1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2017 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54 
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64 #include "bnxt_devlink.h"
65 
66 #define BNXT_TX_TIMEOUT		(5 * HZ)
67 
68 static const char version[] =
69 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
70 
71 MODULE_LICENSE("GPL");
72 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74 
75 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
76 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
77 #define BNXT_RX_COPY_THRESH 256
78 
79 #define BNXT_TX_PUSH_THRESH 164
80 
81 enum board_idx {
82 	BCM57301,
83 	BCM57302,
84 	BCM57304,
85 	BCM57417_NPAR,
86 	BCM58700,
87 	BCM57311,
88 	BCM57312,
89 	BCM57402,
90 	BCM57404,
91 	BCM57406,
92 	BCM57402_NPAR,
93 	BCM57407,
94 	BCM57412,
95 	BCM57414,
96 	BCM57416,
97 	BCM57417,
98 	BCM57412_NPAR,
99 	BCM57314,
100 	BCM57417_SFP,
101 	BCM57416_SFP,
102 	BCM57404_NPAR,
103 	BCM57406_NPAR,
104 	BCM57407_SFP,
105 	BCM57407_NPAR,
106 	BCM57414_NPAR,
107 	BCM57416_NPAR,
108 	BCM57452,
109 	BCM57454,
110 	BCM58802,
111 	BCM58804,
112 	BCM58808,
113 	NETXTREME_E_VF,
114 	NETXTREME_C_VF,
115 	NETXTREME_S_VF,
116 };
117 
118 /* indexed by enum above */
119 static const struct {
120 	char *name;
121 } board_info[] = {
122 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
123 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
124 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
125 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
126 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
127 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
128 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
129 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
130 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
131 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
132 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
133 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
134 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
135 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
136 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
137 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
138 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
139 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
140 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
141 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
142 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
143 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
144 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
145 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
146 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
147 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
148 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
149 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
150 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
151 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
152 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
153 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
154 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
155 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
156 };
157 
158 static const struct pci_device_id bnxt_pci_tbl[] = {
159 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
163 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
166 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
167 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
168 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
169 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
170 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
171 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
173 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
175 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
176 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
180 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
181 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
184 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
185 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
187 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
190 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
192 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
193 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
194 #ifdef CONFIG_BNXT_SRIOV
195 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
196 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
197 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
203 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
204 #endif
205 	{ 0 }
206 };
207 
208 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
209 
210 static const u16 bnxt_vf_req_snif[] = {
211 	HWRM_FUNC_CFG,
212 	HWRM_PORT_PHY_QCFG,
213 	HWRM_CFA_L2_FILTER_ALLOC,
214 };
215 
216 static const u16 bnxt_async_events_arr[] = {
217 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
218 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
219 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
220 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
221 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
222 };
223 
224 static struct workqueue_struct *bnxt_pf_wq;
225 
226 static bool bnxt_vf_pciid(enum board_idx idx)
227 {
228 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
229 		idx == NETXTREME_S_VF);
230 }
231 
232 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
233 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
234 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
235 
236 #define BNXT_CP_DB_REARM(db, raw_cons)					\
237 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
238 
239 #define BNXT_CP_DB(db, raw_cons)					\
240 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
241 
242 #define BNXT_CP_DB_IRQ_DIS(db)						\
243 		writel(DB_CP_IRQ_DIS_FLAGS, db)
244 
245 const u16 bnxt_lhint_arr[] = {
246 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
247 	TX_BD_FLAGS_LHINT_512_TO_1023,
248 	TX_BD_FLAGS_LHINT_1024_TO_2047,
249 	TX_BD_FLAGS_LHINT_1024_TO_2047,
250 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
251 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
252 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
253 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
254 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
255 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
256 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
257 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
258 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265 };
266 
267 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
268 {
269 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
270 
271 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
272 		return 0;
273 
274 	return md_dst->u.port_info.port_id;
275 }
276 
277 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
278 {
279 	struct bnxt *bp = netdev_priv(dev);
280 	struct tx_bd *txbd;
281 	struct tx_bd_ext *txbd1;
282 	struct netdev_queue *txq;
283 	int i;
284 	dma_addr_t mapping;
285 	unsigned int length, pad = 0;
286 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
287 	u16 prod, last_frag;
288 	struct pci_dev *pdev = bp->pdev;
289 	struct bnxt_tx_ring_info *txr;
290 	struct bnxt_sw_tx_bd *tx_buf;
291 
292 	i = skb_get_queue_mapping(skb);
293 	if (unlikely(i >= bp->tx_nr_rings)) {
294 		dev_kfree_skb_any(skb);
295 		return NETDEV_TX_OK;
296 	}
297 
298 	txq = netdev_get_tx_queue(dev, i);
299 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
300 	prod = txr->tx_prod;
301 
302 	free_size = bnxt_tx_avail(bp, txr);
303 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
304 		netif_tx_stop_queue(txq);
305 		return NETDEV_TX_BUSY;
306 	}
307 
308 	length = skb->len;
309 	len = skb_headlen(skb);
310 	last_frag = skb_shinfo(skb)->nr_frags;
311 
312 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
313 
314 	txbd->tx_bd_opaque = prod;
315 
316 	tx_buf = &txr->tx_buf_ring[prod];
317 	tx_buf->skb = skb;
318 	tx_buf->nr_frags = last_frag;
319 
320 	vlan_tag_flags = 0;
321 	cfa_action = bnxt_xmit_get_cfa_action(skb);
322 	if (skb_vlan_tag_present(skb)) {
323 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
324 				 skb_vlan_tag_get(skb);
325 		/* Currently supports 8021Q, 8021AD vlan offloads
326 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
327 		 */
328 		if (skb->vlan_proto == htons(ETH_P_8021Q))
329 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
330 	}
331 
332 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
333 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
334 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
335 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
336 		void *pdata = tx_push_buf->data;
337 		u64 *end;
338 		int j, push_len;
339 
340 		/* Set COAL_NOW to be ready quickly for the next push */
341 		tx_push->tx_bd_len_flags_type =
342 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
343 					TX_BD_TYPE_LONG_TX_BD |
344 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
345 					TX_BD_FLAGS_COAL_NOW |
346 					TX_BD_FLAGS_PACKET_END |
347 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
348 
349 		if (skb->ip_summed == CHECKSUM_PARTIAL)
350 			tx_push1->tx_bd_hsize_lflags =
351 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
352 		else
353 			tx_push1->tx_bd_hsize_lflags = 0;
354 
355 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
356 		tx_push1->tx_bd_cfa_action =
357 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
358 
359 		end = pdata + length;
360 		end = PTR_ALIGN(end, 8) - 1;
361 		*end = 0;
362 
363 		skb_copy_from_linear_data(skb, pdata, len);
364 		pdata += len;
365 		for (j = 0; j < last_frag; j++) {
366 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
367 			void *fptr;
368 
369 			fptr = skb_frag_address_safe(frag);
370 			if (!fptr)
371 				goto normal_tx;
372 
373 			memcpy(pdata, fptr, skb_frag_size(frag));
374 			pdata += skb_frag_size(frag);
375 		}
376 
377 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
378 		txbd->tx_bd_haddr = txr->data_mapping;
379 		prod = NEXT_TX(prod);
380 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
381 		memcpy(txbd, tx_push1, sizeof(*txbd));
382 		prod = NEXT_TX(prod);
383 		tx_push->doorbell =
384 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
385 		txr->tx_prod = prod;
386 
387 		tx_buf->is_push = 1;
388 		netdev_tx_sent_queue(txq, skb->len);
389 		wmb();	/* Sync is_push and byte queue before pushing data */
390 
391 		push_len = (length + sizeof(*tx_push) + 7) / 8;
392 		if (push_len > 16) {
393 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
394 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
395 					 (push_len - 16) << 1);
396 		} else {
397 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
398 					 push_len);
399 		}
400 
401 		goto tx_done;
402 	}
403 
404 normal_tx:
405 	if (length < BNXT_MIN_PKT_SIZE) {
406 		pad = BNXT_MIN_PKT_SIZE - length;
407 		if (skb_pad(skb, pad)) {
408 			/* SKB already freed. */
409 			tx_buf->skb = NULL;
410 			return NETDEV_TX_OK;
411 		}
412 		length = BNXT_MIN_PKT_SIZE;
413 	}
414 
415 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
416 
417 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
418 		dev_kfree_skb_any(skb);
419 		tx_buf->skb = NULL;
420 		return NETDEV_TX_OK;
421 	}
422 
423 	dma_unmap_addr_set(tx_buf, mapping, mapping);
424 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
425 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
426 
427 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
428 
429 	prod = NEXT_TX(prod);
430 	txbd1 = (struct tx_bd_ext *)
431 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
432 
433 	txbd1->tx_bd_hsize_lflags = 0;
434 	if (skb_is_gso(skb)) {
435 		u32 hdr_len;
436 
437 		if (skb->encapsulation)
438 			hdr_len = skb_inner_network_offset(skb) +
439 				skb_inner_network_header_len(skb) +
440 				inner_tcp_hdrlen(skb);
441 		else
442 			hdr_len = skb_transport_offset(skb) +
443 				tcp_hdrlen(skb);
444 
445 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
446 					TX_BD_FLAGS_T_IPID |
447 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
448 		length = skb_shinfo(skb)->gso_size;
449 		txbd1->tx_bd_mss = cpu_to_le32(length);
450 		length += hdr_len;
451 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
452 		txbd1->tx_bd_hsize_lflags =
453 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
454 		txbd1->tx_bd_mss = 0;
455 	}
456 
457 	length >>= 9;
458 	flags |= bnxt_lhint_arr[length];
459 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
460 
461 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
462 	txbd1->tx_bd_cfa_action =
463 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
464 	for (i = 0; i < last_frag; i++) {
465 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
466 
467 		prod = NEXT_TX(prod);
468 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
469 
470 		len = skb_frag_size(frag);
471 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
472 					   DMA_TO_DEVICE);
473 
474 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
475 			goto tx_dma_error;
476 
477 		tx_buf = &txr->tx_buf_ring[prod];
478 		dma_unmap_addr_set(tx_buf, mapping, mapping);
479 
480 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
481 
482 		flags = len << TX_BD_LEN_SHIFT;
483 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
484 	}
485 
486 	flags &= ~TX_BD_LEN;
487 	txbd->tx_bd_len_flags_type =
488 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
489 			    TX_BD_FLAGS_PACKET_END);
490 
491 	netdev_tx_sent_queue(txq, skb->len);
492 
493 	/* Sync BD data before updating doorbell */
494 	wmb();
495 
496 	prod = NEXT_TX(prod);
497 	txr->tx_prod = prod;
498 
499 	if (!skb->xmit_more || netif_xmit_stopped(txq))
500 		bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
501 
502 tx_done:
503 
504 	mmiowb();
505 
506 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
507 		if (skb->xmit_more && !tx_buf->is_push)
508 			bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
509 
510 		netif_tx_stop_queue(txq);
511 
512 		/* netif_tx_stop_queue() must be done before checking
513 		 * tx index in bnxt_tx_avail() below, because in
514 		 * bnxt_tx_int(), we update tx index before checking for
515 		 * netif_tx_queue_stopped().
516 		 */
517 		smp_mb();
518 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
519 			netif_tx_wake_queue(txq);
520 	}
521 	return NETDEV_TX_OK;
522 
523 tx_dma_error:
524 	last_frag = i;
525 
526 	/* start back at beginning and unmap skb */
527 	prod = txr->tx_prod;
528 	tx_buf = &txr->tx_buf_ring[prod];
529 	tx_buf->skb = NULL;
530 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
531 			 skb_headlen(skb), PCI_DMA_TODEVICE);
532 	prod = NEXT_TX(prod);
533 
534 	/* unmap remaining mapped pages */
535 	for (i = 0; i < last_frag; i++) {
536 		prod = NEXT_TX(prod);
537 		tx_buf = &txr->tx_buf_ring[prod];
538 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
539 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
540 			       PCI_DMA_TODEVICE);
541 	}
542 
543 	dev_kfree_skb_any(skb);
544 	return NETDEV_TX_OK;
545 }
546 
547 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
548 {
549 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
550 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
551 	u16 cons = txr->tx_cons;
552 	struct pci_dev *pdev = bp->pdev;
553 	int i;
554 	unsigned int tx_bytes = 0;
555 
556 	for (i = 0; i < nr_pkts; i++) {
557 		struct bnxt_sw_tx_bd *tx_buf;
558 		struct sk_buff *skb;
559 		int j, last;
560 
561 		tx_buf = &txr->tx_buf_ring[cons];
562 		cons = NEXT_TX(cons);
563 		skb = tx_buf->skb;
564 		tx_buf->skb = NULL;
565 
566 		if (tx_buf->is_push) {
567 			tx_buf->is_push = 0;
568 			goto next_tx_int;
569 		}
570 
571 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
572 				 skb_headlen(skb), PCI_DMA_TODEVICE);
573 		last = tx_buf->nr_frags;
574 
575 		for (j = 0; j < last; j++) {
576 			cons = NEXT_TX(cons);
577 			tx_buf = &txr->tx_buf_ring[cons];
578 			dma_unmap_page(
579 				&pdev->dev,
580 				dma_unmap_addr(tx_buf, mapping),
581 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
582 				PCI_DMA_TODEVICE);
583 		}
584 
585 next_tx_int:
586 		cons = NEXT_TX(cons);
587 
588 		tx_bytes += skb->len;
589 		dev_kfree_skb_any(skb);
590 	}
591 
592 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
593 	txr->tx_cons = cons;
594 
595 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
596 	 * before checking for netif_tx_queue_stopped().  Without the
597 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
598 	 * will miss it and cause the queue to be stopped forever.
599 	 */
600 	smp_mb();
601 
602 	if (unlikely(netif_tx_queue_stopped(txq)) &&
603 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
604 		__netif_tx_lock(txq, smp_processor_id());
605 		if (netif_tx_queue_stopped(txq) &&
606 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
607 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
608 			netif_tx_wake_queue(txq);
609 		__netif_tx_unlock(txq);
610 	}
611 }
612 
613 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
614 					 gfp_t gfp)
615 {
616 	struct device *dev = &bp->pdev->dev;
617 	struct page *page;
618 
619 	page = alloc_page(gfp);
620 	if (!page)
621 		return NULL;
622 
623 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
624 				      DMA_ATTR_WEAK_ORDERING);
625 	if (dma_mapping_error(dev, *mapping)) {
626 		__free_page(page);
627 		return NULL;
628 	}
629 	*mapping += bp->rx_dma_offset;
630 	return page;
631 }
632 
633 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
634 				       gfp_t gfp)
635 {
636 	u8 *data;
637 	struct pci_dev *pdev = bp->pdev;
638 
639 	data = kmalloc(bp->rx_buf_size, gfp);
640 	if (!data)
641 		return NULL;
642 
643 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
644 					bp->rx_buf_use_size, bp->rx_dir,
645 					DMA_ATTR_WEAK_ORDERING);
646 
647 	if (dma_mapping_error(&pdev->dev, *mapping)) {
648 		kfree(data);
649 		data = NULL;
650 	}
651 	return data;
652 }
653 
654 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
655 		       u16 prod, gfp_t gfp)
656 {
657 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
658 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
659 	dma_addr_t mapping;
660 
661 	if (BNXT_RX_PAGE_MODE(bp)) {
662 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
663 
664 		if (!page)
665 			return -ENOMEM;
666 
667 		rx_buf->data = page;
668 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
669 	} else {
670 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
671 
672 		if (!data)
673 			return -ENOMEM;
674 
675 		rx_buf->data = data;
676 		rx_buf->data_ptr = data + bp->rx_offset;
677 	}
678 	rx_buf->mapping = mapping;
679 
680 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
681 	return 0;
682 }
683 
684 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
685 {
686 	u16 prod = rxr->rx_prod;
687 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
688 	struct rx_bd *cons_bd, *prod_bd;
689 
690 	prod_rx_buf = &rxr->rx_buf_ring[prod];
691 	cons_rx_buf = &rxr->rx_buf_ring[cons];
692 
693 	prod_rx_buf->data = data;
694 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
695 
696 	prod_rx_buf->mapping = cons_rx_buf->mapping;
697 
698 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
699 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
700 
701 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
702 }
703 
704 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
705 {
706 	u16 next, max = rxr->rx_agg_bmap_size;
707 
708 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
709 	if (next >= max)
710 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
711 	return next;
712 }
713 
714 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
715 				     struct bnxt_rx_ring_info *rxr,
716 				     u16 prod, gfp_t gfp)
717 {
718 	struct rx_bd *rxbd =
719 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
720 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
721 	struct pci_dev *pdev = bp->pdev;
722 	struct page *page;
723 	dma_addr_t mapping;
724 	u16 sw_prod = rxr->rx_sw_agg_prod;
725 	unsigned int offset = 0;
726 
727 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
728 		page = rxr->rx_page;
729 		if (!page) {
730 			page = alloc_page(gfp);
731 			if (!page)
732 				return -ENOMEM;
733 			rxr->rx_page = page;
734 			rxr->rx_page_offset = 0;
735 		}
736 		offset = rxr->rx_page_offset;
737 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
738 		if (rxr->rx_page_offset == PAGE_SIZE)
739 			rxr->rx_page = NULL;
740 		else
741 			get_page(page);
742 	} else {
743 		page = alloc_page(gfp);
744 		if (!page)
745 			return -ENOMEM;
746 	}
747 
748 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
749 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
750 				     DMA_ATTR_WEAK_ORDERING);
751 	if (dma_mapping_error(&pdev->dev, mapping)) {
752 		__free_page(page);
753 		return -EIO;
754 	}
755 
756 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
757 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
758 
759 	__set_bit(sw_prod, rxr->rx_agg_bmap);
760 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
761 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
762 
763 	rx_agg_buf->page = page;
764 	rx_agg_buf->offset = offset;
765 	rx_agg_buf->mapping = mapping;
766 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
767 	rxbd->rx_bd_opaque = sw_prod;
768 	return 0;
769 }
770 
771 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
772 				   u32 agg_bufs)
773 {
774 	struct bnxt *bp = bnapi->bp;
775 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
776 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
777 	u16 prod = rxr->rx_agg_prod;
778 	u16 sw_prod = rxr->rx_sw_agg_prod;
779 	u32 i;
780 
781 	for (i = 0; i < agg_bufs; i++) {
782 		u16 cons;
783 		struct rx_agg_cmp *agg;
784 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
785 		struct rx_bd *prod_bd;
786 		struct page *page;
787 
788 		agg = (struct rx_agg_cmp *)
789 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
790 		cons = agg->rx_agg_cmp_opaque;
791 		__clear_bit(cons, rxr->rx_agg_bmap);
792 
793 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
794 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
795 
796 		__set_bit(sw_prod, rxr->rx_agg_bmap);
797 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
798 		cons_rx_buf = &rxr->rx_agg_ring[cons];
799 
800 		/* It is possible for sw_prod to be equal to cons, so
801 		 * set cons_rx_buf->page to NULL first.
802 		 */
803 		page = cons_rx_buf->page;
804 		cons_rx_buf->page = NULL;
805 		prod_rx_buf->page = page;
806 		prod_rx_buf->offset = cons_rx_buf->offset;
807 
808 		prod_rx_buf->mapping = cons_rx_buf->mapping;
809 
810 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
811 
812 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
813 		prod_bd->rx_bd_opaque = sw_prod;
814 
815 		prod = NEXT_RX_AGG(prod);
816 		sw_prod = NEXT_RX_AGG(sw_prod);
817 		cp_cons = NEXT_CMP(cp_cons);
818 	}
819 	rxr->rx_agg_prod = prod;
820 	rxr->rx_sw_agg_prod = sw_prod;
821 }
822 
823 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
824 					struct bnxt_rx_ring_info *rxr,
825 					u16 cons, void *data, u8 *data_ptr,
826 					dma_addr_t dma_addr,
827 					unsigned int offset_and_len)
828 {
829 	unsigned int payload = offset_and_len >> 16;
830 	unsigned int len = offset_and_len & 0xffff;
831 	struct skb_frag_struct *frag;
832 	struct page *page = data;
833 	u16 prod = rxr->rx_prod;
834 	struct sk_buff *skb;
835 	int off, err;
836 
837 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
838 	if (unlikely(err)) {
839 		bnxt_reuse_rx_data(rxr, cons, data);
840 		return NULL;
841 	}
842 	dma_addr -= bp->rx_dma_offset;
843 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
844 			     DMA_ATTR_WEAK_ORDERING);
845 
846 	if (unlikely(!payload))
847 		payload = eth_get_headlen(data_ptr, len);
848 
849 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
850 	if (!skb) {
851 		__free_page(page);
852 		return NULL;
853 	}
854 
855 	off = (void *)data_ptr - page_address(page);
856 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
857 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
858 	       payload + NET_IP_ALIGN);
859 
860 	frag = &skb_shinfo(skb)->frags[0];
861 	skb_frag_size_sub(frag, payload);
862 	frag->page_offset += payload;
863 	skb->data_len -= payload;
864 	skb->tail += payload;
865 
866 	return skb;
867 }
868 
869 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
870 				   struct bnxt_rx_ring_info *rxr, u16 cons,
871 				   void *data, u8 *data_ptr,
872 				   dma_addr_t dma_addr,
873 				   unsigned int offset_and_len)
874 {
875 	u16 prod = rxr->rx_prod;
876 	struct sk_buff *skb;
877 	int err;
878 
879 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
880 	if (unlikely(err)) {
881 		bnxt_reuse_rx_data(rxr, cons, data);
882 		return NULL;
883 	}
884 
885 	skb = build_skb(data, 0);
886 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
887 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
888 	if (!skb) {
889 		kfree(data);
890 		return NULL;
891 	}
892 
893 	skb_reserve(skb, bp->rx_offset);
894 	skb_put(skb, offset_and_len & 0xffff);
895 	return skb;
896 }
897 
898 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
899 				     struct sk_buff *skb, u16 cp_cons,
900 				     u32 agg_bufs)
901 {
902 	struct pci_dev *pdev = bp->pdev;
903 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
904 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
905 	u16 prod = rxr->rx_agg_prod;
906 	u32 i;
907 
908 	for (i = 0; i < agg_bufs; i++) {
909 		u16 cons, frag_len;
910 		struct rx_agg_cmp *agg;
911 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
912 		struct page *page;
913 		dma_addr_t mapping;
914 
915 		agg = (struct rx_agg_cmp *)
916 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
917 		cons = agg->rx_agg_cmp_opaque;
918 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
919 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
920 
921 		cons_rx_buf = &rxr->rx_agg_ring[cons];
922 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
923 				   cons_rx_buf->offset, frag_len);
924 		__clear_bit(cons, rxr->rx_agg_bmap);
925 
926 		/* It is possible for bnxt_alloc_rx_page() to allocate
927 		 * a sw_prod index that equals the cons index, so we
928 		 * need to clear the cons entry now.
929 		 */
930 		mapping = cons_rx_buf->mapping;
931 		page = cons_rx_buf->page;
932 		cons_rx_buf->page = NULL;
933 
934 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
935 			struct skb_shared_info *shinfo;
936 			unsigned int nr_frags;
937 
938 			shinfo = skb_shinfo(skb);
939 			nr_frags = --shinfo->nr_frags;
940 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
941 
942 			dev_kfree_skb(skb);
943 
944 			cons_rx_buf->page = page;
945 
946 			/* Update prod since possibly some pages have been
947 			 * allocated already.
948 			 */
949 			rxr->rx_agg_prod = prod;
950 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
951 			return NULL;
952 		}
953 
954 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
955 				     PCI_DMA_FROMDEVICE,
956 				     DMA_ATTR_WEAK_ORDERING);
957 
958 		skb->data_len += frag_len;
959 		skb->len += frag_len;
960 		skb->truesize += PAGE_SIZE;
961 
962 		prod = NEXT_RX_AGG(prod);
963 		cp_cons = NEXT_CMP(cp_cons);
964 	}
965 	rxr->rx_agg_prod = prod;
966 	return skb;
967 }
968 
969 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
970 			       u8 agg_bufs, u32 *raw_cons)
971 {
972 	u16 last;
973 	struct rx_agg_cmp *agg;
974 
975 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
976 	last = RING_CMP(*raw_cons);
977 	agg = (struct rx_agg_cmp *)
978 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
979 	return RX_AGG_CMP_VALID(agg, *raw_cons);
980 }
981 
982 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
983 					    unsigned int len,
984 					    dma_addr_t mapping)
985 {
986 	struct bnxt *bp = bnapi->bp;
987 	struct pci_dev *pdev = bp->pdev;
988 	struct sk_buff *skb;
989 
990 	skb = napi_alloc_skb(&bnapi->napi, len);
991 	if (!skb)
992 		return NULL;
993 
994 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
995 				bp->rx_dir);
996 
997 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
998 	       len + NET_IP_ALIGN);
999 
1000 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1001 				   bp->rx_dir);
1002 
1003 	skb_put(skb, len);
1004 	return skb;
1005 }
1006 
1007 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1008 			   u32 *raw_cons, void *cmp)
1009 {
1010 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1011 	struct rx_cmp *rxcmp = cmp;
1012 	u32 tmp_raw_cons = *raw_cons;
1013 	u8 cmp_type, agg_bufs = 0;
1014 
1015 	cmp_type = RX_CMP_TYPE(rxcmp);
1016 
1017 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1018 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1019 			    RX_CMP_AGG_BUFS) >>
1020 			   RX_CMP_AGG_BUFS_SHIFT;
1021 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1022 		struct rx_tpa_end_cmp *tpa_end = cmp;
1023 
1024 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1025 			    RX_TPA_END_CMP_AGG_BUFS) >>
1026 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1027 	}
1028 
1029 	if (agg_bufs) {
1030 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1031 			return -EBUSY;
1032 	}
1033 	*raw_cons = tmp_raw_cons;
1034 	return 0;
1035 }
1036 
1037 static void bnxt_queue_sp_work(struct bnxt *bp)
1038 {
1039 	if (BNXT_PF(bp))
1040 		queue_work(bnxt_pf_wq, &bp->sp_task);
1041 	else
1042 		schedule_work(&bp->sp_task);
1043 }
1044 
1045 static void bnxt_cancel_sp_work(struct bnxt *bp)
1046 {
1047 	if (BNXT_PF(bp))
1048 		flush_workqueue(bnxt_pf_wq);
1049 	else
1050 		cancel_work_sync(&bp->sp_task);
1051 }
1052 
1053 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1054 {
1055 	if (!rxr->bnapi->in_reset) {
1056 		rxr->bnapi->in_reset = true;
1057 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1058 		bnxt_queue_sp_work(bp);
1059 	}
1060 	rxr->rx_next_cons = 0xffff;
1061 }
1062 
1063 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1064 			   struct rx_tpa_start_cmp *tpa_start,
1065 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1066 {
1067 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1068 	u16 cons, prod;
1069 	struct bnxt_tpa_info *tpa_info;
1070 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1071 	struct rx_bd *prod_bd;
1072 	dma_addr_t mapping;
1073 
1074 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1075 	prod = rxr->rx_prod;
1076 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1077 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1078 	tpa_info = &rxr->rx_tpa[agg_id];
1079 
1080 	if (unlikely(cons != rxr->rx_next_cons)) {
1081 		bnxt_sched_reset(bp, rxr);
1082 		return;
1083 	}
1084 	/* Store cfa_code in tpa_info to use in tpa_end
1085 	 * completion processing.
1086 	 */
1087 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1088 	prod_rx_buf->data = tpa_info->data;
1089 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1090 
1091 	mapping = tpa_info->mapping;
1092 	prod_rx_buf->mapping = mapping;
1093 
1094 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1095 
1096 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1097 
1098 	tpa_info->data = cons_rx_buf->data;
1099 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1100 	cons_rx_buf->data = NULL;
1101 	tpa_info->mapping = cons_rx_buf->mapping;
1102 
1103 	tpa_info->len =
1104 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1105 				RX_TPA_START_CMP_LEN_SHIFT;
1106 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1107 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1108 
1109 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1110 		tpa_info->gso_type = SKB_GSO_TCPV4;
1111 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1112 		if (hash_type == 3)
1113 			tpa_info->gso_type = SKB_GSO_TCPV6;
1114 		tpa_info->rss_hash =
1115 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1116 	} else {
1117 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1118 		tpa_info->gso_type = 0;
1119 		if (netif_msg_rx_err(bp))
1120 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1121 	}
1122 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1123 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1124 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1125 
1126 	rxr->rx_prod = NEXT_RX(prod);
1127 	cons = NEXT_RX(cons);
1128 	rxr->rx_next_cons = NEXT_RX(cons);
1129 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1130 
1131 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1132 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1133 	cons_rx_buf->data = NULL;
1134 }
1135 
1136 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1137 			   u16 cp_cons, u32 agg_bufs)
1138 {
1139 	if (agg_bufs)
1140 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1141 }
1142 
1143 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1144 					   int payload_off, int tcp_ts,
1145 					   struct sk_buff *skb)
1146 {
1147 #ifdef CONFIG_INET
1148 	struct tcphdr *th;
1149 	int len, nw_off;
1150 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1151 	u32 hdr_info = tpa_info->hdr_info;
1152 	bool loopback = false;
1153 
1154 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1155 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1156 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1157 
1158 	/* If the packet is an internal loopback packet, the offsets will
1159 	 * have an extra 4 bytes.
1160 	 */
1161 	if (inner_mac_off == 4) {
1162 		loopback = true;
1163 	} else if (inner_mac_off > 4) {
1164 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1165 					    ETH_HLEN - 2));
1166 
1167 		/* We only support inner iPv4/ipv6.  If we don't see the
1168 		 * correct protocol ID, it must be a loopback packet where
1169 		 * the offsets are off by 4.
1170 		 */
1171 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1172 			loopback = true;
1173 	}
1174 	if (loopback) {
1175 		/* internal loopback packet, subtract all offsets by 4 */
1176 		inner_ip_off -= 4;
1177 		inner_mac_off -= 4;
1178 		outer_ip_off -= 4;
1179 	}
1180 
1181 	nw_off = inner_ip_off - ETH_HLEN;
1182 	skb_set_network_header(skb, nw_off);
1183 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1184 		struct ipv6hdr *iph = ipv6_hdr(skb);
1185 
1186 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1187 		len = skb->len - skb_transport_offset(skb);
1188 		th = tcp_hdr(skb);
1189 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1190 	} else {
1191 		struct iphdr *iph = ip_hdr(skb);
1192 
1193 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1194 		len = skb->len - skb_transport_offset(skb);
1195 		th = tcp_hdr(skb);
1196 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1197 	}
1198 
1199 	if (inner_mac_off) { /* tunnel */
1200 		struct udphdr *uh = NULL;
1201 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1202 					    ETH_HLEN - 2));
1203 
1204 		if (proto == htons(ETH_P_IP)) {
1205 			struct iphdr *iph = (struct iphdr *)skb->data;
1206 
1207 			if (iph->protocol == IPPROTO_UDP)
1208 				uh = (struct udphdr *)(iph + 1);
1209 		} else {
1210 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1211 
1212 			if (iph->nexthdr == IPPROTO_UDP)
1213 				uh = (struct udphdr *)(iph + 1);
1214 		}
1215 		if (uh) {
1216 			if (uh->check)
1217 				skb_shinfo(skb)->gso_type |=
1218 					SKB_GSO_UDP_TUNNEL_CSUM;
1219 			else
1220 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1221 		}
1222 	}
1223 #endif
1224 	return skb;
1225 }
1226 
1227 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1228 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1229 
1230 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1231 					   int payload_off, int tcp_ts,
1232 					   struct sk_buff *skb)
1233 {
1234 #ifdef CONFIG_INET
1235 	struct tcphdr *th;
1236 	int len, nw_off, tcp_opt_len = 0;
1237 
1238 	if (tcp_ts)
1239 		tcp_opt_len = 12;
1240 
1241 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1242 		struct iphdr *iph;
1243 
1244 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1245 			 ETH_HLEN;
1246 		skb_set_network_header(skb, nw_off);
1247 		iph = ip_hdr(skb);
1248 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1249 		len = skb->len - skb_transport_offset(skb);
1250 		th = tcp_hdr(skb);
1251 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1252 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1253 		struct ipv6hdr *iph;
1254 
1255 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1256 			 ETH_HLEN;
1257 		skb_set_network_header(skb, nw_off);
1258 		iph = ipv6_hdr(skb);
1259 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1260 		len = skb->len - skb_transport_offset(skb);
1261 		th = tcp_hdr(skb);
1262 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1263 	} else {
1264 		dev_kfree_skb_any(skb);
1265 		return NULL;
1266 	}
1267 
1268 	if (nw_off) { /* tunnel */
1269 		struct udphdr *uh = NULL;
1270 
1271 		if (skb->protocol == htons(ETH_P_IP)) {
1272 			struct iphdr *iph = (struct iphdr *)skb->data;
1273 
1274 			if (iph->protocol == IPPROTO_UDP)
1275 				uh = (struct udphdr *)(iph + 1);
1276 		} else {
1277 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1278 
1279 			if (iph->nexthdr == IPPROTO_UDP)
1280 				uh = (struct udphdr *)(iph + 1);
1281 		}
1282 		if (uh) {
1283 			if (uh->check)
1284 				skb_shinfo(skb)->gso_type |=
1285 					SKB_GSO_UDP_TUNNEL_CSUM;
1286 			else
1287 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1288 		}
1289 	}
1290 #endif
1291 	return skb;
1292 }
1293 
1294 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1295 					   struct bnxt_tpa_info *tpa_info,
1296 					   struct rx_tpa_end_cmp *tpa_end,
1297 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1298 					   struct sk_buff *skb)
1299 {
1300 #ifdef CONFIG_INET
1301 	int payload_off;
1302 	u16 segs;
1303 
1304 	segs = TPA_END_TPA_SEGS(tpa_end);
1305 	if (segs == 1)
1306 		return skb;
1307 
1308 	NAPI_GRO_CB(skb)->count = segs;
1309 	skb_shinfo(skb)->gso_size =
1310 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1311 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1312 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1313 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1314 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1315 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1316 	if (likely(skb))
1317 		tcp_gro_complete(skb);
1318 #endif
1319 	return skb;
1320 }
1321 
1322 /* Given the cfa_code of a received packet determine which
1323  * netdev (vf-rep or PF) the packet is destined to.
1324  */
1325 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1326 {
1327 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1328 
1329 	/* if vf-rep dev is NULL, the must belongs to the PF */
1330 	return dev ? dev : bp->dev;
1331 }
1332 
1333 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1334 					   struct bnxt_napi *bnapi,
1335 					   u32 *raw_cons,
1336 					   struct rx_tpa_end_cmp *tpa_end,
1337 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1338 					   u8 *event)
1339 {
1340 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1341 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1342 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1343 	u8 *data_ptr, agg_bufs;
1344 	u16 cp_cons = RING_CMP(*raw_cons);
1345 	unsigned int len;
1346 	struct bnxt_tpa_info *tpa_info;
1347 	dma_addr_t mapping;
1348 	struct sk_buff *skb;
1349 	void *data;
1350 
1351 	if (unlikely(bnapi->in_reset)) {
1352 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1353 
1354 		if (rc < 0)
1355 			return ERR_PTR(-EBUSY);
1356 		return NULL;
1357 	}
1358 
1359 	tpa_info = &rxr->rx_tpa[agg_id];
1360 	data = tpa_info->data;
1361 	data_ptr = tpa_info->data_ptr;
1362 	prefetch(data_ptr);
1363 	len = tpa_info->len;
1364 	mapping = tpa_info->mapping;
1365 
1366 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1367 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1368 
1369 	if (agg_bufs) {
1370 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1371 			return ERR_PTR(-EBUSY);
1372 
1373 		*event |= BNXT_AGG_EVENT;
1374 		cp_cons = NEXT_CMP(cp_cons);
1375 	}
1376 
1377 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1378 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1379 		if (agg_bufs > MAX_SKB_FRAGS)
1380 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1381 				    agg_bufs, (int)MAX_SKB_FRAGS);
1382 		return NULL;
1383 	}
1384 
1385 	if (len <= bp->rx_copy_thresh) {
1386 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1387 		if (!skb) {
1388 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1389 			return NULL;
1390 		}
1391 	} else {
1392 		u8 *new_data;
1393 		dma_addr_t new_mapping;
1394 
1395 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1396 		if (!new_data) {
1397 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1398 			return NULL;
1399 		}
1400 
1401 		tpa_info->data = new_data;
1402 		tpa_info->data_ptr = new_data + bp->rx_offset;
1403 		tpa_info->mapping = new_mapping;
1404 
1405 		skb = build_skb(data, 0);
1406 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1407 				       bp->rx_buf_use_size, bp->rx_dir,
1408 				       DMA_ATTR_WEAK_ORDERING);
1409 
1410 		if (!skb) {
1411 			kfree(data);
1412 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1413 			return NULL;
1414 		}
1415 		skb_reserve(skb, bp->rx_offset);
1416 		skb_put(skb, len);
1417 	}
1418 
1419 	if (agg_bufs) {
1420 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1421 		if (!skb) {
1422 			/* Page reuse already handled by bnxt_rx_pages(). */
1423 			return NULL;
1424 		}
1425 	}
1426 
1427 	skb->protocol =
1428 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1429 
1430 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1431 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1432 
1433 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1434 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1435 		u16 vlan_proto = tpa_info->metadata >>
1436 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1437 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1438 
1439 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1440 	}
1441 
1442 	skb_checksum_none_assert(skb);
1443 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1444 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1445 		skb->csum_level =
1446 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1447 	}
1448 
1449 	if (TPA_END_GRO(tpa_end))
1450 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1451 
1452 	return skb;
1453 }
1454 
1455 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1456 			     struct sk_buff *skb)
1457 {
1458 	if (skb->dev != bp->dev) {
1459 		/* this packet belongs to a vf-rep */
1460 		bnxt_vf_rep_rx(bp, skb);
1461 		return;
1462 	}
1463 	skb_record_rx_queue(skb, bnapi->index);
1464 	napi_gro_receive(&bnapi->napi, skb);
1465 }
1466 
1467 /* returns the following:
1468  * 1       - 1 packet successfully received
1469  * 0       - successful TPA_START, packet not completed yet
1470  * -EBUSY  - completion ring does not have all the agg buffers yet
1471  * -ENOMEM - packet aborted due to out of memory
1472  * -EIO    - packet aborted due to hw error indicated in BD
1473  */
1474 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1475 		       u8 *event)
1476 {
1477 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1478 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1479 	struct net_device *dev = bp->dev;
1480 	struct rx_cmp *rxcmp;
1481 	struct rx_cmp_ext *rxcmp1;
1482 	u32 tmp_raw_cons = *raw_cons;
1483 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1484 	struct bnxt_sw_rx_bd *rx_buf;
1485 	unsigned int len;
1486 	u8 *data_ptr, agg_bufs, cmp_type;
1487 	dma_addr_t dma_addr;
1488 	struct sk_buff *skb;
1489 	void *data;
1490 	int rc = 0;
1491 	u32 misc;
1492 
1493 	rxcmp = (struct rx_cmp *)
1494 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1495 
1496 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1497 	cp_cons = RING_CMP(tmp_raw_cons);
1498 	rxcmp1 = (struct rx_cmp_ext *)
1499 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1500 
1501 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1502 		return -EBUSY;
1503 
1504 	cmp_type = RX_CMP_TYPE(rxcmp);
1505 
1506 	prod = rxr->rx_prod;
1507 
1508 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1509 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1510 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1511 
1512 		*event |= BNXT_RX_EVENT;
1513 		goto next_rx_no_prod;
1514 
1515 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1516 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1517 				   (struct rx_tpa_end_cmp *)rxcmp,
1518 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1519 
1520 		if (IS_ERR(skb))
1521 			return -EBUSY;
1522 
1523 		rc = -ENOMEM;
1524 		if (likely(skb)) {
1525 			bnxt_deliver_skb(bp, bnapi, skb);
1526 			rc = 1;
1527 		}
1528 		*event |= BNXT_RX_EVENT;
1529 		goto next_rx_no_prod;
1530 	}
1531 
1532 	cons = rxcmp->rx_cmp_opaque;
1533 	rx_buf = &rxr->rx_buf_ring[cons];
1534 	data = rx_buf->data;
1535 	data_ptr = rx_buf->data_ptr;
1536 	if (unlikely(cons != rxr->rx_next_cons)) {
1537 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1538 
1539 		bnxt_sched_reset(bp, rxr);
1540 		return rc1;
1541 	}
1542 	prefetch(data_ptr);
1543 
1544 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1545 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1546 
1547 	if (agg_bufs) {
1548 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1549 			return -EBUSY;
1550 
1551 		cp_cons = NEXT_CMP(cp_cons);
1552 		*event |= BNXT_AGG_EVENT;
1553 	}
1554 	*event |= BNXT_RX_EVENT;
1555 
1556 	rx_buf->data = NULL;
1557 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1558 		bnxt_reuse_rx_data(rxr, cons, data);
1559 		if (agg_bufs)
1560 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1561 
1562 		rc = -EIO;
1563 		goto next_rx;
1564 	}
1565 
1566 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1567 	dma_addr = rx_buf->mapping;
1568 
1569 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1570 		rc = 1;
1571 		goto next_rx;
1572 	}
1573 
1574 	if (len <= bp->rx_copy_thresh) {
1575 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1576 		bnxt_reuse_rx_data(rxr, cons, data);
1577 		if (!skb) {
1578 			rc = -ENOMEM;
1579 			goto next_rx;
1580 		}
1581 	} else {
1582 		u32 payload;
1583 
1584 		if (rx_buf->data_ptr == data_ptr)
1585 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1586 		else
1587 			payload = 0;
1588 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1589 				      payload | len);
1590 		if (!skb) {
1591 			rc = -ENOMEM;
1592 			goto next_rx;
1593 		}
1594 	}
1595 
1596 	if (agg_bufs) {
1597 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1598 		if (!skb) {
1599 			rc = -ENOMEM;
1600 			goto next_rx;
1601 		}
1602 	}
1603 
1604 	if (RX_CMP_HASH_VALID(rxcmp)) {
1605 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1606 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1607 
1608 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1609 		if (hash_type != 1 && hash_type != 3)
1610 			type = PKT_HASH_TYPE_L3;
1611 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1612 	}
1613 
1614 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1615 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1616 
1617 	if ((rxcmp1->rx_cmp_flags2 &
1618 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1619 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1620 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1621 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1622 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1623 
1624 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1625 	}
1626 
1627 	skb_checksum_none_assert(skb);
1628 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1629 		if (dev->features & NETIF_F_RXCSUM) {
1630 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1631 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1632 		}
1633 	} else {
1634 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1635 			if (dev->features & NETIF_F_RXCSUM)
1636 				cpr->rx_l4_csum_errors++;
1637 		}
1638 	}
1639 
1640 	bnxt_deliver_skb(bp, bnapi, skb);
1641 	rc = 1;
1642 
1643 next_rx:
1644 	rxr->rx_prod = NEXT_RX(prod);
1645 	rxr->rx_next_cons = NEXT_RX(cons);
1646 
1647 next_rx_no_prod:
1648 	*raw_cons = tmp_raw_cons;
1649 
1650 	return rc;
1651 }
1652 
1653 /* In netpoll mode, if we are using a combined completion ring, we need to
1654  * discard the rx packets and recycle the buffers.
1655  */
1656 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1657 				 u32 *raw_cons, u8 *event)
1658 {
1659 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1660 	u32 tmp_raw_cons = *raw_cons;
1661 	struct rx_cmp_ext *rxcmp1;
1662 	struct rx_cmp *rxcmp;
1663 	u16 cp_cons;
1664 	u8 cmp_type;
1665 
1666 	cp_cons = RING_CMP(tmp_raw_cons);
1667 	rxcmp = (struct rx_cmp *)
1668 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1669 
1670 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1671 	cp_cons = RING_CMP(tmp_raw_cons);
1672 	rxcmp1 = (struct rx_cmp_ext *)
1673 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1674 
1675 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1676 		return -EBUSY;
1677 
1678 	cmp_type = RX_CMP_TYPE(rxcmp);
1679 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1680 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1681 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1682 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1683 		struct rx_tpa_end_cmp_ext *tpa_end1;
1684 
1685 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1686 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1687 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1688 	}
1689 	return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1690 }
1691 
1692 #define BNXT_GET_EVENT_PORT(data)	\
1693 	((data) &			\
1694 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1695 
1696 static int bnxt_async_event_process(struct bnxt *bp,
1697 				    struct hwrm_async_event_cmpl *cmpl)
1698 {
1699 	u16 event_id = le16_to_cpu(cmpl->event_id);
1700 
1701 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1702 	switch (event_id) {
1703 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1704 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1705 		struct bnxt_link_info *link_info = &bp->link_info;
1706 
1707 		if (BNXT_VF(bp))
1708 			goto async_event_process_exit;
1709 		if (data1 & 0x20000) {
1710 			u16 fw_speed = link_info->force_link_speed;
1711 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1712 
1713 			netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1714 				    speed);
1715 		}
1716 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1717 		/* fall thru */
1718 	}
1719 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1720 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1721 		break;
1722 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1723 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1724 		break;
1725 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1726 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1727 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1728 
1729 		if (BNXT_VF(bp))
1730 			break;
1731 
1732 		if (bp->pf.port_id != port_id)
1733 			break;
1734 
1735 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1736 		break;
1737 	}
1738 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1739 		if (BNXT_PF(bp))
1740 			goto async_event_process_exit;
1741 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1742 		break;
1743 	default:
1744 		goto async_event_process_exit;
1745 	}
1746 	bnxt_queue_sp_work(bp);
1747 async_event_process_exit:
1748 	bnxt_ulp_async_events(bp, cmpl);
1749 	return 0;
1750 }
1751 
1752 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1753 {
1754 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1755 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1756 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1757 				(struct hwrm_fwd_req_cmpl *)txcmp;
1758 
1759 	switch (cmpl_type) {
1760 	case CMPL_BASE_TYPE_HWRM_DONE:
1761 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1762 		if (seq_id == bp->hwrm_intr_seq_id)
1763 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1764 		else
1765 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1766 		break;
1767 
1768 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1769 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1770 
1771 		if ((vf_id < bp->pf.first_vf_id) ||
1772 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1773 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1774 				   vf_id);
1775 			return -EINVAL;
1776 		}
1777 
1778 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1779 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1780 		bnxt_queue_sp_work(bp);
1781 		break;
1782 
1783 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1784 		bnxt_async_event_process(bp,
1785 					 (struct hwrm_async_event_cmpl *)txcmp);
1786 
1787 	default:
1788 		break;
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1795 {
1796 	struct bnxt_napi *bnapi = dev_instance;
1797 	struct bnxt *bp = bnapi->bp;
1798 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1799 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1800 
1801 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1802 	napi_schedule(&bnapi->napi);
1803 	return IRQ_HANDLED;
1804 }
1805 
1806 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1807 {
1808 	u32 raw_cons = cpr->cp_raw_cons;
1809 	u16 cons = RING_CMP(raw_cons);
1810 	struct tx_cmp *txcmp;
1811 
1812 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1813 
1814 	return TX_CMP_VALID(txcmp, raw_cons);
1815 }
1816 
1817 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1818 {
1819 	struct bnxt_napi *bnapi = dev_instance;
1820 	struct bnxt *bp = bnapi->bp;
1821 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1822 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1823 	u32 int_status;
1824 
1825 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1826 
1827 	if (!bnxt_has_work(bp, cpr)) {
1828 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1829 		/* return if erroneous interrupt */
1830 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1831 			return IRQ_NONE;
1832 	}
1833 
1834 	/* disable ring IRQ */
1835 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1836 
1837 	/* Return here if interrupt is shared and is disabled. */
1838 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1839 		return IRQ_HANDLED;
1840 
1841 	napi_schedule(&bnapi->napi);
1842 	return IRQ_HANDLED;
1843 }
1844 
1845 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1846 {
1847 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1848 	u32 raw_cons = cpr->cp_raw_cons;
1849 	u32 cons;
1850 	int tx_pkts = 0;
1851 	int rx_pkts = 0;
1852 	u8 event = 0;
1853 	struct tx_cmp *txcmp;
1854 
1855 	while (1) {
1856 		int rc;
1857 
1858 		cons = RING_CMP(raw_cons);
1859 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1860 
1861 		if (!TX_CMP_VALID(txcmp, raw_cons))
1862 			break;
1863 
1864 		/* The valid test of the entry must be done first before
1865 		 * reading any further.
1866 		 */
1867 		dma_rmb();
1868 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1869 			tx_pkts++;
1870 			/* return full budget so NAPI will complete. */
1871 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1872 				rx_pkts = budget;
1873 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1874 			if (likely(budget))
1875 				rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1876 			else
1877 				rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1878 							   &event);
1879 			if (likely(rc >= 0))
1880 				rx_pkts += rc;
1881 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1882 			 * the NAPI budget.  Otherwise, we may potentially loop
1883 			 * here forever if we consistently cannot allocate
1884 			 * buffers.
1885 			 */
1886 			else if (rc == -ENOMEM)
1887 				rx_pkts++;
1888 			else if (rc == -EBUSY)	/* partial completion */
1889 				break;
1890 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1891 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1892 				    (TX_CMP_TYPE(txcmp) ==
1893 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1894 				    (TX_CMP_TYPE(txcmp) ==
1895 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1896 			bnxt_hwrm_handler(bp, txcmp);
1897 		}
1898 		raw_cons = NEXT_RAW_CMP(raw_cons);
1899 
1900 		if (rx_pkts == budget)
1901 			break;
1902 	}
1903 
1904 	if (event & BNXT_TX_EVENT) {
1905 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1906 		void __iomem *db = txr->tx_doorbell;
1907 		u16 prod = txr->tx_prod;
1908 
1909 		/* Sync BD data before updating doorbell */
1910 		wmb();
1911 
1912 		bnxt_db_write(bp, db, DB_KEY_TX | prod);
1913 	}
1914 
1915 	cpr->cp_raw_cons = raw_cons;
1916 	/* ACK completion ring before freeing tx ring and producing new
1917 	 * buffers in rx/agg rings to prevent overflowing the completion
1918 	 * ring.
1919 	 */
1920 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1921 
1922 	if (tx_pkts)
1923 		bnapi->tx_int(bp, bnapi, tx_pkts);
1924 
1925 	if (event & BNXT_RX_EVENT) {
1926 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1927 
1928 		bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1929 		if (event & BNXT_AGG_EVENT)
1930 			bnxt_db_write(bp, rxr->rx_agg_doorbell,
1931 				      DB_KEY_RX | rxr->rx_agg_prod);
1932 	}
1933 	return rx_pkts;
1934 }
1935 
1936 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1937 {
1938 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1939 	struct bnxt *bp = bnapi->bp;
1940 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1941 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1942 	struct tx_cmp *txcmp;
1943 	struct rx_cmp_ext *rxcmp1;
1944 	u32 cp_cons, tmp_raw_cons;
1945 	u32 raw_cons = cpr->cp_raw_cons;
1946 	u32 rx_pkts = 0;
1947 	u8 event = 0;
1948 
1949 	while (1) {
1950 		int rc;
1951 
1952 		cp_cons = RING_CMP(raw_cons);
1953 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1954 
1955 		if (!TX_CMP_VALID(txcmp, raw_cons))
1956 			break;
1957 
1958 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1959 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1960 			cp_cons = RING_CMP(tmp_raw_cons);
1961 			rxcmp1 = (struct rx_cmp_ext *)
1962 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1963 
1964 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1965 				break;
1966 
1967 			/* force an error to recycle the buffer */
1968 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1969 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1970 
1971 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1972 			if (likely(rc == -EIO))
1973 				rx_pkts++;
1974 			else if (rc == -EBUSY)	/* partial completion */
1975 				break;
1976 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1977 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1978 			bnxt_hwrm_handler(bp, txcmp);
1979 		} else {
1980 			netdev_err(bp->dev,
1981 				   "Invalid completion received on special ring\n");
1982 		}
1983 		raw_cons = NEXT_RAW_CMP(raw_cons);
1984 
1985 		if (rx_pkts == budget)
1986 			break;
1987 	}
1988 
1989 	cpr->cp_raw_cons = raw_cons;
1990 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1991 	bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1992 
1993 	if (event & BNXT_AGG_EVENT)
1994 		bnxt_db_write(bp, rxr->rx_agg_doorbell,
1995 			      DB_KEY_RX | rxr->rx_agg_prod);
1996 
1997 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1998 		napi_complete_done(napi, rx_pkts);
1999 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2000 	}
2001 	return rx_pkts;
2002 }
2003 
2004 static int bnxt_poll(struct napi_struct *napi, int budget)
2005 {
2006 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2007 	struct bnxt *bp = bnapi->bp;
2008 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2009 	int work_done = 0;
2010 
2011 	while (1) {
2012 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2013 
2014 		if (work_done >= budget)
2015 			break;
2016 
2017 		if (!bnxt_has_work(bp, cpr)) {
2018 			if (napi_complete_done(napi, work_done))
2019 				BNXT_CP_DB_REARM(cpr->cp_doorbell,
2020 						 cpr->cp_raw_cons);
2021 			break;
2022 		}
2023 	}
2024 	mmiowb();
2025 	return work_done;
2026 }
2027 
2028 static void bnxt_free_tx_skbs(struct bnxt *bp)
2029 {
2030 	int i, max_idx;
2031 	struct pci_dev *pdev = bp->pdev;
2032 
2033 	if (!bp->tx_ring)
2034 		return;
2035 
2036 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2037 	for (i = 0; i < bp->tx_nr_rings; i++) {
2038 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2039 		int j;
2040 
2041 		for (j = 0; j < max_idx;) {
2042 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2043 			struct sk_buff *skb = tx_buf->skb;
2044 			int k, last;
2045 
2046 			if (!skb) {
2047 				j++;
2048 				continue;
2049 			}
2050 
2051 			tx_buf->skb = NULL;
2052 
2053 			if (tx_buf->is_push) {
2054 				dev_kfree_skb(skb);
2055 				j += 2;
2056 				continue;
2057 			}
2058 
2059 			dma_unmap_single(&pdev->dev,
2060 					 dma_unmap_addr(tx_buf, mapping),
2061 					 skb_headlen(skb),
2062 					 PCI_DMA_TODEVICE);
2063 
2064 			last = tx_buf->nr_frags;
2065 			j += 2;
2066 			for (k = 0; k < last; k++, j++) {
2067 				int ring_idx = j & bp->tx_ring_mask;
2068 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2069 
2070 				tx_buf = &txr->tx_buf_ring[ring_idx];
2071 				dma_unmap_page(
2072 					&pdev->dev,
2073 					dma_unmap_addr(tx_buf, mapping),
2074 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2075 			}
2076 			dev_kfree_skb(skb);
2077 		}
2078 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2079 	}
2080 }
2081 
2082 static void bnxt_free_rx_skbs(struct bnxt *bp)
2083 {
2084 	int i, max_idx, max_agg_idx;
2085 	struct pci_dev *pdev = bp->pdev;
2086 
2087 	if (!bp->rx_ring)
2088 		return;
2089 
2090 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2091 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2092 	for (i = 0; i < bp->rx_nr_rings; i++) {
2093 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2094 		int j;
2095 
2096 		if (rxr->rx_tpa) {
2097 			for (j = 0; j < MAX_TPA; j++) {
2098 				struct bnxt_tpa_info *tpa_info =
2099 							&rxr->rx_tpa[j];
2100 				u8 *data = tpa_info->data;
2101 
2102 				if (!data)
2103 					continue;
2104 
2105 				dma_unmap_single_attrs(&pdev->dev,
2106 						       tpa_info->mapping,
2107 						       bp->rx_buf_use_size,
2108 						       bp->rx_dir,
2109 						       DMA_ATTR_WEAK_ORDERING);
2110 
2111 				tpa_info->data = NULL;
2112 
2113 				kfree(data);
2114 			}
2115 		}
2116 
2117 		for (j = 0; j < max_idx; j++) {
2118 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2119 			dma_addr_t mapping = rx_buf->mapping;
2120 			void *data = rx_buf->data;
2121 
2122 			if (!data)
2123 				continue;
2124 
2125 			rx_buf->data = NULL;
2126 
2127 			if (BNXT_RX_PAGE_MODE(bp)) {
2128 				mapping -= bp->rx_dma_offset;
2129 				dma_unmap_page_attrs(&pdev->dev, mapping,
2130 						     PAGE_SIZE, bp->rx_dir,
2131 						     DMA_ATTR_WEAK_ORDERING);
2132 				__free_page(data);
2133 			} else {
2134 				dma_unmap_single_attrs(&pdev->dev, mapping,
2135 						       bp->rx_buf_use_size,
2136 						       bp->rx_dir,
2137 						       DMA_ATTR_WEAK_ORDERING);
2138 				kfree(data);
2139 			}
2140 		}
2141 
2142 		for (j = 0; j < max_agg_idx; j++) {
2143 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2144 				&rxr->rx_agg_ring[j];
2145 			struct page *page = rx_agg_buf->page;
2146 
2147 			if (!page)
2148 				continue;
2149 
2150 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2151 					     BNXT_RX_PAGE_SIZE,
2152 					     PCI_DMA_FROMDEVICE,
2153 					     DMA_ATTR_WEAK_ORDERING);
2154 
2155 			rx_agg_buf->page = NULL;
2156 			__clear_bit(j, rxr->rx_agg_bmap);
2157 
2158 			__free_page(page);
2159 		}
2160 		if (rxr->rx_page) {
2161 			__free_page(rxr->rx_page);
2162 			rxr->rx_page = NULL;
2163 		}
2164 	}
2165 }
2166 
2167 static void bnxt_free_skbs(struct bnxt *bp)
2168 {
2169 	bnxt_free_tx_skbs(bp);
2170 	bnxt_free_rx_skbs(bp);
2171 }
2172 
2173 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2174 {
2175 	struct pci_dev *pdev = bp->pdev;
2176 	int i;
2177 
2178 	for (i = 0; i < ring->nr_pages; i++) {
2179 		if (!ring->pg_arr[i])
2180 			continue;
2181 
2182 		dma_free_coherent(&pdev->dev, ring->page_size,
2183 				  ring->pg_arr[i], ring->dma_arr[i]);
2184 
2185 		ring->pg_arr[i] = NULL;
2186 	}
2187 	if (ring->pg_tbl) {
2188 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2189 				  ring->pg_tbl, ring->pg_tbl_map);
2190 		ring->pg_tbl = NULL;
2191 	}
2192 	if (ring->vmem_size && *ring->vmem) {
2193 		vfree(*ring->vmem);
2194 		*ring->vmem = NULL;
2195 	}
2196 }
2197 
2198 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2199 {
2200 	int i;
2201 	struct pci_dev *pdev = bp->pdev;
2202 
2203 	if (ring->nr_pages > 1) {
2204 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2205 						  ring->nr_pages * 8,
2206 						  &ring->pg_tbl_map,
2207 						  GFP_KERNEL);
2208 		if (!ring->pg_tbl)
2209 			return -ENOMEM;
2210 	}
2211 
2212 	for (i = 0; i < ring->nr_pages; i++) {
2213 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2214 						     ring->page_size,
2215 						     &ring->dma_arr[i],
2216 						     GFP_KERNEL);
2217 		if (!ring->pg_arr[i])
2218 			return -ENOMEM;
2219 
2220 		if (ring->nr_pages > 1)
2221 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2222 	}
2223 
2224 	if (ring->vmem_size) {
2225 		*ring->vmem = vzalloc(ring->vmem_size);
2226 		if (!(*ring->vmem))
2227 			return -ENOMEM;
2228 	}
2229 	return 0;
2230 }
2231 
2232 static void bnxt_free_rx_rings(struct bnxt *bp)
2233 {
2234 	int i;
2235 
2236 	if (!bp->rx_ring)
2237 		return;
2238 
2239 	for (i = 0; i < bp->rx_nr_rings; i++) {
2240 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2241 		struct bnxt_ring_struct *ring;
2242 
2243 		if (rxr->xdp_prog)
2244 			bpf_prog_put(rxr->xdp_prog);
2245 
2246 		kfree(rxr->rx_tpa);
2247 		rxr->rx_tpa = NULL;
2248 
2249 		kfree(rxr->rx_agg_bmap);
2250 		rxr->rx_agg_bmap = NULL;
2251 
2252 		ring = &rxr->rx_ring_struct;
2253 		bnxt_free_ring(bp, ring);
2254 
2255 		ring = &rxr->rx_agg_ring_struct;
2256 		bnxt_free_ring(bp, ring);
2257 	}
2258 }
2259 
2260 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2261 {
2262 	int i, rc, agg_rings = 0, tpa_rings = 0;
2263 
2264 	if (!bp->rx_ring)
2265 		return -ENOMEM;
2266 
2267 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2268 		agg_rings = 1;
2269 
2270 	if (bp->flags & BNXT_FLAG_TPA)
2271 		tpa_rings = 1;
2272 
2273 	for (i = 0; i < bp->rx_nr_rings; i++) {
2274 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2275 		struct bnxt_ring_struct *ring;
2276 
2277 		ring = &rxr->rx_ring_struct;
2278 
2279 		rc = bnxt_alloc_ring(bp, ring);
2280 		if (rc)
2281 			return rc;
2282 
2283 		if (agg_rings) {
2284 			u16 mem_size;
2285 
2286 			ring = &rxr->rx_agg_ring_struct;
2287 			rc = bnxt_alloc_ring(bp, ring);
2288 			if (rc)
2289 				return rc;
2290 
2291 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2292 			mem_size = rxr->rx_agg_bmap_size / 8;
2293 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2294 			if (!rxr->rx_agg_bmap)
2295 				return -ENOMEM;
2296 
2297 			if (tpa_rings) {
2298 				rxr->rx_tpa = kcalloc(MAX_TPA,
2299 						sizeof(struct bnxt_tpa_info),
2300 						GFP_KERNEL);
2301 				if (!rxr->rx_tpa)
2302 					return -ENOMEM;
2303 			}
2304 		}
2305 	}
2306 	return 0;
2307 }
2308 
2309 static void bnxt_free_tx_rings(struct bnxt *bp)
2310 {
2311 	int i;
2312 	struct pci_dev *pdev = bp->pdev;
2313 
2314 	if (!bp->tx_ring)
2315 		return;
2316 
2317 	for (i = 0; i < bp->tx_nr_rings; i++) {
2318 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2319 		struct bnxt_ring_struct *ring;
2320 
2321 		if (txr->tx_push) {
2322 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2323 					  txr->tx_push, txr->tx_push_mapping);
2324 			txr->tx_push = NULL;
2325 		}
2326 
2327 		ring = &txr->tx_ring_struct;
2328 
2329 		bnxt_free_ring(bp, ring);
2330 	}
2331 }
2332 
2333 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2334 {
2335 	int i, j, rc;
2336 	struct pci_dev *pdev = bp->pdev;
2337 
2338 	bp->tx_push_size = 0;
2339 	if (bp->tx_push_thresh) {
2340 		int push_size;
2341 
2342 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2343 					bp->tx_push_thresh);
2344 
2345 		if (push_size > 256) {
2346 			push_size = 0;
2347 			bp->tx_push_thresh = 0;
2348 		}
2349 
2350 		bp->tx_push_size = push_size;
2351 	}
2352 
2353 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2354 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2355 		struct bnxt_ring_struct *ring;
2356 
2357 		ring = &txr->tx_ring_struct;
2358 
2359 		rc = bnxt_alloc_ring(bp, ring);
2360 		if (rc)
2361 			return rc;
2362 
2363 		if (bp->tx_push_size) {
2364 			dma_addr_t mapping;
2365 
2366 			/* One pre-allocated DMA buffer to backup
2367 			 * TX push operation
2368 			 */
2369 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2370 						bp->tx_push_size,
2371 						&txr->tx_push_mapping,
2372 						GFP_KERNEL);
2373 
2374 			if (!txr->tx_push)
2375 				return -ENOMEM;
2376 
2377 			mapping = txr->tx_push_mapping +
2378 				sizeof(struct tx_push_bd);
2379 			txr->data_mapping = cpu_to_le64(mapping);
2380 
2381 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2382 		}
2383 		ring->queue_id = bp->q_info[j].queue_id;
2384 		if (i < bp->tx_nr_rings_xdp)
2385 			continue;
2386 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2387 			j++;
2388 	}
2389 	return 0;
2390 }
2391 
2392 static void bnxt_free_cp_rings(struct bnxt *bp)
2393 {
2394 	int i;
2395 
2396 	if (!bp->bnapi)
2397 		return;
2398 
2399 	for (i = 0; i < bp->cp_nr_rings; i++) {
2400 		struct bnxt_napi *bnapi = bp->bnapi[i];
2401 		struct bnxt_cp_ring_info *cpr;
2402 		struct bnxt_ring_struct *ring;
2403 
2404 		if (!bnapi)
2405 			continue;
2406 
2407 		cpr = &bnapi->cp_ring;
2408 		ring = &cpr->cp_ring_struct;
2409 
2410 		bnxt_free_ring(bp, ring);
2411 	}
2412 }
2413 
2414 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2415 {
2416 	int i, rc;
2417 
2418 	for (i = 0; i < bp->cp_nr_rings; i++) {
2419 		struct bnxt_napi *bnapi = bp->bnapi[i];
2420 		struct bnxt_cp_ring_info *cpr;
2421 		struct bnxt_ring_struct *ring;
2422 
2423 		if (!bnapi)
2424 			continue;
2425 
2426 		cpr = &bnapi->cp_ring;
2427 		ring = &cpr->cp_ring_struct;
2428 
2429 		rc = bnxt_alloc_ring(bp, ring);
2430 		if (rc)
2431 			return rc;
2432 	}
2433 	return 0;
2434 }
2435 
2436 static void bnxt_init_ring_struct(struct bnxt *bp)
2437 {
2438 	int i;
2439 
2440 	for (i = 0; i < bp->cp_nr_rings; i++) {
2441 		struct bnxt_napi *bnapi = bp->bnapi[i];
2442 		struct bnxt_cp_ring_info *cpr;
2443 		struct bnxt_rx_ring_info *rxr;
2444 		struct bnxt_tx_ring_info *txr;
2445 		struct bnxt_ring_struct *ring;
2446 
2447 		if (!bnapi)
2448 			continue;
2449 
2450 		cpr = &bnapi->cp_ring;
2451 		ring = &cpr->cp_ring_struct;
2452 		ring->nr_pages = bp->cp_nr_pages;
2453 		ring->page_size = HW_CMPD_RING_SIZE;
2454 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2455 		ring->dma_arr = cpr->cp_desc_mapping;
2456 		ring->vmem_size = 0;
2457 
2458 		rxr = bnapi->rx_ring;
2459 		if (!rxr)
2460 			goto skip_rx;
2461 
2462 		ring = &rxr->rx_ring_struct;
2463 		ring->nr_pages = bp->rx_nr_pages;
2464 		ring->page_size = HW_RXBD_RING_SIZE;
2465 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2466 		ring->dma_arr = rxr->rx_desc_mapping;
2467 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2468 		ring->vmem = (void **)&rxr->rx_buf_ring;
2469 
2470 		ring = &rxr->rx_agg_ring_struct;
2471 		ring->nr_pages = bp->rx_agg_nr_pages;
2472 		ring->page_size = HW_RXBD_RING_SIZE;
2473 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2474 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2475 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2476 		ring->vmem = (void **)&rxr->rx_agg_ring;
2477 
2478 skip_rx:
2479 		txr = bnapi->tx_ring;
2480 		if (!txr)
2481 			continue;
2482 
2483 		ring = &txr->tx_ring_struct;
2484 		ring->nr_pages = bp->tx_nr_pages;
2485 		ring->page_size = HW_RXBD_RING_SIZE;
2486 		ring->pg_arr = (void **)txr->tx_desc_ring;
2487 		ring->dma_arr = txr->tx_desc_mapping;
2488 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2489 		ring->vmem = (void **)&txr->tx_buf_ring;
2490 	}
2491 }
2492 
2493 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2494 {
2495 	int i;
2496 	u32 prod;
2497 	struct rx_bd **rx_buf_ring;
2498 
2499 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2500 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2501 		int j;
2502 		struct rx_bd *rxbd;
2503 
2504 		rxbd = rx_buf_ring[i];
2505 		if (!rxbd)
2506 			continue;
2507 
2508 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2509 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2510 			rxbd->rx_bd_opaque = prod;
2511 		}
2512 	}
2513 }
2514 
2515 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2516 {
2517 	struct net_device *dev = bp->dev;
2518 	struct bnxt_rx_ring_info *rxr;
2519 	struct bnxt_ring_struct *ring;
2520 	u32 prod, type;
2521 	int i;
2522 
2523 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2524 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2525 
2526 	if (NET_IP_ALIGN == 2)
2527 		type |= RX_BD_FLAGS_SOP;
2528 
2529 	rxr = &bp->rx_ring[ring_nr];
2530 	ring = &rxr->rx_ring_struct;
2531 	bnxt_init_rxbd_pages(ring, type);
2532 
2533 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2534 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2535 		if (IS_ERR(rxr->xdp_prog)) {
2536 			int rc = PTR_ERR(rxr->xdp_prog);
2537 
2538 			rxr->xdp_prog = NULL;
2539 			return rc;
2540 		}
2541 	}
2542 	prod = rxr->rx_prod;
2543 	for (i = 0; i < bp->rx_ring_size; i++) {
2544 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2545 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2546 				    ring_nr, i, bp->rx_ring_size);
2547 			break;
2548 		}
2549 		prod = NEXT_RX(prod);
2550 	}
2551 	rxr->rx_prod = prod;
2552 	ring->fw_ring_id = INVALID_HW_RING_ID;
2553 
2554 	ring = &rxr->rx_agg_ring_struct;
2555 	ring->fw_ring_id = INVALID_HW_RING_ID;
2556 
2557 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2558 		return 0;
2559 
2560 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2561 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2562 
2563 	bnxt_init_rxbd_pages(ring, type);
2564 
2565 	prod = rxr->rx_agg_prod;
2566 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2567 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2568 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2569 				    ring_nr, i, bp->rx_ring_size);
2570 			break;
2571 		}
2572 		prod = NEXT_RX_AGG(prod);
2573 	}
2574 	rxr->rx_agg_prod = prod;
2575 
2576 	if (bp->flags & BNXT_FLAG_TPA) {
2577 		if (rxr->rx_tpa) {
2578 			u8 *data;
2579 			dma_addr_t mapping;
2580 
2581 			for (i = 0; i < MAX_TPA; i++) {
2582 				data = __bnxt_alloc_rx_data(bp, &mapping,
2583 							    GFP_KERNEL);
2584 				if (!data)
2585 					return -ENOMEM;
2586 
2587 				rxr->rx_tpa[i].data = data;
2588 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2589 				rxr->rx_tpa[i].mapping = mapping;
2590 			}
2591 		} else {
2592 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2593 			return -ENOMEM;
2594 		}
2595 	}
2596 
2597 	return 0;
2598 }
2599 
2600 static void bnxt_init_cp_rings(struct bnxt *bp)
2601 {
2602 	int i;
2603 
2604 	for (i = 0; i < bp->cp_nr_rings; i++) {
2605 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2606 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2607 
2608 		ring->fw_ring_id = INVALID_HW_RING_ID;
2609 	}
2610 }
2611 
2612 static int bnxt_init_rx_rings(struct bnxt *bp)
2613 {
2614 	int i, rc = 0;
2615 
2616 	if (BNXT_RX_PAGE_MODE(bp)) {
2617 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2618 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2619 	} else {
2620 		bp->rx_offset = BNXT_RX_OFFSET;
2621 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2622 	}
2623 
2624 	for (i = 0; i < bp->rx_nr_rings; i++) {
2625 		rc = bnxt_init_one_rx_ring(bp, i);
2626 		if (rc)
2627 			break;
2628 	}
2629 
2630 	return rc;
2631 }
2632 
2633 static int bnxt_init_tx_rings(struct bnxt *bp)
2634 {
2635 	u16 i;
2636 
2637 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2638 				   MAX_SKB_FRAGS + 1);
2639 
2640 	for (i = 0; i < bp->tx_nr_rings; i++) {
2641 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2642 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2643 
2644 		ring->fw_ring_id = INVALID_HW_RING_ID;
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 static void bnxt_free_ring_grps(struct bnxt *bp)
2651 {
2652 	kfree(bp->grp_info);
2653 	bp->grp_info = NULL;
2654 }
2655 
2656 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2657 {
2658 	int i;
2659 
2660 	if (irq_re_init) {
2661 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2662 				       sizeof(struct bnxt_ring_grp_info),
2663 				       GFP_KERNEL);
2664 		if (!bp->grp_info)
2665 			return -ENOMEM;
2666 	}
2667 	for (i = 0; i < bp->cp_nr_rings; i++) {
2668 		if (irq_re_init)
2669 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2670 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2671 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2672 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2673 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2674 	}
2675 	return 0;
2676 }
2677 
2678 static void bnxt_free_vnics(struct bnxt *bp)
2679 {
2680 	kfree(bp->vnic_info);
2681 	bp->vnic_info = NULL;
2682 	bp->nr_vnics = 0;
2683 }
2684 
2685 static int bnxt_alloc_vnics(struct bnxt *bp)
2686 {
2687 	int num_vnics = 1;
2688 
2689 #ifdef CONFIG_RFS_ACCEL
2690 	if (bp->flags & BNXT_FLAG_RFS)
2691 		num_vnics += bp->rx_nr_rings;
2692 #endif
2693 
2694 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2695 		num_vnics++;
2696 
2697 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2698 				GFP_KERNEL);
2699 	if (!bp->vnic_info)
2700 		return -ENOMEM;
2701 
2702 	bp->nr_vnics = num_vnics;
2703 	return 0;
2704 }
2705 
2706 static void bnxt_init_vnics(struct bnxt *bp)
2707 {
2708 	int i;
2709 
2710 	for (i = 0; i < bp->nr_vnics; i++) {
2711 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2712 
2713 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2714 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2715 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2716 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2717 
2718 		if (bp->vnic_info[i].rss_hash_key) {
2719 			if (i == 0)
2720 				prandom_bytes(vnic->rss_hash_key,
2721 					      HW_HASH_KEY_SIZE);
2722 			else
2723 				memcpy(vnic->rss_hash_key,
2724 				       bp->vnic_info[0].rss_hash_key,
2725 				       HW_HASH_KEY_SIZE);
2726 		}
2727 	}
2728 }
2729 
2730 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2731 {
2732 	int pages;
2733 
2734 	pages = ring_size / desc_per_pg;
2735 
2736 	if (!pages)
2737 		return 1;
2738 
2739 	pages++;
2740 
2741 	while (pages & (pages - 1))
2742 		pages++;
2743 
2744 	return pages;
2745 }
2746 
2747 void bnxt_set_tpa_flags(struct bnxt *bp)
2748 {
2749 	bp->flags &= ~BNXT_FLAG_TPA;
2750 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2751 		return;
2752 	if (bp->dev->features & NETIF_F_LRO)
2753 		bp->flags |= BNXT_FLAG_LRO;
2754 	if (bp->dev->features & NETIF_F_GRO)
2755 		bp->flags |= BNXT_FLAG_GRO;
2756 }
2757 
2758 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2759  * be set on entry.
2760  */
2761 void bnxt_set_ring_params(struct bnxt *bp)
2762 {
2763 	u32 ring_size, rx_size, rx_space;
2764 	u32 agg_factor = 0, agg_ring_size = 0;
2765 
2766 	/* 8 for CRC and VLAN */
2767 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2768 
2769 	rx_space = rx_size + NET_SKB_PAD +
2770 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2771 
2772 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2773 	ring_size = bp->rx_ring_size;
2774 	bp->rx_agg_ring_size = 0;
2775 	bp->rx_agg_nr_pages = 0;
2776 
2777 	if (bp->flags & BNXT_FLAG_TPA)
2778 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2779 
2780 	bp->flags &= ~BNXT_FLAG_JUMBO;
2781 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2782 		u32 jumbo_factor;
2783 
2784 		bp->flags |= BNXT_FLAG_JUMBO;
2785 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2786 		if (jumbo_factor > agg_factor)
2787 			agg_factor = jumbo_factor;
2788 	}
2789 	agg_ring_size = ring_size * agg_factor;
2790 
2791 	if (agg_ring_size) {
2792 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2793 							RX_DESC_CNT);
2794 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2795 			u32 tmp = agg_ring_size;
2796 
2797 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2798 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2799 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2800 				    tmp, agg_ring_size);
2801 		}
2802 		bp->rx_agg_ring_size = agg_ring_size;
2803 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2804 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2805 		rx_space = rx_size + NET_SKB_PAD +
2806 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2807 	}
2808 
2809 	bp->rx_buf_use_size = rx_size;
2810 	bp->rx_buf_size = rx_space;
2811 
2812 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2813 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2814 
2815 	ring_size = bp->tx_ring_size;
2816 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2817 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2818 
2819 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2820 	bp->cp_ring_size = ring_size;
2821 
2822 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2823 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2824 		bp->cp_nr_pages = MAX_CP_PAGES;
2825 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2826 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2827 			    ring_size, bp->cp_ring_size);
2828 	}
2829 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2830 	bp->cp_ring_mask = bp->cp_bit - 1;
2831 }
2832 
2833 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2834 {
2835 	if (page_mode) {
2836 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2837 			return -EOPNOTSUPP;
2838 		bp->dev->max_mtu =
2839 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2840 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2841 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2842 		bp->dev->hw_features &= ~NETIF_F_LRO;
2843 		bp->dev->features &= ~NETIF_F_LRO;
2844 		bp->rx_dir = DMA_BIDIRECTIONAL;
2845 		bp->rx_skb_func = bnxt_rx_page_skb;
2846 	} else {
2847 		bp->dev->max_mtu = bp->max_mtu;
2848 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2849 		bp->rx_dir = DMA_FROM_DEVICE;
2850 		bp->rx_skb_func = bnxt_rx_skb;
2851 	}
2852 	return 0;
2853 }
2854 
2855 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2856 {
2857 	int i;
2858 	struct bnxt_vnic_info *vnic;
2859 	struct pci_dev *pdev = bp->pdev;
2860 
2861 	if (!bp->vnic_info)
2862 		return;
2863 
2864 	for (i = 0; i < bp->nr_vnics; i++) {
2865 		vnic = &bp->vnic_info[i];
2866 
2867 		kfree(vnic->fw_grp_ids);
2868 		vnic->fw_grp_ids = NULL;
2869 
2870 		kfree(vnic->uc_list);
2871 		vnic->uc_list = NULL;
2872 
2873 		if (vnic->mc_list) {
2874 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2875 					  vnic->mc_list, vnic->mc_list_mapping);
2876 			vnic->mc_list = NULL;
2877 		}
2878 
2879 		if (vnic->rss_table) {
2880 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2881 					  vnic->rss_table,
2882 					  vnic->rss_table_dma_addr);
2883 			vnic->rss_table = NULL;
2884 		}
2885 
2886 		vnic->rss_hash_key = NULL;
2887 		vnic->flags = 0;
2888 	}
2889 }
2890 
2891 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2892 {
2893 	int i, rc = 0, size;
2894 	struct bnxt_vnic_info *vnic;
2895 	struct pci_dev *pdev = bp->pdev;
2896 	int max_rings;
2897 
2898 	for (i = 0; i < bp->nr_vnics; i++) {
2899 		vnic = &bp->vnic_info[i];
2900 
2901 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2902 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2903 
2904 			if (mem_size > 0) {
2905 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2906 				if (!vnic->uc_list) {
2907 					rc = -ENOMEM;
2908 					goto out;
2909 				}
2910 			}
2911 		}
2912 
2913 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2914 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2915 			vnic->mc_list =
2916 				dma_alloc_coherent(&pdev->dev,
2917 						   vnic->mc_list_size,
2918 						   &vnic->mc_list_mapping,
2919 						   GFP_KERNEL);
2920 			if (!vnic->mc_list) {
2921 				rc = -ENOMEM;
2922 				goto out;
2923 			}
2924 		}
2925 
2926 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2927 			max_rings = bp->rx_nr_rings;
2928 		else
2929 			max_rings = 1;
2930 
2931 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2932 		if (!vnic->fw_grp_ids) {
2933 			rc = -ENOMEM;
2934 			goto out;
2935 		}
2936 
2937 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2938 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2939 			continue;
2940 
2941 		/* Allocate rss table and hash key */
2942 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2943 						     &vnic->rss_table_dma_addr,
2944 						     GFP_KERNEL);
2945 		if (!vnic->rss_table) {
2946 			rc = -ENOMEM;
2947 			goto out;
2948 		}
2949 
2950 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2951 
2952 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2953 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2954 	}
2955 	return 0;
2956 
2957 out:
2958 	return rc;
2959 }
2960 
2961 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2962 {
2963 	struct pci_dev *pdev = bp->pdev;
2964 
2965 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2966 			  bp->hwrm_cmd_resp_dma_addr);
2967 
2968 	bp->hwrm_cmd_resp_addr = NULL;
2969 	if (bp->hwrm_dbg_resp_addr) {
2970 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2971 				  bp->hwrm_dbg_resp_addr,
2972 				  bp->hwrm_dbg_resp_dma_addr);
2973 
2974 		bp->hwrm_dbg_resp_addr = NULL;
2975 	}
2976 }
2977 
2978 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2979 {
2980 	struct pci_dev *pdev = bp->pdev;
2981 
2982 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2983 						   &bp->hwrm_cmd_resp_dma_addr,
2984 						   GFP_KERNEL);
2985 	if (!bp->hwrm_cmd_resp_addr)
2986 		return -ENOMEM;
2987 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2988 						    HWRM_DBG_REG_BUF_SIZE,
2989 						    &bp->hwrm_dbg_resp_dma_addr,
2990 						    GFP_KERNEL);
2991 	if (!bp->hwrm_dbg_resp_addr)
2992 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2993 
2994 	return 0;
2995 }
2996 
2997 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
2998 {
2999 	if (bp->hwrm_short_cmd_req_addr) {
3000 		struct pci_dev *pdev = bp->pdev;
3001 
3002 		dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3003 				  bp->hwrm_short_cmd_req_addr,
3004 				  bp->hwrm_short_cmd_req_dma_addr);
3005 		bp->hwrm_short_cmd_req_addr = NULL;
3006 	}
3007 }
3008 
3009 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3010 {
3011 	struct pci_dev *pdev = bp->pdev;
3012 
3013 	bp->hwrm_short_cmd_req_addr =
3014 		dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3015 				   &bp->hwrm_short_cmd_req_dma_addr,
3016 				   GFP_KERNEL);
3017 	if (!bp->hwrm_short_cmd_req_addr)
3018 		return -ENOMEM;
3019 
3020 	return 0;
3021 }
3022 
3023 static void bnxt_free_stats(struct bnxt *bp)
3024 {
3025 	u32 size, i;
3026 	struct pci_dev *pdev = bp->pdev;
3027 
3028 	if (bp->hw_rx_port_stats) {
3029 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3030 				  bp->hw_rx_port_stats,
3031 				  bp->hw_rx_port_stats_map);
3032 		bp->hw_rx_port_stats = NULL;
3033 		bp->flags &= ~BNXT_FLAG_PORT_STATS;
3034 	}
3035 
3036 	if (!bp->bnapi)
3037 		return;
3038 
3039 	size = sizeof(struct ctx_hw_stats);
3040 
3041 	for (i = 0; i < bp->cp_nr_rings; i++) {
3042 		struct bnxt_napi *bnapi = bp->bnapi[i];
3043 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3044 
3045 		if (cpr->hw_stats) {
3046 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3047 					  cpr->hw_stats_map);
3048 			cpr->hw_stats = NULL;
3049 		}
3050 	}
3051 }
3052 
3053 static int bnxt_alloc_stats(struct bnxt *bp)
3054 {
3055 	u32 size, i;
3056 	struct pci_dev *pdev = bp->pdev;
3057 
3058 	size = sizeof(struct ctx_hw_stats);
3059 
3060 	for (i = 0; i < bp->cp_nr_rings; i++) {
3061 		struct bnxt_napi *bnapi = bp->bnapi[i];
3062 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3063 
3064 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3065 						   &cpr->hw_stats_map,
3066 						   GFP_KERNEL);
3067 		if (!cpr->hw_stats)
3068 			return -ENOMEM;
3069 
3070 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3071 	}
3072 
3073 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3074 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3075 					 sizeof(struct tx_port_stats) + 1024;
3076 
3077 		bp->hw_rx_port_stats =
3078 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3079 					   &bp->hw_rx_port_stats_map,
3080 					   GFP_KERNEL);
3081 		if (!bp->hw_rx_port_stats)
3082 			return -ENOMEM;
3083 
3084 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3085 				       512;
3086 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3087 					   sizeof(struct rx_port_stats) + 512;
3088 		bp->flags |= BNXT_FLAG_PORT_STATS;
3089 	}
3090 	return 0;
3091 }
3092 
3093 static void bnxt_clear_ring_indices(struct bnxt *bp)
3094 {
3095 	int i;
3096 
3097 	if (!bp->bnapi)
3098 		return;
3099 
3100 	for (i = 0; i < bp->cp_nr_rings; i++) {
3101 		struct bnxt_napi *bnapi = bp->bnapi[i];
3102 		struct bnxt_cp_ring_info *cpr;
3103 		struct bnxt_rx_ring_info *rxr;
3104 		struct bnxt_tx_ring_info *txr;
3105 
3106 		if (!bnapi)
3107 			continue;
3108 
3109 		cpr = &bnapi->cp_ring;
3110 		cpr->cp_raw_cons = 0;
3111 
3112 		txr = bnapi->tx_ring;
3113 		if (txr) {
3114 			txr->tx_prod = 0;
3115 			txr->tx_cons = 0;
3116 		}
3117 
3118 		rxr = bnapi->rx_ring;
3119 		if (rxr) {
3120 			rxr->rx_prod = 0;
3121 			rxr->rx_agg_prod = 0;
3122 			rxr->rx_sw_agg_prod = 0;
3123 			rxr->rx_next_cons = 0;
3124 		}
3125 	}
3126 }
3127 
3128 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3129 {
3130 #ifdef CONFIG_RFS_ACCEL
3131 	int i;
3132 
3133 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3134 	 * safe to delete the hash table.
3135 	 */
3136 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3137 		struct hlist_head *head;
3138 		struct hlist_node *tmp;
3139 		struct bnxt_ntuple_filter *fltr;
3140 
3141 		head = &bp->ntp_fltr_hash_tbl[i];
3142 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3143 			hlist_del(&fltr->hash);
3144 			kfree(fltr);
3145 		}
3146 	}
3147 	if (irq_reinit) {
3148 		kfree(bp->ntp_fltr_bmap);
3149 		bp->ntp_fltr_bmap = NULL;
3150 	}
3151 	bp->ntp_fltr_count = 0;
3152 #endif
3153 }
3154 
3155 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3156 {
3157 #ifdef CONFIG_RFS_ACCEL
3158 	int i, rc = 0;
3159 
3160 	if (!(bp->flags & BNXT_FLAG_RFS))
3161 		return 0;
3162 
3163 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3164 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3165 
3166 	bp->ntp_fltr_count = 0;
3167 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3168 				    sizeof(long),
3169 				    GFP_KERNEL);
3170 
3171 	if (!bp->ntp_fltr_bmap)
3172 		rc = -ENOMEM;
3173 
3174 	return rc;
3175 #else
3176 	return 0;
3177 #endif
3178 }
3179 
3180 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3181 {
3182 	bnxt_free_vnic_attributes(bp);
3183 	bnxt_free_tx_rings(bp);
3184 	bnxt_free_rx_rings(bp);
3185 	bnxt_free_cp_rings(bp);
3186 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3187 	if (irq_re_init) {
3188 		bnxt_free_stats(bp);
3189 		bnxt_free_ring_grps(bp);
3190 		bnxt_free_vnics(bp);
3191 		kfree(bp->tx_ring_map);
3192 		bp->tx_ring_map = NULL;
3193 		kfree(bp->tx_ring);
3194 		bp->tx_ring = NULL;
3195 		kfree(bp->rx_ring);
3196 		bp->rx_ring = NULL;
3197 		kfree(bp->bnapi);
3198 		bp->bnapi = NULL;
3199 	} else {
3200 		bnxt_clear_ring_indices(bp);
3201 	}
3202 }
3203 
3204 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3205 {
3206 	int i, j, rc, size, arr_size;
3207 	void *bnapi;
3208 
3209 	if (irq_re_init) {
3210 		/* Allocate bnapi mem pointer array and mem block for
3211 		 * all queues
3212 		 */
3213 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3214 				bp->cp_nr_rings);
3215 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3216 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3217 		if (!bnapi)
3218 			return -ENOMEM;
3219 
3220 		bp->bnapi = bnapi;
3221 		bnapi += arr_size;
3222 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3223 			bp->bnapi[i] = bnapi;
3224 			bp->bnapi[i]->index = i;
3225 			bp->bnapi[i]->bp = bp;
3226 		}
3227 
3228 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3229 				      sizeof(struct bnxt_rx_ring_info),
3230 				      GFP_KERNEL);
3231 		if (!bp->rx_ring)
3232 			return -ENOMEM;
3233 
3234 		for (i = 0; i < bp->rx_nr_rings; i++) {
3235 			bp->rx_ring[i].bnapi = bp->bnapi[i];
3236 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3237 		}
3238 
3239 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3240 				      sizeof(struct bnxt_tx_ring_info),
3241 				      GFP_KERNEL);
3242 		if (!bp->tx_ring)
3243 			return -ENOMEM;
3244 
3245 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3246 					  GFP_KERNEL);
3247 
3248 		if (!bp->tx_ring_map)
3249 			return -ENOMEM;
3250 
3251 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3252 			j = 0;
3253 		else
3254 			j = bp->rx_nr_rings;
3255 
3256 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3257 			bp->tx_ring[i].bnapi = bp->bnapi[j];
3258 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3259 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3260 			if (i >= bp->tx_nr_rings_xdp) {
3261 				bp->tx_ring[i].txq_index = i -
3262 					bp->tx_nr_rings_xdp;
3263 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3264 			} else {
3265 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3266 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3267 			}
3268 		}
3269 
3270 		rc = bnxt_alloc_stats(bp);
3271 		if (rc)
3272 			goto alloc_mem_err;
3273 
3274 		rc = bnxt_alloc_ntp_fltrs(bp);
3275 		if (rc)
3276 			goto alloc_mem_err;
3277 
3278 		rc = bnxt_alloc_vnics(bp);
3279 		if (rc)
3280 			goto alloc_mem_err;
3281 	}
3282 
3283 	bnxt_init_ring_struct(bp);
3284 
3285 	rc = bnxt_alloc_rx_rings(bp);
3286 	if (rc)
3287 		goto alloc_mem_err;
3288 
3289 	rc = bnxt_alloc_tx_rings(bp);
3290 	if (rc)
3291 		goto alloc_mem_err;
3292 
3293 	rc = bnxt_alloc_cp_rings(bp);
3294 	if (rc)
3295 		goto alloc_mem_err;
3296 
3297 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3298 				  BNXT_VNIC_UCAST_FLAG;
3299 	rc = bnxt_alloc_vnic_attributes(bp);
3300 	if (rc)
3301 		goto alloc_mem_err;
3302 	return 0;
3303 
3304 alloc_mem_err:
3305 	bnxt_free_mem(bp, true);
3306 	return rc;
3307 }
3308 
3309 static void bnxt_disable_int(struct bnxt *bp)
3310 {
3311 	int i;
3312 
3313 	if (!bp->bnapi)
3314 		return;
3315 
3316 	for (i = 0; i < bp->cp_nr_rings; i++) {
3317 		struct bnxt_napi *bnapi = bp->bnapi[i];
3318 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3319 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3320 
3321 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3322 			BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3323 	}
3324 }
3325 
3326 static void bnxt_disable_int_sync(struct bnxt *bp)
3327 {
3328 	int i;
3329 
3330 	atomic_inc(&bp->intr_sem);
3331 
3332 	bnxt_disable_int(bp);
3333 	for (i = 0; i < bp->cp_nr_rings; i++)
3334 		synchronize_irq(bp->irq_tbl[i].vector);
3335 }
3336 
3337 static void bnxt_enable_int(struct bnxt *bp)
3338 {
3339 	int i;
3340 
3341 	atomic_set(&bp->intr_sem, 0);
3342 	for (i = 0; i < bp->cp_nr_rings; i++) {
3343 		struct bnxt_napi *bnapi = bp->bnapi[i];
3344 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3345 
3346 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3347 	}
3348 }
3349 
3350 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3351 			    u16 cmpl_ring, u16 target_id)
3352 {
3353 	struct input *req = request;
3354 
3355 	req->req_type = cpu_to_le16(req_type);
3356 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3357 	req->target_id = cpu_to_le16(target_id);
3358 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3359 }
3360 
3361 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3362 				 int timeout, bool silent)
3363 {
3364 	int i, intr_process, rc, tmo_count;
3365 	struct input *req = msg;
3366 	u32 *data = msg;
3367 	__le32 *resp_len, *valid;
3368 	u16 cp_ring_id, len = 0;
3369 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3370 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3371 
3372 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3373 	memset(resp, 0, PAGE_SIZE);
3374 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3375 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3376 
3377 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3378 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3379 		struct hwrm_short_input short_input = {0};
3380 
3381 		memcpy(short_cmd_req, req, msg_len);
3382 		memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3383 						   msg_len);
3384 
3385 		short_input.req_type = req->req_type;
3386 		short_input.signature =
3387 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3388 		short_input.size = cpu_to_le16(msg_len);
3389 		short_input.req_addr =
3390 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3391 
3392 		data = (u32 *)&short_input;
3393 		msg_len = sizeof(short_input);
3394 
3395 		/* Sync memory write before updating doorbell */
3396 		wmb();
3397 
3398 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3399 	}
3400 
3401 	/* Write request msg to hwrm channel */
3402 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3403 
3404 	for (i = msg_len; i < max_req_len; i += 4)
3405 		writel(0, bp->bar0 + i);
3406 
3407 	/* currently supports only one outstanding message */
3408 	if (intr_process)
3409 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3410 
3411 	/* Ring channel doorbell */
3412 	writel(1, bp->bar0 + 0x100);
3413 
3414 	if (!timeout)
3415 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3416 
3417 	i = 0;
3418 	tmo_count = timeout * 40;
3419 	if (intr_process) {
3420 		/* Wait until hwrm response cmpl interrupt is processed */
3421 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3422 		       i++ < tmo_count) {
3423 			usleep_range(25, 40);
3424 		}
3425 
3426 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3427 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3428 				   le16_to_cpu(req->req_type));
3429 			return -1;
3430 		}
3431 	} else {
3432 		/* Check if response len is updated */
3433 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3434 		for (i = 0; i < tmo_count; i++) {
3435 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3436 			      HWRM_RESP_LEN_SFT;
3437 			if (len)
3438 				break;
3439 			usleep_range(25, 40);
3440 		}
3441 
3442 		if (i >= tmo_count) {
3443 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3444 				   timeout, le16_to_cpu(req->req_type),
3445 				   le16_to_cpu(req->seq_id), len);
3446 			return -1;
3447 		}
3448 
3449 		/* Last word of resp contains valid bit */
3450 		valid = bp->hwrm_cmd_resp_addr + len - 4;
3451 		for (i = 0; i < 5; i++) {
3452 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3453 				break;
3454 			udelay(1);
3455 		}
3456 
3457 		if (i >= 5) {
3458 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3459 				   timeout, le16_to_cpu(req->req_type),
3460 				   le16_to_cpu(req->seq_id), len, *valid);
3461 			return -1;
3462 		}
3463 	}
3464 
3465 	rc = le16_to_cpu(resp->error_code);
3466 	if (rc && !silent)
3467 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3468 			   le16_to_cpu(resp->req_type),
3469 			   le16_to_cpu(resp->seq_id), rc);
3470 	return rc;
3471 }
3472 
3473 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3474 {
3475 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3476 }
3477 
3478 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3479 			      int timeout)
3480 {
3481 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3482 }
3483 
3484 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3485 {
3486 	int rc;
3487 
3488 	mutex_lock(&bp->hwrm_cmd_lock);
3489 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3490 	mutex_unlock(&bp->hwrm_cmd_lock);
3491 	return rc;
3492 }
3493 
3494 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3495 			     int timeout)
3496 {
3497 	int rc;
3498 
3499 	mutex_lock(&bp->hwrm_cmd_lock);
3500 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3501 	mutex_unlock(&bp->hwrm_cmd_lock);
3502 	return rc;
3503 }
3504 
3505 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3506 				     int bmap_size)
3507 {
3508 	struct hwrm_func_drv_rgtr_input req = {0};
3509 	DECLARE_BITMAP(async_events_bmap, 256);
3510 	u32 *events = (u32 *)async_events_bmap;
3511 	int i;
3512 
3513 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3514 
3515 	req.enables =
3516 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3517 
3518 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3519 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3520 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3521 
3522 	if (bmap && bmap_size) {
3523 		for (i = 0; i < bmap_size; i++) {
3524 			if (test_bit(i, bmap))
3525 				__set_bit(i, async_events_bmap);
3526 		}
3527 	}
3528 
3529 	for (i = 0; i < 8; i++)
3530 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3531 
3532 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3533 }
3534 
3535 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3536 {
3537 	struct hwrm_func_drv_rgtr_input req = {0};
3538 
3539 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3540 
3541 	req.enables =
3542 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3543 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
3544 
3545 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3546 	req.ver_maj = DRV_VER_MAJ;
3547 	req.ver_min = DRV_VER_MIN;
3548 	req.ver_upd = DRV_VER_UPD;
3549 
3550 	if (BNXT_PF(bp)) {
3551 		u32 data[8];
3552 		int i;
3553 
3554 		memset(data, 0, sizeof(data));
3555 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3556 			u16 cmd = bnxt_vf_req_snif[i];
3557 			unsigned int bit, idx;
3558 
3559 			idx = cmd / 32;
3560 			bit = cmd % 32;
3561 			data[idx] |= 1 << bit;
3562 		}
3563 
3564 		for (i = 0; i < 8; i++)
3565 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3566 
3567 		req.enables |=
3568 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3569 	}
3570 
3571 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3572 }
3573 
3574 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3575 {
3576 	struct hwrm_func_drv_unrgtr_input req = {0};
3577 
3578 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3579 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3580 }
3581 
3582 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3583 {
3584 	u32 rc = 0;
3585 	struct hwrm_tunnel_dst_port_free_input req = {0};
3586 
3587 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3588 	req.tunnel_type = tunnel_type;
3589 
3590 	switch (tunnel_type) {
3591 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3592 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3593 		break;
3594 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3595 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3596 		break;
3597 	default:
3598 		break;
3599 	}
3600 
3601 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3602 	if (rc)
3603 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3604 			   rc);
3605 	return rc;
3606 }
3607 
3608 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3609 					   u8 tunnel_type)
3610 {
3611 	u32 rc = 0;
3612 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3613 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3614 
3615 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3616 
3617 	req.tunnel_type = tunnel_type;
3618 	req.tunnel_dst_port_val = port;
3619 
3620 	mutex_lock(&bp->hwrm_cmd_lock);
3621 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3622 	if (rc) {
3623 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3624 			   rc);
3625 		goto err_out;
3626 	}
3627 
3628 	switch (tunnel_type) {
3629 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3630 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3631 		break;
3632 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3633 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3634 		break;
3635 	default:
3636 		break;
3637 	}
3638 
3639 err_out:
3640 	mutex_unlock(&bp->hwrm_cmd_lock);
3641 	return rc;
3642 }
3643 
3644 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3645 {
3646 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3647 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3648 
3649 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3650 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3651 
3652 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3653 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3654 	req.mask = cpu_to_le32(vnic->rx_mask);
3655 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3656 }
3657 
3658 #ifdef CONFIG_RFS_ACCEL
3659 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3660 					    struct bnxt_ntuple_filter *fltr)
3661 {
3662 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3663 
3664 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3665 	req.ntuple_filter_id = fltr->filter_id;
3666 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3667 }
3668 
3669 #define BNXT_NTP_FLTR_FLAGS					\
3670 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3671 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3672 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3673 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3674 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3675 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3676 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3677 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3678 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3679 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3680 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3681 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3682 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3683 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3684 
3685 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
3686 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3687 
3688 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3689 					     struct bnxt_ntuple_filter *fltr)
3690 {
3691 	int rc = 0;
3692 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3693 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3694 		bp->hwrm_cmd_resp_addr;
3695 	struct flow_keys *keys = &fltr->fkeys;
3696 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3697 
3698 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3699 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3700 
3701 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3702 
3703 	req.ethertype = htons(ETH_P_IP);
3704 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3705 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3706 	req.ip_protocol = keys->basic.ip_proto;
3707 
3708 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3709 		int i;
3710 
3711 		req.ethertype = htons(ETH_P_IPV6);
3712 		req.ip_addr_type =
3713 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3714 		*(struct in6_addr *)&req.src_ipaddr[0] =
3715 			keys->addrs.v6addrs.src;
3716 		*(struct in6_addr *)&req.dst_ipaddr[0] =
3717 			keys->addrs.v6addrs.dst;
3718 		for (i = 0; i < 4; i++) {
3719 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3720 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3721 		}
3722 	} else {
3723 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3724 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3725 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3726 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3727 	}
3728 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3729 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3730 		req.tunnel_type =
3731 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3732 	}
3733 
3734 	req.src_port = keys->ports.src;
3735 	req.src_port_mask = cpu_to_be16(0xffff);
3736 	req.dst_port = keys->ports.dst;
3737 	req.dst_port_mask = cpu_to_be16(0xffff);
3738 
3739 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3740 	mutex_lock(&bp->hwrm_cmd_lock);
3741 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3742 	if (!rc)
3743 		fltr->filter_id = resp->ntuple_filter_id;
3744 	mutex_unlock(&bp->hwrm_cmd_lock);
3745 	return rc;
3746 }
3747 #endif
3748 
3749 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3750 				     u8 *mac_addr)
3751 {
3752 	u32 rc = 0;
3753 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3754 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3755 
3756 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3757 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3758 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3759 		req.flags |=
3760 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3761 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3762 	req.enables =
3763 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3764 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3765 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3766 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3767 	req.l2_addr_mask[0] = 0xff;
3768 	req.l2_addr_mask[1] = 0xff;
3769 	req.l2_addr_mask[2] = 0xff;
3770 	req.l2_addr_mask[3] = 0xff;
3771 	req.l2_addr_mask[4] = 0xff;
3772 	req.l2_addr_mask[5] = 0xff;
3773 
3774 	mutex_lock(&bp->hwrm_cmd_lock);
3775 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3776 	if (!rc)
3777 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3778 							resp->l2_filter_id;
3779 	mutex_unlock(&bp->hwrm_cmd_lock);
3780 	return rc;
3781 }
3782 
3783 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3784 {
3785 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3786 	int rc = 0;
3787 
3788 	/* Any associated ntuple filters will also be cleared by firmware. */
3789 	mutex_lock(&bp->hwrm_cmd_lock);
3790 	for (i = 0; i < num_of_vnics; i++) {
3791 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3792 
3793 		for (j = 0; j < vnic->uc_filter_count; j++) {
3794 			struct hwrm_cfa_l2_filter_free_input req = {0};
3795 
3796 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3797 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3798 
3799 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3800 
3801 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3802 						HWRM_CMD_TIMEOUT);
3803 		}
3804 		vnic->uc_filter_count = 0;
3805 	}
3806 	mutex_unlock(&bp->hwrm_cmd_lock);
3807 
3808 	return rc;
3809 }
3810 
3811 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3812 {
3813 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3814 	struct hwrm_vnic_tpa_cfg_input req = {0};
3815 
3816 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3817 
3818 	if (tpa_flags) {
3819 		u16 mss = bp->dev->mtu - 40;
3820 		u32 nsegs, n, segs = 0, flags;
3821 
3822 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3823 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3824 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3825 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3826 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3827 		if (tpa_flags & BNXT_FLAG_GRO)
3828 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3829 
3830 		req.flags = cpu_to_le32(flags);
3831 
3832 		req.enables =
3833 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3834 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3835 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3836 
3837 		/* Number of segs are log2 units, and first packet is not
3838 		 * included as part of this units.
3839 		 */
3840 		if (mss <= BNXT_RX_PAGE_SIZE) {
3841 			n = BNXT_RX_PAGE_SIZE / mss;
3842 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3843 		} else {
3844 			n = mss / BNXT_RX_PAGE_SIZE;
3845 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3846 				n++;
3847 			nsegs = (MAX_SKB_FRAGS - n) / n;
3848 		}
3849 
3850 		segs = ilog2(nsegs);
3851 		req.max_agg_segs = cpu_to_le16(segs);
3852 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3853 
3854 		req.min_agg_len = cpu_to_le32(512);
3855 	}
3856 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3857 
3858 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3859 }
3860 
3861 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3862 {
3863 	u32 i, j, max_rings;
3864 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3865 	struct hwrm_vnic_rss_cfg_input req = {0};
3866 
3867 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3868 		return 0;
3869 
3870 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3871 	if (set_rss) {
3872 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3873 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3874 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3875 				max_rings = bp->rx_nr_rings - 1;
3876 			else
3877 				max_rings = bp->rx_nr_rings;
3878 		} else {
3879 			max_rings = 1;
3880 		}
3881 
3882 		/* Fill the RSS indirection table with ring group ids */
3883 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3884 			if (j == max_rings)
3885 				j = 0;
3886 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3887 		}
3888 
3889 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3890 		req.hash_key_tbl_addr =
3891 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3892 	}
3893 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3894 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3895 }
3896 
3897 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3898 {
3899 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3900 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3901 
3902 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3903 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3904 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3905 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3906 	req.enables =
3907 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3908 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3909 	/* thresholds not implemented in firmware yet */
3910 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3911 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3912 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3913 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3914 }
3915 
3916 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3917 					u16 ctx_idx)
3918 {
3919 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3920 
3921 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3922 	req.rss_cos_lb_ctx_id =
3923 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3924 
3925 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3926 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3927 }
3928 
3929 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3930 {
3931 	int i, j;
3932 
3933 	for (i = 0; i < bp->nr_vnics; i++) {
3934 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3935 
3936 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3937 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3938 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3939 		}
3940 	}
3941 	bp->rsscos_nr_ctxs = 0;
3942 }
3943 
3944 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3945 {
3946 	int rc;
3947 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3948 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3949 						bp->hwrm_cmd_resp_addr;
3950 
3951 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3952 			       -1);
3953 
3954 	mutex_lock(&bp->hwrm_cmd_lock);
3955 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3956 	if (!rc)
3957 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3958 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3959 	mutex_unlock(&bp->hwrm_cmd_lock);
3960 
3961 	return rc;
3962 }
3963 
3964 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3965 {
3966 	unsigned int ring = 0, grp_idx;
3967 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3968 	struct hwrm_vnic_cfg_input req = {0};
3969 	u16 def_vlan = 0;
3970 
3971 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3972 
3973 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3974 	/* Only RSS support for now TBD: COS & LB */
3975 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3976 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3977 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3978 					   VNIC_CFG_REQ_ENABLES_MRU);
3979 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3980 		req.rss_rule =
3981 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3982 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3983 					   VNIC_CFG_REQ_ENABLES_MRU);
3984 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3985 	} else {
3986 		req.rss_rule = cpu_to_le16(0xffff);
3987 	}
3988 
3989 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3990 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3991 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3992 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3993 	} else {
3994 		req.cos_rule = cpu_to_le16(0xffff);
3995 	}
3996 
3997 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3998 		ring = 0;
3999 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4000 		ring = vnic_id - 1;
4001 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4002 		ring = bp->rx_nr_rings - 1;
4003 
4004 	grp_idx = bp->rx_ring[ring].bnapi->index;
4005 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4006 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4007 
4008 	req.lb_rule = cpu_to_le16(0xffff);
4009 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4010 			      VLAN_HLEN);
4011 
4012 #ifdef CONFIG_BNXT_SRIOV
4013 	if (BNXT_VF(bp))
4014 		def_vlan = bp->vf.vlan;
4015 #endif
4016 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4017 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4018 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4019 		req.flags |=
4020 			cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
4021 
4022 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4023 }
4024 
4025 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4026 {
4027 	u32 rc = 0;
4028 
4029 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4030 		struct hwrm_vnic_free_input req = {0};
4031 
4032 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4033 		req.vnic_id =
4034 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4035 
4036 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4037 		if (rc)
4038 			return rc;
4039 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4040 	}
4041 	return rc;
4042 }
4043 
4044 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4045 {
4046 	u16 i;
4047 
4048 	for (i = 0; i < bp->nr_vnics; i++)
4049 		bnxt_hwrm_vnic_free_one(bp, i);
4050 }
4051 
4052 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4053 				unsigned int start_rx_ring_idx,
4054 				unsigned int nr_rings)
4055 {
4056 	int rc = 0;
4057 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4058 	struct hwrm_vnic_alloc_input req = {0};
4059 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4060 
4061 	/* map ring groups to this vnic */
4062 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4063 		grp_idx = bp->rx_ring[i].bnapi->index;
4064 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4065 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4066 				   j, nr_rings);
4067 			break;
4068 		}
4069 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
4070 					bp->grp_info[grp_idx].fw_grp_id;
4071 	}
4072 
4073 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4074 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4075 	if (vnic_id == 0)
4076 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4077 
4078 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4079 
4080 	mutex_lock(&bp->hwrm_cmd_lock);
4081 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4082 	if (!rc)
4083 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4084 	mutex_unlock(&bp->hwrm_cmd_lock);
4085 	return rc;
4086 }
4087 
4088 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4089 {
4090 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4091 	struct hwrm_vnic_qcaps_input req = {0};
4092 	int rc;
4093 
4094 	if (bp->hwrm_spec_code < 0x10600)
4095 		return 0;
4096 
4097 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4098 	mutex_lock(&bp->hwrm_cmd_lock);
4099 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4100 	if (!rc) {
4101 		if (resp->flags &
4102 		    cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4103 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4104 	}
4105 	mutex_unlock(&bp->hwrm_cmd_lock);
4106 	return rc;
4107 }
4108 
4109 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4110 {
4111 	u16 i;
4112 	u32 rc = 0;
4113 
4114 	mutex_lock(&bp->hwrm_cmd_lock);
4115 	for (i = 0; i < bp->rx_nr_rings; i++) {
4116 		struct hwrm_ring_grp_alloc_input req = {0};
4117 		struct hwrm_ring_grp_alloc_output *resp =
4118 					bp->hwrm_cmd_resp_addr;
4119 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4120 
4121 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4122 
4123 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4124 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4125 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4126 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4127 
4128 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4129 					HWRM_CMD_TIMEOUT);
4130 		if (rc)
4131 			break;
4132 
4133 		bp->grp_info[grp_idx].fw_grp_id =
4134 			le32_to_cpu(resp->ring_group_id);
4135 	}
4136 	mutex_unlock(&bp->hwrm_cmd_lock);
4137 	return rc;
4138 }
4139 
4140 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4141 {
4142 	u16 i;
4143 	u32 rc = 0;
4144 	struct hwrm_ring_grp_free_input req = {0};
4145 
4146 	if (!bp->grp_info)
4147 		return 0;
4148 
4149 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4150 
4151 	mutex_lock(&bp->hwrm_cmd_lock);
4152 	for (i = 0; i < bp->cp_nr_rings; i++) {
4153 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4154 			continue;
4155 		req.ring_group_id =
4156 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4157 
4158 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4159 					HWRM_CMD_TIMEOUT);
4160 		if (rc)
4161 			break;
4162 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4163 	}
4164 	mutex_unlock(&bp->hwrm_cmd_lock);
4165 	return rc;
4166 }
4167 
4168 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4169 				    struct bnxt_ring_struct *ring,
4170 				    u32 ring_type, u32 map_index,
4171 				    u32 stats_ctx_id)
4172 {
4173 	int rc = 0, err = 0;
4174 	struct hwrm_ring_alloc_input req = {0};
4175 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4176 	u16 ring_id;
4177 
4178 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4179 
4180 	req.enables = 0;
4181 	if (ring->nr_pages > 1) {
4182 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4183 		/* Page size is in log2 units */
4184 		req.page_size = BNXT_PAGE_SHIFT;
4185 		req.page_tbl_depth = 1;
4186 	} else {
4187 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4188 	}
4189 	req.fbo = 0;
4190 	/* Association of ring index with doorbell index and MSIX number */
4191 	req.logical_id = cpu_to_le16(map_index);
4192 
4193 	switch (ring_type) {
4194 	case HWRM_RING_ALLOC_TX:
4195 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4196 		/* Association of transmit ring with completion ring */
4197 		req.cmpl_ring_id =
4198 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
4199 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4200 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4201 		req.queue_id = cpu_to_le16(ring->queue_id);
4202 		break;
4203 	case HWRM_RING_ALLOC_RX:
4204 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4205 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4206 		break;
4207 	case HWRM_RING_ALLOC_AGG:
4208 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4209 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4210 		break;
4211 	case HWRM_RING_ALLOC_CMPL:
4212 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4213 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4214 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4215 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4216 		break;
4217 	default:
4218 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4219 			   ring_type);
4220 		return -1;
4221 	}
4222 
4223 	mutex_lock(&bp->hwrm_cmd_lock);
4224 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4225 	err = le16_to_cpu(resp->error_code);
4226 	ring_id = le16_to_cpu(resp->ring_id);
4227 	mutex_unlock(&bp->hwrm_cmd_lock);
4228 
4229 	if (rc || err) {
4230 		switch (ring_type) {
4231 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4232 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4233 				   rc, err);
4234 			return -1;
4235 
4236 		case RING_FREE_REQ_RING_TYPE_RX:
4237 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4238 				   rc, err);
4239 			return -1;
4240 
4241 		case RING_FREE_REQ_RING_TYPE_TX:
4242 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4243 				   rc, err);
4244 			return -1;
4245 
4246 		default:
4247 			netdev_err(bp->dev, "Invalid ring\n");
4248 			return -1;
4249 		}
4250 	}
4251 	ring->fw_ring_id = ring_id;
4252 	return rc;
4253 }
4254 
4255 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4256 {
4257 	int rc;
4258 
4259 	if (BNXT_PF(bp)) {
4260 		struct hwrm_func_cfg_input req = {0};
4261 
4262 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4263 		req.fid = cpu_to_le16(0xffff);
4264 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4265 		req.async_event_cr = cpu_to_le16(idx);
4266 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4267 	} else {
4268 		struct hwrm_func_vf_cfg_input req = {0};
4269 
4270 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4271 		req.enables =
4272 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4273 		req.async_event_cr = cpu_to_le16(idx);
4274 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4275 	}
4276 	return rc;
4277 }
4278 
4279 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4280 {
4281 	int i, rc = 0;
4282 
4283 	for (i = 0; i < bp->cp_nr_rings; i++) {
4284 		struct bnxt_napi *bnapi = bp->bnapi[i];
4285 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4286 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4287 
4288 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
4289 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4290 					      INVALID_STATS_CTX_ID);
4291 		if (rc)
4292 			goto err_out;
4293 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4294 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4295 
4296 		if (!i) {
4297 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4298 			if (rc)
4299 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4300 		}
4301 	}
4302 
4303 	for (i = 0; i < bp->tx_nr_rings; i++) {
4304 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4305 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4306 		u32 map_idx = txr->bnapi->index;
4307 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4308 
4309 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4310 					      map_idx, fw_stats_ctx);
4311 		if (rc)
4312 			goto err_out;
4313 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4314 	}
4315 
4316 	for (i = 0; i < bp->rx_nr_rings; i++) {
4317 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4318 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4319 		u32 map_idx = rxr->bnapi->index;
4320 
4321 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4322 					      map_idx, INVALID_STATS_CTX_ID);
4323 		if (rc)
4324 			goto err_out;
4325 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4326 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4327 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4328 	}
4329 
4330 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4331 		for (i = 0; i < bp->rx_nr_rings; i++) {
4332 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4333 			struct bnxt_ring_struct *ring =
4334 						&rxr->rx_agg_ring_struct;
4335 			u32 grp_idx = rxr->bnapi->index;
4336 			u32 map_idx = grp_idx + bp->rx_nr_rings;
4337 
4338 			rc = hwrm_ring_alloc_send_msg(bp, ring,
4339 						      HWRM_RING_ALLOC_AGG,
4340 						      map_idx,
4341 						      INVALID_STATS_CTX_ID);
4342 			if (rc)
4343 				goto err_out;
4344 
4345 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4346 			writel(DB_KEY_RX | rxr->rx_agg_prod,
4347 			       rxr->rx_agg_doorbell);
4348 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4349 		}
4350 	}
4351 err_out:
4352 	return rc;
4353 }
4354 
4355 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4356 				   struct bnxt_ring_struct *ring,
4357 				   u32 ring_type, int cmpl_ring_id)
4358 {
4359 	int rc;
4360 	struct hwrm_ring_free_input req = {0};
4361 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4362 	u16 error_code;
4363 
4364 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4365 	req.ring_type = ring_type;
4366 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
4367 
4368 	mutex_lock(&bp->hwrm_cmd_lock);
4369 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4370 	error_code = le16_to_cpu(resp->error_code);
4371 	mutex_unlock(&bp->hwrm_cmd_lock);
4372 
4373 	if (rc || error_code) {
4374 		switch (ring_type) {
4375 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4376 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4377 				   rc);
4378 			return rc;
4379 		case RING_FREE_REQ_RING_TYPE_RX:
4380 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4381 				   rc);
4382 			return rc;
4383 		case RING_FREE_REQ_RING_TYPE_TX:
4384 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4385 				   rc);
4386 			return rc;
4387 		default:
4388 			netdev_err(bp->dev, "Invalid ring\n");
4389 			return -1;
4390 		}
4391 	}
4392 	return 0;
4393 }
4394 
4395 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4396 {
4397 	int i;
4398 
4399 	if (!bp->bnapi)
4400 		return;
4401 
4402 	for (i = 0; i < bp->tx_nr_rings; i++) {
4403 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4404 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4405 		u32 grp_idx = txr->bnapi->index;
4406 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4407 
4408 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4409 			hwrm_ring_free_send_msg(bp, ring,
4410 						RING_FREE_REQ_RING_TYPE_TX,
4411 						close_path ? cmpl_ring_id :
4412 						INVALID_HW_RING_ID);
4413 			ring->fw_ring_id = INVALID_HW_RING_ID;
4414 		}
4415 	}
4416 
4417 	for (i = 0; i < bp->rx_nr_rings; i++) {
4418 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4419 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4420 		u32 grp_idx = rxr->bnapi->index;
4421 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4422 
4423 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4424 			hwrm_ring_free_send_msg(bp, ring,
4425 						RING_FREE_REQ_RING_TYPE_RX,
4426 						close_path ? cmpl_ring_id :
4427 						INVALID_HW_RING_ID);
4428 			ring->fw_ring_id = INVALID_HW_RING_ID;
4429 			bp->grp_info[grp_idx].rx_fw_ring_id =
4430 				INVALID_HW_RING_ID;
4431 		}
4432 	}
4433 
4434 	for (i = 0; i < bp->rx_nr_rings; i++) {
4435 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4436 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4437 		u32 grp_idx = rxr->bnapi->index;
4438 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4439 
4440 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4441 			hwrm_ring_free_send_msg(bp, ring,
4442 						RING_FREE_REQ_RING_TYPE_RX,
4443 						close_path ? cmpl_ring_id :
4444 						INVALID_HW_RING_ID);
4445 			ring->fw_ring_id = INVALID_HW_RING_ID;
4446 			bp->grp_info[grp_idx].agg_fw_ring_id =
4447 				INVALID_HW_RING_ID;
4448 		}
4449 	}
4450 
4451 	/* The completion rings are about to be freed.  After that the
4452 	 * IRQ doorbell will not work anymore.  So we need to disable
4453 	 * IRQ here.
4454 	 */
4455 	bnxt_disable_int_sync(bp);
4456 
4457 	for (i = 0; i < bp->cp_nr_rings; i++) {
4458 		struct bnxt_napi *bnapi = bp->bnapi[i];
4459 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4460 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4461 
4462 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4463 			hwrm_ring_free_send_msg(bp, ring,
4464 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
4465 						INVALID_HW_RING_ID);
4466 			ring->fw_ring_id = INVALID_HW_RING_ID;
4467 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4468 		}
4469 	}
4470 }
4471 
4472 /* Caller must hold bp->hwrm_cmd_lock */
4473 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4474 {
4475 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4476 	struct hwrm_func_qcfg_input req = {0};
4477 	int rc;
4478 
4479 	if (bp->hwrm_spec_code < 0x10601)
4480 		return 0;
4481 
4482 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4483 	req.fid = cpu_to_le16(fid);
4484 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4485 	if (!rc)
4486 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4487 
4488 	return rc;
4489 }
4490 
4491 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4492 {
4493 	struct hwrm_func_cfg_input req = {0};
4494 	int rc;
4495 
4496 	if (bp->hwrm_spec_code < 0x10601)
4497 		return 0;
4498 
4499 	if (BNXT_VF(bp))
4500 		return 0;
4501 
4502 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4503 	req.fid = cpu_to_le16(0xffff);
4504 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4505 	req.num_tx_rings = cpu_to_le16(*tx_rings);
4506 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4507 	if (rc)
4508 		return rc;
4509 
4510 	mutex_lock(&bp->hwrm_cmd_lock);
4511 	rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4512 	mutex_unlock(&bp->hwrm_cmd_lock);
4513 	if (!rc)
4514 		bp->tx_reserved_rings = *tx_rings;
4515 	return rc;
4516 }
4517 
4518 static int bnxt_hwrm_check_tx_rings(struct bnxt *bp, int tx_rings)
4519 {
4520 	struct hwrm_func_cfg_input req = {0};
4521 	int rc;
4522 
4523 	if (bp->hwrm_spec_code < 0x10801)
4524 		return 0;
4525 
4526 	if (BNXT_VF(bp))
4527 		return 0;
4528 
4529 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4530 	req.fid = cpu_to_le16(0xffff);
4531 	req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST);
4532 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4533 	req.num_tx_rings = cpu_to_le16(tx_rings);
4534 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4535 	if (rc)
4536 		return -ENOMEM;
4537 	return 0;
4538 }
4539 
4540 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4541 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4542 {
4543 	u16 val, tmr, max, flags;
4544 
4545 	max = hw_coal->bufs_per_record * 128;
4546 	if (hw_coal->budget)
4547 		max = hw_coal->bufs_per_record * hw_coal->budget;
4548 
4549 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4550 	req->num_cmpl_aggr_int = cpu_to_le16(val);
4551 
4552 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4553 	val = min_t(u16, val, 63);
4554 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
4555 
4556 	/* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4557 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
4558 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4559 
4560 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4561 	tmr = max_t(u16, tmr, 1);
4562 	req->int_lat_tmr_max = cpu_to_le16(tmr);
4563 
4564 	/* min timer set to 1/2 of interrupt timer */
4565 	val = tmr / 2;
4566 	req->int_lat_tmr_min = cpu_to_le16(val);
4567 
4568 	/* buf timer set to 1/4 of interrupt timer */
4569 	val = max_t(u16, tmr / 4, 1);
4570 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4571 
4572 	tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4573 	tmr = max_t(u16, tmr, 1);
4574 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4575 
4576 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4577 	if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4578 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4579 	req->flags = cpu_to_le16(flags);
4580 }
4581 
4582 int bnxt_hwrm_set_coal(struct bnxt *bp)
4583 {
4584 	int i, rc = 0;
4585 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4586 							   req_tx = {0}, *req;
4587 
4588 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4589 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4590 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4591 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4592 
4593 	bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4594 	bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4595 
4596 	mutex_lock(&bp->hwrm_cmd_lock);
4597 	for (i = 0; i < bp->cp_nr_rings; i++) {
4598 		struct bnxt_napi *bnapi = bp->bnapi[i];
4599 
4600 		req = &req_rx;
4601 		if (!bnapi->rx_ring)
4602 			req = &req_tx;
4603 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4604 
4605 		rc = _hwrm_send_message(bp, req, sizeof(*req),
4606 					HWRM_CMD_TIMEOUT);
4607 		if (rc)
4608 			break;
4609 	}
4610 	mutex_unlock(&bp->hwrm_cmd_lock);
4611 	return rc;
4612 }
4613 
4614 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4615 {
4616 	int rc = 0, i;
4617 	struct hwrm_stat_ctx_free_input req = {0};
4618 
4619 	if (!bp->bnapi)
4620 		return 0;
4621 
4622 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4623 		return 0;
4624 
4625 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4626 
4627 	mutex_lock(&bp->hwrm_cmd_lock);
4628 	for (i = 0; i < bp->cp_nr_rings; i++) {
4629 		struct bnxt_napi *bnapi = bp->bnapi[i];
4630 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4631 
4632 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4633 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4634 
4635 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4636 						HWRM_CMD_TIMEOUT);
4637 			if (rc)
4638 				break;
4639 
4640 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4641 		}
4642 	}
4643 	mutex_unlock(&bp->hwrm_cmd_lock);
4644 	return rc;
4645 }
4646 
4647 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4648 {
4649 	int rc = 0, i;
4650 	struct hwrm_stat_ctx_alloc_input req = {0};
4651 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4652 
4653 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4654 		return 0;
4655 
4656 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4657 
4658 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4659 
4660 	mutex_lock(&bp->hwrm_cmd_lock);
4661 	for (i = 0; i < bp->cp_nr_rings; i++) {
4662 		struct bnxt_napi *bnapi = bp->bnapi[i];
4663 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4664 
4665 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4666 
4667 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4668 					HWRM_CMD_TIMEOUT);
4669 		if (rc)
4670 			break;
4671 
4672 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4673 
4674 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4675 	}
4676 	mutex_unlock(&bp->hwrm_cmd_lock);
4677 	return rc;
4678 }
4679 
4680 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4681 {
4682 	struct hwrm_func_qcfg_input req = {0};
4683 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4684 	u16 flags;
4685 	int rc;
4686 
4687 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4688 	req.fid = cpu_to_le16(0xffff);
4689 	mutex_lock(&bp->hwrm_cmd_lock);
4690 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4691 	if (rc)
4692 		goto func_qcfg_exit;
4693 
4694 #ifdef CONFIG_BNXT_SRIOV
4695 	if (BNXT_VF(bp)) {
4696 		struct bnxt_vf_info *vf = &bp->vf;
4697 
4698 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4699 	}
4700 #endif
4701 	flags = le16_to_cpu(resp->flags);
4702 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
4703 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
4704 		bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
4705 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
4706 			bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
4707 	}
4708 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
4709 		bp->flags |= BNXT_FLAG_MULTI_HOST;
4710 
4711 	switch (resp->port_partition_type) {
4712 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4713 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4714 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4715 		bp->port_partition_type = resp->port_partition_type;
4716 		break;
4717 	}
4718 	if (bp->hwrm_spec_code < 0x10707 ||
4719 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
4720 		bp->br_mode = BRIDGE_MODE_VEB;
4721 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
4722 		bp->br_mode = BRIDGE_MODE_VEPA;
4723 	else
4724 		bp->br_mode = BRIDGE_MODE_UNDEF;
4725 
4726 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
4727 	if (!bp->max_mtu)
4728 		bp->max_mtu = BNXT_MAX_MTU;
4729 
4730 func_qcfg_exit:
4731 	mutex_unlock(&bp->hwrm_cmd_lock);
4732 	return rc;
4733 }
4734 
4735 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4736 {
4737 	int rc = 0;
4738 	struct hwrm_func_qcaps_input req = {0};
4739 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4740 
4741 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4742 	req.fid = cpu_to_le16(0xffff);
4743 
4744 	mutex_lock(&bp->hwrm_cmd_lock);
4745 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4746 	if (rc)
4747 		goto hwrm_func_qcaps_exit;
4748 
4749 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4750 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4751 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4752 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4753 
4754 	bp->tx_push_thresh = 0;
4755 	if (resp->flags &
4756 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4757 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4758 
4759 	if (BNXT_PF(bp)) {
4760 		struct bnxt_pf_info *pf = &bp->pf;
4761 
4762 		pf->fw_fid = le16_to_cpu(resp->fid);
4763 		pf->port_id = le16_to_cpu(resp->port_id);
4764 		bp->dev->dev_port = pf->port_id;
4765 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4766 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4767 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4768 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4769 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4770 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4771 		if (!pf->max_hw_ring_grps)
4772 			pf->max_hw_ring_grps = pf->max_tx_rings;
4773 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4774 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
4775 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4776 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4777 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
4778 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4779 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4780 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4781 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4782 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4783 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4784 		if (resp->flags &
4785 		    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
4786 			bp->flags |= BNXT_FLAG_WOL_CAP;
4787 	} else {
4788 #ifdef CONFIG_BNXT_SRIOV
4789 		struct bnxt_vf_info *vf = &bp->vf;
4790 
4791 		vf->fw_fid = le16_to_cpu(resp->fid);
4792 
4793 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4794 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4795 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4796 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4797 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4798 		if (!vf->max_hw_ring_grps)
4799 			vf->max_hw_ring_grps = vf->max_tx_rings;
4800 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4801 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
4802 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4803 
4804 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4805 #endif
4806 	}
4807 
4808 hwrm_func_qcaps_exit:
4809 	mutex_unlock(&bp->hwrm_cmd_lock);
4810 	return rc;
4811 }
4812 
4813 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4814 {
4815 	struct hwrm_func_reset_input req = {0};
4816 
4817 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4818 	req.enables = 0;
4819 
4820 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4821 }
4822 
4823 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4824 {
4825 	int rc = 0;
4826 	struct hwrm_queue_qportcfg_input req = {0};
4827 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4828 	u8 i, *qptr;
4829 
4830 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4831 
4832 	mutex_lock(&bp->hwrm_cmd_lock);
4833 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4834 	if (rc)
4835 		goto qportcfg_exit;
4836 
4837 	if (!resp->max_configurable_queues) {
4838 		rc = -EINVAL;
4839 		goto qportcfg_exit;
4840 	}
4841 	bp->max_tc = resp->max_configurable_queues;
4842 	bp->max_lltc = resp->max_configurable_lossless_queues;
4843 	if (bp->max_tc > BNXT_MAX_QUEUE)
4844 		bp->max_tc = BNXT_MAX_QUEUE;
4845 
4846 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4847 		bp->max_tc = 1;
4848 
4849 	if (bp->max_lltc > bp->max_tc)
4850 		bp->max_lltc = bp->max_tc;
4851 
4852 	qptr = &resp->queue_id0;
4853 	for (i = 0; i < bp->max_tc; i++) {
4854 		bp->q_info[i].queue_id = *qptr++;
4855 		bp->q_info[i].queue_profile = *qptr++;
4856 	}
4857 
4858 qportcfg_exit:
4859 	mutex_unlock(&bp->hwrm_cmd_lock);
4860 	return rc;
4861 }
4862 
4863 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4864 {
4865 	int rc;
4866 	struct hwrm_ver_get_input req = {0};
4867 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4868 	u32 dev_caps_cfg;
4869 
4870 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4871 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4872 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4873 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
4874 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4875 	mutex_lock(&bp->hwrm_cmd_lock);
4876 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4877 	if (rc)
4878 		goto hwrm_ver_get_exit;
4879 
4880 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4881 
4882 	bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4883 			     resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4884 	if (resp->hwrm_intf_maj < 1) {
4885 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4886 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
4887 			    resp->hwrm_intf_upd);
4888 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4889 	}
4890 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
4891 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4892 		 resp->hwrm_fw_rsvd);
4893 
4894 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4895 	if (!bp->hwrm_cmd_timeout)
4896 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4897 
4898 	if (resp->hwrm_intf_maj >= 1)
4899 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4900 
4901 	bp->chip_num = le16_to_cpu(resp->chip_num);
4902 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4903 	    !resp->chip_metal)
4904 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4905 
4906 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
4907 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
4908 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
4909 		bp->flags |= BNXT_FLAG_SHORT_CMD;
4910 
4911 hwrm_ver_get_exit:
4912 	mutex_unlock(&bp->hwrm_cmd_lock);
4913 	return rc;
4914 }
4915 
4916 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4917 {
4918 	struct hwrm_fw_set_time_input req = {0};
4919 	struct tm tm;
4920 	time64_t now = ktime_get_real_seconds();
4921 
4922 	if (bp->hwrm_spec_code < 0x10400)
4923 		return -EOPNOTSUPP;
4924 
4925 	time64_to_tm(now, 0, &tm);
4926 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4927 	req.year = cpu_to_le16(1900 + tm.tm_year);
4928 	req.month = 1 + tm.tm_mon;
4929 	req.day = tm.tm_mday;
4930 	req.hour = tm.tm_hour;
4931 	req.minute = tm.tm_min;
4932 	req.second = tm.tm_sec;
4933 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4934 }
4935 
4936 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4937 {
4938 	int rc;
4939 	struct bnxt_pf_info *pf = &bp->pf;
4940 	struct hwrm_port_qstats_input req = {0};
4941 
4942 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4943 		return 0;
4944 
4945 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4946 	req.port_id = cpu_to_le16(pf->port_id);
4947 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4948 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4949 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4950 	return rc;
4951 }
4952 
4953 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4954 {
4955 	if (bp->vxlan_port_cnt) {
4956 		bnxt_hwrm_tunnel_dst_port_free(
4957 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4958 	}
4959 	bp->vxlan_port_cnt = 0;
4960 	if (bp->nge_port_cnt) {
4961 		bnxt_hwrm_tunnel_dst_port_free(
4962 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4963 	}
4964 	bp->nge_port_cnt = 0;
4965 }
4966 
4967 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4968 {
4969 	int rc, i;
4970 	u32 tpa_flags = 0;
4971 
4972 	if (set_tpa)
4973 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
4974 	for (i = 0; i < bp->nr_vnics; i++) {
4975 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4976 		if (rc) {
4977 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4978 				   i, rc);
4979 			return rc;
4980 		}
4981 	}
4982 	return 0;
4983 }
4984 
4985 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4986 {
4987 	int i;
4988 
4989 	for (i = 0; i < bp->nr_vnics; i++)
4990 		bnxt_hwrm_vnic_set_rss(bp, i, false);
4991 }
4992 
4993 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4994 				    bool irq_re_init)
4995 {
4996 	if (bp->vnic_info) {
4997 		bnxt_hwrm_clear_vnic_filter(bp);
4998 		/* clear all RSS setting before free vnic ctx */
4999 		bnxt_hwrm_clear_vnic_rss(bp);
5000 		bnxt_hwrm_vnic_ctx_free(bp);
5001 		/* before free the vnic, undo the vnic tpa settings */
5002 		if (bp->flags & BNXT_FLAG_TPA)
5003 			bnxt_set_tpa(bp, false);
5004 		bnxt_hwrm_vnic_free(bp);
5005 	}
5006 	bnxt_hwrm_ring_free(bp, close_path);
5007 	bnxt_hwrm_ring_grp_free(bp);
5008 	if (irq_re_init) {
5009 		bnxt_hwrm_stat_ctx_free(bp);
5010 		bnxt_hwrm_free_tunnel_ports(bp);
5011 	}
5012 }
5013 
5014 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5015 {
5016 	struct hwrm_func_cfg_input req = {0};
5017 	int rc;
5018 
5019 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5020 	req.fid = cpu_to_le16(0xffff);
5021 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5022 	if (br_mode == BRIDGE_MODE_VEB)
5023 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5024 	else if (br_mode == BRIDGE_MODE_VEPA)
5025 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5026 	else
5027 		return -EINVAL;
5028 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5029 	if (rc)
5030 		rc = -EIO;
5031 	return rc;
5032 }
5033 
5034 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5035 {
5036 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5037 	int rc;
5038 
5039 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5040 		goto skip_rss_ctx;
5041 
5042 	/* allocate context for vnic */
5043 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5044 	if (rc) {
5045 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5046 			   vnic_id, rc);
5047 		goto vnic_setup_err;
5048 	}
5049 	bp->rsscos_nr_ctxs++;
5050 
5051 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5052 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5053 		if (rc) {
5054 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5055 				   vnic_id, rc);
5056 			goto vnic_setup_err;
5057 		}
5058 		bp->rsscos_nr_ctxs++;
5059 	}
5060 
5061 skip_rss_ctx:
5062 	/* configure default vnic, ring grp */
5063 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5064 	if (rc) {
5065 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5066 			   vnic_id, rc);
5067 		goto vnic_setup_err;
5068 	}
5069 
5070 	/* Enable RSS hashing on vnic */
5071 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5072 	if (rc) {
5073 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5074 			   vnic_id, rc);
5075 		goto vnic_setup_err;
5076 	}
5077 
5078 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5079 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5080 		if (rc) {
5081 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5082 				   vnic_id, rc);
5083 		}
5084 	}
5085 
5086 vnic_setup_err:
5087 	return rc;
5088 }
5089 
5090 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5091 {
5092 #ifdef CONFIG_RFS_ACCEL
5093 	int i, rc = 0;
5094 
5095 	for (i = 0; i < bp->rx_nr_rings; i++) {
5096 		struct bnxt_vnic_info *vnic;
5097 		u16 vnic_id = i + 1;
5098 		u16 ring_id = i;
5099 
5100 		if (vnic_id >= bp->nr_vnics)
5101 			break;
5102 
5103 		vnic = &bp->vnic_info[vnic_id];
5104 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
5105 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5106 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5107 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5108 		if (rc) {
5109 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5110 				   vnic_id, rc);
5111 			break;
5112 		}
5113 		rc = bnxt_setup_vnic(bp, vnic_id);
5114 		if (rc)
5115 			break;
5116 	}
5117 	return rc;
5118 #else
5119 	return 0;
5120 #endif
5121 }
5122 
5123 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5124 static bool bnxt_promisc_ok(struct bnxt *bp)
5125 {
5126 #ifdef CONFIG_BNXT_SRIOV
5127 	if (BNXT_VF(bp) && !bp->vf.vlan)
5128 		return false;
5129 #endif
5130 	return true;
5131 }
5132 
5133 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5134 {
5135 	unsigned int rc = 0;
5136 
5137 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5138 	if (rc) {
5139 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5140 			   rc);
5141 		return rc;
5142 	}
5143 
5144 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
5145 	if (rc) {
5146 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5147 			   rc);
5148 		return rc;
5149 	}
5150 	return rc;
5151 }
5152 
5153 static int bnxt_cfg_rx_mode(struct bnxt *);
5154 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5155 
5156 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5157 {
5158 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5159 	int rc = 0;
5160 	unsigned int rx_nr_rings = bp->rx_nr_rings;
5161 
5162 	if (irq_re_init) {
5163 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
5164 		if (rc) {
5165 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5166 				   rc);
5167 			goto err_out;
5168 		}
5169 		if (bp->tx_reserved_rings != bp->tx_nr_rings) {
5170 			int tx = bp->tx_nr_rings;
5171 
5172 			if (bnxt_hwrm_reserve_tx_rings(bp, &tx) ||
5173 			    tx < bp->tx_nr_rings) {
5174 				rc = -ENOMEM;
5175 				goto err_out;
5176 			}
5177 		}
5178 	}
5179 
5180 	rc = bnxt_hwrm_ring_alloc(bp);
5181 	if (rc) {
5182 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5183 		goto err_out;
5184 	}
5185 
5186 	rc = bnxt_hwrm_ring_grp_alloc(bp);
5187 	if (rc) {
5188 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5189 		goto err_out;
5190 	}
5191 
5192 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5193 		rx_nr_rings--;
5194 
5195 	/* default vnic 0 */
5196 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5197 	if (rc) {
5198 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5199 		goto err_out;
5200 	}
5201 
5202 	rc = bnxt_setup_vnic(bp, 0);
5203 	if (rc)
5204 		goto err_out;
5205 
5206 	if (bp->flags & BNXT_FLAG_RFS) {
5207 		rc = bnxt_alloc_rfs_vnics(bp);
5208 		if (rc)
5209 			goto err_out;
5210 	}
5211 
5212 	if (bp->flags & BNXT_FLAG_TPA) {
5213 		rc = bnxt_set_tpa(bp, true);
5214 		if (rc)
5215 			goto err_out;
5216 	}
5217 
5218 	if (BNXT_VF(bp))
5219 		bnxt_update_vf_mac(bp);
5220 
5221 	/* Filter for default vnic 0 */
5222 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5223 	if (rc) {
5224 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5225 		goto err_out;
5226 	}
5227 	vnic->uc_filter_count = 1;
5228 
5229 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5230 
5231 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5232 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5233 
5234 	if (bp->dev->flags & IFF_ALLMULTI) {
5235 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5236 		vnic->mc_list_count = 0;
5237 	} else {
5238 		u32 mask = 0;
5239 
5240 		bnxt_mc_list_updated(bp, &mask);
5241 		vnic->rx_mask |= mask;
5242 	}
5243 
5244 	rc = bnxt_cfg_rx_mode(bp);
5245 	if (rc)
5246 		goto err_out;
5247 
5248 	rc = bnxt_hwrm_set_coal(bp);
5249 	if (rc)
5250 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5251 				rc);
5252 
5253 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5254 		rc = bnxt_setup_nitroa0_vnic(bp);
5255 		if (rc)
5256 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5257 				   rc);
5258 	}
5259 
5260 	if (BNXT_VF(bp)) {
5261 		bnxt_hwrm_func_qcfg(bp);
5262 		netdev_update_features(bp->dev);
5263 	}
5264 
5265 	return 0;
5266 
5267 err_out:
5268 	bnxt_hwrm_resource_free(bp, 0, true);
5269 
5270 	return rc;
5271 }
5272 
5273 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5274 {
5275 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5276 	return 0;
5277 }
5278 
5279 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5280 {
5281 	bnxt_init_cp_rings(bp);
5282 	bnxt_init_rx_rings(bp);
5283 	bnxt_init_tx_rings(bp);
5284 	bnxt_init_ring_grps(bp, irq_re_init);
5285 	bnxt_init_vnics(bp);
5286 
5287 	return bnxt_init_chip(bp, irq_re_init);
5288 }
5289 
5290 static int bnxt_set_real_num_queues(struct bnxt *bp)
5291 {
5292 	int rc;
5293 	struct net_device *dev = bp->dev;
5294 
5295 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5296 					  bp->tx_nr_rings_xdp);
5297 	if (rc)
5298 		return rc;
5299 
5300 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5301 	if (rc)
5302 		return rc;
5303 
5304 #ifdef CONFIG_RFS_ACCEL
5305 	if (bp->flags & BNXT_FLAG_RFS)
5306 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5307 #endif
5308 
5309 	return rc;
5310 }
5311 
5312 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5313 			   bool shared)
5314 {
5315 	int _rx = *rx, _tx = *tx;
5316 
5317 	if (shared) {
5318 		*rx = min_t(int, _rx, max);
5319 		*tx = min_t(int, _tx, max);
5320 	} else {
5321 		if (max < 2)
5322 			return -ENOMEM;
5323 
5324 		while (_rx + _tx > max) {
5325 			if (_rx > _tx && _rx > 1)
5326 				_rx--;
5327 			else if (_tx > 1)
5328 				_tx--;
5329 		}
5330 		*rx = _rx;
5331 		*tx = _tx;
5332 	}
5333 	return 0;
5334 }
5335 
5336 static void bnxt_setup_msix(struct bnxt *bp)
5337 {
5338 	const int len = sizeof(bp->irq_tbl[0].name);
5339 	struct net_device *dev = bp->dev;
5340 	int tcs, i;
5341 
5342 	tcs = netdev_get_num_tc(dev);
5343 	if (tcs > 1) {
5344 		int i, off, count;
5345 
5346 		for (i = 0; i < tcs; i++) {
5347 			count = bp->tx_nr_rings_per_tc;
5348 			off = i * count;
5349 			netdev_set_tc_queue(dev, i, count, off);
5350 		}
5351 	}
5352 
5353 	for (i = 0; i < bp->cp_nr_rings; i++) {
5354 		char *attr;
5355 
5356 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5357 			attr = "TxRx";
5358 		else if (i < bp->rx_nr_rings)
5359 			attr = "rx";
5360 		else
5361 			attr = "tx";
5362 
5363 		snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5364 			 i);
5365 		bp->irq_tbl[i].handler = bnxt_msix;
5366 	}
5367 }
5368 
5369 static void bnxt_setup_inta(struct bnxt *bp)
5370 {
5371 	const int len = sizeof(bp->irq_tbl[0].name);
5372 
5373 	if (netdev_get_num_tc(bp->dev))
5374 		netdev_reset_tc(bp->dev);
5375 
5376 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5377 		 0);
5378 	bp->irq_tbl[0].handler = bnxt_inta;
5379 }
5380 
5381 static int bnxt_setup_int_mode(struct bnxt *bp)
5382 {
5383 	int rc;
5384 
5385 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5386 		bnxt_setup_msix(bp);
5387 	else
5388 		bnxt_setup_inta(bp);
5389 
5390 	rc = bnxt_set_real_num_queues(bp);
5391 	return rc;
5392 }
5393 
5394 #ifdef CONFIG_RFS_ACCEL
5395 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5396 {
5397 #if defined(CONFIG_BNXT_SRIOV)
5398 	if (BNXT_VF(bp))
5399 		return bp->vf.max_rsscos_ctxs;
5400 #endif
5401 	return bp->pf.max_rsscos_ctxs;
5402 }
5403 
5404 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5405 {
5406 #if defined(CONFIG_BNXT_SRIOV)
5407 	if (BNXT_VF(bp))
5408 		return bp->vf.max_vnics;
5409 #endif
5410 	return bp->pf.max_vnics;
5411 }
5412 #endif
5413 
5414 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5415 {
5416 #if defined(CONFIG_BNXT_SRIOV)
5417 	if (BNXT_VF(bp))
5418 		return bp->vf.max_stat_ctxs;
5419 #endif
5420 	return bp->pf.max_stat_ctxs;
5421 }
5422 
5423 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5424 {
5425 #if defined(CONFIG_BNXT_SRIOV)
5426 	if (BNXT_VF(bp))
5427 		bp->vf.max_stat_ctxs = max;
5428 	else
5429 #endif
5430 		bp->pf.max_stat_ctxs = max;
5431 }
5432 
5433 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5434 {
5435 #if defined(CONFIG_BNXT_SRIOV)
5436 	if (BNXT_VF(bp))
5437 		return bp->vf.max_cp_rings;
5438 #endif
5439 	return bp->pf.max_cp_rings;
5440 }
5441 
5442 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5443 {
5444 #if defined(CONFIG_BNXT_SRIOV)
5445 	if (BNXT_VF(bp))
5446 		bp->vf.max_cp_rings = max;
5447 	else
5448 #endif
5449 		bp->pf.max_cp_rings = max;
5450 }
5451 
5452 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5453 {
5454 #if defined(CONFIG_BNXT_SRIOV)
5455 	if (BNXT_VF(bp))
5456 		return min_t(unsigned int, bp->vf.max_irqs,
5457 			     bp->vf.max_cp_rings);
5458 #endif
5459 	return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5460 }
5461 
5462 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5463 {
5464 #if defined(CONFIG_BNXT_SRIOV)
5465 	if (BNXT_VF(bp))
5466 		bp->vf.max_irqs = max_irqs;
5467 	else
5468 #endif
5469 		bp->pf.max_irqs = max_irqs;
5470 }
5471 
5472 static int bnxt_init_msix(struct bnxt *bp)
5473 {
5474 	int i, total_vecs, rc = 0, min = 1;
5475 	struct msix_entry *msix_ent;
5476 
5477 	total_vecs = bnxt_get_max_func_irqs(bp);
5478 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5479 	if (!msix_ent)
5480 		return -ENOMEM;
5481 
5482 	for (i = 0; i < total_vecs; i++) {
5483 		msix_ent[i].entry = i;
5484 		msix_ent[i].vector = 0;
5485 	}
5486 
5487 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5488 		min = 2;
5489 
5490 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5491 	if (total_vecs < 0) {
5492 		rc = -ENODEV;
5493 		goto msix_setup_exit;
5494 	}
5495 
5496 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5497 	if (bp->irq_tbl) {
5498 		for (i = 0; i < total_vecs; i++)
5499 			bp->irq_tbl[i].vector = msix_ent[i].vector;
5500 
5501 		bp->total_irqs = total_vecs;
5502 		/* Trim rings based upon num of vectors allocated */
5503 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5504 				     total_vecs, min == 1);
5505 		if (rc)
5506 			goto msix_setup_exit;
5507 
5508 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5509 		bp->cp_nr_rings = (min == 1) ?
5510 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5511 				  bp->tx_nr_rings + bp->rx_nr_rings;
5512 
5513 	} else {
5514 		rc = -ENOMEM;
5515 		goto msix_setup_exit;
5516 	}
5517 	bp->flags |= BNXT_FLAG_USING_MSIX;
5518 	kfree(msix_ent);
5519 	return 0;
5520 
5521 msix_setup_exit:
5522 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5523 	kfree(bp->irq_tbl);
5524 	bp->irq_tbl = NULL;
5525 	pci_disable_msix(bp->pdev);
5526 	kfree(msix_ent);
5527 	return rc;
5528 }
5529 
5530 static int bnxt_init_inta(struct bnxt *bp)
5531 {
5532 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5533 	if (!bp->irq_tbl)
5534 		return -ENOMEM;
5535 
5536 	bp->total_irqs = 1;
5537 	bp->rx_nr_rings = 1;
5538 	bp->tx_nr_rings = 1;
5539 	bp->cp_nr_rings = 1;
5540 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5541 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
5542 	bp->irq_tbl[0].vector = bp->pdev->irq;
5543 	return 0;
5544 }
5545 
5546 static int bnxt_init_int_mode(struct bnxt *bp)
5547 {
5548 	int rc = 0;
5549 
5550 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
5551 		rc = bnxt_init_msix(bp);
5552 
5553 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5554 		/* fallback to INTA */
5555 		rc = bnxt_init_inta(bp);
5556 	}
5557 	return rc;
5558 }
5559 
5560 static void bnxt_clear_int_mode(struct bnxt *bp)
5561 {
5562 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5563 		pci_disable_msix(bp->pdev);
5564 
5565 	kfree(bp->irq_tbl);
5566 	bp->irq_tbl = NULL;
5567 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
5568 }
5569 
5570 static void bnxt_free_irq(struct bnxt *bp)
5571 {
5572 	struct bnxt_irq *irq;
5573 	int i;
5574 
5575 #ifdef CONFIG_RFS_ACCEL
5576 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5577 	bp->dev->rx_cpu_rmap = NULL;
5578 #endif
5579 	if (!bp->irq_tbl)
5580 		return;
5581 
5582 	for (i = 0; i < bp->cp_nr_rings; i++) {
5583 		irq = &bp->irq_tbl[i];
5584 		if (irq->requested) {
5585 			if (irq->have_cpumask) {
5586 				irq_set_affinity_hint(irq->vector, NULL);
5587 				free_cpumask_var(irq->cpu_mask);
5588 				irq->have_cpumask = 0;
5589 			}
5590 			free_irq(irq->vector, bp->bnapi[i]);
5591 		}
5592 
5593 		irq->requested = 0;
5594 	}
5595 }
5596 
5597 static int bnxt_request_irq(struct bnxt *bp)
5598 {
5599 	int i, j, rc = 0;
5600 	unsigned long flags = 0;
5601 #ifdef CONFIG_RFS_ACCEL
5602 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5603 #endif
5604 
5605 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5606 		flags = IRQF_SHARED;
5607 
5608 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5609 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5610 #ifdef CONFIG_RFS_ACCEL
5611 		if (rmap && bp->bnapi[i]->rx_ring) {
5612 			rc = irq_cpu_rmap_add(rmap, irq->vector);
5613 			if (rc)
5614 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5615 					    j);
5616 			j++;
5617 		}
5618 #endif
5619 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5620 				 bp->bnapi[i]);
5621 		if (rc)
5622 			break;
5623 
5624 		irq->requested = 1;
5625 
5626 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
5627 			int numa_node = dev_to_node(&bp->pdev->dev);
5628 
5629 			irq->have_cpumask = 1;
5630 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
5631 					irq->cpu_mask);
5632 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
5633 			if (rc) {
5634 				netdev_warn(bp->dev,
5635 					    "Set affinity failed, IRQ = %d\n",
5636 					    irq->vector);
5637 				break;
5638 			}
5639 		}
5640 	}
5641 	return rc;
5642 }
5643 
5644 static void bnxt_del_napi(struct bnxt *bp)
5645 {
5646 	int i;
5647 
5648 	if (!bp->bnapi)
5649 		return;
5650 
5651 	for (i = 0; i < bp->cp_nr_rings; i++) {
5652 		struct bnxt_napi *bnapi = bp->bnapi[i];
5653 
5654 		napi_hash_del(&bnapi->napi);
5655 		netif_napi_del(&bnapi->napi);
5656 	}
5657 	/* We called napi_hash_del() before netif_napi_del(), we need
5658 	 * to respect an RCU grace period before freeing napi structures.
5659 	 */
5660 	synchronize_net();
5661 }
5662 
5663 static void bnxt_init_napi(struct bnxt *bp)
5664 {
5665 	int i;
5666 	unsigned int cp_nr_rings = bp->cp_nr_rings;
5667 	struct bnxt_napi *bnapi;
5668 
5669 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
5670 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5671 			cp_nr_rings--;
5672 		for (i = 0; i < cp_nr_rings; i++) {
5673 			bnapi = bp->bnapi[i];
5674 			netif_napi_add(bp->dev, &bnapi->napi,
5675 				       bnxt_poll, 64);
5676 		}
5677 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5678 			bnapi = bp->bnapi[cp_nr_rings];
5679 			netif_napi_add(bp->dev, &bnapi->napi,
5680 				       bnxt_poll_nitroa0, 64);
5681 		}
5682 	} else {
5683 		bnapi = bp->bnapi[0];
5684 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5685 	}
5686 }
5687 
5688 static void bnxt_disable_napi(struct bnxt *bp)
5689 {
5690 	int i;
5691 
5692 	if (!bp->bnapi)
5693 		return;
5694 
5695 	for (i = 0; i < bp->cp_nr_rings; i++)
5696 		napi_disable(&bp->bnapi[i]->napi);
5697 }
5698 
5699 static void bnxt_enable_napi(struct bnxt *bp)
5700 {
5701 	int i;
5702 
5703 	for (i = 0; i < bp->cp_nr_rings; i++) {
5704 		bp->bnapi[i]->in_reset = false;
5705 		napi_enable(&bp->bnapi[i]->napi);
5706 	}
5707 }
5708 
5709 void bnxt_tx_disable(struct bnxt *bp)
5710 {
5711 	int i;
5712 	struct bnxt_tx_ring_info *txr;
5713 
5714 	if (bp->tx_ring) {
5715 		for (i = 0; i < bp->tx_nr_rings; i++) {
5716 			txr = &bp->tx_ring[i];
5717 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
5718 		}
5719 	}
5720 	/* Stop all TX queues */
5721 	netif_tx_disable(bp->dev);
5722 	netif_carrier_off(bp->dev);
5723 }
5724 
5725 void bnxt_tx_enable(struct bnxt *bp)
5726 {
5727 	int i;
5728 	struct bnxt_tx_ring_info *txr;
5729 
5730 	for (i = 0; i < bp->tx_nr_rings; i++) {
5731 		txr = &bp->tx_ring[i];
5732 		txr->dev_state = 0;
5733 	}
5734 	netif_tx_wake_all_queues(bp->dev);
5735 	if (bp->link_info.link_up)
5736 		netif_carrier_on(bp->dev);
5737 }
5738 
5739 static void bnxt_report_link(struct bnxt *bp)
5740 {
5741 	if (bp->link_info.link_up) {
5742 		const char *duplex;
5743 		const char *flow_ctrl;
5744 		u32 speed;
5745 		u16 fec;
5746 
5747 		netif_carrier_on(bp->dev);
5748 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5749 			duplex = "full";
5750 		else
5751 			duplex = "half";
5752 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5753 			flow_ctrl = "ON - receive & transmit";
5754 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5755 			flow_ctrl = "ON - transmit";
5756 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5757 			flow_ctrl = "ON - receive";
5758 		else
5759 			flow_ctrl = "none";
5760 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5761 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
5762 			    speed, duplex, flow_ctrl);
5763 		if (bp->flags & BNXT_FLAG_EEE_CAP)
5764 			netdev_info(bp->dev, "EEE is %s\n",
5765 				    bp->eee.eee_active ? "active" :
5766 							 "not active");
5767 		fec = bp->link_info.fec_cfg;
5768 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5769 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5770 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5771 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5772 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5773 	} else {
5774 		netif_carrier_off(bp->dev);
5775 		netdev_err(bp->dev, "NIC Link is Down\n");
5776 	}
5777 }
5778 
5779 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5780 {
5781 	int rc = 0;
5782 	struct hwrm_port_phy_qcaps_input req = {0};
5783 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5784 	struct bnxt_link_info *link_info = &bp->link_info;
5785 
5786 	if (bp->hwrm_spec_code < 0x10201)
5787 		return 0;
5788 
5789 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5790 
5791 	mutex_lock(&bp->hwrm_cmd_lock);
5792 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5793 	if (rc)
5794 		goto hwrm_phy_qcaps_exit;
5795 
5796 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
5797 		struct ethtool_eee *eee = &bp->eee;
5798 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5799 
5800 		bp->flags |= BNXT_FLAG_EEE_CAP;
5801 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5802 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5803 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5804 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5805 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5806 	}
5807 	if (resp->supported_speeds_auto_mode)
5808 		link_info->support_auto_speeds =
5809 			le16_to_cpu(resp->supported_speeds_auto_mode);
5810 
5811 	bp->port_count = resp->port_cnt;
5812 
5813 hwrm_phy_qcaps_exit:
5814 	mutex_unlock(&bp->hwrm_cmd_lock);
5815 	return rc;
5816 }
5817 
5818 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5819 {
5820 	int rc = 0;
5821 	struct bnxt_link_info *link_info = &bp->link_info;
5822 	struct hwrm_port_phy_qcfg_input req = {0};
5823 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5824 	u8 link_up = link_info->link_up;
5825 	u16 diff;
5826 
5827 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5828 
5829 	mutex_lock(&bp->hwrm_cmd_lock);
5830 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5831 	if (rc) {
5832 		mutex_unlock(&bp->hwrm_cmd_lock);
5833 		return rc;
5834 	}
5835 
5836 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5837 	link_info->phy_link_status = resp->link;
5838 	link_info->duplex = resp->duplex_cfg;
5839 	if (bp->hwrm_spec_code >= 0x10800)
5840 		link_info->duplex = resp->duplex_state;
5841 	link_info->pause = resp->pause;
5842 	link_info->auto_mode = resp->auto_mode;
5843 	link_info->auto_pause_setting = resp->auto_pause;
5844 	link_info->lp_pause = resp->link_partner_adv_pause;
5845 	link_info->force_pause_setting = resp->force_pause;
5846 	link_info->duplex_setting = resp->duplex_cfg;
5847 	if (link_info->phy_link_status == BNXT_LINK_LINK)
5848 		link_info->link_speed = le16_to_cpu(resp->link_speed);
5849 	else
5850 		link_info->link_speed = 0;
5851 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5852 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5853 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5854 	link_info->lp_auto_link_speeds =
5855 		le16_to_cpu(resp->link_partner_adv_speeds);
5856 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5857 	link_info->phy_ver[0] = resp->phy_maj;
5858 	link_info->phy_ver[1] = resp->phy_min;
5859 	link_info->phy_ver[2] = resp->phy_bld;
5860 	link_info->media_type = resp->media_type;
5861 	link_info->phy_type = resp->phy_type;
5862 	link_info->transceiver = resp->xcvr_pkg_type;
5863 	link_info->phy_addr = resp->eee_config_phy_addr &
5864 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5865 	link_info->module_status = resp->module_status;
5866 
5867 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
5868 		struct ethtool_eee *eee = &bp->eee;
5869 		u16 fw_speeds;
5870 
5871 		eee->eee_active = 0;
5872 		if (resp->eee_config_phy_addr &
5873 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5874 			eee->eee_active = 1;
5875 			fw_speeds = le16_to_cpu(
5876 				resp->link_partner_adv_eee_link_speed_mask);
5877 			eee->lp_advertised =
5878 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5879 		}
5880 
5881 		/* Pull initial EEE config */
5882 		if (!chng_link_state) {
5883 			if (resp->eee_config_phy_addr &
5884 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5885 				eee->eee_enabled = 1;
5886 
5887 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5888 			eee->advertised =
5889 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5890 
5891 			if (resp->eee_config_phy_addr &
5892 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5893 				__le32 tmr;
5894 
5895 				eee->tx_lpi_enabled = 1;
5896 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5897 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
5898 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5899 			}
5900 		}
5901 	}
5902 
5903 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5904 	if (bp->hwrm_spec_code >= 0x10504)
5905 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5906 
5907 	/* TODO: need to add more logic to report VF link */
5908 	if (chng_link_state) {
5909 		if (link_info->phy_link_status == BNXT_LINK_LINK)
5910 			link_info->link_up = 1;
5911 		else
5912 			link_info->link_up = 0;
5913 		if (link_up != link_info->link_up)
5914 			bnxt_report_link(bp);
5915 	} else {
5916 		/* alwasy link down if not require to update link state */
5917 		link_info->link_up = 0;
5918 	}
5919 	mutex_unlock(&bp->hwrm_cmd_lock);
5920 
5921 	diff = link_info->support_auto_speeds ^ link_info->advertising;
5922 	if ((link_info->support_auto_speeds | diff) !=
5923 	    link_info->support_auto_speeds) {
5924 		/* An advertised speed is no longer supported, so we need to
5925 		 * update the advertisement settings.  Caller holds RTNL
5926 		 * so we can modify link settings.
5927 		 */
5928 		link_info->advertising = link_info->support_auto_speeds;
5929 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5930 			bnxt_hwrm_set_link_setting(bp, true, false);
5931 	}
5932 	return 0;
5933 }
5934 
5935 static void bnxt_get_port_module_status(struct bnxt *bp)
5936 {
5937 	struct bnxt_link_info *link_info = &bp->link_info;
5938 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5939 	u8 module_status;
5940 
5941 	if (bnxt_update_link(bp, true))
5942 		return;
5943 
5944 	module_status = link_info->module_status;
5945 	switch (module_status) {
5946 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5947 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5948 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5949 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5950 			    bp->pf.port_id);
5951 		if (bp->hwrm_spec_code >= 0x10201) {
5952 			netdev_warn(bp->dev, "Module part number %s\n",
5953 				    resp->phy_vendor_partnumber);
5954 		}
5955 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5956 			netdev_warn(bp->dev, "TX is disabled\n");
5957 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5958 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5959 	}
5960 }
5961 
5962 static void
5963 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5964 {
5965 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5966 		if (bp->hwrm_spec_code >= 0x10201)
5967 			req->auto_pause =
5968 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5969 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5970 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5971 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5972 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5973 		req->enables |=
5974 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5975 	} else {
5976 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5977 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5978 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5979 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5980 		req->enables |=
5981 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5982 		if (bp->hwrm_spec_code >= 0x10201) {
5983 			req->auto_pause = req->force_pause;
5984 			req->enables |= cpu_to_le32(
5985 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5986 		}
5987 	}
5988 }
5989 
5990 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5991 				      struct hwrm_port_phy_cfg_input *req)
5992 {
5993 	u8 autoneg = bp->link_info.autoneg;
5994 	u16 fw_link_speed = bp->link_info.req_link_speed;
5995 	u16 advertising = bp->link_info.advertising;
5996 
5997 	if (autoneg & BNXT_AUTONEG_SPEED) {
5998 		req->auto_mode |=
5999 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6000 
6001 		req->enables |= cpu_to_le32(
6002 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6003 		req->auto_link_speed_mask = cpu_to_le16(advertising);
6004 
6005 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6006 		req->flags |=
6007 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6008 	} else {
6009 		req->force_link_speed = cpu_to_le16(fw_link_speed);
6010 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6011 	}
6012 
6013 	/* tell chimp that the setting takes effect immediately */
6014 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6015 }
6016 
6017 int bnxt_hwrm_set_pause(struct bnxt *bp)
6018 {
6019 	struct hwrm_port_phy_cfg_input req = {0};
6020 	int rc;
6021 
6022 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6023 	bnxt_hwrm_set_pause_common(bp, &req);
6024 
6025 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6026 	    bp->link_info.force_link_chng)
6027 		bnxt_hwrm_set_link_common(bp, &req);
6028 
6029 	mutex_lock(&bp->hwrm_cmd_lock);
6030 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6031 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6032 		/* since changing of pause setting doesn't trigger any link
6033 		 * change event, the driver needs to update the current pause
6034 		 * result upon successfully return of the phy_cfg command
6035 		 */
6036 		bp->link_info.pause =
6037 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6038 		bp->link_info.auto_pause_setting = 0;
6039 		if (!bp->link_info.force_link_chng)
6040 			bnxt_report_link(bp);
6041 	}
6042 	bp->link_info.force_link_chng = false;
6043 	mutex_unlock(&bp->hwrm_cmd_lock);
6044 	return rc;
6045 }
6046 
6047 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6048 			      struct hwrm_port_phy_cfg_input *req)
6049 {
6050 	struct ethtool_eee *eee = &bp->eee;
6051 
6052 	if (eee->eee_enabled) {
6053 		u16 eee_speeds;
6054 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6055 
6056 		if (eee->tx_lpi_enabled)
6057 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6058 		else
6059 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6060 
6061 		req->flags |= cpu_to_le32(flags);
6062 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6063 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6064 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6065 	} else {
6066 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6067 	}
6068 }
6069 
6070 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6071 {
6072 	struct hwrm_port_phy_cfg_input req = {0};
6073 
6074 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6075 	if (set_pause)
6076 		bnxt_hwrm_set_pause_common(bp, &req);
6077 
6078 	bnxt_hwrm_set_link_common(bp, &req);
6079 
6080 	if (set_eee)
6081 		bnxt_hwrm_set_eee(bp, &req);
6082 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6083 }
6084 
6085 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6086 {
6087 	struct hwrm_port_phy_cfg_input req = {0};
6088 
6089 	if (!BNXT_SINGLE_PF(bp))
6090 		return 0;
6091 
6092 	if (pci_num_vf(bp->pdev))
6093 		return 0;
6094 
6095 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6096 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6097 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6098 }
6099 
6100 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6101 {
6102 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6103 	struct hwrm_port_led_qcaps_input req = {0};
6104 	struct bnxt_pf_info *pf = &bp->pf;
6105 	int rc;
6106 
6107 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6108 		return 0;
6109 
6110 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6111 	req.port_id = cpu_to_le16(pf->port_id);
6112 	mutex_lock(&bp->hwrm_cmd_lock);
6113 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6114 	if (rc) {
6115 		mutex_unlock(&bp->hwrm_cmd_lock);
6116 		return rc;
6117 	}
6118 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6119 		int i;
6120 
6121 		bp->num_leds = resp->num_leds;
6122 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6123 						 bp->num_leds);
6124 		for (i = 0; i < bp->num_leds; i++) {
6125 			struct bnxt_led_info *led = &bp->leds[i];
6126 			__le16 caps = led->led_state_caps;
6127 
6128 			if (!led->led_group_id ||
6129 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
6130 				bp->num_leds = 0;
6131 				break;
6132 			}
6133 		}
6134 	}
6135 	mutex_unlock(&bp->hwrm_cmd_lock);
6136 	return 0;
6137 }
6138 
6139 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6140 {
6141 	struct hwrm_wol_filter_alloc_input req = {0};
6142 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6143 	int rc;
6144 
6145 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6146 	req.port_id = cpu_to_le16(bp->pf.port_id);
6147 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6148 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6149 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6150 	mutex_lock(&bp->hwrm_cmd_lock);
6151 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6152 	if (!rc)
6153 		bp->wol_filter_id = resp->wol_filter_id;
6154 	mutex_unlock(&bp->hwrm_cmd_lock);
6155 	return rc;
6156 }
6157 
6158 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6159 {
6160 	struct hwrm_wol_filter_free_input req = {0};
6161 	int rc;
6162 
6163 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6164 	req.port_id = cpu_to_le16(bp->pf.port_id);
6165 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6166 	req.wol_filter_id = bp->wol_filter_id;
6167 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6168 	return rc;
6169 }
6170 
6171 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6172 {
6173 	struct hwrm_wol_filter_qcfg_input req = {0};
6174 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6175 	u16 next_handle = 0;
6176 	int rc;
6177 
6178 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6179 	req.port_id = cpu_to_le16(bp->pf.port_id);
6180 	req.handle = cpu_to_le16(handle);
6181 	mutex_lock(&bp->hwrm_cmd_lock);
6182 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6183 	if (!rc) {
6184 		next_handle = le16_to_cpu(resp->next_handle);
6185 		if (next_handle != 0) {
6186 			if (resp->wol_type ==
6187 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6188 				bp->wol = 1;
6189 				bp->wol_filter_id = resp->wol_filter_id;
6190 			}
6191 		}
6192 	}
6193 	mutex_unlock(&bp->hwrm_cmd_lock);
6194 	return next_handle;
6195 }
6196 
6197 static void bnxt_get_wol_settings(struct bnxt *bp)
6198 {
6199 	u16 handle = 0;
6200 
6201 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6202 		return;
6203 
6204 	do {
6205 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6206 	} while (handle && handle != 0xffff);
6207 }
6208 
6209 static bool bnxt_eee_config_ok(struct bnxt *bp)
6210 {
6211 	struct ethtool_eee *eee = &bp->eee;
6212 	struct bnxt_link_info *link_info = &bp->link_info;
6213 
6214 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6215 		return true;
6216 
6217 	if (eee->eee_enabled) {
6218 		u32 advertising =
6219 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6220 
6221 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6222 			eee->eee_enabled = 0;
6223 			return false;
6224 		}
6225 		if (eee->advertised & ~advertising) {
6226 			eee->advertised = advertising & eee->supported;
6227 			return false;
6228 		}
6229 	}
6230 	return true;
6231 }
6232 
6233 static int bnxt_update_phy_setting(struct bnxt *bp)
6234 {
6235 	int rc;
6236 	bool update_link = false;
6237 	bool update_pause = false;
6238 	bool update_eee = false;
6239 	struct bnxt_link_info *link_info = &bp->link_info;
6240 
6241 	rc = bnxt_update_link(bp, true);
6242 	if (rc) {
6243 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6244 			   rc);
6245 		return rc;
6246 	}
6247 	if (!BNXT_SINGLE_PF(bp))
6248 		return 0;
6249 
6250 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6251 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6252 	    link_info->req_flow_ctrl)
6253 		update_pause = true;
6254 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6255 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
6256 		update_pause = true;
6257 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6258 		if (BNXT_AUTO_MODE(link_info->auto_mode))
6259 			update_link = true;
6260 		if (link_info->req_link_speed != link_info->force_link_speed)
6261 			update_link = true;
6262 		if (link_info->req_duplex != link_info->duplex_setting)
6263 			update_link = true;
6264 	} else {
6265 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6266 			update_link = true;
6267 		if (link_info->advertising != link_info->auto_link_speeds)
6268 			update_link = true;
6269 	}
6270 
6271 	/* The last close may have shutdown the link, so need to call
6272 	 * PHY_CFG to bring it back up.
6273 	 */
6274 	if (!netif_carrier_ok(bp->dev))
6275 		update_link = true;
6276 
6277 	if (!bnxt_eee_config_ok(bp))
6278 		update_eee = true;
6279 
6280 	if (update_link)
6281 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6282 	else if (update_pause)
6283 		rc = bnxt_hwrm_set_pause(bp);
6284 	if (rc) {
6285 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6286 			   rc);
6287 		return rc;
6288 	}
6289 
6290 	return rc;
6291 }
6292 
6293 /* Common routine to pre-map certain register block to different GRC window.
6294  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6295  * in PF and 3 windows in VF that can be customized to map in different
6296  * register blocks.
6297  */
6298 static void bnxt_preset_reg_win(struct bnxt *bp)
6299 {
6300 	if (BNXT_PF(bp)) {
6301 		/* CAG registers map to GRC window #4 */
6302 		writel(BNXT_CAG_REG_BASE,
6303 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6304 	}
6305 }
6306 
6307 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6308 {
6309 	int rc = 0;
6310 
6311 	bnxt_preset_reg_win(bp);
6312 	netif_carrier_off(bp->dev);
6313 	if (irq_re_init) {
6314 		rc = bnxt_setup_int_mode(bp);
6315 		if (rc) {
6316 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6317 				   rc);
6318 			return rc;
6319 		}
6320 	}
6321 	if ((bp->flags & BNXT_FLAG_RFS) &&
6322 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6323 		/* disable RFS if falling back to INTA */
6324 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6325 		bp->flags &= ~BNXT_FLAG_RFS;
6326 	}
6327 
6328 	rc = bnxt_alloc_mem(bp, irq_re_init);
6329 	if (rc) {
6330 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6331 		goto open_err_free_mem;
6332 	}
6333 
6334 	if (irq_re_init) {
6335 		bnxt_init_napi(bp);
6336 		rc = bnxt_request_irq(bp);
6337 		if (rc) {
6338 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6339 			goto open_err;
6340 		}
6341 	}
6342 
6343 	bnxt_enable_napi(bp);
6344 
6345 	rc = bnxt_init_nic(bp, irq_re_init);
6346 	if (rc) {
6347 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6348 		goto open_err;
6349 	}
6350 
6351 	if (link_re_init) {
6352 		mutex_lock(&bp->link_lock);
6353 		rc = bnxt_update_phy_setting(bp);
6354 		mutex_unlock(&bp->link_lock);
6355 		if (rc)
6356 			netdev_warn(bp->dev, "failed to update phy settings\n");
6357 	}
6358 
6359 	if (irq_re_init)
6360 		udp_tunnel_get_rx_info(bp->dev);
6361 
6362 	set_bit(BNXT_STATE_OPEN, &bp->state);
6363 	bnxt_enable_int(bp);
6364 	/* Enable TX queues */
6365 	bnxt_tx_enable(bp);
6366 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6367 	/* Poll link status and check for SFP+ module status */
6368 	bnxt_get_port_module_status(bp);
6369 
6370 	/* VF-reps may need to be re-opened after the PF is re-opened */
6371 	if (BNXT_PF(bp))
6372 		bnxt_vf_reps_open(bp);
6373 	return 0;
6374 
6375 open_err:
6376 	bnxt_disable_napi(bp);
6377 	bnxt_del_napi(bp);
6378 
6379 open_err_free_mem:
6380 	bnxt_free_skbs(bp);
6381 	bnxt_free_irq(bp);
6382 	bnxt_free_mem(bp, true);
6383 	return rc;
6384 }
6385 
6386 /* rtnl_lock held */
6387 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6388 {
6389 	int rc = 0;
6390 
6391 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6392 	if (rc) {
6393 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6394 		dev_close(bp->dev);
6395 	}
6396 	return rc;
6397 }
6398 
6399 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6400  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6401  * self tests.
6402  */
6403 int bnxt_half_open_nic(struct bnxt *bp)
6404 {
6405 	int rc = 0;
6406 
6407 	rc = bnxt_alloc_mem(bp, false);
6408 	if (rc) {
6409 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6410 		goto half_open_err;
6411 	}
6412 	rc = bnxt_init_nic(bp, false);
6413 	if (rc) {
6414 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6415 		goto half_open_err;
6416 	}
6417 	return 0;
6418 
6419 half_open_err:
6420 	bnxt_free_skbs(bp);
6421 	bnxt_free_mem(bp, false);
6422 	dev_close(bp->dev);
6423 	return rc;
6424 }
6425 
6426 /* rtnl_lock held, this call can only be made after a previous successful
6427  * call to bnxt_half_open_nic().
6428  */
6429 void bnxt_half_close_nic(struct bnxt *bp)
6430 {
6431 	bnxt_hwrm_resource_free(bp, false, false);
6432 	bnxt_free_skbs(bp);
6433 	bnxt_free_mem(bp, false);
6434 }
6435 
6436 static int bnxt_open(struct net_device *dev)
6437 {
6438 	struct bnxt *bp = netdev_priv(dev);
6439 
6440 	return __bnxt_open_nic(bp, true, true);
6441 }
6442 
6443 static bool bnxt_drv_busy(struct bnxt *bp)
6444 {
6445 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
6446 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
6447 }
6448 
6449 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6450 {
6451 	int rc = 0;
6452 
6453 #ifdef CONFIG_BNXT_SRIOV
6454 	if (bp->sriov_cfg) {
6455 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6456 						      !bp->sriov_cfg,
6457 						      BNXT_SRIOV_CFG_WAIT_TMO);
6458 		if (rc)
6459 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6460 	}
6461 
6462 	/* Close the VF-reps before closing PF */
6463 	if (BNXT_PF(bp))
6464 		bnxt_vf_reps_close(bp);
6465 #endif
6466 	/* Change device state to avoid TX queue wake up's */
6467 	bnxt_tx_disable(bp);
6468 
6469 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6470 	smp_mb__after_atomic();
6471 	while (bnxt_drv_busy(bp))
6472 		msleep(20);
6473 
6474 	/* Flush rings and and disable interrupts */
6475 	bnxt_shutdown_nic(bp, irq_re_init);
6476 
6477 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6478 
6479 	bnxt_disable_napi(bp);
6480 	del_timer_sync(&bp->timer);
6481 	bnxt_free_skbs(bp);
6482 
6483 	if (irq_re_init) {
6484 		bnxt_free_irq(bp);
6485 		bnxt_del_napi(bp);
6486 	}
6487 	bnxt_free_mem(bp, irq_re_init);
6488 	return rc;
6489 }
6490 
6491 static int bnxt_close(struct net_device *dev)
6492 {
6493 	struct bnxt *bp = netdev_priv(dev);
6494 
6495 	bnxt_close_nic(bp, true, true);
6496 	bnxt_hwrm_shutdown_link(bp);
6497 	return 0;
6498 }
6499 
6500 /* rtnl_lock held */
6501 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6502 {
6503 	switch (cmd) {
6504 	case SIOCGMIIPHY:
6505 		/* fallthru */
6506 	case SIOCGMIIREG: {
6507 		if (!netif_running(dev))
6508 			return -EAGAIN;
6509 
6510 		return 0;
6511 	}
6512 
6513 	case SIOCSMIIREG:
6514 		if (!netif_running(dev))
6515 			return -EAGAIN;
6516 
6517 		return 0;
6518 
6519 	default:
6520 		/* do nothing */
6521 		break;
6522 	}
6523 	return -EOPNOTSUPP;
6524 }
6525 
6526 static void
6527 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6528 {
6529 	u32 i;
6530 	struct bnxt *bp = netdev_priv(dev);
6531 
6532 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
6533 	/* Make sure bnxt_close_nic() sees that we are reading stats before
6534 	 * we check the BNXT_STATE_OPEN flag.
6535 	 */
6536 	smp_mb__after_atomic();
6537 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6538 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6539 		return;
6540 	}
6541 
6542 	/* TODO check if we need to synchronize with bnxt_close path */
6543 	for (i = 0; i < bp->cp_nr_rings; i++) {
6544 		struct bnxt_napi *bnapi = bp->bnapi[i];
6545 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6546 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6547 
6548 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6549 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6550 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6551 
6552 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6553 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6554 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6555 
6556 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6557 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6558 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6559 
6560 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6561 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6562 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6563 
6564 		stats->rx_missed_errors +=
6565 			le64_to_cpu(hw_stats->rx_discard_pkts);
6566 
6567 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6568 
6569 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6570 	}
6571 
6572 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
6573 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
6574 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
6575 
6576 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6577 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6578 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6579 					  le64_to_cpu(rx->rx_ovrsz_frames) +
6580 					  le64_to_cpu(rx->rx_runt_frames);
6581 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6582 				   le64_to_cpu(rx->rx_jbr_frames);
6583 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6584 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6585 		stats->tx_errors = le64_to_cpu(tx->tx_err);
6586 	}
6587 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
6588 }
6589 
6590 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6591 {
6592 	struct net_device *dev = bp->dev;
6593 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6594 	struct netdev_hw_addr *ha;
6595 	u8 *haddr;
6596 	int mc_count = 0;
6597 	bool update = false;
6598 	int off = 0;
6599 
6600 	netdev_for_each_mc_addr(ha, dev) {
6601 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
6602 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6603 			vnic->mc_list_count = 0;
6604 			return false;
6605 		}
6606 		haddr = ha->addr;
6607 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6608 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6609 			update = true;
6610 		}
6611 		off += ETH_ALEN;
6612 		mc_count++;
6613 	}
6614 	if (mc_count)
6615 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6616 
6617 	if (mc_count != vnic->mc_list_count) {
6618 		vnic->mc_list_count = mc_count;
6619 		update = true;
6620 	}
6621 	return update;
6622 }
6623 
6624 static bool bnxt_uc_list_updated(struct bnxt *bp)
6625 {
6626 	struct net_device *dev = bp->dev;
6627 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6628 	struct netdev_hw_addr *ha;
6629 	int off = 0;
6630 
6631 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6632 		return true;
6633 
6634 	netdev_for_each_uc_addr(ha, dev) {
6635 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6636 			return true;
6637 
6638 		off += ETH_ALEN;
6639 	}
6640 	return false;
6641 }
6642 
6643 static void bnxt_set_rx_mode(struct net_device *dev)
6644 {
6645 	struct bnxt *bp = netdev_priv(dev);
6646 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6647 	u32 mask = vnic->rx_mask;
6648 	bool mc_update = false;
6649 	bool uc_update;
6650 
6651 	if (!netif_running(dev))
6652 		return;
6653 
6654 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6655 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6656 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6657 
6658 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6659 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6660 
6661 	uc_update = bnxt_uc_list_updated(bp);
6662 
6663 	if (dev->flags & IFF_ALLMULTI) {
6664 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6665 		vnic->mc_list_count = 0;
6666 	} else {
6667 		mc_update = bnxt_mc_list_updated(bp, &mask);
6668 	}
6669 
6670 	if (mask != vnic->rx_mask || uc_update || mc_update) {
6671 		vnic->rx_mask = mask;
6672 
6673 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6674 		bnxt_queue_sp_work(bp);
6675 	}
6676 }
6677 
6678 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6679 {
6680 	struct net_device *dev = bp->dev;
6681 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6682 	struct netdev_hw_addr *ha;
6683 	int i, off = 0, rc;
6684 	bool uc_update;
6685 
6686 	netif_addr_lock_bh(dev);
6687 	uc_update = bnxt_uc_list_updated(bp);
6688 	netif_addr_unlock_bh(dev);
6689 
6690 	if (!uc_update)
6691 		goto skip_uc;
6692 
6693 	mutex_lock(&bp->hwrm_cmd_lock);
6694 	for (i = 1; i < vnic->uc_filter_count; i++) {
6695 		struct hwrm_cfa_l2_filter_free_input req = {0};
6696 
6697 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6698 				       -1);
6699 
6700 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
6701 
6702 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6703 					HWRM_CMD_TIMEOUT);
6704 	}
6705 	mutex_unlock(&bp->hwrm_cmd_lock);
6706 
6707 	vnic->uc_filter_count = 1;
6708 
6709 	netif_addr_lock_bh(dev);
6710 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6711 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6712 	} else {
6713 		netdev_for_each_uc_addr(ha, dev) {
6714 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6715 			off += ETH_ALEN;
6716 			vnic->uc_filter_count++;
6717 		}
6718 	}
6719 	netif_addr_unlock_bh(dev);
6720 
6721 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6722 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6723 		if (rc) {
6724 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6725 				   rc);
6726 			vnic->uc_filter_count = i;
6727 			return rc;
6728 		}
6729 	}
6730 
6731 skip_uc:
6732 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6733 	if (rc)
6734 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6735 			   rc);
6736 
6737 	return rc;
6738 }
6739 
6740 /* If the chip and firmware supports RFS */
6741 static bool bnxt_rfs_supported(struct bnxt *bp)
6742 {
6743 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6744 		return true;
6745 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6746 		return true;
6747 	return false;
6748 }
6749 
6750 /* If runtime conditions support RFS */
6751 static bool bnxt_rfs_capable(struct bnxt *bp)
6752 {
6753 #ifdef CONFIG_RFS_ACCEL
6754 	int vnics, max_vnics, max_rss_ctxs;
6755 
6756 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6757 		return false;
6758 
6759 	vnics = 1 + bp->rx_nr_rings;
6760 	max_vnics = bnxt_get_max_func_vnics(bp);
6761 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6762 
6763 	/* RSS contexts not a limiting factor */
6764 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6765 		max_rss_ctxs = max_vnics;
6766 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
6767 		netdev_warn(bp->dev,
6768 			    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6769 			    min(max_rss_ctxs - 1, max_vnics - 1));
6770 		return false;
6771 	}
6772 
6773 	return true;
6774 #else
6775 	return false;
6776 #endif
6777 }
6778 
6779 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6780 					   netdev_features_t features)
6781 {
6782 	struct bnxt *bp = netdev_priv(dev);
6783 
6784 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6785 		features &= ~NETIF_F_NTUPLE;
6786 
6787 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
6788 	 * turned on or off together.
6789 	 */
6790 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6791 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6792 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6793 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6794 				      NETIF_F_HW_VLAN_STAG_RX);
6795 		else
6796 			features |= NETIF_F_HW_VLAN_CTAG_RX |
6797 				    NETIF_F_HW_VLAN_STAG_RX;
6798 	}
6799 #ifdef CONFIG_BNXT_SRIOV
6800 	if (BNXT_VF(bp)) {
6801 		if (bp->vf.vlan) {
6802 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6803 				      NETIF_F_HW_VLAN_STAG_RX);
6804 		}
6805 	}
6806 #endif
6807 	return features;
6808 }
6809 
6810 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6811 {
6812 	struct bnxt *bp = netdev_priv(dev);
6813 	u32 flags = bp->flags;
6814 	u32 changes;
6815 	int rc = 0;
6816 	bool re_init = false;
6817 	bool update_tpa = false;
6818 
6819 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6820 	if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6821 		flags |= BNXT_FLAG_GRO;
6822 	if (features & NETIF_F_LRO)
6823 		flags |= BNXT_FLAG_LRO;
6824 
6825 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6826 		flags &= ~BNXT_FLAG_TPA;
6827 
6828 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6829 		flags |= BNXT_FLAG_STRIP_VLAN;
6830 
6831 	if (features & NETIF_F_NTUPLE)
6832 		flags |= BNXT_FLAG_RFS;
6833 
6834 	changes = flags ^ bp->flags;
6835 	if (changes & BNXT_FLAG_TPA) {
6836 		update_tpa = true;
6837 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6838 		    (flags & BNXT_FLAG_TPA) == 0)
6839 			re_init = true;
6840 	}
6841 
6842 	if (changes & ~BNXT_FLAG_TPA)
6843 		re_init = true;
6844 
6845 	if (flags != bp->flags) {
6846 		u32 old_flags = bp->flags;
6847 
6848 		bp->flags = flags;
6849 
6850 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6851 			if (update_tpa)
6852 				bnxt_set_ring_params(bp);
6853 			return rc;
6854 		}
6855 
6856 		if (re_init) {
6857 			bnxt_close_nic(bp, false, false);
6858 			if (update_tpa)
6859 				bnxt_set_ring_params(bp);
6860 
6861 			return bnxt_open_nic(bp, false, false);
6862 		}
6863 		if (update_tpa) {
6864 			rc = bnxt_set_tpa(bp,
6865 					  (flags & BNXT_FLAG_TPA) ?
6866 					  true : false);
6867 			if (rc)
6868 				bp->flags = old_flags;
6869 		}
6870 	}
6871 	return rc;
6872 }
6873 
6874 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6875 {
6876 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6877 	int i = bnapi->index;
6878 
6879 	if (!txr)
6880 		return;
6881 
6882 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6883 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6884 		    txr->tx_cons);
6885 }
6886 
6887 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6888 {
6889 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6890 	int i = bnapi->index;
6891 
6892 	if (!rxr)
6893 		return;
6894 
6895 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6896 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6897 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6898 		    rxr->rx_sw_agg_prod);
6899 }
6900 
6901 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6902 {
6903 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6904 	int i = bnapi->index;
6905 
6906 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6907 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6908 }
6909 
6910 static void bnxt_dbg_dump_states(struct bnxt *bp)
6911 {
6912 	int i;
6913 	struct bnxt_napi *bnapi;
6914 
6915 	for (i = 0; i < bp->cp_nr_rings; i++) {
6916 		bnapi = bp->bnapi[i];
6917 		if (netif_msg_drv(bp)) {
6918 			bnxt_dump_tx_sw_state(bnapi);
6919 			bnxt_dump_rx_sw_state(bnapi);
6920 			bnxt_dump_cp_sw_state(bnapi);
6921 		}
6922 	}
6923 }
6924 
6925 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6926 {
6927 	if (!silent)
6928 		bnxt_dbg_dump_states(bp);
6929 	if (netif_running(bp->dev)) {
6930 		int rc;
6931 
6932 		if (!silent)
6933 			bnxt_ulp_stop(bp);
6934 		bnxt_close_nic(bp, false, false);
6935 		rc = bnxt_open_nic(bp, false, false);
6936 		if (!silent && !rc)
6937 			bnxt_ulp_start(bp);
6938 	}
6939 }
6940 
6941 static void bnxt_tx_timeout(struct net_device *dev)
6942 {
6943 	struct bnxt *bp = netdev_priv(dev);
6944 
6945 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6946 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6947 	bnxt_queue_sp_work(bp);
6948 }
6949 
6950 #ifdef CONFIG_NET_POLL_CONTROLLER
6951 static void bnxt_poll_controller(struct net_device *dev)
6952 {
6953 	struct bnxt *bp = netdev_priv(dev);
6954 	int i;
6955 
6956 	/* Only process tx rings/combined rings in netpoll mode. */
6957 	for (i = 0; i < bp->tx_nr_rings; i++) {
6958 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6959 
6960 		napi_schedule(&txr->bnapi->napi);
6961 	}
6962 }
6963 #endif
6964 
6965 static void bnxt_timer(struct timer_list *t)
6966 {
6967 	struct bnxt *bp = from_timer(bp, t, timer);
6968 	struct net_device *dev = bp->dev;
6969 
6970 	if (!netif_running(dev))
6971 		return;
6972 
6973 	if (atomic_read(&bp->intr_sem) != 0)
6974 		goto bnxt_restart_timer;
6975 
6976 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
6977 	    bp->stats_coal_ticks) {
6978 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6979 		bnxt_queue_sp_work(bp);
6980 	}
6981 
6982 	if (bnxt_tc_flower_enabled(bp)) {
6983 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
6984 		bnxt_queue_sp_work(bp);
6985 	}
6986 bnxt_restart_timer:
6987 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6988 }
6989 
6990 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6991 {
6992 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6993 	 * set.  If the device is being closed, bnxt_close() may be holding
6994 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6995 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6996 	 */
6997 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6998 	rtnl_lock();
6999 }
7000 
7001 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7002 {
7003 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7004 	rtnl_unlock();
7005 }
7006 
7007 /* Only called from bnxt_sp_task() */
7008 static void bnxt_reset(struct bnxt *bp, bool silent)
7009 {
7010 	bnxt_rtnl_lock_sp(bp);
7011 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
7012 		bnxt_reset_task(bp, silent);
7013 	bnxt_rtnl_unlock_sp(bp);
7014 }
7015 
7016 static void bnxt_cfg_ntp_filters(struct bnxt *);
7017 
7018 static void bnxt_sp_task(struct work_struct *work)
7019 {
7020 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7021 
7022 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7023 	smp_mb__after_atomic();
7024 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7025 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7026 		return;
7027 	}
7028 
7029 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7030 		bnxt_cfg_rx_mode(bp);
7031 
7032 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7033 		bnxt_cfg_ntp_filters(bp);
7034 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7035 		bnxt_hwrm_exec_fwd_req(bp);
7036 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7037 		bnxt_hwrm_tunnel_dst_port_alloc(
7038 			bp, bp->vxlan_port,
7039 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7040 	}
7041 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7042 		bnxt_hwrm_tunnel_dst_port_free(
7043 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7044 	}
7045 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7046 		bnxt_hwrm_tunnel_dst_port_alloc(
7047 			bp, bp->nge_port,
7048 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7049 	}
7050 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7051 		bnxt_hwrm_tunnel_dst_port_free(
7052 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7053 	}
7054 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
7055 		bnxt_hwrm_port_qstats(bp);
7056 
7057 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7058 		int rc;
7059 
7060 		mutex_lock(&bp->link_lock);
7061 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7062 				       &bp->sp_event))
7063 			bnxt_hwrm_phy_qcaps(bp);
7064 
7065 		rc = bnxt_update_link(bp, true);
7066 		mutex_unlock(&bp->link_lock);
7067 		if (rc)
7068 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7069 				   rc);
7070 	}
7071 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7072 		mutex_lock(&bp->link_lock);
7073 		bnxt_get_port_module_status(bp);
7074 		mutex_unlock(&bp->link_lock);
7075 	}
7076 
7077 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7078 		bnxt_tc_flow_stats_work(bp);
7079 
7080 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7081 	 * must be the last functions to be called before exiting.
7082 	 */
7083 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7084 		bnxt_reset(bp, false);
7085 
7086 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7087 		bnxt_reset(bp, true);
7088 
7089 	smp_mb__before_atomic();
7090 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7091 }
7092 
7093 /* Under rtnl_lock */
7094 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7095 		     int tx_xdp)
7096 {
7097 	int max_rx, max_tx, tx_sets = 1;
7098 	int tx_rings_needed;
7099 	int rc;
7100 
7101 	if (tcs)
7102 		tx_sets = tcs;
7103 
7104 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7105 	if (rc)
7106 		return rc;
7107 
7108 	if (max_rx < rx)
7109 		return -ENOMEM;
7110 
7111 	tx_rings_needed = tx * tx_sets + tx_xdp;
7112 	if (max_tx < tx_rings_needed)
7113 		return -ENOMEM;
7114 
7115 	return bnxt_hwrm_check_tx_rings(bp, tx_rings_needed);
7116 }
7117 
7118 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7119 {
7120 	if (bp->bar2) {
7121 		pci_iounmap(pdev, bp->bar2);
7122 		bp->bar2 = NULL;
7123 	}
7124 
7125 	if (bp->bar1) {
7126 		pci_iounmap(pdev, bp->bar1);
7127 		bp->bar1 = NULL;
7128 	}
7129 
7130 	if (bp->bar0) {
7131 		pci_iounmap(pdev, bp->bar0);
7132 		bp->bar0 = NULL;
7133 	}
7134 }
7135 
7136 static void bnxt_cleanup_pci(struct bnxt *bp)
7137 {
7138 	bnxt_unmap_bars(bp, bp->pdev);
7139 	pci_release_regions(bp->pdev);
7140 	pci_disable_device(bp->pdev);
7141 }
7142 
7143 static void bnxt_init_dflt_coal(struct bnxt *bp)
7144 {
7145 	struct bnxt_coal *coal;
7146 
7147 	/* Tick values in micro seconds.
7148 	 * 1 coal_buf x bufs_per_record = 1 completion record.
7149 	 */
7150 	coal = &bp->rx_coal;
7151 	coal->coal_ticks = 14;
7152 	coal->coal_bufs = 30;
7153 	coal->coal_ticks_irq = 1;
7154 	coal->coal_bufs_irq = 2;
7155 	coal->idle_thresh = 25;
7156 	coal->bufs_per_record = 2;
7157 	coal->budget = 64;		/* NAPI budget */
7158 
7159 	coal = &bp->tx_coal;
7160 	coal->coal_ticks = 28;
7161 	coal->coal_bufs = 30;
7162 	coal->coal_ticks_irq = 2;
7163 	coal->coal_bufs_irq = 2;
7164 	coal->bufs_per_record = 1;
7165 
7166 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7167 }
7168 
7169 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7170 {
7171 	int rc;
7172 	struct bnxt *bp = netdev_priv(dev);
7173 
7174 	SET_NETDEV_DEV(dev, &pdev->dev);
7175 
7176 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
7177 	rc = pci_enable_device(pdev);
7178 	if (rc) {
7179 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7180 		goto init_err;
7181 	}
7182 
7183 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7184 		dev_err(&pdev->dev,
7185 			"Cannot find PCI device base address, aborting\n");
7186 		rc = -ENODEV;
7187 		goto init_err_disable;
7188 	}
7189 
7190 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7191 	if (rc) {
7192 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7193 		goto init_err_disable;
7194 	}
7195 
7196 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7197 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7198 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7199 		goto init_err_disable;
7200 	}
7201 
7202 	pci_set_master(pdev);
7203 
7204 	bp->dev = dev;
7205 	bp->pdev = pdev;
7206 
7207 	bp->bar0 = pci_ioremap_bar(pdev, 0);
7208 	if (!bp->bar0) {
7209 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7210 		rc = -ENOMEM;
7211 		goto init_err_release;
7212 	}
7213 
7214 	bp->bar1 = pci_ioremap_bar(pdev, 2);
7215 	if (!bp->bar1) {
7216 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7217 		rc = -ENOMEM;
7218 		goto init_err_release;
7219 	}
7220 
7221 	bp->bar2 = pci_ioremap_bar(pdev, 4);
7222 	if (!bp->bar2) {
7223 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7224 		rc = -ENOMEM;
7225 		goto init_err_release;
7226 	}
7227 
7228 	pci_enable_pcie_error_reporting(pdev);
7229 
7230 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
7231 
7232 	spin_lock_init(&bp->ntp_fltr_lock);
7233 
7234 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7235 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7236 
7237 	bnxt_init_dflt_coal(bp);
7238 
7239 	timer_setup(&bp->timer, bnxt_timer, 0);
7240 	bp->current_interval = BNXT_TIMER_INTERVAL;
7241 
7242 	clear_bit(BNXT_STATE_OPEN, &bp->state);
7243 	return 0;
7244 
7245 init_err_release:
7246 	bnxt_unmap_bars(bp, pdev);
7247 	pci_release_regions(pdev);
7248 
7249 init_err_disable:
7250 	pci_disable_device(pdev);
7251 
7252 init_err:
7253 	return rc;
7254 }
7255 
7256 /* rtnl_lock held */
7257 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7258 {
7259 	struct sockaddr *addr = p;
7260 	struct bnxt *bp = netdev_priv(dev);
7261 	int rc = 0;
7262 
7263 	if (!is_valid_ether_addr(addr->sa_data))
7264 		return -EADDRNOTAVAIL;
7265 
7266 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7267 		return 0;
7268 
7269 	rc = bnxt_approve_mac(bp, addr->sa_data);
7270 	if (rc)
7271 		return rc;
7272 
7273 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7274 	if (netif_running(dev)) {
7275 		bnxt_close_nic(bp, false, false);
7276 		rc = bnxt_open_nic(bp, false, false);
7277 	}
7278 
7279 	return rc;
7280 }
7281 
7282 /* rtnl_lock held */
7283 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7284 {
7285 	struct bnxt *bp = netdev_priv(dev);
7286 
7287 	if (netif_running(dev))
7288 		bnxt_close_nic(bp, false, false);
7289 
7290 	dev->mtu = new_mtu;
7291 	bnxt_set_ring_params(bp);
7292 
7293 	if (netif_running(dev))
7294 		return bnxt_open_nic(bp, false, false);
7295 
7296 	return 0;
7297 }
7298 
7299 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7300 {
7301 	struct bnxt *bp = netdev_priv(dev);
7302 	bool sh = false;
7303 	int rc;
7304 
7305 	if (tc > bp->max_tc) {
7306 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7307 			   tc, bp->max_tc);
7308 		return -EINVAL;
7309 	}
7310 
7311 	if (netdev_get_num_tc(dev) == tc)
7312 		return 0;
7313 
7314 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7315 		sh = true;
7316 
7317 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7318 			      sh, tc, bp->tx_nr_rings_xdp);
7319 	if (rc)
7320 		return rc;
7321 
7322 	/* Needs to close the device and do hw resource re-allocations */
7323 	if (netif_running(bp->dev))
7324 		bnxt_close_nic(bp, true, false);
7325 
7326 	if (tc) {
7327 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7328 		netdev_set_num_tc(dev, tc);
7329 	} else {
7330 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7331 		netdev_reset_tc(dev);
7332 	}
7333 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7334 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7335 			       bp->tx_nr_rings + bp->rx_nr_rings;
7336 	bp->num_stat_ctxs = bp->cp_nr_rings;
7337 
7338 	if (netif_running(bp->dev))
7339 		return bnxt_open_nic(bp, true, false);
7340 
7341 	return 0;
7342 }
7343 
7344 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7345 				  void *cb_priv)
7346 {
7347 	struct bnxt *bp = cb_priv;
7348 
7349 	if (!bnxt_tc_flower_enabled(bp) || !tc_can_offload(bp->dev))
7350 		return -EOPNOTSUPP;
7351 
7352 	switch (type) {
7353 	case TC_SETUP_CLSFLOWER:
7354 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
7355 	default:
7356 		return -EOPNOTSUPP;
7357 	}
7358 }
7359 
7360 static int bnxt_setup_tc_block(struct net_device *dev,
7361 			       struct tc_block_offload *f)
7362 {
7363 	struct bnxt *bp = netdev_priv(dev);
7364 
7365 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7366 		return -EOPNOTSUPP;
7367 
7368 	switch (f->command) {
7369 	case TC_BLOCK_BIND:
7370 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
7371 					     bp, bp);
7372 	case TC_BLOCK_UNBIND:
7373 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
7374 		return 0;
7375 	default:
7376 		return -EOPNOTSUPP;
7377 	}
7378 }
7379 
7380 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7381 			 void *type_data)
7382 {
7383 	switch (type) {
7384 	case TC_SETUP_BLOCK:
7385 		return bnxt_setup_tc_block(dev, type_data);
7386 	case TC_SETUP_QDISC_MQPRIO: {
7387 		struct tc_mqprio_qopt *mqprio = type_data;
7388 
7389 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7390 
7391 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
7392 	}
7393 	default:
7394 		return -EOPNOTSUPP;
7395 	}
7396 }
7397 
7398 #ifdef CONFIG_RFS_ACCEL
7399 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7400 			    struct bnxt_ntuple_filter *f2)
7401 {
7402 	struct flow_keys *keys1 = &f1->fkeys;
7403 	struct flow_keys *keys2 = &f2->fkeys;
7404 
7405 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7406 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7407 	    keys1->ports.ports == keys2->ports.ports &&
7408 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
7409 	    keys1->basic.n_proto == keys2->basic.n_proto &&
7410 	    keys1->control.flags == keys2->control.flags &&
7411 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7412 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7413 		return true;
7414 
7415 	return false;
7416 }
7417 
7418 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7419 			      u16 rxq_index, u32 flow_id)
7420 {
7421 	struct bnxt *bp = netdev_priv(dev);
7422 	struct bnxt_ntuple_filter *fltr, *new_fltr;
7423 	struct flow_keys *fkeys;
7424 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
7425 	int rc = 0, idx, bit_id, l2_idx = 0;
7426 	struct hlist_head *head;
7427 
7428 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
7429 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7430 		int off = 0, j;
7431 
7432 		netif_addr_lock_bh(dev);
7433 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
7434 			if (ether_addr_equal(eth->h_dest,
7435 					     vnic->uc_list + off)) {
7436 				l2_idx = j + 1;
7437 				break;
7438 			}
7439 		}
7440 		netif_addr_unlock_bh(dev);
7441 		if (!l2_idx)
7442 			return -EINVAL;
7443 	}
7444 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
7445 	if (!new_fltr)
7446 		return -ENOMEM;
7447 
7448 	fkeys = &new_fltr->fkeys;
7449 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
7450 		rc = -EPROTONOSUPPORT;
7451 		goto err_free;
7452 	}
7453 
7454 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
7455 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
7456 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
7457 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
7458 		rc = -EPROTONOSUPPORT;
7459 		goto err_free;
7460 	}
7461 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
7462 	    bp->hwrm_spec_code < 0x10601) {
7463 		rc = -EPROTONOSUPPORT;
7464 		goto err_free;
7465 	}
7466 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
7467 	    bp->hwrm_spec_code < 0x10601) {
7468 		rc = -EPROTONOSUPPORT;
7469 		goto err_free;
7470 	}
7471 
7472 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7473 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7474 
7475 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7476 	head = &bp->ntp_fltr_hash_tbl[idx];
7477 	rcu_read_lock();
7478 	hlist_for_each_entry_rcu(fltr, head, hash) {
7479 		if (bnxt_fltr_match(fltr, new_fltr)) {
7480 			rcu_read_unlock();
7481 			rc = 0;
7482 			goto err_free;
7483 		}
7484 	}
7485 	rcu_read_unlock();
7486 
7487 	spin_lock_bh(&bp->ntp_fltr_lock);
7488 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7489 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
7490 	if (bit_id < 0) {
7491 		spin_unlock_bh(&bp->ntp_fltr_lock);
7492 		rc = -ENOMEM;
7493 		goto err_free;
7494 	}
7495 
7496 	new_fltr->sw_id = (u16)bit_id;
7497 	new_fltr->flow_id = flow_id;
7498 	new_fltr->l2_fltr_idx = l2_idx;
7499 	new_fltr->rxq = rxq_index;
7500 	hlist_add_head_rcu(&new_fltr->hash, head);
7501 	bp->ntp_fltr_count++;
7502 	spin_unlock_bh(&bp->ntp_fltr_lock);
7503 
7504 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7505 	bnxt_queue_sp_work(bp);
7506 
7507 	return new_fltr->sw_id;
7508 
7509 err_free:
7510 	kfree(new_fltr);
7511 	return rc;
7512 }
7513 
7514 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7515 {
7516 	int i;
7517 
7518 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7519 		struct hlist_head *head;
7520 		struct hlist_node *tmp;
7521 		struct bnxt_ntuple_filter *fltr;
7522 		int rc;
7523 
7524 		head = &bp->ntp_fltr_hash_tbl[i];
7525 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7526 			bool del = false;
7527 
7528 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7529 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
7530 							fltr->flow_id,
7531 							fltr->sw_id)) {
7532 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
7533 									 fltr);
7534 					del = true;
7535 				}
7536 			} else {
7537 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7538 								       fltr);
7539 				if (rc)
7540 					del = true;
7541 				else
7542 					set_bit(BNXT_FLTR_VALID, &fltr->state);
7543 			}
7544 
7545 			if (del) {
7546 				spin_lock_bh(&bp->ntp_fltr_lock);
7547 				hlist_del_rcu(&fltr->hash);
7548 				bp->ntp_fltr_count--;
7549 				spin_unlock_bh(&bp->ntp_fltr_lock);
7550 				synchronize_rcu();
7551 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7552 				kfree(fltr);
7553 			}
7554 		}
7555 	}
7556 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7557 		netdev_info(bp->dev, "Receive PF driver unload event!");
7558 }
7559 
7560 #else
7561 
7562 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7563 {
7564 }
7565 
7566 #endif /* CONFIG_RFS_ACCEL */
7567 
7568 static void bnxt_udp_tunnel_add(struct net_device *dev,
7569 				struct udp_tunnel_info *ti)
7570 {
7571 	struct bnxt *bp = netdev_priv(dev);
7572 
7573 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7574 		return;
7575 
7576 	if (!netif_running(dev))
7577 		return;
7578 
7579 	switch (ti->type) {
7580 	case UDP_TUNNEL_TYPE_VXLAN:
7581 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7582 			return;
7583 
7584 		bp->vxlan_port_cnt++;
7585 		if (bp->vxlan_port_cnt == 1) {
7586 			bp->vxlan_port = ti->port;
7587 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7588 			bnxt_queue_sp_work(bp);
7589 		}
7590 		break;
7591 	case UDP_TUNNEL_TYPE_GENEVE:
7592 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
7593 			return;
7594 
7595 		bp->nge_port_cnt++;
7596 		if (bp->nge_port_cnt == 1) {
7597 			bp->nge_port = ti->port;
7598 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7599 		}
7600 		break;
7601 	default:
7602 		return;
7603 	}
7604 
7605 	bnxt_queue_sp_work(bp);
7606 }
7607 
7608 static void bnxt_udp_tunnel_del(struct net_device *dev,
7609 				struct udp_tunnel_info *ti)
7610 {
7611 	struct bnxt *bp = netdev_priv(dev);
7612 
7613 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7614 		return;
7615 
7616 	if (!netif_running(dev))
7617 		return;
7618 
7619 	switch (ti->type) {
7620 	case UDP_TUNNEL_TYPE_VXLAN:
7621 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7622 			return;
7623 		bp->vxlan_port_cnt--;
7624 
7625 		if (bp->vxlan_port_cnt != 0)
7626 			return;
7627 
7628 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7629 		break;
7630 	case UDP_TUNNEL_TYPE_GENEVE:
7631 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7632 			return;
7633 		bp->nge_port_cnt--;
7634 
7635 		if (bp->nge_port_cnt != 0)
7636 			return;
7637 
7638 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7639 		break;
7640 	default:
7641 		return;
7642 	}
7643 
7644 	bnxt_queue_sp_work(bp);
7645 }
7646 
7647 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7648 			       struct net_device *dev, u32 filter_mask,
7649 			       int nlflags)
7650 {
7651 	struct bnxt *bp = netdev_priv(dev);
7652 
7653 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
7654 				       nlflags, filter_mask, NULL);
7655 }
7656 
7657 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7658 			       u16 flags)
7659 {
7660 	struct bnxt *bp = netdev_priv(dev);
7661 	struct nlattr *attr, *br_spec;
7662 	int rem, rc = 0;
7663 
7664 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
7665 		return -EOPNOTSUPP;
7666 
7667 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7668 	if (!br_spec)
7669 		return -EINVAL;
7670 
7671 	nla_for_each_nested(attr, br_spec, rem) {
7672 		u16 mode;
7673 
7674 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7675 			continue;
7676 
7677 		if (nla_len(attr) < sizeof(mode))
7678 			return -EINVAL;
7679 
7680 		mode = nla_get_u16(attr);
7681 		if (mode == bp->br_mode)
7682 			break;
7683 
7684 		rc = bnxt_hwrm_set_br_mode(bp, mode);
7685 		if (!rc)
7686 			bp->br_mode = mode;
7687 		break;
7688 	}
7689 	return rc;
7690 }
7691 
7692 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
7693 				   size_t len)
7694 {
7695 	struct bnxt *bp = netdev_priv(dev);
7696 	int rc;
7697 
7698 	/* The PF and it's VF-reps only support the switchdev framework */
7699 	if (!BNXT_PF(bp))
7700 		return -EOPNOTSUPP;
7701 
7702 	rc = snprintf(buf, len, "p%d", bp->pf.port_id);
7703 
7704 	if (rc >= len)
7705 		return -EOPNOTSUPP;
7706 	return 0;
7707 }
7708 
7709 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
7710 {
7711 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
7712 		return -EOPNOTSUPP;
7713 
7714 	/* The PF and it's VF-reps only support the switchdev framework */
7715 	if (!BNXT_PF(bp))
7716 		return -EOPNOTSUPP;
7717 
7718 	switch (attr->id) {
7719 	case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
7720 		/* In SRIOV each PF-pool (PF + child VFs) serves as a
7721 		 * switching domain, the PF's perm mac-addr can be used
7722 		 * as the unique parent-id
7723 		 */
7724 		attr->u.ppid.id_len = ETH_ALEN;
7725 		ether_addr_copy(attr->u.ppid.id, bp->pf.mac_addr);
7726 		break;
7727 	default:
7728 		return -EOPNOTSUPP;
7729 	}
7730 	return 0;
7731 }
7732 
7733 static int bnxt_swdev_port_attr_get(struct net_device *dev,
7734 				    struct switchdev_attr *attr)
7735 {
7736 	return bnxt_port_attr_get(netdev_priv(dev), attr);
7737 }
7738 
7739 static const struct switchdev_ops bnxt_switchdev_ops = {
7740 	.switchdev_port_attr_get	= bnxt_swdev_port_attr_get
7741 };
7742 
7743 static const struct net_device_ops bnxt_netdev_ops = {
7744 	.ndo_open		= bnxt_open,
7745 	.ndo_start_xmit		= bnxt_start_xmit,
7746 	.ndo_stop		= bnxt_close,
7747 	.ndo_get_stats64	= bnxt_get_stats64,
7748 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
7749 	.ndo_do_ioctl		= bnxt_ioctl,
7750 	.ndo_validate_addr	= eth_validate_addr,
7751 	.ndo_set_mac_address	= bnxt_change_mac_addr,
7752 	.ndo_change_mtu		= bnxt_change_mtu,
7753 	.ndo_fix_features	= bnxt_fix_features,
7754 	.ndo_set_features	= bnxt_set_features,
7755 	.ndo_tx_timeout		= bnxt_tx_timeout,
7756 #ifdef CONFIG_BNXT_SRIOV
7757 	.ndo_get_vf_config	= bnxt_get_vf_config,
7758 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
7759 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
7760 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
7761 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
7762 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
7763 #endif
7764 #ifdef CONFIG_NET_POLL_CONTROLLER
7765 	.ndo_poll_controller	= bnxt_poll_controller,
7766 #endif
7767 	.ndo_setup_tc           = bnxt_setup_tc,
7768 #ifdef CONFIG_RFS_ACCEL
7769 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
7770 #endif
7771 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
7772 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
7773 	.ndo_bpf		= bnxt_xdp,
7774 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
7775 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
7776 	.ndo_get_phys_port_name = bnxt_get_phys_port_name
7777 };
7778 
7779 static void bnxt_remove_one(struct pci_dev *pdev)
7780 {
7781 	struct net_device *dev = pci_get_drvdata(pdev);
7782 	struct bnxt *bp = netdev_priv(dev);
7783 
7784 	if (BNXT_PF(bp)) {
7785 		bnxt_sriov_disable(bp);
7786 		bnxt_dl_unregister(bp);
7787 	}
7788 
7789 	pci_disable_pcie_error_reporting(pdev);
7790 	unregister_netdev(dev);
7791 	bnxt_shutdown_tc(bp);
7792 	bnxt_cancel_sp_work(bp);
7793 	bp->sp_event = 0;
7794 
7795 	bnxt_clear_int_mode(bp);
7796 	bnxt_hwrm_func_drv_unrgtr(bp);
7797 	bnxt_free_hwrm_resources(bp);
7798 	bnxt_free_hwrm_short_cmd_req(bp);
7799 	bnxt_ethtool_free(bp);
7800 	bnxt_dcb_free(bp);
7801 	kfree(bp->edev);
7802 	bp->edev = NULL;
7803 	if (bp->xdp_prog)
7804 		bpf_prog_put(bp->xdp_prog);
7805 	bnxt_cleanup_pci(bp);
7806 	free_netdev(dev);
7807 }
7808 
7809 static int bnxt_probe_phy(struct bnxt *bp)
7810 {
7811 	int rc = 0;
7812 	struct bnxt_link_info *link_info = &bp->link_info;
7813 
7814 	rc = bnxt_hwrm_phy_qcaps(bp);
7815 	if (rc) {
7816 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7817 			   rc);
7818 		return rc;
7819 	}
7820 	mutex_init(&bp->link_lock);
7821 
7822 	rc = bnxt_update_link(bp, false);
7823 	if (rc) {
7824 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7825 			   rc);
7826 		return rc;
7827 	}
7828 
7829 	/* Older firmware does not have supported_auto_speeds, so assume
7830 	 * that all supported speeds can be autonegotiated.
7831 	 */
7832 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7833 		link_info->support_auto_speeds = link_info->support_speeds;
7834 
7835 	/*initialize the ethool setting copy with NVM settings */
7836 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7837 		link_info->autoneg = BNXT_AUTONEG_SPEED;
7838 		if (bp->hwrm_spec_code >= 0x10201) {
7839 			if (link_info->auto_pause_setting &
7840 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7841 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7842 		} else {
7843 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7844 		}
7845 		link_info->advertising = link_info->auto_link_speeds;
7846 	} else {
7847 		link_info->req_link_speed = link_info->force_link_speed;
7848 		link_info->req_duplex = link_info->duplex_setting;
7849 	}
7850 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7851 		link_info->req_flow_ctrl =
7852 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7853 	else
7854 		link_info->req_flow_ctrl = link_info->force_pause_setting;
7855 	return rc;
7856 }
7857 
7858 static int bnxt_get_max_irq(struct pci_dev *pdev)
7859 {
7860 	u16 ctrl;
7861 
7862 	if (!pdev->msix_cap)
7863 		return 1;
7864 
7865 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7866 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7867 }
7868 
7869 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7870 				int *max_cp)
7871 {
7872 	int max_ring_grps = 0;
7873 
7874 #ifdef CONFIG_BNXT_SRIOV
7875 	if (!BNXT_PF(bp)) {
7876 		*max_tx = bp->vf.max_tx_rings;
7877 		*max_rx = bp->vf.max_rx_rings;
7878 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7879 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7880 		max_ring_grps = bp->vf.max_hw_ring_grps;
7881 	} else
7882 #endif
7883 	{
7884 		*max_tx = bp->pf.max_tx_rings;
7885 		*max_rx = bp->pf.max_rx_rings;
7886 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7887 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7888 		max_ring_grps = bp->pf.max_hw_ring_grps;
7889 	}
7890 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7891 		*max_cp -= 1;
7892 		*max_rx -= 2;
7893 	}
7894 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7895 		*max_rx >>= 1;
7896 	*max_rx = min_t(int, *max_rx, max_ring_grps);
7897 }
7898 
7899 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7900 {
7901 	int rx, tx, cp;
7902 
7903 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
7904 	if (!rx || !tx || !cp)
7905 		return -ENOMEM;
7906 
7907 	*max_rx = rx;
7908 	*max_tx = tx;
7909 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7910 }
7911 
7912 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7913 			       bool shared)
7914 {
7915 	int rc;
7916 
7917 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7918 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7919 		/* Not enough rings, try disabling agg rings. */
7920 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7921 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7922 		if (rc)
7923 			return rc;
7924 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7925 		bp->dev->hw_features &= ~NETIF_F_LRO;
7926 		bp->dev->features &= ~NETIF_F_LRO;
7927 		bnxt_set_ring_params(bp);
7928 	}
7929 
7930 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7931 		int max_cp, max_stat, max_irq;
7932 
7933 		/* Reserve minimum resources for RoCE */
7934 		max_cp = bnxt_get_max_func_cp_rings(bp);
7935 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
7936 		max_irq = bnxt_get_max_func_irqs(bp);
7937 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7938 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7939 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7940 			return 0;
7941 
7942 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7943 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7944 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7945 		max_cp = min_t(int, max_cp, max_irq);
7946 		max_cp = min_t(int, max_cp, max_stat);
7947 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7948 		if (rc)
7949 			rc = 0;
7950 	}
7951 	return rc;
7952 }
7953 
7954 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
7955 {
7956 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
7957 
7958 	if (sh)
7959 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
7960 	dflt_rings = netif_get_num_default_rss_queues();
7961 	/* Reduce default rings to reduce memory usage on multi-port cards */
7962 	if (bp->port_count > 1)
7963 		dflt_rings = min_t(int, dflt_rings, 4);
7964 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7965 	if (rc)
7966 		return rc;
7967 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7968 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7969 
7970 	rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7971 	if (rc)
7972 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7973 
7974 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7975 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7976 			       bp->tx_nr_rings + bp->rx_nr_rings;
7977 	bp->num_stat_ctxs = bp->cp_nr_rings;
7978 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7979 		bp->rx_nr_rings++;
7980 		bp->cp_nr_rings++;
7981 	}
7982 	return rc;
7983 }
7984 
7985 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7986 {
7987 	ASSERT_RTNL();
7988 	bnxt_hwrm_func_qcaps(bp);
7989 	bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7990 }
7991 
7992 static int bnxt_init_mac_addr(struct bnxt *bp)
7993 {
7994 	int rc = 0;
7995 
7996 	if (BNXT_PF(bp)) {
7997 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
7998 	} else {
7999 #ifdef CONFIG_BNXT_SRIOV
8000 		struct bnxt_vf_info *vf = &bp->vf;
8001 
8002 		if (is_valid_ether_addr(vf->mac_addr)) {
8003 			/* overwrite netdev dev_adr with admin VF MAC */
8004 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8005 		} else {
8006 			eth_hw_addr_random(bp->dev);
8007 			rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8008 		}
8009 #endif
8010 	}
8011 	return rc;
8012 }
8013 
8014 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
8015 {
8016 	enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
8017 	enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
8018 
8019 	if (pcie_get_minimum_link(pci_physfn(bp->pdev), &speed, &width) ||
8020 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
8021 		netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
8022 	else
8023 		netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
8024 			    speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
8025 			    speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
8026 			    speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
8027 			    "Unknown", width);
8028 }
8029 
8030 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8031 {
8032 	static int version_printed;
8033 	struct net_device *dev;
8034 	struct bnxt *bp;
8035 	int rc, max_irqs;
8036 
8037 	if (pci_is_bridge(pdev))
8038 		return -ENODEV;
8039 
8040 	if (version_printed++ == 0)
8041 		pr_info("%s", version);
8042 
8043 	max_irqs = bnxt_get_max_irq(pdev);
8044 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8045 	if (!dev)
8046 		return -ENOMEM;
8047 
8048 	bp = netdev_priv(dev);
8049 
8050 	if (bnxt_vf_pciid(ent->driver_data))
8051 		bp->flags |= BNXT_FLAG_VF;
8052 
8053 	if (pdev->msix_cap)
8054 		bp->flags |= BNXT_FLAG_MSIX_CAP;
8055 
8056 	rc = bnxt_init_board(pdev, dev);
8057 	if (rc < 0)
8058 		goto init_err_free;
8059 
8060 	dev->netdev_ops = &bnxt_netdev_ops;
8061 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8062 	dev->ethtool_ops = &bnxt_ethtool_ops;
8063 	SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8064 	pci_set_drvdata(pdev, dev);
8065 
8066 	rc = bnxt_alloc_hwrm_resources(bp);
8067 	if (rc)
8068 		goto init_err_pci_clean;
8069 
8070 	mutex_init(&bp->hwrm_cmd_lock);
8071 	rc = bnxt_hwrm_ver_get(bp);
8072 	if (rc)
8073 		goto init_err_pci_clean;
8074 
8075 	if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8076 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8077 		if (rc)
8078 			goto init_err_pci_clean;
8079 	}
8080 
8081 	rc = bnxt_hwrm_func_reset(bp);
8082 	if (rc)
8083 		goto init_err_pci_clean;
8084 
8085 	bnxt_hwrm_fw_set_time(bp);
8086 
8087 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8088 			   NETIF_F_TSO | NETIF_F_TSO6 |
8089 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8090 			   NETIF_F_GSO_IPXIP4 |
8091 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8092 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8093 			   NETIF_F_RXCSUM | NETIF_F_GRO;
8094 
8095 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8096 		dev->hw_features |= NETIF_F_LRO;
8097 
8098 	dev->hw_enc_features =
8099 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8100 			NETIF_F_TSO | NETIF_F_TSO6 |
8101 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8102 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8103 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8104 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8105 				    NETIF_F_GSO_GRE_CSUM;
8106 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8107 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8108 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8109 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8110 	dev->priv_flags |= IFF_UNICAST_FLT;
8111 
8112 #ifdef CONFIG_BNXT_SRIOV
8113 	init_waitqueue_head(&bp->sriov_cfg_wait);
8114 	mutex_init(&bp->sriov_lock);
8115 #endif
8116 	bp->gro_func = bnxt_gro_func_5730x;
8117 	if (BNXT_CHIP_P4_PLUS(bp))
8118 		bp->gro_func = bnxt_gro_func_5731x;
8119 	else
8120 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
8121 
8122 	rc = bnxt_hwrm_func_drv_rgtr(bp);
8123 	if (rc)
8124 		goto init_err_pci_clean;
8125 
8126 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8127 	if (rc)
8128 		goto init_err_pci_clean;
8129 
8130 	bp->ulp_probe = bnxt_ulp_probe;
8131 
8132 	/* Get the MAX capabilities for this function */
8133 	rc = bnxt_hwrm_func_qcaps(bp);
8134 	if (rc) {
8135 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8136 			   rc);
8137 		rc = -1;
8138 		goto init_err_pci_clean;
8139 	}
8140 	rc = bnxt_init_mac_addr(bp);
8141 	if (rc) {
8142 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8143 		rc = -EADDRNOTAVAIL;
8144 		goto init_err_pci_clean;
8145 	}
8146 	rc = bnxt_hwrm_queue_qportcfg(bp);
8147 	if (rc) {
8148 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8149 			   rc);
8150 		rc = -1;
8151 		goto init_err_pci_clean;
8152 	}
8153 
8154 	bnxt_hwrm_func_qcfg(bp);
8155 	bnxt_hwrm_port_led_qcaps(bp);
8156 	bnxt_ethtool_init(bp);
8157 	bnxt_dcb_init(bp);
8158 
8159 	/* MTU range: 60 - FW defined max */
8160 	dev->min_mtu = ETH_ZLEN;
8161 	dev->max_mtu = bp->max_mtu;
8162 
8163 	rc = bnxt_probe_phy(bp);
8164 	if (rc)
8165 		goto init_err_pci_clean;
8166 
8167 	bnxt_set_rx_skb_mode(bp, false);
8168 	bnxt_set_tpa_flags(bp);
8169 	bnxt_set_ring_params(bp);
8170 	bnxt_set_max_func_irqs(bp, max_irqs);
8171 	rc = bnxt_set_dflt_rings(bp, true);
8172 	if (rc) {
8173 		netdev_err(bp->dev, "Not enough rings available.\n");
8174 		rc = -ENOMEM;
8175 		goto init_err_pci_clean;
8176 	}
8177 
8178 	/* Default RSS hash cfg. */
8179 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8180 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8181 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8182 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8183 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8184 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8185 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8186 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8187 	}
8188 
8189 	bnxt_hwrm_vnic_qcaps(bp);
8190 	if (bnxt_rfs_supported(bp)) {
8191 		dev->hw_features |= NETIF_F_NTUPLE;
8192 		if (bnxt_rfs_capable(bp)) {
8193 			bp->flags |= BNXT_FLAG_RFS;
8194 			dev->features |= NETIF_F_NTUPLE;
8195 		}
8196 	}
8197 
8198 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8199 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
8200 
8201 	rc = bnxt_init_int_mode(bp);
8202 	if (rc)
8203 		goto init_err_pci_clean;
8204 
8205 	bnxt_get_wol_settings(bp);
8206 	if (bp->flags & BNXT_FLAG_WOL_CAP)
8207 		device_set_wakeup_enable(&pdev->dev, bp->wol);
8208 	else
8209 		device_set_wakeup_capable(&pdev->dev, false);
8210 
8211 	if (BNXT_PF(bp)) {
8212 		if (!bnxt_pf_wq) {
8213 			bnxt_pf_wq =
8214 				create_singlethread_workqueue("bnxt_pf_wq");
8215 			if (!bnxt_pf_wq) {
8216 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
8217 				goto init_err_pci_clean;
8218 			}
8219 		}
8220 		bnxt_init_tc(bp);
8221 	}
8222 
8223 	rc = register_netdev(dev);
8224 	if (rc)
8225 		goto init_err_cleanup_tc;
8226 
8227 	if (BNXT_PF(bp))
8228 		bnxt_dl_register(bp);
8229 
8230 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8231 		    board_info[ent->driver_data].name,
8232 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
8233 
8234 	bnxt_parse_log_pcie_link(bp);
8235 
8236 	return 0;
8237 
8238 init_err_cleanup_tc:
8239 	bnxt_shutdown_tc(bp);
8240 	bnxt_clear_int_mode(bp);
8241 
8242 init_err_pci_clean:
8243 	bnxt_cleanup_pci(bp);
8244 
8245 init_err_free:
8246 	free_netdev(dev);
8247 	return rc;
8248 }
8249 
8250 static void bnxt_shutdown(struct pci_dev *pdev)
8251 {
8252 	struct net_device *dev = pci_get_drvdata(pdev);
8253 	struct bnxt *bp;
8254 
8255 	if (!dev)
8256 		return;
8257 
8258 	rtnl_lock();
8259 	bp = netdev_priv(dev);
8260 	if (!bp)
8261 		goto shutdown_exit;
8262 
8263 	if (netif_running(dev))
8264 		dev_close(dev);
8265 
8266 	if (system_state == SYSTEM_POWER_OFF) {
8267 		bnxt_ulp_shutdown(bp);
8268 		bnxt_clear_int_mode(bp);
8269 		pci_wake_from_d3(pdev, bp->wol);
8270 		pci_set_power_state(pdev, PCI_D3hot);
8271 	}
8272 
8273 shutdown_exit:
8274 	rtnl_unlock();
8275 }
8276 
8277 #ifdef CONFIG_PM_SLEEP
8278 static int bnxt_suspend(struct device *device)
8279 {
8280 	struct pci_dev *pdev = to_pci_dev(device);
8281 	struct net_device *dev = pci_get_drvdata(pdev);
8282 	struct bnxt *bp = netdev_priv(dev);
8283 	int rc = 0;
8284 
8285 	rtnl_lock();
8286 	if (netif_running(dev)) {
8287 		netif_device_detach(dev);
8288 		rc = bnxt_close(dev);
8289 	}
8290 	bnxt_hwrm_func_drv_unrgtr(bp);
8291 	rtnl_unlock();
8292 	return rc;
8293 }
8294 
8295 static int bnxt_resume(struct device *device)
8296 {
8297 	struct pci_dev *pdev = to_pci_dev(device);
8298 	struct net_device *dev = pci_get_drvdata(pdev);
8299 	struct bnxt *bp = netdev_priv(dev);
8300 	int rc = 0;
8301 
8302 	rtnl_lock();
8303 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8304 		rc = -ENODEV;
8305 		goto resume_exit;
8306 	}
8307 	rc = bnxt_hwrm_func_reset(bp);
8308 	if (rc) {
8309 		rc = -EBUSY;
8310 		goto resume_exit;
8311 	}
8312 	bnxt_get_wol_settings(bp);
8313 	if (netif_running(dev)) {
8314 		rc = bnxt_open(dev);
8315 		if (!rc)
8316 			netif_device_attach(dev);
8317 	}
8318 
8319 resume_exit:
8320 	rtnl_unlock();
8321 	return rc;
8322 }
8323 
8324 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8325 #define BNXT_PM_OPS (&bnxt_pm_ops)
8326 
8327 #else
8328 
8329 #define BNXT_PM_OPS NULL
8330 
8331 #endif /* CONFIG_PM_SLEEP */
8332 
8333 /**
8334  * bnxt_io_error_detected - called when PCI error is detected
8335  * @pdev: Pointer to PCI device
8336  * @state: The current pci connection state
8337  *
8338  * This function is called after a PCI bus error affecting
8339  * this device has been detected.
8340  */
8341 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
8342 					       pci_channel_state_t state)
8343 {
8344 	struct net_device *netdev = pci_get_drvdata(pdev);
8345 	struct bnxt *bp = netdev_priv(netdev);
8346 
8347 	netdev_info(netdev, "PCI I/O error detected\n");
8348 
8349 	rtnl_lock();
8350 	netif_device_detach(netdev);
8351 
8352 	bnxt_ulp_stop(bp);
8353 
8354 	if (state == pci_channel_io_perm_failure) {
8355 		rtnl_unlock();
8356 		return PCI_ERS_RESULT_DISCONNECT;
8357 	}
8358 
8359 	if (netif_running(netdev))
8360 		bnxt_close(netdev);
8361 
8362 	pci_disable_device(pdev);
8363 	rtnl_unlock();
8364 
8365 	/* Request a slot slot reset. */
8366 	return PCI_ERS_RESULT_NEED_RESET;
8367 }
8368 
8369 /**
8370  * bnxt_io_slot_reset - called after the pci bus has been reset.
8371  * @pdev: Pointer to PCI device
8372  *
8373  * Restart the card from scratch, as if from a cold-boot.
8374  * At this point, the card has exprienced a hard reset,
8375  * followed by fixups by BIOS, and has its config space
8376  * set up identically to what it was at cold boot.
8377  */
8378 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
8379 {
8380 	struct net_device *netdev = pci_get_drvdata(pdev);
8381 	struct bnxt *bp = netdev_priv(netdev);
8382 	int err = 0;
8383 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
8384 
8385 	netdev_info(bp->dev, "PCI Slot Reset\n");
8386 
8387 	rtnl_lock();
8388 
8389 	if (pci_enable_device(pdev)) {
8390 		dev_err(&pdev->dev,
8391 			"Cannot re-enable PCI device after reset.\n");
8392 	} else {
8393 		pci_set_master(pdev);
8394 
8395 		err = bnxt_hwrm_func_reset(bp);
8396 		if (!err && netif_running(netdev))
8397 			err = bnxt_open(netdev);
8398 
8399 		if (!err) {
8400 			result = PCI_ERS_RESULT_RECOVERED;
8401 			bnxt_ulp_start(bp);
8402 		}
8403 	}
8404 
8405 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
8406 		dev_close(netdev);
8407 
8408 	rtnl_unlock();
8409 
8410 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
8411 	if (err) {
8412 		dev_err(&pdev->dev,
8413 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8414 			 err); /* non-fatal, continue */
8415 	}
8416 
8417 	return PCI_ERS_RESULT_RECOVERED;
8418 }
8419 
8420 /**
8421  * bnxt_io_resume - called when traffic can start flowing again.
8422  * @pdev: Pointer to PCI device
8423  *
8424  * This callback is called when the error recovery driver tells
8425  * us that its OK to resume normal operation.
8426  */
8427 static void bnxt_io_resume(struct pci_dev *pdev)
8428 {
8429 	struct net_device *netdev = pci_get_drvdata(pdev);
8430 
8431 	rtnl_lock();
8432 
8433 	netif_device_attach(netdev);
8434 
8435 	rtnl_unlock();
8436 }
8437 
8438 static const struct pci_error_handlers bnxt_err_handler = {
8439 	.error_detected	= bnxt_io_error_detected,
8440 	.slot_reset	= bnxt_io_slot_reset,
8441 	.resume		= bnxt_io_resume
8442 };
8443 
8444 static struct pci_driver bnxt_pci_driver = {
8445 	.name		= DRV_MODULE_NAME,
8446 	.id_table	= bnxt_pci_tbl,
8447 	.probe		= bnxt_init_one,
8448 	.remove		= bnxt_remove_one,
8449 	.shutdown	= bnxt_shutdown,
8450 	.driver.pm	= BNXT_PM_OPS,
8451 	.err_handler	= &bnxt_err_handler,
8452 #if defined(CONFIG_BNXT_SRIOV)
8453 	.sriov_configure = bnxt_sriov_configure,
8454 #endif
8455 };
8456 
8457 static int __init bnxt_init(void)
8458 {
8459 	return pci_register_driver(&bnxt_pci_driver);
8460 }
8461 
8462 static void __exit bnxt_exit(void)
8463 {
8464 	pci_unregister_driver(&bnxt_pci_driver);
8465 	if (bnxt_pf_wq)
8466 		destroy_workqueue(bnxt_pf_wq);
8467 }
8468 
8469 module_init(bnxt_init);
8470 module_exit(bnxt_exit);
8471