1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/aer.h> 52 #include <linux/bitmap.h> 53 #include <linux/cpu_rmap.h> 54 #include <linux/cpumask.h> 55 #include <net/pkt_cls.h> 56 #include <linux/hwmon.h> 57 #include <linux/hwmon-sysfs.h> 58 #include <net/page_pool.h> 59 60 #include "bnxt_hsi.h" 61 #include "bnxt.h" 62 #include "bnxt_hwrm.h" 63 #include "bnxt_ulp.h" 64 #include "bnxt_sriov.h" 65 #include "bnxt_ethtool.h" 66 #include "bnxt_dcb.h" 67 #include "bnxt_xdp.h" 68 #include "bnxt_ptp.h" 69 #include "bnxt_vfr.h" 70 #include "bnxt_tc.h" 71 #include "bnxt_devlink.h" 72 #include "bnxt_debugfs.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 124 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 125 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 126 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 127 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 128 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 129 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 130 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 131 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 132 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 133 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 134 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 135 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 136 }; 137 138 static const struct pci_device_id bnxt_pci_tbl[] = { 139 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 140 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 141 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 142 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 143 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 144 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 145 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 146 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 147 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 148 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 149 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 150 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 151 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 152 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 153 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 154 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 159 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 160 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 161 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 162 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 163 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 166 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 167 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 173 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 174 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 175 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 176 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 177 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 182 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 183 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 184 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 185 #ifdef CONFIG_BNXT_SRIOV 186 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 187 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 188 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 189 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 190 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 191 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 192 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 193 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 194 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 195 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 196 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 197 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 203 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 204 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 207 #endif 208 { 0 } 209 }; 210 211 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 212 213 static const u16 bnxt_vf_req_snif[] = { 214 HWRM_FUNC_CFG, 215 HWRM_FUNC_VF_CFG, 216 HWRM_PORT_PHY_QCFG, 217 HWRM_CFA_L2_FILTER_ALLOC, 218 }; 219 220 static const u16 bnxt_async_events_arr[] = { 221 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 222 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 223 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 224 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 225 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 226 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 227 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 228 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 229 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 230 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 231 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 232 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 233 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 234 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 235 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 236 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 237 }; 238 239 static struct workqueue_struct *bnxt_pf_wq; 240 241 static bool bnxt_vf_pciid(enum board_idx idx) 242 { 243 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 244 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 245 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 246 idx == NETXTREME_E_P5_VF_HV); 247 } 248 249 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 250 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 251 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 252 253 #define BNXT_CP_DB_IRQ_DIS(db) \ 254 writel(DB_CP_IRQ_DIS_FLAGS, db) 255 256 #define BNXT_DB_CQ(db, idx) \ 257 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 258 259 #define BNXT_DB_NQ_P5(db, idx) \ 260 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ 261 (db)->doorbell) 262 263 #define BNXT_DB_CQ_ARM(db, idx) \ 264 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 265 266 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 267 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ 268 (db)->doorbell) 269 270 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 271 { 272 if (bp->flags & BNXT_FLAG_CHIP_P5) 273 BNXT_DB_NQ_P5(db, idx); 274 else 275 BNXT_DB_CQ(db, idx); 276 } 277 278 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 279 { 280 if (bp->flags & BNXT_FLAG_CHIP_P5) 281 BNXT_DB_NQ_ARM_P5(db, idx); 282 else 283 BNXT_DB_CQ_ARM(db, idx); 284 } 285 286 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 287 { 288 if (bp->flags & BNXT_FLAG_CHIP_P5) 289 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 290 RING_CMP(idx), db->doorbell); 291 else 292 BNXT_DB_CQ(db, idx); 293 } 294 295 const u16 bnxt_lhint_arr[] = { 296 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 297 TX_BD_FLAGS_LHINT_512_TO_1023, 298 TX_BD_FLAGS_LHINT_1024_TO_2047, 299 TX_BD_FLAGS_LHINT_1024_TO_2047, 300 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 301 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 302 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 303 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 304 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 305 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 306 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 307 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 308 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 309 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 310 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 311 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 312 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 313 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 314 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 315 }; 316 317 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 318 { 319 struct metadata_dst *md_dst = skb_metadata_dst(skb); 320 321 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 322 return 0; 323 324 return md_dst->u.port_info.port_id; 325 } 326 327 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 328 u16 prod) 329 { 330 bnxt_db_write(bp, &txr->tx_db, prod); 331 txr->kick_pending = 0; 332 } 333 334 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 335 struct bnxt_tx_ring_info *txr, 336 struct netdev_queue *txq) 337 { 338 netif_tx_stop_queue(txq); 339 340 /* netif_tx_stop_queue() must be done before checking 341 * tx index in bnxt_tx_avail() below, because in 342 * bnxt_tx_int(), we update tx index before checking for 343 * netif_tx_queue_stopped(). 344 */ 345 smp_mb(); 346 if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) { 347 netif_tx_wake_queue(txq); 348 return false; 349 } 350 351 return true; 352 } 353 354 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 355 { 356 struct bnxt *bp = netdev_priv(dev); 357 struct tx_bd *txbd; 358 struct tx_bd_ext *txbd1; 359 struct netdev_queue *txq; 360 int i; 361 dma_addr_t mapping; 362 unsigned int length, pad = 0; 363 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 364 u16 prod, last_frag; 365 struct pci_dev *pdev = bp->pdev; 366 struct bnxt_tx_ring_info *txr; 367 struct bnxt_sw_tx_bd *tx_buf; 368 __le32 lflags = 0; 369 370 i = skb_get_queue_mapping(skb); 371 if (unlikely(i >= bp->tx_nr_rings)) { 372 dev_kfree_skb_any(skb); 373 dev_core_stats_tx_dropped_inc(dev); 374 return NETDEV_TX_OK; 375 } 376 377 txq = netdev_get_tx_queue(dev, i); 378 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 379 prod = txr->tx_prod; 380 381 free_size = bnxt_tx_avail(bp, txr); 382 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 383 /* We must have raced with NAPI cleanup */ 384 if (net_ratelimit() && txr->kick_pending) 385 netif_warn(bp, tx_err, dev, 386 "bnxt: ring busy w/ flush pending!\n"); 387 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 388 return NETDEV_TX_BUSY; 389 } 390 391 length = skb->len; 392 len = skb_headlen(skb); 393 last_frag = skb_shinfo(skb)->nr_frags; 394 395 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 396 397 txbd->tx_bd_opaque = prod; 398 399 tx_buf = &txr->tx_buf_ring[prod]; 400 tx_buf->skb = skb; 401 tx_buf->nr_frags = last_frag; 402 403 vlan_tag_flags = 0; 404 cfa_action = bnxt_xmit_get_cfa_action(skb); 405 if (skb_vlan_tag_present(skb)) { 406 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 407 skb_vlan_tag_get(skb); 408 /* Currently supports 8021Q, 8021AD vlan offloads 409 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 410 */ 411 if (skb->vlan_proto == htons(ETH_P_8021Q)) 412 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 413 } 414 415 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 416 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 417 418 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 419 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 420 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 421 &ptp->tx_hdr_off)) { 422 if (vlan_tag_flags) 423 ptp->tx_hdr_off += VLAN_HLEN; 424 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 425 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 426 } else { 427 atomic_inc(&bp->ptp_cfg->tx_avail); 428 } 429 } 430 } 431 432 if (unlikely(skb->no_fcs)) 433 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 434 435 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 436 !lflags) { 437 struct tx_push_buffer *tx_push_buf = txr->tx_push; 438 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 439 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 440 void __iomem *db = txr->tx_db.doorbell; 441 void *pdata = tx_push_buf->data; 442 u64 *end; 443 int j, push_len; 444 445 /* Set COAL_NOW to be ready quickly for the next push */ 446 tx_push->tx_bd_len_flags_type = 447 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 448 TX_BD_TYPE_LONG_TX_BD | 449 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 450 TX_BD_FLAGS_COAL_NOW | 451 TX_BD_FLAGS_PACKET_END | 452 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 453 454 if (skb->ip_summed == CHECKSUM_PARTIAL) 455 tx_push1->tx_bd_hsize_lflags = 456 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 457 else 458 tx_push1->tx_bd_hsize_lflags = 0; 459 460 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 461 tx_push1->tx_bd_cfa_action = 462 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 463 464 end = pdata + length; 465 end = PTR_ALIGN(end, 8) - 1; 466 *end = 0; 467 468 skb_copy_from_linear_data(skb, pdata, len); 469 pdata += len; 470 for (j = 0; j < last_frag; j++) { 471 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 472 void *fptr; 473 474 fptr = skb_frag_address_safe(frag); 475 if (!fptr) 476 goto normal_tx; 477 478 memcpy(pdata, fptr, skb_frag_size(frag)); 479 pdata += skb_frag_size(frag); 480 } 481 482 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 483 txbd->tx_bd_haddr = txr->data_mapping; 484 prod = NEXT_TX(prod); 485 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 486 memcpy(txbd, tx_push1, sizeof(*txbd)); 487 prod = NEXT_TX(prod); 488 tx_push->doorbell = 489 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 490 txr->tx_prod = prod; 491 492 tx_buf->is_push = 1; 493 netdev_tx_sent_queue(txq, skb->len); 494 wmb(); /* Sync is_push and byte queue before pushing data */ 495 496 push_len = (length + sizeof(*tx_push) + 7) / 8; 497 if (push_len > 16) { 498 __iowrite64_copy(db, tx_push_buf, 16); 499 __iowrite32_copy(db + 4, tx_push_buf + 1, 500 (push_len - 16) << 1); 501 } else { 502 __iowrite64_copy(db, tx_push_buf, push_len); 503 } 504 505 goto tx_done; 506 } 507 508 normal_tx: 509 if (length < BNXT_MIN_PKT_SIZE) { 510 pad = BNXT_MIN_PKT_SIZE - length; 511 if (skb_pad(skb, pad)) 512 /* SKB already freed. */ 513 goto tx_kick_pending; 514 length = BNXT_MIN_PKT_SIZE; 515 } 516 517 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 518 519 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 520 goto tx_free; 521 522 dma_unmap_addr_set(tx_buf, mapping, mapping); 523 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 524 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 525 526 txbd->tx_bd_haddr = cpu_to_le64(mapping); 527 528 prod = NEXT_TX(prod); 529 txbd1 = (struct tx_bd_ext *) 530 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 531 532 txbd1->tx_bd_hsize_lflags = lflags; 533 if (skb_is_gso(skb)) { 534 u32 hdr_len; 535 536 if (skb->encapsulation) 537 hdr_len = skb_inner_network_offset(skb) + 538 skb_inner_network_header_len(skb) + 539 inner_tcp_hdrlen(skb); 540 else 541 hdr_len = skb_transport_offset(skb) + 542 tcp_hdrlen(skb); 543 544 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 545 TX_BD_FLAGS_T_IPID | 546 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 547 length = skb_shinfo(skb)->gso_size; 548 txbd1->tx_bd_mss = cpu_to_le32(length); 549 length += hdr_len; 550 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 551 txbd1->tx_bd_hsize_lflags |= 552 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 553 txbd1->tx_bd_mss = 0; 554 } 555 556 length >>= 9; 557 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 558 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 559 skb->len); 560 i = 0; 561 goto tx_dma_error; 562 } 563 flags |= bnxt_lhint_arr[length]; 564 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 565 566 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 567 txbd1->tx_bd_cfa_action = 568 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 569 for (i = 0; i < last_frag; i++) { 570 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 571 572 prod = NEXT_TX(prod); 573 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 574 575 len = skb_frag_size(frag); 576 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 577 DMA_TO_DEVICE); 578 579 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 580 goto tx_dma_error; 581 582 tx_buf = &txr->tx_buf_ring[prod]; 583 dma_unmap_addr_set(tx_buf, mapping, mapping); 584 585 txbd->tx_bd_haddr = cpu_to_le64(mapping); 586 587 flags = len << TX_BD_LEN_SHIFT; 588 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 589 } 590 591 flags &= ~TX_BD_LEN; 592 txbd->tx_bd_len_flags_type = 593 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 594 TX_BD_FLAGS_PACKET_END); 595 596 netdev_tx_sent_queue(txq, skb->len); 597 598 skb_tx_timestamp(skb); 599 600 /* Sync BD data before updating doorbell */ 601 wmb(); 602 603 prod = NEXT_TX(prod); 604 txr->tx_prod = prod; 605 606 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 607 bnxt_txr_db_kick(bp, txr, prod); 608 else 609 txr->kick_pending = 1; 610 611 tx_done: 612 613 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 614 if (netdev_xmit_more() && !tx_buf->is_push) 615 bnxt_txr_db_kick(bp, txr, prod); 616 617 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 618 } 619 return NETDEV_TX_OK; 620 621 tx_dma_error: 622 if (BNXT_TX_PTP_IS_SET(lflags)) 623 atomic_inc(&bp->ptp_cfg->tx_avail); 624 625 last_frag = i; 626 627 /* start back at beginning and unmap skb */ 628 prod = txr->tx_prod; 629 tx_buf = &txr->tx_buf_ring[prod]; 630 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 631 skb_headlen(skb), DMA_TO_DEVICE); 632 prod = NEXT_TX(prod); 633 634 /* unmap remaining mapped pages */ 635 for (i = 0; i < last_frag; i++) { 636 prod = NEXT_TX(prod); 637 tx_buf = &txr->tx_buf_ring[prod]; 638 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 639 skb_frag_size(&skb_shinfo(skb)->frags[i]), 640 DMA_TO_DEVICE); 641 } 642 643 tx_free: 644 dev_kfree_skb_any(skb); 645 tx_kick_pending: 646 if (txr->kick_pending) 647 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 648 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 649 dev_core_stats_tx_dropped_inc(dev); 650 return NETDEV_TX_OK; 651 } 652 653 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 654 { 655 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 656 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 657 u16 cons = txr->tx_cons; 658 struct pci_dev *pdev = bp->pdev; 659 int i; 660 unsigned int tx_bytes = 0; 661 662 for (i = 0; i < nr_pkts; i++) { 663 struct bnxt_sw_tx_bd *tx_buf; 664 bool compl_deferred = false; 665 struct sk_buff *skb; 666 int j, last; 667 668 tx_buf = &txr->tx_buf_ring[cons]; 669 cons = NEXT_TX(cons); 670 skb = tx_buf->skb; 671 tx_buf->skb = NULL; 672 673 if (tx_buf->is_push) { 674 tx_buf->is_push = 0; 675 goto next_tx_int; 676 } 677 678 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 679 skb_headlen(skb), DMA_TO_DEVICE); 680 last = tx_buf->nr_frags; 681 682 for (j = 0; j < last; j++) { 683 cons = NEXT_TX(cons); 684 tx_buf = &txr->tx_buf_ring[cons]; 685 dma_unmap_page( 686 &pdev->dev, 687 dma_unmap_addr(tx_buf, mapping), 688 skb_frag_size(&skb_shinfo(skb)->frags[j]), 689 DMA_TO_DEVICE); 690 } 691 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 692 if (bp->flags & BNXT_FLAG_CHIP_P5) { 693 if (!bnxt_get_tx_ts_p5(bp, skb)) 694 compl_deferred = true; 695 else 696 atomic_inc(&bp->ptp_cfg->tx_avail); 697 } 698 } 699 700 next_tx_int: 701 cons = NEXT_TX(cons); 702 703 tx_bytes += skb->len; 704 if (!compl_deferred) 705 dev_kfree_skb_any(skb); 706 } 707 708 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 709 txr->tx_cons = cons; 710 711 /* Need to make the tx_cons update visible to bnxt_start_xmit() 712 * before checking for netif_tx_queue_stopped(). Without the 713 * memory barrier, there is a small possibility that bnxt_start_xmit() 714 * will miss it and cause the queue to be stopped forever. 715 */ 716 smp_mb(); 717 718 if (unlikely(netif_tx_queue_stopped(txq)) && 719 bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh && 720 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 721 netif_tx_wake_queue(txq); 722 } 723 724 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 725 struct bnxt_rx_ring_info *rxr, 726 gfp_t gfp) 727 { 728 struct device *dev = &bp->pdev->dev; 729 struct page *page; 730 731 page = page_pool_dev_alloc_pages(rxr->page_pool); 732 if (!page) 733 return NULL; 734 735 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 736 DMA_ATTR_WEAK_ORDERING); 737 if (dma_mapping_error(dev, *mapping)) { 738 page_pool_recycle_direct(rxr->page_pool, page); 739 return NULL; 740 } 741 *mapping += bp->rx_dma_offset; 742 return page; 743 } 744 745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 746 gfp_t gfp) 747 { 748 u8 *data; 749 struct pci_dev *pdev = bp->pdev; 750 751 if (gfp == GFP_ATOMIC) 752 data = napi_alloc_frag(bp->rx_buf_size); 753 else 754 data = netdev_alloc_frag(bp->rx_buf_size); 755 if (!data) 756 return NULL; 757 758 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 759 bp->rx_buf_use_size, bp->rx_dir, 760 DMA_ATTR_WEAK_ORDERING); 761 762 if (dma_mapping_error(&pdev->dev, *mapping)) { 763 skb_free_frag(data); 764 data = NULL; 765 } 766 return data; 767 } 768 769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 770 u16 prod, gfp_t gfp) 771 { 772 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 773 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 774 dma_addr_t mapping; 775 776 if (BNXT_RX_PAGE_MODE(bp)) { 777 struct page *page = 778 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 779 780 if (!page) 781 return -ENOMEM; 782 783 rx_buf->data = page; 784 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 785 } else { 786 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 787 788 if (!data) 789 return -ENOMEM; 790 791 rx_buf->data = data; 792 rx_buf->data_ptr = data + bp->rx_offset; 793 } 794 rx_buf->mapping = mapping; 795 796 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 797 return 0; 798 } 799 800 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 801 { 802 u16 prod = rxr->rx_prod; 803 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 804 struct rx_bd *cons_bd, *prod_bd; 805 806 prod_rx_buf = &rxr->rx_buf_ring[prod]; 807 cons_rx_buf = &rxr->rx_buf_ring[cons]; 808 809 prod_rx_buf->data = data; 810 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 811 812 prod_rx_buf->mapping = cons_rx_buf->mapping; 813 814 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 815 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 816 817 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 818 } 819 820 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 821 { 822 u16 next, max = rxr->rx_agg_bmap_size; 823 824 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 825 if (next >= max) 826 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 827 return next; 828 } 829 830 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 831 struct bnxt_rx_ring_info *rxr, 832 u16 prod, gfp_t gfp) 833 { 834 struct rx_bd *rxbd = 835 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 836 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 837 struct pci_dev *pdev = bp->pdev; 838 struct page *page; 839 dma_addr_t mapping; 840 u16 sw_prod = rxr->rx_sw_agg_prod; 841 unsigned int offset = 0; 842 843 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 844 page = rxr->rx_page; 845 if (!page) { 846 page = alloc_page(gfp); 847 if (!page) 848 return -ENOMEM; 849 rxr->rx_page = page; 850 rxr->rx_page_offset = 0; 851 } 852 offset = rxr->rx_page_offset; 853 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 854 if (rxr->rx_page_offset == PAGE_SIZE) 855 rxr->rx_page = NULL; 856 else 857 get_page(page); 858 } else { 859 page = alloc_page(gfp); 860 if (!page) 861 return -ENOMEM; 862 } 863 864 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 865 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 866 DMA_ATTR_WEAK_ORDERING); 867 if (dma_mapping_error(&pdev->dev, mapping)) { 868 __free_page(page); 869 return -EIO; 870 } 871 872 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 873 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 874 875 __set_bit(sw_prod, rxr->rx_agg_bmap); 876 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 877 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 878 879 rx_agg_buf->page = page; 880 rx_agg_buf->offset = offset; 881 rx_agg_buf->mapping = mapping; 882 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 883 rxbd->rx_bd_opaque = sw_prod; 884 return 0; 885 } 886 887 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 888 struct bnxt_cp_ring_info *cpr, 889 u16 cp_cons, u16 curr) 890 { 891 struct rx_agg_cmp *agg; 892 893 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 894 agg = (struct rx_agg_cmp *) 895 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 896 return agg; 897 } 898 899 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 900 struct bnxt_rx_ring_info *rxr, 901 u16 agg_id, u16 curr) 902 { 903 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 904 905 return &tpa_info->agg_arr[curr]; 906 } 907 908 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 909 u16 start, u32 agg_bufs, bool tpa) 910 { 911 struct bnxt_napi *bnapi = cpr->bnapi; 912 struct bnxt *bp = bnapi->bp; 913 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 914 u16 prod = rxr->rx_agg_prod; 915 u16 sw_prod = rxr->rx_sw_agg_prod; 916 bool p5_tpa = false; 917 u32 i; 918 919 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 920 p5_tpa = true; 921 922 for (i = 0; i < agg_bufs; i++) { 923 u16 cons; 924 struct rx_agg_cmp *agg; 925 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 926 struct rx_bd *prod_bd; 927 struct page *page; 928 929 if (p5_tpa) 930 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 931 else 932 agg = bnxt_get_agg(bp, cpr, idx, start + i); 933 cons = agg->rx_agg_cmp_opaque; 934 __clear_bit(cons, rxr->rx_agg_bmap); 935 936 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 937 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 938 939 __set_bit(sw_prod, rxr->rx_agg_bmap); 940 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 941 cons_rx_buf = &rxr->rx_agg_ring[cons]; 942 943 /* It is possible for sw_prod to be equal to cons, so 944 * set cons_rx_buf->page to NULL first. 945 */ 946 page = cons_rx_buf->page; 947 cons_rx_buf->page = NULL; 948 prod_rx_buf->page = page; 949 prod_rx_buf->offset = cons_rx_buf->offset; 950 951 prod_rx_buf->mapping = cons_rx_buf->mapping; 952 953 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 954 955 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 956 prod_bd->rx_bd_opaque = sw_prod; 957 958 prod = NEXT_RX_AGG(prod); 959 sw_prod = NEXT_RX_AGG(sw_prod); 960 } 961 rxr->rx_agg_prod = prod; 962 rxr->rx_sw_agg_prod = sw_prod; 963 } 964 965 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 966 struct bnxt_rx_ring_info *rxr, 967 u16 cons, void *data, u8 *data_ptr, 968 dma_addr_t dma_addr, 969 unsigned int offset_and_len) 970 { 971 unsigned int payload = offset_and_len >> 16; 972 unsigned int len = offset_and_len & 0xffff; 973 skb_frag_t *frag; 974 struct page *page = data; 975 u16 prod = rxr->rx_prod; 976 struct sk_buff *skb; 977 int off, err; 978 979 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 980 if (unlikely(err)) { 981 bnxt_reuse_rx_data(rxr, cons, data); 982 return NULL; 983 } 984 dma_addr -= bp->rx_dma_offset; 985 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 986 DMA_ATTR_WEAK_ORDERING); 987 page_pool_release_page(rxr->page_pool, page); 988 989 if (unlikely(!payload)) 990 payload = eth_get_headlen(bp->dev, data_ptr, len); 991 992 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 993 if (!skb) { 994 __free_page(page); 995 return NULL; 996 } 997 998 off = (void *)data_ptr - page_address(page); 999 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 1000 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1001 payload + NET_IP_ALIGN); 1002 1003 frag = &skb_shinfo(skb)->frags[0]; 1004 skb_frag_size_sub(frag, payload); 1005 skb_frag_off_add(frag, payload); 1006 skb->data_len -= payload; 1007 skb->tail += payload; 1008 1009 return skb; 1010 } 1011 1012 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1013 struct bnxt_rx_ring_info *rxr, u16 cons, 1014 void *data, u8 *data_ptr, 1015 dma_addr_t dma_addr, 1016 unsigned int offset_and_len) 1017 { 1018 u16 prod = rxr->rx_prod; 1019 struct sk_buff *skb; 1020 int err; 1021 1022 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1023 if (unlikely(err)) { 1024 bnxt_reuse_rx_data(rxr, cons, data); 1025 return NULL; 1026 } 1027 1028 skb = build_skb(data, bp->rx_buf_size); 1029 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1030 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1031 if (!skb) { 1032 skb_free_frag(data); 1033 return NULL; 1034 } 1035 1036 skb_reserve(skb, bp->rx_offset); 1037 skb_put(skb, offset_and_len & 0xffff); 1038 return skb; 1039 } 1040 1041 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1042 struct bnxt_cp_ring_info *cpr, 1043 struct sk_buff *skb, u16 idx, 1044 u32 agg_bufs, bool tpa) 1045 { 1046 struct bnxt_napi *bnapi = cpr->bnapi; 1047 struct pci_dev *pdev = bp->pdev; 1048 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1049 u16 prod = rxr->rx_agg_prod; 1050 bool p5_tpa = false; 1051 u32 i; 1052 1053 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1054 p5_tpa = true; 1055 1056 for (i = 0; i < agg_bufs; i++) { 1057 u16 cons, frag_len; 1058 struct rx_agg_cmp *agg; 1059 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1060 struct page *page; 1061 dma_addr_t mapping; 1062 1063 if (p5_tpa) 1064 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1065 else 1066 agg = bnxt_get_agg(bp, cpr, idx, i); 1067 cons = agg->rx_agg_cmp_opaque; 1068 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1069 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1070 1071 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1072 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1073 cons_rx_buf->offset, frag_len); 1074 __clear_bit(cons, rxr->rx_agg_bmap); 1075 1076 /* It is possible for bnxt_alloc_rx_page() to allocate 1077 * a sw_prod index that equals the cons index, so we 1078 * need to clear the cons entry now. 1079 */ 1080 mapping = cons_rx_buf->mapping; 1081 page = cons_rx_buf->page; 1082 cons_rx_buf->page = NULL; 1083 1084 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1085 struct skb_shared_info *shinfo; 1086 unsigned int nr_frags; 1087 1088 shinfo = skb_shinfo(skb); 1089 nr_frags = --shinfo->nr_frags; 1090 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1091 1092 dev_kfree_skb(skb); 1093 1094 cons_rx_buf->page = page; 1095 1096 /* Update prod since possibly some pages have been 1097 * allocated already. 1098 */ 1099 rxr->rx_agg_prod = prod; 1100 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1101 return NULL; 1102 } 1103 1104 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1105 DMA_FROM_DEVICE, 1106 DMA_ATTR_WEAK_ORDERING); 1107 1108 skb->data_len += frag_len; 1109 skb->len += frag_len; 1110 skb->truesize += PAGE_SIZE; 1111 1112 prod = NEXT_RX_AGG(prod); 1113 } 1114 rxr->rx_agg_prod = prod; 1115 return skb; 1116 } 1117 1118 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1119 u8 agg_bufs, u32 *raw_cons) 1120 { 1121 u16 last; 1122 struct rx_agg_cmp *agg; 1123 1124 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1125 last = RING_CMP(*raw_cons); 1126 agg = (struct rx_agg_cmp *) 1127 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1128 return RX_AGG_CMP_VALID(agg, *raw_cons); 1129 } 1130 1131 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1132 unsigned int len, 1133 dma_addr_t mapping) 1134 { 1135 struct bnxt *bp = bnapi->bp; 1136 struct pci_dev *pdev = bp->pdev; 1137 struct sk_buff *skb; 1138 1139 skb = napi_alloc_skb(&bnapi->napi, len); 1140 if (!skb) 1141 return NULL; 1142 1143 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1144 bp->rx_dir); 1145 1146 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1147 len + NET_IP_ALIGN); 1148 1149 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1150 bp->rx_dir); 1151 1152 skb_put(skb, len); 1153 return skb; 1154 } 1155 1156 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1157 u32 *raw_cons, void *cmp) 1158 { 1159 struct rx_cmp *rxcmp = cmp; 1160 u32 tmp_raw_cons = *raw_cons; 1161 u8 cmp_type, agg_bufs = 0; 1162 1163 cmp_type = RX_CMP_TYPE(rxcmp); 1164 1165 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1166 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1167 RX_CMP_AGG_BUFS) >> 1168 RX_CMP_AGG_BUFS_SHIFT; 1169 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1170 struct rx_tpa_end_cmp *tpa_end = cmp; 1171 1172 if (bp->flags & BNXT_FLAG_CHIP_P5) 1173 return 0; 1174 1175 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1176 } 1177 1178 if (agg_bufs) { 1179 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1180 return -EBUSY; 1181 } 1182 *raw_cons = tmp_raw_cons; 1183 return 0; 1184 } 1185 1186 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1187 { 1188 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1189 return; 1190 1191 if (BNXT_PF(bp)) 1192 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1193 else 1194 schedule_delayed_work(&bp->fw_reset_task, delay); 1195 } 1196 1197 static void bnxt_queue_sp_work(struct bnxt *bp) 1198 { 1199 if (BNXT_PF(bp)) 1200 queue_work(bnxt_pf_wq, &bp->sp_task); 1201 else 1202 schedule_work(&bp->sp_task); 1203 } 1204 1205 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1206 { 1207 if (!rxr->bnapi->in_reset) { 1208 rxr->bnapi->in_reset = true; 1209 if (bp->flags & BNXT_FLAG_CHIP_P5) 1210 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1211 else 1212 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1213 bnxt_queue_sp_work(bp); 1214 } 1215 rxr->rx_next_cons = 0xffff; 1216 } 1217 1218 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1219 { 1220 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1221 u16 idx = agg_id & MAX_TPA_P5_MASK; 1222 1223 if (test_bit(idx, map->agg_idx_bmap)) 1224 idx = find_first_zero_bit(map->agg_idx_bmap, 1225 BNXT_AGG_IDX_BMAP_SIZE); 1226 __set_bit(idx, map->agg_idx_bmap); 1227 map->agg_id_tbl[agg_id] = idx; 1228 return idx; 1229 } 1230 1231 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1232 { 1233 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1234 1235 __clear_bit(idx, map->agg_idx_bmap); 1236 } 1237 1238 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1239 { 1240 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1241 1242 return map->agg_id_tbl[agg_id]; 1243 } 1244 1245 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1246 struct rx_tpa_start_cmp *tpa_start, 1247 struct rx_tpa_start_cmp_ext *tpa_start1) 1248 { 1249 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1250 struct bnxt_tpa_info *tpa_info; 1251 u16 cons, prod, agg_id; 1252 struct rx_bd *prod_bd; 1253 dma_addr_t mapping; 1254 1255 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1256 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1257 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1258 } else { 1259 agg_id = TPA_START_AGG_ID(tpa_start); 1260 } 1261 cons = tpa_start->rx_tpa_start_cmp_opaque; 1262 prod = rxr->rx_prod; 1263 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1264 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1265 tpa_info = &rxr->rx_tpa[agg_id]; 1266 1267 if (unlikely(cons != rxr->rx_next_cons || 1268 TPA_START_ERROR(tpa_start))) { 1269 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1270 cons, rxr->rx_next_cons, 1271 TPA_START_ERROR_CODE(tpa_start1)); 1272 bnxt_sched_reset(bp, rxr); 1273 return; 1274 } 1275 /* Store cfa_code in tpa_info to use in tpa_end 1276 * completion processing. 1277 */ 1278 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1279 prod_rx_buf->data = tpa_info->data; 1280 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1281 1282 mapping = tpa_info->mapping; 1283 prod_rx_buf->mapping = mapping; 1284 1285 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1286 1287 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1288 1289 tpa_info->data = cons_rx_buf->data; 1290 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1291 cons_rx_buf->data = NULL; 1292 tpa_info->mapping = cons_rx_buf->mapping; 1293 1294 tpa_info->len = 1295 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1296 RX_TPA_START_CMP_LEN_SHIFT; 1297 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1298 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1299 1300 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1301 tpa_info->gso_type = SKB_GSO_TCPV4; 1302 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1303 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1304 tpa_info->gso_type = SKB_GSO_TCPV6; 1305 tpa_info->rss_hash = 1306 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1307 } else { 1308 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1309 tpa_info->gso_type = 0; 1310 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1311 } 1312 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1313 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1314 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1315 tpa_info->agg_count = 0; 1316 1317 rxr->rx_prod = NEXT_RX(prod); 1318 cons = NEXT_RX(cons); 1319 rxr->rx_next_cons = NEXT_RX(cons); 1320 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1321 1322 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1323 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1324 cons_rx_buf->data = NULL; 1325 } 1326 1327 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1328 { 1329 if (agg_bufs) 1330 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1331 } 1332 1333 #ifdef CONFIG_INET 1334 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1335 { 1336 struct udphdr *uh = NULL; 1337 1338 if (ip_proto == htons(ETH_P_IP)) { 1339 struct iphdr *iph = (struct iphdr *)skb->data; 1340 1341 if (iph->protocol == IPPROTO_UDP) 1342 uh = (struct udphdr *)(iph + 1); 1343 } else { 1344 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1345 1346 if (iph->nexthdr == IPPROTO_UDP) 1347 uh = (struct udphdr *)(iph + 1); 1348 } 1349 if (uh) { 1350 if (uh->check) 1351 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1352 else 1353 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1354 } 1355 } 1356 #endif 1357 1358 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1359 int payload_off, int tcp_ts, 1360 struct sk_buff *skb) 1361 { 1362 #ifdef CONFIG_INET 1363 struct tcphdr *th; 1364 int len, nw_off; 1365 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1366 u32 hdr_info = tpa_info->hdr_info; 1367 bool loopback = false; 1368 1369 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1370 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1371 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1372 1373 /* If the packet is an internal loopback packet, the offsets will 1374 * have an extra 4 bytes. 1375 */ 1376 if (inner_mac_off == 4) { 1377 loopback = true; 1378 } else if (inner_mac_off > 4) { 1379 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1380 ETH_HLEN - 2)); 1381 1382 /* We only support inner iPv4/ipv6. If we don't see the 1383 * correct protocol ID, it must be a loopback packet where 1384 * the offsets are off by 4. 1385 */ 1386 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1387 loopback = true; 1388 } 1389 if (loopback) { 1390 /* internal loopback packet, subtract all offsets by 4 */ 1391 inner_ip_off -= 4; 1392 inner_mac_off -= 4; 1393 outer_ip_off -= 4; 1394 } 1395 1396 nw_off = inner_ip_off - ETH_HLEN; 1397 skb_set_network_header(skb, nw_off); 1398 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1399 struct ipv6hdr *iph = ipv6_hdr(skb); 1400 1401 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1402 len = skb->len - skb_transport_offset(skb); 1403 th = tcp_hdr(skb); 1404 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1405 } else { 1406 struct iphdr *iph = ip_hdr(skb); 1407 1408 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1409 len = skb->len - skb_transport_offset(skb); 1410 th = tcp_hdr(skb); 1411 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1412 } 1413 1414 if (inner_mac_off) { /* tunnel */ 1415 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1416 ETH_HLEN - 2)); 1417 1418 bnxt_gro_tunnel(skb, proto); 1419 } 1420 #endif 1421 return skb; 1422 } 1423 1424 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1425 int payload_off, int tcp_ts, 1426 struct sk_buff *skb) 1427 { 1428 #ifdef CONFIG_INET 1429 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1430 u32 hdr_info = tpa_info->hdr_info; 1431 int iphdr_len, nw_off; 1432 1433 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1434 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1435 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1436 1437 nw_off = inner_ip_off - ETH_HLEN; 1438 skb_set_network_header(skb, nw_off); 1439 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1440 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1441 skb_set_transport_header(skb, nw_off + iphdr_len); 1442 1443 if (inner_mac_off) { /* tunnel */ 1444 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1445 ETH_HLEN - 2)); 1446 1447 bnxt_gro_tunnel(skb, proto); 1448 } 1449 #endif 1450 return skb; 1451 } 1452 1453 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1454 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1455 1456 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1457 int payload_off, int tcp_ts, 1458 struct sk_buff *skb) 1459 { 1460 #ifdef CONFIG_INET 1461 struct tcphdr *th; 1462 int len, nw_off, tcp_opt_len = 0; 1463 1464 if (tcp_ts) 1465 tcp_opt_len = 12; 1466 1467 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1468 struct iphdr *iph; 1469 1470 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1471 ETH_HLEN; 1472 skb_set_network_header(skb, nw_off); 1473 iph = ip_hdr(skb); 1474 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1475 len = skb->len - skb_transport_offset(skb); 1476 th = tcp_hdr(skb); 1477 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1478 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1479 struct ipv6hdr *iph; 1480 1481 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1482 ETH_HLEN; 1483 skb_set_network_header(skb, nw_off); 1484 iph = ipv6_hdr(skb); 1485 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1486 len = skb->len - skb_transport_offset(skb); 1487 th = tcp_hdr(skb); 1488 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1489 } else { 1490 dev_kfree_skb_any(skb); 1491 return NULL; 1492 } 1493 1494 if (nw_off) /* tunnel */ 1495 bnxt_gro_tunnel(skb, skb->protocol); 1496 #endif 1497 return skb; 1498 } 1499 1500 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1501 struct bnxt_tpa_info *tpa_info, 1502 struct rx_tpa_end_cmp *tpa_end, 1503 struct rx_tpa_end_cmp_ext *tpa_end1, 1504 struct sk_buff *skb) 1505 { 1506 #ifdef CONFIG_INET 1507 int payload_off; 1508 u16 segs; 1509 1510 segs = TPA_END_TPA_SEGS(tpa_end); 1511 if (segs == 1) 1512 return skb; 1513 1514 NAPI_GRO_CB(skb)->count = segs; 1515 skb_shinfo(skb)->gso_size = 1516 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1517 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1518 if (bp->flags & BNXT_FLAG_CHIP_P5) 1519 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1520 else 1521 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1522 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1523 if (likely(skb)) 1524 tcp_gro_complete(skb); 1525 #endif 1526 return skb; 1527 } 1528 1529 /* Given the cfa_code of a received packet determine which 1530 * netdev (vf-rep or PF) the packet is destined to. 1531 */ 1532 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1533 { 1534 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1535 1536 /* if vf-rep dev is NULL, the must belongs to the PF */ 1537 return dev ? dev : bp->dev; 1538 } 1539 1540 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1541 struct bnxt_cp_ring_info *cpr, 1542 u32 *raw_cons, 1543 struct rx_tpa_end_cmp *tpa_end, 1544 struct rx_tpa_end_cmp_ext *tpa_end1, 1545 u8 *event) 1546 { 1547 struct bnxt_napi *bnapi = cpr->bnapi; 1548 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1549 u8 *data_ptr, agg_bufs; 1550 unsigned int len; 1551 struct bnxt_tpa_info *tpa_info; 1552 dma_addr_t mapping; 1553 struct sk_buff *skb; 1554 u16 idx = 0, agg_id; 1555 void *data; 1556 bool gro; 1557 1558 if (unlikely(bnapi->in_reset)) { 1559 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1560 1561 if (rc < 0) 1562 return ERR_PTR(-EBUSY); 1563 return NULL; 1564 } 1565 1566 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1567 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1568 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1569 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1570 tpa_info = &rxr->rx_tpa[agg_id]; 1571 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1572 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1573 agg_bufs, tpa_info->agg_count); 1574 agg_bufs = tpa_info->agg_count; 1575 } 1576 tpa_info->agg_count = 0; 1577 *event |= BNXT_AGG_EVENT; 1578 bnxt_free_agg_idx(rxr, agg_id); 1579 idx = agg_id; 1580 gro = !!(bp->flags & BNXT_FLAG_GRO); 1581 } else { 1582 agg_id = TPA_END_AGG_ID(tpa_end); 1583 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1584 tpa_info = &rxr->rx_tpa[agg_id]; 1585 idx = RING_CMP(*raw_cons); 1586 if (agg_bufs) { 1587 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1588 return ERR_PTR(-EBUSY); 1589 1590 *event |= BNXT_AGG_EVENT; 1591 idx = NEXT_CMP(idx); 1592 } 1593 gro = !!TPA_END_GRO(tpa_end); 1594 } 1595 data = tpa_info->data; 1596 data_ptr = tpa_info->data_ptr; 1597 prefetch(data_ptr); 1598 len = tpa_info->len; 1599 mapping = tpa_info->mapping; 1600 1601 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1602 bnxt_abort_tpa(cpr, idx, agg_bufs); 1603 if (agg_bufs > MAX_SKB_FRAGS) 1604 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1605 agg_bufs, (int)MAX_SKB_FRAGS); 1606 return NULL; 1607 } 1608 1609 if (len <= bp->rx_copy_thresh) { 1610 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1611 if (!skb) { 1612 bnxt_abort_tpa(cpr, idx, agg_bufs); 1613 cpr->sw_stats.rx.rx_oom_discards += 1; 1614 return NULL; 1615 } 1616 } else { 1617 u8 *new_data; 1618 dma_addr_t new_mapping; 1619 1620 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1621 if (!new_data) { 1622 bnxt_abort_tpa(cpr, idx, agg_bufs); 1623 cpr->sw_stats.rx.rx_oom_discards += 1; 1624 return NULL; 1625 } 1626 1627 tpa_info->data = new_data; 1628 tpa_info->data_ptr = new_data + bp->rx_offset; 1629 tpa_info->mapping = new_mapping; 1630 1631 skb = build_skb(data, bp->rx_buf_size); 1632 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1633 bp->rx_buf_use_size, bp->rx_dir, 1634 DMA_ATTR_WEAK_ORDERING); 1635 1636 if (!skb) { 1637 skb_free_frag(data); 1638 bnxt_abort_tpa(cpr, idx, agg_bufs); 1639 cpr->sw_stats.rx.rx_oom_discards += 1; 1640 return NULL; 1641 } 1642 skb_reserve(skb, bp->rx_offset); 1643 skb_put(skb, len); 1644 } 1645 1646 if (agg_bufs) { 1647 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1648 if (!skb) { 1649 /* Page reuse already handled by bnxt_rx_pages(). */ 1650 cpr->sw_stats.rx.rx_oom_discards += 1; 1651 return NULL; 1652 } 1653 } 1654 1655 skb->protocol = 1656 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1657 1658 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1659 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1660 1661 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1662 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1663 __be16 vlan_proto = htons(tpa_info->metadata >> 1664 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1665 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1666 1667 if (eth_type_vlan(vlan_proto)) { 1668 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1669 } else { 1670 dev_kfree_skb(skb); 1671 return NULL; 1672 } 1673 } 1674 1675 skb_checksum_none_assert(skb); 1676 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1677 skb->ip_summed = CHECKSUM_UNNECESSARY; 1678 skb->csum_level = 1679 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1680 } 1681 1682 if (gro) 1683 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1684 1685 return skb; 1686 } 1687 1688 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1689 struct rx_agg_cmp *rx_agg) 1690 { 1691 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1692 struct bnxt_tpa_info *tpa_info; 1693 1694 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1695 tpa_info = &rxr->rx_tpa[agg_id]; 1696 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1697 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1698 } 1699 1700 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1701 struct sk_buff *skb) 1702 { 1703 if (skb->dev != bp->dev) { 1704 /* this packet belongs to a vf-rep */ 1705 bnxt_vf_rep_rx(bp, skb); 1706 return; 1707 } 1708 skb_record_rx_queue(skb, bnapi->index); 1709 napi_gro_receive(&bnapi->napi, skb); 1710 } 1711 1712 /* returns the following: 1713 * 1 - 1 packet successfully received 1714 * 0 - successful TPA_START, packet not completed yet 1715 * -EBUSY - completion ring does not have all the agg buffers yet 1716 * -ENOMEM - packet aborted due to out of memory 1717 * -EIO - packet aborted due to hw error indicated in BD 1718 */ 1719 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1720 u32 *raw_cons, u8 *event) 1721 { 1722 struct bnxt_napi *bnapi = cpr->bnapi; 1723 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1724 struct net_device *dev = bp->dev; 1725 struct rx_cmp *rxcmp; 1726 struct rx_cmp_ext *rxcmp1; 1727 u32 tmp_raw_cons = *raw_cons; 1728 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1729 struct bnxt_sw_rx_bd *rx_buf; 1730 unsigned int len; 1731 u8 *data_ptr, agg_bufs, cmp_type; 1732 dma_addr_t dma_addr; 1733 struct sk_buff *skb; 1734 u32 flags, misc; 1735 void *data; 1736 int rc = 0; 1737 1738 rxcmp = (struct rx_cmp *) 1739 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1740 1741 cmp_type = RX_CMP_TYPE(rxcmp); 1742 1743 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1744 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1745 goto next_rx_no_prod_no_len; 1746 } 1747 1748 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1749 cp_cons = RING_CMP(tmp_raw_cons); 1750 rxcmp1 = (struct rx_cmp_ext *) 1751 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1752 1753 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1754 return -EBUSY; 1755 1756 /* The valid test of the entry must be done first before 1757 * reading any further. 1758 */ 1759 dma_rmb(); 1760 prod = rxr->rx_prod; 1761 1762 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1763 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1764 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1765 1766 *event |= BNXT_RX_EVENT; 1767 goto next_rx_no_prod_no_len; 1768 1769 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1770 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1771 (struct rx_tpa_end_cmp *)rxcmp, 1772 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1773 1774 if (IS_ERR(skb)) 1775 return -EBUSY; 1776 1777 rc = -ENOMEM; 1778 if (likely(skb)) { 1779 bnxt_deliver_skb(bp, bnapi, skb); 1780 rc = 1; 1781 } 1782 *event |= BNXT_RX_EVENT; 1783 goto next_rx_no_prod_no_len; 1784 } 1785 1786 cons = rxcmp->rx_cmp_opaque; 1787 if (unlikely(cons != rxr->rx_next_cons)) { 1788 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1789 1790 /* 0xffff is forced error, don't print it */ 1791 if (rxr->rx_next_cons != 0xffff) 1792 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1793 cons, rxr->rx_next_cons); 1794 bnxt_sched_reset(bp, rxr); 1795 if (rc1) 1796 return rc1; 1797 goto next_rx_no_prod_no_len; 1798 } 1799 rx_buf = &rxr->rx_buf_ring[cons]; 1800 data = rx_buf->data; 1801 data_ptr = rx_buf->data_ptr; 1802 prefetch(data_ptr); 1803 1804 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1805 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1806 1807 if (agg_bufs) { 1808 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1809 return -EBUSY; 1810 1811 cp_cons = NEXT_CMP(cp_cons); 1812 *event |= BNXT_AGG_EVENT; 1813 } 1814 *event |= BNXT_RX_EVENT; 1815 1816 rx_buf->data = NULL; 1817 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1818 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1819 1820 bnxt_reuse_rx_data(rxr, cons, data); 1821 if (agg_bufs) 1822 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1823 false); 1824 1825 rc = -EIO; 1826 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1827 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1828 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1829 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1830 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1831 rx_err); 1832 bnxt_sched_reset(bp, rxr); 1833 } 1834 } 1835 goto next_rx_no_len; 1836 } 1837 1838 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1839 len = flags >> RX_CMP_LEN_SHIFT; 1840 dma_addr = rx_buf->mapping; 1841 1842 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1843 rc = 1; 1844 goto next_rx; 1845 } 1846 1847 if (len <= bp->rx_copy_thresh) { 1848 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1849 bnxt_reuse_rx_data(rxr, cons, data); 1850 if (!skb) { 1851 if (agg_bufs) 1852 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1853 agg_bufs, false); 1854 cpr->sw_stats.rx.rx_oom_discards += 1; 1855 rc = -ENOMEM; 1856 goto next_rx; 1857 } 1858 } else { 1859 u32 payload; 1860 1861 if (rx_buf->data_ptr == data_ptr) 1862 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1863 else 1864 payload = 0; 1865 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1866 payload | len); 1867 if (!skb) { 1868 cpr->sw_stats.rx.rx_oom_discards += 1; 1869 rc = -ENOMEM; 1870 goto next_rx; 1871 } 1872 } 1873 1874 if (agg_bufs) { 1875 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1876 if (!skb) { 1877 cpr->sw_stats.rx.rx_oom_discards += 1; 1878 rc = -ENOMEM; 1879 goto next_rx; 1880 } 1881 } 1882 1883 if (RX_CMP_HASH_VALID(rxcmp)) { 1884 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1885 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1886 1887 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1888 if (hash_type != 1 && hash_type != 3) 1889 type = PKT_HASH_TYPE_L3; 1890 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1891 } 1892 1893 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1894 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1895 1896 if ((rxcmp1->rx_cmp_flags2 & 1897 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1898 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1899 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1900 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1901 __be16 vlan_proto = htons(meta_data >> 1902 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1903 1904 if (eth_type_vlan(vlan_proto)) { 1905 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1906 } else { 1907 dev_kfree_skb(skb); 1908 goto next_rx; 1909 } 1910 } 1911 1912 skb_checksum_none_assert(skb); 1913 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1914 if (dev->features & NETIF_F_RXCSUM) { 1915 skb->ip_summed = CHECKSUM_UNNECESSARY; 1916 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1917 } 1918 } else { 1919 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1920 if (dev->features & NETIF_F_RXCSUM) 1921 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1922 } 1923 } 1924 1925 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 1926 RX_CMP_FLAGS_ITYPE_PTP_W_TS)) { 1927 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1928 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1929 u64 ns, ts; 1930 1931 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 1932 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 1933 1934 spin_lock_bh(&ptp->ptp_lock); 1935 ns = timecounter_cyc2time(&ptp->tc, ts); 1936 spin_unlock_bh(&ptp->ptp_lock); 1937 memset(skb_hwtstamps(skb), 0, 1938 sizeof(*skb_hwtstamps(skb))); 1939 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 1940 } 1941 } 1942 } 1943 bnxt_deliver_skb(bp, bnapi, skb); 1944 rc = 1; 1945 1946 next_rx: 1947 cpr->rx_packets += 1; 1948 cpr->rx_bytes += len; 1949 1950 next_rx_no_len: 1951 rxr->rx_prod = NEXT_RX(prod); 1952 rxr->rx_next_cons = NEXT_RX(cons); 1953 1954 next_rx_no_prod_no_len: 1955 *raw_cons = tmp_raw_cons; 1956 1957 return rc; 1958 } 1959 1960 /* In netpoll mode, if we are using a combined completion ring, we need to 1961 * discard the rx packets and recycle the buffers. 1962 */ 1963 static int bnxt_force_rx_discard(struct bnxt *bp, 1964 struct bnxt_cp_ring_info *cpr, 1965 u32 *raw_cons, u8 *event) 1966 { 1967 u32 tmp_raw_cons = *raw_cons; 1968 struct rx_cmp_ext *rxcmp1; 1969 struct rx_cmp *rxcmp; 1970 u16 cp_cons; 1971 u8 cmp_type; 1972 int rc; 1973 1974 cp_cons = RING_CMP(tmp_raw_cons); 1975 rxcmp = (struct rx_cmp *) 1976 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1977 1978 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1979 cp_cons = RING_CMP(tmp_raw_cons); 1980 rxcmp1 = (struct rx_cmp_ext *) 1981 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1982 1983 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1984 return -EBUSY; 1985 1986 /* The valid test of the entry must be done first before 1987 * reading any further. 1988 */ 1989 dma_rmb(); 1990 cmp_type = RX_CMP_TYPE(rxcmp); 1991 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1992 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 1993 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 1994 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1995 struct rx_tpa_end_cmp_ext *tpa_end1; 1996 1997 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 1998 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 1999 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2000 } 2001 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2002 if (rc && rc != -EBUSY) 2003 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2004 return rc; 2005 } 2006 2007 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2008 { 2009 struct bnxt_fw_health *fw_health = bp->fw_health; 2010 u32 reg = fw_health->regs[reg_idx]; 2011 u32 reg_type, reg_off, val = 0; 2012 2013 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2014 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2015 switch (reg_type) { 2016 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2017 pci_read_config_dword(bp->pdev, reg_off, &val); 2018 break; 2019 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2020 reg_off = fw_health->mapped_regs[reg_idx]; 2021 fallthrough; 2022 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2023 val = readl(bp->bar0 + reg_off); 2024 break; 2025 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2026 val = readl(bp->bar1 + reg_off); 2027 break; 2028 } 2029 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2030 val &= fw_health->fw_reset_inprog_reg_mask; 2031 return val; 2032 } 2033 2034 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2035 { 2036 int i; 2037 2038 for (i = 0; i < bp->rx_nr_rings; i++) { 2039 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2040 struct bnxt_ring_grp_info *grp_info; 2041 2042 grp_info = &bp->grp_info[grp_idx]; 2043 if (grp_info->agg_fw_ring_id == ring_id) 2044 return grp_idx; 2045 } 2046 return INVALID_HW_RING_ID; 2047 } 2048 2049 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2050 { 2051 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2052 2053 switch (err_type) { 2054 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2055 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2056 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2057 break; 2058 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2059 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2060 break; 2061 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2062 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2063 break; 2064 default: 2065 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2066 err_type); 2067 break; 2068 } 2069 } 2070 2071 #define BNXT_GET_EVENT_PORT(data) \ 2072 ((data) & \ 2073 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2074 2075 #define BNXT_EVENT_RING_TYPE(data2) \ 2076 ((data2) & \ 2077 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2078 2079 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2080 (BNXT_EVENT_RING_TYPE(data2) == \ 2081 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2082 2083 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2084 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2085 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2086 2087 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2088 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2089 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2090 2091 #define BNXT_PHC_BITS 48 2092 2093 static int bnxt_async_event_process(struct bnxt *bp, 2094 struct hwrm_async_event_cmpl *cmpl) 2095 { 2096 u16 event_id = le16_to_cpu(cmpl->event_id); 2097 u32 data1 = le32_to_cpu(cmpl->event_data1); 2098 u32 data2 = le32_to_cpu(cmpl->event_data2); 2099 2100 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2101 event_id, data1, data2); 2102 2103 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2104 switch (event_id) { 2105 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2106 struct bnxt_link_info *link_info = &bp->link_info; 2107 2108 if (BNXT_VF(bp)) 2109 goto async_event_process_exit; 2110 2111 /* print unsupported speed warning in forced speed mode only */ 2112 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2113 (data1 & 0x20000)) { 2114 u16 fw_speed = link_info->force_link_speed; 2115 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2116 2117 if (speed != SPEED_UNKNOWN) 2118 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2119 speed); 2120 } 2121 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2122 } 2123 fallthrough; 2124 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2125 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2126 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2127 fallthrough; 2128 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2129 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2130 break; 2131 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2132 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2133 break; 2134 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2135 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2136 2137 if (BNXT_VF(bp)) 2138 break; 2139 2140 if (bp->pf.port_id != port_id) 2141 break; 2142 2143 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2144 break; 2145 } 2146 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2147 if (BNXT_PF(bp)) 2148 goto async_event_process_exit; 2149 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2150 break; 2151 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2152 char *type_str = "Solicited"; 2153 2154 if (!bp->fw_health) 2155 goto async_event_process_exit; 2156 2157 bp->fw_reset_timestamp = jiffies; 2158 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2159 if (!bp->fw_reset_min_dsecs) 2160 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2161 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2162 if (!bp->fw_reset_max_dsecs) 2163 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2164 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2165 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2166 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2167 type_str = "Fatal"; 2168 bp->fw_health->fatalities++; 2169 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2170 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2171 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2172 type_str = "Non-fatal"; 2173 bp->fw_health->survivals++; 2174 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2175 } 2176 netif_warn(bp, hw, bp->dev, 2177 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2178 type_str, data1, data2, 2179 bp->fw_reset_min_dsecs * 100, 2180 bp->fw_reset_max_dsecs * 100); 2181 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2182 break; 2183 } 2184 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2185 struct bnxt_fw_health *fw_health = bp->fw_health; 2186 char *status_desc = "healthy"; 2187 u32 status; 2188 2189 if (!fw_health) 2190 goto async_event_process_exit; 2191 2192 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2193 fw_health->enabled = false; 2194 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2195 break; 2196 } 2197 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2198 fw_health->tmr_multiplier = 2199 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2200 bp->current_interval * 10); 2201 fw_health->tmr_counter = fw_health->tmr_multiplier; 2202 if (!fw_health->enabled) 2203 fw_health->last_fw_heartbeat = 2204 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2205 fw_health->last_fw_reset_cnt = 2206 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2207 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2208 if (status != BNXT_FW_STATUS_HEALTHY) 2209 status_desc = "unhealthy"; 2210 netif_info(bp, drv, bp->dev, 2211 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2212 fw_health->primary ? "primary" : "backup", status, 2213 status_desc, fw_health->last_fw_reset_cnt); 2214 if (!fw_health->enabled) { 2215 /* Make sure tmr_counter is set and visible to 2216 * bnxt_health_check() before setting enabled to true. 2217 */ 2218 smp_wmb(); 2219 fw_health->enabled = true; 2220 } 2221 goto async_event_process_exit; 2222 } 2223 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2224 netif_notice(bp, hw, bp->dev, 2225 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2226 data1, data2); 2227 goto async_event_process_exit; 2228 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2229 struct bnxt_rx_ring_info *rxr; 2230 u16 grp_idx; 2231 2232 if (bp->flags & BNXT_FLAG_CHIP_P5) 2233 goto async_event_process_exit; 2234 2235 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2236 BNXT_EVENT_RING_TYPE(data2), data1); 2237 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2238 goto async_event_process_exit; 2239 2240 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2241 if (grp_idx == INVALID_HW_RING_ID) { 2242 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2243 data1); 2244 goto async_event_process_exit; 2245 } 2246 rxr = bp->bnapi[grp_idx]->rx_ring; 2247 bnxt_sched_reset(bp, rxr); 2248 goto async_event_process_exit; 2249 } 2250 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2251 struct bnxt_fw_health *fw_health = bp->fw_health; 2252 2253 netif_notice(bp, hw, bp->dev, 2254 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2255 data1, data2); 2256 if (fw_health) { 2257 fw_health->echo_req_data1 = data1; 2258 fw_health->echo_req_data2 = data2; 2259 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2260 break; 2261 } 2262 goto async_event_process_exit; 2263 } 2264 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2265 bnxt_ptp_pps_event(bp, data1, data2); 2266 goto async_event_process_exit; 2267 } 2268 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2269 bnxt_event_error_report(bp, data1, data2); 2270 goto async_event_process_exit; 2271 } 2272 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2273 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2274 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2275 if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) { 2276 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2277 u64 ns; 2278 2279 spin_lock_bh(&ptp->ptp_lock); 2280 bnxt_ptp_update_current_time(bp); 2281 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2282 BNXT_PHC_BITS) | ptp->current_time); 2283 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2284 spin_unlock_bh(&ptp->ptp_lock); 2285 } 2286 break; 2287 } 2288 goto async_event_process_exit; 2289 } 2290 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2291 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2292 2293 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2294 goto async_event_process_exit; 2295 } 2296 default: 2297 goto async_event_process_exit; 2298 } 2299 bnxt_queue_sp_work(bp); 2300 async_event_process_exit: 2301 bnxt_ulp_async_events(bp, cmpl); 2302 return 0; 2303 } 2304 2305 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2306 { 2307 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2308 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2309 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2310 (struct hwrm_fwd_req_cmpl *)txcmp; 2311 2312 switch (cmpl_type) { 2313 case CMPL_BASE_TYPE_HWRM_DONE: 2314 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2315 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2316 break; 2317 2318 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2319 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2320 2321 if ((vf_id < bp->pf.first_vf_id) || 2322 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2323 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2324 vf_id); 2325 return -EINVAL; 2326 } 2327 2328 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2329 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2330 bnxt_queue_sp_work(bp); 2331 break; 2332 2333 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2334 bnxt_async_event_process(bp, 2335 (struct hwrm_async_event_cmpl *)txcmp); 2336 break; 2337 2338 default: 2339 break; 2340 } 2341 2342 return 0; 2343 } 2344 2345 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2346 { 2347 struct bnxt_napi *bnapi = dev_instance; 2348 struct bnxt *bp = bnapi->bp; 2349 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2350 u32 cons = RING_CMP(cpr->cp_raw_cons); 2351 2352 cpr->event_ctr++; 2353 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2354 napi_schedule(&bnapi->napi); 2355 return IRQ_HANDLED; 2356 } 2357 2358 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2359 { 2360 u32 raw_cons = cpr->cp_raw_cons; 2361 u16 cons = RING_CMP(raw_cons); 2362 struct tx_cmp *txcmp; 2363 2364 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2365 2366 return TX_CMP_VALID(txcmp, raw_cons); 2367 } 2368 2369 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2370 { 2371 struct bnxt_napi *bnapi = dev_instance; 2372 struct bnxt *bp = bnapi->bp; 2373 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2374 u32 cons = RING_CMP(cpr->cp_raw_cons); 2375 u32 int_status; 2376 2377 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2378 2379 if (!bnxt_has_work(bp, cpr)) { 2380 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2381 /* return if erroneous interrupt */ 2382 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2383 return IRQ_NONE; 2384 } 2385 2386 /* disable ring IRQ */ 2387 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2388 2389 /* Return here if interrupt is shared and is disabled. */ 2390 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2391 return IRQ_HANDLED; 2392 2393 napi_schedule(&bnapi->napi); 2394 return IRQ_HANDLED; 2395 } 2396 2397 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2398 int budget) 2399 { 2400 struct bnxt_napi *bnapi = cpr->bnapi; 2401 u32 raw_cons = cpr->cp_raw_cons; 2402 u32 cons; 2403 int tx_pkts = 0; 2404 int rx_pkts = 0; 2405 u8 event = 0; 2406 struct tx_cmp *txcmp; 2407 2408 cpr->has_more_work = 0; 2409 cpr->had_work_done = 1; 2410 while (1) { 2411 int rc; 2412 2413 cons = RING_CMP(raw_cons); 2414 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2415 2416 if (!TX_CMP_VALID(txcmp, raw_cons)) 2417 break; 2418 2419 /* The valid test of the entry must be done first before 2420 * reading any further. 2421 */ 2422 dma_rmb(); 2423 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2424 tx_pkts++; 2425 /* return full budget so NAPI will complete. */ 2426 if (unlikely(tx_pkts >= bp->tx_wake_thresh)) { 2427 rx_pkts = budget; 2428 raw_cons = NEXT_RAW_CMP(raw_cons); 2429 if (budget) 2430 cpr->has_more_work = 1; 2431 break; 2432 } 2433 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2434 if (likely(budget)) 2435 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2436 else 2437 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2438 &event); 2439 if (likely(rc >= 0)) 2440 rx_pkts += rc; 2441 /* Increment rx_pkts when rc is -ENOMEM to count towards 2442 * the NAPI budget. Otherwise, we may potentially loop 2443 * here forever if we consistently cannot allocate 2444 * buffers. 2445 */ 2446 else if (rc == -ENOMEM && budget) 2447 rx_pkts++; 2448 else if (rc == -EBUSY) /* partial completion */ 2449 break; 2450 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2451 CMPL_BASE_TYPE_HWRM_DONE) || 2452 (TX_CMP_TYPE(txcmp) == 2453 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2454 (TX_CMP_TYPE(txcmp) == 2455 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2456 bnxt_hwrm_handler(bp, txcmp); 2457 } 2458 raw_cons = NEXT_RAW_CMP(raw_cons); 2459 2460 if (rx_pkts && rx_pkts == budget) { 2461 cpr->has_more_work = 1; 2462 break; 2463 } 2464 } 2465 2466 if (event & BNXT_REDIRECT_EVENT) 2467 xdp_do_flush(); 2468 2469 if (event & BNXT_TX_EVENT) { 2470 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2471 u16 prod = txr->tx_prod; 2472 2473 /* Sync BD data before updating doorbell */ 2474 wmb(); 2475 2476 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2477 } 2478 2479 cpr->cp_raw_cons = raw_cons; 2480 bnapi->tx_pkts += tx_pkts; 2481 bnapi->events |= event; 2482 return rx_pkts; 2483 } 2484 2485 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2486 { 2487 if (bnapi->tx_pkts) { 2488 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2489 bnapi->tx_pkts = 0; 2490 } 2491 2492 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2493 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2494 2495 if (bnapi->events & BNXT_AGG_EVENT) 2496 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2497 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2498 } 2499 bnapi->events = 0; 2500 } 2501 2502 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2503 int budget) 2504 { 2505 struct bnxt_napi *bnapi = cpr->bnapi; 2506 int rx_pkts; 2507 2508 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2509 2510 /* ACK completion ring before freeing tx ring and producing new 2511 * buffers in rx/agg rings to prevent overflowing the completion 2512 * ring. 2513 */ 2514 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2515 2516 __bnxt_poll_work_done(bp, bnapi); 2517 return rx_pkts; 2518 } 2519 2520 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2521 { 2522 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2523 struct bnxt *bp = bnapi->bp; 2524 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2525 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2526 struct tx_cmp *txcmp; 2527 struct rx_cmp_ext *rxcmp1; 2528 u32 cp_cons, tmp_raw_cons; 2529 u32 raw_cons = cpr->cp_raw_cons; 2530 u32 rx_pkts = 0; 2531 u8 event = 0; 2532 2533 while (1) { 2534 int rc; 2535 2536 cp_cons = RING_CMP(raw_cons); 2537 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2538 2539 if (!TX_CMP_VALID(txcmp, raw_cons)) 2540 break; 2541 2542 /* The valid test of the entry must be done first before 2543 * reading any further. 2544 */ 2545 dma_rmb(); 2546 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2547 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2548 cp_cons = RING_CMP(tmp_raw_cons); 2549 rxcmp1 = (struct rx_cmp_ext *) 2550 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2551 2552 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2553 break; 2554 2555 /* force an error to recycle the buffer */ 2556 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2557 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2558 2559 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2560 if (likely(rc == -EIO) && budget) 2561 rx_pkts++; 2562 else if (rc == -EBUSY) /* partial completion */ 2563 break; 2564 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2565 CMPL_BASE_TYPE_HWRM_DONE)) { 2566 bnxt_hwrm_handler(bp, txcmp); 2567 } else { 2568 netdev_err(bp->dev, 2569 "Invalid completion received on special ring\n"); 2570 } 2571 raw_cons = NEXT_RAW_CMP(raw_cons); 2572 2573 if (rx_pkts == budget) 2574 break; 2575 } 2576 2577 cpr->cp_raw_cons = raw_cons; 2578 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2579 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2580 2581 if (event & BNXT_AGG_EVENT) 2582 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2583 2584 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2585 napi_complete_done(napi, rx_pkts); 2586 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2587 } 2588 return rx_pkts; 2589 } 2590 2591 static int bnxt_poll(struct napi_struct *napi, int budget) 2592 { 2593 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2594 struct bnxt *bp = bnapi->bp; 2595 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2596 int work_done = 0; 2597 2598 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2599 napi_complete(napi); 2600 return 0; 2601 } 2602 while (1) { 2603 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2604 2605 if (work_done >= budget) { 2606 if (!budget) 2607 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2608 break; 2609 } 2610 2611 if (!bnxt_has_work(bp, cpr)) { 2612 if (napi_complete_done(napi, work_done)) 2613 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2614 break; 2615 } 2616 } 2617 if (bp->flags & BNXT_FLAG_DIM) { 2618 struct dim_sample dim_sample = {}; 2619 2620 dim_update_sample(cpr->event_ctr, 2621 cpr->rx_packets, 2622 cpr->rx_bytes, 2623 &dim_sample); 2624 net_dim(&cpr->dim, dim_sample); 2625 } 2626 return work_done; 2627 } 2628 2629 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2630 { 2631 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2632 int i, work_done = 0; 2633 2634 for (i = 0; i < 2; i++) { 2635 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2636 2637 if (cpr2) { 2638 work_done += __bnxt_poll_work(bp, cpr2, 2639 budget - work_done); 2640 cpr->has_more_work |= cpr2->has_more_work; 2641 } 2642 } 2643 return work_done; 2644 } 2645 2646 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2647 u64 dbr_type) 2648 { 2649 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2650 int i; 2651 2652 for (i = 0; i < 2; i++) { 2653 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2654 struct bnxt_db_info *db; 2655 2656 if (cpr2 && cpr2->had_work_done) { 2657 db = &cpr2->cp_db; 2658 bnxt_writeq(bp, db->db_key64 | dbr_type | 2659 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2660 cpr2->had_work_done = 0; 2661 } 2662 } 2663 __bnxt_poll_work_done(bp, bnapi); 2664 } 2665 2666 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2667 { 2668 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2669 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2670 struct bnxt_cp_ring_info *cpr_rx; 2671 u32 raw_cons = cpr->cp_raw_cons; 2672 struct bnxt *bp = bnapi->bp; 2673 struct nqe_cn *nqcmp; 2674 int work_done = 0; 2675 u32 cons; 2676 2677 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2678 napi_complete(napi); 2679 return 0; 2680 } 2681 if (cpr->has_more_work) { 2682 cpr->has_more_work = 0; 2683 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2684 } 2685 while (1) { 2686 cons = RING_CMP(raw_cons); 2687 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2688 2689 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2690 if (cpr->has_more_work) 2691 break; 2692 2693 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2694 cpr->cp_raw_cons = raw_cons; 2695 if (napi_complete_done(napi, work_done)) 2696 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2697 cpr->cp_raw_cons); 2698 goto poll_done; 2699 } 2700 2701 /* The valid test of the entry must be done first before 2702 * reading any further. 2703 */ 2704 dma_rmb(); 2705 2706 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2707 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2708 struct bnxt_cp_ring_info *cpr2; 2709 2710 /* No more budget for RX work */ 2711 if (budget && work_done >= budget && idx == BNXT_RX_HDL) 2712 break; 2713 2714 cpr2 = cpr->cp_ring_arr[idx]; 2715 work_done += __bnxt_poll_work(bp, cpr2, 2716 budget - work_done); 2717 cpr->has_more_work |= cpr2->has_more_work; 2718 } else { 2719 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2720 } 2721 raw_cons = NEXT_RAW_CMP(raw_cons); 2722 } 2723 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2724 if (raw_cons != cpr->cp_raw_cons) { 2725 cpr->cp_raw_cons = raw_cons; 2726 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2727 } 2728 poll_done: 2729 cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL]; 2730 if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) { 2731 struct dim_sample dim_sample = {}; 2732 2733 dim_update_sample(cpr->event_ctr, 2734 cpr_rx->rx_packets, 2735 cpr_rx->rx_bytes, 2736 &dim_sample); 2737 net_dim(&cpr->dim, dim_sample); 2738 } 2739 return work_done; 2740 } 2741 2742 static void bnxt_free_tx_skbs(struct bnxt *bp) 2743 { 2744 int i, max_idx; 2745 struct pci_dev *pdev = bp->pdev; 2746 2747 if (!bp->tx_ring) 2748 return; 2749 2750 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2751 for (i = 0; i < bp->tx_nr_rings; i++) { 2752 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2753 int j; 2754 2755 if (!txr->tx_buf_ring) 2756 continue; 2757 2758 for (j = 0; j < max_idx;) { 2759 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2760 struct sk_buff *skb; 2761 int k, last; 2762 2763 if (i < bp->tx_nr_rings_xdp && 2764 tx_buf->action == XDP_REDIRECT) { 2765 dma_unmap_single(&pdev->dev, 2766 dma_unmap_addr(tx_buf, mapping), 2767 dma_unmap_len(tx_buf, len), 2768 DMA_TO_DEVICE); 2769 xdp_return_frame(tx_buf->xdpf); 2770 tx_buf->action = 0; 2771 tx_buf->xdpf = NULL; 2772 j++; 2773 continue; 2774 } 2775 2776 skb = tx_buf->skb; 2777 if (!skb) { 2778 j++; 2779 continue; 2780 } 2781 2782 tx_buf->skb = NULL; 2783 2784 if (tx_buf->is_push) { 2785 dev_kfree_skb(skb); 2786 j += 2; 2787 continue; 2788 } 2789 2790 dma_unmap_single(&pdev->dev, 2791 dma_unmap_addr(tx_buf, mapping), 2792 skb_headlen(skb), 2793 DMA_TO_DEVICE); 2794 2795 last = tx_buf->nr_frags; 2796 j += 2; 2797 for (k = 0; k < last; k++, j++) { 2798 int ring_idx = j & bp->tx_ring_mask; 2799 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2800 2801 tx_buf = &txr->tx_buf_ring[ring_idx]; 2802 dma_unmap_page( 2803 &pdev->dev, 2804 dma_unmap_addr(tx_buf, mapping), 2805 skb_frag_size(frag), DMA_TO_DEVICE); 2806 } 2807 dev_kfree_skb(skb); 2808 } 2809 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2810 } 2811 } 2812 2813 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2814 { 2815 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2816 struct pci_dev *pdev = bp->pdev; 2817 struct bnxt_tpa_idx_map *map; 2818 int i, max_idx, max_agg_idx; 2819 2820 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2821 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2822 if (!rxr->rx_tpa) 2823 goto skip_rx_tpa_free; 2824 2825 for (i = 0; i < bp->max_tpa; i++) { 2826 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2827 u8 *data = tpa_info->data; 2828 2829 if (!data) 2830 continue; 2831 2832 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2833 bp->rx_buf_use_size, bp->rx_dir, 2834 DMA_ATTR_WEAK_ORDERING); 2835 2836 tpa_info->data = NULL; 2837 2838 skb_free_frag(data); 2839 } 2840 2841 skip_rx_tpa_free: 2842 if (!rxr->rx_buf_ring) 2843 goto skip_rx_buf_free; 2844 2845 for (i = 0; i < max_idx; i++) { 2846 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2847 dma_addr_t mapping = rx_buf->mapping; 2848 void *data = rx_buf->data; 2849 2850 if (!data) 2851 continue; 2852 2853 rx_buf->data = NULL; 2854 if (BNXT_RX_PAGE_MODE(bp)) { 2855 mapping -= bp->rx_dma_offset; 2856 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2857 bp->rx_dir, 2858 DMA_ATTR_WEAK_ORDERING); 2859 page_pool_recycle_direct(rxr->page_pool, data); 2860 } else { 2861 dma_unmap_single_attrs(&pdev->dev, mapping, 2862 bp->rx_buf_use_size, bp->rx_dir, 2863 DMA_ATTR_WEAK_ORDERING); 2864 skb_free_frag(data); 2865 } 2866 } 2867 2868 skip_rx_buf_free: 2869 if (!rxr->rx_agg_ring) 2870 goto skip_rx_agg_free; 2871 2872 for (i = 0; i < max_agg_idx; i++) { 2873 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2874 struct page *page = rx_agg_buf->page; 2875 2876 if (!page) 2877 continue; 2878 2879 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2880 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 2881 DMA_ATTR_WEAK_ORDERING); 2882 2883 rx_agg_buf->page = NULL; 2884 __clear_bit(i, rxr->rx_agg_bmap); 2885 2886 __free_page(page); 2887 } 2888 2889 skip_rx_agg_free: 2890 if (rxr->rx_page) { 2891 __free_page(rxr->rx_page); 2892 rxr->rx_page = NULL; 2893 } 2894 map = rxr->rx_tpa_idx_map; 2895 if (map) 2896 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2897 } 2898 2899 static void bnxt_free_rx_skbs(struct bnxt *bp) 2900 { 2901 int i; 2902 2903 if (!bp->rx_ring) 2904 return; 2905 2906 for (i = 0; i < bp->rx_nr_rings; i++) 2907 bnxt_free_one_rx_ring_skbs(bp, i); 2908 } 2909 2910 static void bnxt_free_skbs(struct bnxt *bp) 2911 { 2912 bnxt_free_tx_skbs(bp); 2913 bnxt_free_rx_skbs(bp); 2914 } 2915 2916 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2917 { 2918 u8 init_val = mem_init->init_val; 2919 u16 offset = mem_init->offset; 2920 u8 *p2 = p; 2921 int i; 2922 2923 if (!init_val) 2924 return; 2925 if (offset == BNXT_MEM_INVALID_OFFSET) { 2926 memset(p, init_val, len); 2927 return; 2928 } 2929 for (i = 0; i < len; i += mem_init->size) 2930 *(p2 + i + offset) = init_val; 2931 } 2932 2933 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2934 { 2935 struct pci_dev *pdev = bp->pdev; 2936 int i; 2937 2938 if (!rmem->pg_arr) 2939 goto skip_pages; 2940 2941 for (i = 0; i < rmem->nr_pages; i++) { 2942 if (!rmem->pg_arr[i]) 2943 continue; 2944 2945 dma_free_coherent(&pdev->dev, rmem->page_size, 2946 rmem->pg_arr[i], rmem->dma_arr[i]); 2947 2948 rmem->pg_arr[i] = NULL; 2949 } 2950 skip_pages: 2951 if (rmem->pg_tbl) { 2952 size_t pg_tbl_size = rmem->nr_pages * 8; 2953 2954 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2955 pg_tbl_size = rmem->page_size; 2956 dma_free_coherent(&pdev->dev, pg_tbl_size, 2957 rmem->pg_tbl, rmem->pg_tbl_map); 2958 rmem->pg_tbl = NULL; 2959 } 2960 if (rmem->vmem_size && *rmem->vmem) { 2961 vfree(*rmem->vmem); 2962 *rmem->vmem = NULL; 2963 } 2964 } 2965 2966 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2967 { 2968 struct pci_dev *pdev = bp->pdev; 2969 u64 valid_bit = 0; 2970 int i; 2971 2972 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2973 valid_bit = PTU_PTE_VALID; 2974 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2975 size_t pg_tbl_size = rmem->nr_pages * 8; 2976 2977 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2978 pg_tbl_size = rmem->page_size; 2979 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2980 &rmem->pg_tbl_map, 2981 GFP_KERNEL); 2982 if (!rmem->pg_tbl) 2983 return -ENOMEM; 2984 } 2985 2986 for (i = 0; i < rmem->nr_pages; i++) { 2987 u64 extra_bits = valid_bit; 2988 2989 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2990 rmem->page_size, 2991 &rmem->dma_arr[i], 2992 GFP_KERNEL); 2993 if (!rmem->pg_arr[i]) 2994 return -ENOMEM; 2995 2996 if (rmem->mem_init) 2997 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2998 rmem->page_size); 2999 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3000 if (i == rmem->nr_pages - 2 && 3001 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3002 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3003 else if (i == rmem->nr_pages - 1 && 3004 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3005 extra_bits |= PTU_PTE_LAST; 3006 rmem->pg_tbl[i] = 3007 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3008 } 3009 } 3010 3011 if (rmem->vmem_size) { 3012 *rmem->vmem = vzalloc(rmem->vmem_size); 3013 if (!(*rmem->vmem)) 3014 return -ENOMEM; 3015 } 3016 return 0; 3017 } 3018 3019 static void bnxt_free_tpa_info(struct bnxt *bp) 3020 { 3021 int i; 3022 3023 for (i = 0; i < bp->rx_nr_rings; i++) { 3024 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3025 3026 kfree(rxr->rx_tpa_idx_map); 3027 rxr->rx_tpa_idx_map = NULL; 3028 if (rxr->rx_tpa) { 3029 kfree(rxr->rx_tpa[0].agg_arr); 3030 rxr->rx_tpa[0].agg_arr = NULL; 3031 } 3032 kfree(rxr->rx_tpa); 3033 rxr->rx_tpa = NULL; 3034 } 3035 } 3036 3037 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3038 { 3039 int i, j, total_aggs = 0; 3040 3041 bp->max_tpa = MAX_TPA; 3042 if (bp->flags & BNXT_FLAG_CHIP_P5) { 3043 if (!bp->max_tpa_v2) 3044 return 0; 3045 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3046 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 3047 } 3048 3049 for (i = 0; i < bp->rx_nr_rings; i++) { 3050 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3051 struct rx_agg_cmp *agg; 3052 3053 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3054 GFP_KERNEL); 3055 if (!rxr->rx_tpa) 3056 return -ENOMEM; 3057 3058 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3059 continue; 3060 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 3061 rxr->rx_tpa[0].agg_arr = agg; 3062 if (!agg) 3063 return -ENOMEM; 3064 for (j = 1; j < bp->max_tpa; j++) 3065 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 3066 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3067 GFP_KERNEL); 3068 if (!rxr->rx_tpa_idx_map) 3069 return -ENOMEM; 3070 } 3071 return 0; 3072 } 3073 3074 static void bnxt_free_rx_rings(struct bnxt *bp) 3075 { 3076 int i; 3077 3078 if (!bp->rx_ring) 3079 return; 3080 3081 bnxt_free_tpa_info(bp); 3082 for (i = 0; i < bp->rx_nr_rings; i++) { 3083 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3084 struct bnxt_ring_struct *ring; 3085 3086 if (rxr->xdp_prog) 3087 bpf_prog_put(rxr->xdp_prog); 3088 3089 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3090 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3091 3092 page_pool_destroy(rxr->page_pool); 3093 rxr->page_pool = NULL; 3094 3095 kfree(rxr->rx_agg_bmap); 3096 rxr->rx_agg_bmap = NULL; 3097 3098 ring = &rxr->rx_ring_struct; 3099 bnxt_free_ring(bp, &ring->ring_mem); 3100 3101 ring = &rxr->rx_agg_ring_struct; 3102 bnxt_free_ring(bp, &ring->ring_mem); 3103 } 3104 } 3105 3106 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3107 struct bnxt_rx_ring_info *rxr) 3108 { 3109 struct page_pool_params pp = { 0 }; 3110 3111 pp.pool_size = bp->rx_ring_size; 3112 pp.nid = dev_to_node(&bp->pdev->dev); 3113 pp.dev = &bp->pdev->dev; 3114 pp.dma_dir = DMA_BIDIRECTIONAL; 3115 3116 rxr->page_pool = page_pool_create(&pp); 3117 if (IS_ERR(rxr->page_pool)) { 3118 int err = PTR_ERR(rxr->page_pool); 3119 3120 rxr->page_pool = NULL; 3121 return err; 3122 } 3123 return 0; 3124 } 3125 3126 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3127 { 3128 int i, rc = 0, agg_rings = 0; 3129 3130 if (!bp->rx_ring) 3131 return -ENOMEM; 3132 3133 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3134 agg_rings = 1; 3135 3136 for (i = 0; i < bp->rx_nr_rings; i++) { 3137 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3138 struct bnxt_ring_struct *ring; 3139 3140 ring = &rxr->rx_ring_struct; 3141 3142 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3143 if (rc) 3144 return rc; 3145 3146 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3147 if (rc < 0) 3148 return rc; 3149 3150 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3151 MEM_TYPE_PAGE_POOL, 3152 rxr->page_pool); 3153 if (rc) { 3154 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3155 return rc; 3156 } 3157 3158 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3159 if (rc) 3160 return rc; 3161 3162 ring->grp_idx = i; 3163 if (agg_rings) { 3164 u16 mem_size; 3165 3166 ring = &rxr->rx_agg_ring_struct; 3167 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3168 if (rc) 3169 return rc; 3170 3171 ring->grp_idx = i; 3172 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3173 mem_size = rxr->rx_agg_bmap_size / 8; 3174 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3175 if (!rxr->rx_agg_bmap) 3176 return -ENOMEM; 3177 } 3178 } 3179 if (bp->flags & BNXT_FLAG_TPA) 3180 rc = bnxt_alloc_tpa_info(bp); 3181 return rc; 3182 } 3183 3184 static void bnxt_free_tx_rings(struct bnxt *bp) 3185 { 3186 int i; 3187 struct pci_dev *pdev = bp->pdev; 3188 3189 if (!bp->tx_ring) 3190 return; 3191 3192 for (i = 0; i < bp->tx_nr_rings; i++) { 3193 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3194 struct bnxt_ring_struct *ring; 3195 3196 if (txr->tx_push) { 3197 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3198 txr->tx_push, txr->tx_push_mapping); 3199 txr->tx_push = NULL; 3200 } 3201 3202 ring = &txr->tx_ring_struct; 3203 3204 bnxt_free_ring(bp, &ring->ring_mem); 3205 } 3206 } 3207 3208 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3209 { 3210 int i, j, rc; 3211 struct pci_dev *pdev = bp->pdev; 3212 3213 bp->tx_push_size = 0; 3214 if (bp->tx_push_thresh) { 3215 int push_size; 3216 3217 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3218 bp->tx_push_thresh); 3219 3220 if (push_size > 256) { 3221 push_size = 0; 3222 bp->tx_push_thresh = 0; 3223 } 3224 3225 bp->tx_push_size = push_size; 3226 } 3227 3228 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3229 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3230 struct bnxt_ring_struct *ring; 3231 u8 qidx; 3232 3233 ring = &txr->tx_ring_struct; 3234 3235 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3236 if (rc) 3237 return rc; 3238 3239 ring->grp_idx = txr->bnapi->index; 3240 if (bp->tx_push_size) { 3241 dma_addr_t mapping; 3242 3243 /* One pre-allocated DMA buffer to backup 3244 * TX push operation 3245 */ 3246 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3247 bp->tx_push_size, 3248 &txr->tx_push_mapping, 3249 GFP_KERNEL); 3250 3251 if (!txr->tx_push) 3252 return -ENOMEM; 3253 3254 mapping = txr->tx_push_mapping + 3255 sizeof(struct tx_push_bd); 3256 txr->data_mapping = cpu_to_le64(mapping); 3257 } 3258 qidx = bp->tc_to_qidx[j]; 3259 ring->queue_id = bp->q_info[qidx].queue_id; 3260 spin_lock_init(&txr->xdp_tx_lock); 3261 if (i < bp->tx_nr_rings_xdp) 3262 continue; 3263 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3264 j++; 3265 } 3266 return 0; 3267 } 3268 3269 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3270 { 3271 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3272 3273 kfree(cpr->cp_desc_ring); 3274 cpr->cp_desc_ring = NULL; 3275 ring->ring_mem.pg_arr = NULL; 3276 kfree(cpr->cp_desc_mapping); 3277 cpr->cp_desc_mapping = NULL; 3278 ring->ring_mem.dma_arr = NULL; 3279 } 3280 3281 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3282 { 3283 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3284 if (!cpr->cp_desc_ring) 3285 return -ENOMEM; 3286 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3287 GFP_KERNEL); 3288 if (!cpr->cp_desc_mapping) 3289 return -ENOMEM; 3290 return 0; 3291 } 3292 3293 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3294 { 3295 int i; 3296 3297 if (!bp->bnapi) 3298 return; 3299 for (i = 0; i < bp->cp_nr_rings; i++) { 3300 struct bnxt_napi *bnapi = bp->bnapi[i]; 3301 3302 if (!bnapi) 3303 continue; 3304 bnxt_free_cp_arrays(&bnapi->cp_ring); 3305 } 3306 } 3307 3308 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3309 { 3310 int i, n = bp->cp_nr_pages; 3311 3312 for (i = 0; i < bp->cp_nr_rings; i++) { 3313 struct bnxt_napi *bnapi = bp->bnapi[i]; 3314 int rc; 3315 3316 if (!bnapi) 3317 continue; 3318 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3319 if (rc) 3320 return rc; 3321 } 3322 return 0; 3323 } 3324 3325 static void bnxt_free_cp_rings(struct bnxt *bp) 3326 { 3327 int i; 3328 3329 if (!bp->bnapi) 3330 return; 3331 3332 for (i = 0; i < bp->cp_nr_rings; i++) { 3333 struct bnxt_napi *bnapi = bp->bnapi[i]; 3334 struct bnxt_cp_ring_info *cpr; 3335 struct bnxt_ring_struct *ring; 3336 int j; 3337 3338 if (!bnapi) 3339 continue; 3340 3341 cpr = &bnapi->cp_ring; 3342 ring = &cpr->cp_ring_struct; 3343 3344 bnxt_free_ring(bp, &ring->ring_mem); 3345 3346 for (j = 0; j < 2; j++) { 3347 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3348 3349 if (cpr2) { 3350 ring = &cpr2->cp_ring_struct; 3351 bnxt_free_ring(bp, &ring->ring_mem); 3352 bnxt_free_cp_arrays(cpr2); 3353 kfree(cpr2); 3354 cpr->cp_ring_arr[j] = NULL; 3355 } 3356 } 3357 } 3358 } 3359 3360 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3361 { 3362 struct bnxt_ring_mem_info *rmem; 3363 struct bnxt_ring_struct *ring; 3364 struct bnxt_cp_ring_info *cpr; 3365 int rc; 3366 3367 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3368 if (!cpr) 3369 return NULL; 3370 3371 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3372 if (rc) { 3373 bnxt_free_cp_arrays(cpr); 3374 kfree(cpr); 3375 return NULL; 3376 } 3377 ring = &cpr->cp_ring_struct; 3378 rmem = &ring->ring_mem; 3379 rmem->nr_pages = bp->cp_nr_pages; 3380 rmem->page_size = HW_CMPD_RING_SIZE; 3381 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3382 rmem->dma_arr = cpr->cp_desc_mapping; 3383 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3384 rc = bnxt_alloc_ring(bp, rmem); 3385 if (rc) { 3386 bnxt_free_ring(bp, rmem); 3387 bnxt_free_cp_arrays(cpr); 3388 kfree(cpr); 3389 cpr = NULL; 3390 } 3391 return cpr; 3392 } 3393 3394 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3395 { 3396 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3397 int i, rc, ulp_base_vec, ulp_msix; 3398 3399 ulp_msix = bnxt_get_ulp_msix_num(bp); 3400 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3401 for (i = 0; i < bp->cp_nr_rings; i++) { 3402 struct bnxt_napi *bnapi = bp->bnapi[i]; 3403 struct bnxt_cp_ring_info *cpr; 3404 struct bnxt_ring_struct *ring; 3405 3406 if (!bnapi) 3407 continue; 3408 3409 cpr = &bnapi->cp_ring; 3410 cpr->bnapi = bnapi; 3411 ring = &cpr->cp_ring_struct; 3412 3413 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3414 if (rc) 3415 return rc; 3416 3417 if (ulp_msix && i >= ulp_base_vec) 3418 ring->map_idx = i + ulp_msix; 3419 else 3420 ring->map_idx = i; 3421 3422 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3423 continue; 3424 3425 if (i < bp->rx_nr_rings) { 3426 struct bnxt_cp_ring_info *cpr2 = 3427 bnxt_alloc_cp_sub_ring(bp); 3428 3429 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3430 if (!cpr2) 3431 return -ENOMEM; 3432 cpr2->bnapi = bnapi; 3433 } 3434 if ((sh && i < bp->tx_nr_rings) || 3435 (!sh && i >= bp->rx_nr_rings)) { 3436 struct bnxt_cp_ring_info *cpr2 = 3437 bnxt_alloc_cp_sub_ring(bp); 3438 3439 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3440 if (!cpr2) 3441 return -ENOMEM; 3442 cpr2->bnapi = bnapi; 3443 } 3444 } 3445 return 0; 3446 } 3447 3448 static void bnxt_init_ring_struct(struct bnxt *bp) 3449 { 3450 int i; 3451 3452 for (i = 0; i < bp->cp_nr_rings; i++) { 3453 struct bnxt_napi *bnapi = bp->bnapi[i]; 3454 struct bnxt_ring_mem_info *rmem; 3455 struct bnxt_cp_ring_info *cpr; 3456 struct bnxt_rx_ring_info *rxr; 3457 struct bnxt_tx_ring_info *txr; 3458 struct bnxt_ring_struct *ring; 3459 3460 if (!bnapi) 3461 continue; 3462 3463 cpr = &bnapi->cp_ring; 3464 ring = &cpr->cp_ring_struct; 3465 rmem = &ring->ring_mem; 3466 rmem->nr_pages = bp->cp_nr_pages; 3467 rmem->page_size = HW_CMPD_RING_SIZE; 3468 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3469 rmem->dma_arr = cpr->cp_desc_mapping; 3470 rmem->vmem_size = 0; 3471 3472 rxr = bnapi->rx_ring; 3473 if (!rxr) 3474 goto skip_rx; 3475 3476 ring = &rxr->rx_ring_struct; 3477 rmem = &ring->ring_mem; 3478 rmem->nr_pages = bp->rx_nr_pages; 3479 rmem->page_size = HW_RXBD_RING_SIZE; 3480 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3481 rmem->dma_arr = rxr->rx_desc_mapping; 3482 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3483 rmem->vmem = (void **)&rxr->rx_buf_ring; 3484 3485 ring = &rxr->rx_agg_ring_struct; 3486 rmem = &ring->ring_mem; 3487 rmem->nr_pages = bp->rx_agg_nr_pages; 3488 rmem->page_size = HW_RXBD_RING_SIZE; 3489 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3490 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3491 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3492 rmem->vmem = (void **)&rxr->rx_agg_ring; 3493 3494 skip_rx: 3495 txr = bnapi->tx_ring; 3496 if (!txr) 3497 continue; 3498 3499 ring = &txr->tx_ring_struct; 3500 rmem = &ring->ring_mem; 3501 rmem->nr_pages = bp->tx_nr_pages; 3502 rmem->page_size = HW_RXBD_RING_SIZE; 3503 rmem->pg_arr = (void **)txr->tx_desc_ring; 3504 rmem->dma_arr = txr->tx_desc_mapping; 3505 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3506 rmem->vmem = (void **)&txr->tx_buf_ring; 3507 } 3508 } 3509 3510 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3511 { 3512 int i; 3513 u32 prod; 3514 struct rx_bd **rx_buf_ring; 3515 3516 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3517 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3518 int j; 3519 struct rx_bd *rxbd; 3520 3521 rxbd = rx_buf_ring[i]; 3522 if (!rxbd) 3523 continue; 3524 3525 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3526 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3527 rxbd->rx_bd_opaque = prod; 3528 } 3529 } 3530 } 3531 3532 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3533 { 3534 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3535 struct net_device *dev = bp->dev; 3536 u32 prod; 3537 int i; 3538 3539 prod = rxr->rx_prod; 3540 for (i = 0; i < bp->rx_ring_size; i++) { 3541 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3542 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3543 ring_nr, i, bp->rx_ring_size); 3544 break; 3545 } 3546 prod = NEXT_RX(prod); 3547 } 3548 rxr->rx_prod = prod; 3549 3550 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3551 return 0; 3552 3553 prod = rxr->rx_agg_prod; 3554 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3555 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3556 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3557 ring_nr, i, bp->rx_ring_size); 3558 break; 3559 } 3560 prod = NEXT_RX_AGG(prod); 3561 } 3562 rxr->rx_agg_prod = prod; 3563 3564 if (rxr->rx_tpa) { 3565 dma_addr_t mapping; 3566 u8 *data; 3567 3568 for (i = 0; i < bp->max_tpa; i++) { 3569 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 3570 if (!data) 3571 return -ENOMEM; 3572 3573 rxr->rx_tpa[i].data = data; 3574 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3575 rxr->rx_tpa[i].mapping = mapping; 3576 } 3577 } 3578 return 0; 3579 } 3580 3581 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3582 { 3583 struct bnxt_rx_ring_info *rxr; 3584 struct bnxt_ring_struct *ring; 3585 u32 type; 3586 3587 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3588 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3589 3590 if (NET_IP_ALIGN == 2) 3591 type |= RX_BD_FLAGS_SOP; 3592 3593 rxr = &bp->rx_ring[ring_nr]; 3594 ring = &rxr->rx_ring_struct; 3595 bnxt_init_rxbd_pages(ring, type); 3596 3597 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3598 bpf_prog_add(bp->xdp_prog, 1); 3599 rxr->xdp_prog = bp->xdp_prog; 3600 } 3601 ring->fw_ring_id = INVALID_HW_RING_ID; 3602 3603 ring = &rxr->rx_agg_ring_struct; 3604 ring->fw_ring_id = INVALID_HW_RING_ID; 3605 3606 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3607 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3608 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3609 3610 bnxt_init_rxbd_pages(ring, type); 3611 } 3612 3613 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3614 } 3615 3616 static void bnxt_init_cp_rings(struct bnxt *bp) 3617 { 3618 int i, j; 3619 3620 for (i = 0; i < bp->cp_nr_rings; i++) { 3621 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3622 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3623 3624 ring->fw_ring_id = INVALID_HW_RING_ID; 3625 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3626 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3627 for (j = 0; j < 2; j++) { 3628 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3629 3630 if (!cpr2) 3631 continue; 3632 3633 ring = &cpr2->cp_ring_struct; 3634 ring->fw_ring_id = INVALID_HW_RING_ID; 3635 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3636 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3637 } 3638 } 3639 } 3640 3641 static int bnxt_init_rx_rings(struct bnxt *bp) 3642 { 3643 int i, rc = 0; 3644 3645 if (BNXT_RX_PAGE_MODE(bp)) { 3646 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3647 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3648 } else { 3649 bp->rx_offset = BNXT_RX_OFFSET; 3650 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3651 } 3652 3653 for (i = 0; i < bp->rx_nr_rings; i++) { 3654 rc = bnxt_init_one_rx_ring(bp, i); 3655 if (rc) 3656 break; 3657 } 3658 3659 return rc; 3660 } 3661 3662 static int bnxt_init_tx_rings(struct bnxt *bp) 3663 { 3664 u16 i; 3665 3666 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3667 BNXT_MIN_TX_DESC_CNT); 3668 3669 for (i = 0; i < bp->tx_nr_rings; i++) { 3670 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3671 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3672 3673 ring->fw_ring_id = INVALID_HW_RING_ID; 3674 } 3675 3676 return 0; 3677 } 3678 3679 static void bnxt_free_ring_grps(struct bnxt *bp) 3680 { 3681 kfree(bp->grp_info); 3682 bp->grp_info = NULL; 3683 } 3684 3685 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3686 { 3687 int i; 3688 3689 if (irq_re_init) { 3690 bp->grp_info = kcalloc(bp->cp_nr_rings, 3691 sizeof(struct bnxt_ring_grp_info), 3692 GFP_KERNEL); 3693 if (!bp->grp_info) 3694 return -ENOMEM; 3695 } 3696 for (i = 0; i < bp->cp_nr_rings; i++) { 3697 if (irq_re_init) 3698 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3699 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3700 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3701 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3702 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3703 } 3704 return 0; 3705 } 3706 3707 static void bnxt_free_vnics(struct bnxt *bp) 3708 { 3709 kfree(bp->vnic_info); 3710 bp->vnic_info = NULL; 3711 bp->nr_vnics = 0; 3712 } 3713 3714 static int bnxt_alloc_vnics(struct bnxt *bp) 3715 { 3716 int num_vnics = 1; 3717 3718 #ifdef CONFIG_RFS_ACCEL 3719 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3720 num_vnics += bp->rx_nr_rings; 3721 #endif 3722 3723 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3724 num_vnics++; 3725 3726 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3727 GFP_KERNEL); 3728 if (!bp->vnic_info) 3729 return -ENOMEM; 3730 3731 bp->nr_vnics = num_vnics; 3732 return 0; 3733 } 3734 3735 static void bnxt_init_vnics(struct bnxt *bp) 3736 { 3737 int i; 3738 3739 for (i = 0; i < bp->nr_vnics; i++) { 3740 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3741 int j; 3742 3743 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3744 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3745 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3746 3747 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3748 3749 if (bp->vnic_info[i].rss_hash_key) { 3750 if (i == 0) 3751 prandom_bytes(vnic->rss_hash_key, 3752 HW_HASH_KEY_SIZE); 3753 else 3754 memcpy(vnic->rss_hash_key, 3755 bp->vnic_info[0].rss_hash_key, 3756 HW_HASH_KEY_SIZE); 3757 } 3758 } 3759 } 3760 3761 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3762 { 3763 int pages; 3764 3765 pages = ring_size / desc_per_pg; 3766 3767 if (!pages) 3768 return 1; 3769 3770 pages++; 3771 3772 while (pages & (pages - 1)) 3773 pages++; 3774 3775 return pages; 3776 } 3777 3778 void bnxt_set_tpa_flags(struct bnxt *bp) 3779 { 3780 bp->flags &= ~BNXT_FLAG_TPA; 3781 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3782 return; 3783 if (bp->dev->features & NETIF_F_LRO) 3784 bp->flags |= BNXT_FLAG_LRO; 3785 else if (bp->dev->features & NETIF_F_GRO_HW) 3786 bp->flags |= BNXT_FLAG_GRO; 3787 } 3788 3789 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3790 * be set on entry. 3791 */ 3792 void bnxt_set_ring_params(struct bnxt *bp) 3793 { 3794 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3795 u32 agg_factor = 0, agg_ring_size = 0; 3796 3797 /* 8 for CRC and VLAN */ 3798 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3799 3800 rx_space = rx_size + NET_SKB_PAD + 3801 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3802 3803 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3804 ring_size = bp->rx_ring_size; 3805 bp->rx_agg_ring_size = 0; 3806 bp->rx_agg_nr_pages = 0; 3807 3808 if (bp->flags & BNXT_FLAG_TPA) 3809 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3810 3811 bp->flags &= ~BNXT_FLAG_JUMBO; 3812 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3813 u32 jumbo_factor; 3814 3815 bp->flags |= BNXT_FLAG_JUMBO; 3816 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3817 if (jumbo_factor > agg_factor) 3818 agg_factor = jumbo_factor; 3819 } 3820 if (agg_factor) { 3821 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3822 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3823 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3824 bp->rx_ring_size, ring_size); 3825 bp->rx_ring_size = ring_size; 3826 } 3827 agg_ring_size = ring_size * agg_factor; 3828 3829 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3830 RX_DESC_CNT); 3831 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3832 u32 tmp = agg_ring_size; 3833 3834 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3835 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3836 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3837 tmp, agg_ring_size); 3838 } 3839 bp->rx_agg_ring_size = agg_ring_size; 3840 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3841 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3842 rx_space = rx_size + NET_SKB_PAD + 3843 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3844 } 3845 3846 bp->rx_buf_use_size = rx_size; 3847 bp->rx_buf_size = rx_space; 3848 3849 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3850 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3851 3852 ring_size = bp->tx_ring_size; 3853 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3854 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3855 3856 max_rx_cmpl = bp->rx_ring_size; 3857 /* MAX TPA needs to be added because TPA_START completions are 3858 * immediately recycled, so the TPA completions are not bound by 3859 * the RX ring size. 3860 */ 3861 if (bp->flags & BNXT_FLAG_TPA) 3862 max_rx_cmpl += bp->max_tpa; 3863 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3864 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3865 bp->cp_ring_size = ring_size; 3866 3867 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3868 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3869 bp->cp_nr_pages = MAX_CP_PAGES; 3870 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3871 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3872 ring_size, bp->cp_ring_size); 3873 } 3874 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3875 bp->cp_ring_mask = bp->cp_bit - 1; 3876 } 3877 3878 /* Changing allocation mode of RX rings. 3879 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3880 */ 3881 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3882 { 3883 if (page_mode) { 3884 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3885 return -EOPNOTSUPP; 3886 bp->dev->max_mtu = 3887 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3888 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3889 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3890 bp->rx_dir = DMA_BIDIRECTIONAL; 3891 bp->rx_skb_func = bnxt_rx_page_skb; 3892 /* Disable LRO or GRO_HW */ 3893 netdev_update_features(bp->dev); 3894 } else { 3895 bp->dev->max_mtu = bp->max_mtu; 3896 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3897 bp->rx_dir = DMA_FROM_DEVICE; 3898 bp->rx_skb_func = bnxt_rx_skb; 3899 } 3900 return 0; 3901 } 3902 3903 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3904 { 3905 int i; 3906 struct bnxt_vnic_info *vnic; 3907 struct pci_dev *pdev = bp->pdev; 3908 3909 if (!bp->vnic_info) 3910 return; 3911 3912 for (i = 0; i < bp->nr_vnics; i++) { 3913 vnic = &bp->vnic_info[i]; 3914 3915 kfree(vnic->fw_grp_ids); 3916 vnic->fw_grp_ids = NULL; 3917 3918 kfree(vnic->uc_list); 3919 vnic->uc_list = NULL; 3920 3921 if (vnic->mc_list) { 3922 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3923 vnic->mc_list, vnic->mc_list_mapping); 3924 vnic->mc_list = NULL; 3925 } 3926 3927 if (vnic->rss_table) { 3928 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3929 vnic->rss_table, 3930 vnic->rss_table_dma_addr); 3931 vnic->rss_table = NULL; 3932 } 3933 3934 vnic->rss_hash_key = NULL; 3935 vnic->flags = 0; 3936 } 3937 } 3938 3939 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3940 { 3941 int i, rc = 0, size; 3942 struct bnxt_vnic_info *vnic; 3943 struct pci_dev *pdev = bp->pdev; 3944 int max_rings; 3945 3946 for (i = 0; i < bp->nr_vnics; i++) { 3947 vnic = &bp->vnic_info[i]; 3948 3949 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3950 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3951 3952 if (mem_size > 0) { 3953 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3954 if (!vnic->uc_list) { 3955 rc = -ENOMEM; 3956 goto out; 3957 } 3958 } 3959 } 3960 3961 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3962 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3963 vnic->mc_list = 3964 dma_alloc_coherent(&pdev->dev, 3965 vnic->mc_list_size, 3966 &vnic->mc_list_mapping, 3967 GFP_KERNEL); 3968 if (!vnic->mc_list) { 3969 rc = -ENOMEM; 3970 goto out; 3971 } 3972 } 3973 3974 if (bp->flags & BNXT_FLAG_CHIP_P5) 3975 goto vnic_skip_grps; 3976 3977 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3978 max_rings = bp->rx_nr_rings; 3979 else 3980 max_rings = 1; 3981 3982 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3983 if (!vnic->fw_grp_ids) { 3984 rc = -ENOMEM; 3985 goto out; 3986 } 3987 vnic_skip_grps: 3988 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3989 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3990 continue; 3991 3992 /* Allocate rss table and hash key */ 3993 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3994 if (bp->flags & BNXT_FLAG_CHIP_P5) 3995 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3996 3997 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3998 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3999 vnic->rss_table_size, 4000 &vnic->rss_table_dma_addr, 4001 GFP_KERNEL); 4002 if (!vnic->rss_table) { 4003 rc = -ENOMEM; 4004 goto out; 4005 } 4006 4007 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4008 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4009 } 4010 return 0; 4011 4012 out: 4013 return rc; 4014 } 4015 4016 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4017 { 4018 struct bnxt_hwrm_wait_token *token; 4019 4020 dma_pool_destroy(bp->hwrm_dma_pool); 4021 bp->hwrm_dma_pool = NULL; 4022 4023 rcu_read_lock(); 4024 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4025 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4026 rcu_read_unlock(); 4027 } 4028 4029 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4030 { 4031 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4032 BNXT_HWRM_DMA_SIZE, 4033 BNXT_HWRM_DMA_ALIGN, 0); 4034 if (!bp->hwrm_dma_pool) 4035 return -ENOMEM; 4036 4037 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4038 4039 return 0; 4040 } 4041 4042 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4043 { 4044 kfree(stats->hw_masks); 4045 stats->hw_masks = NULL; 4046 kfree(stats->sw_stats); 4047 stats->sw_stats = NULL; 4048 if (stats->hw_stats) { 4049 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4050 stats->hw_stats_map); 4051 stats->hw_stats = NULL; 4052 } 4053 } 4054 4055 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4056 bool alloc_masks) 4057 { 4058 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4059 &stats->hw_stats_map, GFP_KERNEL); 4060 if (!stats->hw_stats) 4061 return -ENOMEM; 4062 4063 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4064 if (!stats->sw_stats) 4065 goto stats_mem_err; 4066 4067 if (alloc_masks) { 4068 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4069 if (!stats->hw_masks) 4070 goto stats_mem_err; 4071 } 4072 return 0; 4073 4074 stats_mem_err: 4075 bnxt_free_stats_mem(bp, stats); 4076 return -ENOMEM; 4077 } 4078 4079 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4080 { 4081 int i; 4082 4083 for (i = 0; i < count; i++) 4084 mask_arr[i] = mask; 4085 } 4086 4087 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4088 { 4089 int i; 4090 4091 for (i = 0; i < count; i++) 4092 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4093 } 4094 4095 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4096 struct bnxt_stats_mem *stats) 4097 { 4098 struct hwrm_func_qstats_ext_output *resp; 4099 struct hwrm_func_qstats_ext_input *req; 4100 __le64 *hw_masks; 4101 int rc; 4102 4103 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4104 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4105 return -EOPNOTSUPP; 4106 4107 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4108 if (rc) 4109 return rc; 4110 4111 req->fid = cpu_to_le16(0xffff); 4112 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4113 4114 resp = hwrm_req_hold(bp, req); 4115 rc = hwrm_req_send(bp, req); 4116 if (!rc) { 4117 hw_masks = &resp->rx_ucast_pkts; 4118 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4119 } 4120 hwrm_req_drop(bp, req); 4121 return rc; 4122 } 4123 4124 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4125 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4126 4127 static void bnxt_init_stats(struct bnxt *bp) 4128 { 4129 struct bnxt_napi *bnapi = bp->bnapi[0]; 4130 struct bnxt_cp_ring_info *cpr; 4131 struct bnxt_stats_mem *stats; 4132 __le64 *rx_stats, *tx_stats; 4133 int rc, rx_count, tx_count; 4134 u64 *rx_masks, *tx_masks; 4135 u64 mask; 4136 u8 flags; 4137 4138 cpr = &bnapi->cp_ring; 4139 stats = &cpr->stats; 4140 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4141 if (rc) { 4142 if (bp->flags & BNXT_FLAG_CHIP_P5) 4143 mask = (1ULL << 48) - 1; 4144 else 4145 mask = -1ULL; 4146 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4147 } 4148 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4149 stats = &bp->port_stats; 4150 rx_stats = stats->hw_stats; 4151 rx_masks = stats->hw_masks; 4152 rx_count = sizeof(struct rx_port_stats) / 8; 4153 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4154 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4155 tx_count = sizeof(struct tx_port_stats) / 8; 4156 4157 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4158 rc = bnxt_hwrm_port_qstats(bp, flags); 4159 if (rc) { 4160 mask = (1ULL << 40) - 1; 4161 4162 bnxt_fill_masks(rx_masks, mask, rx_count); 4163 bnxt_fill_masks(tx_masks, mask, tx_count); 4164 } else { 4165 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4166 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4167 bnxt_hwrm_port_qstats(bp, 0); 4168 } 4169 } 4170 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4171 stats = &bp->rx_port_stats_ext; 4172 rx_stats = stats->hw_stats; 4173 rx_masks = stats->hw_masks; 4174 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4175 stats = &bp->tx_port_stats_ext; 4176 tx_stats = stats->hw_stats; 4177 tx_masks = stats->hw_masks; 4178 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4179 4180 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4181 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4182 if (rc) { 4183 mask = (1ULL << 40) - 1; 4184 4185 bnxt_fill_masks(rx_masks, mask, rx_count); 4186 if (tx_stats) 4187 bnxt_fill_masks(tx_masks, mask, tx_count); 4188 } else { 4189 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4190 if (tx_stats) 4191 bnxt_copy_hw_masks(tx_masks, tx_stats, 4192 tx_count); 4193 bnxt_hwrm_port_qstats_ext(bp, 0); 4194 } 4195 } 4196 } 4197 4198 static void bnxt_free_port_stats(struct bnxt *bp) 4199 { 4200 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4201 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4202 4203 bnxt_free_stats_mem(bp, &bp->port_stats); 4204 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4205 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4206 } 4207 4208 static void bnxt_free_ring_stats(struct bnxt *bp) 4209 { 4210 int i; 4211 4212 if (!bp->bnapi) 4213 return; 4214 4215 for (i = 0; i < bp->cp_nr_rings; i++) { 4216 struct bnxt_napi *bnapi = bp->bnapi[i]; 4217 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4218 4219 bnxt_free_stats_mem(bp, &cpr->stats); 4220 } 4221 } 4222 4223 static int bnxt_alloc_stats(struct bnxt *bp) 4224 { 4225 u32 size, i; 4226 int rc; 4227 4228 size = bp->hw_ring_stats_size; 4229 4230 for (i = 0; i < bp->cp_nr_rings; i++) { 4231 struct bnxt_napi *bnapi = bp->bnapi[i]; 4232 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4233 4234 cpr->stats.len = size; 4235 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4236 if (rc) 4237 return rc; 4238 4239 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4240 } 4241 4242 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4243 return 0; 4244 4245 if (bp->port_stats.hw_stats) 4246 goto alloc_ext_stats; 4247 4248 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4249 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4250 if (rc) 4251 return rc; 4252 4253 bp->flags |= BNXT_FLAG_PORT_STATS; 4254 4255 alloc_ext_stats: 4256 /* Display extended statistics only if FW supports it */ 4257 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4258 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4259 return 0; 4260 4261 if (bp->rx_port_stats_ext.hw_stats) 4262 goto alloc_tx_ext_stats; 4263 4264 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4265 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4266 /* Extended stats are optional */ 4267 if (rc) 4268 return 0; 4269 4270 alloc_tx_ext_stats: 4271 if (bp->tx_port_stats_ext.hw_stats) 4272 return 0; 4273 4274 if (bp->hwrm_spec_code >= 0x10902 || 4275 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4276 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4277 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4278 /* Extended stats are optional */ 4279 if (rc) 4280 return 0; 4281 } 4282 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4283 return 0; 4284 } 4285 4286 static void bnxt_clear_ring_indices(struct bnxt *bp) 4287 { 4288 int i; 4289 4290 if (!bp->bnapi) 4291 return; 4292 4293 for (i = 0; i < bp->cp_nr_rings; i++) { 4294 struct bnxt_napi *bnapi = bp->bnapi[i]; 4295 struct bnxt_cp_ring_info *cpr; 4296 struct bnxt_rx_ring_info *rxr; 4297 struct bnxt_tx_ring_info *txr; 4298 4299 if (!bnapi) 4300 continue; 4301 4302 cpr = &bnapi->cp_ring; 4303 cpr->cp_raw_cons = 0; 4304 4305 txr = bnapi->tx_ring; 4306 if (txr) { 4307 txr->tx_prod = 0; 4308 txr->tx_cons = 0; 4309 } 4310 4311 rxr = bnapi->rx_ring; 4312 if (rxr) { 4313 rxr->rx_prod = 0; 4314 rxr->rx_agg_prod = 0; 4315 rxr->rx_sw_agg_prod = 0; 4316 rxr->rx_next_cons = 0; 4317 } 4318 } 4319 } 4320 4321 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4322 { 4323 #ifdef CONFIG_RFS_ACCEL 4324 int i; 4325 4326 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4327 * safe to delete the hash table. 4328 */ 4329 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4330 struct hlist_head *head; 4331 struct hlist_node *tmp; 4332 struct bnxt_ntuple_filter *fltr; 4333 4334 head = &bp->ntp_fltr_hash_tbl[i]; 4335 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4336 hlist_del(&fltr->hash); 4337 kfree(fltr); 4338 } 4339 } 4340 if (irq_reinit) { 4341 kfree(bp->ntp_fltr_bmap); 4342 bp->ntp_fltr_bmap = NULL; 4343 } 4344 bp->ntp_fltr_count = 0; 4345 #endif 4346 } 4347 4348 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4349 { 4350 #ifdef CONFIG_RFS_ACCEL 4351 int i, rc = 0; 4352 4353 if (!(bp->flags & BNXT_FLAG_RFS)) 4354 return 0; 4355 4356 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4357 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4358 4359 bp->ntp_fltr_count = 0; 4360 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4361 sizeof(long), 4362 GFP_KERNEL); 4363 4364 if (!bp->ntp_fltr_bmap) 4365 rc = -ENOMEM; 4366 4367 return rc; 4368 #else 4369 return 0; 4370 #endif 4371 } 4372 4373 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4374 { 4375 bnxt_free_vnic_attributes(bp); 4376 bnxt_free_tx_rings(bp); 4377 bnxt_free_rx_rings(bp); 4378 bnxt_free_cp_rings(bp); 4379 bnxt_free_all_cp_arrays(bp); 4380 bnxt_free_ntp_fltrs(bp, irq_re_init); 4381 if (irq_re_init) { 4382 bnxt_free_ring_stats(bp); 4383 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4384 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4385 bnxt_free_port_stats(bp); 4386 bnxt_free_ring_grps(bp); 4387 bnxt_free_vnics(bp); 4388 kfree(bp->tx_ring_map); 4389 bp->tx_ring_map = NULL; 4390 kfree(bp->tx_ring); 4391 bp->tx_ring = NULL; 4392 kfree(bp->rx_ring); 4393 bp->rx_ring = NULL; 4394 kfree(bp->bnapi); 4395 bp->bnapi = NULL; 4396 } else { 4397 bnxt_clear_ring_indices(bp); 4398 } 4399 } 4400 4401 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4402 { 4403 int i, j, rc, size, arr_size; 4404 void *bnapi; 4405 4406 if (irq_re_init) { 4407 /* Allocate bnapi mem pointer array and mem block for 4408 * all queues 4409 */ 4410 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4411 bp->cp_nr_rings); 4412 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4413 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4414 if (!bnapi) 4415 return -ENOMEM; 4416 4417 bp->bnapi = bnapi; 4418 bnapi += arr_size; 4419 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4420 bp->bnapi[i] = bnapi; 4421 bp->bnapi[i]->index = i; 4422 bp->bnapi[i]->bp = bp; 4423 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4424 struct bnxt_cp_ring_info *cpr = 4425 &bp->bnapi[i]->cp_ring; 4426 4427 cpr->cp_ring_struct.ring_mem.flags = 4428 BNXT_RMEM_RING_PTE_FLAG; 4429 } 4430 } 4431 4432 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4433 sizeof(struct bnxt_rx_ring_info), 4434 GFP_KERNEL); 4435 if (!bp->rx_ring) 4436 return -ENOMEM; 4437 4438 for (i = 0; i < bp->rx_nr_rings; i++) { 4439 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4440 4441 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4442 rxr->rx_ring_struct.ring_mem.flags = 4443 BNXT_RMEM_RING_PTE_FLAG; 4444 rxr->rx_agg_ring_struct.ring_mem.flags = 4445 BNXT_RMEM_RING_PTE_FLAG; 4446 } 4447 rxr->bnapi = bp->bnapi[i]; 4448 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4449 } 4450 4451 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4452 sizeof(struct bnxt_tx_ring_info), 4453 GFP_KERNEL); 4454 if (!bp->tx_ring) 4455 return -ENOMEM; 4456 4457 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4458 GFP_KERNEL); 4459 4460 if (!bp->tx_ring_map) 4461 return -ENOMEM; 4462 4463 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4464 j = 0; 4465 else 4466 j = bp->rx_nr_rings; 4467 4468 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4469 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4470 4471 if (bp->flags & BNXT_FLAG_CHIP_P5) 4472 txr->tx_ring_struct.ring_mem.flags = 4473 BNXT_RMEM_RING_PTE_FLAG; 4474 txr->bnapi = bp->bnapi[j]; 4475 bp->bnapi[j]->tx_ring = txr; 4476 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4477 if (i >= bp->tx_nr_rings_xdp) { 4478 txr->txq_index = i - bp->tx_nr_rings_xdp; 4479 bp->bnapi[j]->tx_int = bnxt_tx_int; 4480 } else { 4481 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4482 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4483 } 4484 } 4485 4486 rc = bnxt_alloc_stats(bp); 4487 if (rc) 4488 goto alloc_mem_err; 4489 bnxt_init_stats(bp); 4490 4491 rc = bnxt_alloc_ntp_fltrs(bp); 4492 if (rc) 4493 goto alloc_mem_err; 4494 4495 rc = bnxt_alloc_vnics(bp); 4496 if (rc) 4497 goto alloc_mem_err; 4498 } 4499 4500 rc = bnxt_alloc_all_cp_arrays(bp); 4501 if (rc) 4502 goto alloc_mem_err; 4503 4504 bnxt_init_ring_struct(bp); 4505 4506 rc = bnxt_alloc_rx_rings(bp); 4507 if (rc) 4508 goto alloc_mem_err; 4509 4510 rc = bnxt_alloc_tx_rings(bp); 4511 if (rc) 4512 goto alloc_mem_err; 4513 4514 rc = bnxt_alloc_cp_rings(bp); 4515 if (rc) 4516 goto alloc_mem_err; 4517 4518 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4519 BNXT_VNIC_UCAST_FLAG; 4520 rc = bnxt_alloc_vnic_attributes(bp); 4521 if (rc) 4522 goto alloc_mem_err; 4523 return 0; 4524 4525 alloc_mem_err: 4526 bnxt_free_mem(bp, true); 4527 return rc; 4528 } 4529 4530 static void bnxt_disable_int(struct bnxt *bp) 4531 { 4532 int i; 4533 4534 if (!bp->bnapi) 4535 return; 4536 4537 for (i = 0; i < bp->cp_nr_rings; i++) { 4538 struct bnxt_napi *bnapi = bp->bnapi[i]; 4539 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4540 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4541 4542 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4543 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4544 } 4545 } 4546 4547 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4548 { 4549 struct bnxt_napi *bnapi = bp->bnapi[n]; 4550 struct bnxt_cp_ring_info *cpr; 4551 4552 cpr = &bnapi->cp_ring; 4553 return cpr->cp_ring_struct.map_idx; 4554 } 4555 4556 static void bnxt_disable_int_sync(struct bnxt *bp) 4557 { 4558 int i; 4559 4560 if (!bp->irq_tbl) 4561 return; 4562 4563 atomic_inc(&bp->intr_sem); 4564 4565 bnxt_disable_int(bp); 4566 for (i = 0; i < bp->cp_nr_rings; i++) { 4567 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4568 4569 synchronize_irq(bp->irq_tbl[map_idx].vector); 4570 } 4571 } 4572 4573 static void bnxt_enable_int(struct bnxt *bp) 4574 { 4575 int i; 4576 4577 atomic_set(&bp->intr_sem, 0); 4578 for (i = 0; i < bp->cp_nr_rings; i++) { 4579 struct bnxt_napi *bnapi = bp->bnapi[i]; 4580 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4581 4582 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4583 } 4584 } 4585 4586 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4587 bool async_only) 4588 { 4589 DECLARE_BITMAP(async_events_bmap, 256); 4590 u32 *events = (u32 *)async_events_bmap; 4591 struct hwrm_func_drv_rgtr_output *resp; 4592 struct hwrm_func_drv_rgtr_input *req; 4593 u32 flags; 4594 int rc, i; 4595 4596 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4597 if (rc) 4598 return rc; 4599 4600 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4601 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4602 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4603 4604 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4605 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4606 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4607 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4608 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4609 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4610 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4611 req->flags = cpu_to_le32(flags); 4612 req->ver_maj_8b = DRV_VER_MAJ; 4613 req->ver_min_8b = DRV_VER_MIN; 4614 req->ver_upd_8b = DRV_VER_UPD; 4615 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4616 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4617 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4618 4619 if (BNXT_PF(bp)) { 4620 u32 data[8]; 4621 int i; 4622 4623 memset(data, 0, sizeof(data)); 4624 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4625 u16 cmd = bnxt_vf_req_snif[i]; 4626 unsigned int bit, idx; 4627 4628 idx = cmd / 32; 4629 bit = cmd % 32; 4630 data[idx] |= 1 << bit; 4631 } 4632 4633 for (i = 0; i < 8; i++) 4634 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4635 4636 req->enables |= 4637 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4638 } 4639 4640 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4641 req->flags |= cpu_to_le32( 4642 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4643 4644 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4645 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4646 u16 event_id = bnxt_async_events_arr[i]; 4647 4648 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4649 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4650 continue; 4651 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4652 } 4653 if (bmap && bmap_size) { 4654 for (i = 0; i < bmap_size; i++) { 4655 if (test_bit(i, bmap)) 4656 __set_bit(i, async_events_bmap); 4657 } 4658 } 4659 for (i = 0; i < 8; i++) 4660 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4661 4662 if (async_only) 4663 req->enables = 4664 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4665 4666 resp = hwrm_req_hold(bp, req); 4667 rc = hwrm_req_send(bp, req); 4668 if (!rc) { 4669 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4670 if (resp->flags & 4671 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4672 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4673 } 4674 hwrm_req_drop(bp, req); 4675 return rc; 4676 } 4677 4678 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4679 { 4680 struct hwrm_func_drv_unrgtr_input *req; 4681 int rc; 4682 4683 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4684 return 0; 4685 4686 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4687 if (rc) 4688 return rc; 4689 return hwrm_req_send(bp, req); 4690 } 4691 4692 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4693 { 4694 struct hwrm_tunnel_dst_port_free_input *req; 4695 int rc; 4696 4697 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 4698 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 4699 return 0; 4700 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 4701 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 4702 return 0; 4703 4704 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4705 if (rc) 4706 return rc; 4707 4708 req->tunnel_type = tunnel_type; 4709 4710 switch (tunnel_type) { 4711 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4712 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4713 bp->vxlan_port = 0; 4714 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4715 break; 4716 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4717 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4718 bp->nge_port = 0; 4719 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4720 break; 4721 default: 4722 break; 4723 } 4724 4725 rc = hwrm_req_send(bp, req); 4726 if (rc) 4727 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4728 rc); 4729 return rc; 4730 } 4731 4732 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4733 u8 tunnel_type) 4734 { 4735 struct hwrm_tunnel_dst_port_alloc_output *resp; 4736 struct hwrm_tunnel_dst_port_alloc_input *req; 4737 int rc; 4738 4739 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4740 if (rc) 4741 return rc; 4742 4743 req->tunnel_type = tunnel_type; 4744 req->tunnel_dst_port_val = port; 4745 4746 resp = hwrm_req_hold(bp, req); 4747 rc = hwrm_req_send(bp, req); 4748 if (rc) { 4749 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4750 rc); 4751 goto err_out; 4752 } 4753 4754 switch (tunnel_type) { 4755 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4756 bp->vxlan_port = port; 4757 bp->vxlan_fw_dst_port_id = 4758 le16_to_cpu(resp->tunnel_dst_port_id); 4759 break; 4760 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4761 bp->nge_port = port; 4762 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4763 break; 4764 default: 4765 break; 4766 } 4767 4768 err_out: 4769 hwrm_req_drop(bp, req); 4770 return rc; 4771 } 4772 4773 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4774 { 4775 struct hwrm_cfa_l2_set_rx_mask_input *req; 4776 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4777 int rc; 4778 4779 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 4780 if (rc) 4781 return rc; 4782 4783 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4784 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 4785 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4786 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4787 } 4788 req->mask = cpu_to_le32(vnic->rx_mask); 4789 return hwrm_req_send_silent(bp, req); 4790 } 4791 4792 #ifdef CONFIG_RFS_ACCEL 4793 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4794 struct bnxt_ntuple_filter *fltr) 4795 { 4796 struct hwrm_cfa_ntuple_filter_free_input *req; 4797 int rc; 4798 4799 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 4800 if (rc) 4801 return rc; 4802 4803 req->ntuple_filter_id = fltr->filter_id; 4804 return hwrm_req_send(bp, req); 4805 } 4806 4807 #define BNXT_NTP_FLTR_FLAGS \ 4808 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4809 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4810 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4811 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4812 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4813 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4814 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4815 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4816 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4817 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4818 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4819 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4820 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4821 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4822 4823 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4824 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4825 4826 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4827 struct bnxt_ntuple_filter *fltr) 4828 { 4829 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4830 struct hwrm_cfa_ntuple_filter_alloc_input *req; 4831 struct flow_keys *keys = &fltr->fkeys; 4832 struct bnxt_vnic_info *vnic; 4833 u32 flags = 0; 4834 int rc; 4835 4836 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 4837 if (rc) 4838 return rc; 4839 4840 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4841 4842 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4843 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4844 req->dst_id = cpu_to_le16(fltr->rxq); 4845 } else { 4846 vnic = &bp->vnic_info[fltr->rxq + 1]; 4847 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 4848 } 4849 req->flags = cpu_to_le32(flags); 4850 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4851 4852 req->ethertype = htons(ETH_P_IP); 4853 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4854 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4855 req->ip_protocol = keys->basic.ip_proto; 4856 4857 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4858 int i; 4859 4860 req->ethertype = htons(ETH_P_IPV6); 4861 req->ip_addr_type = 4862 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4863 *(struct in6_addr *)&req->src_ipaddr[0] = 4864 keys->addrs.v6addrs.src; 4865 *(struct in6_addr *)&req->dst_ipaddr[0] = 4866 keys->addrs.v6addrs.dst; 4867 for (i = 0; i < 4; i++) { 4868 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4869 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4870 } 4871 } else { 4872 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 4873 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4874 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 4875 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4876 } 4877 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 4878 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 4879 req->tunnel_type = 4880 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 4881 } 4882 4883 req->src_port = keys->ports.src; 4884 req->src_port_mask = cpu_to_be16(0xffff); 4885 req->dst_port = keys->ports.dst; 4886 req->dst_port_mask = cpu_to_be16(0xffff); 4887 4888 resp = hwrm_req_hold(bp, req); 4889 rc = hwrm_req_send(bp, req); 4890 if (!rc) 4891 fltr->filter_id = resp->ntuple_filter_id; 4892 hwrm_req_drop(bp, req); 4893 return rc; 4894 } 4895 #endif 4896 4897 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 4898 const u8 *mac_addr) 4899 { 4900 struct hwrm_cfa_l2_filter_alloc_output *resp; 4901 struct hwrm_cfa_l2_filter_alloc_input *req; 4902 int rc; 4903 4904 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 4905 if (rc) 4906 return rc; 4907 4908 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 4909 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 4910 req->flags |= 4911 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 4912 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 4913 req->enables = 4914 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 4915 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 4916 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 4917 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 4918 req->l2_addr_mask[0] = 0xff; 4919 req->l2_addr_mask[1] = 0xff; 4920 req->l2_addr_mask[2] = 0xff; 4921 req->l2_addr_mask[3] = 0xff; 4922 req->l2_addr_mask[4] = 0xff; 4923 req->l2_addr_mask[5] = 0xff; 4924 4925 resp = hwrm_req_hold(bp, req); 4926 rc = hwrm_req_send(bp, req); 4927 if (!rc) 4928 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 4929 resp->l2_filter_id; 4930 hwrm_req_drop(bp, req); 4931 return rc; 4932 } 4933 4934 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 4935 { 4936 struct hwrm_cfa_l2_filter_free_input *req; 4937 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 4938 int rc; 4939 4940 /* Any associated ntuple filters will also be cleared by firmware. */ 4941 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 4942 if (rc) 4943 return rc; 4944 hwrm_req_hold(bp, req); 4945 for (i = 0; i < num_of_vnics; i++) { 4946 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4947 4948 for (j = 0; j < vnic->uc_filter_count; j++) { 4949 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 4950 4951 rc = hwrm_req_send(bp, req); 4952 } 4953 vnic->uc_filter_count = 0; 4954 } 4955 hwrm_req_drop(bp, req); 4956 return rc; 4957 } 4958 4959 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 4960 { 4961 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4962 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 4963 struct hwrm_vnic_tpa_cfg_input *req; 4964 int rc; 4965 4966 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 4967 return 0; 4968 4969 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 4970 if (rc) 4971 return rc; 4972 4973 if (tpa_flags) { 4974 u16 mss = bp->dev->mtu - 40; 4975 u32 nsegs, n, segs = 0, flags; 4976 4977 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 4978 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 4979 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 4980 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 4981 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 4982 if (tpa_flags & BNXT_FLAG_GRO) 4983 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 4984 4985 req->flags = cpu_to_le32(flags); 4986 4987 req->enables = 4988 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 4989 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 4990 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 4991 4992 /* Number of segs are log2 units, and first packet is not 4993 * included as part of this units. 4994 */ 4995 if (mss <= BNXT_RX_PAGE_SIZE) { 4996 n = BNXT_RX_PAGE_SIZE / mss; 4997 nsegs = (MAX_SKB_FRAGS - 1) * n; 4998 } else { 4999 n = mss / BNXT_RX_PAGE_SIZE; 5000 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5001 n++; 5002 nsegs = (MAX_SKB_FRAGS - n) / n; 5003 } 5004 5005 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5006 segs = MAX_TPA_SEGS_P5; 5007 max_aggs = bp->max_tpa; 5008 } else { 5009 segs = ilog2(nsegs); 5010 } 5011 req->max_agg_segs = cpu_to_le16(segs); 5012 req->max_aggs = cpu_to_le16(max_aggs); 5013 5014 req->min_agg_len = cpu_to_le32(512); 5015 } 5016 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5017 5018 return hwrm_req_send(bp, req); 5019 } 5020 5021 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5022 { 5023 struct bnxt_ring_grp_info *grp_info; 5024 5025 grp_info = &bp->grp_info[ring->grp_idx]; 5026 return grp_info->cp_fw_ring_id; 5027 } 5028 5029 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5030 { 5031 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5032 struct bnxt_napi *bnapi = rxr->bnapi; 5033 struct bnxt_cp_ring_info *cpr; 5034 5035 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5036 return cpr->cp_ring_struct.fw_ring_id; 5037 } else { 5038 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5039 } 5040 } 5041 5042 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5043 { 5044 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5045 struct bnxt_napi *bnapi = txr->bnapi; 5046 struct bnxt_cp_ring_info *cpr; 5047 5048 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5049 return cpr->cp_ring_struct.fw_ring_id; 5050 } else { 5051 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5052 } 5053 } 5054 5055 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5056 { 5057 int entries; 5058 5059 if (bp->flags & BNXT_FLAG_CHIP_P5) 5060 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5061 else 5062 entries = HW_HASH_INDEX_SIZE; 5063 5064 bp->rss_indir_tbl_entries = entries; 5065 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5066 GFP_KERNEL); 5067 if (!bp->rss_indir_tbl) 5068 return -ENOMEM; 5069 return 0; 5070 } 5071 5072 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5073 { 5074 u16 max_rings, max_entries, pad, i; 5075 5076 if (!bp->rx_nr_rings) 5077 return; 5078 5079 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5080 max_rings = bp->rx_nr_rings - 1; 5081 else 5082 max_rings = bp->rx_nr_rings; 5083 5084 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5085 5086 for (i = 0; i < max_entries; i++) 5087 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5088 5089 pad = bp->rss_indir_tbl_entries - max_entries; 5090 if (pad) 5091 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5092 } 5093 5094 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5095 { 5096 u16 i, tbl_size, max_ring = 0; 5097 5098 if (!bp->rss_indir_tbl) 5099 return 0; 5100 5101 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5102 for (i = 0; i < tbl_size; i++) 5103 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5104 return max_ring; 5105 } 5106 5107 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5108 { 5109 if (bp->flags & BNXT_FLAG_CHIP_P5) 5110 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5111 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5112 return 2; 5113 return 1; 5114 } 5115 5116 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5117 { 5118 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5119 u16 i, j; 5120 5121 /* Fill the RSS indirection table with ring group ids */ 5122 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5123 if (!no_rss) 5124 j = bp->rss_indir_tbl[i]; 5125 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5126 } 5127 } 5128 5129 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5130 struct bnxt_vnic_info *vnic) 5131 { 5132 __le16 *ring_tbl = vnic->rss_table; 5133 struct bnxt_rx_ring_info *rxr; 5134 u16 tbl_size, i; 5135 5136 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5137 5138 for (i = 0; i < tbl_size; i++) { 5139 u16 ring_id, j; 5140 5141 j = bp->rss_indir_tbl[i]; 5142 rxr = &bp->rx_ring[j]; 5143 5144 ring_id = rxr->rx_ring_struct.fw_ring_id; 5145 *ring_tbl++ = cpu_to_le16(ring_id); 5146 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5147 *ring_tbl++ = cpu_to_le16(ring_id); 5148 } 5149 } 5150 5151 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5152 { 5153 if (bp->flags & BNXT_FLAG_CHIP_P5) 5154 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5155 else 5156 __bnxt_fill_hw_rss_tbl(bp, vnic); 5157 } 5158 5159 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5160 { 5161 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5162 struct hwrm_vnic_rss_cfg_input *req; 5163 int rc; 5164 5165 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5166 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5167 return 0; 5168 5169 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5170 if (rc) 5171 return rc; 5172 5173 if (set_rss) { 5174 bnxt_fill_hw_rss_tbl(bp, vnic); 5175 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5176 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5177 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5178 req->hash_key_tbl_addr = 5179 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5180 } 5181 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5182 return hwrm_req_send(bp, req); 5183 } 5184 5185 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5186 { 5187 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5188 struct hwrm_vnic_rss_cfg_input *req; 5189 dma_addr_t ring_tbl_map; 5190 u32 i, nr_ctxs; 5191 int rc; 5192 5193 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5194 if (rc) 5195 return rc; 5196 5197 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5198 if (!set_rss) 5199 return hwrm_req_send(bp, req); 5200 5201 bnxt_fill_hw_rss_tbl(bp, vnic); 5202 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5203 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5204 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5205 ring_tbl_map = vnic->rss_table_dma_addr; 5206 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5207 5208 hwrm_req_hold(bp, req); 5209 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5210 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5211 req->ring_table_pair_index = i; 5212 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5213 rc = hwrm_req_send(bp, req); 5214 if (rc) 5215 goto exit; 5216 } 5217 5218 exit: 5219 hwrm_req_drop(bp, req); 5220 return rc; 5221 } 5222 5223 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5224 { 5225 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5226 struct hwrm_vnic_plcmodes_cfg_input *req; 5227 int rc; 5228 5229 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5230 if (rc) 5231 return rc; 5232 5233 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5234 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5235 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5236 req->enables = 5237 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5238 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5239 /* thresholds not implemented in firmware yet */ 5240 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5241 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5242 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5243 return hwrm_req_send(bp, req); 5244 } 5245 5246 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5247 u16 ctx_idx) 5248 { 5249 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5250 5251 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5252 return; 5253 5254 req->rss_cos_lb_ctx_id = 5255 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5256 5257 hwrm_req_send(bp, req); 5258 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5259 } 5260 5261 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5262 { 5263 int i, j; 5264 5265 for (i = 0; i < bp->nr_vnics; i++) { 5266 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5267 5268 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5269 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5270 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5271 } 5272 } 5273 bp->rsscos_nr_ctxs = 0; 5274 } 5275 5276 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5277 { 5278 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5279 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5280 int rc; 5281 5282 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5283 if (rc) 5284 return rc; 5285 5286 resp = hwrm_req_hold(bp, req); 5287 rc = hwrm_req_send(bp, req); 5288 if (!rc) 5289 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5290 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5291 hwrm_req_drop(bp, req); 5292 5293 return rc; 5294 } 5295 5296 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5297 { 5298 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5299 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5300 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5301 } 5302 5303 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5304 { 5305 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5306 struct hwrm_vnic_cfg_input *req; 5307 unsigned int ring = 0, grp_idx; 5308 u16 def_vlan = 0; 5309 int rc; 5310 5311 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5312 if (rc) 5313 return rc; 5314 5315 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5316 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5317 5318 req->default_rx_ring_id = 5319 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5320 req->default_cmpl_ring_id = 5321 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5322 req->enables = 5323 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5324 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5325 goto vnic_mru; 5326 } 5327 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5328 /* Only RSS support for now TBD: COS & LB */ 5329 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5330 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5331 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5332 VNIC_CFG_REQ_ENABLES_MRU); 5333 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5334 req->rss_rule = 5335 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5336 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5337 VNIC_CFG_REQ_ENABLES_MRU); 5338 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5339 } else { 5340 req->rss_rule = cpu_to_le16(0xffff); 5341 } 5342 5343 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5344 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5345 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5346 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5347 } else { 5348 req->cos_rule = cpu_to_le16(0xffff); 5349 } 5350 5351 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5352 ring = 0; 5353 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5354 ring = vnic_id - 1; 5355 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5356 ring = bp->rx_nr_rings - 1; 5357 5358 grp_idx = bp->rx_ring[ring].bnapi->index; 5359 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5360 req->lb_rule = cpu_to_le16(0xffff); 5361 vnic_mru: 5362 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5363 5364 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5365 #ifdef CONFIG_BNXT_SRIOV 5366 if (BNXT_VF(bp)) 5367 def_vlan = bp->vf.vlan; 5368 #endif 5369 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5370 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5371 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5372 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5373 5374 return hwrm_req_send(bp, req); 5375 } 5376 5377 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5378 { 5379 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5380 struct hwrm_vnic_free_input *req; 5381 5382 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5383 return; 5384 5385 req->vnic_id = 5386 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5387 5388 hwrm_req_send(bp, req); 5389 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5390 } 5391 } 5392 5393 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5394 { 5395 u16 i; 5396 5397 for (i = 0; i < bp->nr_vnics; i++) 5398 bnxt_hwrm_vnic_free_one(bp, i); 5399 } 5400 5401 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5402 unsigned int start_rx_ring_idx, 5403 unsigned int nr_rings) 5404 { 5405 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5406 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5407 struct hwrm_vnic_alloc_output *resp; 5408 struct hwrm_vnic_alloc_input *req; 5409 int rc; 5410 5411 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5412 if (rc) 5413 return rc; 5414 5415 if (bp->flags & BNXT_FLAG_CHIP_P5) 5416 goto vnic_no_ring_grps; 5417 5418 /* map ring groups to this vnic */ 5419 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5420 grp_idx = bp->rx_ring[i].bnapi->index; 5421 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5422 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5423 j, nr_rings); 5424 break; 5425 } 5426 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5427 } 5428 5429 vnic_no_ring_grps: 5430 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5431 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5432 if (vnic_id == 0) 5433 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5434 5435 resp = hwrm_req_hold(bp, req); 5436 rc = hwrm_req_send(bp, req); 5437 if (!rc) 5438 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5439 hwrm_req_drop(bp, req); 5440 return rc; 5441 } 5442 5443 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5444 { 5445 struct hwrm_vnic_qcaps_output *resp; 5446 struct hwrm_vnic_qcaps_input *req; 5447 int rc; 5448 5449 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5450 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5451 if (bp->hwrm_spec_code < 0x10600) 5452 return 0; 5453 5454 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5455 if (rc) 5456 return rc; 5457 5458 resp = hwrm_req_hold(bp, req); 5459 rc = hwrm_req_send(bp, req); 5460 if (!rc) { 5461 u32 flags = le32_to_cpu(resp->flags); 5462 5463 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5464 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5465 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5466 if (flags & 5467 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5468 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5469 5470 /* Older P5 fw before EXT_HW_STATS support did not set 5471 * VLAN_STRIP_CAP properly. 5472 */ 5473 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5474 (BNXT_CHIP_P5_THOR(bp) && 5475 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5476 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5477 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5478 if (bp->max_tpa_v2) { 5479 if (BNXT_CHIP_P5_THOR(bp)) 5480 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5481 else 5482 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5483 } 5484 } 5485 hwrm_req_drop(bp, req); 5486 return rc; 5487 } 5488 5489 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5490 { 5491 struct hwrm_ring_grp_alloc_output *resp; 5492 struct hwrm_ring_grp_alloc_input *req; 5493 int rc; 5494 u16 i; 5495 5496 if (bp->flags & BNXT_FLAG_CHIP_P5) 5497 return 0; 5498 5499 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5500 if (rc) 5501 return rc; 5502 5503 resp = hwrm_req_hold(bp, req); 5504 for (i = 0; i < bp->rx_nr_rings; i++) { 5505 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5506 5507 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5508 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5509 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5510 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5511 5512 rc = hwrm_req_send(bp, req); 5513 5514 if (rc) 5515 break; 5516 5517 bp->grp_info[grp_idx].fw_grp_id = 5518 le32_to_cpu(resp->ring_group_id); 5519 } 5520 hwrm_req_drop(bp, req); 5521 return rc; 5522 } 5523 5524 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5525 { 5526 struct hwrm_ring_grp_free_input *req; 5527 u16 i; 5528 5529 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5530 return; 5531 5532 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5533 return; 5534 5535 hwrm_req_hold(bp, req); 5536 for (i = 0; i < bp->cp_nr_rings; i++) { 5537 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5538 continue; 5539 req->ring_group_id = 5540 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5541 5542 hwrm_req_send(bp, req); 5543 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5544 } 5545 hwrm_req_drop(bp, req); 5546 } 5547 5548 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5549 struct bnxt_ring_struct *ring, 5550 u32 ring_type, u32 map_index) 5551 { 5552 struct hwrm_ring_alloc_output *resp; 5553 struct hwrm_ring_alloc_input *req; 5554 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5555 struct bnxt_ring_grp_info *grp_info; 5556 int rc, err = 0; 5557 u16 ring_id; 5558 5559 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5560 if (rc) 5561 goto exit; 5562 5563 req->enables = 0; 5564 if (rmem->nr_pages > 1) { 5565 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5566 /* Page size is in log2 units */ 5567 req->page_size = BNXT_PAGE_SHIFT; 5568 req->page_tbl_depth = 1; 5569 } else { 5570 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5571 } 5572 req->fbo = 0; 5573 /* Association of ring index with doorbell index and MSIX number */ 5574 req->logical_id = cpu_to_le16(map_index); 5575 5576 switch (ring_type) { 5577 case HWRM_RING_ALLOC_TX: { 5578 struct bnxt_tx_ring_info *txr; 5579 5580 txr = container_of(ring, struct bnxt_tx_ring_info, 5581 tx_ring_struct); 5582 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5583 /* Association of transmit ring with completion ring */ 5584 grp_info = &bp->grp_info[ring->grp_idx]; 5585 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5586 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5587 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5588 req->queue_id = cpu_to_le16(ring->queue_id); 5589 break; 5590 } 5591 case HWRM_RING_ALLOC_RX: 5592 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5593 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5594 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5595 u16 flags = 0; 5596 5597 /* Association of rx ring with stats context */ 5598 grp_info = &bp->grp_info[ring->grp_idx]; 5599 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5600 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5601 req->enables |= cpu_to_le32( 5602 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5603 if (NET_IP_ALIGN == 2) 5604 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5605 req->flags = cpu_to_le16(flags); 5606 } 5607 break; 5608 case HWRM_RING_ALLOC_AGG: 5609 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5610 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5611 /* Association of agg ring with rx ring */ 5612 grp_info = &bp->grp_info[ring->grp_idx]; 5613 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5614 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5615 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5616 req->enables |= cpu_to_le32( 5617 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5618 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5619 } else { 5620 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5621 } 5622 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5623 break; 5624 case HWRM_RING_ALLOC_CMPL: 5625 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5626 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5627 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5628 /* Association of cp ring with nq */ 5629 grp_info = &bp->grp_info[map_index]; 5630 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5631 req->cq_handle = cpu_to_le64(ring->handle); 5632 req->enables |= cpu_to_le32( 5633 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5634 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5635 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5636 } 5637 break; 5638 case HWRM_RING_ALLOC_NQ: 5639 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5640 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5641 if (bp->flags & BNXT_FLAG_USING_MSIX) 5642 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5643 break; 5644 default: 5645 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5646 ring_type); 5647 return -1; 5648 } 5649 5650 resp = hwrm_req_hold(bp, req); 5651 rc = hwrm_req_send(bp, req); 5652 err = le16_to_cpu(resp->error_code); 5653 ring_id = le16_to_cpu(resp->ring_id); 5654 hwrm_req_drop(bp, req); 5655 5656 exit: 5657 if (rc || err) { 5658 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5659 ring_type, rc, err); 5660 return -EIO; 5661 } 5662 ring->fw_ring_id = ring_id; 5663 return rc; 5664 } 5665 5666 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5667 { 5668 int rc; 5669 5670 if (BNXT_PF(bp)) { 5671 struct hwrm_func_cfg_input *req; 5672 5673 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 5674 if (rc) 5675 return rc; 5676 5677 req->fid = cpu_to_le16(0xffff); 5678 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5679 req->async_event_cr = cpu_to_le16(idx); 5680 return hwrm_req_send(bp, req); 5681 } else { 5682 struct hwrm_func_vf_cfg_input *req; 5683 5684 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5685 if (rc) 5686 return rc; 5687 5688 req->enables = 5689 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5690 req->async_event_cr = cpu_to_le16(idx); 5691 return hwrm_req_send(bp, req); 5692 } 5693 } 5694 5695 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5696 u32 map_idx, u32 xid) 5697 { 5698 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5699 if (BNXT_PF(bp)) 5700 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5701 else 5702 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5703 switch (ring_type) { 5704 case HWRM_RING_ALLOC_TX: 5705 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5706 break; 5707 case HWRM_RING_ALLOC_RX: 5708 case HWRM_RING_ALLOC_AGG: 5709 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5710 break; 5711 case HWRM_RING_ALLOC_CMPL: 5712 db->db_key64 = DBR_PATH_L2; 5713 break; 5714 case HWRM_RING_ALLOC_NQ: 5715 db->db_key64 = DBR_PATH_L2; 5716 break; 5717 } 5718 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5719 } else { 5720 db->doorbell = bp->bar1 + map_idx * 0x80; 5721 switch (ring_type) { 5722 case HWRM_RING_ALLOC_TX: 5723 db->db_key32 = DB_KEY_TX; 5724 break; 5725 case HWRM_RING_ALLOC_RX: 5726 case HWRM_RING_ALLOC_AGG: 5727 db->db_key32 = DB_KEY_RX; 5728 break; 5729 case HWRM_RING_ALLOC_CMPL: 5730 db->db_key32 = DB_KEY_CP; 5731 break; 5732 } 5733 } 5734 } 5735 5736 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5737 { 5738 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5739 int i, rc = 0; 5740 u32 type; 5741 5742 if (bp->flags & BNXT_FLAG_CHIP_P5) 5743 type = HWRM_RING_ALLOC_NQ; 5744 else 5745 type = HWRM_RING_ALLOC_CMPL; 5746 for (i = 0; i < bp->cp_nr_rings; i++) { 5747 struct bnxt_napi *bnapi = bp->bnapi[i]; 5748 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5749 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5750 u32 map_idx = ring->map_idx; 5751 unsigned int vector; 5752 5753 vector = bp->irq_tbl[map_idx].vector; 5754 disable_irq_nosync(vector); 5755 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5756 if (rc) { 5757 enable_irq(vector); 5758 goto err_out; 5759 } 5760 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5761 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5762 enable_irq(vector); 5763 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5764 5765 if (!i) { 5766 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5767 if (rc) 5768 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5769 } 5770 } 5771 5772 type = HWRM_RING_ALLOC_TX; 5773 for (i = 0; i < bp->tx_nr_rings; i++) { 5774 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5775 struct bnxt_ring_struct *ring; 5776 u32 map_idx; 5777 5778 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5779 struct bnxt_napi *bnapi = txr->bnapi; 5780 struct bnxt_cp_ring_info *cpr, *cpr2; 5781 u32 type2 = HWRM_RING_ALLOC_CMPL; 5782 5783 cpr = &bnapi->cp_ring; 5784 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5785 ring = &cpr2->cp_ring_struct; 5786 ring->handle = BNXT_TX_HDL; 5787 map_idx = bnapi->index; 5788 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5789 if (rc) 5790 goto err_out; 5791 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5792 ring->fw_ring_id); 5793 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5794 } 5795 ring = &txr->tx_ring_struct; 5796 map_idx = i; 5797 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5798 if (rc) 5799 goto err_out; 5800 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5801 } 5802 5803 type = HWRM_RING_ALLOC_RX; 5804 for (i = 0; i < bp->rx_nr_rings; i++) { 5805 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5806 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5807 struct bnxt_napi *bnapi = rxr->bnapi; 5808 u32 map_idx = bnapi->index; 5809 5810 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5811 if (rc) 5812 goto err_out; 5813 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5814 /* If we have agg rings, post agg buffers first. */ 5815 if (!agg_rings) 5816 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5817 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5818 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5819 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5820 u32 type2 = HWRM_RING_ALLOC_CMPL; 5821 struct bnxt_cp_ring_info *cpr2; 5822 5823 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5824 ring = &cpr2->cp_ring_struct; 5825 ring->handle = BNXT_RX_HDL; 5826 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5827 if (rc) 5828 goto err_out; 5829 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5830 ring->fw_ring_id); 5831 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5832 } 5833 } 5834 5835 if (agg_rings) { 5836 type = HWRM_RING_ALLOC_AGG; 5837 for (i = 0; i < bp->rx_nr_rings; i++) { 5838 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5839 struct bnxt_ring_struct *ring = 5840 &rxr->rx_agg_ring_struct; 5841 u32 grp_idx = ring->grp_idx; 5842 u32 map_idx = grp_idx + bp->rx_nr_rings; 5843 5844 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5845 if (rc) 5846 goto err_out; 5847 5848 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5849 ring->fw_ring_id); 5850 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5851 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5852 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5853 } 5854 } 5855 err_out: 5856 return rc; 5857 } 5858 5859 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5860 struct bnxt_ring_struct *ring, 5861 u32 ring_type, int cmpl_ring_id) 5862 { 5863 struct hwrm_ring_free_output *resp; 5864 struct hwrm_ring_free_input *req; 5865 u16 error_code = 0; 5866 int rc; 5867 5868 if (BNXT_NO_FW_ACCESS(bp)) 5869 return 0; 5870 5871 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 5872 if (rc) 5873 goto exit; 5874 5875 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 5876 req->ring_type = ring_type; 5877 req->ring_id = cpu_to_le16(ring->fw_ring_id); 5878 5879 resp = hwrm_req_hold(bp, req); 5880 rc = hwrm_req_send(bp, req); 5881 error_code = le16_to_cpu(resp->error_code); 5882 hwrm_req_drop(bp, req); 5883 exit: 5884 if (rc || error_code) { 5885 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5886 ring_type, rc, error_code); 5887 return -EIO; 5888 } 5889 return 0; 5890 } 5891 5892 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5893 { 5894 u32 type; 5895 int i; 5896 5897 if (!bp->bnapi) 5898 return; 5899 5900 for (i = 0; i < bp->tx_nr_rings; i++) { 5901 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5902 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5903 5904 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5905 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5906 5907 hwrm_ring_free_send_msg(bp, ring, 5908 RING_FREE_REQ_RING_TYPE_TX, 5909 close_path ? cmpl_ring_id : 5910 INVALID_HW_RING_ID); 5911 ring->fw_ring_id = INVALID_HW_RING_ID; 5912 } 5913 } 5914 5915 for (i = 0; i < bp->rx_nr_rings; i++) { 5916 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5917 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5918 u32 grp_idx = rxr->bnapi->index; 5919 5920 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5921 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5922 5923 hwrm_ring_free_send_msg(bp, ring, 5924 RING_FREE_REQ_RING_TYPE_RX, 5925 close_path ? cmpl_ring_id : 5926 INVALID_HW_RING_ID); 5927 ring->fw_ring_id = INVALID_HW_RING_ID; 5928 bp->grp_info[grp_idx].rx_fw_ring_id = 5929 INVALID_HW_RING_ID; 5930 } 5931 } 5932 5933 if (bp->flags & BNXT_FLAG_CHIP_P5) 5934 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 5935 else 5936 type = RING_FREE_REQ_RING_TYPE_RX; 5937 for (i = 0; i < bp->rx_nr_rings; i++) { 5938 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5939 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 5940 u32 grp_idx = rxr->bnapi->index; 5941 5942 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5943 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5944 5945 hwrm_ring_free_send_msg(bp, ring, type, 5946 close_path ? cmpl_ring_id : 5947 INVALID_HW_RING_ID); 5948 ring->fw_ring_id = INVALID_HW_RING_ID; 5949 bp->grp_info[grp_idx].agg_fw_ring_id = 5950 INVALID_HW_RING_ID; 5951 } 5952 } 5953 5954 /* The completion rings are about to be freed. After that the 5955 * IRQ doorbell will not work anymore. So we need to disable 5956 * IRQ here. 5957 */ 5958 bnxt_disable_int_sync(bp); 5959 5960 if (bp->flags & BNXT_FLAG_CHIP_P5) 5961 type = RING_FREE_REQ_RING_TYPE_NQ; 5962 else 5963 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 5964 for (i = 0; i < bp->cp_nr_rings; i++) { 5965 struct bnxt_napi *bnapi = bp->bnapi[i]; 5966 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5967 struct bnxt_ring_struct *ring; 5968 int j; 5969 5970 for (j = 0; j < 2; j++) { 5971 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 5972 5973 if (cpr2) { 5974 ring = &cpr2->cp_ring_struct; 5975 if (ring->fw_ring_id == INVALID_HW_RING_ID) 5976 continue; 5977 hwrm_ring_free_send_msg(bp, ring, 5978 RING_FREE_REQ_RING_TYPE_L2_CMPL, 5979 INVALID_HW_RING_ID); 5980 ring->fw_ring_id = INVALID_HW_RING_ID; 5981 } 5982 } 5983 ring = &cpr->cp_ring_struct; 5984 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5985 hwrm_ring_free_send_msg(bp, ring, type, 5986 INVALID_HW_RING_ID); 5987 ring->fw_ring_id = INVALID_HW_RING_ID; 5988 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 5989 } 5990 } 5991 } 5992 5993 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5994 bool shared); 5995 5996 static int bnxt_hwrm_get_rings(struct bnxt *bp) 5997 { 5998 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5999 struct hwrm_func_qcfg_output *resp; 6000 struct hwrm_func_qcfg_input *req; 6001 int rc; 6002 6003 if (bp->hwrm_spec_code < 0x10601) 6004 return 0; 6005 6006 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6007 if (rc) 6008 return rc; 6009 6010 req->fid = cpu_to_le16(0xffff); 6011 resp = hwrm_req_hold(bp, req); 6012 rc = hwrm_req_send(bp, req); 6013 if (rc) { 6014 hwrm_req_drop(bp, req); 6015 return rc; 6016 } 6017 6018 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6019 if (BNXT_NEW_RM(bp)) { 6020 u16 cp, stats; 6021 6022 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6023 hw_resc->resv_hw_ring_grps = 6024 le32_to_cpu(resp->alloc_hw_ring_grps); 6025 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6026 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6027 stats = le16_to_cpu(resp->alloc_stat_ctx); 6028 hw_resc->resv_irqs = cp; 6029 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6030 int rx = hw_resc->resv_rx_rings; 6031 int tx = hw_resc->resv_tx_rings; 6032 6033 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6034 rx >>= 1; 6035 if (cp < (rx + tx)) { 6036 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6037 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6038 rx <<= 1; 6039 hw_resc->resv_rx_rings = rx; 6040 hw_resc->resv_tx_rings = tx; 6041 } 6042 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6043 hw_resc->resv_hw_ring_grps = rx; 6044 } 6045 hw_resc->resv_cp_rings = cp; 6046 hw_resc->resv_stat_ctxs = stats; 6047 } 6048 hwrm_req_drop(bp, req); 6049 return 0; 6050 } 6051 6052 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6053 { 6054 struct hwrm_func_qcfg_output *resp; 6055 struct hwrm_func_qcfg_input *req; 6056 int rc; 6057 6058 if (bp->hwrm_spec_code < 0x10601) 6059 return 0; 6060 6061 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6062 if (rc) 6063 return rc; 6064 6065 req->fid = cpu_to_le16(fid); 6066 resp = hwrm_req_hold(bp, req); 6067 rc = hwrm_req_send(bp, req); 6068 if (!rc) 6069 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6070 6071 hwrm_req_drop(bp, req); 6072 return rc; 6073 } 6074 6075 static bool bnxt_rfs_supported(struct bnxt *bp); 6076 6077 static struct hwrm_func_cfg_input * 6078 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6079 int ring_grps, int cp_rings, int stats, int vnics) 6080 { 6081 struct hwrm_func_cfg_input *req; 6082 u32 enables = 0; 6083 6084 if (hwrm_req_init(bp, req, HWRM_FUNC_CFG)) 6085 return NULL; 6086 6087 req->fid = cpu_to_le16(0xffff); 6088 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6089 req->num_tx_rings = cpu_to_le16(tx_rings); 6090 if (BNXT_NEW_RM(bp)) { 6091 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6092 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6093 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6094 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6095 enables |= tx_rings + ring_grps ? 6096 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6097 enables |= rx_rings ? 6098 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6099 } else { 6100 enables |= cp_rings ? 6101 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6102 enables |= ring_grps ? 6103 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6104 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6105 } 6106 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6107 6108 req->num_rx_rings = cpu_to_le16(rx_rings); 6109 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6110 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6111 req->num_msix = cpu_to_le16(cp_rings); 6112 req->num_rsscos_ctxs = 6113 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6114 } else { 6115 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6116 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6117 req->num_rsscos_ctxs = cpu_to_le16(1); 6118 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6119 bnxt_rfs_supported(bp)) 6120 req->num_rsscos_ctxs = 6121 cpu_to_le16(ring_grps + 1); 6122 } 6123 req->num_stat_ctxs = cpu_to_le16(stats); 6124 req->num_vnics = cpu_to_le16(vnics); 6125 } 6126 req->enables = cpu_to_le32(enables); 6127 return req; 6128 } 6129 6130 static struct hwrm_func_vf_cfg_input * 6131 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6132 int ring_grps, int cp_rings, int stats, int vnics) 6133 { 6134 struct hwrm_func_vf_cfg_input *req; 6135 u32 enables = 0; 6136 6137 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6138 return NULL; 6139 6140 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6141 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6142 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6143 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6144 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6145 enables |= tx_rings + ring_grps ? 6146 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6147 } else { 6148 enables |= cp_rings ? 6149 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6150 enables |= ring_grps ? 6151 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6152 } 6153 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6154 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6155 6156 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6157 req->num_tx_rings = cpu_to_le16(tx_rings); 6158 req->num_rx_rings = cpu_to_le16(rx_rings); 6159 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6160 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6161 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6162 } else { 6163 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6164 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6165 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6166 } 6167 req->num_stat_ctxs = cpu_to_le16(stats); 6168 req->num_vnics = cpu_to_le16(vnics); 6169 6170 req->enables = cpu_to_le32(enables); 6171 return req; 6172 } 6173 6174 static int 6175 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6176 int ring_grps, int cp_rings, int stats, int vnics) 6177 { 6178 struct hwrm_func_cfg_input *req; 6179 int rc; 6180 6181 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6182 cp_rings, stats, vnics); 6183 if (!req) 6184 return -ENOMEM; 6185 6186 if (!req->enables) { 6187 hwrm_req_drop(bp, req); 6188 return 0; 6189 } 6190 6191 rc = hwrm_req_send(bp, req); 6192 if (rc) 6193 return rc; 6194 6195 if (bp->hwrm_spec_code < 0x10601) 6196 bp->hw_resc.resv_tx_rings = tx_rings; 6197 6198 return bnxt_hwrm_get_rings(bp); 6199 } 6200 6201 static int 6202 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6203 int ring_grps, int cp_rings, int stats, int vnics) 6204 { 6205 struct hwrm_func_vf_cfg_input *req; 6206 int rc; 6207 6208 if (!BNXT_NEW_RM(bp)) { 6209 bp->hw_resc.resv_tx_rings = tx_rings; 6210 return 0; 6211 } 6212 6213 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6214 cp_rings, stats, vnics); 6215 if (!req) 6216 return -ENOMEM; 6217 6218 rc = hwrm_req_send(bp, req); 6219 if (rc) 6220 return rc; 6221 6222 return bnxt_hwrm_get_rings(bp); 6223 } 6224 6225 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6226 int cp, int stat, int vnic) 6227 { 6228 if (BNXT_PF(bp)) 6229 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6230 vnic); 6231 else 6232 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6233 vnic); 6234 } 6235 6236 int bnxt_nq_rings_in_use(struct bnxt *bp) 6237 { 6238 int cp = bp->cp_nr_rings; 6239 int ulp_msix, ulp_base; 6240 6241 ulp_msix = bnxt_get_ulp_msix_num(bp); 6242 if (ulp_msix) { 6243 ulp_base = bnxt_get_ulp_msix_base(bp); 6244 cp += ulp_msix; 6245 if ((ulp_base + ulp_msix) > cp) 6246 cp = ulp_base + ulp_msix; 6247 } 6248 return cp; 6249 } 6250 6251 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6252 { 6253 int cp; 6254 6255 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6256 return bnxt_nq_rings_in_use(bp); 6257 6258 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6259 return cp; 6260 } 6261 6262 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6263 { 6264 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6265 int cp = bp->cp_nr_rings; 6266 6267 if (!ulp_stat) 6268 return cp; 6269 6270 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6271 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6272 6273 return cp + ulp_stat; 6274 } 6275 6276 /* Check if a default RSS map needs to be setup. This function is only 6277 * used on older firmware that does not require reserving RX rings. 6278 */ 6279 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6280 { 6281 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6282 6283 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6284 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6285 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6286 if (!netif_is_rxfh_configured(bp->dev)) 6287 bnxt_set_dflt_rss_indir_tbl(bp); 6288 } 6289 } 6290 6291 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6292 { 6293 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6294 int cp = bnxt_cp_rings_in_use(bp); 6295 int nq = bnxt_nq_rings_in_use(bp); 6296 int rx = bp->rx_nr_rings, stat; 6297 int vnic = 1, grp = rx; 6298 6299 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6300 bp->hwrm_spec_code >= 0x10601) 6301 return true; 6302 6303 /* Old firmware does not need RX ring reservations but we still 6304 * need to setup a default RSS map when needed. With new firmware 6305 * we go through RX ring reservations first and then set up the 6306 * RSS map for the successfully reserved RX rings when needed. 6307 */ 6308 if (!BNXT_NEW_RM(bp)) { 6309 bnxt_check_rss_tbl_no_rmgr(bp); 6310 return false; 6311 } 6312 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6313 vnic = rx + 1; 6314 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6315 rx <<= 1; 6316 stat = bnxt_get_func_stat_ctxs(bp); 6317 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6318 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6319 (hw_resc->resv_hw_ring_grps != grp && 6320 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6321 return true; 6322 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6323 hw_resc->resv_irqs != nq) 6324 return true; 6325 return false; 6326 } 6327 6328 static int __bnxt_reserve_rings(struct bnxt *bp) 6329 { 6330 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6331 int cp = bnxt_nq_rings_in_use(bp); 6332 int tx = bp->tx_nr_rings; 6333 int rx = bp->rx_nr_rings; 6334 int grp, rx_rings, rc; 6335 int vnic = 1, stat; 6336 bool sh = false; 6337 6338 if (!bnxt_need_reserve_rings(bp)) 6339 return 0; 6340 6341 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6342 sh = true; 6343 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6344 vnic = rx + 1; 6345 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6346 rx <<= 1; 6347 grp = bp->rx_nr_rings; 6348 stat = bnxt_get_func_stat_ctxs(bp); 6349 6350 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6351 if (rc) 6352 return rc; 6353 6354 tx = hw_resc->resv_tx_rings; 6355 if (BNXT_NEW_RM(bp)) { 6356 rx = hw_resc->resv_rx_rings; 6357 cp = hw_resc->resv_irqs; 6358 grp = hw_resc->resv_hw_ring_grps; 6359 vnic = hw_resc->resv_vnics; 6360 stat = hw_resc->resv_stat_ctxs; 6361 } 6362 6363 rx_rings = rx; 6364 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6365 if (rx >= 2) { 6366 rx_rings = rx >> 1; 6367 } else { 6368 if (netif_running(bp->dev)) 6369 return -ENOMEM; 6370 6371 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6372 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6373 bp->dev->hw_features &= ~NETIF_F_LRO; 6374 bp->dev->features &= ~NETIF_F_LRO; 6375 bnxt_set_ring_params(bp); 6376 } 6377 } 6378 rx_rings = min_t(int, rx_rings, grp); 6379 cp = min_t(int, cp, bp->cp_nr_rings); 6380 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6381 stat -= bnxt_get_ulp_stat_ctxs(bp); 6382 cp = min_t(int, cp, stat); 6383 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6384 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6385 rx = rx_rings << 1; 6386 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6387 bp->tx_nr_rings = tx; 6388 6389 /* If we cannot reserve all the RX rings, reset the RSS map only 6390 * if absolutely necessary 6391 */ 6392 if (rx_rings != bp->rx_nr_rings) { 6393 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6394 rx_rings, bp->rx_nr_rings); 6395 if (netif_is_rxfh_configured(bp->dev) && 6396 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6397 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6398 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6399 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6400 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6401 } 6402 } 6403 bp->rx_nr_rings = rx_rings; 6404 bp->cp_nr_rings = cp; 6405 6406 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6407 return -ENOMEM; 6408 6409 if (!netif_is_rxfh_configured(bp->dev)) 6410 bnxt_set_dflt_rss_indir_tbl(bp); 6411 6412 return rc; 6413 } 6414 6415 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6416 int ring_grps, int cp_rings, int stats, 6417 int vnics) 6418 { 6419 struct hwrm_func_vf_cfg_input *req; 6420 u32 flags; 6421 6422 if (!BNXT_NEW_RM(bp)) 6423 return 0; 6424 6425 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6426 cp_rings, stats, vnics); 6427 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6428 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6429 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6430 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6431 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6432 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6433 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6434 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6435 6436 req->flags = cpu_to_le32(flags); 6437 return hwrm_req_send_silent(bp, req); 6438 } 6439 6440 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6441 int ring_grps, int cp_rings, int stats, 6442 int vnics) 6443 { 6444 struct hwrm_func_cfg_input *req; 6445 u32 flags; 6446 6447 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6448 cp_rings, stats, vnics); 6449 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6450 if (BNXT_NEW_RM(bp)) { 6451 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6452 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6453 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6454 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6455 if (bp->flags & BNXT_FLAG_CHIP_P5) 6456 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6457 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6458 else 6459 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6460 } 6461 6462 req->flags = cpu_to_le32(flags); 6463 return hwrm_req_send_silent(bp, req); 6464 } 6465 6466 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6467 int ring_grps, int cp_rings, int stats, 6468 int vnics) 6469 { 6470 if (bp->hwrm_spec_code < 0x10801) 6471 return 0; 6472 6473 if (BNXT_PF(bp)) 6474 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6475 ring_grps, cp_rings, stats, 6476 vnics); 6477 6478 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6479 cp_rings, stats, vnics); 6480 } 6481 6482 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6483 { 6484 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6485 struct hwrm_ring_aggint_qcaps_output *resp; 6486 struct hwrm_ring_aggint_qcaps_input *req; 6487 int rc; 6488 6489 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6490 coal_cap->num_cmpl_dma_aggr_max = 63; 6491 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6492 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6493 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6494 coal_cap->int_lat_tmr_min_max = 65535; 6495 coal_cap->int_lat_tmr_max_max = 65535; 6496 coal_cap->num_cmpl_aggr_int_max = 65535; 6497 coal_cap->timer_units = 80; 6498 6499 if (bp->hwrm_spec_code < 0x10902) 6500 return; 6501 6502 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6503 return; 6504 6505 resp = hwrm_req_hold(bp, req); 6506 rc = hwrm_req_send_silent(bp, req); 6507 if (!rc) { 6508 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6509 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6510 coal_cap->num_cmpl_dma_aggr_max = 6511 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6512 coal_cap->num_cmpl_dma_aggr_during_int_max = 6513 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6514 coal_cap->cmpl_aggr_dma_tmr_max = 6515 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6516 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6517 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6518 coal_cap->int_lat_tmr_min_max = 6519 le16_to_cpu(resp->int_lat_tmr_min_max); 6520 coal_cap->int_lat_tmr_max_max = 6521 le16_to_cpu(resp->int_lat_tmr_max_max); 6522 coal_cap->num_cmpl_aggr_int_max = 6523 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6524 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6525 } 6526 hwrm_req_drop(bp, req); 6527 } 6528 6529 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6530 { 6531 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6532 6533 return usec * 1000 / coal_cap->timer_units; 6534 } 6535 6536 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6537 struct bnxt_coal *hw_coal, 6538 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6539 { 6540 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6541 u16 val, tmr, max, flags = hw_coal->flags; 6542 u32 cmpl_params = coal_cap->cmpl_params; 6543 6544 max = hw_coal->bufs_per_record * 128; 6545 if (hw_coal->budget) 6546 max = hw_coal->bufs_per_record * hw_coal->budget; 6547 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6548 6549 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6550 req->num_cmpl_aggr_int = cpu_to_le16(val); 6551 6552 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6553 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6554 6555 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6556 coal_cap->num_cmpl_dma_aggr_during_int_max); 6557 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6558 6559 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6560 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6561 req->int_lat_tmr_max = cpu_to_le16(tmr); 6562 6563 /* min timer set to 1/2 of interrupt timer */ 6564 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6565 val = tmr / 2; 6566 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6567 req->int_lat_tmr_min = cpu_to_le16(val); 6568 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6569 } 6570 6571 /* buf timer set to 1/4 of interrupt timer */ 6572 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6573 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6574 6575 if (cmpl_params & 6576 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6577 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6578 val = clamp_t(u16, tmr, 1, 6579 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6580 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6581 req->enables |= 6582 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6583 } 6584 6585 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6586 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6587 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6588 req->flags = cpu_to_le16(flags); 6589 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6590 } 6591 6592 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6593 struct bnxt_coal *hw_coal) 6594 { 6595 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6596 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6597 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6598 u32 nq_params = coal_cap->nq_params; 6599 u16 tmr; 6600 int rc; 6601 6602 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6603 return 0; 6604 6605 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6606 if (rc) 6607 return rc; 6608 6609 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6610 req->flags = 6611 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6612 6613 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6614 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6615 req->int_lat_tmr_min = cpu_to_le16(tmr); 6616 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6617 return hwrm_req_send(bp, req); 6618 } 6619 6620 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6621 { 6622 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6623 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6624 struct bnxt_coal coal; 6625 int rc; 6626 6627 /* Tick values in micro seconds. 6628 * 1 coal_buf x bufs_per_record = 1 completion record. 6629 */ 6630 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6631 6632 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6633 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6634 6635 if (!bnapi->rx_ring) 6636 return -ENODEV; 6637 6638 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6639 if (rc) 6640 return rc; 6641 6642 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6643 6644 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6645 6646 return hwrm_req_send(bp, req_rx); 6647 } 6648 6649 int bnxt_hwrm_set_coal(struct bnxt *bp) 6650 { 6651 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6652 *req; 6653 int i, rc; 6654 6655 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6656 if (rc) 6657 return rc; 6658 6659 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6660 if (rc) { 6661 hwrm_req_drop(bp, req_rx); 6662 return rc; 6663 } 6664 6665 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6666 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6667 6668 hwrm_req_hold(bp, req_rx); 6669 hwrm_req_hold(bp, req_tx); 6670 for (i = 0; i < bp->cp_nr_rings; i++) { 6671 struct bnxt_napi *bnapi = bp->bnapi[i]; 6672 struct bnxt_coal *hw_coal; 6673 u16 ring_id; 6674 6675 req = req_rx; 6676 if (!bnapi->rx_ring) { 6677 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6678 req = req_tx; 6679 } else { 6680 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6681 } 6682 req->ring_id = cpu_to_le16(ring_id); 6683 6684 rc = hwrm_req_send(bp, req); 6685 if (rc) 6686 break; 6687 6688 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6689 continue; 6690 6691 if (bnapi->rx_ring && bnapi->tx_ring) { 6692 req = req_tx; 6693 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6694 req->ring_id = cpu_to_le16(ring_id); 6695 rc = hwrm_req_send(bp, req); 6696 if (rc) 6697 break; 6698 } 6699 if (bnapi->rx_ring) 6700 hw_coal = &bp->rx_coal; 6701 else 6702 hw_coal = &bp->tx_coal; 6703 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6704 } 6705 hwrm_req_drop(bp, req_rx); 6706 hwrm_req_drop(bp, req_tx); 6707 return rc; 6708 } 6709 6710 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6711 { 6712 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6713 struct hwrm_stat_ctx_free_input *req; 6714 int i; 6715 6716 if (!bp->bnapi) 6717 return; 6718 6719 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6720 return; 6721 6722 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6723 return; 6724 if (BNXT_FW_MAJ(bp) <= 20) { 6725 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6726 hwrm_req_drop(bp, req); 6727 return; 6728 } 6729 hwrm_req_hold(bp, req0); 6730 } 6731 hwrm_req_hold(bp, req); 6732 for (i = 0; i < bp->cp_nr_rings; i++) { 6733 struct bnxt_napi *bnapi = bp->bnapi[i]; 6734 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6735 6736 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6737 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6738 if (req0) { 6739 req0->stat_ctx_id = req->stat_ctx_id; 6740 hwrm_req_send(bp, req0); 6741 } 6742 hwrm_req_send(bp, req); 6743 6744 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6745 } 6746 } 6747 hwrm_req_drop(bp, req); 6748 if (req0) 6749 hwrm_req_drop(bp, req0); 6750 } 6751 6752 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6753 { 6754 struct hwrm_stat_ctx_alloc_output *resp; 6755 struct hwrm_stat_ctx_alloc_input *req; 6756 int rc, i; 6757 6758 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6759 return 0; 6760 6761 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 6762 if (rc) 6763 return rc; 6764 6765 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6766 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6767 6768 resp = hwrm_req_hold(bp, req); 6769 for (i = 0; i < bp->cp_nr_rings; i++) { 6770 struct bnxt_napi *bnapi = bp->bnapi[i]; 6771 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6772 6773 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6774 6775 rc = hwrm_req_send(bp, req); 6776 if (rc) 6777 break; 6778 6779 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6780 6781 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6782 } 6783 hwrm_req_drop(bp, req); 6784 return rc; 6785 } 6786 6787 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6788 { 6789 struct hwrm_func_qcfg_output *resp; 6790 struct hwrm_func_qcfg_input *req; 6791 u32 min_db_offset = 0; 6792 u16 flags; 6793 int rc; 6794 6795 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6796 if (rc) 6797 return rc; 6798 6799 req->fid = cpu_to_le16(0xffff); 6800 resp = hwrm_req_hold(bp, req); 6801 rc = hwrm_req_send(bp, req); 6802 if (rc) 6803 goto func_qcfg_exit; 6804 6805 #ifdef CONFIG_BNXT_SRIOV 6806 if (BNXT_VF(bp)) { 6807 struct bnxt_vf_info *vf = &bp->vf; 6808 6809 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6810 } else { 6811 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6812 } 6813 #endif 6814 flags = le16_to_cpu(resp->flags); 6815 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6816 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6817 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6818 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6819 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6820 } 6821 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6822 bp->flags |= BNXT_FLAG_MULTI_HOST; 6823 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6824 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6825 6826 switch (resp->port_partition_type) { 6827 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6828 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6829 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6830 bp->port_partition_type = resp->port_partition_type; 6831 break; 6832 } 6833 if (bp->hwrm_spec_code < 0x10707 || 6834 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6835 bp->br_mode = BRIDGE_MODE_VEB; 6836 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6837 bp->br_mode = BRIDGE_MODE_VEPA; 6838 else 6839 bp->br_mode = BRIDGE_MODE_UNDEF; 6840 6841 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6842 if (!bp->max_mtu) 6843 bp->max_mtu = BNXT_MAX_MTU; 6844 6845 if (bp->db_size) 6846 goto func_qcfg_exit; 6847 6848 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6849 if (BNXT_PF(bp)) 6850 min_db_offset = DB_PF_OFFSET_P5; 6851 else 6852 min_db_offset = DB_VF_OFFSET_P5; 6853 } 6854 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6855 1024); 6856 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6857 bp->db_size <= min_db_offset) 6858 bp->db_size = pci_resource_len(bp->pdev, 2); 6859 6860 func_qcfg_exit: 6861 hwrm_req_drop(bp, req); 6862 return rc; 6863 } 6864 6865 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 6866 struct hwrm_func_backing_store_qcaps_output *resp) 6867 { 6868 struct bnxt_mem_init *mem_init; 6869 u16 init_mask; 6870 u8 init_val; 6871 u8 *offset; 6872 int i; 6873 6874 init_val = resp->ctx_kind_initializer; 6875 init_mask = le16_to_cpu(resp->ctx_init_mask); 6876 offset = &resp->qp_init_offset; 6877 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 6878 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 6879 mem_init->init_val = init_val; 6880 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 6881 if (!init_mask) 6882 continue; 6883 if (i == BNXT_CTX_MEM_INIT_STAT) 6884 offset = &resp->stat_init_offset; 6885 if (init_mask & (1 << i)) 6886 mem_init->offset = *offset * 4; 6887 else 6888 mem_init->init_val = 0; 6889 } 6890 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 6891 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 6892 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 6893 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 6894 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 6895 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 6896 } 6897 6898 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6899 { 6900 struct hwrm_func_backing_store_qcaps_output *resp; 6901 struct hwrm_func_backing_store_qcaps_input *req; 6902 int rc; 6903 6904 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6905 return 0; 6906 6907 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 6908 if (rc) 6909 return rc; 6910 6911 resp = hwrm_req_hold(bp, req); 6912 rc = hwrm_req_send_silent(bp, req); 6913 if (!rc) { 6914 struct bnxt_ctx_pg_info *ctx_pg; 6915 struct bnxt_ctx_mem_info *ctx; 6916 int i, tqm_rings; 6917 6918 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6919 if (!ctx) { 6920 rc = -ENOMEM; 6921 goto ctx_err; 6922 } 6923 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6924 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6925 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6926 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6927 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6928 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6929 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6930 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6931 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6932 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6933 ctx->vnic_max_vnic_entries = 6934 le16_to_cpu(resp->vnic_max_vnic_entries); 6935 ctx->vnic_max_ring_table_entries = 6936 le16_to_cpu(resp->vnic_max_ring_table_entries); 6937 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6938 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6939 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6940 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6941 ctx->tqm_min_entries_per_ring = 6942 le32_to_cpu(resp->tqm_min_entries_per_ring); 6943 ctx->tqm_max_entries_per_ring = 6944 le32_to_cpu(resp->tqm_max_entries_per_ring); 6945 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6946 if (!ctx->tqm_entries_multiple) 6947 ctx->tqm_entries_multiple = 1; 6948 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6949 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 6950 ctx->mrav_num_entries_units = 6951 le16_to_cpu(resp->mrav_num_entries_units); 6952 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 6953 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 6954 6955 bnxt_init_ctx_initializer(ctx, resp); 6956 6957 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 6958 if (!ctx->tqm_fp_rings_count) 6959 ctx->tqm_fp_rings_count = bp->max_q; 6960 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 6961 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 6962 6963 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 6964 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 6965 if (!ctx_pg) { 6966 kfree(ctx); 6967 rc = -ENOMEM; 6968 goto ctx_err; 6969 } 6970 for (i = 0; i < tqm_rings; i++, ctx_pg++) 6971 ctx->tqm_mem[i] = ctx_pg; 6972 bp->ctx = ctx; 6973 } else { 6974 rc = 0; 6975 } 6976 ctx_err: 6977 hwrm_req_drop(bp, req); 6978 return rc; 6979 } 6980 6981 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 6982 __le64 *pg_dir) 6983 { 6984 if (!rmem->nr_pages) 6985 return; 6986 6987 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 6988 if (rmem->depth >= 1) { 6989 if (rmem->depth == 2) 6990 *pg_attr |= 2; 6991 else 6992 *pg_attr |= 1; 6993 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 6994 } else { 6995 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 6996 } 6997 } 6998 6999 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 7000 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 7001 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 7002 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 7003 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 7004 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 7005 7006 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 7007 { 7008 struct hwrm_func_backing_store_cfg_input *req; 7009 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7010 struct bnxt_ctx_pg_info *ctx_pg; 7011 void **__req = (void **)&req; 7012 u32 req_len = sizeof(*req); 7013 __le32 *num_entries; 7014 __le64 *pg_dir; 7015 u32 flags = 0; 7016 u8 *pg_attr; 7017 u32 ena; 7018 int rc; 7019 int i; 7020 7021 if (!ctx) 7022 return 0; 7023 7024 if (req_len > bp->hwrm_max_ext_req_len) 7025 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7026 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 7027 if (rc) 7028 return rc; 7029 7030 req->enables = cpu_to_le32(enables); 7031 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7032 ctx_pg = &ctx->qp_mem; 7033 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 7034 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 7035 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 7036 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 7037 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7038 &req->qpc_pg_size_qpc_lvl, 7039 &req->qpc_page_dir); 7040 } 7041 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7042 ctx_pg = &ctx->srq_mem; 7043 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 7044 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7045 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7046 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7047 &req->srq_pg_size_srq_lvl, 7048 &req->srq_page_dir); 7049 } 7050 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7051 ctx_pg = &ctx->cq_mem; 7052 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 7053 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7054 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7055 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7056 &req->cq_pg_size_cq_lvl, 7057 &req->cq_page_dir); 7058 } 7059 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7060 ctx_pg = &ctx->vnic_mem; 7061 req->vnic_num_vnic_entries = 7062 cpu_to_le16(ctx->vnic_max_vnic_entries); 7063 req->vnic_num_ring_table_entries = 7064 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7065 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7066 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7067 &req->vnic_pg_size_vnic_lvl, 7068 &req->vnic_page_dir); 7069 } 7070 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7071 ctx_pg = &ctx->stat_mem; 7072 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7073 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7074 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7075 &req->stat_pg_size_stat_lvl, 7076 &req->stat_page_dir); 7077 } 7078 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7079 ctx_pg = &ctx->mrav_mem; 7080 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7081 if (ctx->mrav_num_entries_units) 7082 flags |= 7083 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7084 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7085 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7086 &req->mrav_pg_size_mrav_lvl, 7087 &req->mrav_page_dir); 7088 } 7089 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7090 ctx_pg = &ctx->tim_mem; 7091 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7092 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7093 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7094 &req->tim_pg_size_tim_lvl, 7095 &req->tim_page_dir); 7096 } 7097 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7098 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7099 pg_dir = &req->tqm_sp_page_dir, 7100 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7101 i < BNXT_MAX_TQM_RINGS; 7102 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7103 if (!(enables & ena)) 7104 continue; 7105 7106 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7107 ctx_pg = ctx->tqm_mem[i]; 7108 *num_entries = cpu_to_le32(ctx_pg->entries); 7109 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7110 } 7111 req->flags = cpu_to_le32(flags); 7112 return hwrm_req_send(bp, req); 7113 } 7114 7115 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7116 struct bnxt_ctx_pg_info *ctx_pg) 7117 { 7118 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7119 7120 rmem->page_size = BNXT_PAGE_SIZE; 7121 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7122 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7123 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7124 if (rmem->depth >= 1) 7125 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7126 return bnxt_alloc_ring(bp, rmem); 7127 } 7128 7129 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7130 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7131 u8 depth, struct bnxt_mem_init *mem_init) 7132 { 7133 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7134 int rc; 7135 7136 if (!mem_size) 7137 return -EINVAL; 7138 7139 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7140 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7141 ctx_pg->nr_pages = 0; 7142 return -EINVAL; 7143 } 7144 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7145 int nr_tbls, i; 7146 7147 rmem->depth = 2; 7148 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7149 GFP_KERNEL); 7150 if (!ctx_pg->ctx_pg_tbl) 7151 return -ENOMEM; 7152 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7153 rmem->nr_pages = nr_tbls; 7154 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7155 if (rc) 7156 return rc; 7157 for (i = 0; i < nr_tbls; i++) { 7158 struct bnxt_ctx_pg_info *pg_tbl; 7159 7160 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7161 if (!pg_tbl) 7162 return -ENOMEM; 7163 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7164 rmem = &pg_tbl->ring_mem; 7165 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7166 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7167 rmem->depth = 1; 7168 rmem->nr_pages = MAX_CTX_PAGES; 7169 rmem->mem_init = mem_init; 7170 if (i == (nr_tbls - 1)) { 7171 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7172 7173 if (rem) 7174 rmem->nr_pages = rem; 7175 } 7176 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7177 if (rc) 7178 break; 7179 } 7180 } else { 7181 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7182 if (rmem->nr_pages > 1 || depth) 7183 rmem->depth = 1; 7184 rmem->mem_init = mem_init; 7185 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7186 } 7187 return rc; 7188 } 7189 7190 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7191 struct bnxt_ctx_pg_info *ctx_pg) 7192 { 7193 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7194 7195 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7196 ctx_pg->ctx_pg_tbl) { 7197 int i, nr_tbls = rmem->nr_pages; 7198 7199 for (i = 0; i < nr_tbls; i++) { 7200 struct bnxt_ctx_pg_info *pg_tbl; 7201 struct bnxt_ring_mem_info *rmem2; 7202 7203 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7204 if (!pg_tbl) 7205 continue; 7206 rmem2 = &pg_tbl->ring_mem; 7207 bnxt_free_ring(bp, rmem2); 7208 ctx_pg->ctx_pg_arr[i] = NULL; 7209 kfree(pg_tbl); 7210 ctx_pg->ctx_pg_tbl[i] = NULL; 7211 } 7212 kfree(ctx_pg->ctx_pg_tbl); 7213 ctx_pg->ctx_pg_tbl = NULL; 7214 } 7215 bnxt_free_ring(bp, rmem); 7216 ctx_pg->nr_pages = 0; 7217 } 7218 7219 void bnxt_free_ctx_mem(struct bnxt *bp) 7220 { 7221 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7222 int i; 7223 7224 if (!ctx) 7225 return; 7226 7227 if (ctx->tqm_mem[0]) { 7228 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7229 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7230 kfree(ctx->tqm_mem[0]); 7231 ctx->tqm_mem[0] = NULL; 7232 } 7233 7234 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7235 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7236 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7237 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7238 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7239 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7240 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7241 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7242 } 7243 7244 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7245 { 7246 struct bnxt_ctx_pg_info *ctx_pg; 7247 struct bnxt_ctx_mem_info *ctx; 7248 struct bnxt_mem_init *init; 7249 u32 mem_size, ena, entries; 7250 u32 entries_sp, min; 7251 u32 num_mr, num_ah; 7252 u32 extra_srqs = 0; 7253 u32 extra_qps = 0; 7254 u8 pg_lvl = 1; 7255 int i, rc; 7256 7257 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7258 if (rc) { 7259 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7260 rc); 7261 return rc; 7262 } 7263 ctx = bp->ctx; 7264 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7265 return 0; 7266 7267 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7268 pg_lvl = 2; 7269 extra_qps = 65536; 7270 extra_srqs = 8192; 7271 } 7272 7273 ctx_pg = &ctx->qp_mem; 7274 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7275 extra_qps; 7276 if (ctx->qp_entry_size) { 7277 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7278 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7279 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7280 if (rc) 7281 return rc; 7282 } 7283 7284 ctx_pg = &ctx->srq_mem; 7285 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7286 if (ctx->srq_entry_size) { 7287 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7288 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7289 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7290 if (rc) 7291 return rc; 7292 } 7293 7294 ctx_pg = &ctx->cq_mem; 7295 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7296 if (ctx->cq_entry_size) { 7297 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7298 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7299 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7300 if (rc) 7301 return rc; 7302 } 7303 7304 ctx_pg = &ctx->vnic_mem; 7305 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7306 ctx->vnic_max_ring_table_entries; 7307 if (ctx->vnic_entry_size) { 7308 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7309 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7310 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7311 if (rc) 7312 return rc; 7313 } 7314 7315 ctx_pg = &ctx->stat_mem; 7316 ctx_pg->entries = ctx->stat_max_entries; 7317 if (ctx->stat_entry_size) { 7318 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7319 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7320 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7321 if (rc) 7322 return rc; 7323 } 7324 7325 ena = 0; 7326 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7327 goto skip_rdma; 7328 7329 ctx_pg = &ctx->mrav_mem; 7330 /* 128K extra is needed to accommodate static AH context 7331 * allocation by f/w. 7332 */ 7333 num_mr = 1024 * 256; 7334 num_ah = 1024 * 128; 7335 ctx_pg->entries = num_mr + num_ah; 7336 if (ctx->mrav_entry_size) { 7337 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7338 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7339 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7340 if (rc) 7341 return rc; 7342 } 7343 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7344 if (ctx->mrav_num_entries_units) 7345 ctx_pg->entries = 7346 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7347 (num_ah / ctx->mrav_num_entries_units); 7348 7349 ctx_pg = &ctx->tim_mem; 7350 ctx_pg->entries = ctx->qp_mem.entries; 7351 if (ctx->tim_entry_size) { 7352 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7353 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7354 if (rc) 7355 return rc; 7356 } 7357 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7358 7359 skip_rdma: 7360 min = ctx->tqm_min_entries_per_ring; 7361 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7362 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7363 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7364 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7365 entries = roundup(entries, ctx->tqm_entries_multiple); 7366 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7367 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7368 ctx_pg = ctx->tqm_mem[i]; 7369 ctx_pg->entries = i ? entries : entries_sp; 7370 if (ctx->tqm_entry_size) { 7371 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7372 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7373 NULL); 7374 if (rc) 7375 return rc; 7376 } 7377 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7378 } 7379 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7380 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7381 if (rc) { 7382 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7383 rc); 7384 return rc; 7385 } 7386 ctx->flags |= BNXT_CTX_FLAG_INITED; 7387 return 0; 7388 } 7389 7390 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7391 { 7392 struct hwrm_func_resource_qcaps_output *resp; 7393 struct hwrm_func_resource_qcaps_input *req; 7394 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7395 int rc; 7396 7397 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7398 if (rc) 7399 return rc; 7400 7401 req->fid = cpu_to_le16(0xffff); 7402 resp = hwrm_req_hold(bp, req); 7403 rc = hwrm_req_send_silent(bp, req); 7404 if (rc) 7405 goto hwrm_func_resc_qcaps_exit; 7406 7407 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7408 if (!all) 7409 goto hwrm_func_resc_qcaps_exit; 7410 7411 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7412 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7413 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7414 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7415 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7416 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7417 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7418 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7419 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7420 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7421 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7422 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7423 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7424 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7425 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7426 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7427 7428 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7429 u16 max_msix = le16_to_cpu(resp->max_msix); 7430 7431 hw_resc->max_nqs = max_msix; 7432 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7433 } 7434 7435 if (BNXT_PF(bp)) { 7436 struct bnxt_pf_info *pf = &bp->pf; 7437 7438 pf->vf_resv_strategy = 7439 le16_to_cpu(resp->vf_reservation_strategy); 7440 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7441 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7442 } 7443 hwrm_func_resc_qcaps_exit: 7444 hwrm_req_drop(bp, req); 7445 return rc; 7446 } 7447 7448 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7449 { 7450 struct hwrm_port_mac_ptp_qcfg_output *resp; 7451 struct hwrm_port_mac_ptp_qcfg_input *req; 7452 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7453 bool phc_cfg; 7454 u8 flags; 7455 int rc; 7456 7457 if (bp->hwrm_spec_code < 0x10801) { 7458 rc = -ENODEV; 7459 goto no_ptp; 7460 } 7461 7462 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7463 if (rc) 7464 goto no_ptp; 7465 7466 req->port_id = cpu_to_le16(bp->pf.port_id); 7467 resp = hwrm_req_hold(bp, req); 7468 rc = hwrm_req_send(bp, req); 7469 if (rc) 7470 goto exit; 7471 7472 flags = resp->flags; 7473 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7474 rc = -ENODEV; 7475 goto exit; 7476 } 7477 if (!ptp) { 7478 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7479 if (!ptp) { 7480 rc = -ENOMEM; 7481 goto exit; 7482 } 7483 ptp->bp = bp; 7484 bp->ptp_cfg = ptp; 7485 } 7486 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7487 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7488 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7489 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7490 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7491 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7492 } else { 7493 rc = -ENODEV; 7494 goto exit; 7495 } 7496 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 7497 rc = bnxt_ptp_init(bp, phc_cfg); 7498 if (rc) 7499 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7500 exit: 7501 hwrm_req_drop(bp, req); 7502 if (!rc) 7503 return 0; 7504 7505 no_ptp: 7506 bnxt_ptp_clear(bp); 7507 kfree(ptp); 7508 bp->ptp_cfg = NULL; 7509 return rc; 7510 } 7511 7512 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7513 { 7514 struct hwrm_func_qcaps_output *resp; 7515 struct hwrm_func_qcaps_input *req; 7516 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7517 u32 flags, flags_ext; 7518 int rc; 7519 7520 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7521 if (rc) 7522 return rc; 7523 7524 req->fid = cpu_to_le16(0xffff); 7525 resp = hwrm_req_hold(bp, req); 7526 rc = hwrm_req_send(bp, req); 7527 if (rc) 7528 goto hwrm_func_qcaps_exit; 7529 7530 flags = le32_to_cpu(resp->flags); 7531 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7532 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7533 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7534 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7535 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7536 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7537 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7538 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7539 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7540 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7541 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7542 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7543 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7544 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7545 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7546 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7547 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 7548 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 7549 7550 flags_ext = le32_to_cpu(resp->flags_ext); 7551 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7552 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7553 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7554 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7555 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 7556 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 7557 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 7558 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 7559 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 7560 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 7561 7562 bp->tx_push_thresh = 0; 7563 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7564 BNXT_FW_MAJ(bp) > 217) 7565 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7566 7567 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7568 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7569 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7570 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7571 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7572 if (!hw_resc->max_hw_ring_grps) 7573 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7574 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7575 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7576 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7577 7578 if (BNXT_PF(bp)) { 7579 struct bnxt_pf_info *pf = &bp->pf; 7580 7581 pf->fw_fid = le16_to_cpu(resp->fid); 7582 pf->port_id = le16_to_cpu(resp->port_id); 7583 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7584 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7585 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7586 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7587 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7588 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7589 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7590 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7591 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7592 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7593 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7594 bp->flags |= BNXT_FLAG_WOL_CAP; 7595 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7596 __bnxt_hwrm_ptp_qcfg(bp); 7597 } else { 7598 bnxt_ptp_clear(bp); 7599 kfree(bp->ptp_cfg); 7600 bp->ptp_cfg = NULL; 7601 } 7602 } else { 7603 #ifdef CONFIG_BNXT_SRIOV 7604 struct bnxt_vf_info *vf = &bp->vf; 7605 7606 vf->fw_fid = le16_to_cpu(resp->fid); 7607 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7608 #endif 7609 } 7610 7611 hwrm_func_qcaps_exit: 7612 hwrm_req_drop(bp, req); 7613 return rc; 7614 } 7615 7616 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 7617 { 7618 struct hwrm_dbg_qcaps_output *resp; 7619 struct hwrm_dbg_qcaps_input *req; 7620 int rc; 7621 7622 bp->fw_dbg_cap = 0; 7623 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 7624 return; 7625 7626 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 7627 if (rc) 7628 return; 7629 7630 req->fid = cpu_to_le16(0xffff); 7631 resp = hwrm_req_hold(bp, req); 7632 rc = hwrm_req_send(bp, req); 7633 if (rc) 7634 goto hwrm_dbg_qcaps_exit; 7635 7636 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 7637 7638 hwrm_dbg_qcaps_exit: 7639 hwrm_req_drop(bp, req); 7640 } 7641 7642 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7643 7644 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7645 { 7646 int rc; 7647 7648 rc = __bnxt_hwrm_func_qcaps(bp); 7649 if (rc) 7650 return rc; 7651 7652 bnxt_hwrm_dbg_qcaps(bp); 7653 7654 rc = bnxt_hwrm_queue_qportcfg(bp); 7655 if (rc) { 7656 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7657 return rc; 7658 } 7659 if (bp->hwrm_spec_code >= 0x10803) { 7660 rc = bnxt_alloc_ctx_mem(bp); 7661 if (rc) 7662 return rc; 7663 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7664 if (!rc) 7665 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7666 } 7667 return 0; 7668 } 7669 7670 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7671 { 7672 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7673 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7674 u32 flags; 7675 int rc; 7676 7677 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7678 return 0; 7679 7680 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7681 if (rc) 7682 return rc; 7683 7684 resp = hwrm_req_hold(bp, req); 7685 rc = hwrm_req_send(bp, req); 7686 if (rc) 7687 goto hwrm_cfa_adv_qcaps_exit; 7688 7689 flags = le32_to_cpu(resp->flags); 7690 if (flags & 7691 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7692 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7693 7694 hwrm_cfa_adv_qcaps_exit: 7695 hwrm_req_drop(bp, req); 7696 return rc; 7697 } 7698 7699 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7700 { 7701 if (bp->fw_health) 7702 return 0; 7703 7704 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7705 if (!bp->fw_health) 7706 return -ENOMEM; 7707 7708 mutex_init(&bp->fw_health->lock); 7709 return 0; 7710 } 7711 7712 static int bnxt_alloc_fw_health(struct bnxt *bp) 7713 { 7714 int rc; 7715 7716 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7717 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7718 return 0; 7719 7720 rc = __bnxt_alloc_fw_health(bp); 7721 if (rc) { 7722 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7723 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7724 return rc; 7725 } 7726 7727 return 0; 7728 } 7729 7730 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7731 { 7732 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7733 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7734 BNXT_FW_HEALTH_WIN_MAP_OFF); 7735 } 7736 7737 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7738 { 7739 struct bnxt_fw_health *fw_health = bp->fw_health; 7740 u32 reg_type; 7741 7742 if (!fw_health) 7743 return; 7744 7745 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7746 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7747 fw_health->status_reliable = false; 7748 7749 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 7750 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7751 fw_health->resets_reliable = false; 7752 } 7753 7754 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7755 { 7756 void __iomem *hs; 7757 u32 status_loc; 7758 u32 reg_type; 7759 u32 sig; 7760 7761 if (bp->fw_health) 7762 bp->fw_health->status_reliable = false; 7763 7764 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7765 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7766 7767 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7768 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7769 if (!bp->chip_num) { 7770 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7771 bp->chip_num = readl(bp->bar0 + 7772 BNXT_FW_HEALTH_WIN_BASE + 7773 BNXT_GRC_REG_CHIP_NUM); 7774 } 7775 if (!BNXT_CHIP_P5(bp)) 7776 return; 7777 7778 status_loc = BNXT_GRC_REG_STATUS_P5 | 7779 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7780 } else { 7781 status_loc = readl(hs + offsetof(struct hcomm_status, 7782 fw_status_loc)); 7783 } 7784 7785 if (__bnxt_alloc_fw_health(bp)) { 7786 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7787 return; 7788 } 7789 7790 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7791 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7792 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7793 __bnxt_map_fw_health_reg(bp, status_loc); 7794 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7795 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7796 } 7797 7798 bp->fw_health->status_reliable = true; 7799 } 7800 7801 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7802 { 7803 struct bnxt_fw_health *fw_health = bp->fw_health; 7804 u32 reg_base = 0xffffffff; 7805 int i; 7806 7807 bp->fw_health->status_reliable = false; 7808 bp->fw_health->resets_reliable = false; 7809 /* Only pre-map the monitoring GRC registers using window 3 */ 7810 for (i = 0; i < 4; i++) { 7811 u32 reg = fw_health->regs[i]; 7812 7813 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7814 continue; 7815 if (reg_base == 0xffffffff) 7816 reg_base = reg & BNXT_GRC_BASE_MASK; 7817 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7818 return -ERANGE; 7819 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7820 } 7821 bp->fw_health->status_reliable = true; 7822 bp->fw_health->resets_reliable = true; 7823 if (reg_base == 0xffffffff) 7824 return 0; 7825 7826 __bnxt_map_fw_health_reg(bp, reg_base); 7827 return 0; 7828 } 7829 7830 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 7831 { 7832 if (!bp->fw_health) 7833 return; 7834 7835 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 7836 bp->fw_health->status_reliable = true; 7837 bp->fw_health->resets_reliable = true; 7838 } else { 7839 bnxt_try_map_fw_health_reg(bp); 7840 } 7841 } 7842 7843 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7844 { 7845 struct bnxt_fw_health *fw_health = bp->fw_health; 7846 struct hwrm_error_recovery_qcfg_output *resp; 7847 struct hwrm_error_recovery_qcfg_input *req; 7848 int rc, i; 7849 7850 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7851 return 0; 7852 7853 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 7854 if (rc) 7855 return rc; 7856 7857 resp = hwrm_req_hold(bp, req); 7858 rc = hwrm_req_send(bp, req); 7859 if (rc) 7860 goto err_recovery_out; 7861 fw_health->flags = le32_to_cpu(resp->flags); 7862 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7863 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7864 rc = -EINVAL; 7865 goto err_recovery_out; 7866 } 7867 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7868 fw_health->master_func_wait_dsecs = 7869 le32_to_cpu(resp->master_func_wait_period); 7870 fw_health->normal_func_wait_dsecs = 7871 le32_to_cpu(resp->normal_func_wait_period); 7872 fw_health->post_reset_wait_dsecs = 7873 le32_to_cpu(resp->master_func_wait_period_after_reset); 7874 fw_health->post_reset_max_wait_dsecs = 7875 le32_to_cpu(resp->max_bailout_time_after_reset); 7876 fw_health->regs[BNXT_FW_HEALTH_REG] = 7877 le32_to_cpu(resp->fw_health_status_reg); 7878 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7879 le32_to_cpu(resp->fw_heartbeat_reg); 7880 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7881 le32_to_cpu(resp->fw_reset_cnt_reg); 7882 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7883 le32_to_cpu(resp->reset_inprogress_reg); 7884 fw_health->fw_reset_inprog_reg_mask = 7885 le32_to_cpu(resp->reset_inprogress_reg_mask); 7886 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7887 if (fw_health->fw_reset_seq_cnt >= 16) { 7888 rc = -EINVAL; 7889 goto err_recovery_out; 7890 } 7891 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7892 fw_health->fw_reset_seq_regs[i] = 7893 le32_to_cpu(resp->reset_reg[i]); 7894 fw_health->fw_reset_seq_vals[i] = 7895 le32_to_cpu(resp->reset_reg_val[i]); 7896 fw_health->fw_reset_seq_delay_msec[i] = 7897 resp->delay_after_reset[i]; 7898 } 7899 err_recovery_out: 7900 hwrm_req_drop(bp, req); 7901 if (!rc) 7902 rc = bnxt_map_fw_health_regs(bp); 7903 if (rc) 7904 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7905 return rc; 7906 } 7907 7908 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7909 { 7910 struct hwrm_func_reset_input *req; 7911 int rc; 7912 7913 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 7914 if (rc) 7915 return rc; 7916 7917 req->enables = 0; 7918 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 7919 return hwrm_req_send(bp, req); 7920 } 7921 7922 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7923 { 7924 struct hwrm_nvm_get_dev_info_output nvm_info; 7925 7926 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7927 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7928 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7929 nvm_info.nvm_cfg_ver_upd); 7930 } 7931 7932 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7933 { 7934 struct hwrm_queue_qportcfg_output *resp; 7935 struct hwrm_queue_qportcfg_input *req; 7936 u8 i, j, *qptr; 7937 bool no_rdma; 7938 int rc = 0; 7939 7940 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 7941 if (rc) 7942 return rc; 7943 7944 resp = hwrm_req_hold(bp, req); 7945 rc = hwrm_req_send(bp, req); 7946 if (rc) 7947 goto qportcfg_exit; 7948 7949 if (!resp->max_configurable_queues) { 7950 rc = -EINVAL; 7951 goto qportcfg_exit; 7952 } 7953 bp->max_tc = resp->max_configurable_queues; 7954 bp->max_lltc = resp->max_configurable_lossless_queues; 7955 if (bp->max_tc > BNXT_MAX_QUEUE) 7956 bp->max_tc = BNXT_MAX_QUEUE; 7957 7958 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7959 qptr = &resp->queue_id0; 7960 for (i = 0, j = 0; i < bp->max_tc; i++) { 7961 bp->q_info[j].queue_id = *qptr; 7962 bp->q_ids[i] = *qptr++; 7963 bp->q_info[j].queue_profile = *qptr++; 7964 bp->tc_to_qidx[j] = j; 7965 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7966 (no_rdma && BNXT_PF(bp))) 7967 j++; 7968 } 7969 bp->max_q = bp->max_tc; 7970 bp->max_tc = max_t(u8, j, 1); 7971 7972 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7973 bp->max_tc = 1; 7974 7975 if (bp->max_lltc > bp->max_tc) 7976 bp->max_lltc = bp->max_tc; 7977 7978 qportcfg_exit: 7979 hwrm_req_drop(bp, req); 7980 return rc; 7981 } 7982 7983 static int bnxt_hwrm_poll(struct bnxt *bp) 7984 { 7985 struct hwrm_ver_get_input *req; 7986 int rc; 7987 7988 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7989 if (rc) 7990 return rc; 7991 7992 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7993 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7994 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7995 7996 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 7997 rc = hwrm_req_send(bp, req); 7998 return rc; 7999 } 8000 8001 static int bnxt_hwrm_ver_get(struct bnxt *bp) 8002 { 8003 struct hwrm_ver_get_output *resp; 8004 struct hwrm_ver_get_input *req; 8005 u16 fw_maj, fw_min, fw_bld, fw_rsv; 8006 u32 dev_caps_cfg, hwrm_ver; 8007 int rc, len; 8008 8009 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8010 if (rc) 8011 return rc; 8012 8013 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 8014 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 8015 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8016 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8017 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8018 8019 resp = hwrm_req_hold(bp, req); 8020 rc = hwrm_req_send(bp, req); 8021 if (rc) 8022 goto hwrm_ver_get_exit; 8023 8024 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 8025 8026 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 8027 resp->hwrm_intf_min_8b << 8 | 8028 resp->hwrm_intf_upd_8b; 8029 if (resp->hwrm_intf_maj_8b < 1) { 8030 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 8031 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8032 resp->hwrm_intf_upd_8b); 8033 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 8034 } 8035 8036 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 8037 HWRM_VERSION_UPDATE; 8038 8039 if (bp->hwrm_spec_code > hwrm_ver) 8040 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8041 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 8042 HWRM_VERSION_UPDATE); 8043 else 8044 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8045 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8046 resp->hwrm_intf_upd_8b); 8047 8048 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 8049 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 8050 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 8051 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 8052 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 8053 len = FW_VER_STR_LEN; 8054 } else { 8055 fw_maj = resp->hwrm_fw_maj_8b; 8056 fw_min = resp->hwrm_fw_min_8b; 8057 fw_bld = resp->hwrm_fw_bld_8b; 8058 fw_rsv = resp->hwrm_fw_rsvd_8b; 8059 len = BC_HWRM_STR_LEN; 8060 } 8061 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 8062 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 8063 fw_rsv); 8064 8065 if (strlen(resp->active_pkg_name)) { 8066 int fw_ver_len = strlen(bp->fw_ver_str); 8067 8068 snprintf(bp->fw_ver_str + fw_ver_len, 8069 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8070 resp->active_pkg_name); 8071 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8072 } 8073 8074 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8075 if (!bp->hwrm_cmd_timeout) 8076 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8077 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 8078 if (!bp->hwrm_cmd_max_timeout) 8079 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 8080 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 8081 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 8082 bp->hwrm_cmd_max_timeout / 1000); 8083 8084 if (resp->hwrm_intf_maj_8b >= 1) { 8085 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8086 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8087 } 8088 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8089 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8090 8091 bp->chip_num = le16_to_cpu(resp->chip_num); 8092 bp->chip_rev = resp->chip_rev; 8093 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8094 !resp->chip_metal) 8095 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8096 8097 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8098 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8099 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8100 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8101 8102 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8103 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8104 8105 if (dev_caps_cfg & 8106 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8107 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8108 8109 if (dev_caps_cfg & 8110 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8111 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8112 8113 if (dev_caps_cfg & 8114 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8115 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8116 8117 hwrm_ver_get_exit: 8118 hwrm_req_drop(bp, req); 8119 return rc; 8120 } 8121 8122 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8123 { 8124 struct hwrm_fw_set_time_input *req; 8125 struct tm tm; 8126 time64_t now = ktime_get_real_seconds(); 8127 int rc; 8128 8129 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8130 bp->hwrm_spec_code < 0x10400) 8131 return -EOPNOTSUPP; 8132 8133 time64_to_tm(now, 0, &tm); 8134 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8135 if (rc) 8136 return rc; 8137 8138 req->year = cpu_to_le16(1900 + tm.tm_year); 8139 req->month = 1 + tm.tm_mon; 8140 req->day = tm.tm_mday; 8141 req->hour = tm.tm_hour; 8142 req->minute = tm.tm_min; 8143 req->second = tm.tm_sec; 8144 return hwrm_req_send(bp, req); 8145 } 8146 8147 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8148 { 8149 u64 sw_tmp; 8150 8151 hw &= mask; 8152 sw_tmp = (*sw & ~mask) | hw; 8153 if (hw < (*sw & mask)) 8154 sw_tmp += mask + 1; 8155 WRITE_ONCE(*sw, sw_tmp); 8156 } 8157 8158 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8159 int count, bool ignore_zero) 8160 { 8161 int i; 8162 8163 for (i = 0; i < count; i++) { 8164 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8165 8166 if (ignore_zero && !hw) 8167 continue; 8168 8169 if (masks[i] == -1ULL) 8170 sw_stats[i] = hw; 8171 else 8172 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8173 } 8174 } 8175 8176 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8177 { 8178 if (!stats->hw_stats) 8179 return; 8180 8181 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8182 stats->hw_masks, stats->len / 8, false); 8183 } 8184 8185 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8186 { 8187 struct bnxt_stats_mem *ring0_stats; 8188 bool ignore_zero = false; 8189 int i; 8190 8191 /* Chip bug. Counter intermittently becomes 0. */ 8192 if (bp->flags & BNXT_FLAG_CHIP_P5) 8193 ignore_zero = true; 8194 8195 for (i = 0; i < bp->cp_nr_rings; i++) { 8196 struct bnxt_napi *bnapi = bp->bnapi[i]; 8197 struct bnxt_cp_ring_info *cpr; 8198 struct bnxt_stats_mem *stats; 8199 8200 cpr = &bnapi->cp_ring; 8201 stats = &cpr->stats; 8202 if (!i) 8203 ring0_stats = stats; 8204 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8205 ring0_stats->hw_masks, 8206 ring0_stats->len / 8, ignore_zero); 8207 } 8208 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8209 struct bnxt_stats_mem *stats = &bp->port_stats; 8210 __le64 *hw_stats = stats->hw_stats; 8211 u64 *sw_stats = stats->sw_stats; 8212 u64 *masks = stats->hw_masks; 8213 int cnt; 8214 8215 cnt = sizeof(struct rx_port_stats) / 8; 8216 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8217 8218 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8219 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8220 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8221 cnt = sizeof(struct tx_port_stats) / 8; 8222 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8223 } 8224 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8225 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8226 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8227 } 8228 } 8229 8230 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8231 { 8232 struct hwrm_port_qstats_input *req; 8233 struct bnxt_pf_info *pf = &bp->pf; 8234 int rc; 8235 8236 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8237 return 0; 8238 8239 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8240 return -EOPNOTSUPP; 8241 8242 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8243 if (rc) 8244 return rc; 8245 8246 req->flags = flags; 8247 req->port_id = cpu_to_le16(pf->port_id); 8248 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8249 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8250 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8251 return hwrm_req_send(bp, req); 8252 } 8253 8254 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8255 { 8256 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8257 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8258 struct hwrm_port_qstats_ext_output *resp_qs; 8259 struct hwrm_port_qstats_ext_input *req_qs; 8260 struct bnxt_pf_info *pf = &bp->pf; 8261 u32 tx_stat_size; 8262 int rc; 8263 8264 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8265 return 0; 8266 8267 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8268 return -EOPNOTSUPP; 8269 8270 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8271 if (rc) 8272 return rc; 8273 8274 req_qs->flags = flags; 8275 req_qs->port_id = cpu_to_le16(pf->port_id); 8276 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8277 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8278 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8279 sizeof(struct tx_port_stats_ext) : 0; 8280 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8281 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8282 resp_qs = hwrm_req_hold(bp, req_qs); 8283 rc = hwrm_req_send(bp, req_qs); 8284 if (!rc) { 8285 bp->fw_rx_stats_ext_size = 8286 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8287 if (BNXT_FW_MAJ(bp) < 220 && 8288 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 8289 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 8290 8291 bp->fw_tx_stats_ext_size = tx_stat_size ? 8292 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8293 } else { 8294 bp->fw_rx_stats_ext_size = 0; 8295 bp->fw_tx_stats_ext_size = 0; 8296 } 8297 hwrm_req_drop(bp, req_qs); 8298 8299 if (flags) 8300 return rc; 8301 8302 if (bp->fw_tx_stats_ext_size <= 8303 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8304 bp->pri2cos_valid = 0; 8305 return rc; 8306 } 8307 8308 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8309 if (rc) 8310 return rc; 8311 8312 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8313 8314 resp_qc = hwrm_req_hold(bp, req_qc); 8315 rc = hwrm_req_send(bp, req_qc); 8316 if (!rc) { 8317 u8 *pri2cos; 8318 int i, j; 8319 8320 pri2cos = &resp_qc->pri0_cos_queue_id; 8321 for (i = 0; i < 8; i++) { 8322 u8 queue_id = pri2cos[i]; 8323 u8 queue_idx; 8324 8325 /* Per port queue IDs start from 0, 10, 20, etc */ 8326 queue_idx = queue_id % 10; 8327 if (queue_idx > BNXT_MAX_QUEUE) { 8328 bp->pri2cos_valid = false; 8329 hwrm_req_drop(bp, req_qc); 8330 return rc; 8331 } 8332 for (j = 0; j < bp->max_q; j++) { 8333 if (bp->q_ids[j] == queue_id) 8334 bp->pri2cos_idx[i] = queue_idx; 8335 } 8336 } 8337 bp->pri2cos_valid = true; 8338 } 8339 hwrm_req_drop(bp, req_qc); 8340 8341 return rc; 8342 } 8343 8344 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8345 { 8346 bnxt_hwrm_tunnel_dst_port_free(bp, 8347 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8348 bnxt_hwrm_tunnel_dst_port_free(bp, 8349 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8350 } 8351 8352 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8353 { 8354 int rc, i; 8355 u32 tpa_flags = 0; 8356 8357 if (set_tpa) 8358 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8359 else if (BNXT_NO_FW_ACCESS(bp)) 8360 return 0; 8361 for (i = 0; i < bp->nr_vnics; i++) { 8362 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8363 if (rc) { 8364 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8365 i, rc); 8366 return rc; 8367 } 8368 } 8369 return 0; 8370 } 8371 8372 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8373 { 8374 int i; 8375 8376 for (i = 0; i < bp->nr_vnics; i++) 8377 bnxt_hwrm_vnic_set_rss(bp, i, false); 8378 } 8379 8380 static void bnxt_clear_vnic(struct bnxt *bp) 8381 { 8382 if (!bp->vnic_info) 8383 return; 8384 8385 bnxt_hwrm_clear_vnic_filter(bp); 8386 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8387 /* clear all RSS setting before free vnic ctx */ 8388 bnxt_hwrm_clear_vnic_rss(bp); 8389 bnxt_hwrm_vnic_ctx_free(bp); 8390 } 8391 /* before free the vnic, undo the vnic tpa settings */ 8392 if (bp->flags & BNXT_FLAG_TPA) 8393 bnxt_set_tpa(bp, false); 8394 bnxt_hwrm_vnic_free(bp); 8395 if (bp->flags & BNXT_FLAG_CHIP_P5) 8396 bnxt_hwrm_vnic_ctx_free(bp); 8397 } 8398 8399 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8400 bool irq_re_init) 8401 { 8402 bnxt_clear_vnic(bp); 8403 bnxt_hwrm_ring_free(bp, close_path); 8404 bnxt_hwrm_ring_grp_free(bp); 8405 if (irq_re_init) { 8406 bnxt_hwrm_stat_ctx_free(bp); 8407 bnxt_hwrm_free_tunnel_ports(bp); 8408 } 8409 } 8410 8411 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8412 { 8413 struct hwrm_func_cfg_input *req; 8414 u8 evb_mode; 8415 int rc; 8416 8417 if (br_mode == BRIDGE_MODE_VEB) 8418 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8419 else if (br_mode == BRIDGE_MODE_VEPA) 8420 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8421 else 8422 return -EINVAL; 8423 8424 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8425 if (rc) 8426 return rc; 8427 8428 req->fid = cpu_to_le16(0xffff); 8429 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8430 req->evb_mode = evb_mode; 8431 return hwrm_req_send(bp, req); 8432 } 8433 8434 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8435 { 8436 struct hwrm_func_cfg_input *req; 8437 int rc; 8438 8439 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8440 return 0; 8441 8442 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8443 if (rc) 8444 return rc; 8445 8446 req->fid = cpu_to_le16(0xffff); 8447 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8448 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8449 if (size == 128) 8450 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8451 8452 return hwrm_req_send(bp, req); 8453 } 8454 8455 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8456 { 8457 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8458 int rc; 8459 8460 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8461 goto skip_rss_ctx; 8462 8463 /* allocate context for vnic */ 8464 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8465 if (rc) { 8466 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8467 vnic_id, rc); 8468 goto vnic_setup_err; 8469 } 8470 bp->rsscos_nr_ctxs++; 8471 8472 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8473 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8474 if (rc) { 8475 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8476 vnic_id, rc); 8477 goto vnic_setup_err; 8478 } 8479 bp->rsscos_nr_ctxs++; 8480 } 8481 8482 skip_rss_ctx: 8483 /* configure default vnic, ring grp */ 8484 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8485 if (rc) { 8486 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8487 vnic_id, rc); 8488 goto vnic_setup_err; 8489 } 8490 8491 /* Enable RSS hashing on vnic */ 8492 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8493 if (rc) { 8494 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8495 vnic_id, rc); 8496 goto vnic_setup_err; 8497 } 8498 8499 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8500 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8501 if (rc) { 8502 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8503 vnic_id, rc); 8504 } 8505 } 8506 8507 vnic_setup_err: 8508 return rc; 8509 } 8510 8511 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8512 { 8513 int rc, i, nr_ctxs; 8514 8515 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8516 for (i = 0; i < nr_ctxs; i++) { 8517 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8518 if (rc) { 8519 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8520 vnic_id, i, rc); 8521 break; 8522 } 8523 bp->rsscos_nr_ctxs++; 8524 } 8525 if (i < nr_ctxs) 8526 return -ENOMEM; 8527 8528 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8529 if (rc) { 8530 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8531 vnic_id, rc); 8532 return rc; 8533 } 8534 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8535 if (rc) { 8536 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8537 vnic_id, rc); 8538 return rc; 8539 } 8540 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8541 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8542 if (rc) { 8543 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8544 vnic_id, rc); 8545 } 8546 } 8547 return rc; 8548 } 8549 8550 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8551 { 8552 if (bp->flags & BNXT_FLAG_CHIP_P5) 8553 return __bnxt_setup_vnic_p5(bp, vnic_id); 8554 else 8555 return __bnxt_setup_vnic(bp, vnic_id); 8556 } 8557 8558 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8559 { 8560 #ifdef CONFIG_RFS_ACCEL 8561 int i, rc = 0; 8562 8563 if (bp->flags & BNXT_FLAG_CHIP_P5) 8564 return 0; 8565 8566 for (i = 0; i < bp->rx_nr_rings; i++) { 8567 struct bnxt_vnic_info *vnic; 8568 u16 vnic_id = i + 1; 8569 u16 ring_id = i; 8570 8571 if (vnic_id >= bp->nr_vnics) 8572 break; 8573 8574 vnic = &bp->vnic_info[vnic_id]; 8575 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8576 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8577 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8578 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8579 if (rc) { 8580 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8581 vnic_id, rc); 8582 break; 8583 } 8584 rc = bnxt_setup_vnic(bp, vnic_id); 8585 if (rc) 8586 break; 8587 } 8588 return rc; 8589 #else 8590 return 0; 8591 #endif 8592 } 8593 8594 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8595 static bool bnxt_promisc_ok(struct bnxt *bp) 8596 { 8597 #ifdef CONFIG_BNXT_SRIOV 8598 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8599 return false; 8600 #endif 8601 return true; 8602 } 8603 8604 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8605 { 8606 unsigned int rc = 0; 8607 8608 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8609 if (rc) { 8610 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8611 rc); 8612 return rc; 8613 } 8614 8615 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8616 if (rc) { 8617 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8618 rc); 8619 return rc; 8620 } 8621 return rc; 8622 } 8623 8624 static int bnxt_cfg_rx_mode(struct bnxt *); 8625 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8626 8627 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8628 { 8629 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8630 int rc = 0; 8631 unsigned int rx_nr_rings = bp->rx_nr_rings; 8632 8633 if (irq_re_init) { 8634 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8635 if (rc) { 8636 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8637 rc); 8638 goto err_out; 8639 } 8640 } 8641 8642 rc = bnxt_hwrm_ring_alloc(bp); 8643 if (rc) { 8644 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8645 goto err_out; 8646 } 8647 8648 rc = bnxt_hwrm_ring_grp_alloc(bp); 8649 if (rc) { 8650 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8651 goto err_out; 8652 } 8653 8654 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8655 rx_nr_rings--; 8656 8657 /* default vnic 0 */ 8658 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8659 if (rc) { 8660 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8661 goto err_out; 8662 } 8663 8664 rc = bnxt_setup_vnic(bp, 0); 8665 if (rc) 8666 goto err_out; 8667 8668 if (bp->flags & BNXT_FLAG_RFS) { 8669 rc = bnxt_alloc_rfs_vnics(bp); 8670 if (rc) 8671 goto err_out; 8672 } 8673 8674 if (bp->flags & BNXT_FLAG_TPA) { 8675 rc = bnxt_set_tpa(bp, true); 8676 if (rc) 8677 goto err_out; 8678 } 8679 8680 if (BNXT_VF(bp)) 8681 bnxt_update_vf_mac(bp); 8682 8683 /* Filter for default vnic 0 */ 8684 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8685 if (rc) { 8686 if (BNXT_VF(bp) && rc == -ENODEV) 8687 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 8688 else 8689 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8690 goto err_out; 8691 } 8692 vnic->uc_filter_count = 1; 8693 8694 vnic->rx_mask = 0; 8695 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 8696 goto skip_rx_mask; 8697 8698 if (bp->dev->flags & IFF_BROADCAST) 8699 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8700 8701 if (bp->dev->flags & IFF_PROMISC) 8702 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8703 8704 if (bp->dev->flags & IFF_ALLMULTI) { 8705 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8706 vnic->mc_list_count = 0; 8707 } else if (bp->dev->flags & IFF_MULTICAST) { 8708 u32 mask = 0; 8709 8710 bnxt_mc_list_updated(bp, &mask); 8711 vnic->rx_mask |= mask; 8712 } 8713 8714 rc = bnxt_cfg_rx_mode(bp); 8715 if (rc) 8716 goto err_out; 8717 8718 skip_rx_mask: 8719 rc = bnxt_hwrm_set_coal(bp); 8720 if (rc) 8721 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8722 rc); 8723 8724 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8725 rc = bnxt_setup_nitroa0_vnic(bp); 8726 if (rc) 8727 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8728 rc); 8729 } 8730 8731 if (BNXT_VF(bp)) { 8732 bnxt_hwrm_func_qcfg(bp); 8733 netdev_update_features(bp->dev); 8734 } 8735 8736 return 0; 8737 8738 err_out: 8739 bnxt_hwrm_resource_free(bp, 0, true); 8740 8741 return rc; 8742 } 8743 8744 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8745 { 8746 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8747 return 0; 8748 } 8749 8750 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8751 { 8752 bnxt_init_cp_rings(bp); 8753 bnxt_init_rx_rings(bp); 8754 bnxt_init_tx_rings(bp); 8755 bnxt_init_ring_grps(bp, irq_re_init); 8756 bnxt_init_vnics(bp); 8757 8758 return bnxt_init_chip(bp, irq_re_init); 8759 } 8760 8761 static int bnxt_set_real_num_queues(struct bnxt *bp) 8762 { 8763 int rc; 8764 struct net_device *dev = bp->dev; 8765 8766 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8767 bp->tx_nr_rings_xdp); 8768 if (rc) 8769 return rc; 8770 8771 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8772 if (rc) 8773 return rc; 8774 8775 #ifdef CONFIG_RFS_ACCEL 8776 if (bp->flags & BNXT_FLAG_RFS) 8777 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8778 #endif 8779 8780 return rc; 8781 } 8782 8783 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8784 bool shared) 8785 { 8786 int _rx = *rx, _tx = *tx; 8787 8788 if (shared) { 8789 *rx = min_t(int, _rx, max); 8790 *tx = min_t(int, _tx, max); 8791 } else { 8792 if (max < 2) 8793 return -ENOMEM; 8794 8795 while (_rx + _tx > max) { 8796 if (_rx > _tx && _rx > 1) 8797 _rx--; 8798 else if (_tx > 1) 8799 _tx--; 8800 } 8801 *rx = _rx; 8802 *tx = _tx; 8803 } 8804 return 0; 8805 } 8806 8807 static void bnxt_setup_msix(struct bnxt *bp) 8808 { 8809 const int len = sizeof(bp->irq_tbl[0].name); 8810 struct net_device *dev = bp->dev; 8811 int tcs, i; 8812 8813 tcs = netdev_get_num_tc(dev); 8814 if (tcs) { 8815 int i, off, count; 8816 8817 for (i = 0; i < tcs; i++) { 8818 count = bp->tx_nr_rings_per_tc; 8819 off = i * count; 8820 netdev_set_tc_queue(dev, i, count, off); 8821 } 8822 } 8823 8824 for (i = 0; i < bp->cp_nr_rings; i++) { 8825 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8826 char *attr; 8827 8828 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8829 attr = "TxRx"; 8830 else if (i < bp->rx_nr_rings) 8831 attr = "rx"; 8832 else 8833 attr = "tx"; 8834 8835 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8836 attr, i); 8837 bp->irq_tbl[map_idx].handler = bnxt_msix; 8838 } 8839 } 8840 8841 static void bnxt_setup_inta(struct bnxt *bp) 8842 { 8843 const int len = sizeof(bp->irq_tbl[0].name); 8844 8845 if (netdev_get_num_tc(bp->dev)) 8846 netdev_reset_tc(bp->dev); 8847 8848 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8849 0); 8850 bp->irq_tbl[0].handler = bnxt_inta; 8851 } 8852 8853 static int bnxt_init_int_mode(struct bnxt *bp); 8854 8855 static int bnxt_setup_int_mode(struct bnxt *bp) 8856 { 8857 int rc; 8858 8859 if (!bp->irq_tbl) { 8860 rc = bnxt_init_int_mode(bp); 8861 if (rc || !bp->irq_tbl) 8862 return rc ?: -ENODEV; 8863 } 8864 8865 if (bp->flags & BNXT_FLAG_USING_MSIX) 8866 bnxt_setup_msix(bp); 8867 else 8868 bnxt_setup_inta(bp); 8869 8870 rc = bnxt_set_real_num_queues(bp); 8871 return rc; 8872 } 8873 8874 #ifdef CONFIG_RFS_ACCEL 8875 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8876 { 8877 return bp->hw_resc.max_rsscos_ctxs; 8878 } 8879 8880 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8881 { 8882 return bp->hw_resc.max_vnics; 8883 } 8884 #endif 8885 8886 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8887 { 8888 return bp->hw_resc.max_stat_ctxs; 8889 } 8890 8891 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8892 { 8893 return bp->hw_resc.max_cp_rings; 8894 } 8895 8896 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8897 { 8898 unsigned int cp = bp->hw_resc.max_cp_rings; 8899 8900 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8901 cp -= bnxt_get_ulp_msix_num(bp); 8902 8903 return cp; 8904 } 8905 8906 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8907 { 8908 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8909 8910 if (bp->flags & BNXT_FLAG_CHIP_P5) 8911 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8912 8913 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8914 } 8915 8916 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8917 { 8918 bp->hw_resc.max_irqs = max_irqs; 8919 } 8920 8921 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8922 { 8923 unsigned int cp; 8924 8925 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8926 if (bp->flags & BNXT_FLAG_CHIP_P5) 8927 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8928 else 8929 return cp - bp->cp_nr_rings; 8930 } 8931 8932 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8933 { 8934 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8935 } 8936 8937 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8938 { 8939 int max_cp = bnxt_get_max_func_cp_rings(bp); 8940 int max_irq = bnxt_get_max_func_irqs(bp); 8941 int total_req = bp->cp_nr_rings + num; 8942 int max_idx, avail_msix; 8943 8944 max_idx = bp->total_irqs; 8945 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8946 max_idx = min_t(int, bp->total_irqs, max_cp); 8947 avail_msix = max_idx - bp->cp_nr_rings; 8948 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8949 return avail_msix; 8950 8951 if (max_irq < total_req) { 8952 num = max_irq - bp->cp_nr_rings; 8953 if (num <= 0) 8954 return 0; 8955 } 8956 return num; 8957 } 8958 8959 static int bnxt_get_num_msix(struct bnxt *bp) 8960 { 8961 if (!BNXT_NEW_RM(bp)) 8962 return bnxt_get_max_func_irqs(bp); 8963 8964 return bnxt_nq_rings_in_use(bp); 8965 } 8966 8967 static int bnxt_init_msix(struct bnxt *bp) 8968 { 8969 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8970 struct msix_entry *msix_ent; 8971 8972 total_vecs = bnxt_get_num_msix(bp); 8973 max = bnxt_get_max_func_irqs(bp); 8974 if (total_vecs > max) 8975 total_vecs = max; 8976 8977 if (!total_vecs) 8978 return 0; 8979 8980 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8981 if (!msix_ent) 8982 return -ENOMEM; 8983 8984 for (i = 0; i < total_vecs; i++) { 8985 msix_ent[i].entry = i; 8986 msix_ent[i].vector = 0; 8987 } 8988 8989 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8990 min = 2; 8991 8992 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8993 ulp_msix = bnxt_get_ulp_msix_num(bp); 8994 if (total_vecs < 0 || total_vecs < ulp_msix) { 8995 rc = -ENODEV; 8996 goto msix_setup_exit; 8997 } 8998 8999 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 9000 if (bp->irq_tbl) { 9001 for (i = 0; i < total_vecs; i++) 9002 bp->irq_tbl[i].vector = msix_ent[i].vector; 9003 9004 bp->total_irqs = total_vecs; 9005 /* Trim rings based upon num of vectors allocated */ 9006 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 9007 total_vecs - ulp_msix, min == 1); 9008 if (rc) 9009 goto msix_setup_exit; 9010 9011 bp->cp_nr_rings = (min == 1) ? 9012 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 9013 bp->tx_nr_rings + bp->rx_nr_rings; 9014 9015 } else { 9016 rc = -ENOMEM; 9017 goto msix_setup_exit; 9018 } 9019 bp->flags |= BNXT_FLAG_USING_MSIX; 9020 kfree(msix_ent); 9021 return 0; 9022 9023 msix_setup_exit: 9024 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 9025 kfree(bp->irq_tbl); 9026 bp->irq_tbl = NULL; 9027 pci_disable_msix(bp->pdev); 9028 kfree(msix_ent); 9029 return rc; 9030 } 9031 9032 static int bnxt_init_inta(struct bnxt *bp) 9033 { 9034 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 9035 if (!bp->irq_tbl) 9036 return -ENOMEM; 9037 9038 bp->total_irqs = 1; 9039 bp->rx_nr_rings = 1; 9040 bp->tx_nr_rings = 1; 9041 bp->cp_nr_rings = 1; 9042 bp->flags |= BNXT_FLAG_SHARED_RINGS; 9043 bp->irq_tbl[0].vector = bp->pdev->irq; 9044 return 0; 9045 } 9046 9047 static int bnxt_init_int_mode(struct bnxt *bp) 9048 { 9049 int rc = -ENODEV; 9050 9051 if (bp->flags & BNXT_FLAG_MSIX_CAP) 9052 rc = bnxt_init_msix(bp); 9053 9054 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 9055 /* fallback to INTA */ 9056 rc = bnxt_init_inta(bp); 9057 } 9058 return rc; 9059 } 9060 9061 static void bnxt_clear_int_mode(struct bnxt *bp) 9062 { 9063 if (bp->flags & BNXT_FLAG_USING_MSIX) 9064 pci_disable_msix(bp->pdev); 9065 9066 kfree(bp->irq_tbl); 9067 bp->irq_tbl = NULL; 9068 bp->flags &= ~BNXT_FLAG_USING_MSIX; 9069 } 9070 9071 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 9072 { 9073 int tcs = netdev_get_num_tc(bp->dev); 9074 bool irq_cleared = false; 9075 int rc; 9076 9077 if (!bnxt_need_reserve_rings(bp)) 9078 return 0; 9079 9080 if (irq_re_init && BNXT_NEW_RM(bp) && 9081 bnxt_get_num_msix(bp) != bp->total_irqs) { 9082 bnxt_ulp_irq_stop(bp); 9083 bnxt_clear_int_mode(bp); 9084 irq_cleared = true; 9085 } 9086 rc = __bnxt_reserve_rings(bp); 9087 if (irq_cleared) { 9088 if (!rc) 9089 rc = bnxt_init_int_mode(bp); 9090 bnxt_ulp_irq_restart(bp, rc); 9091 } 9092 if (rc) { 9093 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9094 return rc; 9095 } 9096 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 9097 netdev_err(bp->dev, "tx ring reservation failure\n"); 9098 netdev_reset_tc(bp->dev); 9099 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9100 return -ENOMEM; 9101 } 9102 return 0; 9103 } 9104 9105 static void bnxt_free_irq(struct bnxt *bp) 9106 { 9107 struct bnxt_irq *irq; 9108 int i; 9109 9110 #ifdef CONFIG_RFS_ACCEL 9111 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9112 bp->dev->rx_cpu_rmap = NULL; 9113 #endif 9114 if (!bp->irq_tbl || !bp->bnapi) 9115 return; 9116 9117 for (i = 0; i < bp->cp_nr_rings; i++) { 9118 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9119 9120 irq = &bp->irq_tbl[map_idx]; 9121 if (irq->requested) { 9122 if (irq->have_cpumask) { 9123 irq_set_affinity_hint(irq->vector, NULL); 9124 free_cpumask_var(irq->cpu_mask); 9125 irq->have_cpumask = 0; 9126 } 9127 free_irq(irq->vector, bp->bnapi[i]); 9128 } 9129 9130 irq->requested = 0; 9131 } 9132 } 9133 9134 static int bnxt_request_irq(struct bnxt *bp) 9135 { 9136 int i, j, rc = 0; 9137 unsigned long flags = 0; 9138 #ifdef CONFIG_RFS_ACCEL 9139 struct cpu_rmap *rmap; 9140 #endif 9141 9142 rc = bnxt_setup_int_mode(bp); 9143 if (rc) { 9144 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9145 rc); 9146 return rc; 9147 } 9148 #ifdef CONFIG_RFS_ACCEL 9149 rmap = bp->dev->rx_cpu_rmap; 9150 #endif 9151 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9152 flags = IRQF_SHARED; 9153 9154 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9155 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9156 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9157 9158 #ifdef CONFIG_RFS_ACCEL 9159 if (rmap && bp->bnapi[i]->rx_ring) { 9160 rc = irq_cpu_rmap_add(rmap, irq->vector); 9161 if (rc) 9162 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9163 j); 9164 j++; 9165 } 9166 #endif 9167 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9168 bp->bnapi[i]); 9169 if (rc) 9170 break; 9171 9172 irq->requested = 1; 9173 9174 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9175 int numa_node = dev_to_node(&bp->pdev->dev); 9176 9177 irq->have_cpumask = 1; 9178 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9179 irq->cpu_mask); 9180 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9181 if (rc) { 9182 netdev_warn(bp->dev, 9183 "Set affinity failed, IRQ = %d\n", 9184 irq->vector); 9185 break; 9186 } 9187 } 9188 } 9189 return rc; 9190 } 9191 9192 static void bnxt_del_napi(struct bnxt *bp) 9193 { 9194 int i; 9195 9196 if (!bp->bnapi) 9197 return; 9198 9199 for (i = 0; i < bp->cp_nr_rings; i++) { 9200 struct bnxt_napi *bnapi = bp->bnapi[i]; 9201 9202 __netif_napi_del(&bnapi->napi); 9203 } 9204 /* We called __netif_napi_del(), we need 9205 * to respect an RCU grace period before freeing napi structures. 9206 */ 9207 synchronize_net(); 9208 } 9209 9210 static void bnxt_init_napi(struct bnxt *bp) 9211 { 9212 int i; 9213 unsigned int cp_nr_rings = bp->cp_nr_rings; 9214 struct bnxt_napi *bnapi; 9215 9216 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9217 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9218 9219 if (bp->flags & BNXT_FLAG_CHIP_P5) 9220 poll_fn = bnxt_poll_p5; 9221 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9222 cp_nr_rings--; 9223 for (i = 0; i < cp_nr_rings; i++) { 9224 bnapi = bp->bnapi[i]; 9225 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9226 } 9227 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9228 bnapi = bp->bnapi[cp_nr_rings]; 9229 netif_napi_add(bp->dev, &bnapi->napi, 9230 bnxt_poll_nitroa0, 64); 9231 } 9232 } else { 9233 bnapi = bp->bnapi[0]; 9234 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9235 } 9236 } 9237 9238 static void bnxt_disable_napi(struct bnxt *bp) 9239 { 9240 int i; 9241 9242 if (!bp->bnapi || 9243 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9244 return; 9245 9246 for (i = 0; i < bp->cp_nr_rings; i++) { 9247 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9248 9249 napi_disable(&bp->bnapi[i]->napi); 9250 if (bp->bnapi[i]->rx_ring) 9251 cancel_work_sync(&cpr->dim.work); 9252 } 9253 } 9254 9255 static void bnxt_enable_napi(struct bnxt *bp) 9256 { 9257 int i; 9258 9259 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9260 for (i = 0; i < bp->cp_nr_rings; i++) { 9261 struct bnxt_napi *bnapi = bp->bnapi[i]; 9262 struct bnxt_cp_ring_info *cpr; 9263 9264 cpr = &bnapi->cp_ring; 9265 if (bnapi->in_reset) 9266 cpr->sw_stats.rx.rx_resets++; 9267 bnapi->in_reset = false; 9268 9269 if (bnapi->rx_ring) { 9270 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9271 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9272 } 9273 napi_enable(&bnapi->napi); 9274 } 9275 } 9276 9277 void bnxt_tx_disable(struct bnxt *bp) 9278 { 9279 int i; 9280 struct bnxt_tx_ring_info *txr; 9281 9282 if (bp->tx_ring) { 9283 for (i = 0; i < bp->tx_nr_rings; i++) { 9284 txr = &bp->tx_ring[i]; 9285 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9286 } 9287 } 9288 /* Make sure napi polls see @dev_state change */ 9289 synchronize_net(); 9290 /* Drop carrier first to prevent TX timeout */ 9291 netif_carrier_off(bp->dev); 9292 /* Stop all TX queues */ 9293 netif_tx_disable(bp->dev); 9294 } 9295 9296 void bnxt_tx_enable(struct bnxt *bp) 9297 { 9298 int i; 9299 struct bnxt_tx_ring_info *txr; 9300 9301 for (i = 0; i < bp->tx_nr_rings; i++) { 9302 txr = &bp->tx_ring[i]; 9303 WRITE_ONCE(txr->dev_state, 0); 9304 } 9305 /* Make sure napi polls see @dev_state change */ 9306 synchronize_net(); 9307 netif_tx_wake_all_queues(bp->dev); 9308 if (BNXT_LINK_IS_UP(bp)) 9309 netif_carrier_on(bp->dev); 9310 } 9311 9312 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9313 { 9314 u8 active_fec = link_info->active_fec_sig_mode & 9315 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9316 9317 switch (active_fec) { 9318 default: 9319 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9320 return "None"; 9321 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9322 return "Clause 74 BaseR"; 9323 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9324 return "Clause 91 RS(528,514)"; 9325 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9326 return "Clause 91 RS544_1XN"; 9327 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9328 return "Clause 91 RS(544,514)"; 9329 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9330 return "Clause 91 RS272_1XN"; 9331 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9332 return "Clause 91 RS(272,257)"; 9333 } 9334 } 9335 9336 void bnxt_report_link(struct bnxt *bp) 9337 { 9338 if (BNXT_LINK_IS_UP(bp)) { 9339 const char *signal = ""; 9340 const char *flow_ctrl; 9341 const char *duplex; 9342 u32 speed; 9343 u16 fec; 9344 9345 netif_carrier_on(bp->dev); 9346 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9347 if (speed == SPEED_UNKNOWN) { 9348 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9349 return; 9350 } 9351 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9352 duplex = "full"; 9353 else 9354 duplex = "half"; 9355 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9356 flow_ctrl = "ON - receive & transmit"; 9357 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9358 flow_ctrl = "ON - transmit"; 9359 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9360 flow_ctrl = "ON - receive"; 9361 else 9362 flow_ctrl = "none"; 9363 if (bp->link_info.phy_qcfg_resp.option_flags & 9364 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9365 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9366 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9367 switch (sig_mode) { 9368 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9369 signal = "(NRZ) "; 9370 break; 9371 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9372 signal = "(PAM4) "; 9373 break; 9374 default: 9375 break; 9376 } 9377 } 9378 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9379 speed, signal, duplex, flow_ctrl); 9380 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9381 netdev_info(bp->dev, "EEE is %s\n", 9382 bp->eee.eee_active ? "active" : 9383 "not active"); 9384 fec = bp->link_info.fec_cfg; 9385 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9386 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9387 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9388 bnxt_report_fec(&bp->link_info)); 9389 } else { 9390 netif_carrier_off(bp->dev); 9391 netdev_err(bp->dev, "NIC Link is Down\n"); 9392 } 9393 } 9394 9395 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9396 { 9397 if (!resp->supported_speeds_auto_mode && 9398 !resp->supported_speeds_force_mode && 9399 !resp->supported_pam4_speeds_auto_mode && 9400 !resp->supported_pam4_speeds_force_mode) 9401 return true; 9402 return false; 9403 } 9404 9405 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9406 { 9407 struct bnxt_link_info *link_info = &bp->link_info; 9408 struct hwrm_port_phy_qcaps_output *resp; 9409 struct hwrm_port_phy_qcaps_input *req; 9410 int rc = 0; 9411 9412 if (bp->hwrm_spec_code < 0x10201) 9413 return 0; 9414 9415 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9416 if (rc) 9417 return rc; 9418 9419 resp = hwrm_req_hold(bp, req); 9420 rc = hwrm_req_send(bp, req); 9421 if (rc) 9422 goto hwrm_phy_qcaps_exit; 9423 9424 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 9425 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9426 struct ethtool_eee *eee = &bp->eee; 9427 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9428 9429 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9430 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9431 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9432 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9433 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9434 } 9435 9436 if (bp->hwrm_spec_code >= 0x10a01) { 9437 if (bnxt_phy_qcaps_no_speed(resp)) { 9438 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9439 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9440 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9441 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9442 netdev_info(bp->dev, "Ethernet link enabled\n"); 9443 /* Phy re-enabled, reprobe the speeds */ 9444 link_info->support_auto_speeds = 0; 9445 link_info->support_pam4_auto_speeds = 0; 9446 } 9447 } 9448 if (resp->supported_speeds_auto_mode) 9449 link_info->support_auto_speeds = 9450 le16_to_cpu(resp->supported_speeds_auto_mode); 9451 if (resp->supported_pam4_speeds_auto_mode) 9452 link_info->support_pam4_auto_speeds = 9453 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9454 9455 bp->port_count = resp->port_cnt; 9456 9457 hwrm_phy_qcaps_exit: 9458 hwrm_req_drop(bp, req); 9459 return rc; 9460 } 9461 9462 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9463 { 9464 u16 diff = advertising ^ supported; 9465 9466 return ((supported | diff) != supported); 9467 } 9468 9469 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9470 { 9471 struct bnxt_link_info *link_info = &bp->link_info; 9472 struct hwrm_port_phy_qcfg_output *resp; 9473 struct hwrm_port_phy_qcfg_input *req; 9474 u8 link_state = link_info->link_state; 9475 bool support_changed = false; 9476 int rc; 9477 9478 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9479 if (rc) 9480 return rc; 9481 9482 resp = hwrm_req_hold(bp, req); 9483 rc = hwrm_req_send(bp, req); 9484 if (rc) { 9485 hwrm_req_drop(bp, req); 9486 if (BNXT_VF(bp) && rc == -ENODEV) { 9487 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 9488 rc = 0; 9489 } 9490 return rc; 9491 } 9492 9493 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9494 link_info->phy_link_status = resp->link; 9495 link_info->duplex = resp->duplex_cfg; 9496 if (bp->hwrm_spec_code >= 0x10800) 9497 link_info->duplex = resp->duplex_state; 9498 link_info->pause = resp->pause; 9499 link_info->auto_mode = resp->auto_mode; 9500 link_info->auto_pause_setting = resp->auto_pause; 9501 link_info->lp_pause = resp->link_partner_adv_pause; 9502 link_info->force_pause_setting = resp->force_pause; 9503 link_info->duplex_setting = resp->duplex_cfg; 9504 if (link_info->phy_link_status == BNXT_LINK_LINK) 9505 link_info->link_speed = le16_to_cpu(resp->link_speed); 9506 else 9507 link_info->link_speed = 0; 9508 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9509 link_info->force_pam4_link_speed = 9510 le16_to_cpu(resp->force_pam4_link_speed); 9511 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9512 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9513 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9514 link_info->auto_pam4_link_speeds = 9515 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9516 link_info->lp_auto_link_speeds = 9517 le16_to_cpu(resp->link_partner_adv_speeds); 9518 link_info->lp_auto_pam4_link_speeds = 9519 resp->link_partner_pam4_adv_speeds; 9520 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9521 link_info->phy_ver[0] = resp->phy_maj; 9522 link_info->phy_ver[1] = resp->phy_min; 9523 link_info->phy_ver[2] = resp->phy_bld; 9524 link_info->media_type = resp->media_type; 9525 link_info->phy_type = resp->phy_type; 9526 link_info->transceiver = resp->xcvr_pkg_type; 9527 link_info->phy_addr = resp->eee_config_phy_addr & 9528 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9529 link_info->module_status = resp->module_status; 9530 9531 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9532 struct ethtool_eee *eee = &bp->eee; 9533 u16 fw_speeds; 9534 9535 eee->eee_active = 0; 9536 if (resp->eee_config_phy_addr & 9537 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9538 eee->eee_active = 1; 9539 fw_speeds = le16_to_cpu( 9540 resp->link_partner_adv_eee_link_speed_mask); 9541 eee->lp_advertised = 9542 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9543 } 9544 9545 /* Pull initial EEE config */ 9546 if (!chng_link_state) { 9547 if (resp->eee_config_phy_addr & 9548 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9549 eee->eee_enabled = 1; 9550 9551 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9552 eee->advertised = 9553 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9554 9555 if (resp->eee_config_phy_addr & 9556 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9557 __le32 tmr; 9558 9559 eee->tx_lpi_enabled = 1; 9560 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9561 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9562 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9563 } 9564 } 9565 } 9566 9567 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9568 if (bp->hwrm_spec_code >= 0x10504) { 9569 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9570 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9571 } 9572 /* TODO: need to add more logic to report VF link */ 9573 if (chng_link_state) { 9574 if (link_info->phy_link_status == BNXT_LINK_LINK) 9575 link_info->link_state = BNXT_LINK_STATE_UP; 9576 else 9577 link_info->link_state = BNXT_LINK_STATE_DOWN; 9578 if (link_state != link_info->link_state) 9579 bnxt_report_link(bp); 9580 } else { 9581 /* always link down if not require to update link state */ 9582 link_info->link_state = BNXT_LINK_STATE_DOWN; 9583 } 9584 hwrm_req_drop(bp, req); 9585 9586 if (!BNXT_PHY_CFG_ABLE(bp)) 9587 return 0; 9588 9589 /* Check if any advertised speeds are no longer supported. The caller 9590 * holds the link_lock mutex, so we can modify link_info settings. 9591 */ 9592 if (bnxt_support_dropped(link_info->advertising, 9593 link_info->support_auto_speeds)) { 9594 link_info->advertising = link_info->support_auto_speeds; 9595 support_changed = true; 9596 } 9597 if (bnxt_support_dropped(link_info->advertising_pam4, 9598 link_info->support_pam4_auto_speeds)) { 9599 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9600 support_changed = true; 9601 } 9602 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9603 bnxt_hwrm_set_link_setting(bp, true, false); 9604 return 0; 9605 } 9606 9607 static void bnxt_get_port_module_status(struct bnxt *bp) 9608 { 9609 struct bnxt_link_info *link_info = &bp->link_info; 9610 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9611 u8 module_status; 9612 9613 if (bnxt_update_link(bp, true)) 9614 return; 9615 9616 module_status = link_info->module_status; 9617 switch (module_status) { 9618 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9619 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9620 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9621 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9622 bp->pf.port_id); 9623 if (bp->hwrm_spec_code >= 0x10201) { 9624 netdev_warn(bp->dev, "Module part number %s\n", 9625 resp->phy_vendor_partnumber); 9626 } 9627 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9628 netdev_warn(bp->dev, "TX is disabled\n"); 9629 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9630 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9631 } 9632 } 9633 9634 static void 9635 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9636 { 9637 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9638 if (bp->hwrm_spec_code >= 0x10201) 9639 req->auto_pause = 9640 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9641 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9642 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9643 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9644 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9645 req->enables |= 9646 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9647 } else { 9648 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9649 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9650 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9651 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9652 req->enables |= 9653 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9654 if (bp->hwrm_spec_code >= 0x10201) { 9655 req->auto_pause = req->force_pause; 9656 req->enables |= cpu_to_le32( 9657 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9658 } 9659 } 9660 } 9661 9662 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9663 { 9664 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9665 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9666 if (bp->link_info.advertising) { 9667 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9668 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9669 } 9670 if (bp->link_info.advertising_pam4) { 9671 req->enables |= 9672 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9673 req->auto_link_pam4_speed_mask = 9674 cpu_to_le16(bp->link_info.advertising_pam4); 9675 } 9676 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9677 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9678 } else { 9679 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9680 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9681 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9682 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9683 } else { 9684 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9685 } 9686 } 9687 9688 /* tell chimp that the setting takes effect immediately */ 9689 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9690 } 9691 9692 int bnxt_hwrm_set_pause(struct bnxt *bp) 9693 { 9694 struct hwrm_port_phy_cfg_input *req; 9695 int rc; 9696 9697 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9698 if (rc) 9699 return rc; 9700 9701 bnxt_hwrm_set_pause_common(bp, req); 9702 9703 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9704 bp->link_info.force_link_chng) 9705 bnxt_hwrm_set_link_common(bp, req); 9706 9707 rc = hwrm_req_send(bp, req); 9708 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9709 /* since changing of pause setting doesn't trigger any link 9710 * change event, the driver needs to update the current pause 9711 * result upon successfully return of the phy_cfg command 9712 */ 9713 bp->link_info.pause = 9714 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9715 bp->link_info.auto_pause_setting = 0; 9716 if (!bp->link_info.force_link_chng) 9717 bnxt_report_link(bp); 9718 } 9719 bp->link_info.force_link_chng = false; 9720 return rc; 9721 } 9722 9723 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9724 struct hwrm_port_phy_cfg_input *req) 9725 { 9726 struct ethtool_eee *eee = &bp->eee; 9727 9728 if (eee->eee_enabled) { 9729 u16 eee_speeds; 9730 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9731 9732 if (eee->tx_lpi_enabled) 9733 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9734 else 9735 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9736 9737 req->flags |= cpu_to_le32(flags); 9738 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9739 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9740 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9741 } else { 9742 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9743 } 9744 } 9745 9746 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9747 { 9748 struct hwrm_port_phy_cfg_input *req; 9749 int rc; 9750 9751 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9752 if (rc) 9753 return rc; 9754 9755 if (set_pause) 9756 bnxt_hwrm_set_pause_common(bp, req); 9757 9758 bnxt_hwrm_set_link_common(bp, req); 9759 9760 if (set_eee) 9761 bnxt_hwrm_set_eee(bp, req); 9762 return hwrm_req_send(bp, req); 9763 } 9764 9765 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9766 { 9767 struct hwrm_port_phy_cfg_input *req; 9768 int rc; 9769 9770 if (!BNXT_SINGLE_PF(bp)) 9771 return 0; 9772 9773 if (pci_num_vf(bp->pdev) && 9774 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9775 return 0; 9776 9777 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9778 if (rc) 9779 return rc; 9780 9781 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9782 rc = hwrm_req_send(bp, req); 9783 if (!rc) { 9784 mutex_lock(&bp->link_lock); 9785 /* Device is not obliged link down in certain scenarios, even 9786 * when forced. Setting the state unknown is consistent with 9787 * driver startup and will force link state to be reported 9788 * during subsequent open based on PORT_PHY_QCFG. 9789 */ 9790 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 9791 mutex_unlock(&bp->link_lock); 9792 } 9793 return rc; 9794 } 9795 9796 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9797 { 9798 #ifdef CONFIG_TEE_BNXT_FW 9799 int rc = tee_bnxt_fw_load(); 9800 9801 if (rc) 9802 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9803 9804 return rc; 9805 #else 9806 netdev_err(bp->dev, "OP-TEE not supported\n"); 9807 return -ENODEV; 9808 #endif 9809 } 9810 9811 static int bnxt_try_recover_fw(struct bnxt *bp) 9812 { 9813 if (bp->fw_health && bp->fw_health->status_reliable) { 9814 int retry = 0, rc; 9815 u32 sts; 9816 9817 do { 9818 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9819 rc = bnxt_hwrm_poll(bp); 9820 if (!BNXT_FW_IS_BOOTING(sts) && 9821 !BNXT_FW_IS_RECOVERING(sts)) 9822 break; 9823 retry++; 9824 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9825 9826 if (!BNXT_FW_IS_HEALTHY(sts)) { 9827 netdev_err(bp->dev, 9828 "Firmware not responding, status: 0x%x\n", 9829 sts); 9830 rc = -ENODEV; 9831 } 9832 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9833 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9834 return bnxt_fw_reset_via_optee(bp); 9835 } 9836 return rc; 9837 } 9838 9839 return -ENODEV; 9840 } 9841 9842 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 9843 { 9844 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9845 int rc; 9846 9847 if (!BNXT_NEW_RM(bp)) 9848 return 0; /* no resource reservations required */ 9849 9850 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9851 if (rc) 9852 netdev_err(bp->dev, "resc_qcaps failed\n"); 9853 9854 hw_resc->resv_cp_rings = 0; 9855 hw_resc->resv_stat_ctxs = 0; 9856 hw_resc->resv_irqs = 0; 9857 hw_resc->resv_tx_rings = 0; 9858 hw_resc->resv_rx_rings = 0; 9859 hw_resc->resv_hw_ring_grps = 0; 9860 hw_resc->resv_vnics = 0; 9861 if (!fw_reset) { 9862 bp->tx_nr_rings = 0; 9863 bp->rx_nr_rings = 0; 9864 } 9865 9866 return rc; 9867 } 9868 9869 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9870 { 9871 struct hwrm_func_drv_if_change_output *resp; 9872 struct hwrm_func_drv_if_change_input *req; 9873 bool fw_reset = !bp->irq_tbl; 9874 bool resc_reinit = false; 9875 int rc, retry = 0; 9876 u32 flags = 0; 9877 9878 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9879 return 0; 9880 9881 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 9882 if (rc) 9883 return rc; 9884 9885 if (up) 9886 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9887 resp = hwrm_req_hold(bp, req); 9888 9889 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9890 while (retry < BNXT_FW_IF_RETRY) { 9891 rc = hwrm_req_send(bp, req); 9892 if (rc != -EAGAIN) 9893 break; 9894 9895 msleep(50); 9896 retry++; 9897 } 9898 9899 if (rc == -EAGAIN) { 9900 hwrm_req_drop(bp, req); 9901 return rc; 9902 } else if (!rc) { 9903 flags = le32_to_cpu(resp->flags); 9904 } else if (up) { 9905 rc = bnxt_try_recover_fw(bp); 9906 fw_reset = true; 9907 } 9908 hwrm_req_drop(bp, req); 9909 if (rc) 9910 return rc; 9911 9912 if (!up) { 9913 bnxt_inv_fw_health_reg(bp); 9914 return 0; 9915 } 9916 9917 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9918 resc_reinit = true; 9919 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9920 fw_reset = true; 9921 else 9922 bnxt_remap_fw_health_regs(bp); 9923 9924 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9925 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9926 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9927 return -ENODEV; 9928 } 9929 if (resc_reinit || fw_reset) { 9930 if (fw_reset) { 9931 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9932 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9933 bnxt_ulp_stop(bp); 9934 bnxt_free_ctx_mem(bp); 9935 kfree(bp->ctx); 9936 bp->ctx = NULL; 9937 bnxt_dcb_free(bp); 9938 rc = bnxt_fw_init_one(bp); 9939 if (rc) { 9940 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9941 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9942 return rc; 9943 } 9944 bnxt_clear_int_mode(bp); 9945 rc = bnxt_init_int_mode(bp); 9946 if (rc) { 9947 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9948 netdev_err(bp->dev, "init int mode failed\n"); 9949 return rc; 9950 } 9951 } 9952 rc = bnxt_cancel_reservations(bp, fw_reset); 9953 } 9954 return rc; 9955 } 9956 9957 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9958 { 9959 struct hwrm_port_led_qcaps_output *resp; 9960 struct hwrm_port_led_qcaps_input *req; 9961 struct bnxt_pf_info *pf = &bp->pf; 9962 int rc; 9963 9964 bp->num_leds = 0; 9965 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9966 return 0; 9967 9968 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 9969 if (rc) 9970 return rc; 9971 9972 req->port_id = cpu_to_le16(pf->port_id); 9973 resp = hwrm_req_hold(bp, req); 9974 rc = hwrm_req_send(bp, req); 9975 if (rc) { 9976 hwrm_req_drop(bp, req); 9977 return rc; 9978 } 9979 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9980 int i; 9981 9982 bp->num_leds = resp->num_leds; 9983 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9984 bp->num_leds); 9985 for (i = 0; i < bp->num_leds; i++) { 9986 struct bnxt_led_info *led = &bp->leds[i]; 9987 __le16 caps = led->led_state_caps; 9988 9989 if (!led->led_group_id || 9990 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9991 bp->num_leds = 0; 9992 break; 9993 } 9994 } 9995 } 9996 hwrm_req_drop(bp, req); 9997 return 0; 9998 } 9999 10000 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 10001 { 10002 struct hwrm_wol_filter_alloc_output *resp; 10003 struct hwrm_wol_filter_alloc_input *req; 10004 int rc; 10005 10006 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 10007 if (rc) 10008 return rc; 10009 10010 req->port_id = cpu_to_le16(bp->pf.port_id); 10011 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 10012 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 10013 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 10014 10015 resp = hwrm_req_hold(bp, req); 10016 rc = hwrm_req_send(bp, req); 10017 if (!rc) 10018 bp->wol_filter_id = resp->wol_filter_id; 10019 hwrm_req_drop(bp, req); 10020 return rc; 10021 } 10022 10023 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 10024 { 10025 struct hwrm_wol_filter_free_input *req; 10026 int rc; 10027 10028 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 10029 if (rc) 10030 return rc; 10031 10032 req->port_id = cpu_to_le16(bp->pf.port_id); 10033 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 10034 req->wol_filter_id = bp->wol_filter_id; 10035 10036 return hwrm_req_send(bp, req); 10037 } 10038 10039 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 10040 { 10041 struct hwrm_wol_filter_qcfg_output *resp; 10042 struct hwrm_wol_filter_qcfg_input *req; 10043 u16 next_handle = 0; 10044 int rc; 10045 10046 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 10047 if (rc) 10048 return rc; 10049 10050 req->port_id = cpu_to_le16(bp->pf.port_id); 10051 req->handle = cpu_to_le16(handle); 10052 resp = hwrm_req_hold(bp, req); 10053 rc = hwrm_req_send(bp, req); 10054 if (!rc) { 10055 next_handle = le16_to_cpu(resp->next_handle); 10056 if (next_handle != 0) { 10057 if (resp->wol_type == 10058 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 10059 bp->wol = 1; 10060 bp->wol_filter_id = resp->wol_filter_id; 10061 } 10062 } 10063 } 10064 hwrm_req_drop(bp, req); 10065 return next_handle; 10066 } 10067 10068 static void bnxt_get_wol_settings(struct bnxt *bp) 10069 { 10070 u16 handle = 0; 10071 10072 bp->wol = 0; 10073 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 10074 return; 10075 10076 do { 10077 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 10078 } while (handle && handle != 0xffff); 10079 } 10080 10081 #ifdef CONFIG_BNXT_HWMON 10082 static ssize_t bnxt_show_temp(struct device *dev, 10083 struct device_attribute *devattr, char *buf) 10084 { 10085 struct hwrm_temp_monitor_query_output *resp; 10086 struct hwrm_temp_monitor_query_input *req; 10087 struct bnxt *bp = dev_get_drvdata(dev); 10088 u32 len = 0; 10089 int rc; 10090 10091 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 10092 if (rc) 10093 return rc; 10094 resp = hwrm_req_hold(bp, req); 10095 rc = hwrm_req_send(bp, req); 10096 if (!rc) 10097 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 10098 hwrm_req_drop(bp, req); 10099 if (rc) 10100 return rc; 10101 return len; 10102 } 10103 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 10104 10105 static struct attribute *bnxt_attrs[] = { 10106 &sensor_dev_attr_temp1_input.dev_attr.attr, 10107 NULL 10108 }; 10109 ATTRIBUTE_GROUPS(bnxt); 10110 10111 static void bnxt_hwmon_close(struct bnxt *bp) 10112 { 10113 if (bp->hwmon_dev) { 10114 hwmon_device_unregister(bp->hwmon_dev); 10115 bp->hwmon_dev = NULL; 10116 } 10117 } 10118 10119 static void bnxt_hwmon_open(struct bnxt *bp) 10120 { 10121 struct hwrm_temp_monitor_query_input *req; 10122 struct pci_dev *pdev = bp->pdev; 10123 int rc; 10124 10125 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 10126 if (!rc) 10127 rc = hwrm_req_send_silent(bp, req); 10128 if (rc == -EACCES || rc == -EOPNOTSUPP) { 10129 bnxt_hwmon_close(bp); 10130 return; 10131 } 10132 10133 if (bp->hwmon_dev) 10134 return; 10135 10136 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 10137 DRV_MODULE_NAME, bp, 10138 bnxt_groups); 10139 if (IS_ERR(bp->hwmon_dev)) { 10140 bp->hwmon_dev = NULL; 10141 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10142 } 10143 } 10144 #else 10145 static void bnxt_hwmon_close(struct bnxt *bp) 10146 { 10147 } 10148 10149 static void bnxt_hwmon_open(struct bnxt *bp) 10150 { 10151 } 10152 #endif 10153 10154 static bool bnxt_eee_config_ok(struct bnxt *bp) 10155 { 10156 struct ethtool_eee *eee = &bp->eee; 10157 struct bnxt_link_info *link_info = &bp->link_info; 10158 10159 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10160 return true; 10161 10162 if (eee->eee_enabled) { 10163 u32 advertising = 10164 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10165 10166 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10167 eee->eee_enabled = 0; 10168 return false; 10169 } 10170 if (eee->advertised & ~advertising) { 10171 eee->advertised = advertising & eee->supported; 10172 return false; 10173 } 10174 } 10175 return true; 10176 } 10177 10178 static int bnxt_update_phy_setting(struct bnxt *bp) 10179 { 10180 int rc; 10181 bool update_link = false; 10182 bool update_pause = false; 10183 bool update_eee = false; 10184 struct bnxt_link_info *link_info = &bp->link_info; 10185 10186 rc = bnxt_update_link(bp, true); 10187 if (rc) { 10188 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10189 rc); 10190 return rc; 10191 } 10192 if (!BNXT_SINGLE_PF(bp)) 10193 return 0; 10194 10195 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10196 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10197 link_info->req_flow_ctrl) 10198 update_pause = true; 10199 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10200 link_info->force_pause_setting != link_info->req_flow_ctrl) 10201 update_pause = true; 10202 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10203 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10204 update_link = true; 10205 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10206 link_info->req_link_speed != link_info->force_link_speed) 10207 update_link = true; 10208 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10209 link_info->req_link_speed != link_info->force_pam4_link_speed) 10210 update_link = true; 10211 if (link_info->req_duplex != link_info->duplex_setting) 10212 update_link = true; 10213 } else { 10214 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10215 update_link = true; 10216 if (link_info->advertising != link_info->auto_link_speeds || 10217 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10218 update_link = true; 10219 } 10220 10221 /* The last close may have shutdown the link, so need to call 10222 * PHY_CFG to bring it back up. 10223 */ 10224 if (!BNXT_LINK_IS_UP(bp)) 10225 update_link = true; 10226 10227 if (!bnxt_eee_config_ok(bp)) 10228 update_eee = true; 10229 10230 if (update_link) 10231 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10232 else if (update_pause) 10233 rc = bnxt_hwrm_set_pause(bp); 10234 if (rc) { 10235 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10236 rc); 10237 return rc; 10238 } 10239 10240 return rc; 10241 } 10242 10243 /* Common routine to pre-map certain register block to different GRC window. 10244 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10245 * in PF and 3 windows in VF that can be customized to map in different 10246 * register blocks. 10247 */ 10248 static void bnxt_preset_reg_win(struct bnxt *bp) 10249 { 10250 if (BNXT_PF(bp)) { 10251 /* CAG registers map to GRC window #4 */ 10252 writel(BNXT_CAG_REG_BASE, 10253 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10254 } 10255 } 10256 10257 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10258 10259 static int bnxt_reinit_after_abort(struct bnxt *bp) 10260 { 10261 int rc; 10262 10263 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10264 return -EBUSY; 10265 10266 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10267 return -ENODEV; 10268 10269 rc = bnxt_fw_init_one(bp); 10270 if (!rc) { 10271 bnxt_clear_int_mode(bp); 10272 rc = bnxt_init_int_mode(bp); 10273 if (!rc) { 10274 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10275 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10276 } 10277 } 10278 return rc; 10279 } 10280 10281 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10282 { 10283 int rc = 0; 10284 10285 bnxt_preset_reg_win(bp); 10286 netif_carrier_off(bp->dev); 10287 if (irq_re_init) { 10288 /* Reserve rings now if none were reserved at driver probe. */ 10289 rc = bnxt_init_dflt_ring_mode(bp); 10290 if (rc) { 10291 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10292 return rc; 10293 } 10294 } 10295 rc = bnxt_reserve_rings(bp, irq_re_init); 10296 if (rc) 10297 return rc; 10298 if ((bp->flags & BNXT_FLAG_RFS) && 10299 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10300 /* disable RFS if falling back to INTA */ 10301 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10302 bp->flags &= ~BNXT_FLAG_RFS; 10303 } 10304 10305 rc = bnxt_alloc_mem(bp, irq_re_init); 10306 if (rc) { 10307 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10308 goto open_err_free_mem; 10309 } 10310 10311 if (irq_re_init) { 10312 bnxt_init_napi(bp); 10313 rc = bnxt_request_irq(bp); 10314 if (rc) { 10315 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10316 goto open_err_irq; 10317 } 10318 } 10319 10320 rc = bnxt_init_nic(bp, irq_re_init); 10321 if (rc) { 10322 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10323 goto open_err_irq; 10324 } 10325 10326 bnxt_enable_napi(bp); 10327 bnxt_debug_dev_init(bp); 10328 10329 if (link_re_init) { 10330 mutex_lock(&bp->link_lock); 10331 rc = bnxt_update_phy_setting(bp); 10332 mutex_unlock(&bp->link_lock); 10333 if (rc) { 10334 netdev_warn(bp->dev, "failed to update phy settings\n"); 10335 if (BNXT_SINGLE_PF(bp)) { 10336 bp->link_info.phy_retry = true; 10337 bp->link_info.phy_retry_expires = 10338 jiffies + 5 * HZ; 10339 } 10340 } 10341 } 10342 10343 if (irq_re_init) 10344 udp_tunnel_nic_reset_ntf(bp->dev); 10345 10346 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 10347 if (!static_key_enabled(&bnxt_xdp_locking_key)) 10348 static_branch_enable(&bnxt_xdp_locking_key); 10349 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 10350 static_branch_disable(&bnxt_xdp_locking_key); 10351 } 10352 set_bit(BNXT_STATE_OPEN, &bp->state); 10353 bnxt_enable_int(bp); 10354 /* Enable TX queues */ 10355 bnxt_tx_enable(bp); 10356 mod_timer(&bp->timer, jiffies + bp->current_interval); 10357 /* Poll link status and check for SFP+ module status */ 10358 mutex_lock(&bp->link_lock); 10359 bnxt_get_port_module_status(bp); 10360 mutex_unlock(&bp->link_lock); 10361 10362 /* VF-reps may need to be re-opened after the PF is re-opened */ 10363 if (BNXT_PF(bp)) 10364 bnxt_vf_reps_open(bp); 10365 bnxt_ptp_init_rtc(bp, true); 10366 return 0; 10367 10368 open_err_irq: 10369 bnxt_del_napi(bp); 10370 10371 open_err_free_mem: 10372 bnxt_free_skbs(bp); 10373 bnxt_free_irq(bp); 10374 bnxt_free_mem(bp, true); 10375 return rc; 10376 } 10377 10378 /* rtnl_lock held */ 10379 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10380 { 10381 int rc = 0; 10382 10383 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10384 rc = -EIO; 10385 if (!rc) 10386 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10387 if (rc) { 10388 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10389 dev_close(bp->dev); 10390 } 10391 return rc; 10392 } 10393 10394 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10395 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10396 * self tests. 10397 */ 10398 int bnxt_half_open_nic(struct bnxt *bp) 10399 { 10400 int rc = 0; 10401 10402 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10403 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10404 rc = -ENODEV; 10405 goto half_open_err; 10406 } 10407 10408 rc = bnxt_alloc_mem(bp, true); 10409 if (rc) { 10410 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10411 goto half_open_err; 10412 } 10413 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10414 rc = bnxt_init_nic(bp, true); 10415 if (rc) { 10416 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10417 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10418 goto half_open_err; 10419 } 10420 return 0; 10421 10422 half_open_err: 10423 bnxt_free_skbs(bp); 10424 bnxt_free_mem(bp, true); 10425 dev_close(bp->dev); 10426 return rc; 10427 } 10428 10429 /* rtnl_lock held, this call can only be made after a previous successful 10430 * call to bnxt_half_open_nic(). 10431 */ 10432 void bnxt_half_close_nic(struct bnxt *bp) 10433 { 10434 bnxt_hwrm_resource_free(bp, false, true); 10435 bnxt_free_skbs(bp); 10436 bnxt_free_mem(bp, true); 10437 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10438 } 10439 10440 void bnxt_reenable_sriov(struct bnxt *bp) 10441 { 10442 if (BNXT_PF(bp)) { 10443 struct bnxt_pf_info *pf = &bp->pf; 10444 int n = pf->active_vfs; 10445 10446 if (n) 10447 bnxt_cfg_hw_sriov(bp, &n, true); 10448 } 10449 } 10450 10451 static int bnxt_open(struct net_device *dev) 10452 { 10453 struct bnxt *bp = netdev_priv(dev); 10454 int rc; 10455 10456 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10457 rc = bnxt_reinit_after_abort(bp); 10458 if (rc) { 10459 if (rc == -EBUSY) 10460 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10461 else 10462 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10463 return -ENODEV; 10464 } 10465 } 10466 10467 rc = bnxt_hwrm_if_change(bp, true); 10468 if (rc) 10469 return rc; 10470 10471 rc = __bnxt_open_nic(bp, true, true); 10472 if (rc) { 10473 bnxt_hwrm_if_change(bp, false); 10474 } else { 10475 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10476 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10477 bnxt_ulp_start(bp, 0); 10478 bnxt_reenable_sriov(bp); 10479 } 10480 } 10481 bnxt_hwmon_open(bp); 10482 } 10483 10484 return rc; 10485 } 10486 10487 static bool bnxt_drv_busy(struct bnxt *bp) 10488 { 10489 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10490 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10491 } 10492 10493 static void bnxt_get_ring_stats(struct bnxt *bp, 10494 struct rtnl_link_stats64 *stats); 10495 10496 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10497 bool link_re_init) 10498 { 10499 /* Close the VF-reps before closing PF */ 10500 if (BNXT_PF(bp)) 10501 bnxt_vf_reps_close(bp); 10502 10503 /* Change device state to avoid TX queue wake up's */ 10504 bnxt_tx_disable(bp); 10505 10506 clear_bit(BNXT_STATE_OPEN, &bp->state); 10507 smp_mb__after_atomic(); 10508 while (bnxt_drv_busy(bp)) 10509 msleep(20); 10510 10511 /* Flush rings and and disable interrupts */ 10512 bnxt_shutdown_nic(bp, irq_re_init); 10513 10514 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10515 10516 bnxt_debug_dev_exit(bp); 10517 bnxt_disable_napi(bp); 10518 del_timer_sync(&bp->timer); 10519 bnxt_free_skbs(bp); 10520 10521 /* Save ring stats before shutdown */ 10522 if (bp->bnapi && irq_re_init) 10523 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10524 if (irq_re_init) { 10525 bnxt_free_irq(bp); 10526 bnxt_del_napi(bp); 10527 } 10528 bnxt_free_mem(bp, irq_re_init); 10529 } 10530 10531 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10532 { 10533 int rc = 0; 10534 10535 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10536 /* If we get here, it means firmware reset is in progress 10537 * while we are trying to close. We can safely proceed with 10538 * the close because we are holding rtnl_lock(). Some firmware 10539 * messages may fail as we proceed to close. We set the 10540 * ABORT_ERR flag here so that the FW reset thread will later 10541 * abort when it gets the rtnl_lock() and sees the flag. 10542 */ 10543 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10544 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10545 } 10546 10547 #ifdef CONFIG_BNXT_SRIOV 10548 if (bp->sriov_cfg) { 10549 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10550 !bp->sriov_cfg, 10551 BNXT_SRIOV_CFG_WAIT_TMO); 10552 if (rc) 10553 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10554 } 10555 #endif 10556 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10557 return rc; 10558 } 10559 10560 static int bnxt_close(struct net_device *dev) 10561 { 10562 struct bnxt *bp = netdev_priv(dev); 10563 10564 bnxt_hwmon_close(bp); 10565 bnxt_close_nic(bp, true, true); 10566 bnxt_hwrm_shutdown_link(bp); 10567 bnxt_hwrm_if_change(bp, false); 10568 return 0; 10569 } 10570 10571 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10572 u16 *val) 10573 { 10574 struct hwrm_port_phy_mdio_read_output *resp; 10575 struct hwrm_port_phy_mdio_read_input *req; 10576 int rc; 10577 10578 if (bp->hwrm_spec_code < 0x10a00) 10579 return -EOPNOTSUPP; 10580 10581 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10582 if (rc) 10583 return rc; 10584 10585 req->port_id = cpu_to_le16(bp->pf.port_id); 10586 req->phy_addr = phy_addr; 10587 req->reg_addr = cpu_to_le16(reg & 0x1f); 10588 if (mdio_phy_id_is_c45(phy_addr)) { 10589 req->cl45_mdio = 1; 10590 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10591 req->dev_addr = mdio_phy_id_devad(phy_addr); 10592 req->reg_addr = cpu_to_le16(reg); 10593 } 10594 10595 resp = hwrm_req_hold(bp, req); 10596 rc = hwrm_req_send(bp, req); 10597 if (!rc) 10598 *val = le16_to_cpu(resp->reg_data); 10599 hwrm_req_drop(bp, req); 10600 return rc; 10601 } 10602 10603 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10604 u16 val) 10605 { 10606 struct hwrm_port_phy_mdio_write_input *req; 10607 int rc; 10608 10609 if (bp->hwrm_spec_code < 0x10a00) 10610 return -EOPNOTSUPP; 10611 10612 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10613 if (rc) 10614 return rc; 10615 10616 req->port_id = cpu_to_le16(bp->pf.port_id); 10617 req->phy_addr = phy_addr; 10618 req->reg_addr = cpu_to_le16(reg & 0x1f); 10619 if (mdio_phy_id_is_c45(phy_addr)) { 10620 req->cl45_mdio = 1; 10621 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10622 req->dev_addr = mdio_phy_id_devad(phy_addr); 10623 req->reg_addr = cpu_to_le16(reg); 10624 } 10625 req->reg_data = cpu_to_le16(val); 10626 10627 return hwrm_req_send(bp, req); 10628 } 10629 10630 /* rtnl_lock held */ 10631 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10632 { 10633 struct mii_ioctl_data *mdio = if_mii(ifr); 10634 struct bnxt *bp = netdev_priv(dev); 10635 int rc; 10636 10637 switch (cmd) { 10638 case SIOCGMIIPHY: 10639 mdio->phy_id = bp->link_info.phy_addr; 10640 10641 fallthrough; 10642 case SIOCGMIIREG: { 10643 u16 mii_regval = 0; 10644 10645 if (!netif_running(dev)) 10646 return -EAGAIN; 10647 10648 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10649 &mii_regval); 10650 mdio->val_out = mii_regval; 10651 return rc; 10652 } 10653 10654 case SIOCSMIIREG: 10655 if (!netif_running(dev)) 10656 return -EAGAIN; 10657 10658 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10659 mdio->val_in); 10660 10661 case SIOCSHWTSTAMP: 10662 return bnxt_hwtstamp_set(dev, ifr); 10663 10664 case SIOCGHWTSTAMP: 10665 return bnxt_hwtstamp_get(dev, ifr); 10666 10667 default: 10668 /* do nothing */ 10669 break; 10670 } 10671 return -EOPNOTSUPP; 10672 } 10673 10674 static void bnxt_get_ring_stats(struct bnxt *bp, 10675 struct rtnl_link_stats64 *stats) 10676 { 10677 int i; 10678 10679 for (i = 0; i < bp->cp_nr_rings; i++) { 10680 struct bnxt_napi *bnapi = bp->bnapi[i]; 10681 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10682 u64 *sw = cpr->stats.sw_stats; 10683 10684 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10685 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10686 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10687 10688 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10689 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10690 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10691 10692 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10693 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10694 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10695 10696 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10697 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10698 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10699 10700 stats->rx_missed_errors += 10701 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10702 10703 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10704 10705 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10706 10707 stats->rx_dropped += 10708 cpr->sw_stats.rx.rx_netpoll_discards + 10709 cpr->sw_stats.rx.rx_oom_discards; 10710 } 10711 } 10712 10713 static void bnxt_add_prev_stats(struct bnxt *bp, 10714 struct rtnl_link_stats64 *stats) 10715 { 10716 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10717 10718 stats->rx_packets += prev_stats->rx_packets; 10719 stats->tx_packets += prev_stats->tx_packets; 10720 stats->rx_bytes += prev_stats->rx_bytes; 10721 stats->tx_bytes += prev_stats->tx_bytes; 10722 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10723 stats->multicast += prev_stats->multicast; 10724 stats->rx_dropped += prev_stats->rx_dropped; 10725 stats->tx_dropped += prev_stats->tx_dropped; 10726 } 10727 10728 static void 10729 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10730 { 10731 struct bnxt *bp = netdev_priv(dev); 10732 10733 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10734 /* Make sure bnxt_close_nic() sees that we are reading stats before 10735 * we check the BNXT_STATE_OPEN flag. 10736 */ 10737 smp_mb__after_atomic(); 10738 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10739 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10740 *stats = bp->net_stats_prev; 10741 return; 10742 } 10743 10744 bnxt_get_ring_stats(bp, stats); 10745 bnxt_add_prev_stats(bp, stats); 10746 10747 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10748 u64 *rx = bp->port_stats.sw_stats; 10749 u64 *tx = bp->port_stats.sw_stats + 10750 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10751 10752 stats->rx_crc_errors = 10753 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10754 stats->rx_frame_errors = 10755 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10756 stats->rx_length_errors = 10757 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10758 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10759 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10760 stats->rx_errors = 10761 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10762 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10763 stats->collisions = 10764 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10765 stats->tx_fifo_errors = 10766 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10767 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10768 } 10769 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10770 } 10771 10772 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10773 { 10774 struct net_device *dev = bp->dev; 10775 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10776 struct netdev_hw_addr *ha; 10777 u8 *haddr; 10778 int mc_count = 0; 10779 bool update = false; 10780 int off = 0; 10781 10782 netdev_for_each_mc_addr(ha, dev) { 10783 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10784 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10785 vnic->mc_list_count = 0; 10786 return false; 10787 } 10788 haddr = ha->addr; 10789 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10790 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10791 update = true; 10792 } 10793 off += ETH_ALEN; 10794 mc_count++; 10795 } 10796 if (mc_count) 10797 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10798 10799 if (mc_count != vnic->mc_list_count) { 10800 vnic->mc_list_count = mc_count; 10801 update = true; 10802 } 10803 return update; 10804 } 10805 10806 static bool bnxt_uc_list_updated(struct bnxt *bp) 10807 { 10808 struct net_device *dev = bp->dev; 10809 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10810 struct netdev_hw_addr *ha; 10811 int off = 0; 10812 10813 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10814 return true; 10815 10816 netdev_for_each_uc_addr(ha, dev) { 10817 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10818 return true; 10819 10820 off += ETH_ALEN; 10821 } 10822 return false; 10823 } 10824 10825 static void bnxt_set_rx_mode(struct net_device *dev) 10826 { 10827 struct bnxt *bp = netdev_priv(dev); 10828 struct bnxt_vnic_info *vnic; 10829 bool mc_update = false; 10830 bool uc_update; 10831 u32 mask; 10832 10833 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10834 return; 10835 10836 vnic = &bp->vnic_info[0]; 10837 mask = vnic->rx_mask; 10838 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10839 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10840 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10841 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10842 10843 if (dev->flags & IFF_PROMISC) 10844 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10845 10846 uc_update = bnxt_uc_list_updated(bp); 10847 10848 if (dev->flags & IFF_BROADCAST) 10849 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10850 if (dev->flags & IFF_ALLMULTI) { 10851 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10852 vnic->mc_list_count = 0; 10853 } else if (dev->flags & IFF_MULTICAST) { 10854 mc_update = bnxt_mc_list_updated(bp, &mask); 10855 } 10856 10857 if (mask != vnic->rx_mask || uc_update || mc_update) { 10858 vnic->rx_mask = mask; 10859 10860 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10861 bnxt_queue_sp_work(bp); 10862 } 10863 } 10864 10865 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10866 { 10867 struct net_device *dev = bp->dev; 10868 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10869 struct hwrm_cfa_l2_filter_free_input *req; 10870 struct netdev_hw_addr *ha; 10871 int i, off = 0, rc; 10872 bool uc_update; 10873 10874 netif_addr_lock_bh(dev); 10875 uc_update = bnxt_uc_list_updated(bp); 10876 netif_addr_unlock_bh(dev); 10877 10878 if (!uc_update) 10879 goto skip_uc; 10880 10881 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 10882 if (rc) 10883 return rc; 10884 hwrm_req_hold(bp, req); 10885 for (i = 1; i < vnic->uc_filter_count; i++) { 10886 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 10887 10888 rc = hwrm_req_send(bp, req); 10889 } 10890 hwrm_req_drop(bp, req); 10891 10892 vnic->uc_filter_count = 1; 10893 10894 netif_addr_lock_bh(dev); 10895 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10896 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10897 } else { 10898 netdev_for_each_uc_addr(ha, dev) { 10899 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10900 off += ETH_ALEN; 10901 vnic->uc_filter_count++; 10902 } 10903 } 10904 netif_addr_unlock_bh(dev); 10905 10906 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10907 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10908 if (rc) { 10909 if (BNXT_VF(bp) && rc == -ENODEV) { 10910 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 10911 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 10912 else 10913 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 10914 rc = 0; 10915 } else { 10916 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10917 } 10918 vnic->uc_filter_count = i; 10919 return rc; 10920 } 10921 } 10922 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 10923 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 10924 10925 skip_uc: 10926 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10927 !bnxt_promisc_ok(bp)) 10928 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10929 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10930 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 10931 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10932 rc); 10933 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10934 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10935 vnic->mc_list_count = 0; 10936 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10937 } 10938 if (rc) 10939 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10940 rc); 10941 10942 return rc; 10943 } 10944 10945 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10946 { 10947 #ifdef CONFIG_BNXT_SRIOV 10948 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10949 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10950 10951 /* No minimum rings were provisioned by the PF. Don't 10952 * reserve rings by default when device is down. 10953 */ 10954 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10955 return true; 10956 10957 if (!netif_running(bp->dev)) 10958 return false; 10959 } 10960 #endif 10961 return true; 10962 } 10963 10964 /* If the chip and firmware supports RFS */ 10965 static bool bnxt_rfs_supported(struct bnxt *bp) 10966 { 10967 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10968 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10969 return true; 10970 return false; 10971 } 10972 /* 212 firmware is broken for aRFS */ 10973 if (BNXT_FW_MAJ(bp) == 212) 10974 return false; 10975 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10976 return true; 10977 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10978 return true; 10979 return false; 10980 } 10981 10982 /* If runtime conditions support RFS */ 10983 static bool bnxt_rfs_capable(struct bnxt *bp) 10984 { 10985 #ifdef CONFIG_RFS_ACCEL 10986 int vnics, max_vnics, max_rss_ctxs; 10987 10988 if (bp->flags & BNXT_FLAG_CHIP_P5) 10989 return bnxt_rfs_supported(bp); 10990 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 10991 return false; 10992 10993 vnics = 1 + bp->rx_nr_rings; 10994 max_vnics = bnxt_get_max_func_vnics(bp); 10995 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10996 10997 /* RSS contexts not a limiting factor */ 10998 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10999 max_rss_ctxs = max_vnics; 11000 if (vnics > max_vnics || vnics > max_rss_ctxs) { 11001 if (bp->rx_nr_rings > 1) 11002 netdev_warn(bp->dev, 11003 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 11004 min(max_rss_ctxs - 1, max_vnics - 1)); 11005 return false; 11006 } 11007 11008 if (!BNXT_NEW_RM(bp)) 11009 return true; 11010 11011 if (vnics == bp->hw_resc.resv_vnics) 11012 return true; 11013 11014 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 11015 if (vnics <= bp->hw_resc.resv_vnics) 11016 return true; 11017 11018 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 11019 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 11020 return false; 11021 #else 11022 return false; 11023 #endif 11024 } 11025 11026 static netdev_features_t bnxt_fix_features(struct net_device *dev, 11027 netdev_features_t features) 11028 { 11029 struct bnxt *bp = netdev_priv(dev); 11030 netdev_features_t vlan_features; 11031 11032 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 11033 features &= ~NETIF_F_NTUPLE; 11034 11035 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 11036 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 11037 11038 if (!(features & NETIF_F_GRO)) 11039 features &= ~NETIF_F_GRO_HW; 11040 11041 if (features & NETIF_F_GRO_HW) 11042 features &= ~NETIF_F_LRO; 11043 11044 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 11045 * turned on or off together. 11046 */ 11047 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 11048 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 11049 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11050 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11051 else if (vlan_features) 11052 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 11053 } 11054 #ifdef CONFIG_BNXT_SRIOV 11055 if (BNXT_VF(bp) && bp->vf.vlan) 11056 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11057 #endif 11058 return features; 11059 } 11060 11061 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 11062 { 11063 struct bnxt *bp = netdev_priv(dev); 11064 u32 flags = bp->flags; 11065 u32 changes; 11066 int rc = 0; 11067 bool re_init = false; 11068 bool update_tpa = false; 11069 11070 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 11071 if (features & NETIF_F_GRO_HW) 11072 flags |= BNXT_FLAG_GRO; 11073 else if (features & NETIF_F_LRO) 11074 flags |= BNXT_FLAG_LRO; 11075 11076 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 11077 flags &= ~BNXT_FLAG_TPA; 11078 11079 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11080 flags |= BNXT_FLAG_STRIP_VLAN; 11081 11082 if (features & NETIF_F_NTUPLE) 11083 flags |= BNXT_FLAG_RFS; 11084 11085 changes = flags ^ bp->flags; 11086 if (changes & BNXT_FLAG_TPA) { 11087 update_tpa = true; 11088 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 11089 (flags & BNXT_FLAG_TPA) == 0 || 11090 (bp->flags & BNXT_FLAG_CHIP_P5)) 11091 re_init = true; 11092 } 11093 11094 if (changes & ~BNXT_FLAG_TPA) 11095 re_init = true; 11096 11097 if (flags != bp->flags) { 11098 u32 old_flags = bp->flags; 11099 11100 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11101 bp->flags = flags; 11102 if (update_tpa) 11103 bnxt_set_ring_params(bp); 11104 return rc; 11105 } 11106 11107 if (re_init) { 11108 bnxt_close_nic(bp, false, false); 11109 bp->flags = flags; 11110 if (update_tpa) 11111 bnxt_set_ring_params(bp); 11112 11113 return bnxt_open_nic(bp, false, false); 11114 } 11115 if (update_tpa) { 11116 bp->flags = flags; 11117 rc = bnxt_set_tpa(bp, 11118 (flags & BNXT_FLAG_TPA) ? 11119 true : false); 11120 if (rc) 11121 bp->flags = old_flags; 11122 } 11123 } 11124 return rc; 11125 } 11126 11127 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 11128 u8 **nextp) 11129 { 11130 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11131 int hdr_count = 0; 11132 u8 *nexthdr; 11133 int start; 11134 11135 /* Check that there are at most 2 IPv6 extension headers, no 11136 * fragment header, and each is <= 64 bytes. 11137 */ 11138 start = nw_off + sizeof(*ip6h); 11139 nexthdr = &ip6h->nexthdr; 11140 while (ipv6_ext_hdr(*nexthdr)) { 11141 struct ipv6_opt_hdr *hp; 11142 int hdrlen; 11143 11144 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11145 *nexthdr == NEXTHDR_FRAGMENT) 11146 return false; 11147 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11148 skb_headlen(skb), NULL); 11149 if (!hp) 11150 return false; 11151 if (*nexthdr == NEXTHDR_AUTH) 11152 hdrlen = ipv6_authlen(hp); 11153 else 11154 hdrlen = ipv6_optlen(hp); 11155 11156 if (hdrlen > 64) 11157 return false; 11158 nexthdr = &hp->nexthdr; 11159 start += hdrlen; 11160 hdr_count++; 11161 } 11162 if (nextp) { 11163 /* Caller will check inner protocol */ 11164 if (skb->encapsulation) { 11165 *nextp = nexthdr; 11166 return true; 11167 } 11168 *nextp = NULL; 11169 } 11170 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11171 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11172 } 11173 11174 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11175 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11176 { 11177 struct udphdr *uh = udp_hdr(skb); 11178 __be16 udp_port = uh->dest; 11179 11180 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11181 return false; 11182 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11183 struct ethhdr *eh = inner_eth_hdr(skb); 11184 11185 switch (eh->h_proto) { 11186 case htons(ETH_P_IP): 11187 return true; 11188 case htons(ETH_P_IPV6): 11189 return bnxt_exthdr_check(bp, skb, 11190 skb_inner_network_offset(skb), 11191 NULL); 11192 } 11193 } 11194 return false; 11195 } 11196 11197 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11198 { 11199 switch (l4_proto) { 11200 case IPPROTO_UDP: 11201 return bnxt_udp_tunl_check(bp, skb); 11202 case IPPROTO_IPIP: 11203 return true; 11204 case IPPROTO_GRE: { 11205 switch (skb->inner_protocol) { 11206 default: 11207 return false; 11208 case htons(ETH_P_IP): 11209 return true; 11210 case htons(ETH_P_IPV6): 11211 fallthrough; 11212 } 11213 } 11214 case IPPROTO_IPV6: 11215 /* Check ext headers of inner ipv6 */ 11216 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11217 NULL); 11218 } 11219 return false; 11220 } 11221 11222 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11223 struct net_device *dev, 11224 netdev_features_t features) 11225 { 11226 struct bnxt *bp = netdev_priv(dev); 11227 u8 *l4_proto; 11228 11229 features = vlan_features_check(skb, features); 11230 switch (vlan_get_protocol(skb)) { 11231 case htons(ETH_P_IP): 11232 if (!skb->encapsulation) 11233 return features; 11234 l4_proto = &ip_hdr(skb)->protocol; 11235 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11236 return features; 11237 break; 11238 case htons(ETH_P_IPV6): 11239 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11240 &l4_proto)) 11241 break; 11242 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11243 return features; 11244 break; 11245 } 11246 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11247 } 11248 11249 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11250 u32 *reg_buf) 11251 { 11252 struct hwrm_dbg_read_direct_output *resp; 11253 struct hwrm_dbg_read_direct_input *req; 11254 __le32 *dbg_reg_buf; 11255 dma_addr_t mapping; 11256 int rc, i; 11257 11258 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11259 if (rc) 11260 return rc; 11261 11262 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11263 &mapping); 11264 if (!dbg_reg_buf) { 11265 rc = -ENOMEM; 11266 goto dbg_rd_reg_exit; 11267 } 11268 11269 req->host_dest_addr = cpu_to_le64(mapping); 11270 11271 resp = hwrm_req_hold(bp, req); 11272 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11273 req->read_len32 = cpu_to_le32(num_words); 11274 11275 rc = hwrm_req_send(bp, req); 11276 if (rc || resp->error_code) { 11277 rc = -EIO; 11278 goto dbg_rd_reg_exit; 11279 } 11280 for (i = 0; i < num_words; i++) 11281 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11282 11283 dbg_rd_reg_exit: 11284 hwrm_req_drop(bp, req); 11285 return rc; 11286 } 11287 11288 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11289 u32 ring_id, u32 *prod, u32 *cons) 11290 { 11291 struct hwrm_dbg_ring_info_get_output *resp; 11292 struct hwrm_dbg_ring_info_get_input *req; 11293 int rc; 11294 11295 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11296 if (rc) 11297 return rc; 11298 11299 req->ring_type = ring_type; 11300 req->fw_ring_id = cpu_to_le32(ring_id); 11301 resp = hwrm_req_hold(bp, req); 11302 rc = hwrm_req_send(bp, req); 11303 if (!rc) { 11304 *prod = le32_to_cpu(resp->producer_index); 11305 *cons = le32_to_cpu(resp->consumer_index); 11306 } 11307 hwrm_req_drop(bp, req); 11308 return rc; 11309 } 11310 11311 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11312 { 11313 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11314 int i = bnapi->index; 11315 11316 if (!txr) 11317 return; 11318 11319 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11320 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11321 txr->tx_cons); 11322 } 11323 11324 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11325 { 11326 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11327 int i = bnapi->index; 11328 11329 if (!rxr) 11330 return; 11331 11332 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11333 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11334 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11335 rxr->rx_sw_agg_prod); 11336 } 11337 11338 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11339 { 11340 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11341 int i = bnapi->index; 11342 11343 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11344 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11345 } 11346 11347 static void bnxt_dbg_dump_states(struct bnxt *bp) 11348 { 11349 int i; 11350 struct bnxt_napi *bnapi; 11351 11352 for (i = 0; i < bp->cp_nr_rings; i++) { 11353 bnapi = bp->bnapi[i]; 11354 if (netif_msg_drv(bp)) { 11355 bnxt_dump_tx_sw_state(bnapi); 11356 bnxt_dump_rx_sw_state(bnapi); 11357 bnxt_dump_cp_sw_state(bnapi); 11358 } 11359 } 11360 } 11361 11362 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11363 { 11364 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11365 struct hwrm_ring_reset_input *req; 11366 struct bnxt_napi *bnapi = rxr->bnapi; 11367 struct bnxt_cp_ring_info *cpr; 11368 u16 cp_ring_id; 11369 int rc; 11370 11371 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11372 if (rc) 11373 return rc; 11374 11375 cpr = &bnapi->cp_ring; 11376 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11377 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11378 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11379 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11380 return hwrm_req_send_silent(bp, req); 11381 } 11382 11383 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11384 { 11385 if (!silent) 11386 bnxt_dbg_dump_states(bp); 11387 if (netif_running(bp->dev)) { 11388 int rc; 11389 11390 if (silent) { 11391 bnxt_close_nic(bp, false, false); 11392 bnxt_open_nic(bp, false, false); 11393 } else { 11394 bnxt_ulp_stop(bp); 11395 bnxt_close_nic(bp, true, false); 11396 rc = bnxt_open_nic(bp, true, false); 11397 bnxt_ulp_start(bp, rc); 11398 } 11399 } 11400 } 11401 11402 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11403 { 11404 struct bnxt *bp = netdev_priv(dev); 11405 11406 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11407 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11408 bnxt_queue_sp_work(bp); 11409 } 11410 11411 static void bnxt_fw_health_check(struct bnxt *bp) 11412 { 11413 struct bnxt_fw_health *fw_health = bp->fw_health; 11414 u32 val; 11415 11416 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11417 return; 11418 11419 /* Make sure it is enabled before checking the tmr_counter. */ 11420 smp_rmb(); 11421 if (fw_health->tmr_counter) { 11422 fw_health->tmr_counter--; 11423 return; 11424 } 11425 11426 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11427 if (val == fw_health->last_fw_heartbeat) { 11428 fw_health->arrests++; 11429 goto fw_reset; 11430 } 11431 11432 fw_health->last_fw_heartbeat = val; 11433 11434 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11435 if (val != fw_health->last_fw_reset_cnt) { 11436 fw_health->discoveries++; 11437 goto fw_reset; 11438 } 11439 11440 fw_health->tmr_counter = fw_health->tmr_multiplier; 11441 return; 11442 11443 fw_reset: 11444 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11445 bnxt_queue_sp_work(bp); 11446 } 11447 11448 static void bnxt_timer(struct timer_list *t) 11449 { 11450 struct bnxt *bp = from_timer(bp, t, timer); 11451 struct net_device *dev = bp->dev; 11452 11453 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11454 return; 11455 11456 if (atomic_read(&bp->intr_sem) != 0) 11457 goto bnxt_restart_timer; 11458 11459 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11460 bnxt_fw_health_check(bp); 11461 11462 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) { 11463 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11464 bnxt_queue_sp_work(bp); 11465 } 11466 11467 if (bnxt_tc_flower_enabled(bp)) { 11468 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11469 bnxt_queue_sp_work(bp); 11470 } 11471 11472 #ifdef CONFIG_RFS_ACCEL 11473 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11474 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11475 bnxt_queue_sp_work(bp); 11476 } 11477 #endif /*CONFIG_RFS_ACCEL*/ 11478 11479 if (bp->link_info.phy_retry) { 11480 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11481 bp->link_info.phy_retry = false; 11482 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11483 } else { 11484 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11485 bnxt_queue_sp_work(bp); 11486 } 11487 } 11488 11489 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) { 11490 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 11491 bnxt_queue_sp_work(bp); 11492 } 11493 11494 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11495 netif_carrier_ok(dev)) { 11496 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11497 bnxt_queue_sp_work(bp); 11498 } 11499 bnxt_restart_timer: 11500 mod_timer(&bp->timer, jiffies + bp->current_interval); 11501 } 11502 11503 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11504 { 11505 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11506 * set. If the device is being closed, bnxt_close() may be holding 11507 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11508 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11509 */ 11510 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11511 rtnl_lock(); 11512 } 11513 11514 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11515 { 11516 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11517 rtnl_unlock(); 11518 } 11519 11520 /* Only called from bnxt_sp_task() */ 11521 static void bnxt_reset(struct bnxt *bp, bool silent) 11522 { 11523 bnxt_rtnl_lock_sp(bp); 11524 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11525 bnxt_reset_task(bp, silent); 11526 bnxt_rtnl_unlock_sp(bp); 11527 } 11528 11529 /* Only called from bnxt_sp_task() */ 11530 static void bnxt_rx_ring_reset(struct bnxt *bp) 11531 { 11532 int i; 11533 11534 bnxt_rtnl_lock_sp(bp); 11535 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11536 bnxt_rtnl_unlock_sp(bp); 11537 return; 11538 } 11539 /* Disable and flush TPA before resetting the RX ring */ 11540 if (bp->flags & BNXT_FLAG_TPA) 11541 bnxt_set_tpa(bp, false); 11542 for (i = 0; i < bp->rx_nr_rings; i++) { 11543 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11544 struct bnxt_cp_ring_info *cpr; 11545 int rc; 11546 11547 if (!rxr->bnapi->in_reset) 11548 continue; 11549 11550 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11551 if (rc) { 11552 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11553 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11554 else 11555 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11556 rc); 11557 bnxt_reset_task(bp, true); 11558 break; 11559 } 11560 bnxt_free_one_rx_ring_skbs(bp, i); 11561 rxr->rx_prod = 0; 11562 rxr->rx_agg_prod = 0; 11563 rxr->rx_sw_agg_prod = 0; 11564 rxr->rx_next_cons = 0; 11565 rxr->bnapi->in_reset = false; 11566 bnxt_alloc_one_rx_ring(bp, i); 11567 cpr = &rxr->bnapi->cp_ring; 11568 cpr->sw_stats.rx.rx_resets++; 11569 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11570 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11571 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11572 } 11573 if (bp->flags & BNXT_FLAG_TPA) 11574 bnxt_set_tpa(bp, true); 11575 bnxt_rtnl_unlock_sp(bp); 11576 } 11577 11578 static void bnxt_fw_reset_close(struct bnxt *bp) 11579 { 11580 bnxt_ulp_stop(bp); 11581 /* When firmware is in fatal state, quiesce device and disable 11582 * bus master to prevent any potential bad DMAs before freeing 11583 * kernel memory. 11584 */ 11585 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11586 u16 val = 0; 11587 11588 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11589 if (val == 0xffff) 11590 bp->fw_reset_min_dsecs = 0; 11591 bnxt_tx_disable(bp); 11592 bnxt_disable_napi(bp); 11593 bnxt_disable_int_sync(bp); 11594 bnxt_free_irq(bp); 11595 bnxt_clear_int_mode(bp); 11596 pci_disable_device(bp->pdev); 11597 } 11598 __bnxt_close_nic(bp, true, false); 11599 bnxt_vf_reps_free(bp); 11600 bnxt_clear_int_mode(bp); 11601 bnxt_hwrm_func_drv_unrgtr(bp); 11602 if (pci_is_enabled(bp->pdev)) 11603 pci_disable_device(bp->pdev); 11604 bnxt_free_ctx_mem(bp); 11605 kfree(bp->ctx); 11606 bp->ctx = NULL; 11607 } 11608 11609 static bool is_bnxt_fw_ok(struct bnxt *bp) 11610 { 11611 struct bnxt_fw_health *fw_health = bp->fw_health; 11612 bool no_heartbeat = false, has_reset = false; 11613 u32 val; 11614 11615 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11616 if (val == fw_health->last_fw_heartbeat) 11617 no_heartbeat = true; 11618 11619 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11620 if (val != fw_health->last_fw_reset_cnt) 11621 has_reset = true; 11622 11623 if (!no_heartbeat && has_reset) 11624 return true; 11625 11626 return false; 11627 } 11628 11629 /* rtnl_lock is acquired before calling this function */ 11630 static void bnxt_force_fw_reset(struct bnxt *bp) 11631 { 11632 struct bnxt_fw_health *fw_health = bp->fw_health; 11633 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11634 u32 wait_dsecs; 11635 11636 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11637 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11638 return; 11639 11640 if (ptp) { 11641 spin_lock_bh(&ptp->ptp_lock); 11642 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11643 spin_unlock_bh(&ptp->ptp_lock); 11644 } else { 11645 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11646 } 11647 bnxt_fw_reset_close(bp); 11648 wait_dsecs = fw_health->master_func_wait_dsecs; 11649 if (fw_health->primary) { 11650 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11651 wait_dsecs = 0; 11652 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11653 } else { 11654 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11655 wait_dsecs = fw_health->normal_func_wait_dsecs; 11656 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11657 } 11658 11659 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11660 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11661 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11662 } 11663 11664 void bnxt_fw_exception(struct bnxt *bp) 11665 { 11666 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11667 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11668 bnxt_rtnl_lock_sp(bp); 11669 bnxt_force_fw_reset(bp); 11670 bnxt_rtnl_unlock_sp(bp); 11671 } 11672 11673 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11674 * < 0 on error. 11675 */ 11676 static int bnxt_get_registered_vfs(struct bnxt *bp) 11677 { 11678 #ifdef CONFIG_BNXT_SRIOV 11679 int rc; 11680 11681 if (!BNXT_PF(bp)) 11682 return 0; 11683 11684 rc = bnxt_hwrm_func_qcfg(bp); 11685 if (rc) { 11686 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11687 return rc; 11688 } 11689 if (bp->pf.registered_vfs) 11690 return bp->pf.registered_vfs; 11691 if (bp->sriov_cfg) 11692 return 1; 11693 #endif 11694 return 0; 11695 } 11696 11697 void bnxt_fw_reset(struct bnxt *bp) 11698 { 11699 bnxt_rtnl_lock_sp(bp); 11700 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11701 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11702 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11703 int n = 0, tmo; 11704 11705 if (ptp) { 11706 spin_lock_bh(&ptp->ptp_lock); 11707 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11708 spin_unlock_bh(&ptp->ptp_lock); 11709 } else { 11710 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11711 } 11712 if (bp->pf.active_vfs && 11713 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11714 n = bnxt_get_registered_vfs(bp); 11715 if (n < 0) { 11716 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11717 n); 11718 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11719 dev_close(bp->dev); 11720 goto fw_reset_exit; 11721 } else if (n > 0) { 11722 u16 vf_tmo_dsecs = n * 10; 11723 11724 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11725 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11726 bp->fw_reset_state = 11727 BNXT_FW_RESET_STATE_POLL_VF; 11728 bnxt_queue_fw_reset_work(bp, HZ / 10); 11729 goto fw_reset_exit; 11730 } 11731 bnxt_fw_reset_close(bp); 11732 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11733 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11734 tmo = HZ / 10; 11735 } else { 11736 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11737 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11738 } 11739 bnxt_queue_fw_reset_work(bp, tmo); 11740 } 11741 fw_reset_exit: 11742 bnxt_rtnl_unlock_sp(bp); 11743 } 11744 11745 static void bnxt_chk_missed_irq(struct bnxt *bp) 11746 { 11747 int i; 11748 11749 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11750 return; 11751 11752 for (i = 0; i < bp->cp_nr_rings; i++) { 11753 struct bnxt_napi *bnapi = bp->bnapi[i]; 11754 struct bnxt_cp_ring_info *cpr; 11755 u32 fw_ring_id; 11756 int j; 11757 11758 if (!bnapi) 11759 continue; 11760 11761 cpr = &bnapi->cp_ring; 11762 for (j = 0; j < 2; j++) { 11763 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11764 u32 val[2]; 11765 11766 if (!cpr2 || cpr2->has_more_work || 11767 !bnxt_has_work(bp, cpr2)) 11768 continue; 11769 11770 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11771 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11772 continue; 11773 } 11774 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11775 bnxt_dbg_hwrm_ring_info_get(bp, 11776 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11777 fw_ring_id, &val[0], &val[1]); 11778 cpr->sw_stats.cmn.missed_irqs++; 11779 } 11780 } 11781 } 11782 11783 static void bnxt_cfg_ntp_filters(struct bnxt *); 11784 11785 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11786 { 11787 struct bnxt_link_info *link_info = &bp->link_info; 11788 11789 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11790 link_info->autoneg = BNXT_AUTONEG_SPEED; 11791 if (bp->hwrm_spec_code >= 0x10201) { 11792 if (link_info->auto_pause_setting & 11793 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11794 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11795 } else { 11796 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11797 } 11798 link_info->advertising = link_info->auto_link_speeds; 11799 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11800 } else { 11801 link_info->req_link_speed = link_info->force_link_speed; 11802 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11803 if (link_info->force_pam4_link_speed) { 11804 link_info->req_link_speed = 11805 link_info->force_pam4_link_speed; 11806 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11807 } 11808 link_info->req_duplex = link_info->duplex_setting; 11809 } 11810 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11811 link_info->req_flow_ctrl = 11812 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11813 else 11814 link_info->req_flow_ctrl = link_info->force_pause_setting; 11815 } 11816 11817 static void bnxt_fw_echo_reply(struct bnxt *bp) 11818 { 11819 struct bnxt_fw_health *fw_health = bp->fw_health; 11820 struct hwrm_func_echo_response_input *req; 11821 int rc; 11822 11823 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 11824 if (rc) 11825 return; 11826 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11827 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11828 hwrm_req_send(bp, req); 11829 } 11830 11831 static void bnxt_sp_task(struct work_struct *work) 11832 { 11833 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11834 11835 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11836 smp_mb__after_atomic(); 11837 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11838 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11839 return; 11840 } 11841 11842 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11843 bnxt_cfg_rx_mode(bp); 11844 11845 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11846 bnxt_cfg_ntp_filters(bp); 11847 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11848 bnxt_hwrm_exec_fwd_req(bp); 11849 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11850 bnxt_hwrm_port_qstats(bp, 0); 11851 bnxt_hwrm_port_qstats_ext(bp, 0); 11852 bnxt_accumulate_all_stats(bp); 11853 } 11854 11855 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11856 int rc; 11857 11858 mutex_lock(&bp->link_lock); 11859 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11860 &bp->sp_event)) 11861 bnxt_hwrm_phy_qcaps(bp); 11862 11863 rc = bnxt_update_link(bp, true); 11864 if (rc) 11865 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11866 rc); 11867 11868 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11869 &bp->sp_event)) 11870 bnxt_init_ethtool_link_settings(bp); 11871 mutex_unlock(&bp->link_lock); 11872 } 11873 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11874 int rc; 11875 11876 mutex_lock(&bp->link_lock); 11877 rc = bnxt_update_phy_setting(bp); 11878 mutex_unlock(&bp->link_lock); 11879 if (rc) { 11880 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11881 } else { 11882 bp->link_info.phy_retry = false; 11883 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11884 } 11885 } 11886 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11887 mutex_lock(&bp->link_lock); 11888 bnxt_get_port_module_status(bp); 11889 mutex_unlock(&bp->link_lock); 11890 } 11891 11892 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11893 bnxt_tc_flow_stats_work(bp); 11894 11895 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11896 bnxt_chk_missed_irq(bp); 11897 11898 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11899 bnxt_fw_echo_reply(bp); 11900 11901 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11902 * must be the last functions to be called before exiting. 11903 */ 11904 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11905 bnxt_reset(bp, false); 11906 11907 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11908 bnxt_reset(bp, true); 11909 11910 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11911 bnxt_rx_ring_reset(bp); 11912 11913 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 11914 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 11915 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 11916 bnxt_devlink_health_fw_report(bp); 11917 else 11918 bnxt_fw_reset(bp); 11919 } 11920 11921 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11922 if (!is_bnxt_fw_ok(bp)) 11923 bnxt_devlink_health_fw_report(bp); 11924 } 11925 11926 smp_mb__before_atomic(); 11927 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11928 } 11929 11930 /* Under rtnl_lock */ 11931 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11932 int tx_xdp) 11933 { 11934 int max_rx, max_tx, tx_sets = 1; 11935 int tx_rings_needed, stats; 11936 int rx_rings = rx; 11937 int cp, vnics, rc; 11938 11939 if (tcs) 11940 tx_sets = tcs; 11941 11942 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11943 if (rc) 11944 return rc; 11945 11946 if (max_rx < rx) 11947 return -ENOMEM; 11948 11949 tx_rings_needed = tx * tx_sets + tx_xdp; 11950 if (max_tx < tx_rings_needed) 11951 return -ENOMEM; 11952 11953 vnics = 1; 11954 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11955 vnics += rx_rings; 11956 11957 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11958 rx_rings <<= 1; 11959 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11960 stats = cp; 11961 if (BNXT_NEW_RM(bp)) { 11962 cp += bnxt_get_ulp_msix_num(bp); 11963 stats += bnxt_get_ulp_stat_ctxs(bp); 11964 } 11965 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11966 stats, vnics); 11967 } 11968 11969 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11970 { 11971 if (bp->bar2) { 11972 pci_iounmap(pdev, bp->bar2); 11973 bp->bar2 = NULL; 11974 } 11975 11976 if (bp->bar1) { 11977 pci_iounmap(pdev, bp->bar1); 11978 bp->bar1 = NULL; 11979 } 11980 11981 if (bp->bar0) { 11982 pci_iounmap(pdev, bp->bar0); 11983 bp->bar0 = NULL; 11984 } 11985 } 11986 11987 static void bnxt_cleanup_pci(struct bnxt *bp) 11988 { 11989 bnxt_unmap_bars(bp, bp->pdev); 11990 pci_release_regions(bp->pdev); 11991 if (pci_is_enabled(bp->pdev)) 11992 pci_disable_device(bp->pdev); 11993 } 11994 11995 static void bnxt_init_dflt_coal(struct bnxt *bp) 11996 { 11997 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 11998 struct bnxt_coal *coal; 11999 u16 flags = 0; 12000 12001 if (coal_cap->cmpl_params & 12002 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 12003 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 12004 12005 /* Tick values in micro seconds. 12006 * 1 coal_buf x bufs_per_record = 1 completion record. 12007 */ 12008 coal = &bp->rx_coal; 12009 coal->coal_ticks = 10; 12010 coal->coal_bufs = 30; 12011 coal->coal_ticks_irq = 1; 12012 coal->coal_bufs_irq = 2; 12013 coal->idle_thresh = 50; 12014 coal->bufs_per_record = 2; 12015 coal->budget = 64; /* NAPI budget */ 12016 coal->flags = flags; 12017 12018 coal = &bp->tx_coal; 12019 coal->coal_ticks = 28; 12020 coal->coal_bufs = 30; 12021 coal->coal_ticks_irq = 2; 12022 coal->coal_bufs_irq = 2; 12023 coal->bufs_per_record = 1; 12024 coal->flags = flags; 12025 12026 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 12027 } 12028 12029 static int bnxt_fw_init_one_p1(struct bnxt *bp) 12030 { 12031 int rc; 12032 12033 bp->fw_cap = 0; 12034 rc = bnxt_hwrm_ver_get(bp); 12035 bnxt_try_map_fw_health_reg(bp); 12036 if (rc) { 12037 rc = bnxt_try_recover_fw(bp); 12038 if (rc) 12039 return rc; 12040 rc = bnxt_hwrm_ver_get(bp); 12041 if (rc) 12042 return rc; 12043 } 12044 12045 bnxt_nvm_cfg_ver_get(bp); 12046 12047 rc = bnxt_hwrm_func_reset(bp); 12048 if (rc) 12049 return -ENODEV; 12050 12051 bnxt_hwrm_fw_set_time(bp); 12052 return 0; 12053 } 12054 12055 static int bnxt_fw_init_one_p2(struct bnxt *bp) 12056 { 12057 int rc; 12058 12059 /* Get the MAX capabilities for this function */ 12060 rc = bnxt_hwrm_func_qcaps(bp); 12061 if (rc) { 12062 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 12063 rc); 12064 return -ENODEV; 12065 } 12066 12067 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 12068 if (rc) 12069 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 12070 rc); 12071 12072 if (bnxt_alloc_fw_health(bp)) { 12073 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 12074 } else { 12075 rc = bnxt_hwrm_error_recovery_qcfg(bp); 12076 if (rc) 12077 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 12078 rc); 12079 } 12080 12081 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 12082 if (rc) 12083 return -ENODEV; 12084 12085 bnxt_hwrm_func_qcfg(bp); 12086 bnxt_hwrm_vnic_qcaps(bp); 12087 bnxt_hwrm_port_led_qcaps(bp); 12088 bnxt_ethtool_init(bp); 12089 bnxt_dcb_init(bp); 12090 return 0; 12091 } 12092 12093 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 12094 { 12095 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 12096 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 12097 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 12098 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 12099 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 12100 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 12101 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 12102 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 12103 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 12104 } 12105 } 12106 12107 static void bnxt_set_dflt_rfs(struct bnxt *bp) 12108 { 12109 struct net_device *dev = bp->dev; 12110 12111 dev->hw_features &= ~NETIF_F_NTUPLE; 12112 dev->features &= ~NETIF_F_NTUPLE; 12113 bp->flags &= ~BNXT_FLAG_RFS; 12114 if (bnxt_rfs_supported(bp)) { 12115 dev->hw_features |= NETIF_F_NTUPLE; 12116 if (bnxt_rfs_capable(bp)) { 12117 bp->flags |= BNXT_FLAG_RFS; 12118 dev->features |= NETIF_F_NTUPLE; 12119 } 12120 } 12121 } 12122 12123 static void bnxt_fw_init_one_p3(struct bnxt *bp) 12124 { 12125 struct pci_dev *pdev = bp->pdev; 12126 12127 bnxt_set_dflt_rss_hash_type(bp); 12128 bnxt_set_dflt_rfs(bp); 12129 12130 bnxt_get_wol_settings(bp); 12131 if (bp->flags & BNXT_FLAG_WOL_CAP) 12132 device_set_wakeup_enable(&pdev->dev, bp->wol); 12133 else 12134 device_set_wakeup_capable(&pdev->dev, false); 12135 12136 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 12137 bnxt_hwrm_coal_params_qcaps(bp); 12138 } 12139 12140 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 12141 12142 int bnxt_fw_init_one(struct bnxt *bp) 12143 { 12144 int rc; 12145 12146 rc = bnxt_fw_init_one_p1(bp); 12147 if (rc) { 12148 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 12149 return rc; 12150 } 12151 rc = bnxt_fw_init_one_p2(bp); 12152 if (rc) { 12153 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12154 return rc; 12155 } 12156 rc = bnxt_probe_phy(bp, false); 12157 if (rc) 12158 return rc; 12159 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12160 if (rc) 12161 return rc; 12162 12163 bnxt_fw_init_one_p3(bp); 12164 return 0; 12165 } 12166 12167 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12168 { 12169 struct bnxt_fw_health *fw_health = bp->fw_health; 12170 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12171 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12172 u32 reg_type, reg_off, delay_msecs; 12173 12174 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12175 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12176 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12177 switch (reg_type) { 12178 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12179 pci_write_config_dword(bp->pdev, reg_off, val); 12180 break; 12181 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12182 writel(reg_off & BNXT_GRC_BASE_MASK, 12183 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12184 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12185 fallthrough; 12186 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12187 writel(val, bp->bar0 + reg_off); 12188 break; 12189 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12190 writel(val, bp->bar1 + reg_off); 12191 break; 12192 } 12193 if (delay_msecs) { 12194 pci_read_config_dword(bp->pdev, 0, &val); 12195 msleep(delay_msecs); 12196 } 12197 } 12198 12199 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 12200 { 12201 struct hwrm_func_qcfg_output *resp; 12202 struct hwrm_func_qcfg_input *req; 12203 bool result = true; /* firmware will enforce if unknown */ 12204 12205 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 12206 return result; 12207 12208 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 12209 return result; 12210 12211 req->fid = cpu_to_le16(0xffff); 12212 resp = hwrm_req_hold(bp, req); 12213 if (!hwrm_req_send(bp, req)) 12214 result = !!(le16_to_cpu(resp->flags) & 12215 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 12216 hwrm_req_drop(bp, req); 12217 return result; 12218 } 12219 12220 static void bnxt_reset_all(struct bnxt *bp) 12221 { 12222 struct bnxt_fw_health *fw_health = bp->fw_health; 12223 int i, rc; 12224 12225 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12226 bnxt_fw_reset_via_optee(bp); 12227 bp->fw_reset_timestamp = jiffies; 12228 return; 12229 } 12230 12231 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12232 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12233 bnxt_fw_reset_writel(bp, i); 12234 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12235 struct hwrm_fw_reset_input *req; 12236 12237 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12238 if (!rc) { 12239 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12240 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12241 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12242 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12243 rc = hwrm_req_send(bp, req); 12244 } 12245 if (rc != -ENODEV) 12246 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12247 } 12248 bp->fw_reset_timestamp = jiffies; 12249 } 12250 12251 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12252 { 12253 return time_after(jiffies, bp->fw_reset_timestamp + 12254 (bp->fw_reset_max_dsecs * HZ / 10)); 12255 } 12256 12257 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12258 { 12259 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12260 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12261 bnxt_ulp_start(bp, rc); 12262 bnxt_dl_health_fw_status_update(bp, false); 12263 } 12264 bp->fw_reset_state = 0; 12265 dev_close(bp->dev); 12266 } 12267 12268 static void bnxt_fw_reset_task(struct work_struct *work) 12269 { 12270 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12271 int rc = 0; 12272 12273 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12274 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12275 return; 12276 } 12277 12278 switch (bp->fw_reset_state) { 12279 case BNXT_FW_RESET_STATE_POLL_VF: { 12280 int n = bnxt_get_registered_vfs(bp); 12281 int tmo; 12282 12283 if (n < 0) { 12284 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12285 n, jiffies_to_msecs(jiffies - 12286 bp->fw_reset_timestamp)); 12287 goto fw_reset_abort; 12288 } else if (n > 0) { 12289 if (bnxt_fw_reset_timeout(bp)) { 12290 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12291 bp->fw_reset_state = 0; 12292 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12293 n); 12294 return; 12295 } 12296 bnxt_queue_fw_reset_work(bp, HZ / 10); 12297 return; 12298 } 12299 bp->fw_reset_timestamp = jiffies; 12300 rtnl_lock(); 12301 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12302 bnxt_fw_reset_abort(bp, rc); 12303 rtnl_unlock(); 12304 return; 12305 } 12306 bnxt_fw_reset_close(bp); 12307 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12308 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12309 tmo = HZ / 10; 12310 } else { 12311 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12312 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12313 } 12314 rtnl_unlock(); 12315 bnxt_queue_fw_reset_work(bp, tmo); 12316 return; 12317 } 12318 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12319 u32 val; 12320 12321 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12322 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12323 !bnxt_fw_reset_timeout(bp)) { 12324 bnxt_queue_fw_reset_work(bp, HZ / 5); 12325 return; 12326 } 12327 12328 if (!bp->fw_health->primary) { 12329 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12330 12331 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12332 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12333 return; 12334 } 12335 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12336 } 12337 fallthrough; 12338 case BNXT_FW_RESET_STATE_RESET_FW: 12339 bnxt_reset_all(bp); 12340 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12341 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12342 return; 12343 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12344 bnxt_inv_fw_health_reg(bp); 12345 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12346 !bp->fw_reset_min_dsecs) { 12347 u16 val; 12348 12349 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12350 if (val == 0xffff) { 12351 if (bnxt_fw_reset_timeout(bp)) { 12352 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12353 rc = -ETIMEDOUT; 12354 goto fw_reset_abort; 12355 } 12356 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12357 return; 12358 } 12359 } 12360 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12361 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 12362 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 12363 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 12364 bnxt_dl_remote_reload(bp); 12365 if (pci_enable_device(bp->pdev)) { 12366 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12367 rc = -ENODEV; 12368 goto fw_reset_abort; 12369 } 12370 pci_set_master(bp->pdev); 12371 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12372 fallthrough; 12373 case BNXT_FW_RESET_STATE_POLL_FW: 12374 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12375 rc = bnxt_hwrm_poll(bp); 12376 if (rc) { 12377 if (bnxt_fw_reset_timeout(bp)) { 12378 netdev_err(bp->dev, "Firmware reset aborted\n"); 12379 goto fw_reset_abort_status; 12380 } 12381 bnxt_queue_fw_reset_work(bp, HZ / 5); 12382 return; 12383 } 12384 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12385 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12386 fallthrough; 12387 case BNXT_FW_RESET_STATE_OPENING: 12388 while (!rtnl_trylock()) { 12389 bnxt_queue_fw_reset_work(bp, HZ / 10); 12390 return; 12391 } 12392 rc = bnxt_open(bp->dev); 12393 if (rc) { 12394 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12395 bnxt_fw_reset_abort(bp, rc); 12396 rtnl_unlock(); 12397 return; 12398 } 12399 12400 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 12401 bp->fw_health->enabled) { 12402 bp->fw_health->last_fw_reset_cnt = 12403 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12404 } 12405 bp->fw_reset_state = 0; 12406 /* Make sure fw_reset_state is 0 before clearing the flag */ 12407 smp_mb__before_atomic(); 12408 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12409 bnxt_ulp_start(bp, 0); 12410 bnxt_reenable_sriov(bp); 12411 bnxt_vf_reps_alloc(bp); 12412 bnxt_vf_reps_open(bp); 12413 bnxt_ptp_reapply_pps(bp); 12414 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 12415 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 12416 bnxt_dl_health_fw_recovery_done(bp); 12417 bnxt_dl_health_fw_status_update(bp, true); 12418 } 12419 rtnl_unlock(); 12420 break; 12421 } 12422 return; 12423 12424 fw_reset_abort_status: 12425 if (bp->fw_health->status_reliable || 12426 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12427 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12428 12429 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12430 } 12431 fw_reset_abort: 12432 rtnl_lock(); 12433 bnxt_fw_reset_abort(bp, rc); 12434 rtnl_unlock(); 12435 } 12436 12437 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12438 { 12439 int rc; 12440 struct bnxt *bp = netdev_priv(dev); 12441 12442 SET_NETDEV_DEV(dev, &pdev->dev); 12443 12444 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12445 rc = pci_enable_device(pdev); 12446 if (rc) { 12447 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12448 goto init_err; 12449 } 12450 12451 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12452 dev_err(&pdev->dev, 12453 "Cannot find PCI device base address, aborting\n"); 12454 rc = -ENODEV; 12455 goto init_err_disable; 12456 } 12457 12458 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12459 if (rc) { 12460 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12461 goto init_err_disable; 12462 } 12463 12464 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12465 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12466 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12467 rc = -EIO; 12468 goto init_err_release; 12469 } 12470 12471 pci_set_master(pdev); 12472 12473 bp->dev = dev; 12474 bp->pdev = pdev; 12475 12476 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12477 * determines the BAR size. 12478 */ 12479 bp->bar0 = pci_ioremap_bar(pdev, 0); 12480 if (!bp->bar0) { 12481 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12482 rc = -ENOMEM; 12483 goto init_err_release; 12484 } 12485 12486 bp->bar2 = pci_ioremap_bar(pdev, 4); 12487 if (!bp->bar2) { 12488 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12489 rc = -ENOMEM; 12490 goto init_err_release; 12491 } 12492 12493 pci_enable_pcie_error_reporting(pdev); 12494 12495 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12496 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12497 12498 spin_lock_init(&bp->ntp_fltr_lock); 12499 #if BITS_PER_LONG == 32 12500 spin_lock_init(&bp->db_lock); 12501 #endif 12502 12503 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12504 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12505 12506 timer_setup(&bp->timer, bnxt_timer, 0); 12507 bp->current_interval = BNXT_TIMER_INTERVAL; 12508 12509 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12510 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12511 12512 clear_bit(BNXT_STATE_OPEN, &bp->state); 12513 return 0; 12514 12515 init_err_release: 12516 bnxt_unmap_bars(bp, pdev); 12517 pci_release_regions(pdev); 12518 12519 init_err_disable: 12520 pci_disable_device(pdev); 12521 12522 init_err: 12523 return rc; 12524 } 12525 12526 /* rtnl_lock held */ 12527 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12528 { 12529 struct sockaddr *addr = p; 12530 struct bnxt *bp = netdev_priv(dev); 12531 int rc = 0; 12532 12533 if (!is_valid_ether_addr(addr->sa_data)) 12534 return -EADDRNOTAVAIL; 12535 12536 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12537 return 0; 12538 12539 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12540 if (rc) 12541 return rc; 12542 12543 eth_hw_addr_set(dev, addr->sa_data); 12544 if (netif_running(dev)) { 12545 bnxt_close_nic(bp, false, false); 12546 rc = bnxt_open_nic(bp, false, false); 12547 } 12548 12549 return rc; 12550 } 12551 12552 /* rtnl_lock held */ 12553 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12554 { 12555 struct bnxt *bp = netdev_priv(dev); 12556 12557 if (netif_running(dev)) 12558 bnxt_close_nic(bp, true, false); 12559 12560 dev->mtu = new_mtu; 12561 bnxt_set_ring_params(bp); 12562 12563 if (netif_running(dev)) 12564 return bnxt_open_nic(bp, true, false); 12565 12566 return 0; 12567 } 12568 12569 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12570 { 12571 struct bnxt *bp = netdev_priv(dev); 12572 bool sh = false; 12573 int rc; 12574 12575 if (tc > bp->max_tc) { 12576 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12577 tc, bp->max_tc); 12578 return -EINVAL; 12579 } 12580 12581 if (netdev_get_num_tc(dev) == tc) 12582 return 0; 12583 12584 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12585 sh = true; 12586 12587 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12588 sh, tc, bp->tx_nr_rings_xdp); 12589 if (rc) 12590 return rc; 12591 12592 /* Needs to close the device and do hw resource re-allocations */ 12593 if (netif_running(bp->dev)) 12594 bnxt_close_nic(bp, true, false); 12595 12596 if (tc) { 12597 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12598 netdev_set_num_tc(dev, tc); 12599 } else { 12600 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12601 netdev_reset_tc(dev); 12602 } 12603 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12604 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12605 bp->tx_nr_rings + bp->rx_nr_rings; 12606 12607 if (netif_running(bp->dev)) 12608 return bnxt_open_nic(bp, true, false); 12609 12610 return 0; 12611 } 12612 12613 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12614 void *cb_priv) 12615 { 12616 struct bnxt *bp = cb_priv; 12617 12618 if (!bnxt_tc_flower_enabled(bp) || 12619 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12620 return -EOPNOTSUPP; 12621 12622 switch (type) { 12623 case TC_SETUP_CLSFLOWER: 12624 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12625 default: 12626 return -EOPNOTSUPP; 12627 } 12628 } 12629 12630 LIST_HEAD(bnxt_block_cb_list); 12631 12632 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12633 void *type_data) 12634 { 12635 struct bnxt *bp = netdev_priv(dev); 12636 12637 switch (type) { 12638 case TC_SETUP_BLOCK: 12639 return flow_block_cb_setup_simple(type_data, 12640 &bnxt_block_cb_list, 12641 bnxt_setup_tc_block_cb, 12642 bp, bp, true); 12643 case TC_SETUP_QDISC_MQPRIO: { 12644 struct tc_mqprio_qopt *mqprio = type_data; 12645 12646 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12647 12648 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12649 } 12650 default: 12651 return -EOPNOTSUPP; 12652 } 12653 } 12654 12655 #ifdef CONFIG_RFS_ACCEL 12656 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12657 struct bnxt_ntuple_filter *f2) 12658 { 12659 struct flow_keys *keys1 = &f1->fkeys; 12660 struct flow_keys *keys2 = &f2->fkeys; 12661 12662 if (keys1->basic.n_proto != keys2->basic.n_proto || 12663 keys1->basic.ip_proto != keys2->basic.ip_proto) 12664 return false; 12665 12666 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12667 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12668 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12669 return false; 12670 } else { 12671 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12672 sizeof(keys1->addrs.v6addrs.src)) || 12673 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12674 sizeof(keys1->addrs.v6addrs.dst))) 12675 return false; 12676 } 12677 12678 if (keys1->ports.ports == keys2->ports.ports && 12679 keys1->control.flags == keys2->control.flags && 12680 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12681 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12682 return true; 12683 12684 return false; 12685 } 12686 12687 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12688 u16 rxq_index, u32 flow_id) 12689 { 12690 struct bnxt *bp = netdev_priv(dev); 12691 struct bnxt_ntuple_filter *fltr, *new_fltr; 12692 struct flow_keys *fkeys; 12693 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12694 int rc = 0, idx, bit_id, l2_idx = 0; 12695 struct hlist_head *head; 12696 u32 flags; 12697 12698 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12699 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12700 int off = 0, j; 12701 12702 netif_addr_lock_bh(dev); 12703 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12704 if (ether_addr_equal(eth->h_dest, 12705 vnic->uc_list + off)) { 12706 l2_idx = j + 1; 12707 break; 12708 } 12709 } 12710 netif_addr_unlock_bh(dev); 12711 if (!l2_idx) 12712 return -EINVAL; 12713 } 12714 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12715 if (!new_fltr) 12716 return -ENOMEM; 12717 12718 fkeys = &new_fltr->fkeys; 12719 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12720 rc = -EPROTONOSUPPORT; 12721 goto err_free; 12722 } 12723 12724 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12725 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12726 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12727 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12728 rc = -EPROTONOSUPPORT; 12729 goto err_free; 12730 } 12731 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12732 bp->hwrm_spec_code < 0x10601) { 12733 rc = -EPROTONOSUPPORT; 12734 goto err_free; 12735 } 12736 flags = fkeys->control.flags; 12737 if (((flags & FLOW_DIS_ENCAPSULATION) && 12738 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12739 rc = -EPROTONOSUPPORT; 12740 goto err_free; 12741 } 12742 12743 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12744 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12745 12746 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12747 head = &bp->ntp_fltr_hash_tbl[idx]; 12748 rcu_read_lock(); 12749 hlist_for_each_entry_rcu(fltr, head, hash) { 12750 if (bnxt_fltr_match(fltr, new_fltr)) { 12751 rcu_read_unlock(); 12752 rc = 0; 12753 goto err_free; 12754 } 12755 } 12756 rcu_read_unlock(); 12757 12758 spin_lock_bh(&bp->ntp_fltr_lock); 12759 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12760 BNXT_NTP_FLTR_MAX_FLTR, 0); 12761 if (bit_id < 0) { 12762 spin_unlock_bh(&bp->ntp_fltr_lock); 12763 rc = -ENOMEM; 12764 goto err_free; 12765 } 12766 12767 new_fltr->sw_id = (u16)bit_id; 12768 new_fltr->flow_id = flow_id; 12769 new_fltr->l2_fltr_idx = l2_idx; 12770 new_fltr->rxq = rxq_index; 12771 hlist_add_head_rcu(&new_fltr->hash, head); 12772 bp->ntp_fltr_count++; 12773 spin_unlock_bh(&bp->ntp_fltr_lock); 12774 12775 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12776 bnxt_queue_sp_work(bp); 12777 12778 return new_fltr->sw_id; 12779 12780 err_free: 12781 kfree(new_fltr); 12782 return rc; 12783 } 12784 12785 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12786 { 12787 int i; 12788 12789 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12790 struct hlist_head *head; 12791 struct hlist_node *tmp; 12792 struct bnxt_ntuple_filter *fltr; 12793 int rc; 12794 12795 head = &bp->ntp_fltr_hash_tbl[i]; 12796 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12797 bool del = false; 12798 12799 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12800 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12801 fltr->flow_id, 12802 fltr->sw_id)) { 12803 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12804 fltr); 12805 del = true; 12806 } 12807 } else { 12808 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12809 fltr); 12810 if (rc) 12811 del = true; 12812 else 12813 set_bit(BNXT_FLTR_VALID, &fltr->state); 12814 } 12815 12816 if (del) { 12817 spin_lock_bh(&bp->ntp_fltr_lock); 12818 hlist_del_rcu(&fltr->hash); 12819 bp->ntp_fltr_count--; 12820 spin_unlock_bh(&bp->ntp_fltr_lock); 12821 synchronize_rcu(); 12822 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12823 kfree(fltr); 12824 } 12825 } 12826 } 12827 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12828 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12829 } 12830 12831 #else 12832 12833 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12834 { 12835 } 12836 12837 #endif /* CONFIG_RFS_ACCEL */ 12838 12839 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12840 { 12841 struct bnxt *bp = netdev_priv(netdev); 12842 struct udp_tunnel_info ti; 12843 unsigned int cmd; 12844 12845 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12846 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) 12847 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12848 else 12849 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12850 12851 if (ti.port) 12852 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12853 12854 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12855 } 12856 12857 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12858 .sync_table = bnxt_udp_tunnel_sync, 12859 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12860 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12861 .tables = { 12862 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12863 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12864 }, 12865 }; 12866 12867 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12868 struct net_device *dev, u32 filter_mask, 12869 int nlflags) 12870 { 12871 struct bnxt *bp = netdev_priv(dev); 12872 12873 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12874 nlflags, filter_mask, NULL); 12875 } 12876 12877 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12878 u16 flags, struct netlink_ext_ack *extack) 12879 { 12880 struct bnxt *bp = netdev_priv(dev); 12881 struct nlattr *attr, *br_spec; 12882 int rem, rc = 0; 12883 12884 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12885 return -EOPNOTSUPP; 12886 12887 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12888 if (!br_spec) 12889 return -EINVAL; 12890 12891 nla_for_each_nested(attr, br_spec, rem) { 12892 u16 mode; 12893 12894 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12895 continue; 12896 12897 if (nla_len(attr) < sizeof(mode)) 12898 return -EINVAL; 12899 12900 mode = nla_get_u16(attr); 12901 if (mode == bp->br_mode) 12902 break; 12903 12904 rc = bnxt_hwrm_set_br_mode(bp, mode); 12905 if (!rc) 12906 bp->br_mode = mode; 12907 break; 12908 } 12909 return rc; 12910 } 12911 12912 int bnxt_get_port_parent_id(struct net_device *dev, 12913 struct netdev_phys_item_id *ppid) 12914 { 12915 struct bnxt *bp = netdev_priv(dev); 12916 12917 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12918 return -EOPNOTSUPP; 12919 12920 /* The PF and it's VF-reps only support the switchdev framework */ 12921 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12922 return -EOPNOTSUPP; 12923 12924 ppid->id_len = sizeof(bp->dsn); 12925 memcpy(ppid->id, bp->dsn, ppid->id_len); 12926 12927 return 0; 12928 } 12929 12930 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12931 { 12932 struct bnxt *bp = netdev_priv(dev); 12933 12934 return &bp->dl_port; 12935 } 12936 12937 static const struct net_device_ops bnxt_netdev_ops = { 12938 .ndo_open = bnxt_open, 12939 .ndo_start_xmit = bnxt_start_xmit, 12940 .ndo_stop = bnxt_close, 12941 .ndo_get_stats64 = bnxt_get_stats64, 12942 .ndo_set_rx_mode = bnxt_set_rx_mode, 12943 .ndo_eth_ioctl = bnxt_ioctl, 12944 .ndo_validate_addr = eth_validate_addr, 12945 .ndo_set_mac_address = bnxt_change_mac_addr, 12946 .ndo_change_mtu = bnxt_change_mtu, 12947 .ndo_fix_features = bnxt_fix_features, 12948 .ndo_set_features = bnxt_set_features, 12949 .ndo_features_check = bnxt_features_check, 12950 .ndo_tx_timeout = bnxt_tx_timeout, 12951 #ifdef CONFIG_BNXT_SRIOV 12952 .ndo_get_vf_config = bnxt_get_vf_config, 12953 .ndo_set_vf_mac = bnxt_set_vf_mac, 12954 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12955 .ndo_set_vf_rate = bnxt_set_vf_bw, 12956 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12957 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12958 .ndo_set_vf_trust = bnxt_set_vf_trust, 12959 #endif 12960 .ndo_setup_tc = bnxt_setup_tc, 12961 #ifdef CONFIG_RFS_ACCEL 12962 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12963 #endif 12964 .ndo_bpf = bnxt_xdp, 12965 .ndo_xdp_xmit = bnxt_xdp_xmit, 12966 .ndo_bridge_getlink = bnxt_bridge_getlink, 12967 .ndo_bridge_setlink = bnxt_bridge_setlink, 12968 .ndo_get_devlink_port = bnxt_get_devlink_port, 12969 }; 12970 12971 static void bnxt_remove_one(struct pci_dev *pdev) 12972 { 12973 struct net_device *dev = pci_get_drvdata(pdev); 12974 struct bnxt *bp = netdev_priv(dev); 12975 12976 if (BNXT_PF(bp)) 12977 bnxt_sriov_disable(bp); 12978 12979 if (BNXT_PF(bp)) 12980 devlink_port_type_clear(&bp->dl_port); 12981 12982 bnxt_ptp_clear(bp); 12983 pci_disable_pcie_error_reporting(pdev); 12984 unregister_netdev(dev); 12985 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12986 /* Flush any pending tasks */ 12987 cancel_work_sync(&bp->sp_task); 12988 cancel_delayed_work_sync(&bp->fw_reset_task); 12989 bp->sp_event = 0; 12990 12991 bnxt_dl_fw_reporters_destroy(bp); 12992 bnxt_dl_unregister(bp); 12993 bnxt_shutdown_tc(bp); 12994 12995 bnxt_clear_int_mode(bp); 12996 bnxt_hwrm_func_drv_unrgtr(bp); 12997 bnxt_free_hwrm_resources(bp); 12998 bnxt_ethtool_free(bp); 12999 bnxt_dcb_free(bp); 13000 kfree(bp->edev); 13001 bp->edev = NULL; 13002 kfree(bp->ptp_cfg); 13003 bp->ptp_cfg = NULL; 13004 kfree(bp->fw_health); 13005 bp->fw_health = NULL; 13006 bnxt_cleanup_pci(bp); 13007 bnxt_free_ctx_mem(bp); 13008 kfree(bp->ctx); 13009 bp->ctx = NULL; 13010 kfree(bp->rss_indir_tbl); 13011 bp->rss_indir_tbl = NULL; 13012 bnxt_free_port_stats(bp); 13013 free_netdev(dev); 13014 } 13015 13016 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 13017 { 13018 int rc = 0; 13019 struct bnxt_link_info *link_info = &bp->link_info; 13020 13021 bp->phy_flags = 0; 13022 rc = bnxt_hwrm_phy_qcaps(bp); 13023 if (rc) { 13024 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 13025 rc); 13026 return rc; 13027 } 13028 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 13029 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 13030 else 13031 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 13032 if (!fw_dflt) 13033 return 0; 13034 13035 mutex_lock(&bp->link_lock); 13036 rc = bnxt_update_link(bp, false); 13037 if (rc) { 13038 mutex_unlock(&bp->link_lock); 13039 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 13040 rc); 13041 return rc; 13042 } 13043 13044 /* Older firmware does not have supported_auto_speeds, so assume 13045 * that all supported speeds can be autonegotiated. 13046 */ 13047 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 13048 link_info->support_auto_speeds = link_info->support_speeds; 13049 13050 bnxt_init_ethtool_link_settings(bp); 13051 mutex_unlock(&bp->link_lock); 13052 return 0; 13053 } 13054 13055 static int bnxt_get_max_irq(struct pci_dev *pdev) 13056 { 13057 u16 ctrl; 13058 13059 if (!pdev->msix_cap) 13060 return 1; 13061 13062 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 13063 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 13064 } 13065 13066 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13067 int *max_cp) 13068 { 13069 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13070 int max_ring_grps = 0, max_irq; 13071 13072 *max_tx = hw_resc->max_tx_rings; 13073 *max_rx = hw_resc->max_rx_rings; 13074 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 13075 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 13076 bnxt_get_ulp_msix_num(bp), 13077 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 13078 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 13079 *max_cp = min_t(int, *max_cp, max_irq); 13080 max_ring_grps = hw_resc->max_hw_ring_grps; 13081 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 13082 *max_cp -= 1; 13083 *max_rx -= 2; 13084 } 13085 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13086 *max_rx >>= 1; 13087 if (bp->flags & BNXT_FLAG_CHIP_P5) { 13088 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 13089 /* On P5 chips, max_cp output param should be available NQs */ 13090 *max_cp = max_irq; 13091 } 13092 *max_rx = min_t(int, *max_rx, max_ring_grps); 13093 } 13094 13095 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 13096 { 13097 int rx, tx, cp; 13098 13099 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 13100 *max_rx = rx; 13101 *max_tx = tx; 13102 if (!rx || !tx || !cp) 13103 return -ENOMEM; 13104 13105 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 13106 } 13107 13108 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13109 bool shared) 13110 { 13111 int rc; 13112 13113 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13114 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 13115 /* Not enough rings, try disabling agg rings. */ 13116 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 13117 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13118 if (rc) { 13119 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 13120 bp->flags |= BNXT_FLAG_AGG_RINGS; 13121 return rc; 13122 } 13123 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 13124 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13125 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13126 bnxt_set_ring_params(bp); 13127 } 13128 13129 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 13130 int max_cp, max_stat, max_irq; 13131 13132 /* Reserve minimum resources for RoCE */ 13133 max_cp = bnxt_get_max_func_cp_rings(bp); 13134 max_stat = bnxt_get_max_func_stat_ctxs(bp); 13135 max_irq = bnxt_get_max_func_irqs(bp); 13136 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 13137 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 13138 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 13139 return 0; 13140 13141 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 13142 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 13143 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 13144 max_cp = min_t(int, max_cp, max_irq); 13145 max_cp = min_t(int, max_cp, max_stat); 13146 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 13147 if (rc) 13148 rc = 0; 13149 } 13150 return rc; 13151 } 13152 13153 /* In initial default shared ring setting, each shared ring must have a 13154 * RX/TX ring pair. 13155 */ 13156 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 13157 { 13158 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 13159 bp->rx_nr_rings = bp->cp_nr_rings; 13160 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 13161 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13162 } 13163 13164 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 13165 { 13166 int dflt_rings, max_rx_rings, max_tx_rings, rc; 13167 13168 if (!bnxt_can_reserve_rings(bp)) 13169 return 0; 13170 13171 if (sh) 13172 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13173 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13174 /* Reduce default rings on multi-port cards so that total default 13175 * rings do not exceed CPU count. 13176 */ 13177 if (bp->port_count > 1) { 13178 int max_rings = 13179 max_t(int, num_online_cpus() / bp->port_count, 1); 13180 13181 dflt_rings = min_t(int, dflt_rings, max_rings); 13182 } 13183 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13184 if (rc) 13185 return rc; 13186 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13187 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13188 if (sh) 13189 bnxt_trim_dflt_sh_rings(bp); 13190 else 13191 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13192 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13193 13194 rc = __bnxt_reserve_rings(bp); 13195 if (rc && rc != -ENODEV) 13196 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13197 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13198 if (sh) 13199 bnxt_trim_dflt_sh_rings(bp); 13200 13201 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13202 if (bnxt_need_reserve_rings(bp)) { 13203 rc = __bnxt_reserve_rings(bp); 13204 if (rc && rc != -ENODEV) 13205 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13206 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13207 } 13208 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13209 bp->rx_nr_rings++; 13210 bp->cp_nr_rings++; 13211 } 13212 if (rc) { 13213 bp->tx_nr_rings = 0; 13214 bp->rx_nr_rings = 0; 13215 } 13216 return rc; 13217 } 13218 13219 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13220 { 13221 int rc; 13222 13223 if (bp->tx_nr_rings) 13224 return 0; 13225 13226 bnxt_ulp_irq_stop(bp); 13227 bnxt_clear_int_mode(bp); 13228 rc = bnxt_set_dflt_rings(bp, true); 13229 if (rc) { 13230 if (BNXT_VF(bp) && rc == -ENODEV) 13231 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13232 else 13233 netdev_err(bp->dev, "Not enough rings available.\n"); 13234 goto init_dflt_ring_err; 13235 } 13236 rc = bnxt_init_int_mode(bp); 13237 if (rc) 13238 goto init_dflt_ring_err; 13239 13240 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13241 13242 bnxt_set_dflt_rfs(bp); 13243 13244 init_dflt_ring_err: 13245 bnxt_ulp_irq_restart(bp, rc); 13246 return rc; 13247 } 13248 13249 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13250 { 13251 int rc; 13252 13253 ASSERT_RTNL(); 13254 bnxt_hwrm_func_qcaps(bp); 13255 13256 if (netif_running(bp->dev)) 13257 __bnxt_close_nic(bp, true, false); 13258 13259 bnxt_ulp_irq_stop(bp); 13260 bnxt_clear_int_mode(bp); 13261 rc = bnxt_init_int_mode(bp); 13262 bnxt_ulp_irq_restart(bp, rc); 13263 13264 if (netif_running(bp->dev)) { 13265 if (rc) 13266 dev_close(bp->dev); 13267 else 13268 rc = bnxt_open_nic(bp, true, false); 13269 } 13270 13271 return rc; 13272 } 13273 13274 static int bnxt_init_mac_addr(struct bnxt *bp) 13275 { 13276 int rc = 0; 13277 13278 if (BNXT_PF(bp)) { 13279 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 13280 } else { 13281 #ifdef CONFIG_BNXT_SRIOV 13282 struct bnxt_vf_info *vf = &bp->vf; 13283 bool strict_approval = true; 13284 13285 if (is_valid_ether_addr(vf->mac_addr)) { 13286 /* overwrite netdev dev_addr with admin VF MAC */ 13287 eth_hw_addr_set(bp->dev, vf->mac_addr); 13288 /* Older PF driver or firmware may not approve this 13289 * correctly. 13290 */ 13291 strict_approval = false; 13292 } else { 13293 eth_hw_addr_random(bp->dev); 13294 } 13295 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13296 #endif 13297 } 13298 return rc; 13299 } 13300 13301 static void bnxt_vpd_read_info(struct bnxt *bp) 13302 { 13303 struct pci_dev *pdev = bp->pdev; 13304 unsigned int vpd_size, kw_len; 13305 int pos, size; 13306 u8 *vpd_data; 13307 13308 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 13309 if (IS_ERR(vpd_data)) { 13310 pci_warn(pdev, "Unable to read VPD\n"); 13311 return; 13312 } 13313 13314 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13315 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 13316 if (pos < 0) 13317 goto read_sn; 13318 13319 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13320 memcpy(bp->board_partno, &vpd_data[pos], size); 13321 13322 read_sn: 13323 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13324 PCI_VPD_RO_KEYWORD_SERIALNO, 13325 &kw_len); 13326 if (pos < 0) 13327 goto exit; 13328 13329 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13330 memcpy(bp->board_serialno, &vpd_data[pos], size); 13331 exit: 13332 kfree(vpd_data); 13333 } 13334 13335 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13336 { 13337 struct pci_dev *pdev = bp->pdev; 13338 u64 qword; 13339 13340 qword = pci_get_dsn(pdev); 13341 if (!qword) { 13342 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13343 return -EOPNOTSUPP; 13344 } 13345 13346 put_unaligned_le64(qword, dsn); 13347 13348 bp->flags |= BNXT_FLAG_DSN_VALID; 13349 return 0; 13350 } 13351 13352 static int bnxt_map_db_bar(struct bnxt *bp) 13353 { 13354 if (!bp->db_size) 13355 return -ENODEV; 13356 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13357 if (!bp->bar1) 13358 return -ENOMEM; 13359 return 0; 13360 } 13361 13362 void bnxt_print_device_info(struct bnxt *bp) 13363 { 13364 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 13365 board_info[bp->board_idx].name, 13366 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 13367 13368 pcie_print_link_status(bp->pdev); 13369 } 13370 13371 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13372 { 13373 struct net_device *dev; 13374 struct bnxt *bp; 13375 int rc, max_irqs; 13376 13377 if (pci_is_bridge(pdev)) 13378 return -ENODEV; 13379 13380 /* Clear any pending DMA transactions from crash kernel 13381 * while loading driver in capture kernel. 13382 */ 13383 if (is_kdump_kernel()) { 13384 pci_clear_master(pdev); 13385 pcie_flr(pdev); 13386 } 13387 13388 max_irqs = bnxt_get_max_irq(pdev); 13389 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13390 if (!dev) 13391 return -ENOMEM; 13392 13393 bp = netdev_priv(dev); 13394 bp->board_idx = ent->driver_data; 13395 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13396 bnxt_set_max_func_irqs(bp, max_irqs); 13397 13398 if (bnxt_vf_pciid(bp->board_idx)) 13399 bp->flags |= BNXT_FLAG_VF; 13400 13401 if (pdev->msix_cap) 13402 bp->flags |= BNXT_FLAG_MSIX_CAP; 13403 13404 rc = bnxt_init_board(pdev, dev); 13405 if (rc < 0) 13406 goto init_err_free; 13407 13408 dev->netdev_ops = &bnxt_netdev_ops; 13409 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13410 dev->ethtool_ops = &bnxt_ethtool_ops; 13411 pci_set_drvdata(pdev, dev); 13412 13413 rc = bnxt_alloc_hwrm_resources(bp); 13414 if (rc) 13415 goto init_err_pci_clean; 13416 13417 mutex_init(&bp->hwrm_cmd_lock); 13418 mutex_init(&bp->link_lock); 13419 13420 rc = bnxt_fw_init_one_p1(bp); 13421 if (rc) 13422 goto init_err_pci_clean; 13423 13424 if (BNXT_PF(bp)) 13425 bnxt_vpd_read_info(bp); 13426 13427 if (BNXT_CHIP_P5(bp)) { 13428 bp->flags |= BNXT_FLAG_CHIP_P5; 13429 if (BNXT_CHIP_SR2(bp)) 13430 bp->flags |= BNXT_FLAG_CHIP_SR2; 13431 } 13432 13433 rc = bnxt_alloc_rss_indir_tbl(bp); 13434 if (rc) 13435 goto init_err_pci_clean; 13436 13437 rc = bnxt_fw_init_one_p2(bp); 13438 if (rc) 13439 goto init_err_pci_clean; 13440 13441 rc = bnxt_map_db_bar(bp); 13442 if (rc) { 13443 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13444 rc); 13445 goto init_err_pci_clean; 13446 } 13447 13448 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13449 NETIF_F_TSO | NETIF_F_TSO6 | 13450 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13451 NETIF_F_GSO_IPXIP4 | 13452 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13453 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13454 NETIF_F_RXCSUM | NETIF_F_GRO; 13455 13456 if (BNXT_SUPPORTS_TPA(bp)) 13457 dev->hw_features |= NETIF_F_LRO; 13458 13459 dev->hw_enc_features = 13460 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13461 NETIF_F_TSO | NETIF_F_TSO6 | 13462 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13463 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13464 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13465 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13466 13467 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13468 NETIF_F_GSO_GRE_CSUM; 13469 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13470 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13471 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13472 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13473 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13474 if (BNXT_SUPPORTS_TPA(bp)) 13475 dev->hw_features |= NETIF_F_GRO_HW; 13476 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13477 if (dev->features & NETIF_F_GRO_HW) 13478 dev->features &= ~NETIF_F_LRO; 13479 dev->priv_flags |= IFF_UNICAST_FLT; 13480 13481 #ifdef CONFIG_BNXT_SRIOV 13482 init_waitqueue_head(&bp->sriov_cfg_wait); 13483 #endif 13484 if (BNXT_SUPPORTS_TPA(bp)) { 13485 bp->gro_func = bnxt_gro_func_5730x; 13486 if (BNXT_CHIP_P4(bp)) 13487 bp->gro_func = bnxt_gro_func_5731x; 13488 else if (BNXT_CHIP_P5(bp)) 13489 bp->gro_func = bnxt_gro_func_5750x; 13490 } 13491 if (!BNXT_CHIP_P4_PLUS(bp)) 13492 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13493 13494 rc = bnxt_init_mac_addr(bp); 13495 if (rc) { 13496 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13497 rc = -EADDRNOTAVAIL; 13498 goto init_err_pci_clean; 13499 } 13500 13501 if (BNXT_PF(bp)) { 13502 /* Read the adapter's DSN to use as the eswitch switch_id */ 13503 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13504 } 13505 13506 /* MTU range: 60 - FW defined max */ 13507 dev->min_mtu = ETH_ZLEN; 13508 dev->max_mtu = bp->max_mtu; 13509 13510 rc = bnxt_probe_phy(bp, true); 13511 if (rc) 13512 goto init_err_pci_clean; 13513 13514 bnxt_set_rx_skb_mode(bp, false); 13515 bnxt_set_tpa_flags(bp); 13516 bnxt_set_ring_params(bp); 13517 rc = bnxt_set_dflt_rings(bp, true); 13518 if (rc) { 13519 if (BNXT_VF(bp) && rc == -ENODEV) { 13520 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13521 } else { 13522 netdev_err(bp->dev, "Not enough rings available.\n"); 13523 rc = -ENOMEM; 13524 } 13525 goto init_err_pci_clean; 13526 } 13527 13528 bnxt_fw_init_one_p3(bp); 13529 13530 bnxt_init_dflt_coal(bp); 13531 13532 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13533 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13534 13535 rc = bnxt_init_int_mode(bp); 13536 if (rc) 13537 goto init_err_pci_clean; 13538 13539 /* No TC has been set yet and rings may have been trimmed due to 13540 * limited MSIX, so we re-initialize the TX rings per TC. 13541 */ 13542 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13543 13544 if (BNXT_PF(bp)) { 13545 if (!bnxt_pf_wq) { 13546 bnxt_pf_wq = 13547 create_singlethread_workqueue("bnxt_pf_wq"); 13548 if (!bnxt_pf_wq) { 13549 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13550 rc = -ENOMEM; 13551 goto init_err_pci_clean; 13552 } 13553 } 13554 rc = bnxt_init_tc(bp); 13555 if (rc) 13556 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13557 rc); 13558 } 13559 13560 bnxt_inv_fw_health_reg(bp); 13561 rc = bnxt_dl_register(bp); 13562 if (rc) 13563 goto init_err_dl; 13564 13565 rc = register_netdev(dev); 13566 if (rc) 13567 goto init_err_cleanup; 13568 13569 if (BNXT_PF(bp)) 13570 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13571 bnxt_dl_fw_reporters_create(bp); 13572 13573 bnxt_print_device_info(bp); 13574 13575 pci_save_state(pdev); 13576 return 0; 13577 13578 init_err_cleanup: 13579 bnxt_dl_unregister(bp); 13580 init_err_dl: 13581 bnxt_shutdown_tc(bp); 13582 bnxt_clear_int_mode(bp); 13583 13584 init_err_pci_clean: 13585 bnxt_hwrm_func_drv_unrgtr(bp); 13586 bnxt_free_hwrm_resources(bp); 13587 bnxt_ethtool_free(bp); 13588 bnxt_ptp_clear(bp); 13589 kfree(bp->ptp_cfg); 13590 bp->ptp_cfg = NULL; 13591 kfree(bp->fw_health); 13592 bp->fw_health = NULL; 13593 bnxt_cleanup_pci(bp); 13594 bnxt_free_ctx_mem(bp); 13595 kfree(bp->ctx); 13596 bp->ctx = NULL; 13597 kfree(bp->rss_indir_tbl); 13598 bp->rss_indir_tbl = NULL; 13599 13600 init_err_free: 13601 free_netdev(dev); 13602 return rc; 13603 } 13604 13605 static void bnxt_shutdown(struct pci_dev *pdev) 13606 { 13607 struct net_device *dev = pci_get_drvdata(pdev); 13608 struct bnxt *bp; 13609 13610 if (!dev) 13611 return; 13612 13613 rtnl_lock(); 13614 bp = netdev_priv(dev); 13615 if (!bp) 13616 goto shutdown_exit; 13617 13618 if (netif_running(dev)) 13619 dev_close(dev); 13620 13621 bnxt_ulp_shutdown(bp); 13622 bnxt_clear_int_mode(bp); 13623 pci_disable_device(pdev); 13624 13625 if (system_state == SYSTEM_POWER_OFF) { 13626 pci_wake_from_d3(pdev, bp->wol); 13627 pci_set_power_state(pdev, PCI_D3hot); 13628 } 13629 13630 shutdown_exit: 13631 rtnl_unlock(); 13632 } 13633 13634 #ifdef CONFIG_PM_SLEEP 13635 static int bnxt_suspend(struct device *device) 13636 { 13637 struct net_device *dev = dev_get_drvdata(device); 13638 struct bnxt *bp = netdev_priv(dev); 13639 int rc = 0; 13640 13641 rtnl_lock(); 13642 bnxt_ulp_stop(bp); 13643 if (netif_running(dev)) { 13644 netif_device_detach(dev); 13645 rc = bnxt_close(dev); 13646 } 13647 bnxt_hwrm_func_drv_unrgtr(bp); 13648 pci_disable_device(bp->pdev); 13649 bnxt_free_ctx_mem(bp); 13650 kfree(bp->ctx); 13651 bp->ctx = NULL; 13652 rtnl_unlock(); 13653 return rc; 13654 } 13655 13656 static int bnxt_resume(struct device *device) 13657 { 13658 struct net_device *dev = dev_get_drvdata(device); 13659 struct bnxt *bp = netdev_priv(dev); 13660 int rc = 0; 13661 13662 rtnl_lock(); 13663 rc = pci_enable_device(bp->pdev); 13664 if (rc) { 13665 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13666 rc); 13667 goto resume_exit; 13668 } 13669 pci_set_master(bp->pdev); 13670 if (bnxt_hwrm_ver_get(bp)) { 13671 rc = -ENODEV; 13672 goto resume_exit; 13673 } 13674 rc = bnxt_hwrm_func_reset(bp); 13675 if (rc) { 13676 rc = -EBUSY; 13677 goto resume_exit; 13678 } 13679 13680 rc = bnxt_hwrm_func_qcaps(bp); 13681 if (rc) 13682 goto resume_exit; 13683 13684 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13685 rc = -ENODEV; 13686 goto resume_exit; 13687 } 13688 13689 bnxt_get_wol_settings(bp); 13690 if (netif_running(dev)) { 13691 rc = bnxt_open(dev); 13692 if (!rc) 13693 netif_device_attach(dev); 13694 } 13695 13696 resume_exit: 13697 bnxt_ulp_start(bp, rc); 13698 if (!rc) 13699 bnxt_reenable_sriov(bp); 13700 rtnl_unlock(); 13701 return rc; 13702 } 13703 13704 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13705 #define BNXT_PM_OPS (&bnxt_pm_ops) 13706 13707 #else 13708 13709 #define BNXT_PM_OPS NULL 13710 13711 #endif /* CONFIG_PM_SLEEP */ 13712 13713 /** 13714 * bnxt_io_error_detected - called when PCI error is detected 13715 * @pdev: Pointer to PCI device 13716 * @state: The current pci connection state 13717 * 13718 * This function is called after a PCI bus error affecting 13719 * this device has been detected. 13720 */ 13721 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13722 pci_channel_state_t state) 13723 { 13724 struct net_device *netdev = pci_get_drvdata(pdev); 13725 struct bnxt *bp = netdev_priv(netdev); 13726 13727 netdev_info(netdev, "PCI I/O error detected\n"); 13728 13729 rtnl_lock(); 13730 netif_device_detach(netdev); 13731 13732 bnxt_ulp_stop(bp); 13733 13734 if (state == pci_channel_io_perm_failure) { 13735 rtnl_unlock(); 13736 return PCI_ERS_RESULT_DISCONNECT; 13737 } 13738 13739 if (state == pci_channel_io_frozen) 13740 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13741 13742 if (netif_running(netdev)) 13743 bnxt_close(netdev); 13744 13745 if (pci_is_enabled(pdev)) 13746 pci_disable_device(pdev); 13747 bnxt_free_ctx_mem(bp); 13748 kfree(bp->ctx); 13749 bp->ctx = NULL; 13750 rtnl_unlock(); 13751 13752 /* Request a slot slot reset. */ 13753 return PCI_ERS_RESULT_NEED_RESET; 13754 } 13755 13756 /** 13757 * bnxt_io_slot_reset - called after the pci bus has been reset. 13758 * @pdev: Pointer to PCI device 13759 * 13760 * Restart the card from scratch, as if from a cold-boot. 13761 * At this point, the card has exprienced a hard reset, 13762 * followed by fixups by BIOS, and has its config space 13763 * set up identically to what it was at cold boot. 13764 */ 13765 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13766 { 13767 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13768 struct net_device *netdev = pci_get_drvdata(pdev); 13769 struct bnxt *bp = netdev_priv(netdev); 13770 int err = 0, off; 13771 13772 netdev_info(bp->dev, "PCI Slot Reset\n"); 13773 13774 rtnl_lock(); 13775 13776 if (pci_enable_device(pdev)) { 13777 dev_err(&pdev->dev, 13778 "Cannot re-enable PCI device after reset.\n"); 13779 } else { 13780 pci_set_master(pdev); 13781 /* Upon fatal error, our device internal logic that latches to 13782 * BAR value is getting reset and will restore only upon 13783 * rewritting the BARs. 13784 * 13785 * As pci_restore_state() does not re-write the BARs if the 13786 * value is same as saved value earlier, driver needs to 13787 * write the BARs to 0 to force restore, in case of fatal error. 13788 */ 13789 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13790 &bp->state)) { 13791 for (off = PCI_BASE_ADDRESS_0; 13792 off <= PCI_BASE_ADDRESS_5; off += 4) 13793 pci_write_config_dword(bp->pdev, off, 0); 13794 } 13795 pci_restore_state(pdev); 13796 pci_save_state(pdev); 13797 13798 err = bnxt_hwrm_func_reset(bp); 13799 if (!err) 13800 result = PCI_ERS_RESULT_RECOVERED; 13801 } 13802 13803 rtnl_unlock(); 13804 13805 return result; 13806 } 13807 13808 /** 13809 * bnxt_io_resume - called when traffic can start flowing again. 13810 * @pdev: Pointer to PCI device 13811 * 13812 * This callback is called when the error recovery driver tells 13813 * us that its OK to resume normal operation. 13814 */ 13815 static void bnxt_io_resume(struct pci_dev *pdev) 13816 { 13817 struct net_device *netdev = pci_get_drvdata(pdev); 13818 struct bnxt *bp = netdev_priv(netdev); 13819 int err; 13820 13821 netdev_info(bp->dev, "PCI Slot Resume\n"); 13822 rtnl_lock(); 13823 13824 err = bnxt_hwrm_func_qcaps(bp); 13825 if (!err && netif_running(netdev)) 13826 err = bnxt_open(netdev); 13827 13828 bnxt_ulp_start(bp, err); 13829 if (!err) { 13830 bnxt_reenable_sriov(bp); 13831 netif_device_attach(netdev); 13832 } 13833 13834 rtnl_unlock(); 13835 } 13836 13837 static const struct pci_error_handlers bnxt_err_handler = { 13838 .error_detected = bnxt_io_error_detected, 13839 .slot_reset = bnxt_io_slot_reset, 13840 .resume = bnxt_io_resume 13841 }; 13842 13843 static struct pci_driver bnxt_pci_driver = { 13844 .name = DRV_MODULE_NAME, 13845 .id_table = bnxt_pci_tbl, 13846 .probe = bnxt_init_one, 13847 .remove = bnxt_remove_one, 13848 .shutdown = bnxt_shutdown, 13849 .driver.pm = BNXT_PM_OPS, 13850 .err_handler = &bnxt_err_handler, 13851 #if defined(CONFIG_BNXT_SRIOV) 13852 .sriov_configure = bnxt_sriov_configure, 13853 #endif 13854 }; 13855 13856 static int __init bnxt_init(void) 13857 { 13858 bnxt_debug_init(); 13859 return pci_register_driver(&bnxt_pci_driver); 13860 } 13861 13862 static void __exit bnxt_exit(void) 13863 { 13864 pci_unregister_driver(&bnxt_pci_driver); 13865 if (bnxt_pf_wq) 13866 destroy_workqueue(bnxt_pf_wq); 13867 bnxt_debug_exit(); 13868 } 13869 13870 module_init(bnxt_init); 13871 module_exit(bnxt_exit); 13872