1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 #include <linux/align.h>
59 #include <net/netdev_queues.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
336 {
337 	struct bnxt *bp = netdev_priv(dev);
338 	struct tx_bd *txbd;
339 	struct tx_bd_ext *txbd1;
340 	struct netdev_queue *txq;
341 	int i;
342 	dma_addr_t mapping;
343 	unsigned int length, pad = 0;
344 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
345 	u16 prod, last_frag;
346 	struct pci_dev *pdev = bp->pdev;
347 	struct bnxt_tx_ring_info *txr;
348 	struct bnxt_sw_tx_bd *tx_buf;
349 	__le32 lflags = 0;
350 
351 	i = skb_get_queue_mapping(skb);
352 	if (unlikely(i >= bp->tx_nr_rings)) {
353 		dev_kfree_skb_any(skb);
354 		dev_core_stats_tx_dropped_inc(dev);
355 		return NETDEV_TX_OK;
356 	}
357 
358 	txq = netdev_get_tx_queue(dev, i);
359 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
360 	prod = txr->tx_prod;
361 
362 	free_size = bnxt_tx_avail(bp, txr);
363 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
364 		/* We must have raced with NAPI cleanup */
365 		if (net_ratelimit() && txr->kick_pending)
366 			netif_warn(bp, tx_err, dev,
367 				   "bnxt: ring busy w/ flush pending!\n");
368 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
369 					bp->tx_wake_thresh))
370 			return NETDEV_TX_BUSY;
371 	}
372 
373 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
374 		goto tx_free;
375 
376 	length = skb->len;
377 	len = skb_headlen(skb);
378 	last_frag = skb_shinfo(skb)->nr_frags;
379 
380 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
381 
382 	txbd->tx_bd_opaque = prod;
383 
384 	tx_buf = &txr->tx_buf_ring[prod];
385 	tx_buf->skb = skb;
386 	tx_buf->nr_frags = last_frag;
387 
388 	vlan_tag_flags = 0;
389 	cfa_action = bnxt_xmit_get_cfa_action(skb);
390 	if (skb_vlan_tag_present(skb)) {
391 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
392 				 skb_vlan_tag_get(skb);
393 		/* Currently supports 8021Q, 8021AD vlan offloads
394 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
395 		 */
396 		if (skb->vlan_proto == htons(ETH_P_8021Q))
397 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
398 	}
399 
400 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
401 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
402 
403 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
404 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
405 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
406 					    &ptp->tx_hdr_off)) {
407 				if (vlan_tag_flags)
408 					ptp->tx_hdr_off += VLAN_HLEN;
409 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
410 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
411 			} else {
412 				atomic_inc(&bp->ptp_cfg->tx_avail);
413 			}
414 		}
415 	}
416 
417 	if (unlikely(skb->no_fcs))
418 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
419 
420 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
421 	    !lflags) {
422 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
423 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
424 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
425 		void __iomem *db = txr->tx_db.doorbell;
426 		void *pdata = tx_push_buf->data;
427 		u64 *end;
428 		int j, push_len;
429 
430 		/* Set COAL_NOW to be ready quickly for the next push */
431 		tx_push->tx_bd_len_flags_type =
432 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
433 					TX_BD_TYPE_LONG_TX_BD |
434 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
435 					TX_BD_FLAGS_COAL_NOW |
436 					TX_BD_FLAGS_PACKET_END |
437 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
438 
439 		if (skb->ip_summed == CHECKSUM_PARTIAL)
440 			tx_push1->tx_bd_hsize_lflags =
441 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
442 		else
443 			tx_push1->tx_bd_hsize_lflags = 0;
444 
445 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
446 		tx_push1->tx_bd_cfa_action =
447 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
448 
449 		end = pdata + length;
450 		end = PTR_ALIGN(end, 8) - 1;
451 		*end = 0;
452 
453 		skb_copy_from_linear_data(skb, pdata, len);
454 		pdata += len;
455 		for (j = 0; j < last_frag; j++) {
456 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
457 			void *fptr;
458 
459 			fptr = skb_frag_address_safe(frag);
460 			if (!fptr)
461 				goto normal_tx;
462 
463 			memcpy(pdata, fptr, skb_frag_size(frag));
464 			pdata += skb_frag_size(frag);
465 		}
466 
467 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
468 		txbd->tx_bd_haddr = txr->data_mapping;
469 		prod = NEXT_TX(prod);
470 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
471 		memcpy(txbd, tx_push1, sizeof(*txbd));
472 		prod = NEXT_TX(prod);
473 		tx_push->doorbell =
474 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
475 		WRITE_ONCE(txr->tx_prod, prod);
476 
477 		tx_buf->is_push = 1;
478 		netdev_tx_sent_queue(txq, skb->len);
479 		wmb();	/* Sync is_push and byte queue before pushing data */
480 
481 		push_len = (length + sizeof(*tx_push) + 7) / 8;
482 		if (push_len > 16) {
483 			__iowrite64_copy(db, tx_push_buf, 16);
484 			__iowrite32_copy(db + 4, tx_push_buf + 1,
485 					 (push_len - 16) << 1);
486 		} else {
487 			__iowrite64_copy(db, tx_push_buf, push_len);
488 		}
489 
490 		goto tx_done;
491 	}
492 
493 normal_tx:
494 	if (length < BNXT_MIN_PKT_SIZE) {
495 		pad = BNXT_MIN_PKT_SIZE - length;
496 		if (skb_pad(skb, pad))
497 			/* SKB already freed. */
498 			goto tx_kick_pending;
499 		length = BNXT_MIN_PKT_SIZE;
500 	}
501 
502 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
503 
504 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
505 		goto tx_free;
506 
507 	dma_unmap_addr_set(tx_buf, mapping, mapping);
508 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
509 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
510 
511 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
512 
513 	prod = NEXT_TX(prod);
514 	txbd1 = (struct tx_bd_ext *)
515 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
516 
517 	txbd1->tx_bd_hsize_lflags = lflags;
518 	if (skb_is_gso(skb)) {
519 		u32 hdr_len;
520 
521 		if (skb->encapsulation)
522 			hdr_len = skb_inner_tcp_all_headers(skb);
523 		else
524 			hdr_len = skb_tcp_all_headers(skb);
525 
526 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
527 					TX_BD_FLAGS_T_IPID |
528 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
529 		length = skb_shinfo(skb)->gso_size;
530 		txbd1->tx_bd_mss = cpu_to_le32(length);
531 		length += hdr_len;
532 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
533 		txbd1->tx_bd_hsize_lflags |=
534 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
535 		txbd1->tx_bd_mss = 0;
536 	}
537 
538 	length >>= 9;
539 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
540 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
541 				     skb->len);
542 		i = 0;
543 		goto tx_dma_error;
544 	}
545 	flags |= bnxt_lhint_arr[length];
546 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
547 
548 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
549 	txbd1->tx_bd_cfa_action =
550 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
551 	for (i = 0; i < last_frag; i++) {
552 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
553 
554 		prod = NEXT_TX(prod);
555 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
556 
557 		len = skb_frag_size(frag);
558 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
559 					   DMA_TO_DEVICE);
560 
561 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
562 			goto tx_dma_error;
563 
564 		tx_buf = &txr->tx_buf_ring[prod];
565 		dma_unmap_addr_set(tx_buf, mapping, mapping);
566 
567 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
568 
569 		flags = len << TX_BD_LEN_SHIFT;
570 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
571 	}
572 
573 	flags &= ~TX_BD_LEN;
574 	txbd->tx_bd_len_flags_type =
575 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
576 			    TX_BD_FLAGS_PACKET_END);
577 
578 	netdev_tx_sent_queue(txq, skb->len);
579 
580 	skb_tx_timestamp(skb);
581 
582 	/* Sync BD data before updating doorbell */
583 	wmb();
584 
585 	prod = NEXT_TX(prod);
586 	WRITE_ONCE(txr->tx_prod, prod);
587 
588 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
589 		bnxt_txr_db_kick(bp, txr, prod);
590 	else
591 		txr->kick_pending = 1;
592 
593 tx_done:
594 
595 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
596 		if (netdev_xmit_more() && !tx_buf->is_push)
597 			bnxt_txr_db_kick(bp, txr, prod);
598 
599 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
600 				   bp->tx_wake_thresh);
601 	}
602 	return NETDEV_TX_OK;
603 
604 tx_dma_error:
605 	if (BNXT_TX_PTP_IS_SET(lflags))
606 		atomic_inc(&bp->ptp_cfg->tx_avail);
607 
608 	last_frag = i;
609 
610 	/* start back at beginning and unmap skb */
611 	prod = txr->tx_prod;
612 	tx_buf = &txr->tx_buf_ring[prod];
613 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
614 			 skb_headlen(skb), DMA_TO_DEVICE);
615 	prod = NEXT_TX(prod);
616 
617 	/* unmap remaining mapped pages */
618 	for (i = 0; i < last_frag; i++) {
619 		prod = NEXT_TX(prod);
620 		tx_buf = &txr->tx_buf_ring[prod];
621 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
622 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
623 			       DMA_TO_DEVICE);
624 	}
625 
626 tx_free:
627 	dev_kfree_skb_any(skb);
628 tx_kick_pending:
629 	if (txr->kick_pending)
630 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
631 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
632 	dev_core_stats_tx_dropped_inc(dev);
633 	return NETDEV_TX_OK;
634 }
635 
636 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
637 {
638 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
639 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
640 	u16 cons = txr->tx_cons;
641 	struct pci_dev *pdev = bp->pdev;
642 	int i;
643 	unsigned int tx_bytes = 0;
644 
645 	for (i = 0; i < nr_pkts; i++) {
646 		struct bnxt_sw_tx_bd *tx_buf;
647 		struct sk_buff *skb;
648 		int j, last;
649 
650 		tx_buf = &txr->tx_buf_ring[cons];
651 		cons = NEXT_TX(cons);
652 		skb = tx_buf->skb;
653 		tx_buf->skb = NULL;
654 
655 		tx_bytes += skb->len;
656 
657 		if (tx_buf->is_push) {
658 			tx_buf->is_push = 0;
659 			goto next_tx_int;
660 		}
661 
662 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
663 				 skb_headlen(skb), DMA_TO_DEVICE);
664 		last = tx_buf->nr_frags;
665 
666 		for (j = 0; j < last; j++) {
667 			cons = NEXT_TX(cons);
668 			tx_buf = &txr->tx_buf_ring[cons];
669 			dma_unmap_page(
670 				&pdev->dev,
671 				dma_unmap_addr(tx_buf, mapping),
672 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
673 				DMA_TO_DEVICE);
674 		}
675 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
676 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
677 				/* PTP worker takes ownership of the skb */
678 				if (!bnxt_get_tx_ts_p5(bp, skb))
679 					skb = NULL;
680 				else
681 					atomic_inc(&bp->ptp_cfg->tx_avail);
682 			}
683 		}
684 
685 next_tx_int:
686 		cons = NEXT_TX(cons);
687 
688 		dev_kfree_skb_any(skb);
689 	}
690 
691 	WRITE_ONCE(txr->tx_cons, cons);
692 
693 	__netif_txq_completed_wake(txq, nr_pkts, tx_bytes,
694 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
695 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
696 }
697 
698 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
699 					 struct bnxt_rx_ring_info *rxr,
700 					 gfp_t gfp)
701 {
702 	struct device *dev = &bp->pdev->dev;
703 	struct page *page;
704 
705 	page = page_pool_dev_alloc_pages(rxr->page_pool);
706 	if (!page)
707 		return NULL;
708 
709 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
710 				      DMA_ATTR_WEAK_ORDERING);
711 	if (dma_mapping_error(dev, *mapping)) {
712 		page_pool_recycle_direct(rxr->page_pool, page);
713 		return NULL;
714 	}
715 	return page;
716 }
717 
718 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
719 				       gfp_t gfp)
720 {
721 	u8 *data;
722 	struct pci_dev *pdev = bp->pdev;
723 
724 	if (gfp == GFP_ATOMIC)
725 		data = napi_alloc_frag(bp->rx_buf_size);
726 	else
727 		data = netdev_alloc_frag(bp->rx_buf_size);
728 	if (!data)
729 		return NULL;
730 
731 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
732 					bp->rx_buf_use_size, bp->rx_dir,
733 					DMA_ATTR_WEAK_ORDERING);
734 
735 	if (dma_mapping_error(&pdev->dev, *mapping)) {
736 		skb_free_frag(data);
737 		data = NULL;
738 	}
739 	return data;
740 }
741 
742 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
743 		       u16 prod, gfp_t gfp)
744 {
745 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
746 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
747 	dma_addr_t mapping;
748 
749 	if (BNXT_RX_PAGE_MODE(bp)) {
750 		struct page *page =
751 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
752 
753 		if (!page)
754 			return -ENOMEM;
755 
756 		mapping += bp->rx_dma_offset;
757 		rx_buf->data = page;
758 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
759 	} else {
760 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
761 
762 		if (!data)
763 			return -ENOMEM;
764 
765 		rx_buf->data = data;
766 		rx_buf->data_ptr = data + bp->rx_offset;
767 	}
768 	rx_buf->mapping = mapping;
769 
770 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
771 	return 0;
772 }
773 
774 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
775 {
776 	u16 prod = rxr->rx_prod;
777 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
778 	struct rx_bd *cons_bd, *prod_bd;
779 
780 	prod_rx_buf = &rxr->rx_buf_ring[prod];
781 	cons_rx_buf = &rxr->rx_buf_ring[cons];
782 
783 	prod_rx_buf->data = data;
784 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
785 
786 	prod_rx_buf->mapping = cons_rx_buf->mapping;
787 
788 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
789 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
790 
791 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
792 }
793 
794 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
795 {
796 	u16 next, max = rxr->rx_agg_bmap_size;
797 
798 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
799 	if (next >= max)
800 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
801 	return next;
802 }
803 
804 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
805 				     struct bnxt_rx_ring_info *rxr,
806 				     u16 prod, gfp_t gfp)
807 {
808 	struct rx_bd *rxbd =
809 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
810 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
811 	struct pci_dev *pdev = bp->pdev;
812 	struct page *page;
813 	dma_addr_t mapping;
814 	u16 sw_prod = rxr->rx_sw_agg_prod;
815 	unsigned int offset = 0;
816 
817 	if (BNXT_RX_PAGE_MODE(bp)) {
818 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
819 
820 		if (!page)
821 			return -ENOMEM;
822 
823 	} else {
824 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
825 			page = rxr->rx_page;
826 			if (!page) {
827 				page = alloc_page(gfp);
828 				if (!page)
829 					return -ENOMEM;
830 				rxr->rx_page = page;
831 				rxr->rx_page_offset = 0;
832 			}
833 			offset = rxr->rx_page_offset;
834 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
835 			if (rxr->rx_page_offset == PAGE_SIZE)
836 				rxr->rx_page = NULL;
837 			else
838 				get_page(page);
839 		} else {
840 			page = alloc_page(gfp);
841 			if (!page)
842 				return -ENOMEM;
843 		}
844 
845 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
846 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
847 					     DMA_ATTR_WEAK_ORDERING);
848 		if (dma_mapping_error(&pdev->dev, mapping)) {
849 			__free_page(page);
850 			return -EIO;
851 		}
852 	}
853 
854 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
855 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
856 
857 	__set_bit(sw_prod, rxr->rx_agg_bmap);
858 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
859 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
860 
861 	rx_agg_buf->page = page;
862 	rx_agg_buf->offset = offset;
863 	rx_agg_buf->mapping = mapping;
864 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
865 	rxbd->rx_bd_opaque = sw_prod;
866 	return 0;
867 }
868 
869 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
870 				       struct bnxt_cp_ring_info *cpr,
871 				       u16 cp_cons, u16 curr)
872 {
873 	struct rx_agg_cmp *agg;
874 
875 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
876 	agg = (struct rx_agg_cmp *)
877 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
878 	return agg;
879 }
880 
881 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
882 					      struct bnxt_rx_ring_info *rxr,
883 					      u16 agg_id, u16 curr)
884 {
885 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
886 
887 	return &tpa_info->agg_arr[curr];
888 }
889 
890 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
891 				   u16 start, u32 agg_bufs, bool tpa)
892 {
893 	struct bnxt_napi *bnapi = cpr->bnapi;
894 	struct bnxt *bp = bnapi->bp;
895 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
896 	u16 prod = rxr->rx_agg_prod;
897 	u16 sw_prod = rxr->rx_sw_agg_prod;
898 	bool p5_tpa = false;
899 	u32 i;
900 
901 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
902 		p5_tpa = true;
903 
904 	for (i = 0; i < agg_bufs; i++) {
905 		u16 cons;
906 		struct rx_agg_cmp *agg;
907 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
908 		struct rx_bd *prod_bd;
909 		struct page *page;
910 
911 		if (p5_tpa)
912 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
913 		else
914 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
915 		cons = agg->rx_agg_cmp_opaque;
916 		__clear_bit(cons, rxr->rx_agg_bmap);
917 
918 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
919 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
920 
921 		__set_bit(sw_prod, rxr->rx_agg_bmap);
922 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
923 		cons_rx_buf = &rxr->rx_agg_ring[cons];
924 
925 		/* It is possible for sw_prod to be equal to cons, so
926 		 * set cons_rx_buf->page to NULL first.
927 		 */
928 		page = cons_rx_buf->page;
929 		cons_rx_buf->page = NULL;
930 		prod_rx_buf->page = page;
931 		prod_rx_buf->offset = cons_rx_buf->offset;
932 
933 		prod_rx_buf->mapping = cons_rx_buf->mapping;
934 
935 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
936 
937 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
938 		prod_bd->rx_bd_opaque = sw_prod;
939 
940 		prod = NEXT_RX_AGG(prod);
941 		sw_prod = NEXT_RX_AGG(sw_prod);
942 	}
943 	rxr->rx_agg_prod = prod;
944 	rxr->rx_sw_agg_prod = sw_prod;
945 }
946 
947 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
948 					      struct bnxt_rx_ring_info *rxr,
949 					      u16 cons, void *data, u8 *data_ptr,
950 					      dma_addr_t dma_addr,
951 					      unsigned int offset_and_len)
952 {
953 	unsigned int len = offset_and_len & 0xffff;
954 	struct page *page = data;
955 	u16 prod = rxr->rx_prod;
956 	struct sk_buff *skb;
957 	int err;
958 
959 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
960 	if (unlikely(err)) {
961 		bnxt_reuse_rx_data(rxr, cons, data);
962 		return NULL;
963 	}
964 	dma_addr -= bp->rx_dma_offset;
965 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
966 			     DMA_ATTR_WEAK_ORDERING);
967 	skb = build_skb(page_address(page), PAGE_SIZE);
968 	if (!skb) {
969 		page_pool_recycle_direct(rxr->page_pool, page);
970 		return NULL;
971 	}
972 	skb_mark_for_recycle(skb);
973 	skb_reserve(skb, bp->rx_dma_offset);
974 	__skb_put(skb, len);
975 
976 	return skb;
977 }
978 
979 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
980 					struct bnxt_rx_ring_info *rxr,
981 					u16 cons, void *data, u8 *data_ptr,
982 					dma_addr_t dma_addr,
983 					unsigned int offset_and_len)
984 {
985 	unsigned int payload = offset_and_len >> 16;
986 	unsigned int len = offset_and_len & 0xffff;
987 	skb_frag_t *frag;
988 	struct page *page = data;
989 	u16 prod = rxr->rx_prod;
990 	struct sk_buff *skb;
991 	int off, err;
992 
993 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
994 	if (unlikely(err)) {
995 		bnxt_reuse_rx_data(rxr, cons, data);
996 		return NULL;
997 	}
998 	dma_addr -= bp->rx_dma_offset;
999 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1000 			     DMA_ATTR_WEAK_ORDERING);
1001 
1002 	if (unlikely(!payload))
1003 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1004 
1005 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1006 	if (!skb) {
1007 		page_pool_recycle_direct(rxr->page_pool, page);
1008 		return NULL;
1009 	}
1010 
1011 	skb_mark_for_recycle(skb);
1012 	off = (void *)data_ptr - page_address(page);
1013 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1014 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1015 	       payload + NET_IP_ALIGN);
1016 
1017 	frag = &skb_shinfo(skb)->frags[0];
1018 	skb_frag_size_sub(frag, payload);
1019 	skb_frag_off_add(frag, payload);
1020 	skb->data_len -= payload;
1021 	skb->tail += payload;
1022 
1023 	return skb;
1024 }
1025 
1026 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1027 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1028 				   void *data, u8 *data_ptr,
1029 				   dma_addr_t dma_addr,
1030 				   unsigned int offset_and_len)
1031 {
1032 	u16 prod = rxr->rx_prod;
1033 	struct sk_buff *skb;
1034 	int err;
1035 
1036 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1037 	if (unlikely(err)) {
1038 		bnxt_reuse_rx_data(rxr, cons, data);
1039 		return NULL;
1040 	}
1041 
1042 	skb = build_skb(data, bp->rx_buf_size);
1043 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1044 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1045 	if (!skb) {
1046 		skb_free_frag(data);
1047 		return NULL;
1048 	}
1049 
1050 	skb_reserve(skb, bp->rx_offset);
1051 	skb_put(skb, offset_and_len & 0xffff);
1052 	return skb;
1053 }
1054 
1055 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1056 			       struct bnxt_cp_ring_info *cpr,
1057 			       struct skb_shared_info *shinfo,
1058 			       u16 idx, u32 agg_bufs, bool tpa,
1059 			       struct xdp_buff *xdp)
1060 {
1061 	struct bnxt_napi *bnapi = cpr->bnapi;
1062 	struct pci_dev *pdev = bp->pdev;
1063 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1064 	u16 prod = rxr->rx_agg_prod;
1065 	u32 i, total_frag_len = 0;
1066 	bool p5_tpa = false;
1067 
1068 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1069 		p5_tpa = true;
1070 
1071 	for (i = 0; i < agg_bufs; i++) {
1072 		skb_frag_t *frag = &shinfo->frags[i];
1073 		u16 cons, frag_len;
1074 		struct rx_agg_cmp *agg;
1075 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1076 		struct page *page;
1077 		dma_addr_t mapping;
1078 
1079 		if (p5_tpa)
1080 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1081 		else
1082 			agg = bnxt_get_agg(bp, cpr, idx, i);
1083 		cons = agg->rx_agg_cmp_opaque;
1084 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1085 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1086 
1087 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1088 		skb_frag_off_set(frag, cons_rx_buf->offset);
1089 		skb_frag_size_set(frag, frag_len);
1090 		__skb_frag_set_page(frag, cons_rx_buf->page);
1091 		shinfo->nr_frags = i + 1;
1092 		__clear_bit(cons, rxr->rx_agg_bmap);
1093 
1094 		/* It is possible for bnxt_alloc_rx_page() to allocate
1095 		 * a sw_prod index that equals the cons index, so we
1096 		 * need to clear the cons entry now.
1097 		 */
1098 		mapping = cons_rx_buf->mapping;
1099 		page = cons_rx_buf->page;
1100 		cons_rx_buf->page = NULL;
1101 
1102 		if (xdp && page_is_pfmemalloc(page))
1103 			xdp_buff_set_frag_pfmemalloc(xdp);
1104 
1105 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1106 			unsigned int nr_frags;
1107 
1108 			nr_frags = --shinfo->nr_frags;
1109 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1110 			cons_rx_buf->page = page;
1111 
1112 			/* Update prod since possibly some pages have been
1113 			 * allocated already.
1114 			 */
1115 			rxr->rx_agg_prod = prod;
1116 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1117 			return 0;
1118 		}
1119 
1120 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1121 				     bp->rx_dir,
1122 				     DMA_ATTR_WEAK_ORDERING);
1123 
1124 		total_frag_len += frag_len;
1125 		prod = NEXT_RX_AGG(prod);
1126 	}
1127 	rxr->rx_agg_prod = prod;
1128 	return total_frag_len;
1129 }
1130 
1131 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1132 					     struct bnxt_cp_ring_info *cpr,
1133 					     struct sk_buff *skb, u16 idx,
1134 					     u32 agg_bufs, bool tpa)
1135 {
1136 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1137 	u32 total_frag_len = 0;
1138 
1139 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1140 					     agg_bufs, tpa, NULL);
1141 	if (!total_frag_len) {
1142 		dev_kfree_skb(skb);
1143 		return NULL;
1144 	}
1145 
1146 	skb->data_len += total_frag_len;
1147 	skb->len += total_frag_len;
1148 	skb->truesize += PAGE_SIZE * agg_bufs;
1149 	return skb;
1150 }
1151 
1152 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1153 				 struct bnxt_cp_ring_info *cpr,
1154 				 struct xdp_buff *xdp, u16 idx,
1155 				 u32 agg_bufs, bool tpa)
1156 {
1157 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1158 	u32 total_frag_len = 0;
1159 
1160 	if (!xdp_buff_has_frags(xdp))
1161 		shinfo->nr_frags = 0;
1162 
1163 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1164 					     idx, agg_bufs, tpa, xdp);
1165 	if (total_frag_len) {
1166 		xdp_buff_set_frags_flag(xdp);
1167 		shinfo->nr_frags = agg_bufs;
1168 		shinfo->xdp_frags_size = total_frag_len;
1169 	}
1170 	return total_frag_len;
1171 }
1172 
1173 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1174 			       u8 agg_bufs, u32 *raw_cons)
1175 {
1176 	u16 last;
1177 	struct rx_agg_cmp *agg;
1178 
1179 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1180 	last = RING_CMP(*raw_cons);
1181 	agg = (struct rx_agg_cmp *)
1182 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1183 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1184 }
1185 
1186 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1187 					    unsigned int len,
1188 					    dma_addr_t mapping)
1189 {
1190 	struct bnxt *bp = bnapi->bp;
1191 	struct pci_dev *pdev = bp->pdev;
1192 	struct sk_buff *skb;
1193 
1194 	skb = napi_alloc_skb(&bnapi->napi, len);
1195 	if (!skb)
1196 		return NULL;
1197 
1198 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1199 				bp->rx_dir);
1200 
1201 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1202 	       len + NET_IP_ALIGN);
1203 
1204 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1205 				   bp->rx_dir);
1206 
1207 	skb_put(skb, len);
1208 	return skb;
1209 }
1210 
1211 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1212 			   u32 *raw_cons, void *cmp)
1213 {
1214 	struct rx_cmp *rxcmp = cmp;
1215 	u32 tmp_raw_cons = *raw_cons;
1216 	u8 cmp_type, agg_bufs = 0;
1217 
1218 	cmp_type = RX_CMP_TYPE(rxcmp);
1219 
1220 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1221 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1222 			    RX_CMP_AGG_BUFS) >>
1223 			   RX_CMP_AGG_BUFS_SHIFT;
1224 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1225 		struct rx_tpa_end_cmp *tpa_end = cmp;
1226 
1227 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1228 			return 0;
1229 
1230 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1231 	}
1232 
1233 	if (agg_bufs) {
1234 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1235 			return -EBUSY;
1236 	}
1237 	*raw_cons = tmp_raw_cons;
1238 	return 0;
1239 }
1240 
1241 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1242 {
1243 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1244 		return;
1245 
1246 	if (BNXT_PF(bp))
1247 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1248 	else
1249 		schedule_delayed_work(&bp->fw_reset_task, delay);
1250 }
1251 
1252 static void bnxt_queue_sp_work(struct bnxt *bp)
1253 {
1254 	if (BNXT_PF(bp))
1255 		queue_work(bnxt_pf_wq, &bp->sp_task);
1256 	else
1257 		schedule_work(&bp->sp_task);
1258 }
1259 
1260 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1261 {
1262 	if (!rxr->bnapi->in_reset) {
1263 		rxr->bnapi->in_reset = true;
1264 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1265 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1266 		else
1267 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1268 		bnxt_queue_sp_work(bp);
1269 	}
1270 	rxr->rx_next_cons = 0xffff;
1271 }
1272 
1273 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1274 {
1275 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1276 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1277 
1278 	if (test_bit(idx, map->agg_idx_bmap))
1279 		idx = find_first_zero_bit(map->agg_idx_bmap,
1280 					  BNXT_AGG_IDX_BMAP_SIZE);
1281 	__set_bit(idx, map->agg_idx_bmap);
1282 	map->agg_id_tbl[agg_id] = idx;
1283 	return idx;
1284 }
1285 
1286 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1287 {
1288 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1289 
1290 	__clear_bit(idx, map->agg_idx_bmap);
1291 }
1292 
1293 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1294 {
1295 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1296 
1297 	return map->agg_id_tbl[agg_id];
1298 }
1299 
1300 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1301 			   struct rx_tpa_start_cmp *tpa_start,
1302 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1303 {
1304 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1305 	struct bnxt_tpa_info *tpa_info;
1306 	u16 cons, prod, agg_id;
1307 	struct rx_bd *prod_bd;
1308 	dma_addr_t mapping;
1309 
1310 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1311 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1312 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1313 	} else {
1314 		agg_id = TPA_START_AGG_ID(tpa_start);
1315 	}
1316 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1317 	prod = rxr->rx_prod;
1318 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1319 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1320 	tpa_info = &rxr->rx_tpa[agg_id];
1321 
1322 	if (unlikely(cons != rxr->rx_next_cons ||
1323 		     TPA_START_ERROR(tpa_start))) {
1324 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1325 			    cons, rxr->rx_next_cons,
1326 			    TPA_START_ERROR_CODE(tpa_start1));
1327 		bnxt_sched_reset(bp, rxr);
1328 		return;
1329 	}
1330 	/* Store cfa_code in tpa_info to use in tpa_end
1331 	 * completion processing.
1332 	 */
1333 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1334 	prod_rx_buf->data = tpa_info->data;
1335 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1336 
1337 	mapping = tpa_info->mapping;
1338 	prod_rx_buf->mapping = mapping;
1339 
1340 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1341 
1342 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1343 
1344 	tpa_info->data = cons_rx_buf->data;
1345 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1346 	cons_rx_buf->data = NULL;
1347 	tpa_info->mapping = cons_rx_buf->mapping;
1348 
1349 	tpa_info->len =
1350 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1351 				RX_TPA_START_CMP_LEN_SHIFT;
1352 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1353 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1354 
1355 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1356 		tpa_info->gso_type = SKB_GSO_TCPV4;
1357 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1358 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1359 			tpa_info->gso_type = SKB_GSO_TCPV6;
1360 		tpa_info->rss_hash =
1361 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1362 	} else {
1363 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1364 		tpa_info->gso_type = 0;
1365 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1366 	}
1367 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1368 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1369 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1370 	tpa_info->agg_count = 0;
1371 
1372 	rxr->rx_prod = NEXT_RX(prod);
1373 	cons = NEXT_RX(cons);
1374 	rxr->rx_next_cons = NEXT_RX(cons);
1375 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1376 
1377 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1378 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1379 	cons_rx_buf->data = NULL;
1380 }
1381 
1382 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1383 {
1384 	if (agg_bufs)
1385 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1386 }
1387 
1388 #ifdef CONFIG_INET
1389 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1390 {
1391 	struct udphdr *uh = NULL;
1392 
1393 	if (ip_proto == htons(ETH_P_IP)) {
1394 		struct iphdr *iph = (struct iphdr *)skb->data;
1395 
1396 		if (iph->protocol == IPPROTO_UDP)
1397 			uh = (struct udphdr *)(iph + 1);
1398 	} else {
1399 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1400 
1401 		if (iph->nexthdr == IPPROTO_UDP)
1402 			uh = (struct udphdr *)(iph + 1);
1403 	}
1404 	if (uh) {
1405 		if (uh->check)
1406 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1407 		else
1408 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1409 	}
1410 }
1411 #endif
1412 
1413 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1414 					   int payload_off, int tcp_ts,
1415 					   struct sk_buff *skb)
1416 {
1417 #ifdef CONFIG_INET
1418 	struct tcphdr *th;
1419 	int len, nw_off;
1420 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1421 	u32 hdr_info = tpa_info->hdr_info;
1422 	bool loopback = false;
1423 
1424 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1425 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1426 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1427 
1428 	/* If the packet is an internal loopback packet, the offsets will
1429 	 * have an extra 4 bytes.
1430 	 */
1431 	if (inner_mac_off == 4) {
1432 		loopback = true;
1433 	} else if (inner_mac_off > 4) {
1434 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1435 					    ETH_HLEN - 2));
1436 
1437 		/* We only support inner iPv4/ipv6.  If we don't see the
1438 		 * correct protocol ID, it must be a loopback packet where
1439 		 * the offsets are off by 4.
1440 		 */
1441 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1442 			loopback = true;
1443 	}
1444 	if (loopback) {
1445 		/* internal loopback packet, subtract all offsets by 4 */
1446 		inner_ip_off -= 4;
1447 		inner_mac_off -= 4;
1448 		outer_ip_off -= 4;
1449 	}
1450 
1451 	nw_off = inner_ip_off - ETH_HLEN;
1452 	skb_set_network_header(skb, nw_off);
1453 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1454 		struct ipv6hdr *iph = ipv6_hdr(skb);
1455 
1456 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1457 		len = skb->len - skb_transport_offset(skb);
1458 		th = tcp_hdr(skb);
1459 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1460 	} else {
1461 		struct iphdr *iph = ip_hdr(skb);
1462 
1463 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1464 		len = skb->len - skb_transport_offset(skb);
1465 		th = tcp_hdr(skb);
1466 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1467 	}
1468 
1469 	if (inner_mac_off) { /* tunnel */
1470 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1471 					    ETH_HLEN - 2));
1472 
1473 		bnxt_gro_tunnel(skb, proto);
1474 	}
1475 #endif
1476 	return skb;
1477 }
1478 
1479 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1480 					   int payload_off, int tcp_ts,
1481 					   struct sk_buff *skb)
1482 {
1483 #ifdef CONFIG_INET
1484 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1485 	u32 hdr_info = tpa_info->hdr_info;
1486 	int iphdr_len, nw_off;
1487 
1488 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1489 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1490 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1491 
1492 	nw_off = inner_ip_off - ETH_HLEN;
1493 	skb_set_network_header(skb, nw_off);
1494 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1495 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1496 	skb_set_transport_header(skb, nw_off + iphdr_len);
1497 
1498 	if (inner_mac_off) { /* tunnel */
1499 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1500 					    ETH_HLEN - 2));
1501 
1502 		bnxt_gro_tunnel(skb, proto);
1503 	}
1504 #endif
1505 	return skb;
1506 }
1507 
1508 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1509 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1510 
1511 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1512 					   int payload_off, int tcp_ts,
1513 					   struct sk_buff *skb)
1514 {
1515 #ifdef CONFIG_INET
1516 	struct tcphdr *th;
1517 	int len, nw_off, tcp_opt_len = 0;
1518 
1519 	if (tcp_ts)
1520 		tcp_opt_len = 12;
1521 
1522 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1523 		struct iphdr *iph;
1524 
1525 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1526 			 ETH_HLEN;
1527 		skb_set_network_header(skb, nw_off);
1528 		iph = ip_hdr(skb);
1529 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1530 		len = skb->len - skb_transport_offset(skb);
1531 		th = tcp_hdr(skb);
1532 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1533 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1534 		struct ipv6hdr *iph;
1535 
1536 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1537 			 ETH_HLEN;
1538 		skb_set_network_header(skb, nw_off);
1539 		iph = ipv6_hdr(skb);
1540 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1541 		len = skb->len - skb_transport_offset(skb);
1542 		th = tcp_hdr(skb);
1543 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1544 	} else {
1545 		dev_kfree_skb_any(skb);
1546 		return NULL;
1547 	}
1548 
1549 	if (nw_off) /* tunnel */
1550 		bnxt_gro_tunnel(skb, skb->protocol);
1551 #endif
1552 	return skb;
1553 }
1554 
1555 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1556 					   struct bnxt_tpa_info *tpa_info,
1557 					   struct rx_tpa_end_cmp *tpa_end,
1558 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1559 					   struct sk_buff *skb)
1560 {
1561 #ifdef CONFIG_INET
1562 	int payload_off;
1563 	u16 segs;
1564 
1565 	segs = TPA_END_TPA_SEGS(tpa_end);
1566 	if (segs == 1)
1567 		return skb;
1568 
1569 	NAPI_GRO_CB(skb)->count = segs;
1570 	skb_shinfo(skb)->gso_size =
1571 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1572 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1573 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1574 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1575 	else
1576 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1577 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1578 	if (likely(skb))
1579 		tcp_gro_complete(skb);
1580 #endif
1581 	return skb;
1582 }
1583 
1584 /* Given the cfa_code of a received packet determine which
1585  * netdev (vf-rep or PF) the packet is destined to.
1586  */
1587 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1588 {
1589 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1590 
1591 	/* if vf-rep dev is NULL, the must belongs to the PF */
1592 	return dev ? dev : bp->dev;
1593 }
1594 
1595 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1596 					   struct bnxt_cp_ring_info *cpr,
1597 					   u32 *raw_cons,
1598 					   struct rx_tpa_end_cmp *tpa_end,
1599 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1600 					   u8 *event)
1601 {
1602 	struct bnxt_napi *bnapi = cpr->bnapi;
1603 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1604 	u8 *data_ptr, agg_bufs;
1605 	unsigned int len;
1606 	struct bnxt_tpa_info *tpa_info;
1607 	dma_addr_t mapping;
1608 	struct sk_buff *skb;
1609 	u16 idx = 0, agg_id;
1610 	void *data;
1611 	bool gro;
1612 
1613 	if (unlikely(bnapi->in_reset)) {
1614 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1615 
1616 		if (rc < 0)
1617 			return ERR_PTR(-EBUSY);
1618 		return NULL;
1619 	}
1620 
1621 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1622 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1623 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1624 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1625 		tpa_info = &rxr->rx_tpa[agg_id];
1626 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1627 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1628 				    agg_bufs, tpa_info->agg_count);
1629 			agg_bufs = tpa_info->agg_count;
1630 		}
1631 		tpa_info->agg_count = 0;
1632 		*event |= BNXT_AGG_EVENT;
1633 		bnxt_free_agg_idx(rxr, agg_id);
1634 		idx = agg_id;
1635 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1636 	} else {
1637 		agg_id = TPA_END_AGG_ID(tpa_end);
1638 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1639 		tpa_info = &rxr->rx_tpa[agg_id];
1640 		idx = RING_CMP(*raw_cons);
1641 		if (agg_bufs) {
1642 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1643 				return ERR_PTR(-EBUSY);
1644 
1645 			*event |= BNXT_AGG_EVENT;
1646 			idx = NEXT_CMP(idx);
1647 		}
1648 		gro = !!TPA_END_GRO(tpa_end);
1649 	}
1650 	data = tpa_info->data;
1651 	data_ptr = tpa_info->data_ptr;
1652 	prefetch(data_ptr);
1653 	len = tpa_info->len;
1654 	mapping = tpa_info->mapping;
1655 
1656 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1657 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1658 		if (agg_bufs > MAX_SKB_FRAGS)
1659 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1660 				    agg_bufs, (int)MAX_SKB_FRAGS);
1661 		return NULL;
1662 	}
1663 
1664 	if (len <= bp->rx_copy_thresh) {
1665 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1666 		if (!skb) {
1667 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1668 			cpr->sw_stats.rx.rx_oom_discards += 1;
1669 			return NULL;
1670 		}
1671 	} else {
1672 		u8 *new_data;
1673 		dma_addr_t new_mapping;
1674 
1675 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1676 		if (!new_data) {
1677 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1678 			cpr->sw_stats.rx.rx_oom_discards += 1;
1679 			return NULL;
1680 		}
1681 
1682 		tpa_info->data = new_data;
1683 		tpa_info->data_ptr = new_data + bp->rx_offset;
1684 		tpa_info->mapping = new_mapping;
1685 
1686 		skb = build_skb(data, bp->rx_buf_size);
1687 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1688 				       bp->rx_buf_use_size, bp->rx_dir,
1689 				       DMA_ATTR_WEAK_ORDERING);
1690 
1691 		if (!skb) {
1692 			skb_free_frag(data);
1693 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1694 			cpr->sw_stats.rx.rx_oom_discards += 1;
1695 			return NULL;
1696 		}
1697 		skb_reserve(skb, bp->rx_offset);
1698 		skb_put(skb, len);
1699 	}
1700 
1701 	if (agg_bufs) {
1702 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1703 		if (!skb) {
1704 			/* Page reuse already handled by bnxt_rx_pages(). */
1705 			cpr->sw_stats.rx.rx_oom_discards += 1;
1706 			return NULL;
1707 		}
1708 	}
1709 
1710 	skb->protocol =
1711 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1712 
1713 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1714 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1715 
1716 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1717 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1718 		__be16 vlan_proto = htons(tpa_info->metadata >>
1719 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1720 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1721 
1722 		if (eth_type_vlan(vlan_proto)) {
1723 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1724 		} else {
1725 			dev_kfree_skb(skb);
1726 			return NULL;
1727 		}
1728 	}
1729 
1730 	skb_checksum_none_assert(skb);
1731 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1732 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1733 		skb->csum_level =
1734 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1735 	}
1736 
1737 	if (gro)
1738 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1739 
1740 	return skb;
1741 }
1742 
1743 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1744 			 struct rx_agg_cmp *rx_agg)
1745 {
1746 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1747 	struct bnxt_tpa_info *tpa_info;
1748 
1749 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1750 	tpa_info = &rxr->rx_tpa[agg_id];
1751 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1752 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1753 }
1754 
1755 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1756 			     struct sk_buff *skb)
1757 {
1758 	if (skb->dev != bp->dev) {
1759 		/* this packet belongs to a vf-rep */
1760 		bnxt_vf_rep_rx(bp, skb);
1761 		return;
1762 	}
1763 	skb_record_rx_queue(skb, bnapi->index);
1764 	napi_gro_receive(&bnapi->napi, skb);
1765 }
1766 
1767 /* returns the following:
1768  * 1       - 1 packet successfully received
1769  * 0       - successful TPA_START, packet not completed yet
1770  * -EBUSY  - completion ring does not have all the agg buffers yet
1771  * -ENOMEM - packet aborted due to out of memory
1772  * -EIO    - packet aborted due to hw error indicated in BD
1773  */
1774 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1775 		       u32 *raw_cons, u8 *event)
1776 {
1777 	struct bnxt_napi *bnapi = cpr->bnapi;
1778 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1779 	struct net_device *dev = bp->dev;
1780 	struct rx_cmp *rxcmp;
1781 	struct rx_cmp_ext *rxcmp1;
1782 	u32 tmp_raw_cons = *raw_cons;
1783 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1784 	struct bnxt_sw_rx_bd *rx_buf;
1785 	unsigned int len;
1786 	u8 *data_ptr, agg_bufs, cmp_type;
1787 	bool xdp_active = false;
1788 	dma_addr_t dma_addr;
1789 	struct sk_buff *skb;
1790 	struct xdp_buff xdp;
1791 	u32 flags, misc;
1792 	void *data;
1793 	int rc = 0;
1794 
1795 	rxcmp = (struct rx_cmp *)
1796 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1797 
1798 	cmp_type = RX_CMP_TYPE(rxcmp);
1799 
1800 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1801 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1802 		goto next_rx_no_prod_no_len;
1803 	}
1804 
1805 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1806 	cp_cons = RING_CMP(tmp_raw_cons);
1807 	rxcmp1 = (struct rx_cmp_ext *)
1808 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1809 
1810 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1811 		return -EBUSY;
1812 
1813 	/* The valid test of the entry must be done first before
1814 	 * reading any further.
1815 	 */
1816 	dma_rmb();
1817 	prod = rxr->rx_prod;
1818 
1819 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1820 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1821 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1822 
1823 		*event |= BNXT_RX_EVENT;
1824 		goto next_rx_no_prod_no_len;
1825 
1826 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1827 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1828 				   (struct rx_tpa_end_cmp *)rxcmp,
1829 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1830 
1831 		if (IS_ERR(skb))
1832 			return -EBUSY;
1833 
1834 		rc = -ENOMEM;
1835 		if (likely(skb)) {
1836 			bnxt_deliver_skb(bp, bnapi, skb);
1837 			rc = 1;
1838 		}
1839 		*event |= BNXT_RX_EVENT;
1840 		goto next_rx_no_prod_no_len;
1841 	}
1842 
1843 	cons = rxcmp->rx_cmp_opaque;
1844 	if (unlikely(cons != rxr->rx_next_cons)) {
1845 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1846 
1847 		/* 0xffff is forced error, don't print it */
1848 		if (rxr->rx_next_cons != 0xffff)
1849 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1850 				    cons, rxr->rx_next_cons);
1851 		bnxt_sched_reset(bp, rxr);
1852 		if (rc1)
1853 			return rc1;
1854 		goto next_rx_no_prod_no_len;
1855 	}
1856 	rx_buf = &rxr->rx_buf_ring[cons];
1857 	data = rx_buf->data;
1858 	data_ptr = rx_buf->data_ptr;
1859 	prefetch(data_ptr);
1860 
1861 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1862 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1863 
1864 	if (agg_bufs) {
1865 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1866 			return -EBUSY;
1867 
1868 		cp_cons = NEXT_CMP(cp_cons);
1869 		*event |= BNXT_AGG_EVENT;
1870 	}
1871 	*event |= BNXT_RX_EVENT;
1872 
1873 	rx_buf->data = NULL;
1874 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1875 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1876 
1877 		bnxt_reuse_rx_data(rxr, cons, data);
1878 		if (agg_bufs)
1879 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1880 					       false);
1881 
1882 		rc = -EIO;
1883 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1884 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1885 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1886 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1887 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1888 						 rx_err);
1889 				bnxt_sched_reset(bp, rxr);
1890 			}
1891 		}
1892 		goto next_rx_no_len;
1893 	}
1894 
1895 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1896 	len = flags >> RX_CMP_LEN_SHIFT;
1897 	dma_addr = rx_buf->mapping;
1898 
1899 	if (bnxt_xdp_attached(bp, rxr)) {
1900 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
1901 		if (agg_bufs) {
1902 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1903 							     cp_cons, agg_bufs,
1904 							     false);
1905 			if (!frag_len) {
1906 				cpr->sw_stats.rx.rx_oom_discards += 1;
1907 				rc = -ENOMEM;
1908 				goto next_rx;
1909 			}
1910 		}
1911 		xdp_active = true;
1912 	}
1913 
1914 	if (xdp_active) {
1915 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
1916 			rc = 1;
1917 			goto next_rx;
1918 		}
1919 	}
1920 
1921 	if (len <= bp->rx_copy_thresh) {
1922 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1923 		bnxt_reuse_rx_data(rxr, cons, data);
1924 		if (!skb) {
1925 			if (agg_bufs) {
1926 				if (!xdp_active)
1927 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1928 							       agg_bufs, false);
1929 				else
1930 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1931 			}
1932 			cpr->sw_stats.rx.rx_oom_discards += 1;
1933 			rc = -ENOMEM;
1934 			goto next_rx;
1935 		}
1936 	} else {
1937 		u32 payload;
1938 
1939 		if (rx_buf->data_ptr == data_ptr)
1940 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1941 		else
1942 			payload = 0;
1943 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1944 				      payload | len);
1945 		if (!skb) {
1946 			cpr->sw_stats.rx.rx_oom_discards += 1;
1947 			rc = -ENOMEM;
1948 			goto next_rx;
1949 		}
1950 	}
1951 
1952 	if (agg_bufs) {
1953 		if (!xdp_active) {
1954 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1955 			if (!skb) {
1956 				cpr->sw_stats.rx.rx_oom_discards += 1;
1957 				rc = -ENOMEM;
1958 				goto next_rx;
1959 			}
1960 		} else {
1961 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1962 			if (!skb) {
1963 				/* we should be able to free the old skb here */
1964 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1965 				cpr->sw_stats.rx.rx_oom_discards += 1;
1966 				rc = -ENOMEM;
1967 				goto next_rx;
1968 			}
1969 		}
1970 	}
1971 
1972 	if (RX_CMP_HASH_VALID(rxcmp)) {
1973 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1974 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1975 
1976 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1977 		if (hash_type != 1 && hash_type != 3)
1978 			type = PKT_HASH_TYPE_L3;
1979 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1980 	}
1981 
1982 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1983 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1984 
1985 	if ((rxcmp1->rx_cmp_flags2 &
1986 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1987 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1988 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1989 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1990 		__be16 vlan_proto = htons(meta_data >>
1991 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1992 
1993 		if (eth_type_vlan(vlan_proto)) {
1994 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1995 		} else {
1996 			dev_kfree_skb(skb);
1997 			goto next_rx;
1998 		}
1999 	}
2000 
2001 	skb_checksum_none_assert(skb);
2002 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2003 		if (dev->features & NETIF_F_RXCSUM) {
2004 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2005 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2006 		}
2007 	} else {
2008 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2009 			if (dev->features & NETIF_F_RXCSUM)
2010 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2011 		}
2012 	}
2013 
2014 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2015 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2016 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2017 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2018 			u64 ns, ts;
2019 
2020 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2021 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2022 
2023 				spin_lock_bh(&ptp->ptp_lock);
2024 				ns = timecounter_cyc2time(&ptp->tc, ts);
2025 				spin_unlock_bh(&ptp->ptp_lock);
2026 				memset(skb_hwtstamps(skb), 0,
2027 				       sizeof(*skb_hwtstamps(skb)));
2028 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2029 			}
2030 		}
2031 	}
2032 	bnxt_deliver_skb(bp, bnapi, skb);
2033 	rc = 1;
2034 
2035 next_rx:
2036 	cpr->rx_packets += 1;
2037 	cpr->rx_bytes += len;
2038 
2039 next_rx_no_len:
2040 	rxr->rx_prod = NEXT_RX(prod);
2041 	rxr->rx_next_cons = NEXT_RX(cons);
2042 
2043 next_rx_no_prod_no_len:
2044 	*raw_cons = tmp_raw_cons;
2045 
2046 	return rc;
2047 }
2048 
2049 /* In netpoll mode, if we are using a combined completion ring, we need to
2050  * discard the rx packets and recycle the buffers.
2051  */
2052 static int bnxt_force_rx_discard(struct bnxt *bp,
2053 				 struct bnxt_cp_ring_info *cpr,
2054 				 u32 *raw_cons, u8 *event)
2055 {
2056 	u32 tmp_raw_cons = *raw_cons;
2057 	struct rx_cmp_ext *rxcmp1;
2058 	struct rx_cmp *rxcmp;
2059 	u16 cp_cons;
2060 	u8 cmp_type;
2061 	int rc;
2062 
2063 	cp_cons = RING_CMP(tmp_raw_cons);
2064 	rxcmp = (struct rx_cmp *)
2065 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2066 
2067 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2068 	cp_cons = RING_CMP(tmp_raw_cons);
2069 	rxcmp1 = (struct rx_cmp_ext *)
2070 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2071 
2072 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2073 		return -EBUSY;
2074 
2075 	/* The valid test of the entry must be done first before
2076 	 * reading any further.
2077 	 */
2078 	dma_rmb();
2079 	cmp_type = RX_CMP_TYPE(rxcmp);
2080 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2081 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2082 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2083 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2084 		struct rx_tpa_end_cmp_ext *tpa_end1;
2085 
2086 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2087 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2088 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2089 	}
2090 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2091 	if (rc && rc != -EBUSY)
2092 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2093 	return rc;
2094 }
2095 
2096 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2097 {
2098 	struct bnxt_fw_health *fw_health = bp->fw_health;
2099 	u32 reg = fw_health->regs[reg_idx];
2100 	u32 reg_type, reg_off, val = 0;
2101 
2102 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2103 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2104 	switch (reg_type) {
2105 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2106 		pci_read_config_dword(bp->pdev, reg_off, &val);
2107 		break;
2108 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2109 		reg_off = fw_health->mapped_regs[reg_idx];
2110 		fallthrough;
2111 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2112 		val = readl(bp->bar0 + reg_off);
2113 		break;
2114 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2115 		val = readl(bp->bar1 + reg_off);
2116 		break;
2117 	}
2118 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2119 		val &= fw_health->fw_reset_inprog_reg_mask;
2120 	return val;
2121 }
2122 
2123 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2124 {
2125 	int i;
2126 
2127 	for (i = 0; i < bp->rx_nr_rings; i++) {
2128 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2129 		struct bnxt_ring_grp_info *grp_info;
2130 
2131 		grp_info = &bp->grp_info[grp_idx];
2132 		if (grp_info->agg_fw_ring_id == ring_id)
2133 			return grp_idx;
2134 	}
2135 	return INVALID_HW_RING_ID;
2136 }
2137 
2138 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2139 {
2140 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2141 
2142 	switch (err_type) {
2143 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2144 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2145 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2146 		break;
2147 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2148 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2149 		break;
2150 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2151 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2152 		break;
2153 	default:
2154 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2155 			   err_type);
2156 		break;
2157 	}
2158 }
2159 
2160 #define BNXT_GET_EVENT_PORT(data)	\
2161 	((data) &			\
2162 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2163 
2164 #define BNXT_EVENT_RING_TYPE(data2)	\
2165 	((data2) &			\
2166 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2167 
2168 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2169 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2170 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2171 
2172 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2173 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2174 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2175 
2176 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2177 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2178 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2179 
2180 #define BNXT_PHC_BITS	48
2181 
2182 static int bnxt_async_event_process(struct bnxt *bp,
2183 				    struct hwrm_async_event_cmpl *cmpl)
2184 {
2185 	u16 event_id = le16_to_cpu(cmpl->event_id);
2186 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2187 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2188 
2189 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2190 		   event_id, data1, data2);
2191 
2192 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2193 	switch (event_id) {
2194 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2195 		struct bnxt_link_info *link_info = &bp->link_info;
2196 
2197 		if (BNXT_VF(bp))
2198 			goto async_event_process_exit;
2199 
2200 		/* print unsupported speed warning in forced speed mode only */
2201 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2202 		    (data1 & 0x20000)) {
2203 			u16 fw_speed = link_info->force_link_speed;
2204 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2205 
2206 			if (speed != SPEED_UNKNOWN)
2207 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2208 					    speed);
2209 		}
2210 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2211 	}
2212 		fallthrough;
2213 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2214 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2215 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2216 		fallthrough;
2217 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2218 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2219 		break;
2220 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2221 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2222 		break;
2223 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2224 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2225 
2226 		if (BNXT_VF(bp))
2227 			break;
2228 
2229 		if (bp->pf.port_id != port_id)
2230 			break;
2231 
2232 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2233 		break;
2234 	}
2235 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2236 		if (BNXT_PF(bp))
2237 			goto async_event_process_exit;
2238 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2239 		break;
2240 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2241 		char *type_str = "Solicited";
2242 
2243 		if (!bp->fw_health)
2244 			goto async_event_process_exit;
2245 
2246 		bp->fw_reset_timestamp = jiffies;
2247 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2248 		if (!bp->fw_reset_min_dsecs)
2249 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2250 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2251 		if (!bp->fw_reset_max_dsecs)
2252 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2253 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2254 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2255 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2256 			type_str = "Fatal";
2257 			bp->fw_health->fatalities++;
2258 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2259 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2260 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2261 			type_str = "Non-fatal";
2262 			bp->fw_health->survivals++;
2263 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2264 		}
2265 		netif_warn(bp, hw, bp->dev,
2266 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2267 			   type_str, data1, data2,
2268 			   bp->fw_reset_min_dsecs * 100,
2269 			   bp->fw_reset_max_dsecs * 100);
2270 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2271 		break;
2272 	}
2273 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2274 		struct bnxt_fw_health *fw_health = bp->fw_health;
2275 		char *status_desc = "healthy";
2276 		u32 status;
2277 
2278 		if (!fw_health)
2279 			goto async_event_process_exit;
2280 
2281 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2282 			fw_health->enabled = false;
2283 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2284 			break;
2285 		}
2286 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2287 		fw_health->tmr_multiplier =
2288 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2289 				     bp->current_interval * 10);
2290 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2291 		if (!fw_health->enabled)
2292 			fw_health->last_fw_heartbeat =
2293 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2294 		fw_health->last_fw_reset_cnt =
2295 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2296 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2297 		if (status != BNXT_FW_STATUS_HEALTHY)
2298 			status_desc = "unhealthy";
2299 		netif_info(bp, drv, bp->dev,
2300 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2301 			   fw_health->primary ? "primary" : "backup", status,
2302 			   status_desc, fw_health->last_fw_reset_cnt);
2303 		if (!fw_health->enabled) {
2304 			/* Make sure tmr_counter is set and visible to
2305 			 * bnxt_health_check() before setting enabled to true.
2306 			 */
2307 			smp_wmb();
2308 			fw_health->enabled = true;
2309 		}
2310 		goto async_event_process_exit;
2311 	}
2312 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2313 		netif_notice(bp, hw, bp->dev,
2314 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2315 			     data1, data2);
2316 		goto async_event_process_exit;
2317 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2318 		struct bnxt_rx_ring_info *rxr;
2319 		u16 grp_idx;
2320 
2321 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2322 			goto async_event_process_exit;
2323 
2324 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2325 			    BNXT_EVENT_RING_TYPE(data2), data1);
2326 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2327 			goto async_event_process_exit;
2328 
2329 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2330 		if (grp_idx == INVALID_HW_RING_ID) {
2331 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2332 				    data1);
2333 			goto async_event_process_exit;
2334 		}
2335 		rxr = bp->bnapi[grp_idx]->rx_ring;
2336 		bnxt_sched_reset(bp, rxr);
2337 		goto async_event_process_exit;
2338 	}
2339 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2340 		struct bnxt_fw_health *fw_health = bp->fw_health;
2341 
2342 		netif_notice(bp, hw, bp->dev,
2343 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2344 			     data1, data2);
2345 		if (fw_health) {
2346 			fw_health->echo_req_data1 = data1;
2347 			fw_health->echo_req_data2 = data2;
2348 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2349 			break;
2350 		}
2351 		goto async_event_process_exit;
2352 	}
2353 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2354 		bnxt_ptp_pps_event(bp, data1, data2);
2355 		goto async_event_process_exit;
2356 	}
2357 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2358 		bnxt_event_error_report(bp, data1, data2);
2359 		goto async_event_process_exit;
2360 	}
2361 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2362 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2363 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2364 			if (BNXT_PTP_USE_RTC(bp)) {
2365 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2366 				u64 ns;
2367 
2368 				if (!ptp)
2369 					goto async_event_process_exit;
2370 
2371 				spin_lock_bh(&ptp->ptp_lock);
2372 				bnxt_ptp_update_current_time(bp);
2373 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2374 				       BNXT_PHC_BITS) | ptp->current_time);
2375 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2376 				spin_unlock_bh(&ptp->ptp_lock);
2377 			}
2378 			break;
2379 		}
2380 		goto async_event_process_exit;
2381 	}
2382 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2383 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2384 
2385 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2386 		goto async_event_process_exit;
2387 	}
2388 	default:
2389 		goto async_event_process_exit;
2390 	}
2391 	bnxt_queue_sp_work(bp);
2392 async_event_process_exit:
2393 	return 0;
2394 }
2395 
2396 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2397 {
2398 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2399 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2400 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2401 				(struct hwrm_fwd_req_cmpl *)txcmp;
2402 
2403 	switch (cmpl_type) {
2404 	case CMPL_BASE_TYPE_HWRM_DONE:
2405 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2406 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2407 		break;
2408 
2409 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2410 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2411 
2412 		if ((vf_id < bp->pf.first_vf_id) ||
2413 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2414 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2415 				   vf_id);
2416 			return -EINVAL;
2417 		}
2418 
2419 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2420 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2421 		bnxt_queue_sp_work(bp);
2422 		break;
2423 
2424 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2425 		bnxt_async_event_process(bp,
2426 					 (struct hwrm_async_event_cmpl *)txcmp);
2427 		break;
2428 
2429 	default:
2430 		break;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2437 {
2438 	struct bnxt_napi *bnapi = dev_instance;
2439 	struct bnxt *bp = bnapi->bp;
2440 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2441 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2442 
2443 	cpr->event_ctr++;
2444 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2445 	napi_schedule(&bnapi->napi);
2446 	return IRQ_HANDLED;
2447 }
2448 
2449 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2450 {
2451 	u32 raw_cons = cpr->cp_raw_cons;
2452 	u16 cons = RING_CMP(raw_cons);
2453 	struct tx_cmp *txcmp;
2454 
2455 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2456 
2457 	return TX_CMP_VALID(txcmp, raw_cons);
2458 }
2459 
2460 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2461 {
2462 	struct bnxt_napi *bnapi = dev_instance;
2463 	struct bnxt *bp = bnapi->bp;
2464 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2465 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2466 	u32 int_status;
2467 
2468 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2469 
2470 	if (!bnxt_has_work(bp, cpr)) {
2471 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2472 		/* return if erroneous interrupt */
2473 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2474 			return IRQ_NONE;
2475 	}
2476 
2477 	/* disable ring IRQ */
2478 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2479 
2480 	/* Return here if interrupt is shared and is disabled. */
2481 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2482 		return IRQ_HANDLED;
2483 
2484 	napi_schedule(&bnapi->napi);
2485 	return IRQ_HANDLED;
2486 }
2487 
2488 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2489 			    int budget)
2490 {
2491 	struct bnxt_napi *bnapi = cpr->bnapi;
2492 	u32 raw_cons = cpr->cp_raw_cons;
2493 	u32 cons;
2494 	int tx_pkts = 0;
2495 	int rx_pkts = 0;
2496 	u8 event = 0;
2497 	struct tx_cmp *txcmp;
2498 
2499 	cpr->has_more_work = 0;
2500 	cpr->had_work_done = 1;
2501 	while (1) {
2502 		int rc;
2503 
2504 		cons = RING_CMP(raw_cons);
2505 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2506 
2507 		if (!TX_CMP_VALID(txcmp, raw_cons))
2508 			break;
2509 
2510 		/* The valid test of the entry must be done first before
2511 		 * reading any further.
2512 		 */
2513 		dma_rmb();
2514 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2515 			tx_pkts++;
2516 			/* return full budget so NAPI will complete. */
2517 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2518 				rx_pkts = budget;
2519 				raw_cons = NEXT_RAW_CMP(raw_cons);
2520 				if (budget)
2521 					cpr->has_more_work = 1;
2522 				break;
2523 			}
2524 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2525 			if (likely(budget))
2526 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2527 			else
2528 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2529 							   &event);
2530 			if (likely(rc >= 0))
2531 				rx_pkts += rc;
2532 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2533 			 * the NAPI budget.  Otherwise, we may potentially loop
2534 			 * here forever if we consistently cannot allocate
2535 			 * buffers.
2536 			 */
2537 			else if (rc == -ENOMEM && budget)
2538 				rx_pkts++;
2539 			else if (rc == -EBUSY)	/* partial completion */
2540 				break;
2541 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2542 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2543 				    (TX_CMP_TYPE(txcmp) ==
2544 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2545 				    (TX_CMP_TYPE(txcmp) ==
2546 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2547 			bnxt_hwrm_handler(bp, txcmp);
2548 		}
2549 		raw_cons = NEXT_RAW_CMP(raw_cons);
2550 
2551 		if (rx_pkts && rx_pkts == budget) {
2552 			cpr->has_more_work = 1;
2553 			break;
2554 		}
2555 	}
2556 
2557 	if (event & BNXT_REDIRECT_EVENT)
2558 		xdp_do_flush();
2559 
2560 	if (event & BNXT_TX_EVENT) {
2561 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2562 		u16 prod = txr->tx_prod;
2563 
2564 		/* Sync BD data before updating doorbell */
2565 		wmb();
2566 
2567 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2568 	}
2569 
2570 	cpr->cp_raw_cons = raw_cons;
2571 	bnapi->tx_pkts += tx_pkts;
2572 	bnapi->events |= event;
2573 	return rx_pkts;
2574 }
2575 
2576 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2577 {
2578 	if (bnapi->tx_pkts) {
2579 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2580 		bnapi->tx_pkts = 0;
2581 	}
2582 
2583 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2584 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2585 
2586 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2587 	}
2588 	if (bnapi->events & BNXT_AGG_EVENT) {
2589 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2590 
2591 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2592 	}
2593 	bnapi->events = 0;
2594 }
2595 
2596 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2597 			  int budget)
2598 {
2599 	struct bnxt_napi *bnapi = cpr->bnapi;
2600 	int rx_pkts;
2601 
2602 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2603 
2604 	/* ACK completion ring before freeing tx ring and producing new
2605 	 * buffers in rx/agg rings to prevent overflowing the completion
2606 	 * ring.
2607 	 */
2608 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2609 
2610 	__bnxt_poll_work_done(bp, bnapi);
2611 	return rx_pkts;
2612 }
2613 
2614 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2615 {
2616 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2617 	struct bnxt *bp = bnapi->bp;
2618 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2619 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2620 	struct tx_cmp *txcmp;
2621 	struct rx_cmp_ext *rxcmp1;
2622 	u32 cp_cons, tmp_raw_cons;
2623 	u32 raw_cons = cpr->cp_raw_cons;
2624 	u32 rx_pkts = 0;
2625 	u8 event = 0;
2626 
2627 	while (1) {
2628 		int rc;
2629 
2630 		cp_cons = RING_CMP(raw_cons);
2631 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2632 
2633 		if (!TX_CMP_VALID(txcmp, raw_cons))
2634 			break;
2635 
2636 		/* The valid test of the entry must be done first before
2637 		 * reading any further.
2638 		 */
2639 		dma_rmb();
2640 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2641 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2642 			cp_cons = RING_CMP(tmp_raw_cons);
2643 			rxcmp1 = (struct rx_cmp_ext *)
2644 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2645 
2646 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2647 				break;
2648 
2649 			/* force an error to recycle the buffer */
2650 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2651 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2652 
2653 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2654 			if (likely(rc == -EIO) && budget)
2655 				rx_pkts++;
2656 			else if (rc == -EBUSY)	/* partial completion */
2657 				break;
2658 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2659 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2660 			bnxt_hwrm_handler(bp, txcmp);
2661 		} else {
2662 			netdev_err(bp->dev,
2663 				   "Invalid completion received on special ring\n");
2664 		}
2665 		raw_cons = NEXT_RAW_CMP(raw_cons);
2666 
2667 		if (rx_pkts == budget)
2668 			break;
2669 	}
2670 
2671 	cpr->cp_raw_cons = raw_cons;
2672 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2673 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2674 
2675 	if (event & BNXT_AGG_EVENT)
2676 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2677 
2678 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2679 		napi_complete_done(napi, rx_pkts);
2680 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2681 	}
2682 	return rx_pkts;
2683 }
2684 
2685 static int bnxt_poll(struct napi_struct *napi, int budget)
2686 {
2687 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2688 	struct bnxt *bp = bnapi->bp;
2689 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2690 	int work_done = 0;
2691 
2692 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2693 		napi_complete(napi);
2694 		return 0;
2695 	}
2696 	while (1) {
2697 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2698 
2699 		if (work_done >= budget) {
2700 			if (!budget)
2701 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2702 			break;
2703 		}
2704 
2705 		if (!bnxt_has_work(bp, cpr)) {
2706 			if (napi_complete_done(napi, work_done))
2707 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2708 			break;
2709 		}
2710 	}
2711 	if (bp->flags & BNXT_FLAG_DIM) {
2712 		struct dim_sample dim_sample = {};
2713 
2714 		dim_update_sample(cpr->event_ctr,
2715 				  cpr->rx_packets,
2716 				  cpr->rx_bytes,
2717 				  &dim_sample);
2718 		net_dim(&cpr->dim, dim_sample);
2719 	}
2720 	return work_done;
2721 }
2722 
2723 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2724 {
2725 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2726 	int i, work_done = 0;
2727 
2728 	for (i = 0; i < 2; i++) {
2729 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2730 
2731 		if (cpr2) {
2732 			work_done += __bnxt_poll_work(bp, cpr2,
2733 						      budget - work_done);
2734 			cpr->has_more_work |= cpr2->has_more_work;
2735 		}
2736 	}
2737 	return work_done;
2738 }
2739 
2740 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2741 				 u64 dbr_type)
2742 {
2743 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2744 	int i;
2745 
2746 	for (i = 0; i < 2; i++) {
2747 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2748 		struct bnxt_db_info *db;
2749 
2750 		if (cpr2 && cpr2->had_work_done) {
2751 			db = &cpr2->cp_db;
2752 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2753 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2754 			cpr2->had_work_done = 0;
2755 		}
2756 	}
2757 	__bnxt_poll_work_done(bp, bnapi);
2758 }
2759 
2760 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2761 {
2762 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2763 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2764 	struct bnxt_cp_ring_info *cpr_rx;
2765 	u32 raw_cons = cpr->cp_raw_cons;
2766 	struct bnxt *bp = bnapi->bp;
2767 	struct nqe_cn *nqcmp;
2768 	int work_done = 0;
2769 	u32 cons;
2770 
2771 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2772 		napi_complete(napi);
2773 		return 0;
2774 	}
2775 	if (cpr->has_more_work) {
2776 		cpr->has_more_work = 0;
2777 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2778 	}
2779 	while (1) {
2780 		cons = RING_CMP(raw_cons);
2781 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2782 
2783 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2784 			if (cpr->has_more_work)
2785 				break;
2786 
2787 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2788 			cpr->cp_raw_cons = raw_cons;
2789 			if (napi_complete_done(napi, work_done))
2790 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2791 						  cpr->cp_raw_cons);
2792 			goto poll_done;
2793 		}
2794 
2795 		/* The valid test of the entry must be done first before
2796 		 * reading any further.
2797 		 */
2798 		dma_rmb();
2799 
2800 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2801 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2802 			struct bnxt_cp_ring_info *cpr2;
2803 
2804 			/* No more budget for RX work */
2805 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2806 				break;
2807 
2808 			cpr2 = cpr->cp_ring_arr[idx];
2809 			work_done += __bnxt_poll_work(bp, cpr2,
2810 						      budget - work_done);
2811 			cpr->has_more_work |= cpr2->has_more_work;
2812 		} else {
2813 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2814 		}
2815 		raw_cons = NEXT_RAW_CMP(raw_cons);
2816 	}
2817 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2818 	if (raw_cons != cpr->cp_raw_cons) {
2819 		cpr->cp_raw_cons = raw_cons;
2820 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2821 	}
2822 poll_done:
2823 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2824 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2825 		struct dim_sample dim_sample = {};
2826 
2827 		dim_update_sample(cpr->event_ctr,
2828 				  cpr_rx->rx_packets,
2829 				  cpr_rx->rx_bytes,
2830 				  &dim_sample);
2831 		net_dim(&cpr->dim, dim_sample);
2832 	}
2833 	return work_done;
2834 }
2835 
2836 static void bnxt_free_tx_skbs(struct bnxt *bp)
2837 {
2838 	int i, max_idx;
2839 	struct pci_dev *pdev = bp->pdev;
2840 
2841 	if (!bp->tx_ring)
2842 		return;
2843 
2844 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2845 	for (i = 0; i < bp->tx_nr_rings; i++) {
2846 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2847 		int j;
2848 
2849 		if (!txr->tx_buf_ring)
2850 			continue;
2851 
2852 		for (j = 0; j < max_idx;) {
2853 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2854 			struct sk_buff *skb;
2855 			int k, last;
2856 
2857 			if (i < bp->tx_nr_rings_xdp &&
2858 			    tx_buf->action == XDP_REDIRECT) {
2859 				dma_unmap_single(&pdev->dev,
2860 					dma_unmap_addr(tx_buf, mapping),
2861 					dma_unmap_len(tx_buf, len),
2862 					DMA_TO_DEVICE);
2863 				xdp_return_frame(tx_buf->xdpf);
2864 				tx_buf->action = 0;
2865 				tx_buf->xdpf = NULL;
2866 				j++;
2867 				continue;
2868 			}
2869 
2870 			skb = tx_buf->skb;
2871 			if (!skb) {
2872 				j++;
2873 				continue;
2874 			}
2875 
2876 			tx_buf->skb = NULL;
2877 
2878 			if (tx_buf->is_push) {
2879 				dev_kfree_skb(skb);
2880 				j += 2;
2881 				continue;
2882 			}
2883 
2884 			dma_unmap_single(&pdev->dev,
2885 					 dma_unmap_addr(tx_buf, mapping),
2886 					 skb_headlen(skb),
2887 					 DMA_TO_DEVICE);
2888 
2889 			last = tx_buf->nr_frags;
2890 			j += 2;
2891 			for (k = 0; k < last; k++, j++) {
2892 				int ring_idx = j & bp->tx_ring_mask;
2893 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2894 
2895 				tx_buf = &txr->tx_buf_ring[ring_idx];
2896 				dma_unmap_page(
2897 					&pdev->dev,
2898 					dma_unmap_addr(tx_buf, mapping),
2899 					skb_frag_size(frag), DMA_TO_DEVICE);
2900 			}
2901 			dev_kfree_skb(skb);
2902 		}
2903 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2904 	}
2905 }
2906 
2907 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2908 {
2909 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2910 	struct pci_dev *pdev = bp->pdev;
2911 	struct bnxt_tpa_idx_map *map;
2912 	int i, max_idx, max_agg_idx;
2913 
2914 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2915 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2916 	if (!rxr->rx_tpa)
2917 		goto skip_rx_tpa_free;
2918 
2919 	for (i = 0; i < bp->max_tpa; i++) {
2920 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2921 		u8 *data = tpa_info->data;
2922 
2923 		if (!data)
2924 			continue;
2925 
2926 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2927 				       bp->rx_buf_use_size, bp->rx_dir,
2928 				       DMA_ATTR_WEAK_ORDERING);
2929 
2930 		tpa_info->data = NULL;
2931 
2932 		skb_free_frag(data);
2933 	}
2934 
2935 skip_rx_tpa_free:
2936 	if (!rxr->rx_buf_ring)
2937 		goto skip_rx_buf_free;
2938 
2939 	for (i = 0; i < max_idx; i++) {
2940 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2941 		dma_addr_t mapping = rx_buf->mapping;
2942 		void *data = rx_buf->data;
2943 
2944 		if (!data)
2945 			continue;
2946 
2947 		rx_buf->data = NULL;
2948 		if (BNXT_RX_PAGE_MODE(bp)) {
2949 			mapping -= bp->rx_dma_offset;
2950 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2951 					     bp->rx_dir,
2952 					     DMA_ATTR_WEAK_ORDERING);
2953 			page_pool_recycle_direct(rxr->page_pool, data);
2954 		} else {
2955 			dma_unmap_single_attrs(&pdev->dev, mapping,
2956 					       bp->rx_buf_use_size, bp->rx_dir,
2957 					       DMA_ATTR_WEAK_ORDERING);
2958 			skb_free_frag(data);
2959 		}
2960 	}
2961 
2962 skip_rx_buf_free:
2963 	if (!rxr->rx_agg_ring)
2964 		goto skip_rx_agg_free;
2965 
2966 	for (i = 0; i < max_agg_idx; i++) {
2967 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2968 		struct page *page = rx_agg_buf->page;
2969 
2970 		if (!page)
2971 			continue;
2972 
2973 		if (BNXT_RX_PAGE_MODE(bp)) {
2974 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2975 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
2976 					     DMA_ATTR_WEAK_ORDERING);
2977 			rx_agg_buf->page = NULL;
2978 			__clear_bit(i, rxr->rx_agg_bmap);
2979 
2980 			page_pool_recycle_direct(rxr->page_pool, page);
2981 		} else {
2982 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2983 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
2984 					     DMA_ATTR_WEAK_ORDERING);
2985 			rx_agg_buf->page = NULL;
2986 			__clear_bit(i, rxr->rx_agg_bmap);
2987 
2988 			__free_page(page);
2989 		}
2990 	}
2991 
2992 skip_rx_agg_free:
2993 	if (rxr->rx_page) {
2994 		__free_page(rxr->rx_page);
2995 		rxr->rx_page = NULL;
2996 	}
2997 	map = rxr->rx_tpa_idx_map;
2998 	if (map)
2999 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3000 }
3001 
3002 static void bnxt_free_rx_skbs(struct bnxt *bp)
3003 {
3004 	int i;
3005 
3006 	if (!bp->rx_ring)
3007 		return;
3008 
3009 	for (i = 0; i < bp->rx_nr_rings; i++)
3010 		bnxt_free_one_rx_ring_skbs(bp, i);
3011 }
3012 
3013 static void bnxt_free_skbs(struct bnxt *bp)
3014 {
3015 	bnxt_free_tx_skbs(bp);
3016 	bnxt_free_rx_skbs(bp);
3017 }
3018 
3019 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3020 {
3021 	u8 init_val = mem_init->init_val;
3022 	u16 offset = mem_init->offset;
3023 	u8 *p2 = p;
3024 	int i;
3025 
3026 	if (!init_val)
3027 		return;
3028 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3029 		memset(p, init_val, len);
3030 		return;
3031 	}
3032 	for (i = 0; i < len; i += mem_init->size)
3033 		*(p2 + i + offset) = init_val;
3034 }
3035 
3036 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3037 {
3038 	struct pci_dev *pdev = bp->pdev;
3039 	int i;
3040 
3041 	if (!rmem->pg_arr)
3042 		goto skip_pages;
3043 
3044 	for (i = 0; i < rmem->nr_pages; i++) {
3045 		if (!rmem->pg_arr[i])
3046 			continue;
3047 
3048 		dma_free_coherent(&pdev->dev, rmem->page_size,
3049 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3050 
3051 		rmem->pg_arr[i] = NULL;
3052 	}
3053 skip_pages:
3054 	if (rmem->pg_tbl) {
3055 		size_t pg_tbl_size = rmem->nr_pages * 8;
3056 
3057 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3058 			pg_tbl_size = rmem->page_size;
3059 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3060 				  rmem->pg_tbl, rmem->pg_tbl_map);
3061 		rmem->pg_tbl = NULL;
3062 	}
3063 	if (rmem->vmem_size && *rmem->vmem) {
3064 		vfree(*rmem->vmem);
3065 		*rmem->vmem = NULL;
3066 	}
3067 }
3068 
3069 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3070 {
3071 	struct pci_dev *pdev = bp->pdev;
3072 	u64 valid_bit = 0;
3073 	int i;
3074 
3075 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3076 		valid_bit = PTU_PTE_VALID;
3077 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3078 		size_t pg_tbl_size = rmem->nr_pages * 8;
3079 
3080 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3081 			pg_tbl_size = rmem->page_size;
3082 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3083 						  &rmem->pg_tbl_map,
3084 						  GFP_KERNEL);
3085 		if (!rmem->pg_tbl)
3086 			return -ENOMEM;
3087 	}
3088 
3089 	for (i = 0; i < rmem->nr_pages; i++) {
3090 		u64 extra_bits = valid_bit;
3091 
3092 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3093 						     rmem->page_size,
3094 						     &rmem->dma_arr[i],
3095 						     GFP_KERNEL);
3096 		if (!rmem->pg_arr[i])
3097 			return -ENOMEM;
3098 
3099 		if (rmem->mem_init)
3100 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3101 					  rmem->page_size);
3102 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3103 			if (i == rmem->nr_pages - 2 &&
3104 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3105 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3106 			else if (i == rmem->nr_pages - 1 &&
3107 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3108 				extra_bits |= PTU_PTE_LAST;
3109 			rmem->pg_tbl[i] =
3110 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3111 		}
3112 	}
3113 
3114 	if (rmem->vmem_size) {
3115 		*rmem->vmem = vzalloc(rmem->vmem_size);
3116 		if (!(*rmem->vmem))
3117 			return -ENOMEM;
3118 	}
3119 	return 0;
3120 }
3121 
3122 static void bnxt_free_tpa_info(struct bnxt *bp)
3123 {
3124 	int i, j;
3125 
3126 	for (i = 0; i < bp->rx_nr_rings; i++) {
3127 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3128 
3129 		kfree(rxr->rx_tpa_idx_map);
3130 		rxr->rx_tpa_idx_map = NULL;
3131 		if (rxr->rx_tpa) {
3132 			for (j = 0; j < bp->max_tpa; j++) {
3133 				kfree(rxr->rx_tpa[j].agg_arr);
3134 				rxr->rx_tpa[j].agg_arr = NULL;
3135 			}
3136 		}
3137 		kfree(rxr->rx_tpa);
3138 		rxr->rx_tpa = NULL;
3139 	}
3140 }
3141 
3142 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3143 {
3144 	int i, j;
3145 
3146 	bp->max_tpa = MAX_TPA;
3147 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3148 		if (!bp->max_tpa_v2)
3149 			return 0;
3150 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3151 	}
3152 
3153 	for (i = 0; i < bp->rx_nr_rings; i++) {
3154 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3155 		struct rx_agg_cmp *agg;
3156 
3157 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3158 				      GFP_KERNEL);
3159 		if (!rxr->rx_tpa)
3160 			return -ENOMEM;
3161 
3162 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3163 			continue;
3164 		for (j = 0; j < bp->max_tpa; j++) {
3165 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3166 			if (!agg)
3167 				return -ENOMEM;
3168 			rxr->rx_tpa[j].agg_arr = agg;
3169 		}
3170 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3171 					      GFP_KERNEL);
3172 		if (!rxr->rx_tpa_idx_map)
3173 			return -ENOMEM;
3174 	}
3175 	return 0;
3176 }
3177 
3178 static void bnxt_free_rx_rings(struct bnxt *bp)
3179 {
3180 	int i;
3181 
3182 	if (!bp->rx_ring)
3183 		return;
3184 
3185 	bnxt_free_tpa_info(bp);
3186 	for (i = 0; i < bp->rx_nr_rings; i++) {
3187 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3188 		struct bnxt_ring_struct *ring;
3189 
3190 		if (rxr->xdp_prog)
3191 			bpf_prog_put(rxr->xdp_prog);
3192 
3193 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3194 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3195 
3196 		page_pool_destroy(rxr->page_pool);
3197 		rxr->page_pool = NULL;
3198 
3199 		kfree(rxr->rx_agg_bmap);
3200 		rxr->rx_agg_bmap = NULL;
3201 
3202 		ring = &rxr->rx_ring_struct;
3203 		bnxt_free_ring(bp, &ring->ring_mem);
3204 
3205 		ring = &rxr->rx_agg_ring_struct;
3206 		bnxt_free_ring(bp, &ring->ring_mem);
3207 	}
3208 }
3209 
3210 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3211 				   struct bnxt_rx_ring_info *rxr)
3212 {
3213 	struct page_pool_params pp = { 0 };
3214 
3215 	pp.pool_size = bp->rx_ring_size;
3216 	pp.nid = dev_to_node(&bp->pdev->dev);
3217 	pp.napi = &rxr->bnapi->napi;
3218 	pp.dev = &bp->pdev->dev;
3219 	pp.dma_dir = DMA_BIDIRECTIONAL;
3220 
3221 	rxr->page_pool = page_pool_create(&pp);
3222 	if (IS_ERR(rxr->page_pool)) {
3223 		int err = PTR_ERR(rxr->page_pool);
3224 
3225 		rxr->page_pool = NULL;
3226 		return err;
3227 	}
3228 	return 0;
3229 }
3230 
3231 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3232 {
3233 	int i, rc = 0, agg_rings = 0;
3234 
3235 	if (!bp->rx_ring)
3236 		return -ENOMEM;
3237 
3238 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3239 		agg_rings = 1;
3240 
3241 	for (i = 0; i < bp->rx_nr_rings; i++) {
3242 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3243 		struct bnxt_ring_struct *ring;
3244 
3245 		ring = &rxr->rx_ring_struct;
3246 
3247 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3248 		if (rc)
3249 			return rc;
3250 
3251 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3252 		if (rc < 0)
3253 			return rc;
3254 
3255 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3256 						MEM_TYPE_PAGE_POOL,
3257 						rxr->page_pool);
3258 		if (rc) {
3259 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3260 			return rc;
3261 		}
3262 
3263 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3264 		if (rc)
3265 			return rc;
3266 
3267 		ring->grp_idx = i;
3268 		if (agg_rings) {
3269 			u16 mem_size;
3270 
3271 			ring = &rxr->rx_agg_ring_struct;
3272 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3273 			if (rc)
3274 				return rc;
3275 
3276 			ring->grp_idx = i;
3277 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3278 			mem_size = rxr->rx_agg_bmap_size / 8;
3279 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3280 			if (!rxr->rx_agg_bmap)
3281 				return -ENOMEM;
3282 		}
3283 	}
3284 	if (bp->flags & BNXT_FLAG_TPA)
3285 		rc = bnxt_alloc_tpa_info(bp);
3286 	return rc;
3287 }
3288 
3289 static void bnxt_free_tx_rings(struct bnxt *bp)
3290 {
3291 	int i;
3292 	struct pci_dev *pdev = bp->pdev;
3293 
3294 	if (!bp->tx_ring)
3295 		return;
3296 
3297 	for (i = 0; i < bp->tx_nr_rings; i++) {
3298 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3299 		struct bnxt_ring_struct *ring;
3300 
3301 		if (txr->tx_push) {
3302 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3303 					  txr->tx_push, txr->tx_push_mapping);
3304 			txr->tx_push = NULL;
3305 		}
3306 
3307 		ring = &txr->tx_ring_struct;
3308 
3309 		bnxt_free_ring(bp, &ring->ring_mem);
3310 	}
3311 }
3312 
3313 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3314 {
3315 	int i, j, rc;
3316 	struct pci_dev *pdev = bp->pdev;
3317 
3318 	bp->tx_push_size = 0;
3319 	if (bp->tx_push_thresh) {
3320 		int push_size;
3321 
3322 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3323 					bp->tx_push_thresh);
3324 
3325 		if (push_size > 256) {
3326 			push_size = 0;
3327 			bp->tx_push_thresh = 0;
3328 		}
3329 
3330 		bp->tx_push_size = push_size;
3331 	}
3332 
3333 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3334 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3335 		struct bnxt_ring_struct *ring;
3336 		u8 qidx;
3337 
3338 		ring = &txr->tx_ring_struct;
3339 
3340 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3341 		if (rc)
3342 			return rc;
3343 
3344 		ring->grp_idx = txr->bnapi->index;
3345 		if (bp->tx_push_size) {
3346 			dma_addr_t mapping;
3347 
3348 			/* One pre-allocated DMA buffer to backup
3349 			 * TX push operation
3350 			 */
3351 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3352 						bp->tx_push_size,
3353 						&txr->tx_push_mapping,
3354 						GFP_KERNEL);
3355 
3356 			if (!txr->tx_push)
3357 				return -ENOMEM;
3358 
3359 			mapping = txr->tx_push_mapping +
3360 				sizeof(struct tx_push_bd);
3361 			txr->data_mapping = cpu_to_le64(mapping);
3362 		}
3363 		qidx = bp->tc_to_qidx[j];
3364 		ring->queue_id = bp->q_info[qidx].queue_id;
3365 		spin_lock_init(&txr->xdp_tx_lock);
3366 		if (i < bp->tx_nr_rings_xdp)
3367 			continue;
3368 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3369 			j++;
3370 	}
3371 	return 0;
3372 }
3373 
3374 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3375 {
3376 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3377 
3378 	kfree(cpr->cp_desc_ring);
3379 	cpr->cp_desc_ring = NULL;
3380 	ring->ring_mem.pg_arr = NULL;
3381 	kfree(cpr->cp_desc_mapping);
3382 	cpr->cp_desc_mapping = NULL;
3383 	ring->ring_mem.dma_arr = NULL;
3384 }
3385 
3386 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3387 {
3388 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3389 	if (!cpr->cp_desc_ring)
3390 		return -ENOMEM;
3391 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3392 				       GFP_KERNEL);
3393 	if (!cpr->cp_desc_mapping)
3394 		return -ENOMEM;
3395 	return 0;
3396 }
3397 
3398 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3399 {
3400 	int i;
3401 
3402 	if (!bp->bnapi)
3403 		return;
3404 	for (i = 0; i < bp->cp_nr_rings; i++) {
3405 		struct bnxt_napi *bnapi = bp->bnapi[i];
3406 
3407 		if (!bnapi)
3408 			continue;
3409 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3410 	}
3411 }
3412 
3413 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3414 {
3415 	int i, n = bp->cp_nr_pages;
3416 
3417 	for (i = 0; i < bp->cp_nr_rings; i++) {
3418 		struct bnxt_napi *bnapi = bp->bnapi[i];
3419 		int rc;
3420 
3421 		if (!bnapi)
3422 			continue;
3423 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3424 		if (rc)
3425 			return rc;
3426 	}
3427 	return 0;
3428 }
3429 
3430 static void bnxt_free_cp_rings(struct bnxt *bp)
3431 {
3432 	int i;
3433 
3434 	if (!bp->bnapi)
3435 		return;
3436 
3437 	for (i = 0; i < bp->cp_nr_rings; i++) {
3438 		struct bnxt_napi *bnapi = bp->bnapi[i];
3439 		struct bnxt_cp_ring_info *cpr;
3440 		struct bnxt_ring_struct *ring;
3441 		int j;
3442 
3443 		if (!bnapi)
3444 			continue;
3445 
3446 		cpr = &bnapi->cp_ring;
3447 		ring = &cpr->cp_ring_struct;
3448 
3449 		bnxt_free_ring(bp, &ring->ring_mem);
3450 
3451 		for (j = 0; j < 2; j++) {
3452 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3453 
3454 			if (cpr2) {
3455 				ring = &cpr2->cp_ring_struct;
3456 				bnxt_free_ring(bp, &ring->ring_mem);
3457 				bnxt_free_cp_arrays(cpr2);
3458 				kfree(cpr2);
3459 				cpr->cp_ring_arr[j] = NULL;
3460 			}
3461 		}
3462 	}
3463 }
3464 
3465 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3466 {
3467 	struct bnxt_ring_mem_info *rmem;
3468 	struct bnxt_ring_struct *ring;
3469 	struct bnxt_cp_ring_info *cpr;
3470 	int rc;
3471 
3472 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3473 	if (!cpr)
3474 		return NULL;
3475 
3476 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3477 	if (rc) {
3478 		bnxt_free_cp_arrays(cpr);
3479 		kfree(cpr);
3480 		return NULL;
3481 	}
3482 	ring = &cpr->cp_ring_struct;
3483 	rmem = &ring->ring_mem;
3484 	rmem->nr_pages = bp->cp_nr_pages;
3485 	rmem->page_size = HW_CMPD_RING_SIZE;
3486 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3487 	rmem->dma_arr = cpr->cp_desc_mapping;
3488 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3489 	rc = bnxt_alloc_ring(bp, rmem);
3490 	if (rc) {
3491 		bnxt_free_ring(bp, rmem);
3492 		bnxt_free_cp_arrays(cpr);
3493 		kfree(cpr);
3494 		cpr = NULL;
3495 	}
3496 	return cpr;
3497 }
3498 
3499 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3500 {
3501 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3502 	int i, rc, ulp_base_vec, ulp_msix;
3503 
3504 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3505 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3506 	for (i = 0; i < bp->cp_nr_rings; i++) {
3507 		struct bnxt_napi *bnapi = bp->bnapi[i];
3508 		struct bnxt_cp_ring_info *cpr;
3509 		struct bnxt_ring_struct *ring;
3510 
3511 		if (!bnapi)
3512 			continue;
3513 
3514 		cpr = &bnapi->cp_ring;
3515 		cpr->bnapi = bnapi;
3516 		ring = &cpr->cp_ring_struct;
3517 
3518 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3519 		if (rc)
3520 			return rc;
3521 
3522 		if (ulp_msix && i >= ulp_base_vec)
3523 			ring->map_idx = i + ulp_msix;
3524 		else
3525 			ring->map_idx = i;
3526 
3527 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3528 			continue;
3529 
3530 		if (i < bp->rx_nr_rings) {
3531 			struct bnxt_cp_ring_info *cpr2 =
3532 				bnxt_alloc_cp_sub_ring(bp);
3533 
3534 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3535 			if (!cpr2)
3536 				return -ENOMEM;
3537 			cpr2->bnapi = bnapi;
3538 		}
3539 		if ((sh && i < bp->tx_nr_rings) ||
3540 		    (!sh && i >= bp->rx_nr_rings)) {
3541 			struct bnxt_cp_ring_info *cpr2 =
3542 				bnxt_alloc_cp_sub_ring(bp);
3543 
3544 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3545 			if (!cpr2)
3546 				return -ENOMEM;
3547 			cpr2->bnapi = bnapi;
3548 		}
3549 	}
3550 	return 0;
3551 }
3552 
3553 static void bnxt_init_ring_struct(struct bnxt *bp)
3554 {
3555 	int i;
3556 
3557 	for (i = 0; i < bp->cp_nr_rings; i++) {
3558 		struct bnxt_napi *bnapi = bp->bnapi[i];
3559 		struct bnxt_ring_mem_info *rmem;
3560 		struct bnxt_cp_ring_info *cpr;
3561 		struct bnxt_rx_ring_info *rxr;
3562 		struct bnxt_tx_ring_info *txr;
3563 		struct bnxt_ring_struct *ring;
3564 
3565 		if (!bnapi)
3566 			continue;
3567 
3568 		cpr = &bnapi->cp_ring;
3569 		ring = &cpr->cp_ring_struct;
3570 		rmem = &ring->ring_mem;
3571 		rmem->nr_pages = bp->cp_nr_pages;
3572 		rmem->page_size = HW_CMPD_RING_SIZE;
3573 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3574 		rmem->dma_arr = cpr->cp_desc_mapping;
3575 		rmem->vmem_size = 0;
3576 
3577 		rxr = bnapi->rx_ring;
3578 		if (!rxr)
3579 			goto skip_rx;
3580 
3581 		ring = &rxr->rx_ring_struct;
3582 		rmem = &ring->ring_mem;
3583 		rmem->nr_pages = bp->rx_nr_pages;
3584 		rmem->page_size = HW_RXBD_RING_SIZE;
3585 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3586 		rmem->dma_arr = rxr->rx_desc_mapping;
3587 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3588 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3589 
3590 		ring = &rxr->rx_agg_ring_struct;
3591 		rmem = &ring->ring_mem;
3592 		rmem->nr_pages = bp->rx_agg_nr_pages;
3593 		rmem->page_size = HW_RXBD_RING_SIZE;
3594 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3595 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3596 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3597 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3598 
3599 skip_rx:
3600 		txr = bnapi->tx_ring;
3601 		if (!txr)
3602 			continue;
3603 
3604 		ring = &txr->tx_ring_struct;
3605 		rmem = &ring->ring_mem;
3606 		rmem->nr_pages = bp->tx_nr_pages;
3607 		rmem->page_size = HW_RXBD_RING_SIZE;
3608 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3609 		rmem->dma_arr = txr->tx_desc_mapping;
3610 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3611 		rmem->vmem = (void **)&txr->tx_buf_ring;
3612 	}
3613 }
3614 
3615 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3616 {
3617 	int i;
3618 	u32 prod;
3619 	struct rx_bd **rx_buf_ring;
3620 
3621 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3622 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3623 		int j;
3624 		struct rx_bd *rxbd;
3625 
3626 		rxbd = rx_buf_ring[i];
3627 		if (!rxbd)
3628 			continue;
3629 
3630 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3631 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3632 			rxbd->rx_bd_opaque = prod;
3633 		}
3634 	}
3635 }
3636 
3637 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3638 {
3639 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3640 	struct net_device *dev = bp->dev;
3641 	u32 prod;
3642 	int i;
3643 
3644 	prod = rxr->rx_prod;
3645 	for (i = 0; i < bp->rx_ring_size; i++) {
3646 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3647 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3648 				    ring_nr, i, bp->rx_ring_size);
3649 			break;
3650 		}
3651 		prod = NEXT_RX(prod);
3652 	}
3653 	rxr->rx_prod = prod;
3654 
3655 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3656 		return 0;
3657 
3658 	prod = rxr->rx_agg_prod;
3659 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3660 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3661 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3662 				    ring_nr, i, bp->rx_ring_size);
3663 			break;
3664 		}
3665 		prod = NEXT_RX_AGG(prod);
3666 	}
3667 	rxr->rx_agg_prod = prod;
3668 
3669 	if (rxr->rx_tpa) {
3670 		dma_addr_t mapping;
3671 		u8 *data;
3672 
3673 		for (i = 0; i < bp->max_tpa; i++) {
3674 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3675 			if (!data)
3676 				return -ENOMEM;
3677 
3678 			rxr->rx_tpa[i].data = data;
3679 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3680 			rxr->rx_tpa[i].mapping = mapping;
3681 		}
3682 	}
3683 	return 0;
3684 }
3685 
3686 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3687 {
3688 	struct bnxt_rx_ring_info *rxr;
3689 	struct bnxt_ring_struct *ring;
3690 	u32 type;
3691 
3692 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3693 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3694 
3695 	if (NET_IP_ALIGN == 2)
3696 		type |= RX_BD_FLAGS_SOP;
3697 
3698 	rxr = &bp->rx_ring[ring_nr];
3699 	ring = &rxr->rx_ring_struct;
3700 	bnxt_init_rxbd_pages(ring, type);
3701 
3702 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3703 		bpf_prog_add(bp->xdp_prog, 1);
3704 		rxr->xdp_prog = bp->xdp_prog;
3705 	}
3706 	ring->fw_ring_id = INVALID_HW_RING_ID;
3707 
3708 	ring = &rxr->rx_agg_ring_struct;
3709 	ring->fw_ring_id = INVALID_HW_RING_ID;
3710 
3711 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3712 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3713 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3714 
3715 		bnxt_init_rxbd_pages(ring, type);
3716 	}
3717 
3718 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3719 }
3720 
3721 static void bnxt_init_cp_rings(struct bnxt *bp)
3722 {
3723 	int i, j;
3724 
3725 	for (i = 0; i < bp->cp_nr_rings; i++) {
3726 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3727 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3728 
3729 		ring->fw_ring_id = INVALID_HW_RING_ID;
3730 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3731 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3732 		for (j = 0; j < 2; j++) {
3733 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3734 
3735 			if (!cpr2)
3736 				continue;
3737 
3738 			ring = &cpr2->cp_ring_struct;
3739 			ring->fw_ring_id = INVALID_HW_RING_ID;
3740 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3741 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3742 		}
3743 	}
3744 }
3745 
3746 static int bnxt_init_rx_rings(struct bnxt *bp)
3747 {
3748 	int i, rc = 0;
3749 
3750 	if (BNXT_RX_PAGE_MODE(bp)) {
3751 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3752 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3753 	} else {
3754 		bp->rx_offset = BNXT_RX_OFFSET;
3755 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3756 	}
3757 
3758 	for (i = 0; i < bp->rx_nr_rings; i++) {
3759 		rc = bnxt_init_one_rx_ring(bp, i);
3760 		if (rc)
3761 			break;
3762 	}
3763 
3764 	return rc;
3765 }
3766 
3767 static int bnxt_init_tx_rings(struct bnxt *bp)
3768 {
3769 	u16 i;
3770 
3771 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3772 				   BNXT_MIN_TX_DESC_CNT);
3773 
3774 	for (i = 0; i < bp->tx_nr_rings; i++) {
3775 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3776 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3777 
3778 		ring->fw_ring_id = INVALID_HW_RING_ID;
3779 	}
3780 
3781 	return 0;
3782 }
3783 
3784 static void bnxt_free_ring_grps(struct bnxt *bp)
3785 {
3786 	kfree(bp->grp_info);
3787 	bp->grp_info = NULL;
3788 }
3789 
3790 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3791 {
3792 	int i;
3793 
3794 	if (irq_re_init) {
3795 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3796 				       sizeof(struct bnxt_ring_grp_info),
3797 				       GFP_KERNEL);
3798 		if (!bp->grp_info)
3799 			return -ENOMEM;
3800 	}
3801 	for (i = 0; i < bp->cp_nr_rings; i++) {
3802 		if (irq_re_init)
3803 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3804 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3805 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3806 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3807 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3808 	}
3809 	return 0;
3810 }
3811 
3812 static void bnxt_free_vnics(struct bnxt *bp)
3813 {
3814 	kfree(bp->vnic_info);
3815 	bp->vnic_info = NULL;
3816 	bp->nr_vnics = 0;
3817 }
3818 
3819 static int bnxt_alloc_vnics(struct bnxt *bp)
3820 {
3821 	int num_vnics = 1;
3822 
3823 #ifdef CONFIG_RFS_ACCEL
3824 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3825 		num_vnics += bp->rx_nr_rings;
3826 #endif
3827 
3828 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3829 		num_vnics++;
3830 
3831 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3832 				GFP_KERNEL);
3833 	if (!bp->vnic_info)
3834 		return -ENOMEM;
3835 
3836 	bp->nr_vnics = num_vnics;
3837 	return 0;
3838 }
3839 
3840 static void bnxt_init_vnics(struct bnxt *bp)
3841 {
3842 	int i;
3843 
3844 	for (i = 0; i < bp->nr_vnics; i++) {
3845 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3846 		int j;
3847 
3848 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3849 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3850 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3851 
3852 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3853 
3854 		if (bp->vnic_info[i].rss_hash_key) {
3855 			if (i == 0)
3856 				get_random_bytes(vnic->rss_hash_key,
3857 					      HW_HASH_KEY_SIZE);
3858 			else
3859 				memcpy(vnic->rss_hash_key,
3860 				       bp->vnic_info[0].rss_hash_key,
3861 				       HW_HASH_KEY_SIZE);
3862 		}
3863 	}
3864 }
3865 
3866 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3867 {
3868 	int pages;
3869 
3870 	pages = ring_size / desc_per_pg;
3871 
3872 	if (!pages)
3873 		return 1;
3874 
3875 	pages++;
3876 
3877 	while (pages & (pages - 1))
3878 		pages++;
3879 
3880 	return pages;
3881 }
3882 
3883 void bnxt_set_tpa_flags(struct bnxt *bp)
3884 {
3885 	bp->flags &= ~BNXT_FLAG_TPA;
3886 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3887 		return;
3888 	if (bp->dev->features & NETIF_F_LRO)
3889 		bp->flags |= BNXT_FLAG_LRO;
3890 	else if (bp->dev->features & NETIF_F_GRO_HW)
3891 		bp->flags |= BNXT_FLAG_GRO;
3892 }
3893 
3894 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3895  * be set on entry.
3896  */
3897 void bnxt_set_ring_params(struct bnxt *bp)
3898 {
3899 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3900 	u32 agg_factor = 0, agg_ring_size = 0;
3901 
3902 	/* 8 for CRC and VLAN */
3903 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3904 
3905 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3906 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3907 
3908 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3909 	ring_size = bp->rx_ring_size;
3910 	bp->rx_agg_ring_size = 0;
3911 	bp->rx_agg_nr_pages = 0;
3912 
3913 	if (bp->flags & BNXT_FLAG_TPA)
3914 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3915 
3916 	bp->flags &= ~BNXT_FLAG_JUMBO;
3917 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3918 		u32 jumbo_factor;
3919 
3920 		bp->flags |= BNXT_FLAG_JUMBO;
3921 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3922 		if (jumbo_factor > agg_factor)
3923 			agg_factor = jumbo_factor;
3924 	}
3925 	if (agg_factor) {
3926 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3927 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3928 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3929 				    bp->rx_ring_size, ring_size);
3930 			bp->rx_ring_size = ring_size;
3931 		}
3932 		agg_ring_size = ring_size * agg_factor;
3933 
3934 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3935 							RX_DESC_CNT);
3936 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3937 			u32 tmp = agg_ring_size;
3938 
3939 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3940 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3941 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3942 				    tmp, agg_ring_size);
3943 		}
3944 		bp->rx_agg_ring_size = agg_ring_size;
3945 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3946 
3947 		if (BNXT_RX_PAGE_MODE(bp)) {
3948 			rx_space = PAGE_SIZE;
3949 			rx_size = PAGE_SIZE -
3950 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
3951 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3952 		} else {
3953 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3954 			rx_space = rx_size + NET_SKB_PAD +
3955 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3956 		}
3957 	}
3958 
3959 	bp->rx_buf_use_size = rx_size;
3960 	bp->rx_buf_size = rx_space;
3961 
3962 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3963 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3964 
3965 	ring_size = bp->tx_ring_size;
3966 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3967 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3968 
3969 	max_rx_cmpl = bp->rx_ring_size;
3970 	/* MAX TPA needs to be added because TPA_START completions are
3971 	 * immediately recycled, so the TPA completions are not bound by
3972 	 * the RX ring size.
3973 	 */
3974 	if (bp->flags & BNXT_FLAG_TPA)
3975 		max_rx_cmpl += bp->max_tpa;
3976 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3977 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3978 	bp->cp_ring_size = ring_size;
3979 
3980 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3981 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3982 		bp->cp_nr_pages = MAX_CP_PAGES;
3983 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3984 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3985 			    ring_size, bp->cp_ring_size);
3986 	}
3987 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3988 	bp->cp_ring_mask = bp->cp_bit - 1;
3989 }
3990 
3991 /* Changing allocation mode of RX rings.
3992  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3993  */
3994 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3995 {
3996 	if (page_mode) {
3997 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3998 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
3999 
4000 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4001 			bp->flags |= BNXT_FLAG_JUMBO;
4002 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4003 			bp->dev->max_mtu =
4004 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4005 		} else {
4006 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4007 			bp->rx_skb_func = bnxt_rx_page_skb;
4008 			bp->dev->max_mtu =
4009 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4010 		}
4011 		bp->rx_dir = DMA_BIDIRECTIONAL;
4012 		/* Disable LRO or GRO_HW */
4013 		netdev_update_features(bp->dev);
4014 	} else {
4015 		bp->dev->max_mtu = bp->max_mtu;
4016 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4017 		bp->rx_dir = DMA_FROM_DEVICE;
4018 		bp->rx_skb_func = bnxt_rx_skb;
4019 	}
4020 	return 0;
4021 }
4022 
4023 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4024 {
4025 	int i;
4026 	struct bnxt_vnic_info *vnic;
4027 	struct pci_dev *pdev = bp->pdev;
4028 
4029 	if (!bp->vnic_info)
4030 		return;
4031 
4032 	for (i = 0; i < bp->nr_vnics; i++) {
4033 		vnic = &bp->vnic_info[i];
4034 
4035 		kfree(vnic->fw_grp_ids);
4036 		vnic->fw_grp_ids = NULL;
4037 
4038 		kfree(vnic->uc_list);
4039 		vnic->uc_list = NULL;
4040 
4041 		if (vnic->mc_list) {
4042 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4043 					  vnic->mc_list, vnic->mc_list_mapping);
4044 			vnic->mc_list = NULL;
4045 		}
4046 
4047 		if (vnic->rss_table) {
4048 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4049 					  vnic->rss_table,
4050 					  vnic->rss_table_dma_addr);
4051 			vnic->rss_table = NULL;
4052 		}
4053 
4054 		vnic->rss_hash_key = NULL;
4055 		vnic->flags = 0;
4056 	}
4057 }
4058 
4059 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4060 {
4061 	int i, rc = 0, size;
4062 	struct bnxt_vnic_info *vnic;
4063 	struct pci_dev *pdev = bp->pdev;
4064 	int max_rings;
4065 
4066 	for (i = 0; i < bp->nr_vnics; i++) {
4067 		vnic = &bp->vnic_info[i];
4068 
4069 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4070 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4071 
4072 			if (mem_size > 0) {
4073 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4074 				if (!vnic->uc_list) {
4075 					rc = -ENOMEM;
4076 					goto out;
4077 				}
4078 			}
4079 		}
4080 
4081 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4082 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4083 			vnic->mc_list =
4084 				dma_alloc_coherent(&pdev->dev,
4085 						   vnic->mc_list_size,
4086 						   &vnic->mc_list_mapping,
4087 						   GFP_KERNEL);
4088 			if (!vnic->mc_list) {
4089 				rc = -ENOMEM;
4090 				goto out;
4091 			}
4092 		}
4093 
4094 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4095 			goto vnic_skip_grps;
4096 
4097 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4098 			max_rings = bp->rx_nr_rings;
4099 		else
4100 			max_rings = 1;
4101 
4102 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4103 		if (!vnic->fw_grp_ids) {
4104 			rc = -ENOMEM;
4105 			goto out;
4106 		}
4107 vnic_skip_grps:
4108 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4109 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4110 			continue;
4111 
4112 		/* Allocate rss table and hash key */
4113 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4114 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4115 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4116 
4117 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4118 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4119 						     vnic->rss_table_size,
4120 						     &vnic->rss_table_dma_addr,
4121 						     GFP_KERNEL);
4122 		if (!vnic->rss_table) {
4123 			rc = -ENOMEM;
4124 			goto out;
4125 		}
4126 
4127 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4128 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4129 	}
4130 	return 0;
4131 
4132 out:
4133 	return rc;
4134 }
4135 
4136 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4137 {
4138 	struct bnxt_hwrm_wait_token *token;
4139 
4140 	dma_pool_destroy(bp->hwrm_dma_pool);
4141 	bp->hwrm_dma_pool = NULL;
4142 
4143 	rcu_read_lock();
4144 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4145 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4146 	rcu_read_unlock();
4147 }
4148 
4149 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4150 {
4151 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4152 					    BNXT_HWRM_DMA_SIZE,
4153 					    BNXT_HWRM_DMA_ALIGN, 0);
4154 	if (!bp->hwrm_dma_pool)
4155 		return -ENOMEM;
4156 
4157 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4158 
4159 	return 0;
4160 }
4161 
4162 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4163 {
4164 	kfree(stats->hw_masks);
4165 	stats->hw_masks = NULL;
4166 	kfree(stats->sw_stats);
4167 	stats->sw_stats = NULL;
4168 	if (stats->hw_stats) {
4169 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4170 				  stats->hw_stats_map);
4171 		stats->hw_stats = NULL;
4172 	}
4173 }
4174 
4175 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4176 				bool alloc_masks)
4177 {
4178 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4179 					     &stats->hw_stats_map, GFP_KERNEL);
4180 	if (!stats->hw_stats)
4181 		return -ENOMEM;
4182 
4183 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4184 	if (!stats->sw_stats)
4185 		goto stats_mem_err;
4186 
4187 	if (alloc_masks) {
4188 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4189 		if (!stats->hw_masks)
4190 			goto stats_mem_err;
4191 	}
4192 	return 0;
4193 
4194 stats_mem_err:
4195 	bnxt_free_stats_mem(bp, stats);
4196 	return -ENOMEM;
4197 }
4198 
4199 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4200 {
4201 	int i;
4202 
4203 	for (i = 0; i < count; i++)
4204 		mask_arr[i] = mask;
4205 }
4206 
4207 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4208 {
4209 	int i;
4210 
4211 	for (i = 0; i < count; i++)
4212 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4213 }
4214 
4215 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4216 				    struct bnxt_stats_mem *stats)
4217 {
4218 	struct hwrm_func_qstats_ext_output *resp;
4219 	struct hwrm_func_qstats_ext_input *req;
4220 	__le64 *hw_masks;
4221 	int rc;
4222 
4223 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4224 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4225 		return -EOPNOTSUPP;
4226 
4227 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4228 	if (rc)
4229 		return rc;
4230 
4231 	req->fid = cpu_to_le16(0xffff);
4232 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4233 
4234 	resp = hwrm_req_hold(bp, req);
4235 	rc = hwrm_req_send(bp, req);
4236 	if (!rc) {
4237 		hw_masks = &resp->rx_ucast_pkts;
4238 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4239 	}
4240 	hwrm_req_drop(bp, req);
4241 	return rc;
4242 }
4243 
4244 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4245 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4246 
4247 static void bnxt_init_stats(struct bnxt *bp)
4248 {
4249 	struct bnxt_napi *bnapi = bp->bnapi[0];
4250 	struct bnxt_cp_ring_info *cpr;
4251 	struct bnxt_stats_mem *stats;
4252 	__le64 *rx_stats, *tx_stats;
4253 	int rc, rx_count, tx_count;
4254 	u64 *rx_masks, *tx_masks;
4255 	u64 mask;
4256 	u8 flags;
4257 
4258 	cpr = &bnapi->cp_ring;
4259 	stats = &cpr->stats;
4260 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4261 	if (rc) {
4262 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4263 			mask = (1ULL << 48) - 1;
4264 		else
4265 			mask = -1ULL;
4266 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4267 	}
4268 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4269 		stats = &bp->port_stats;
4270 		rx_stats = stats->hw_stats;
4271 		rx_masks = stats->hw_masks;
4272 		rx_count = sizeof(struct rx_port_stats) / 8;
4273 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4274 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4275 		tx_count = sizeof(struct tx_port_stats) / 8;
4276 
4277 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4278 		rc = bnxt_hwrm_port_qstats(bp, flags);
4279 		if (rc) {
4280 			mask = (1ULL << 40) - 1;
4281 
4282 			bnxt_fill_masks(rx_masks, mask, rx_count);
4283 			bnxt_fill_masks(tx_masks, mask, tx_count);
4284 		} else {
4285 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4286 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4287 			bnxt_hwrm_port_qstats(bp, 0);
4288 		}
4289 	}
4290 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4291 		stats = &bp->rx_port_stats_ext;
4292 		rx_stats = stats->hw_stats;
4293 		rx_masks = stats->hw_masks;
4294 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4295 		stats = &bp->tx_port_stats_ext;
4296 		tx_stats = stats->hw_stats;
4297 		tx_masks = stats->hw_masks;
4298 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4299 
4300 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4301 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4302 		if (rc) {
4303 			mask = (1ULL << 40) - 1;
4304 
4305 			bnxt_fill_masks(rx_masks, mask, rx_count);
4306 			if (tx_stats)
4307 				bnxt_fill_masks(tx_masks, mask, tx_count);
4308 		} else {
4309 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4310 			if (tx_stats)
4311 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4312 						   tx_count);
4313 			bnxt_hwrm_port_qstats_ext(bp, 0);
4314 		}
4315 	}
4316 }
4317 
4318 static void bnxt_free_port_stats(struct bnxt *bp)
4319 {
4320 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4321 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4322 
4323 	bnxt_free_stats_mem(bp, &bp->port_stats);
4324 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4325 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4326 }
4327 
4328 static void bnxt_free_ring_stats(struct bnxt *bp)
4329 {
4330 	int i;
4331 
4332 	if (!bp->bnapi)
4333 		return;
4334 
4335 	for (i = 0; i < bp->cp_nr_rings; i++) {
4336 		struct bnxt_napi *bnapi = bp->bnapi[i];
4337 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4338 
4339 		bnxt_free_stats_mem(bp, &cpr->stats);
4340 	}
4341 }
4342 
4343 static int bnxt_alloc_stats(struct bnxt *bp)
4344 {
4345 	u32 size, i;
4346 	int rc;
4347 
4348 	size = bp->hw_ring_stats_size;
4349 
4350 	for (i = 0; i < bp->cp_nr_rings; i++) {
4351 		struct bnxt_napi *bnapi = bp->bnapi[i];
4352 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4353 
4354 		cpr->stats.len = size;
4355 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4356 		if (rc)
4357 			return rc;
4358 
4359 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4360 	}
4361 
4362 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4363 		return 0;
4364 
4365 	if (bp->port_stats.hw_stats)
4366 		goto alloc_ext_stats;
4367 
4368 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4369 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4370 	if (rc)
4371 		return rc;
4372 
4373 	bp->flags |= BNXT_FLAG_PORT_STATS;
4374 
4375 alloc_ext_stats:
4376 	/* Display extended statistics only if FW supports it */
4377 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4378 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4379 			return 0;
4380 
4381 	if (bp->rx_port_stats_ext.hw_stats)
4382 		goto alloc_tx_ext_stats;
4383 
4384 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4385 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4386 	/* Extended stats are optional */
4387 	if (rc)
4388 		return 0;
4389 
4390 alloc_tx_ext_stats:
4391 	if (bp->tx_port_stats_ext.hw_stats)
4392 		return 0;
4393 
4394 	if (bp->hwrm_spec_code >= 0x10902 ||
4395 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4396 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4397 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4398 		/* Extended stats are optional */
4399 		if (rc)
4400 			return 0;
4401 	}
4402 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4403 	return 0;
4404 }
4405 
4406 static void bnxt_clear_ring_indices(struct bnxt *bp)
4407 {
4408 	int i;
4409 
4410 	if (!bp->bnapi)
4411 		return;
4412 
4413 	for (i = 0; i < bp->cp_nr_rings; i++) {
4414 		struct bnxt_napi *bnapi = bp->bnapi[i];
4415 		struct bnxt_cp_ring_info *cpr;
4416 		struct bnxt_rx_ring_info *rxr;
4417 		struct bnxt_tx_ring_info *txr;
4418 
4419 		if (!bnapi)
4420 			continue;
4421 
4422 		cpr = &bnapi->cp_ring;
4423 		cpr->cp_raw_cons = 0;
4424 
4425 		txr = bnapi->tx_ring;
4426 		if (txr) {
4427 			txr->tx_prod = 0;
4428 			txr->tx_cons = 0;
4429 		}
4430 
4431 		rxr = bnapi->rx_ring;
4432 		if (rxr) {
4433 			rxr->rx_prod = 0;
4434 			rxr->rx_agg_prod = 0;
4435 			rxr->rx_sw_agg_prod = 0;
4436 			rxr->rx_next_cons = 0;
4437 		}
4438 	}
4439 }
4440 
4441 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4442 {
4443 #ifdef CONFIG_RFS_ACCEL
4444 	int i;
4445 
4446 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4447 	 * safe to delete the hash table.
4448 	 */
4449 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4450 		struct hlist_head *head;
4451 		struct hlist_node *tmp;
4452 		struct bnxt_ntuple_filter *fltr;
4453 
4454 		head = &bp->ntp_fltr_hash_tbl[i];
4455 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4456 			hlist_del(&fltr->hash);
4457 			kfree(fltr);
4458 		}
4459 	}
4460 	if (irq_reinit) {
4461 		bitmap_free(bp->ntp_fltr_bmap);
4462 		bp->ntp_fltr_bmap = NULL;
4463 	}
4464 	bp->ntp_fltr_count = 0;
4465 #endif
4466 }
4467 
4468 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4469 {
4470 #ifdef CONFIG_RFS_ACCEL
4471 	int i, rc = 0;
4472 
4473 	if (!(bp->flags & BNXT_FLAG_RFS))
4474 		return 0;
4475 
4476 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4477 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4478 
4479 	bp->ntp_fltr_count = 0;
4480 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4481 
4482 	if (!bp->ntp_fltr_bmap)
4483 		rc = -ENOMEM;
4484 
4485 	return rc;
4486 #else
4487 	return 0;
4488 #endif
4489 }
4490 
4491 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4492 {
4493 	bnxt_free_vnic_attributes(bp);
4494 	bnxt_free_tx_rings(bp);
4495 	bnxt_free_rx_rings(bp);
4496 	bnxt_free_cp_rings(bp);
4497 	bnxt_free_all_cp_arrays(bp);
4498 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4499 	if (irq_re_init) {
4500 		bnxt_free_ring_stats(bp);
4501 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4502 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4503 			bnxt_free_port_stats(bp);
4504 		bnxt_free_ring_grps(bp);
4505 		bnxt_free_vnics(bp);
4506 		kfree(bp->tx_ring_map);
4507 		bp->tx_ring_map = NULL;
4508 		kfree(bp->tx_ring);
4509 		bp->tx_ring = NULL;
4510 		kfree(bp->rx_ring);
4511 		bp->rx_ring = NULL;
4512 		kfree(bp->bnapi);
4513 		bp->bnapi = NULL;
4514 	} else {
4515 		bnxt_clear_ring_indices(bp);
4516 	}
4517 }
4518 
4519 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4520 {
4521 	int i, j, rc, size, arr_size;
4522 	void *bnapi;
4523 
4524 	if (irq_re_init) {
4525 		/* Allocate bnapi mem pointer array and mem block for
4526 		 * all queues
4527 		 */
4528 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4529 				bp->cp_nr_rings);
4530 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4531 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4532 		if (!bnapi)
4533 			return -ENOMEM;
4534 
4535 		bp->bnapi = bnapi;
4536 		bnapi += arr_size;
4537 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4538 			bp->bnapi[i] = bnapi;
4539 			bp->bnapi[i]->index = i;
4540 			bp->bnapi[i]->bp = bp;
4541 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4542 				struct bnxt_cp_ring_info *cpr =
4543 					&bp->bnapi[i]->cp_ring;
4544 
4545 				cpr->cp_ring_struct.ring_mem.flags =
4546 					BNXT_RMEM_RING_PTE_FLAG;
4547 			}
4548 		}
4549 
4550 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4551 				      sizeof(struct bnxt_rx_ring_info),
4552 				      GFP_KERNEL);
4553 		if (!bp->rx_ring)
4554 			return -ENOMEM;
4555 
4556 		for (i = 0; i < bp->rx_nr_rings; i++) {
4557 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4558 
4559 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4560 				rxr->rx_ring_struct.ring_mem.flags =
4561 					BNXT_RMEM_RING_PTE_FLAG;
4562 				rxr->rx_agg_ring_struct.ring_mem.flags =
4563 					BNXT_RMEM_RING_PTE_FLAG;
4564 			}
4565 			rxr->bnapi = bp->bnapi[i];
4566 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4567 		}
4568 
4569 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4570 				      sizeof(struct bnxt_tx_ring_info),
4571 				      GFP_KERNEL);
4572 		if (!bp->tx_ring)
4573 			return -ENOMEM;
4574 
4575 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4576 					  GFP_KERNEL);
4577 
4578 		if (!bp->tx_ring_map)
4579 			return -ENOMEM;
4580 
4581 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4582 			j = 0;
4583 		else
4584 			j = bp->rx_nr_rings;
4585 
4586 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4587 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4588 
4589 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4590 				txr->tx_ring_struct.ring_mem.flags =
4591 					BNXT_RMEM_RING_PTE_FLAG;
4592 			txr->bnapi = bp->bnapi[j];
4593 			bp->bnapi[j]->tx_ring = txr;
4594 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4595 			if (i >= bp->tx_nr_rings_xdp) {
4596 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4597 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4598 			} else {
4599 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4600 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4601 			}
4602 		}
4603 
4604 		rc = bnxt_alloc_stats(bp);
4605 		if (rc)
4606 			goto alloc_mem_err;
4607 		bnxt_init_stats(bp);
4608 
4609 		rc = bnxt_alloc_ntp_fltrs(bp);
4610 		if (rc)
4611 			goto alloc_mem_err;
4612 
4613 		rc = bnxt_alloc_vnics(bp);
4614 		if (rc)
4615 			goto alloc_mem_err;
4616 	}
4617 
4618 	rc = bnxt_alloc_all_cp_arrays(bp);
4619 	if (rc)
4620 		goto alloc_mem_err;
4621 
4622 	bnxt_init_ring_struct(bp);
4623 
4624 	rc = bnxt_alloc_rx_rings(bp);
4625 	if (rc)
4626 		goto alloc_mem_err;
4627 
4628 	rc = bnxt_alloc_tx_rings(bp);
4629 	if (rc)
4630 		goto alloc_mem_err;
4631 
4632 	rc = bnxt_alloc_cp_rings(bp);
4633 	if (rc)
4634 		goto alloc_mem_err;
4635 
4636 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4637 				  BNXT_VNIC_UCAST_FLAG;
4638 	rc = bnxt_alloc_vnic_attributes(bp);
4639 	if (rc)
4640 		goto alloc_mem_err;
4641 	return 0;
4642 
4643 alloc_mem_err:
4644 	bnxt_free_mem(bp, true);
4645 	return rc;
4646 }
4647 
4648 static void bnxt_disable_int(struct bnxt *bp)
4649 {
4650 	int i;
4651 
4652 	if (!bp->bnapi)
4653 		return;
4654 
4655 	for (i = 0; i < bp->cp_nr_rings; i++) {
4656 		struct bnxt_napi *bnapi = bp->bnapi[i];
4657 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4658 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4659 
4660 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4661 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4662 	}
4663 }
4664 
4665 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4666 {
4667 	struct bnxt_napi *bnapi = bp->bnapi[n];
4668 	struct bnxt_cp_ring_info *cpr;
4669 
4670 	cpr = &bnapi->cp_ring;
4671 	return cpr->cp_ring_struct.map_idx;
4672 }
4673 
4674 static void bnxt_disable_int_sync(struct bnxt *bp)
4675 {
4676 	int i;
4677 
4678 	if (!bp->irq_tbl)
4679 		return;
4680 
4681 	atomic_inc(&bp->intr_sem);
4682 
4683 	bnxt_disable_int(bp);
4684 	for (i = 0; i < bp->cp_nr_rings; i++) {
4685 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4686 
4687 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4688 	}
4689 }
4690 
4691 static void bnxt_enable_int(struct bnxt *bp)
4692 {
4693 	int i;
4694 
4695 	atomic_set(&bp->intr_sem, 0);
4696 	for (i = 0; i < bp->cp_nr_rings; i++) {
4697 		struct bnxt_napi *bnapi = bp->bnapi[i];
4698 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4699 
4700 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4701 	}
4702 }
4703 
4704 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4705 			    bool async_only)
4706 {
4707 	DECLARE_BITMAP(async_events_bmap, 256);
4708 	u32 *events = (u32 *)async_events_bmap;
4709 	struct hwrm_func_drv_rgtr_output *resp;
4710 	struct hwrm_func_drv_rgtr_input *req;
4711 	u32 flags;
4712 	int rc, i;
4713 
4714 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4715 	if (rc)
4716 		return rc;
4717 
4718 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4719 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4720 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4721 
4722 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4723 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4724 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4725 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4726 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4727 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4728 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4729 	req->flags = cpu_to_le32(flags);
4730 	req->ver_maj_8b = DRV_VER_MAJ;
4731 	req->ver_min_8b = DRV_VER_MIN;
4732 	req->ver_upd_8b = DRV_VER_UPD;
4733 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4734 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4735 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4736 
4737 	if (BNXT_PF(bp)) {
4738 		u32 data[8];
4739 		int i;
4740 
4741 		memset(data, 0, sizeof(data));
4742 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4743 			u16 cmd = bnxt_vf_req_snif[i];
4744 			unsigned int bit, idx;
4745 
4746 			idx = cmd / 32;
4747 			bit = cmd % 32;
4748 			data[idx] |= 1 << bit;
4749 		}
4750 
4751 		for (i = 0; i < 8; i++)
4752 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4753 
4754 		req->enables |=
4755 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4756 	}
4757 
4758 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4759 		req->flags |= cpu_to_le32(
4760 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4761 
4762 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4763 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4764 		u16 event_id = bnxt_async_events_arr[i];
4765 
4766 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4767 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4768 			continue;
4769 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
4770 		    !bp->ptp_cfg)
4771 			continue;
4772 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4773 	}
4774 	if (bmap && bmap_size) {
4775 		for (i = 0; i < bmap_size; i++) {
4776 			if (test_bit(i, bmap))
4777 				__set_bit(i, async_events_bmap);
4778 		}
4779 	}
4780 	for (i = 0; i < 8; i++)
4781 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4782 
4783 	if (async_only)
4784 		req->enables =
4785 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4786 
4787 	resp = hwrm_req_hold(bp, req);
4788 	rc = hwrm_req_send(bp, req);
4789 	if (!rc) {
4790 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4791 		if (resp->flags &
4792 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4793 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4794 	}
4795 	hwrm_req_drop(bp, req);
4796 	return rc;
4797 }
4798 
4799 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4800 {
4801 	struct hwrm_func_drv_unrgtr_input *req;
4802 	int rc;
4803 
4804 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4805 		return 0;
4806 
4807 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4808 	if (rc)
4809 		return rc;
4810 	return hwrm_req_send(bp, req);
4811 }
4812 
4813 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4814 {
4815 	struct hwrm_tunnel_dst_port_free_input *req;
4816 	int rc;
4817 
4818 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4819 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4820 		return 0;
4821 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4822 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4823 		return 0;
4824 
4825 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4826 	if (rc)
4827 		return rc;
4828 
4829 	req->tunnel_type = tunnel_type;
4830 
4831 	switch (tunnel_type) {
4832 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4833 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4834 		bp->vxlan_port = 0;
4835 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4836 		break;
4837 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4838 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4839 		bp->nge_port = 0;
4840 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4841 		break;
4842 	default:
4843 		break;
4844 	}
4845 
4846 	rc = hwrm_req_send(bp, req);
4847 	if (rc)
4848 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4849 			   rc);
4850 	return rc;
4851 }
4852 
4853 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4854 					   u8 tunnel_type)
4855 {
4856 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4857 	struct hwrm_tunnel_dst_port_alloc_input *req;
4858 	int rc;
4859 
4860 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4861 	if (rc)
4862 		return rc;
4863 
4864 	req->tunnel_type = tunnel_type;
4865 	req->tunnel_dst_port_val = port;
4866 
4867 	resp = hwrm_req_hold(bp, req);
4868 	rc = hwrm_req_send(bp, req);
4869 	if (rc) {
4870 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4871 			   rc);
4872 		goto err_out;
4873 	}
4874 
4875 	switch (tunnel_type) {
4876 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4877 		bp->vxlan_port = port;
4878 		bp->vxlan_fw_dst_port_id =
4879 			le16_to_cpu(resp->tunnel_dst_port_id);
4880 		break;
4881 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4882 		bp->nge_port = port;
4883 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4884 		break;
4885 	default:
4886 		break;
4887 	}
4888 
4889 err_out:
4890 	hwrm_req_drop(bp, req);
4891 	return rc;
4892 }
4893 
4894 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4895 {
4896 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4897 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4898 	int rc;
4899 
4900 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4901 	if (rc)
4902 		return rc;
4903 
4904 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4905 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4906 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4907 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4908 	}
4909 	req->mask = cpu_to_le32(vnic->rx_mask);
4910 	return hwrm_req_send_silent(bp, req);
4911 }
4912 
4913 #ifdef CONFIG_RFS_ACCEL
4914 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4915 					    struct bnxt_ntuple_filter *fltr)
4916 {
4917 	struct hwrm_cfa_ntuple_filter_free_input *req;
4918 	int rc;
4919 
4920 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4921 	if (rc)
4922 		return rc;
4923 
4924 	req->ntuple_filter_id = fltr->filter_id;
4925 	return hwrm_req_send(bp, req);
4926 }
4927 
4928 #define BNXT_NTP_FLTR_FLAGS					\
4929 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4930 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4931 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4932 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4933 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4934 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4935 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4936 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4937 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4938 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4939 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4940 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4941 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4942 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4943 
4944 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4945 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4946 
4947 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4948 					     struct bnxt_ntuple_filter *fltr)
4949 {
4950 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4951 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4952 	struct flow_keys *keys = &fltr->fkeys;
4953 	struct bnxt_vnic_info *vnic;
4954 	u32 flags = 0;
4955 	int rc;
4956 
4957 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4958 	if (rc)
4959 		return rc;
4960 
4961 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4962 
4963 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4964 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4965 		req->dst_id = cpu_to_le16(fltr->rxq);
4966 	} else {
4967 		vnic = &bp->vnic_info[fltr->rxq + 1];
4968 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4969 	}
4970 	req->flags = cpu_to_le32(flags);
4971 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4972 
4973 	req->ethertype = htons(ETH_P_IP);
4974 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4975 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4976 	req->ip_protocol = keys->basic.ip_proto;
4977 
4978 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4979 		int i;
4980 
4981 		req->ethertype = htons(ETH_P_IPV6);
4982 		req->ip_addr_type =
4983 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4984 		*(struct in6_addr *)&req->src_ipaddr[0] =
4985 			keys->addrs.v6addrs.src;
4986 		*(struct in6_addr *)&req->dst_ipaddr[0] =
4987 			keys->addrs.v6addrs.dst;
4988 		for (i = 0; i < 4; i++) {
4989 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4990 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4991 		}
4992 	} else {
4993 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
4994 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4995 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4996 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4997 	}
4998 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4999 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5000 		req->tunnel_type =
5001 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5002 	}
5003 
5004 	req->src_port = keys->ports.src;
5005 	req->src_port_mask = cpu_to_be16(0xffff);
5006 	req->dst_port = keys->ports.dst;
5007 	req->dst_port_mask = cpu_to_be16(0xffff);
5008 
5009 	resp = hwrm_req_hold(bp, req);
5010 	rc = hwrm_req_send(bp, req);
5011 	if (!rc)
5012 		fltr->filter_id = resp->ntuple_filter_id;
5013 	hwrm_req_drop(bp, req);
5014 	return rc;
5015 }
5016 #endif
5017 
5018 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5019 				     const u8 *mac_addr)
5020 {
5021 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5022 	struct hwrm_cfa_l2_filter_alloc_input *req;
5023 	int rc;
5024 
5025 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5026 	if (rc)
5027 		return rc;
5028 
5029 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5030 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5031 		req->flags |=
5032 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5033 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5034 	req->enables =
5035 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5036 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5037 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5038 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5039 	req->l2_addr_mask[0] = 0xff;
5040 	req->l2_addr_mask[1] = 0xff;
5041 	req->l2_addr_mask[2] = 0xff;
5042 	req->l2_addr_mask[3] = 0xff;
5043 	req->l2_addr_mask[4] = 0xff;
5044 	req->l2_addr_mask[5] = 0xff;
5045 
5046 	resp = hwrm_req_hold(bp, req);
5047 	rc = hwrm_req_send(bp, req);
5048 	if (!rc)
5049 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5050 							resp->l2_filter_id;
5051 	hwrm_req_drop(bp, req);
5052 	return rc;
5053 }
5054 
5055 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5056 {
5057 	struct hwrm_cfa_l2_filter_free_input *req;
5058 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5059 	int rc;
5060 
5061 	/* Any associated ntuple filters will also be cleared by firmware. */
5062 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5063 	if (rc)
5064 		return rc;
5065 	hwrm_req_hold(bp, req);
5066 	for (i = 0; i < num_of_vnics; i++) {
5067 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5068 
5069 		for (j = 0; j < vnic->uc_filter_count; j++) {
5070 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5071 
5072 			rc = hwrm_req_send(bp, req);
5073 		}
5074 		vnic->uc_filter_count = 0;
5075 	}
5076 	hwrm_req_drop(bp, req);
5077 	return rc;
5078 }
5079 
5080 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5081 {
5082 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5083 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5084 	struct hwrm_vnic_tpa_cfg_input *req;
5085 	int rc;
5086 
5087 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5088 		return 0;
5089 
5090 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5091 	if (rc)
5092 		return rc;
5093 
5094 	if (tpa_flags) {
5095 		u16 mss = bp->dev->mtu - 40;
5096 		u32 nsegs, n, segs = 0, flags;
5097 
5098 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5099 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5100 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5101 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5102 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5103 		if (tpa_flags & BNXT_FLAG_GRO)
5104 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5105 
5106 		req->flags = cpu_to_le32(flags);
5107 
5108 		req->enables =
5109 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5110 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5111 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5112 
5113 		/* Number of segs are log2 units, and first packet is not
5114 		 * included as part of this units.
5115 		 */
5116 		if (mss <= BNXT_RX_PAGE_SIZE) {
5117 			n = BNXT_RX_PAGE_SIZE / mss;
5118 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5119 		} else {
5120 			n = mss / BNXT_RX_PAGE_SIZE;
5121 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5122 				n++;
5123 			nsegs = (MAX_SKB_FRAGS - n) / n;
5124 		}
5125 
5126 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5127 			segs = MAX_TPA_SEGS_P5;
5128 			max_aggs = bp->max_tpa;
5129 		} else {
5130 			segs = ilog2(nsegs);
5131 		}
5132 		req->max_agg_segs = cpu_to_le16(segs);
5133 		req->max_aggs = cpu_to_le16(max_aggs);
5134 
5135 		req->min_agg_len = cpu_to_le32(512);
5136 	}
5137 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5138 
5139 	return hwrm_req_send(bp, req);
5140 }
5141 
5142 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5143 {
5144 	struct bnxt_ring_grp_info *grp_info;
5145 
5146 	grp_info = &bp->grp_info[ring->grp_idx];
5147 	return grp_info->cp_fw_ring_id;
5148 }
5149 
5150 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5151 {
5152 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5153 		struct bnxt_napi *bnapi = rxr->bnapi;
5154 		struct bnxt_cp_ring_info *cpr;
5155 
5156 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5157 		return cpr->cp_ring_struct.fw_ring_id;
5158 	} else {
5159 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5160 	}
5161 }
5162 
5163 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5164 {
5165 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5166 		struct bnxt_napi *bnapi = txr->bnapi;
5167 		struct bnxt_cp_ring_info *cpr;
5168 
5169 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5170 		return cpr->cp_ring_struct.fw_ring_id;
5171 	} else {
5172 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5173 	}
5174 }
5175 
5176 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5177 {
5178 	int entries;
5179 
5180 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5181 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5182 	else
5183 		entries = HW_HASH_INDEX_SIZE;
5184 
5185 	bp->rss_indir_tbl_entries = entries;
5186 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5187 					  GFP_KERNEL);
5188 	if (!bp->rss_indir_tbl)
5189 		return -ENOMEM;
5190 	return 0;
5191 }
5192 
5193 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5194 {
5195 	u16 max_rings, max_entries, pad, i;
5196 
5197 	if (!bp->rx_nr_rings)
5198 		return;
5199 
5200 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5201 		max_rings = bp->rx_nr_rings - 1;
5202 	else
5203 		max_rings = bp->rx_nr_rings;
5204 
5205 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5206 
5207 	for (i = 0; i < max_entries; i++)
5208 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5209 
5210 	pad = bp->rss_indir_tbl_entries - max_entries;
5211 	if (pad)
5212 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5213 }
5214 
5215 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5216 {
5217 	u16 i, tbl_size, max_ring = 0;
5218 
5219 	if (!bp->rss_indir_tbl)
5220 		return 0;
5221 
5222 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5223 	for (i = 0; i < tbl_size; i++)
5224 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5225 	return max_ring;
5226 }
5227 
5228 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5229 {
5230 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5231 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5232 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5233 		return 2;
5234 	return 1;
5235 }
5236 
5237 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5238 {
5239 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5240 	u16 i, j;
5241 
5242 	/* Fill the RSS indirection table with ring group ids */
5243 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5244 		if (!no_rss)
5245 			j = bp->rss_indir_tbl[i];
5246 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5247 	}
5248 }
5249 
5250 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5251 				    struct bnxt_vnic_info *vnic)
5252 {
5253 	__le16 *ring_tbl = vnic->rss_table;
5254 	struct bnxt_rx_ring_info *rxr;
5255 	u16 tbl_size, i;
5256 
5257 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5258 
5259 	for (i = 0; i < tbl_size; i++) {
5260 		u16 ring_id, j;
5261 
5262 		j = bp->rss_indir_tbl[i];
5263 		rxr = &bp->rx_ring[j];
5264 
5265 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5266 		*ring_tbl++ = cpu_to_le16(ring_id);
5267 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5268 		*ring_tbl++ = cpu_to_le16(ring_id);
5269 	}
5270 }
5271 
5272 static void
5273 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5274 			 struct bnxt_vnic_info *vnic)
5275 {
5276 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5277 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5278 	else
5279 		bnxt_fill_hw_rss_tbl(bp, vnic);
5280 
5281 	if (bp->rss_hash_delta) {
5282 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5283 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5284 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5285 		else
5286 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5287 	} else {
5288 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5289 	}
5290 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5291 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5292 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5293 }
5294 
5295 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5296 {
5297 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5298 	struct hwrm_vnic_rss_cfg_input *req;
5299 	int rc;
5300 
5301 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5302 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5303 		return 0;
5304 
5305 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5306 	if (rc)
5307 		return rc;
5308 
5309 	if (set_rss)
5310 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5311 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5312 	return hwrm_req_send(bp, req);
5313 }
5314 
5315 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5316 {
5317 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5318 	struct hwrm_vnic_rss_cfg_input *req;
5319 	dma_addr_t ring_tbl_map;
5320 	u32 i, nr_ctxs;
5321 	int rc;
5322 
5323 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5324 	if (rc)
5325 		return rc;
5326 
5327 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5328 	if (!set_rss)
5329 		return hwrm_req_send(bp, req);
5330 
5331 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5332 	ring_tbl_map = vnic->rss_table_dma_addr;
5333 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5334 
5335 	hwrm_req_hold(bp, req);
5336 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5337 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5338 		req->ring_table_pair_index = i;
5339 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5340 		rc = hwrm_req_send(bp, req);
5341 		if (rc)
5342 			goto exit;
5343 	}
5344 
5345 exit:
5346 	hwrm_req_drop(bp, req);
5347 	return rc;
5348 }
5349 
5350 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5351 {
5352 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5353 	struct hwrm_vnic_rss_qcfg_output *resp;
5354 	struct hwrm_vnic_rss_qcfg_input *req;
5355 
5356 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5357 		return;
5358 
5359 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5360 	/* all contexts configured to same hash_type, zero always exists */
5361 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5362 	resp = hwrm_req_hold(bp, req);
5363 	if (!hwrm_req_send(bp, req)) {
5364 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5365 		bp->rss_hash_delta = 0;
5366 	}
5367 	hwrm_req_drop(bp, req);
5368 }
5369 
5370 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5371 {
5372 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5373 	struct hwrm_vnic_plcmodes_cfg_input *req;
5374 	int rc;
5375 
5376 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5377 	if (rc)
5378 		return rc;
5379 
5380 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5381 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5382 
5383 	if (BNXT_RX_PAGE_MODE(bp)) {
5384 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
5385 	} else {
5386 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5387 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5388 		req->enables |=
5389 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5390 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5391 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5392 	}
5393 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5394 	return hwrm_req_send(bp, req);
5395 }
5396 
5397 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5398 					u16 ctx_idx)
5399 {
5400 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5401 
5402 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5403 		return;
5404 
5405 	req->rss_cos_lb_ctx_id =
5406 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5407 
5408 	hwrm_req_send(bp, req);
5409 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5410 }
5411 
5412 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5413 {
5414 	int i, j;
5415 
5416 	for (i = 0; i < bp->nr_vnics; i++) {
5417 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5418 
5419 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5420 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5421 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5422 		}
5423 	}
5424 	bp->rsscos_nr_ctxs = 0;
5425 }
5426 
5427 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5428 {
5429 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5430 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5431 	int rc;
5432 
5433 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5434 	if (rc)
5435 		return rc;
5436 
5437 	resp = hwrm_req_hold(bp, req);
5438 	rc = hwrm_req_send(bp, req);
5439 	if (!rc)
5440 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5441 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5442 	hwrm_req_drop(bp, req);
5443 
5444 	return rc;
5445 }
5446 
5447 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5448 {
5449 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5450 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5451 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5452 }
5453 
5454 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5455 {
5456 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5457 	struct hwrm_vnic_cfg_input *req;
5458 	unsigned int ring = 0, grp_idx;
5459 	u16 def_vlan = 0;
5460 	int rc;
5461 
5462 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5463 	if (rc)
5464 		return rc;
5465 
5466 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5467 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5468 
5469 		req->default_rx_ring_id =
5470 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5471 		req->default_cmpl_ring_id =
5472 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5473 		req->enables =
5474 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5475 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5476 		goto vnic_mru;
5477 	}
5478 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5479 	/* Only RSS support for now TBD: COS & LB */
5480 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5481 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5482 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5483 					   VNIC_CFG_REQ_ENABLES_MRU);
5484 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5485 		req->rss_rule =
5486 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5487 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5488 					   VNIC_CFG_REQ_ENABLES_MRU);
5489 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5490 	} else {
5491 		req->rss_rule = cpu_to_le16(0xffff);
5492 	}
5493 
5494 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5495 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5496 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5497 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5498 	} else {
5499 		req->cos_rule = cpu_to_le16(0xffff);
5500 	}
5501 
5502 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5503 		ring = 0;
5504 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5505 		ring = vnic_id - 1;
5506 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5507 		ring = bp->rx_nr_rings - 1;
5508 
5509 	grp_idx = bp->rx_ring[ring].bnapi->index;
5510 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5511 	req->lb_rule = cpu_to_le16(0xffff);
5512 vnic_mru:
5513 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5514 
5515 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5516 #ifdef CONFIG_BNXT_SRIOV
5517 	if (BNXT_VF(bp))
5518 		def_vlan = bp->vf.vlan;
5519 #endif
5520 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5521 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5522 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
5523 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5524 
5525 	return hwrm_req_send(bp, req);
5526 }
5527 
5528 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5529 {
5530 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5531 		struct hwrm_vnic_free_input *req;
5532 
5533 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5534 			return;
5535 
5536 		req->vnic_id =
5537 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5538 
5539 		hwrm_req_send(bp, req);
5540 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5541 	}
5542 }
5543 
5544 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5545 {
5546 	u16 i;
5547 
5548 	for (i = 0; i < bp->nr_vnics; i++)
5549 		bnxt_hwrm_vnic_free_one(bp, i);
5550 }
5551 
5552 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5553 				unsigned int start_rx_ring_idx,
5554 				unsigned int nr_rings)
5555 {
5556 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5557 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5558 	struct hwrm_vnic_alloc_output *resp;
5559 	struct hwrm_vnic_alloc_input *req;
5560 	int rc;
5561 
5562 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5563 	if (rc)
5564 		return rc;
5565 
5566 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5567 		goto vnic_no_ring_grps;
5568 
5569 	/* map ring groups to this vnic */
5570 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5571 		grp_idx = bp->rx_ring[i].bnapi->index;
5572 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5573 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5574 				   j, nr_rings);
5575 			break;
5576 		}
5577 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5578 	}
5579 
5580 vnic_no_ring_grps:
5581 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5582 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5583 	if (vnic_id == 0)
5584 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5585 
5586 	resp = hwrm_req_hold(bp, req);
5587 	rc = hwrm_req_send(bp, req);
5588 	if (!rc)
5589 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5590 	hwrm_req_drop(bp, req);
5591 	return rc;
5592 }
5593 
5594 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5595 {
5596 	struct hwrm_vnic_qcaps_output *resp;
5597 	struct hwrm_vnic_qcaps_input *req;
5598 	int rc;
5599 
5600 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5601 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5602 	if (bp->hwrm_spec_code < 0x10600)
5603 		return 0;
5604 
5605 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5606 	if (rc)
5607 		return rc;
5608 
5609 	resp = hwrm_req_hold(bp, req);
5610 	rc = hwrm_req_send(bp, req);
5611 	if (!rc) {
5612 		u32 flags = le32_to_cpu(resp->flags);
5613 
5614 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5615 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5616 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5617 		if (flags &
5618 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5619 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5620 
5621 		/* Older P5 fw before EXT_HW_STATS support did not set
5622 		 * VLAN_STRIP_CAP properly.
5623 		 */
5624 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5625 		    (BNXT_CHIP_P5_THOR(bp) &&
5626 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5627 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5628 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
5629 			bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA;
5630 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5631 		if (bp->max_tpa_v2) {
5632 			if (BNXT_CHIP_P5_THOR(bp))
5633 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5634 			else
5635 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5636 		}
5637 	}
5638 	hwrm_req_drop(bp, req);
5639 	return rc;
5640 }
5641 
5642 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5643 {
5644 	struct hwrm_ring_grp_alloc_output *resp;
5645 	struct hwrm_ring_grp_alloc_input *req;
5646 	int rc;
5647 	u16 i;
5648 
5649 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5650 		return 0;
5651 
5652 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5653 	if (rc)
5654 		return rc;
5655 
5656 	resp = hwrm_req_hold(bp, req);
5657 	for (i = 0; i < bp->rx_nr_rings; i++) {
5658 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5659 
5660 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5661 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5662 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5663 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5664 
5665 		rc = hwrm_req_send(bp, req);
5666 
5667 		if (rc)
5668 			break;
5669 
5670 		bp->grp_info[grp_idx].fw_grp_id =
5671 			le32_to_cpu(resp->ring_group_id);
5672 	}
5673 	hwrm_req_drop(bp, req);
5674 	return rc;
5675 }
5676 
5677 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5678 {
5679 	struct hwrm_ring_grp_free_input *req;
5680 	u16 i;
5681 
5682 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5683 		return;
5684 
5685 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5686 		return;
5687 
5688 	hwrm_req_hold(bp, req);
5689 	for (i = 0; i < bp->cp_nr_rings; i++) {
5690 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5691 			continue;
5692 		req->ring_group_id =
5693 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5694 
5695 		hwrm_req_send(bp, req);
5696 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5697 	}
5698 	hwrm_req_drop(bp, req);
5699 }
5700 
5701 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5702 				    struct bnxt_ring_struct *ring,
5703 				    u32 ring_type, u32 map_index)
5704 {
5705 	struct hwrm_ring_alloc_output *resp;
5706 	struct hwrm_ring_alloc_input *req;
5707 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5708 	struct bnxt_ring_grp_info *grp_info;
5709 	int rc, err = 0;
5710 	u16 ring_id;
5711 
5712 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5713 	if (rc)
5714 		goto exit;
5715 
5716 	req->enables = 0;
5717 	if (rmem->nr_pages > 1) {
5718 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5719 		/* Page size is in log2 units */
5720 		req->page_size = BNXT_PAGE_SHIFT;
5721 		req->page_tbl_depth = 1;
5722 	} else {
5723 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5724 	}
5725 	req->fbo = 0;
5726 	/* Association of ring index with doorbell index and MSIX number */
5727 	req->logical_id = cpu_to_le16(map_index);
5728 
5729 	switch (ring_type) {
5730 	case HWRM_RING_ALLOC_TX: {
5731 		struct bnxt_tx_ring_info *txr;
5732 
5733 		txr = container_of(ring, struct bnxt_tx_ring_info,
5734 				   tx_ring_struct);
5735 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5736 		/* Association of transmit ring with completion ring */
5737 		grp_info = &bp->grp_info[ring->grp_idx];
5738 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5739 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5740 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5741 		req->queue_id = cpu_to_le16(ring->queue_id);
5742 		break;
5743 	}
5744 	case HWRM_RING_ALLOC_RX:
5745 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5746 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5747 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5748 			u16 flags = 0;
5749 
5750 			/* Association of rx ring with stats context */
5751 			grp_info = &bp->grp_info[ring->grp_idx];
5752 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5753 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5754 			req->enables |= cpu_to_le32(
5755 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5756 			if (NET_IP_ALIGN == 2)
5757 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5758 			req->flags = cpu_to_le16(flags);
5759 		}
5760 		break;
5761 	case HWRM_RING_ALLOC_AGG:
5762 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5763 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5764 			/* Association of agg ring with rx ring */
5765 			grp_info = &bp->grp_info[ring->grp_idx];
5766 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5767 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5768 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5769 			req->enables |= cpu_to_le32(
5770 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5771 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5772 		} else {
5773 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5774 		}
5775 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5776 		break;
5777 	case HWRM_RING_ALLOC_CMPL:
5778 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5779 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5780 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5781 			/* Association of cp ring with nq */
5782 			grp_info = &bp->grp_info[map_index];
5783 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5784 			req->cq_handle = cpu_to_le64(ring->handle);
5785 			req->enables |= cpu_to_le32(
5786 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5787 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5788 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5789 		}
5790 		break;
5791 	case HWRM_RING_ALLOC_NQ:
5792 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5793 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5794 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5795 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5796 		break;
5797 	default:
5798 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5799 			   ring_type);
5800 		return -1;
5801 	}
5802 
5803 	resp = hwrm_req_hold(bp, req);
5804 	rc = hwrm_req_send(bp, req);
5805 	err = le16_to_cpu(resp->error_code);
5806 	ring_id = le16_to_cpu(resp->ring_id);
5807 	hwrm_req_drop(bp, req);
5808 
5809 exit:
5810 	if (rc || err) {
5811 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5812 			   ring_type, rc, err);
5813 		return -EIO;
5814 	}
5815 	ring->fw_ring_id = ring_id;
5816 	return rc;
5817 }
5818 
5819 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5820 {
5821 	int rc;
5822 
5823 	if (BNXT_PF(bp)) {
5824 		struct hwrm_func_cfg_input *req;
5825 
5826 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5827 		if (rc)
5828 			return rc;
5829 
5830 		req->fid = cpu_to_le16(0xffff);
5831 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5832 		req->async_event_cr = cpu_to_le16(idx);
5833 		return hwrm_req_send(bp, req);
5834 	} else {
5835 		struct hwrm_func_vf_cfg_input *req;
5836 
5837 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5838 		if (rc)
5839 			return rc;
5840 
5841 		req->enables =
5842 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5843 		req->async_event_cr = cpu_to_le16(idx);
5844 		return hwrm_req_send(bp, req);
5845 	}
5846 }
5847 
5848 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5849 			u32 map_idx, u32 xid)
5850 {
5851 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5852 		if (BNXT_PF(bp))
5853 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5854 		else
5855 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5856 		switch (ring_type) {
5857 		case HWRM_RING_ALLOC_TX:
5858 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5859 			break;
5860 		case HWRM_RING_ALLOC_RX:
5861 		case HWRM_RING_ALLOC_AGG:
5862 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5863 			break;
5864 		case HWRM_RING_ALLOC_CMPL:
5865 			db->db_key64 = DBR_PATH_L2;
5866 			break;
5867 		case HWRM_RING_ALLOC_NQ:
5868 			db->db_key64 = DBR_PATH_L2;
5869 			break;
5870 		}
5871 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5872 	} else {
5873 		db->doorbell = bp->bar1 + map_idx * 0x80;
5874 		switch (ring_type) {
5875 		case HWRM_RING_ALLOC_TX:
5876 			db->db_key32 = DB_KEY_TX;
5877 			break;
5878 		case HWRM_RING_ALLOC_RX:
5879 		case HWRM_RING_ALLOC_AGG:
5880 			db->db_key32 = DB_KEY_RX;
5881 			break;
5882 		case HWRM_RING_ALLOC_CMPL:
5883 			db->db_key32 = DB_KEY_CP;
5884 			break;
5885 		}
5886 	}
5887 }
5888 
5889 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5890 {
5891 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5892 	int i, rc = 0;
5893 	u32 type;
5894 
5895 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5896 		type = HWRM_RING_ALLOC_NQ;
5897 	else
5898 		type = HWRM_RING_ALLOC_CMPL;
5899 	for (i = 0; i < bp->cp_nr_rings; i++) {
5900 		struct bnxt_napi *bnapi = bp->bnapi[i];
5901 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5902 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5903 		u32 map_idx = ring->map_idx;
5904 		unsigned int vector;
5905 
5906 		vector = bp->irq_tbl[map_idx].vector;
5907 		disable_irq_nosync(vector);
5908 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5909 		if (rc) {
5910 			enable_irq(vector);
5911 			goto err_out;
5912 		}
5913 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5914 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5915 		enable_irq(vector);
5916 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5917 
5918 		if (!i) {
5919 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5920 			if (rc)
5921 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5922 		}
5923 	}
5924 
5925 	type = HWRM_RING_ALLOC_TX;
5926 	for (i = 0; i < bp->tx_nr_rings; i++) {
5927 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5928 		struct bnxt_ring_struct *ring;
5929 		u32 map_idx;
5930 
5931 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5932 			struct bnxt_napi *bnapi = txr->bnapi;
5933 			struct bnxt_cp_ring_info *cpr, *cpr2;
5934 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5935 
5936 			cpr = &bnapi->cp_ring;
5937 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5938 			ring = &cpr2->cp_ring_struct;
5939 			ring->handle = BNXT_TX_HDL;
5940 			map_idx = bnapi->index;
5941 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5942 			if (rc)
5943 				goto err_out;
5944 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5945 				    ring->fw_ring_id);
5946 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5947 		}
5948 		ring = &txr->tx_ring_struct;
5949 		map_idx = i;
5950 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5951 		if (rc)
5952 			goto err_out;
5953 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5954 	}
5955 
5956 	type = HWRM_RING_ALLOC_RX;
5957 	for (i = 0; i < bp->rx_nr_rings; i++) {
5958 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5959 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5960 		struct bnxt_napi *bnapi = rxr->bnapi;
5961 		u32 map_idx = bnapi->index;
5962 
5963 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5964 		if (rc)
5965 			goto err_out;
5966 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5967 		/* If we have agg rings, post agg buffers first. */
5968 		if (!agg_rings)
5969 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5970 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5971 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5972 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5973 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5974 			struct bnxt_cp_ring_info *cpr2;
5975 
5976 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5977 			ring = &cpr2->cp_ring_struct;
5978 			ring->handle = BNXT_RX_HDL;
5979 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5980 			if (rc)
5981 				goto err_out;
5982 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5983 				    ring->fw_ring_id);
5984 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5985 		}
5986 	}
5987 
5988 	if (agg_rings) {
5989 		type = HWRM_RING_ALLOC_AGG;
5990 		for (i = 0; i < bp->rx_nr_rings; i++) {
5991 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5992 			struct bnxt_ring_struct *ring =
5993 						&rxr->rx_agg_ring_struct;
5994 			u32 grp_idx = ring->grp_idx;
5995 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5996 
5997 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5998 			if (rc)
5999 				goto err_out;
6000 
6001 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6002 				    ring->fw_ring_id);
6003 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6004 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6005 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6006 		}
6007 	}
6008 err_out:
6009 	return rc;
6010 }
6011 
6012 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6013 				   struct bnxt_ring_struct *ring,
6014 				   u32 ring_type, int cmpl_ring_id)
6015 {
6016 	struct hwrm_ring_free_output *resp;
6017 	struct hwrm_ring_free_input *req;
6018 	u16 error_code = 0;
6019 	int rc;
6020 
6021 	if (BNXT_NO_FW_ACCESS(bp))
6022 		return 0;
6023 
6024 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6025 	if (rc)
6026 		goto exit;
6027 
6028 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6029 	req->ring_type = ring_type;
6030 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6031 
6032 	resp = hwrm_req_hold(bp, req);
6033 	rc = hwrm_req_send(bp, req);
6034 	error_code = le16_to_cpu(resp->error_code);
6035 	hwrm_req_drop(bp, req);
6036 exit:
6037 	if (rc || error_code) {
6038 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6039 			   ring_type, rc, error_code);
6040 		return -EIO;
6041 	}
6042 	return 0;
6043 }
6044 
6045 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6046 {
6047 	u32 type;
6048 	int i;
6049 
6050 	if (!bp->bnapi)
6051 		return;
6052 
6053 	for (i = 0; i < bp->tx_nr_rings; i++) {
6054 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6055 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6056 
6057 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6058 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6059 
6060 			hwrm_ring_free_send_msg(bp, ring,
6061 						RING_FREE_REQ_RING_TYPE_TX,
6062 						close_path ? cmpl_ring_id :
6063 						INVALID_HW_RING_ID);
6064 			ring->fw_ring_id = INVALID_HW_RING_ID;
6065 		}
6066 	}
6067 
6068 	for (i = 0; i < bp->rx_nr_rings; i++) {
6069 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6070 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6071 		u32 grp_idx = rxr->bnapi->index;
6072 
6073 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6074 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6075 
6076 			hwrm_ring_free_send_msg(bp, ring,
6077 						RING_FREE_REQ_RING_TYPE_RX,
6078 						close_path ? cmpl_ring_id :
6079 						INVALID_HW_RING_ID);
6080 			ring->fw_ring_id = INVALID_HW_RING_ID;
6081 			bp->grp_info[grp_idx].rx_fw_ring_id =
6082 				INVALID_HW_RING_ID;
6083 		}
6084 	}
6085 
6086 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6087 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6088 	else
6089 		type = RING_FREE_REQ_RING_TYPE_RX;
6090 	for (i = 0; i < bp->rx_nr_rings; i++) {
6091 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6092 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6093 		u32 grp_idx = rxr->bnapi->index;
6094 
6095 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6096 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6097 
6098 			hwrm_ring_free_send_msg(bp, ring, type,
6099 						close_path ? cmpl_ring_id :
6100 						INVALID_HW_RING_ID);
6101 			ring->fw_ring_id = INVALID_HW_RING_ID;
6102 			bp->grp_info[grp_idx].agg_fw_ring_id =
6103 				INVALID_HW_RING_ID;
6104 		}
6105 	}
6106 
6107 	/* The completion rings are about to be freed.  After that the
6108 	 * IRQ doorbell will not work anymore.  So we need to disable
6109 	 * IRQ here.
6110 	 */
6111 	bnxt_disable_int_sync(bp);
6112 
6113 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6114 		type = RING_FREE_REQ_RING_TYPE_NQ;
6115 	else
6116 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6117 	for (i = 0; i < bp->cp_nr_rings; i++) {
6118 		struct bnxt_napi *bnapi = bp->bnapi[i];
6119 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6120 		struct bnxt_ring_struct *ring;
6121 		int j;
6122 
6123 		for (j = 0; j < 2; j++) {
6124 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6125 
6126 			if (cpr2) {
6127 				ring = &cpr2->cp_ring_struct;
6128 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6129 					continue;
6130 				hwrm_ring_free_send_msg(bp, ring,
6131 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6132 					INVALID_HW_RING_ID);
6133 				ring->fw_ring_id = INVALID_HW_RING_ID;
6134 			}
6135 		}
6136 		ring = &cpr->cp_ring_struct;
6137 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6138 			hwrm_ring_free_send_msg(bp, ring, type,
6139 						INVALID_HW_RING_ID);
6140 			ring->fw_ring_id = INVALID_HW_RING_ID;
6141 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6142 		}
6143 	}
6144 }
6145 
6146 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6147 			   bool shared);
6148 
6149 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6150 {
6151 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6152 	struct hwrm_func_qcfg_output *resp;
6153 	struct hwrm_func_qcfg_input *req;
6154 	int rc;
6155 
6156 	if (bp->hwrm_spec_code < 0x10601)
6157 		return 0;
6158 
6159 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6160 	if (rc)
6161 		return rc;
6162 
6163 	req->fid = cpu_to_le16(0xffff);
6164 	resp = hwrm_req_hold(bp, req);
6165 	rc = hwrm_req_send(bp, req);
6166 	if (rc) {
6167 		hwrm_req_drop(bp, req);
6168 		return rc;
6169 	}
6170 
6171 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6172 	if (BNXT_NEW_RM(bp)) {
6173 		u16 cp, stats;
6174 
6175 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6176 		hw_resc->resv_hw_ring_grps =
6177 			le32_to_cpu(resp->alloc_hw_ring_grps);
6178 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6179 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6180 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6181 		hw_resc->resv_irqs = cp;
6182 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6183 			int rx = hw_resc->resv_rx_rings;
6184 			int tx = hw_resc->resv_tx_rings;
6185 
6186 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6187 				rx >>= 1;
6188 			if (cp < (rx + tx)) {
6189 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6190 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6191 					rx <<= 1;
6192 				hw_resc->resv_rx_rings = rx;
6193 				hw_resc->resv_tx_rings = tx;
6194 			}
6195 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6196 			hw_resc->resv_hw_ring_grps = rx;
6197 		}
6198 		hw_resc->resv_cp_rings = cp;
6199 		hw_resc->resv_stat_ctxs = stats;
6200 	}
6201 	hwrm_req_drop(bp, req);
6202 	return 0;
6203 }
6204 
6205 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6206 {
6207 	struct hwrm_func_qcfg_output *resp;
6208 	struct hwrm_func_qcfg_input *req;
6209 	int rc;
6210 
6211 	if (bp->hwrm_spec_code < 0x10601)
6212 		return 0;
6213 
6214 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6215 	if (rc)
6216 		return rc;
6217 
6218 	req->fid = cpu_to_le16(fid);
6219 	resp = hwrm_req_hold(bp, req);
6220 	rc = hwrm_req_send(bp, req);
6221 	if (!rc)
6222 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6223 
6224 	hwrm_req_drop(bp, req);
6225 	return rc;
6226 }
6227 
6228 static bool bnxt_rfs_supported(struct bnxt *bp);
6229 
6230 static struct hwrm_func_cfg_input *
6231 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6232 			     int ring_grps, int cp_rings, int stats, int vnics)
6233 {
6234 	struct hwrm_func_cfg_input *req;
6235 	u32 enables = 0;
6236 
6237 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6238 		return NULL;
6239 
6240 	req->fid = cpu_to_le16(0xffff);
6241 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6242 	req->num_tx_rings = cpu_to_le16(tx_rings);
6243 	if (BNXT_NEW_RM(bp)) {
6244 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6245 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6246 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6247 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6248 			enables |= tx_rings + ring_grps ?
6249 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6250 			enables |= rx_rings ?
6251 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6252 		} else {
6253 			enables |= cp_rings ?
6254 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6255 			enables |= ring_grps ?
6256 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6257 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6258 		}
6259 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6260 
6261 		req->num_rx_rings = cpu_to_le16(rx_rings);
6262 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6263 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6264 			req->num_msix = cpu_to_le16(cp_rings);
6265 			req->num_rsscos_ctxs =
6266 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6267 		} else {
6268 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6269 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6270 			req->num_rsscos_ctxs = cpu_to_le16(1);
6271 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6272 			    bnxt_rfs_supported(bp))
6273 				req->num_rsscos_ctxs =
6274 					cpu_to_le16(ring_grps + 1);
6275 		}
6276 		req->num_stat_ctxs = cpu_to_le16(stats);
6277 		req->num_vnics = cpu_to_le16(vnics);
6278 	}
6279 	req->enables = cpu_to_le32(enables);
6280 	return req;
6281 }
6282 
6283 static struct hwrm_func_vf_cfg_input *
6284 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6285 			     int ring_grps, int cp_rings, int stats, int vnics)
6286 {
6287 	struct hwrm_func_vf_cfg_input *req;
6288 	u32 enables = 0;
6289 
6290 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6291 		return NULL;
6292 
6293 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6294 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6295 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6296 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6297 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6298 		enables |= tx_rings + ring_grps ?
6299 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6300 	} else {
6301 		enables |= cp_rings ?
6302 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6303 		enables |= ring_grps ?
6304 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6305 	}
6306 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6307 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6308 
6309 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6310 	req->num_tx_rings = cpu_to_le16(tx_rings);
6311 	req->num_rx_rings = cpu_to_le16(rx_rings);
6312 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6313 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6314 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6315 	} else {
6316 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6317 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6318 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6319 	}
6320 	req->num_stat_ctxs = cpu_to_le16(stats);
6321 	req->num_vnics = cpu_to_le16(vnics);
6322 
6323 	req->enables = cpu_to_le32(enables);
6324 	return req;
6325 }
6326 
6327 static int
6328 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6329 			   int ring_grps, int cp_rings, int stats, int vnics)
6330 {
6331 	struct hwrm_func_cfg_input *req;
6332 	int rc;
6333 
6334 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6335 					   cp_rings, stats, vnics);
6336 	if (!req)
6337 		return -ENOMEM;
6338 
6339 	if (!req->enables) {
6340 		hwrm_req_drop(bp, req);
6341 		return 0;
6342 	}
6343 
6344 	rc = hwrm_req_send(bp, req);
6345 	if (rc)
6346 		return rc;
6347 
6348 	if (bp->hwrm_spec_code < 0x10601)
6349 		bp->hw_resc.resv_tx_rings = tx_rings;
6350 
6351 	return bnxt_hwrm_get_rings(bp);
6352 }
6353 
6354 static int
6355 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6356 			   int ring_grps, int cp_rings, int stats, int vnics)
6357 {
6358 	struct hwrm_func_vf_cfg_input *req;
6359 	int rc;
6360 
6361 	if (!BNXT_NEW_RM(bp)) {
6362 		bp->hw_resc.resv_tx_rings = tx_rings;
6363 		return 0;
6364 	}
6365 
6366 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6367 					   cp_rings, stats, vnics);
6368 	if (!req)
6369 		return -ENOMEM;
6370 
6371 	rc = hwrm_req_send(bp, req);
6372 	if (rc)
6373 		return rc;
6374 
6375 	return bnxt_hwrm_get_rings(bp);
6376 }
6377 
6378 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6379 				   int cp, int stat, int vnic)
6380 {
6381 	if (BNXT_PF(bp))
6382 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6383 						  vnic);
6384 	else
6385 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6386 						  vnic);
6387 }
6388 
6389 int bnxt_nq_rings_in_use(struct bnxt *bp)
6390 {
6391 	int cp = bp->cp_nr_rings;
6392 	int ulp_msix, ulp_base;
6393 
6394 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6395 	if (ulp_msix) {
6396 		ulp_base = bnxt_get_ulp_msix_base(bp);
6397 		cp += ulp_msix;
6398 		if ((ulp_base + ulp_msix) > cp)
6399 			cp = ulp_base + ulp_msix;
6400 	}
6401 	return cp;
6402 }
6403 
6404 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6405 {
6406 	int cp;
6407 
6408 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6409 		return bnxt_nq_rings_in_use(bp);
6410 
6411 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6412 	return cp;
6413 }
6414 
6415 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6416 {
6417 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6418 	int cp = bp->cp_nr_rings;
6419 
6420 	if (!ulp_stat)
6421 		return cp;
6422 
6423 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6424 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6425 
6426 	return cp + ulp_stat;
6427 }
6428 
6429 /* Check if a default RSS map needs to be setup.  This function is only
6430  * used on older firmware that does not require reserving RX rings.
6431  */
6432 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6433 {
6434 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6435 
6436 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6437 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6438 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6439 		if (!netif_is_rxfh_configured(bp->dev))
6440 			bnxt_set_dflt_rss_indir_tbl(bp);
6441 	}
6442 }
6443 
6444 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6445 {
6446 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6447 	int cp = bnxt_cp_rings_in_use(bp);
6448 	int nq = bnxt_nq_rings_in_use(bp);
6449 	int rx = bp->rx_nr_rings, stat;
6450 	int vnic = 1, grp = rx;
6451 
6452 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6453 	    bp->hwrm_spec_code >= 0x10601)
6454 		return true;
6455 
6456 	/* Old firmware does not need RX ring reservations but we still
6457 	 * need to setup a default RSS map when needed.  With new firmware
6458 	 * we go through RX ring reservations first and then set up the
6459 	 * RSS map for the successfully reserved RX rings when needed.
6460 	 */
6461 	if (!BNXT_NEW_RM(bp)) {
6462 		bnxt_check_rss_tbl_no_rmgr(bp);
6463 		return false;
6464 	}
6465 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6466 		vnic = rx + 1;
6467 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6468 		rx <<= 1;
6469 	stat = bnxt_get_func_stat_ctxs(bp);
6470 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6471 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6472 	    (hw_resc->resv_hw_ring_grps != grp &&
6473 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6474 		return true;
6475 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6476 	    hw_resc->resv_irqs != nq)
6477 		return true;
6478 	return false;
6479 }
6480 
6481 static int __bnxt_reserve_rings(struct bnxt *bp)
6482 {
6483 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6484 	int cp = bnxt_nq_rings_in_use(bp);
6485 	int tx = bp->tx_nr_rings;
6486 	int rx = bp->rx_nr_rings;
6487 	int grp, rx_rings, rc;
6488 	int vnic = 1, stat;
6489 	bool sh = false;
6490 
6491 	if (!bnxt_need_reserve_rings(bp))
6492 		return 0;
6493 
6494 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6495 		sh = true;
6496 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6497 		vnic = rx + 1;
6498 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6499 		rx <<= 1;
6500 	grp = bp->rx_nr_rings;
6501 	stat = bnxt_get_func_stat_ctxs(bp);
6502 
6503 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6504 	if (rc)
6505 		return rc;
6506 
6507 	tx = hw_resc->resv_tx_rings;
6508 	if (BNXT_NEW_RM(bp)) {
6509 		rx = hw_resc->resv_rx_rings;
6510 		cp = hw_resc->resv_irqs;
6511 		grp = hw_resc->resv_hw_ring_grps;
6512 		vnic = hw_resc->resv_vnics;
6513 		stat = hw_resc->resv_stat_ctxs;
6514 	}
6515 
6516 	rx_rings = rx;
6517 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6518 		if (rx >= 2) {
6519 			rx_rings = rx >> 1;
6520 		} else {
6521 			if (netif_running(bp->dev))
6522 				return -ENOMEM;
6523 
6524 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6525 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6526 			bp->dev->hw_features &= ~NETIF_F_LRO;
6527 			bp->dev->features &= ~NETIF_F_LRO;
6528 			bnxt_set_ring_params(bp);
6529 		}
6530 	}
6531 	rx_rings = min_t(int, rx_rings, grp);
6532 	cp = min_t(int, cp, bp->cp_nr_rings);
6533 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6534 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6535 	cp = min_t(int, cp, stat);
6536 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6537 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6538 		rx = rx_rings << 1;
6539 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6540 	bp->tx_nr_rings = tx;
6541 
6542 	/* If we cannot reserve all the RX rings, reset the RSS map only
6543 	 * if absolutely necessary
6544 	 */
6545 	if (rx_rings != bp->rx_nr_rings) {
6546 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6547 			    rx_rings, bp->rx_nr_rings);
6548 		if (netif_is_rxfh_configured(bp->dev) &&
6549 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6550 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6551 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6552 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6553 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6554 		}
6555 	}
6556 	bp->rx_nr_rings = rx_rings;
6557 	bp->cp_nr_rings = cp;
6558 
6559 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6560 		return -ENOMEM;
6561 
6562 	if (!netif_is_rxfh_configured(bp->dev))
6563 		bnxt_set_dflt_rss_indir_tbl(bp);
6564 
6565 	return rc;
6566 }
6567 
6568 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6569 				    int ring_grps, int cp_rings, int stats,
6570 				    int vnics)
6571 {
6572 	struct hwrm_func_vf_cfg_input *req;
6573 	u32 flags;
6574 
6575 	if (!BNXT_NEW_RM(bp))
6576 		return 0;
6577 
6578 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6579 					   cp_rings, stats, vnics);
6580 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6581 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6582 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6583 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6584 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6585 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6586 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6587 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6588 
6589 	req->flags = cpu_to_le32(flags);
6590 	return hwrm_req_send_silent(bp, req);
6591 }
6592 
6593 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6594 				    int ring_grps, int cp_rings, int stats,
6595 				    int vnics)
6596 {
6597 	struct hwrm_func_cfg_input *req;
6598 	u32 flags;
6599 
6600 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6601 					   cp_rings, stats, vnics);
6602 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6603 	if (BNXT_NEW_RM(bp)) {
6604 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6605 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6606 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6607 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6608 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6609 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6610 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6611 		else
6612 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6613 	}
6614 
6615 	req->flags = cpu_to_le32(flags);
6616 	return hwrm_req_send_silent(bp, req);
6617 }
6618 
6619 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6620 				 int ring_grps, int cp_rings, int stats,
6621 				 int vnics)
6622 {
6623 	if (bp->hwrm_spec_code < 0x10801)
6624 		return 0;
6625 
6626 	if (BNXT_PF(bp))
6627 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6628 						ring_grps, cp_rings, stats,
6629 						vnics);
6630 
6631 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6632 					cp_rings, stats, vnics);
6633 }
6634 
6635 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6636 {
6637 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6638 	struct hwrm_ring_aggint_qcaps_output *resp;
6639 	struct hwrm_ring_aggint_qcaps_input *req;
6640 	int rc;
6641 
6642 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6643 	coal_cap->num_cmpl_dma_aggr_max = 63;
6644 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6645 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6646 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6647 	coal_cap->int_lat_tmr_min_max = 65535;
6648 	coal_cap->int_lat_tmr_max_max = 65535;
6649 	coal_cap->num_cmpl_aggr_int_max = 65535;
6650 	coal_cap->timer_units = 80;
6651 
6652 	if (bp->hwrm_spec_code < 0x10902)
6653 		return;
6654 
6655 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6656 		return;
6657 
6658 	resp = hwrm_req_hold(bp, req);
6659 	rc = hwrm_req_send_silent(bp, req);
6660 	if (!rc) {
6661 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6662 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6663 		coal_cap->num_cmpl_dma_aggr_max =
6664 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6665 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6666 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6667 		coal_cap->cmpl_aggr_dma_tmr_max =
6668 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6669 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6670 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6671 		coal_cap->int_lat_tmr_min_max =
6672 			le16_to_cpu(resp->int_lat_tmr_min_max);
6673 		coal_cap->int_lat_tmr_max_max =
6674 			le16_to_cpu(resp->int_lat_tmr_max_max);
6675 		coal_cap->num_cmpl_aggr_int_max =
6676 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6677 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6678 	}
6679 	hwrm_req_drop(bp, req);
6680 }
6681 
6682 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6683 {
6684 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6685 
6686 	return usec * 1000 / coal_cap->timer_units;
6687 }
6688 
6689 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6690 	struct bnxt_coal *hw_coal,
6691 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6692 {
6693 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6694 	u16 val, tmr, max, flags = hw_coal->flags;
6695 	u32 cmpl_params = coal_cap->cmpl_params;
6696 
6697 	max = hw_coal->bufs_per_record * 128;
6698 	if (hw_coal->budget)
6699 		max = hw_coal->bufs_per_record * hw_coal->budget;
6700 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6701 
6702 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6703 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6704 
6705 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6706 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6707 
6708 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6709 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6710 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6711 
6712 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6713 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6714 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6715 
6716 	/* min timer set to 1/2 of interrupt timer */
6717 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6718 		val = tmr / 2;
6719 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6720 		req->int_lat_tmr_min = cpu_to_le16(val);
6721 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6722 	}
6723 
6724 	/* buf timer set to 1/4 of interrupt timer */
6725 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6726 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6727 
6728 	if (cmpl_params &
6729 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6730 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6731 		val = clamp_t(u16, tmr, 1,
6732 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6733 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6734 		req->enables |=
6735 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6736 	}
6737 
6738 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6739 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6740 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6741 	req->flags = cpu_to_le16(flags);
6742 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6743 }
6744 
6745 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6746 				   struct bnxt_coal *hw_coal)
6747 {
6748 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6749 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6750 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6751 	u32 nq_params = coal_cap->nq_params;
6752 	u16 tmr;
6753 	int rc;
6754 
6755 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6756 		return 0;
6757 
6758 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6759 	if (rc)
6760 		return rc;
6761 
6762 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6763 	req->flags =
6764 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6765 
6766 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6767 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6768 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6769 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6770 	return hwrm_req_send(bp, req);
6771 }
6772 
6773 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6774 {
6775 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6776 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6777 	struct bnxt_coal coal;
6778 	int rc;
6779 
6780 	/* Tick values in micro seconds.
6781 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6782 	 */
6783 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6784 
6785 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6786 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6787 
6788 	if (!bnapi->rx_ring)
6789 		return -ENODEV;
6790 
6791 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6792 	if (rc)
6793 		return rc;
6794 
6795 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6796 
6797 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6798 
6799 	return hwrm_req_send(bp, req_rx);
6800 }
6801 
6802 int bnxt_hwrm_set_coal(struct bnxt *bp)
6803 {
6804 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6805 							   *req;
6806 	int i, rc;
6807 
6808 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6809 	if (rc)
6810 		return rc;
6811 
6812 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6813 	if (rc) {
6814 		hwrm_req_drop(bp, req_rx);
6815 		return rc;
6816 	}
6817 
6818 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6819 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6820 
6821 	hwrm_req_hold(bp, req_rx);
6822 	hwrm_req_hold(bp, req_tx);
6823 	for (i = 0; i < bp->cp_nr_rings; i++) {
6824 		struct bnxt_napi *bnapi = bp->bnapi[i];
6825 		struct bnxt_coal *hw_coal;
6826 		u16 ring_id;
6827 
6828 		req = req_rx;
6829 		if (!bnapi->rx_ring) {
6830 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6831 			req = req_tx;
6832 		} else {
6833 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6834 		}
6835 		req->ring_id = cpu_to_le16(ring_id);
6836 
6837 		rc = hwrm_req_send(bp, req);
6838 		if (rc)
6839 			break;
6840 
6841 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6842 			continue;
6843 
6844 		if (bnapi->rx_ring && bnapi->tx_ring) {
6845 			req = req_tx;
6846 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6847 			req->ring_id = cpu_to_le16(ring_id);
6848 			rc = hwrm_req_send(bp, req);
6849 			if (rc)
6850 				break;
6851 		}
6852 		if (bnapi->rx_ring)
6853 			hw_coal = &bp->rx_coal;
6854 		else
6855 			hw_coal = &bp->tx_coal;
6856 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6857 	}
6858 	hwrm_req_drop(bp, req_rx);
6859 	hwrm_req_drop(bp, req_tx);
6860 	return rc;
6861 }
6862 
6863 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6864 {
6865 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6866 	struct hwrm_stat_ctx_free_input *req;
6867 	int i;
6868 
6869 	if (!bp->bnapi)
6870 		return;
6871 
6872 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6873 		return;
6874 
6875 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6876 		return;
6877 	if (BNXT_FW_MAJ(bp) <= 20) {
6878 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6879 			hwrm_req_drop(bp, req);
6880 			return;
6881 		}
6882 		hwrm_req_hold(bp, req0);
6883 	}
6884 	hwrm_req_hold(bp, req);
6885 	for (i = 0; i < bp->cp_nr_rings; i++) {
6886 		struct bnxt_napi *bnapi = bp->bnapi[i];
6887 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6888 
6889 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6890 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6891 			if (req0) {
6892 				req0->stat_ctx_id = req->stat_ctx_id;
6893 				hwrm_req_send(bp, req0);
6894 			}
6895 			hwrm_req_send(bp, req);
6896 
6897 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6898 		}
6899 	}
6900 	hwrm_req_drop(bp, req);
6901 	if (req0)
6902 		hwrm_req_drop(bp, req0);
6903 }
6904 
6905 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6906 {
6907 	struct hwrm_stat_ctx_alloc_output *resp;
6908 	struct hwrm_stat_ctx_alloc_input *req;
6909 	int rc, i;
6910 
6911 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6912 		return 0;
6913 
6914 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6915 	if (rc)
6916 		return rc;
6917 
6918 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6919 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6920 
6921 	resp = hwrm_req_hold(bp, req);
6922 	for (i = 0; i < bp->cp_nr_rings; i++) {
6923 		struct bnxt_napi *bnapi = bp->bnapi[i];
6924 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6925 
6926 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6927 
6928 		rc = hwrm_req_send(bp, req);
6929 		if (rc)
6930 			break;
6931 
6932 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6933 
6934 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6935 	}
6936 	hwrm_req_drop(bp, req);
6937 	return rc;
6938 }
6939 
6940 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6941 {
6942 	struct hwrm_func_qcfg_output *resp;
6943 	struct hwrm_func_qcfg_input *req;
6944 	u32 min_db_offset = 0;
6945 	u16 flags;
6946 	int rc;
6947 
6948 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6949 	if (rc)
6950 		return rc;
6951 
6952 	req->fid = cpu_to_le16(0xffff);
6953 	resp = hwrm_req_hold(bp, req);
6954 	rc = hwrm_req_send(bp, req);
6955 	if (rc)
6956 		goto func_qcfg_exit;
6957 
6958 #ifdef CONFIG_BNXT_SRIOV
6959 	if (BNXT_VF(bp)) {
6960 		struct bnxt_vf_info *vf = &bp->vf;
6961 
6962 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6963 	} else {
6964 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6965 	}
6966 #endif
6967 	flags = le16_to_cpu(resp->flags);
6968 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6969 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6970 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6971 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6972 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6973 	}
6974 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6975 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6976 
6977 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6978 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6979 
6980 	switch (resp->port_partition_type) {
6981 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6982 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6983 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6984 		bp->port_partition_type = resp->port_partition_type;
6985 		break;
6986 	}
6987 	if (bp->hwrm_spec_code < 0x10707 ||
6988 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6989 		bp->br_mode = BRIDGE_MODE_VEB;
6990 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6991 		bp->br_mode = BRIDGE_MODE_VEPA;
6992 	else
6993 		bp->br_mode = BRIDGE_MODE_UNDEF;
6994 
6995 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6996 	if (!bp->max_mtu)
6997 		bp->max_mtu = BNXT_MAX_MTU;
6998 
6999 	if (bp->db_size)
7000 		goto func_qcfg_exit;
7001 
7002 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7003 		if (BNXT_PF(bp))
7004 			min_db_offset = DB_PF_OFFSET_P5;
7005 		else
7006 			min_db_offset = DB_VF_OFFSET_P5;
7007 	}
7008 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7009 				 1024);
7010 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7011 	    bp->db_size <= min_db_offset)
7012 		bp->db_size = pci_resource_len(bp->pdev, 2);
7013 
7014 func_qcfg_exit:
7015 	hwrm_req_drop(bp, req);
7016 	return rc;
7017 }
7018 
7019 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7020 			struct hwrm_func_backing_store_qcaps_output *resp)
7021 {
7022 	struct bnxt_mem_init *mem_init;
7023 	u16 init_mask;
7024 	u8 init_val;
7025 	u8 *offset;
7026 	int i;
7027 
7028 	init_val = resp->ctx_kind_initializer;
7029 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7030 	offset = &resp->qp_init_offset;
7031 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7032 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7033 		mem_init->init_val = init_val;
7034 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7035 		if (!init_mask)
7036 			continue;
7037 		if (i == BNXT_CTX_MEM_INIT_STAT)
7038 			offset = &resp->stat_init_offset;
7039 		if (init_mask & (1 << i))
7040 			mem_init->offset = *offset * 4;
7041 		else
7042 			mem_init->init_val = 0;
7043 	}
7044 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7045 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7046 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7047 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7048 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7049 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7050 }
7051 
7052 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7053 {
7054 	struct hwrm_func_backing_store_qcaps_output *resp;
7055 	struct hwrm_func_backing_store_qcaps_input *req;
7056 	int rc;
7057 
7058 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7059 		return 0;
7060 
7061 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7062 	if (rc)
7063 		return rc;
7064 
7065 	resp = hwrm_req_hold(bp, req);
7066 	rc = hwrm_req_send_silent(bp, req);
7067 	if (!rc) {
7068 		struct bnxt_ctx_pg_info *ctx_pg;
7069 		struct bnxt_ctx_mem_info *ctx;
7070 		int i, tqm_rings;
7071 
7072 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7073 		if (!ctx) {
7074 			rc = -ENOMEM;
7075 			goto ctx_err;
7076 		}
7077 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7078 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7079 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7080 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7081 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7082 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7083 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7084 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7085 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7086 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7087 		ctx->vnic_max_vnic_entries =
7088 			le16_to_cpu(resp->vnic_max_vnic_entries);
7089 		ctx->vnic_max_ring_table_entries =
7090 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7091 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7092 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7093 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7094 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7095 		ctx->tqm_min_entries_per_ring =
7096 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7097 		ctx->tqm_max_entries_per_ring =
7098 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7099 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7100 		if (!ctx->tqm_entries_multiple)
7101 			ctx->tqm_entries_multiple = 1;
7102 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7103 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7104 		ctx->mrav_num_entries_units =
7105 			le16_to_cpu(resp->mrav_num_entries_units);
7106 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7107 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7108 
7109 		bnxt_init_ctx_initializer(ctx, resp);
7110 
7111 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7112 		if (!ctx->tqm_fp_rings_count)
7113 			ctx->tqm_fp_rings_count = bp->max_q;
7114 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7115 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7116 
7117 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7118 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7119 		if (!ctx_pg) {
7120 			kfree(ctx);
7121 			rc = -ENOMEM;
7122 			goto ctx_err;
7123 		}
7124 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7125 			ctx->tqm_mem[i] = ctx_pg;
7126 		bp->ctx = ctx;
7127 	} else {
7128 		rc = 0;
7129 	}
7130 ctx_err:
7131 	hwrm_req_drop(bp, req);
7132 	return rc;
7133 }
7134 
7135 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7136 				  __le64 *pg_dir)
7137 {
7138 	if (!rmem->nr_pages)
7139 		return;
7140 
7141 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7142 	if (rmem->depth >= 1) {
7143 		if (rmem->depth == 2)
7144 			*pg_attr |= 2;
7145 		else
7146 			*pg_attr |= 1;
7147 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7148 	} else {
7149 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7150 	}
7151 }
7152 
7153 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7154 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7155 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7156 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7157 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7158 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7159 
7160 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7161 {
7162 	struct hwrm_func_backing_store_cfg_input *req;
7163 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7164 	struct bnxt_ctx_pg_info *ctx_pg;
7165 	void **__req = (void **)&req;
7166 	u32 req_len = sizeof(*req);
7167 	__le32 *num_entries;
7168 	__le64 *pg_dir;
7169 	u32 flags = 0;
7170 	u8 *pg_attr;
7171 	u32 ena;
7172 	int rc;
7173 	int i;
7174 
7175 	if (!ctx)
7176 		return 0;
7177 
7178 	if (req_len > bp->hwrm_max_ext_req_len)
7179 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7180 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7181 	if (rc)
7182 		return rc;
7183 
7184 	req->enables = cpu_to_le32(enables);
7185 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7186 		ctx_pg = &ctx->qp_mem;
7187 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7188 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7189 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7190 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7191 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7192 				      &req->qpc_pg_size_qpc_lvl,
7193 				      &req->qpc_page_dir);
7194 	}
7195 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7196 		ctx_pg = &ctx->srq_mem;
7197 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7198 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7199 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7200 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7201 				      &req->srq_pg_size_srq_lvl,
7202 				      &req->srq_page_dir);
7203 	}
7204 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7205 		ctx_pg = &ctx->cq_mem;
7206 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7207 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7208 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7209 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7210 				      &req->cq_pg_size_cq_lvl,
7211 				      &req->cq_page_dir);
7212 	}
7213 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7214 		ctx_pg = &ctx->vnic_mem;
7215 		req->vnic_num_vnic_entries =
7216 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7217 		req->vnic_num_ring_table_entries =
7218 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7219 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7220 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7221 				      &req->vnic_pg_size_vnic_lvl,
7222 				      &req->vnic_page_dir);
7223 	}
7224 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7225 		ctx_pg = &ctx->stat_mem;
7226 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7227 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7228 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7229 				      &req->stat_pg_size_stat_lvl,
7230 				      &req->stat_page_dir);
7231 	}
7232 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7233 		ctx_pg = &ctx->mrav_mem;
7234 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7235 		if (ctx->mrav_num_entries_units)
7236 			flags |=
7237 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7238 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7239 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7240 				      &req->mrav_pg_size_mrav_lvl,
7241 				      &req->mrav_page_dir);
7242 	}
7243 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7244 		ctx_pg = &ctx->tim_mem;
7245 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7246 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7247 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7248 				      &req->tim_pg_size_tim_lvl,
7249 				      &req->tim_page_dir);
7250 	}
7251 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7252 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7253 	     pg_dir = &req->tqm_sp_page_dir,
7254 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7255 	     i < BNXT_MAX_TQM_RINGS;
7256 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7257 		if (!(enables & ena))
7258 			continue;
7259 
7260 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7261 		ctx_pg = ctx->tqm_mem[i];
7262 		*num_entries = cpu_to_le32(ctx_pg->entries);
7263 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7264 	}
7265 	req->flags = cpu_to_le32(flags);
7266 	return hwrm_req_send(bp, req);
7267 }
7268 
7269 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7270 				  struct bnxt_ctx_pg_info *ctx_pg)
7271 {
7272 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7273 
7274 	rmem->page_size = BNXT_PAGE_SIZE;
7275 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7276 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7277 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7278 	if (rmem->depth >= 1)
7279 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7280 	return bnxt_alloc_ring(bp, rmem);
7281 }
7282 
7283 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7284 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7285 				  u8 depth, struct bnxt_mem_init *mem_init)
7286 {
7287 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7288 	int rc;
7289 
7290 	if (!mem_size)
7291 		return -EINVAL;
7292 
7293 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7294 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7295 		ctx_pg->nr_pages = 0;
7296 		return -EINVAL;
7297 	}
7298 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7299 		int nr_tbls, i;
7300 
7301 		rmem->depth = 2;
7302 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7303 					     GFP_KERNEL);
7304 		if (!ctx_pg->ctx_pg_tbl)
7305 			return -ENOMEM;
7306 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7307 		rmem->nr_pages = nr_tbls;
7308 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7309 		if (rc)
7310 			return rc;
7311 		for (i = 0; i < nr_tbls; i++) {
7312 			struct bnxt_ctx_pg_info *pg_tbl;
7313 
7314 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7315 			if (!pg_tbl)
7316 				return -ENOMEM;
7317 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7318 			rmem = &pg_tbl->ring_mem;
7319 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7320 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7321 			rmem->depth = 1;
7322 			rmem->nr_pages = MAX_CTX_PAGES;
7323 			rmem->mem_init = mem_init;
7324 			if (i == (nr_tbls - 1)) {
7325 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7326 
7327 				if (rem)
7328 					rmem->nr_pages = rem;
7329 			}
7330 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7331 			if (rc)
7332 				break;
7333 		}
7334 	} else {
7335 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7336 		if (rmem->nr_pages > 1 || depth)
7337 			rmem->depth = 1;
7338 		rmem->mem_init = mem_init;
7339 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7340 	}
7341 	return rc;
7342 }
7343 
7344 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7345 				  struct bnxt_ctx_pg_info *ctx_pg)
7346 {
7347 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7348 
7349 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7350 	    ctx_pg->ctx_pg_tbl) {
7351 		int i, nr_tbls = rmem->nr_pages;
7352 
7353 		for (i = 0; i < nr_tbls; i++) {
7354 			struct bnxt_ctx_pg_info *pg_tbl;
7355 			struct bnxt_ring_mem_info *rmem2;
7356 
7357 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7358 			if (!pg_tbl)
7359 				continue;
7360 			rmem2 = &pg_tbl->ring_mem;
7361 			bnxt_free_ring(bp, rmem2);
7362 			ctx_pg->ctx_pg_arr[i] = NULL;
7363 			kfree(pg_tbl);
7364 			ctx_pg->ctx_pg_tbl[i] = NULL;
7365 		}
7366 		kfree(ctx_pg->ctx_pg_tbl);
7367 		ctx_pg->ctx_pg_tbl = NULL;
7368 	}
7369 	bnxt_free_ring(bp, rmem);
7370 	ctx_pg->nr_pages = 0;
7371 }
7372 
7373 void bnxt_free_ctx_mem(struct bnxt *bp)
7374 {
7375 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7376 	int i;
7377 
7378 	if (!ctx)
7379 		return;
7380 
7381 	if (ctx->tqm_mem[0]) {
7382 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7383 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7384 		kfree(ctx->tqm_mem[0]);
7385 		ctx->tqm_mem[0] = NULL;
7386 	}
7387 
7388 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7389 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7390 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7391 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7392 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7393 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7394 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7395 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7396 }
7397 
7398 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7399 {
7400 	struct bnxt_ctx_pg_info *ctx_pg;
7401 	struct bnxt_ctx_mem_info *ctx;
7402 	struct bnxt_mem_init *init;
7403 	u32 mem_size, ena, entries;
7404 	u32 entries_sp, min;
7405 	u32 num_mr, num_ah;
7406 	u32 extra_srqs = 0;
7407 	u32 extra_qps = 0;
7408 	u8 pg_lvl = 1;
7409 	int i, rc;
7410 
7411 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7412 	if (rc) {
7413 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7414 			   rc);
7415 		return rc;
7416 	}
7417 	ctx = bp->ctx;
7418 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7419 		return 0;
7420 
7421 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7422 		pg_lvl = 2;
7423 		extra_qps = 65536;
7424 		extra_srqs = 8192;
7425 	}
7426 
7427 	ctx_pg = &ctx->qp_mem;
7428 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7429 			  extra_qps;
7430 	if (ctx->qp_entry_size) {
7431 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7432 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7433 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7434 		if (rc)
7435 			return rc;
7436 	}
7437 
7438 	ctx_pg = &ctx->srq_mem;
7439 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7440 	if (ctx->srq_entry_size) {
7441 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7442 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7443 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7444 		if (rc)
7445 			return rc;
7446 	}
7447 
7448 	ctx_pg = &ctx->cq_mem;
7449 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7450 	if (ctx->cq_entry_size) {
7451 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7452 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7453 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7454 		if (rc)
7455 			return rc;
7456 	}
7457 
7458 	ctx_pg = &ctx->vnic_mem;
7459 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7460 			  ctx->vnic_max_ring_table_entries;
7461 	if (ctx->vnic_entry_size) {
7462 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7463 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7464 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7465 		if (rc)
7466 			return rc;
7467 	}
7468 
7469 	ctx_pg = &ctx->stat_mem;
7470 	ctx_pg->entries = ctx->stat_max_entries;
7471 	if (ctx->stat_entry_size) {
7472 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7473 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7474 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7475 		if (rc)
7476 			return rc;
7477 	}
7478 
7479 	ena = 0;
7480 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7481 		goto skip_rdma;
7482 
7483 	ctx_pg = &ctx->mrav_mem;
7484 	/* 128K extra is needed to accommodate static AH context
7485 	 * allocation by f/w.
7486 	 */
7487 	num_mr = 1024 * 256;
7488 	num_ah = 1024 * 128;
7489 	ctx_pg->entries = num_mr + num_ah;
7490 	if (ctx->mrav_entry_size) {
7491 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7492 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7493 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7494 		if (rc)
7495 			return rc;
7496 	}
7497 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7498 	if (ctx->mrav_num_entries_units)
7499 		ctx_pg->entries =
7500 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7501 			 (num_ah / ctx->mrav_num_entries_units);
7502 
7503 	ctx_pg = &ctx->tim_mem;
7504 	ctx_pg->entries = ctx->qp_mem.entries;
7505 	if (ctx->tim_entry_size) {
7506 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7507 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7508 		if (rc)
7509 			return rc;
7510 	}
7511 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7512 
7513 skip_rdma:
7514 	min = ctx->tqm_min_entries_per_ring;
7515 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7516 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7517 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7518 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7519 	entries = roundup(entries, ctx->tqm_entries_multiple);
7520 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7521 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7522 		ctx_pg = ctx->tqm_mem[i];
7523 		ctx_pg->entries = i ? entries : entries_sp;
7524 		if (ctx->tqm_entry_size) {
7525 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7526 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7527 						    NULL);
7528 			if (rc)
7529 				return rc;
7530 		}
7531 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7532 	}
7533 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7534 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7535 	if (rc) {
7536 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7537 			   rc);
7538 		return rc;
7539 	}
7540 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7541 	return 0;
7542 }
7543 
7544 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7545 {
7546 	struct hwrm_func_resource_qcaps_output *resp;
7547 	struct hwrm_func_resource_qcaps_input *req;
7548 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7549 	int rc;
7550 
7551 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7552 	if (rc)
7553 		return rc;
7554 
7555 	req->fid = cpu_to_le16(0xffff);
7556 	resp = hwrm_req_hold(bp, req);
7557 	rc = hwrm_req_send_silent(bp, req);
7558 	if (rc)
7559 		goto hwrm_func_resc_qcaps_exit;
7560 
7561 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7562 	if (!all)
7563 		goto hwrm_func_resc_qcaps_exit;
7564 
7565 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7566 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7567 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7568 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7569 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7570 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7571 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7572 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7573 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7574 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7575 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7576 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7577 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7578 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7579 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7580 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7581 
7582 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7583 		u16 max_msix = le16_to_cpu(resp->max_msix);
7584 
7585 		hw_resc->max_nqs = max_msix;
7586 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7587 	}
7588 
7589 	if (BNXT_PF(bp)) {
7590 		struct bnxt_pf_info *pf = &bp->pf;
7591 
7592 		pf->vf_resv_strategy =
7593 			le16_to_cpu(resp->vf_reservation_strategy);
7594 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7595 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7596 	}
7597 hwrm_func_resc_qcaps_exit:
7598 	hwrm_req_drop(bp, req);
7599 	return rc;
7600 }
7601 
7602 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7603 {
7604 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7605 	struct hwrm_port_mac_ptp_qcfg_input *req;
7606 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7607 	bool phc_cfg;
7608 	u8 flags;
7609 	int rc;
7610 
7611 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_THOR(bp)) {
7612 		rc = -ENODEV;
7613 		goto no_ptp;
7614 	}
7615 
7616 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7617 	if (rc)
7618 		goto no_ptp;
7619 
7620 	req->port_id = cpu_to_le16(bp->pf.port_id);
7621 	resp = hwrm_req_hold(bp, req);
7622 	rc = hwrm_req_send(bp, req);
7623 	if (rc)
7624 		goto exit;
7625 
7626 	flags = resp->flags;
7627 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7628 		rc = -ENODEV;
7629 		goto exit;
7630 	}
7631 	if (!ptp) {
7632 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7633 		if (!ptp) {
7634 			rc = -ENOMEM;
7635 			goto exit;
7636 		}
7637 		ptp->bp = bp;
7638 		bp->ptp_cfg = ptp;
7639 	}
7640 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7641 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7642 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7643 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7644 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7645 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7646 	} else {
7647 		rc = -ENODEV;
7648 		goto exit;
7649 	}
7650 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7651 	rc = bnxt_ptp_init(bp, phc_cfg);
7652 	if (rc)
7653 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7654 exit:
7655 	hwrm_req_drop(bp, req);
7656 	if (!rc)
7657 		return 0;
7658 
7659 no_ptp:
7660 	bnxt_ptp_clear(bp);
7661 	kfree(ptp);
7662 	bp->ptp_cfg = NULL;
7663 	return rc;
7664 }
7665 
7666 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7667 {
7668 	struct hwrm_func_qcaps_output *resp;
7669 	struct hwrm_func_qcaps_input *req;
7670 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7671 	u32 flags, flags_ext, flags_ext2;
7672 	int rc;
7673 
7674 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7675 	if (rc)
7676 		return rc;
7677 
7678 	req->fid = cpu_to_le16(0xffff);
7679 	resp = hwrm_req_hold(bp, req);
7680 	rc = hwrm_req_send(bp, req);
7681 	if (rc)
7682 		goto hwrm_func_qcaps_exit;
7683 
7684 	flags = le32_to_cpu(resp->flags);
7685 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7686 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7687 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7688 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7689 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7690 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7691 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7692 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7693 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7694 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7695 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7696 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7697 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7698 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7699 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7700 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7701 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7702 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7703 
7704 	flags_ext = le32_to_cpu(resp->flags_ext);
7705 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7706 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7707 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7708 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7709 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7710 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7711 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7712 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7713 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7714 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7715 
7716 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7717 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7718 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7719 
7720 	bp->tx_push_thresh = 0;
7721 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7722 	    BNXT_FW_MAJ(bp) > 217)
7723 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7724 
7725 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7726 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7727 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7728 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7729 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7730 	if (!hw_resc->max_hw_ring_grps)
7731 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7732 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7733 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7734 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7735 
7736 	if (BNXT_PF(bp)) {
7737 		struct bnxt_pf_info *pf = &bp->pf;
7738 
7739 		pf->fw_fid = le16_to_cpu(resp->fid);
7740 		pf->port_id = le16_to_cpu(resp->port_id);
7741 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7742 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7743 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7744 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7745 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7746 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7747 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7748 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7749 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7750 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7751 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7752 			bp->flags |= BNXT_FLAG_WOL_CAP;
7753 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7754 			bp->fw_cap |= BNXT_FW_CAP_PTP;
7755 		} else {
7756 			bnxt_ptp_clear(bp);
7757 			kfree(bp->ptp_cfg);
7758 			bp->ptp_cfg = NULL;
7759 		}
7760 	} else {
7761 #ifdef CONFIG_BNXT_SRIOV
7762 		struct bnxt_vf_info *vf = &bp->vf;
7763 
7764 		vf->fw_fid = le16_to_cpu(resp->fid);
7765 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7766 #endif
7767 	}
7768 
7769 hwrm_func_qcaps_exit:
7770 	hwrm_req_drop(bp, req);
7771 	return rc;
7772 }
7773 
7774 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7775 {
7776 	struct hwrm_dbg_qcaps_output *resp;
7777 	struct hwrm_dbg_qcaps_input *req;
7778 	int rc;
7779 
7780 	bp->fw_dbg_cap = 0;
7781 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7782 		return;
7783 
7784 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7785 	if (rc)
7786 		return;
7787 
7788 	req->fid = cpu_to_le16(0xffff);
7789 	resp = hwrm_req_hold(bp, req);
7790 	rc = hwrm_req_send(bp, req);
7791 	if (rc)
7792 		goto hwrm_dbg_qcaps_exit;
7793 
7794 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7795 
7796 hwrm_dbg_qcaps_exit:
7797 	hwrm_req_drop(bp, req);
7798 }
7799 
7800 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7801 
7802 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7803 {
7804 	int rc;
7805 
7806 	rc = __bnxt_hwrm_func_qcaps(bp);
7807 	if (rc)
7808 		return rc;
7809 
7810 	bnxt_hwrm_dbg_qcaps(bp);
7811 
7812 	rc = bnxt_hwrm_queue_qportcfg(bp);
7813 	if (rc) {
7814 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7815 		return rc;
7816 	}
7817 	if (bp->hwrm_spec_code >= 0x10803) {
7818 		rc = bnxt_alloc_ctx_mem(bp);
7819 		if (rc)
7820 			return rc;
7821 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7822 		if (!rc)
7823 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7824 	}
7825 	return 0;
7826 }
7827 
7828 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7829 {
7830 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7831 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7832 	u32 flags;
7833 	int rc;
7834 
7835 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7836 		return 0;
7837 
7838 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7839 	if (rc)
7840 		return rc;
7841 
7842 	resp = hwrm_req_hold(bp, req);
7843 	rc = hwrm_req_send(bp, req);
7844 	if (rc)
7845 		goto hwrm_cfa_adv_qcaps_exit;
7846 
7847 	flags = le32_to_cpu(resp->flags);
7848 	if (flags &
7849 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7850 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7851 
7852 hwrm_cfa_adv_qcaps_exit:
7853 	hwrm_req_drop(bp, req);
7854 	return rc;
7855 }
7856 
7857 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7858 {
7859 	if (bp->fw_health)
7860 		return 0;
7861 
7862 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7863 	if (!bp->fw_health)
7864 		return -ENOMEM;
7865 
7866 	mutex_init(&bp->fw_health->lock);
7867 	return 0;
7868 }
7869 
7870 static int bnxt_alloc_fw_health(struct bnxt *bp)
7871 {
7872 	int rc;
7873 
7874 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7875 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7876 		return 0;
7877 
7878 	rc = __bnxt_alloc_fw_health(bp);
7879 	if (rc) {
7880 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7881 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7882 		return rc;
7883 	}
7884 
7885 	return 0;
7886 }
7887 
7888 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7889 {
7890 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7891 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7892 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7893 }
7894 
7895 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7896 {
7897 	struct bnxt_fw_health *fw_health = bp->fw_health;
7898 	u32 reg_type;
7899 
7900 	if (!fw_health)
7901 		return;
7902 
7903 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7904 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7905 		fw_health->status_reliable = false;
7906 
7907 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7908 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7909 		fw_health->resets_reliable = false;
7910 }
7911 
7912 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7913 {
7914 	void __iomem *hs;
7915 	u32 status_loc;
7916 	u32 reg_type;
7917 	u32 sig;
7918 
7919 	if (bp->fw_health)
7920 		bp->fw_health->status_reliable = false;
7921 
7922 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7923 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7924 
7925 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7926 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7927 		if (!bp->chip_num) {
7928 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7929 			bp->chip_num = readl(bp->bar0 +
7930 					     BNXT_FW_HEALTH_WIN_BASE +
7931 					     BNXT_GRC_REG_CHIP_NUM);
7932 		}
7933 		if (!BNXT_CHIP_P5(bp))
7934 			return;
7935 
7936 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7937 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7938 	} else {
7939 		status_loc = readl(hs + offsetof(struct hcomm_status,
7940 						 fw_status_loc));
7941 	}
7942 
7943 	if (__bnxt_alloc_fw_health(bp)) {
7944 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7945 		return;
7946 	}
7947 
7948 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7949 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7950 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7951 		__bnxt_map_fw_health_reg(bp, status_loc);
7952 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7953 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7954 	}
7955 
7956 	bp->fw_health->status_reliable = true;
7957 }
7958 
7959 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7960 {
7961 	struct bnxt_fw_health *fw_health = bp->fw_health;
7962 	u32 reg_base = 0xffffffff;
7963 	int i;
7964 
7965 	bp->fw_health->status_reliable = false;
7966 	bp->fw_health->resets_reliable = false;
7967 	/* Only pre-map the monitoring GRC registers using window 3 */
7968 	for (i = 0; i < 4; i++) {
7969 		u32 reg = fw_health->regs[i];
7970 
7971 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7972 			continue;
7973 		if (reg_base == 0xffffffff)
7974 			reg_base = reg & BNXT_GRC_BASE_MASK;
7975 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7976 			return -ERANGE;
7977 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7978 	}
7979 	bp->fw_health->status_reliable = true;
7980 	bp->fw_health->resets_reliable = true;
7981 	if (reg_base == 0xffffffff)
7982 		return 0;
7983 
7984 	__bnxt_map_fw_health_reg(bp, reg_base);
7985 	return 0;
7986 }
7987 
7988 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
7989 {
7990 	if (!bp->fw_health)
7991 		return;
7992 
7993 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
7994 		bp->fw_health->status_reliable = true;
7995 		bp->fw_health->resets_reliable = true;
7996 	} else {
7997 		bnxt_try_map_fw_health_reg(bp);
7998 	}
7999 }
8000 
8001 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8002 {
8003 	struct bnxt_fw_health *fw_health = bp->fw_health;
8004 	struct hwrm_error_recovery_qcfg_output *resp;
8005 	struct hwrm_error_recovery_qcfg_input *req;
8006 	int rc, i;
8007 
8008 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8009 		return 0;
8010 
8011 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8012 	if (rc)
8013 		return rc;
8014 
8015 	resp = hwrm_req_hold(bp, req);
8016 	rc = hwrm_req_send(bp, req);
8017 	if (rc)
8018 		goto err_recovery_out;
8019 	fw_health->flags = le32_to_cpu(resp->flags);
8020 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8021 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8022 		rc = -EINVAL;
8023 		goto err_recovery_out;
8024 	}
8025 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8026 	fw_health->master_func_wait_dsecs =
8027 		le32_to_cpu(resp->master_func_wait_period);
8028 	fw_health->normal_func_wait_dsecs =
8029 		le32_to_cpu(resp->normal_func_wait_period);
8030 	fw_health->post_reset_wait_dsecs =
8031 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8032 	fw_health->post_reset_max_wait_dsecs =
8033 		le32_to_cpu(resp->max_bailout_time_after_reset);
8034 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8035 		le32_to_cpu(resp->fw_health_status_reg);
8036 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8037 		le32_to_cpu(resp->fw_heartbeat_reg);
8038 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8039 		le32_to_cpu(resp->fw_reset_cnt_reg);
8040 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8041 		le32_to_cpu(resp->reset_inprogress_reg);
8042 	fw_health->fw_reset_inprog_reg_mask =
8043 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8044 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8045 	if (fw_health->fw_reset_seq_cnt >= 16) {
8046 		rc = -EINVAL;
8047 		goto err_recovery_out;
8048 	}
8049 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8050 		fw_health->fw_reset_seq_regs[i] =
8051 			le32_to_cpu(resp->reset_reg[i]);
8052 		fw_health->fw_reset_seq_vals[i] =
8053 			le32_to_cpu(resp->reset_reg_val[i]);
8054 		fw_health->fw_reset_seq_delay_msec[i] =
8055 			resp->delay_after_reset[i];
8056 	}
8057 err_recovery_out:
8058 	hwrm_req_drop(bp, req);
8059 	if (!rc)
8060 		rc = bnxt_map_fw_health_regs(bp);
8061 	if (rc)
8062 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8063 	return rc;
8064 }
8065 
8066 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8067 {
8068 	struct hwrm_func_reset_input *req;
8069 	int rc;
8070 
8071 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8072 	if (rc)
8073 		return rc;
8074 
8075 	req->enables = 0;
8076 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8077 	return hwrm_req_send(bp, req);
8078 }
8079 
8080 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8081 {
8082 	struct hwrm_nvm_get_dev_info_output nvm_info;
8083 
8084 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8085 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8086 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8087 			 nvm_info.nvm_cfg_ver_upd);
8088 }
8089 
8090 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8091 {
8092 	struct hwrm_queue_qportcfg_output *resp;
8093 	struct hwrm_queue_qportcfg_input *req;
8094 	u8 i, j, *qptr;
8095 	bool no_rdma;
8096 	int rc = 0;
8097 
8098 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8099 	if (rc)
8100 		return rc;
8101 
8102 	resp = hwrm_req_hold(bp, req);
8103 	rc = hwrm_req_send(bp, req);
8104 	if (rc)
8105 		goto qportcfg_exit;
8106 
8107 	if (!resp->max_configurable_queues) {
8108 		rc = -EINVAL;
8109 		goto qportcfg_exit;
8110 	}
8111 	bp->max_tc = resp->max_configurable_queues;
8112 	bp->max_lltc = resp->max_configurable_lossless_queues;
8113 	if (bp->max_tc > BNXT_MAX_QUEUE)
8114 		bp->max_tc = BNXT_MAX_QUEUE;
8115 
8116 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8117 	qptr = &resp->queue_id0;
8118 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8119 		bp->q_info[j].queue_id = *qptr;
8120 		bp->q_ids[i] = *qptr++;
8121 		bp->q_info[j].queue_profile = *qptr++;
8122 		bp->tc_to_qidx[j] = j;
8123 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8124 		    (no_rdma && BNXT_PF(bp)))
8125 			j++;
8126 	}
8127 	bp->max_q = bp->max_tc;
8128 	bp->max_tc = max_t(u8, j, 1);
8129 
8130 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8131 		bp->max_tc = 1;
8132 
8133 	if (bp->max_lltc > bp->max_tc)
8134 		bp->max_lltc = bp->max_tc;
8135 
8136 qportcfg_exit:
8137 	hwrm_req_drop(bp, req);
8138 	return rc;
8139 }
8140 
8141 static int bnxt_hwrm_poll(struct bnxt *bp)
8142 {
8143 	struct hwrm_ver_get_input *req;
8144 	int rc;
8145 
8146 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8147 	if (rc)
8148 		return rc;
8149 
8150 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8151 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8152 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8153 
8154 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8155 	rc = hwrm_req_send(bp, req);
8156 	return rc;
8157 }
8158 
8159 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8160 {
8161 	struct hwrm_ver_get_output *resp;
8162 	struct hwrm_ver_get_input *req;
8163 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8164 	u32 dev_caps_cfg, hwrm_ver;
8165 	int rc, len;
8166 
8167 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8168 	if (rc)
8169 		return rc;
8170 
8171 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8172 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8173 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8174 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8175 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8176 
8177 	resp = hwrm_req_hold(bp, req);
8178 	rc = hwrm_req_send(bp, req);
8179 	if (rc)
8180 		goto hwrm_ver_get_exit;
8181 
8182 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8183 
8184 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8185 			     resp->hwrm_intf_min_8b << 8 |
8186 			     resp->hwrm_intf_upd_8b;
8187 	if (resp->hwrm_intf_maj_8b < 1) {
8188 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8189 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8190 			    resp->hwrm_intf_upd_8b);
8191 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8192 	}
8193 
8194 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8195 			HWRM_VERSION_UPDATE;
8196 
8197 	if (bp->hwrm_spec_code > hwrm_ver)
8198 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8199 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8200 			 HWRM_VERSION_UPDATE);
8201 	else
8202 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8203 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8204 			 resp->hwrm_intf_upd_8b);
8205 
8206 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8207 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8208 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8209 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8210 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8211 		len = FW_VER_STR_LEN;
8212 	} else {
8213 		fw_maj = resp->hwrm_fw_maj_8b;
8214 		fw_min = resp->hwrm_fw_min_8b;
8215 		fw_bld = resp->hwrm_fw_bld_8b;
8216 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8217 		len = BC_HWRM_STR_LEN;
8218 	}
8219 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8220 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8221 		 fw_rsv);
8222 
8223 	if (strlen(resp->active_pkg_name)) {
8224 		int fw_ver_len = strlen(bp->fw_ver_str);
8225 
8226 		snprintf(bp->fw_ver_str + fw_ver_len,
8227 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8228 			 resp->active_pkg_name);
8229 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8230 	}
8231 
8232 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8233 	if (!bp->hwrm_cmd_timeout)
8234 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8235 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8236 	if (!bp->hwrm_cmd_max_timeout)
8237 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8238 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8239 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8240 			    bp->hwrm_cmd_max_timeout / 1000);
8241 
8242 	if (resp->hwrm_intf_maj_8b >= 1) {
8243 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8244 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8245 	}
8246 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8247 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8248 
8249 	bp->chip_num = le16_to_cpu(resp->chip_num);
8250 	bp->chip_rev = resp->chip_rev;
8251 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8252 	    !resp->chip_metal)
8253 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8254 
8255 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8256 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8257 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8258 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8259 
8260 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8261 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8262 
8263 	if (dev_caps_cfg &
8264 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8265 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8266 
8267 	if (dev_caps_cfg &
8268 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8269 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8270 
8271 	if (dev_caps_cfg &
8272 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8273 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8274 
8275 hwrm_ver_get_exit:
8276 	hwrm_req_drop(bp, req);
8277 	return rc;
8278 }
8279 
8280 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8281 {
8282 	struct hwrm_fw_set_time_input *req;
8283 	struct tm tm;
8284 	time64_t now = ktime_get_real_seconds();
8285 	int rc;
8286 
8287 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8288 	    bp->hwrm_spec_code < 0x10400)
8289 		return -EOPNOTSUPP;
8290 
8291 	time64_to_tm(now, 0, &tm);
8292 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8293 	if (rc)
8294 		return rc;
8295 
8296 	req->year = cpu_to_le16(1900 + tm.tm_year);
8297 	req->month = 1 + tm.tm_mon;
8298 	req->day = tm.tm_mday;
8299 	req->hour = tm.tm_hour;
8300 	req->minute = tm.tm_min;
8301 	req->second = tm.tm_sec;
8302 	return hwrm_req_send(bp, req);
8303 }
8304 
8305 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8306 {
8307 	u64 sw_tmp;
8308 
8309 	hw &= mask;
8310 	sw_tmp = (*sw & ~mask) | hw;
8311 	if (hw < (*sw & mask))
8312 		sw_tmp += mask + 1;
8313 	WRITE_ONCE(*sw, sw_tmp);
8314 }
8315 
8316 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8317 				    int count, bool ignore_zero)
8318 {
8319 	int i;
8320 
8321 	for (i = 0; i < count; i++) {
8322 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8323 
8324 		if (ignore_zero && !hw)
8325 			continue;
8326 
8327 		if (masks[i] == -1ULL)
8328 			sw_stats[i] = hw;
8329 		else
8330 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8331 	}
8332 }
8333 
8334 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8335 {
8336 	if (!stats->hw_stats)
8337 		return;
8338 
8339 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8340 				stats->hw_masks, stats->len / 8, false);
8341 }
8342 
8343 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8344 {
8345 	struct bnxt_stats_mem *ring0_stats;
8346 	bool ignore_zero = false;
8347 	int i;
8348 
8349 	/* Chip bug.  Counter intermittently becomes 0. */
8350 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8351 		ignore_zero = true;
8352 
8353 	for (i = 0; i < bp->cp_nr_rings; i++) {
8354 		struct bnxt_napi *bnapi = bp->bnapi[i];
8355 		struct bnxt_cp_ring_info *cpr;
8356 		struct bnxt_stats_mem *stats;
8357 
8358 		cpr = &bnapi->cp_ring;
8359 		stats = &cpr->stats;
8360 		if (!i)
8361 			ring0_stats = stats;
8362 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8363 					ring0_stats->hw_masks,
8364 					ring0_stats->len / 8, ignore_zero);
8365 	}
8366 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8367 		struct bnxt_stats_mem *stats = &bp->port_stats;
8368 		__le64 *hw_stats = stats->hw_stats;
8369 		u64 *sw_stats = stats->sw_stats;
8370 		u64 *masks = stats->hw_masks;
8371 		int cnt;
8372 
8373 		cnt = sizeof(struct rx_port_stats) / 8;
8374 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8375 
8376 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8377 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8378 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8379 		cnt = sizeof(struct tx_port_stats) / 8;
8380 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8381 	}
8382 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8383 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8384 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8385 	}
8386 }
8387 
8388 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8389 {
8390 	struct hwrm_port_qstats_input *req;
8391 	struct bnxt_pf_info *pf = &bp->pf;
8392 	int rc;
8393 
8394 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8395 		return 0;
8396 
8397 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8398 		return -EOPNOTSUPP;
8399 
8400 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8401 	if (rc)
8402 		return rc;
8403 
8404 	req->flags = flags;
8405 	req->port_id = cpu_to_le16(pf->port_id);
8406 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8407 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8408 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8409 	return hwrm_req_send(bp, req);
8410 }
8411 
8412 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8413 {
8414 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8415 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8416 	struct hwrm_port_qstats_ext_output *resp_qs;
8417 	struct hwrm_port_qstats_ext_input *req_qs;
8418 	struct bnxt_pf_info *pf = &bp->pf;
8419 	u32 tx_stat_size;
8420 	int rc;
8421 
8422 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8423 		return 0;
8424 
8425 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8426 		return -EOPNOTSUPP;
8427 
8428 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8429 	if (rc)
8430 		return rc;
8431 
8432 	req_qs->flags = flags;
8433 	req_qs->port_id = cpu_to_le16(pf->port_id);
8434 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8435 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8436 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8437 		       sizeof(struct tx_port_stats_ext) : 0;
8438 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8439 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8440 	resp_qs = hwrm_req_hold(bp, req_qs);
8441 	rc = hwrm_req_send(bp, req_qs);
8442 	if (!rc) {
8443 		bp->fw_rx_stats_ext_size =
8444 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8445 		if (BNXT_FW_MAJ(bp) < 220 &&
8446 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8447 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8448 
8449 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8450 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8451 	} else {
8452 		bp->fw_rx_stats_ext_size = 0;
8453 		bp->fw_tx_stats_ext_size = 0;
8454 	}
8455 	hwrm_req_drop(bp, req_qs);
8456 
8457 	if (flags)
8458 		return rc;
8459 
8460 	if (bp->fw_tx_stats_ext_size <=
8461 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8462 		bp->pri2cos_valid = 0;
8463 		return rc;
8464 	}
8465 
8466 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8467 	if (rc)
8468 		return rc;
8469 
8470 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8471 
8472 	resp_qc = hwrm_req_hold(bp, req_qc);
8473 	rc = hwrm_req_send(bp, req_qc);
8474 	if (!rc) {
8475 		u8 *pri2cos;
8476 		int i, j;
8477 
8478 		pri2cos = &resp_qc->pri0_cos_queue_id;
8479 		for (i = 0; i < 8; i++) {
8480 			u8 queue_id = pri2cos[i];
8481 			u8 queue_idx;
8482 
8483 			/* Per port queue IDs start from 0, 10, 20, etc */
8484 			queue_idx = queue_id % 10;
8485 			if (queue_idx > BNXT_MAX_QUEUE) {
8486 				bp->pri2cos_valid = false;
8487 				hwrm_req_drop(bp, req_qc);
8488 				return rc;
8489 			}
8490 			for (j = 0; j < bp->max_q; j++) {
8491 				if (bp->q_ids[j] == queue_id)
8492 					bp->pri2cos_idx[i] = queue_idx;
8493 			}
8494 		}
8495 		bp->pri2cos_valid = true;
8496 	}
8497 	hwrm_req_drop(bp, req_qc);
8498 
8499 	return rc;
8500 }
8501 
8502 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8503 {
8504 	bnxt_hwrm_tunnel_dst_port_free(bp,
8505 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8506 	bnxt_hwrm_tunnel_dst_port_free(bp,
8507 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8508 }
8509 
8510 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8511 {
8512 	int rc, i;
8513 	u32 tpa_flags = 0;
8514 
8515 	if (set_tpa)
8516 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8517 	else if (BNXT_NO_FW_ACCESS(bp))
8518 		return 0;
8519 	for (i = 0; i < bp->nr_vnics; i++) {
8520 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8521 		if (rc) {
8522 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8523 				   i, rc);
8524 			return rc;
8525 		}
8526 	}
8527 	return 0;
8528 }
8529 
8530 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8531 {
8532 	int i;
8533 
8534 	for (i = 0; i < bp->nr_vnics; i++)
8535 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8536 }
8537 
8538 static void bnxt_clear_vnic(struct bnxt *bp)
8539 {
8540 	if (!bp->vnic_info)
8541 		return;
8542 
8543 	bnxt_hwrm_clear_vnic_filter(bp);
8544 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8545 		/* clear all RSS setting before free vnic ctx */
8546 		bnxt_hwrm_clear_vnic_rss(bp);
8547 		bnxt_hwrm_vnic_ctx_free(bp);
8548 	}
8549 	/* before free the vnic, undo the vnic tpa settings */
8550 	if (bp->flags & BNXT_FLAG_TPA)
8551 		bnxt_set_tpa(bp, false);
8552 	bnxt_hwrm_vnic_free(bp);
8553 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8554 		bnxt_hwrm_vnic_ctx_free(bp);
8555 }
8556 
8557 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8558 				    bool irq_re_init)
8559 {
8560 	bnxt_clear_vnic(bp);
8561 	bnxt_hwrm_ring_free(bp, close_path);
8562 	bnxt_hwrm_ring_grp_free(bp);
8563 	if (irq_re_init) {
8564 		bnxt_hwrm_stat_ctx_free(bp);
8565 		bnxt_hwrm_free_tunnel_ports(bp);
8566 	}
8567 }
8568 
8569 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8570 {
8571 	struct hwrm_func_cfg_input *req;
8572 	u8 evb_mode;
8573 	int rc;
8574 
8575 	if (br_mode == BRIDGE_MODE_VEB)
8576 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8577 	else if (br_mode == BRIDGE_MODE_VEPA)
8578 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8579 	else
8580 		return -EINVAL;
8581 
8582 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8583 	if (rc)
8584 		return rc;
8585 
8586 	req->fid = cpu_to_le16(0xffff);
8587 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8588 	req->evb_mode = evb_mode;
8589 	return hwrm_req_send(bp, req);
8590 }
8591 
8592 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8593 {
8594 	struct hwrm_func_cfg_input *req;
8595 	int rc;
8596 
8597 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8598 		return 0;
8599 
8600 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8601 	if (rc)
8602 		return rc;
8603 
8604 	req->fid = cpu_to_le16(0xffff);
8605 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8606 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8607 	if (size == 128)
8608 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8609 
8610 	return hwrm_req_send(bp, req);
8611 }
8612 
8613 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8614 {
8615 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8616 	int rc;
8617 
8618 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8619 		goto skip_rss_ctx;
8620 
8621 	/* allocate context for vnic */
8622 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8623 	if (rc) {
8624 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8625 			   vnic_id, rc);
8626 		goto vnic_setup_err;
8627 	}
8628 	bp->rsscos_nr_ctxs++;
8629 
8630 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8631 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8632 		if (rc) {
8633 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8634 				   vnic_id, rc);
8635 			goto vnic_setup_err;
8636 		}
8637 		bp->rsscos_nr_ctxs++;
8638 	}
8639 
8640 skip_rss_ctx:
8641 	/* configure default vnic, ring grp */
8642 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8643 	if (rc) {
8644 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8645 			   vnic_id, rc);
8646 		goto vnic_setup_err;
8647 	}
8648 
8649 	/* Enable RSS hashing on vnic */
8650 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8651 	if (rc) {
8652 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8653 			   vnic_id, rc);
8654 		goto vnic_setup_err;
8655 	}
8656 
8657 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8658 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8659 		if (rc) {
8660 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8661 				   vnic_id, rc);
8662 		}
8663 	}
8664 
8665 vnic_setup_err:
8666 	return rc;
8667 }
8668 
8669 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8670 {
8671 	int rc, i, nr_ctxs;
8672 
8673 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8674 	for (i = 0; i < nr_ctxs; i++) {
8675 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8676 		if (rc) {
8677 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8678 				   vnic_id, i, rc);
8679 			break;
8680 		}
8681 		bp->rsscos_nr_ctxs++;
8682 	}
8683 	if (i < nr_ctxs)
8684 		return -ENOMEM;
8685 
8686 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8687 	if (rc) {
8688 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8689 			   vnic_id, rc);
8690 		return rc;
8691 	}
8692 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8693 	if (rc) {
8694 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8695 			   vnic_id, rc);
8696 		return rc;
8697 	}
8698 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8699 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8700 		if (rc) {
8701 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8702 				   vnic_id, rc);
8703 		}
8704 	}
8705 	return rc;
8706 }
8707 
8708 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8709 {
8710 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8711 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8712 	else
8713 		return __bnxt_setup_vnic(bp, vnic_id);
8714 }
8715 
8716 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8717 {
8718 #ifdef CONFIG_RFS_ACCEL
8719 	int i, rc = 0;
8720 
8721 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8722 		return 0;
8723 
8724 	for (i = 0; i < bp->rx_nr_rings; i++) {
8725 		struct bnxt_vnic_info *vnic;
8726 		u16 vnic_id = i + 1;
8727 		u16 ring_id = i;
8728 
8729 		if (vnic_id >= bp->nr_vnics)
8730 			break;
8731 
8732 		vnic = &bp->vnic_info[vnic_id];
8733 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8734 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8735 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8736 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8737 		if (rc) {
8738 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8739 				   vnic_id, rc);
8740 			break;
8741 		}
8742 		rc = bnxt_setup_vnic(bp, vnic_id);
8743 		if (rc)
8744 			break;
8745 	}
8746 	return rc;
8747 #else
8748 	return 0;
8749 #endif
8750 }
8751 
8752 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8753 static bool bnxt_promisc_ok(struct bnxt *bp)
8754 {
8755 #ifdef CONFIG_BNXT_SRIOV
8756 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8757 		return false;
8758 #endif
8759 	return true;
8760 }
8761 
8762 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8763 {
8764 	unsigned int rc = 0;
8765 
8766 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8767 	if (rc) {
8768 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8769 			   rc);
8770 		return rc;
8771 	}
8772 
8773 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8774 	if (rc) {
8775 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8776 			   rc);
8777 		return rc;
8778 	}
8779 	return rc;
8780 }
8781 
8782 static int bnxt_cfg_rx_mode(struct bnxt *);
8783 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8784 
8785 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8786 {
8787 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8788 	int rc = 0;
8789 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8790 
8791 	if (irq_re_init) {
8792 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8793 		if (rc) {
8794 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8795 				   rc);
8796 			goto err_out;
8797 		}
8798 	}
8799 
8800 	rc = bnxt_hwrm_ring_alloc(bp);
8801 	if (rc) {
8802 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8803 		goto err_out;
8804 	}
8805 
8806 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8807 	if (rc) {
8808 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8809 		goto err_out;
8810 	}
8811 
8812 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8813 		rx_nr_rings--;
8814 
8815 	/* default vnic 0 */
8816 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8817 	if (rc) {
8818 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8819 		goto err_out;
8820 	}
8821 
8822 	if (BNXT_VF(bp))
8823 		bnxt_hwrm_func_qcfg(bp);
8824 
8825 	rc = bnxt_setup_vnic(bp, 0);
8826 	if (rc)
8827 		goto err_out;
8828 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
8829 		bnxt_hwrm_update_rss_hash_cfg(bp);
8830 
8831 	if (bp->flags & BNXT_FLAG_RFS) {
8832 		rc = bnxt_alloc_rfs_vnics(bp);
8833 		if (rc)
8834 			goto err_out;
8835 	}
8836 
8837 	if (bp->flags & BNXT_FLAG_TPA) {
8838 		rc = bnxt_set_tpa(bp, true);
8839 		if (rc)
8840 			goto err_out;
8841 	}
8842 
8843 	if (BNXT_VF(bp))
8844 		bnxt_update_vf_mac(bp);
8845 
8846 	/* Filter for default vnic 0 */
8847 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8848 	if (rc) {
8849 		if (BNXT_VF(bp) && rc == -ENODEV)
8850 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8851 		else
8852 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8853 		goto err_out;
8854 	}
8855 	vnic->uc_filter_count = 1;
8856 
8857 	vnic->rx_mask = 0;
8858 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8859 		goto skip_rx_mask;
8860 
8861 	if (bp->dev->flags & IFF_BROADCAST)
8862 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8863 
8864 	if (bp->dev->flags & IFF_PROMISC)
8865 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8866 
8867 	if (bp->dev->flags & IFF_ALLMULTI) {
8868 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8869 		vnic->mc_list_count = 0;
8870 	} else if (bp->dev->flags & IFF_MULTICAST) {
8871 		u32 mask = 0;
8872 
8873 		bnxt_mc_list_updated(bp, &mask);
8874 		vnic->rx_mask |= mask;
8875 	}
8876 
8877 	rc = bnxt_cfg_rx_mode(bp);
8878 	if (rc)
8879 		goto err_out;
8880 
8881 skip_rx_mask:
8882 	rc = bnxt_hwrm_set_coal(bp);
8883 	if (rc)
8884 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8885 				rc);
8886 
8887 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8888 		rc = bnxt_setup_nitroa0_vnic(bp);
8889 		if (rc)
8890 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8891 				   rc);
8892 	}
8893 
8894 	if (BNXT_VF(bp)) {
8895 		bnxt_hwrm_func_qcfg(bp);
8896 		netdev_update_features(bp->dev);
8897 	}
8898 
8899 	return 0;
8900 
8901 err_out:
8902 	bnxt_hwrm_resource_free(bp, 0, true);
8903 
8904 	return rc;
8905 }
8906 
8907 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8908 {
8909 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8910 	return 0;
8911 }
8912 
8913 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8914 {
8915 	bnxt_init_cp_rings(bp);
8916 	bnxt_init_rx_rings(bp);
8917 	bnxt_init_tx_rings(bp);
8918 	bnxt_init_ring_grps(bp, irq_re_init);
8919 	bnxt_init_vnics(bp);
8920 
8921 	return bnxt_init_chip(bp, irq_re_init);
8922 }
8923 
8924 static int bnxt_set_real_num_queues(struct bnxt *bp)
8925 {
8926 	int rc;
8927 	struct net_device *dev = bp->dev;
8928 
8929 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8930 					  bp->tx_nr_rings_xdp);
8931 	if (rc)
8932 		return rc;
8933 
8934 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8935 	if (rc)
8936 		return rc;
8937 
8938 #ifdef CONFIG_RFS_ACCEL
8939 	if (bp->flags & BNXT_FLAG_RFS)
8940 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8941 #endif
8942 
8943 	return rc;
8944 }
8945 
8946 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8947 			   bool shared)
8948 {
8949 	int _rx = *rx, _tx = *tx;
8950 
8951 	if (shared) {
8952 		*rx = min_t(int, _rx, max);
8953 		*tx = min_t(int, _tx, max);
8954 	} else {
8955 		if (max < 2)
8956 			return -ENOMEM;
8957 
8958 		while (_rx + _tx > max) {
8959 			if (_rx > _tx && _rx > 1)
8960 				_rx--;
8961 			else if (_tx > 1)
8962 				_tx--;
8963 		}
8964 		*rx = _rx;
8965 		*tx = _tx;
8966 	}
8967 	return 0;
8968 }
8969 
8970 static void bnxt_setup_msix(struct bnxt *bp)
8971 {
8972 	const int len = sizeof(bp->irq_tbl[0].name);
8973 	struct net_device *dev = bp->dev;
8974 	int tcs, i;
8975 
8976 	tcs = netdev_get_num_tc(dev);
8977 	if (tcs) {
8978 		int i, off, count;
8979 
8980 		for (i = 0; i < tcs; i++) {
8981 			count = bp->tx_nr_rings_per_tc;
8982 			off = i * count;
8983 			netdev_set_tc_queue(dev, i, count, off);
8984 		}
8985 	}
8986 
8987 	for (i = 0; i < bp->cp_nr_rings; i++) {
8988 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8989 		char *attr;
8990 
8991 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8992 			attr = "TxRx";
8993 		else if (i < bp->rx_nr_rings)
8994 			attr = "rx";
8995 		else
8996 			attr = "tx";
8997 
8998 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8999 			 attr, i);
9000 		bp->irq_tbl[map_idx].handler = bnxt_msix;
9001 	}
9002 }
9003 
9004 static void bnxt_setup_inta(struct bnxt *bp)
9005 {
9006 	const int len = sizeof(bp->irq_tbl[0].name);
9007 
9008 	if (netdev_get_num_tc(bp->dev))
9009 		netdev_reset_tc(bp->dev);
9010 
9011 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
9012 		 0);
9013 	bp->irq_tbl[0].handler = bnxt_inta;
9014 }
9015 
9016 static int bnxt_init_int_mode(struct bnxt *bp);
9017 
9018 static int bnxt_setup_int_mode(struct bnxt *bp)
9019 {
9020 	int rc;
9021 
9022 	if (!bp->irq_tbl) {
9023 		rc = bnxt_init_int_mode(bp);
9024 		if (rc || !bp->irq_tbl)
9025 			return rc ?: -ENODEV;
9026 	}
9027 
9028 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9029 		bnxt_setup_msix(bp);
9030 	else
9031 		bnxt_setup_inta(bp);
9032 
9033 	rc = bnxt_set_real_num_queues(bp);
9034 	return rc;
9035 }
9036 
9037 #ifdef CONFIG_RFS_ACCEL
9038 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9039 {
9040 	return bp->hw_resc.max_rsscos_ctxs;
9041 }
9042 
9043 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9044 {
9045 	return bp->hw_resc.max_vnics;
9046 }
9047 #endif
9048 
9049 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9050 {
9051 	return bp->hw_resc.max_stat_ctxs;
9052 }
9053 
9054 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9055 {
9056 	return bp->hw_resc.max_cp_rings;
9057 }
9058 
9059 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9060 {
9061 	unsigned int cp = bp->hw_resc.max_cp_rings;
9062 
9063 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9064 		cp -= bnxt_get_ulp_msix_num(bp);
9065 
9066 	return cp;
9067 }
9068 
9069 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9070 {
9071 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9072 
9073 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9074 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9075 
9076 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9077 }
9078 
9079 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9080 {
9081 	bp->hw_resc.max_irqs = max_irqs;
9082 }
9083 
9084 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9085 {
9086 	unsigned int cp;
9087 
9088 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9089 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9090 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9091 	else
9092 		return cp - bp->cp_nr_rings;
9093 }
9094 
9095 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9096 {
9097 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9098 }
9099 
9100 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9101 {
9102 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9103 	int max_irq = bnxt_get_max_func_irqs(bp);
9104 	int total_req = bp->cp_nr_rings + num;
9105 	int max_idx, avail_msix;
9106 
9107 	max_idx = bp->total_irqs;
9108 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9109 		max_idx = min_t(int, bp->total_irqs, max_cp);
9110 	avail_msix = max_idx - bp->cp_nr_rings;
9111 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9112 		return avail_msix;
9113 
9114 	if (max_irq < total_req) {
9115 		num = max_irq - bp->cp_nr_rings;
9116 		if (num <= 0)
9117 			return 0;
9118 	}
9119 	return num;
9120 }
9121 
9122 static int bnxt_get_num_msix(struct bnxt *bp)
9123 {
9124 	if (!BNXT_NEW_RM(bp))
9125 		return bnxt_get_max_func_irqs(bp);
9126 
9127 	return bnxt_nq_rings_in_use(bp);
9128 }
9129 
9130 static int bnxt_init_msix(struct bnxt *bp)
9131 {
9132 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9133 	struct msix_entry *msix_ent;
9134 
9135 	total_vecs = bnxt_get_num_msix(bp);
9136 	max = bnxt_get_max_func_irqs(bp);
9137 	if (total_vecs > max)
9138 		total_vecs = max;
9139 
9140 	if (!total_vecs)
9141 		return 0;
9142 
9143 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9144 	if (!msix_ent)
9145 		return -ENOMEM;
9146 
9147 	for (i = 0; i < total_vecs; i++) {
9148 		msix_ent[i].entry = i;
9149 		msix_ent[i].vector = 0;
9150 	}
9151 
9152 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9153 		min = 2;
9154 
9155 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9156 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9157 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9158 		rc = -ENODEV;
9159 		goto msix_setup_exit;
9160 	}
9161 
9162 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9163 	if (bp->irq_tbl) {
9164 		for (i = 0; i < total_vecs; i++)
9165 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9166 
9167 		bp->total_irqs = total_vecs;
9168 		/* Trim rings based upon num of vectors allocated */
9169 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9170 				     total_vecs - ulp_msix, min == 1);
9171 		if (rc)
9172 			goto msix_setup_exit;
9173 
9174 		bp->cp_nr_rings = (min == 1) ?
9175 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9176 				  bp->tx_nr_rings + bp->rx_nr_rings;
9177 
9178 	} else {
9179 		rc = -ENOMEM;
9180 		goto msix_setup_exit;
9181 	}
9182 	bp->flags |= BNXT_FLAG_USING_MSIX;
9183 	kfree(msix_ent);
9184 	return 0;
9185 
9186 msix_setup_exit:
9187 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9188 	kfree(bp->irq_tbl);
9189 	bp->irq_tbl = NULL;
9190 	pci_disable_msix(bp->pdev);
9191 	kfree(msix_ent);
9192 	return rc;
9193 }
9194 
9195 static int bnxt_init_inta(struct bnxt *bp)
9196 {
9197 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9198 	if (!bp->irq_tbl)
9199 		return -ENOMEM;
9200 
9201 	bp->total_irqs = 1;
9202 	bp->rx_nr_rings = 1;
9203 	bp->tx_nr_rings = 1;
9204 	bp->cp_nr_rings = 1;
9205 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9206 	bp->irq_tbl[0].vector = bp->pdev->irq;
9207 	return 0;
9208 }
9209 
9210 static int bnxt_init_int_mode(struct bnxt *bp)
9211 {
9212 	int rc = -ENODEV;
9213 
9214 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9215 		rc = bnxt_init_msix(bp);
9216 
9217 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9218 		/* fallback to INTA */
9219 		rc = bnxt_init_inta(bp);
9220 	}
9221 	return rc;
9222 }
9223 
9224 static void bnxt_clear_int_mode(struct bnxt *bp)
9225 {
9226 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9227 		pci_disable_msix(bp->pdev);
9228 
9229 	kfree(bp->irq_tbl);
9230 	bp->irq_tbl = NULL;
9231 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9232 }
9233 
9234 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9235 {
9236 	int tcs = netdev_get_num_tc(bp->dev);
9237 	bool irq_cleared = false;
9238 	int rc;
9239 
9240 	if (!bnxt_need_reserve_rings(bp))
9241 		return 0;
9242 
9243 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9244 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9245 		bnxt_ulp_irq_stop(bp);
9246 		bnxt_clear_int_mode(bp);
9247 		irq_cleared = true;
9248 	}
9249 	rc = __bnxt_reserve_rings(bp);
9250 	if (irq_cleared) {
9251 		if (!rc)
9252 			rc = bnxt_init_int_mode(bp);
9253 		bnxt_ulp_irq_restart(bp, rc);
9254 	}
9255 	if (rc) {
9256 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9257 		return rc;
9258 	}
9259 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
9260 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
9261 		netdev_err(bp->dev, "tx ring reservation failure\n");
9262 		netdev_reset_tc(bp->dev);
9263 		if (bp->tx_nr_rings_xdp)
9264 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
9265 		else
9266 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9267 		return -ENOMEM;
9268 	}
9269 	return 0;
9270 }
9271 
9272 static void bnxt_free_irq(struct bnxt *bp)
9273 {
9274 	struct bnxt_irq *irq;
9275 	int i;
9276 
9277 #ifdef CONFIG_RFS_ACCEL
9278 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9279 	bp->dev->rx_cpu_rmap = NULL;
9280 #endif
9281 	if (!bp->irq_tbl || !bp->bnapi)
9282 		return;
9283 
9284 	for (i = 0; i < bp->cp_nr_rings; i++) {
9285 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9286 
9287 		irq = &bp->irq_tbl[map_idx];
9288 		if (irq->requested) {
9289 			if (irq->have_cpumask) {
9290 				irq_set_affinity_hint(irq->vector, NULL);
9291 				free_cpumask_var(irq->cpu_mask);
9292 				irq->have_cpumask = 0;
9293 			}
9294 			free_irq(irq->vector, bp->bnapi[i]);
9295 		}
9296 
9297 		irq->requested = 0;
9298 	}
9299 }
9300 
9301 static int bnxt_request_irq(struct bnxt *bp)
9302 {
9303 	int i, j, rc = 0;
9304 	unsigned long flags = 0;
9305 #ifdef CONFIG_RFS_ACCEL
9306 	struct cpu_rmap *rmap;
9307 #endif
9308 
9309 	rc = bnxt_setup_int_mode(bp);
9310 	if (rc) {
9311 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9312 			   rc);
9313 		return rc;
9314 	}
9315 #ifdef CONFIG_RFS_ACCEL
9316 	rmap = bp->dev->rx_cpu_rmap;
9317 #endif
9318 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9319 		flags = IRQF_SHARED;
9320 
9321 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9322 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9323 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9324 
9325 #ifdef CONFIG_RFS_ACCEL
9326 		if (rmap && bp->bnapi[i]->rx_ring) {
9327 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9328 			if (rc)
9329 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9330 					    j);
9331 			j++;
9332 		}
9333 #endif
9334 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9335 				 bp->bnapi[i]);
9336 		if (rc)
9337 			break;
9338 
9339 		irq->requested = 1;
9340 
9341 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9342 			int numa_node = dev_to_node(&bp->pdev->dev);
9343 
9344 			irq->have_cpumask = 1;
9345 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9346 					irq->cpu_mask);
9347 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9348 			if (rc) {
9349 				netdev_warn(bp->dev,
9350 					    "Set affinity failed, IRQ = %d\n",
9351 					    irq->vector);
9352 				break;
9353 			}
9354 		}
9355 	}
9356 	return rc;
9357 }
9358 
9359 static void bnxt_del_napi(struct bnxt *bp)
9360 {
9361 	int i;
9362 
9363 	if (!bp->bnapi)
9364 		return;
9365 
9366 	for (i = 0; i < bp->cp_nr_rings; i++) {
9367 		struct bnxt_napi *bnapi = bp->bnapi[i];
9368 
9369 		__netif_napi_del(&bnapi->napi);
9370 	}
9371 	/* We called __netif_napi_del(), we need
9372 	 * to respect an RCU grace period before freeing napi structures.
9373 	 */
9374 	synchronize_net();
9375 }
9376 
9377 static void bnxt_init_napi(struct bnxt *bp)
9378 {
9379 	int i;
9380 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9381 	struct bnxt_napi *bnapi;
9382 
9383 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9384 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9385 
9386 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9387 			poll_fn = bnxt_poll_p5;
9388 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9389 			cp_nr_rings--;
9390 		for (i = 0; i < cp_nr_rings; i++) {
9391 			bnapi = bp->bnapi[i];
9392 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
9393 		}
9394 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9395 			bnapi = bp->bnapi[cp_nr_rings];
9396 			netif_napi_add(bp->dev, &bnapi->napi,
9397 				       bnxt_poll_nitroa0);
9398 		}
9399 	} else {
9400 		bnapi = bp->bnapi[0];
9401 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
9402 	}
9403 }
9404 
9405 static void bnxt_disable_napi(struct bnxt *bp)
9406 {
9407 	int i;
9408 
9409 	if (!bp->bnapi ||
9410 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9411 		return;
9412 
9413 	for (i = 0; i < bp->cp_nr_rings; i++) {
9414 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9415 
9416 		napi_disable(&bp->bnapi[i]->napi);
9417 		if (bp->bnapi[i]->rx_ring)
9418 			cancel_work_sync(&cpr->dim.work);
9419 	}
9420 }
9421 
9422 static void bnxt_enable_napi(struct bnxt *bp)
9423 {
9424 	int i;
9425 
9426 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9427 	for (i = 0; i < bp->cp_nr_rings; i++) {
9428 		struct bnxt_napi *bnapi = bp->bnapi[i];
9429 		struct bnxt_cp_ring_info *cpr;
9430 
9431 		cpr = &bnapi->cp_ring;
9432 		if (bnapi->in_reset)
9433 			cpr->sw_stats.rx.rx_resets++;
9434 		bnapi->in_reset = false;
9435 
9436 		if (bnapi->rx_ring) {
9437 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9438 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9439 		}
9440 		napi_enable(&bnapi->napi);
9441 	}
9442 }
9443 
9444 void bnxt_tx_disable(struct bnxt *bp)
9445 {
9446 	int i;
9447 	struct bnxt_tx_ring_info *txr;
9448 
9449 	if (bp->tx_ring) {
9450 		for (i = 0; i < bp->tx_nr_rings; i++) {
9451 			txr = &bp->tx_ring[i];
9452 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9453 		}
9454 	}
9455 	/* Make sure napi polls see @dev_state change */
9456 	synchronize_net();
9457 	/* Drop carrier first to prevent TX timeout */
9458 	netif_carrier_off(bp->dev);
9459 	/* Stop all TX queues */
9460 	netif_tx_disable(bp->dev);
9461 }
9462 
9463 void bnxt_tx_enable(struct bnxt *bp)
9464 {
9465 	int i;
9466 	struct bnxt_tx_ring_info *txr;
9467 
9468 	for (i = 0; i < bp->tx_nr_rings; i++) {
9469 		txr = &bp->tx_ring[i];
9470 		WRITE_ONCE(txr->dev_state, 0);
9471 	}
9472 	/* Make sure napi polls see @dev_state change */
9473 	synchronize_net();
9474 	netif_tx_wake_all_queues(bp->dev);
9475 	if (BNXT_LINK_IS_UP(bp))
9476 		netif_carrier_on(bp->dev);
9477 }
9478 
9479 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9480 {
9481 	u8 active_fec = link_info->active_fec_sig_mode &
9482 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9483 
9484 	switch (active_fec) {
9485 	default:
9486 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9487 		return "None";
9488 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9489 		return "Clause 74 BaseR";
9490 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9491 		return "Clause 91 RS(528,514)";
9492 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9493 		return "Clause 91 RS544_1XN";
9494 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9495 		return "Clause 91 RS(544,514)";
9496 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9497 		return "Clause 91 RS272_1XN";
9498 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9499 		return "Clause 91 RS(272,257)";
9500 	}
9501 }
9502 
9503 void bnxt_report_link(struct bnxt *bp)
9504 {
9505 	if (BNXT_LINK_IS_UP(bp)) {
9506 		const char *signal = "";
9507 		const char *flow_ctrl;
9508 		const char *duplex;
9509 		u32 speed;
9510 		u16 fec;
9511 
9512 		netif_carrier_on(bp->dev);
9513 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9514 		if (speed == SPEED_UNKNOWN) {
9515 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9516 			return;
9517 		}
9518 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9519 			duplex = "full";
9520 		else
9521 			duplex = "half";
9522 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9523 			flow_ctrl = "ON - receive & transmit";
9524 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9525 			flow_ctrl = "ON - transmit";
9526 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9527 			flow_ctrl = "ON - receive";
9528 		else
9529 			flow_ctrl = "none";
9530 		if (bp->link_info.phy_qcfg_resp.option_flags &
9531 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9532 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9533 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9534 			switch (sig_mode) {
9535 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9536 				signal = "(NRZ) ";
9537 				break;
9538 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9539 				signal = "(PAM4) ";
9540 				break;
9541 			default:
9542 				break;
9543 			}
9544 		}
9545 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9546 			    speed, signal, duplex, flow_ctrl);
9547 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9548 			netdev_info(bp->dev, "EEE is %s\n",
9549 				    bp->eee.eee_active ? "active" :
9550 							 "not active");
9551 		fec = bp->link_info.fec_cfg;
9552 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9553 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9554 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9555 				    bnxt_report_fec(&bp->link_info));
9556 	} else {
9557 		netif_carrier_off(bp->dev);
9558 		netdev_err(bp->dev, "NIC Link is Down\n");
9559 	}
9560 }
9561 
9562 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9563 {
9564 	if (!resp->supported_speeds_auto_mode &&
9565 	    !resp->supported_speeds_force_mode &&
9566 	    !resp->supported_pam4_speeds_auto_mode &&
9567 	    !resp->supported_pam4_speeds_force_mode)
9568 		return true;
9569 	return false;
9570 }
9571 
9572 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9573 {
9574 	struct bnxt_link_info *link_info = &bp->link_info;
9575 	struct hwrm_port_phy_qcaps_output *resp;
9576 	struct hwrm_port_phy_qcaps_input *req;
9577 	int rc = 0;
9578 
9579 	if (bp->hwrm_spec_code < 0x10201)
9580 		return 0;
9581 
9582 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9583 	if (rc)
9584 		return rc;
9585 
9586 	resp = hwrm_req_hold(bp, req);
9587 	rc = hwrm_req_send(bp, req);
9588 	if (rc)
9589 		goto hwrm_phy_qcaps_exit;
9590 
9591 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9592 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9593 		struct ethtool_eee *eee = &bp->eee;
9594 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9595 
9596 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9597 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9598 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9599 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9600 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9601 	}
9602 
9603 	if (bp->hwrm_spec_code >= 0x10a01) {
9604 		if (bnxt_phy_qcaps_no_speed(resp)) {
9605 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9606 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9607 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9608 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9609 			netdev_info(bp->dev, "Ethernet link enabled\n");
9610 			/* Phy re-enabled, reprobe the speeds */
9611 			link_info->support_auto_speeds = 0;
9612 			link_info->support_pam4_auto_speeds = 0;
9613 		}
9614 	}
9615 	if (resp->supported_speeds_auto_mode)
9616 		link_info->support_auto_speeds =
9617 			le16_to_cpu(resp->supported_speeds_auto_mode);
9618 	if (resp->supported_pam4_speeds_auto_mode)
9619 		link_info->support_pam4_auto_speeds =
9620 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9621 
9622 	bp->port_count = resp->port_cnt;
9623 
9624 hwrm_phy_qcaps_exit:
9625 	hwrm_req_drop(bp, req);
9626 	return rc;
9627 }
9628 
9629 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9630 {
9631 	u16 diff = advertising ^ supported;
9632 
9633 	return ((supported | diff) != supported);
9634 }
9635 
9636 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9637 {
9638 	struct bnxt_link_info *link_info = &bp->link_info;
9639 	struct hwrm_port_phy_qcfg_output *resp;
9640 	struct hwrm_port_phy_qcfg_input *req;
9641 	u8 link_state = link_info->link_state;
9642 	bool support_changed = false;
9643 	int rc;
9644 
9645 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9646 	if (rc)
9647 		return rc;
9648 
9649 	resp = hwrm_req_hold(bp, req);
9650 	rc = hwrm_req_send(bp, req);
9651 	if (rc) {
9652 		hwrm_req_drop(bp, req);
9653 		if (BNXT_VF(bp) && rc == -ENODEV) {
9654 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9655 			rc = 0;
9656 		}
9657 		return rc;
9658 	}
9659 
9660 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9661 	link_info->phy_link_status = resp->link;
9662 	link_info->duplex = resp->duplex_cfg;
9663 	if (bp->hwrm_spec_code >= 0x10800)
9664 		link_info->duplex = resp->duplex_state;
9665 	link_info->pause = resp->pause;
9666 	link_info->auto_mode = resp->auto_mode;
9667 	link_info->auto_pause_setting = resp->auto_pause;
9668 	link_info->lp_pause = resp->link_partner_adv_pause;
9669 	link_info->force_pause_setting = resp->force_pause;
9670 	link_info->duplex_setting = resp->duplex_cfg;
9671 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9672 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9673 	else
9674 		link_info->link_speed = 0;
9675 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9676 	link_info->force_pam4_link_speed =
9677 		le16_to_cpu(resp->force_pam4_link_speed);
9678 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9679 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9680 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9681 	link_info->auto_pam4_link_speeds =
9682 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9683 	link_info->lp_auto_link_speeds =
9684 		le16_to_cpu(resp->link_partner_adv_speeds);
9685 	link_info->lp_auto_pam4_link_speeds =
9686 		resp->link_partner_pam4_adv_speeds;
9687 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9688 	link_info->phy_ver[0] = resp->phy_maj;
9689 	link_info->phy_ver[1] = resp->phy_min;
9690 	link_info->phy_ver[2] = resp->phy_bld;
9691 	link_info->media_type = resp->media_type;
9692 	link_info->phy_type = resp->phy_type;
9693 	link_info->transceiver = resp->xcvr_pkg_type;
9694 	link_info->phy_addr = resp->eee_config_phy_addr &
9695 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9696 	link_info->module_status = resp->module_status;
9697 
9698 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9699 		struct ethtool_eee *eee = &bp->eee;
9700 		u16 fw_speeds;
9701 
9702 		eee->eee_active = 0;
9703 		if (resp->eee_config_phy_addr &
9704 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9705 			eee->eee_active = 1;
9706 			fw_speeds = le16_to_cpu(
9707 				resp->link_partner_adv_eee_link_speed_mask);
9708 			eee->lp_advertised =
9709 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9710 		}
9711 
9712 		/* Pull initial EEE config */
9713 		if (!chng_link_state) {
9714 			if (resp->eee_config_phy_addr &
9715 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9716 				eee->eee_enabled = 1;
9717 
9718 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9719 			eee->advertised =
9720 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9721 
9722 			if (resp->eee_config_phy_addr &
9723 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9724 				__le32 tmr;
9725 
9726 				eee->tx_lpi_enabled = 1;
9727 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9728 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9729 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9730 			}
9731 		}
9732 	}
9733 
9734 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9735 	if (bp->hwrm_spec_code >= 0x10504) {
9736 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9737 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9738 	}
9739 	/* TODO: need to add more logic to report VF link */
9740 	if (chng_link_state) {
9741 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9742 			link_info->link_state = BNXT_LINK_STATE_UP;
9743 		else
9744 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9745 		if (link_state != link_info->link_state)
9746 			bnxt_report_link(bp);
9747 	} else {
9748 		/* always link down if not require to update link state */
9749 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9750 	}
9751 	hwrm_req_drop(bp, req);
9752 
9753 	if (!BNXT_PHY_CFG_ABLE(bp))
9754 		return 0;
9755 
9756 	/* Check if any advertised speeds are no longer supported. The caller
9757 	 * holds the link_lock mutex, so we can modify link_info settings.
9758 	 */
9759 	if (bnxt_support_dropped(link_info->advertising,
9760 				 link_info->support_auto_speeds)) {
9761 		link_info->advertising = link_info->support_auto_speeds;
9762 		support_changed = true;
9763 	}
9764 	if (bnxt_support_dropped(link_info->advertising_pam4,
9765 				 link_info->support_pam4_auto_speeds)) {
9766 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9767 		support_changed = true;
9768 	}
9769 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9770 		bnxt_hwrm_set_link_setting(bp, true, false);
9771 	return 0;
9772 }
9773 
9774 static void bnxt_get_port_module_status(struct bnxt *bp)
9775 {
9776 	struct bnxt_link_info *link_info = &bp->link_info;
9777 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9778 	u8 module_status;
9779 
9780 	if (bnxt_update_link(bp, true))
9781 		return;
9782 
9783 	module_status = link_info->module_status;
9784 	switch (module_status) {
9785 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9786 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9787 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9788 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9789 			    bp->pf.port_id);
9790 		if (bp->hwrm_spec_code >= 0x10201) {
9791 			netdev_warn(bp->dev, "Module part number %s\n",
9792 				    resp->phy_vendor_partnumber);
9793 		}
9794 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9795 			netdev_warn(bp->dev, "TX is disabled\n");
9796 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9797 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9798 	}
9799 }
9800 
9801 static void
9802 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9803 {
9804 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9805 		if (bp->hwrm_spec_code >= 0x10201)
9806 			req->auto_pause =
9807 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9808 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9809 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9810 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9811 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9812 		req->enables |=
9813 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9814 	} else {
9815 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9816 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9817 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9818 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9819 		req->enables |=
9820 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9821 		if (bp->hwrm_spec_code >= 0x10201) {
9822 			req->auto_pause = req->force_pause;
9823 			req->enables |= cpu_to_le32(
9824 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9825 		}
9826 	}
9827 }
9828 
9829 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9830 {
9831 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9832 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9833 		if (bp->link_info.advertising) {
9834 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9835 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9836 		}
9837 		if (bp->link_info.advertising_pam4) {
9838 			req->enables |=
9839 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9840 			req->auto_link_pam4_speed_mask =
9841 				cpu_to_le16(bp->link_info.advertising_pam4);
9842 		}
9843 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9844 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9845 	} else {
9846 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9847 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9848 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9849 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9850 		} else {
9851 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9852 		}
9853 	}
9854 
9855 	/* tell chimp that the setting takes effect immediately */
9856 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9857 }
9858 
9859 int bnxt_hwrm_set_pause(struct bnxt *bp)
9860 {
9861 	struct hwrm_port_phy_cfg_input *req;
9862 	int rc;
9863 
9864 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9865 	if (rc)
9866 		return rc;
9867 
9868 	bnxt_hwrm_set_pause_common(bp, req);
9869 
9870 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9871 	    bp->link_info.force_link_chng)
9872 		bnxt_hwrm_set_link_common(bp, req);
9873 
9874 	rc = hwrm_req_send(bp, req);
9875 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9876 		/* since changing of pause setting doesn't trigger any link
9877 		 * change event, the driver needs to update the current pause
9878 		 * result upon successfully return of the phy_cfg command
9879 		 */
9880 		bp->link_info.pause =
9881 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9882 		bp->link_info.auto_pause_setting = 0;
9883 		if (!bp->link_info.force_link_chng)
9884 			bnxt_report_link(bp);
9885 	}
9886 	bp->link_info.force_link_chng = false;
9887 	return rc;
9888 }
9889 
9890 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9891 			      struct hwrm_port_phy_cfg_input *req)
9892 {
9893 	struct ethtool_eee *eee = &bp->eee;
9894 
9895 	if (eee->eee_enabled) {
9896 		u16 eee_speeds;
9897 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9898 
9899 		if (eee->tx_lpi_enabled)
9900 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9901 		else
9902 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9903 
9904 		req->flags |= cpu_to_le32(flags);
9905 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9906 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9907 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9908 	} else {
9909 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9910 	}
9911 }
9912 
9913 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9914 {
9915 	struct hwrm_port_phy_cfg_input *req;
9916 	int rc;
9917 
9918 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9919 	if (rc)
9920 		return rc;
9921 
9922 	if (set_pause)
9923 		bnxt_hwrm_set_pause_common(bp, req);
9924 
9925 	bnxt_hwrm_set_link_common(bp, req);
9926 
9927 	if (set_eee)
9928 		bnxt_hwrm_set_eee(bp, req);
9929 	return hwrm_req_send(bp, req);
9930 }
9931 
9932 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9933 {
9934 	struct hwrm_port_phy_cfg_input *req;
9935 	int rc;
9936 
9937 	if (!BNXT_SINGLE_PF(bp))
9938 		return 0;
9939 
9940 	if (pci_num_vf(bp->pdev) &&
9941 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9942 		return 0;
9943 
9944 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9945 	if (rc)
9946 		return rc;
9947 
9948 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9949 	rc = hwrm_req_send(bp, req);
9950 	if (!rc) {
9951 		mutex_lock(&bp->link_lock);
9952 		/* Device is not obliged link down in certain scenarios, even
9953 		 * when forced. Setting the state unknown is consistent with
9954 		 * driver startup and will force link state to be reported
9955 		 * during subsequent open based on PORT_PHY_QCFG.
9956 		 */
9957 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9958 		mutex_unlock(&bp->link_lock);
9959 	}
9960 	return rc;
9961 }
9962 
9963 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9964 {
9965 #ifdef CONFIG_TEE_BNXT_FW
9966 	int rc = tee_bnxt_fw_load();
9967 
9968 	if (rc)
9969 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9970 
9971 	return rc;
9972 #else
9973 	netdev_err(bp->dev, "OP-TEE not supported\n");
9974 	return -ENODEV;
9975 #endif
9976 }
9977 
9978 static int bnxt_try_recover_fw(struct bnxt *bp)
9979 {
9980 	if (bp->fw_health && bp->fw_health->status_reliable) {
9981 		int retry = 0, rc;
9982 		u32 sts;
9983 
9984 		do {
9985 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9986 			rc = bnxt_hwrm_poll(bp);
9987 			if (!BNXT_FW_IS_BOOTING(sts) &&
9988 			    !BNXT_FW_IS_RECOVERING(sts))
9989 				break;
9990 			retry++;
9991 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9992 
9993 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9994 			netdev_err(bp->dev,
9995 				   "Firmware not responding, status: 0x%x\n",
9996 				   sts);
9997 			rc = -ENODEV;
9998 		}
9999 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
10000 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
10001 			return bnxt_fw_reset_via_optee(bp);
10002 		}
10003 		return rc;
10004 	}
10005 
10006 	return -ENODEV;
10007 }
10008 
10009 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10010 {
10011 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10012 
10013 	if (!BNXT_NEW_RM(bp))
10014 		return; /* no resource reservations required */
10015 
10016 	hw_resc->resv_cp_rings = 0;
10017 	hw_resc->resv_stat_ctxs = 0;
10018 	hw_resc->resv_irqs = 0;
10019 	hw_resc->resv_tx_rings = 0;
10020 	hw_resc->resv_rx_rings = 0;
10021 	hw_resc->resv_hw_ring_grps = 0;
10022 	hw_resc->resv_vnics = 0;
10023 	if (!fw_reset) {
10024 		bp->tx_nr_rings = 0;
10025 		bp->rx_nr_rings = 0;
10026 	}
10027 }
10028 
10029 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10030 {
10031 	int rc;
10032 
10033 	if (!BNXT_NEW_RM(bp))
10034 		return 0; /* no resource reservations required */
10035 
10036 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10037 	if (rc)
10038 		netdev_err(bp->dev, "resc_qcaps failed\n");
10039 
10040 	bnxt_clear_reservations(bp, fw_reset);
10041 
10042 	return rc;
10043 }
10044 
10045 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10046 {
10047 	struct hwrm_func_drv_if_change_output *resp;
10048 	struct hwrm_func_drv_if_change_input *req;
10049 	bool fw_reset = !bp->irq_tbl;
10050 	bool resc_reinit = false;
10051 	int rc, retry = 0;
10052 	u32 flags = 0;
10053 
10054 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10055 		return 0;
10056 
10057 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10058 	if (rc)
10059 		return rc;
10060 
10061 	if (up)
10062 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10063 	resp = hwrm_req_hold(bp, req);
10064 
10065 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10066 	while (retry < BNXT_FW_IF_RETRY) {
10067 		rc = hwrm_req_send(bp, req);
10068 		if (rc != -EAGAIN)
10069 			break;
10070 
10071 		msleep(50);
10072 		retry++;
10073 	}
10074 
10075 	if (rc == -EAGAIN) {
10076 		hwrm_req_drop(bp, req);
10077 		return rc;
10078 	} else if (!rc) {
10079 		flags = le32_to_cpu(resp->flags);
10080 	} else if (up) {
10081 		rc = bnxt_try_recover_fw(bp);
10082 		fw_reset = true;
10083 	}
10084 	hwrm_req_drop(bp, req);
10085 	if (rc)
10086 		return rc;
10087 
10088 	if (!up) {
10089 		bnxt_inv_fw_health_reg(bp);
10090 		return 0;
10091 	}
10092 
10093 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10094 		resc_reinit = true;
10095 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10096 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10097 		fw_reset = true;
10098 	else
10099 		bnxt_remap_fw_health_regs(bp);
10100 
10101 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10102 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10103 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10104 		return -ENODEV;
10105 	}
10106 	if (resc_reinit || fw_reset) {
10107 		if (fw_reset) {
10108 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10109 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10110 				bnxt_ulp_stop(bp);
10111 			bnxt_free_ctx_mem(bp);
10112 			kfree(bp->ctx);
10113 			bp->ctx = NULL;
10114 			bnxt_dcb_free(bp);
10115 			rc = bnxt_fw_init_one(bp);
10116 			if (rc) {
10117 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10118 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10119 				return rc;
10120 			}
10121 			bnxt_clear_int_mode(bp);
10122 			rc = bnxt_init_int_mode(bp);
10123 			if (rc) {
10124 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10125 				netdev_err(bp->dev, "init int mode failed\n");
10126 				return rc;
10127 			}
10128 		}
10129 		rc = bnxt_cancel_reservations(bp, fw_reset);
10130 	}
10131 	return rc;
10132 }
10133 
10134 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10135 {
10136 	struct hwrm_port_led_qcaps_output *resp;
10137 	struct hwrm_port_led_qcaps_input *req;
10138 	struct bnxt_pf_info *pf = &bp->pf;
10139 	int rc;
10140 
10141 	bp->num_leds = 0;
10142 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10143 		return 0;
10144 
10145 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10146 	if (rc)
10147 		return rc;
10148 
10149 	req->port_id = cpu_to_le16(pf->port_id);
10150 	resp = hwrm_req_hold(bp, req);
10151 	rc = hwrm_req_send(bp, req);
10152 	if (rc) {
10153 		hwrm_req_drop(bp, req);
10154 		return rc;
10155 	}
10156 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10157 		int i;
10158 
10159 		bp->num_leds = resp->num_leds;
10160 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10161 						 bp->num_leds);
10162 		for (i = 0; i < bp->num_leds; i++) {
10163 			struct bnxt_led_info *led = &bp->leds[i];
10164 			__le16 caps = led->led_state_caps;
10165 
10166 			if (!led->led_group_id ||
10167 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10168 				bp->num_leds = 0;
10169 				break;
10170 			}
10171 		}
10172 	}
10173 	hwrm_req_drop(bp, req);
10174 	return 0;
10175 }
10176 
10177 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10178 {
10179 	struct hwrm_wol_filter_alloc_output *resp;
10180 	struct hwrm_wol_filter_alloc_input *req;
10181 	int rc;
10182 
10183 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10184 	if (rc)
10185 		return rc;
10186 
10187 	req->port_id = cpu_to_le16(bp->pf.port_id);
10188 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10189 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10190 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10191 
10192 	resp = hwrm_req_hold(bp, req);
10193 	rc = hwrm_req_send(bp, req);
10194 	if (!rc)
10195 		bp->wol_filter_id = resp->wol_filter_id;
10196 	hwrm_req_drop(bp, req);
10197 	return rc;
10198 }
10199 
10200 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10201 {
10202 	struct hwrm_wol_filter_free_input *req;
10203 	int rc;
10204 
10205 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10206 	if (rc)
10207 		return rc;
10208 
10209 	req->port_id = cpu_to_le16(bp->pf.port_id);
10210 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10211 	req->wol_filter_id = bp->wol_filter_id;
10212 
10213 	return hwrm_req_send(bp, req);
10214 }
10215 
10216 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10217 {
10218 	struct hwrm_wol_filter_qcfg_output *resp;
10219 	struct hwrm_wol_filter_qcfg_input *req;
10220 	u16 next_handle = 0;
10221 	int rc;
10222 
10223 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10224 	if (rc)
10225 		return rc;
10226 
10227 	req->port_id = cpu_to_le16(bp->pf.port_id);
10228 	req->handle = cpu_to_le16(handle);
10229 	resp = hwrm_req_hold(bp, req);
10230 	rc = hwrm_req_send(bp, req);
10231 	if (!rc) {
10232 		next_handle = le16_to_cpu(resp->next_handle);
10233 		if (next_handle != 0) {
10234 			if (resp->wol_type ==
10235 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10236 				bp->wol = 1;
10237 				bp->wol_filter_id = resp->wol_filter_id;
10238 			}
10239 		}
10240 	}
10241 	hwrm_req_drop(bp, req);
10242 	return next_handle;
10243 }
10244 
10245 static void bnxt_get_wol_settings(struct bnxt *bp)
10246 {
10247 	u16 handle = 0;
10248 
10249 	bp->wol = 0;
10250 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10251 		return;
10252 
10253 	do {
10254 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10255 	} while (handle && handle != 0xffff);
10256 }
10257 
10258 #ifdef CONFIG_BNXT_HWMON
10259 static ssize_t bnxt_show_temp(struct device *dev,
10260 			      struct device_attribute *devattr, char *buf)
10261 {
10262 	struct hwrm_temp_monitor_query_output *resp;
10263 	struct hwrm_temp_monitor_query_input *req;
10264 	struct bnxt *bp = dev_get_drvdata(dev);
10265 	u32 len = 0;
10266 	int rc;
10267 
10268 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10269 	if (rc)
10270 		return rc;
10271 	resp = hwrm_req_hold(bp, req);
10272 	rc = hwrm_req_send(bp, req);
10273 	if (!rc)
10274 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10275 	hwrm_req_drop(bp, req);
10276 	if (rc)
10277 		return rc;
10278 	return len;
10279 }
10280 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10281 
10282 static struct attribute *bnxt_attrs[] = {
10283 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10284 	NULL
10285 };
10286 ATTRIBUTE_GROUPS(bnxt);
10287 
10288 static void bnxt_hwmon_close(struct bnxt *bp)
10289 {
10290 	if (bp->hwmon_dev) {
10291 		hwmon_device_unregister(bp->hwmon_dev);
10292 		bp->hwmon_dev = NULL;
10293 	}
10294 }
10295 
10296 static void bnxt_hwmon_open(struct bnxt *bp)
10297 {
10298 	struct hwrm_temp_monitor_query_input *req;
10299 	struct pci_dev *pdev = bp->pdev;
10300 	int rc;
10301 
10302 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10303 	if (!rc)
10304 		rc = hwrm_req_send_silent(bp, req);
10305 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10306 		bnxt_hwmon_close(bp);
10307 		return;
10308 	}
10309 
10310 	if (bp->hwmon_dev)
10311 		return;
10312 
10313 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10314 							  DRV_MODULE_NAME, bp,
10315 							  bnxt_groups);
10316 	if (IS_ERR(bp->hwmon_dev)) {
10317 		bp->hwmon_dev = NULL;
10318 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10319 	}
10320 }
10321 #else
10322 static void bnxt_hwmon_close(struct bnxt *bp)
10323 {
10324 }
10325 
10326 static void bnxt_hwmon_open(struct bnxt *bp)
10327 {
10328 }
10329 #endif
10330 
10331 static bool bnxt_eee_config_ok(struct bnxt *bp)
10332 {
10333 	struct ethtool_eee *eee = &bp->eee;
10334 	struct bnxt_link_info *link_info = &bp->link_info;
10335 
10336 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10337 		return true;
10338 
10339 	if (eee->eee_enabled) {
10340 		u32 advertising =
10341 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10342 
10343 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10344 			eee->eee_enabled = 0;
10345 			return false;
10346 		}
10347 		if (eee->advertised & ~advertising) {
10348 			eee->advertised = advertising & eee->supported;
10349 			return false;
10350 		}
10351 	}
10352 	return true;
10353 }
10354 
10355 static int bnxt_update_phy_setting(struct bnxt *bp)
10356 {
10357 	int rc;
10358 	bool update_link = false;
10359 	bool update_pause = false;
10360 	bool update_eee = false;
10361 	struct bnxt_link_info *link_info = &bp->link_info;
10362 
10363 	rc = bnxt_update_link(bp, true);
10364 	if (rc) {
10365 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10366 			   rc);
10367 		return rc;
10368 	}
10369 	if (!BNXT_SINGLE_PF(bp))
10370 		return 0;
10371 
10372 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10373 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10374 	    link_info->req_flow_ctrl)
10375 		update_pause = true;
10376 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10377 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10378 		update_pause = true;
10379 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10380 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10381 			update_link = true;
10382 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10383 		    link_info->req_link_speed != link_info->force_link_speed)
10384 			update_link = true;
10385 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10386 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10387 			update_link = true;
10388 		if (link_info->req_duplex != link_info->duplex_setting)
10389 			update_link = true;
10390 	} else {
10391 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10392 			update_link = true;
10393 		if (link_info->advertising != link_info->auto_link_speeds ||
10394 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10395 			update_link = true;
10396 	}
10397 
10398 	/* The last close may have shutdown the link, so need to call
10399 	 * PHY_CFG to bring it back up.
10400 	 */
10401 	if (!BNXT_LINK_IS_UP(bp))
10402 		update_link = true;
10403 
10404 	if (!bnxt_eee_config_ok(bp))
10405 		update_eee = true;
10406 
10407 	if (update_link)
10408 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10409 	else if (update_pause)
10410 		rc = bnxt_hwrm_set_pause(bp);
10411 	if (rc) {
10412 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10413 			   rc);
10414 		return rc;
10415 	}
10416 
10417 	return rc;
10418 }
10419 
10420 /* Common routine to pre-map certain register block to different GRC window.
10421  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10422  * in PF and 3 windows in VF that can be customized to map in different
10423  * register blocks.
10424  */
10425 static void bnxt_preset_reg_win(struct bnxt *bp)
10426 {
10427 	if (BNXT_PF(bp)) {
10428 		/* CAG registers map to GRC window #4 */
10429 		writel(BNXT_CAG_REG_BASE,
10430 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10431 	}
10432 }
10433 
10434 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10435 
10436 static int bnxt_reinit_after_abort(struct bnxt *bp)
10437 {
10438 	int rc;
10439 
10440 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10441 		return -EBUSY;
10442 
10443 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10444 		return -ENODEV;
10445 
10446 	rc = bnxt_fw_init_one(bp);
10447 	if (!rc) {
10448 		bnxt_clear_int_mode(bp);
10449 		rc = bnxt_init_int_mode(bp);
10450 		if (!rc) {
10451 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10452 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10453 		}
10454 	}
10455 	return rc;
10456 }
10457 
10458 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10459 {
10460 	int rc = 0;
10461 
10462 	bnxt_preset_reg_win(bp);
10463 	netif_carrier_off(bp->dev);
10464 	if (irq_re_init) {
10465 		/* Reserve rings now if none were reserved at driver probe. */
10466 		rc = bnxt_init_dflt_ring_mode(bp);
10467 		if (rc) {
10468 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10469 			return rc;
10470 		}
10471 	}
10472 	rc = bnxt_reserve_rings(bp, irq_re_init);
10473 	if (rc)
10474 		return rc;
10475 	if ((bp->flags & BNXT_FLAG_RFS) &&
10476 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10477 		/* disable RFS if falling back to INTA */
10478 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10479 		bp->flags &= ~BNXT_FLAG_RFS;
10480 	}
10481 
10482 	rc = bnxt_alloc_mem(bp, irq_re_init);
10483 	if (rc) {
10484 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10485 		goto open_err_free_mem;
10486 	}
10487 
10488 	if (irq_re_init) {
10489 		bnxt_init_napi(bp);
10490 		rc = bnxt_request_irq(bp);
10491 		if (rc) {
10492 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10493 			goto open_err_irq;
10494 		}
10495 	}
10496 
10497 	rc = bnxt_init_nic(bp, irq_re_init);
10498 	if (rc) {
10499 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10500 		goto open_err_irq;
10501 	}
10502 
10503 	bnxt_enable_napi(bp);
10504 	bnxt_debug_dev_init(bp);
10505 
10506 	if (link_re_init) {
10507 		mutex_lock(&bp->link_lock);
10508 		rc = bnxt_update_phy_setting(bp);
10509 		mutex_unlock(&bp->link_lock);
10510 		if (rc) {
10511 			netdev_warn(bp->dev, "failed to update phy settings\n");
10512 			if (BNXT_SINGLE_PF(bp)) {
10513 				bp->link_info.phy_retry = true;
10514 				bp->link_info.phy_retry_expires =
10515 					jiffies + 5 * HZ;
10516 			}
10517 		}
10518 	}
10519 
10520 	if (irq_re_init)
10521 		udp_tunnel_nic_reset_ntf(bp->dev);
10522 
10523 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10524 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10525 			static_branch_enable(&bnxt_xdp_locking_key);
10526 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10527 		static_branch_disable(&bnxt_xdp_locking_key);
10528 	}
10529 	set_bit(BNXT_STATE_OPEN, &bp->state);
10530 	bnxt_enable_int(bp);
10531 	/* Enable TX queues */
10532 	bnxt_tx_enable(bp);
10533 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10534 	/* Poll link status and check for SFP+ module status */
10535 	mutex_lock(&bp->link_lock);
10536 	bnxt_get_port_module_status(bp);
10537 	mutex_unlock(&bp->link_lock);
10538 
10539 	/* VF-reps may need to be re-opened after the PF is re-opened */
10540 	if (BNXT_PF(bp))
10541 		bnxt_vf_reps_open(bp);
10542 	bnxt_ptp_init_rtc(bp, true);
10543 	bnxt_ptp_cfg_tstamp_filters(bp);
10544 	return 0;
10545 
10546 open_err_irq:
10547 	bnxt_del_napi(bp);
10548 
10549 open_err_free_mem:
10550 	bnxt_free_skbs(bp);
10551 	bnxt_free_irq(bp);
10552 	bnxt_free_mem(bp, true);
10553 	return rc;
10554 }
10555 
10556 /* rtnl_lock held */
10557 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10558 {
10559 	int rc = 0;
10560 
10561 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10562 		rc = -EIO;
10563 	if (!rc)
10564 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10565 	if (rc) {
10566 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10567 		dev_close(bp->dev);
10568 	}
10569 	return rc;
10570 }
10571 
10572 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10573  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10574  * self tests.
10575  */
10576 int bnxt_half_open_nic(struct bnxt *bp)
10577 {
10578 	int rc = 0;
10579 
10580 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10581 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10582 		rc = -ENODEV;
10583 		goto half_open_err;
10584 	}
10585 
10586 	rc = bnxt_alloc_mem(bp, true);
10587 	if (rc) {
10588 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10589 		goto half_open_err;
10590 	}
10591 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10592 	rc = bnxt_init_nic(bp, true);
10593 	if (rc) {
10594 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10595 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10596 		goto half_open_err;
10597 	}
10598 	return 0;
10599 
10600 half_open_err:
10601 	bnxt_free_skbs(bp);
10602 	bnxt_free_mem(bp, true);
10603 	dev_close(bp->dev);
10604 	return rc;
10605 }
10606 
10607 /* rtnl_lock held, this call can only be made after a previous successful
10608  * call to bnxt_half_open_nic().
10609  */
10610 void bnxt_half_close_nic(struct bnxt *bp)
10611 {
10612 	bnxt_hwrm_resource_free(bp, false, true);
10613 	bnxt_free_skbs(bp);
10614 	bnxt_free_mem(bp, true);
10615 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10616 }
10617 
10618 void bnxt_reenable_sriov(struct bnxt *bp)
10619 {
10620 	if (BNXT_PF(bp)) {
10621 		struct bnxt_pf_info *pf = &bp->pf;
10622 		int n = pf->active_vfs;
10623 
10624 		if (n)
10625 			bnxt_cfg_hw_sriov(bp, &n, true);
10626 	}
10627 }
10628 
10629 static int bnxt_open(struct net_device *dev)
10630 {
10631 	struct bnxt *bp = netdev_priv(dev);
10632 	int rc;
10633 
10634 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10635 		rc = bnxt_reinit_after_abort(bp);
10636 		if (rc) {
10637 			if (rc == -EBUSY)
10638 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10639 			else
10640 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10641 			return -ENODEV;
10642 		}
10643 	}
10644 
10645 	rc = bnxt_hwrm_if_change(bp, true);
10646 	if (rc)
10647 		return rc;
10648 
10649 	rc = __bnxt_open_nic(bp, true, true);
10650 	if (rc) {
10651 		bnxt_hwrm_if_change(bp, false);
10652 	} else {
10653 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10654 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10655 				bnxt_ulp_start(bp, 0);
10656 				bnxt_reenable_sriov(bp);
10657 			}
10658 		}
10659 		bnxt_hwmon_open(bp);
10660 	}
10661 
10662 	return rc;
10663 }
10664 
10665 static bool bnxt_drv_busy(struct bnxt *bp)
10666 {
10667 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10668 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10669 }
10670 
10671 static void bnxt_get_ring_stats(struct bnxt *bp,
10672 				struct rtnl_link_stats64 *stats);
10673 
10674 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10675 			     bool link_re_init)
10676 {
10677 	/* Close the VF-reps before closing PF */
10678 	if (BNXT_PF(bp))
10679 		bnxt_vf_reps_close(bp);
10680 
10681 	/* Change device state to avoid TX queue wake up's */
10682 	bnxt_tx_disable(bp);
10683 
10684 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10685 	smp_mb__after_atomic();
10686 	while (bnxt_drv_busy(bp))
10687 		msleep(20);
10688 
10689 	/* Flush rings and disable interrupts */
10690 	bnxt_shutdown_nic(bp, irq_re_init);
10691 
10692 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10693 
10694 	bnxt_debug_dev_exit(bp);
10695 	bnxt_disable_napi(bp);
10696 	del_timer_sync(&bp->timer);
10697 	bnxt_free_skbs(bp);
10698 
10699 	/* Save ring stats before shutdown */
10700 	if (bp->bnapi && irq_re_init)
10701 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10702 	if (irq_re_init) {
10703 		bnxt_free_irq(bp);
10704 		bnxt_del_napi(bp);
10705 	}
10706 	bnxt_free_mem(bp, irq_re_init);
10707 }
10708 
10709 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10710 {
10711 	int rc = 0;
10712 
10713 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10714 		/* If we get here, it means firmware reset is in progress
10715 		 * while we are trying to close.  We can safely proceed with
10716 		 * the close because we are holding rtnl_lock().  Some firmware
10717 		 * messages may fail as we proceed to close.  We set the
10718 		 * ABORT_ERR flag here so that the FW reset thread will later
10719 		 * abort when it gets the rtnl_lock() and sees the flag.
10720 		 */
10721 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10722 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10723 	}
10724 
10725 #ifdef CONFIG_BNXT_SRIOV
10726 	if (bp->sriov_cfg) {
10727 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10728 						      !bp->sriov_cfg,
10729 						      BNXT_SRIOV_CFG_WAIT_TMO);
10730 		if (rc)
10731 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10732 	}
10733 #endif
10734 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10735 	return rc;
10736 }
10737 
10738 static int bnxt_close(struct net_device *dev)
10739 {
10740 	struct bnxt *bp = netdev_priv(dev);
10741 
10742 	bnxt_hwmon_close(bp);
10743 	bnxt_close_nic(bp, true, true);
10744 	bnxt_hwrm_shutdown_link(bp);
10745 	bnxt_hwrm_if_change(bp, false);
10746 	return 0;
10747 }
10748 
10749 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10750 				   u16 *val)
10751 {
10752 	struct hwrm_port_phy_mdio_read_output *resp;
10753 	struct hwrm_port_phy_mdio_read_input *req;
10754 	int rc;
10755 
10756 	if (bp->hwrm_spec_code < 0x10a00)
10757 		return -EOPNOTSUPP;
10758 
10759 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10760 	if (rc)
10761 		return rc;
10762 
10763 	req->port_id = cpu_to_le16(bp->pf.port_id);
10764 	req->phy_addr = phy_addr;
10765 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10766 	if (mdio_phy_id_is_c45(phy_addr)) {
10767 		req->cl45_mdio = 1;
10768 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10769 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10770 		req->reg_addr = cpu_to_le16(reg);
10771 	}
10772 
10773 	resp = hwrm_req_hold(bp, req);
10774 	rc = hwrm_req_send(bp, req);
10775 	if (!rc)
10776 		*val = le16_to_cpu(resp->reg_data);
10777 	hwrm_req_drop(bp, req);
10778 	return rc;
10779 }
10780 
10781 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10782 				    u16 val)
10783 {
10784 	struct hwrm_port_phy_mdio_write_input *req;
10785 	int rc;
10786 
10787 	if (bp->hwrm_spec_code < 0x10a00)
10788 		return -EOPNOTSUPP;
10789 
10790 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10791 	if (rc)
10792 		return rc;
10793 
10794 	req->port_id = cpu_to_le16(bp->pf.port_id);
10795 	req->phy_addr = phy_addr;
10796 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10797 	if (mdio_phy_id_is_c45(phy_addr)) {
10798 		req->cl45_mdio = 1;
10799 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10800 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10801 		req->reg_addr = cpu_to_le16(reg);
10802 	}
10803 	req->reg_data = cpu_to_le16(val);
10804 
10805 	return hwrm_req_send(bp, req);
10806 }
10807 
10808 /* rtnl_lock held */
10809 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10810 {
10811 	struct mii_ioctl_data *mdio = if_mii(ifr);
10812 	struct bnxt *bp = netdev_priv(dev);
10813 	int rc;
10814 
10815 	switch (cmd) {
10816 	case SIOCGMIIPHY:
10817 		mdio->phy_id = bp->link_info.phy_addr;
10818 
10819 		fallthrough;
10820 	case SIOCGMIIREG: {
10821 		u16 mii_regval = 0;
10822 
10823 		if (!netif_running(dev))
10824 			return -EAGAIN;
10825 
10826 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10827 					     &mii_regval);
10828 		mdio->val_out = mii_regval;
10829 		return rc;
10830 	}
10831 
10832 	case SIOCSMIIREG:
10833 		if (!netif_running(dev))
10834 			return -EAGAIN;
10835 
10836 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10837 						mdio->val_in);
10838 
10839 	case SIOCSHWTSTAMP:
10840 		return bnxt_hwtstamp_set(dev, ifr);
10841 
10842 	case SIOCGHWTSTAMP:
10843 		return bnxt_hwtstamp_get(dev, ifr);
10844 
10845 	default:
10846 		/* do nothing */
10847 		break;
10848 	}
10849 	return -EOPNOTSUPP;
10850 }
10851 
10852 static void bnxt_get_ring_stats(struct bnxt *bp,
10853 				struct rtnl_link_stats64 *stats)
10854 {
10855 	int i;
10856 
10857 	for (i = 0; i < bp->cp_nr_rings; i++) {
10858 		struct bnxt_napi *bnapi = bp->bnapi[i];
10859 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10860 		u64 *sw = cpr->stats.sw_stats;
10861 
10862 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10863 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10864 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10865 
10866 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10867 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10868 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10869 
10870 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10871 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10872 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10873 
10874 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10875 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10876 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10877 
10878 		stats->rx_missed_errors +=
10879 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10880 
10881 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10882 
10883 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10884 
10885 		stats->rx_dropped +=
10886 			cpr->sw_stats.rx.rx_netpoll_discards +
10887 			cpr->sw_stats.rx.rx_oom_discards;
10888 	}
10889 }
10890 
10891 static void bnxt_add_prev_stats(struct bnxt *bp,
10892 				struct rtnl_link_stats64 *stats)
10893 {
10894 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10895 
10896 	stats->rx_packets += prev_stats->rx_packets;
10897 	stats->tx_packets += prev_stats->tx_packets;
10898 	stats->rx_bytes += prev_stats->rx_bytes;
10899 	stats->tx_bytes += prev_stats->tx_bytes;
10900 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10901 	stats->multicast += prev_stats->multicast;
10902 	stats->rx_dropped += prev_stats->rx_dropped;
10903 	stats->tx_dropped += prev_stats->tx_dropped;
10904 }
10905 
10906 static void
10907 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10908 {
10909 	struct bnxt *bp = netdev_priv(dev);
10910 
10911 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10912 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10913 	 * we check the BNXT_STATE_OPEN flag.
10914 	 */
10915 	smp_mb__after_atomic();
10916 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10917 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10918 		*stats = bp->net_stats_prev;
10919 		return;
10920 	}
10921 
10922 	bnxt_get_ring_stats(bp, stats);
10923 	bnxt_add_prev_stats(bp, stats);
10924 
10925 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10926 		u64 *rx = bp->port_stats.sw_stats;
10927 		u64 *tx = bp->port_stats.sw_stats +
10928 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10929 
10930 		stats->rx_crc_errors =
10931 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10932 		stats->rx_frame_errors =
10933 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10934 		stats->rx_length_errors =
10935 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10936 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10937 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10938 		stats->rx_errors =
10939 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10940 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10941 		stats->collisions =
10942 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10943 		stats->tx_fifo_errors =
10944 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10945 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10946 	}
10947 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10948 }
10949 
10950 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10951 {
10952 	struct net_device *dev = bp->dev;
10953 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10954 	struct netdev_hw_addr *ha;
10955 	u8 *haddr;
10956 	int mc_count = 0;
10957 	bool update = false;
10958 	int off = 0;
10959 
10960 	netdev_for_each_mc_addr(ha, dev) {
10961 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10962 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10963 			vnic->mc_list_count = 0;
10964 			return false;
10965 		}
10966 		haddr = ha->addr;
10967 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10968 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10969 			update = true;
10970 		}
10971 		off += ETH_ALEN;
10972 		mc_count++;
10973 	}
10974 	if (mc_count)
10975 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10976 
10977 	if (mc_count != vnic->mc_list_count) {
10978 		vnic->mc_list_count = mc_count;
10979 		update = true;
10980 	}
10981 	return update;
10982 }
10983 
10984 static bool bnxt_uc_list_updated(struct bnxt *bp)
10985 {
10986 	struct net_device *dev = bp->dev;
10987 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10988 	struct netdev_hw_addr *ha;
10989 	int off = 0;
10990 
10991 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10992 		return true;
10993 
10994 	netdev_for_each_uc_addr(ha, dev) {
10995 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10996 			return true;
10997 
10998 		off += ETH_ALEN;
10999 	}
11000 	return false;
11001 }
11002 
11003 static void bnxt_set_rx_mode(struct net_device *dev)
11004 {
11005 	struct bnxt *bp = netdev_priv(dev);
11006 	struct bnxt_vnic_info *vnic;
11007 	bool mc_update = false;
11008 	bool uc_update;
11009 	u32 mask;
11010 
11011 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11012 		return;
11013 
11014 	vnic = &bp->vnic_info[0];
11015 	mask = vnic->rx_mask;
11016 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11017 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11018 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11019 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11020 
11021 	if (dev->flags & IFF_PROMISC)
11022 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11023 
11024 	uc_update = bnxt_uc_list_updated(bp);
11025 
11026 	if (dev->flags & IFF_BROADCAST)
11027 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11028 	if (dev->flags & IFF_ALLMULTI) {
11029 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11030 		vnic->mc_list_count = 0;
11031 	} else if (dev->flags & IFF_MULTICAST) {
11032 		mc_update = bnxt_mc_list_updated(bp, &mask);
11033 	}
11034 
11035 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11036 		vnic->rx_mask = mask;
11037 
11038 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11039 		bnxt_queue_sp_work(bp);
11040 	}
11041 }
11042 
11043 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11044 {
11045 	struct net_device *dev = bp->dev;
11046 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11047 	struct hwrm_cfa_l2_filter_free_input *req;
11048 	struct netdev_hw_addr *ha;
11049 	int i, off = 0, rc;
11050 	bool uc_update;
11051 
11052 	netif_addr_lock_bh(dev);
11053 	uc_update = bnxt_uc_list_updated(bp);
11054 	netif_addr_unlock_bh(dev);
11055 
11056 	if (!uc_update)
11057 		goto skip_uc;
11058 
11059 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11060 	if (rc)
11061 		return rc;
11062 	hwrm_req_hold(bp, req);
11063 	for (i = 1; i < vnic->uc_filter_count; i++) {
11064 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11065 
11066 		rc = hwrm_req_send(bp, req);
11067 	}
11068 	hwrm_req_drop(bp, req);
11069 
11070 	vnic->uc_filter_count = 1;
11071 
11072 	netif_addr_lock_bh(dev);
11073 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11074 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11075 	} else {
11076 		netdev_for_each_uc_addr(ha, dev) {
11077 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11078 			off += ETH_ALEN;
11079 			vnic->uc_filter_count++;
11080 		}
11081 	}
11082 	netif_addr_unlock_bh(dev);
11083 
11084 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11085 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11086 		if (rc) {
11087 			if (BNXT_VF(bp) && rc == -ENODEV) {
11088 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11089 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11090 				else
11091 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11092 				rc = 0;
11093 			} else {
11094 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11095 			}
11096 			vnic->uc_filter_count = i;
11097 			return rc;
11098 		}
11099 	}
11100 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11101 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11102 
11103 skip_uc:
11104 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11105 	    !bnxt_promisc_ok(bp))
11106 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11107 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11108 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11109 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11110 			    rc);
11111 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11112 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11113 		vnic->mc_list_count = 0;
11114 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11115 	}
11116 	if (rc)
11117 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11118 			   rc);
11119 
11120 	return rc;
11121 }
11122 
11123 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11124 {
11125 #ifdef CONFIG_BNXT_SRIOV
11126 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11127 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11128 
11129 		/* No minimum rings were provisioned by the PF.  Don't
11130 		 * reserve rings by default when device is down.
11131 		 */
11132 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11133 			return true;
11134 
11135 		if (!netif_running(bp->dev))
11136 			return false;
11137 	}
11138 #endif
11139 	return true;
11140 }
11141 
11142 /* If the chip and firmware supports RFS */
11143 static bool bnxt_rfs_supported(struct bnxt *bp)
11144 {
11145 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11146 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11147 			return true;
11148 		return false;
11149 	}
11150 	/* 212 firmware is broken for aRFS */
11151 	if (BNXT_FW_MAJ(bp) == 212)
11152 		return false;
11153 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11154 		return true;
11155 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11156 		return true;
11157 	return false;
11158 }
11159 
11160 /* If runtime conditions support RFS */
11161 static bool bnxt_rfs_capable(struct bnxt *bp)
11162 {
11163 #ifdef CONFIG_RFS_ACCEL
11164 	int vnics, max_vnics, max_rss_ctxs;
11165 
11166 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11167 		return bnxt_rfs_supported(bp);
11168 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11169 		return false;
11170 
11171 	vnics = 1 + bp->rx_nr_rings;
11172 	max_vnics = bnxt_get_max_func_vnics(bp);
11173 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11174 
11175 	/* RSS contexts not a limiting factor */
11176 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11177 		max_rss_ctxs = max_vnics;
11178 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11179 		if (bp->rx_nr_rings > 1)
11180 			netdev_warn(bp->dev,
11181 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11182 				    min(max_rss_ctxs - 1, max_vnics - 1));
11183 		return false;
11184 	}
11185 
11186 	if (!BNXT_NEW_RM(bp))
11187 		return true;
11188 
11189 	if (vnics == bp->hw_resc.resv_vnics)
11190 		return true;
11191 
11192 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11193 	if (vnics <= bp->hw_resc.resv_vnics)
11194 		return true;
11195 
11196 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11197 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11198 	return false;
11199 #else
11200 	return false;
11201 #endif
11202 }
11203 
11204 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11205 					   netdev_features_t features)
11206 {
11207 	struct bnxt *bp = netdev_priv(dev);
11208 	netdev_features_t vlan_features;
11209 
11210 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11211 		features &= ~NETIF_F_NTUPLE;
11212 
11213 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11214 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11215 
11216 	if (!(features & NETIF_F_GRO))
11217 		features &= ~NETIF_F_GRO_HW;
11218 
11219 	if (features & NETIF_F_GRO_HW)
11220 		features &= ~NETIF_F_LRO;
11221 
11222 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11223 	 * turned on or off together.
11224 	 */
11225 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11226 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11227 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11228 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11229 		else if (vlan_features)
11230 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11231 	}
11232 #ifdef CONFIG_BNXT_SRIOV
11233 	if (BNXT_VF(bp) && bp->vf.vlan)
11234 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11235 #endif
11236 	return features;
11237 }
11238 
11239 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11240 {
11241 	struct bnxt *bp = netdev_priv(dev);
11242 	u32 flags = bp->flags;
11243 	u32 changes;
11244 	int rc = 0;
11245 	bool re_init = false;
11246 	bool update_tpa = false;
11247 
11248 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11249 	if (features & NETIF_F_GRO_HW)
11250 		flags |= BNXT_FLAG_GRO;
11251 	else if (features & NETIF_F_LRO)
11252 		flags |= BNXT_FLAG_LRO;
11253 
11254 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11255 		flags &= ~BNXT_FLAG_TPA;
11256 
11257 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11258 		flags |= BNXT_FLAG_STRIP_VLAN;
11259 
11260 	if (features & NETIF_F_NTUPLE)
11261 		flags |= BNXT_FLAG_RFS;
11262 
11263 	changes = flags ^ bp->flags;
11264 	if (changes & BNXT_FLAG_TPA) {
11265 		update_tpa = true;
11266 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11267 		    (flags & BNXT_FLAG_TPA) == 0 ||
11268 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11269 			re_init = true;
11270 	}
11271 
11272 	if (changes & ~BNXT_FLAG_TPA)
11273 		re_init = true;
11274 
11275 	if (flags != bp->flags) {
11276 		u32 old_flags = bp->flags;
11277 
11278 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11279 			bp->flags = flags;
11280 			if (update_tpa)
11281 				bnxt_set_ring_params(bp);
11282 			return rc;
11283 		}
11284 
11285 		if (re_init) {
11286 			bnxt_close_nic(bp, false, false);
11287 			bp->flags = flags;
11288 			if (update_tpa)
11289 				bnxt_set_ring_params(bp);
11290 
11291 			return bnxt_open_nic(bp, false, false);
11292 		}
11293 		if (update_tpa) {
11294 			bp->flags = flags;
11295 			rc = bnxt_set_tpa(bp,
11296 					  (flags & BNXT_FLAG_TPA) ?
11297 					  true : false);
11298 			if (rc)
11299 				bp->flags = old_flags;
11300 		}
11301 	}
11302 	return rc;
11303 }
11304 
11305 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11306 			      u8 **nextp)
11307 {
11308 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11309 	struct hop_jumbo_hdr *jhdr;
11310 	int hdr_count = 0;
11311 	u8 *nexthdr;
11312 	int start;
11313 
11314 	/* Check that there are at most 2 IPv6 extension headers, no
11315 	 * fragment header, and each is <= 64 bytes.
11316 	 */
11317 	start = nw_off + sizeof(*ip6h);
11318 	nexthdr = &ip6h->nexthdr;
11319 	while (ipv6_ext_hdr(*nexthdr)) {
11320 		struct ipv6_opt_hdr *hp;
11321 		int hdrlen;
11322 
11323 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11324 		    *nexthdr == NEXTHDR_FRAGMENT)
11325 			return false;
11326 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11327 					  skb_headlen(skb), NULL);
11328 		if (!hp)
11329 			return false;
11330 		if (*nexthdr == NEXTHDR_AUTH)
11331 			hdrlen = ipv6_authlen(hp);
11332 		else
11333 			hdrlen = ipv6_optlen(hp);
11334 
11335 		if (hdrlen > 64)
11336 			return false;
11337 
11338 		/* The ext header may be a hop-by-hop header inserted for
11339 		 * big TCP purposes. This will be removed before sending
11340 		 * from NIC, so do not count it.
11341 		 */
11342 		if (*nexthdr == NEXTHDR_HOP) {
11343 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
11344 				goto increment_hdr;
11345 
11346 			jhdr = (struct hop_jumbo_hdr *)hp;
11347 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
11348 			    jhdr->nexthdr != IPPROTO_TCP)
11349 				goto increment_hdr;
11350 
11351 			goto next_hdr;
11352 		}
11353 increment_hdr:
11354 		hdr_count++;
11355 next_hdr:
11356 		nexthdr = &hp->nexthdr;
11357 		start += hdrlen;
11358 	}
11359 	if (nextp) {
11360 		/* Caller will check inner protocol */
11361 		if (skb->encapsulation) {
11362 			*nextp = nexthdr;
11363 			return true;
11364 		}
11365 		*nextp = NULL;
11366 	}
11367 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11368 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11369 }
11370 
11371 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11372 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11373 {
11374 	struct udphdr *uh = udp_hdr(skb);
11375 	__be16 udp_port = uh->dest;
11376 
11377 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11378 		return false;
11379 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11380 		struct ethhdr *eh = inner_eth_hdr(skb);
11381 
11382 		switch (eh->h_proto) {
11383 		case htons(ETH_P_IP):
11384 			return true;
11385 		case htons(ETH_P_IPV6):
11386 			return bnxt_exthdr_check(bp, skb,
11387 						 skb_inner_network_offset(skb),
11388 						 NULL);
11389 		}
11390 	}
11391 	return false;
11392 }
11393 
11394 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11395 {
11396 	switch (l4_proto) {
11397 	case IPPROTO_UDP:
11398 		return bnxt_udp_tunl_check(bp, skb);
11399 	case IPPROTO_IPIP:
11400 		return true;
11401 	case IPPROTO_GRE: {
11402 		switch (skb->inner_protocol) {
11403 		default:
11404 			return false;
11405 		case htons(ETH_P_IP):
11406 			return true;
11407 		case htons(ETH_P_IPV6):
11408 			fallthrough;
11409 		}
11410 	}
11411 	case IPPROTO_IPV6:
11412 		/* Check ext headers of inner ipv6 */
11413 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11414 					 NULL);
11415 	}
11416 	return false;
11417 }
11418 
11419 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11420 					     struct net_device *dev,
11421 					     netdev_features_t features)
11422 {
11423 	struct bnxt *bp = netdev_priv(dev);
11424 	u8 *l4_proto;
11425 
11426 	features = vlan_features_check(skb, features);
11427 	switch (vlan_get_protocol(skb)) {
11428 	case htons(ETH_P_IP):
11429 		if (!skb->encapsulation)
11430 			return features;
11431 		l4_proto = &ip_hdr(skb)->protocol;
11432 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11433 			return features;
11434 		break;
11435 	case htons(ETH_P_IPV6):
11436 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11437 				       &l4_proto))
11438 			break;
11439 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11440 			return features;
11441 		break;
11442 	}
11443 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11444 }
11445 
11446 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11447 			 u32 *reg_buf)
11448 {
11449 	struct hwrm_dbg_read_direct_output *resp;
11450 	struct hwrm_dbg_read_direct_input *req;
11451 	__le32 *dbg_reg_buf;
11452 	dma_addr_t mapping;
11453 	int rc, i;
11454 
11455 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11456 	if (rc)
11457 		return rc;
11458 
11459 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11460 					 &mapping);
11461 	if (!dbg_reg_buf) {
11462 		rc = -ENOMEM;
11463 		goto dbg_rd_reg_exit;
11464 	}
11465 
11466 	req->host_dest_addr = cpu_to_le64(mapping);
11467 
11468 	resp = hwrm_req_hold(bp, req);
11469 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11470 	req->read_len32 = cpu_to_le32(num_words);
11471 
11472 	rc = hwrm_req_send(bp, req);
11473 	if (rc || resp->error_code) {
11474 		rc = -EIO;
11475 		goto dbg_rd_reg_exit;
11476 	}
11477 	for (i = 0; i < num_words; i++)
11478 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11479 
11480 dbg_rd_reg_exit:
11481 	hwrm_req_drop(bp, req);
11482 	return rc;
11483 }
11484 
11485 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11486 				       u32 ring_id, u32 *prod, u32 *cons)
11487 {
11488 	struct hwrm_dbg_ring_info_get_output *resp;
11489 	struct hwrm_dbg_ring_info_get_input *req;
11490 	int rc;
11491 
11492 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11493 	if (rc)
11494 		return rc;
11495 
11496 	req->ring_type = ring_type;
11497 	req->fw_ring_id = cpu_to_le32(ring_id);
11498 	resp = hwrm_req_hold(bp, req);
11499 	rc = hwrm_req_send(bp, req);
11500 	if (!rc) {
11501 		*prod = le32_to_cpu(resp->producer_index);
11502 		*cons = le32_to_cpu(resp->consumer_index);
11503 	}
11504 	hwrm_req_drop(bp, req);
11505 	return rc;
11506 }
11507 
11508 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11509 {
11510 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11511 	int i = bnapi->index;
11512 
11513 	if (!txr)
11514 		return;
11515 
11516 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11517 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11518 		    txr->tx_cons);
11519 }
11520 
11521 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11522 {
11523 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11524 	int i = bnapi->index;
11525 
11526 	if (!rxr)
11527 		return;
11528 
11529 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11530 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11531 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11532 		    rxr->rx_sw_agg_prod);
11533 }
11534 
11535 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11536 {
11537 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11538 	int i = bnapi->index;
11539 
11540 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11541 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11542 }
11543 
11544 static void bnxt_dbg_dump_states(struct bnxt *bp)
11545 {
11546 	int i;
11547 	struct bnxt_napi *bnapi;
11548 
11549 	for (i = 0; i < bp->cp_nr_rings; i++) {
11550 		bnapi = bp->bnapi[i];
11551 		if (netif_msg_drv(bp)) {
11552 			bnxt_dump_tx_sw_state(bnapi);
11553 			bnxt_dump_rx_sw_state(bnapi);
11554 			bnxt_dump_cp_sw_state(bnapi);
11555 		}
11556 	}
11557 }
11558 
11559 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11560 {
11561 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11562 	struct hwrm_ring_reset_input *req;
11563 	struct bnxt_napi *bnapi = rxr->bnapi;
11564 	struct bnxt_cp_ring_info *cpr;
11565 	u16 cp_ring_id;
11566 	int rc;
11567 
11568 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11569 	if (rc)
11570 		return rc;
11571 
11572 	cpr = &bnapi->cp_ring;
11573 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11574 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11575 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11576 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11577 	return hwrm_req_send_silent(bp, req);
11578 }
11579 
11580 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11581 {
11582 	if (!silent)
11583 		bnxt_dbg_dump_states(bp);
11584 	if (netif_running(bp->dev)) {
11585 		int rc;
11586 
11587 		if (silent) {
11588 			bnxt_close_nic(bp, false, false);
11589 			bnxt_open_nic(bp, false, false);
11590 		} else {
11591 			bnxt_ulp_stop(bp);
11592 			bnxt_close_nic(bp, true, false);
11593 			rc = bnxt_open_nic(bp, true, false);
11594 			bnxt_ulp_start(bp, rc);
11595 		}
11596 	}
11597 }
11598 
11599 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11600 {
11601 	struct bnxt *bp = netdev_priv(dev);
11602 
11603 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11604 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11605 	bnxt_queue_sp_work(bp);
11606 }
11607 
11608 static void bnxt_fw_health_check(struct bnxt *bp)
11609 {
11610 	struct bnxt_fw_health *fw_health = bp->fw_health;
11611 	struct pci_dev *pdev = bp->pdev;
11612 	u32 val;
11613 
11614 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11615 		return;
11616 
11617 	/* Make sure it is enabled before checking the tmr_counter. */
11618 	smp_rmb();
11619 	if (fw_health->tmr_counter) {
11620 		fw_health->tmr_counter--;
11621 		return;
11622 	}
11623 
11624 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11625 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
11626 		fw_health->arrests++;
11627 		goto fw_reset;
11628 	}
11629 
11630 	fw_health->last_fw_heartbeat = val;
11631 
11632 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11633 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
11634 		fw_health->discoveries++;
11635 		goto fw_reset;
11636 	}
11637 
11638 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11639 	return;
11640 
11641 fw_reset:
11642 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11643 	bnxt_queue_sp_work(bp);
11644 }
11645 
11646 static void bnxt_timer(struct timer_list *t)
11647 {
11648 	struct bnxt *bp = from_timer(bp, t, timer);
11649 	struct net_device *dev = bp->dev;
11650 
11651 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11652 		return;
11653 
11654 	if (atomic_read(&bp->intr_sem) != 0)
11655 		goto bnxt_restart_timer;
11656 
11657 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11658 		bnxt_fw_health_check(bp);
11659 
11660 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11661 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11662 		bnxt_queue_sp_work(bp);
11663 	}
11664 
11665 	if (bnxt_tc_flower_enabled(bp)) {
11666 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11667 		bnxt_queue_sp_work(bp);
11668 	}
11669 
11670 #ifdef CONFIG_RFS_ACCEL
11671 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11672 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11673 		bnxt_queue_sp_work(bp);
11674 	}
11675 #endif /*CONFIG_RFS_ACCEL*/
11676 
11677 	if (bp->link_info.phy_retry) {
11678 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11679 			bp->link_info.phy_retry = false;
11680 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11681 		} else {
11682 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11683 			bnxt_queue_sp_work(bp);
11684 		}
11685 	}
11686 
11687 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11688 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11689 		bnxt_queue_sp_work(bp);
11690 	}
11691 
11692 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11693 	    netif_carrier_ok(dev)) {
11694 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11695 		bnxt_queue_sp_work(bp);
11696 	}
11697 bnxt_restart_timer:
11698 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11699 }
11700 
11701 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11702 {
11703 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11704 	 * set.  If the device is being closed, bnxt_close() may be holding
11705 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11706 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11707 	 */
11708 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11709 	rtnl_lock();
11710 }
11711 
11712 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11713 {
11714 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11715 	rtnl_unlock();
11716 }
11717 
11718 /* Only called from bnxt_sp_task() */
11719 static void bnxt_reset(struct bnxt *bp, bool silent)
11720 {
11721 	bnxt_rtnl_lock_sp(bp);
11722 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11723 		bnxt_reset_task(bp, silent);
11724 	bnxt_rtnl_unlock_sp(bp);
11725 }
11726 
11727 /* Only called from bnxt_sp_task() */
11728 static void bnxt_rx_ring_reset(struct bnxt *bp)
11729 {
11730 	int i;
11731 
11732 	bnxt_rtnl_lock_sp(bp);
11733 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11734 		bnxt_rtnl_unlock_sp(bp);
11735 		return;
11736 	}
11737 	/* Disable and flush TPA before resetting the RX ring */
11738 	if (bp->flags & BNXT_FLAG_TPA)
11739 		bnxt_set_tpa(bp, false);
11740 	for (i = 0; i < bp->rx_nr_rings; i++) {
11741 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11742 		struct bnxt_cp_ring_info *cpr;
11743 		int rc;
11744 
11745 		if (!rxr->bnapi->in_reset)
11746 			continue;
11747 
11748 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11749 		if (rc) {
11750 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11751 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11752 			else
11753 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11754 					    rc);
11755 			bnxt_reset_task(bp, true);
11756 			break;
11757 		}
11758 		bnxt_free_one_rx_ring_skbs(bp, i);
11759 		rxr->rx_prod = 0;
11760 		rxr->rx_agg_prod = 0;
11761 		rxr->rx_sw_agg_prod = 0;
11762 		rxr->rx_next_cons = 0;
11763 		rxr->bnapi->in_reset = false;
11764 		bnxt_alloc_one_rx_ring(bp, i);
11765 		cpr = &rxr->bnapi->cp_ring;
11766 		cpr->sw_stats.rx.rx_resets++;
11767 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11768 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11769 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11770 	}
11771 	if (bp->flags & BNXT_FLAG_TPA)
11772 		bnxt_set_tpa(bp, true);
11773 	bnxt_rtnl_unlock_sp(bp);
11774 }
11775 
11776 static void bnxt_fw_reset_close(struct bnxt *bp)
11777 {
11778 	bnxt_ulp_stop(bp);
11779 	/* When firmware is in fatal state, quiesce device and disable
11780 	 * bus master to prevent any potential bad DMAs before freeing
11781 	 * kernel memory.
11782 	 */
11783 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11784 		u16 val = 0;
11785 
11786 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11787 		if (val == 0xffff)
11788 			bp->fw_reset_min_dsecs = 0;
11789 		bnxt_tx_disable(bp);
11790 		bnxt_disable_napi(bp);
11791 		bnxt_disable_int_sync(bp);
11792 		bnxt_free_irq(bp);
11793 		bnxt_clear_int_mode(bp);
11794 		pci_disable_device(bp->pdev);
11795 	}
11796 	__bnxt_close_nic(bp, true, false);
11797 	bnxt_vf_reps_free(bp);
11798 	bnxt_clear_int_mode(bp);
11799 	bnxt_hwrm_func_drv_unrgtr(bp);
11800 	if (pci_is_enabled(bp->pdev))
11801 		pci_disable_device(bp->pdev);
11802 	bnxt_free_ctx_mem(bp);
11803 	kfree(bp->ctx);
11804 	bp->ctx = NULL;
11805 }
11806 
11807 static bool is_bnxt_fw_ok(struct bnxt *bp)
11808 {
11809 	struct bnxt_fw_health *fw_health = bp->fw_health;
11810 	bool no_heartbeat = false, has_reset = false;
11811 	u32 val;
11812 
11813 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11814 	if (val == fw_health->last_fw_heartbeat)
11815 		no_heartbeat = true;
11816 
11817 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11818 	if (val != fw_health->last_fw_reset_cnt)
11819 		has_reset = true;
11820 
11821 	if (!no_heartbeat && has_reset)
11822 		return true;
11823 
11824 	return false;
11825 }
11826 
11827 /* rtnl_lock is acquired before calling this function */
11828 static void bnxt_force_fw_reset(struct bnxt *bp)
11829 {
11830 	struct bnxt_fw_health *fw_health = bp->fw_health;
11831 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11832 	u32 wait_dsecs;
11833 
11834 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11835 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11836 		return;
11837 
11838 	if (ptp) {
11839 		spin_lock_bh(&ptp->ptp_lock);
11840 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11841 		spin_unlock_bh(&ptp->ptp_lock);
11842 	} else {
11843 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11844 	}
11845 	bnxt_fw_reset_close(bp);
11846 	wait_dsecs = fw_health->master_func_wait_dsecs;
11847 	if (fw_health->primary) {
11848 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11849 			wait_dsecs = 0;
11850 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11851 	} else {
11852 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11853 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11854 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11855 	}
11856 
11857 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11858 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11859 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11860 }
11861 
11862 void bnxt_fw_exception(struct bnxt *bp)
11863 {
11864 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11865 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11866 	bnxt_rtnl_lock_sp(bp);
11867 	bnxt_force_fw_reset(bp);
11868 	bnxt_rtnl_unlock_sp(bp);
11869 }
11870 
11871 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11872  * < 0 on error.
11873  */
11874 static int bnxt_get_registered_vfs(struct bnxt *bp)
11875 {
11876 #ifdef CONFIG_BNXT_SRIOV
11877 	int rc;
11878 
11879 	if (!BNXT_PF(bp))
11880 		return 0;
11881 
11882 	rc = bnxt_hwrm_func_qcfg(bp);
11883 	if (rc) {
11884 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11885 		return rc;
11886 	}
11887 	if (bp->pf.registered_vfs)
11888 		return bp->pf.registered_vfs;
11889 	if (bp->sriov_cfg)
11890 		return 1;
11891 #endif
11892 	return 0;
11893 }
11894 
11895 void bnxt_fw_reset(struct bnxt *bp)
11896 {
11897 	bnxt_rtnl_lock_sp(bp);
11898 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11899 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11900 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11901 		int n = 0, tmo;
11902 
11903 		if (ptp) {
11904 			spin_lock_bh(&ptp->ptp_lock);
11905 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11906 			spin_unlock_bh(&ptp->ptp_lock);
11907 		} else {
11908 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11909 		}
11910 		if (bp->pf.active_vfs &&
11911 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11912 			n = bnxt_get_registered_vfs(bp);
11913 		if (n < 0) {
11914 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11915 				   n);
11916 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11917 			dev_close(bp->dev);
11918 			goto fw_reset_exit;
11919 		} else if (n > 0) {
11920 			u16 vf_tmo_dsecs = n * 10;
11921 
11922 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11923 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11924 			bp->fw_reset_state =
11925 				BNXT_FW_RESET_STATE_POLL_VF;
11926 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11927 			goto fw_reset_exit;
11928 		}
11929 		bnxt_fw_reset_close(bp);
11930 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11931 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11932 			tmo = HZ / 10;
11933 		} else {
11934 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11935 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11936 		}
11937 		bnxt_queue_fw_reset_work(bp, tmo);
11938 	}
11939 fw_reset_exit:
11940 	bnxt_rtnl_unlock_sp(bp);
11941 }
11942 
11943 static void bnxt_chk_missed_irq(struct bnxt *bp)
11944 {
11945 	int i;
11946 
11947 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11948 		return;
11949 
11950 	for (i = 0; i < bp->cp_nr_rings; i++) {
11951 		struct bnxt_napi *bnapi = bp->bnapi[i];
11952 		struct bnxt_cp_ring_info *cpr;
11953 		u32 fw_ring_id;
11954 		int j;
11955 
11956 		if (!bnapi)
11957 			continue;
11958 
11959 		cpr = &bnapi->cp_ring;
11960 		for (j = 0; j < 2; j++) {
11961 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11962 			u32 val[2];
11963 
11964 			if (!cpr2 || cpr2->has_more_work ||
11965 			    !bnxt_has_work(bp, cpr2))
11966 				continue;
11967 
11968 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11969 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11970 				continue;
11971 			}
11972 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11973 			bnxt_dbg_hwrm_ring_info_get(bp,
11974 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11975 				fw_ring_id, &val[0], &val[1]);
11976 			cpr->sw_stats.cmn.missed_irqs++;
11977 		}
11978 	}
11979 }
11980 
11981 static void bnxt_cfg_ntp_filters(struct bnxt *);
11982 
11983 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11984 {
11985 	struct bnxt_link_info *link_info = &bp->link_info;
11986 
11987 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11988 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11989 		if (bp->hwrm_spec_code >= 0x10201) {
11990 			if (link_info->auto_pause_setting &
11991 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11992 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11993 		} else {
11994 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11995 		}
11996 		link_info->advertising = link_info->auto_link_speeds;
11997 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11998 	} else {
11999 		link_info->req_link_speed = link_info->force_link_speed;
12000 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
12001 		if (link_info->force_pam4_link_speed) {
12002 			link_info->req_link_speed =
12003 				link_info->force_pam4_link_speed;
12004 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
12005 		}
12006 		link_info->req_duplex = link_info->duplex_setting;
12007 	}
12008 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12009 		link_info->req_flow_ctrl =
12010 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12011 	else
12012 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12013 }
12014 
12015 static void bnxt_fw_echo_reply(struct bnxt *bp)
12016 {
12017 	struct bnxt_fw_health *fw_health = bp->fw_health;
12018 	struct hwrm_func_echo_response_input *req;
12019 	int rc;
12020 
12021 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12022 	if (rc)
12023 		return;
12024 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12025 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12026 	hwrm_req_send(bp, req);
12027 }
12028 
12029 static void bnxt_sp_task(struct work_struct *work)
12030 {
12031 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12032 
12033 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12034 	smp_mb__after_atomic();
12035 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12036 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12037 		return;
12038 	}
12039 
12040 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12041 		bnxt_cfg_rx_mode(bp);
12042 
12043 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12044 		bnxt_cfg_ntp_filters(bp);
12045 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12046 		bnxt_hwrm_exec_fwd_req(bp);
12047 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12048 		bnxt_hwrm_port_qstats(bp, 0);
12049 		bnxt_hwrm_port_qstats_ext(bp, 0);
12050 		bnxt_accumulate_all_stats(bp);
12051 	}
12052 
12053 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12054 		int rc;
12055 
12056 		mutex_lock(&bp->link_lock);
12057 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12058 				       &bp->sp_event))
12059 			bnxt_hwrm_phy_qcaps(bp);
12060 
12061 		rc = bnxt_update_link(bp, true);
12062 		if (rc)
12063 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12064 				   rc);
12065 
12066 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12067 				       &bp->sp_event))
12068 			bnxt_init_ethtool_link_settings(bp);
12069 		mutex_unlock(&bp->link_lock);
12070 	}
12071 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12072 		int rc;
12073 
12074 		mutex_lock(&bp->link_lock);
12075 		rc = bnxt_update_phy_setting(bp);
12076 		mutex_unlock(&bp->link_lock);
12077 		if (rc) {
12078 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12079 		} else {
12080 			bp->link_info.phy_retry = false;
12081 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12082 		}
12083 	}
12084 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12085 		mutex_lock(&bp->link_lock);
12086 		bnxt_get_port_module_status(bp);
12087 		mutex_unlock(&bp->link_lock);
12088 	}
12089 
12090 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12091 		bnxt_tc_flow_stats_work(bp);
12092 
12093 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12094 		bnxt_chk_missed_irq(bp);
12095 
12096 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12097 		bnxt_fw_echo_reply(bp);
12098 
12099 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12100 	 * must be the last functions to be called before exiting.
12101 	 */
12102 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12103 		bnxt_reset(bp, false);
12104 
12105 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12106 		bnxt_reset(bp, true);
12107 
12108 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12109 		bnxt_rx_ring_reset(bp);
12110 
12111 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12112 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12113 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12114 			bnxt_devlink_health_fw_report(bp);
12115 		else
12116 			bnxt_fw_reset(bp);
12117 	}
12118 
12119 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12120 		if (!is_bnxt_fw_ok(bp))
12121 			bnxt_devlink_health_fw_report(bp);
12122 	}
12123 
12124 	smp_mb__before_atomic();
12125 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12126 }
12127 
12128 /* Under rtnl_lock */
12129 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12130 		     int tx_xdp)
12131 {
12132 	int max_rx, max_tx, tx_sets = 1;
12133 	int tx_rings_needed, stats;
12134 	int rx_rings = rx;
12135 	int cp, vnics, rc;
12136 
12137 	if (tcs)
12138 		tx_sets = tcs;
12139 
12140 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12141 	if (rc)
12142 		return rc;
12143 
12144 	if (max_rx < rx)
12145 		return -ENOMEM;
12146 
12147 	tx_rings_needed = tx * tx_sets + tx_xdp;
12148 	if (max_tx < tx_rings_needed)
12149 		return -ENOMEM;
12150 
12151 	vnics = 1;
12152 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12153 		vnics += rx_rings;
12154 
12155 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12156 		rx_rings <<= 1;
12157 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12158 	stats = cp;
12159 	if (BNXT_NEW_RM(bp)) {
12160 		cp += bnxt_get_ulp_msix_num(bp);
12161 		stats += bnxt_get_ulp_stat_ctxs(bp);
12162 	}
12163 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12164 				     stats, vnics);
12165 }
12166 
12167 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12168 {
12169 	if (bp->bar2) {
12170 		pci_iounmap(pdev, bp->bar2);
12171 		bp->bar2 = NULL;
12172 	}
12173 
12174 	if (bp->bar1) {
12175 		pci_iounmap(pdev, bp->bar1);
12176 		bp->bar1 = NULL;
12177 	}
12178 
12179 	if (bp->bar0) {
12180 		pci_iounmap(pdev, bp->bar0);
12181 		bp->bar0 = NULL;
12182 	}
12183 }
12184 
12185 static void bnxt_cleanup_pci(struct bnxt *bp)
12186 {
12187 	bnxt_unmap_bars(bp, bp->pdev);
12188 	pci_release_regions(bp->pdev);
12189 	if (pci_is_enabled(bp->pdev))
12190 		pci_disable_device(bp->pdev);
12191 }
12192 
12193 static void bnxt_init_dflt_coal(struct bnxt *bp)
12194 {
12195 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12196 	struct bnxt_coal *coal;
12197 	u16 flags = 0;
12198 
12199 	if (coal_cap->cmpl_params &
12200 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12201 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12202 
12203 	/* Tick values in micro seconds.
12204 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12205 	 */
12206 	coal = &bp->rx_coal;
12207 	coal->coal_ticks = 10;
12208 	coal->coal_bufs = 30;
12209 	coal->coal_ticks_irq = 1;
12210 	coal->coal_bufs_irq = 2;
12211 	coal->idle_thresh = 50;
12212 	coal->bufs_per_record = 2;
12213 	coal->budget = 64;		/* NAPI budget */
12214 	coal->flags = flags;
12215 
12216 	coal = &bp->tx_coal;
12217 	coal->coal_ticks = 28;
12218 	coal->coal_bufs = 30;
12219 	coal->coal_ticks_irq = 2;
12220 	coal->coal_bufs_irq = 2;
12221 	coal->bufs_per_record = 1;
12222 	coal->flags = flags;
12223 
12224 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12225 }
12226 
12227 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12228 {
12229 	int rc;
12230 
12231 	bp->fw_cap = 0;
12232 	rc = bnxt_hwrm_ver_get(bp);
12233 	bnxt_try_map_fw_health_reg(bp);
12234 	if (rc) {
12235 		rc = bnxt_try_recover_fw(bp);
12236 		if (rc)
12237 			return rc;
12238 		rc = bnxt_hwrm_ver_get(bp);
12239 		if (rc)
12240 			return rc;
12241 	}
12242 
12243 	bnxt_nvm_cfg_ver_get(bp);
12244 
12245 	rc = bnxt_hwrm_func_reset(bp);
12246 	if (rc)
12247 		return -ENODEV;
12248 
12249 	bnxt_hwrm_fw_set_time(bp);
12250 	return 0;
12251 }
12252 
12253 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12254 {
12255 	int rc;
12256 
12257 	/* Get the MAX capabilities for this function */
12258 	rc = bnxt_hwrm_func_qcaps(bp);
12259 	if (rc) {
12260 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12261 			   rc);
12262 		return -ENODEV;
12263 	}
12264 
12265 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12266 	if (rc)
12267 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12268 			    rc);
12269 
12270 	if (bnxt_alloc_fw_health(bp)) {
12271 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12272 	} else {
12273 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12274 		if (rc)
12275 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12276 				    rc);
12277 	}
12278 
12279 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12280 	if (rc)
12281 		return -ENODEV;
12282 
12283 	bnxt_hwrm_func_qcfg(bp);
12284 	bnxt_hwrm_vnic_qcaps(bp);
12285 	bnxt_hwrm_port_led_qcaps(bp);
12286 	bnxt_ethtool_init(bp);
12287 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
12288 		__bnxt_hwrm_ptp_qcfg(bp);
12289 	bnxt_dcb_init(bp);
12290 	return 0;
12291 }
12292 
12293 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12294 {
12295 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12296 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12297 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12298 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12299 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12300 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
12301 		bp->rss_hash_delta = bp->rss_hash_cfg;
12302 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12303 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12304 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12305 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12306 	}
12307 }
12308 
12309 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12310 {
12311 	struct net_device *dev = bp->dev;
12312 
12313 	dev->hw_features &= ~NETIF_F_NTUPLE;
12314 	dev->features &= ~NETIF_F_NTUPLE;
12315 	bp->flags &= ~BNXT_FLAG_RFS;
12316 	if (bnxt_rfs_supported(bp)) {
12317 		dev->hw_features |= NETIF_F_NTUPLE;
12318 		if (bnxt_rfs_capable(bp)) {
12319 			bp->flags |= BNXT_FLAG_RFS;
12320 			dev->features |= NETIF_F_NTUPLE;
12321 		}
12322 	}
12323 }
12324 
12325 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12326 {
12327 	struct pci_dev *pdev = bp->pdev;
12328 
12329 	bnxt_set_dflt_rss_hash_type(bp);
12330 	bnxt_set_dflt_rfs(bp);
12331 
12332 	bnxt_get_wol_settings(bp);
12333 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12334 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12335 	else
12336 		device_set_wakeup_capable(&pdev->dev, false);
12337 
12338 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12339 	bnxt_hwrm_coal_params_qcaps(bp);
12340 }
12341 
12342 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12343 
12344 int bnxt_fw_init_one(struct bnxt *bp)
12345 {
12346 	int rc;
12347 
12348 	rc = bnxt_fw_init_one_p1(bp);
12349 	if (rc) {
12350 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12351 		return rc;
12352 	}
12353 	rc = bnxt_fw_init_one_p2(bp);
12354 	if (rc) {
12355 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12356 		return rc;
12357 	}
12358 	rc = bnxt_probe_phy(bp, false);
12359 	if (rc)
12360 		return rc;
12361 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12362 	if (rc)
12363 		return rc;
12364 
12365 	bnxt_fw_init_one_p3(bp);
12366 	return 0;
12367 }
12368 
12369 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12370 {
12371 	struct bnxt_fw_health *fw_health = bp->fw_health;
12372 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12373 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12374 	u32 reg_type, reg_off, delay_msecs;
12375 
12376 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12377 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12378 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12379 	switch (reg_type) {
12380 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12381 		pci_write_config_dword(bp->pdev, reg_off, val);
12382 		break;
12383 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12384 		writel(reg_off & BNXT_GRC_BASE_MASK,
12385 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12386 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12387 		fallthrough;
12388 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12389 		writel(val, bp->bar0 + reg_off);
12390 		break;
12391 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12392 		writel(val, bp->bar1 + reg_off);
12393 		break;
12394 	}
12395 	if (delay_msecs) {
12396 		pci_read_config_dword(bp->pdev, 0, &val);
12397 		msleep(delay_msecs);
12398 	}
12399 }
12400 
12401 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12402 {
12403 	struct hwrm_func_qcfg_output *resp;
12404 	struct hwrm_func_qcfg_input *req;
12405 	bool result = true; /* firmware will enforce if unknown */
12406 
12407 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12408 		return result;
12409 
12410 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12411 		return result;
12412 
12413 	req->fid = cpu_to_le16(0xffff);
12414 	resp = hwrm_req_hold(bp, req);
12415 	if (!hwrm_req_send(bp, req))
12416 		result = !!(le16_to_cpu(resp->flags) &
12417 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12418 	hwrm_req_drop(bp, req);
12419 	return result;
12420 }
12421 
12422 static void bnxt_reset_all(struct bnxt *bp)
12423 {
12424 	struct bnxt_fw_health *fw_health = bp->fw_health;
12425 	int i, rc;
12426 
12427 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12428 		bnxt_fw_reset_via_optee(bp);
12429 		bp->fw_reset_timestamp = jiffies;
12430 		return;
12431 	}
12432 
12433 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12434 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12435 			bnxt_fw_reset_writel(bp, i);
12436 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12437 		struct hwrm_fw_reset_input *req;
12438 
12439 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12440 		if (!rc) {
12441 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12442 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12443 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12444 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12445 			rc = hwrm_req_send(bp, req);
12446 		}
12447 		if (rc != -ENODEV)
12448 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12449 	}
12450 	bp->fw_reset_timestamp = jiffies;
12451 }
12452 
12453 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12454 {
12455 	return time_after(jiffies, bp->fw_reset_timestamp +
12456 			  (bp->fw_reset_max_dsecs * HZ / 10));
12457 }
12458 
12459 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12460 {
12461 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12462 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12463 		bnxt_ulp_start(bp, rc);
12464 		bnxt_dl_health_fw_status_update(bp, false);
12465 	}
12466 	bp->fw_reset_state = 0;
12467 	dev_close(bp->dev);
12468 }
12469 
12470 static void bnxt_fw_reset_task(struct work_struct *work)
12471 {
12472 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12473 	int rc = 0;
12474 
12475 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12476 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12477 		return;
12478 	}
12479 
12480 	switch (bp->fw_reset_state) {
12481 	case BNXT_FW_RESET_STATE_POLL_VF: {
12482 		int n = bnxt_get_registered_vfs(bp);
12483 		int tmo;
12484 
12485 		if (n < 0) {
12486 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12487 				   n, jiffies_to_msecs(jiffies -
12488 				   bp->fw_reset_timestamp));
12489 			goto fw_reset_abort;
12490 		} else if (n > 0) {
12491 			if (bnxt_fw_reset_timeout(bp)) {
12492 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12493 				bp->fw_reset_state = 0;
12494 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12495 					   n);
12496 				return;
12497 			}
12498 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12499 			return;
12500 		}
12501 		bp->fw_reset_timestamp = jiffies;
12502 		rtnl_lock();
12503 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12504 			bnxt_fw_reset_abort(bp, rc);
12505 			rtnl_unlock();
12506 			return;
12507 		}
12508 		bnxt_fw_reset_close(bp);
12509 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12510 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12511 			tmo = HZ / 10;
12512 		} else {
12513 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12514 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12515 		}
12516 		rtnl_unlock();
12517 		bnxt_queue_fw_reset_work(bp, tmo);
12518 		return;
12519 	}
12520 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12521 		u32 val;
12522 
12523 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12524 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12525 		    !bnxt_fw_reset_timeout(bp)) {
12526 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12527 			return;
12528 		}
12529 
12530 		if (!bp->fw_health->primary) {
12531 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12532 
12533 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12534 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12535 			return;
12536 		}
12537 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12538 	}
12539 		fallthrough;
12540 	case BNXT_FW_RESET_STATE_RESET_FW:
12541 		bnxt_reset_all(bp);
12542 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12543 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12544 		return;
12545 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12546 		bnxt_inv_fw_health_reg(bp);
12547 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12548 		    !bp->fw_reset_min_dsecs) {
12549 			u16 val;
12550 
12551 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12552 			if (val == 0xffff) {
12553 				if (bnxt_fw_reset_timeout(bp)) {
12554 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12555 					rc = -ETIMEDOUT;
12556 					goto fw_reset_abort;
12557 				}
12558 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12559 				return;
12560 			}
12561 		}
12562 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12563 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12564 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12565 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12566 			bnxt_dl_remote_reload(bp);
12567 		if (pci_enable_device(bp->pdev)) {
12568 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12569 			rc = -ENODEV;
12570 			goto fw_reset_abort;
12571 		}
12572 		pci_set_master(bp->pdev);
12573 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12574 		fallthrough;
12575 	case BNXT_FW_RESET_STATE_POLL_FW:
12576 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12577 		rc = bnxt_hwrm_poll(bp);
12578 		if (rc) {
12579 			if (bnxt_fw_reset_timeout(bp)) {
12580 				netdev_err(bp->dev, "Firmware reset aborted\n");
12581 				goto fw_reset_abort_status;
12582 			}
12583 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12584 			return;
12585 		}
12586 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12587 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12588 		fallthrough;
12589 	case BNXT_FW_RESET_STATE_OPENING:
12590 		while (!rtnl_trylock()) {
12591 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12592 			return;
12593 		}
12594 		rc = bnxt_open(bp->dev);
12595 		if (rc) {
12596 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12597 			bnxt_fw_reset_abort(bp, rc);
12598 			rtnl_unlock();
12599 			return;
12600 		}
12601 
12602 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12603 		    bp->fw_health->enabled) {
12604 			bp->fw_health->last_fw_reset_cnt =
12605 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12606 		}
12607 		bp->fw_reset_state = 0;
12608 		/* Make sure fw_reset_state is 0 before clearing the flag */
12609 		smp_mb__before_atomic();
12610 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12611 		bnxt_ulp_start(bp, 0);
12612 		bnxt_reenable_sriov(bp);
12613 		bnxt_vf_reps_alloc(bp);
12614 		bnxt_vf_reps_open(bp);
12615 		bnxt_ptp_reapply_pps(bp);
12616 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12617 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12618 			bnxt_dl_health_fw_recovery_done(bp);
12619 			bnxt_dl_health_fw_status_update(bp, true);
12620 		}
12621 		rtnl_unlock();
12622 		break;
12623 	}
12624 	return;
12625 
12626 fw_reset_abort_status:
12627 	if (bp->fw_health->status_reliable ||
12628 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12629 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12630 
12631 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12632 	}
12633 fw_reset_abort:
12634 	rtnl_lock();
12635 	bnxt_fw_reset_abort(bp, rc);
12636 	rtnl_unlock();
12637 }
12638 
12639 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12640 {
12641 	int rc;
12642 	struct bnxt *bp = netdev_priv(dev);
12643 
12644 	SET_NETDEV_DEV(dev, &pdev->dev);
12645 
12646 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12647 	rc = pci_enable_device(pdev);
12648 	if (rc) {
12649 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12650 		goto init_err;
12651 	}
12652 
12653 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12654 		dev_err(&pdev->dev,
12655 			"Cannot find PCI device base address, aborting\n");
12656 		rc = -ENODEV;
12657 		goto init_err_disable;
12658 	}
12659 
12660 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12661 	if (rc) {
12662 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12663 		goto init_err_disable;
12664 	}
12665 
12666 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12667 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12668 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12669 		rc = -EIO;
12670 		goto init_err_release;
12671 	}
12672 
12673 	pci_set_master(pdev);
12674 
12675 	bp->dev = dev;
12676 	bp->pdev = pdev;
12677 
12678 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12679 	 * determines the BAR size.
12680 	 */
12681 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12682 	if (!bp->bar0) {
12683 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12684 		rc = -ENOMEM;
12685 		goto init_err_release;
12686 	}
12687 
12688 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12689 	if (!bp->bar2) {
12690 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12691 		rc = -ENOMEM;
12692 		goto init_err_release;
12693 	}
12694 
12695 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12696 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12697 
12698 	spin_lock_init(&bp->ntp_fltr_lock);
12699 #if BITS_PER_LONG == 32
12700 	spin_lock_init(&bp->db_lock);
12701 #endif
12702 
12703 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12704 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12705 
12706 	timer_setup(&bp->timer, bnxt_timer, 0);
12707 	bp->current_interval = BNXT_TIMER_INTERVAL;
12708 
12709 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12710 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12711 
12712 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12713 	return 0;
12714 
12715 init_err_release:
12716 	bnxt_unmap_bars(bp, pdev);
12717 	pci_release_regions(pdev);
12718 
12719 init_err_disable:
12720 	pci_disable_device(pdev);
12721 
12722 init_err:
12723 	return rc;
12724 }
12725 
12726 /* rtnl_lock held */
12727 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12728 {
12729 	struct sockaddr *addr = p;
12730 	struct bnxt *bp = netdev_priv(dev);
12731 	int rc = 0;
12732 
12733 	if (!is_valid_ether_addr(addr->sa_data))
12734 		return -EADDRNOTAVAIL;
12735 
12736 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12737 		return 0;
12738 
12739 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12740 	if (rc)
12741 		return rc;
12742 
12743 	eth_hw_addr_set(dev, addr->sa_data);
12744 	if (netif_running(dev)) {
12745 		bnxt_close_nic(bp, false, false);
12746 		rc = bnxt_open_nic(bp, false, false);
12747 	}
12748 
12749 	return rc;
12750 }
12751 
12752 /* rtnl_lock held */
12753 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12754 {
12755 	struct bnxt *bp = netdev_priv(dev);
12756 
12757 	if (netif_running(dev))
12758 		bnxt_close_nic(bp, true, false);
12759 
12760 	dev->mtu = new_mtu;
12761 	bnxt_set_ring_params(bp);
12762 
12763 	if (netif_running(dev))
12764 		return bnxt_open_nic(bp, true, false);
12765 
12766 	return 0;
12767 }
12768 
12769 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12770 {
12771 	struct bnxt *bp = netdev_priv(dev);
12772 	bool sh = false;
12773 	int rc;
12774 
12775 	if (tc > bp->max_tc) {
12776 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12777 			   tc, bp->max_tc);
12778 		return -EINVAL;
12779 	}
12780 
12781 	if (netdev_get_num_tc(dev) == tc)
12782 		return 0;
12783 
12784 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12785 		sh = true;
12786 
12787 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12788 			      sh, tc, bp->tx_nr_rings_xdp);
12789 	if (rc)
12790 		return rc;
12791 
12792 	/* Needs to close the device and do hw resource re-allocations */
12793 	if (netif_running(bp->dev))
12794 		bnxt_close_nic(bp, true, false);
12795 
12796 	if (tc) {
12797 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12798 		netdev_set_num_tc(dev, tc);
12799 	} else {
12800 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12801 		netdev_reset_tc(dev);
12802 	}
12803 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12804 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12805 			       bp->tx_nr_rings + bp->rx_nr_rings;
12806 
12807 	if (netif_running(bp->dev))
12808 		return bnxt_open_nic(bp, true, false);
12809 
12810 	return 0;
12811 }
12812 
12813 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12814 				  void *cb_priv)
12815 {
12816 	struct bnxt *bp = cb_priv;
12817 
12818 	if (!bnxt_tc_flower_enabled(bp) ||
12819 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12820 		return -EOPNOTSUPP;
12821 
12822 	switch (type) {
12823 	case TC_SETUP_CLSFLOWER:
12824 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12825 	default:
12826 		return -EOPNOTSUPP;
12827 	}
12828 }
12829 
12830 LIST_HEAD(bnxt_block_cb_list);
12831 
12832 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12833 			 void *type_data)
12834 {
12835 	struct bnxt *bp = netdev_priv(dev);
12836 
12837 	switch (type) {
12838 	case TC_SETUP_BLOCK:
12839 		return flow_block_cb_setup_simple(type_data,
12840 						  &bnxt_block_cb_list,
12841 						  bnxt_setup_tc_block_cb,
12842 						  bp, bp, true);
12843 	case TC_SETUP_QDISC_MQPRIO: {
12844 		struct tc_mqprio_qopt *mqprio = type_data;
12845 
12846 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12847 
12848 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12849 	}
12850 	default:
12851 		return -EOPNOTSUPP;
12852 	}
12853 }
12854 
12855 #ifdef CONFIG_RFS_ACCEL
12856 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12857 			    struct bnxt_ntuple_filter *f2)
12858 {
12859 	struct flow_keys *keys1 = &f1->fkeys;
12860 	struct flow_keys *keys2 = &f2->fkeys;
12861 
12862 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12863 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12864 		return false;
12865 
12866 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12867 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12868 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12869 			return false;
12870 	} else {
12871 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12872 			   sizeof(keys1->addrs.v6addrs.src)) ||
12873 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12874 			   sizeof(keys1->addrs.v6addrs.dst)))
12875 			return false;
12876 	}
12877 
12878 	if (keys1->ports.ports == keys2->ports.ports &&
12879 	    keys1->control.flags == keys2->control.flags &&
12880 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12881 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12882 		return true;
12883 
12884 	return false;
12885 }
12886 
12887 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12888 			      u16 rxq_index, u32 flow_id)
12889 {
12890 	struct bnxt *bp = netdev_priv(dev);
12891 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12892 	struct flow_keys *fkeys;
12893 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12894 	int rc = 0, idx, bit_id, l2_idx = 0;
12895 	struct hlist_head *head;
12896 	u32 flags;
12897 
12898 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12899 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12900 		int off = 0, j;
12901 
12902 		netif_addr_lock_bh(dev);
12903 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12904 			if (ether_addr_equal(eth->h_dest,
12905 					     vnic->uc_list + off)) {
12906 				l2_idx = j + 1;
12907 				break;
12908 			}
12909 		}
12910 		netif_addr_unlock_bh(dev);
12911 		if (!l2_idx)
12912 			return -EINVAL;
12913 	}
12914 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12915 	if (!new_fltr)
12916 		return -ENOMEM;
12917 
12918 	fkeys = &new_fltr->fkeys;
12919 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12920 		rc = -EPROTONOSUPPORT;
12921 		goto err_free;
12922 	}
12923 
12924 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12925 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12926 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12927 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12928 		rc = -EPROTONOSUPPORT;
12929 		goto err_free;
12930 	}
12931 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12932 	    bp->hwrm_spec_code < 0x10601) {
12933 		rc = -EPROTONOSUPPORT;
12934 		goto err_free;
12935 	}
12936 	flags = fkeys->control.flags;
12937 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12938 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12939 		rc = -EPROTONOSUPPORT;
12940 		goto err_free;
12941 	}
12942 
12943 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12944 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12945 
12946 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12947 	head = &bp->ntp_fltr_hash_tbl[idx];
12948 	rcu_read_lock();
12949 	hlist_for_each_entry_rcu(fltr, head, hash) {
12950 		if (bnxt_fltr_match(fltr, new_fltr)) {
12951 			rc = fltr->sw_id;
12952 			rcu_read_unlock();
12953 			goto err_free;
12954 		}
12955 	}
12956 	rcu_read_unlock();
12957 
12958 	spin_lock_bh(&bp->ntp_fltr_lock);
12959 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12960 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12961 	if (bit_id < 0) {
12962 		spin_unlock_bh(&bp->ntp_fltr_lock);
12963 		rc = -ENOMEM;
12964 		goto err_free;
12965 	}
12966 
12967 	new_fltr->sw_id = (u16)bit_id;
12968 	new_fltr->flow_id = flow_id;
12969 	new_fltr->l2_fltr_idx = l2_idx;
12970 	new_fltr->rxq = rxq_index;
12971 	hlist_add_head_rcu(&new_fltr->hash, head);
12972 	bp->ntp_fltr_count++;
12973 	spin_unlock_bh(&bp->ntp_fltr_lock);
12974 
12975 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12976 	bnxt_queue_sp_work(bp);
12977 
12978 	return new_fltr->sw_id;
12979 
12980 err_free:
12981 	kfree(new_fltr);
12982 	return rc;
12983 }
12984 
12985 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12986 {
12987 	int i;
12988 
12989 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12990 		struct hlist_head *head;
12991 		struct hlist_node *tmp;
12992 		struct bnxt_ntuple_filter *fltr;
12993 		int rc;
12994 
12995 		head = &bp->ntp_fltr_hash_tbl[i];
12996 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12997 			bool del = false;
12998 
12999 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
13000 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
13001 							fltr->flow_id,
13002 							fltr->sw_id)) {
13003 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13004 									 fltr);
13005 					del = true;
13006 				}
13007 			} else {
13008 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13009 								       fltr);
13010 				if (rc)
13011 					del = true;
13012 				else
13013 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13014 			}
13015 
13016 			if (del) {
13017 				spin_lock_bh(&bp->ntp_fltr_lock);
13018 				hlist_del_rcu(&fltr->hash);
13019 				bp->ntp_fltr_count--;
13020 				spin_unlock_bh(&bp->ntp_fltr_lock);
13021 				synchronize_rcu();
13022 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13023 				kfree(fltr);
13024 			}
13025 		}
13026 	}
13027 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13028 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13029 }
13030 
13031 #else
13032 
13033 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13034 {
13035 }
13036 
13037 #endif /* CONFIG_RFS_ACCEL */
13038 
13039 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
13040 				    unsigned int entry, struct udp_tunnel_info *ti)
13041 {
13042 	struct bnxt *bp = netdev_priv(netdev);
13043 	unsigned int cmd;
13044 
13045 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13046 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13047 	else
13048 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13049 
13050 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
13051 }
13052 
13053 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
13054 				      unsigned int entry, struct udp_tunnel_info *ti)
13055 {
13056 	struct bnxt *bp = netdev_priv(netdev);
13057 	unsigned int cmd;
13058 
13059 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13060 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13061 	else
13062 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13063 
13064 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13065 }
13066 
13067 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13068 	.set_port	= bnxt_udp_tunnel_set_port,
13069 	.unset_port	= bnxt_udp_tunnel_unset_port,
13070 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13071 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13072 	.tables		= {
13073 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13074 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13075 	},
13076 };
13077 
13078 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13079 			       struct net_device *dev, u32 filter_mask,
13080 			       int nlflags)
13081 {
13082 	struct bnxt *bp = netdev_priv(dev);
13083 
13084 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13085 				       nlflags, filter_mask, NULL);
13086 }
13087 
13088 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13089 			       u16 flags, struct netlink_ext_ack *extack)
13090 {
13091 	struct bnxt *bp = netdev_priv(dev);
13092 	struct nlattr *attr, *br_spec;
13093 	int rem, rc = 0;
13094 
13095 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13096 		return -EOPNOTSUPP;
13097 
13098 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13099 	if (!br_spec)
13100 		return -EINVAL;
13101 
13102 	nla_for_each_nested(attr, br_spec, rem) {
13103 		u16 mode;
13104 
13105 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13106 			continue;
13107 
13108 		if (nla_len(attr) < sizeof(mode))
13109 			return -EINVAL;
13110 
13111 		mode = nla_get_u16(attr);
13112 		if (mode == bp->br_mode)
13113 			break;
13114 
13115 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13116 		if (!rc)
13117 			bp->br_mode = mode;
13118 		break;
13119 	}
13120 	return rc;
13121 }
13122 
13123 int bnxt_get_port_parent_id(struct net_device *dev,
13124 			    struct netdev_phys_item_id *ppid)
13125 {
13126 	struct bnxt *bp = netdev_priv(dev);
13127 
13128 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13129 		return -EOPNOTSUPP;
13130 
13131 	/* The PF and it's VF-reps only support the switchdev framework */
13132 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13133 		return -EOPNOTSUPP;
13134 
13135 	ppid->id_len = sizeof(bp->dsn);
13136 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13137 
13138 	return 0;
13139 }
13140 
13141 static const struct net_device_ops bnxt_netdev_ops = {
13142 	.ndo_open		= bnxt_open,
13143 	.ndo_start_xmit		= bnxt_start_xmit,
13144 	.ndo_stop		= bnxt_close,
13145 	.ndo_get_stats64	= bnxt_get_stats64,
13146 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13147 	.ndo_eth_ioctl		= bnxt_ioctl,
13148 	.ndo_validate_addr	= eth_validate_addr,
13149 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13150 	.ndo_change_mtu		= bnxt_change_mtu,
13151 	.ndo_fix_features	= bnxt_fix_features,
13152 	.ndo_set_features	= bnxt_set_features,
13153 	.ndo_features_check	= bnxt_features_check,
13154 	.ndo_tx_timeout		= bnxt_tx_timeout,
13155 #ifdef CONFIG_BNXT_SRIOV
13156 	.ndo_get_vf_config	= bnxt_get_vf_config,
13157 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13158 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13159 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13160 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13161 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13162 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13163 #endif
13164 	.ndo_setup_tc           = bnxt_setup_tc,
13165 #ifdef CONFIG_RFS_ACCEL
13166 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13167 #endif
13168 	.ndo_bpf		= bnxt_xdp,
13169 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13170 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13171 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13172 };
13173 
13174 static void bnxt_remove_one(struct pci_dev *pdev)
13175 {
13176 	struct net_device *dev = pci_get_drvdata(pdev);
13177 	struct bnxt *bp = netdev_priv(dev);
13178 
13179 	if (BNXT_PF(bp))
13180 		bnxt_sriov_disable(bp);
13181 
13182 	bnxt_rdma_aux_device_uninit(bp);
13183 
13184 	bnxt_ptp_clear(bp);
13185 	unregister_netdev(dev);
13186 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13187 	/* Flush any pending tasks */
13188 	cancel_work_sync(&bp->sp_task);
13189 	cancel_delayed_work_sync(&bp->fw_reset_task);
13190 	bp->sp_event = 0;
13191 
13192 	bnxt_dl_fw_reporters_destroy(bp);
13193 	bnxt_dl_unregister(bp);
13194 	bnxt_shutdown_tc(bp);
13195 
13196 	bnxt_clear_int_mode(bp);
13197 	bnxt_hwrm_func_drv_unrgtr(bp);
13198 	bnxt_free_hwrm_resources(bp);
13199 	bnxt_ethtool_free(bp);
13200 	bnxt_dcb_free(bp);
13201 	kfree(bp->ptp_cfg);
13202 	bp->ptp_cfg = NULL;
13203 	kfree(bp->fw_health);
13204 	bp->fw_health = NULL;
13205 	bnxt_cleanup_pci(bp);
13206 	bnxt_free_ctx_mem(bp);
13207 	kfree(bp->ctx);
13208 	bp->ctx = NULL;
13209 	kfree(bp->rss_indir_tbl);
13210 	bp->rss_indir_tbl = NULL;
13211 	bnxt_free_port_stats(bp);
13212 	free_netdev(dev);
13213 }
13214 
13215 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13216 {
13217 	int rc = 0;
13218 	struct bnxt_link_info *link_info = &bp->link_info;
13219 
13220 	bp->phy_flags = 0;
13221 	rc = bnxt_hwrm_phy_qcaps(bp);
13222 	if (rc) {
13223 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13224 			   rc);
13225 		return rc;
13226 	}
13227 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13228 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13229 	else
13230 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13231 	if (!fw_dflt)
13232 		return 0;
13233 
13234 	mutex_lock(&bp->link_lock);
13235 	rc = bnxt_update_link(bp, false);
13236 	if (rc) {
13237 		mutex_unlock(&bp->link_lock);
13238 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13239 			   rc);
13240 		return rc;
13241 	}
13242 
13243 	/* Older firmware does not have supported_auto_speeds, so assume
13244 	 * that all supported speeds can be autonegotiated.
13245 	 */
13246 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13247 		link_info->support_auto_speeds = link_info->support_speeds;
13248 
13249 	bnxt_init_ethtool_link_settings(bp);
13250 	mutex_unlock(&bp->link_lock);
13251 	return 0;
13252 }
13253 
13254 static int bnxt_get_max_irq(struct pci_dev *pdev)
13255 {
13256 	u16 ctrl;
13257 
13258 	if (!pdev->msix_cap)
13259 		return 1;
13260 
13261 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13262 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13263 }
13264 
13265 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13266 				int *max_cp)
13267 {
13268 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13269 	int max_ring_grps = 0, max_irq;
13270 
13271 	*max_tx = hw_resc->max_tx_rings;
13272 	*max_rx = hw_resc->max_rx_rings;
13273 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13274 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13275 			bnxt_get_ulp_msix_num(bp),
13276 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13277 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13278 		*max_cp = min_t(int, *max_cp, max_irq);
13279 	max_ring_grps = hw_resc->max_hw_ring_grps;
13280 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13281 		*max_cp -= 1;
13282 		*max_rx -= 2;
13283 	}
13284 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13285 		*max_rx >>= 1;
13286 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13287 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13288 		/* On P5 chips, max_cp output param should be available NQs */
13289 		*max_cp = max_irq;
13290 	}
13291 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13292 }
13293 
13294 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13295 {
13296 	int rx, tx, cp;
13297 
13298 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13299 	*max_rx = rx;
13300 	*max_tx = tx;
13301 	if (!rx || !tx || !cp)
13302 		return -ENOMEM;
13303 
13304 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13305 }
13306 
13307 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13308 			       bool shared)
13309 {
13310 	int rc;
13311 
13312 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13313 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13314 		/* Not enough rings, try disabling agg rings. */
13315 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13316 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13317 		if (rc) {
13318 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13319 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13320 			return rc;
13321 		}
13322 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13323 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13324 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13325 		bnxt_set_ring_params(bp);
13326 	}
13327 
13328 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13329 		int max_cp, max_stat, max_irq;
13330 
13331 		/* Reserve minimum resources for RoCE */
13332 		max_cp = bnxt_get_max_func_cp_rings(bp);
13333 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13334 		max_irq = bnxt_get_max_func_irqs(bp);
13335 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13336 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13337 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13338 			return 0;
13339 
13340 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13341 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13342 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13343 		max_cp = min_t(int, max_cp, max_irq);
13344 		max_cp = min_t(int, max_cp, max_stat);
13345 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13346 		if (rc)
13347 			rc = 0;
13348 	}
13349 	return rc;
13350 }
13351 
13352 /* In initial default shared ring setting, each shared ring must have a
13353  * RX/TX ring pair.
13354  */
13355 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13356 {
13357 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13358 	bp->rx_nr_rings = bp->cp_nr_rings;
13359 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13360 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13361 }
13362 
13363 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13364 {
13365 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13366 
13367 	if (!bnxt_can_reserve_rings(bp))
13368 		return 0;
13369 
13370 	if (sh)
13371 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13372 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13373 	/* Reduce default rings on multi-port cards so that total default
13374 	 * rings do not exceed CPU count.
13375 	 */
13376 	if (bp->port_count > 1) {
13377 		int max_rings =
13378 			max_t(int, num_online_cpus() / bp->port_count, 1);
13379 
13380 		dflt_rings = min_t(int, dflt_rings, max_rings);
13381 	}
13382 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13383 	if (rc)
13384 		return rc;
13385 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13386 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13387 	if (sh)
13388 		bnxt_trim_dflt_sh_rings(bp);
13389 	else
13390 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13391 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13392 
13393 	rc = __bnxt_reserve_rings(bp);
13394 	if (rc && rc != -ENODEV)
13395 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13396 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13397 	if (sh)
13398 		bnxt_trim_dflt_sh_rings(bp);
13399 
13400 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13401 	if (bnxt_need_reserve_rings(bp)) {
13402 		rc = __bnxt_reserve_rings(bp);
13403 		if (rc && rc != -ENODEV)
13404 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13405 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13406 	}
13407 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13408 		bp->rx_nr_rings++;
13409 		bp->cp_nr_rings++;
13410 	}
13411 	if (rc) {
13412 		bp->tx_nr_rings = 0;
13413 		bp->rx_nr_rings = 0;
13414 	}
13415 	return rc;
13416 }
13417 
13418 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13419 {
13420 	int rc;
13421 
13422 	if (bp->tx_nr_rings)
13423 		return 0;
13424 
13425 	bnxt_ulp_irq_stop(bp);
13426 	bnxt_clear_int_mode(bp);
13427 	rc = bnxt_set_dflt_rings(bp, true);
13428 	if (rc) {
13429 		if (BNXT_VF(bp) && rc == -ENODEV)
13430 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13431 		else
13432 			netdev_err(bp->dev, "Not enough rings available.\n");
13433 		goto init_dflt_ring_err;
13434 	}
13435 	rc = bnxt_init_int_mode(bp);
13436 	if (rc)
13437 		goto init_dflt_ring_err;
13438 
13439 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13440 
13441 	bnxt_set_dflt_rfs(bp);
13442 
13443 init_dflt_ring_err:
13444 	bnxt_ulp_irq_restart(bp, rc);
13445 	return rc;
13446 }
13447 
13448 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13449 {
13450 	int rc;
13451 
13452 	ASSERT_RTNL();
13453 	bnxt_hwrm_func_qcaps(bp);
13454 
13455 	if (netif_running(bp->dev))
13456 		__bnxt_close_nic(bp, true, false);
13457 
13458 	bnxt_ulp_irq_stop(bp);
13459 	bnxt_clear_int_mode(bp);
13460 	rc = bnxt_init_int_mode(bp);
13461 	bnxt_ulp_irq_restart(bp, rc);
13462 
13463 	if (netif_running(bp->dev)) {
13464 		if (rc)
13465 			dev_close(bp->dev);
13466 		else
13467 			rc = bnxt_open_nic(bp, true, false);
13468 	}
13469 
13470 	return rc;
13471 }
13472 
13473 static int bnxt_init_mac_addr(struct bnxt *bp)
13474 {
13475 	int rc = 0;
13476 
13477 	if (BNXT_PF(bp)) {
13478 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13479 	} else {
13480 #ifdef CONFIG_BNXT_SRIOV
13481 		struct bnxt_vf_info *vf = &bp->vf;
13482 		bool strict_approval = true;
13483 
13484 		if (is_valid_ether_addr(vf->mac_addr)) {
13485 			/* overwrite netdev dev_addr with admin VF MAC */
13486 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13487 			/* Older PF driver or firmware may not approve this
13488 			 * correctly.
13489 			 */
13490 			strict_approval = false;
13491 		} else {
13492 			eth_hw_addr_random(bp->dev);
13493 		}
13494 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13495 #endif
13496 	}
13497 	return rc;
13498 }
13499 
13500 static void bnxt_vpd_read_info(struct bnxt *bp)
13501 {
13502 	struct pci_dev *pdev = bp->pdev;
13503 	unsigned int vpd_size, kw_len;
13504 	int pos, size;
13505 	u8 *vpd_data;
13506 
13507 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13508 	if (IS_ERR(vpd_data)) {
13509 		pci_warn(pdev, "Unable to read VPD\n");
13510 		return;
13511 	}
13512 
13513 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13514 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13515 	if (pos < 0)
13516 		goto read_sn;
13517 
13518 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13519 	memcpy(bp->board_partno, &vpd_data[pos], size);
13520 
13521 read_sn:
13522 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13523 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13524 					   &kw_len);
13525 	if (pos < 0)
13526 		goto exit;
13527 
13528 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13529 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13530 exit:
13531 	kfree(vpd_data);
13532 }
13533 
13534 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13535 {
13536 	struct pci_dev *pdev = bp->pdev;
13537 	u64 qword;
13538 
13539 	qword = pci_get_dsn(pdev);
13540 	if (!qword) {
13541 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13542 		return -EOPNOTSUPP;
13543 	}
13544 
13545 	put_unaligned_le64(qword, dsn);
13546 
13547 	bp->flags |= BNXT_FLAG_DSN_VALID;
13548 	return 0;
13549 }
13550 
13551 static int bnxt_map_db_bar(struct bnxt *bp)
13552 {
13553 	if (!bp->db_size)
13554 		return -ENODEV;
13555 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13556 	if (!bp->bar1)
13557 		return -ENOMEM;
13558 	return 0;
13559 }
13560 
13561 void bnxt_print_device_info(struct bnxt *bp)
13562 {
13563 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13564 		    board_info[bp->board_idx].name,
13565 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13566 
13567 	pcie_print_link_status(bp->pdev);
13568 }
13569 
13570 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13571 {
13572 	struct net_device *dev;
13573 	struct bnxt *bp;
13574 	int rc, max_irqs;
13575 
13576 	if (pci_is_bridge(pdev))
13577 		return -ENODEV;
13578 
13579 	/* Clear any pending DMA transactions from crash kernel
13580 	 * while loading driver in capture kernel.
13581 	 */
13582 	if (is_kdump_kernel()) {
13583 		pci_clear_master(pdev);
13584 		pcie_flr(pdev);
13585 	}
13586 
13587 	max_irqs = bnxt_get_max_irq(pdev);
13588 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13589 	if (!dev)
13590 		return -ENOMEM;
13591 
13592 	bp = netdev_priv(dev);
13593 	bp->board_idx = ent->driver_data;
13594 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13595 	bnxt_set_max_func_irqs(bp, max_irqs);
13596 
13597 	if (bnxt_vf_pciid(bp->board_idx))
13598 		bp->flags |= BNXT_FLAG_VF;
13599 
13600 	/* No devlink port registration in case of a VF */
13601 	if (BNXT_PF(bp))
13602 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
13603 
13604 	if (pdev->msix_cap)
13605 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13606 
13607 	rc = bnxt_init_board(pdev, dev);
13608 	if (rc < 0)
13609 		goto init_err_free;
13610 
13611 	dev->netdev_ops = &bnxt_netdev_ops;
13612 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13613 	dev->ethtool_ops = &bnxt_ethtool_ops;
13614 	pci_set_drvdata(pdev, dev);
13615 
13616 	rc = bnxt_alloc_hwrm_resources(bp);
13617 	if (rc)
13618 		goto init_err_pci_clean;
13619 
13620 	mutex_init(&bp->hwrm_cmd_lock);
13621 	mutex_init(&bp->link_lock);
13622 
13623 	rc = bnxt_fw_init_one_p1(bp);
13624 	if (rc)
13625 		goto init_err_pci_clean;
13626 
13627 	if (BNXT_PF(bp))
13628 		bnxt_vpd_read_info(bp);
13629 
13630 	if (BNXT_CHIP_P5(bp)) {
13631 		bp->flags |= BNXT_FLAG_CHIP_P5;
13632 		if (BNXT_CHIP_SR2(bp))
13633 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13634 	}
13635 
13636 	rc = bnxt_alloc_rss_indir_tbl(bp);
13637 	if (rc)
13638 		goto init_err_pci_clean;
13639 
13640 	rc = bnxt_fw_init_one_p2(bp);
13641 	if (rc)
13642 		goto init_err_pci_clean;
13643 
13644 	rc = bnxt_map_db_bar(bp);
13645 	if (rc) {
13646 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13647 			rc);
13648 		goto init_err_pci_clean;
13649 	}
13650 
13651 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13652 			   NETIF_F_TSO | NETIF_F_TSO6 |
13653 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13654 			   NETIF_F_GSO_IPXIP4 |
13655 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13656 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13657 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13658 
13659 	if (BNXT_SUPPORTS_TPA(bp))
13660 		dev->hw_features |= NETIF_F_LRO;
13661 
13662 	dev->hw_enc_features =
13663 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13664 			NETIF_F_TSO | NETIF_F_TSO6 |
13665 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13666 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13667 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13668 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13669 
13670 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13671 				    NETIF_F_GSO_GRE_CSUM;
13672 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13673 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13674 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13675 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13676 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13677 	if (BNXT_SUPPORTS_TPA(bp))
13678 		dev->hw_features |= NETIF_F_GRO_HW;
13679 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13680 	if (dev->features & NETIF_F_GRO_HW)
13681 		dev->features &= ~NETIF_F_LRO;
13682 	dev->priv_flags |= IFF_UNICAST_FLT;
13683 
13684 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
13685 
13686 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
13687 			    NETDEV_XDP_ACT_RX_SG;
13688 
13689 #ifdef CONFIG_BNXT_SRIOV
13690 	init_waitqueue_head(&bp->sriov_cfg_wait);
13691 #endif
13692 	if (BNXT_SUPPORTS_TPA(bp)) {
13693 		bp->gro_func = bnxt_gro_func_5730x;
13694 		if (BNXT_CHIP_P4(bp))
13695 			bp->gro_func = bnxt_gro_func_5731x;
13696 		else if (BNXT_CHIP_P5(bp))
13697 			bp->gro_func = bnxt_gro_func_5750x;
13698 	}
13699 	if (!BNXT_CHIP_P4_PLUS(bp))
13700 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13701 
13702 	rc = bnxt_init_mac_addr(bp);
13703 	if (rc) {
13704 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13705 		rc = -EADDRNOTAVAIL;
13706 		goto init_err_pci_clean;
13707 	}
13708 
13709 	if (BNXT_PF(bp)) {
13710 		/* Read the adapter's DSN to use as the eswitch switch_id */
13711 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13712 	}
13713 
13714 	/* MTU range: 60 - FW defined max */
13715 	dev->min_mtu = ETH_ZLEN;
13716 	dev->max_mtu = bp->max_mtu;
13717 
13718 	rc = bnxt_probe_phy(bp, true);
13719 	if (rc)
13720 		goto init_err_pci_clean;
13721 
13722 	bnxt_set_rx_skb_mode(bp, false);
13723 	bnxt_set_tpa_flags(bp);
13724 	bnxt_set_ring_params(bp);
13725 	rc = bnxt_set_dflt_rings(bp, true);
13726 	if (rc) {
13727 		if (BNXT_VF(bp) && rc == -ENODEV) {
13728 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13729 		} else {
13730 			netdev_err(bp->dev, "Not enough rings available.\n");
13731 			rc = -ENOMEM;
13732 		}
13733 		goto init_err_pci_clean;
13734 	}
13735 
13736 	bnxt_fw_init_one_p3(bp);
13737 
13738 	bnxt_init_dflt_coal(bp);
13739 
13740 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13741 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13742 
13743 	rc = bnxt_init_int_mode(bp);
13744 	if (rc)
13745 		goto init_err_pci_clean;
13746 
13747 	/* No TC has been set yet and rings may have been trimmed due to
13748 	 * limited MSIX, so we re-initialize the TX rings per TC.
13749 	 */
13750 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13751 
13752 	if (BNXT_PF(bp)) {
13753 		if (!bnxt_pf_wq) {
13754 			bnxt_pf_wq =
13755 				create_singlethread_workqueue("bnxt_pf_wq");
13756 			if (!bnxt_pf_wq) {
13757 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13758 				rc = -ENOMEM;
13759 				goto init_err_pci_clean;
13760 			}
13761 		}
13762 		rc = bnxt_init_tc(bp);
13763 		if (rc)
13764 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13765 				   rc);
13766 	}
13767 
13768 	bnxt_inv_fw_health_reg(bp);
13769 	rc = bnxt_dl_register(bp);
13770 	if (rc)
13771 		goto init_err_dl;
13772 
13773 	rc = register_netdev(dev);
13774 	if (rc)
13775 		goto init_err_cleanup;
13776 
13777 	bnxt_dl_fw_reporters_create(bp);
13778 
13779 	bnxt_rdma_aux_device_init(bp);
13780 
13781 	bnxt_print_device_info(bp);
13782 
13783 	pci_save_state(pdev);
13784 
13785 	return 0;
13786 init_err_cleanup:
13787 	bnxt_dl_unregister(bp);
13788 init_err_dl:
13789 	bnxt_shutdown_tc(bp);
13790 	bnxt_clear_int_mode(bp);
13791 
13792 init_err_pci_clean:
13793 	bnxt_hwrm_func_drv_unrgtr(bp);
13794 	bnxt_free_hwrm_resources(bp);
13795 	bnxt_ethtool_free(bp);
13796 	bnxt_ptp_clear(bp);
13797 	kfree(bp->ptp_cfg);
13798 	bp->ptp_cfg = NULL;
13799 	kfree(bp->fw_health);
13800 	bp->fw_health = NULL;
13801 	bnxt_cleanup_pci(bp);
13802 	bnxt_free_ctx_mem(bp);
13803 	kfree(bp->ctx);
13804 	bp->ctx = NULL;
13805 	kfree(bp->rss_indir_tbl);
13806 	bp->rss_indir_tbl = NULL;
13807 
13808 init_err_free:
13809 	free_netdev(dev);
13810 	return rc;
13811 }
13812 
13813 static void bnxt_shutdown(struct pci_dev *pdev)
13814 {
13815 	struct net_device *dev = pci_get_drvdata(pdev);
13816 	struct bnxt *bp;
13817 
13818 	if (!dev)
13819 		return;
13820 
13821 	rtnl_lock();
13822 	bp = netdev_priv(dev);
13823 	if (!bp)
13824 		goto shutdown_exit;
13825 
13826 	if (netif_running(dev))
13827 		dev_close(dev);
13828 
13829 	bnxt_clear_int_mode(bp);
13830 	pci_disable_device(pdev);
13831 
13832 	if (system_state == SYSTEM_POWER_OFF) {
13833 		pci_wake_from_d3(pdev, bp->wol);
13834 		pci_set_power_state(pdev, PCI_D3hot);
13835 	}
13836 
13837 shutdown_exit:
13838 	rtnl_unlock();
13839 }
13840 
13841 #ifdef CONFIG_PM_SLEEP
13842 static int bnxt_suspend(struct device *device)
13843 {
13844 	struct net_device *dev = dev_get_drvdata(device);
13845 	struct bnxt *bp = netdev_priv(dev);
13846 	int rc = 0;
13847 
13848 	rtnl_lock();
13849 	bnxt_ulp_stop(bp);
13850 	if (netif_running(dev)) {
13851 		netif_device_detach(dev);
13852 		rc = bnxt_close(dev);
13853 	}
13854 	bnxt_hwrm_func_drv_unrgtr(bp);
13855 	pci_disable_device(bp->pdev);
13856 	bnxt_free_ctx_mem(bp);
13857 	kfree(bp->ctx);
13858 	bp->ctx = NULL;
13859 	rtnl_unlock();
13860 	return rc;
13861 }
13862 
13863 static int bnxt_resume(struct device *device)
13864 {
13865 	struct net_device *dev = dev_get_drvdata(device);
13866 	struct bnxt *bp = netdev_priv(dev);
13867 	int rc = 0;
13868 
13869 	rtnl_lock();
13870 	rc = pci_enable_device(bp->pdev);
13871 	if (rc) {
13872 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13873 			   rc);
13874 		goto resume_exit;
13875 	}
13876 	pci_set_master(bp->pdev);
13877 	if (bnxt_hwrm_ver_get(bp)) {
13878 		rc = -ENODEV;
13879 		goto resume_exit;
13880 	}
13881 	rc = bnxt_hwrm_func_reset(bp);
13882 	if (rc) {
13883 		rc = -EBUSY;
13884 		goto resume_exit;
13885 	}
13886 
13887 	rc = bnxt_hwrm_func_qcaps(bp);
13888 	if (rc)
13889 		goto resume_exit;
13890 
13891 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13892 		rc = -ENODEV;
13893 		goto resume_exit;
13894 	}
13895 
13896 	bnxt_get_wol_settings(bp);
13897 	if (netif_running(dev)) {
13898 		rc = bnxt_open(dev);
13899 		if (!rc)
13900 			netif_device_attach(dev);
13901 	}
13902 
13903 resume_exit:
13904 	bnxt_ulp_start(bp, rc);
13905 	if (!rc)
13906 		bnxt_reenable_sriov(bp);
13907 	rtnl_unlock();
13908 	return rc;
13909 }
13910 
13911 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13912 #define BNXT_PM_OPS (&bnxt_pm_ops)
13913 
13914 #else
13915 
13916 #define BNXT_PM_OPS NULL
13917 
13918 #endif /* CONFIG_PM_SLEEP */
13919 
13920 /**
13921  * bnxt_io_error_detected - called when PCI error is detected
13922  * @pdev: Pointer to PCI device
13923  * @state: The current pci connection state
13924  *
13925  * This function is called after a PCI bus error affecting
13926  * this device has been detected.
13927  */
13928 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13929 					       pci_channel_state_t state)
13930 {
13931 	struct net_device *netdev = pci_get_drvdata(pdev);
13932 	struct bnxt *bp = netdev_priv(netdev);
13933 
13934 	netdev_info(netdev, "PCI I/O error detected\n");
13935 
13936 	rtnl_lock();
13937 	netif_device_detach(netdev);
13938 
13939 	bnxt_ulp_stop(bp);
13940 
13941 	if (state == pci_channel_io_perm_failure) {
13942 		rtnl_unlock();
13943 		return PCI_ERS_RESULT_DISCONNECT;
13944 	}
13945 
13946 	if (state == pci_channel_io_frozen)
13947 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13948 
13949 	if (netif_running(netdev))
13950 		bnxt_close(netdev);
13951 
13952 	if (pci_is_enabled(pdev))
13953 		pci_disable_device(pdev);
13954 	bnxt_free_ctx_mem(bp);
13955 	kfree(bp->ctx);
13956 	bp->ctx = NULL;
13957 	rtnl_unlock();
13958 
13959 	/* Request a slot slot reset. */
13960 	return PCI_ERS_RESULT_NEED_RESET;
13961 }
13962 
13963 /**
13964  * bnxt_io_slot_reset - called after the pci bus has been reset.
13965  * @pdev: Pointer to PCI device
13966  *
13967  * Restart the card from scratch, as if from a cold-boot.
13968  * At this point, the card has exprienced a hard reset,
13969  * followed by fixups by BIOS, and has its config space
13970  * set up identically to what it was at cold boot.
13971  */
13972 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13973 {
13974 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13975 	struct net_device *netdev = pci_get_drvdata(pdev);
13976 	struct bnxt *bp = netdev_priv(netdev);
13977 	int retry = 0;
13978 	int err = 0;
13979 	int off;
13980 
13981 	netdev_info(bp->dev, "PCI Slot Reset\n");
13982 
13983 	rtnl_lock();
13984 
13985 	if (pci_enable_device(pdev)) {
13986 		dev_err(&pdev->dev,
13987 			"Cannot re-enable PCI device after reset.\n");
13988 	} else {
13989 		pci_set_master(pdev);
13990 		/* Upon fatal error, our device internal logic that latches to
13991 		 * BAR value is getting reset and will restore only upon
13992 		 * rewritting the BARs.
13993 		 *
13994 		 * As pci_restore_state() does not re-write the BARs if the
13995 		 * value is same as saved value earlier, driver needs to
13996 		 * write the BARs to 0 to force restore, in case of fatal error.
13997 		 */
13998 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13999 				       &bp->state)) {
14000 			for (off = PCI_BASE_ADDRESS_0;
14001 			     off <= PCI_BASE_ADDRESS_5; off += 4)
14002 				pci_write_config_dword(bp->pdev, off, 0);
14003 		}
14004 		pci_restore_state(pdev);
14005 		pci_save_state(pdev);
14006 
14007 		bnxt_inv_fw_health_reg(bp);
14008 		bnxt_try_map_fw_health_reg(bp);
14009 
14010 		/* In some PCIe AER scenarios, firmware may take up to
14011 		 * 10 seconds to become ready in the worst case.
14012 		 */
14013 		do {
14014 			err = bnxt_try_recover_fw(bp);
14015 			if (!err)
14016 				break;
14017 			retry++;
14018 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14019 
14020 		if (err) {
14021 			dev_err(&pdev->dev, "Firmware not ready\n");
14022 			goto reset_exit;
14023 		}
14024 
14025 		err = bnxt_hwrm_func_reset(bp);
14026 		if (!err)
14027 			result = PCI_ERS_RESULT_RECOVERED;
14028 
14029 		bnxt_ulp_irq_stop(bp);
14030 		bnxt_clear_int_mode(bp);
14031 		err = bnxt_init_int_mode(bp);
14032 		bnxt_ulp_irq_restart(bp, err);
14033 	}
14034 
14035 reset_exit:
14036 	bnxt_clear_reservations(bp, true);
14037 	rtnl_unlock();
14038 
14039 	return result;
14040 }
14041 
14042 /**
14043  * bnxt_io_resume - called when traffic can start flowing again.
14044  * @pdev: Pointer to PCI device
14045  *
14046  * This callback is called when the error recovery driver tells
14047  * us that its OK to resume normal operation.
14048  */
14049 static void bnxt_io_resume(struct pci_dev *pdev)
14050 {
14051 	struct net_device *netdev = pci_get_drvdata(pdev);
14052 	struct bnxt *bp = netdev_priv(netdev);
14053 	int err;
14054 
14055 	netdev_info(bp->dev, "PCI Slot Resume\n");
14056 	rtnl_lock();
14057 
14058 	err = bnxt_hwrm_func_qcaps(bp);
14059 	if (!err && netif_running(netdev))
14060 		err = bnxt_open(netdev);
14061 
14062 	bnxt_ulp_start(bp, err);
14063 	if (!err) {
14064 		bnxt_reenable_sriov(bp);
14065 		netif_device_attach(netdev);
14066 	}
14067 
14068 	rtnl_unlock();
14069 }
14070 
14071 static const struct pci_error_handlers bnxt_err_handler = {
14072 	.error_detected	= bnxt_io_error_detected,
14073 	.slot_reset	= bnxt_io_slot_reset,
14074 	.resume		= bnxt_io_resume
14075 };
14076 
14077 static struct pci_driver bnxt_pci_driver = {
14078 	.name		= DRV_MODULE_NAME,
14079 	.id_table	= bnxt_pci_tbl,
14080 	.probe		= bnxt_init_one,
14081 	.remove		= bnxt_remove_one,
14082 	.shutdown	= bnxt_shutdown,
14083 	.driver.pm	= BNXT_PM_OPS,
14084 	.err_handler	= &bnxt_err_handler,
14085 #if defined(CONFIG_BNXT_SRIOV)
14086 	.sriov_configure = bnxt_sriov_configure,
14087 #endif
14088 };
14089 
14090 static int __init bnxt_init(void)
14091 {
14092 	int err;
14093 
14094 	bnxt_debug_init();
14095 	err = pci_register_driver(&bnxt_pci_driver);
14096 	if (err) {
14097 		bnxt_debug_exit();
14098 		return err;
14099 	}
14100 
14101 	return 0;
14102 }
14103 
14104 static void __exit bnxt_exit(void)
14105 {
14106 	pci_unregister_driver(&bnxt_pci_driver);
14107 	if (bnxt_pf_wq)
14108 		destroy_workqueue(bnxt_pf_wq);
14109 	bnxt_debug_exit();
14110 }
14111 
14112 module_init(bnxt_init);
14113 module_exit(bnxt_exit);
14114