xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 58919326e72f63c380dc3271dd1cc8bdf1bbe3e4)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 
60 #include "bnxt_hsi.h"
61 #include "bnxt.h"
62 #include "bnxt_hwrm.h"
63 #include "bnxt_ulp.h"
64 #include "bnxt_sriov.h"
65 #include "bnxt_ethtool.h"
66 #include "bnxt_dcb.h"
67 #include "bnxt_xdp.h"
68 #include "bnxt_ptp.h"
69 #include "bnxt_vfr.h"
70 #include "bnxt_tc.h"
71 #include "bnxt_devlink.h"
72 #include "bnxt_debugfs.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
124 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
125 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
126 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
127 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
128 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
130 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
131 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
132 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
133 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
134 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
135 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
136 };
137 
138 static const struct pci_device_id bnxt_pci_tbl[] = {
139 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
140 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
142 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
160 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
167 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
174 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
184 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
185 #ifdef CONFIG_BNXT_SRIOV
186 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
187 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
188 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
190 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
191 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
197 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
203 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
205 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
207 #endif
208 	{ 0 }
209 };
210 
211 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
212 
213 static const u16 bnxt_vf_req_snif[] = {
214 	HWRM_FUNC_CFG,
215 	HWRM_FUNC_VF_CFG,
216 	HWRM_PORT_PHY_QCFG,
217 	HWRM_CFA_L2_FILTER_ALLOC,
218 };
219 
220 static const u16 bnxt_async_events_arr[] = {
221 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
225 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
226 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
229 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
232 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
233 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
234 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
235 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
236 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
237 };
238 
239 static struct workqueue_struct *bnxt_pf_wq;
240 
241 static bool bnxt_vf_pciid(enum board_idx idx)
242 {
243 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
244 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
245 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
246 		idx == NETXTREME_E_P5_VF_HV);
247 }
248 
249 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
250 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
251 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
252 
253 #define BNXT_CP_DB_IRQ_DIS(db)						\
254 		writel(DB_CP_IRQ_DIS_FLAGS, db)
255 
256 #define BNXT_DB_CQ(db, idx)						\
257 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
258 
259 #define BNXT_DB_NQ_P5(db, idx)						\
260 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
261 		    (db)->doorbell)
262 
263 #define BNXT_DB_CQ_ARM(db, idx)						\
264 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
265 
266 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
267 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
268 		    (db)->doorbell)
269 
270 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
271 {
272 	if (bp->flags & BNXT_FLAG_CHIP_P5)
273 		BNXT_DB_NQ_P5(db, idx);
274 	else
275 		BNXT_DB_CQ(db, idx);
276 }
277 
278 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
279 {
280 	if (bp->flags & BNXT_FLAG_CHIP_P5)
281 		BNXT_DB_NQ_ARM_P5(db, idx);
282 	else
283 		BNXT_DB_CQ_ARM(db, idx);
284 }
285 
286 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
287 {
288 	if (bp->flags & BNXT_FLAG_CHIP_P5)
289 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
290 			    RING_CMP(idx), db->doorbell);
291 	else
292 		BNXT_DB_CQ(db, idx);
293 }
294 
295 const u16 bnxt_lhint_arr[] = {
296 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
297 	TX_BD_FLAGS_LHINT_512_TO_1023,
298 	TX_BD_FLAGS_LHINT_1024_TO_2047,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 };
316 
317 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
318 {
319 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
320 
321 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
322 		return 0;
323 
324 	return md_dst->u.port_info.port_id;
325 }
326 
327 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
328 			     u16 prod)
329 {
330 	bnxt_db_write(bp, &txr->tx_db, prod);
331 	txr->kick_pending = 0;
332 }
333 
334 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
335 					  struct bnxt_tx_ring_info *txr,
336 					  struct netdev_queue *txq)
337 {
338 	netif_tx_stop_queue(txq);
339 
340 	/* netif_tx_stop_queue() must be done before checking
341 	 * tx index in bnxt_tx_avail() below, because in
342 	 * bnxt_tx_int(), we update tx index before checking for
343 	 * netif_tx_queue_stopped().
344 	 */
345 	smp_mb();
346 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
347 		netif_tx_wake_queue(txq);
348 		return false;
349 	}
350 
351 	return true;
352 }
353 
354 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
355 {
356 	struct bnxt *bp = netdev_priv(dev);
357 	struct tx_bd *txbd;
358 	struct tx_bd_ext *txbd1;
359 	struct netdev_queue *txq;
360 	int i;
361 	dma_addr_t mapping;
362 	unsigned int length, pad = 0;
363 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
364 	u16 prod, last_frag;
365 	struct pci_dev *pdev = bp->pdev;
366 	struct bnxt_tx_ring_info *txr;
367 	struct bnxt_sw_tx_bd *tx_buf;
368 	__le32 lflags = 0;
369 
370 	i = skb_get_queue_mapping(skb);
371 	if (unlikely(i >= bp->tx_nr_rings)) {
372 		dev_kfree_skb_any(skb);
373 		dev_core_stats_tx_dropped_inc(dev);
374 		return NETDEV_TX_OK;
375 	}
376 
377 	txq = netdev_get_tx_queue(dev, i);
378 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
379 	prod = txr->tx_prod;
380 
381 	free_size = bnxt_tx_avail(bp, txr);
382 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
383 		/* We must have raced with NAPI cleanup */
384 		if (net_ratelimit() && txr->kick_pending)
385 			netif_warn(bp, tx_err, dev,
386 				   "bnxt: ring busy w/ flush pending!\n");
387 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
388 			return NETDEV_TX_BUSY;
389 	}
390 
391 	length = skb->len;
392 	len = skb_headlen(skb);
393 	last_frag = skb_shinfo(skb)->nr_frags;
394 
395 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
396 
397 	txbd->tx_bd_opaque = prod;
398 
399 	tx_buf = &txr->tx_buf_ring[prod];
400 	tx_buf->skb = skb;
401 	tx_buf->nr_frags = last_frag;
402 
403 	vlan_tag_flags = 0;
404 	cfa_action = bnxt_xmit_get_cfa_action(skb);
405 	if (skb_vlan_tag_present(skb)) {
406 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
407 				 skb_vlan_tag_get(skb);
408 		/* Currently supports 8021Q, 8021AD vlan offloads
409 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
410 		 */
411 		if (skb->vlan_proto == htons(ETH_P_8021Q))
412 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
413 	}
414 
415 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
416 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
417 
418 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
419 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
420 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
421 					    &ptp->tx_hdr_off)) {
422 				if (vlan_tag_flags)
423 					ptp->tx_hdr_off += VLAN_HLEN;
424 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
425 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
426 			} else {
427 				atomic_inc(&bp->ptp_cfg->tx_avail);
428 			}
429 		}
430 	}
431 
432 	if (unlikely(skb->no_fcs))
433 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
434 
435 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
436 	    !lflags) {
437 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
438 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
439 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
440 		void __iomem *db = txr->tx_db.doorbell;
441 		void *pdata = tx_push_buf->data;
442 		u64 *end;
443 		int j, push_len;
444 
445 		/* Set COAL_NOW to be ready quickly for the next push */
446 		tx_push->tx_bd_len_flags_type =
447 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
448 					TX_BD_TYPE_LONG_TX_BD |
449 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
450 					TX_BD_FLAGS_COAL_NOW |
451 					TX_BD_FLAGS_PACKET_END |
452 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
453 
454 		if (skb->ip_summed == CHECKSUM_PARTIAL)
455 			tx_push1->tx_bd_hsize_lflags =
456 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
457 		else
458 			tx_push1->tx_bd_hsize_lflags = 0;
459 
460 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
461 		tx_push1->tx_bd_cfa_action =
462 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
463 
464 		end = pdata + length;
465 		end = PTR_ALIGN(end, 8) - 1;
466 		*end = 0;
467 
468 		skb_copy_from_linear_data(skb, pdata, len);
469 		pdata += len;
470 		for (j = 0; j < last_frag; j++) {
471 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
472 			void *fptr;
473 
474 			fptr = skb_frag_address_safe(frag);
475 			if (!fptr)
476 				goto normal_tx;
477 
478 			memcpy(pdata, fptr, skb_frag_size(frag));
479 			pdata += skb_frag_size(frag);
480 		}
481 
482 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
483 		txbd->tx_bd_haddr = txr->data_mapping;
484 		prod = NEXT_TX(prod);
485 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
486 		memcpy(txbd, tx_push1, sizeof(*txbd));
487 		prod = NEXT_TX(prod);
488 		tx_push->doorbell =
489 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
490 		txr->tx_prod = prod;
491 
492 		tx_buf->is_push = 1;
493 		netdev_tx_sent_queue(txq, skb->len);
494 		wmb();	/* Sync is_push and byte queue before pushing data */
495 
496 		push_len = (length + sizeof(*tx_push) + 7) / 8;
497 		if (push_len > 16) {
498 			__iowrite64_copy(db, tx_push_buf, 16);
499 			__iowrite32_copy(db + 4, tx_push_buf + 1,
500 					 (push_len - 16) << 1);
501 		} else {
502 			__iowrite64_copy(db, tx_push_buf, push_len);
503 		}
504 
505 		goto tx_done;
506 	}
507 
508 normal_tx:
509 	if (length < BNXT_MIN_PKT_SIZE) {
510 		pad = BNXT_MIN_PKT_SIZE - length;
511 		if (skb_pad(skb, pad))
512 			/* SKB already freed. */
513 			goto tx_kick_pending;
514 		length = BNXT_MIN_PKT_SIZE;
515 	}
516 
517 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
518 
519 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
520 		goto tx_free;
521 
522 	dma_unmap_addr_set(tx_buf, mapping, mapping);
523 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
524 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
525 
526 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
527 
528 	prod = NEXT_TX(prod);
529 	txbd1 = (struct tx_bd_ext *)
530 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
531 
532 	txbd1->tx_bd_hsize_lflags = lflags;
533 	if (skb_is_gso(skb)) {
534 		u32 hdr_len;
535 
536 		if (skb->encapsulation)
537 			hdr_len = skb_inner_network_offset(skb) +
538 				skb_inner_network_header_len(skb) +
539 				inner_tcp_hdrlen(skb);
540 		else
541 			hdr_len = skb_transport_offset(skb) +
542 				tcp_hdrlen(skb);
543 
544 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
545 					TX_BD_FLAGS_T_IPID |
546 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
547 		length = skb_shinfo(skb)->gso_size;
548 		txbd1->tx_bd_mss = cpu_to_le32(length);
549 		length += hdr_len;
550 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
551 		txbd1->tx_bd_hsize_lflags |=
552 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
553 		txbd1->tx_bd_mss = 0;
554 	}
555 
556 	length >>= 9;
557 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
558 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
559 				     skb->len);
560 		i = 0;
561 		goto tx_dma_error;
562 	}
563 	flags |= bnxt_lhint_arr[length];
564 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
565 
566 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
567 	txbd1->tx_bd_cfa_action =
568 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
569 	for (i = 0; i < last_frag; i++) {
570 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
571 
572 		prod = NEXT_TX(prod);
573 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
574 
575 		len = skb_frag_size(frag);
576 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
577 					   DMA_TO_DEVICE);
578 
579 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
580 			goto tx_dma_error;
581 
582 		tx_buf = &txr->tx_buf_ring[prod];
583 		dma_unmap_addr_set(tx_buf, mapping, mapping);
584 
585 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
586 
587 		flags = len << TX_BD_LEN_SHIFT;
588 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
589 	}
590 
591 	flags &= ~TX_BD_LEN;
592 	txbd->tx_bd_len_flags_type =
593 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
594 			    TX_BD_FLAGS_PACKET_END);
595 
596 	netdev_tx_sent_queue(txq, skb->len);
597 
598 	skb_tx_timestamp(skb);
599 
600 	/* Sync BD data before updating doorbell */
601 	wmb();
602 
603 	prod = NEXT_TX(prod);
604 	txr->tx_prod = prod;
605 
606 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
607 		bnxt_txr_db_kick(bp, txr, prod);
608 	else
609 		txr->kick_pending = 1;
610 
611 tx_done:
612 
613 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
614 		if (netdev_xmit_more() && !tx_buf->is_push)
615 			bnxt_txr_db_kick(bp, txr, prod);
616 
617 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
618 	}
619 	return NETDEV_TX_OK;
620 
621 tx_dma_error:
622 	if (BNXT_TX_PTP_IS_SET(lflags))
623 		atomic_inc(&bp->ptp_cfg->tx_avail);
624 
625 	last_frag = i;
626 
627 	/* start back at beginning and unmap skb */
628 	prod = txr->tx_prod;
629 	tx_buf = &txr->tx_buf_ring[prod];
630 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
631 			 skb_headlen(skb), DMA_TO_DEVICE);
632 	prod = NEXT_TX(prod);
633 
634 	/* unmap remaining mapped pages */
635 	for (i = 0; i < last_frag; i++) {
636 		prod = NEXT_TX(prod);
637 		tx_buf = &txr->tx_buf_ring[prod];
638 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
639 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
640 			       DMA_TO_DEVICE);
641 	}
642 
643 tx_free:
644 	dev_kfree_skb_any(skb);
645 tx_kick_pending:
646 	if (txr->kick_pending)
647 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
648 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
649 	dev_core_stats_tx_dropped_inc(dev);
650 	return NETDEV_TX_OK;
651 }
652 
653 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
654 {
655 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
656 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
657 	u16 cons = txr->tx_cons;
658 	struct pci_dev *pdev = bp->pdev;
659 	int i;
660 	unsigned int tx_bytes = 0;
661 
662 	for (i = 0; i < nr_pkts; i++) {
663 		struct bnxt_sw_tx_bd *tx_buf;
664 		bool compl_deferred = false;
665 		struct sk_buff *skb;
666 		int j, last;
667 
668 		tx_buf = &txr->tx_buf_ring[cons];
669 		cons = NEXT_TX(cons);
670 		skb = tx_buf->skb;
671 		tx_buf->skb = NULL;
672 
673 		if (tx_buf->is_push) {
674 			tx_buf->is_push = 0;
675 			goto next_tx_int;
676 		}
677 
678 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
679 				 skb_headlen(skb), DMA_TO_DEVICE);
680 		last = tx_buf->nr_frags;
681 
682 		for (j = 0; j < last; j++) {
683 			cons = NEXT_TX(cons);
684 			tx_buf = &txr->tx_buf_ring[cons];
685 			dma_unmap_page(
686 				&pdev->dev,
687 				dma_unmap_addr(tx_buf, mapping),
688 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
689 				DMA_TO_DEVICE);
690 		}
691 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
692 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
693 				if (!bnxt_get_tx_ts_p5(bp, skb))
694 					compl_deferred = true;
695 				else
696 					atomic_inc(&bp->ptp_cfg->tx_avail);
697 			}
698 		}
699 
700 next_tx_int:
701 		cons = NEXT_TX(cons);
702 
703 		tx_bytes += skb->len;
704 		if (!compl_deferred)
705 			dev_kfree_skb_any(skb);
706 	}
707 
708 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
709 	txr->tx_cons = cons;
710 
711 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
712 	 * before checking for netif_tx_queue_stopped().  Without the
713 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
714 	 * will miss it and cause the queue to be stopped forever.
715 	 */
716 	smp_mb();
717 
718 	if (unlikely(netif_tx_queue_stopped(txq)) &&
719 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
720 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
721 		netif_tx_wake_queue(txq);
722 }
723 
724 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
725 					 struct bnxt_rx_ring_info *rxr,
726 					 gfp_t gfp)
727 {
728 	struct device *dev = &bp->pdev->dev;
729 	struct page *page;
730 
731 	page = page_pool_dev_alloc_pages(rxr->page_pool);
732 	if (!page)
733 		return NULL;
734 
735 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
736 				      DMA_ATTR_WEAK_ORDERING);
737 	if (dma_mapping_error(dev, *mapping)) {
738 		page_pool_recycle_direct(rxr->page_pool, page);
739 		return NULL;
740 	}
741 	*mapping += bp->rx_dma_offset;
742 	return page;
743 }
744 
745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
746 				       gfp_t gfp)
747 {
748 	u8 *data;
749 	struct pci_dev *pdev = bp->pdev;
750 
751 	if (gfp == GFP_ATOMIC)
752 		data = napi_alloc_frag(bp->rx_buf_size);
753 	else
754 		data = netdev_alloc_frag(bp->rx_buf_size);
755 	if (!data)
756 		return NULL;
757 
758 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
759 					bp->rx_buf_use_size, bp->rx_dir,
760 					DMA_ATTR_WEAK_ORDERING);
761 
762 	if (dma_mapping_error(&pdev->dev, *mapping)) {
763 		skb_free_frag(data);
764 		data = NULL;
765 	}
766 	return data;
767 }
768 
769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
770 		       u16 prod, gfp_t gfp)
771 {
772 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
774 	dma_addr_t mapping;
775 
776 	if (BNXT_RX_PAGE_MODE(bp)) {
777 		struct page *page =
778 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
779 
780 		if (!page)
781 			return -ENOMEM;
782 
783 		rx_buf->data = page;
784 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
785 	} else {
786 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
787 
788 		if (!data)
789 			return -ENOMEM;
790 
791 		rx_buf->data = data;
792 		rx_buf->data_ptr = data + bp->rx_offset;
793 	}
794 	rx_buf->mapping = mapping;
795 
796 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
797 	return 0;
798 }
799 
800 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
801 {
802 	u16 prod = rxr->rx_prod;
803 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
804 	struct rx_bd *cons_bd, *prod_bd;
805 
806 	prod_rx_buf = &rxr->rx_buf_ring[prod];
807 	cons_rx_buf = &rxr->rx_buf_ring[cons];
808 
809 	prod_rx_buf->data = data;
810 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
811 
812 	prod_rx_buf->mapping = cons_rx_buf->mapping;
813 
814 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
815 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
816 
817 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
818 }
819 
820 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
821 {
822 	u16 next, max = rxr->rx_agg_bmap_size;
823 
824 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
825 	if (next >= max)
826 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
827 	return next;
828 }
829 
830 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
831 				     struct bnxt_rx_ring_info *rxr,
832 				     u16 prod, gfp_t gfp)
833 {
834 	struct rx_bd *rxbd =
835 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
836 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
837 	struct pci_dev *pdev = bp->pdev;
838 	struct page *page;
839 	dma_addr_t mapping;
840 	u16 sw_prod = rxr->rx_sw_agg_prod;
841 	unsigned int offset = 0;
842 
843 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
844 		page = rxr->rx_page;
845 		if (!page) {
846 			page = alloc_page(gfp);
847 			if (!page)
848 				return -ENOMEM;
849 			rxr->rx_page = page;
850 			rxr->rx_page_offset = 0;
851 		}
852 		offset = rxr->rx_page_offset;
853 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
854 		if (rxr->rx_page_offset == PAGE_SIZE)
855 			rxr->rx_page = NULL;
856 		else
857 			get_page(page);
858 	} else {
859 		page = alloc_page(gfp);
860 		if (!page)
861 			return -ENOMEM;
862 	}
863 
864 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
865 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
866 				     DMA_ATTR_WEAK_ORDERING);
867 	if (dma_mapping_error(&pdev->dev, mapping)) {
868 		__free_page(page);
869 		return -EIO;
870 	}
871 
872 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
873 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
874 
875 	__set_bit(sw_prod, rxr->rx_agg_bmap);
876 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
877 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
878 
879 	rx_agg_buf->page = page;
880 	rx_agg_buf->offset = offset;
881 	rx_agg_buf->mapping = mapping;
882 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
883 	rxbd->rx_bd_opaque = sw_prod;
884 	return 0;
885 }
886 
887 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
888 				       struct bnxt_cp_ring_info *cpr,
889 				       u16 cp_cons, u16 curr)
890 {
891 	struct rx_agg_cmp *agg;
892 
893 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
894 	agg = (struct rx_agg_cmp *)
895 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
896 	return agg;
897 }
898 
899 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
900 					      struct bnxt_rx_ring_info *rxr,
901 					      u16 agg_id, u16 curr)
902 {
903 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
904 
905 	return &tpa_info->agg_arr[curr];
906 }
907 
908 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
909 				   u16 start, u32 agg_bufs, bool tpa)
910 {
911 	struct bnxt_napi *bnapi = cpr->bnapi;
912 	struct bnxt *bp = bnapi->bp;
913 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
914 	u16 prod = rxr->rx_agg_prod;
915 	u16 sw_prod = rxr->rx_sw_agg_prod;
916 	bool p5_tpa = false;
917 	u32 i;
918 
919 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
920 		p5_tpa = true;
921 
922 	for (i = 0; i < agg_bufs; i++) {
923 		u16 cons;
924 		struct rx_agg_cmp *agg;
925 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
926 		struct rx_bd *prod_bd;
927 		struct page *page;
928 
929 		if (p5_tpa)
930 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
931 		else
932 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
933 		cons = agg->rx_agg_cmp_opaque;
934 		__clear_bit(cons, rxr->rx_agg_bmap);
935 
936 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
937 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
938 
939 		__set_bit(sw_prod, rxr->rx_agg_bmap);
940 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
941 		cons_rx_buf = &rxr->rx_agg_ring[cons];
942 
943 		/* It is possible for sw_prod to be equal to cons, so
944 		 * set cons_rx_buf->page to NULL first.
945 		 */
946 		page = cons_rx_buf->page;
947 		cons_rx_buf->page = NULL;
948 		prod_rx_buf->page = page;
949 		prod_rx_buf->offset = cons_rx_buf->offset;
950 
951 		prod_rx_buf->mapping = cons_rx_buf->mapping;
952 
953 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
954 
955 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
956 		prod_bd->rx_bd_opaque = sw_prod;
957 
958 		prod = NEXT_RX_AGG(prod);
959 		sw_prod = NEXT_RX_AGG(sw_prod);
960 	}
961 	rxr->rx_agg_prod = prod;
962 	rxr->rx_sw_agg_prod = sw_prod;
963 }
964 
965 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
966 					struct bnxt_rx_ring_info *rxr,
967 					u16 cons, void *data, u8 *data_ptr,
968 					dma_addr_t dma_addr,
969 					unsigned int offset_and_len)
970 {
971 	unsigned int payload = offset_and_len >> 16;
972 	unsigned int len = offset_and_len & 0xffff;
973 	skb_frag_t *frag;
974 	struct page *page = data;
975 	u16 prod = rxr->rx_prod;
976 	struct sk_buff *skb;
977 	int off, err;
978 
979 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
980 	if (unlikely(err)) {
981 		bnxt_reuse_rx_data(rxr, cons, data);
982 		return NULL;
983 	}
984 	dma_addr -= bp->rx_dma_offset;
985 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
986 			     DMA_ATTR_WEAK_ORDERING);
987 	page_pool_release_page(rxr->page_pool, page);
988 
989 	if (unlikely(!payload))
990 		payload = eth_get_headlen(bp->dev, data_ptr, len);
991 
992 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
993 	if (!skb) {
994 		__free_page(page);
995 		return NULL;
996 	}
997 
998 	off = (void *)data_ptr - page_address(page);
999 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1000 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1001 	       payload + NET_IP_ALIGN);
1002 
1003 	frag = &skb_shinfo(skb)->frags[0];
1004 	skb_frag_size_sub(frag, payload);
1005 	skb_frag_off_add(frag, payload);
1006 	skb->data_len -= payload;
1007 	skb->tail += payload;
1008 
1009 	return skb;
1010 }
1011 
1012 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1013 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1014 				   void *data, u8 *data_ptr,
1015 				   dma_addr_t dma_addr,
1016 				   unsigned int offset_and_len)
1017 {
1018 	u16 prod = rxr->rx_prod;
1019 	struct sk_buff *skb;
1020 	int err;
1021 
1022 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1023 	if (unlikely(err)) {
1024 		bnxt_reuse_rx_data(rxr, cons, data);
1025 		return NULL;
1026 	}
1027 
1028 	skb = build_skb(data, bp->rx_buf_size);
1029 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1030 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1031 	if (!skb) {
1032 		skb_free_frag(data);
1033 		return NULL;
1034 	}
1035 
1036 	skb_reserve(skb, bp->rx_offset);
1037 	skb_put(skb, offset_and_len & 0xffff);
1038 	return skb;
1039 }
1040 
1041 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1042 				     struct bnxt_cp_ring_info *cpr,
1043 				     struct sk_buff *skb, u16 idx,
1044 				     u32 agg_bufs, bool tpa)
1045 {
1046 	struct bnxt_napi *bnapi = cpr->bnapi;
1047 	struct pci_dev *pdev = bp->pdev;
1048 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1049 	u16 prod = rxr->rx_agg_prod;
1050 	bool p5_tpa = false;
1051 	u32 i;
1052 
1053 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1054 		p5_tpa = true;
1055 
1056 	for (i = 0; i < agg_bufs; i++) {
1057 		u16 cons, frag_len;
1058 		struct rx_agg_cmp *agg;
1059 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1060 		struct page *page;
1061 		dma_addr_t mapping;
1062 
1063 		if (p5_tpa)
1064 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1065 		else
1066 			agg = bnxt_get_agg(bp, cpr, idx, i);
1067 		cons = agg->rx_agg_cmp_opaque;
1068 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1069 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1070 
1071 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1072 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1073 				   cons_rx_buf->offset, frag_len);
1074 		__clear_bit(cons, rxr->rx_agg_bmap);
1075 
1076 		/* It is possible for bnxt_alloc_rx_page() to allocate
1077 		 * a sw_prod index that equals the cons index, so we
1078 		 * need to clear the cons entry now.
1079 		 */
1080 		mapping = cons_rx_buf->mapping;
1081 		page = cons_rx_buf->page;
1082 		cons_rx_buf->page = NULL;
1083 
1084 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1085 			struct skb_shared_info *shinfo;
1086 			unsigned int nr_frags;
1087 
1088 			shinfo = skb_shinfo(skb);
1089 			nr_frags = --shinfo->nr_frags;
1090 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1091 
1092 			dev_kfree_skb(skb);
1093 
1094 			cons_rx_buf->page = page;
1095 
1096 			/* Update prod since possibly some pages have been
1097 			 * allocated already.
1098 			 */
1099 			rxr->rx_agg_prod = prod;
1100 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1101 			return NULL;
1102 		}
1103 
1104 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1105 				     DMA_FROM_DEVICE,
1106 				     DMA_ATTR_WEAK_ORDERING);
1107 
1108 		skb->data_len += frag_len;
1109 		skb->len += frag_len;
1110 		skb->truesize += PAGE_SIZE;
1111 
1112 		prod = NEXT_RX_AGG(prod);
1113 	}
1114 	rxr->rx_agg_prod = prod;
1115 	return skb;
1116 }
1117 
1118 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1119 			       u8 agg_bufs, u32 *raw_cons)
1120 {
1121 	u16 last;
1122 	struct rx_agg_cmp *agg;
1123 
1124 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1125 	last = RING_CMP(*raw_cons);
1126 	agg = (struct rx_agg_cmp *)
1127 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1128 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1129 }
1130 
1131 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1132 					    unsigned int len,
1133 					    dma_addr_t mapping)
1134 {
1135 	struct bnxt *bp = bnapi->bp;
1136 	struct pci_dev *pdev = bp->pdev;
1137 	struct sk_buff *skb;
1138 
1139 	skb = napi_alloc_skb(&bnapi->napi, len);
1140 	if (!skb)
1141 		return NULL;
1142 
1143 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1144 				bp->rx_dir);
1145 
1146 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1147 	       len + NET_IP_ALIGN);
1148 
1149 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1150 				   bp->rx_dir);
1151 
1152 	skb_put(skb, len);
1153 	return skb;
1154 }
1155 
1156 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1157 			   u32 *raw_cons, void *cmp)
1158 {
1159 	struct rx_cmp *rxcmp = cmp;
1160 	u32 tmp_raw_cons = *raw_cons;
1161 	u8 cmp_type, agg_bufs = 0;
1162 
1163 	cmp_type = RX_CMP_TYPE(rxcmp);
1164 
1165 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1166 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1167 			    RX_CMP_AGG_BUFS) >>
1168 			   RX_CMP_AGG_BUFS_SHIFT;
1169 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1170 		struct rx_tpa_end_cmp *tpa_end = cmp;
1171 
1172 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1173 			return 0;
1174 
1175 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1176 	}
1177 
1178 	if (agg_bufs) {
1179 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1180 			return -EBUSY;
1181 	}
1182 	*raw_cons = tmp_raw_cons;
1183 	return 0;
1184 }
1185 
1186 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1187 {
1188 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1189 		return;
1190 
1191 	if (BNXT_PF(bp))
1192 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1193 	else
1194 		schedule_delayed_work(&bp->fw_reset_task, delay);
1195 }
1196 
1197 static void bnxt_queue_sp_work(struct bnxt *bp)
1198 {
1199 	if (BNXT_PF(bp))
1200 		queue_work(bnxt_pf_wq, &bp->sp_task);
1201 	else
1202 		schedule_work(&bp->sp_task);
1203 }
1204 
1205 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1206 {
1207 	if (!rxr->bnapi->in_reset) {
1208 		rxr->bnapi->in_reset = true;
1209 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1210 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1211 		else
1212 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1213 		bnxt_queue_sp_work(bp);
1214 	}
1215 	rxr->rx_next_cons = 0xffff;
1216 }
1217 
1218 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1219 {
1220 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1221 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1222 
1223 	if (test_bit(idx, map->agg_idx_bmap))
1224 		idx = find_first_zero_bit(map->agg_idx_bmap,
1225 					  BNXT_AGG_IDX_BMAP_SIZE);
1226 	__set_bit(idx, map->agg_idx_bmap);
1227 	map->agg_id_tbl[agg_id] = idx;
1228 	return idx;
1229 }
1230 
1231 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1232 {
1233 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1234 
1235 	__clear_bit(idx, map->agg_idx_bmap);
1236 }
1237 
1238 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1239 {
1240 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1241 
1242 	return map->agg_id_tbl[agg_id];
1243 }
1244 
1245 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1246 			   struct rx_tpa_start_cmp *tpa_start,
1247 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1248 {
1249 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1250 	struct bnxt_tpa_info *tpa_info;
1251 	u16 cons, prod, agg_id;
1252 	struct rx_bd *prod_bd;
1253 	dma_addr_t mapping;
1254 
1255 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1256 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1257 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1258 	} else {
1259 		agg_id = TPA_START_AGG_ID(tpa_start);
1260 	}
1261 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1262 	prod = rxr->rx_prod;
1263 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1264 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1265 	tpa_info = &rxr->rx_tpa[agg_id];
1266 
1267 	if (unlikely(cons != rxr->rx_next_cons ||
1268 		     TPA_START_ERROR(tpa_start))) {
1269 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1270 			    cons, rxr->rx_next_cons,
1271 			    TPA_START_ERROR_CODE(tpa_start1));
1272 		bnxt_sched_reset(bp, rxr);
1273 		return;
1274 	}
1275 	/* Store cfa_code in tpa_info to use in tpa_end
1276 	 * completion processing.
1277 	 */
1278 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1279 	prod_rx_buf->data = tpa_info->data;
1280 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1281 
1282 	mapping = tpa_info->mapping;
1283 	prod_rx_buf->mapping = mapping;
1284 
1285 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1286 
1287 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1288 
1289 	tpa_info->data = cons_rx_buf->data;
1290 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1291 	cons_rx_buf->data = NULL;
1292 	tpa_info->mapping = cons_rx_buf->mapping;
1293 
1294 	tpa_info->len =
1295 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1296 				RX_TPA_START_CMP_LEN_SHIFT;
1297 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1298 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1299 
1300 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1301 		tpa_info->gso_type = SKB_GSO_TCPV4;
1302 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1303 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1304 			tpa_info->gso_type = SKB_GSO_TCPV6;
1305 		tpa_info->rss_hash =
1306 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1307 	} else {
1308 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1309 		tpa_info->gso_type = 0;
1310 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1311 	}
1312 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1313 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1314 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1315 	tpa_info->agg_count = 0;
1316 
1317 	rxr->rx_prod = NEXT_RX(prod);
1318 	cons = NEXT_RX(cons);
1319 	rxr->rx_next_cons = NEXT_RX(cons);
1320 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1321 
1322 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1323 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1324 	cons_rx_buf->data = NULL;
1325 }
1326 
1327 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1328 {
1329 	if (agg_bufs)
1330 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1331 }
1332 
1333 #ifdef CONFIG_INET
1334 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1335 {
1336 	struct udphdr *uh = NULL;
1337 
1338 	if (ip_proto == htons(ETH_P_IP)) {
1339 		struct iphdr *iph = (struct iphdr *)skb->data;
1340 
1341 		if (iph->protocol == IPPROTO_UDP)
1342 			uh = (struct udphdr *)(iph + 1);
1343 	} else {
1344 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1345 
1346 		if (iph->nexthdr == IPPROTO_UDP)
1347 			uh = (struct udphdr *)(iph + 1);
1348 	}
1349 	if (uh) {
1350 		if (uh->check)
1351 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1352 		else
1353 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1354 	}
1355 }
1356 #endif
1357 
1358 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1359 					   int payload_off, int tcp_ts,
1360 					   struct sk_buff *skb)
1361 {
1362 #ifdef CONFIG_INET
1363 	struct tcphdr *th;
1364 	int len, nw_off;
1365 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1366 	u32 hdr_info = tpa_info->hdr_info;
1367 	bool loopback = false;
1368 
1369 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1370 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1371 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1372 
1373 	/* If the packet is an internal loopback packet, the offsets will
1374 	 * have an extra 4 bytes.
1375 	 */
1376 	if (inner_mac_off == 4) {
1377 		loopback = true;
1378 	} else if (inner_mac_off > 4) {
1379 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1380 					    ETH_HLEN - 2));
1381 
1382 		/* We only support inner iPv4/ipv6.  If we don't see the
1383 		 * correct protocol ID, it must be a loopback packet where
1384 		 * the offsets are off by 4.
1385 		 */
1386 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1387 			loopback = true;
1388 	}
1389 	if (loopback) {
1390 		/* internal loopback packet, subtract all offsets by 4 */
1391 		inner_ip_off -= 4;
1392 		inner_mac_off -= 4;
1393 		outer_ip_off -= 4;
1394 	}
1395 
1396 	nw_off = inner_ip_off - ETH_HLEN;
1397 	skb_set_network_header(skb, nw_off);
1398 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1399 		struct ipv6hdr *iph = ipv6_hdr(skb);
1400 
1401 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1402 		len = skb->len - skb_transport_offset(skb);
1403 		th = tcp_hdr(skb);
1404 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1405 	} else {
1406 		struct iphdr *iph = ip_hdr(skb);
1407 
1408 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1409 		len = skb->len - skb_transport_offset(skb);
1410 		th = tcp_hdr(skb);
1411 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1412 	}
1413 
1414 	if (inner_mac_off) { /* tunnel */
1415 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1416 					    ETH_HLEN - 2));
1417 
1418 		bnxt_gro_tunnel(skb, proto);
1419 	}
1420 #endif
1421 	return skb;
1422 }
1423 
1424 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1425 					   int payload_off, int tcp_ts,
1426 					   struct sk_buff *skb)
1427 {
1428 #ifdef CONFIG_INET
1429 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1430 	u32 hdr_info = tpa_info->hdr_info;
1431 	int iphdr_len, nw_off;
1432 
1433 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1434 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1435 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1436 
1437 	nw_off = inner_ip_off - ETH_HLEN;
1438 	skb_set_network_header(skb, nw_off);
1439 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1440 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1441 	skb_set_transport_header(skb, nw_off + iphdr_len);
1442 
1443 	if (inner_mac_off) { /* tunnel */
1444 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1445 					    ETH_HLEN - 2));
1446 
1447 		bnxt_gro_tunnel(skb, proto);
1448 	}
1449 #endif
1450 	return skb;
1451 }
1452 
1453 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1454 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1455 
1456 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1457 					   int payload_off, int tcp_ts,
1458 					   struct sk_buff *skb)
1459 {
1460 #ifdef CONFIG_INET
1461 	struct tcphdr *th;
1462 	int len, nw_off, tcp_opt_len = 0;
1463 
1464 	if (tcp_ts)
1465 		tcp_opt_len = 12;
1466 
1467 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1468 		struct iphdr *iph;
1469 
1470 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1471 			 ETH_HLEN;
1472 		skb_set_network_header(skb, nw_off);
1473 		iph = ip_hdr(skb);
1474 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1475 		len = skb->len - skb_transport_offset(skb);
1476 		th = tcp_hdr(skb);
1477 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1478 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1479 		struct ipv6hdr *iph;
1480 
1481 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1482 			 ETH_HLEN;
1483 		skb_set_network_header(skb, nw_off);
1484 		iph = ipv6_hdr(skb);
1485 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1486 		len = skb->len - skb_transport_offset(skb);
1487 		th = tcp_hdr(skb);
1488 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1489 	} else {
1490 		dev_kfree_skb_any(skb);
1491 		return NULL;
1492 	}
1493 
1494 	if (nw_off) /* tunnel */
1495 		bnxt_gro_tunnel(skb, skb->protocol);
1496 #endif
1497 	return skb;
1498 }
1499 
1500 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1501 					   struct bnxt_tpa_info *tpa_info,
1502 					   struct rx_tpa_end_cmp *tpa_end,
1503 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1504 					   struct sk_buff *skb)
1505 {
1506 #ifdef CONFIG_INET
1507 	int payload_off;
1508 	u16 segs;
1509 
1510 	segs = TPA_END_TPA_SEGS(tpa_end);
1511 	if (segs == 1)
1512 		return skb;
1513 
1514 	NAPI_GRO_CB(skb)->count = segs;
1515 	skb_shinfo(skb)->gso_size =
1516 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1517 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1518 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1519 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1520 	else
1521 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1522 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1523 	if (likely(skb))
1524 		tcp_gro_complete(skb);
1525 #endif
1526 	return skb;
1527 }
1528 
1529 /* Given the cfa_code of a received packet determine which
1530  * netdev (vf-rep or PF) the packet is destined to.
1531  */
1532 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1533 {
1534 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1535 
1536 	/* if vf-rep dev is NULL, the must belongs to the PF */
1537 	return dev ? dev : bp->dev;
1538 }
1539 
1540 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1541 					   struct bnxt_cp_ring_info *cpr,
1542 					   u32 *raw_cons,
1543 					   struct rx_tpa_end_cmp *tpa_end,
1544 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1545 					   u8 *event)
1546 {
1547 	struct bnxt_napi *bnapi = cpr->bnapi;
1548 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1549 	u8 *data_ptr, agg_bufs;
1550 	unsigned int len;
1551 	struct bnxt_tpa_info *tpa_info;
1552 	dma_addr_t mapping;
1553 	struct sk_buff *skb;
1554 	u16 idx = 0, agg_id;
1555 	void *data;
1556 	bool gro;
1557 
1558 	if (unlikely(bnapi->in_reset)) {
1559 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1560 
1561 		if (rc < 0)
1562 			return ERR_PTR(-EBUSY);
1563 		return NULL;
1564 	}
1565 
1566 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1567 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1568 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1569 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1570 		tpa_info = &rxr->rx_tpa[agg_id];
1571 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1572 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1573 				    agg_bufs, tpa_info->agg_count);
1574 			agg_bufs = tpa_info->agg_count;
1575 		}
1576 		tpa_info->agg_count = 0;
1577 		*event |= BNXT_AGG_EVENT;
1578 		bnxt_free_agg_idx(rxr, agg_id);
1579 		idx = agg_id;
1580 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1581 	} else {
1582 		agg_id = TPA_END_AGG_ID(tpa_end);
1583 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1584 		tpa_info = &rxr->rx_tpa[agg_id];
1585 		idx = RING_CMP(*raw_cons);
1586 		if (agg_bufs) {
1587 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1588 				return ERR_PTR(-EBUSY);
1589 
1590 			*event |= BNXT_AGG_EVENT;
1591 			idx = NEXT_CMP(idx);
1592 		}
1593 		gro = !!TPA_END_GRO(tpa_end);
1594 	}
1595 	data = tpa_info->data;
1596 	data_ptr = tpa_info->data_ptr;
1597 	prefetch(data_ptr);
1598 	len = tpa_info->len;
1599 	mapping = tpa_info->mapping;
1600 
1601 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1602 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1603 		if (agg_bufs > MAX_SKB_FRAGS)
1604 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1605 				    agg_bufs, (int)MAX_SKB_FRAGS);
1606 		return NULL;
1607 	}
1608 
1609 	if (len <= bp->rx_copy_thresh) {
1610 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1611 		if (!skb) {
1612 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1613 			cpr->sw_stats.rx.rx_oom_discards += 1;
1614 			return NULL;
1615 		}
1616 	} else {
1617 		u8 *new_data;
1618 		dma_addr_t new_mapping;
1619 
1620 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1621 		if (!new_data) {
1622 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1623 			cpr->sw_stats.rx.rx_oom_discards += 1;
1624 			return NULL;
1625 		}
1626 
1627 		tpa_info->data = new_data;
1628 		tpa_info->data_ptr = new_data + bp->rx_offset;
1629 		tpa_info->mapping = new_mapping;
1630 
1631 		skb = build_skb(data, bp->rx_buf_size);
1632 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1633 				       bp->rx_buf_use_size, bp->rx_dir,
1634 				       DMA_ATTR_WEAK_ORDERING);
1635 
1636 		if (!skb) {
1637 			skb_free_frag(data);
1638 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1639 			cpr->sw_stats.rx.rx_oom_discards += 1;
1640 			return NULL;
1641 		}
1642 		skb_reserve(skb, bp->rx_offset);
1643 		skb_put(skb, len);
1644 	}
1645 
1646 	if (agg_bufs) {
1647 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1648 		if (!skb) {
1649 			/* Page reuse already handled by bnxt_rx_pages(). */
1650 			cpr->sw_stats.rx.rx_oom_discards += 1;
1651 			return NULL;
1652 		}
1653 	}
1654 
1655 	skb->protocol =
1656 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1657 
1658 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1659 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1660 
1661 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1662 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1663 		__be16 vlan_proto = htons(tpa_info->metadata >>
1664 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1665 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1666 
1667 		if (eth_type_vlan(vlan_proto)) {
1668 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1669 		} else {
1670 			dev_kfree_skb(skb);
1671 			return NULL;
1672 		}
1673 	}
1674 
1675 	skb_checksum_none_assert(skb);
1676 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1677 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1678 		skb->csum_level =
1679 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1680 	}
1681 
1682 	if (gro)
1683 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1684 
1685 	return skb;
1686 }
1687 
1688 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1689 			 struct rx_agg_cmp *rx_agg)
1690 {
1691 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1692 	struct bnxt_tpa_info *tpa_info;
1693 
1694 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1695 	tpa_info = &rxr->rx_tpa[agg_id];
1696 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1697 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1698 }
1699 
1700 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1701 			     struct sk_buff *skb)
1702 {
1703 	if (skb->dev != bp->dev) {
1704 		/* this packet belongs to a vf-rep */
1705 		bnxt_vf_rep_rx(bp, skb);
1706 		return;
1707 	}
1708 	skb_record_rx_queue(skb, bnapi->index);
1709 	napi_gro_receive(&bnapi->napi, skb);
1710 }
1711 
1712 /* returns the following:
1713  * 1       - 1 packet successfully received
1714  * 0       - successful TPA_START, packet not completed yet
1715  * -EBUSY  - completion ring does not have all the agg buffers yet
1716  * -ENOMEM - packet aborted due to out of memory
1717  * -EIO    - packet aborted due to hw error indicated in BD
1718  */
1719 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1720 		       u32 *raw_cons, u8 *event)
1721 {
1722 	struct bnxt_napi *bnapi = cpr->bnapi;
1723 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1724 	struct net_device *dev = bp->dev;
1725 	struct rx_cmp *rxcmp;
1726 	struct rx_cmp_ext *rxcmp1;
1727 	u32 tmp_raw_cons = *raw_cons;
1728 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1729 	struct bnxt_sw_rx_bd *rx_buf;
1730 	unsigned int len;
1731 	u8 *data_ptr, agg_bufs, cmp_type;
1732 	dma_addr_t dma_addr;
1733 	struct sk_buff *skb;
1734 	u32 flags, misc;
1735 	void *data;
1736 	int rc = 0;
1737 
1738 	rxcmp = (struct rx_cmp *)
1739 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1740 
1741 	cmp_type = RX_CMP_TYPE(rxcmp);
1742 
1743 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1744 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1745 		goto next_rx_no_prod_no_len;
1746 	}
1747 
1748 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1749 	cp_cons = RING_CMP(tmp_raw_cons);
1750 	rxcmp1 = (struct rx_cmp_ext *)
1751 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1752 
1753 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1754 		return -EBUSY;
1755 
1756 	/* The valid test of the entry must be done first before
1757 	 * reading any further.
1758 	 */
1759 	dma_rmb();
1760 	prod = rxr->rx_prod;
1761 
1762 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1763 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1764 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1765 
1766 		*event |= BNXT_RX_EVENT;
1767 		goto next_rx_no_prod_no_len;
1768 
1769 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1770 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1771 				   (struct rx_tpa_end_cmp *)rxcmp,
1772 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1773 
1774 		if (IS_ERR(skb))
1775 			return -EBUSY;
1776 
1777 		rc = -ENOMEM;
1778 		if (likely(skb)) {
1779 			bnxt_deliver_skb(bp, bnapi, skb);
1780 			rc = 1;
1781 		}
1782 		*event |= BNXT_RX_EVENT;
1783 		goto next_rx_no_prod_no_len;
1784 	}
1785 
1786 	cons = rxcmp->rx_cmp_opaque;
1787 	if (unlikely(cons != rxr->rx_next_cons)) {
1788 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1789 
1790 		/* 0xffff is forced error, don't print it */
1791 		if (rxr->rx_next_cons != 0xffff)
1792 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1793 				    cons, rxr->rx_next_cons);
1794 		bnxt_sched_reset(bp, rxr);
1795 		if (rc1)
1796 			return rc1;
1797 		goto next_rx_no_prod_no_len;
1798 	}
1799 	rx_buf = &rxr->rx_buf_ring[cons];
1800 	data = rx_buf->data;
1801 	data_ptr = rx_buf->data_ptr;
1802 	prefetch(data_ptr);
1803 
1804 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1805 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1806 
1807 	if (agg_bufs) {
1808 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1809 			return -EBUSY;
1810 
1811 		cp_cons = NEXT_CMP(cp_cons);
1812 		*event |= BNXT_AGG_EVENT;
1813 	}
1814 	*event |= BNXT_RX_EVENT;
1815 
1816 	rx_buf->data = NULL;
1817 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1818 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1819 
1820 		bnxt_reuse_rx_data(rxr, cons, data);
1821 		if (agg_bufs)
1822 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1823 					       false);
1824 
1825 		rc = -EIO;
1826 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1827 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1828 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1829 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1830 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1831 						 rx_err);
1832 				bnxt_sched_reset(bp, rxr);
1833 			}
1834 		}
1835 		goto next_rx_no_len;
1836 	}
1837 
1838 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1839 	len = flags >> RX_CMP_LEN_SHIFT;
1840 	dma_addr = rx_buf->mapping;
1841 
1842 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1843 		rc = 1;
1844 		goto next_rx;
1845 	}
1846 
1847 	if (len <= bp->rx_copy_thresh) {
1848 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1849 		bnxt_reuse_rx_data(rxr, cons, data);
1850 		if (!skb) {
1851 			if (agg_bufs)
1852 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1853 						       agg_bufs, false);
1854 			cpr->sw_stats.rx.rx_oom_discards += 1;
1855 			rc = -ENOMEM;
1856 			goto next_rx;
1857 		}
1858 	} else {
1859 		u32 payload;
1860 
1861 		if (rx_buf->data_ptr == data_ptr)
1862 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1863 		else
1864 			payload = 0;
1865 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1866 				      payload | len);
1867 		if (!skb) {
1868 			cpr->sw_stats.rx.rx_oom_discards += 1;
1869 			rc = -ENOMEM;
1870 			goto next_rx;
1871 		}
1872 	}
1873 
1874 	if (agg_bufs) {
1875 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1876 		if (!skb) {
1877 			cpr->sw_stats.rx.rx_oom_discards += 1;
1878 			rc = -ENOMEM;
1879 			goto next_rx;
1880 		}
1881 	}
1882 
1883 	if (RX_CMP_HASH_VALID(rxcmp)) {
1884 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1885 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1886 
1887 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1888 		if (hash_type != 1 && hash_type != 3)
1889 			type = PKT_HASH_TYPE_L3;
1890 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1891 	}
1892 
1893 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1894 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1895 
1896 	if ((rxcmp1->rx_cmp_flags2 &
1897 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1898 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1899 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1900 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1901 		__be16 vlan_proto = htons(meta_data >>
1902 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1903 
1904 		if (eth_type_vlan(vlan_proto)) {
1905 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1906 		} else {
1907 			dev_kfree_skb(skb);
1908 			goto next_rx;
1909 		}
1910 	}
1911 
1912 	skb_checksum_none_assert(skb);
1913 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1914 		if (dev->features & NETIF_F_RXCSUM) {
1915 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1916 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1917 		}
1918 	} else {
1919 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1920 			if (dev->features & NETIF_F_RXCSUM)
1921 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1922 		}
1923 	}
1924 
1925 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
1926 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS)) {
1927 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
1928 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1929 			u64 ns, ts;
1930 
1931 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
1932 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1933 
1934 				spin_lock_bh(&ptp->ptp_lock);
1935 				ns = timecounter_cyc2time(&ptp->tc, ts);
1936 				spin_unlock_bh(&ptp->ptp_lock);
1937 				memset(skb_hwtstamps(skb), 0,
1938 				       sizeof(*skb_hwtstamps(skb)));
1939 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
1940 			}
1941 		}
1942 	}
1943 	bnxt_deliver_skb(bp, bnapi, skb);
1944 	rc = 1;
1945 
1946 next_rx:
1947 	cpr->rx_packets += 1;
1948 	cpr->rx_bytes += len;
1949 
1950 next_rx_no_len:
1951 	rxr->rx_prod = NEXT_RX(prod);
1952 	rxr->rx_next_cons = NEXT_RX(cons);
1953 
1954 next_rx_no_prod_no_len:
1955 	*raw_cons = tmp_raw_cons;
1956 
1957 	return rc;
1958 }
1959 
1960 /* In netpoll mode, if we are using a combined completion ring, we need to
1961  * discard the rx packets and recycle the buffers.
1962  */
1963 static int bnxt_force_rx_discard(struct bnxt *bp,
1964 				 struct bnxt_cp_ring_info *cpr,
1965 				 u32 *raw_cons, u8 *event)
1966 {
1967 	u32 tmp_raw_cons = *raw_cons;
1968 	struct rx_cmp_ext *rxcmp1;
1969 	struct rx_cmp *rxcmp;
1970 	u16 cp_cons;
1971 	u8 cmp_type;
1972 	int rc;
1973 
1974 	cp_cons = RING_CMP(tmp_raw_cons);
1975 	rxcmp = (struct rx_cmp *)
1976 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1977 
1978 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1979 	cp_cons = RING_CMP(tmp_raw_cons);
1980 	rxcmp1 = (struct rx_cmp_ext *)
1981 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1982 
1983 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1984 		return -EBUSY;
1985 
1986 	/* The valid test of the entry must be done first before
1987 	 * reading any further.
1988 	 */
1989 	dma_rmb();
1990 	cmp_type = RX_CMP_TYPE(rxcmp);
1991 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1992 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1993 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1994 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1995 		struct rx_tpa_end_cmp_ext *tpa_end1;
1996 
1997 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1998 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1999 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2000 	}
2001 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2002 	if (rc && rc != -EBUSY)
2003 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2004 	return rc;
2005 }
2006 
2007 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2008 {
2009 	struct bnxt_fw_health *fw_health = bp->fw_health;
2010 	u32 reg = fw_health->regs[reg_idx];
2011 	u32 reg_type, reg_off, val = 0;
2012 
2013 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2014 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2015 	switch (reg_type) {
2016 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2017 		pci_read_config_dword(bp->pdev, reg_off, &val);
2018 		break;
2019 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2020 		reg_off = fw_health->mapped_regs[reg_idx];
2021 		fallthrough;
2022 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2023 		val = readl(bp->bar0 + reg_off);
2024 		break;
2025 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2026 		val = readl(bp->bar1 + reg_off);
2027 		break;
2028 	}
2029 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2030 		val &= fw_health->fw_reset_inprog_reg_mask;
2031 	return val;
2032 }
2033 
2034 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2035 {
2036 	int i;
2037 
2038 	for (i = 0; i < bp->rx_nr_rings; i++) {
2039 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2040 		struct bnxt_ring_grp_info *grp_info;
2041 
2042 		grp_info = &bp->grp_info[grp_idx];
2043 		if (grp_info->agg_fw_ring_id == ring_id)
2044 			return grp_idx;
2045 	}
2046 	return INVALID_HW_RING_ID;
2047 }
2048 
2049 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2050 {
2051 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2052 
2053 	switch (err_type) {
2054 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2055 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2056 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2057 		break;
2058 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2059 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2060 		break;
2061 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2062 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2063 		break;
2064 	default:
2065 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2066 			   err_type);
2067 		break;
2068 	}
2069 }
2070 
2071 #define BNXT_GET_EVENT_PORT(data)	\
2072 	((data) &			\
2073 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2074 
2075 #define BNXT_EVENT_RING_TYPE(data2)	\
2076 	((data2) &			\
2077 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2078 
2079 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2080 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2081 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2082 
2083 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2084 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2085 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2086 
2087 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2088 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2089 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2090 
2091 #define BNXT_PHC_BITS	48
2092 
2093 static int bnxt_async_event_process(struct bnxt *bp,
2094 				    struct hwrm_async_event_cmpl *cmpl)
2095 {
2096 	u16 event_id = le16_to_cpu(cmpl->event_id);
2097 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2098 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2099 
2100 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2101 		   event_id, data1, data2);
2102 
2103 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2104 	switch (event_id) {
2105 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2106 		struct bnxt_link_info *link_info = &bp->link_info;
2107 
2108 		if (BNXT_VF(bp))
2109 			goto async_event_process_exit;
2110 
2111 		/* print unsupported speed warning in forced speed mode only */
2112 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2113 		    (data1 & 0x20000)) {
2114 			u16 fw_speed = link_info->force_link_speed;
2115 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2116 
2117 			if (speed != SPEED_UNKNOWN)
2118 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2119 					    speed);
2120 		}
2121 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2122 	}
2123 		fallthrough;
2124 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2125 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2126 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2127 		fallthrough;
2128 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2129 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2130 		break;
2131 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2132 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2133 		break;
2134 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2135 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2136 
2137 		if (BNXT_VF(bp))
2138 			break;
2139 
2140 		if (bp->pf.port_id != port_id)
2141 			break;
2142 
2143 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2144 		break;
2145 	}
2146 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2147 		if (BNXT_PF(bp))
2148 			goto async_event_process_exit;
2149 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2150 		break;
2151 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2152 		char *type_str = "Solicited";
2153 
2154 		if (!bp->fw_health)
2155 			goto async_event_process_exit;
2156 
2157 		bp->fw_reset_timestamp = jiffies;
2158 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2159 		if (!bp->fw_reset_min_dsecs)
2160 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2161 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2162 		if (!bp->fw_reset_max_dsecs)
2163 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2164 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2165 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2166 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2167 			type_str = "Fatal";
2168 			bp->fw_health->fatalities++;
2169 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2170 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2171 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2172 			type_str = "Non-fatal";
2173 			bp->fw_health->survivals++;
2174 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2175 		}
2176 		netif_warn(bp, hw, bp->dev,
2177 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2178 			   type_str, data1, data2,
2179 			   bp->fw_reset_min_dsecs * 100,
2180 			   bp->fw_reset_max_dsecs * 100);
2181 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2182 		break;
2183 	}
2184 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2185 		struct bnxt_fw_health *fw_health = bp->fw_health;
2186 		char *status_desc = "healthy";
2187 		u32 status;
2188 
2189 		if (!fw_health)
2190 			goto async_event_process_exit;
2191 
2192 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2193 			fw_health->enabled = false;
2194 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2195 			break;
2196 		}
2197 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2198 		fw_health->tmr_multiplier =
2199 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2200 				     bp->current_interval * 10);
2201 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2202 		if (!fw_health->enabled)
2203 			fw_health->last_fw_heartbeat =
2204 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2205 		fw_health->last_fw_reset_cnt =
2206 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2207 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2208 		if (status != BNXT_FW_STATUS_HEALTHY)
2209 			status_desc = "unhealthy";
2210 		netif_info(bp, drv, bp->dev,
2211 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2212 			   fw_health->primary ? "primary" : "backup", status,
2213 			   status_desc, fw_health->last_fw_reset_cnt);
2214 		if (!fw_health->enabled) {
2215 			/* Make sure tmr_counter is set and visible to
2216 			 * bnxt_health_check() before setting enabled to true.
2217 			 */
2218 			smp_wmb();
2219 			fw_health->enabled = true;
2220 		}
2221 		goto async_event_process_exit;
2222 	}
2223 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2224 		netif_notice(bp, hw, bp->dev,
2225 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2226 			     data1, data2);
2227 		goto async_event_process_exit;
2228 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2229 		struct bnxt_rx_ring_info *rxr;
2230 		u16 grp_idx;
2231 
2232 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2233 			goto async_event_process_exit;
2234 
2235 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2236 			    BNXT_EVENT_RING_TYPE(data2), data1);
2237 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2238 			goto async_event_process_exit;
2239 
2240 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2241 		if (grp_idx == INVALID_HW_RING_ID) {
2242 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2243 				    data1);
2244 			goto async_event_process_exit;
2245 		}
2246 		rxr = bp->bnapi[grp_idx]->rx_ring;
2247 		bnxt_sched_reset(bp, rxr);
2248 		goto async_event_process_exit;
2249 	}
2250 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2251 		struct bnxt_fw_health *fw_health = bp->fw_health;
2252 
2253 		netif_notice(bp, hw, bp->dev,
2254 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2255 			     data1, data2);
2256 		if (fw_health) {
2257 			fw_health->echo_req_data1 = data1;
2258 			fw_health->echo_req_data2 = data2;
2259 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2260 			break;
2261 		}
2262 		goto async_event_process_exit;
2263 	}
2264 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2265 		bnxt_ptp_pps_event(bp, data1, data2);
2266 		goto async_event_process_exit;
2267 	}
2268 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2269 		bnxt_event_error_report(bp, data1, data2);
2270 		goto async_event_process_exit;
2271 	}
2272 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2273 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2274 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2275 			if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
2276 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2277 				u64 ns;
2278 
2279 				spin_lock_bh(&ptp->ptp_lock);
2280 				bnxt_ptp_update_current_time(bp);
2281 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2282 				       BNXT_PHC_BITS) | ptp->current_time);
2283 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2284 				spin_unlock_bh(&ptp->ptp_lock);
2285 			}
2286 			break;
2287 		}
2288 		goto async_event_process_exit;
2289 	}
2290 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2291 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2292 
2293 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2294 		goto async_event_process_exit;
2295 	}
2296 	default:
2297 		goto async_event_process_exit;
2298 	}
2299 	bnxt_queue_sp_work(bp);
2300 async_event_process_exit:
2301 	bnxt_ulp_async_events(bp, cmpl);
2302 	return 0;
2303 }
2304 
2305 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2306 {
2307 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2308 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2309 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2310 				(struct hwrm_fwd_req_cmpl *)txcmp;
2311 
2312 	switch (cmpl_type) {
2313 	case CMPL_BASE_TYPE_HWRM_DONE:
2314 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2315 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2316 		break;
2317 
2318 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2319 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2320 
2321 		if ((vf_id < bp->pf.first_vf_id) ||
2322 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2323 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2324 				   vf_id);
2325 			return -EINVAL;
2326 		}
2327 
2328 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2329 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2330 		bnxt_queue_sp_work(bp);
2331 		break;
2332 
2333 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2334 		bnxt_async_event_process(bp,
2335 					 (struct hwrm_async_event_cmpl *)txcmp);
2336 		break;
2337 
2338 	default:
2339 		break;
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2346 {
2347 	struct bnxt_napi *bnapi = dev_instance;
2348 	struct bnxt *bp = bnapi->bp;
2349 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2350 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2351 
2352 	cpr->event_ctr++;
2353 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2354 	napi_schedule(&bnapi->napi);
2355 	return IRQ_HANDLED;
2356 }
2357 
2358 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2359 {
2360 	u32 raw_cons = cpr->cp_raw_cons;
2361 	u16 cons = RING_CMP(raw_cons);
2362 	struct tx_cmp *txcmp;
2363 
2364 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2365 
2366 	return TX_CMP_VALID(txcmp, raw_cons);
2367 }
2368 
2369 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2370 {
2371 	struct bnxt_napi *bnapi = dev_instance;
2372 	struct bnxt *bp = bnapi->bp;
2373 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2374 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2375 	u32 int_status;
2376 
2377 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2378 
2379 	if (!bnxt_has_work(bp, cpr)) {
2380 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2381 		/* return if erroneous interrupt */
2382 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2383 			return IRQ_NONE;
2384 	}
2385 
2386 	/* disable ring IRQ */
2387 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2388 
2389 	/* Return here if interrupt is shared and is disabled. */
2390 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2391 		return IRQ_HANDLED;
2392 
2393 	napi_schedule(&bnapi->napi);
2394 	return IRQ_HANDLED;
2395 }
2396 
2397 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2398 			    int budget)
2399 {
2400 	struct bnxt_napi *bnapi = cpr->bnapi;
2401 	u32 raw_cons = cpr->cp_raw_cons;
2402 	u32 cons;
2403 	int tx_pkts = 0;
2404 	int rx_pkts = 0;
2405 	u8 event = 0;
2406 	struct tx_cmp *txcmp;
2407 
2408 	cpr->has_more_work = 0;
2409 	cpr->had_work_done = 1;
2410 	while (1) {
2411 		int rc;
2412 
2413 		cons = RING_CMP(raw_cons);
2414 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2415 
2416 		if (!TX_CMP_VALID(txcmp, raw_cons))
2417 			break;
2418 
2419 		/* The valid test of the entry must be done first before
2420 		 * reading any further.
2421 		 */
2422 		dma_rmb();
2423 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2424 			tx_pkts++;
2425 			/* return full budget so NAPI will complete. */
2426 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2427 				rx_pkts = budget;
2428 				raw_cons = NEXT_RAW_CMP(raw_cons);
2429 				if (budget)
2430 					cpr->has_more_work = 1;
2431 				break;
2432 			}
2433 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2434 			if (likely(budget))
2435 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2436 			else
2437 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2438 							   &event);
2439 			if (likely(rc >= 0))
2440 				rx_pkts += rc;
2441 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2442 			 * the NAPI budget.  Otherwise, we may potentially loop
2443 			 * here forever if we consistently cannot allocate
2444 			 * buffers.
2445 			 */
2446 			else if (rc == -ENOMEM && budget)
2447 				rx_pkts++;
2448 			else if (rc == -EBUSY)	/* partial completion */
2449 				break;
2450 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2451 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2452 				    (TX_CMP_TYPE(txcmp) ==
2453 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2454 				    (TX_CMP_TYPE(txcmp) ==
2455 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2456 			bnxt_hwrm_handler(bp, txcmp);
2457 		}
2458 		raw_cons = NEXT_RAW_CMP(raw_cons);
2459 
2460 		if (rx_pkts && rx_pkts == budget) {
2461 			cpr->has_more_work = 1;
2462 			break;
2463 		}
2464 	}
2465 
2466 	if (event & BNXT_REDIRECT_EVENT)
2467 		xdp_do_flush();
2468 
2469 	if (event & BNXT_TX_EVENT) {
2470 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2471 		u16 prod = txr->tx_prod;
2472 
2473 		/* Sync BD data before updating doorbell */
2474 		wmb();
2475 
2476 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2477 	}
2478 
2479 	cpr->cp_raw_cons = raw_cons;
2480 	bnapi->tx_pkts += tx_pkts;
2481 	bnapi->events |= event;
2482 	return rx_pkts;
2483 }
2484 
2485 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2486 {
2487 	if (bnapi->tx_pkts) {
2488 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2489 		bnapi->tx_pkts = 0;
2490 	}
2491 
2492 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2493 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2494 
2495 		if (bnapi->events & BNXT_AGG_EVENT)
2496 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2497 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2498 	}
2499 	bnapi->events = 0;
2500 }
2501 
2502 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2503 			  int budget)
2504 {
2505 	struct bnxt_napi *bnapi = cpr->bnapi;
2506 	int rx_pkts;
2507 
2508 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2509 
2510 	/* ACK completion ring before freeing tx ring and producing new
2511 	 * buffers in rx/agg rings to prevent overflowing the completion
2512 	 * ring.
2513 	 */
2514 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2515 
2516 	__bnxt_poll_work_done(bp, bnapi);
2517 	return rx_pkts;
2518 }
2519 
2520 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2521 {
2522 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2523 	struct bnxt *bp = bnapi->bp;
2524 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2525 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2526 	struct tx_cmp *txcmp;
2527 	struct rx_cmp_ext *rxcmp1;
2528 	u32 cp_cons, tmp_raw_cons;
2529 	u32 raw_cons = cpr->cp_raw_cons;
2530 	u32 rx_pkts = 0;
2531 	u8 event = 0;
2532 
2533 	while (1) {
2534 		int rc;
2535 
2536 		cp_cons = RING_CMP(raw_cons);
2537 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2538 
2539 		if (!TX_CMP_VALID(txcmp, raw_cons))
2540 			break;
2541 
2542 		/* The valid test of the entry must be done first before
2543 		 * reading any further.
2544 		 */
2545 		dma_rmb();
2546 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2547 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2548 			cp_cons = RING_CMP(tmp_raw_cons);
2549 			rxcmp1 = (struct rx_cmp_ext *)
2550 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2551 
2552 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2553 				break;
2554 
2555 			/* force an error to recycle the buffer */
2556 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2557 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2558 
2559 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2560 			if (likely(rc == -EIO) && budget)
2561 				rx_pkts++;
2562 			else if (rc == -EBUSY)	/* partial completion */
2563 				break;
2564 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2565 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2566 			bnxt_hwrm_handler(bp, txcmp);
2567 		} else {
2568 			netdev_err(bp->dev,
2569 				   "Invalid completion received on special ring\n");
2570 		}
2571 		raw_cons = NEXT_RAW_CMP(raw_cons);
2572 
2573 		if (rx_pkts == budget)
2574 			break;
2575 	}
2576 
2577 	cpr->cp_raw_cons = raw_cons;
2578 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2579 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2580 
2581 	if (event & BNXT_AGG_EVENT)
2582 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2583 
2584 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2585 		napi_complete_done(napi, rx_pkts);
2586 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2587 	}
2588 	return rx_pkts;
2589 }
2590 
2591 static int bnxt_poll(struct napi_struct *napi, int budget)
2592 {
2593 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2594 	struct bnxt *bp = bnapi->bp;
2595 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2596 	int work_done = 0;
2597 
2598 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2599 		napi_complete(napi);
2600 		return 0;
2601 	}
2602 	while (1) {
2603 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2604 
2605 		if (work_done >= budget) {
2606 			if (!budget)
2607 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2608 			break;
2609 		}
2610 
2611 		if (!bnxt_has_work(bp, cpr)) {
2612 			if (napi_complete_done(napi, work_done))
2613 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2614 			break;
2615 		}
2616 	}
2617 	if (bp->flags & BNXT_FLAG_DIM) {
2618 		struct dim_sample dim_sample = {};
2619 
2620 		dim_update_sample(cpr->event_ctr,
2621 				  cpr->rx_packets,
2622 				  cpr->rx_bytes,
2623 				  &dim_sample);
2624 		net_dim(&cpr->dim, dim_sample);
2625 	}
2626 	return work_done;
2627 }
2628 
2629 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2630 {
2631 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2632 	int i, work_done = 0;
2633 
2634 	for (i = 0; i < 2; i++) {
2635 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2636 
2637 		if (cpr2) {
2638 			work_done += __bnxt_poll_work(bp, cpr2,
2639 						      budget - work_done);
2640 			cpr->has_more_work |= cpr2->has_more_work;
2641 		}
2642 	}
2643 	return work_done;
2644 }
2645 
2646 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2647 				 u64 dbr_type)
2648 {
2649 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2650 	int i;
2651 
2652 	for (i = 0; i < 2; i++) {
2653 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2654 		struct bnxt_db_info *db;
2655 
2656 		if (cpr2 && cpr2->had_work_done) {
2657 			db = &cpr2->cp_db;
2658 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2659 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2660 			cpr2->had_work_done = 0;
2661 		}
2662 	}
2663 	__bnxt_poll_work_done(bp, bnapi);
2664 }
2665 
2666 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2667 {
2668 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2669 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2670 	struct bnxt_cp_ring_info *cpr_rx;
2671 	u32 raw_cons = cpr->cp_raw_cons;
2672 	struct bnxt *bp = bnapi->bp;
2673 	struct nqe_cn *nqcmp;
2674 	int work_done = 0;
2675 	u32 cons;
2676 
2677 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2678 		napi_complete(napi);
2679 		return 0;
2680 	}
2681 	if (cpr->has_more_work) {
2682 		cpr->has_more_work = 0;
2683 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2684 	}
2685 	while (1) {
2686 		cons = RING_CMP(raw_cons);
2687 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2688 
2689 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2690 			if (cpr->has_more_work)
2691 				break;
2692 
2693 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2694 			cpr->cp_raw_cons = raw_cons;
2695 			if (napi_complete_done(napi, work_done))
2696 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2697 						  cpr->cp_raw_cons);
2698 			goto poll_done;
2699 		}
2700 
2701 		/* The valid test of the entry must be done first before
2702 		 * reading any further.
2703 		 */
2704 		dma_rmb();
2705 
2706 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2707 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2708 			struct bnxt_cp_ring_info *cpr2;
2709 
2710 			/* No more budget for RX work */
2711 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2712 				break;
2713 
2714 			cpr2 = cpr->cp_ring_arr[idx];
2715 			work_done += __bnxt_poll_work(bp, cpr2,
2716 						      budget - work_done);
2717 			cpr->has_more_work |= cpr2->has_more_work;
2718 		} else {
2719 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2720 		}
2721 		raw_cons = NEXT_RAW_CMP(raw_cons);
2722 	}
2723 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2724 	if (raw_cons != cpr->cp_raw_cons) {
2725 		cpr->cp_raw_cons = raw_cons;
2726 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2727 	}
2728 poll_done:
2729 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2730 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2731 		struct dim_sample dim_sample = {};
2732 
2733 		dim_update_sample(cpr->event_ctr,
2734 				  cpr_rx->rx_packets,
2735 				  cpr_rx->rx_bytes,
2736 				  &dim_sample);
2737 		net_dim(&cpr->dim, dim_sample);
2738 	}
2739 	return work_done;
2740 }
2741 
2742 static void bnxt_free_tx_skbs(struct bnxt *bp)
2743 {
2744 	int i, max_idx;
2745 	struct pci_dev *pdev = bp->pdev;
2746 
2747 	if (!bp->tx_ring)
2748 		return;
2749 
2750 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2751 	for (i = 0; i < bp->tx_nr_rings; i++) {
2752 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2753 		int j;
2754 
2755 		if (!txr->tx_buf_ring)
2756 			continue;
2757 
2758 		for (j = 0; j < max_idx;) {
2759 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2760 			struct sk_buff *skb;
2761 			int k, last;
2762 
2763 			if (i < bp->tx_nr_rings_xdp &&
2764 			    tx_buf->action == XDP_REDIRECT) {
2765 				dma_unmap_single(&pdev->dev,
2766 					dma_unmap_addr(tx_buf, mapping),
2767 					dma_unmap_len(tx_buf, len),
2768 					DMA_TO_DEVICE);
2769 				xdp_return_frame(tx_buf->xdpf);
2770 				tx_buf->action = 0;
2771 				tx_buf->xdpf = NULL;
2772 				j++;
2773 				continue;
2774 			}
2775 
2776 			skb = tx_buf->skb;
2777 			if (!skb) {
2778 				j++;
2779 				continue;
2780 			}
2781 
2782 			tx_buf->skb = NULL;
2783 
2784 			if (tx_buf->is_push) {
2785 				dev_kfree_skb(skb);
2786 				j += 2;
2787 				continue;
2788 			}
2789 
2790 			dma_unmap_single(&pdev->dev,
2791 					 dma_unmap_addr(tx_buf, mapping),
2792 					 skb_headlen(skb),
2793 					 DMA_TO_DEVICE);
2794 
2795 			last = tx_buf->nr_frags;
2796 			j += 2;
2797 			for (k = 0; k < last; k++, j++) {
2798 				int ring_idx = j & bp->tx_ring_mask;
2799 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2800 
2801 				tx_buf = &txr->tx_buf_ring[ring_idx];
2802 				dma_unmap_page(
2803 					&pdev->dev,
2804 					dma_unmap_addr(tx_buf, mapping),
2805 					skb_frag_size(frag), DMA_TO_DEVICE);
2806 			}
2807 			dev_kfree_skb(skb);
2808 		}
2809 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2810 	}
2811 }
2812 
2813 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2814 {
2815 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2816 	struct pci_dev *pdev = bp->pdev;
2817 	struct bnxt_tpa_idx_map *map;
2818 	int i, max_idx, max_agg_idx;
2819 
2820 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2821 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2822 	if (!rxr->rx_tpa)
2823 		goto skip_rx_tpa_free;
2824 
2825 	for (i = 0; i < bp->max_tpa; i++) {
2826 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2827 		u8 *data = tpa_info->data;
2828 
2829 		if (!data)
2830 			continue;
2831 
2832 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2833 				       bp->rx_buf_use_size, bp->rx_dir,
2834 				       DMA_ATTR_WEAK_ORDERING);
2835 
2836 		tpa_info->data = NULL;
2837 
2838 		skb_free_frag(data);
2839 	}
2840 
2841 skip_rx_tpa_free:
2842 	if (!rxr->rx_buf_ring)
2843 		goto skip_rx_buf_free;
2844 
2845 	for (i = 0; i < max_idx; i++) {
2846 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2847 		dma_addr_t mapping = rx_buf->mapping;
2848 		void *data = rx_buf->data;
2849 
2850 		if (!data)
2851 			continue;
2852 
2853 		rx_buf->data = NULL;
2854 		if (BNXT_RX_PAGE_MODE(bp)) {
2855 			mapping -= bp->rx_dma_offset;
2856 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2857 					     bp->rx_dir,
2858 					     DMA_ATTR_WEAK_ORDERING);
2859 			page_pool_recycle_direct(rxr->page_pool, data);
2860 		} else {
2861 			dma_unmap_single_attrs(&pdev->dev, mapping,
2862 					       bp->rx_buf_use_size, bp->rx_dir,
2863 					       DMA_ATTR_WEAK_ORDERING);
2864 			skb_free_frag(data);
2865 		}
2866 	}
2867 
2868 skip_rx_buf_free:
2869 	if (!rxr->rx_agg_ring)
2870 		goto skip_rx_agg_free;
2871 
2872 	for (i = 0; i < max_agg_idx; i++) {
2873 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2874 		struct page *page = rx_agg_buf->page;
2875 
2876 		if (!page)
2877 			continue;
2878 
2879 		dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2880 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
2881 				     DMA_ATTR_WEAK_ORDERING);
2882 
2883 		rx_agg_buf->page = NULL;
2884 		__clear_bit(i, rxr->rx_agg_bmap);
2885 
2886 		__free_page(page);
2887 	}
2888 
2889 skip_rx_agg_free:
2890 	if (rxr->rx_page) {
2891 		__free_page(rxr->rx_page);
2892 		rxr->rx_page = NULL;
2893 	}
2894 	map = rxr->rx_tpa_idx_map;
2895 	if (map)
2896 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2897 }
2898 
2899 static void bnxt_free_rx_skbs(struct bnxt *bp)
2900 {
2901 	int i;
2902 
2903 	if (!bp->rx_ring)
2904 		return;
2905 
2906 	for (i = 0; i < bp->rx_nr_rings; i++)
2907 		bnxt_free_one_rx_ring_skbs(bp, i);
2908 }
2909 
2910 static void bnxt_free_skbs(struct bnxt *bp)
2911 {
2912 	bnxt_free_tx_skbs(bp);
2913 	bnxt_free_rx_skbs(bp);
2914 }
2915 
2916 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2917 {
2918 	u8 init_val = mem_init->init_val;
2919 	u16 offset = mem_init->offset;
2920 	u8 *p2 = p;
2921 	int i;
2922 
2923 	if (!init_val)
2924 		return;
2925 	if (offset == BNXT_MEM_INVALID_OFFSET) {
2926 		memset(p, init_val, len);
2927 		return;
2928 	}
2929 	for (i = 0; i < len; i += mem_init->size)
2930 		*(p2 + i + offset) = init_val;
2931 }
2932 
2933 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2934 {
2935 	struct pci_dev *pdev = bp->pdev;
2936 	int i;
2937 
2938 	if (!rmem->pg_arr)
2939 		goto skip_pages;
2940 
2941 	for (i = 0; i < rmem->nr_pages; i++) {
2942 		if (!rmem->pg_arr[i])
2943 			continue;
2944 
2945 		dma_free_coherent(&pdev->dev, rmem->page_size,
2946 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2947 
2948 		rmem->pg_arr[i] = NULL;
2949 	}
2950 skip_pages:
2951 	if (rmem->pg_tbl) {
2952 		size_t pg_tbl_size = rmem->nr_pages * 8;
2953 
2954 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2955 			pg_tbl_size = rmem->page_size;
2956 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2957 				  rmem->pg_tbl, rmem->pg_tbl_map);
2958 		rmem->pg_tbl = NULL;
2959 	}
2960 	if (rmem->vmem_size && *rmem->vmem) {
2961 		vfree(*rmem->vmem);
2962 		*rmem->vmem = NULL;
2963 	}
2964 }
2965 
2966 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2967 {
2968 	struct pci_dev *pdev = bp->pdev;
2969 	u64 valid_bit = 0;
2970 	int i;
2971 
2972 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2973 		valid_bit = PTU_PTE_VALID;
2974 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2975 		size_t pg_tbl_size = rmem->nr_pages * 8;
2976 
2977 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2978 			pg_tbl_size = rmem->page_size;
2979 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2980 						  &rmem->pg_tbl_map,
2981 						  GFP_KERNEL);
2982 		if (!rmem->pg_tbl)
2983 			return -ENOMEM;
2984 	}
2985 
2986 	for (i = 0; i < rmem->nr_pages; i++) {
2987 		u64 extra_bits = valid_bit;
2988 
2989 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2990 						     rmem->page_size,
2991 						     &rmem->dma_arr[i],
2992 						     GFP_KERNEL);
2993 		if (!rmem->pg_arr[i])
2994 			return -ENOMEM;
2995 
2996 		if (rmem->mem_init)
2997 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
2998 					  rmem->page_size);
2999 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3000 			if (i == rmem->nr_pages - 2 &&
3001 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3002 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3003 			else if (i == rmem->nr_pages - 1 &&
3004 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3005 				extra_bits |= PTU_PTE_LAST;
3006 			rmem->pg_tbl[i] =
3007 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3008 		}
3009 	}
3010 
3011 	if (rmem->vmem_size) {
3012 		*rmem->vmem = vzalloc(rmem->vmem_size);
3013 		if (!(*rmem->vmem))
3014 			return -ENOMEM;
3015 	}
3016 	return 0;
3017 }
3018 
3019 static void bnxt_free_tpa_info(struct bnxt *bp)
3020 {
3021 	int i;
3022 
3023 	for (i = 0; i < bp->rx_nr_rings; i++) {
3024 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3025 
3026 		kfree(rxr->rx_tpa_idx_map);
3027 		rxr->rx_tpa_idx_map = NULL;
3028 		if (rxr->rx_tpa) {
3029 			kfree(rxr->rx_tpa[0].agg_arr);
3030 			rxr->rx_tpa[0].agg_arr = NULL;
3031 		}
3032 		kfree(rxr->rx_tpa);
3033 		rxr->rx_tpa = NULL;
3034 	}
3035 }
3036 
3037 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3038 {
3039 	int i, j, total_aggs = 0;
3040 
3041 	bp->max_tpa = MAX_TPA;
3042 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3043 		if (!bp->max_tpa_v2)
3044 			return 0;
3045 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3046 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3047 	}
3048 
3049 	for (i = 0; i < bp->rx_nr_rings; i++) {
3050 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3051 		struct rx_agg_cmp *agg;
3052 
3053 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3054 				      GFP_KERNEL);
3055 		if (!rxr->rx_tpa)
3056 			return -ENOMEM;
3057 
3058 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3059 			continue;
3060 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3061 		rxr->rx_tpa[0].agg_arr = agg;
3062 		if (!agg)
3063 			return -ENOMEM;
3064 		for (j = 1; j < bp->max_tpa; j++)
3065 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3066 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3067 					      GFP_KERNEL);
3068 		if (!rxr->rx_tpa_idx_map)
3069 			return -ENOMEM;
3070 	}
3071 	return 0;
3072 }
3073 
3074 static void bnxt_free_rx_rings(struct bnxt *bp)
3075 {
3076 	int i;
3077 
3078 	if (!bp->rx_ring)
3079 		return;
3080 
3081 	bnxt_free_tpa_info(bp);
3082 	for (i = 0; i < bp->rx_nr_rings; i++) {
3083 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3084 		struct bnxt_ring_struct *ring;
3085 
3086 		if (rxr->xdp_prog)
3087 			bpf_prog_put(rxr->xdp_prog);
3088 
3089 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3090 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3091 
3092 		page_pool_destroy(rxr->page_pool);
3093 		rxr->page_pool = NULL;
3094 
3095 		kfree(rxr->rx_agg_bmap);
3096 		rxr->rx_agg_bmap = NULL;
3097 
3098 		ring = &rxr->rx_ring_struct;
3099 		bnxt_free_ring(bp, &ring->ring_mem);
3100 
3101 		ring = &rxr->rx_agg_ring_struct;
3102 		bnxt_free_ring(bp, &ring->ring_mem);
3103 	}
3104 }
3105 
3106 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3107 				   struct bnxt_rx_ring_info *rxr)
3108 {
3109 	struct page_pool_params pp = { 0 };
3110 
3111 	pp.pool_size = bp->rx_ring_size;
3112 	pp.nid = dev_to_node(&bp->pdev->dev);
3113 	pp.dev = &bp->pdev->dev;
3114 	pp.dma_dir = DMA_BIDIRECTIONAL;
3115 
3116 	rxr->page_pool = page_pool_create(&pp);
3117 	if (IS_ERR(rxr->page_pool)) {
3118 		int err = PTR_ERR(rxr->page_pool);
3119 
3120 		rxr->page_pool = NULL;
3121 		return err;
3122 	}
3123 	return 0;
3124 }
3125 
3126 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3127 {
3128 	int i, rc = 0, agg_rings = 0;
3129 
3130 	if (!bp->rx_ring)
3131 		return -ENOMEM;
3132 
3133 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3134 		agg_rings = 1;
3135 
3136 	for (i = 0; i < bp->rx_nr_rings; i++) {
3137 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3138 		struct bnxt_ring_struct *ring;
3139 
3140 		ring = &rxr->rx_ring_struct;
3141 
3142 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3143 		if (rc)
3144 			return rc;
3145 
3146 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3147 		if (rc < 0)
3148 			return rc;
3149 
3150 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3151 						MEM_TYPE_PAGE_POOL,
3152 						rxr->page_pool);
3153 		if (rc) {
3154 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3155 			return rc;
3156 		}
3157 
3158 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3159 		if (rc)
3160 			return rc;
3161 
3162 		ring->grp_idx = i;
3163 		if (agg_rings) {
3164 			u16 mem_size;
3165 
3166 			ring = &rxr->rx_agg_ring_struct;
3167 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3168 			if (rc)
3169 				return rc;
3170 
3171 			ring->grp_idx = i;
3172 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3173 			mem_size = rxr->rx_agg_bmap_size / 8;
3174 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3175 			if (!rxr->rx_agg_bmap)
3176 				return -ENOMEM;
3177 		}
3178 	}
3179 	if (bp->flags & BNXT_FLAG_TPA)
3180 		rc = bnxt_alloc_tpa_info(bp);
3181 	return rc;
3182 }
3183 
3184 static void bnxt_free_tx_rings(struct bnxt *bp)
3185 {
3186 	int i;
3187 	struct pci_dev *pdev = bp->pdev;
3188 
3189 	if (!bp->tx_ring)
3190 		return;
3191 
3192 	for (i = 0; i < bp->tx_nr_rings; i++) {
3193 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3194 		struct bnxt_ring_struct *ring;
3195 
3196 		if (txr->tx_push) {
3197 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3198 					  txr->tx_push, txr->tx_push_mapping);
3199 			txr->tx_push = NULL;
3200 		}
3201 
3202 		ring = &txr->tx_ring_struct;
3203 
3204 		bnxt_free_ring(bp, &ring->ring_mem);
3205 	}
3206 }
3207 
3208 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3209 {
3210 	int i, j, rc;
3211 	struct pci_dev *pdev = bp->pdev;
3212 
3213 	bp->tx_push_size = 0;
3214 	if (bp->tx_push_thresh) {
3215 		int push_size;
3216 
3217 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3218 					bp->tx_push_thresh);
3219 
3220 		if (push_size > 256) {
3221 			push_size = 0;
3222 			bp->tx_push_thresh = 0;
3223 		}
3224 
3225 		bp->tx_push_size = push_size;
3226 	}
3227 
3228 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3229 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3230 		struct bnxt_ring_struct *ring;
3231 		u8 qidx;
3232 
3233 		ring = &txr->tx_ring_struct;
3234 
3235 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3236 		if (rc)
3237 			return rc;
3238 
3239 		ring->grp_idx = txr->bnapi->index;
3240 		if (bp->tx_push_size) {
3241 			dma_addr_t mapping;
3242 
3243 			/* One pre-allocated DMA buffer to backup
3244 			 * TX push operation
3245 			 */
3246 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3247 						bp->tx_push_size,
3248 						&txr->tx_push_mapping,
3249 						GFP_KERNEL);
3250 
3251 			if (!txr->tx_push)
3252 				return -ENOMEM;
3253 
3254 			mapping = txr->tx_push_mapping +
3255 				sizeof(struct tx_push_bd);
3256 			txr->data_mapping = cpu_to_le64(mapping);
3257 		}
3258 		qidx = bp->tc_to_qidx[j];
3259 		ring->queue_id = bp->q_info[qidx].queue_id;
3260 		spin_lock_init(&txr->xdp_tx_lock);
3261 		if (i < bp->tx_nr_rings_xdp)
3262 			continue;
3263 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3264 			j++;
3265 	}
3266 	return 0;
3267 }
3268 
3269 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3270 {
3271 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3272 
3273 	kfree(cpr->cp_desc_ring);
3274 	cpr->cp_desc_ring = NULL;
3275 	ring->ring_mem.pg_arr = NULL;
3276 	kfree(cpr->cp_desc_mapping);
3277 	cpr->cp_desc_mapping = NULL;
3278 	ring->ring_mem.dma_arr = NULL;
3279 }
3280 
3281 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3282 {
3283 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3284 	if (!cpr->cp_desc_ring)
3285 		return -ENOMEM;
3286 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3287 				       GFP_KERNEL);
3288 	if (!cpr->cp_desc_mapping)
3289 		return -ENOMEM;
3290 	return 0;
3291 }
3292 
3293 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3294 {
3295 	int i;
3296 
3297 	if (!bp->bnapi)
3298 		return;
3299 	for (i = 0; i < bp->cp_nr_rings; i++) {
3300 		struct bnxt_napi *bnapi = bp->bnapi[i];
3301 
3302 		if (!bnapi)
3303 			continue;
3304 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3305 	}
3306 }
3307 
3308 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3309 {
3310 	int i, n = bp->cp_nr_pages;
3311 
3312 	for (i = 0; i < bp->cp_nr_rings; i++) {
3313 		struct bnxt_napi *bnapi = bp->bnapi[i];
3314 		int rc;
3315 
3316 		if (!bnapi)
3317 			continue;
3318 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3319 		if (rc)
3320 			return rc;
3321 	}
3322 	return 0;
3323 }
3324 
3325 static void bnxt_free_cp_rings(struct bnxt *bp)
3326 {
3327 	int i;
3328 
3329 	if (!bp->bnapi)
3330 		return;
3331 
3332 	for (i = 0; i < bp->cp_nr_rings; i++) {
3333 		struct bnxt_napi *bnapi = bp->bnapi[i];
3334 		struct bnxt_cp_ring_info *cpr;
3335 		struct bnxt_ring_struct *ring;
3336 		int j;
3337 
3338 		if (!bnapi)
3339 			continue;
3340 
3341 		cpr = &bnapi->cp_ring;
3342 		ring = &cpr->cp_ring_struct;
3343 
3344 		bnxt_free_ring(bp, &ring->ring_mem);
3345 
3346 		for (j = 0; j < 2; j++) {
3347 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3348 
3349 			if (cpr2) {
3350 				ring = &cpr2->cp_ring_struct;
3351 				bnxt_free_ring(bp, &ring->ring_mem);
3352 				bnxt_free_cp_arrays(cpr2);
3353 				kfree(cpr2);
3354 				cpr->cp_ring_arr[j] = NULL;
3355 			}
3356 		}
3357 	}
3358 }
3359 
3360 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3361 {
3362 	struct bnxt_ring_mem_info *rmem;
3363 	struct bnxt_ring_struct *ring;
3364 	struct bnxt_cp_ring_info *cpr;
3365 	int rc;
3366 
3367 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3368 	if (!cpr)
3369 		return NULL;
3370 
3371 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3372 	if (rc) {
3373 		bnxt_free_cp_arrays(cpr);
3374 		kfree(cpr);
3375 		return NULL;
3376 	}
3377 	ring = &cpr->cp_ring_struct;
3378 	rmem = &ring->ring_mem;
3379 	rmem->nr_pages = bp->cp_nr_pages;
3380 	rmem->page_size = HW_CMPD_RING_SIZE;
3381 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3382 	rmem->dma_arr = cpr->cp_desc_mapping;
3383 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3384 	rc = bnxt_alloc_ring(bp, rmem);
3385 	if (rc) {
3386 		bnxt_free_ring(bp, rmem);
3387 		bnxt_free_cp_arrays(cpr);
3388 		kfree(cpr);
3389 		cpr = NULL;
3390 	}
3391 	return cpr;
3392 }
3393 
3394 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3395 {
3396 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3397 	int i, rc, ulp_base_vec, ulp_msix;
3398 
3399 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3400 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3401 	for (i = 0; i < bp->cp_nr_rings; i++) {
3402 		struct bnxt_napi *bnapi = bp->bnapi[i];
3403 		struct bnxt_cp_ring_info *cpr;
3404 		struct bnxt_ring_struct *ring;
3405 
3406 		if (!bnapi)
3407 			continue;
3408 
3409 		cpr = &bnapi->cp_ring;
3410 		cpr->bnapi = bnapi;
3411 		ring = &cpr->cp_ring_struct;
3412 
3413 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3414 		if (rc)
3415 			return rc;
3416 
3417 		if (ulp_msix && i >= ulp_base_vec)
3418 			ring->map_idx = i + ulp_msix;
3419 		else
3420 			ring->map_idx = i;
3421 
3422 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3423 			continue;
3424 
3425 		if (i < bp->rx_nr_rings) {
3426 			struct bnxt_cp_ring_info *cpr2 =
3427 				bnxt_alloc_cp_sub_ring(bp);
3428 
3429 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3430 			if (!cpr2)
3431 				return -ENOMEM;
3432 			cpr2->bnapi = bnapi;
3433 		}
3434 		if ((sh && i < bp->tx_nr_rings) ||
3435 		    (!sh && i >= bp->rx_nr_rings)) {
3436 			struct bnxt_cp_ring_info *cpr2 =
3437 				bnxt_alloc_cp_sub_ring(bp);
3438 
3439 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3440 			if (!cpr2)
3441 				return -ENOMEM;
3442 			cpr2->bnapi = bnapi;
3443 		}
3444 	}
3445 	return 0;
3446 }
3447 
3448 static void bnxt_init_ring_struct(struct bnxt *bp)
3449 {
3450 	int i;
3451 
3452 	for (i = 0; i < bp->cp_nr_rings; i++) {
3453 		struct bnxt_napi *bnapi = bp->bnapi[i];
3454 		struct bnxt_ring_mem_info *rmem;
3455 		struct bnxt_cp_ring_info *cpr;
3456 		struct bnxt_rx_ring_info *rxr;
3457 		struct bnxt_tx_ring_info *txr;
3458 		struct bnxt_ring_struct *ring;
3459 
3460 		if (!bnapi)
3461 			continue;
3462 
3463 		cpr = &bnapi->cp_ring;
3464 		ring = &cpr->cp_ring_struct;
3465 		rmem = &ring->ring_mem;
3466 		rmem->nr_pages = bp->cp_nr_pages;
3467 		rmem->page_size = HW_CMPD_RING_SIZE;
3468 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3469 		rmem->dma_arr = cpr->cp_desc_mapping;
3470 		rmem->vmem_size = 0;
3471 
3472 		rxr = bnapi->rx_ring;
3473 		if (!rxr)
3474 			goto skip_rx;
3475 
3476 		ring = &rxr->rx_ring_struct;
3477 		rmem = &ring->ring_mem;
3478 		rmem->nr_pages = bp->rx_nr_pages;
3479 		rmem->page_size = HW_RXBD_RING_SIZE;
3480 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3481 		rmem->dma_arr = rxr->rx_desc_mapping;
3482 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3483 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3484 
3485 		ring = &rxr->rx_agg_ring_struct;
3486 		rmem = &ring->ring_mem;
3487 		rmem->nr_pages = bp->rx_agg_nr_pages;
3488 		rmem->page_size = HW_RXBD_RING_SIZE;
3489 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3490 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3491 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3492 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3493 
3494 skip_rx:
3495 		txr = bnapi->tx_ring;
3496 		if (!txr)
3497 			continue;
3498 
3499 		ring = &txr->tx_ring_struct;
3500 		rmem = &ring->ring_mem;
3501 		rmem->nr_pages = bp->tx_nr_pages;
3502 		rmem->page_size = HW_RXBD_RING_SIZE;
3503 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3504 		rmem->dma_arr = txr->tx_desc_mapping;
3505 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3506 		rmem->vmem = (void **)&txr->tx_buf_ring;
3507 	}
3508 }
3509 
3510 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3511 {
3512 	int i;
3513 	u32 prod;
3514 	struct rx_bd **rx_buf_ring;
3515 
3516 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3517 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3518 		int j;
3519 		struct rx_bd *rxbd;
3520 
3521 		rxbd = rx_buf_ring[i];
3522 		if (!rxbd)
3523 			continue;
3524 
3525 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3526 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3527 			rxbd->rx_bd_opaque = prod;
3528 		}
3529 	}
3530 }
3531 
3532 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3533 {
3534 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3535 	struct net_device *dev = bp->dev;
3536 	u32 prod;
3537 	int i;
3538 
3539 	prod = rxr->rx_prod;
3540 	for (i = 0; i < bp->rx_ring_size; i++) {
3541 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3542 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3543 				    ring_nr, i, bp->rx_ring_size);
3544 			break;
3545 		}
3546 		prod = NEXT_RX(prod);
3547 	}
3548 	rxr->rx_prod = prod;
3549 
3550 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3551 		return 0;
3552 
3553 	prod = rxr->rx_agg_prod;
3554 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3555 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3556 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3557 				    ring_nr, i, bp->rx_ring_size);
3558 			break;
3559 		}
3560 		prod = NEXT_RX_AGG(prod);
3561 	}
3562 	rxr->rx_agg_prod = prod;
3563 
3564 	if (rxr->rx_tpa) {
3565 		dma_addr_t mapping;
3566 		u8 *data;
3567 
3568 		for (i = 0; i < bp->max_tpa; i++) {
3569 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3570 			if (!data)
3571 				return -ENOMEM;
3572 
3573 			rxr->rx_tpa[i].data = data;
3574 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3575 			rxr->rx_tpa[i].mapping = mapping;
3576 		}
3577 	}
3578 	return 0;
3579 }
3580 
3581 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3582 {
3583 	struct bnxt_rx_ring_info *rxr;
3584 	struct bnxt_ring_struct *ring;
3585 	u32 type;
3586 
3587 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3588 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3589 
3590 	if (NET_IP_ALIGN == 2)
3591 		type |= RX_BD_FLAGS_SOP;
3592 
3593 	rxr = &bp->rx_ring[ring_nr];
3594 	ring = &rxr->rx_ring_struct;
3595 	bnxt_init_rxbd_pages(ring, type);
3596 
3597 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3598 		bpf_prog_add(bp->xdp_prog, 1);
3599 		rxr->xdp_prog = bp->xdp_prog;
3600 	}
3601 	ring->fw_ring_id = INVALID_HW_RING_ID;
3602 
3603 	ring = &rxr->rx_agg_ring_struct;
3604 	ring->fw_ring_id = INVALID_HW_RING_ID;
3605 
3606 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3607 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3608 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3609 
3610 		bnxt_init_rxbd_pages(ring, type);
3611 	}
3612 
3613 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3614 }
3615 
3616 static void bnxt_init_cp_rings(struct bnxt *bp)
3617 {
3618 	int i, j;
3619 
3620 	for (i = 0; i < bp->cp_nr_rings; i++) {
3621 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3622 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3623 
3624 		ring->fw_ring_id = INVALID_HW_RING_ID;
3625 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3626 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3627 		for (j = 0; j < 2; j++) {
3628 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3629 
3630 			if (!cpr2)
3631 				continue;
3632 
3633 			ring = &cpr2->cp_ring_struct;
3634 			ring->fw_ring_id = INVALID_HW_RING_ID;
3635 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3636 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3637 		}
3638 	}
3639 }
3640 
3641 static int bnxt_init_rx_rings(struct bnxt *bp)
3642 {
3643 	int i, rc = 0;
3644 
3645 	if (BNXT_RX_PAGE_MODE(bp)) {
3646 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3647 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3648 	} else {
3649 		bp->rx_offset = BNXT_RX_OFFSET;
3650 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3651 	}
3652 
3653 	for (i = 0; i < bp->rx_nr_rings; i++) {
3654 		rc = bnxt_init_one_rx_ring(bp, i);
3655 		if (rc)
3656 			break;
3657 	}
3658 
3659 	return rc;
3660 }
3661 
3662 static int bnxt_init_tx_rings(struct bnxt *bp)
3663 {
3664 	u16 i;
3665 
3666 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3667 				   BNXT_MIN_TX_DESC_CNT);
3668 
3669 	for (i = 0; i < bp->tx_nr_rings; i++) {
3670 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3671 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3672 
3673 		ring->fw_ring_id = INVALID_HW_RING_ID;
3674 	}
3675 
3676 	return 0;
3677 }
3678 
3679 static void bnxt_free_ring_grps(struct bnxt *bp)
3680 {
3681 	kfree(bp->grp_info);
3682 	bp->grp_info = NULL;
3683 }
3684 
3685 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3686 {
3687 	int i;
3688 
3689 	if (irq_re_init) {
3690 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3691 				       sizeof(struct bnxt_ring_grp_info),
3692 				       GFP_KERNEL);
3693 		if (!bp->grp_info)
3694 			return -ENOMEM;
3695 	}
3696 	for (i = 0; i < bp->cp_nr_rings; i++) {
3697 		if (irq_re_init)
3698 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3699 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3700 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3701 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3702 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3703 	}
3704 	return 0;
3705 }
3706 
3707 static void bnxt_free_vnics(struct bnxt *bp)
3708 {
3709 	kfree(bp->vnic_info);
3710 	bp->vnic_info = NULL;
3711 	bp->nr_vnics = 0;
3712 }
3713 
3714 static int bnxt_alloc_vnics(struct bnxt *bp)
3715 {
3716 	int num_vnics = 1;
3717 
3718 #ifdef CONFIG_RFS_ACCEL
3719 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3720 		num_vnics += bp->rx_nr_rings;
3721 #endif
3722 
3723 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3724 		num_vnics++;
3725 
3726 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3727 				GFP_KERNEL);
3728 	if (!bp->vnic_info)
3729 		return -ENOMEM;
3730 
3731 	bp->nr_vnics = num_vnics;
3732 	return 0;
3733 }
3734 
3735 static void bnxt_init_vnics(struct bnxt *bp)
3736 {
3737 	int i;
3738 
3739 	for (i = 0; i < bp->nr_vnics; i++) {
3740 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3741 		int j;
3742 
3743 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3744 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3745 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3746 
3747 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3748 
3749 		if (bp->vnic_info[i].rss_hash_key) {
3750 			if (i == 0)
3751 				prandom_bytes(vnic->rss_hash_key,
3752 					      HW_HASH_KEY_SIZE);
3753 			else
3754 				memcpy(vnic->rss_hash_key,
3755 				       bp->vnic_info[0].rss_hash_key,
3756 				       HW_HASH_KEY_SIZE);
3757 		}
3758 	}
3759 }
3760 
3761 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3762 {
3763 	int pages;
3764 
3765 	pages = ring_size / desc_per_pg;
3766 
3767 	if (!pages)
3768 		return 1;
3769 
3770 	pages++;
3771 
3772 	while (pages & (pages - 1))
3773 		pages++;
3774 
3775 	return pages;
3776 }
3777 
3778 void bnxt_set_tpa_flags(struct bnxt *bp)
3779 {
3780 	bp->flags &= ~BNXT_FLAG_TPA;
3781 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3782 		return;
3783 	if (bp->dev->features & NETIF_F_LRO)
3784 		bp->flags |= BNXT_FLAG_LRO;
3785 	else if (bp->dev->features & NETIF_F_GRO_HW)
3786 		bp->flags |= BNXT_FLAG_GRO;
3787 }
3788 
3789 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3790  * be set on entry.
3791  */
3792 void bnxt_set_ring_params(struct bnxt *bp)
3793 {
3794 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3795 	u32 agg_factor = 0, agg_ring_size = 0;
3796 
3797 	/* 8 for CRC and VLAN */
3798 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3799 
3800 	rx_space = rx_size + NET_SKB_PAD +
3801 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3802 
3803 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3804 	ring_size = bp->rx_ring_size;
3805 	bp->rx_agg_ring_size = 0;
3806 	bp->rx_agg_nr_pages = 0;
3807 
3808 	if (bp->flags & BNXT_FLAG_TPA)
3809 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3810 
3811 	bp->flags &= ~BNXT_FLAG_JUMBO;
3812 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3813 		u32 jumbo_factor;
3814 
3815 		bp->flags |= BNXT_FLAG_JUMBO;
3816 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3817 		if (jumbo_factor > agg_factor)
3818 			agg_factor = jumbo_factor;
3819 	}
3820 	if (agg_factor) {
3821 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3822 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3823 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3824 				    bp->rx_ring_size, ring_size);
3825 			bp->rx_ring_size = ring_size;
3826 		}
3827 		agg_ring_size = ring_size * agg_factor;
3828 
3829 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3830 							RX_DESC_CNT);
3831 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3832 			u32 tmp = agg_ring_size;
3833 
3834 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3835 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3836 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3837 				    tmp, agg_ring_size);
3838 		}
3839 		bp->rx_agg_ring_size = agg_ring_size;
3840 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3841 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3842 		rx_space = rx_size + NET_SKB_PAD +
3843 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3844 	}
3845 
3846 	bp->rx_buf_use_size = rx_size;
3847 	bp->rx_buf_size = rx_space;
3848 
3849 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3850 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3851 
3852 	ring_size = bp->tx_ring_size;
3853 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3854 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3855 
3856 	max_rx_cmpl = bp->rx_ring_size;
3857 	/* MAX TPA needs to be added because TPA_START completions are
3858 	 * immediately recycled, so the TPA completions are not bound by
3859 	 * the RX ring size.
3860 	 */
3861 	if (bp->flags & BNXT_FLAG_TPA)
3862 		max_rx_cmpl += bp->max_tpa;
3863 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3864 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3865 	bp->cp_ring_size = ring_size;
3866 
3867 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3868 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3869 		bp->cp_nr_pages = MAX_CP_PAGES;
3870 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3871 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3872 			    ring_size, bp->cp_ring_size);
3873 	}
3874 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3875 	bp->cp_ring_mask = bp->cp_bit - 1;
3876 }
3877 
3878 /* Changing allocation mode of RX rings.
3879  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3880  */
3881 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3882 {
3883 	if (page_mode) {
3884 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3885 			return -EOPNOTSUPP;
3886 		bp->dev->max_mtu =
3887 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3888 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3889 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3890 		bp->rx_dir = DMA_BIDIRECTIONAL;
3891 		bp->rx_skb_func = bnxt_rx_page_skb;
3892 		/* Disable LRO or GRO_HW */
3893 		netdev_update_features(bp->dev);
3894 	} else {
3895 		bp->dev->max_mtu = bp->max_mtu;
3896 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3897 		bp->rx_dir = DMA_FROM_DEVICE;
3898 		bp->rx_skb_func = bnxt_rx_skb;
3899 	}
3900 	return 0;
3901 }
3902 
3903 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3904 {
3905 	int i;
3906 	struct bnxt_vnic_info *vnic;
3907 	struct pci_dev *pdev = bp->pdev;
3908 
3909 	if (!bp->vnic_info)
3910 		return;
3911 
3912 	for (i = 0; i < bp->nr_vnics; i++) {
3913 		vnic = &bp->vnic_info[i];
3914 
3915 		kfree(vnic->fw_grp_ids);
3916 		vnic->fw_grp_ids = NULL;
3917 
3918 		kfree(vnic->uc_list);
3919 		vnic->uc_list = NULL;
3920 
3921 		if (vnic->mc_list) {
3922 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3923 					  vnic->mc_list, vnic->mc_list_mapping);
3924 			vnic->mc_list = NULL;
3925 		}
3926 
3927 		if (vnic->rss_table) {
3928 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3929 					  vnic->rss_table,
3930 					  vnic->rss_table_dma_addr);
3931 			vnic->rss_table = NULL;
3932 		}
3933 
3934 		vnic->rss_hash_key = NULL;
3935 		vnic->flags = 0;
3936 	}
3937 }
3938 
3939 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3940 {
3941 	int i, rc = 0, size;
3942 	struct bnxt_vnic_info *vnic;
3943 	struct pci_dev *pdev = bp->pdev;
3944 	int max_rings;
3945 
3946 	for (i = 0; i < bp->nr_vnics; i++) {
3947 		vnic = &bp->vnic_info[i];
3948 
3949 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3950 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3951 
3952 			if (mem_size > 0) {
3953 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3954 				if (!vnic->uc_list) {
3955 					rc = -ENOMEM;
3956 					goto out;
3957 				}
3958 			}
3959 		}
3960 
3961 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3962 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3963 			vnic->mc_list =
3964 				dma_alloc_coherent(&pdev->dev,
3965 						   vnic->mc_list_size,
3966 						   &vnic->mc_list_mapping,
3967 						   GFP_KERNEL);
3968 			if (!vnic->mc_list) {
3969 				rc = -ENOMEM;
3970 				goto out;
3971 			}
3972 		}
3973 
3974 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3975 			goto vnic_skip_grps;
3976 
3977 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3978 			max_rings = bp->rx_nr_rings;
3979 		else
3980 			max_rings = 1;
3981 
3982 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3983 		if (!vnic->fw_grp_ids) {
3984 			rc = -ENOMEM;
3985 			goto out;
3986 		}
3987 vnic_skip_grps:
3988 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3989 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3990 			continue;
3991 
3992 		/* Allocate rss table and hash key */
3993 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3994 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3995 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3996 
3997 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3998 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3999 						     vnic->rss_table_size,
4000 						     &vnic->rss_table_dma_addr,
4001 						     GFP_KERNEL);
4002 		if (!vnic->rss_table) {
4003 			rc = -ENOMEM;
4004 			goto out;
4005 		}
4006 
4007 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4008 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4009 	}
4010 	return 0;
4011 
4012 out:
4013 	return rc;
4014 }
4015 
4016 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4017 {
4018 	struct bnxt_hwrm_wait_token *token;
4019 
4020 	dma_pool_destroy(bp->hwrm_dma_pool);
4021 	bp->hwrm_dma_pool = NULL;
4022 
4023 	rcu_read_lock();
4024 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4025 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4026 	rcu_read_unlock();
4027 }
4028 
4029 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4030 {
4031 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4032 					    BNXT_HWRM_DMA_SIZE,
4033 					    BNXT_HWRM_DMA_ALIGN, 0);
4034 	if (!bp->hwrm_dma_pool)
4035 		return -ENOMEM;
4036 
4037 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4038 
4039 	return 0;
4040 }
4041 
4042 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4043 {
4044 	kfree(stats->hw_masks);
4045 	stats->hw_masks = NULL;
4046 	kfree(stats->sw_stats);
4047 	stats->sw_stats = NULL;
4048 	if (stats->hw_stats) {
4049 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4050 				  stats->hw_stats_map);
4051 		stats->hw_stats = NULL;
4052 	}
4053 }
4054 
4055 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4056 				bool alloc_masks)
4057 {
4058 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4059 					     &stats->hw_stats_map, GFP_KERNEL);
4060 	if (!stats->hw_stats)
4061 		return -ENOMEM;
4062 
4063 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4064 	if (!stats->sw_stats)
4065 		goto stats_mem_err;
4066 
4067 	if (alloc_masks) {
4068 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4069 		if (!stats->hw_masks)
4070 			goto stats_mem_err;
4071 	}
4072 	return 0;
4073 
4074 stats_mem_err:
4075 	bnxt_free_stats_mem(bp, stats);
4076 	return -ENOMEM;
4077 }
4078 
4079 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4080 {
4081 	int i;
4082 
4083 	for (i = 0; i < count; i++)
4084 		mask_arr[i] = mask;
4085 }
4086 
4087 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4088 {
4089 	int i;
4090 
4091 	for (i = 0; i < count; i++)
4092 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4093 }
4094 
4095 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4096 				    struct bnxt_stats_mem *stats)
4097 {
4098 	struct hwrm_func_qstats_ext_output *resp;
4099 	struct hwrm_func_qstats_ext_input *req;
4100 	__le64 *hw_masks;
4101 	int rc;
4102 
4103 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4104 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4105 		return -EOPNOTSUPP;
4106 
4107 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4108 	if (rc)
4109 		return rc;
4110 
4111 	req->fid = cpu_to_le16(0xffff);
4112 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4113 
4114 	resp = hwrm_req_hold(bp, req);
4115 	rc = hwrm_req_send(bp, req);
4116 	if (!rc) {
4117 		hw_masks = &resp->rx_ucast_pkts;
4118 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4119 	}
4120 	hwrm_req_drop(bp, req);
4121 	return rc;
4122 }
4123 
4124 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4125 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4126 
4127 static void bnxt_init_stats(struct bnxt *bp)
4128 {
4129 	struct bnxt_napi *bnapi = bp->bnapi[0];
4130 	struct bnxt_cp_ring_info *cpr;
4131 	struct bnxt_stats_mem *stats;
4132 	__le64 *rx_stats, *tx_stats;
4133 	int rc, rx_count, tx_count;
4134 	u64 *rx_masks, *tx_masks;
4135 	u64 mask;
4136 	u8 flags;
4137 
4138 	cpr = &bnapi->cp_ring;
4139 	stats = &cpr->stats;
4140 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4141 	if (rc) {
4142 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4143 			mask = (1ULL << 48) - 1;
4144 		else
4145 			mask = -1ULL;
4146 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4147 	}
4148 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4149 		stats = &bp->port_stats;
4150 		rx_stats = stats->hw_stats;
4151 		rx_masks = stats->hw_masks;
4152 		rx_count = sizeof(struct rx_port_stats) / 8;
4153 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4154 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4155 		tx_count = sizeof(struct tx_port_stats) / 8;
4156 
4157 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4158 		rc = bnxt_hwrm_port_qstats(bp, flags);
4159 		if (rc) {
4160 			mask = (1ULL << 40) - 1;
4161 
4162 			bnxt_fill_masks(rx_masks, mask, rx_count);
4163 			bnxt_fill_masks(tx_masks, mask, tx_count);
4164 		} else {
4165 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4166 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4167 			bnxt_hwrm_port_qstats(bp, 0);
4168 		}
4169 	}
4170 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4171 		stats = &bp->rx_port_stats_ext;
4172 		rx_stats = stats->hw_stats;
4173 		rx_masks = stats->hw_masks;
4174 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4175 		stats = &bp->tx_port_stats_ext;
4176 		tx_stats = stats->hw_stats;
4177 		tx_masks = stats->hw_masks;
4178 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4179 
4180 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4181 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4182 		if (rc) {
4183 			mask = (1ULL << 40) - 1;
4184 
4185 			bnxt_fill_masks(rx_masks, mask, rx_count);
4186 			if (tx_stats)
4187 				bnxt_fill_masks(tx_masks, mask, tx_count);
4188 		} else {
4189 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4190 			if (tx_stats)
4191 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4192 						   tx_count);
4193 			bnxt_hwrm_port_qstats_ext(bp, 0);
4194 		}
4195 	}
4196 }
4197 
4198 static void bnxt_free_port_stats(struct bnxt *bp)
4199 {
4200 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4201 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4202 
4203 	bnxt_free_stats_mem(bp, &bp->port_stats);
4204 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4205 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4206 }
4207 
4208 static void bnxt_free_ring_stats(struct bnxt *bp)
4209 {
4210 	int i;
4211 
4212 	if (!bp->bnapi)
4213 		return;
4214 
4215 	for (i = 0; i < bp->cp_nr_rings; i++) {
4216 		struct bnxt_napi *bnapi = bp->bnapi[i];
4217 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4218 
4219 		bnxt_free_stats_mem(bp, &cpr->stats);
4220 	}
4221 }
4222 
4223 static int bnxt_alloc_stats(struct bnxt *bp)
4224 {
4225 	u32 size, i;
4226 	int rc;
4227 
4228 	size = bp->hw_ring_stats_size;
4229 
4230 	for (i = 0; i < bp->cp_nr_rings; i++) {
4231 		struct bnxt_napi *bnapi = bp->bnapi[i];
4232 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4233 
4234 		cpr->stats.len = size;
4235 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4236 		if (rc)
4237 			return rc;
4238 
4239 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4240 	}
4241 
4242 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4243 		return 0;
4244 
4245 	if (bp->port_stats.hw_stats)
4246 		goto alloc_ext_stats;
4247 
4248 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4249 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4250 	if (rc)
4251 		return rc;
4252 
4253 	bp->flags |= BNXT_FLAG_PORT_STATS;
4254 
4255 alloc_ext_stats:
4256 	/* Display extended statistics only if FW supports it */
4257 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4258 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4259 			return 0;
4260 
4261 	if (bp->rx_port_stats_ext.hw_stats)
4262 		goto alloc_tx_ext_stats;
4263 
4264 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4265 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4266 	/* Extended stats are optional */
4267 	if (rc)
4268 		return 0;
4269 
4270 alloc_tx_ext_stats:
4271 	if (bp->tx_port_stats_ext.hw_stats)
4272 		return 0;
4273 
4274 	if (bp->hwrm_spec_code >= 0x10902 ||
4275 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4276 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4277 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4278 		/* Extended stats are optional */
4279 		if (rc)
4280 			return 0;
4281 	}
4282 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4283 	return 0;
4284 }
4285 
4286 static void bnxt_clear_ring_indices(struct bnxt *bp)
4287 {
4288 	int i;
4289 
4290 	if (!bp->bnapi)
4291 		return;
4292 
4293 	for (i = 0; i < bp->cp_nr_rings; i++) {
4294 		struct bnxt_napi *bnapi = bp->bnapi[i];
4295 		struct bnxt_cp_ring_info *cpr;
4296 		struct bnxt_rx_ring_info *rxr;
4297 		struct bnxt_tx_ring_info *txr;
4298 
4299 		if (!bnapi)
4300 			continue;
4301 
4302 		cpr = &bnapi->cp_ring;
4303 		cpr->cp_raw_cons = 0;
4304 
4305 		txr = bnapi->tx_ring;
4306 		if (txr) {
4307 			txr->tx_prod = 0;
4308 			txr->tx_cons = 0;
4309 		}
4310 
4311 		rxr = bnapi->rx_ring;
4312 		if (rxr) {
4313 			rxr->rx_prod = 0;
4314 			rxr->rx_agg_prod = 0;
4315 			rxr->rx_sw_agg_prod = 0;
4316 			rxr->rx_next_cons = 0;
4317 		}
4318 	}
4319 }
4320 
4321 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4322 {
4323 #ifdef CONFIG_RFS_ACCEL
4324 	int i;
4325 
4326 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4327 	 * safe to delete the hash table.
4328 	 */
4329 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4330 		struct hlist_head *head;
4331 		struct hlist_node *tmp;
4332 		struct bnxt_ntuple_filter *fltr;
4333 
4334 		head = &bp->ntp_fltr_hash_tbl[i];
4335 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4336 			hlist_del(&fltr->hash);
4337 			kfree(fltr);
4338 		}
4339 	}
4340 	if (irq_reinit) {
4341 		kfree(bp->ntp_fltr_bmap);
4342 		bp->ntp_fltr_bmap = NULL;
4343 	}
4344 	bp->ntp_fltr_count = 0;
4345 #endif
4346 }
4347 
4348 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4349 {
4350 #ifdef CONFIG_RFS_ACCEL
4351 	int i, rc = 0;
4352 
4353 	if (!(bp->flags & BNXT_FLAG_RFS))
4354 		return 0;
4355 
4356 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4357 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4358 
4359 	bp->ntp_fltr_count = 0;
4360 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4361 				    sizeof(long),
4362 				    GFP_KERNEL);
4363 
4364 	if (!bp->ntp_fltr_bmap)
4365 		rc = -ENOMEM;
4366 
4367 	return rc;
4368 #else
4369 	return 0;
4370 #endif
4371 }
4372 
4373 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4374 {
4375 	bnxt_free_vnic_attributes(bp);
4376 	bnxt_free_tx_rings(bp);
4377 	bnxt_free_rx_rings(bp);
4378 	bnxt_free_cp_rings(bp);
4379 	bnxt_free_all_cp_arrays(bp);
4380 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4381 	if (irq_re_init) {
4382 		bnxt_free_ring_stats(bp);
4383 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4384 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4385 			bnxt_free_port_stats(bp);
4386 		bnxt_free_ring_grps(bp);
4387 		bnxt_free_vnics(bp);
4388 		kfree(bp->tx_ring_map);
4389 		bp->tx_ring_map = NULL;
4390 		kfree(bp->tx_ring);
4391 		bp->tx_ring = NULL;
4392 		kfree(bp->rx_ring);
4393 		bp->rx_ring = NULL;
4394 		kfree(bp->bnapi);
4395 		bp->bnapi = NULL;
4396 	} else {
4397 		bnxt_clear_ring_indices(bp);
4398 	}
4399 }
4400 
4401 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4402 {
4403 	int i, j, rc, size, arr_size;
4404 	void *bnapi;
4405 
4406 	if (irq_re_init) {
4407 		/* Allocate bnapi mem pointer array and mem block for
4408 		 * all queues
4409 		 */
4410 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4411 				bp->cp_nr_rings);
4412 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4413 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4414 		if (!bnapi)
4415 			return -ENOMEM;
4416 
4417 		bp->bnapi = bnapi;
4418 		bnapi += arr_size;
4419 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4420 			bp->bnapi[i] = bnapi;
4421 			bp->bnapi[i]->index = i;
4422 			bp->bnapi[i]->bp = bp;
4423 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4424 				struct bnxt_cp_ring_info *cpr =
4425 					&bp->bnapi[i]->cp_ring;
4426 
4427 				cpr->cp_ring_struct.ring_mem.flags =
4428 					BNXT_RMEM_RING_PTE_FLAG;
4429 			}
4430 		}
4431 
4432 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4433 				      sizeof(struct bnxt_rx_ring_info),
4434 				      GFP_KERNEL);
4435 		if (!bp->rx_ring)
4436 			return -ENOMEM;
4437 
4438 		for (i = 0; i < bp->rx_nr_rings; i++) {
4439 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4440 
4441 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4442 				rxr->rx_ring_struct.ring_mem.flags =
4443 					BNXT_RMEM_RING_PTE_FLAG;
4444 				rxr->rx_agg_ring_struct.ring_mem.flags =
4445 					BNXT_RMEM_RING_PTE_FLAG;
4446 			}
4447 			rxr->bnapi = bp->bnapi[i];
4448 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4449 		}
4450 
4451 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4452 				      sizeof(struct bnxt_tx_ring_info),
4453 				      GFP_KERNEL);
4454 		if (!bp->tx_ring)
4455 			return -ENOMEM;
4456 
4457 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4458 					  GFP_KERNEL);
4459 
4460 		if (!bp->tx_ring_map)
4461 			return -ENOMEM;
4462 
4463 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4464 			j = 0;
4465 		else
4466 			j = bp->rx_nr_rings;
4467 
4468 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4469 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4470 
4471 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4472 				txr->tx_ring_struct.ring_mem.flags =
4473 					BNXT_RMEM_RING_PTE_FLAG;
4474 			txr->bnapi = bp->bnapi[j];
4475 			bp->bnapi[j]->tx_ring = txr;
4476 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4477 			if (i >= bp->tx_nr_rings_xdp) {
4478 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4479 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4480 			} else {
4481 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4482 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4483 			}
4484 		}
4485 
4486 		rc = bnxt_alloc_stats(bp);
4487 		if (rc)
4488 			goto alloc_mem_err;
4489 		bnxt_init_stats(bp);
4490 
4491 		rc = bnxt_alloc_ntp_fltrs(bp);
4492 		if (rc)
4493 			goto alloc_mem_err;
4494 
4495 		rc = bnxt_alloc_vnics(bp);
4496 		if (rc)
4497 			goto alloc_mem_err;
4498 	}
4499 
4500 	rc = bnxt_alloc_all_cp_arrays(bp);
4501 	if (rc)
4502 		goto alloc_mem_err;
4503 
4504 	bnxt_init_ring_struct(bp);
4505 
4506 	rc = bnxt_alloc_rx_rings(bp);
4507 	if (rc)
4508 		goto alloc_mem_err;
4509 
4510 	rc = bnxt_alloc_tx_rings(bp);
4511 	if (rc)
4512 		goto alloc_mem_err;
4513 
4514 	rc = bnxt_alloc_cp_rings(bp);
4515 	if (rc)
4516 		goto alloc_mem_err;
4517 
4518 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4519 				  BNXT_VNIC_UCAST_FLAG;
4520 	rc = bnxt_alloc_vnic_attributes(bp);
4521 	if (rc)
4522 		goto alloc_mem_err;
4523 	return 0;
4524 
4525 alloc_mem_err:
4526 	bnxt_free_mem(bp, true);
4527 	return rc;
4528 }
4529 
4530 static void bnxt_disable_int(struct bnxt *bp)
4531 {
4532 	int i;
4533 
4534 	if (!bp->bnapi)
4535 		return;
4536 
4537 	for (i = 0; i < bp->cp_nr_rings; i++) {
4538 		struct bnxt_napi *bnapi = bp->bnapi[i];
4539 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4540 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4541 
4542 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4543 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4544 	}
4545 }
4546 
4547 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4548 {
4549 	struct bnxt_napi *bnapi = bp->bnapi[n];
4550 	struct bnxt_cp_ring_info *cpr;
4551 
4552 	cpr = &bnapi->cp_ring;
4553 	return cpr->cp_ring_struct.map_idx;
4554 }
4555 
4556 static void bnxt_disable_int_sync(struct bnxt *bp)
4557 {
4558 	int i;
4559 
4560 	if (!bp->irq_tbl)
4561 		return;
4562 
4563 	atomic_inc(&bp->intr_sem);
4564 
4565 	bnxt_disable_int(bp);
4566 	for (i = 0; i < bp->cp_nr_rings; i++) {
4567 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4568 
4569 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4570 	}
4571 }
4572 
4573 static void bnxt_enable_int(struct bnxt *bp)
4574 {
4575 	int i;
4576 
4577 	atomic_set(&bp->intr_sem, 0);
4578 	for (i = 0; i < bp->cp_nr_rings; i++) {
4579 		struct bnxt_napi *bnapi = bp->bnapi[i];
4580 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4581 
4582 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4583 	}
4584 }
4585 
4586 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4587 			    bool async_only)
4588 {
4589 	DECLARE_BITMAP(async_events_bmap, 256);
4590 	u32 *events = (u32 *)async_events_bmap;
4591 	struct hwrm_func_drv_rgtr_output *resp;
4592 	struct hwrm_func_drv_rgtr_input *req;
4593 	u32 flags;
4594 	int rc, i;
4595 
4596 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4597 	if (rc)
4598 		return rc;
4599 
4600 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4601 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4602 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4603 
4604 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4605 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4606 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4607 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4608 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4609 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4610 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4611 	req->flags = cpu_to_le32(flags);
4612 	req->ver_maj_8b = DRV_VER_MAJ;
4613 	req->ver_min_8b = DRV_VER_MIN;
4614 	req->ver_upd_8b = DRV_VER_UPD;
4615 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4616 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4617 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4618 
4619 	if (BNXT_PF(bp)) {
4620 		u32 data[8];
4621 		int i;
4622 
4623 		memset(data, 0, sizeof(data));
4624 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4625 			u16 cmd = bnxt_vf_req_snif[i];
4626 			unsigned int bit, idx;
4627 
4628 			idx = cmd / 32;
4629 			bit = cmd % 32;
4630 			data[idx] |= 1 << bit;
4631 		}
4632 
4633 		for (i = 0; i < 8; i++)
4634 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4635 
4636 		req->enables |=
4637 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4638 	}
4639 
4640 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4641 		req->flags |= cpu_to_le32(
4642 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4643 
4644 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4645 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4646 		u16 event_id = bnxt_async_events_arr[i];
4647 
4648 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4649 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4650 			continue;
4651 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4652 	}
4653 	if (bmap && bmap_size) {
4654 		for (i = 0; i < bmap_size; i++) {
4655 			if (test_bit(i, bmap))
4656 				__set_bit(i, async_events_bmap);
4657 		}
4658 	}
4659 	for (i = 0; i < 8; i++)
4660 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4661 
4662 	if (async_only)
4663 		req->enables =
4664 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4665 
4666 	resp = hwrm_req_hold(bp, req);
4667 	rc = hwrm_req_send(bp, req);
4668 	if (!rc) {
4669 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4670 		if (resp->flags &
4671 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4672 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4673 	}
4674 	hwrm_req_drop(bp, req);
4675 	return rc;
4676 }
4677 
4678 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4679 {
4680 	struct hwrm_func_drv_unrgtr_input *req;
4681 	int rc;
4682 
4683 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4684 		return 0;
4685 
4686 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4687 	if (rc)
4688 		return rc;
4689 	return hwrm_req_send(bp, req);
4690 }
4691 
4692 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4693 {
4694 	struct hwrm_tunnel_dst_port_free_input *req;
4695 	int rc;
4696 
4697 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4698 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4699 		return 0;
4700 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4701 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4702 		return 0;
4703 
4704 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4705 	if (rc)
4706 		return rc;
4707 
4708 	req->tunnel_type = tunnel_type;
4709 
4710 	switch (tunnel_type) {
4711 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4712 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4713 		bp->vxlan_port = 0;
4714 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4715 		break;
4716 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4717 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4718 		bp->nge_port = 0;
4719 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4720 		break;
4721 	default:
4722 		break;
4723 	}
4724 
4725 	rc = hwrm_req_send(bp, req);
4726 	if (rc)
4727 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4728 			   rc);
4729 	return rc;
4730 }
4731 
4732 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4733 					   u8 tunnel_type)
4734 {
4735 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4736 	struct hwrm_tunnel_dst_port_alloc_input *req;
4737 	int rc;
4738 
4739 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4740 	if (rc)
4741 		return rc;
4742 
4743 	req->tunnel_type = tunnel_type;
4744 	req->tunnel_dst_port_val = port;
4745 
4746 	resp = hwrm_req_hold(bp, req);
4747 	rc = hwrm_req_send(bp, req);
4748 	if (rc) {
4749 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4750 			   rc);
4751 		goto err_out;
4752 	}
4753 
4754 	switch (tunnel_type) {
4755 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4756 		bp->vxlan_port = port;
4757 		bp->vxlan_fw_dst_port_id =
4758 			le16_to_cpu(resp->tunnel_dst_port_id);
4759 		break;
4760 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4761 		bp->nge_port = port;
4762 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4763 		break;
4764 	default:
4765 		break;
4766 	}
4767 
4768 err_out:
4769 	hwrm_req_drop(bp, req);
4770 	return rc;
4771 }
4772 
4773 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4774 {
4775 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4776 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4777 	int rc;
4778 
4779 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4780 	if (rc)
4781 		return rc;
4782 
4783 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4784 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4785 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4786 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4787 	}
4788 	req->mask = cpu_to_le32(vnic->rx_mask);
4789 	return hwrm_req_send_silent(bp, req);
4790 }
4791 
4792 #ifdef CONFIG_RFS_ACCEL
4793 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4794 					    struct bnxt_ntuple_filter *fltr)
4795 {
4796 	struct hwrm_cfa_ntuple_filter_free_input *req;
4797 	int rc;
4798 
4799 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4800 	if (rc)
4801 		return rc;
4802 
4803 	req->ntuple_filter_id = fltr->filter_id;
4804 	return hwrm_req_send(bp, req);
4805 }
4806 
4807 #define BNXT_NTP_FLTR_FLAGS					\
4808 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4809 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4810 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4811 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4812 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4813 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4814 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4815 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4816 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4817 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4818 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4819 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4820 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4821 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4822 
4823 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4824 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4825 
4826 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4827 					     struct bnxt_ntuple_filter *fltr)
4828 {
4829 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4830 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4831 	struct flow_keys *keys = &fltr->fkeys;
4832 	struct bnxt_vnic_info *vnic;
4833 	u32 flags = 0;
4834 	int rc;
4835 
4836 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4837 	if (rc)
4838 		return rc;
4839 
4840 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4841 
4842 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4843 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4844 		req->dst_id = cpu_to_le16(fltr->rxq);
4845 	} else {
4846 		vnic = &bp->vnic_info[fltr->rxq + 1];
4847 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4848 	}
4849 	req->flags = cpu_to_le32(flags);
4850 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4851 
4852 	req->ethertype = htons(ETH_P_IP);
4853 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4854 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4855 	req->ip_protocol = keys->basic.ip_proto;
4856 
4857 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4858 		int i;
4859 
4860 		req->ethertype = htons(ETH_P_IPV6);
4861 		req->ip_addr_type =
4862 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4863 		*(struct in6_addr *)&req->src_ipaddr[0] =
4864 			keys->addrs.v6addrs.src;
4865 		*(struct in6_addr *)&req->dst_ipaddr[0] =
4866 			keys->addrs.v6addrs.dst;
4867 		for (i = 0; i < 4; i++) {
4868 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4869 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4870 		}
4871 	} else {
4872 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
4873 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4874 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4875 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4876 	}
4877 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4878 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4879 		req->tunnel_type =
4880 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4881 	}
4882 
4883 	req->src_port = keys->ports.src;
4884 	req->src_port_mask = cpu_to_be16(0xffff);
4885 	req->dst_port = keys->ports.dst;
4886 	req->dst_port_mask = cpu_to_be16(0xffff);
4887 
4888 	resp = hwrm_req_hold(bp, req);
4889 	rc = hwrm_req_send(bp, req);
4890 	if (!rc)
4891 		fltr->filter_id = resp->ntuple_filter_id;
4892 	hwrm_req_drop(bp, req);
4893 	return rc;
4894 }
4895 #endif
4896 
4897 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4898 				     const u8 *mac_addr)
4899 {
4900 	struct hwrm_cfa_l2_filter_alloc_output *resp;
4901 	struct hwrm_cfa_l2_filter_alloc_input *req;
4902 	int rc;
4903 
4904 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
4905 	if (rc)
4906 		return rc;
4907 
4908 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4909 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4910 		req->flags |=
4911 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4912 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4913 	req->enables =
4914 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4915 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4916 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4917 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
4918 	req->l2_addr_mask[0] = 0xff;
4919 	req->l2_addr_mask[1] = 0xff;
4920 	req->l2_addr_mask[2] = 0xff;
4921 	req->l2_addr_mask[3] = 0xff;
4922 	req->l2_addr_mask[4] = 0xff;
4923 	req->l2_addr_mask[5] = 0xff;
4924 
4925 	resp = hwrm_req_hold(bp, req);
4926 	rc = hwrm_req_send(bp, req);
4927 	if (!rc)
4928 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4929 							resp->l2_filter_id;
4930 	hwrm_req_drop(bp, req);
4931 	return rc;
4932 }
4933 
4934 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4935 {
4936 	struct hwrm_cfa_l2_filter_free_input *req;
4937 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4938 	int rc;
4939 
4940 	/* Any associated ntuple filters will also be cleared by firmware. */
4941 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
4942 	if (rc)
4943 		return rc;
4944 	hwrm_req_hold(bp, req);
4945 	for (i = 0; i < num_of_vnics; i++) {
4946 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4947 
4948 		for (j = 0; j < vnic->uc_filter_count; j++) {
4949 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
4950 
4951 			rc = hwrm_req_send(bp, req);
4952 		}
4953 		vnic->uc_filter_count = 0;
4954 	}
4955 	hwrm_req_drop(bp, req);
4956 	return rc;
4957 }
4958 
4959 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4960 {
4961 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4962 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4963 	struct hwrm_vnic_tpa_cfg_input *req;
4964 	int rc;
4965 
4966 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4967 		return 0;
4968 
4969 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
4970 	if (rc)
4971 		return rc;
4972 
4973 	if (tpa_flags) {
4974 		u16 mss = bp->dev->mtu - 40;
4975 		u32 nsegs, n, segs = 0, flags;
4976 
4977 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4978 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4979 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4980 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4981 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4982 		if (tpa_flags & BNXT_FLAG_GRO)
4983 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4984 
4985 		req->flags = cpu_to_le32(flags);
4986 
4987 		req->enables =
4988 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4989 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4990 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4991 
4992 		/* Number of segs are log2 units, and first packet is not
4993 		 * included as part of this units.
4994 		 */
4995 		if (mss <= BNXT_RX_PAGE_SIZE) {
4996 			n = BNXT_RX_PAGE_SIZE / mss;
4997 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4998 		} else {
4999 			n = mss / BNXT_RX_PAGE_SIZE;
5000 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5001 				n++;
5002 			nsegs = (MAX_SKB_FRAGS - n) / n;
5003 		}
5004 
5005 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5006 			segs = MAX_TPA_SEGS_P5;
5007 			max_aggs = bp->max_tpa;
5008 		} else {
5009 			segs = ilog2(nsegs);
5010 		}
5011 		req->max_agg_segs = cpu_to_le16(segs);
5012 		req->max_aggs = cpu_to_le16(max_aggs);
5013 
5014 		req->min_agg_len = cpu_to_le32(512);
5015 	}
5016 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5017 
5018 	return hwrm_req_send(bp, req);
5019 }
5020 
5021 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5022 {
5023 	struct bnxt_ring_grp_info *grp_info;
5024 
5025 	grp_info = &bp->grp_info[ring->grp_idx];
5026 	return grp_info->cp_fw_ring_id;
5027 }
5028 
5029 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5030 {
5031 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5032 		struct bnxt_napi *bnapi = rxr->bnapi;
5033 		struct bnxt_cp_ring_info *cpr;
5034 
5035 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5036 		return cpr->cp_ring_struct.fw_ring_id;
5037 	} else {
5038 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5039 	}
5040 }
5041 
5042 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5043 {
5044 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5045 		struct bnxt_napi *bnapi = txr->bnapi;
5046 		struct bnxt_cp_ring_info *cpr;
5047 
5048 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5049 		return cpr->cp_ring_struct.fw_ring_id;
5050 	} else {
5051 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5052 	}
5053 }
5054 
5055 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5056 {
5057 	int entries;
5058 
5059 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5060 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5061 	else
5062 		entries = HW_HASH_INDEX_SIZE;
5063 
5064 	bp->rss_indir_tbl_entries = entries;
5065 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5066 					  GFP_KERNEL);
5067 	if (!bp->rss_indir_tbl)
5068 		return -ENOMEM;
5069 	return 0;
5070 }
5071 
5072 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5073 {
5074 	u16 max_rings, max_entries, pad, i;
5075 
5076 	if (!bp->rx_nr_rings)
5077 		return;
5078 
5079 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5080 		max_rings = bp->rx_nr_rings - 1;
5081 	else
5082 		max_rings = bp->rx_nr_rings;
5083 
5084 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5085 
5086 	for (i = 0; i < max_entries; i++)
5087 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5088 
5089 	pad = bp->rss_indir_tbl_entries - max_entries;
5090 	if (pad)
5091 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5092 }
5093 
5094 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5095 {
5096 	u16 i, tbl_size, max_ring = 0;
5097 
5098 	if (!bp->rss_indir_tbl)
5099 		return 0;
5100 
5101 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5102 	for (i = 0; i < tbl_size; i++)
5103 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5104 	return max_ring;
5105 }
5106 
5107 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5108 {
5109 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5110 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5111 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5112 		return 2;
5113 	return 1;
5114 }
5115 
5116 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5117 {
5118 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5119 	u16 i, j;
5120 
5121 	/* Fill the RSS indirection table with ring group ids */
5122 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5123 		if (!no_rss)
5124 			j = bp->rss_indir_tbl[i];
5125 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5126 	}
5127 }
5128 
5129 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5130 				      struct bnxt_vnic_info *vnic)
5131 {
5132 	__le16 *ring_tbl = vnic->rss_table;
5133 	struct bnxt_rx_ring_info *rxr;
5134 	u16 tbl_size, i;
5135 
5136 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5137 
5138 	for (i = 0; i < tbl_size; i++) {
5139 		u16 ring_id, j;
5140 
5141 		j = bp->rss_indir_tbl[i];
5142 		rxr = &bp->rx_ring[j];
5143 
5144 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5145 		*ring_tbl++ = cpu_to_le16(ring_id);
5146 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5147 		*ring_tbl++ = cpu_to_le16(ring_id);
5148 	}
5149 }
5150 
5151 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5152 {
5153 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5154 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5155 	else
5156 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5157 }
5158 
5159 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5160 {
5161 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5162 	struct hwrm_vnic_rss_cfg_input *req;
5163 	int rc;
5164 
5165 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5166 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5167 		return 0;
5168 
5169 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5170 	if (rc)
5171 		return rc;
5172 
5173 	if (set_rss) {
5174 		bnxt_fill_hw_rss_tbl(bp, vnic);
5175 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5176 		req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5177 		req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5178 		req->hash_key_tbl_addr =
5179 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5180 	}
5181 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5182 	return hwrm_req_send(bp, req);
5183 }
5184 
5185 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5186 {
5187 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5188 	struct hwrm_vnic_rss_cfg_input *req;
5189 	dma_addr_t ring_tbl_map;
5190 	u32 i, nr_ctxs;
5191 	int rc;
5192 
5193 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5194 	if (rc)
5195 		return rc;
5196 
5197 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5198 	if (!set_rss)
5199 		return hwrm_req_send(bp, req);
5200 
5201 	bnxt_fill_hw_rss_tbl(bp, vnic);
5202 	req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5203 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5204 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5205 	ring_tbl_map = vnic->rss_table_dma_addr;
5206 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5207 
5208 	hwrm_req_hold(bp, req);
5209 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5210 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5211 		req->ring_table_pair_index = i;
5212 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5213 		rc = hwrm_req_send(bp, req);
5214 		if (rc)
5215 			goto exit;
5216 	}
5217 
5218 exit:
5219 	hwrm_req_drop(bp, req);
5220 	return rc;
5221 }
5222 
5223 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5224 {
5225 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5226 	struct hwrm_vnic_plcmodes_cfg_input *req;
5227 	int rc;
5228 
5229 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5230 	if (rc)
5231 		return rc;
5232 
5233 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5234 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5235 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5236 	req->enables =
5237 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5238 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5239 	/* thresholds not implemented in firmware yet */
5240 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5241 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5242 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5243 	return hwrm_req_send(bp, req);
5244 }
5245 
5246 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5247 					u16 ctx_idx)
5248 {
5249 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5250 
5251 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5252 		return;
5253 
5254 	req->rss_cos_lb_ctx_id =
5255 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5256 
5257 	hwrm_req_send(bp, req);
5258 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5259 }
5260 
5261 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5262 {
5263 	int i, j;
5264 
5265 	for (i = 0; i < bp->nr_vnics; i++) {
5266 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5267 
5268 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5269 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5270 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5271 		}
5272 	}
5273 	bp->rsscos_nr_ctxs = 0;
5274 }
5275 
5276 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5277 {
5278 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5279 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5280 	int rc;
5281 
5282 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5283 	if (rc)
5284 		return rc;
5285 
5286 	resp = hwrm_req_hold(bp, req);
5287 	rc = hwrm_req_send(bp, req);
5288 	if (!rc)
5289 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5290 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5291 	hwrm_req_drop(bp, req);
5292 
5293 	return rc;
5294 }
5295 
5296 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5297 {
5298 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5299 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5300 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5301 }
5302 
5303 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5304 {
5305 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5306 	struct hwrm_vnic_cfg_input *req;
5307 	unsigned int ring = 0, grp_idx;
5308 	u16 def_vlan = 0;
5309 	int rc;
5310 
5311 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5312 	if (rc)
5313 		return rc;
5314 
5315 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5316 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5317 
5318 		req->default_rx_ring_id =
5319 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5320 		req->default_cmpl_ring_id =
5321 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5322 		req->enables =
5323 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5324 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5325 		goto vnic_mru;
5326 	}
5327 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5328 	/* Only RSS support for now TBD: COS & LB */
5329 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5330 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5331 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5332 					   VNIC_CFG_REQ_ENABLES_MRU);
5333 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5334 		req->rss_rule =
5335 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5336 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5337 					   VNIC_CFG_REQ_ENABLES_MRU);
5338 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5339 	} else {
5340 		req->rss_rule = cpu_to_le16(0xffff);
5341 	}
5342 
5343 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5344 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5345 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5346 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5347 	} else {
5348 		req->cos_rule = cpu_to_le16(0xffff);
5349 	}
5350 
5351 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5352 		ring = 0;
5353 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5354 		ring = vnic_id - 1;
5355 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5356 		ring = bp->rx_nr_rings - 1;
5357 
5358 	grp_idx = bp->rx_ring[ring].bnapi->index;
5359 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5360 	req->lb_rule = cpu_to_le16(0xffff);
5361 vnic_mru:
5362 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5363 
5364 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5365 #ifdef CONFIG_BNXT_SRIOV
5366 	if (BNXT_VF(bp))
5367 		def_vlan = bp->vf.vlan;
5368 #endif
5369 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5370 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5371 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5372 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5373 
5374 	return hwrm_req_send(bp, req);
5375 }
5376 
5377 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5378 {
5379 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5380 		struct hwrm_vnic_free_input *req;
5381 
5382 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5383 			return;
5384 
5385 		req->vnic_id =
5386 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5387 
5388 		hwrm_req_send(bp, req);
5389 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5390 	}
5391 }
5392 
5393 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5394 {
5395 	u16 i;
5396 
5397 	for (i = 0; i < bp->nr_vnics; i++)
5398 		bnxt_hwrm_vnic_free_one(bp, i);
5399 }
5400 
5401 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5402 				unsigned int start_rx_ring_idx,
5403 				unsigned int nr_rings)
5404 {
5405 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5406 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5407 	struct hwrm_vnic_alloc_output *resp;
5408 	struct hwrm_vnic_alloc_input *req;
5409 	int rc;
5410 
5411 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5412 	if (rc)
5413 		return rc;
5414 
5415 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5416 		goto vnic_no_ring_grps;
5417 
5418 	/* map ring groups to this vnic */
5419 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5420 		grp_idx = bp->rx_ring[i].bnapi->index;
5421 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5422 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5423 				   j, nr_rings);
5424 			break;
5425 		}
5426 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5427 	}
5428 
5429 vnic_no_ring_grps:
5430 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5431 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5432 	if (vnic_id == 0)
5433 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5434 
5435 	resp = hwrm_req_hold(bp, req);
5436 	rc = hwrm_req_send(bp, req);
5437 	if (!rc)
5438 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5439 	hwrm_req_drop(bp, req);
5440 	return rc;
5441 }
5442 
5443 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5444 {
5445 	struct hwrm_vnic_qcaps_output *resp;
5446 	struct hwrm_vnic_qcaps_input *req;
5447 	int rc;
5448 
5449 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5450 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5451 	if (bp->hwrm_spec_code < 0x10600)
5452 		return 0;
5453 
5454 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5455 	if (rc)
5456 		return rc;
5457 
5458 	resp = hwrm_req_hold(bp, req);
5459 	rc = hwrm_req_send(bp, req);
5460 	if (!rc) {
5461 		u32 flags = le32_to_cpu(resp->flags);
5462 
5463 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5464 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5465 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5466 		if (flags &
5467 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5468 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5469 
5470 		/* Older P5 fw before EXT_HW_STATS support did not set
5471 		 * VLAN_STRIP_CAP properly.
5472 		 */
5473 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5474 		    (BNXT_CHIP_P5_THOR(bp) &&
5475 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5476 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5477 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5478 		if (bp->max_tpa_v2) {
5479 			if (BNXT_CHIP_P5_THOR(bp))
5480 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5481 			else
5482 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5483 		}
5484 	}
5485 	hwrm_req_drop(bp, req);
5486 	return rc;
5487 }
5488 
5489 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5490 {
5491 	struct hwrm_ring_grp_alloc_output *resp;
5492 	struct hwrm_ring_grp_alloc_input *req;
5493 	int rc;
5494 	u16 i;
5495 
5496 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5497 		return 0;
5498 
5499 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5500 	if (rc)
5501 		return rc;
5502 
5503 	resp = hwrm_req_hold(bp, req);
5504 	for (i = 0; i < bp->rx_nr_rings; i++) {
5505 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5506 
5507 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5508 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5509 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5510 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5511 
5512 		rc = hwrm_req_send(bp, req);
5513 
5514 		if (rc)
5515 			break;
5516 
5517 		bp->grp_info[grp_idx].fw_grp_id =
5518 			le32_to_cpu(resp->ring_group_id);
5519 	}
5520 	hwrm_req_drop(bp, req);
5521 	return rc;
5522 }
5523 
5524 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5525 {
5526 	struct hwrm_ring_grp_free_input *req;
5527 	u16 i;
5528 
5529 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5530 		return;
5531 
5532 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5533 		return;
5534 
5535 	hwrm_req_hold(bp, req);
5536 	for (i = 0; i < bp->cp_nr_rings; i++) {
5537 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5538 			continue;
5539 		req->ring_group_id =
5540 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5541 
5542 		hwrm_req_send(bp, req);
5543 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5544 	}
5545 	hwrm_req_drop(bp, req);
5546 }
5547 
5548 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5549 				    struct bnxt_ring_struct *ring,
5550 				    u32 ring_type, u32 map_index)
5551 {
5552 	struct hwrm_ring_alloc_output *resp;
5553 	struct hwrm_ring_alloc_input *req;
5554 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5555 	struct bnxt_ring_grp_info *grp_info;
5556 	int rc, err = 0;
5557 	u16 ring_id;
5558 
5559 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5560 	if (rc)
5561 		goto exit;
5562 
5563 	req->enables = 0;
5564 	if (rmem->nr_pages > 1) {
5565 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5566 		/* Page size is in log2 units */
5567 		req->page_size = BNXT_PAGE_SHIFT;
5568 		req->page_tbl_depth = 1;
5569 	} else {
5570 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5571 	}
5572 	req->fbo = 0;
5573 	/* Association of ring index with doorbell index and MSIX number */
5574 	req->logical_id = cpu_to_le16(map_index);
5575 
5576 	switch (ring_type) {
5577 	case HWRM_RING_ALLOC_TX: {
5578 		struct bnxt_tx_ring_info *txr;
5579 
5580 		txr = container_of(ring, struct bnxt_tx_ring_info,
5581 				   tx_ring_struct);
5582 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5583 		/* Association of transmit ring with completion ring */
5584 		grp_info = &bp->grp_info[ring->grp_idx];
5585 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5586 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5587 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5588 		req->queue_id = cpu_to_le16(ring->queue_id);
5589 		break;
5590 	}
5591 	case HWRM_RING_ALLOC_RX:
5592 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5593 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5594 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5595 			u16 flags = 0;
5596 
5597 			/* Association of rx ring with stats context */
5598 			grp_info = &bp->grp_info[ring->grp_idx];
5599 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5600 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5601 			req->enables |= cpu_to_le32(
5602 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5603 			if (NET_IP_ALIGN == 2)
5604 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5605 			req->flags = cpu_to_le16(flags);
5606 		}
5607 		break;
5608 	case HWRM_RING_ALLOC_AGG:
5609 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5610 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5611 			/* Association of agg ring with rx ring */
5612 			grp_info = &bp->grp_info[ring->grp_idx];
5613 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5614 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5615 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5616 			req->enables |= cpu_to_le32(
5617 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5618 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5619 		} else {
5620 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5621 		}
5622 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5623 		break;
5624 	case HWRM_RING_ALLOC_CMPL:
5625 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5626 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5627 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5628 			/* Association of cp ring with nq */
5629 			grp_info = &bp->grp_info[map_index];
5630 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5631 			req->cq_handle = cpu_to_le64(ring->handle);
5632 			req->enables |= cpu_to_le32(
5633 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5634 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5635 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5636 		}
5637 		break;
5638 	case HWRM_RING_ALLOC_NQ:
5639 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5640 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5641 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5642 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5643 		break;
5644 	default:
5645 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5646 			   ring_type);
5647 		return -1;
5648 	}
5649 
5650 	resp = hwrm_req_hold(bp, req);
5651 	rc = hwrm_req_send(bp, req);
5652 	err = le16_to_cpu(resp->error_code);
5653 	ring_id = le16_to_cpu(resp->ring_id);
5654 	hwrm_req_drop(bp, req);
5655 
5656 exit:
5657 	if (rc || err) {
5658 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5659 			   ring_type, rc, err);
5660 		return -EIO;
5661 	}
5662 	ring->fw_ring_id = ring_id;
5663 	return rc;
5664 }
5665 
5666 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5667 {
5668 	int rc;
5669 
5670 	if (BNXT_PF(bp)) {
5671 		struct hwrm_func_cfg_input *req;
5672 
5673 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5674 		if (rc)
5675 			return rc;
5676 
5677 		req->fid = cpu_to_le16(0xffff);
5678 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5679 		req->async_event_cr = cpu_to_le16(idx);
5680 		return hwrm_req_send(bp, req);
5681 	} else {
5682 		struct hwrm_func_vf_cfg_input *req;
5683 
5684 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5685 		if (rc)
5686 			return rc;
5687 
5688 		req->enables =
5689 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5690 		req->async_event_cr = cpu_to_le16(idx);
5691 		return hwrm_req_send(bp, req);
5692 	}
5693 }
5694 
5695 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5696 			u32 map_idx, u32 xid)
5697 {
5698 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5699 		if (BNXT_PF(bp))
5700 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5701 		else
5702 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5703 		switch (ring_type) {
5704 		case HWRM_RING_ALLOC_TX:
5705 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5706 			break;
5707 		case HWRM_RING_ALLOC_RX:
5708 		case HWRM_RING_ALLOC_AGG:
5709 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5710 			break;
5711 		case HWRM_RING_ALLOC_CMPL:
5712 			db->db_key64 = DBR_PATH_L2;
5713 			break;
5714 		case HWRM_RING_ALLOC_NQ:
5715 			db->db_key64 = DBR_PATH_L2;
5716 			break;
5717 		}
5718 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5719 	} else {
5720 		db->doorbell = bp->bar1 + map_idx * 0x80;
5721 		switch (ring_type) {
5722 		case HWRM_RING_ALLOC_TX:
5723 			db->db_key32 = DB_KEY_TX;
5724 			break;
5725 		case HWRM_RING_ALLOC_RX:
5726 		case HWRM_RING_ALLOC_AGG:
5727 			db->db_key32 = DB_KEY_RX;
5728 			break;
5729 		case HWRM_RING_ALLOC_CMPL:
5730 			db->db_key32 = DB_KEY_CP;
5731 			break;
5732 		}
5733 	}
5734 }
5735 
5736 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5737 {
5738 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5739 	int i, rc = 0;
5740 	u32 type;
5741 
5742 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5743 		type = HWRM_RING_ALLOC_NQ;
5744 	else
5745 		type = HWRM_RING_ALLOC_CMPL;
5746 	for (i = 0; i < bp->cp_nr_rings; i++) {
5747 		struct bnxt_napi *bnapi = bp->bnapi[i];
5748 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5749 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5750 		u32 map_idx = ring->map_idx;
5751 		unsigned int vector;
5752 
5753 		vector = bp->irq_tbl[map_idx].vector;
5754 		disable_irq_nosync(vector);
5755 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5756 		if (rc) {
5757 			enable_irq(vector);
5758 			goto err_out;
5759 		}
5760 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5761 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5762 		enable_irq(vector);
5763 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5764 
5765 		if (!i) {
5766 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5767 			if (rc)
5768 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5769 		}
5770 	}
5771 
5772 	type = HWRM_RING_ALLOC_TX;
5773 	for (i = 0; i < bp->tx_nr_rings; i++) {
5774 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5775 		struct bnxt_ring_struct *ring;
5776 		u32 map_idx;
5777 
5778 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5779 			struct bnxt_napi *bnapi = txr->bnapi;
5780 			struct bnxt_cp_ring_info *cpr, *cpr2;
5781 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5782 
5783 			cpr = &bnapi->cp_ring;
5784 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5785 			ring = &cpr2->cp_ring_struct;
5786 			ring->handle = BNXT_TX_HDL;
5787 			map_idx = bnapi->index;
5788 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5789 			if (rc)
5790 				goto err_out;
5791 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5792 				    ring->fw_ring_id);
5793 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5794 		}
5795 		ring = &txr->tx_ring_struct;
5796 		map_idx = i;
5797 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5798 		if (rc)
5799 			goto err_out;
5800 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5801 	}
5802 
5803 	type = HWRM_RING_ALLOC_RX;
5804 	for (i = 0; i < bp->rx_nr_rings; i++) {
5805 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5806 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5807 		struct bnxt_napi *bnapi = rxr->bnapi;
5808 		u32 map_idx = bnapi->index;
5809 
5810 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5811 		if (rc)
5812 			goto err_out;
5813 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5814 		/* If we have agg rings, post agg buffers first. */
5815 		if (!agg_rings)
5816 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5817 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5818 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5819 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5820 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5821 			struct bnxt_cp_ring_info *cpr2;
5822 
5823 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5824 			ring = &cpr2->cp_ring_struct;
5825 			ring->handle = BNXT_RX_HDL;
5826 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5827 			if (rc)
5828 				goto err_out;
5829 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5830 				    ring->fw_ring_id);
5831 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5832 		}
5833 	}
5834 
5835 	if (agg_rings) {
5836 		type = HWRM_RING_ALLOC_AGG;
5837 		for (i = 0; i < bp->rx_nr_rings; i++) {
5838 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5839 			struct bnxt_ring_struct *ring =
5840 						&rxr->rx_agg_ring_struct;
5841 			u32 grp_idx = ring->grp_idx;
5842 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5843 
5844 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5845 			if (rc)
5846 				goto err_out;
5847 
5848 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5849 				    ring->fw_ring_id);
5850 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5851 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5852 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5853 		}
5854 	}
5855 err_out:
5856 	return rc;
5857 }
5858 
5859 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5860 				   struct bnxt_ring_struct *ring,
5861 				   u32 ring_type, int cmpl_ring_id)
5862 {
5863 	struct hwrm_ring_free_output *resp;
5864 	struct hwrm_ring_free_input *req;
5865 	u16 error_code = 0;
5866 	int rc;
5867 
5868 	if (BNXT_NO_FW_ACCESS(bp))
5869 		return 0;
5870 
5871 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
5872 	if (rc)
5873 		goto exit;
5874 
5875 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
5876 	req->ring_type = ring_type;
5877 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
5878 
5879 	resp = hwrm_req_hold(bp, req);
5880 	rc = hwrm_req_send(bp, req);
5881 	error_code = le16_to_cpu(resp->error_code);
5882 	hwrm_req_drop(bp, req);
5883 exit:
5884 	if (rc || error_code) {
5885 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5886 			   ring_type, rc, error_code);
5887 		return -EIO;
5888 	}
5889 	return 0;
5890 }
5891 
5892 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5893 {
5894 	u32 type;
5895 	int i;
5896 
5897 	if (!bp->bnapi)
5898 		return;
5899 
5900 	for (i = 0; i < bp->tx_nr_rings; i++) {
5901 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5902 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5903 
5904 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5905 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5906 
5907 			hwrm_ring_free_send_msg(bp, ring,
5908 						RING_FREE_REQ_RING_TYPE_TX,
5909 						close_path ? cmpl_ring_id :
5910 						INVALID_HW_RING_ID);
5911 			ring->fw_ring_id = INVALID_HW_RING_ID;
5912 		}
5913 	}
5914 
5915 	for (i = 0; i < bp->rx_nr_rings; i++) {
5916 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5917 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5918 		u32 grp_idx = rxr->bnapi->index;
5919 
5920 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5921 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5922 
5923 			hwrm_ring_free_send_msg(bp, ring,
5924 						RING_FREE_REQ_RING_TYPE_RX,
5925 						close_path ? cmpl_ring_id :
5926 						INVALID_HW_RING_ID);
5927 			ring->fw_ring_id = INVALID_HW_RING_ID;
5928 			bp->grp_info[grp_idx].rx_fw_ring_id =
5929 				INVALID_HW_RING_ID;
5930 		}
5931 	}
5932 
5933 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5934 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5935 	else
5936 		type = RING_FREE_REQ_RING_TYPE_RX;
5937 	for (i = 0; i < bp->rx_nr_rings; i++) {
5938 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5939 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5940 		u32 grp_idx = rxr->bnapi->index;
5941 
5942 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5943 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5944 
5945 			hwrm_ring_free_send_msg(bp, ring, type,
5946 						close_path ? cmpl_ring_id :
5947 						INVALID_HW_RING_ID);
5948 			ring->fw_ring_id = INVALID_HW_RING_ID;
5949 			bp->grp_info[grp_idx].agg_fw_ring_id =
5950 				INVALID_HW_RING_ID;
5951 		}
5952 	}
5953 
5954 	/* The completion rings are about to be freed.  After that the
5955 	 * IRQ doorbell will not work anymore.  So we need to disable
5956 	 * IRQ here.
5957 	 */
5958 	bnxt_disable_int_sync(bp);
5959 
5960 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5961 		type = RING_FREE_REQ_RING_TYPE_NQ;
5962 	else
5963 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5964 	for (i = 0; i < bp->cp_nr_rings; i++) {
5965 		struct bnxt_napi *bnapi = bp->bnapi[i];
5966 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5967 		struct bnxt_ring_struct *ring;
5968 		int j;
5969 
5970 		for (j = 0; j < 2; j++) {
5971 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5972 
5973 			if (cpr2) {
5974 				ring = &cpr2->cp_ring_struct;
5975 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5976 					continue;
5977 				hwrm_ring_free_send_msg(bp, ring,
5978 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5979 					INVALID_HW_RING_ID);
5980 				ring->fw_ring_id = INVALID_HW_RING_ID;
5981 			}
5982 		}
5983 		ring = &cpr->cp_ring_struct;
5984 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5985 			hwrm_ring_free_send_msg(bp, ring, type,
5986 						INVALID_HW_RING_ID);
5987 			ring->fw_ring_id = INVALID_HW_RING_ID;
5988 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5989 		}
5990 	}
5991 }
5992 
5993 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5994 			   bool shared);
5995 
5996 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5997 {
5998 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5999 	struct hwrm_func_qcfg_output *resp;
6000 	struct hwrm_func_qcfg_input *req;
6001 	int rc;
6002 
6003 	if (bp->hwrm_spec_code < 0x10601)
6004 		return 0;
6005 
6006 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6007 	if (rc)
6008 		return rc;
6009 
6010 	req->fid = cpu_to_le16(0xffff);
6011 	resp = hwrm_req_hold(bp, req);
6012 	rc = hwrm_req_send(bp, req);
6013 	if (rc) {
6014 		hwrm_req_drop(bp, req);
6015 		return rc;
6016 	}
6017 
6018 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6019 	if (BNXT_NEW_RM(bp)) {
6020 		u16 cp, stats;
6021 
6022 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6023 		hw_resc->resv_hw_ring_grps =
6024 			le32_to_cpu(resp->alloc_hw_ring_grps);
6025 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6026 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6027 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6028 		hw_resc->resv_irqs = cp;
6029 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6030 			int rx = hw_resc->resv_rx_rings;
6031 			int tx = hw_resc->resv_tx_rings;
6032 
6033 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6034 				rx >>= 1;
6035 			if (cp < (rx + tx)) {
6036 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6037 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6038 					rx <<= 1;
6039 				hw_resc->resv_rx_rings = rx;
6040 				hw_resc->resv_tx_rings = tx;
6041 			}
6042 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6043 			hw_resc->resv_hw_ring_grps = rx;
6044 		}
6045 		hw_resc->resv_cp_rings = cp;
6046 		hw_resc->resv_stat_ctxs = stats;
6047 	}
6048 	hwrm_req_drop(bp, req);
6049 	return 0;
6050 }
6051 
6052 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6053 {
6054 	struct hwrm_func_qcfg_output *resp;
6055 	struct hwrm_func_qcfg_input *req;
6056 	int rc;
6057 
6058 	if (bp->hwrm_spec_code < 0x10601)
6059 		return 0;
6060 
6061 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6062 	if (rc)
6063 		return rc;
6064 
6065 	req->fid = cpu_to_le16(fid);
6066 	resp = hwrm_req_hold(bp, req);
6067 	rc = hwrm_req_send(bp, req);
6068 	if (!rc)
6069 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6070 
6071 	hwrm_req_drop(bp, req);
6072 	return rc;
6073 }
6074 
6075 static bool bnxt_rfs_supported(struct bnxt *bp);
6076 
6077 static struct hwrm_func_cfg_input *
6078 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6079 			     int ring_grps, int cp_rings, int stats, int vnics)
6080 {
6081 	struct hwrm_func_cfg_input *req;
6082 	u32 enables = 0;
6083 
6084 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6085 		return NULL;
6086 
6087 	req->fid = cpu_to_le16(0xffff);
6088 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6089 	req->num_tx_rings = cpu_to_le16(tx_rings);
6090 	if (BNXT_NEW_RM(bp)) {
6091 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6092 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6093 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6094 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6095 			enables |= tx_rings + ring_grps ?
6096 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6097 			enables |= rx_rings ?
6098 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6099 		} else {
6100 			enables |= cp_rings ?
6101 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6102 			enables |= ring_grps ?
6103 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6104 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6105 		}
6106 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6107 
6108 		req->num_rx_rings = cpu_to_le16(rx_rings);
6109 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6110 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6111 			req->num_msix = cpu_to_le16(cp_rings);
6112 			req->num_rsscos_ctxs =
6113 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6114 		} else {
6115 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6116 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6117 			req->num_rsscos_ctxs = cpu_to_le16(1);
6118 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6119 			    bnxt_rfs_supported(bp))
6120 				req->num_rsscos_ctxs =
6121 					cpu_to_le16(ring_grps + 1);
6122 		}
6123 		req->num_stat_ctxs = cpu_to_le16(stats);
6124 		req->num_vnics = cpu_to_le16(vnics);
6125 	}
6126 	req->enables = cpu_to_le32(enables);
6127 	return req;
6128 }
6129 
6130 static struct hwrm_func_vf_cfg_input *
6131 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6132 			     int ring_grps, int cp_rings, int stats, int vnics)
6133 {
6134 	struct hwrm_func_vf_cfg_input *req;
6135 	u32 enables = 0;
6136 
6137 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6138 		return NULL;
6139 
6140 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6141 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6142 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6143 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6144 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6145 		enables |= tx_rings + ring_grps ?
6146 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6147 	} else {
6148 		enables |= cp_rings ?
6149 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6150 		enables |= ring_grps ?
6151 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6152 	}
6153 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6154 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6155 
6156 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6157 	req->num_tx_rings = cpu_to_le16(tx_rings);
6158 	req->num_rx_rings = cpu_to_le16(rx_rings);
6159 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6160 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6161 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6162 	} else {
6163 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6164 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6165 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6166 	}
6167 	req->num_stat_ctxs = cpu_to_le16(stats);
6168 	req->num_vnics = cpu_to_le16(vnics);
6169 
6170 	req->enables = cpu_to_le32(enables);
6171 	return req;
6172 }
6173 
6174 static int
6175 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6176 			   int ring_grps, int cp_rings, int stats, int vnics)
6177 {
6178 	struct hwrm_func_cfg_input *req;
6179 	int rc;
6180 
6181 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6182 					   cp_rings, stats, vnics);
6183 	if (!req)
6184 		return -ENOMEM;
6185 
6186 	if (!req->enables) {
6187 		hwrm_req_drop(bp, req);
6188 		return 0;
6189 	}
6190 
6191 	rc = hwrm_req_send(bp, req);
6192 	if (rc)
6193 		return rc;
6194 
6195 	if (bp->hwrm_spec_code < 0x10601)
6196 		bp->hw_resc.resv_tx_rings = tx_rings;
6197 
6198 	return bnxt_hwrm_get_rings(bp);
6199 }
6200 
6201 static int
6202 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6203 			   int ring_grps, int cp_rings, int stats, int vnics)
6204 {
6205 	struct hwrm_func_vf_cfg_input *req;
6206 	int rc;
6207 
6208 	if (!BNXT_NEW_RM(bp)) {
6209 		bp->hw_resc.resv_tx_rings = tx_rings;
6210 		return 0;
6211 	}
6212 
6213 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6214 					   cp_rings, stats, vnics);
6215 	if (!req)
6216 		return -ENOMEM;
6217 
6218 	rc = hwrm_req_send(bp, req);
6219 	if (rc)
6220 		return rc;
6221 
6222 	return bnxt_hwrm_get_rings(bp);
6223 }
6224 
6225 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6226 				   int cp, int stat, int vnic)
6227 {
6228 	if (BNXT_PF(bp))
6229 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6230 						  vnic);
6231 	else
6232 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6233 						  vnic);
6234 }
6235 
6236 int bnxt_nq_rings_in_use(struct bnxt *bp)
6237 {
6238 	int cp = bp->cp_nr_rings;
6239 	int ulp_msix, ulp_base;
6240 
6241 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6242 	if (ulp_msix) {
6243 		ulp_base = bnxt_get_ulp_msix_base(bp);
6244 		cp += ulp_msix;
6245 		if ((ulp_base + ulp_msix) > cp)
6246 			cp = ulp_base + ulp_msix;
6247 	}
6248 	return cp;
6249 }
6250 
6251 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6252 {
6253 	int cp;
6254 
6255 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6256 		return bnxt_nq_rings_in_use(bp);
6257 
6258 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6259 	return cp;
6260 }
6261 
6262 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6263 {
6264 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6265 	int cp = bp->cp_nr_rings;
6266 
6267 	if (!ulp_stat)
6268 		return cp;
6269 
6270 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6271 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6272 
6273 	return cp + ulp_stat;
6274 }
6275 
6276 /* Check if a default RSS map needs to be setup.  This function is only
6277  * used on older firmware that does not require reserving RX rings.
6278  */
6279 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6280 {
6281 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6282 
6283 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6284 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6285 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6286 		if (!netif_is_rxfh_configured(bp->dev))
6287 			bnxt_set_dflt_rss_indir_tbl(bp);
6288 	}
6289 }
6290 
6291 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6292 {
6293 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6294 	int cp = bnxt_cp_rings_in_use(bp);
6295 	int nq = bnxt_nq_rings_in_use(bp);
6296 	int rx = bp->rx_nr_rings, stat;
6297 	int vnic = 1, grp = rx;
6298 
6299 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6300 	    bp->hwrm_spec_code >= 0x10601)
6301 		return true;
6302 
6303 	/* Old firmware does not need RX ring reservations but we still
6304 	 * need to setup a default RSS map when needed.  With new firmware
6305 	 * we go through RX ring reservations first and then set up the
6306 	 * RSS map for the successfully reserved RX rings when needed.
6307 	 */
6308 	if (!BNXT_NEW_RM(bp)) {
6309 		bnxt_check_rss_tbl_no_rmgr(bp);
6310 		return false;
6311 	}
6312 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6313 		vnic = rx + 1;
6314 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6315 		rx <<= 1;
6316 	stat = bnxt_get_func_stat_ctxs(bp);
6317 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6318 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6319 	    (hw_resc->resv_hw_ring_grps != grp &&
6320 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6321 		return true;
6322 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6323 	    hw_resc->resv_irqs != nq)
6324 		return true;
6325 	return false;
6326 }
6327 
6328 static int __bnxt_reserve_rings(struct bnxt *bp)
6329 {
6330 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6331 	int cp = bnxt_nq_rings_in_use(bp);
6332 	int tx = bp->tx_nr_rings;
6333 	int rx = bp->rx_nr_rings;
6334 	int grp, rx_rings, rc;
6335 	int vnic = 1, stat;
6336 	bool sh = false;
6337 
6338 	if (!bnxt_need_reserve_rings(bp))
6339 		return 0;
6340 
6341 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6342 		sh = true;
6343 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6344 		vnic = rx + 1;
6345 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6346 		rx <<= 1;
6347 	grp = bp->rx_nr_rings;
6348 	stat = bnxt_get_func_stat_ctxs(bp);
6349 
6350 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6351 	if (rc)
6352 		return rc;
6353 
6354 	tx = hw_resc->resv_tx_rings;
6355 	if (BNXT_NEW_RM(bp)) {
6356 		rx = hw_resc->resv_rx_rings;
6357 		cp = hw_resc->resv_irqs;
6358 		grp = hw_resc->resv_hw_ring_grps;
6359 		vnic = hw_resc->resv_vnics;
6360 		stat = hw_resc->resv_stat_ctxs;
6361 	}
6362 
6363 	rx_rings = rx;
6364 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6365 		if (rx >= 2) {
6366 			rx_rings = rx >> 1;
6367 		} else {
6368 			if (netif_running(bp->dev))
6369 				return -ENOMEM;
6370 
6371 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6372 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6373 			bp->dev->hw_features &= ~NETIF_F_LRO;
6374 			bp->dev->features &= ~NETIF_F_LRO;
6375 			bnxt_set_ring_params(bp);
6376 		}
6377 	}
6378 	rx_rings = min_t(int, rx_rings, grp);
6379 	cp = min_t(int, cp, bp->cp_nr_rings);
6380 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6381 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6382 	cp = min_t(int, cp, stat);
6383 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6384 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6385 		rx = rx_rings << 1;
6386 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6387 	bp->tx_nr_rings = tx;
6388 
6389 	/* If we cannot reserve all the RX rings, reset the RSS map only
6390 	 * if absolutely necessary
6391 	 */
6392 	if (rx_rings != bp->rx_nr_rings) {
6393 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6394 			    rx_rings, bp->rx_nr_rings);
6395 		if (netif_is_rxfh_configured(bp->dev) &&
6396 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6397 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6398 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6399 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6400 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6401 		}
6402 	}
6403 	bp->rx_nr_rings = rx_rings;
6404 	bp->cp_nr_rings = cp;
6405 
6406 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6407 		return -ENOMEM;
6408 
6409 	if (!netif_is_rxfh_configured(bp->dev))
6410 		bnxt_set_dflt_rss_indir_tbl(bp);
6411 
6412 	return rc;
6413 }
6414 
6415 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6416 				    int ring_grps, int cp_rings, int stats,
6417 				    int vnics)
6418 {
6419 	struct hwrm_func_vf_cfg_input *req;
6420 	u32 flags;
6421 
6422 	if (!BNXT_NEW_RM(bp))
6423 		return 0;
6424 
6425 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6426 					   cp_rings, stats, vnics);
6427 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6428 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6429 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6430 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6431 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6432 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6433 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6434 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6435 
6436 	req->flags = cpu_to_le32(flags);
6437 	return hwrm_req_send_silent(bp, req);
6438 }
6439 
6440 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6441 				    int ring_grps, int cp_rings, int stats,
6442 				    int vnics)
6443 {
6444 	struct hwrm_func_cfg_input *req;
6445 	u32 flags;
6446 
6447 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6448 					   cp_rings, stats, vnics);
6449 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6450 	if (BNXT_NEW_RM(bp)) {
6451 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6452 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6453 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6454 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6455 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6456 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6457 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6458 		else
6459 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6460 	}
6461 
6462 	req->flags = cpu_to_le32(flags);
6463 	return hwrm_req_send_silent(bp, req);
6464 }
6465 
6466 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6467 				 int ring_grps, int cp_rings, int stats,
6468 				 int vnics)
6469 {
6470 	if (bp->hwrm_spec_code < 0x10801)
6471 		return 0;
6472 
6473 	if (BNXT_PF(bp))
6474 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6475 						ring_grps, cp_rings, stats,
6476 						vnics);
6477 
6478 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6479 					cp_rings, stats, vnics);
6480 }
6481 
6482 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6483 {
6484 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6485 	struct hwrm_ring_aggint_qcaps_output *resp;
6486 	struct hwrm_ring_aggint_qcaps_input *req;
6487 	int rc;
6488 
6489 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6490 	coal_cap->num_cmpl_dma_aggr_max = 63;
6491 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6492 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6493 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6494 	coal_cap->int_lat_tmr_min_max = 65535;
6495 	coal_cap->int_lat_tmr_max_max = 65535;
6496 	coal_cap->num_cmpl_aggr_int_max = 65535;
6497 	coal_cap->timer_units = 80;
6498 
6499 	if (bp->hwrm_spec_code < 0x10902)
6500 		return;
6501 
6502 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6503 		return;
6504 
6505 	resp = hwrm_req_hold(bp, req);
6506 	rc = hwrm_req_send_silent(bp, req);
6507 	if (!rc) {
6508 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6509 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6510 		coal_cap->num_cmpl_dma_aggr_max =
6511 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6512 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6513 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6514 		coal_cap->cmpl_aggr_dma_tmr_max =
6515 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6516 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6517 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6518 		coal_cap->int_lat_tmr_min_max =
6519 			le16_to_cpu(resp->int_lat_tmr_min_max);
6520 		coal_cap->int_lat_tmr_max_max =
6521 			le16_to_cpu(resp->int_lat_tmr_max_max);
6522 		coal_cap->num_cmpl_aggr_int_max =
6523 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6524 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6525 	}
6526 	hwrm_req_drop(bp, req);
6527 }
6528 
6529 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6530 {
6531 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6532 
6533 	return usec * 1000 / coal_cap->timer_units;
6534 }
6535 
6536 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6537 	struct bnxt_coal *hw_coal,
6538 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6539 {
6540 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6541 	u16 val, tmr, max, flags = hw_coal->flags;
6542 	u32 cmpl_params = coal_cap->cmpl_params;
6543 
6544 	max = hw_coal->bufs_per_record * 128;
6545 	if (hw_coal->budget)
6546 		max = hw_coal->bufs_per_record * hw_coal->budget;
6547 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6548 
6549 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6550 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6551 
6552 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6553 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6554 
6555 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6556 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6557 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6558 
6559 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6560 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6561 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6562 
6563 	/* min timer set to 1/2 of interrupt timer */
6564 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6565 		val = tmr / 2;
6566 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6567 		req->int_lat_tmr_min = cpu_to_le16(val);
6568 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6569 	}
6570 
6571 	/* buf timer set to 1/4 of interrupt timer */
6572 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6573 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6574 
6575 	if (cmpl_params &
6576 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6577 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6578 		val = clamp_t(u16, tmr, 1,
6579 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6580 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6581 		req->enables |=
6582 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6583 	}
6584 
6585 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6586 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6587 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6588 	req->flags = cpu_to_le16(flags);
6589 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6590 }
6591 
6592 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6593 				   struct bnxt_coal *hw_coal)
6594 {
6595 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6596 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6597 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6598 	u32 nq_params = coal_cap->nq_params;
6599 	u16 tmr;
6600 	int rc;
6601 
6602 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6603 		return 0;
6604 
6605 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6606 	if (rc)
6607 		return rc;
6608 
6609 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6610 	req->flags =
6611 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6612 
6613 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6614 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6615 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6616 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6617 	return hwrm_req_send(bp, req);
6618 }
6619 
6620 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6621 {
6622 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6623 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6624 	struct bnxt_coal coal;
6625 	int rc;
6626 
6627 	/* Tick values in micro seconds.
6628 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6629 	 */
6630 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6631 
6632 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6633 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6634 
6635 	if (!bnapi->rx_ring)
6636 		return -ENODEV;
6637 
6638 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6639 	if (rc)
6640 		return rc;
6641 
6642 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6643 
6644 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6645 
6646 	return hwrm_req_send(bp, req_rx);
6647 }
6648 
6649 int bnxt_hwrm_set_coal(struct bnxt *bp)
6650 {
6651 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6652 							   *req;
6653 	int i, rc;
6654 
6655 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6656 	if (rc)
6657 		return rc;
6658 
6659 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6660 	if (rc) {
6661 		hwrm_req_drop(bp, req_rx);
6662 		return rc;
6663 	}
6664 
6665 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6666 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6667 
6668 	hwrm_req_hold(bp, req_rx);
6669 	hwrm_req_hold(bp, req_tx);
6670 	for (i = 0; i < bp->cp_nr_rings; i++) {
6671 		struct bnxt_napi *bnapi = bp->bnapi[i];
6672 		struct bnxt_coal *hw_coal;
6673 		u16 ring_id;
6674 
6675 		req = req_rx;
6676 		if (!bnapi->rx_ring) {
6677 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6678 			req = req_tx;
6679 		} else {
6680 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6681 		}
6682 		req->ring_id = cpu_to_le16(ring_id);
6683 
6684 		rc = hwrm_req_send(bp, req);
6685 		if (rc)
6686 			break;
6687 
6688 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6689 			continue;
6690 
6691 		if (bnapi->rx_ring && bnapi->tx_ring) {
6692 			req = req_tx;
6693 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6694 			req->ring_id = cpu_to_le16(ring_id);
6695 			rc = hwrm_req_send(bp, req);
6696 			if (rc)
6697 				break;
6698 		}
6699 		if (bnapi->rx_ring)
6700 			hw_coal = &bp->rx_coal;
6701 		else
6702 			hw_coal = &bp->tx_coal;
6703 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6704 	}
6705 	hwrm_req_drop(bp, req_rx);
6706 	hwrm_req_drop(bp, req_tx);
6707 	return rc;
6708 }
6709 
6710 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6711 {
6712 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6713 	struct hwrm_stat_ctx_free_input *req;
6714 	int i;
6715 
6716 	if (!bp->bnapi)
6717 		return;
6718 
6719 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6720 		return;
6721 
6722 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6723 		return;
6724 	if (BNXT_FW_MAJ(bp) <= 20) {
6725 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6726 			hwrm_req_drop(bp, req);
6727 			return;
6728 		}
6729 		hwrm_req_hold(bp, req0);
6730 	}
6731 	hwrm_req_hold(bp, req);
6732 	for (i = 0; i < bp->cp_nr_rings; i++) {
6733 		struct bnxt_napi *bnapi = bp->bnapi[i];
6734 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6735 
6736 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6737 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6738 			if (req0) {
6739 				req0->stat_ctx_id = req->stat_ctx_id;
6740 				hwrm_req_send(bp, req0);
6741 			}
6742 			hwrm_req_send(bp, req);
6743 
6744 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6745 		}
6746 	}
6747 	hwrm_req_drop(bp, req);
6748 	if (req0)
6749 		hwrm_req_drop(bp, req0);
6750 }
6751 
6752 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6753 {
6754 	struct hwrm_stat_ctx_alloc_output *resp;
6755 	struct hwrm_stat_ctx_alloc_input *req;
6756 	int rc, i;
6757 
6758 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6759 		return 0;
6760 
6761 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6762 	if (rc)
6763 		return rc;
6764 
6765 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6766 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6767 
6768 	resp = hwrm_req_hold(bp, req);
6769 	for (i = 0; i < bp->cp_nr_rings; i++) {
6770 		struct bnxt_napi *bnapi = bp->bnapi[i];
6771 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6772 
6773 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6774 
6775 		rc = hwrm_req_send(bp, req);
6776 		if (rc)
6777 			break;
6778 
6779 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6780 
6781 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6782 	}
6783 	hwrm_req_drop(bp, req);
6784 	return rc;
6785 }
6786 
6787 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6788 {
6789 	struct hwrm_func_qcfg_output *resp;
6790 	struct hwrm_func_qcfg_input *req;
6791 	u32 min_db_offset = 0;
6792 	u16 flags;
6793 	int rc;
6794 
6795 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6796 	if (rc)
6797 		return rc;
6798 
6799 	req->fid = cpu_to_le16(0xffff);
6800 	resp = hwrm_req_hold(bp, req);
6801 	rc = hwrm_req_send(bp, req);
6802 	if (rc)
6803 		goto func_qcfg_exit;
6804 
6805 #ifdef CONFIG_BNXT_SRIOV
6806 	if (BNXT_VF(bp)) {
6807 		struct bnxt_vf_info *vf = &bp->vf;
6808 
6809 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6810 	} else {
6811 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6812 	}
6813 #endif
6814 	flags = le16_to_cpu(resp->flags);
6815 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6816 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6817 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6818 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6819 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6820 	}
6821 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6822 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6823 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6824 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6825 
6826 	switch (resp->port_partition_type) {
6827 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6828 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6829 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6830 		bp->port_partition_type = resp->port_partition_type;
6831 		break;
6832 	}
6833 	if (bp->hwrm_spec_code < 0x10707 ||
6834 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6835 		bp->br_mode = BRIDGE_MODE_VEB;
6836 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6837 		bp->br_mode = BRIDGE_MODE_VEPA;
6838 	else
6839 		bp->br_mode = BRIDGE_MODE_UNDEF;
6840 
6841 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6842 	if (!bp->max_mtu)
6843 		bp->max_mtu = BNXT_MAX_MTU;
6844 
6845 	if (bp->db_size)
6846 		goto func_qcfg_exit;
6847 
6848 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6849 		if (BNXT_PF(bp))
6850 			min_db_offset = DB_PF_OFFSET_P5;
6851 		else
6852 			min_db_offset = DB_VF_OFFSET_P5;
6853 	}
6854 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6855 				 1024);
6856 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6857 	    bp->db_size <= min_db_offset)
6858 		bp->db_size = pci_resource_len(bp->pdev, 2);
6859 
6860 func_qcfg_exit:
6861 	hwrm_req_drop(bp, req);
6862 	return rc;
6863 }
6864 
6865 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
6866 			struct hwrm_func_backing_store_qcaps_output *resp)
6867 {
6868 	struct bnxt_mem_init *mem_init;
6869 	u16 init_mask;
6870 	u8 init_val;
6871 	u8 *offset;
6872 	int i;
6873 
6874 	init_val = resp->ctx_kind_initializer;
6875 	init_mask = le16_to_cpu(resp->ctx_init_mask);
6876 	offset = &resp->qp_init_offset;
6877 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
6878 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
6879 		mem_init->init_val = init_val;
6880 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
6881 		if (!init_mask)
6882 			continue;
6883 		if (i == BNXT_CTX_MEM_INIT_STAT)
6884 			offset = &resp->stat_init_offset;
6885 		if (init_mask & (1 << i))
6886 			mem_init->offset = *offset * 4;
6887 		else
6888 			mem_init->init_val = 0;
6889 	}
6890 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
6891 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
6892 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
6893 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
6894 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
6895 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
6896 }
6897 
6898 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6899 {
6900 	struct hwrm_func_backing_store_qcaps_output *resp;
6901 	struct hwrm_func_backing_store_qcaps_input *req;
6902 	int rc;
6903 
6904 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6905 		return 0;
6906 
6907 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
6908 	if (rc)
6909 		return rc;
6910 
6911 	resp = hwrm_req_hold(bp, req);
6912 	rc = hwrm_req_send_silent(bp, req);
6913 	if (!rc) {
6914 		struct bnxt_ctx_pg_info *ctx_pg;
6915 		struct bnxt_ctx_mem_info *ctx;
6916 		int i, tqm_rings;
6917 
6918 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6919 		if (!ctx) {
6920 			rc = -ENOMEM;
6921 			goto ctx_err;
6922 		}
6923 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6924 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6925 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6926 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6927 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6928 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6929 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6930 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6931 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6932 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6933 		ctx->vnic_max_vnic_entries =
6934 			le16_to_cpu(resp->vnic_max_vnic_entries);
6935 		ctx->vnic_max_ring_table_entries =
6936 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6937 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6938 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6939 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6940 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6941 		ctx->tqm_min_entries_per_ring =
6942 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6943 		ctx->tqm_max_entries_per_ring =
6944 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6945 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6946 		if (!ctx->tqm_entries_multiple)
6947 			ctx->tqm_entries_multiple = 1;
6948 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6949 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6950 		ctx->mrav_num_entries_units =
6951 			le16_to_cpu(resp->mrav_num_entries_units);
6952 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6953 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6954 
6955 		bnxt_init_ctx_initializer(ctx, resp);
6956 
6957 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6958 		if (!ctx->tqm_fp_rings_count)
6959 			ctx->tqm_fp_rings_count = bp->max_q;
6960 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
6961 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
6962 
6963 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
6964 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6965 		if (!ctx_pg) {
6966 			kfree(ctx);
6967 			rc = -ENOMEM;
6968 			goto ctx_err;
6969 		}
6970 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6971 			ctx->tqm_mem[i] = ctx_pg;
6972 		bp->ctx = ctx;
6973 	} else {
6974 		rc = 0;
6975 	}
6976 ctx_err:
6977 	hwrm_req_drop(bp, req);
6978 	return rc;
6979 }
6980 
6981 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6982 				  __le64 *pg_dir)
6983 {
6984 	if (!rmem->nr_pages)
6985 		return;
6986 
6987 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
6988 	if (rmem->depth >= 1) {
6989 		if (rmem->depth == 2)
6990 			*pg_attr |= 2;
6991 		else
6992 			*pg_attr |= 1;
6993 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6994 	} else {
6995 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6996 	}
6997 }
6998 
6999 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7000 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7001 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7002 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7003 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7004 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7005 
7006 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7007 {
7008 	struct hwrm_func_backing_store_cfg_input *req;
7009 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7010 	struct bnxt_ctx_pg_info *ctx_pg;
7011 	void **__req = (void **)&req;
7012 	u32 req_len = sizeof(*req);
7013 	__le32 *num_entries;
7014 	__le64 *pg_dir;
7015 	u32 flags = 0;
7016 	u8 *pg_attr;
7017 	u32 ena;
7018 	int rc;
7019 	int i;
7020 
7021 	if (!ctx)
7022 		return 0;
7023 
7024 	if (req_len > bp->hwrm_max_ext_req_len)
7025 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7026 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7027 	if (rc)
7028 		return rc;
7029 
7030 	req->enables = cpu_to_le32(enables);
7031 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7032 		ctx_pg = &ctx->qp_mem;
7033 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7034 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7035 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7036 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7037 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7038 				      &req->qpc_pg_size_qpc_lvl,
7039 				      &req->qpc_page_dir);
7040 	}
7041 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7042 		ctx_pg = &ctx->srq_mem;
7043 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7044 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7045 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7046 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7047 				      &req->srq_pg_size_srq_lvl,
7048 				      &req->srq_page_dir);
7049 	}
7050 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7051 		ctx_pg = &ctx->cq_mem;
7052 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7053 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7054 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7055 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7056 				      &req->cq_pg_size_cq_lvl,
7057 				      &req->cq_page_dir);
7058 	}
7059 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7060 		ctx_pg = &ctx->vnic_mem;
7061 		req->vnic_num_vnic_entries =
7062 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7063 		req->vnic_num_ring_table_entries =
7064 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7065 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7066 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7067 				      &req->vnic_pg_size_vnic_lvl,
7068 				      &req->vnic_page_dir);
7069 	}
7070 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7071 		ctx_pg = &ctx->stat_mem;
7072 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7073 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7074 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7075 				      &req->stat_pg_size_stat_lvl,
7076 				      &req->stat_page_dir);
7077 	}
7078 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7079 		ctx_pg = &ctx->mrav_mem;
7080 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7081 		if (ctx->mrav_num_entries_units)
7082 			flags |=
7083 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7084 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7085 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7086 				      &req->mrav_pg_size_mrav_lvl,
7087 				      &req->mrav_page_dir);
7088 	}
7089 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7090 		ctx_pg = &ctx->tim_mem;
7091 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7092 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7093 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7094 				      &req->tim_pg_size_tim_lvl,
7095 				      &req->tim_page_dir);
7096 	}
7097 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7098 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7099 	     pg_dir = &req->tqm_sp_page_dir,
7100 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7101 	     i < BNXT_MAX_TQM_RINGS;
7102 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7103 		if (!(enables & ena))
7104 			continue;
7105 
7106 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7107 		ctx_pg = ctx->tqm_mem[i];
7108 		*num_entries = cpu_to_le32(ctx_pg->entries);
7109 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7110 	}
7111 	req->flags = cpu_to_le32(flags);
7112 	return hwrm_req_send(bp, req);
7113 }
7114 
7115 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7116 				  struct bnxt_ctx_pg_info *ctx_pg)
7117 {
7118 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7119 
7120 	rmem->page_size = BNXT_PAGE_SIZE;
7121 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7122 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7123 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7124 	if (rmem->depth >= 1)
7125 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7126 	return bnxt_alloc_ring(bp, rmem);
7127 }
7128 
7129 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7130 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7131 				  u8 depth, struct bnxt_mem_init *mem_init)
7132 {
7133 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7134 	int rc;
7135 
7136 	if (!mem_size)
7137 		return -EINVAL;
7138 
7139 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7140 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7141 		ctx_pg->nr_pages = 0;
7142 		return -EINVAL;
7143 	}
7144 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7145 		int nr_tbls, i;
7146 
7147 		rmem->depth = 2;
7148 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7149 					     GFP_KERNEL);
7150 		if (!ctx_pg->ctx_pg_tbl)
7151 			return -ENOMEM;
7152 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7153 		rmem->nr_pages = nr_tbls;
7154 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7155 		if (rc)
7156 			return rc;
7157 		for (i = 0; i < nr_tbls; i++) {
7158 			struct bnxt_ctx_pg_info *pg_tbl;
7159 
7160 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7161 			if (!pg_tbl)
7162 				return -ENOMEM;
7163 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7164 			rmem = &pg_tbl->ring_mem;
7165 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7166 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7167 			rmem->depth = 1;
7168 			rmem->nr_pages = MAX_CTX_PAGES;
7169 			rmem->mem_init = mem_init;
7170 			if (i == (nr_tbls - 1)) {
7171 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7172 
7173 				if (rem)
7174 					rmem->nr_pages = rem;
7175 			}
7176 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7177 			if (rc)
7178 				break;
7179 		}
7180 	} else {
7181 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7182 		if (rmem->nr_pages > 1 || depth)
7183 			rmem->depth = 1;
7184 		rmem->mem_init = mem_init;
7185 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7186 	}
7187 	return rc;
7188 }
7189 
7190 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7191 				  struct bnxt_ctx_pg_info *ctx_pg)
7192 {
7193 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7194 
7195 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7196 	    ctx_pg->ctx_pg_tbl) {
7197 		int i, nr_tbls = rmem->nr_pages;
7198 
7199 		for (i = 0; i < nr_tbls; i++) {
7200 			struct bnxt_ctx_pg_info *pg_tbl;
7201 			struct bnxt_ring_mem_info *rmem2;
7202 
7203 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7204 			if (!pg_tbl)
7205 				continue;
7206 			rmem2 = &pg_tbl->ring_mem;
7207 			bnxt_free_ring(bp, rmem2);
7208 			ctx_pg->ctx_pg_arr[i] = NULL;
7209 			kfree(pg_tbl);
7210 			ctx_pg->ctx_pg_tbl[i] = NULL;
7211 		}
7212 		kfree(ctx_pg->ctx_pg_tbl);
7213 		ctx_pg->ctx_pg_tbl = NULL;
7214 	}
7215 	bnxt_free_ring(bp, rmem);
7216 	ctx_pg->nr_pages = 0;
7217 }
7218 
7219 void bnxt_free_ctx_mem(struct bnxt *bp)
7220 {
7221 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7222 	int i;
7223 
7224 	if (!ctx)
7225 		return;
7226 
7227 	if (ctx->tqm_mem[0]) {
7228 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7229 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7230 		kfree(ctx->tqm_mem[0]);
7231 		ctx->tqm_mem[0] = NULL;
7232 	}
7233 
7234 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7235 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7236 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7237 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7238 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7239 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7240 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7241 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7242 }
7243 
7244 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7245 {
7246 	struct bnxt_ctx_pg_info *ctx_pg;
7247 	struct bnxt_ctx_mem_info *ctx;
7248 	struct bnxt_mem_init *init;
7249 	u32 mem_size, ena, entries;
7250 	u32 entries_sp, min;
7251 	u32 num_mr, num_ah;
7252 	u32 extra_srqs = 0;
7253 	u32 extra_qps = 0;
7254 	u8 pg_lvl = 1;
7255 	int i, rc;
7256 
7257 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7258 	if (rc) {
7259 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7260 			   rc);
7261 		return rc;
7262 	}
7263 	ctx = bp->ctx;
7264 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7265 		return 0;
7266 
7267 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7268 		pg_lvl = 2;
7269 		extra_qps = 65536;
7270 		extra_srqs = 8192;
7271 	}
7272 
7273 	ctx_pg = &ctx->qp_mem;
7274 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7275 			  extra_qps;
7276 	if (ctx->qp_entry_size) {
7277 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7278 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7279 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7280 		if (rc)
7281 			return rc;
7282 	}
7283 
7284 	ctx_pg = &ctx->srq_mem;
7285 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7286 	if (ctx->srq_entry_size) {
7287 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7288 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7289 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7290 		if (rc)
7291 			return rc;
7292 	}
7293 
7294 	ctx_pg = &ctx->cq_mem;
7295 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7296 	if (ctx->cq_entry_size) {
7297 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7298 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7299 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7300 		if (rc)
7301 			return rc;
7302 	}
7303 
7304 	ctx_pg = &ctx->vnic_mem;
7305 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7306 			  ctx->vnic_max_ring_table_entries;
7307 	if (ctx->vnic_entry_size) {
7308 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7309 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7310 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7311 		if (rc)
7312 			return rc;
7313 	}
7314 
7315 	ctx_pg = &ctx->stat_mem;
7316 	ctx_pg->entries = ctx->stat_max_entries;
7317 	if (ctx->stat_entry_size) {
7318 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7319 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7320 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7321 		if (rc)
7322 			return rc;
7323 	}
7324 
7325 	ena = 0;
7326 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7327 		goto skip_rdma;
7328 
7329 	ctx_pg = &ctx->mrav_mem;
7330 	/* 128K extra is needed to accommodate static AH context
7331 	 * allocation by f/w.
7332 	 */
7333 	num_mr = 1024 * 256;
7334 	num_ah = 1024 * 128;
7335 	ctx_pg->entries = num_mr + num_ah;
7336 	if (ctx->mrav_entry_size) {
7337 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7338 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7339 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7340 		if (rc)
7341 			return rc;
7342 	}
7343 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7344 	if (ctx->mrav_num_entries_units)
7345 		ctx_pg->entries =
7346 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7347 			 (num_ah / ctx->mrav_num_entries_units);
7348 
7349 	ctx_pg = &ctx->tim_mem;
7350 	ctx_pg->entries = ctx->qp_mem.entries;
7351 	if (ctx->tim_entry_size) {
7352 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7353 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7354 		if (rc)
7355 			return rc;
7356 	}
7357 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7358 
7359 skip_rdma:
7360 	min = ctx->tqm_min_entries_per_ring;
7361 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7362 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7363 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7364 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7365 	entries = roundup(entries, ctx->tqm_entries_multiple);
7366 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7367 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7368 		ctx_pg = ctx->tqm_mem[i];
7369 		ctx_pg->entries = i ? entries : entries_sp;
7370 		if (ctx->tqm_entry_size) {
7371 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7372 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7373 						    NULL);
7374 			if (rc)
7375 				return rc;
7376 		}
7377 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7378 	}
7379 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7380 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7381 	if (rc) {
7382 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7383 			   rc);
7384 		return rc;
7385 	}
7386 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7387 	return 0;
7388 }
7389 
7390 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7391 {
7392 	struct hwrm_func_resource_qcaps_output *resp;
7393 	struct hwrm_func_resource_qcaps_input *req;
7394 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7395 	int rc;
7396 
7397 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7398 	if (rc)
7399 		return rc;
7400 
7401 	req->fid = cpu_to_le16(0xffff);
7402 	resp = hwrm_req_hold(bp, req);
7403 	rc = hwrm_req_send_silent(bp, req);
7404 	if (rc)
7405 		goto hwrm_func_resc_qcaps_exit;
7406 
7407 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7408 	if (!all)
7409 		goto hwrm_func_resc_qcaps_exit;
7410 
7411 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7412 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7413 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7414 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7415 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7416 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7417 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7418 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7419 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7420 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7421 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7422 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7423 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7424 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7425 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7426 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7427 
7428 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7429 		u16 max_msix = le16_to_cpu(resp->max_msix);
7430 
7431 		hw_resc->max_nqs = max_msix;
7432 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7433 	}
7434 
7435 	if (BNXT_PF(bp)) {
7436 		struct bnxt_pf_info *pf = &bp->pf;
7437 
7438 		pf->vf_resv_strategy =
7439 			le16_to_cpu(resp->vf_reservation_strategy);
7440 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7441 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7442 	}
7443 hwrm_func_resc_qcaps_exit:
7444 	hwrm_req_drop(bp, req);
7445 	return rc;
7446 }
7447 
7448 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7449 {
7450 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7451 	struct hwrm_port_mac_ptp_qcfg_input *req;
7452 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7453 	bool phc_cfg;
7454 	u8 flags;
7455 	int rc;
7456 
7457 	if (bp->hwrm_spec_code < 0x10801) {
7458 		rc = -ENODEV;
7459 		goto no_ptp;
7460 	}
7461 
7462 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7463 	if (rc)
7464 		goto no_ptp;
7465 
7466 	req->port_id = cpu_to_le16(bp->pf.port_id);
7467 	resp = hwrm_req_hold(bp, req);
7468 	rc = hwrm_req_send(bp, req);
7469 	if (rc)
7470 		goto exit;
7471 
7472 	flags = resp->flags;
7473 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7474 		rc = -ENODEV;
7475 		goto exit;
7476 	}
7477 	if (!ptp) {
7478 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7479 		if (!ptp) {
7480 			rc = -ENOMEM;
7481 			goto exit;
7482 		}
7483 		ptp->bp = bp;
7484 		bp->ptp_cfg = ptp;
7485 	}
7486 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7487 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7488 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7489 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7490 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7491 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7492 	} else {
7493 		rc = -ENODEV;
7494 		goto exit;
7495 	}
7496 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7497 	rc = bnxt_ptp_init(bp, phc_cfg);
7498 	if (rc)
7499 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7500 exit:
7501 	hwrm_req_drop(bp, req);
7502 	if (!rc)
7503 		return 0;
7504 
7505 no_ptp:
7506 	bnxt_ptp_clear(bp);
7507 	kfree(ptp);
7508 	bp->ptp_cfg = NULL;
7509 	return rc;
7510 }
7511 
7512 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7513 {
7514 	struct hwrm_func_qcaps_output *resp;
7515 	struct hwrm_func_qcaps_input *req;
7516 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7517 	u32 flags, flags_ext;
7518 	int rc;
7519 
7520 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7521 	if (rc)
7522 		return rc;
7523 
7524 	req->fid = cpu_to_le16(0xffff);
7525 	resp = hwrm_req_hold(bp, req);
7526 	rc = hwrm_req_send(bp, req);
7527 	if (rc)
7528 		goto hwrm_func_qcaps_exit;
7529 
7530 	flags = le32_to_cpu(resp->flags);
7531 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7532 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7533 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7534 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7535 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7536 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7537 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7538 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7539 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7540 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7541 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7542 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7543 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7544 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7545 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7546 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7547 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7548 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7549 
7550 	flags_ext = le32_to_cpu(resp->flags_ext);
7551 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7552 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7553 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7554 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7555 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7556 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7557 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7558 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7559 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7560 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7561 
7562 	bp->tx_push_thresh = 0;
7563 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7564 	    BNXT_FW_MAJ(bp) > 217)
7565 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7566 
7567 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7568 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7569 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7570 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7571 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7572 	if (!hw_resc->max_hw_ring_grps)
7573 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7574 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7575 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7576 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7577 
7578 	if (BNXT_PF(bp)) {
7579 		struct bnxt_pf_info *pf = &bp->pf;
7580 
7581 		pf->fw_fid = le16_to_cpu(resp->fid);
7582 		pf->port_id = le16_to_cpu(resp->port_id);
7583 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7584 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7585 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7586 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7587 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7588 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7589 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7590 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7591 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7592 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7593 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7594 			bp->flags |= BNXT_FLAG_WOL_CAP;
7595 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7596 			__bnxt_hwrm_ptp_qcfg(bp);
7597 		} else {
7598 			bnxt_ptp_clear(bp);
7599 			kfree(bp->ptp_cfg);
7600 			bp->ptp_cfg = NULL;
7601 		}
7602 	} else {
7603 #ifdef CONFIG_BNXT_SRIOV
7604 		struct bnxt_vf_info *vf = &bp->vf;
7605 
7606 		vf->fw_fid = le16_to_cpu(resp->fid);
7607 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7608 #endif
7609 	}
7610 
7611 hwrm_func_qcaps_exit:
7612 	hwrm_req_drop(bp, req);
7613 	return rc;
7614 }
7615 
7616 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7617 {
7618 	struct hwrm_dbg_qcaps_output *resp;
7619 	struct hwrm_dbg_qcaps_input *req;
7620 	int rc;
7621 
7622 	bp->fw_dbg_cap = 0;
7623 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7624 		return;
7625 
7626 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7627 	if (rc)
7628 		return;
7629 
7630 	req->fid = cpu_to_le16(0xffff);
7631 	resp = hwrm_req_hold(bp, req);
7632 	rc = hwrm_req_send(bp, req);
7633 	if (rc)
7634 		goto hwrm_dbg_qcaps_exit;
7635 
7636 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7637 
7638 hwrm_dbg_qcaps_exit:
7639 	hwrm_req_drop(bp, req);
7640 }
7641 
7642 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7643 
7644 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7645 {
7646 	int rc;
7647 
7648 	rc = __bnxt_hwrm_func_qcaps(bp);
7649 	if (rc)
7650 		return rc;
7651 
7652 	bnxt_hwrm_dbg_qcaps(bp);
7653 
7654 	rc = bnxt_hwrm_queue_qportcfg(bp);
7655 	if (rc) {
7656 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7657 		return rc;
7658 	}
7659 	if (bp->hwrm_spec_code >= 0x10803) {
7660 		rc = bnxt_alloc_ctx_mem(bp);
7661 		if (rc)
7662 			return rc;
7663 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7664 		if (!rc)
7665 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7666 	}
7667 	return 0;
7668 }
7669 
7670 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7671 {
7672 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7673 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7674 	u32 flags;
7675 	int rc;
7676 
7677 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7678 		return 0;
7679 
7680 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7681 	if (rc)
7682 		return rc;
7683 
7684 	resp = hwrm_req_hold(bp, req);
7685 	rc = hwrm_req_send(bp, req);
7686 	if (rc)
7687 		goto hwrm_cfa_adv_qcaps_exit;
7688 
7689 	flags = le32_to_cpu(resp->flags);
7690 	if (flags &
7691 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7692 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7693 
7694 hwrm_cfa_adv_qcaps_exit:
7695 	hwrm_req_drop(bp, req);
7696 	return rc;
7697 }
7698 
7699 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7700 {
7701 	if (bp->fw_health)
7702 		return 0;
7703 
7704 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7705 	if (!bp->fw_health)
7706 		return -ENOMEM;
7707 
7708 	mutex_init(&bp->fw_health->lock);
7709 	return 0;
7710 }
7711 
7712 static int bnxt_alloc_fw_health(struct bnxt *bp)
7713 {
7714 	int rc;
7715 
7716 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7717 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7718 		return 0;
7719 
7720 	rc = __bnxt_alloc_fw_health(bp);
7721 	if (rc) {
7722 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7723 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7724 		return rc;
7725 	}
7726 
7727 	return 0;
7728 }
7729 
7730 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7731 {
7732 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7733 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7734 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7735 }
7736 
7737 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7738 {
7739 	struct bnxt_fw_health *fw_health = bp->fw_health;
7740 	u32 reg_type;
7741 
7742 	if (!fw_health)
7743 		return;
7744 
7745 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7746 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7747 		fw_health->status_reliable = false;
7748 
7749 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7750 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7751 		fw_health->resets_reliable = false;
7752 }
7753 
7754 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7755 {
7756 	void __iomem *hs;
7757 	u32 status_loc;
7758 	u32 reg_type;
7759 	u32 sig;
7760 
7761 	if (bp->fw_health)
7762 		bp->fw_health->status_reliable = false;
7763 
7764 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7765 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7766 
7767 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7768 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7769 		if (!bp->chip_num) {
7770 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7771 			bp->chip_num = readl(bp->bar0 +
7772 					     BNXT_FW_HEALTH_WIN_BASE +
7773 					     BNXT_GRC_REG_CHIP_NUM);
7774 		}
7775 		if (!BNXT_CHIP_P5(bp))
7776 			return;
7777 
7778 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7779 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7780 	} else {
7781 		status_loc = readl(hs + offsetof(struct hcomm_status,
7782 						 fw_status_loc));
7783 	}
7784 
7785 	if (__bnxt_alloc_fw_health(bp)) {
7786 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7787 		return;
7788 	}
7789 
7790 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7791 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7792 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7793 		__bnxt_map_fw_health_reg(bp, status_loc);
7794 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7795 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7796 	}
7797 
7798 	bp->fw_health->status_reliable = true;
7799 }
7800 
7801 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7802 {
7803 	struct bnxt_fw_health *fw_health = bp->fw_health;
7804 	u32 reg_base = 0xffffffff;
7805 	int i;
7806 
7807 	bp->fw_health->status_reliable = false;
7808 	bp->fw_health->resets_reliable = false;
7809 	/* Only pre-map the monitoring GRC registers using window 3 */
7810 	for (i = 0; i < 4; i++) {
7811 		u32 reg = fw_health->regs[i];
7812 
7813 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7814 			continue;
7815 		if (reg_base == 0xffffffff)
7816 			reg_base = reg & BNXT_GRC_BASE_MASK;
7817 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7818 			return -ERANGE;
7819 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7820 	}
7821 	bp->fw_health->status_reliable = true;
7822 	bp->fw_health->resets_reliable = true;
7823 	if (reg_base == 0xffffffff)
7824 		return 0;
7825 
7826 	__bnxt_map_fw_health_reg(bp, reg_base);
7827 	return 0;
7828 }
7829 
7830 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
7831 {
7832 	if (!bp->fw_health)
7833 		return;
7834 
7835 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
7836 		bp->fw_health->status_reliable = true;
7837 		bp->fw_health->resets_reliable = true;
7838 	} else {
7839 		bnxt_try_map_fw_health_reg(bp);
7840 	}
7841 }
7842 
7843 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7844 {
7845 	struct bnxt_fw_health *fw_health = bp->fw_health;
7846 	struct hwrm_error_recovery_qcfg_output *resp;
7847 	struct hwrm_error_recovery_qcfg_input *req;
7848 	int rc, i;
7849 
7850 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7851 		return 0;
7852 
7853 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
7854 	if (rc)
7855 		return rc;
7856 
7857 	resp = hwrm_req_hold(bp, req);
7858 	rc = hwrm_req_send(bp, req);
7859 	if (rc)
7860 		goto err_recovery_out;
7861 	fw_health->flags = le32_to_cpu(resp->flags);
7862 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7863 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7864 		rc = -EINVAL;
7865 		goto err_recovery_out;
7866 	}
7867 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7868 	fw_health->master_func_wait_dsecs =
7869 		le32_to_cpu(resp->master_func_wait_period);
7870 	fw_health->normal_func_wait_dsecs =
7871 		le32_to_cpu(resp->normal_func_wait_period);
7872 	fw_health->post_reset_wait_dsecs =
7873 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7874 	fw_health->post_reset_max_wait_dsecs =
7875 		le32_to_cpu(resp->max_bailout_time_after_reset);
7876 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7877 		le32_to_cpu(resp->fw_health_status_reg);
7878 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7879 		le32_to_cpu(resp->fw_heartbeat_reg);
7880 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7881 		le32_to_cpu(resp->fw_reset_cnt_reg);
7882 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7883 		le32_to_cpu(resp->reset_inprogress_reg);
7884 	fw_health->fw_reset_inprog_reg_mask =
7885 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7886 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7887 	if (fw_health->fw_reset_seq_cnt >= 16) {
7888 		rc = -EINVAL;
7889 		goto err_recovery_out;
7890 	}
7891 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7892 		fw_health->fw_reset_seq_regs[i] =
7893 			le32_to_cpu(resp->reset_reg[i]);
7894 		fw_health->fw_reset_seq_vals[i] =
7895 			le32_to_cpu(resp->reset_reg_val[i]);
7896 		fw_health->fw_reset_seq_delay_msec[i] =
7897 			resp->delay_after_reset[i];
7898 	}
7899 err_recovery_out:
7900 	hwrm_req_drop(bp, req);
7901 	if (!rc)
7902 		rc = bnxt_map_fw_health_regs(bp);
7903 	if (rc)
7904 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7905 	return rc;
7906 }
7907 
7908 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7909 {
7910 	struct hwrm_func_reset_input *req;
7911 	int rc;
7912 
7913 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
7914 	if (rc)
7915 		return rc;
7916 
7917 	req->enables = 0;
7918 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
7919 	return hwrm_req_send(bp, req);
7920 }
7921 
7922 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7923 {
7924 	struct hwrm_nvm_get_dev_info_output nvm_info;
7925 
7926 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7927 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7928 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7929 			 nvm_info.nvm_cfg_ver_upd);
7930 }
7931 
7932 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7933 {
7934 	struct hwrm_queue_qportcfg_output *resp;
7935 	struct hwrm_queue_qportcfg_input *req;
7936 	u8 i, j, *qptr;
7937 	bool no_rdma;
7938 	int rc = 0;
7939 
7940 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
7941 	if (rc)
7942 		return rc;
7943 
7944 	resp = hwrm_req_hold(bp, req);
7945 	rc = hwrm_req_send(bp, req);
7946 	if (rc)
7947 		goto qportcfg_exit;
7948 
7949 	if (!resp->max_configurable_queues) {
7950 		rc = -EINVAL;
7951 		goto qportcfg_exit;
7952 	}
7953 	bp->max_tc = resp->max_configurable_queues;
7954 	bp->max_lltc = resp->max_configurable_lossless_queues;
7955 	if (bp->max_tc > BNXT_MAX_QUEUE)
7956 		bp->max_tc = BNXT_MAX_QUEUE;
7957 
7958 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7959 	qptr = &resp->queue_id0;
7960 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7961 		bp->q_info[j].queue_id = *qptr;
7962 		bp->q_ids[i] = *qptr++;
7963 		bp->q_info[j].queue_profile = *qptr++;
7964 		bp->tc_to_qidx[j] = j;
7965 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7966 		    (no_rdma && BNXT_PF(bp)))
7967 			j++;
7968 	}
7969 	bp->max_q = bp->max_tc;
7970 	bp->max_tc = max_t(u8, j, 1);
7971 
7972 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7973 		bp->max_tc = 1;
7974 
7975 	if (bp->max_lltc > bp->max_tc)
7976 		bp->max_lltc = bp->max_tc;
7977 
7978 qportcfg_exit:
7979 	hwrm_req_drop(bp, req);
7980 	return rc;
7981 }
7982 
7983 static int bnxt_hwrm_poll(struct bnxt *bp)
7984 {
7985 	struct hwrm_ver_get_input *req;
7986 	int rc;
7987 
7988 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7989 	if (rc)
7990 		return rc;
7991 
7992 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7993 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
7994 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7995 
7996 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
7997 	rc = hwrm_req_send(bp, req);
7998 	return rc;
7999 }
8000 
8001 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8002 {
8003 	struct hwrm_ver_get_output *resp;
8004 	struct hwrm_ver_get_input *req;
8005 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8006 	u32 dev_caps_cfg, hwrm_ver;
8007 	int rc, len;
8008 
8009 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8010 	if (rc)
8011 		return rc;
8012 
8013 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8014 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8015 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8016 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8017 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8018 
8019 	resp = hwrm_req_hold(bp, req);
8020 	rc = hwrm_req_send(bp, req);
8021 	if (rc)
8022 		goto hwrm_ver_get_exit;
8023 
8024 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8025 
8026 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8027 			     resp->hwrm_intf_min_8b << 8 |
8028 			     resp->hwrm_intf_upd_8b;
8029 	if (resp->hwrm_intf_maj_8b < 1) {
8030 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8031 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8032 			    resp->hwrm_intf_upd_8b);
8033 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8034 	}
8035 
8036 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8037 			HWRM_VERSION_UPDATE;
8038 
8039 	if (bp->hwrm_spec_code > hwrm_ver)
8040 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8041 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8042 			 HWRM_VERSION_UPDATE);
8043 	else
8044 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8045 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8046 			 resp->hwrm_intf_upd_8b);
8047 
8048 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8049 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8050 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8051 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8052 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8053 		len = FW_VER_STR_LEN;
8054 	} else {
8055 		fw_maj = resp->hwrm_fw_maj_8b;
8056 		fw_min = resp->hwrm_fw_min_8b;
8057 		fw_bld = resp->hwrm_fw_bld_8b;
8058 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8059 		len = BC_HWRM_STR_LEN;
8060 	}
8061 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8062 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8063 		 fw_rsv);
8064 
8065 	if (strlen(resp->active_pkg_name)) {
8066 		int fw_ver_len = strlen(bp->fw_ver_str);
8067 
8068 		snprintf(bp->fw_ver_str + fw_ver_len,
8069 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8070 			 resp->active_pkg_name);
8071 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8072 	}
8073 
8074 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8075 	if (!bp->hwrm_cmd_timeout)
8076 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8077 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8078 	if (!bp->hwrm_cmd_max_timeout)
8079 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8080 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8081 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8082 			    bp->hwrm_cmd_max_timeout / 1000);
8083 
8084 	if (resp->hwrm_intf_maj_8b >= 1) {
8085 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8086 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8087 	}
8088 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8089 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8090 
8091 	bp->chip_num = le16_to_cpu(resp->chip_num);
8092 	bp->chip_rev = resp->chip_rev;
8093 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8094 	    !resp->chip_metal)
8095 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8096 
8097 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8098 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8099 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8100 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8101 
8102 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8103 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8104 
8105 	if (dev_caps_cfg &
8106 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8107 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8108 
8109 	if (dev_caps_cfg &
8110 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8111 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8112 
8113 	if (dev_caps_cfg &
8114 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8115 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8116 
8117 hwrm_ver_get_exit:
8118 	hwrm_req_drop(bp, req);
8119 	return rc;
8120 }
8121 
8122 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8123 {
8124 	struct hwrm_fw_set_time_input *req;
8125 	struct tm tm;
8126 	time64_t now = ktime_get_real_seconds();
8127 	int rc;
8128 
8129 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8130 	    bp->hwrm_spec_code < 0x10400)
8131 		return -EOPNOTSUPP;
8132 
8133 	time64_to_tm(now, 0, &tm);
8134 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8135 	if (rc)
8136 		return rc;
8137 
8138 	req->year = cpu_to_le16(1900 + tm.tm_year);
8139 	req->month = 1 + tm.tm_mon;
8140 	req->day = tm.tm_mday;
8141 	req->hour = tm.tm_hour;
8142 	req->minute = tm.tm_min;
8143 	req->second = tm.tm_sec;
8144 	return hwrm_req_send(bp, req);
8145 }
8146 
8147 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8148 {
8149 	u64 sw_tmp;
8150 
8151 	hw &= mask;
8152 	sw_tmp = (*sw & ~mask) | hw;
8153 	if (hw < (*sw & mask))
8154 		sw_tmp += mask + 1;
8155 	WRITE_ONCE(*sw, sw_tmp);
8156 }
8157 
8158 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8159 				    int count, bool ignore_zero)
8160 {
8161 	int i;
8162 
8163 	for (i = 0; i < count; i++) {
8164 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8165 
8166 		if (ignore_zero && !hw)
8167 			continue;
8168 
8169 		if (masks[i] == -1ULL)
8170 			sw_stats[i] = hw;
8171 		else
8172 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8173 	}
8174 }
8175 
8176 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8177 {
8178 	if (!stats->hw_stats)
8179 		return;
8180 
8181 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8182 				stats->hw_masks, stats->len / 8, false);
8183 }
8184 
8185 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8186 {
8187 	struct bnxt_stats_mem *ring0_stats;
8188 	bool ignore_zero = false;
8189 	int i;
8190 
8191 	/* Chip bug.  Counter intermittently becomes 0. */
8192 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8193 		ignore_zero = true;
8194 
8195 	for (i = 0; i < bp->cp_nr_rings; i++) {
8196 		struct bnxt_napi *bnapi = bp->bnapi[i];
8197 		struct bnxt_cp_ring_info *cpr;
8198 		struct bnxt_stats_mem *stats;
8199 
8200 		cpr = &bnapi->cp_ring;
8201 		stats = &cpr->stats;
8202 		if (!i)
8203 			ring0_stats = stats;
8204 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8205 					ring0_stats->hw_masks,
8206 					ring0_stats->len / 8, ignore_zero);
8207 	}
8208 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8209 		struct bnxt_stats_mem *stats = &bp->port_stats;
8210 		__le64 *hw_stats = stats->hw_stats;
8211 		u64 *sw_stats = stats->sw_stats;
8212 		u64 *masks = stats->hw_masks;
8213 		int cnt;
8214 
8215 		cnt = sizeof(struct rx_port_stats) / 8;
8216 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8217 
8218 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8219 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8220 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8221 		cnt = sizeof(struct tx_port_stats) / 8;
8222 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8223 	}
8224 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8225 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8226 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8227 	}
8228 }
8229 
8230 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8231 {
8232 	struct hwrm_port_qstats_input *req;
8233 	struct bnxt_pf_info *pf = &bp->pf;
8234 	int rc;
8235 
8236 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8237 		return 0;
8238 
8239 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8240 		return -EOPNOTSUPP;
8241 
8242 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8243 	if (rc)
8244 		return rc;
8245 
8246 	req->flags = flags;
8247 	req->port_id = cpu_to_le16(pf->port_id);
8248 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8249 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8250 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8251 	return hwrm_req_send(bp, req);
8252 }
8253 
8254 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8255 {
8256 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8257 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8258 	struct hwrm_port_qstats_ext_output *resp_qs;
8259 	struct hwrm_port_qstats_ext_input *req_qs;
8260 	struct bnxt_pf_info *pf = &bp->pf;
8261 	u32 tx_stat_size;
8262 	int rc;
8263 
8264 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8265 		return 0;
8266 
8267 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8268 		return -EOPNOTSUPP;
8269 
8270 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8271 	if (rc)
8272 		return rc;
8273 
8274 	req_qs->flags = flags;
8275 	req_qs->port_id = cpu_to_le16(pf->port_id);
8276 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8277 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8278 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8279 		       sizeof(struct tx_port_stats_ext) : 0;
8280 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8281 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8282 	resp_qs = hwrm_req_hold(bp, req_qs);
8283 	rc = hwrm_req_send(bp, req_qs);
8284 	if (!rc) {
8285 		bp->fw_rx_stats_ext_size =
8286 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8287 		if (BNXT_FW_MAJ(bp) < 220 &&
8288 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8289 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8290 
8291 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8292 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8293 	} else {
8294 		bp->fw_rx_stats_ext_size = 0;
8295 		bp->fw_tx_stats_ext_size = 0;
8296 	}
8297 	hwrm_req_drop(bp, req_qs);
8298 
8299 	if (flags)
8300 		return rc;
8301 
8302 	if (bp->fw_tx_stats_ext_size <=
8303 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8304 		bp->pri2cos_valid = 0;
8305 		return rc;
8306 	}
8307 
8308 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8309 	if (rc)
8310 		return rc;
8311 
8312 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8313 
8314 	resp_qc = hwrm_req_hold(bp, req_qc);
8315 	rc = hwrm_req_send(bp, req_qc);
8316 	if (!rc) {
8317 		u8 *pri2cos;
8318 		int i, j;
8319 
8320 		pri2cos = &resp_qc->pri0_cos_queue_id;
8321 		for (i = 0; i < 8; i++) {
8322 			u8 queue_id = pri2cos[i];
8323 			u8 queue_idx;
8324 
8325 			/* Per port queue IDs start from 0, 10, 20, etc */
8326 			queue_idx = queue_id % 10;
8327 			if (queue_idx > BNXT_MAX_QUEUE) {
8328 				bp->pri2cos_valid = false;
8329 				hwrm_req_drop(bp, req_qc);
8330 				return rc;
8331 			}
8332 			for (j = 0; j < bp->max_q; j++) {
8333 				if (bp->q_ids[j] == queue_id)
8334 					bp->pri2cos_idx[i] = queue_idx;
8335 			}
8336 		}
8337 		bp->pri2cos_valid = true;
8338 	}
8339 	hwrm_req_drop(bp, req_qc);
8340 
8341 	return rc;
8342 }
8343 
8344 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8345 {
8346 	bnxt_hwrm_tunnel_dst_port_free(bp,
8347 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8348 	bnxt_hwrm_tunnel_dst_port_free(bp,
8349 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8350 }
8351 
8352 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8353 {
8354 	int rc, i;
8355 	u32 tpa_flags = 0;
8356 
8357 	if (set_tpa)
8358 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8359 	else if (BNXT_NO_FW_ACCESS(bp))
8360 		return 0;
8361 	for (i = 0; i < bp->nr_vnics; i++) {
8362 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8363 		if (rc) {
8364 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8365 				   i, rc);
8366 			return rc;
8367 		}
8368 	}
8369 	return 0;
8370 }
8371 
8372 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8373 {
8374 	int i;
8375 
8376 	for (i = 0; i < bp->nr_vnics; i++)
8377 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8378 }
8379 
8380 static void bnxt_clear_vnic(struct bnxt *bp)
8381 {
8382 	if (!bp->vnic_info)
8383 		return;
8384 
8385 	bnxt_hwrm_clear_vnic_filter(bp);
8386 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8387 		/* clear all RSS setting before free vnic ctx */
8388 		bnxt_hwrm_clear_vnic_rss(bp);
8389 		bnxt_hwrm_vnic_ctx_free(bp);
8390 	}
8391 	/* before free the vnic, undo the vnic tpa settings */
8392 	if (bp->flags & BNXT_FLAG_TPA)
8393 		bnxt_set_tpa(bp, false);
8394 	bnxt_hwrm_vnic_free(bp);
8395 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8396 		bnxt_hwrm_vnic_ctx_free(bp);
8397 }
8398 
8399 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8400 				    bool irq_re_init)
8401 {
8402 	bnxt_clear_vnic(bp);
8403 	bnxt_hwrm_ring_free(bp, close_path);
8404 	bnxt_hwrm_ring_grp_free(bp);
8405 	if (irq_re_init) {
8406 		bnxt_hwrm_stat_ctx_free(bp);
8407 		bnxt_hwrm_free_tunnel_ports(bp);
8408 	}
8409 }
8410 
8411 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8412 {
8413 	struct hwrm_func_cfg_input *req;
8414 	u8 evb_mode;
8415 	int rc;
8416 
8417 	if (br_mode == BRIDGE_MODE_VEB)
8418 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8419 	else if (br_mode == BRIDGE_MODE_VEPA)
8420 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8421 	else
8422 		return -EINVAL;
8423 
8424 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8425 	if (rc)
8426 		return rc;
8427 
8428 	req->fid = cpu_to_le16(0xffff);
8429 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8430 	req->evb_mode = evb_mode;
8431 	return hwrm_req_send(bp, req);
8432 }
8433 
8434 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8435 {
8436 	struct hwrm_func_cfg_input *req;
8437 	int rc;
8438 
8439 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8440 		return 0;
8441 
8442 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8443 	if (rc)
8444 		return rc;
8445 
8446 	req->fid = cpu_to_le16(0xffff);
8447 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8448 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8449 	if (size == 128)
8450 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8451 
8452 	return hwrm_req_send(bp, req);
8453 }
8454 
8455 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8456 {
8457 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8458 	int rc;
8459 
8460 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8461 		goto skip_rss_ctx;
8462 
8463 	/* allocate context for vnic */
8464 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8465 	if (rc) {
8466 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8467 			   vnic_id, rc);
8468 		goto vnic_setup_err;
8469 	}
8470 	bp->rsscos_nr_ctxs++;
8471 
8472 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8473 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8474 		if (rc) {
8475 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8476 				   vnic_id, rc);
8477 			goto vnic_setup_err;
8478 		}
8479 		bp->rsscos_nr_ctxs++;
8480 	}
8481 
8482 skip_rss_ctx:
8483 	/* configure default vnic, ring grp */
8484 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8485 	if (rc) {
8486 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8487 			   vnic_id, rc);
8488 		goto vnic_setup_err;
8489 	}
8490 
8491 	/* Enable RSS hashing on vnic */
8492 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8493 	if (rc) {
8494 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8495 			   vnic_id, rc);
8496 		goto vnic_setup_err;
8497 	}
8498 
8499 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8500 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8501 		if (rc) {
8502 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8503 				   vnic_id, rc);
8504 		}
8505 	}
8506 
8507 vnic_setup_err:
8508 	return rc;
8509 }
8510 
8511 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8512 {
8513 	int rc, i, nr_ctxs;
8514 
8515 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8516 	for (i = 0; i < nr_ctxs; i++) {
8517 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8518 		if (rc) {
8519 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8520 				   vnic_id, i, rc);
8521 			break;
8522 		}
8523 		bp->rsscos_nr_ctxs++;
8524 	}
8525 	if (i < nr_ctxs)
8526 		return -ENOMEM;
8527 
8528 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8529 	if (rc) {
8530 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8531 			   vnic_id, rc);
8532 		return rc;
8533 	}
8534 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8535 	if (rc) {
8536 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8537 			   vnic_id, rc);
8538 		return rc;
8539 	}
8540 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8541 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8542 		if (rc) {
8543 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8544 				   vnic_id, rc);
8545 		}
8546 	}
8547 	return rc;
8548 }
8549 
8550 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8551 {
8552 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8553 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8554 	else
8555 		return __bnxt_setup_vnic(bp, vnic_id);
8556 }
8557 
8558 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8559 {
8560 #ifdef CONFIG_RFS_ACCEL
8561 	int i, rc = 0;
8562 
8563 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8564 		return 0;
8565 
8566 	for (i = 0; i < bp->rx_nr_rings; i++) {
8567 		struct bnxt_vnic_info *vnic;
8568 		u16 vnic_id = i + 1;
8569 		u16 ring_id = i;
8570 
8571 		if (vnic_id >= bp->nr_vnics)
8572 			break;
8573 
8574 		vnic = &bp->vnic_info[vnic_id];
8575 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8576 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8577 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8578 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8579 		if (rc) {
8580 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8581 				   vnic_id, rc);
8582 			break;
8583 		}
8584 		rc = bnxt_setup_vnic(bp, vnic_id);
8585 		if (rc)
8586 			break;
8587 	}
8588 	return rc;
8589 #else
8590 	return 0;
8591 #endif
8592 }
8593 
8594 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8595 static bool bnxt_promisc_ok(struct bnxt *bp)
8596 {
8597 #ifdef CONFIG_BNXT_SRIOV
8598 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8599 		return false;
8600 #endif
8601 	return true;
8602 }
8603 
8604 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8605 {
8606 	unsigned int rc = 0;
8607 
8608 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8609 	if (rc) {
8610 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8611 			   rc);
8612 		return rc;
8613 	}
8614 
8615 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8616 	if (rc) {
8617 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8618 			   rc);
8619 		return rc;
8620 	}
8621 	return rc;
8622 }
8623 
8624 static int bnxt_cfg_rx_mode(struct bnxt *);
8625 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8626 
8627 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8628 {
8629 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8630 	int rc = 0;
8631 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8632 
8633 	if (irq_re_init) {
8634 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8635 		if (rc) {
8636 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8637 				   rc);
8638 			goto err_out;
8639 		}
8640 	}
8641 
8642 	rc = bnxt_hwrm_ring_alloc(bp);
8643 	if (rc) {
8644 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8645 		goto err_out;
8646 	}
8647 
8648 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8649 	if (rc) {
8650 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8651 		goto err_out;
8652 	}
8653 
8654 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8655 		rx_nr_rings--;
8656 
8657 	/* default vnic 0 */
8658 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8659 	if (rc) {
8660 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8661 		goto err_out;
8662 	}
8663 
8664 	rc = bnxt_setup_vnic(bp, 0);
8665 	if (rc)
8666 		goto err_out;
8667 
8668 	if (bp->flags & BNXT_FLAG_RFS) {
8669 		rc = bnxt_alloc_rfs_vnics(bp);
8670 		if (rc)
8671 			goto err_out;
8672 	}
8673 
8674 	if (bp->flags & BNXT_FLAG_TPA) {
8675 		rc = bnxt_set_tpa(bp, true);
8676 		if (rc)
8677 			goto err_out;
8678 	}
8679 
8680 	if (BNXT_VF(bp))
8681 		bnxt_update_vf_mac(bp);
8682 
8683 	/* Filter for default vnic 0 */
8684 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8685 	if (rc) {
8686 		if (BNXT_VF(bp) && rc == -ENODEV)
8687 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8688 		else
8689 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8690 		goto err_out;
8691 	}
8692 	vnic->uc_filter_count = 1;
8693 
8694 	vnic->rx_mask = 0;
8695 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8696 		goto skip_rx_mask;
8697 
8698 	if (bp->dev->flags & IFF_BROADCAST)
8699 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8700 
8701 	if (bp->dev->flags & IFF_PROMISC)
8702 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8703 
8704 	if (bp->dev->flags & IFF_ALLMULTI) {
8705 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8706 		vnic->mc_list_count = 0;
8707 	} else if (bp->dev->flags & IFF_MULTICAST) {
8708 		u32 mask = 0;
8709 
8710 		bnxt_mc_list_updated(bp, &mask);
8711 		vnic->rx_mask |= mask;
8712 	}
8713 
8714 	rc = bnxt_cfg_rx_mode(bp);
8715 	if (rc)
8716 		goto err_out;
8717 
8718 skip_rx_mask:
8719 	rc = bnxt_hwrm_set_coal(bp);
8720 	if (rc)
8721 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8722 				rc);
8723 
8724 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8725 		rc = bnxt_setup_nitroa0_vnic(bp);
8726 		if (rc)
8727 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8728 				   rc);
8729 	}
8730 
8731 	if (BNXT_VF(bp)) {
8732 		bnxt_hwrm_func_qcfg(bp);
8733 		netdev_update_features(bp->dev);
8734 	}
8735 
8736 	return 0;
8737 
8738 err_out:
8739 	bnxt_hwrm_resource_free(bp, 0, true);
8740 
8741 	return rc;
8742 }
8743 
8744 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8745 {
8746 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8747 	return 0;
8748 }
8749 
8750 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8751 {
8752 	bnxt_init_cp_rings(bp);
8753 	bnxt_init_rx_rings(bp);
8754 	bnxt_init_tx_rings(bp);
8755 	bnxt_init_ring_grps(bp, irq_re_init);
8756 	bnxt_init_vnics(bp);
8757 
8758 	return bnxt_init_chip(bp, irq_re_init);
8759 }
8760 
8761 static int bnxt_set_real_num_queues(struct bnxt *bp)
8762 {
8763 	int rc;
8764 	struct net_device *dev = bp->dev;
8765 
8766 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8767 					  bp->tx_nr_rings_xdp);
8768 	if (rc)
8769 		return rc;
8770 
8771 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8772 	if (rc)
8773 		return rc;
8774 
8775 #ifdef CONFIG_RFS_ACCEL
8776 	if (bp->flags & BNXT_FLAG_RFS)
8777 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8778 #endif
8779 
8780 	return rc;
8781 }
8782 
8783 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8784 			   bool shared)
8785 {
8786 	int _rx = *rx, _tx = *tx;
8787 
8788 	if (shared) {
8789 		*rx = min_t(int, _rx, max);
8790 		*tx = min_t(int, _tx, max);
8791 	} else {
8792 		if (max < 2)
8793 			return -ENOMEM;
8794 
8795 		while (_rx + _tx > max) {
8796 			if (_rx > _tx && _rx > 1)
8797 				_rx--;
8798 			else if (_tx > 1)
8799 				_tx--;
8800 		}
8801 		*rx = _rx;
8802 		*tx = _tx;
8803 	}
8804 	return 0;
8805 }
8806 
8807 static void bnxt_setup_msix(struct bnxt *bp)
8808 {
8809 	const int len = sizeof(bp->irq_tbl[0].name);
8810 	struct net_device *dev = bp->dev;
8811 	int tcs, i;
8812 
8813 	tcs = netdev_get_num_tc(dev);
8814 	if (tcs) {
8815 		int i, off, count;
8816 
8817 		for (i = 0; i < tcs; i++) {
8818 			count = bp->tx_nr_rings_per_tc;
8819 			off = i * count;
8820 			netdev_set_tc_queue(dev, i, count, off);
8821 		}
8822 	}
8823 
8824 	for (i = 0; i < bp->cp_nr_rings; i++) {
8825 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8826 		char *attr;
8827 
8828 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8829 			attr = "TxRx";
8830 		else if (i < bp->rx_nr_rings)
8831 			attr = "rx";
8832 		else
8833 			attr = "tx";
8834 
8835 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8836 			 attr, i);
8837 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8838 	}
8839 }
8840 
8841 static void bnxt_setup_inta(struct bnxt *bp)
8842 {
8843 	const int len = sizeof(bp->irq_tbl[0].name);
8844 
8845 	if (netdev_get_num_tc(bp->dev))
8846 		netdev_reset_tc(bp->dev);
8847 
8848 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8849 		 0);
8850 	bp->irq_tbl[0].handler = bnxt_inta;
8851 }
8852 
8853 static int bnxt_init_int_mode(struct bnxt *bp);
8854 
8855 static int bnxt_setup_int_mode(struct bnxt *bp)
8856 {
8857 	int rc;
8858 
8859 	if (!bp->irq_tbl) {
8860 		rc = bnxt_init_int_mode(bp);
8861 		if (rc || !bp->irq_tbl)
8862 			return rc ?: -ENODEV;
8863 	}
8864 
8865 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8866 		bnxt_setup_msix(bp);
8867 	else
8868 		bnxt_setup_inta(bp);
8869 
8870 	rc = bnxt_set_real_num_queues(bp);
8871 	return rc;
8872 }
8873 
8874 #ifdef CONFIG_RFS_ACCEL
8875 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8876 {
8877 	return bp->hw_resc.max_rsscos_ctxs;
8878 }
8879 
8880 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8881 {
8882 	return bp->hw_resc.max_vnics;
8883 }
8884 #endif
8885 
8886 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8887 {
8888 	return bp->hw_resc.max_stat_ctxs;
8889 }
8890 
8891 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8892 {
8893 	return bp->hw_resc.max_cp_rings;
8894 }
8895 
8896 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8897 {
8898 	unsigned int cp = bp->hw_resc.max_cp_rings;
8899 
8900 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8901 		cp -= bnxt_get_ulp_msix_num(bp);
8902 
8903 	return cp;
8904 }
8905 
8906 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8907 {
8908 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8909 
8910 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8911 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8912 
8913 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8914 }
8915 
8916 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8917 {
8918 	bp->hw_resc.max_irqs = max_irqs;
8919 }
8920 
8921 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8922 {
8923 	unsigned int cp;
8924 
8925 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8926 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8927 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8928 	else
8929 		return cp - bp->cp_nr_rings;
8930 }
8931 
8932 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8933 {
8934 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8935 }
8936 
8937 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8938 {
8939 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8940 	int max_irq = bnxt_get_max_func_irqs(bp);
8941 	int total_req = bp->cp_nr_rings + num;
8942 	int max_idx, avail_msix;
8943 
8944 	max_idx = bp->total_irqs;
8945 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8946 		max_idx = min_t(int, bp->total_irqs, max_cp);
8947 	avail_msix = max_idx - bp->cp_nr_rings;
8948 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8949 		return avail_msix;
8950 
8951 	if (max_irq < total_req) {
8952 		num = max_irq - bp->cp_nr_rings;
8953 		if (num <= 0)
8954 			return 0;
8955 	}
8956 	return num;
8957 }
8958 
8959 static int bnxt_get_num_msix(struct bnxt *bp)
8960 {
8961 	if (!BNXT_NEW_RM(bp))
8962 		return bnxt_get_max_func_irqs(bp);
8963 
8964 	return bnxt_nq_rings_in_use(bp);
8965 }
8966 
8967 static int bnxt_init_msix(struct bnxt *bp)
8968 {
8969 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8970 	struct msix_entry *msix_ent;
8971 
8972 	total_vecs = bnxt_get_num_msix(bp);
8973 	max = bnxt_get_max_func_irqs(bp);
8974 	if (total_vecs > max)
8975 		total_vecs = max;
8976 
8977 	if (!total_vecs)
8978 		return 0;
8979 
8980 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8981 	if (!msix_ent)
8982 		return -ENOMEM;
8983 
8984 	for (i = 0; i < total_vecs; i++) {
8985 		msix_ent[i].entry = i;
8986 		msix_ent[i].vector = 0;
8987 	}
8988 
8989 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8990 		min = 2;
8991 
8992 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8993 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8994 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8995 		rc = -ENODEV;
8996 		goto msix_setup_exit;
8997 	}
8998 
8999 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9000 	if (bp->irq_tbl) {
9001 		for (i = 0; i < total_vecs; i++)
9002 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9003 
9004 		bp->total_irqs = total_vecs;
9005 		/* Trim rings based upon num of vectors allocated */
9006 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9007 				     total_vecs - ulp_msix, min == 1);
9008 		if (rc)
9009 			goto msix_setup_exit;
9010 
9011 		bp->cp_nr_rings = (min == 1) ?
9012 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9013 				  bp->tx_nr_rings + bp->rx_nr_rings;
9014 
9015 	} else {
9016 		rc = -ENOMEM;
9017 		goto msix_setup_exit;
9018 	}
9019 	bp->flags |= BNXT_FLAG_USING_MSIX;
9020 	kfree(msix_ent);
9021 	return 0;
9022 
9023 msix_setup_exit:
9024 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9025 	kfree(bp->irq_tbl);
9026 	bp->irq_tbl = NULL;
9027 	pci_disable_msix(bp->pdev);
9028 	kfree(msix_ent);
9029 	return rc;
9030 }
9031 
9032 static int bnxt_init_inta(struct bnxt *bp)
9033 {
9034 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9035 	if (!bp->irq_tbl)
9036 		return -ENOMEM;
9037 
9038 	bp->total_irqs = 1;
9039 	bp->rx_nr_rings = 1;
9040 	bp->tx_nr_rings = 1;
9041 	bp->cp_nr_rings = 1;
9042 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9043 	bp->irq_tbl[0].vector = bp->pdev->irq;
9044 	return 0;
9045 }
9046 
9047 static int bnxt_init_int_mode(struct bnxt *bp)
9048 {
9049 	int rc = -ENODEV;
9050 
9051 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9052 		rc = bnxt_init_msix(bp);
9053 
9054 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9055 		/* fallback to INTA */
9056 		rc = bnxt_init_inta(bp);
9057 	}
9058 	return rc;
9059 }
9060 
9061 static void bnxt_clear_int_mode(struct bnxt *bp)
9062 {
9063 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9064 		pci_disable_msix(bp->pdev);
9065 
9066 	kfree(bp->irq_tbl);
9067 	bp->irq_tbl = NULL;
9068 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9069 }
9070 
9071 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9072 {
9073 	int tcs = netdev_get_num_tc(bp->dev);
9074 	bool irq_cleared = false;
9075 	int rc;
9076 
9077 	if (!bnxt_need_reserve_rings(bp))
9078 		return 0;
9079 
9080 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9081 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9082 		bnxt_ulp_irq_stop(bp);
9083 		bnxt_clear_int_mode(bp);
9084 		irq_cleared = true;
9085 	}
9086 	rc = __bnxt_reserve_rings(bp);
9087 	if (irq_cleared) {
9088 		if (!rc)
9089 			rc = bnxt_init_int_mode(bp);
9090 		bnxt_ulp_irq_restart(bp, rc);
9091 	}
9092 	if (rc) {
9093 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9094 		return rc;
9095 	}
9096 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9097 		netdev_err(bp->dev, "tx ring reservation failure\n");
9098 		netdev_reset_tc(bp->dev);
9099 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9100 		return -ENOMEM;
9101 	}
9102 	return 0;
9103 }
9104 
9105 static void bnxt_free_irq(struct bnxt *bp)
9106 {
9107 	struct bnxt_irq *irq;
9108 	int i;
9109 
9110 #ifdef CONFIG_RFS_ACCEL
9111 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9112 	bp->dev->rx_cpu_rmap = NULL;
9113 #endif
9114 	if (!bp->irq_tbl || !bp->bnapi)
9115 		return;
9116 
9117 	for (i = 0; i < bp->cp_nr_rings; i++) {
9118 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9119 
9120 		irq = &bp->irq_tbl[map_idx];
9121 		if (irq->requested) {
9122 			if (irq->have_cpumask) {
9123 				irq_set_affinity_hint(irq->vector, NULL);
9124 				free_cpumask_var(irq->cpu_mask);
9125 				irq->have_cpumask = 0;
9126 			}
9127 			free_irq(irq->vector, bp->bnapi[i]);
9128 		}
9129 
9130 		irq->requested = 0;
9131 	}
9132 }
9133 
9134 static int bnxt_request_irq(struct bnxt *bp)
9135 {
9136 	int i, j, rc = 0;
9137 	unsigned long flags = 0;
9138 #ifdef CONFIG_RFS_ACCEL
9139 	struct cpu_rmap *rmap;
9140 #endif
9141 
9142 	rc = bnxt_setup_int_mode(bp);
9143 	if (rc) {
9144 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9145 			   rc);
9146 		return rc;
9147 	}
9148 #ifdef CONFIG_RFS_ACCEL
9149 	rmap = bp->dev->rx_cpu_rmap;
9150 #endif
9151 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9152 		flags = IRQF_SHARED;
9153 
9154 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9155 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9156 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9157 
9158 #ifdef CONFIG_RFS_ACCEL
9159 		if (rmap && bp->bnapi[i]->rx_ring) {
9160 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9161 			if (rc)
9162 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9163 					    j);
9164 			j++;
9165 		}
9166 #endif
9167 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9168 				 bp->bnapi[i]);
9169 		if (rc)
9170 			break;
9171 
9172 		irq->requested = 1;
9173 
9174 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9175 			int numa_node = dev_to_node(&bp->pdev->dev);
9176 
9177 			irq->have_cpumask = 1;
9178 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9179 					irq->cpu_mask);
9180 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9181 			if (rc) {
9182 				netdev_warn(bp->dev,
9183 					    "Set affinity failed, IRQ = %d\n",
9184 					    irq->vector);
9185 				break;
9186 			}
9187 		}
9188 	}
9189 	return rc;
9190 }
9191 
9192 static void bnxt_del_napi(struct bnxt *bp)
9193 {
9194 	int i;
9195 
9196 	if (!bp->bnapi)
9197 		return;
9198 
9199 	for (i = 0; i < bp->cp_nr_rings; i++) {
9200 		struct bnxt_napi *bnapi = bp->bnapi[i];
9201 
9202 		__netif_napi_del(&bnapi->napi);
9203 	}
9204 	/* We called __netif_napi_del(), we need
9205 	 * to respect an RCU grace period before freeing napi structures.
9206 	 */
9207 	synchronize_net();
9208 }
9209 
9210 static void bnxt_init_napi(struct bnxt *bp)
9211 {
9212 	int i;
9213 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9214 	struct bnxt_napi *bnapi;
9215 
9216 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9217 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9218 
9219 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9220 			poll_fn = bnxt_poll_p5;
9221 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9222 			cp_nr_rings--;
9223 		for (i = 0; i < cp_nr_rings; i++) {
9224 			bnapi = bp->bnapi[i];
9225 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
9226 		}
9227 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9228 			bnapi = bp->bnapi[cp_nr_rings];
9229 			netif_napi_add(bp->dev, &bnapi->napi,
9230 				       bnxt_poll_nitroa0, 64);
9231 		}
9232 	} else {
9233 		bnapi = bp->bnapi[0];
9234 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9235 	}
9236 }
9237 
9238 static void bnxt_disable_napi(struct bnxt *bp)
9239 {
9240 	int i;
9241 
9242 	if (!bp->bnapi ||
9243 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9244 		return;
9245 
9246 	for (i = 0; i < bp->cp_nr_rings; i++) {
9247 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9248 
9249 		napi_disable(&bp->bnapi[i]->napi);
9250 		if (bp->bnapi[i]->rx_ring)
9251 			cancel_work_sync(&cpr->dim.work);
9252 	}
9253 }
9254 
9255 static void bnxt_enable_napi(struct bnxt *bp)
9256 {
9257 	int i;
9258 
9259 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9260 	for (i = 0; i < bp->cp_nr_rings; i++) {
9261 		struct bnxt_napi *bnapi = bp->bnapi[i];
9262 		struct bnxt_cp_ring_info *cpr;
9263 
9264 		cpr = &bnapi->cp_ring;
9265 		if (bnapi->in_reset)
9266 			cpr->sw_stats.rx.rx_resets++;
9267 		bnapi->in_reset = false;
9268 
9269 		if (bnapi->rx_ring) {
9270 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9271 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9272 		}
9273 		napi_enable(&bnapi->napi);
9274 	}
9275 }
9276 
9277 void bnxt_tx_disable(struct bnxt *bp)
9278 {
9279 	int i;
9280 	struct bnxt_tx_ring_info *txr;
9281 
9282 	if (bp->tx_ring) {
9283 		for (i = 0; i < bp->tx_nr_rings; i++) {
9284 			txr = &bp->tx_ring[i];
9285 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9286 		}
9287 	}
9288 	/* Make sure napi polls see @dev_state change */
9289 	synchronize_net();
9290 	/* Drop carrier first to prevent TX timeout */
9291 	netif_carrier_off(bp->dev);
9292 	/* Stop all TX queues */
9293 	netif_tx_disable(bp->dev);
9294 }
9295 
9296 void bnxt_tx_enable(struct bnxt *bp)
9297 {
9298 	int i;
9299 	struct bnxt_tx_ring_info *txr;
9300 
9301 	for (i = 0; i < bp->tx_nr_rings; i++) {
9302 		txr = &bp->tx_ring[i];
9303 		WRITE_ONCE(txr->dev_state, 0);
9304 	}
9305 	/* Make sure napi polls see @dev_state change */
9306 	synchronize_net();
9307 	netif_tx_wake_all_queues(bp->dev);
9308 	if (BNXT_LINK_IS_UP(bp))
9309 		netif_carrier_on(bp->dev);
9310 }
9311 
9312 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9313 {
9314 	u8 active_fec = link_info->active_fec_sig_mode &
9315 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9316 
9317 	switch (active_fec) {
9318 	default:
9319 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9320 		return "None";
9321 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9322 		return "Clause 74 BaseR";
9323 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9324 		return "Clause 91 RS(528,514)";
9325 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9326 		return "Clause 91 RS544_1XN";
9327 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9328 		return "Clause 91 RS(544,514)";
9329 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9330 		return "Clause 91 RS272_1XN";
9331 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9332 		return "Clause 91 RS(272,257)";
9333 	}
9334 }
9335 
9336 void bnxt_report_link(struct bnxt *bp)
9337 {
9338 	if (BNXT_LINK_IS_UP(bp)) {
9339 		const char *signal = "";
9340 		const char *flow_ctrl;
9341 		const char *duplex;
9342 		u32 speed;
9343 		u16 fec;
9344 
9345 		netif_carrier_on(bp->dev);
9346 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9347 		if (speed == SPEED_UNKNOWN) {
9348 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9349 			return;
9350 		}
9351 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9352 			duplex = "full";
9353 		else
9354 			duplex = "half";
9355 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9356 			flow_ctrl = "ON - receive & transmit";
9357 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9358 			flow_ctrl = "ON - transmit";
9359 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9360 			flow_ctrl = "ON - receive";
9361 		else
9362 			flow_ctrl = "none";
9363 		if (bp->link_info.phy_qcfg_resp.option_flags &
9364 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9365 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9366 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9367 			switch (sig_mode) {
9368 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9369 				signal = "(NRZ) ";
9370 				break;
9371 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9372 				signal = "(PAM4) ";
9373 				break;
9374 			default:
9375 				break;
9376 			}
9377 		}
9378 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9379 			    speed, signal, duplex, flow_ctrl);
9380 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9381 			netdev_info(bp->dev, "EEE is %s\n",
9382 				    bp->eee.eee_active ? "active" :
9383 							 "not active");
9384 		fec = bp->link_info.fec_cfg;
9385 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9386 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9387 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9388 				    bnxt_report_fec(&bp->link_info));
9389 	} else {
9390 		netif_carrier_off(bp->dev);
9391 		netdev_err(bp->dev, "NIC Link is Down\n");
9392 	}
9393 }
9394 
9395 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9396 {
9397 	if (!resp->supported_speeds_auto_mode &&
9398 	    !resp->supported_speeds_force_mode &&
9399 	    !resp->supported_pam4_speeds_auto_mode &&
9400 	    !resp->supported_pam4_speeds_force_mode)
9401 		return true;
9402 	return false;
9403 }
9404 
9405 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9406 {
9407 	struct bnxt_link_info *link_info = &bp->link_info;
9408 	struct hwrm_port_phy_qcaps_output *resp;
9409 	struct hwrm_port_phy_qcaps_input *req;
9410 	int rc = 0;
9411 
9412 	if (bp->hwrm_spec_code < 0x10201)
9413 		return 0;
9414 
9415 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9416 	if (rc)
9417 		return rc;
9418 
9419 	resp = hwrm_req_hold(bp, req);
9420 	rc = hwrm_req_send(bp, req);
9421 	if (rc)
9422 		goto hwrm_phy_qcaps_exit;
9423 
9424 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9425 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9426 		struct ethtool_eee *eee = &bp->eee;
9427 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9428 
9429 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9430 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9431 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9432 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9433 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9434 	}
9435 
9436 	if (bp->hwrm_spec_code >= 0x10a01) {
9437 		if (bnxt_phy_qcaps_no_speed(resp)) {
9438 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9439 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9440 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9441 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9442 			netdev_info(bp->dev, "Ethernet link enabled\n");
9443 			/* Phy re-enabled, reprobe the speeds */
9444 			link_info->support_auto_speeds = 0;
9445 			link_info->support_pam4_auto_speeds = 0;
9446 		}
9447 	}
9448 	if (resp->supported_speeds_auto_mode)
9449 		link_info->support_auto_speeds =
9450 			le16_to_cpu(resp->supported_speeds_auto_mode);
9451 	if (resp->supported_pam4_speeds_auto_mode)
9452 		link_info->support_pam4_auto_speeds =
9453 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9454 
9455 	bp->port_count = resp->port_cnt;
9456 
9457 hwrm_phy_qcaps_exit:
9458 	hwrm_req_drop(bp, req);
9459 	return rc;
9460 }
9461 
9462 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9463 {
9464 	u16 diff = advertising ^ supported;
9465 
9466 	return ((supported | diff) != supported);
9467 }
9468 
9469 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9470 {
9471 	struct bnxt_link_info *link_info = &bp->link_info;
9472 	struct hwrm_port_phy_qcfg_output *resp;
9473 	struct hwrm_port_phy_qcfg_input *req;
9474 	u8 link_state = link_info->link_state;
9475 	bool support_changed = false;
9476 	int rc;
9477 
9478 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9479 	if (rc)
9480 		return rc;
9481 
9482 	resp = hwrm_req_hold(bp, req);
9483 	rc = hwrm_req_send(bp, req);
9484 	if (rc) {
9485 		hwrm_req_drop(bp, req);
9486 		if (BNXT_VF(bp) && rc == -ENODEV) {
9487 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9488 			rc = 0;
9489 		}
9490 		return rc;
9491 	}
9492 
9493 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9494 	link_info->phy_link_status = resp->link;
9495 	link_info->duplex = resp->duplex_cfg;
9496 	if (bp->hwrm_spec_code >= 0x10800)
9497 		link_info->duplex = resp->duplex_state;
9498 	link_info->pause = resp->pause;
9499 	link_info->auto_mode = resp->auto_mode;
9500 	link_info->auto_pause_setting = resp->auto_pause;
9501 	link_info->lp_pause = resp->link_partner_adv_pause;
9502 	link_info->force_pause_setting = resp->force_pause;
9503 	link_info->duplex_setting = resp->duplex_cfg;
9504 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9505 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9506 	else
9507 		link_info->link_speed = 0;
9508 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9509 	link_info->force_pam4_link_speed =
9510 		le16_to_cpu(resp->force_pam4_link_speed);
9511 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9512 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9513 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9514 	link_info->auto_pam4_link_speeds =
9515 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9516 	link_info->lp_auto_link_speeds =
9517 		le16_to_cpu(resp->link_partner_adv_speeds);
9518 	link_info->lp_auto_pam4_link_speeds =
9519 		resp->link_partner_pam4_adv_speeds;
9520 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9521 	link_info->phy_ver[0] = resp->phy_maj;
9522 	link_info->phy_ver[1] = resp->phy_min;
9523 	link_info->phy_ver[2] = resp->phy_bld;
9524 	link_info->media_type = resp->media_type;
9525 	link_info->phy_type = resp->phy_type;
9526 	link_info->transceiver = resp->xcvr_pkg_type;
9527 	link_info->phy_addr = resp->eee_config_phy_addr &
9528 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9529 	link_info->module_status = resp->module_status;
9530 
9531 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9532 		struct ethtool_eee *eee = &bp->eee;
9533 		u16 fw_speeds;
9534 
9535 		eee->eee_active = 0;
9536 		if (resp->eee_config_phy_addr &
9537 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9538 			eee->eee_active = 1;
9539 			fw_speeds = le16_to_cpu(
9540 				resp->link_partner_adv_eee_link_speed_mask);
9541 			eee->lp_advertised =
9542 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9543 		}
9544 
9545 		/* Pull initial EEE config */
9546 		if (!chng_link_state) {
9547 			if (resp->eee_config_phy_addr &
9548 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9549 				eee->eee_enabled = 1;
9550 
9551 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9552 			eee->advertised =
9553 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9554 
9555 			if (resp->eee_config_phy_addr &
9556 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9557 				__le32 tmr;
9558 
9559 				eee->tx_lpi_enabled = 1;
9560 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9561 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9562 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9563 			}
9564 		}
9565 	}
9566 
9567 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9568 	if (bp->hwrm_spec_code >= 0x10504) {
9569 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9570 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9571 	}
9572 	/* TODO: need to add more logic to report VF link */
9573 	if (chng_link_state) {
9574 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9575 			link_info->link_state = BNXT_LINK_STATE_UP;
9576 		else
9577 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9578 		if (link_state != link_info->link_state)
9579 			bnxt_report_link(bp);
9580 	} else {
9581 		/* always link down if not require to update link state */
9582 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9583 	}
9584 	hwrm_req_drop(bp, req);
9585 
9586 	if (!BNXT_PHY_CFG_ABLE(bp))
9587 		return 0;
9588 
9589 	/* Check if any advertised speeds are no longer supported. The caller
9590 	 * holds the link_lock mutex, so we can modify link_info settings.
9591 	 */
9592 	if (bnxt_support_dropped(link_info->advertising,
9593 				 link_info->support_auto_speeds)) {
9594 		link_info->advertising = link_info->support_auto_speeds;
9595 		support_changed = true;
9596 	}
9597 	if (bnxt_support_dropped(link_info->advertising_pam4,
9598 				 link_info->support_pam4_auto_speeds)) {
9599 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9600 		support_changed = true;
9601 	}
9602 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9603 		bnxt_hwrm_set_link_setting(bp, true, false);
9604 	return 0;
9605 }
9606 
9607 static void bnxt_get_port_module_status(struct bnxt *bp)
9608 {
9609 	struct bnxt_link_info *link_info = &bp->link_info;
9610 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9611 	u8 module_status;
9612 
9613 	if (bnxt_update_link(bp, true))
9614 		return;
9615 
9616 	module_status = link_info->module_status;
9617 	switch (module_status) {
9618 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9619 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9620 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9621 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9622 			    bp->pf.port_id);
9623 		if (bp->hwrm_spec_code >= 0x10201) {
9624 			netdev_warn(bp->dev, "Module part number %s\n",
9625 				    resp->phy_vendor_partnumber);
9626 		}
9627 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9628 			netdev_warn(bp->dev, "TX is disabled\n");
9629 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9630 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9631 	}
9632 }
9633 
9634 static void
9635 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9636 {
9637 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9638 		if (bp->hwrm_spec_code >= 0x10201)
9639 			req->auto_pause =
9640 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9641 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9642 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9643 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9644 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9645 		req->enables |=
9646 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9647 	} else {
9648 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9649 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9650 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9651 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9652 		req->enables |=
9653 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9654 		if (bp->hwrm_spec_code >= 0x10201) {
9655 			req->auto_pause = req->force_pause;
9656 			req->enables |= cpu_to_le32(
9657 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9658 		}
9659 	}
9660 }
9661 
9662 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9663 {
9664 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9665 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9666 		if (bp->link_info.advertising) {
9667 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9668 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9669 		}
9670 		if (bp->link_info.advertising_pam4) {
9671 			req->enables |=
9672 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9673 			req->auto_link_pam4_speed_mask =
9674 				cpu_to_le16(bp->link_info.advertising_pam4);
9675 		}
9676 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9677 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9678 	} else {
9679 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9680 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9681 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9682 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9683 		} else {
9684 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9685 		}
9686 	}
9687 
9688 	/* tell chimp that the setting takes effect immediately */
9689 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9690 }
9691 
9692 int bnxt_hwrm_set_pause(struct bnxt *bp)
9693 {
9694 	struct hwrm_port_phy_cfg_input *req;
9695 	int rc;
9696 
9697 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9698 	if (rc)
9699 		return rc;
9700 
9701 	bnxt_hwrm_set_pause_common(bp, req);
9702 
9703 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9704 	    bp->link_info.force_link_chng)
9705 		bnxt_hwrm_set_link_common(bp, req);
9706 
9707 	rc = hwrm_req_send(bp, req);
9708 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9709 		/* since changing of pause setting doesn't trigger any link
9710 		 * change event, the driver needs to update the current pause
9711 		 * result upon successfully return of the phy_cfg command
9712 		 */
9713 		bp->link_info.pause =
9714 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9715 		bp->link_info.auto_pause_setting = 0;
9716 		if (!bp->link_info.force_link_chng)
9717 			bnxt_report_link(bp);
9718 	}
9719 	bp->link_info.force_link_chng = false;
9720 	return rc;
9721 }
9722 
9723 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9724 			      struct hwrm_port_phy_cfg_input *req)
9725 {
9726 	struct ethtool_eee *eee = &bp->eee;
9727 
9728 	if (eee->eee_enabled) {
9729 		u16 eee_speeds;
9730 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9731 
9732 		if (eee->tx_lpi_enabled)
9733 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9734 		else
9735 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9736 
9737 		req->flags |= cpu_to_le32(flags);
9738 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9739 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9740 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9741 	} else {
9742 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9743 	}
9744 }
9745 
9746 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9747 {
9748 	struct hwrm_port_phy_cfg_input *req;
9749 	int rc;
9750 
9751 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9752 	if (rc)
9753 		return rc;
9754 
9755 	if (set_pause)
9756 		bnxt_hwrm_set_pause_common(bp, req);
9757 
9758 	bnxt_hwrm_set_link_common(bp, req);
9759 
9760 	if (set_eee)
9761 		bnxt_hwrm_set_eee(bp, req);
9762 	return hwrm_req_send(bp, req);
9763 }
9764 
9765 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9766 {
9767 	struct hwrm_port_phy_cfg_input *req;
9768 	int rc;
9769 
9770 	if (!BNXT_SINGLE_PF(bp))
9771 		return 0;
9772 
9773 	if (pci_num_vf(bp->pdev) &&
9774 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9775 		return 0;
9776 
9777 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9778 	if (rc)
9779 		return rc;
9780 
9781 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9782 	rc = hwrm_req_send(bp, req);
9783 	if (!rc) {
9784 		mutex_lock(&bp->link_lock);
9785 		/* Device is not obliged link down in certain scenarios, even
9786 		 * when forced. Setting the state unknown is consistent with
9787 		 * driver startup and will force link state to be reported
9788 		 * during subsequent open based on PORT_PHY_QCFG.
9789 		 */
9790 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9791 		mutex_unlock(&bp->link_lock);
9792 	}
9793 	return rc;
9794 }
9795 
9796 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9797 {
9798 #ifdef CONFIG_TEE_BNXT_FW
9799 	int rc = tee_bnxt_fw_load();
9800 
9801 	if (rc)
9802 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9803 
9804 	return rc;
9805 #else
9806 	netdev_err(bp->dev, "OP-TEE not supported\n");
9807 	return -ENODEV;
9808 #endif
9809 }
9810 
9811 static int bnxt_try_recover_fw(struct bnxt *bp)
9812 {
9813 	if (bp->fw_health && bp->fw_health->status_reliable) {
9814 		int retry = 0, rc;
9815 		u32 sts;
9816 
9817 		do {
9818 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9819 			rc = bnxt_hwrm_poll(bp);
9820 			if (!BNXT_FW_IS_BOOTING(sts) &&
9821 			    !BNXT_FW_IS_RECOVERING(sts))
9822 				break;
9823 			retry++;
9824 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9825 
9826 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9827 			netdev_err(bp->dev,
9828 				   "Firmware not responding, status: 0x%x\n",
9829 				   sts);
9830 			rc = -ENODEV;
9831 		}
9832 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9833 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9834 			return bnxt_fw_reset_via_optee(bp);
9835 		}
9836 		return rc;
9837 	}
9838 
9839 	return -ENODEV;
9840 }
9841 
9842 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
9843 {
9844 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9845 	int rc;
9846 
9847 	if (!BNXT_NEW_RM(bp))
9848 		return 0; /* no resource reservations required */
9849 
9850 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9851 	if (rc)
9852 		netdev_err(bp->dev, "resc_qcaps failed\n");
9853 
9854 	hw_resc->resv_cp_rings = 0;
9855 	hw_resc->resv_stat_ctxs = 0;
9856 	hw_resc->resv_irqs = 0;
9857 	hw_resc->resv_tx_rings = 0;
9858 	hw_resc->resv_rx_rings = 0;
9859 	hw_resc->resv_hw_ring_grps = 0;
9860 	hw_resc->resv_vnics = 0;
9861 	if (!fw_reset) {
9862 		bp->tx_nr_rings = 0;
9863 		bp->rx_nr_rings = 0;
9864 	}
9865 
9866 	return rc;
9867 }
9868 
9869 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9870 {
9871 	struct hwrm_func_drv_if_change_output *resp;
9872 	struct hwrm_func_drv_if_change_input *req;
9873 	bool fw_reset = !bp->irq_tbl;
9874 	bool resc_reinit = false;
9875 	int rc, retry = 0;
9876 	u32 flags = 0;
9877 
9878 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9879 		return 0;
9880 
9881 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
9882 	if (rc)
9883 		return rc;
9884 
9885 	if (up)
9886 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9887 	resp = hwrm_req_hold(bp, req);
9888 
9889 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9890 	while (retry < BNXT_FW_IF_RETRY) {
9891 		rc = hwrm_req_send(bp, req);
9892 		if (rc != -EAGAIN)
9893 			break;
9894 
9895 		msleep(50);
9896 		retry++;
9897 	}
9898 
9899 	if (rc == -EAGAIN) {
9900 		hwrm_req_drop(bp, req);
9901 		return rc;
9902 	} else if (!rc) {
9903 		flags = le32_to_cpu(resp->flags);
9904 	} else if (up) {
9905 		rc = bnxt_try_recover_fw(bp);
9906 		fw_reset = true;
9907 	}
9908 	hwrm_req_drop(bp, req);
9909 	if (rc)
9910 		return rc;
9911 
9912 	if (!up) {
9913 		bnxt_inv_fw_health_reg(bp);
9914 		return 0;
9915 	}
9916 
9917 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9918 		resc_reinit = true;
9919 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9920 		fw_reset = true;
9921 	else
9922 		bnxt_remap_fw_health_regs(bp);
9923 
9924 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9925 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9926 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9927 		return -ENODEV;
9928 	}
9929 	if (resc_reinit || fw_reset) {
9930 		if (fw_reset) {
9931 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9932 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9933 				bnxt_ulp_stop(bp);
9934 			bnxt_free_ctx_mem(bp);
9935 			kfree(bp->ctx);
9936 			bp->ctx = NULL;
9937 			bnxt_dcb_free(bp);
9938 			rc = bnxt_fw_init_one(bp);
9939 			if (rc) {
9940 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9941 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9942 				return rc;
9943 			}
9944 			bnxt_clear_int_mode(bp);
9945 			rc = bnxt_init_int_mode(bp);
9946 			if (rc) {
9947 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9948 				netdev_err(bp->dev, "init int mode failed\n");
9949 				return rc;
9950 			}
9951 		}
9952 		rc = bnxt_cancel_reservations(bp, fw_reset);
9953 	}
9954 	return rc;
9955 }
9956 
9957 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9958 {
9959 	struct hwrm_port_led_qcaps_output *resp;
9960 	struct hwrm_port_led_qcaps_input *req;
9961 	struct bnxt_pf_info *pf = &bp->pf;
9962 	int rc;
9963 
9964 	bp->num_leds = 0;
9965 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9966 		return 0;
9967 
9968 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
9969 	if (rc)
9970 		return rc;
9971 
9972 	req->port_id = cpu_to_le16(pf->port_id);
9973 	resp = hwrm_req_hold(bp, req);
9974 	rc = hwrm_req_send(bp, req);
9975 	if (rc) {
9976 		hwrm_req_drop(bp, req);
9977 		return rc;
9978 	}
9979 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9980 		int i;
9981 
9982 		bp->num_leds = resp->num_leds;
9983 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9984 						 bp->num_leds);
9985 		for (i = 0; i < bp->num_leds; i++) {
9986 			struct bnxt_led_info *led = &bp->leds[i];
9987 			__le16 caps = led->led_state_caps;
9988 
9989 			if (!led->led_group_id ||
9990 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9991 				bp->num_leds = 0;
9992 				break;
9993 			}
9994 		}
9995 	}
9996 	hwrm_req_drop(bp, req);
9997 	return 0;
9998 }
9999 
10000 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10001 {
10002 	struct hwrm_wol_filter_alloc_output *resp;
10003 	struct hwrm_wol_filter_alloc_input *req;
10004 	int rc;
10005 
10006 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10007 	if (rc)
10008 		return rc;
10009 
10010 	req->port_id = cpu_to_le16(bp->pf.port_id);
10011 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10012 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10013 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10014 
10015 	resp = hwrm_req_hold(bp, req);
10016 	rc = hwrm_req_send(bp, req);
10017 	if (!rc)
10018 		bp->wol_filter_id = resp->wol_filter_id;
10019 	hwrm_req_drop(bp, req);
10020 	return rc;
10021 }
10022 
10023 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10024 {
10025 	struct hwrm_wol_filter_free_input *req;
10026 	int rc;
10027 
10028 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10029 	if (rc)
10030 		return rc;
10031 
10032 	req->port_id = cpu_to_le16(bp->pf.port_id);
10033 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10034 	req->wol_filter_id = bp->wol_filter_id;
10035 
10036 	return hwrm_req_send(bp, req);
10037 }
10038 
10039 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10040 {
10041 	struct hwrm_wol_filter_qcfg_output *resp;
10042 	struct hwrm_wol_filter_qcfg_input *req;
10043 	u16 next_handle = 0;
10044 	int rc;
10045 
10046 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10047 	if (rc)
10048 		return rc;
10049 
10050 	req->port_id = cpu_to_le16(bp->pf.port_id);
10051 	req->handle = cpu_to_le16(handle);
10052 	resp = hwrm_req_hold(bp, req);
10053 	rc = hwrm_req_send(bp, req);
10054 	if (!rc) {
10055 		next_handle = le16_to_cpu(resp->next_handle);
10056 		if (next_handle != 0) {
10057 			if (resp->wol_type ==
10058 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10059 				bp->wol = 1;
10060 				bp->wol_filter_id = resp->wol_filter_id;
10061 			}
10062 		}
10063 	}
10064 	hwrm_req_drop(bp, req);
10065 	return next_handle;
10066 }
10067 
10068 static void bnxt_get_wol_settings(struct bnxt *bp)
10069 {
10070 	u16 handle = 0;
10071 
10072 	bp->wol = 0;
10073 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10074 		return;
10075 
10076 	do {
10077 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10078 	} while (handle && handle != 0xffff);
10079 }
10080 
10081 #ifdef CONFIG_BNXT_HWMON
10082 static ssize_t bnxt_show_temp(struct device *dev,
10083 			      struct device_attribute *devattr, char *buf)
10084 {
10085 	struct hwrm_temp_monitor_query_output *resp;
10086 	struct hwrm_temp_monitor_query_input *req;
10087 	struct bnxt *bp = dev_get_drvdata(dev);
10088 	u32 len = 0;
10089 	int rc;
10090 
10091 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10092 	if (rc)
10093 		return rc;
10094 	resp = hwrm_req_hold(bp, req);
10095 	rc = hwrm_req_send(bp, req);
10096 	if (!rc)
10097 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10098 	hwrm_req_drop(bp, req);
10099 	if (rc)
10100 		return rc;
10101 	return len;
10102 }
10103 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10104 
10105 static struct attribute *bnxt_attrs[] = {
10106 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10107 	NULL
10108 };
10109 ATTRIBUTE_GROUPS(bnxt);
10110 
10111 static void bnxt_hwmon_close(struct bnxt *bp)
10112 {
10113 	if (bp->hwmon_dev) {
10114 		hwmon_device_unregister(bp->hwmon_dev);
10115 		bp->hwmon_dev = NULL;
10116 	}
10117 }
10118 
10119 static void bnxt_hwmon_open(struct bnxt *bp)
10120 {
10121 	struct hwrm_temp_monitor_query_input *req;
10122 	struct pci_dev *pdev = bp->pdev;
10123 	int rc;
10124 
10125 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10126 	if (!rc)
10127 		rc = hwrm_req_send_silent(bp, req);
10128 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10129 		bnxt_hwmon_close(bp);
10130 		return;
10131 	}
10132 
10133 	if (bp->hwmon_dev)
10134 		return;
10135 
10136 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10137 							  DRV_MODULE_NAME, bp,
10138 							  bnxt_groups);
10139 	if (IS_ERR(bp->hwmon_dev)) {
10140 		bp->hwmon_dev = NULL;
10141 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10142 	}
10143 }
10144 #else
10145 static void bnxt_hwmon_close(struct bnxt *bp)
10146 {
10147 }
10148 
10149 static void bnxt_hwmon_open(struct bnxt *bp)
10150 {
10151 }
10152 #endif
10153 
10154 static bool bnxt_eee_config_ok(struct bnxt *bp)
10155 {
10156 	struct ethtool_eee *eee = &bp->eee;
10157 	struct bnxt_link_info *link_info = &bp->link_info;
10158 
10159 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10160 		return true;
10161 
10162 	if (eee->eee_enabled) {
10163 		u32 advertising =
10164 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10165 
10166 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10167 			eee->eee_enabled = 0;
10168 			return false;
10169 		}
10170 		if (eee->advertised & ~advertising) {
10171 			eee->advertised = advertising & eee->supported;
10172 			return false;
10173 		}
10174 	}
10175 	return true;
10176 }
10177 
10178 static int bnxt_update_phy_setting(struct bnxt *bp)
10179 {
10180 	int rc;
10181 	bool update_link = false;
10182 	bool update_pause = false;
10183 	bool update_eee = false;
10184 	struct bnxt_link_info *link_info = &bp->link_info;
10185 
10186 	rc = bnxt_update_link(bp, true);
10187 	if (rc) {
10188 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10189 			   rc);
10190 		return rc;
10191 	}
10192 	if (!BNXT_SINGLE_PF(bp))
10193 		return 0;
10194 
10195 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10196 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10197 	    link_info->req_flow_ctrl)
10198 		update_pause = true;
10199 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10200 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10201 		update_pause = true;
10202 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10203 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10204 			update_link = true;
10205 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10206 		    link_info->req_link_speed != link_info->force_link_speed)
10207 			update_link = true;
10208 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10209 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10210 			update_link = true;
10211 		if (link_info->req_duplex != link_info->duplex_setting)
10212 			update_link = true;
10213 	} else {
10214 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10215 			update_link = true;
10216 		if (link_info->advertising != link_info->auto_link_speeds ||
10217 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10218 			update_link = true;
10219 	}
10220 
10221 	/* The last close may have shutdown the link, so need to call
10222 	 * PHY_CFG to bring it back up.
10223 	 */
10224 	if (!BNXT_LINK_IS_UP(bp))
10225 		update_link = true;
10226 
10227 	if (!bnxt_eee_config_ok(bp))
10228 		update_eee = true;
10229 
10230 	if (update_link)
10231 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10232 	else if (update_pause)
10233 		rc = bnxt_hwrm_set_pause(bp);
10234 	if (rc) {
10235 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10236 			   rc);
10237 		return rc;
10238 	}
10239 
10240 	return rc;
10241 }
10242 
10243 /* Common routine to pre-map certain register block to different GRC window.
10244  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10245  * in PF and 3 windows in VF that can be customized to map in different
10246  * register blocks.
10247  */
10248 static void bnxt_preset_reg_win(struct bnxt *bp)
10249 {
10250 	if (BNXT_PF(bp)) {
10251 		/* CAG registers map to GRC window #4 */
10252 		writel(BNXT_CAG_REG_BASE,
10253 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10254 	}
10255 }
10256 
10257 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10258 
10259 static int bnxt_reinit_after_abort(struct bnxt *bp)
10260 {
10261 	int rc;
10262 
10263 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10264 		return -EBUSY;
10265 
10266 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10267 		return -ENODEV;
10268 
10269 	rc = bnxt_fw_init_one(bp);
10270 	if (!rc) {
10271 		bnxt_clear_int_mode(bp);
10272 		rc = bnxt_init_int_mode(bp);
10273 		if (!rc) {
10274 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10275 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10276 		}
10277 	}
10278 	return rc;
10279 }
10280 
10281 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10282 {
10283 	int rc = 0;
10284 
10285 	bnxt_preset_reg_win(bp);
10286 	netif_carrier_off(bp->dev);
10287 	if (irq_re_init) {
10288 		/* Reserve rings now if none were reserved at driver probe. */
10289 		rc = bnxt_init_dflt_ring_mode(bp);
10290 		if (rc) {
10291 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10292 			return rc;
10293 		}
10294 	}
10295 	rc = bnxt_reserve_rings(bp, irq_re_init);
10296 	if (rc)
10297 		return rc;
10298 	if ((bp->flags & BNXT_FLAG_RFS) &&
10299 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10300 		/* disable RFS if falling back to INTA */
10301 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10302 		bp->flags &= ~BNXT_FLAG_RFS;
10303 	}
10304 
10305 	rc = bnxt_alloc_mem(bp, irq_re_init);
10306 	if (rc) {
10307 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10308 		goto open_err_free_mem;
10309 	}
10310 
10311 	if (irq_re_init) {
10312 		bnxt_init_napi(bp);
10313 		rc = bnxt_request_irq(bp);
10314 		if (rc) {
10315 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10316 			goto open_err_irq;
10317 		}
10318 	}
10319 
10320 	rc = bnxt_init_nic(bp, irq_re_init);
10321 	if (rc) {
10322 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10323 		goto open_err_irq;
10324 	}
10325 
10326 	bnxt_enable_napi(bp);
10327 	bnxt_debug_dev_init(bp);
10328 
10329 	if (link_re_init) {
10330 		mutex_lock(&bp->link_lock);
10331 		rc = bnxt_update_phy_setting(bp);
10332 		mutex_unlock(&bp->link_lock);
10333 		if (rc) {
10334 			netdev_warn(bp->dev, "failed to update phy settings\n");
10335 			if (BNXT_SINGLE_PF(bp)) {
10336 				bp->link_info.phy_retry = true;
10337 				bp->link_info.phy_retry_expires =
10338 					jiffies + 5 * HZ;
10339 			}
10340 		}
10341 	}
10342 
10343 	if (irq_re_init)
10344 		udp_tunnel_nic_reset_ntf(bp->dev);
10345 
10346 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10347 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10348 			static_branch_enable(&bnxt_xdp_locking_key);
10349 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10350 		static_branch_disable(&bnxt_xdp_locking_key);
10351 	}
10352 	set_bit(BNXT_STATE_OPEN, &bp->state);
10353 	bnxt_enable_int(bp);
10354 	/* Enable TX queues */
10355 	bnxt_tx_enable(bp);
10356 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10357 	/* Poll link status and check for SFP+ module status */
10358 	mutex_lock(&bp->link_lock);
10359 	bnxt_get_port_module_status(bp);
10360 	mutex_unlock(&bp->link_lock);
10361 
10362 	/* VF-reps may need to be re-opened after the PF is re-opened */
10363 	if (BNXT_PF(bp))
10364 		bnxt_vf_reps_open(bp);
10365 	bnxt_ptp_init_rtc(bp, true);
10366 	return 0;
10367 
10368 open_err_irq:
10369 	bnxt_del_napi(bp);
10370 
10371 open_err_free_mem:
10372 	bnxt_free_skbs(bp);
10373 	bnxt_free_irq(bp);
10374 	bnxt_free_mem(bp, true);
10375 	return rc;
10376 }
10377 
10378 /* rtnl_lock held */
10379 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10380 {
10381 	int rc = 0;
10382 
10383 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10384 		rc = -EIO;
10385 	if (!rc)
10386 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10387 	if (rc) {
10388 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10389 		dev_close(bp->dev);
10390 	}
10391 	return rc;
10392 }
10393 
10394 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10395  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10396  * self tests.
10397  */
10398 int bnxt_half_open_nic(struct bnxt *bp)
10399 {
10400 	int rc = 0;
10401 
10402 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10403 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10404 		rc = -ENODEV;
10405 		goto half_open_err;
10406 	}
10407 
10408 	rc = bnxt_alloc_mem(bp, true);
10409 	if (rc) {
10410 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10411 		goto half_open_err;
10412 	}
10413 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10414 	rc = bnxt_init_nic(bp, true);
10415 	if (rc) {
10416 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10417 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10418 		goto half_open_err;
10419 	}
10420 	return 0;
10421 
10422 half_open_err:
10423 	bnxt_free_skbs(bp);
10424 	bnxt_free_mem(bp, true);
10425 	dev_close(bp->dev);
10426 	return rc;
10427 }
10428 
10429 /* rtnl_lock held, this call can only be made after a previous successful
10430  * call to bnxt_half_open_nic().
10431  */
10432 void bnxt_half_close_nic(struct bnxt *bp)
10433 {
10434 	bnxt_hwrm_resource_free(bp, false, true);
10435 	bnxt_free_skbs(bp);
10436 	bnxt_free_mem(bp, true);
10437 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10438 }
10439 
10440 void bnxt_reenable_sriov(struct bnxt *bp)
10441 {
10442 	if (BNXT_PF(bp)) {
10443 		struct bnxt_pf_info *pf = &bp->pf;
10444 		int n = pf->active_vfs;
10445 
10446 		if (n)
10447 			bnxt_cfg_hw_sriov(bp, &n, true);
10448 	}
10449 }
10450 
10451 static int bnxt_open(struct net_device *dev)
10452 {
10453 	struct bnxt *bp = netdev_priv(dev);
10454 	int rc;
10455 
10456 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10457 		rc = bnxt_reinit_after_abort(bp);
10458 		if (rc) {
10459 			if (rc == -EBUSY)
10460 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10461 			else
10462 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10463 			return -ENODEV;
10464 		}
10465 	}
10466 
10467 	rc = bnxt_hwrm_if_change(bp, true);
10468 	if (rc)
10469 		return rc;
10470 
10471 	rc = __bnxt_open_nic(bp, true, true);
10472 	if (rc) {
10473 		bnxt_hwrm_if_change(bp, false);
10474 	} else {
10475 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10476 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10477 				bnxt_ulp_start(bp, 0);
10478 				bnxt_reenable_sriov(bp);
10479 			}
10480 		}
10481 		bnxt_hwmon_open(bp);
10482 	}
10483 
10484 	return rc;
10485 }
10486 
10487 static bool bnxt_drv_busy(struct bnxt *bp)
10488 {
10489 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10490 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10491 }
10492 
10493 static void bnxt_get_ring_stats(struct bnxt *bp,
10494 				struct rtnl_link_stats64 *stats);
10495 
10496 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10497 			     bool link_re_init)
10498 {
10499 	/* Close the VF-reps before closing PF */
10500 	if (BNXT_PF(bp))
10501 		bnxt_vf_reps_close(bp);
10502 
10503 	/* Change device state to avoid TX queue wake up's */
10504 	bnxt_tx_disable(bp);
10505 
10506 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10507 	smp_mb__after_atomic();
10508 	while (bnxt_drv_busy(bp))
10509 		msleep(20);
10510 
10511 	/* Flush rings and and disable interrupts */
10512 	bnxt_shutdown_nic(bp, irq_re_init);
10513 
10514 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10515 
10516 	bnxt_debug_dev_exit(bp);
10517 	bnxt_disable_napi(bp);
10518 	del_timer_sync(&bp->timer);
10519 	bnxt_free_skbs(bp);
10520 
10521 	/* Save ring stats before shutdown */
10522 	if (bp->bnapi && irq_re_init)
10523 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10524 	if (irq_re_init) {
10525 		bnxt_free_irq(bp);
10526 		bnxt_del_napi(bp);
10527 	}
10528 	bnxt_free_mem(bp, irq_re_init);
10529 }
10530 
10531 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10532 {
10533 	int rc = 0;
10534 
10535 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10536 		/* If we get here, it means firmware reset is in progress
10537 		 * while we are trying to close.  We can safely proceed with
10538 		 * the close because we are holding rtnl_lock().  Some firmware
10539 		 * messages may fail as we proceed to close.  We set the
10540 		 * ABORT_ERR flag here so that the FW reset thread will later
10541 		 * abort when it gets the rtnl_lock() and sees the flag.
10542 		 */
10543 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10544 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10545 	}
10546 
10547 #ifdef CONFIG_BNXT_SRIOV
10548 	if (bp->sriov_cfg) {
10549 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10550 						      !bp->sriov_cfg,
10551 						      BNXT_SRIOV_CFG_WAIT_TMO);
10552 		if (rc)
10553 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10554 	}
10555 #endif
10556 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10557 	return rc;
10558 }
10559 
10560 static int bnxt_close(struct net_device *dev)
10561 {
10562 	struct bnxt *bp = netdev_priv(dev);
10563 
10564 	bnxt_hwmon_close(bp);
10565 	bnxt_close_nic(bp, true, true);
10566 	bnxt_hwrm_shutdown_link(bp);
10567 	bnxt_hwrm_if_change(bp, false);
10568 	return 0;
10569 }
10570 
10571 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10572 				   u16 *val)
10573 {
10574 	struct hwrm_port_phy_mdio_read_output *resp;
10575 	struct hwrm_port_phy_mdio_read_input *req;
10576 	int rc;
10577 
10578 	if (bp->hwrm_spec_code < 0x10a00)
10579 		return -EOPNOTSUPP;
10580 
10581 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10582 	if (rc)
10583 		return rc;
10584 
10585 	req->port_id = cpu_to_le16(bp->pf.port_id);
10586 	req->phy_addr = phy_addr;
10587 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10588 	if (mdio_phy_id_is_c45(phy_addr)) {
10589 		req->cl45_mdio = 1;
10590 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10591 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10592 		req->reg_addr = cpu_to_le16(reg);
10593 	}
10594 
10595 	resp = hwrm_req_hold(bp, req);
10596 	rc = hwrm_req_send(bp, req);
10597 	if (!rc)
10598 		*val = le16_to_cpu(resp->reg_data);
10599 	hwrm_req_drop(bp, req);
10600 	return rc;
10601 }
10602 
10603 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10604 				    u16 val)
10605 {
10606 	struct hwrm_port_phy_mdio_write_input *req;
10607 	int rc;
10608 
10609 	if (bp->hwrm_spec_code < 0x10a00)
10610 		return -EOPNOTSUPP;
10611 
10612 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10613 	if (rc)
10614 		return rc;
10615 
10616 	req->port_id = cpu_to_le16(bp->pf.port_id);
10617 	req->phy_addr = phy_addr;
10618 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10619 	if (mdio_phy_id_is_c45(phy_addr)) {
10620 		req->cl45_mdio = 1;
10621 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10622 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10623 		req->reg_addr = cpu_to_le16(reg);
10624 	}
10625 	req->reg_data = cpu_to_le16(val);
10626 
10627 	return hwrm_req_send(bp, req);
10628 }
10629 
10630 /* rtnl_lock held */
10631 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10632 {
10633 	struct mii_ioctl_data *mdio = if_mii(ifr);
10634 	struct bnxt *bp = netdev_priv(dev);
10635 	int rc;
10636 
10637 	switch (cmd) {
10638 	case SIOCGMIIPHY:
10639 		mdio->phy_id = bp->link_info.phy_addr;
10640 
10641 		fallthrough;
10642 	case SIOCGMIIREG: {
10643 		u16 mii_regval = 0;
10644 
10645 		if (!netif_running(dev))
10646 			return -EAGAIN;
10647 
10648 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10649 					     &mii_regval);
10650 		mdio->val_out = mii_regval;
10651 		return rc;
10652 	}
10653 
10654 	case SIOCSMIIREG:
10655 		if (!netif_running(dev))
10656 			return -EAGAIN;
10657 
10658 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10659 						mdio->val_in);
10660 
10661 	case SIOCSHWTSTAMP:
10662 		return bnxt_hwtstamp_set(dev, ifr);
10663 
10664 	case SIOCGHWTSTAMP:
10665 		return bnxt_hwtstamp_get(dev, ifr);
10666 
10667 	default:
10668 		/* do nothing */
10669 		break;
10670 	}
10671 	return -EOPNOTSUPP;
10672 }
10673 
10674 static void bnxt_get_ring_stats(struct bnxt *bp,
10675 				struct rtnl_link_stats64 *stats)
10676 {
10677 	int i;
10678 
10679 	for (i = 0; i < bp->cp_nr_rings; i++) {
10680 		struct bnxt_napi *bnapi = bp->bnapi[i];
10681 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10682 		u64 *sw = cpr->stats.sw_stats;
10683 
10684 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10685 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10686 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10687 
10688 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10689 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10690 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10691 
10692 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10693 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10694 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10695 
10696 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10697 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10698 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10699 
10700 		stats->rx_missed_errors +=
10701 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10702 
10703 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10704 
10705 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10706 
10707 		stats->rx_dropped +=
10708 			cpr->sw_stats.rx.rx_netpoll_discards +
10709 			cpr->sw_stats.rx.rx_oom_discards;
10710 	}
10711 }
10712 
10713 static void bnxt_add_prev_stats(struct bnxt *bp,
10714 				struct rtnl_link_stats64 *stats)
10715 {
10716 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10717 
10718 	stats->rx_packets += prev_stats->rx_packets;
10719 	stats->tx_packets += prev_stats->tx_packets;
10720 	stats->rx_bytes += prev_stats->rx_bytes;
10721 	stats->tx_bytes += prev_stats->tx_bytes;
10722 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10723 	stats->multicast += prev_stats->multicast;
10724 	stats->rx_dropped += prev_stats->rx_dropped;
10725 	stats->tx_dropped += prev_stats->tx_dropped;
10726 }
10727 
10728 static void
10729 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10730 {
10731 	struct bnxt *bp = netdev_priv(dev);
10732 
10733 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10734 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10735 	 * we check the BNXT_STATE_OPEN flag.
10736 	 */
10737 	smp_mb__after_atomic();
10738 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10739 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10740 		*stats = bp->net_stats_prev;
10741 		return;
10742 	}
10743 
10744 	bnxt_get_ring_stats(bp, stats);
10745 	bnxt_add_prev_stats(bp, stats);
10746 
10747 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10748 		u64 *rx = bp->port_stats.sw_stats;
10749 		u64 *tx = bp->port_stats.sw_stats +
10750 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10751 
10752 		stats->rx_crc_errors =
10753 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10754 		stats->rx_frame_errors =
10755 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10756 		stats->rx_length_errors =
10757 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10758 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10759 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10760 		stats->rx_errors =
10761 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10762 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10763 		stats->collisions =
10764 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10765 		stats->tx_fifo_errors =
10766 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10767 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10768 	}
10769 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10770 }
10771 
10772 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10773 {
10774 	struct net_device *dev = bp->dev;
10775 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10776 	struct netdev_hw_addr *ha;
10777 	u8 *haddr;
10778 	int mc_count = 0;
10779 	bool update = false;
10780 	int off = 0;
10781 
10782 	netdev_for_each_mc_addr(ha, dev) {
10783 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10784 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10785 			vnic->mc_list_count = 0;
10786 			return false;
10787 		}
10788 		haddr = ha->addr;
10789 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10790 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10791 			update = true;
10792 		}
10793 		off += ETH_ALEN;
10794 		mc_count++;
10795 	}
10796 	if (mc_count)
10797 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10798 
10799 	if (mc_count != vnic->mc_list_count) {
10800 		vnic->mc_list_count = mc_count;
10801 		update = true;
10802 	}
10803 	return update;
10804 }
10805 
10806 static bool bnxt_uc_list_updated(struct bnxt *bp)
10807 {
10808 	struct net_device *dev = bp->dev;
10809 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10810 	struct netdev_hw_addr *ha;
10811 	int off = 0;
10812 
10813 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10814 		return true;
10815 
10816 	netdev_for_each_uc_addr(ha, dev) {
10817 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10818 			return true;
10819 
10820 		off += ETH_ALEN;
10821 	}
10822 	return false;
10823 }
10824 
10825 static void bnxt_set_rx_mode(struct net_device *dev)
10826 {
10827 	struct bnxt *bp = netdev_priv(dev);
10828 	struct bnxt_vnic_info *vnic;
10829 	bool mc_update = false;
10830 	bool uc_update;
10831 	u32 mask;
10832 
10833 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10834 		return;
10835 
10836 	vnic = &bp->vnic_info[0];
10837 	mask = vnic->rx_mask;
10838 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10839 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10840 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10841 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10842 
10843 	if (dev->flags & IFF_PROMISC)
10844 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10845 
10846 	uc_update = bnxt_uc_list_updated(bp);
10847 
10848 	if (dev->flags & IFF_BROADCAST)
10849 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10850 	if (dev->flags & IFF_ALLMULTI) {
10851 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10852 		vnic->mc_list_count = 0;
10853 	} else if (dev->flags & IFF_MULTICAST) {
10854 		mc_update = bnxt_mc_list_updated(bp, &mask);
10855 	}
10856 
10857 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10858 		vnic->rx_mask = mask;
10859 
10860 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10861 		bnxt_queue_sp_work(bp);
10862 	}
10863 }
10864 
10865 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10866 {
10867 	struct net_device *dev = bp->dev;
10868 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10869 	struct hwrm_cfa_l2_filter_free_input *req;
10870 	struct netdev_hw_addr *ha;
10871 	int i, off = 0, rc;
10872 	bool uc_update;
10873 
10874 	netif_addr_lock_bh(dev);
10875 	uc_update = bnxt_uc_list_updated(bp);
10876 	netif_addr_unlock_bh(dev);
10877 
10878 	if (!uc_update)
10879 		goto skip_uc;
10880 
10881 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
10882 	if (rc)
10883 		return rc;
10884 	hwrm_req_hold(bp, req);
10885 	for (i = 1; i < vnic->uc_filter_count; i++) {
10886 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
10887 
10888 		rc = hwrm_req_send(bp, req);
10889 	}
10890 	hwrm_req_drop(bp, req);
10891 
10892 	vnic->uc_filter_count = 1;
10893 
10894 	netif_addr_lock_bh(dev);
10895 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10896 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10897 	} else {
10898 		netdev_for_each_uc_addr(ha, dev) {
10899 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10900 			off += ETH_ALEN;
10901 			vnic->uc_filter_count++;
10902 		}
10903 	}
10904 	netif_addr_unlock_bh(dev);
10905 
10906 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10907 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10908 		if (rc) {
10909 			if (BNXT_VF(bp) && rc == -ENODEV) {
10910 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
10911 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
10912 				else
10913 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
10914 				rc = 0;
10915 			} else {
10916 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
10917 			}
10918 			vnic->uc_filter_count = i;
10919 			return rc;
10920 		}
10921 	}
10922 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
10923 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
10924 
10925 skip_uc:
10926 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
10927 	    !bnxt_promisc_ok(bp))
10928 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10929 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10930 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
10931 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10932 			    rc);
10933 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10934 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10935 		vnic->mc_list_count = 0;
10936 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10937 	}
10938 	if (rc)
10939 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10940 			   rc);
10941 
10942 	return rc;
10943 }
10944 
10945 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10946 {
10947 #ifdef CONFIG_BNXT_SRIOV
10948 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10949 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10950 
10951 		/* No minimum rings were provisioned by the PF.  Don't
10952 		 * reserve rings by default when device is down.
10953 		 */
10954 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10955 			return true;
10956 
10957 		if (!netif_running(bp->dev))
10958 			return false;
10959 	}
10960 #endif
10961 	return true;
10962 }
10963 
10964 /* If the chip and firmware supports RFS */
10965 static bool bnxt_rfs_supported(struct bnxt *bp)
10966 {
10967 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10968 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10969 			return true;
10970 		return false;
10971 	}
10972 	/* 212 firmware is broken for aRFS */
10973 	if (BNXT_FW_MAJ(bp) == 212)
10974 		return false;
10975 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10976 		return true;
10977 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10978 		return true;
10979 	return false;
10980 }
10981 
10982 /* If runtime conditions support RFS */
10983 static bool bnxt_rfs_capable(struct bnxt *bp)
10984 {
10985 #ifdef CONFIG_RFS_ACCEL
10986 	int vnics, max_vnics, max_rss_ctxs;
10987 
10988 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10989 		return bnxt_rfs_supported(bp);
10990 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
10991 		return false;
10992 
10993 	vnics = 1 + bp->rx_nr_rings;
10994 	max_vnics = bnxt_get_max_func_vnics(bp);
10995 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10996 
10997 	/* RSS contexts not a limiting factor */
10998 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10999 		max_rss_ctxs = max_vnics;
11000 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11001 		if (bp->rx_nr_rings > 1)
11002 			netdev_warn(bp->dev,
11003 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11004 				    min(max_rss_ctxs - 1, max_vnics - 1));
11005 		return false;
11006 	}
11007 
11008 	if (!BNXT_NEW_RM(bp))
11009 		return true;
11010 
11011 	if (vnics == bp->hw_resc.resv_vnics)
11012 		return true;
11013 
11014 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11015 	if (vnics <= bp->hw_resc.resv_vnics)
11016 		return true;
11017 
11018 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11019 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11020 	return false;
11021 #else
11022 	return false;
11023 #endif
11024 }
11025 
11026 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11027 					   netdev_features_t features)
11028 {
11029 	struct bnxt *bp = netdev_priv(dev);
11030 	netdev_features_t vlan_features;
11031 
11032 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11033 		features &= ~NETIF_F_NTUPLE;
11034 
11035 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11036 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11037 
11038 	if (!(features & NETIF_F_GRO))
11039 		features &= ~NETIF_F_GRO_HW;
11040 
11041 	if (features & NETIF_F_GRO_HW)
11042 		features &= ~NETIF_F_LRO;
11043 
11044 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11045 	 * turned on or off together.
11046 	 */
11047 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11048 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11049 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11050 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11051 		else if (vlan_features)
11052 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11053 	}
11054 #ifdef CONFIG_BNXT_SRIOV
11055 	if (BNXT_VF(bp) && bp->vf.vlan)
11056 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11057 #endif
11058 	return features;
11059 }
11060 
11061 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11062 {
11063 	struct bnxt *bp = netdev_priv(dev);
11064 	u32 flags = bp->flags;
11065 	u32 changes;
11066 	int rc = 0;
11067 	bool re_init = false;
11068 	bool update_tpa = false;
11069 
11070 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11071 	if (features & NETIF_F_GRO_HW)
11072 		flags |= BNXT_FLAG_GRO;
11073 	else if (features & NETIF_F_LRO)
11074 		flags |= BNXT_FLAG_LRO;
11075 
11076 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11077 		flags &= ~BNXT_FLAG_TPA;
11078 
11079 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11080 		flags |= BNXT_FLAG_STRIP_VLAN;
11081 
11082 	if (features & NETIF_F_NTUPLE)
11083 		flags |= BNXT_FLAG_RFS;
11084 
11085 	changes = flags ^ bp->flags;
11086 	if (changes & BNXT_FLAG_TPA) {
11087 		update_tpa = true;
11088 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11089 		    (flags & BNXT_FLAG_TPA) == 0 ||
11090 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11091 			re_init = true;
11092 	}
11093 
11094 	if (changes & ~BNXT_FLAG_TPA)
11095 		re_init = true;
11096 
11097 	if (flags != bp->flags) {
11098 		u32 old_flags = bp->flags;
11099 
11100 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11101 			bp->flags = flags;
11102 			if (update_tpa)
11103 				bnxt_set_ring_params(bp);
11104 			return rc;
11105 		}
11106 
11107 		if (re_init) {
11108 			bnxt_close_nic(bp, false, false);
11109 			bp->flags = flags;
11110 			if (update_tpa)
11111 				bnxt_set_ring_params(bp);
11112 
11113 			return bnxt_open_nic(bp, false, false);
11114 		}
11115 		if (update_tpa) {
11116 			bp->flags = flags;
11117 			rc = bnxt_set_tpa(bp,
11118 					  (flags & BNXT_FLAG_TPA) ?
11119 					  true : false);
11120 			if (rc)
11121 				bp->flags = old_flags;
11122 		}
11123 	}
11124 	return rc;
11125 }
11126 
11127 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11128 			      u8 **nextp)
11129 {
11130 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11131 	int hdr_count = 0;
11132 	u8 *nexthdr;
11133 	int start;
11134 
11135 	/* Check that there are at most 2 IPv6 extension headers, no
11136 	 * fragment header, and each is <= 64 bytes.
11137 	 */
11138 	start = nw_off + sizeof(*ip6h);
11139 	nexthdr = &ip6h->nexthdr;
11140 	while (ipv6_ext_hdr(*nexthdr)) {
11141 		struct ipv6_opt_hdr *hp;
11142 		int hdrlen;
11143 
11144 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11145 		    *nexthdr == NEXTHDR_FRAGMENT)
11146 			return false;
11147 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11148 					  skb_headlen(skb), NULL);
11149 		if (!hp)
11150 			return false;
11151 		if (*nexthdr == NEXTHDR_AUTH)
11152 			hdrlen = ipv6_authlen(hp);
11153 		else
11154 			hdrlen = ipv6_optlen(hp);
11155 
11156 		if (hdrlen > 64)
11157 			return false;
11158 		nexthdr = &hp->nexthdr;
11159 		start += hdrlen;
11160 		hdr_count++;
11161 	}
11162 	if (nextp) {
11163 		/* Caller will check inner protocol */
11164 		if (skb->encapsulation) {
11165 			*nextp = nexthdr;
11166 			return true;
11167 		}
11168 		*nextp = NULL;
11169 	}
11170 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11171 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11172 }
11173 
11174 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11175 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11176 {
11177 	struct udphdr *uh = udp_hdr(skb);
11178 	__be16 udp_port = uh->dest;
11179 
11180 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11181 		return false;
11182 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11183 		struct ethhdr *eh = inner_eth_hdr(skb);
11184 
11185 		switch (eh->h_proto) {
11186 		case htons(ETH_P_IP):
11187 			return true;
11188 		case htons(ETH_P_IPV6):
11189 			return bnxt_exthdr_check(bp, skb,
11190 						 skb_inner_network_offset(skb),
11191 						 NULL);
11192 		}
11193 	}
11194 	return false;
11195 }
11196 
11197 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11198 {
11199 	switch (l4_proto) {
11200 	case IPPROTO_UDP:
11201 		return bnxt_udp_tunl_check(bp, skb);
11202 	case IPPROTO_IPIP:
11203 		return true;
11204 	case IPPROTO_GRE: {
11205 		switch (skb->inner_protocol) {
11206 		default:
11207 			return false;
11208 		case htons(ETH_P_IP):
11209 			return true;
11210 		case htons(ETH_P_IPV6):
11211 			fallthrough;
11212 		}
11213 	}
11214 	case IPPROTO_IPV6:
11215 		/* Check ext headers of inner ipv6 */
11216 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11217 					 NULL);
11218 	}
11219 	return false;
11220 }
11221 
11222 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11223 					     struct net_device *dev,
11224 					     netdev_features_t features)
11225 {
11226 	struct bnxt *bp = netdev_priv(dev);
11227 	u8 *l4_proto;
11228 
11229 	features = vlan_features_check(skb, features);
11230 	switch (vlan_get_protocol(skb)) {
11231 	case htons(ETH_P_IP):
11232 		if (!skb->encapsulation)
11233 			return features;
11234 		l4_proto = &ip_hdr(skb)->protocol;
11235 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11236 			return features;
11237 		break;
11238 	case htons(ETH_P_IPV6):
11239 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11240 				       &l4_proto))
11241 			break;
11242 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11243 			return features;
11244 		break;
11245 	}
11246 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11247 }
11248 
11249 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11250 			 u32 *reg_buf)
11251 {
11252 	struct hwrm_dbg_read_direct_output *resp;
11253 	struct hwrm_dbg_read_direct_input *req;
11254 	__le32 *dbg_reg_buf;
11255 	dma_addr_t mapping;
11256 	int rc, i;
11257 
11258 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11259 	if (rc)
11260 		return rc;
11261 
11262 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11263 					 &mapping);
11264 	if (!dbg_reg_buf) {
11265 		rc = -ENOMEM;
11266 		goto dbg_rd_reg_exit;
11267 	}
11268 
11269 	req->host_dest_addr = cpu_to_le64(mapping);
11270 
11271 	resp = hwrm_req_hold(bp, req);
11272 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11273 	req->read_len32 = cpu_to_le32(num_words);
11274 
11275 	rc = hwrm_req_send(bp, req);
11276 	if (rc || resp->error_code) {
11277 		rc = -EIO;
11278 		goto dbg_rd_reg_exit;
11279 	}
11280 	for (i = 0; i < num_words; i++)
11281 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11282 
11283 dbg_rd_reg_exit:
11284 	hwrm_req_drop(bp, req);
11285 	return rc;
11286 }
11287 
11288 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11289 				       u32 ring_id, u32 *prod, u32 *cons)
11290 {
11291 	struct hwrm_dbg_ring_info_get_output *resp;
11292 	struct hwrm_dbg_ring_info_get_input *req;
11293 	int rc;
11294 
11295 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11296 	if (rc)
11297 		return rc;
11298 
11299 	req->ring_type = ring_type;
11300 	req->fw_ring_id = cpu_to_le32(ring_id);
11301 	resp = hwrm_req_hold(bp, req);
11302 	rc = hwrm_req_send(bp, req);
11303 	if (!rc) {
11304 		*prod = le32_to_cpu(resp->producer_index);
11305 		*cons = le32_to_cpu(resp->consumer_index);
11306 	}
11307 	hwrm_req_drop(bp, req);
11308 	return rc;
11309 }
11310 
11311 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11312 {
11313 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11314 	int i = bnapi->index;
11315 
11316 	if (!txr)
11317 		return;
11318 
11319 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11320 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11321 		    txr->tx_cons);
11322 }
11323 
11324 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11325 {
11326 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11327 	int i = bnapi->index;
11328 
11329 	if (!rxr)
11330 		return;
11331 
11332 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11333 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11334 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11335 		    rxr->rx_sw_agg_prod);
11336 }
11337 
11338 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11339 {
11340 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11341 	int i = bnapi->index;
11342 
11343 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11344 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11345 }
11346 
11347 static void bnxt_dbg_dump_states(struct bnxt *bp)
11348 {
11349 	int i;
11350 	struct bnxt_napi *bnapi;
11351 
11352 	for (i = 0; i < bp->cp_nr_rings; i++) {
11353 		bnapi = bp->bnapi[i];
11354 		if (netif_msg_drv(bp)) {
11355 			bnxt_dump_tx_sw_state(bnapi);
11356 			bnxt_dump_rx_sw_state(bnapi);
11357 			bnxt_dump_cp_sw_state(bnapi);
11358 		}
11359 	}
11360 }
11361 
11362 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11363 {
11364 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11365 	struct hwrm_ring_reset_input *req;
11366 	struct bnxt_napi *bnapi = rxr->bnapi;
11367 	struct bnxt_cp_ring_info *cpr;
11368 	u16 cp_ring_id;
11369 	int rc;
11370 
11371 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11372 	if (rc)
11373 		return rc;
11374 
11375 	cpr = &bnapi->cp_ring;
11376 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11377 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11378 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11379 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11380 	return hwrm_req_send_silent(bp, req);
11381 }
11382 
11383 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11384 {
11385 	if (!silent)
11386 		bnxt_dbg_dump_states(bp);
11387 	if (netif_running(bp->dev)) {
11388 		int rc;
11389 
11390 		if (silent) {
11391 			bnxt_close_nic(bp, false, false);
11392 			bnxt_open_nic(bp, false, false);
11393 		} else {
11394 			bnxt_ulp_stop(bp);
11395 			bnxt_close_nic(bp, true, false);
11396 			rc = bnxt_open_nic(bp, true, false);
11397 			bnxt_ulp_start(bp, rc);
11398 		}
11399 	}
11400 }
11401 
11402 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11403 {
11404 	struct bnxt *bp = netdev_priv(dev);
11405 
11406 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11407 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11408 	bnxt_queue_sp_work(bp);
11409 }
11410 
11411 static void bnxt_fw_health_check(struct bnxt *bp)
11412 {
11413 	struct bnxt_fw_health *fw_health = bp->fw_health;
11414 	u32 val;
11415 
11416 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11417 		return;
11418 
11419 	/* Make sure it is enabled before checking the tmr_counter. */
11420 	smp_rmb();
11421 	if (fw_health->tmr_counter) {
11422 		fw_health->tmr_counter--;
11423 		return;
11424 	}
11425 
11426 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11427 	if (val == fw_health->last_fw_heartbeat) {
11428 		fw_health->arrests++;
11429 		goto fw_reset;
11430 	}
11431 
11432 	fw_health->last_fw_heartbeat = val;
11433 
11434 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11435 	if (val != fw_health->last_fw_reset_cnt) {
11436 		fw_health->discoveries++;
11437 		goto fw_reset;
11438 	}
11439 
11440 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11441 	return;
11442 
11443 fw_reset:
11444 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11445 	bnxt_queue_sp_work(bp);
11446 }
11447 
11448 static void bnxt_timer(struct timer_list *t)
11449 {
11450 	struct bnxt *bp = from_timer(bp, t, timer);
11451 	struct net_device *dev = bp->dev;
11452 
11453 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11454 		return;
11455 
11456 	if (atomic_read(&bp->intr_sem) != 0)
11457 		goto bnxt_restart_timer;
11458 
11459 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11460 		bnxt_fw_health_check(bp);
11461 
11462 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11463 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11464 		bnxt_queue_sp_work(bp);
11465 	}
11466 
11467 	if (bnxt_tc_flower_enabled(bp)) {
11468 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11469 		bnxt_queue_sp_work(bp);
11470 	}
11471 
11472 #ifdef CONFIG_RFS_ACCEL
11473 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11474 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11475 		bnxt_queue_sp_work(bp);
11476 	}
11477 #endif /*CONFIG_RFS_ACCEL*/
11478 
11479 	if (bp->link_info.phy_retry) {
11480 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11481 			bp->link_info.phy_retry = false;
11482 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11483 		} else {
11484 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11485 			bnxt_queue_sp_work(bp);
11486 		}
11487 	}
11488 
11489 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11490 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11491 		bnxt_queue_sp_work(bp);
11492 	}
11493 
11494 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11495 	    netif_carrier_ok(dev)) {
11496 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11497 		bnxt_queue_sp_work(bp);
11498 	}
11499 bnxt_restart_timer:
11500 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11501 }
11502 
11503 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11504 {
11505 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11506 	 * set.  If the device is being closed, bnxt_close() may be holding
11507 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11508 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11509 	 */
11510 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11511 	rtnl_lock();
11512 }
11513 
11514 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11515 {
11516 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11517 	rtnl_unlock();
11518 }
11519 
11520 /* Only called from bnxt_sp_task() */
11521 static void bnxt_reset(struct bnxt *bp, bool silent)
11522 {
11523 	bnxt_rtnl_lock_sp(bp);
11524 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11525 		bnxt_reset_task(bp, silent);
11526 	bnxt_rtnl_unlock_sp(bp);
11527 }
11528 
11529 /* Only called from bnxt_sp_task() */
11530 static void bnxt_rx_ring_reset(struct bnxt *bp)
11531 {
11532 	int i;
11533 
11534 	bnxt_rtnl_lock_sp(bp);
11535 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11536 		bnxt_rtnl_unlock_sp(bp);
11537 		return;
11538 	}
11539 	/* Disable and flush TPA before resetting the RX ring */
11540 	if (bp->flags & BNXT_FLAG_TPA)
11541 		bnxt_set_tpa(bp, false);
11542 	for (i = 0; i < bp->rx_nr_rings; i++) {
11543 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11544 		struct bnxt_cp_ring_info *cpr;
11545 		int rc;
11546 
11547 		if (!rxr->bnapi->in_reset)
11548 			continue;
11549 
11550 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11551 		if (rc) {
11552 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11553 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11554 			else
11555 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11556 					    rc);
11557 			bnxt_reset_task(bp, true);
11558 			break;
11559 		}
11560 		bnxt_free_one_rx_ring_skbs(bp, i);
11561 		rxr->rx_prod = 0;
11562 		rxr->rx_agg_prod = 0;
11563 		rxr->rx_sw_agg_prod = 0;
11564 		rxr->rx_next_cons = 0;
11565 		rxr->bnapi->in_reset = false;
11566 		bnxt_alloc_one_rx_ring(bp, i);
11567 		cpr = &rxr->bnapi->cp_ring;
11568 		cpr->sw_stats.rx.rx_resets++;
11569 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11570 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11571 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11572 	}
11573 	if (bp->flags & BNXT_FLAG_TPA)
11574 		bnxt_set_tpa(bp, true);
11575 	bnxt_rtnl_unlock_sp(bp);
11576 }
11577 
11578 static void bnxt_fw_reset_close(struct bnxt *bp)
11579 {
11580 	bnxt_ulp_stop(bp);
11581 	/* When firmware is in fatal state, quiesce device and disable
11582 	 * bus master to prevent any potential bad DMAs before freeing
11583 	 * kernel memory.
11584 	 */
11585 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11586 		u16 val = 0;
11587 
11588 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11589 		if (val == 0xffff)
11590 			bp->fw_reset_min_dsecs = 0;
11591 		bnxt_tx_disable(bp);
11592 		bnxt_disable_napi(bp);
11593 		bnxt_disable_int_sync(bp);
11594 		bnxt_free_irq(bp);
11595 		bnxt_clear_int_mode(bp);
11596 		pci_disable_device(bp->pdev);
11597 	}
11598 	__bnxt_close_nic(bp, true, false);
11599 	bnxt_vf_reps_free(bp);
11600 	bnxt_clear_int_mode(bp);
11601 	bnxt_hwrm_func_drv_unrgtr(bp);
11602 	if (pci_is_enabled(bp->pdev))
11603 		pci_disable_device(bp->pdev);
11604 	bnxt_free_ctx_mem(bp);
11605 	kfree(bp->ctx);
11606 	bp->ctx = NULL;
11607 }
11608 
11609 static bool is_bnxt_fw_ok(struct bnxt *bp)
11610 {
11611 	struct bnxt_fw_health *fw_health = bp->fw_health;
11612 	bool no_heartbeat = false, has_reset = false;
11613 	u32 val;
11614 
11615 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11616 	if (val == fw_health->last_fw_heartbeat)
11617 		no_heartbeat = true;
11618 
11619 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11620 	if (val != fw_health->last_fw_reset_cnt)
11621 		has_reset = true;
11622 
11623 	if (!no_heartbeat && has_reset)
11624 		return true;
11625 
11626 	return false;
11627 }
11628 
11629 /* rtnl_lock is acquired before calling this function */
11630 static void bnxt_force_fw_reset(struct bnxt *bp)
11631 {
11632 	struct bnxt_fw_health *fw_health = bp->fw_health;
11633 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11634 	u32 wait_dsecs;
11635 
11636 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11637 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11638 		return;
11639 
11640 	if (ptp) {
11641 		spin_lock_bh(&ptp->ptp_lock);
11642 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11643 		spin_unlock_bh(&ptp->ptp_lock);
11644 	} else {
11645 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11646 	}
11647 	bnxt_fw_reset_close(bp);
11648 	wait_dsecs = fw_health->master_func_wait_dsecs;
11649 	if (fw_health->primary) {
11650 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11651 			wait_dsecs = 0;
11652 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11653 	} else {
11654 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11655 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11656 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11657 	}
11658 
11659 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11660 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11661 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11662 }
11663 
11664 void bnxt_fw_exception(struct bnxt *bp)
11665 {
11666 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11667 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11668 	bnxt_rtnl_lock_sp(bp);
11669 	bnxt_force_fw_reset(bp);
11670 	bnxt_rtnl_unlock_sp(bp);
11671 }
11672 
11673 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11674  * < 0 on error.
11675  */
11676 static int bnxt_get_registered_vfs(struct bnxt *bp)
11677 {
11678 #ifdef CONFIG_BNXT_SRIOV
11679 	int rc;
11680 
11681 	if (!BNXT_PF(bp))
11682 		return 0;
11683 
11684 	rc = bnxt_hwrm_func_qcfg(bp);
11685 	if (rc) {
11686 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11687 		return rc;
11688 	}
11689 	if (bp->pf.registered_vfs)
11690 		return bp->pf.registered_vfs;
11691 	if (bp->sriov_cfg)
11692 		return 1;
11693 #endif
11694 	return 0;
11695 }
11696 
11697 void bnxt_fw_reset(struct bnxt *bp)
11698 {
11699 	bnxt_rtnl_lock_sp(bp);
11700 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11701 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11702 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11703 		int n = 0, tmo;
11704 
11705 		if (ptp) {
11706 			spin_lock_bh(&ptp->ptp_lock);
11707 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11708 			spin_unlock_bh(&ptp->ptp_lock);
11709 		} else {
11710 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11711 		}
11712 		if (bp->pf.active_vfs &&
11713 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11714 			n = bnxt_get_registered_vfs(bp);
11715 		if (n < 0) {
11716 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11717 				   n);
11718 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11719 			dev_close(bp->dev);
11720 			goto fw_reset_exit;
11721 		} else if (n > 0) {
11722 			u16 vf_tmo_dsecs = n * 10;
11723 
11724 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11725 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11726 			bp->fw_reset_state =
11727 				BNXT_FW_RESET_STATE_POLL_VF;
11728 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11729 			goto fw_reset_exit;
11730 		}
11731 		bnxt_fw_reset_close(bp);
11732 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11733 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11734 			tmo = HZ / 10;
11735 		} else {
11736 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11737 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11738 		}
11739 		bnxt_queue_fw_reset_work(bp, tmo);
11740 	}
11741 fw_reset_exit:
11742 	bnxt_rtnl_unlock_sp(bp);
11743 }
11744 
11745 static void bnxt_chk_missed_irq(struct bnxt *bp)
11746 {
11747 	int i;
11748 
11749 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11750 		return;
11751 
11752 	for (i = 0; i < bp->cp_nr_rings; i++) {
11753 		struct bnxt_napi *bnapi = bp->bnapi[i];
11754 		struct bnxt_cp_ring_info *cpr;
11755 		u32 fw_ring_id;
11756 		int j;
11757 
11758 		if (!bnapi)
11759 			continue;
11760 
11761 		cpr = &bnapi->cp_ring;
11762 		for (j = 0; j < 2; j++) {
11763 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11764 			u32 val[2];
11765 
11766 			if (!cpr2 || cpr2->has_more_work ||
11767 			    !bnxt_has_work(bp, cpr2))
11768 				continue;
11769 
11770 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11771 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11772 				continue;
11773 			}
11774 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11775 			bnxt_dbg_hwrm_ring_info_get(bp,
11776 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11777 				fw_ring_id, &val[0], &val[1]);
11778 			cpr->sw_stats.cmn.missed_irqs++;
11779 		}
11780 	}
11781 }
11782 
11783 static void bnxt_cfg_ntp_filters(struct bnxt *);
11784 
11785 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11786 {
11787 	struct bnxt_link_info *link_info = &bp->link_info;
11788 
11789 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11790 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11791 		if (bp->hwrm_spec_code >= 0x10201) {
11792 			if (link_info->auto_pause_setting &
11793 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11794 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11795 		} else {
11796 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11797 		}
11798 		link_info->advertising = link_info->auto_link_speeds;
11799 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11800 	} else {
11801 		link_info->req_link_speed = link_info->force_link_speed;
11802 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11803 		if (link_info->force_pam4_link_speed) {
11804 			link_info->req_link_speed =
11805 				link_info->force_pam4_link_speed;
11806 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11807 		}
11808 		link_info->req_duplex = link_info->duplex_setting;
11809 	}
11810 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11811 		link_info->req_flow_ctrl =
11812 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11813 	else
11814 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11815 }
11816 
11817 static void bnxt_fw_echo_reply(struct bnxt *bp)
11818 {
11819 	struct bnxt_fw_health *fw_health = bp->fw_health;
11820 	struct hwrm_func_echo_response_input *req;
11821 	int rc;
11822 
11823 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11824 	if (rc)
11825 		return;
11826 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11827 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11828 	hwrm_req_send(bp, req);
11829 }
11830 
11831 static void bnxt_sp_task(struct work_struct *work)
11832 {
11833 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11834 
11835 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11836 	smp_mb__after_atomic();
11837 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11838 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11839 		return;
11840 	}
11841 
11842 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11843 		bnxt_cfg_rx_mode(bp);
11844 
11845 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11846 		bnxt_cfg_ntp_filters(bp);
11847 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11848 		bnxt_hwrm_exec_fwd_req(bp);
11849 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11850 		bnxt_hwrm_port_qstats(bp, 0);
11851 		bnxt_hwrm_port_qstats_ext(bp, 0);
11852 		bnxt_accumulate_all_stats(bp);
11853 	}
11854 
11855 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11856 		int rc;
11857 
11858 		mutex_lock(&bp->link_lock);
11859 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11860 				       &bp->sp_event))
11861 			bnxt_hwrm_phy_qcaps(bp);
11862 
11863 		rc = bnxt_update_link(bp, true);
11864 		if (rc)
11865 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11866 				   rc);
11867 
11868 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11869 				       &bp->sp_event))
11870 			bnxt_init_ethtool_link_settings(bp);
11871 		mutex_unlock(&bp->link_lock);
11872 	}
11873 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11874 		int rc;
11875 
11876 		mutex_lock(&bp->link_lock);
11877 		rc = bnxt_update_phy_setting(bp);
11878 		mutex_unlock(&bp->link_lock);
11879 		if (rc) {
11880 			netdev_warn(bp->dev, "update phy settings retry failed\n");
11881 		} else {
11882 			bp->link_info.phy_retry = false;
11883 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
11884 		}
11885 	}
11886 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11887 		mutex_lock(&bp->link_lock);
11888 		bnxt_get_port_module_status(bp);
11889 		mutex_unlock(&bp->link_lock);
11890 	}
11891 
11892 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11893 		bnxt_tc_flow_stats_work(bp);
11894 
11895 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11896 		bnxt_chk_missed_irq(bp);
11897 
11898 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
11899 		bnxt_fw_echo_reply(bp);
11900 
11901 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11902 	 * must be the last functions to be called before exiting.
11903 	 */
11904 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11905 		bnxt_reset(bp, false);
11906 
11907 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11908 		bnxt_reset(bp, true);
11909 
11910 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11911 		bnxt_rx_ring_reset(bp);
11912 
11913 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
11914 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
11915 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
11916 			bnxt_devlink_health_fw_report(bp);
11917 		else
11918 			bnxt_fw_reset(bp);
11919 	}
11920 
11921 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11922 		if (!is_bnxt_fw_ok(bp))
11923 			bnxt_devlink_health_fw_report(bp);
11924 	}
11925 
11926 	smp_mb__before_atomic();
11927 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11928 }
11929 
11930 /* Under rtnl_lock */
11931 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11932 		     int tx_xdp)
11933 {
11934 	int max_rx, max_tx, tx_sets = 1;
11935 	int tx_rings_needed, stats;
11936 	int rx_rings = rx;
11937 	int cp, vnics, rc;
11938 
11939 	if (tcs)
11940 		tx_sets = tcs;
11941 
11942 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11943 	if (rc)
11944 		return rc;
11945 
11946 	if (max_rx < rx)
11947 		return -ENOMEM;
11948 
11949 	tx_rings_needed = tx * tx_sets + tx_xdp;
11950 	if (max_tx < tx_rings_needed)
11951 		return -ENOMEM;
11952 
11953 	vnics = 1;
11954 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11955 		vnics += rx_rings;
11956 
11957 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11958 		rx_rings <<= 1;
11959 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11960 	stats = cp;
11961 	if (BNXT_NEW_RM(bp)) {
11962 		cp += bnxt_get_ulp_msix_num(bp);
11963 		stats += bnxt_get_ulp_stat_ctxs(bp);
11964 	}
11965 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11966 				     stats, vnics);
11967 }
11968 
11969 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11970 {
11971 	if (bp->bar2) {
11972 		pci_iounmap(pdev, bp->bar2);
11973 		bp->bar2 = NULL;
11974 	}
11975 
11976 	if (bp->bar1) {
11977 		pci_iounmap(pdev, bp->bar1);
11978 		bp->bar1 = NULL;
11979 	}
11980 
11981 	if (bp->bar0) {
11982 		pci_iounmap(pdev, bp->bar0);
11983 		bp->bar0 = NULL;
11984 	}
11985 }
11986 
11987 static void bnxt_cleanup_pci(struct bnxt *bp)
11988 {
11989 	bnxt_unmap_bars(bp, bp->pdev);
11990 	pci_release_regions(bp->pdev);
11991 	if (pci_is_enabled(bp->pdev))
11992 		pci_disable_device(bp->pdev);
11993 }
11994 
11995 static void bnxt_init_dflt_coal(struct bnxt *bp)
11996 {
11997 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
11998 	struct bnxt_coal *coal;
11999 	u16 flags = 0;
12000 
12001 	if (coal_cap->cmpl_params &
12002 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12003 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12004 
12005 	/* Tick values in micro seconds.
12006 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12007 	 */
12008 	coal = &bp->rx_coal;
12009 	coal->coal_ticks = 10;
12010 	coal->coal_bufs = 30;
12011 	coal->coal_ticks_irq = 1;
12012 	coal->coal_bufs_irq = 2;
12013 	coal->idle_thresh = 50;
12014 	coal->bufs_per_record = 2;
12015 	coal->budget = 64;		/* NAPI budget */
12016 	coal->flags = flags;
12017 
12018 	coal = &bp->tx_coal;
12019 	coal->coal_ticks = 28;
12020 	coal->coal_bufs = 30;
12021 	coal->coal_ticks_irq = 2;
12022 	coal->coal_bufs_irq = 2;
12023 	coal->bufs_per_record = 1;
12024 	coal->flags = flags;
12025 
12026 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12027 }
12028 
12029 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12030 {
12031 	int rc;
12032 
12033 	bp->fw_cap = 0;
12034 	rc = bnxt_hwrm_ver_get(bp);
12035 	bnxt_try_map_fw_health_reg(bp);
12036 	if (rc) {
12037 		rc = bnxt_try_recover_fw(bp);
12038 		if (rc)
12039 			return rc;
12040 		rc = bnxt_hwrm_ver_get(bp);
12041 		if (rc)
12042 			return rc;
12043 	}
12044 
12045 	bnxt_nvm_cfg_ver_get(bp);
12046 
12047 	rc = bnxt_hwrm_func_reset(bp);
12048 	if (rc)
12049 		return -ENODEV;
12050 
12051 	bnxt_hwrm_fw_set_time(bp);
12052 	return 0;
12053 }
12054 
12055 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12056 {
12057 	int rc;
12058 
12059 	/* Get the MAX capabilities for this function */
12060 	rc = bnxt_hwrm_func_qcaps(bp);
12061 	if (rc) {
12062 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12063 			   rc);
12064 		return -ENODEV;
12065 	}
12066 
12067 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12068 	if (rc)
12069 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12070 			    rc);
12071 
12072 	if (bnxt_alloc_fw_health(bp)) {
12073 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12074 	} else {
12075 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12076 		if (rc)
12077 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12078 				    rc);
12079 	}
12080 
12081 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12082 	if (rc)
12083 		return -ENODEV;
12084 
12085 	bnxt_hwrm_func_qcfg(bp);
12086 	bnxt_hwrm_vnic_qcaps(bp);
12087 	bnxt_hwrm_port_led_qcaps(bp);
12088 	bnxt_ethtool_init(bp);
12089 	bnxt_dcb_init(bp);
12090 	return 0;
12091 }
12092 
12093 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12094 {
12095 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12096 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12097 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12098 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12099 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12100 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12101 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12102 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12103 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12104 	}
12105 }
12106 
12107 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12108 {
12109 	struct net_device *dev = bp->dev;
12110 
12111 	dev->hw_features &= ~NETIF_F_NTUPLE;
12112 	dev->features &= ~NETIF_F_NTUPLE;
12113 	bp->flags &= ~BNXT_FLAG_RFS;
12114 	if (bnxt_rfs_supported(bp)) {
12115 		dev->hw_features |= NETIF_F_NTUPLE;
12116 		if (bnxt_rfs_capable(bp)) {
12117 			bp->flags |= BNXT_FLAG_RFS;
12118 			dev->features |= NETIF_F_NTUPLE;
12119 		}
12120 	}
12121 }
12122 
12123 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12124 {
12125 	struct pci_dev *pdev = bp->pdev;
12126 
12127 	bnxt_set_dflt_rss_hash_type(bp);
12128 	bnxt_set_dflt_rfs(bp);
12129 
12130 	bnxt_get_wol_settings(bp);
12131 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12132 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12133 	else
12134 		device_set_wakeup_capable(&pdev->dev, false);
12135 
12136 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12137 	bnxt_hwrm_coal_params_qcaps(bp);
12138 }
12139 
12140 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12141 
12142 int bnxt_fw_init_one(struct bnxt *bp)
12143 {
12144 	int rc;
12145 
12146 	rc = bnxt_fw_init_one_p1(bp);
12147 	if (rc) {
12148 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12149 		return rc;
12150 	}
12151 	rc = bnxt_fw_init_one_p2(bp);
12152 	if (rc) {
12153 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12154 		return rc;
12155 	}
12156 	rc = bnxt_probe_phy(bp, false);
12157 	if (rc)
12158 		return rc;
12159 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12160 	if (rc)
12161 		return rc;
12162 
12163 	bnxt_fw_init_one_p3(bp);
12164 	return 0;
12165 }
12166 
12167 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12168 {
12169 	struct bnxt_fw_health *fw_health = bp->fw_health;
12170 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12171 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12172 	u32 reg_type, reg_off, delay_msecs;
12173 
12174 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12175 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12176 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12177 	switch (reg_type) {
12178 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12179 		pci_write_config_dword(bp->pdev, reg_off, val);
12180 		break;
12181 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12182 		writel(reg_off & BNXT_GRC_BASE_MASK,
12183 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12184 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12185 		fallthrough;
12186 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12187 		writel(val, bp->bar0 + reg_off);
12188 		break;
12189 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12190 		writel(val, bp->bar1 + reg_off);
12191 		break;
12192 	}
12193 	if (delay_msecs) {
12194 		pci_read_config_dword(bp->pdev, 0, &val);
12195 		msleep(delay_msecs);
12196 	}
12197 }
12198 
12199 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12200 {
12201 	struct hwrm_func_qcfg_output *resp;
12202 	struct hwrm_func_qcfg_input *req;
12203 	bool result = true; /* firmware will enforce if unknown */
12204 
12205 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12206 		return result;
12207 
12208 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12209 		return result;
12210 
12211 	req->fid = cpu_to_le16(0xffff);
12212 	resp = hwrm_req_hold(bp, req);
12213 	if (!hwrm_req_send(bp, req))
12214 		result = !!(le16_to_cpu(resp->flags) &
12215 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12216 	hwrm_req_drop(bp, req);
12217 	return result;
12218 }
12219 
12220 static void bnxt_reset_all(struct bnxt *bp)
12221 {
12222 	struct bnxt_fw_health *fw_health = bp->fw_health;
12223 	int i, rc;
12224 
12225 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12226 		bnxt_fw_reset_via_optee(bp);
12227 		bp->fw_reset_timestamp = jiffies;
12228 		return;
12229 	}
12230 
12231 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12232 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12233 			bnxt_fw_reset_writel(bp, i);
12234 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12235 		struct hwrm_fw_reset_input *req;
12236 
12237 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12238 		if (!rc) {
12239 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12240 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12241 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12242 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12243 			rc = hwrm_req_send(bp, req);
12244 		}
12245 		if (rc != -ENODEV)
12246 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12247 	}
12248 	bp->fw_reset_timestamp = jiffies;
12249 }
12250 
12251 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12252 {
12253 	return time_after(jiffies, bp->fw_reset_timestamp +
12254 			  (bp->fw_reset_max_dsecs * HZ / 10));
12255 }
12256 
12257 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12258 {
12259 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12260 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12261 		bnxt_ulp_start(bp, rc);
12262 		bnxt_dl_health_fw_status_update(bp, false);
12263 	}
12264 	bp->fw_reset_state = 0;
12265 	dev_close(bp->dev);
12266 }
12267 
12268 static void bnxt_fw_reset_task(struct work_struct *work)
12269 {
12270 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12271 	int rc = 0;
12272 
12273 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12274 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12275 		return;
12276 	}
12277 
12278 	switch (bp->fw_reset_state) {
12279 	case BNXT_FW_RESET_STATE_POLL_VF: {
12280 		int n = bnxt_get_registered_vfs(bp);
12281 		int tmo;
12282 
12283 		if (n < 0) {
12284 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12285 				   n, jiffies_to_msecs(jiffies -
12286 				   bp->fw_reset_timestamp));
12287 			goto fw_reset_abort;
12288 		} else if (n > 0) {
12289 			if (bnxt_fw_reset_timeout(bp)) {
12290 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12291 				bp->fw_reset_state = 0;
12292 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12293 					   n);
12294 				return;
12295 			}
12296 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12297 			return;
12298 		}
12299 		bp->fw_reset_timestamp = jiffies;
12300 		rtnl_lock();
12301 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12302 			bnxt_fw_reset_abort(bp, rc);
12303 			rtnl_unlock();
12304 			return;
12305 		}
12306 		bnxt_fw_reset_close(bp);
12307 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12308 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12309 			tmo = HZ / 10;
12310 		} else {
12311 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12312 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12313 		}
12314 		rtnl_unlock();
12315 		bnxt_queue_fw_reset_work(bp, tmo);
12316 		return;
12317 	}
12318 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12319 		u32 val;
12320 
12321 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12322 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12323 		    !bnxt_fw_reset_timeout(bp)) {
12324 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12325 			return;
12326 		}
12327 
12328 		if (!bp->fw_health->primary) {
12329 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12330 
12331 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12332 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12333 			return;
12334 		}
12335 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12336 	}
12337 		fallthrough;
12338 	case BNXT_FW_RESET_STATE_RESET_FW:
12339 		bnxt_reset_all(bp);
12340 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12341 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12342 		return;
12343 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12344 		bnxt_inv_fw_health_reg(bp);
12345 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12346 		    !bp->fw_reset_min_dsecs) {
12347 			u16 val;
12348 
12349 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12350 			if (val == 0xffff) {
12351 				if (bnxt_fw_reset_timeout(bp)) {
12352 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12353 					rc = -ETIMEDOUT;
12354 					goto fw_reset_abort;
12355 				}
12356 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12357 				return;
12358 			}
12359 		}
12360 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12361 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12362 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12363 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12364 			bnxt_dl_remote_reload(bp);
12365 		if (pci_enable_device(bp->pdev)) {
12366 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12367 			rc = -ENODEV;
12368 			goto fw_reset_abort;
12369 		}
12370 		pci_set_master(bp->pdev);
12371 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12372 		fallthrough;
12373 	case BNXT_FW_RESET_STATE_POLL_FW:
12374 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12375 		rc = bnxt_hwrm_poll(bp);
12376 		if (rc) {
12377 			if (bnxt_fw_reset_timeout(bp)) {
12378 				netdev_err(bp->dev, "Firmware reset aborted\n");
12379 				goto fw_reset_abort_status;
12380 			}
12381 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12382 			return;
12383 		}
12384 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12385 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12386 		fallthrough;
12387 	case BNXT_FW_RESET_STATE_OPENING:
12388 		while (!rtnl_trylock()) {
12389 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12390 			return;
12391 		}
12392 		rc = bnxt_open(bp->dev);
12393 		if (rc) {
12394 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12395 			bnxt_fw_reset_abort(bp, rc);
12396 			rtnl_unlock();
12397 			return;
12398 		}
12399 
12400 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12401 		    bp->fw_health->enabled) {
12402 			bp->fw_health->last_fw_reset_cnt =
12403 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12404 		}
12405 		bp->fw_reset_state = 0;
12406 		/* Make sure fw_reset_state is 0 before clearing the flag */
12407 		smp_mb__before_atomic();
12408 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12409 		bnxt_ulp_start(bp, 0);
12410 		bnxt_reenable_sriov(bp);
12411 		bnxt_vf_reps_alloc(bp);
12412 		bnxt_vf_reps_open(bp);
12413 		bnxt_ptp_reapply_pps(bp);
12414 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12415 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12416 			bnxt_dl_health_fw_recovery_done(bp);
12417 			bnxt_dl_health_fw_status_update(bp, true);
12418 		}
12419 		rtnl_unlock();
12420 		break;
12421 	}
12422 	return;
12423 
12424 fw_reset_abort_status:
12425 	if (bp->fw_health->status_reliable ||
12426 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12427 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12428 
12429 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12430 	}
12431 fw_reset_abort:
12432 	rtnl_lock();
12433 	bnxt_fw_reset_abort(bp, rc);
12434 	rtnl_unlock();
12435 }
12436 
12437 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12438 {
12439 	int rc;
12440 	struct bnxt *bp = netdev_priv(dev);
12441 
12442 	SET_NETDEV_DEV(dev, &pdev->dev);
12443 
12444 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12445 	rc = pci_enable_device(pdev);
12446 	if (rc) {
12447 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12448 		goto init_err;
12449 	}
12450 
12451 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12452 		dev_err(&pdev->dev,
12453 			"Cannot find PCI device base address, aborting\n");
12454 		rc = -ENODEV;
12455 		goto init_err_disable;
12456 	}
12457 
12458 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12459 	if (rc) {
12460 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12461 		goto init_err_disable;
12462 	}
12463 
12464 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12465 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12466 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12467 		rc = -EIO;
12468 		goto init_err_release;
12469 	}
12470 
12471 	pci_set_master(pdev);
12472 
12473 	bp->dev = dev;
12474 	bp->pdev = pdev;
12475 
12476 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12477 	 * determines the BAR size.
12478 	 */
12479 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12480 	if (!bp->bar0) {
12481 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12482 		rc = -ENOMEM;
12483 		goto init_err_release;
12484 	}
12485 
12486 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12487 	if (!bp->bar2) {
12488 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12489 		rc = -ENOMEM;
12490 		goto init_err_release;
12491 	}
12492 
12493 	pci_enable_pcie_error_reporting(pdev);
12494 
12495 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12496 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12497 
12498 	spin_lock_init(&bp->ntp_fltr_lock);
12499 #if BITS_PER_LONG == 32
12500 	spin_lock_init(&bp->db_lock);
12501 #endif
12502 
12503 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12504 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12505 
12506 	timer_setup(&bp->timer, bnxt_timer, 0);
12507 	bp->current_interval = BNXT_TIMER_INTERVAL;
12508 
12509 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12510 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12511 
12512 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12513 	return 0;
12514 
12515 init_err_release:
12516 	bnxt_unmap_bars(bp, pdev);
12517 	pci_release_regions(pdev);
12518 
12519 init_err_disable:
12520 	pci_disable_device(pdev);
12521 
12522 init_err:
12523 	return rc;
12524 }
12525 
12526 /* rtnl_lock held */
12527 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12528 {
12529 	struct sockaddr *addr = p;
12530 	struct bnxt *bp = netdev_priv(dev);
12531 	int rc = 0;
12532 
12533 	if (!is_valid_ether_addr(addr->sa_data))
12534 		return -EADDRNOTAVAIL;
12535 
12536 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12537 		return 0;
12538 
12539 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12540 	if (rc)
12541 		return rc;
12542 
12543 	eth_hw_addr_set(dev, addr->sa_data);
12544 	if (netif_running(dev)) {
12545 		bnxt_close_nic(bp, false, false);
12546 		rc = bnxt_open_nic(bp, false, false);
12547 	}
12548 
12549 	return rc;
12550 }
12551 
12552 /* rtnl_lock held */
12553 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12554 {
12555 	struct bnxt *bp = netdev_priv(dev);
12556 
12557 	if (netif_running(dev))
12558 		bnxt_close_nic(bp, true, false);
12559 
12560 	dev->mtu = new_mtu;
12561 	bnxt_set_ring_params(bp);
12562 
12563 	if (netif_running(dev))
12564 		return bnxt_open_nic(bp, true, false);
12565 
12566 	return 0;
12567 }
12568 
12569 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12570 {
12571 	struct bnxt *bp = netdev_priv(dev);
12572 	bool sh = false;
12573 	int rc;
12574 
12575 	if (tc > bp->max_tc) {
12576 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12577 			   tc, bp->max_tc);
12578 		return -EINVAL;
12579 	}
12580 
12581 	if (netdev_get_num_tc(dev) == tc)
12582 		return 0;
12583 
12584 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12585 		sh = true;
12586 
12587 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12588 			      sh, tc, bp->tx_nr_rings_xdp);
12589 	if (rc)
12590 		return rc;
12591 
12592 	/* Needs to close the device and do hw resource re-allocations */
12593 	if (netif_running(bp->dev))
12594 		bnxt_close_nic(bp, true, false);
12595 
12596 	if (tc) {
12597 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12598 		netdev_set_num_tc(dev, tc);
12599 	} else {
12600 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12601 		netdev_reset_tc(dev);
12602 	}
12603 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12604 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12605 			       bp->tx_nr_rings + bp->rx_nr_rings;
12606 
12607 	if (netif_running(bp->dev))
12608 		return bnxt_open_nic(bp, true, false);
12609 
12610 	return 0;
12611 }
12612 
12613 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12614 				  void *cb_priv)
12615 {
12616 	struct bnxt *bp = cb_priv;
12617 
12618 	if (!bnxt_tc_flower_enabled(bp) ||
12619 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12620 		return -EOPNOTSUPP;
12621 
12622 	switch (type) {
12623 	case TC_SETUP_CLSFLOWER:
12624 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12625 	default:
12626 		return -EOPNOTSUPP;
12627 	}
12628 }
12629 
12630 LIST_HEAD(bnxt_block_cb_list);
12631 
12632 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12633 			 void *type_data)
12634 {
12635 	struct bnxt *bp = netdev_priv(dev);
12636 
12637 	switch (type) {
12638 	case TC_SETUP_BLOCK:
12639 		return flow_block_cb_setup_simple(type_data,
12640 						  &bnxt_block_cb_list,
12641 						  bnxt_setup_tc_block_cb,
12642 						  bp, bp, true);
12643 	case TC_SETUP_QDISC_MQPRIO: {
12644 		struct tc_mqprio_qopt *mqprio = type_data;
12645 
12646 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12647 
12648 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12649 	}
12650 	default:
12651 		return -EOPNOTSUPP;
12652 	}
12653 }
12654 
12655 #ifdef CONFIG_RFS_ACCEL
12656 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12657 			    struct bnxt_ntuple_filter *f2)
12658 {
12659 	struct flow_keys *keys1 = &f1->fkeys;
12660 	struct flow_keys *keys2 = &f2->fkeys;
12661 
12662 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12663 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12664 		return false;
12665 
12666 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12667 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12668 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12669 			return false;
12670 	} else {
12671 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12672 			   sizeof(keys1->addrs.v6addrs.src)) ||
12673 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12674 			   sizeof(keys1->addrs.v6addrs.dst)))
12675 			return false;
12676 	}
12677 
12678 	if (keys1->ports.ports == keys2->ports.ports &&
12679 	    keys1->control.flags == keys2->control.flags &&
12680 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12681 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12682 		return true;
12683 
12684 	return false;
12685 }
12686 
12687 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12688 			      u16 rxq_index, u32 flow_id)
12689 {
12690 	struct bnxt *bp = netdev_priv(dev);
12691 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12692 	struct flow_keys *fkeys;
12693 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12694 	int rc = 0, idx, bit_id, l2_idx = 0;
12695 	struct hlist_head *head;
12696 	u32 flags;
12697 
12698 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12699 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12700 		int off = 0, j;
12701 
12702 		netif_addr_lock_bh(dev);
12703 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12704 			if (ether_addr_equal(eth->h_dest,
12705 					     vnic->uc_list + off)) {
12706 				l2_idx = j + 1;
12707 				break;
12708 			}
12709 		}
12710 		netif_addr_unlock_bh(dev);
12711 		if (!l2_idx)
12712 			return -EINVAL;
12713 	}
12714 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12715 	if (!new_fltr)
12716 		return -ENOMEM;
12717 
12718 	fkeys = &new_fltr->fkeys;
12719 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12720 		rc = -EPROTONOSUPPORT;
12721 		goto err_free;
12722 	}
12723 
12724 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12725 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12726 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12727 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12728 		rc = -EPROTONOSUPPORT;
12729 		goto err_free;
12730 	}
12731 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12732 	    bp->hwrm_spec_code < 0x10601) {
12733 		rc = -EPROTONOSUPPORT;
12734 		goto err_free;
12735 	}
12736 	flags = fkeys->control.flags;
12737 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12738 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12739 		rc = -EPROTONOSUPPORT;
12740 		goto err_free;
12741 	}
12742 
12743 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12744 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12745 
12746 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12747 	head = &bp->ntp_fltr_hash_tbl[idx];
12748 	rcu_read_lock();
12749 	hlist_for_each_entry_rcu(fltr, head, hash) {
12750 		if (bnxt_fltr_match(fltr, new_fltr)) {
12751 			rcu_read_unlock();
12752 			rc = 0;
12753 			goto err_free;
12754 		}
12755 	}
12756 	rcu_read_unlock();
12757 
12758 	spin_lock_bh(&bp->ntp_fltr_lock);
12759 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12760 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12761 	if (bit_id < 0) {
12762 		spin_unlock_bh(&bp->ntp_fltr_lock);
12763 		rc = -ENOMEM;
12764 		goto err_free;
12765 	}
12766 
12767 	new_fltr->sw_id = (u16)bit_id;
12768 	new_fltr->flow_id = flow_id;
12769 	new_fltr->l2_fltr_idx = l2_idx;
12770 	new_fltr->rxq = rxq_index;
12771 	hlist_add_head_rcu(&new_fltr->hash, head);
12772 	bp->ntp_fltr_count++;
12773 	spin_unlock_bh(&bp->ntp_fltr_lock);
12774 
12775 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12776 	bnxt_queue_sp_work(bp);
12777 
12778 	return new_fltr->sw_id;
12779 
12780 err_free:
12781 	kfree(new_fltr);
12782 	return rc;
12783 }
12784 
12785 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12786 {
12787 	int i;
12788 
12789 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12790 		struct hlist_head *head;
12791 		struct hlist_node *tmp;
12792 		struct bnxt_ntuple_filter *fltr;
12793 		int rc;
12794 
12795 		head = &bp->ntp_fltr_hash_tbl[i];
12796 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12797 			bool del = false;
12798 
12799 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12800 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12801 							fltr->flow_id,
12802 							fltr->sw_id)) {
12803 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12804 									 fltr);
12805 					del = true;
12806 				}
12807 			} else {
12808 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12809 								       fltr);
12810 				if (rc)
12811 					del = true;
12812 				else
12813 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12814 			}
12815 
12816 			if (del) {
12817 				spin_lock_bh(&bp->ntp_fltr_lock);
12818 				hlist_del_rcu(&fltr->hash);
12819 				bp->ntp_fltr_count--;
12820 				spin_unlock_bh(&bp->ntp_fltr_lock);
12821 				synchronize_rcu();
12822 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12823 				kfree(fltr);
12824 			}
12825 		}
12826 	}
12827 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12828 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12829 }
12830 
12831 #else
12832 
12833 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12834 {
12835 }
12836 
12837 #endif /* CONFIG_RFS_ACCEL */
12838 
12839 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12840 {
12841 	struct bnxt *bp = netdev_priv(netdev);
12842 	struct udp_tunnel_info ti;
12843 	unsigned int cmd;
12844 
12845 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12846 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
12847 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12848 	else
12849 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12850 
12851 	if (ti.port)
12852 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12853 
12854 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12855 }
12856 
12857 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
12858 	.sync_table	= bnxt_udp_tunnel_sync,
12859 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
12860 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
12861 	.tables		= {
12862 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
12863 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
12864 	},
12865 };
12866 
12867 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
12868 			       struct net_device *dev, u32 filter_mask,
12869 			       int nlflags)
12870 {
12871 	struct bnxt *bp = netdev_priv(dev);
12872 
12873 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12874 				       nlflags, filter_mask, NULL);
12875 }
12876 
12877 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12878 			       u16 flags, struct netlink_ext_ack *extack)
12879 {
12880 	struct bnxt *bp = netdev_priv(dev);
12881 	struct nlattr *attr, *br_spec;
12882 	int rem, rc = 0;
12883 
12884 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12885 		return -EOPNOTSUPP;
12886 
12887 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12888 	if (!br_spec)
12889 		return -EINVAL;
12890 
12891 	nla_for_each_nested(attr, br_spec, rem) {
12892 		u16 mode;
12893 
12894 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
12895 			continue;
12896 
12897 		if (nla_len(attr) < sizeof(mode))
12898 			return -EINVAL;
12899 
12900 		mode = nla_get_u16(attr);
12901 		if (mode == bp->br_mode)
12902 			break;
12903 
12904 		rc = bnxt_hwrm_set_br_mode(bp, mode);
12905 		if (!rc)
12906 			bp->br_mode = mode;
12907 		break;
12908 	}
12909 	return rc;
12910 }
12911 
12912 int bnxt_get_port_parent_id(struct net_device *dev,
12913 			    struct netdev_phys_item_id *ppid)
12914 {
12915 	struct bnxt *bp = netdev_priv(dev);
12916 
12917 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12918 		return -EOPNOTSUPP;
12919 
12920 	/* The PF and it's VF-reps only support the switchdev framework */
12921 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12922 		return -EOPNOTSUPP;
12923 
12924 	ppid->id_len = sizeof(bp->dsn);
12925 	memcpy(ppid->id, bp->dsn, ppid->id_len);
12926 
12927 	return 0;
12928 }
12929 
12930 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12931 {
12932 	struct bnxt *bp = netdev_priv(dev);
12933 
12934 	return &bp->dl_port;
12935 }
12936 
12937 static const struct net_device_ops bnxt_netdev_ops = {
12938 	.ndo_open		= bnxt_open,
12939 	.ndo_start_xmit		= bnxt_start_xmit,
12940 	.ndo_stop		= bnxt_close,
12941 	.ndo_get_stats64	= bnxt_get_stats64,
12942 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
12943 	.ndo_eth_ioctl		= bnxt_ioctl,
12944 	.ndo_validate_addr	= eth_validate_addr,
12945 	.ndo_set_mac_address	= bnxt_change_mac_addr,
12946 	.ndo_change_mtu		= bnxt_change_mtu,
12947 	.ndo_fix_features	= bnxt_fix_features,
12948 	.ndo_set_features	= bnxt_set_features,
12949 	.ndo_features_check	= bnxt_features_check,
12950 	.ndo_tx_timeout		= bnxt_tx_timeout,
12951 #ifdef CONFIG_BNXT_SRIOV
12952 	.ndo_get_vf_config	= bnxt_get_vf_config,
12953 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
12954 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
12955 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
12956 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
12957 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
12958 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
12959 #endif
12960 	.ndo_setup_tc           = bnxt_setup_tc,
12961 #ifdef CONFIG_RFS_ACCEL
12962 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
12963 #endif
12964 	.ndo_bpf		= bnxt_xdp,
12965 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
12966 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
12967 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
12968 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
12969 };
12970 
12971 static void bnxt_remove_one(struct pci_dev *pdev)
12972 {
12973 	struct net_device *dev = pci_get_drvdata(pdev);
12974 	struct bnxt *bp = netdev_priv(dev);
12975 
12976 	if (BNXT_PF(bp))
12977 		bnxt_sriov_disable(bp);
12978 
12979 	if (BNXT_PF(bp))
12980 		devlink_port_type_clear(&bp->dl_port);
12981 
12982 	bnxt_ptp_clear(bp);
12983 	pci_disable_pcie_error_reporting(pdev);
12984 	unregister_netdev(dev);
12985 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12986 	/* Flush any pending tasks */
12987 	cancel_work_sync(&bp->sp_task);
12988 	cancel_delayed_work_sync(&bp->fw_reset_task);
12989 	bp->sp_event = 0;
12990 
12991 	bnxt_dl_fw_reporters_destroy(bp);
12992 	bnxt_dl_unregister(bp);
12993 	bnxt_shutdown_tc(bp);
12994 
12995 	bnxt_clear_int_mode(bp);
12996 	bnxt_hwrm_func_drv_unrgtr(bp);
12997 	bnxt_free_hwrm_resources(bp);
12998 	bnxt_ethtool_free(bp);
12999 	bnxt_dcb_free(bp);
13000 	kfree(bp->edev);
13001 	bp->edev = NULL;
13002 	kfree(bp->ptp_cfg);
13003 	bp->ptp_cfg = NULL;
13004 	kfree(bp->fw_health);
13005 	bp->fw_health = NULL;
13006 	bnxt_cleanup_pci(bp);
13007 	bnxt_free_ctx_mem(bp);
13008 	kfree(bp->ctx);
13009 	bp->ctx = NULL;
13010 	kfree(bp->rss_indir_tbl);
13011 	bp->rss_indir_tbl = NULL;
13012 	bnxt_free_port_stats(bp);
13013 	free_netdev(dev);
13014 }
13015 
13016 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13017 {
13018 	int rc = 0;
13019 	struct bnxt_link_info *link_info = &bp->link_info;
13020 
13021 	bp->phy_flags = 0;
13022 	rc = bnxt_hwrm_phy_qcaps(bp);
13023 	if (rc) {
13024 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13025 			   rc);
13026 		return rc;
13027 	}
13028 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13029 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13030 	else
13031 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13032 	if (!fw_dflt)
13033 		return 0;
13034 
13035 	mutex_lock(&bp->link_lock);
13036 	rc = bnxt_update_link(bp, false);
13037 	if (rc) {
13038 		mutex_unlock(&bp->link_lock);
13039 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13040 			   rc);
13041 		return rc;
13042 	}
13043 
13044 	/* Older firmware does not have supported_auto_speeds, so assume
13045 	 * that all supported speeds can be autonegotiated.
13046 	 */
13047 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13048 		link_info->support_auto_speeds = link_info->support_speeds;
13049 
13050 	bnxt_init_ethtool_link_settings(bp);
13051 	mutex_unlock(&bp->link_lock);
13052 	return 0;
13053 }
13054 
13055 static int bnxt_get_max_irq(struct pci_dev *pdev)
13056 {
13057 	u16 ctrl;
13058 
13059 	if (!pdev->msix_cap)
13060 		return 1;
13061 
13062 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13063 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13064 }
13065 
13066 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13067 				int *max_cp)
13068 {
13069 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13070 	int max_ring_grps = 0, max_irq;
13071 
13072 	*max_tx = hw_resc->max_tx_rings;
13073 	*max_rx = hw_resc->max_rx_rings;
13074 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13075 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13076 			bnxt_get_ulp_msix_num(bp),
13077 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13078 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13079 		*max_cp = min_t(int, *max_cp, max_irq);
13080 	max_ring_grps = hw_resc->max_hw_ring_grps;
13081 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13082 		*max_cp -= 1;
13083 		*max_rx -= 2;
13084 	}
13085 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13086 		*max_rx >>= 1;
13087 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13088 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13089 		/* On P5 chips, max_cp output param should be available NQs */
13090 		*max_cp = max_irq;
13091 	}
13092 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13093 }
13094 
13095 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13096 {
13097 	int rx, tx, cp;
13098 
13099 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13100 	*max_rx = rx;
13101 	*max_tx = tx;
13102 	if (!rx || !tx || !cp)
13103 		return -ENOMEM;
13104 
13105 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13106 }
13107 
13108 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13109 			       bool shared)
13110 {
13111 	int rc;
13112 
13113 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13114 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13115 		/* Not enough rings, try disabling agg rings. */
13116 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13117 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13118 		if (rc) {
13119 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13120 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13121 			return rc;
13122 		}
13123 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13124 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13125 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13126 		bnxt_set_ring_params(bp);
13127 	}
13128 
13129 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13130 		int max_cp, max_stat, max_irq;
13131 
13132 		/* Reserve minimum resources for RoCE */
13133 		max_cp = bnxt_get_max_func_cp_rings(bp);
13134 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13135 		max_irq = bnxt_get_max_func_irqs(bp);
13136 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13137 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13138 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13139 			return 0;
13140 
13141 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13142 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13143 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13144 		max_cp = min_t(int, max_cp, max_irq);
13145 		max_cp = min_t(int, max_cp, max_stat);
13146 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13147 		if (rc)
13148 			rc = 0;
13149 	}
13150 	return rc;
13151 }
13152 
13153 /* In initial default shared ring setting, each shared ring must have a
13154  * RX/TX ring pair.
13155  */
13156 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13157 {
13158 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13159 	bp->rx_nr_rings = bp->cp_nr_rings;
13160 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13161 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13162 }
13163 
13164 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13165 {
13166 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13167 
13168 	if (!bnxt_can_reserve_rings(bp))
13169 		return 0;
13170 
13171 	if (sh)
13172 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13173 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13174 	/* Reduce default rings on multi-port cards so that total default
13175 	 * rings do not exceed CPU count.
13176 	 */
13177 	if (bp->port_count > 1) {
13178 		int max_rings =
13179 			max_t(int, num_online_cpus() / bp->port_count, 1);
13180 
13181 		dflt_rings = min_t(int, dflt_rings, max_rings);
13182 	}
13183 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13184 	if (rc)
13185 		return rc;
13186 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13187 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13188 	if (sh)
13189 		bnxt_trim_dflt_sh_rings(bp);
13190 	else
13191 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13192 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13193 
13194 	rc = __bnxt_reserve_rings(bp);
13195 	if (rc && rc != -ENODEV)
13196 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13197 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13198 	if (sh)
13199 		bnxt_trim_dflt_sh_rings(bp);
13200 
13201 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13202 	if (bnxt_need_reserve_rings(bp)) {
13203 		rc = __bnxt_reserve_rings(bp);
13204 		if (rc && rc != -ENODEV)
13205 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13206 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13207 	}
13208 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13209 		bp->rx_nr_rings++;
13210 		bp->cp_nr_rings++;
13211 	}
13212 	if (rc) {
13213 		bp->tx_nr_rings = 0;
13214 		bp->rx_nr_rings = 0;
13215 	}
13216 	return rc;
13217 }
13218 
13219 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13220 {
13221 	int rc;
13222 
13223 	if (bp->tx_nr_rings)
13224 		return 0;
13225 
13226 	bnxt_ulp_irq_stop(bp);
13227 	bnxt_clear_int_mode(bp);
13228 	rc = bnxt_set_dflt_rings(bp, true);
13229 	if (rc) {
13230 		if (BNXT_VF(bp) && rc == -ENODEV)
13231 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13232 		else
13233 			netdev_err(bp->dev, "Not enough rings available.\n");
13234 		goto init_dflt_ring_err;
13235 	}
13236 	rc = bnxt_init_int_mode(bp);
13237 	if (rc)
13238 		goto init_dflt_ring_err;
13239 
13240 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13241 
13242 	bnxt_set_dflt_rfs(bp);
13243 
13244 init_dflt_ring_err:
13245 	bnxt_ulp_irq_restart(bp, rc);
13246 	return rc;
13247 }
13248 
13249 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13250 {
13251 	int rc;
13252 
13253 	ASSERT_RTNL();
13254 	bnxt_hwrm_func_qcaps(bp);
13255 
13256 	if (netif_running(bp->dev))
13257 		__bnxt_close_nic(bp, true, false);
13258 
13259 	bnxt_ulp_irq_stop(bp);
13260 	bnxt_clear_int_mode(bp);
13261 	rc = bnxt_init_int_mode(bp);
13262 	bnxt_ulp_irq_restart(bp, rc);
13263 
13264 	if (netif_running(bp->dev)) {
13265 		if (rc)
13266 			dev_close(bp->dev);
13267 		else
13268 			rc = bnxt_open_nic(bp, true, false);
13269 	}
13270 
13271 	return rc;
13272 }
13273 
13274 static int bnxt_init_mac_addr(struct bnxt *bp)
13275 {
13276 	int rc = 0;
13277 
13278 	if (BNXT_PF(bp)) {
13279 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13280 	} else {
13281 #ifdef CONFIG_BNXT_SRIOV
13282 		struct bnxt_vf_info *vf = &bp->vf;
13283 		bool strict_approval = true;
13284 
13285 		if (is_valid_ether_addr(vf->mac_addr)) {
13286 			/* overwrite netdev dev_addr with admin VF MAC */
13287 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13288 			/* Older PF driver or firmware may not approve this
13289 			 * correctly.
13290 			 */
13291 			strict_approval = false;
13292 		} else {
13293 			eth_hw_addr_random(bp->dev);
13294 		}
13295 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13296 #endif
13297 	}
13298 	return rc;
13299 }
13300 
13301 static void bnxt_vpd_read_info(struct bnxt *bp)
13302 {
13303 	struct pci_dev *pdev = bp->pdev;
13304 	unsigned int vpd_size, kw_len;
13305 	int pos, size;
13306 	u8 *vpd_data;
13307 
13308 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13309 	if (IS_ERR(vpd_data)) {
13310 		pci_warn(pdev, "Unable to read VPD\n");
13311 		return;
13312 	}
13313 
13314 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13315 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13316 	if (pos < 0)
13317 		goto read_sn;
13318 
13319 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13320 	memcpy(bp->board_partno, &vpd_data[pos], size);
13321 
13322 read_sn:
13323 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13324 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13325 					   &kw_len);
13326 	if (pos < 0)
13327 		goto exit;
13328 
13329 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13330 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13331 exit:
13332 	kfree(vpd_data);
13333 }
13334 
13335 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13336 {
13337 	struct pci_dev *pdev = bp->pdev;
13338 	u64 qword;
13339 
13340 	qword = pci_get_dsn(pdev);
13341 	if (!qword) {
13342 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13343 		return -EOPNOTSUPP;
13344 	}
13345 
13346 	put_unaligned_le64(qword, dsn);
13347 
13348 	bp->flags |= BNXT_FLAG_DSN_VALID;
13349 	return 0;
13350 }
13351 
13352 static int bnxt_map_db_bar(struct bnxt *bp)
13353 {
13354 	if (!bp->db_size)
13355 		return -ENODEV;
13356 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13357 	if (!bp->bar1)
13358 		return -ENOMEM;
13359 	return 0;
13360 }
13361 
13362 void bnxt_print_device_info(struct bnxt *bp)
13363 {
13364 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13365 		    board_info[bp->board_idx].name,
13366 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13367 
13368 	pcie_print_link_status(bp->pdev);
13369 }
13370 
13371 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13372 {
13373 	struct net_device *dev;
13374 	struct bnxt *bp;
13375 	int rc, max_irqs;
13376 
13377 	if (pci_is_bridge(pdev))
13378 		return -ENODEV;
13379 
13380 	/* Clear any pending DMA transactions from crash kernel
13381 	 * while loading driver in capture kernel.
13382 	 */
13383 	if (is_kdump_kernel()) {
13384 		pci_clear_master(pdev);
13385 		pcie_flr(pdev);
13386 	}
13387 
13388 	max_irqs = bnxt_get_max_irq(pdev);
13389 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13390 	if (!dev)
13391 		return -ENOMEM;
13392 
13393 	bp = netdev_priv(dev);
13394 	bp->board_idx = ent->driver_data;
13395 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13396 	bnxt_set_max_func_irqs(bp, max_irqs);
13397 
13398 	if (bnxt_vf_pciid(bp->board_idx))
13399 		bp->flags |= BNXT_FLAG_VF;
13400 
13401 	if (pdev->msix_cap)
13402 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13403 
13404 	rc = bnxt_init_board(pdev, dev);
13405 	if (rc < 0)
13406 		goto init_err_free;
13407 
13408 	dev->netdev_ops = &bnxt_netdev_ops;
13409 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13410 	dev->ethtool_ops = &bnxt_ethtool_ops;
13411 	pci_set_drvdata(pdev, dev);
13412 
13413 	rc = bnxt_alloc_hwrm_resources(bp);
13414 	if (rc)
13415 		goto init_err_pci_clean;
13416 
13417 	mutex_init(&bp->hwrm_cmd_lock);
13418 	mutex_init(&bp->link_lock);
13419 
13420 	rc = bnxt_fw_init_one_p1(bp);
13421 	if (rc)
13422 		goto init_err_pci_clean;
13423 
13424 	if (BNXT_PF(bp))
13425 		bnxt_vpd_read_info(bp);
13426 
13427 	if (BNXT_CHIP_P5(bp)) {
13428 		bp->flags |= BNXT_FLAG_CHIP_P5;
13429 		if (BNXT_CHIP_SR2(bp))
13430 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13431 	}
13432 
13433 	rc = bnxt_alloc_rss_indir_tbl(bp);
13434 	if (rc)
13435 		goto init_err_pci_clean;
13436 
13437 	rc = bnxt_fw_init_one_p2(bp);
13438 	if (rc)
13439 		goto init_err_pci_clean;
13440 
13441 	rc = bnxt_map_db_bar(bp);
13442 	if (rc) {
13443 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13444 			rc);
13445 		goto init_err_pci_clean;
13446 	}
13447 
13448 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13449 			   NETIF_F_TSO | NETIF_F_TSO6 |
13450 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13451 			   NETIF_F_GSO_IPXIP4 |
13452 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13453 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13454 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13455 
13456 	if (BNXT_SUPPORTS_TPA(bp))
13457 		dev->hw_features |= NETIF_F_LRO;
13458 
13459 	dev->hw_enc_features =
13460 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13461 			NETIF_F_TSO | NETIF_F_TSO6 |
13462 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13463 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13464 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13465 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13466 
13467 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13468 				    NETIF_F_GSO_GRE_CSUM;
13469 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13470 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13471 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13472 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13473 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13474 	if (BNXT_SUPPORTS_TPA(bp))
13475 		dev->hw_features |= NETIF_F_GRO_HW;
13476 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13477 	if (dev->features & NETIF_F_GRO_HW)
13478 		dev->features &= ~NETIF_F_LRO;
13479 	dev->priv_flags |= IFF_UNICAST_FLT;
13480 
13481 #ifdef CONFIG_BNXT_SRIOV
13482 	init_waitqueue_head(&bp->sriov_cfg_wait);
13483 #endif
13484 	if (BNXT_SUPPORTS_TPA(bp)) {
13485 		bp->gro_func = bnxt_gro_func_5730x;
13486 		if (BNXT_CHIP_P4(bp))
13487 			bp->gro_func = bnxt_gro_func_5731x;
13488 		else if (BNXT_CHIP_P5(bp))
13489 			bp->gro_func = bnxt_gro_func_5750x;
13490 	}
13491 	if (!BNXT_CHIP_P4_PLUS(bp))
13492 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13493 
13494 	rc = bnxt_init_mac_addr(bp);
13495 	if (rc) {
13496 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13497 		rc = -EADDRNOTAVAIL;
13498 		goto init_err_pci_clean;
13499 	}
13500 
13501 	if (BNXT_PF(bp)) {
13502 		/* Read the adapter's DSN to use as the eswitch switch_id */
13503 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13504 	}
13505 
13506 	/* MTU range: 60 - FW defined max */
13507 	dev->min_mtu = ETH_ZLEN;
13508 	dev->max_mtu = bp->max_mtu;
13509 
13510 	rc = bnxt_probe_phy(bp, true);
13511 	if (rc)
13512 		goto init_err_pci_clean;
13513 
13514 	bnxt_set_rx_skb_mode(bp, false);
13515 	bnxt_set_tpa_flags(bp);
13516 	bnxt_set_ring_params(bp);
13517 	rc = bnxt_set_dflt_rings(bp, true);
13518 	if (rc) {
13519 		if (BNXT_VF(bp) && rc == -ENODEV) {
13520 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13521 		} else {
13522 			netdev_err(bp->dev, "Not enough rings available.\n");
13523 			rc = -ENOMEM;
13524 		}
13525 		goto init_err_pci_clean;
13526 	}
13527 
13528 	bnxt_fw_init_one_p3(bp);
13529 
13530 	bnxt_init_dflt_coal(bp);
13531 
13532 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13533 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13534 
13535 	rc = bnxt_init_int_mode(bp);
13536 	if (rc)
13537 		goto init_err_pci_clean;
13538 
13539 	/* No TC has been set yet and rings may have been trimmed due to
13540 	 * limited MSIX, so we re-initialize the TX rings per TC.
13541 	 */
13542 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13543 
13544 	if (BNXT_PF(bp)) {
13545 		if (!bnxt_pf_wq) {
13546 			bnxt_pf_wq =
13547 				create_singlethread_workqueue("bnxt_pf_wq");
13548 			if (!bnxt_pf_wq) {
13549 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13550 				rc = -ENOMEM;
13551 				goto init_err_pci_clean;
13552 			}
13553 		}
13554 		rc = bnxt_init_tc(bp);
13555 		if (rc)
13556 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13557 				   rc);
13558 	}
13559 
13560 	bnxt_inv_fw_health_reg(bp);
13561 	rc = bnxt_dl_register(bp);
13562 	if (rc)
13563 		goto init_err_dl;
13564 
13565 	rc = register_netdev(dev);
13566 	if (rc)
13567 		goto init_err_cleanup;
13568 
13569 	if (BNXT_PF(bp))
13570 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13571 	bnxt_dl_fw_reporters_create(bp);
13572 
13573 	bnxt_print_device_info(bp);
13574 
13575 	pci_save_state(pdev);
13576 	return 0;
13577 
13578 init_err_cleanup:
13579 	bnxt_dl_unregister(bp);
13580 init_err_dl:
13581 	bnxt_shutdown_tc(bp);
13582 	bnxt_clear_int_mode(bp);
13583 
13584 init_err_pci_clean:
13585 	bnxt_hwrm_func_drv_unrgtr(bp);
13586 	bnxt_free_hwrm_resources(bp);
13587 	bnxt_ethtool_free(bp);
13588 	bnxt_ptp_clear(bp);
13589 	kfree(bp->ptp_cfg);
13590 	bp->ptp_cfg = NULL;
13591 	kfree(bp->fw_health);
13592 	bp->fw_health = NULL;
13593 	bnxt_cleanup_pci(bp);
13594 	bnxt_free_ctx_mem(bp);
13595 	kfree(bp->ctx);
13596 	bp->ctx = NULL;
13597 	kfree(bp->rss_indir_tbl);
13598 	bp->rss_indir_tbl = NULL;
13599 
13600 init_err_free:
13601 	free_netdev(dev);
13602 	return rc;
13603 }
13604 
13605 static void bnxt_shutdown(struct pci_dev *pdev)
13606 {
13607 	struct net_device *dev = pci_get_drvdata(pdev);
13608 	struct bnxt *bp;
13609 
13610 	if (!dev)
13611 		return;
13612 
13613 	rtnl_lock();
13614 	bp = netdev_priv(dev);
13615 	if (!bp)
13616 		goto shutdown_exit;
13617 
13618 	if (netif_running(dev))
13619 		dev_close(dev);
13620 
13621 	bnxt_ulp_shutdown(bp);
13622 	bnxt_clear_int_mode(bp);
13623 	pci_disable_device(pdev);
13624 
13625 	if (system_state == SYSTEM_POWER_OFF) {
13626 		pci_wake_from_d3(pdev, bp->wol);
13627 		pci_set_power_state(pdev, PCI_D3hot);
13628 	}
13629 
13630 shutdown_exit:
13631 	rtnl_unlock();
13632 }
13633 
13634 #ifdef CONFIG_PM_SLEEP
13635 static int bnxt_suspend(struct device *device)
13636 {
13637 	struct net_device *dev = dev_get_drvdata(device);
13638 	struct bnxt *bp = netdev_priv(dev);
13639 	int rc = 0;
13640 
13641 	rtnl_lock();
13642 	bnxt_ulp_stop(bp);
13643 	if (netif_running(dev)) {
13644 		netif_device_detach(dev);
13645 		rc = bnxt_close(dev);
13646 	}
13647 	bnxt_hwrm_func_drv_unrgtr(bp);
13648 	pci_disable_device(bp->pdev);
13649 	bnxt_free_ctx_mem(bp);
13650 	kfree(bp->ctx);
13651 	bp->ctx = NULL;
13652 	rtnl_unlock();
13653 	return rc;
13654 }
13655 
13656 static int bnxt_resume(struct device *device)
13657 {
13658 	struct net_device *dev = dev_get_drvdata(device);
13659 	struct bnxt *bp = netdev_priv(dev);
13660 	int rc = 0;
13661 
13662 	rtnl_lock();
13663 	rc = pci_enable_device(bp->pdev);
13664 	if (rc) {
13665 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13666 			   rc);
13667 		goto resume_exit;
13668 	}
13669 	pci_set_master(bp->pdev);
13670 	if (bnxt_hwrm_ver_get(bp)) {
13671 		rc = -ENODEV;
13672 		goto resume_exit;
13673 	}
13674 	rc = bnxt_hwrm_func_reset(bp);
13675 	if (rc) {
13676 		rc = -EBUSY;
13677 		goto resume_exit;
13678 	}
13679 
13680 	rc = bnxt_hwrm_func_qcaps(bp);
13681 	if (rc)
13682 		goto resume_exit;
13683 
13684 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13685 		rc = -ENODEV;
13686 		goto resume_exit;
13687 	}
13688 
13689 	bnxt_get_wol_settings(bp);
13690 	if (netif_running(dev)) {
13691 		rc = bnxt_open(dev);
13692 		if (!rc)
13693 			netif_device_attach(dev);
13694 	}
13695 
13696 resume_exit:
13697 	bnxt_ulp_start(bp, rc);
13698 	if (!rc)
13699 		bnxt_reenable_sriov(bp);
13700 	rtnl_unlock();
13701 	return rc;
13702 }
13703 
13704 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13705 #define BNXT_PM_OPS (&bnxt_pm_ops)
13706 
13707 #else
13708 
13709 #define BNXT_PM_OPS NULL
13710 
13711 #endif /* CONFIG_PM_SLEEP */
13712 
13713 /**
13714  * bnxt_io_error_detected - called when PCI error is detected
13715  * @pdev: Pointer to PCI device
13716  * @state: The current pci connection state
13717  *
13718  * This function is called after a PCI bus error affecting
13719  * this device has been detected.
13720  */
13721 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13722 					       pci_channel_state_t state)
13723 {
13724 	struct net_device *netdev = pci_get_drvdata(pdev);
13725 	struct bnxt *bp = netdev_priv(netdev);
13726 
13727 	netdev_info(netdev, "PCI I/O error detected\n");
13728 
13729 	rtnl_lock();
13730 	netif_device_detach(netdev);
13731 
13732 	bnxt_ulp_stop(bp);
13733 
13734 	if (state == pci_channel_io_perm_failure) {
13735 		rtnl_unlock();
13736 		return PCI_ERS_RESULT_DISCONNECT;
13737 	}
13738 
13739 	if (state == pci_channel_io_frozen)
13740 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13741 
13742 	if (netif_running(netdev))
13743 		bnxt_close(netdev);
13744 
13745 	if (pci_is_enabled(pdev))
13746 		pci_disable_device(pdev);
13747 	bnxt_free_ctx_mem(bp);
13748 	kfree(bp->ctx);
13749 	bp->ctx = NULL;
13750 	rtnl_unlock();
13751 
13752 	/* Request a slot slot reset. */
13753 	return PCI_ERS_RESULT_NEED_RESET;
13754 }
13755 
13756 /**
13757  * bnxt_io_slot_reset - called after the pci bus has been reset.
13758  * @pdev: Pointer to PCI device
13759  *
13760  * Restart the card from scratch, as if from a cold-boot.
13761  * At this point, the card has exprienced a hard reset,
13762  * followed by fixups by BIOS, and has its config space
13763  * set up identically to what it was at cold boot.
13764  */
13765 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13766 {
13767 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13768 	struct net_device *netdev = pci_get_drvdata(pdev);
13769 	struct bnxt *bp = netdev_priv(netdev);
13770 	int err = 0, off;
13771 
13772 	netdev_info(bp->dev, "PCI Slot Reset\n");
13773 
13774 	rtnl_lock();
13775 
13776 	if (pci_enable_device(pdev)) {
13777 		dev_err(&pdev->dev,
13778 			"Cannot re-enable PCI device after reset.\n");
13779 	} else {
13780 		pci_set_master(pdev);
13781 		/* Upon fatal error, our device internal logic that latches to
13782 		 * BAR value is getting reset and will restore only upon
13783 		 * rewritting the BARs.
13784 		 *
13785 		 * As pci_restore_state() does not re-write the BARs if the
13786 		 * value is same as saved value earlier, driver needs to
13787 		 * write the BARs to 0 to force restore, in case of fatal error.
13788 		 */
13789 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13790 				       &bp->state)) {
13791 			for (off = PCI_BASE_ADDRESS_0;
13792 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13793 				pci_write_config_dword(bp->pdev, off, 0);
13794 		}
13795 		pci_restore_state(pdev);
13796 		pci_save_state(pdev);
13797 
13798 		err = bnxt_hwrm_func_reset(bp);
13799 		if (!err)
13800 			result = PCI_ERS_RESULT_RECOVERED;
13801 	}
13802 
13803 	rtnl_unlock();
13804 
13805 	return result;
13806 }
13807 
13808 /**
13809  * bnxt_io_resume - called when traffic can start flowing again.
13810  * @pdev: Pointer to PCI device
13811  *
13812  * This callback is called when the error recovery driver tells
13813  * us that its OK to resume normal operation.
13814  */
13815 static void bnxt_io_resume(struct pci_dev *pdev)
13816 {
13817 	struct net_device *netdev = pci_get_drvdata(pdev);
13818 	struct bnxt *bp = netdev_priv(netdev);
13819 	int err;
13820 
13821 	netdev_info(bp->dev, "PCI Slot Resume\n");
13822 	rtnl_lock();
13823 
13824 	err = bnxt_hwrm_func_qcaps(bp);
13825 	if (!err && netif_running(netdev))
13826 		err = bnxt_open(netdev);
13827 
13828 	bnxt_ulp_start(bp, err);
13829 	if (!err) {
13830 		bnxt_reenable_sriov(bp);
13831 		netif_device_attach(netdev);
13832 	}
13833 
13834 	rtnl_unlock();
13835 }
13836 
13837 static const struct pci_error_handlers bnxt_err_handler = {
13838 	.error_detected	= bnxt_io_error_detected,
13839 	.slot_reset	= bnxt_io_slot_reset,
13840 	.resume		= bnxt_io_resume
13841 };
13842 
13843 static struct pci_driver bnxt_pci_driver = {
13844 	.name		= DRV_MODULE_NAME,
13845 	.id_table	= bnxt_pci_tbl,
13846 	.probe		= bnxt_init_one,
13847 	.remove		= bnxt_remove_one,
13848 	.shutdown	= bnxt_shutdown,
13849 	.driver.pm	= BNXT_PM_OPS,
13850 	.err_handler	= &bnxt_err_handler,
13851 #if defined(CONFIG_BNXT_SRIOV)
13852 	.sriov_configure = bnxt_sriov_configure,
13853 #endif
13854 };
13855 
13856 static int __init bnxt_init(void)
13857 {
13858 	bnxt_debug_init();
13859 	return pci_register_driver(&bnxt_pci_driver);
13860 }
13861 
13862 static void __exit bnxt_exit(void)
13863 {
13864 	pci_unregister_driver(&bnxt_pci_driver);
13865 	if (bnxt_pf_wq)
13866 		destroy_workqueue(bnxt_pf_wq);
13867 	bnxt_debug_exit();
13868 }
13869 
13870 module_init(bnxt_init);
13871 module_exit(bnxt_exit);
13872