1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2017 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/if.h> 35 #include <linux/if_vlan.h> 36 #include <linux/rtc.h> 37 #include <linux/bpf.h> 38 #include <net/ip.h> 39 #include <net/tcp.h> 40 #include <net/udp.h> 41 #include <net/checksum.h> 42 #include <net/ip6_checksum.h> 43 #include <net/udp_tunnel.h> 44 #include <linux/workqueue.h> 45 #include <linux/prefetch.h> 46 #include <linux/cache.h> 47 #include <linux/log2.h> 48 #include <linux/aer.h> 49 #include <linux/bitmap.h> 50 #include <linux/cpu_rmap.h> 51 52 #include "bnxt_hsi.h" 53 #include "bnxt.h" 54 #include "bnxt_ulp.h" 55 #include "bnxt_sriov.h" 56 #include "bnxt_ethtool.h" 57 #include "bnxt_dcb.h" 58 #include "bnxt_xdp.h" 59 60 #define BNXT_TX_TIMEOUT (5 * HZ) 61 62 static const char version[] = 63 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n"; 64 65 MODULE_LICENSE("GPL"); 66 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 67 MODULE_VERSION(DRV_MODULE_VERSION); 68 69 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 70 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 71 #define BNXT_RX_COPY_THRESH 256 72 73 #define BNXT_TX_PUSH_THRESH 164 74 75 enum board_idx { 76 BCM57301, 77 BCM57302, 78 BCM57304, 79 BCM57417_NPAR, 80 BCM58700, 81 BCM57311, 82 BCM57312, 83 BCM57402, 84 BCM57404, 85 BCM57406, 86 BCM57402_NPAR, 87 BCM57407, 88 BCM57412, 89 BCM57414, 90 BCM57416, 91 BCM57417, 92 BCM57412_NPAR, 93 BCM57314, 94 BCM57417_SFP, 95 BCM57416_SFP, 96 BCM57404_NPAR, 97 BCM57406_NPAR, 98 BCM57407_SFP, 99 BCM57407_NPAR, 100 BCM57414_NPAR, 101 BCM57416_NPAR, 102 BCM57452, 103 BCM57454, 104 NETXTREME_E_VF, 105 NETXTREME_C_VF, 106 }; 107 108 /* indexed by enum above */ 109 static const struct { 110 char *name; 111 } board_info[] = { 112 { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 113 { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 114 { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 115 { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 116 { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 117 { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 118 { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 119 { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 120 { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 121 { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 122 { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 123 { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 124 { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 125 { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 126 { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 127 { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 128 { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 129 { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 130 { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 131 { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 132 { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 133 { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 134 { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 135 { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 136 { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 137 { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 138 { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 139 { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 140 { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 141 { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 142 }; 143 144 static const struct pci_device_id bnxt_pci_tbl[] = { 145 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 146 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 147 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 148 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 149 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 150 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 151 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 152 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 153 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 154 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 157 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 162 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 163 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 164 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 165 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 166 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 167 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 169 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 176 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 177 #ifdef CONFIG_BNXT_SRIOV 178 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 179 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 180 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 181 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 182 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 183 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 184 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 185 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 186 #endif 187 { 0 } 188 }; 189 190 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 191 192 static const u16 bnxt_vf_req_snif[] = { 193 HWRM_FUNC_CFG, 194 HWRM_PORT_PHY_QCFG, 195 HWRM_CFA_L2_FILTER_ALLOC, 196 }; 197 198 static const u16 bnxt_async_events_arr[] = { 199 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 200 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 201 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 202 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 203 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 204 }; 205 206 static bool bnxt_vf_pciid(enum board_idx idx) 207 { 208 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF); 209 } 210 211 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 212 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 213 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 214 215 #define BNXT_CP_DB_REARM(db, raw_cons) \ 216 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db) 217 218 #define BNXT_CP_DB(db, raw_cons) \ 219 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db) 220 221 #define BNXT_CP_DB_IRQ_DIS(db) \ 222 writel(DB_CP_IRQ_DIS_FLAGS, db) 223 224 const u16 bnxt_lhint_arr[] = { 225 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 226 TX_BD_FLAGS_LHINT_512_TO_1023, 227 TX_BD_FLAGS_LHINT_1024_TO_2047, 228 TX_BD_FLAGS_LHINT_1024_TO_2047, 229 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 230 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 231 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 232 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 233 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 234 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 235 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 236 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 237 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 238 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 239 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 240 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 241 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 242 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 243 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 244 }; 245 246 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 247 { 248 struct bnxt *bp = netdev_priv(dev); 249 struct tx_bd *txbd; 250 struct tx_bd_ext *txbd1; 251 struct netdev_queue *txq; 252 int i; 253 dma_addr_t mapping; 254 unsigned int length, pad = 0; 255 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 256 u16 prod, last_frag; 257 struct pci_dev *pdev = bp->pdev; 258 struct bnxt_tx_ring_info *txr; 259 struct bnxt_sw_tx_bd *tx_buf; 260 261 i = skb_get_queue_mapping(skb); 262 if (unlikely(i >= bp->tx_nr_rings)) { 263 dev_kfree_skb_any(skb); 264 return NETDEV_TX_OK; 265 } 266 267 txq = netdev_get_tx_queue(dev, i); 268 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 269 prod = txr->tx_prod; 270 271 free_size = bnxt_tx_avail(bp, txr); 272 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 273 netif_tx_stop_queue(txq); 274 return NETDEV_TX_BUSY; 275 } 276 277 length = skb->len; 278 len = skb_headlen(skb); 279 last_frag = skb_shinfo(skb)->nr_frags; 280 281 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 282 283 txbd->tx_bd_opaque = prod; 284 285 tx_buf = &txr->tx_buf_ring[prod]; 286 tx_buf->skb = skb; 287 tx_buf->nr_frags = last_frag; 288 289 vlan_tag_flags = 0; 290 cfa_action = 0; 291 if (skb_vlan_tag_present(skb)) { 292 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 293 skb_vlan_tag_get(skb); 294 /* Currently supports 8021Q, 8021AD vlan offloads 295 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 296 */ 297 if (skb->vlan_proto == htons(ETH_P_8021Q)) 298 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 299 } 300 301 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) { 302 struct tx_push_buffer *tx_push_buf = txr->tx_push; 303 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 304 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 305 void *pdata = tx_push_buf->data; 306 u64 *end; 307 int j, push_len; 308 309 /* Set COAL_NOW to be ready quickly for the next push */ 310 tx_push->tx_bd_len_flags_type = 311 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 312 TX_BD_TYPE_LONG_TX_BD | 313 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 314 TX_BD_FLAGS_COAL_NOW | 315 TX_BD_FLAGS_PACKET_END | 316 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 317 318 if (skb->ip_summed == CHECKSUM_PARTIAL) 319 tx_push1->tx_bd_hsize_lflags = 320 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 321 else 322 tx_push1->tx_bd_hsize_lflags = 0; 323 324 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 325 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action); 326 327 end = pdata + length; 328 end = PTR_ALIGN(end, 8) - 1; 329 *end = 0; 330 331 skb_copy_from_linear_data(skb, pdata, len); 332 pdata += len; 333 for (j = 0; j < last_frag; j++) { 334 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 335 void *fptr; 336 337 fptr = skb_frag_address_safe(frag); 338 if (!fptr) 339 goto normal_tx; 340 341 memcpy(pdata, fptr, skb_frag_size(frag)); 342 pdata += skb_frag_size(frag); 343 } 344 345 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 346 txbd->tx_bd_haddr = txr->data_mapping; 347 prod = NEXT_TX(prod); 348 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 349 memcpy(txbd, tx_push1, sizeof(*txbd)); 350 prod = NEXT_TX(prod); 351 tx_push->doorbell = 352 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 353 txr->tx_prod = prod; 354 355 tx_buf->is_push = 1; 356 netdev_tx_sent_queue(txq, skb->len); 357 wmb(); /* Sync is_push and byte queue before pushing data */ 358 359 push_len = (length + sizeof(*tx_push) + 7) / 8; 360 if (push_len > 16) { 361 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16); 362 __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1, 363 (push_len - 16) << 1); 364 } else { 365 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 366 push_len); 367 } 368 369 goto tx_done; 370 } 371 372 normal_tx: 373 if (length < BNXT_MIN_PKT_SIZE) { 374 pad = BNXT_MIN_PKT_SIZE - length; 375 if (skb_pad(skb, pad)) { 376 /* SKB already freed. */ 377 tx_buf->skb = NULL; 378 return NETDEV_TX_OK; 379 } 380 length = BNXT_MIN_PKT_SIZE; 381 } 382 383 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 384 385 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { 386 dev_kfree_skb_any(skb); 387 tx_buf->skb = NULL; 388 return NETDEV_TX_OK; 389 } 390 391 dma_unmap_addr_set(tx_buf, mapping, mapping); 392 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 393 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 394 395 txbd->tx_bd_haddr = cpu_to_le64(mapping); 396 397 prod = NEXT_TX(prod); 398 txbd1 = (struct tx_bd_ext *) 399 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 400 401 txbd1->tx_bd_hsize_lflags = 0; 402 if (skb_is_gso(skb)) { 403 u32 hdr_len; 404 405 if (skb->encapsulation) 406 hdr_len = skb_inner_network_offset(skb) + 407 skb_inner_network_header_len(skb) + 408 inner_tcp_hdrlen(skb); 409 else 410 hdr_len = skb_transport_offset(skb) + 411 tcp_hdrlen(skb); 412 413 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO | 414 TX_BD_FLAGS_T_IPID | 415 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 416 length = skb_shinfo(skb)->gso_size; 417 txbd1->tx_bd_mss = cpu_to_le32(length); 418 length += hdr_len; 419 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 420 txbd1->tx_bd_hsize_lflags = 421 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 422 txbd1->tx_bd_mss = 0; 423 } 424 425 length >>= 9; 426 flags |= bnxt_lhint_arr[length]; 427 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 428 429 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 430 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action); 431 for (i = 0; i < last_frag; i++) { 432 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 433 434 prod = NEXT_TX(prod); 435 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 436 437 len = skb_frag_size(frag); 438 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 439 DMA_TO_DEVICE); 440 441 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 442 goto tx_dma_error; 443 444 tx_buf = &txr->tx_buf_ring[prod]; 445 dma_unmap_addr_set(tx_buf, mapping, mapping); 446 447 txbd->tx_bd_haddr = cpu_to_le64(mapping); 448 449 flags = len << TX_BD_LEN_SHIFT; 450 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 451 } 452 453 flags &= ~TX_BD_LEN; 454 txbd->tx_bd_len_flags_type = 455 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 456 TX_BD_FLAGS_PACKET_END); 457 458 netdev_tx_sent_queue(txq, skb->len); 459 460 /* Sync BD data before updating doorbell */ 461 wmb(); 462 463 prod = NEXT_TX(prod); 464 txr->tx_prod = prod; 465 466 if (!skb->xmit_more || netif_xmit_stopped(txq)) 467 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod); 468 469 tx_done: 470 471 mmiowb(); 472 473 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 474 if (skb->xmit_more && !tx_buf->is_push) 475 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod); 476 477 netif_tx_stop_queue(txq); 478 479 /* netif_tx_stop_queue() must be done before checking 480 * tx index in bnxt_tx_avail() below, because in 481 * bnxt_tx_int(), we update tx index before checking for 482 * netif_tx_queue_stopped(). 483 */ 484 smp_mb(); 485 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) 486 netif_tx_wake_queue(txq); 487 } 488 return NETDEV_TX_OK; 489 490 tx_dma_error: 491 last_frag = i; 492 493 /* start back at beginning and unmap skb */ 494 prod = txr->tx_prod; 495 tx_buf = &txr->tx_buf_ring[prod]; 496 tx_buf->skb = NULL; 497 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 498 skb_headlen(skb), PCI_DMA_TODEVICE); 499 prod = NEXT_TX(prod); 500 501 /* unmap remaining mapped pages */ 502 for (i = 0; i < last_frag; i++) { 503 prod = NEXT_TX(prod); 504 tx_buf = &txr->tx_buf_ring[prod]; 505 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 506 skb_frag_size(&skb_shinfo(skb)->frags[i]), 507 PCI_DMA_TODEVICE); 508 } 509 510 dev_kfree_skb_any(skb); 511 return NETDEV_TX_OK; 512 } 513 514 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 515 { 516 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 517 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 518 u16 cons = txr->tx_cons; 519 struct pci_dev *pdev = bp->pdev; 520 int i; 521 unsigned int tx_bytes = 0; 522 523 for (i = 0; i < nr_pkts; i++) { 524 struct bnxt_sw_tx_bd *tx_buf; 525 struct sk_buff *skb; 526 int j, last; 527 528 tx_buf = &txr->tx_buf_ring[cons]; 529 cons = NEXT_TX(cons); 530 skb = tx_buf->skb; 531 tx_buf->skb = NULL; 532 533 if (tx_buf->is_push) { 534 tx_buf->is_push = 0; 535 goto next_tx_int; 536 } 537 538 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 539 skb_headlen(skb), PCI_DMA_TODEVICE); 540 last = tx_buf->nr_frags; 541 542 for (j = 0; j < last; j++) { 543 cons = NEXT_TX(cons); 544 tx_buf = &txr->tx_buf_ring[cons]; 545 dma_unmap_page( 546 &pdev->dev, 547 dma_unmap_addr(tx_buf, mapping), 548 skb_frag_size(&skb_shinfo(skb)->frags[j]), 549 PCI_DMA_TODEVICE); 550 } 551 552 next_tx_int: 553 cons = NEXT_TX(cons); 554 555 tx_bytes += skb->len; 556 dev_kfree_skb_any(skb); 557 } 558 559 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 560 txr->tx_cons = cons; 561 562 /* Need to make the tx_cons update visible to bnxt_start_xmit() 563 * before checking for netif_tx_queue_stopped(). Without the 564 * memory barrier, there is a small possibility that bnxt_start_xmit() 565 * will miss it and cause the queue to be stopped forever. 566 */ 567 smp_mb(); 568 569 if (unlikely(netif_tx_queue_stopped(txq)) && 570 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { 571 __netif_tx_lock(txq, smp_processor_id()); 572 if (netif_tx_queue_stopped(txq) && 573 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 574 txr->dev_state != BNXT_DEV_STATE_CLOSING) 575 netif_tx_wake_queue(txq); 576 __netif_tx_unlock(txq); 577 } 578 } 579 580 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 581 gfp_t gfp) 582 { 583 struct device *dev = &bp->pdev->dev; 584 struct page *page; 585 586 page = alloc_page(gfp); 587 if (!page) 588 return NULL; 589 590 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 591 DMA_ATTR_WEAK_ORDERING); 592 if (dma_mapping_error(dev, *mapping)) { 593 __free_page(page); 594 return NULL; 595 } 596 *mapping += bp->rx_dma_offset; 597 return page; 598 } 599 600 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 601 gfp_t gfp) 602 { 603 u8 *data; 604 struct pci_dev *pdev = bp->pdev; 605 606 data = kmalloc(bp->rx_buf_size, gfp); 607 if (!data) 608 return NULL; 609 610 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 611 bp->rx_buf_use_size, bp->rx_dir, 612 DMA_ATTR_WEAK_ORDERING); 613 614 if (dma_mapping_error(&pdev->dev, *mapping)) { 615 kfree(data); 616 data = NULL; 617 } 618 return data; 619 } 620 621 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 622 u16 prod, gfp_t gfp) 623 { 624 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 625 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 626 dma_addr_t mapping; 627 628 if (BNXT_RX_PAGE_MODE(bp)) { 629 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp); 630 631 if (!page) 632 return -ENOMEM; 633 634 rx_buf->data = page; 635 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 636 } else { 637 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 638 639 if (!data) 640 return -ENOMEM; 641 642 rx_buf->data = data; 643 rx_buf->data_ptr = data + bp->rx_offset; 644 } 645 rx_buf->mapping = mapping; 646 647 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 648 return 0; 649 } 650 651 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 652 { 653 u16 prod = rxr->rx_prod; 654 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 655 struct rx_bd *cons_bd, *prod_bd; 656 657 prod_rx_buf = &rxr->rx_buf_ring[prod]; 658 cons_rx_buf = &rxr->rx_buf_ring[cons]; 659 660 prod_rx_buf->data = data; 661 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 662 663 prod_rx_buf->mapping = cons_rx_buf->mapping; 664 665 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 666 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 667 668 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 669 } 670 671 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 672 { 673 u16 next, max = rxr->rx_agg_bmap_size; 674 675 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 676 if (next >= max) 677 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 678 return next; 679 } 680 681 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 682 struct bnxt_rx_ring_info *rxr, 683 u16 prod, gfp_t gfp) 684 { 685 struct rx_bd *rxbd = 686 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 687 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 688 struct pci_dev *pdev = bp->pdev; 689 struct page *page; 690 dma_addr_t mapping; 691 u16 sw_prod = rxr->rx_sw_agg_prod; 692 unsigned int offset = 0; 693 694 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 695 page = rxr->rx_page; 696 if (!page) { 697 page = alloc_page(gfp); 698 if (!page) 699 return -ENOMEM; 700 rxr->rx_page = page; 701 rxr->rx_page_offset = 0; 702 } 703 offset = rxr->rx_page_offset; 704 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 705 if (rxr->rx_page_offset == PAGE_SIZE) 706 rxr->rx_page = NULL; 707 else 708 get_page(page); 709 } else { 710 page = alloc_page(gfp); 711 if (!page) 712 return -ENOMEM; 713 } 714 715 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 716 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 717 DMA_ATTR_WEAK_ORDERING); 718 if (dma_mapping_error(&pdev->dev, mapping)) { 719 __free_page(page); 720 return -EIO; 721 } 722 723 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 724 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 725 726 __set_bit(sw_prod, rxr->rx_agg_bmap); 727 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 728 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 729 730 rx_agg_buf->page = page; 731 rx_agg_buf->offset = offset; 732 rx_agg_buf->mapping = mapping; 733 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 734 rxbd->rx_bd_opaque = sw_prod; 735 return 0; 736 } 737 738 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons, 739 u32 agg_bufs) 740 { 741 struct bnxt *bp = bnapi->bp; 742 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 743 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 744 u16 prod = rxr->rx_agg_prod; 745 u16 sw_prod = rxr->rx_sw_agg_prod; 746 u32 i; 747 748 for (i = 0; i < agg_bufs; i++) { 749 u16 cons; 750 struct rx_agg_cmp *agg; 751 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 752 struct rx_bd *prod_bd; 753 struct page *page; 754 755 agg = (struct rx_agg_cmp *) 756 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 757 cons = agg->rx_agg_cmp_opaque; 758 __clear_bit(cons, rxr->rx_agg_bmap); 759 760 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 761 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 762 763 __set_bit(sw_prod, rxr->rx_agg_bmap); 764 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 765 cons_rx_buf = &rxr->rx_agg_ring[cons]; 766 767 /* It is possible for sw_prod to be equal to cons, so 768 * set cons_rx_buf->page to NULL first. 769 */ 770 page = cons_rx_buf->page; 771 cons_rx_buf->page = NULL; 772 prod_rx_buf->page = page; 773 prod_rx_buf->offset = cons_rx_buf->offset; 774 775 prod_rx_buf->mapping = cons_rx_buf->mapping; 776 777 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 778 779 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 780 prod_bd->rx_bd_opaque = sw_prod; 781 782 prod = NEXT_RX_AGG(prod); 783 sw_prod = NEXT_RX_AGG(sw_prod); 784 cp_cons = NEXT_CMP(cp_cons); 785 } 786 rxr->rx_agg_prod = prod; 787 rxr->rx_sw_agg_prod = sw_prod; 788 } 789 790 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 791 struct bnxt_rx_ring_info *rxr, 792 u16 cons, void *data, u8 *data_ptr, 793 dma_addr_t dma_addr, 794 unsigned int offset_and_len) 795 { 796 unsigned int payload = offset_and_len >> 16; 797 unsigned int len = offset_and_len & 0xffff; 798 struct skb_frag_struct *frag; 799 struct page *page = data; 800 u16 prod = rxr->rx_prod; 801 struct sk_buff *skb; 802 int off, err; 803 804 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 805 if (unlikely(err)) { 806 bnxt_reuse_rx_data(rxr, cons, data); 807 return NULL; 808 } 809 dma_addr -= bp->rx_dma_offset; 810 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 811 DMA_ATTR_WEAK_ORDERING); 812 813 if (unlikely(!payload)) 814 payload = eth_get_headlen(data_ptr, len); 815 816 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 817 if (!skb) { 818 __free_page(page); 819 return NULL; 820 } 821 822 off = (void *)data_ptr - page_address(page); 823 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 824 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 825 payload + NET_IP_ALIGN); 826 827 frag = &skb_shinfo(skb)->frags[0]; 828 skb_frag_size_sub(frag, payload); 829 frag->page_offset += payload; 830 skb->data_len -= payload; 831 skb->tail += payload; 832 833 return skb; 834 } 835 836 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 837 struct bnxt_rx_ring_info *rxr, u16 cons, 838 void *data, u8 *data_ptr, 839 dma_addr_t dma_addr, 840 unsigned int offset_and_len) 841 { 842 u16 prod = rxr->rx_prod; 843 struct sk_buff *skb; 844 int err; 845 846 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 847 if (unlikely(err)) { 848 bnxt_reuse_rx_data(rxr, cons, data); 849 return NULL; 850 } 851 852 skb = build_skb(data, 0); 853 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 854 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 855 if (!skb) { 856 kfree(data); 857 return NULL; 858 } 859 860 skb_reserve(skb, bp->rx_offset); 861 skb_put(skb, offset_and_len & 0xffff); 862 return skb; 863 } 864 865 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi, 866 struct sk_buff *skb, u16 cp_cons, 867 u32 agg_bufs) 868 { 869 struct pci_dev *pdev = bp->pdev; 870 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 871 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 872 u16 prod = rxr->rx_agg_prod; 873 u32 i; 874 875 for (i = 0; i < agg_bufs; i++) { 876 u16 cons, frag_len; 877 struct rx_agg_cmp *agg; 878 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 879 struct page *page; 880 dma_addr_t mapping; 881 882 agg = (struct rx_agg_cmp *) 883 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 884 cons = agg->rx_agg_cmp_opaque; 885 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 886 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 887 888 cons_rx_buf = &rxr->rx_agg_ring[cons]; 889 skb_fill_page_desc(skb, i, cons_rx_buf->page, 890 cons_rx_buf->offset, frag_len); 891 __clear_bit(cons, rxr->rx_agg_bmap); 892 893 /* It is possible for bnxt_alloc_rx_page() to allocate 894 * a sw_prod index that equals the cons index, so we 895 * need to clear the cons entry now. 896 */ 897 mapping = cons_rx_buf->mapping; 898 page = cons_rx_buf->page; 899 cons_rx_buf->page = NULL; 900 901 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 902 struct skb_shared_info *shinfo; 903 unsigned int nr_frags; 904 905 shinfo = skb_shinfo(skb); 906 nr_frags = --shinfo->nr_frags; 907 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 908 909 dev_kfree_skb(skb); 910 911 cons_rx_buf->page = page; 912 913 /* Update prod since possibly some pages have been 914 * allocated already. 915 */ 916 rxr->rx_agg_prod = prod; 917 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i); 918 return NULL; 919 } 920 921 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 922 PCI_DMA_FROMDEVICE, 923 DMA_ATTR_WEAK_ORDERING); 924 925 skb->data_len += frag_len; 926 skb->len += frag_len; 927 skb->truesize += PAGE_SIZE; 928 929 prod = NEXT_RX_AGG(prod); 930 cp_cons = NEXT_CMP(cp_cons); 931 } 932 rxr->rx_agg_prod = prod; 933 return skb; 934 } 935 936 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 937 u8 agg_bufs, u32 *raw_cons) 938 { 939 u16 last; 940 struct rx_agg_cmp *agg; 941 942 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 943 last = RING_CMP(*raw_cons); 944 agg = (struct rx_agg_cmp *) 945 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 946 return RX_AGG_CMP_VALID(agg, *raw_cons); 947 } 948 949 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 950 unsigned int len, 951 dma_addr_t mapping) 952 { 953 struct bnxt *bp = bnapi->bp; 954 struct pci_dev *pdev = bp->pdev; 955 struct sk_buff *skb; 956 957 skb = napi_alloc_skb(&bnapi->napi, len); 958 if (!skb) 959 return NULL; 960 961 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 962 bp->rx_dir); 963 964 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 965 len + NET_IP_ALIGN); 966 967 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 968 bp->rx_dir); 969 970 skb_put(skb, len); 971 return skb; 972 } 973 974 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi, 975 u32 *raw_cons, void *cmp) 976 { 977 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 978 struct rx_cmp *rxcmp = cmp; 979 u32 tmp_raw_cons = *raw_cons; 980 u8 cmp_type, agg_bufs = 0; 981 982 cmp_type = RX_CMP_TYPE(rxcmp); 983 984 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 985 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 986 RX_CMP_AGG_BUFS) >> 987 RX_CMP_AGG_BUFS_SHIFT; 988 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 989 struct rx_tpa_end_cmp *tpa_end = cmp; 990 991 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 992 RX_TPA_END_CMP_AGG_BUFS) >> 993 RX_TPA_END_CMP_AGG_BUFS_SHIFT; 994 } 995 996 if (agg_bufs) { 997 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 998 return -EBUSY; 999 } 1000 *raw_cons = tmp_raw_cons; 1001 return 0; 1002 } 1003 1004 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1005 { 1006 if (!rxr->bnapi->in_reset) { 1007 rxr->bnapi->in_reset = true; 1008 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1009 schedule_work(&bp->sp_task); 1010 } 1011 rxr->rx_next_cons = 0xffff; 1012 } 1013 1014 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1015 struct rx_tpa_start_cmp *tpa_start, 1016 struct rx_tpa_start_cmp_ext *tpa_start1) 1017 { 1018 u8 agg_id = TPA_START_AGG_ID(tpa_start); 1019 u16 cons, prod; 1020 struct bnxt_tpa_info *tpa_info; 1021 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1022 struct rx_bd *prod_bd; 1023 dma_addr_t mapping; 1024 1025 cons = tpa_start->rx_tpa_start_cmp_opaque; 1026 prod = rxr->rx_prod; 1027 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1028 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1029 tpa_info = &rxr->rx_tpa[agg_id]; 1030 1031 if (unlikely(cons != rxr->rx_next_cons)) { 1032 bnxt_sched_reset(bp, rxr); 1033 return; 1034 } 1035 1036 prod_rx_buf->data = tpa_info->data; 1037 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1038 1039 mapping = tpa_info->mapping; 1040 prod_rx_buf->mapping = mapping; 1041 1042 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1043 1044 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1045 1046 tpa_info->data = cons_rx_buf->data; 1047 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1048 cons_rx_buf->data = NULL; 1049 tpa_info->mapping = cons_rx_buf->mapping; 1050 1051 tpa_info->len = 1052 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1053 RX_TPA_START_CMP_LEN_SHIFT; 1054 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1055 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1056 1057 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1058 tpa_info->gso_type = SKB_GSO_TCPV4; 1059 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1060 if (hash_type == 3) 1061 tpa_info->gso_type = SKB_GSO_TCPV6; 1062 tpa_info->rss_hash = 1063 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1064 } else { 1065 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1066 tpa_info->gso_type = 0; 1067 if (netif_msg_rx_err(bp)) 1068 netdev_warn(bp->dev, "TPA packet without valid hash\n"); 1069 } 1070 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1071 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1072 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1073 1074 rxr->rx_prod = NEXT_RX(prod); 1075 cons = NEXT_RX(cons); 1076 rxr->rx_next_cons = NEXT_RX(cons); 1077 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1078 1079 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1080 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1081 cons_rx_buf->data = NULL; 1082 } 1083 1084 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi, 1085 u16 cp_cons, u32 agg_bufs) 1086 { 1087 if (agg_bufs) 1088 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); 1089 } 1090 1091 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1092 int payload_off, int tcp_ts, 1093 struct sk_buff *skb) 1094 { 1095 #ifdef CONFIG_INET 1096 struct tcphdr *th; 1097 int len, nw_off; 1098 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1099 u32 hdr_info = tpa_info->hdr_info; 1100 bool loopback = false; 1101 1102 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1103 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1104 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1105 1106 /* If the packet is an internal loopback packet, the offsets will 1107 * have an extra 4 bytes. 1108 */ 1109 if (inner_mac_off == 4) { 1110 loopback = true; 1111 } else if (inner_mac_off > 4) { 1112 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1113 ETH_HLEN - 2)); 1114 1115 /* We only support inner iPv4/ipv6. If we don't see the 1116 * correct protocol ID, it must be a loopback packet where 1117 * the offsets are off by 4. 1118 */ 1119 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1120 loopback = true; 1121 } 1122 if (loopback) { 1123 /* internal loopback packet, subtract all offsets by 4 */ 1124 inner_ip_off -= 4; 1125 inner_mac_off -= 4; 1126 outer_ip_off -= 4; 1127 } 1128 1129 nw_off = inner_ip_off - ETH_HLEN; 1130 skb_set_network_header(skb, nw_off); 1131 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1132 struct ipv6hdr *iph = ipv6_hdr(skb); 1133 1134 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1135 len = skb->len - skb_transport_offset(skb); 1136 th = tcp_hdr(skb); 1137 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1138 } else { 1139 struct iphdr *iph = ip_hdr(skb); 1140 1141 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1142 len = skb->len - skb_transport_offset(skb); 1143 th = tcp_hdr(skb); 1144 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1145 } 1146 1147 if (inner_mac_off) { /* tunnel */ 1148 struct udphdr *uh = NULL; 1149 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1150 ETH_HLEN - 2)); 1151 1152 if (proto == htons(ETH_P_IP)) { 1153 struct iphdr *iph = (struct iphdr *)skb->data; 1154 1155 if (iph->protocol == IPPROTO_UDP) 1156 uh = (struct udphdr *)(iph + 1); 1157 } else { 1158 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1159 1160 if (iph->nexthdr == IPPROTO_UDP) 1161 uh = (struct udphdr *)(iph + 1); 1162 } 1163 if (uh) { 1164 if (uh->check) 1165 skb_shinfo(skb)->gso_type |= 1166 SKB_GSO_UDP_TUNNEL_CSUM; 1167 else 1168 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1169 } 1170 } 1171 #endif 1172 return skb; 1173 } 1174 1175 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1176 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1177 1178 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1179 int payload_off, int tcp_ts, 1180 struct sk_buff *skb) 1181 { 1182 #ifdef CONFIG_INET 1183 struct tcphdr *th; 1184 int len, nw_off, tcp_opt_len = 0; 1185 1186 if (tcp_ts) 1187 tcp_opt_len = 12; 1188 1189 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1190 struct iphdr *iph; 1191 1192 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1193 ETH_HLEN; 1194 skb_set_network_header(skb, nw_off); 1195 iph = ip_hdr(skb); 1196 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1197 len = skb->len - skb_transport_offset(skb); 1198 th = tcp_hdr(skb); 1199 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1200 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1201 struct ipv6hdr *iph; 1202 1203 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1204 ETH_HLEN; 1205 skb_set_network_header(skb, nw_off); 1206 iph = ipv6_hdr(skb); 1207 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1208 len = skb->len - skb_transport_offset(skb); 1209 th = tcp_hdr(skb); 1210 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1211 } else { 1212 dev_kfree_skb_any(skb); 1213 return NULL; 1214 } 1215 1216 if (nw_off) { /* tunnel */ 1217 struct udphdr *uh = NULL; 1218 1219 if (skb->protocol == htons(ETH_P_IP)) { 1220 struct iphdr *iph = (struct iphdr *)skb->data; 1221 1222 if (iph->protocol == IPPROTO_UDP) 1223 uh = (struct udphdr *)(iph + 1); 1224 } else { 1225 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1226 1227 if (iph->nexthdr == IPPROTO_UDP) 1228 uh = (struct udphdr *)(iph + 1); 1229 } 1230 if (uh) { 1231 if (uh->check) 1232 skb_shinfo(skb)->gso_type |= 1233 SKB_GSO_UDP_TUNNEL_CSUM; 1234 else 1235 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1236 } 1237 } 1238 #endif 1239 return skb; 1240 } 1241 1242 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1243 struct bnxt_tpa_info *tpa_info, 1244 struct rx_tpa_end_cmp *tpa_end, 1245 struct rx_tpa_end_cmp_ext *tpa_end1, 1246 struct sk_buff *skb) 1247 { 1248 #ifdef CONFIG_INET 1249 int payload_off; 1250 u16 segs; 1251 1252 segs = TPA_END_TPA_SEGS(tpa_end); 1253 if (segs == 1) 1254 return skb; 1255 1256 NAPI_GRO_CB(skb)->count = segs; 1257 skb_shinfo(skb)->gso_size = 1258 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1259 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1260 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 1261 RX_TPA_END_CMP_PAYLOAD_OFFSET) >> 1262 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT; 1263 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1264 if (likely(skb)) 1265 tcp_gro_complete(skb); 1266 #endif 1267 return skb; 1268 } 1269 1270 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1271 struct bnxt_napi *bnapi, 1272 u32 *raw_cons, 1273 struct rx_tpa_end_cmp *tpa_end, 1274 struct rx_tpa_end_cmp_ext *tpa_end1, 1275 u8 *event) 1276 { 1277 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1278 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1279 u8 agg_id = TPA_END_AGG_ID(tpa_end); 1280 u8 *data_ptr, agg_bufs; 1281 u16 cp_cons = RING_CMP(*raw_cons); 1282 unsigned int len; 1283 struct bnxt_tpa_info *tpa_info; 1284 dma_addr_t mapping; 1285 struct sk_buff *skb; 1286 void *data; 1287 1288 if (unlikely(bnapi->in_reset)) { 1289 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end); 1290 1291 if (rc < 0) 1292 return ERR_PTR(-EBUSY); 1293 return NULL; 1294 } 1295 1296 tpa_info = &rxr->rx_tpa[agg_id]; 1297 data = tpa_info->data; 1298 data_ptr = tpa_info->data_ptr; 1299 prefetch(data_ptr); 1300 len = tpa_info->len; 1301 mapping = tpa_info->mapping; 1302 1303 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 1304 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT; 1305 1306 if (agg_bufs) { 1307 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1308 return ERR_PTR(-EBUSY); 1309 1310 *event |= BNXT_AGG_EVENT; 1311 cp_cons = NEXT_CMP(cp_cons); 1312 } 1313 1314 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1315 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 1316 if (agg_bufs > MAX_SKB_FRAGS) 1317 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1318 agg_bufs, (int)MAX_SKB_FRAGS); 1319 return NULL; 1320 } 1321 1322 if (len <= bp->rx_copy_thresh) { 1323 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1324 if (!skb) { 1325 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 1326 return NULL; 1327 } 1328 } else { 1329 u8 *new_data; 1330 dma_addr_t new_mapping; 1331 1332 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1333 if (!new_data) { 1334 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 1335 return NULL; 1336 } 1337 1338 tpa_info->data = new_data; 1339 tpa_info->data_ptr = new_data + bp->rx_offset; 1340 tpa_info->mapping = new_mapping; 1341 1342 skb = build_skb(data, 0); 1343 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1344 bp->rx_buf_use_size, bp->rx_dir, 1345 DMA_ATTR_WEAK_ORDERING); 1346 1347 if (!skb) { 1348 kfree(data); 1349 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 1350 return NULL; 1351 } 1352 skb_reserve(skb, bp->rx_offset); 1353 skb_put(skb, len); 1354 } 1355 1356 if (agg_bufs) { 1357 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); 1358 if (!skb) { 1359 /* Page reuse already handled by bnxt_rx_pages(). */ 1360 return NULL; 1361 } 1362 } 1363 skb->protocol = eth_type_trans(skb, bp->dev); 1364 1365 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1366 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1367 1368 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1369 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { 1370 u16 vlan_proto = tpa_info->metadata >> 1371 RX_CMP_FLAGS2_METADATA_TPID_SFT; 1372 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK; 1373 1374 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); 1375 } 1376 1377 skb_checksum_none_assert(skb); 1378 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1379 skb->ip_summed = CHECKSUM_UNNECESSARY; 1380 skb->csum_level = 1381 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1382 } 1383 1384 if (TPA_END_GRO(tpa_end)) 1385 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1386 1387 return skb; 1388 } 1389 1390 /* returns the following: 1391 * 1 - 1 packet successfully received 1392 * 0 - successful TPA_START, packet not completed yet 1393 * -EBUSY - completion ring does not have all the agg buffers yet 1394 * -ENOMEM - packet aborted due to out of memory 1395 * -EIO - packet aborted due to hw error indicated in BD 1396 */ 1397 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons, 1398 u8 *event) 1399 { 1400 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1401 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1402 struct net_device *dev = bp->dev; 1403 struct rx_cmp *rxcmp; 1404 struct rx_cmp_ext *rxcmp1; 1405 u32 tmp_raw_cons = *raw_cons; 1406 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1407 struct bnxt_sw_rx_bd *rx_buf; 1408 unsigned int len; 1409 u8 *data_ptr, agg_bufs, cmp_type; 1410 dma_addr_t dma_addr; 1411 struct sk_buff *skb; 1412 void *data; 1413 int rc = 0; 1414 u32 misc; 1415 1416 rxcmp = (struct rx_cmp *) 1417 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1418 1419 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1420 cp_cons = RING_CMP(tmp_raw_cons); 1421 rxcmp1 = (struct rx_cmp_ext *) 1422 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1423 1424 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1425 return -EBUSY; 1426 1427 cmp_type = RX_CMP_TYPE(rxcmp); 1428 1429 prod = rxr->rx_prod; 1430 1431 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1432 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1433 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1434 1435 *event |= BNXT_RX_EVENT; 1436 goto next_rx_no_prod; 1437 1438 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1439 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons, 1440 (struct rx_tpa_end_cmp *)rxcmp, 1441 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1442 1443 if (unlikely(IS_ERR(skb))) 1444 return -EBUSY; 1445 1446 rc = -ENOMEM; 1447 if (likely(skb)) { 1448 skb_record_rx_queue(skb, bnapi->index); 1449 napi_gro_receive(&bnapi->napi, skb); 1450 rc = 1; 1451 } 1452 *event |= BNXT_RX_EVENT; 1453 goto next_rx_no_prod; 1454 } 1455 1456 cons = rxcmp->rx_cmp_opaque; 1457 rx_buf = &rxr->rx_buf_ring[cons]; 1458 data = rx_buf->data; 1459 data_ptr = rx_buf->data_ptr; 1460 if (unlikely(cons != rxr->rx_next_cons)) { 1461 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp); 1462 1463 bnxt_sched_reset(bp, rxr); 1464 return rc1; 1465 } 1466 prefetch(data_ptr); 1467 1468 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1469 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1470 1471 if (agg_bufs) { 1472 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1473 return -EBUSY; 1474 1475 cp_cons = NEXT_CMP(cp_cons); 1476 *event |= BNXT_AGG_EVENT; 1477 } 1478 *event |= BNXT_RX_EVENT; 1479 1480 rx_buf->data = NULL; 1481 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1482 bnxt_reuse_rx_data(rxr, cons, data); 1483 if (agg_bufs) 1484 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); 1485 1486 rc = -EIO; 1487 goto next_rx; 1488 } 1489 1490 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT; 1491 dma_addr = rx_buf->mapping; 1492 1493 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1494 rc = 1; 1495 goto next_rx; 1496 } 1497 1498 if (len <= bp->rx_copy_thresh) { 1499 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1500 bnxt_reuse_rx_data(rxr, cons, data); 1501 if (!skb) { 1502 rc = -ENOMEM; 1503 goto next_rx; 1504 } 1505 } else { 1506 u32 payload; 1507 1508 if (rx_buf->data_ptr == data_ptr) 1509 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1510 else 1511 payload = 0; 1512 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1513 payload | len); 1514 if (!skb) { 1515 rc = -ENOMEM; 1516 goto next_rx; 1517 } 1518 } 1519 1520 if (agg_bufs) { 1521 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); 1522 if (!skb) { 1523 rc = -ENOMEM; 1524 goto next_rx; 1525 } 1526 } 1527 1528 if (RX_CMP_HASH_VALID(rxcmp)) { 1529 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1530 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1531 1532 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1533 if (hash_type != 1 && hash_type != 3) 1534 type = PKT_HASH_TYPE_L3; 1535 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1536 } 1537 1538 skb->protocol = eth_type_trans(skb, dev); 1539 1540 if ((rxcmp1->rx_cmp_flags2 & 1541 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1542 (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { 1543 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1544 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK; 1545 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT; 1546 1547 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); 1548 } 1549 1550 skb_checksum_none_assert(skb); 1551 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1552 if (dev->features & NETIF_F_RXCSUM) { 1553 skb->ip_summed = CHECKSUM_UNNECESSARY; 1554 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1555 } 1556 } else { 1557 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1558 if (dev->features & NETIF_F_RXCSUM) 1559 cpr->rx_l4_csum_errors++; 1560 } 1561 } 1562 1563 skb_record_rx_queue(skb, bnapi->index); 1564 napi_gro_receive(&bnapi->napi, skb); 1565 rc = 1; 1566 1567 next_rx: 1568 rxr->rx_prod = NEXT_RX(prod); 1569 rxr->rx_next_cons = NEXT_RX(cons); 1570 1571 next_rx_no_prod: 1572 *raw_cons = tmp_raw_cons; 1573 1574 return rc; 1575 } 1576 1577 /* In netpoll mode, if we are using a combined completion ring, we need to 1578 * discard the rx packets and recycle the buffers. 1579 */ 1580 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi, 1581 u32 *raw_cons, u8 *event) 1582 { 1583 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1584 u32 tmp_raw_cons = *raw_cons; 1585 struct rx_cmp_ext *rxcmp1; 1586 struct rx_cmp *rxcmp; 1587 u16 cp_cons; 1588 u8 cmp_type; 1589 1590 cp_cons = RING_CMP(tmp_raw_cons); 1591 rxcmp = (struct rx_cmp *) 1592 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1593 1594 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1595 cp_cons = RING_CMP(tmp_raw_cons); 1596 rxcmp1 = (struct rx_cmp_ext *) 1597 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1598 1599 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1600 return -EBUSY; 1601 1602 cmp_type = RX_CMP_TYPE(rxcmp); 1603 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1604 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 1605 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 1606 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1607 struct rx_tpa_end_cmp_ext *tpa_end1; 1608 1609 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 1610 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 1611 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 1612 } 1613 return bnxt_rx_pkt(bp, bnapi, raw_cons, event); 1614 } 1615 1616 #define BNXT_GET_EVENT_PORT(data) \ 1617 ((data) & \ 1618 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 1619 1620 static int bnxt_async_event_process(struct bnxt *bp, 1621 struct hwrm_async_event_cmpl *cmpl) 1622 { 1623 u16 event_id = le16_to_cpu(cmpl->event_id); 1624 1625 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 1626 switch (event_id) { 1627 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 1628 u32 data1 = le32_to_cpu(cmpl->event_data1); 1629 struct bnxt_link_info *link_info = &bp->link_info; 1630 1631 if (BNXT_VF(bp)) 1632 goto async_event_process_exit; 1633 if (data1 & 0x20000) { 1634 u16 fw_speed = link_info->force_link_speed; 1635 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 1636 1637 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 1638 speed); 1639 } 1640 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 1641 /* fall thru */ 1642 } 1643 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 1644 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 1645 break; 1646 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 1647 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 1648 break; 1649 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 1650 u32 data1 = le32_to_cpu(cmpl->event_data1); 1651 u16 port_id = BNXT_GET_EVENT_PORT(data1); 1652 1653 if (BNXT_VF(bp)) 1654 break; 1655 1656 if (bp->pf.port_id != port_id) 1657 break; 1658 1659 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 1660 break; 1661 } 1662 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 1663 if (BNXT_PF(bp)) 1664 goto async_event_process_exit; 1665 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 1666 break; 1667 default: 1668 goto async_event_process_exit; 1669 } 1670 schedule_work(&bp->sp_task); 1671 async_event_process_exit: 1672 bnxt_ulp_async_events(bp, cmpl); 1673 return 0; 1674 } 1675 1676 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 1677 { 1678 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 1679 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 1680 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 1681 (struct hwrm_fwd_req_cmpl *)txcmp; 1682 1683 switch (cmpl_type) { 1684 case CMPL_BASE_TYPE_HWRM_DONE: 1685 seq_id = le16_to_cpu(h_cmpl->sequence_id); 1686 if (seq_id == bp->hwrm_intr_seq_id) 1687 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID; 1688 else 1689 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 1690 break; 1691 1692 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 1693 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 1694 1695 if ((vf_id < bp->pf.first_vf_id) || 1696 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 1697 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 1698 vf_id); 1699 return -EINVAL; 1700 } 1701 1702 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 1703 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 1704 schedule_work(&bp->sp_task); 1705 break; 1706 1707 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 1708 bnxt_async_event_process(bp, 1709 (struct hwrm_async_event_cmpl *)txcmp); 1710 1711 default: 1712 break; 1713 } 1714 1715 return 0; 1716 } 1717 1718 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 1719 { 1720 struct bnxt_napi *bnapi = dev_instance; 1721 struct bnxt *bp = bnapi->bp; 1722 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1723 u32 cons = RING_CMP(cpr->cp_raw_cons); 1724 1725 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 1726 napi_schedule(&bnapi->napi); 1727 return IRQ_HANDLED; 1728 } 1729 1730 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 1731 { 1732 u32 raw_cons = cpr->cp_raw_cons; 1733 u16 cons = RING_CMP(raw_cons); 1734 struct tx_cmp *txcmp; 1735 1736 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 1737 1738 return TX_CMP_VALID(txcmp, raw_cons); 1739 } 1740 1741 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 1742 { 1743 struct bnxt_napi *bnapi = dev_instance; 1744 struct bnxt *bp = bnapi->bp; 1745 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1746 u32 cons = RING_CMP(cpr->cp_raw_cons); 1747 u32 int_status; 1748 1749 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 1750 1751 if (!bnxt_has_work(bp, cpr)) { 1752 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 1753 /* return if erroneous interrupt */ 1754 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 1755 return IRQ_NONE; 1756 } 1757 1758 /* disable ring IRQ */ 1759 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell); 1760 1761 /* Return here if interrupt is shared and is disabled. */ 1762 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 1763 return IRQ_HANDLED; 1764 1765 napi_schedule(&bnapi->napi); 1766 return IRQ_HANDLED; 1767 } 1768 1769 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 1770 { 1771 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1772 u32 raw_cons = cpr->cp_raw_cons; 1773 u32 cons; 1774 int tx_pkts = 0; 1775 int rx_pkts = 0; 1776 u8 event = 0; 1777 struct tx_cmp *txcmp; 1778 1779 while (1) { 1780 int rc; 1781 1782 cons = RING_CMP(raw_cons); 1783 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 1784 1785 if (!TX_CMP_VALID(txcmp, raw_cons)) 1786 break; 1787 1788 /* The valid test of the entry must be done first before 1789 * reading any further. 1790 */ 1791 dma_rmb(); 1792 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 1793 tx_pkts++; 1794 /* return full budget so NAPI will complete. */ 1795 if (unlikely(tx_pkts > bp->tx_wake_thresh)) 1796 rx_pkts = budget; 1797 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 1798 if (likely(budget)) 1799 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event); 1800 else 1801 rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons, 1802 &event); 1803 if (likely(rc >= 0)) 1804 rx_pkts += rc; 1805 else if (rc == -EBUSY) /* partial completion */ 1806 break; 1807 } else if (unlikely((TX_CMP_TYPE(txcmp) == 1808 CMPL_BASE_TYPE_HWRM_DONE) || 1809 (TX_CMP_TYPE(txcmp) == 1810 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 1811 (TX_CMP_TYPE(txcmp) == 1812 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 1813 bnxt_hwrm_handler(bp, txcmp); 1814 } 1815 raw_cons = NEXT_RAW_CMP(raw_cons); 1816 1817 if (rx_pkts == budget) 1818 break; 1819 } 1820 1821 if (event & BNXT_TX_EVENT) { 1822 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 1823 void __iomem *db = txr->tx_doorbell; 1824 u16 prod = txr->tx_prod; 1825 1826 /* Sync BD data before updating doorbell */ 1827 wmb(); 1828 1829 bnxt_db_write(bp, db, DB_KEY_TX | prod); 1830 } 1831 1832 cpr->cp_raw_cons = raw_cons; 1833 /* ACK completion ring before freeing tx ring and producing new 1834 * buffers in rx/agg rings to prevent overflowing the completion 1835 * ring. 1836 */ 1837 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 1838 1839 if (tx_pkts) 1840 bnapi->tx_int(bp, bnapi, tx_pkts); 1841 1842 if (event & BNXT_RX_EVENT) { 1843 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1844 1845 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod); 1846 if (event & BNXT_AGG_EVENT) 1847 bnxt_db_write(bp, rxr->rx_agg_doorbell, 1848 DB_KEY_RX | rxr->rx_agg_prod); 1849 } 1850 return rx_pkts; 1851 } 1852 1853 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 1854 { 1855 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 1856 struct bnxt *bp = bnapi->bp; 1857 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1858 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1859 struct tx_cmp *txcmp; 1860 struct rx_cmp_ext *rxcmp1; 1861 u32 cp_cons, tmp_raw_cons; 1862 u32 raw_cons = cpr->cp_raw_cons; 1863 u32 rx_pkts = 0; 1864 u8 event = 0; 1865 1866 while (1) { 1867 int rc; 1868 1869 cp_cons = RING_CMP(raw_cons); 1870 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1871 1872 if (!TX_CMP_VALID(txcmp, raw_cons)) 1873 break; 1874 1875 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 1876 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 1877 cp_cons = RING_CMP(tmp_raw_cons); 1878 rxcmp1 = (struct rx_cmp_ext *) 1879 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1880 1881 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1882 break; 1883 1884 /* force an error to recycle the buffer */ 1885 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 1886 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 1887 1888 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event); 1889 if (likely(rc == -EIO)) 1890 rx_pkts++; 1891 else if (rc == -EBUSY) /* partial completion */ 1892 break; 1893 } else if (unlikely(TX_CMP_TYPE(txcmp) == 1894 CMPL_BASE_TYPE_HWRM_DONE)) { 1895 bnxt_hwrm_handler(bp, txcmp); 1896 } else { 1897 netdev_err(bp->dev, 1898 "Invalid completion received on special ring\n"); 1899 } 1900 raw_cons = NEXT_RAW_CMP(raw_cons); 1901 1902 if (rx_pkts == budget) 1903 break; 1904 } 1905 1906 cpr->cp_raw_cons = raw_cons; 1907 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 1908 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod); 1909 1910 if (event & BNXT_AGG_EVENT) 1911 bnxt_db_write(bp, rxr->rx_agg_doorbell, 1912 DB_KEY_RX | rxr->rx_agg_prod); 1913 1914 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 1915 napi_complete_done(napi, rx_pkts); 1916 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 1917 } 1918 return rx_pkts; 1919 } 1920 1921 static int bnxt_poll(struct napi_struct *napi, int budget) 1922 { 1923 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 1924 struct bnxt *bp = bnapi->bp; 1925 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1926 int work_done = 0; 1927 1928 while (1) { 1929 work_done += bnxt_poll_work(bp, bnapi, budget - work_done); 1930 1931 if (work_done >= budget) 1932 break; 1933 1934 if (!bnxt_has_work(bp, cpr)) { 1935 if (napi_complete_done(napi, work_done)) 1936 BNXT_CP_DB_REARM(cpr->cp_doorbell, 1937 cpr->cp_raw_cons); 1938 break; 1939 } 1940 } 1941 mmiowb(); 1942 return work_done; 1943 } 1944 1945 static void bnxt_free_tx_skbs(struct bnxt *bp) 1946 { 1947 int i, max_idx; 1948 struct pci_dev *pdev = bp->pdev; 1949 1950 if (!bp->tx_ring) 1951 return; 1952 1953 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 1954 for (i = 0; i < bp->tx_nr_rings; i++) { 1955 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 1956 int j; 1957 1958 for (j = 0; j < max_idx;) { 1959 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 1960 struct sk_buff *skb = tx_buf->skb; 1961 int k, last; 1962 1963 if (!skb) { 1964 j++; 1965 continue; 1966 } 1967 1968 tx_buf->skb = NULL; 1969 1970 if (tx_buf->is_push) { 1971 dev_kfree_skb(skb); 1972 j += 2; 1973 continue; 1974 } 1975 1976 dma_unmap_single(&pdev->dev, 1977 dma_unmap_addr(tx_buf, mapping), 1978 skb_headlen(skb), 1979 PCI_DMA_TODEVICE); 1980 1981 last = tx_buf->nr_frags; 1982 j += 2; 1983 for (k = 0; k < last; k++, j++) { 1984 int ring_idx = j & bp->tx_ring_mask; 1985 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 1986 1987 tx_buf = &txr->tx_buf_ring[ring_idx]; 1988 dma_unmap_page( 1989 &pdev->dev, 1990 dma_unmap_addr(tx_buf, mapping), 1991 skb_frag_size(frag), PCI_DMA_TODEVICE); 1992 } 1993 dev_kfree_skb(skb); 1994 } 1995 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 1996 } 1997 } 1998 1999 static void bnxt_free_rx_skbs(struct bnxt *bp) 2000 { 2001 int i, max_idx, max_agg_idx; 2002 struct pci_dev *pdev = bp->pdev; 2003 2004 if (!bp->rx_ring) 2005 return; 2006 2007 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2008 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2009 for (i = 0; i < bp->rx_nr_rings; i++) { 2010 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2011 int j; 2012 2013 if (rxr->rx_tpa) { 2014 for (j = 0; j < MAX_TPA; j++) { 2015 struct bnxt_tpa_info *tpa_info = 2016 &rxr->rx_tpa[j]; 2017 u8 *data = tpa_info->data; 2018 2019 if (!data) 2020 continue; 2021 2022 dma_unmap_single_attrs(&pdev->dev, 2023 tpa_info->mapping, 2024 bp->rx_buf_use_size, 2025 bp->rx_dir, 2026 DMA_ATTR_WEAK_ORDERING); 2027 2028 tpa_info->data = NULL; 2029 2030 kfree(data); 2031 } 2032 } 2033 2034 for (j = 0; j < max_idx; j++) { 2035 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j]; 2036 dma_addr_t mapping = rx_buf->mapping; 2037 void *data = rx_buf->data; 2038 2039 if (!data) 2040 continue; 2041 2042 rx_buf->data = NULL; 2043 2044 if (BNXT_RX_PAGE_MODE(bp)) { 2045 mapping -= bp->rx_dma_offset; 2046 dma_unmap_page_attrs(&pdev->dev, mapping, 2047 PAGE_SIZE, bp->rx_dir, 2048 DMA_ATTR_WEAK_ORDERING); 2049 __free_page(data); 2050 } else { 2051 dma_unmap_single_attrs(&pdev->dev, mapping, 2052 bp->rx_buf_use_size, 2053 bp->rx_dir, 2054 DMA_ATTR_WEAK_ORDERING); 2055 kfree(data); 2056 } 2057 } 2058 2059 for (j = 0; j < max_agg_idx; j++) { 2060 struct bnxt_sw_rx_agg_bd *rx_agg_buf = 2061 &rxr->rx_agg_ring[j]; 2062 struct page *page = rx_agg_buf->page; 2063 2064 if (!page) 2065 continue; 2066 2067 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2068 BNXT_RX_PAGE_SIZE, 2069 PCI_DMA_FROMDEVICE, 2070 DMA_ATTR_WEAK_ORDERING); 2071 2072 rx_agg_buf->page = NULL; 2073 __clear_bit(j, rxr->rx_agg_bmap); 2074 2075 __free_page(page); 2076 } 2077 if (rxr->rx_page) { 2078 __free_page(rxr->rx_page); 2079 rxr->rx_page = NULL; 2080 } 2081 } 2082 } 2083 2084 static void bnxt_free_skbs(struct bnxt *bp) 2085 { 2086 bnxt_free_tx_skbs(bp); 2087 bnxt_free_rx_skbs(bp); 2088 } 2089 2090 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) 2091 { 2092 struct pci_dev *pdev = bp->pdev; 2093 int i; 2094 2095 for (i = 0; i < ring->nr_pages; i++) { 2096 if (!ring->pg_arr[i]) 2097 continue; 2098 2099 dma_free_coherent(&pdev->dev, ring->page_size, 2100 ring->pg_arr[i], ring->dma_arr[i]); 2101 2102 ring->pg_arr[i] = NULL; 2103 } 2104 if (ring->pg_tbl) { 2105 dma_free_coherent(&pdev->dev, ring->nr_pages * 8, 2106 ring->pg_tbl, ring->pg_tbl_map); 2107 ring->pg_tbl = NULL; 2108 } 2109 if (ring->vmem_size && *ring->vmem) { 2110 vfree(*ring->vmem); 2111 *ring->vmem = NULL; 2112 } 2113 } 2114 2115 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) 2116 { 2117 int i; 2118 struct pci_dev *pdev = bp->pdev; 2119 2120 if (ring->nr_pages > 1) { 2121 ring->pg_tbl = dma_alloc_coherent(&pdev->dev, 2122 ring->nr_pages * 8, 2123 &ring->pg_tbl_map, 2124 GFP_KERNEL); 2125 if (!ring->pg_tbl) 2126 return -ENOMEM; 2127 } 2128 2129 for (i = 0; i < ring->nr_pages; i++) { 2130 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2131 ring->page_size, 2132 &ring->dma_arr[i], 2133 GFP_KERNEL); 2134 if (!ring->pg_arr[i]) 2135 return -ENOMEM; 2136 2137 if (ring->nr_pages > 1) 2138 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]); 2139 } 2140 2141 if (ring->vmem_size) { 2142 *ring->vmem = vzalloc(ring->vmem_size); 2143 if (!(*ring->vmem)) 2144 return -ENOMEM; 2145 } 2146 return 0; 2147 } 2148 2149 static void bnxt_free_rx_rings(struct bnxt *bp) 2150 { 2151 int i; 2152 2153 if (!bp->rx_ring) 2154 return; 2155 2156 for (i = 0; i < bp->rx_nr_rings; i++) { 2157 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2158 struct bnxt_ring_struct *ring; 2159 2160 if (rxr->xdp_prog) 2161 bpf_prog_put(rxr->xdp_prog); 2162 2163 kfree(rxr->rx_tpa); 2164 rxr->rx_tpa = NULL; 2165 2166 kfree(rxr->rx_agg_bmap); 2167 rxr->rx_agg_bmap = NULL; 2168 2169 ring = &rxr->rx_ring_struct; 2170 bnxt_free_ring(bp, ring); 2171 2172 ring = &rxr->rx_agg_ring_struct; 2173 bnxt_free_ring(bp, ring); 2174 } 2175 } 2176 2177 static int bnxt_alloc_rx_rings(struct bnxt *bp) 2178 { 2179 int i, rc, agg_rings = 0, tpa_rings = 0; 2180 2181 if (!bp->rx_ring) 2182 return -ENOMEM; 2183 2184 if (bp->flags & BNXT_FLAG_AGG_RINGS) 2185 agg_rings = 1; 2186 2187 if (bp->flags & BNXT_FLAG_TPA) 2188 tpa_rings = 1; 2189 2190 for (i = 0; i < bp->rx_nr_rings; i++) { 2191 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2192 struct bnxt_ring_struct *ring; 2193 2194 ring = &rxr->rx_ring_struct; 2195 2196 rc = bnxt_alloc_ring(bp, ring); 2197 if (rc) 2198 return rc; 2199 2200 if (agg_rings) { 2201 u16 mem_size; 2202 2203 ring = &rxr->rx_agg_ring_struct; 2204 rc = bnxt_alloc_ring(bp, ring); 2205 if (rc) 2206 return rc; 2207 2208 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 2209 mem_size = rxr->rx_agg_bmap_size / 8; 2210 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 2211 if (!rxr->rx_agg_bmap) 2212 return -ENOMEM; 2213 2214 if (tpa_rings) { 2215 rxr->rx_tpa = kcalloc(MAX_TPA, 2216 sizeof(struct bnxt_tpa_info), 2217 GFP_KERNEL); 2218 if (!rxr->rx_tpa) 2219 return -ENOMEM; 2220 } 2221 } 2222 } 2223 return 0; 2224 } 2225 2226 static void bnxt_free_tx_rings(struct bnxt *bp) 2227 { 2228 int i; 2229 struct pci_dev *pdev = bp->pdev; 2230 2231 if (!bp->tx_ring) 2232 return; 2233 2234 for (i = 0; i < bp->tx_nr_rings; i++) { 2235 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2236 struct bnxt_ring_struct *ring; 2237 2238 if (txr->tx_push) { 2239 dma_free_coherent(&pdev->dev, bp->tx_push_size, 2240 txr->tx_push, txr->tx_push_mapping); 2241 txr->tx_push = NULL; 2242 } 2243 2244 ring = &txr->tx_ring_struct; 2245 2246 bnxt_free_ring(bp, ring); 2247 } 2248 } 2249 2250 static int bnxt_alloc_tx_rings(struct bnxt *bp) 2251 { 2252 int i, j, rc; 2253 struct pci_dev *pdev = bp->pdev; 2254 2255 bp->tx_push_size = 0; 2256 if (bp->tx_push_thresh) { 2257 int push_size; 2258 2259 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 2260 bp->tx_push_thresh); 2261 2262 if (push_size > 256) { 2263 push_size = 0; 2264 bp->tx_push_thresh = 0; 2265 } 2266 2267 bp->tx_push_size = push_size; 2268 } 2269 2270 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 2271 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2272 struct bnxt_ring_struct *ring; 2273 2274 ring = &txr->tx_ring_struct; 2275 2276 rc = bnxt_alloc_ring(bp, ring); 2277 if (rc) 2278 return rc; 2279 2280 if (bp->tx_push_size) { 2281 dma_addr_t mapping; 2282 2283 /* One pre-allocated DMA buffer to backup 2284 * TX push operation 2285 */ 2286 txr->tx_push = dma_alloc_coherent(&pdev->dev, 2287 bp->tx_push_size, 2288 &txr->tx_push_mapping, 2289 GFP_KERNEL); 2290 2291 if (!txr->tx_push) 2292 return -ENOMEM; 2293 2294 mapping = txr->tx_push_mapping + 2295 sizeof(struct tx_push_bd); 2296 txr->data_mapping = cpu_to_le64(mapping); 2297 2298 memset(txr->tx_push, 0, sizeof(struct tx_push_bd)); 2299 } 2300 ring->queue_id = bp->q_info[j].queue_id; 2301 if (i < bp->tx_nr_rings_xdp) 2302 continue; 2303 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 2304 j++; 2305 } 2306 return 0; 2307 } 2308 2309 static void bnxt_free_cp_rings(struct bnxt *bp) 2310 { 2311 int i; 2312 2313 if (!bp->bnapi) 2314 return; 2315 2316 for (i = 0; i < bp->cp_nr_rings; i++) { 2317 struct bnxt_napi *bnapi = bp->bnapi[i]; 2318 struct bnxt_cp_ring_info *cpr; 2319 struct bnxt_ring_struct *ring; 2320 2321 if (!bnapi) 2322 continue; 2323 2324 cpr = &bnapi->cp_ring; 2325 ring = &cpr->cp_ring_struct; 2326 2327 bnxt_free_ring(bp, ring); 2328 } 2329 } 2330 2331 static int bnxt_alloc_cp_rings(struct bnxt *bp) 2332 { 2333 int i, rc; 2334 2335 for (i = 0; i < bp->cp_nr_rings; i++) { 2336 struct bnxt_napi *bnapi = bp->bnapi[i]; 2337 struct bnxt_cp_ring_info *cpr; 2338 struct bnxt_ring_struct *ring; 2339 2340 if (!bnapi) 2341 continue; 2342 2343 cpr = &bnapi->cp_ring; 2344 ring = &cpr->cp_ring_struct; 2345 2346 rc = bnxt_alloc_ring(bp, ring); 2347 if (rc) 2348 return rc; 2349 } 2350 return 0; 2351 } 2352 2353 static void bnxt_init_ring_struct(struct bnxt *bp) 2354 { 2355 int i; 2356 2357 for (i = 0; i < bp->cp_nr_rings; i++) { 2358 struct bnxt_napi *bnapi = bp->bnapi[i]; 2359 struct bnxt_cp_ring_info *cpr; 2360 struct bnxt_rx_ring_info *rxr; 2361 struct bnxt_tx_ring_info *txr; 2362 struct bnxt_ring_struct *ring; 2363 2364 if (!bnapi) 2365 continue; 2366 2367 cpr = &bnapi->cp_ring; 2368 ring = &cpr->cp_ring_struct; 2369 ring->nr_pages = bp->cp_nr_pages; 2370 ring->page_size = HW_CMPD_RING_SIZE; 2371 ring->pg_arr = (void **)cpr->cp_desc_ring; 2372 ring->dma_arr = cpr->cp_desc_mapping; 2373 ring->vmem_size = 0; 2374 2375 rxr = bnapi->rx_ring; 2376 if (!rxr) 2377 goto skip_rx; 2378 2379 ring = &rxr->rx_ring_struct; 2380 ring->nr_pages = bp->rx_nr_pages; 2381 ring->page_size = HW_RXBD_RING_SIZE; 2382 ring->pg_arr = (void **)rxr->rx_desc_ring; 2383 ring->dma_arr = rxr->rx_desc_mapping; 2384 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 2385 ring->vmem = (void **)&rxr->rx_buf_ring; 2386 2387 ring = &rxr->rx_agg_ring_struct; 2388 ring->nr_pages = bp->rx_agg_nr_pages; 2389 ring->page_size = HW_RXBD_RING_SIZE; 2390 ring->pg_arr = (void **)rxr->rx_agg_desc_ring; 2391 ring->dma_arr = rxr->rx_agg_desc_mapping; 2392 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 2393 ring->vmem = (void **)&rxr->rx_agg_ring; 2394 2395 skip_rx: 2396 txr = bnapi->tx_ring; 2397 if (!txr) 2398 continue; 2399 2400 ring = &txr->tx_ring_struct; 2401 ring->nr_pages = bp->tx_nr_pages; 2402 ring->page_size = HW_RXBD_RING_SIZE; 2403 ring->pg_arr = (void **)txr->tx_desc_ring; 2404 ring->dma_arr = txr->tx_desc_mapping; 2405 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 2406 ring->vmem = (void **)&txr->tx_buf_ring; 2407 } 2408 } 2409 2410 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 2411 { 2412 int i; 2413 u32 prod; 2414 struct rx_bd **rx_buf_ring; 2415 2416 rx_buf_ring = (struct rx_bd **)ring->pg_arr; 2417 for (i = 0, prod = 0; i < ring->nr_pages; i++) { 2418 int j; 2419 struct rx_bd *rxbd; 2420 2421 rxbd = rx_buf_ring[i]; 2422 if (!rxbd) 2423 continue; 2424 2425 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 2426 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 2427 rxbd->rx_bd_opaque = prod; 2428 } 2429 } 2430 } 2431 2432 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 2433 { 2434 struct net_device *dev = bp->dev; 2435 struct bnxt_rx_ring_info *rxr; 2436 struct bnxt_ring_struct *ring; 2437 u32 prod, type; 2438 int i; 2439 2440 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 2441 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 2442 2443 if (NET_IP_ALIGN == 2) 2444 type |= RX_BD_FLAGS_SOP; 2445 2446 rxr = &bp->rx_ring[ring_nr]; 2447 ring = &rxr->rx_ring_struct; 2448 bnxt_init_rxbd_pages(ring, type); 2449 2450 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 2451 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1); 2452 if (IS_ERR(rxr->xdp_prog)) { 2453 int rc = PTR_ERR(rxr->xdp_prog); 2454 2455 rxr->xdp_prog = NULL; 2456 return rc; 2457 } 2458 } 2459 prod = rxr->rx_prod; 2460 for (i = 0; i < bp->rx_ring_size; i++) { 2461 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) { 2462 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 2463 ring_nr, i, bp->rx_ring_size); 2464 break; 2465 } 2466 prod = NEXT_RX(prod); 2467 } 2468 rxr->rx_prod = prod; 2469 ring->fw_ring_id = INVALID_HW_RING_ID; 2470 2471 ring = &rxr->rx_agg_ring_struct; 2472 ring->fw_ring_id = INVALID_HW_RING_ID; 2473 2474 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 2475 return 0; 2476 2477 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 2478 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 2479 2480 bnxt_init_rxbd_pages(ring, type); 2481 2482 prod = rxr->rx_agg_prod; 2483 for (i = 0; i < bp->rx_agg_ring_size; i++) { 2484 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) { 2485 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 2486 ring_nr, i, bp->rx_ring_size); 2487 break; 2488 } 2489 prod = NEXT_RX_AGG(prod); 2490 } 2491 rxr->rx_agg_prod = prod; 2492 2493 if (bp->flags & BNXT_FLAG_TPA) { 2494 if (rxr->rx_tpa) { 2495 u8 *data; 2496 dma_addr_t mapping; 2497 2498 for (i = 0; i < MAX_TPA; i++) { 2499 data = __bnxt_alloc_rx_data(bp, &mapping, 2500 GFP_KERNEL); 2501 if (!data) 2502 return -ENOMEM; 2503 2504 rxr->rx_tpa[i].data = data; 2505 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 2506 rxr->rx_tpa[i].mapping = mapping; 2507 } 2508 } else { 2509 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n"); 2510 return -ENOMEM; 2511 } 2512 } 2513 2514 return 0; 2515 } 2516 2517 static void bnxt_init_cp_rings(struct bnxt *bp) 2518 { 2519 int i; 2520 2521 for (i = 0; i < bp->cp_nr_rings; i++) { 2522 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 2523 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 2524 2525 ring->fw_ring_id = INVALID_HW_RING_ID; 2526 } 2527 } 2528 2529 static int bnxt_init_rx_rings(struct bnxt *bp) 2530 { 2531 int i, rc = 0; 2532 2533 if (BNXT_RX_PAGE_MODE(bp)) { 2534 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 2535 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 2536 } else { 2537 bp->rx_offset = BNXT_RX_OFFSET; 2538 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 2539 } 2540 2541 for (i = 0; i < bp->rx_nr_rings; i++) { 2542 rc = bnxt_init_one_rx_ring(bp, i); 2543 if (rc) 2544 break; 2545 } 2546 2547 return rc; 2548 } 2549 2550 static int bnxt_init_tx_rings(struct bnxt *bp) 2551 { 2552 u16 i; 2553 2554 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 2555 MAX_SKB_FRAGS + 1); 2556 2557 for (i = 0; i < bp->tx_nr_rings; i++) { 2558 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2559 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 2560 2561 ring->fw_ring_id = INVALID_HW_RING_ID; 2562 } 2563 2564 return 0; 2565 } 2566 2567 static void bnxt_free_ring_grps(struct bnxt *bp) 2568 { 2569 kfree(bp->grp_info); 2570 bp->grp_info = NULL; 2571 } 2572 2573 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 2574 { 2575 int i; 2576 2577 if (irq_re_init) { 2578 bp->grp_info = kcalloc(bp->cp_nr_rings, 2579 sizeof(struct bnxt_ring_grp_info), 2580 GFP_KERNEL); 2581 if (!bp->grp_info) 2582 return -ENOMEM; 2583 } 2584 for (i = 0; i < bp->cp_nr_rings; i++) { 2585 if (irq_re_init) 2586 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 2587 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 2588 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 2589 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 2590 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 2591 } 2592 return 0; 2593 } 2594 2595 static void bnxt_free_vnics(struct bnxt *bp) 2596 { 2597 kfree(bp->vnic_info); 2598 bp->vnic_info = NULL; 2599 bp->nr_vnics = 0; 2600 } 2601 2602 static int bnxt_alloc_vnics(struct bnxt *bp) 2603 { 2604 int num_vnics = 1; 2605 2606 #ifdef CONFIG_RFS_ACCEL 2607 if (bp->flags & BNXT_FLAG_RFS) 2608 num_vnics += bp->rx_nr_rings; 2609 #endif 2610 2611 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 2612 num_vnics++; 2613 2614 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 2615 GFP_KERNEL); 2616 if (!bp->vnic_info) 2617 return -ENOMEM; 2618 2619 bp->nr_vnics = num_vnics; 2620 return 0; 2621 } 2622 2623 static void bnxt_init_vnics(struct bnxt *bp) 2624 { 2625 int i; 2626 2627 for (i = 0; i < bp->nr_vnics; i++) { 2628 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 2629 2630 vnic->fw_vnic_id = INVALID_HW_RING_ID; 2631 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID; 2632 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID; 2633 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 2634 2635 if (bp->vnic_info[i].rss_hash_key) { 2636 if (i == 0) 2637 prandom_bytes(vnic->rss_hash_key, 2638 HW_HASH_KEY_SIZE); 2639 else 2640 memcpy(vnic->rss_hash_key, 2641 bp->vnic_info[0].rss_hash_key, 2642 HW_HASH_KEY_SIZE); 2643 } 2644 } 2645 } 2646 2647 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 2648 { 2649 int pages; 2650 2651 pages = ring_size / desc_per_pg; 2652 2653 if (!pages) 2654 return 1; 2655 2656 pages++; 2657 2658 while (pages & (pages - 1)) 2659 pages++; 2660 2661 return pages; 2662 } 2663 2664 void bnxt_set_tpa_flags(struct bnxt *bp) 2665 { 2666 bp->flags &= ~BNXT_FLAG_TPA; 2667 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 2668 return; 2669 if (bp->dev->features & NETIF_F_LRO) 2670 bp->flags |= BNXT_FLAG_LRO; 2671 if (bp->dev->features & NETIF_F_GRO) 2672 bp->flags |= BNXT_FLAG_GRO; 2673 } 2674 2675 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 2676 * be set on entry. 2677 */ 2678 void bnxt_set_ring_params(struct bnxt *bp) 2679 { 2680 u32 ring_size, rx_size, rx_space; 2681 u32 agg_factor = 0, agg_ring_size = 0; 2682 2683 /* 8 for CRC and VLAN */ 2684 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 2685 2686 rx_space = rx_size + NET_SKB_PAD + 2687 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2688 2689 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 2690 ring_size = bp->rx_ring_size; 2691 bp->rx_agg_ring_size = 0; 2692 bp->rx_agg_nr_pages = 0; 2693 2694 if (bp->flags & BNXT_FLAG_TPA) 2695 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 2696 2697 bp->flags &= ~BNXT_FLAG_JUMBO; 2698 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 2699 u32 jumbo_factor; 2700 2701 bp->flags |= BNXT_FLAG_JUMBO; 2702 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 2703 if (jumbo_factor > agg_factor) 2704 agg_factor = jumbo_factor; 2705 } 2706 agg_ring_size = ring_size * agg_factor; 2707 2708 if (agg_ring_size) { 2709 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 2710 RX_DESC_CNT); 2711 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 2712 u32 tmp = agg_ring_size; 2713 2714 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 2715 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 2716 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 2717 tmp, agg_ring_size); 2718 } 2719 bp->rx_agg_ring_size = agg_ring_size; 2720 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 2721 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 2722 rx_space = rx_size + NET_SKB_PAD + 2723 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2724 } 2725 2726 bp->rx_buf_use_size = rx_size; 2727 bp->rx_buf_size = rx_space; 2728 2729 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 2730 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 2731 2732 ring_size = bp->tx_ring_size; 2733 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 2734 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 2735 2736 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size; 2737 bp->cp_ring_size = ring_size; 2738 2739 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 2740 if (bp->cp_nr_pages > MAX_CP_PAGES) { 2741 bp->cp_nr_pages = MAX_CP_PAGES; 2742 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 2743 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 2744 ring_size, bp->cp_ring_size); 2745 } 2746 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 2747 bp->cp_ring_mask = bp->cp_bit - 1; 2748 } 2749 2750 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 2751 { 2752 if (page_mode) { 2753 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 2754 return -EOPNOTSUPP; 2755 bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU; 2756 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 2757 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 2758 bp->dev->hw_features &= ~NETIF_F_LRO; 2759 bp->dev->features &= ~NETIF_F_LRO; 2760 bp->rx_dir = DMA_BIDIRECTIONAL; 2761 bp->rx_skb_func = bnxt_rx_page_skb; 2762 } else { 2763 bp->dev->max_mtu = BNXT_MAX_MTU; 2764 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 2765 bp->rx_dir = DMA_FROM_DEVICE; 2766 bp->rx_skb_func = bnxt_rx_skb; 2767 } 2768 return 0; 2769 } 2770 2771 static void bnxt_free_vnic_attributes(struct bnxt *bp) 2772 { 2773 int i; 2774 struct bnxt_vnic_info *vnic; 2775 struct pci_dev *pdev = bp->pdev; 2776 2777 if (!bp->vnic_info) 2778 return; 2779 2780 for (i = 0; i < bp->nr_vnics; i++) { 2781 vnic = &bp->vnic_info[i]; 2782 2783 kfree(vnic->fw_grp_ids); 2784 vnic->fw_grp_ids = NULL; 2785 2786 kfree(vnic->uc_list); 2787 vnic->uc_list = NULL; 2788 2789 if (vnic->mc_list) { 2790 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 2791 vnic->mc_list, vnic->mc_list_mapping); 2792 vnic->mc_list = NULL; 2793 } 2794 2795 if (vnic->rss_table) { 2796 dma_free_coherent(&pdev->dev, PAGE_SIZE, 2797 vnic->rss_table, 2798 vnic->rss_table_dma_addr); 2799 vnic->rss_table = NULL; 2800 } 2801 2802 vnic->rss_hash_key = NULL; 2803 vnic->flags = 0; 2804 } 2805 } 2806 2807 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 2808 { 2809 int i, rc = 0, size; 2810 struct bnxt_vnic_info *vnic; 2811 struct pci_dev *pdev = bp->pdev; 2812 int max_rings; 2813 2814 for (i = 0; i < bp->nr_vnics; i++) { 2815 vnic = &bp->vnic_info[i]; 2816 2817 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 2818 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 2819 2820 if (mem_size > 0) { 2821 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 2822 if (!vnic->uc_list) { 2823 rc = -ENOMEM; 2824 goto out; 2825 } 2826 } 2827 } 2828 2829 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 2830 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 2831 vnic->mc_list = 2832 dma_alloc_coherent(&pdev->dev, 2833 vnic->mc_list_size, 2834 &vnic->mc_list_mapping, 2835 GFP_KERNEL); 2836 if (!vnic->mc_list) { 2837 rc = -ENOMEM; 2838 goto out; 2839 } 2840 } 2841 2842 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 2843 max_rings = bp->rx_nr_rings; 2844 else 2845 max_rings = 1; 2846 2847 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 2848 if (!vnic->fw_grp_ids) { 2849 rc = -ENOMEM; 2850 goto out; 2851 } 2852 2853 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 2854 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 2855 continue; 2856 2857 /* Allocate rss table and hash key */ 2858 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 2859 &vnic->rss_table_dma_addr, 2860 GFP_KERNEL); 2861 if (!vnic->rss_table) { 2862 rc = -ENOMEM; 2863 goto out; 2864 } 2865 2866 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 2867 2868 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 2869 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 2870 } 2871 return 0; 2872 2873 out: 2874 return rc; 2875 } 2876 2877 static void bnxt_free_hwrm_resources(struct bnxt *bp) 2878 { 2879 struct pci_dev *pdev = bp->pdev; 2880 2881 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 2882 bp->hwrm_cmd_resp_dma_addr); 2883 2884 bp->hwrm_cmd_resp_addr = NULL; 2885 if (bp->hwrm_dbg_resp_addr) { 2886 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE, 2887 bp->hwrm_dbg_resp_addr, 2888 bp->hwrm_dbg_resp_dma_addr); 2889 2890 bp->hwrm_dbg_resp_addr = NULL; 2891 } 2892 } 2893 2894 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 2895 { 2896 struct pci_dev *pdev = bp->pdev; 2897 2898 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 2899 &bp->hwrm_cmd_resp_dma_addr, 2900 GFP_KERNEL); 2901 if (!bp->hwrm_cmd_resp_addr) 2902 return -ENOMEM; 2903 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev, 2904 HWRM_DBG_REG_BUF_SIZE, 2905 &bp->hwrm_dbg_resp_dma_addr, 2906 GFP_KERNEL); 2907 if (!bp->hwrm_dbg_resp_addr) 2908 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n"); 2909 2910 return 0; 2911 } 2912 2913 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp) 2914 { 2915 if (bp->hwrm_short_cmd_req_addr) { 2916 struct pci_dev *pdev = bp->pdev; 2917 2918 dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN, 2919 bp->hwrm_short_cmd_req_addr, 2920 bp->hwrm_short_cmd_req_dma_addr); 2921 bp->hwrm_short_cmd_req_addr = NULL; 2922 } 2923 } 2924 2925 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp) 2926 { 2927 struct pci_dev *pdev = bp->pdev; 2928 2929 bp->hwrm_short_cmd_req_addr = 2930 dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN, 2931 &bp->hwrm_short_cmd_req_dma_addr, 2932 GFP_KERNEL); 2933 if (!bp->hwrm_short_cmd_req_addr) 2934 return -ENOMEM; 2935 2936 return 0; 2937 } 2938 2939 static void bnxt_free_stats(struct bnxt *bp) 2940 { 2941 u32 size, i; 2942 struct pci_dev *pdev = bp->pdev; 2943 2944 if (bp->hw_rx_port_stats) { 2945 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size, 2946 bp->hw_rx_port_stats, 2947 bp->hw_rx_port_stats_map); 2948 bp->hw_rx_port_stats = NULL; 2949 bp->flags &= ~BNXT_FLAG_PORT_STATS; 2950 } 2951 2952 if (!bp->bnapi) 2953 return; 2954 2955 size = sizeof(struct ctx_hw_stats); 2956 2957 for (i = 0; i < bp->cp_nr_rings; i++) { 2958 struct bnxt_napi *bnapi = bp->bnapi[i]; 2959 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2960 2961 if (cpr->hw_stats) { 2962 dma_free_coherent(&pdev->dev, size, cpr->hw_stats, 2963 cpr->hw_stats_map); 2964 cpr->hw_stats = NULL; 2965 } 2966 } 2967 } 2968 2969 static int bnxt_alloc_stats(struct bnxt *bp) 2970 { 2971 u32 size, i; 2972 struct pci_dev *pdev = bp->pdev; 2973 2974 size = sizeof(struct ctx_hw_stats); 2975 2976 for (i = 0; i < bp->cp_nr_rings; i++) { 2977 struct bnxt_napi *bnapi = bp->bnapi[i]; 2978 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2979 2980 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size, 2981 &cpr->hw_stats_map, 2982 GFP_KERNEL); 2983 if (!cpr->hw_stats) 2984 return -ENOMEM; 2985 2986 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 2987 } 2988 2989 if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) { 2990 bp->hw_port_stats_size = sizeof(struct rx_port_stats) + 2991 sizeof(struct tx_port_stats) + 1024; 2992 2993 bp->hw_rx_port_stats = 2994 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size, 2995 &bp->hw_rx_port_stats_map, 2996 GFP_KERNEL); 2997 if (!bp->hw_rx_port_stats) 2998 return -ENOMEM; 2999 3000 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 3001 512; 3002 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map + 3003 sizeof(struct rx_port_stats) + 512; 3004 bp->flags |= BNXT_FLAG_PORT_STATS; 3005 } 3006 return 0; 3007 } 3008 3009 static void bnxt_clear_ring_indices(struct bnxt *bp) 3010 { 3011 int i; 3012 3013 if (!bp->bnapi) 3014 return; 3015 3016 for (i = 0; i < bp->cp_nr_rings; i++) { 3017 struct bnxt_napi *bnapi = bp->bnapi[i]; 3018 struct bnxt_cp_ring_info *cpr; 3019 struct bnxt_rx_ring_info *rxr; 3020 struct bnxt_tx_ring_info *txr; 3021 3022 if (!bnapi) 3023 continue; 3024 3025 cpr = &bnapi->cp_ring; 3026 cpr->cp_raw_cons = 0; 3027 3028 txr = bnapi->tx_ring; 3029 if (txr) { 3030 txr->tx_prod = 0; 3031 txr->tx_cons = 0; 3032 } 3033 3034 rxr = bnapi->rx_ring; 3035 if (rxr) { 3036 rxr->rx_prod = 0; 3037 rxr->rx_agg_prod = 0; 3038 rxr->rx_sw_agg_prod = 0; 3039 rxr->rx_next_cons = 0; 3040 } 3041 } 3042 } 3043 3044 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 3045 { 3046 #ifdef CONFIG_RFS_ACCEL 3047 int i; 3048 3049 /* Under rtnl_lock and all our NAPIs have been disabled. It's 3050 * safe to delete the hash table. 3051 */ 3052 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 3053 struct hlist_head *head; 3054 struct hlist_node *tmp; 3055 struct bnxt_ntuple_filter *fltr; 3056 3057 head = &bp->ntp_fltr_hash_tbl[i]; 3058 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 3059 hlist_del(&fltr->hash); 3060 kfree(fltr); 3061 } 3062 } 3063 if (irq_reinit) { 3064 kfree(bp->ntp_fltr_bmap); 3065 bp->ntp_fltr_bmap = NULL; 3066 } 3067 bp->ntp_fltr_count = 0; 3068 #endif 3069 } 3070 3071 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 3072 { 3073 #ifdef CONFIG_RFS_ACCEL 3074 int i, rc = 0; 3075 3076 if (!(bp->flags & BNXT_FLAG_RFS)) 3077 return 0; 3078 3079 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 3080 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 3081 3082 bp->ntp_fltr_count = 0; 3083 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 3084 sizeof(long), 3085 GFP_KERNEL); 3086 3087 if (!bp->ntp_fltr_bmap) 3088 rc = -ENOMEM; 3089 3090 return rc; 3091 #else 3092 return 0; 3093 #endif 3094 } 3095 3096 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 3097 { 3098 bnxt_free_vnic_attributes(bp); 3099 bnxt_free_tx_rings(bp); 3100 bnxt_free_rx_rings(bp); 3101 bnxt_free_cp_rings(bp); 3102 bnxt_free_ntp_fltrs(bp, irq_re_init); 3103 if (irq_re_init) { 3104 bnxt_free_stats(bp); 3105 bnxt_free_ring_grps(bp); 3106 bnxt_free_vnics(bp); 3107 kfree(bp->tx_ring_map); 3108 bp->tx_ring_map = NULL; 3109 kfree(bp->tx_ring); 3110 bp->tx_ring = NULL; 3111 kfree(bp->rx_ring); 3112 bp->rx_ring = NULL; 3113 kfree(bp->bnapi); 3114 bp->bnapi = NULL; 3115 } else { 3116 bnxt_clear_ring_indices(bp); 3117 } 3118 } 3119 3120 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 3121 { 3122 int i, j, rc, size, arr_size; 3123 void *bnapi; 3124 3125 if (irq_re_init) { 3126 /* Allocate bnapi mem pointer array and mem block for 3127 * all queues 3128 */ 3129 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 3130 bp->cp_nr_rings); 3131 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 3132 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 3133 if (!bnapi) 3134 return -ENOMEM; 3135 3136 bp->bnapi = bnapi; 3137 bnapi += arr_size; 3138 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 3139 bp->bnapi[i] = bnapi; 3140 bp->bnapi[i]->index = i; 3141 bp->bnapi[i]->bp = bp; 3142 } 3143 3144 bp->rx_ring = kcalloc(bp->rx_nr_rings, 3145 sizeof(struct bnxt_rx_ring_info), 3146 GFP_KERNEL); 3147 if (!bp->rx_ring) 3148 return -ENOMEM; 3149 3150 for (i = 0; i < bp->rx_nr_rings; i++) { 3151 bp->rx_ring[i].bnapi = bp->bnapi[i]; 3152 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 3153 } 3154 3155 bp->tx_ring = kcalloc(bp->tx_nr_rings, 3156 sizeof(struct bnxt_tx_ring_info), 3157 GFP_KERNEL); 3158 if (!bp->tx_ring) 3159 return -ENOMEM; 3160 3161 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 3162 GFP_KERNEL); 3163 3164 if (!bp->tx_ring_map) 3165 return -ENOMEM; 3166 3167 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 3168 j = 0; 3169 else 3170 j = bp->rx_nr_rings; 3171 3172 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 3173 bp->tx_ring[i].bnapi = bp->bnapi[j]; 3174 bp->bnapi[j]->tx_ring = &bp->tx_ring[i]; 3175 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 3176 if (i >= bp->tx_nr_rings_xdp) { 3177 bp->tx_ring[i].txq_index = i - 3178 bp->tx_nr_rings_xdp; 3179 bp->bnapi[j]->tx_int = bnxt_tx_int; 3180 } else { 3181 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 3182 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 3183 } 3184 } 3185 3186 rc = bnxt_alloc_stats(bp); 3187 if (rc) 3188 goto alloc_mem_err; 3189 3190 rc = bnxt_alloc_ntp_fltrs(bp); 3191 if (rc) 3192 goto alloc_mem_err; 3193 3194 rc = bnxt_alloc_vnics(bp); 3195 if (rc) 3196 goto alloc_mem_err; 3197 } 3198 3199 bnxt_init_ring_struct(bp); 3200 3201 rc = bnxt_alloc_rx_rings(bp); 3202 if (rc) 3203 goto alloc_mem_err; 3204 3205 rc = bnxt_alloc_tx_rings(bp); 3206 if (rc) 3207 goto alloc_mem_err; 3208 3209 rc = bnxt_alloc_cp_rings(bp); 3210 if (rc) 3211 goto alloc_mem_err; 3212 3213 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 3214 BNXT_VNIC_UCAST_FLAG; 3215 rc = bnxt_alloc_vnic_attributes(bp); 3216 if (rc) 3217 goto alloc_mem_err; 3218 return 0; 3219 3220 alloc_mem_err: 3221 bnxt_free_mem(bp, true); 3222 return rc; 3223 } 3224 3225 static void bnxt_disable_int(struct bnxt *bp) 3226 { 3227 int i; 3228 3229 if (!bp->bnapi) 3230 return; 3231 3232 for (i = 0; i < bp->cp_nr_rings; i++) { 3233 struct bnxt_napi *bnapi = bp->bnapi[i]; 3234 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3235 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3236 3237 if (ring->fw_ring_id != INVALID_HW_RING_ID) 3238 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 3239 } 3240 } 3241 3242 static void bnxt_disable_int_sync(struct bnxt *bp) 3243 { 3244 int i; 3245 3246 atomic_inc(&bp->intr_sem); 3247 3248 bnxt_disable_int(bp); 3249 for (i = 0; i < bp->cp_nr_rings; i++) 3250 synchronize_irq(bp->irq_tbl[i].vector); 3251 } 3252 3253 static void bnxt_enable_int(struct bnxt *bp) 3254 { 3255 int i; 3256 3257 atomic_set(&bp->intr_sem, 0); 3258 for (i = 0; i < bp->cp_nr_rings; i++) { 3259 struct bnxt_napi *bnapi = bp->bnapi[i]; 3260 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3261 3262 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 3263 } 3264 } 3265 3266 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 3267 u16 cmpl_ring, u16 target_id) 3268 { 3269 struct input *req = request; 3270 3271 req->req_type = cpu_to_le16(req_type); 3272 req->cmpl_ring = cpu_to_le16(cmpl_ring); 3273 req->target_id = cpu_to_le16(target_id); 3274 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 3275 } 3276 3277 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, 3278 int timeout, bool silent) 3279 { 3280 int i, intr_process, rc, tmo_count; 3281 struct input *req = msg; 3282 u32 *data = msg; 3283 __le32 *resp_len, *valid; 3284 u16 cp_ring_id, len = 0; 3285 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 3286 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; 3287 3288 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++); 3289 memset(resp, 0, PAGE_SIZE); 3290 cp_ring_id = le16_to_cpu(req->cmpl_ring); 3291 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 3292 3293 if (bp->flags & BNXT_FLAG_SHORT_CMD) { 3294 void *short_cmd_req = bp->hwrm_short_cmd_req_addr; 3295 struct hwrm_short_input short_input = {0}; 3296 3297 memcpy(short_cmd_req, req, msg_len); 3298 memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN - 3299 msg_len); 3300 3301 short_input.req_type = req->req_type; 3302 short_input.signature = 3303 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); 3304 short_input.size = cpu_to_le16(msg_len); 3305 short_input.req_addr = 3306 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr); 3307 3308 data = (u32 *)&short_input; 3309 msg_len = sizeof(short_input); 3310 3311 /* Sync memory write before updating doorbell */ 3312 wmb(); 3313 3314 max_req_len = BNXT_HWRM_SHORT_REQ_LEN; 3315 } 3316 3317 /* Write request msg to hwrm channel */ 3318 __iowrite32_copy(bp->bar0, data, msg_len / 4); 3319 3320 for (i = msg_len; i < max_req_len; i += 4) 3321 writel(0, bp->bar0 + i); 3322 3323 /* currently supports only one outstanding message */ 3324 if (intr_process) 3325 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); 3326 3327 /* Ring channel doorbell */ 3328 writel(1, bp->bar0 + 0x100); 3329 3330 if (!timeout) 3331 timeout = DFLT_HWRM_CMD_TIMEOUT; 3332 3333 i = 0; 3334 tmo_count = timeout * 40; 3335 if (intr_process) { 3336 /* Wait until hwrm response cmpl interrupt is processed */ 3337 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID && 3338 i++ < tmo_count) { 3339 usleep_range(25, 40); 3340 } 3341 3342 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) { 3343 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 3344 le16_to_cpu(req->req_type)); 3345 return -1; 3346 } 3347 } else { 3348 /* Check if response len is updated */ 3349 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET; 3350 for (i = 0; i < tmo_count; i++) { 3351 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >> 3352 HWRM_RESP_LEN_SFT; 3353 if (len) 3354 break; 3355 usleep_range(25, 40); 3356 } 3357 3358 if (i >= tmo_count) { 3359 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 3360 timeout, le16_to_cpu(req->req_type), 3361 le16_to_cpu(req->seq_id), len); 3362 return -1; 3363 } 3364 3365 /* Last word of resp contains valid bit */ 3366 valid = bp->hwrm_cmd_resp_addr + len - 4; 3367 for (i = 0; i < 5; i++) { 3368 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK) 3369 break; 3370 udelay(1); 3371 } 3372 3373 if (i >= 5) { 3374 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 3375 timeout, le16_to_cpu(req->req_type), 3376 le16_to_cpu(req->seq_id), len, *valid); 3377 return -1; 3378 } 3379 } 3380 3381 rc = le16_to_cpu(resp->error_code); 3382 if (rc && !silent) 3383 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 3384 le16_to_cpu(resp->req_type), 3385 le16_to_cpu(resp->seq_id), rc); 3386 return rc; 3387 } 3388 3389 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 3390 { 3391 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); 3392 } 3393 3394 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 3395 { 3396 int rc; 3397 3398 mutex_lock(&bp->hwrm_cmd_lock); 3399 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 3400 mutex_unlock(&bp->hwrm_cmd_lock); 3401 return rc; 3402 } 3403 3404 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 3405 int timeout) 3406 { 3407 int rc; 3408 3409 mutex_lock(&bp->hwrm_cmd_lock); 3410 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 3411 mutex_unlock(&bp->hwrm_cmd_lock); 3412 return rc; 3413 } 3414 3415 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap, 3416 int bmap_size) 3417 { 3418 struct hwrm_func_drv_rgtr_input req = {0}; 3419 DECLARE_BITMAP(async_events_bmap, 256); 3420 u32 *events = (u32 *)async_events_bmap; 3421 int i; 3422 3423 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 3424 3425 req.enables = 3426 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 3427 3428 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 3429 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) 3430 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 3431 3432 if (bmap && bmap_size) { 3433 for (i = 0; i < bmap_size; i++) { 3434 if (test_bit(i, bmap)) 3435 __set_bit(i, async_events_bmap); 3436 } 3437 } 3438 3439 for (i = 0; i < 8; i++) 3440 req.async_event_fwd[i] |= cpu_to_le32(events[i]); 3441 3442 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3443 } 3444 3445 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp) 3446 { 3447 struct hwrm_func_drv_rgtr_input req = {0}; 3448 3449 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 3450 3451 req.enables = 3452 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 3453 FUNC_DRV_RGTR_REQ_ENABLES_VER); 3454 3455 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 3456 req.ver_maj = DRV_VER_MAJ; 3457 req.ver_min = DRV_VER_MIN; 3458 req.ver_upd = DRV_VER_UPD; 3459 3460 if (BNXT_PF(bp)) { 3461 u32 data[8]; 3462 int i; 3463 3464 memset(data, 0, sizeof(data)); 3465 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 3466 u16 cmd = bnxt_vf_req_snif[i]; 3467 unsigned int bit, idx; 3468 3469 idx = cmd / 32; 3470 bit = cmd % 32; 3471 data[idx] |= 1 << bit; 3472 } 3473 3474 for (i = 0; i < 8; i++) 3475 req.vf_req_fwd[i] = cpu_to_le32(data[i]); 3476 3477 req.enables |= 3478 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 3479 } 3480 3481 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3482 } 3483 3484 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 3485 { 3486 struct hwrm_func_drv_unrgtr_input req = {0}; 3487 3488 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); 3489 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3490 } 3491 3492 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 3493 { 3494 u32 rc = 0; 3495 struct hwrm_tunnel_dst_port_free_input req = {0}; 3496 3497 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 3498 req.tunnel_type = tunnel_type; 3499 3500 switch (tunnel_type) { 3501 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 3502 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id; 3503 break; 3504 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 3505 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id; 3506 break; 3507 default: 3508 break; 3509 } 3510 3511 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3512 if (rc) 3513 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 3514 rc); 3515 return rc; 3516 } 3517 3518 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 3519 u8 tunnel_type) 3520 { 3521 u32 rc = 0; 3522 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 3523 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3524 3525 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 3526 3527 req.tunnel_type = tunnel_type; 3528 req.tunnel_dst_port_val = port; 3529 3530 mutex_lock(&bp->hwrm_cmd_lock); 3531 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3532 if (rc) { 3533 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 3534 rc); 3535 goto err_out; 3536 } 3537 3538 switch (tunnel_type) { 3539 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 3540 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id; 3541 break; 3542 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 3543 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id; 3544 break; 3545 default: 3546 break; 3547 } 3548 3549 err_out: 3550 mutex_unlock(&bp->hwrm_cmd_lock); 3551 return rc; 3552 } 3553 3554 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 3555 { 3556 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 3557 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3558 3559 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 3560 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 3561 3562 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 3563 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 3564 req.mask = cpu_to_le32(vnic->rx_mask); 3565 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3566 } 3567 3568 #ifdef CONFIG_RFS_ACCEL 3569 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 3570 struct bnxt_ntuple_filter *fltr) 3571 { 3572 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 3573 3574 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 3575 req.ntuple_filter_id = fltr->filter_id; 3576 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3577 } 3578 3579 #define BNXT_NTP_FLTR_FLAGS \ 3580 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 3581 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 3582 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 3583 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 3584 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 3585 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 3586 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 3587 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 3588 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 3589 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 3590 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 3591 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 3592 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 3593 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 3594 3595 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 3596 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 3597 3598 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 3599 struct bnxt_ntuple_filter *fltr) 3600 { 3601 int rc = 0; 3602 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 3603 struct hwrm_cfa_ntuple_filter_alloc_output *resp = 3604 bp->hwrm_cmd_resp_addr; 3605 struct flow_keys *keys = &fltr->fkeys; 3606 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1]; 3607 3608 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 3609 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 3610 3611 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 3612 3613 req.ethertype = htons(ETH_P_IP); 3614 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 3615 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 3616 req.ip_protocol = keys->basic.ip_proto; 3617 3618 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 3619 int i; 3620 3621 req.ethertype = htons(ETH_P_IPV6); 3622 req.ip_addr_type = 3623 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 3624 *(struct in6_addr *)&req.src_ipaddr[0] = 3625 keys->addrs.v6addrs.src; 3626 *(struct in6_addr *)&req.dst_ipaddr[0] = 3627 keys->addrs.v6addrs.dst; 3628 for (i = 0; i < 4; i++) { 3629 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 3630 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 3631 } 3632 } else { 3633 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 3634 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 3635 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 3636 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 3637 } 3638 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 3639 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 3640 req.tunnel_type = 3641 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 3642 } 3643 3644 req.src_port = keys->ports.src; 3645 req.src_port_mask = cpu_to_be16(0xffff); 3646 req.dst_port = keys->ports.dst; 3647 req.dst_port_mask = cpu_to_be16(0xffff); 3648 3649 req.dst_id = cpu_to_le16(vnic->fw_vnic_id); 3650 mutex_lock(&bp->hwrm_cmd_lock); 3651 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3652 if (!rc) 3653 fltr->filter_id = resp->ntuple_filter_id; 3654 mutex_unlock(&bp->hwrm_cmd_lock); 3655 return rc; 3656 } 3657 #endif 3658 3659 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 3660 u8 *mac_addr) 3661 { 3662 u32 rc = 0; 3663 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 3664 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3665 3666 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 3667 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 3668 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 3669 req.flags |= 3670 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 3671 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 3672 req.enables = 3673 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 3674 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 3675 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 3676 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 3677 req.l2_addr_mask[0] = 0xff; 3678 req.l2_addr_mask[1] = 0xff; 3679 req.l2_addr_mask[2] = 0xff; 3680 req.l2_addr_mask[3] = 0xff; 3681 req.l2_addr_mask[4] = 0xff; 3682 req.l2_addr_mask[5] = 0xff; 3683 3684 mutex_lock(&bp->hwrm_cmd_lock); 3685 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3686 if (!rc) 3687 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 3688 resp->l2_filter_id; 3689 mutex_unlock(&bp->hwrm_cmd_lock); 3690 return rc; 3691 } 3692 3693 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 3694 { 3695 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 3696 int rc = 0; 3697 3698 /* Any associated ntuple filters will also be cleared by firmware. */ 3699 mutex_lock(&bp->hwrm_cmd_lock); 3700 for (i = 0; i < num_of_vnics; i++) { 3701 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3702 3703 for (j = 0; j < vnic->uc_filter_count; j++) { 3704 struct hwrm_cfa_l2_filter_free_input req = {0}; 3705 3706 bnxt_hwrm_cmd_hdr_init(bp, &req, 3707 HWRM_CFA_L2_FILTER_FREE, -1, -1); 3708 3709 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 3710 3711 rc = _hwrm_send_message(bp, &req, sizeof(req), 3712 HWRM_CMD_TIMEOUT); 3713 } 3714 vnic->uc_filter_count = 0; 3715 } 3716 mutex_unlock(&bp->hwrm_cmd_lock); 3717 3718 return rc; 3719 } 3720 3721 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 3722 { 3723 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3724 struct hwrm_vnic_tpa_cfg_input req = {0}; 3725 3726 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 3727 3728 if (tpa_flags) { 3729 u16 mss = bp->dev->mtu - 40; 3730 u32 nsegs, n, segs = 0, flags; 3731 3732 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 3733 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 3734 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 3735 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 3736 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 3737 if (tpa_flags & BNXT_FLAG_GRO) 3738 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 3739 3740 req.flags = cpu_to_le32(flags); 3741 3742 req.enables = 3743 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 3744 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 3745 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 3746 3747 /* Number of segs are log2 units, and first packet is not 3748 * included as part of this units. 3749 */ 3750 if (mss <= BNXT_RX_PAGE_SIZE) { 3751 n = BNXT_RX_PAGE_SIZE / mss; 3752 nsegs = (MAX_SKB_FRAGS - 1) * n; 3753 } else { 3754 n = mss / BNXT_RX_PAGE_SIZE; 3755 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 3756 n++; 3757 nsegs = (MAX_SKB_FRAGS - n) / n; 3758 } 3759 3760 segs = ilog2(nsegs); 3761 req.max_agg_segs = cpu_to_le16(segs); 3762 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX); 3763 3764 req.min_agg_len = cpu_to_le32(512); 3765 } 3766 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 3767 3768 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3769 } 3770 3771 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 3772 { 3773 u32 i, j, max_rings; 3774 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3775 struct hwrm_vnic_rss_cfg_input req = {0}; 3776 3777 if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 3778 return 0; 3779 3780 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 3781 if (set_rss) { 3782 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 3783 if (vnic->flags & BNXT_VNIC_RSS_FLAG) { 3784 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3785 max_rings = bp->rx_nr_rings - 1; 3786 else 3787 max_rings = bp->rx_nr_rings; 3788 } else { 3789 max_rings = 1; 3790 } 3791 3792 /* Fill the RSS indirection table with ring group ids */ 3793 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) { 3794 if (j == max_rings) 3795 j = 0; 3796 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 3797 } 3798 3799 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 3800 req.hash_key_tbl_addr = 3801 cpu_to_le64(vnic->rss_hash_key_dma_addr); 3802 } 3803 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 3804 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3805 } 3806 3807 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 3808 { 3809 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3810 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 3811 3812 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 3813 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 3814 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 3815 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 3816 req.enables = 3817 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 3818 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 3819 /* thresholds not implemented in firmware yet */ 3820 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 3821 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 3822 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 3823 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3824 } 3825 3826 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 3827 u16 ctx_idx) 3828 { 3829 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 3830 3831 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 3832 req.rss_cos_lb_ctx_id = 3833 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 3834 3835 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3836 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 3837 } 3838 3839 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 3840 { 3841 int i, j; 3842 3843 for (i = 0; i < bp->nr_vnics; i++) { 3844 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3845 3846 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 3847 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 3848 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 3849 } 3850 } 3851 bp->rsscos_nr_ctxs = 0; 3852 } 3853 3854 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 3855 { 3856 int rc; 3857 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 3858 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 3859 bp->hwrm_cmd_resp_addr; 3860 3861 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 3862 -1); 3863 3864 mutex_lock(&bp->hwrm_cmd_lock); 3865 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3866 if (!rc) 3867 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 3868 le16_to_cpu(resp->rss_cos_lb_ctx_id); 3869 mutex_unlock(&bp->hwrm_cmd_lock); 3870 3871 return rc; 3872 } 3873 3874 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 3875 { 3876 unsigned int ring = 0, grp_idx; 3877 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3878 struct hwrm_vnic_cfg_input req = {0}; 3879 u16 def_vlan = 0; 3880 3881 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 3882 3883 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 3884 /* Only RSS support for now TBD: COS & LB */ 3885 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 3886 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 3887 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 3888 VNIC_CFG_REQ_ENABLES_MRU); 3889 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 3890 req.rss_rule = 3891 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 3892 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 3893 VNIC_CFG_REQ_ENABLES_MRU); 3894 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 3895 } else { 3896 req.rss_rule = cpu_to_le16(0xffff); 3897 } 3898 3899 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 3900 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 3901 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 3902 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 3903 } else { 3904 req.cos_rule = cpu_to_le16(0xffff); 3905 } 3906 3907 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3908 ring = 0; 3909 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 3910 ring = vnic_id - 1; 3911 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 3912 ring = bp->rx_nr_rings - 1; 3913 3914 grp_idx = bp->rx_ring[ring].bnapi->index; 3915 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 3916 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 3917 3918 req.lb_rule = cpu_to_le16(0xffff); 3919 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + 3920 VLAN_HLEN); 3921 3922 #ifdef CONFIG_BNXT_SRIOV 3923 if (BNXT_VF(bp)) 3924 def_vlan = bp->vf.vlan; 3925 #endif 3926 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 3927 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 3928 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 3929 req.flags |= 3930 cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE); 3931 3932 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3933 } 3934 3935 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 3936 { 3937 u32 rc = 0; 3938 3939 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 3940 struct hwrm_vnic_free_input req = {0}; 3941 3942 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 3943 req.vnic_id = 3944 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 3945 3946 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3947 if (rc) 3948 return rc; 3949 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 3950 } 3951 return rc; 3952 } 3953 3954 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 3955 { 3956 u16 i; 3957 3958 for (i = 0; i < bp->nr_vnics; i++) 3959 bnxt_hwrm_vnic_free_one(bp, i); 3960 } 3961 3962 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 3963 unsigned int start_rx_ring_idx, 3964 unsigned int nr_rings) 3965 { 3966 int rc = 0; 3967 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 3968 struct hwrm_vnic_alloc_input req = {0}; 3969 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3970 3971 /* map ring groups to this vnic */ 3972 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 3973 grp_idx = bp->rx_ring[i].bnapi->index; 3974 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 3975 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 3976 j, nr_rings); 3977 break; 3978 } 3979 bp->vnic_info[vnic_id].fw_grp_ids[j] = 3980 bp->grp_info[grp_idx].fw_grp_id; 3981 } 3982 3983 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID; 3984 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID; 3985 if (vnic_id == 0) 3986 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 3987 3988 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 3989 3990 mutex_lock(&bp->hwrm_cmd_lock); 3991 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3992 if (!rc) 3993 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id); 3994 mutex_unlock(&bp->hwrm_cmd_lock); 3995 return rc; 3996 } 3997 3998 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 3999 { 4000 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 4001 struct hwrm_vnic_qcaps_input req = {0}; 4002 int rc; 4003 4004 if (bp->hwrm_spec_code < 0x10600) 4005 return 0; 4006 4007 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1); 4008 mutex_lock(&bp->hwrm_cmd_lock); 4009 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4010 if (!rc) { 4011 if (resp->flags & 4012 cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 4013 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 4014 } 4015 mutex_unlock(&bp->hwrm_cmd_lock); 4016 return rc; 4017 } 4018 4019 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 4020 { 4021 u16 i; 4022 u32 rc = 0; 4023 4024 mutex_lock(&bp->hwrm_cmd_lock); 4025 for (i = 0; i < bp->rx_nr_rings; i++) { 4026 struct hwrm_ring_grp_alloc_input req = {0}; 4027 struct hwrm_ring_grp_alloc_output *resp = 4028 bp->hwrm_cmd_resp_addr; 4029 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 4030 4031 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 4032 4033 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 4034 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 4035 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 4036 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 4037 4038 rc = _hwrm_send_message(bp, &req, sizeof(req), 4039 HWRM_CMD_TIMEOUT); 4040 if (rc) 4041 break; 4042 4043 bp->grp_info[grp_idx].fw_grp_id = 4044 le32_to_cpu(resp->ring_group_id); 4045 } 4046 mutex_unlock(&bp->hwrm_cmd_lock); 4047 return rc; 4048 } 4049 4050 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp) 4051 { 4052 u16 i; 4053 u32 rc = 0; 4054 struct hwrm_ring_grp_free_input req = {0}; 4055 4056 if (!bp->grp_info) 4057 return 0; 4058 4059 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 4060 4061 mutex_lock(&bp->hwrm_cmd_lock); 4062 for (i = 0; i < bp->cp_nr_rings; i++) { 4063 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 4064 continue; 4065 req.ring_group_id = 4066 cpu_to_le32(bp->grp_info[i].fw_grp_id); 4067 4068 rc = _hwrm_send_message(bp, &req, sizeof(req), 4069 HWRM_CMD_TIMEOUT); 4070 if (rc) 4071 break; 4072 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4073 } 4074 mutex_unlock(&bp->hwrm_cmd_lock); 4075 return rc; 4076 } 4077 4078 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 4079 struct bnxt_ring_struct *ring, 4080 u32 ring_type, u32 map_index, 4081 u32 stats_ctx_id) 4082 { 4083 int rc = 0, err = 0; 4084 struct hwrm_ring_alloc_input req = {0}; 4085 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4086 u16 ring_id; 4087 4088 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 4089 4090 req.enables = 0; 4091 if (ring->nr_pages > 1) { 4092 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map); 4093 /* Page size is in log2 units */ 4094 req.page_size = BNXT_PAGE_SHIFT; 4095 req.page_tbl_depth = 1; 4096 } else { 4097 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]); 4098 } 4099 req.fbo = 0; 4100 /* Association of ring index with doorbell index and MSIX number */ 4101 req.logical_id = cpu_to_le16(map_index); 4102 4103 switch (ring_type) { 4104 case HWRM_RING_ALLOC_TX: 4105 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 4106 /* Association of transmit ring with completion ring */ 4107 req.cmpl_ring_id = 4108 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id); 4109 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 4110 req.stat_ctx_id = cpu_to_le32(stats_ctx_id); 4111 req.queue_id = cpu_to_le16(ring->queue_id); 4112 break; 4113 case HWRM_RING_ALLOC_RX: 4114 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 4115 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 4116 break; 4117 case HWRM_RING_ALLOC_AGG: 4118 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 4119 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 4120 break; 4121 case HWRM_RING_ALLOC_CMPL: 4122 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 4123 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 4124 if (bp->flags & BNXT_FLAG_USING_MSIX) 4125 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 4126 break; 4127 default: 4128 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 4129 ring_type); 4130 return -1; 4131 } 4132 4133 mutex_lock(&bp->hwrm_cmd_lock); 4134 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4135 err = le16_to_cpu(resp->error_code); 4136 ring_id = le16_to_cpu(resp->ring_id); 4137 mutex_unlock(&bp->hwrm_cmd_lock); 4138 4139 if (rc || err) { 4140 switch (ring_type) { 4141 case RING_FREE_REQ_RING_TYPE_L2_CMPL: 4142 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n", 4143 rc, err); 4144 return -1; 4145 4146 case RING_FREE_REQ_RING_TYPE_RX: 4147 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n", 4148 rc, err); 4149 return -1; 4150 4151 case RING_FREE_REQ_RING_TYPE_TX: 4152 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n", 4153 rc, err); 4154 return -1; 4155 4156 default: 4157 netdev_err(bp->dev, "Invalid ring\n"); 4158 return -1; 4159 } 4160 } 4161 ring->fw_ring_id = ring_id; 4162 return rc; 4163 } 4164 4165 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 4166 { 4167 int rc; 4168 4169 if (BNXT_PF(bp)) { 4170 struct hwrm_func_cfg_input req = {0}; 4171 4172 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 4173 req.fid = cpu_to_le16(0xffff); 4174 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 4175 req.async_event_cr = cpu_to_le16(idx); 4176 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4177 } else { 4178 struct hwrm_func_vf_cfg_input req = {0}; 4179 4180 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 4181 req.enables = 4182 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 4183 req.async_event_cr = cpu_to_le16(idx); 4184 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4185 } 4186 return rc; 4187 } 4188 4189 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 4190 { 4191 int i, rc = 0; 4192 4193 for (i = 0; i < bp->cp_nr_rings; i++) { 4194 struct bnxt_napi *bnapi = bp->bnapi[i]; 4195 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4196 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4197 4198 cpr->cp_doorbell = bp->bar1 + i * 0x80; 4199 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i, 4200 INVALID_STATS_CTX_ID); 4201 if (rc) 4202 goto err_out; 4203 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 4204 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 4205 4206 if (!i) { 4207 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 4208 if (rc) 4209 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 4210 } 4211 } 4212 4213 for (i = 0; i < bp->tx_nr_rings; i++) { 4214 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4215 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4216 u32 map_idx = txr->bnapi->index; 4217 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx; 4218 4219 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX, 4220 map_idx, fw_stats_ctx); 4221 if (rc) 4222 goto err_out; 4223 txr->tx_doorbell = bp->bar1 + map_idx * 0x80; 4224 } 4225 4226 for (i = 0; i < bp->rx_nr_rings; i++) { 4227 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4228 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 4229 u32 map_idx = rxr->bnapi->index; 4230 4231 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX, 4232 map_idx, INVALID_STATS_CTX_ID); 4233 if (rc) 4234 goto err_out; 4235 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80; 4236 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 4237 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 4238 } 4239 4240 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 4241 for (i = 0; i < bp->rx_nr_rings; i++) { 4242 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4243 struct bnxt_ring_struct *ring = 4244 &rxr->rx_agg_ring_struct; 4245 u32 grp_idx = rxr->bnapi->index; 4246 u32 map_idx = grp_idx + bp->rx_nr_rings; 4247 4248 rc = hwrm_ring_alloc_send_msg(bp, ring, 4249 HWRM_RING_ALLOC_AGG, 4250 map_idx, 4251 INVALID_STATS_CTX_ID); 4252 if (rc) 4253 goto err_out; 4254 4255 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80; 4256 writel(DB_KEY_RX | rxr->rx_agg_prod, 4257 rxr->rx_agg_doorbell); 4258 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 4259 } 4260 } 4261 err_out: 4262 return rc; 4263 } 4264 4265 static int hwrm_ring_free_send_msg(struct bnxt *bp, 4266 struct bnxt_ring_struct *ring, 4267 u32 ring_type, int cmpl_ring_id) 4268 { 4269 int rc; 4270 struct hwrm_ring_free_input req = {0}; 4271 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 4272 u16 error_code; 4273 4274 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); 4275 req.ring_type = ring_type; 4276 req.ring_id = cpu_to_le16(ring->fw_ring_id); 4277 4278 mutex_lock(&bp->hwrm_cmd_lock); 4279 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4280 error_code = le16_to_cpu(resp->error_code); 4281 mutex_unlock(&bp->hwrm_cmd_lock); 4282 4283 if (rc || error_code) { 4284 switch (ring_type) { 4285 case RING_FREE_REQ_RING_TYPE_L2_CMPL: 4286 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n", 4287 rc); 4288 return rc; 4289 case RING_FREE_REQ_RING_TYPE_RX: 4290 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n", 4291 rc); 4292 return rc; 4293 case RING_FREE_REQ_RING_TYPE_TX: 4294 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n", 4295 rc); 4296 return rc; 4297 default: 4298 netdev_err(bp->dev, "Invalid ring\n"); 4299 return -1; 4300 } 4301 } 4302 return 0; 4303 } 4304 4305 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 4306 { 4307 int i; 4308 4309 if (!bp->bnapi) 4310 return; 4311 4312 for (i = 0; i < bp->tx_nr_rings; i++) { 4313 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4314 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4315 u32 grp_idx = txr->bnapi->index; 4316 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; 4317 4318 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 4319 hwrm_ring_free_send_msg(bp, ring, 4320 RING_FREE_REQ_RING_TYPE_TX, 4321 close_path ? cmpl_ring_id : 4322 INVALID_HW_RING_ID); 4323 ring->fw_ring_id = INVALID_HW_RING_ID; 4324 } 4325 } 4326 4327 for (i = 0; i < bp->rx_nr_rings; i++) { 4328 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4329 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 4330 u32 grp_idx = rxr->bnapi->index; 4331 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; 4332 4333 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 4334 hwrm_ring_free_send_msg(bp, ring, 4335 RING_FREE_REQ_RING_TYPE_RX, 4336 close_path ? cmpl_ring_id : 4337 INVALID_HW_RING_ID); 4338 ring->fw_ring_id = INVALID_HW_RING_ID; 4339 bp->grp_info[grp_idx].rx_fw_ring_id = 4340 INVALID_HW_RING_ID; 4341 } 4342 } 4343 4344 for (i = 0; i < bp->rx_nr_rings; i++) { 4345 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4346 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 4347 u32 grp_idx = rxr->bnapi->index; 4348 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id; 4349 4350 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 4351 hwrm_ring_free_send_msg(bp, ring, 4352 RING_FREE_REQ_RING_TYPE_RX, 4353 close_path ? cmpl_ring_id : 4354 INVALID_HW_RING_ID); 4355 ring->fw_ring_id = INVALID_HW_RING_ID; 4356 bp->grp_info[grp_idx].agg_fw_ring_id = 4357 INVALID_HW_RING_ID; 4358 } 4359 } 4360 4361 /* The completion rings are about to be freed. After that the 4362 * IRQ doorbell will not work anymore. So we need to disable 4363 * IRQ here. 4364 */ 4365 bnxt_disable_int_sync(bp); 4366 4367 for (i = 0; i < bp->cp_nr_rings; i++) { 4368 struct bnxt_napi *bnapi = bp->bnapi[i]; 4369 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4370 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4371 4372 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 4373 hwrm_ring_free_send_msg(bp, ring, 4374 RING_FREE_REQ_RING_TYPE_L2_CMPL, 4375 INVALID_HW_RING_ID); 4376 ring->fw_ring_id = INVALID_HW_RING_ID; 4377 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4378 } 4379 } 4380 } 4381 4382 /* Caller must hold bp->hwrm_cmd_lock */ 4383 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 4384 { 4385 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 4386 struct hwrm_func_qcfg_input req = {0}; 4387 int rc; 4388 4389 if (bp->hwrm_spec_code < 0x10601) 4390 return 0; 4391 4392 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 4393 req.fid = cpu_to_le16(fid); 4394 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4395 if (!rc) 4396 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 4397 4398 return rc; 4399 } 4400 4401 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings) 4402 { 4403 struct hwrm_func_cfg_input req = {0}; 4404 int rc; 4405 4406 if (bp->hwrm_spec_code < 0x10601) 4407 return 0; 4408 4409 if (BNXT_VF(bp)) 4410 return 0; 4411 4412 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 4413 req.fid = cpu_to_le16(0xffff); 4414 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS); 4415 req.num_tx_rings = cpu_to_le16(*tx_rings); 4416 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4417 if (rc) 4418 return rc; 4419 4420 mutex_lock(&bp->hwrm_cmd_lock); 4421 rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings); 4422 mutex_unlock(&bp->hwrm_cmd_lock); 4423 return rc; 4424 } 4425 4426 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs, 4427 u32 buf_tmrs, u16 flags, 4428 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 4429 { 4430 req->flags = cpu_to_le16(flags); 4431 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs); 4432 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16); 4433 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs); 4434 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16); 4435 /* Minimum time between 2 interrupts set to buf_tmr x 2 */ 4436 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2); 4437 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4); 4438 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4); 4439 } 4440 4441 int bnxt_hwrm_set_coal(struct bnxt *bp) 4442 { 4443 int i, rc = 0; 4444 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, 4445 req_tx = {0}, *req; 4446 u16 max_buf, max_buf_irq; 4447 u16 buf_tmr, buf_tmr_irq; 4448 u32 flags; 4449 4450 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 4451 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 4452 bnxt_hwrm_cmd_hdr_init(bp, &req_tx, 4453 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 4454 4455 /* Each rx completion (2 records) should be DMAed immediately. 4456 * DMA 1/4 of the completion buffers at a time. 4457 */ 4458 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2); 4459 /* max_buf must not be zero */ 4460 max_buf = clamp_t(u16, max_buf, 1, 63); 4461 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63); 4462 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks); 4463 /* buf timer set to 1/4 of interrupt timer */ 4464 buf_tmr = max_t(u16, buf_tmr / 4, 1); 4465 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq); 4466 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1); 4467 4468 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 4469 4470 /* RING_IDLE generates more IRQs for lower latency. Enable it only 4471 * if coal_ticks is less than 25 us. 4472 */ 4473 if (bp->rx_coal_ticks < 25) 4474 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 4475 4476 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf, 4477 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx); 4478 4479 /* max_buf must not be zero */ 4480 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63); 4481 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63); 4482 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks); 4483 /* buf timer set to 1/4 of interrupt timer */ 4484 buf_tmr = max_t(u16, buf_tmr / 4, 1); 4485 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq); 4486 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1); 4487 4488 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 4489 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf, 4490 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx); 4491 4492 mutex_lock(&bp->hwrm_cmd_lock); 4493 for (i = 0; i < bp->cp_nr_rings; i++) { 4494 struct bnxt_napi *bnapi = bp->bnapi[i]; 4495 4496 req = &req_rx; 4497 if (!bnapi->rx_ring) 4498 req = &req_tx; 4499 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id); 4500 4501 rc = _hwrm_send_message(bp, req, sizeof(*req), 4502 HWRM_CMD_TIMEOUT); 4503 if (rc) 4504 break; 4505 } 4506 mutex_unlock(&bp->hwrm_cmd_lock); 4507 return rc; 4508 } 4509 4510 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 4511 { 4512 int rc = 0, i; 4513 struct hwrm_stat_ctx_free_input req = {0}; 4514 4515 if (!bp->bnapi) 4516 return 0; 4517 4518 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4519 return 0; 4520 4521 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 4522 4523 mutex_lock(&bp->hwrm_cmd_lock); 4524 for (i = 0; i < bp->cp_nr_rings; i++) { 4525 struct bnxt_napi *bnapi = bp->bnapi[i]; 4526 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4527 4528 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 4529 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 4530 4531 rc = _hwrm_send_message(bp, &req, sizeof(req), 4532 HWRM_CMD_TIMEOUT); 4533 if (rc) 4534 break; 4535 4536 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4537 } 4538 } 4539 mutex_unlock(&bp->hwrm_cmd_lock); 4540 return rc; 4541 } 4542 4543 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 4544 { 4545 int rc = 0, i; 4546 struct hwrm_stat_ctx_alloc_input req = {0}; 4547 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4548 4549 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4550 return 0; 4551 4552 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 4553 4554 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 4555 4556 mutex_lock(&bp->hwrm_cmd_lock); 4557 for (i = 0; i < bp->cp_nr_rings; i++) { 4558 struct bnxt_napi *bnapi = bp->bnapi[i]; 4559 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4560 4561 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map); 4562 4563 rc = _hwrm_send_message(bp, &req, sizeof(req), 4564 HWRM_CMD_TIMEOUT); 4565 if (rc) 4566 break; 4567 4568 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 4569 4570 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 4571 } 4572 mutex_unlock(&bp->hwrm_cmd_lock); 4573 return rc; 4574 } 4575 4576 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 4577 { 4578 struct hwrm_func_qcfg_input req = {0}; 4579 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 4580 int rc; 4581 4582 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 4583 req.fid = cpu_to_le16(0xffff); 4584 mutex_lock(&bp->hwrm_cmd_lock); 4585 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4586 if (rc) 4587 goto func_qcfg_exit; 4588 4589 #ifdef CONFIG_BNXT_SRIOV 4590 if (BNXT_VF(bp)) { 4591 struct bnxt_vf_info *vf = &bp->vf; 4592 4593 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 4594 } 4595 #endif 4596 if (BNXT_PF(bp)) { 4597 u16 flags = le16_to_cpu(resp->flags); 4598 4599 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 4600 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) 4601 bp->flags |= BNXT_FLAG_FW_LLDP_AGENT; 4602 if (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST) 4603 bp->flags |= BNXT_FLAG_MULTI_HOST; 4604 } 4605 4606 switch (resp->port_partition_type) { 4607 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 4608 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 4609 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 4610 bp->port_partition_type = resp->port_partition_type; 4611 break; 4612 } 4613 4614 func_qcfg_exit: 4615 mutex_unlock(&bp->hwrm_cmd_lock); 4616 return rc; 4617 } 4618 4619 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 4620 { 4621 int rc = 0; 4622 struct hwrm_func_qcaps_input req = {0}; 4623 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 4624 4625 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 4626 req.fid = cpu_to_le16(0xffff); 4627 4628 mutex_lock(&bp->hwrm_cmd_lock); 4629 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4630 if (rc) 4631 goto hwrm_func_qcaps_exit; 4632 4633 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)) 4634 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 4635 if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)) 4636 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 4637 4638 bp->tx_push_thresh = 0; 4639 if (resp->flags & 4640 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)) 4641 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 4642 4643 if (BNXT_PF(bp)) { 4644 struct bnxt_pf_info *pf = &bp->pf; 4645 4646 pf->fw_fid = le16_to_cpu(resp->fid); 4647 pf->port_id = le16_to_cpu(resp->port_id); 4648 bp->dev->dev_port = pf->port_id; 4649 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 4650 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN); 4651 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 4652 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 4653 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 4654 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 4655 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 4656 if (!pf->max_hw_ring_grps) 4657 pf->max_hw_ring_grps = pf->max_tx_rings; 4658 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 4659 pf->max_vnics = le16_to_cpu(resp->max_vnics); 4660 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 4661 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 4662 pf->max_vfs = le16_to_cpu(resp->max_vfs); 4663 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 4664 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 4665 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 4666 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 4667 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 4668 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 4669 if (resp->flags & 4670 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)) 4671 bp->flags |= BNXT_FLAG_WOL_CAP; 4672 } else { 4673 #ifdef CONFIG_BNXT_SRIOV 4674 struct bnxt_vf_info *vf = &bp->vf; 4675 4676 vf->fw_fid = le16_to_cpu(resp->fid); 4677 4678 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 4679 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 4680 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 4681 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 4682 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 4683 if (!vf->max_hw_ring_grps) 4684 vf->max_hw_ring_grps = vf->max_tx_rings; 4685 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 4686 vf->max_vnics = le16_to_cpu(resp->max_vnics); 4687 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 4688 4689 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 4690 mutex_unlock(&bp->hwrm_cmd_lock); 4691 4692 if (is_valid_ether_addr(vf->mac_addr)) { 4693 /* overwrite netdev dev_adr with admin VF MAC */ 4694 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 4695 } else { 4696 eth_hw_addr_random(bp->dev); 4697 rc = bnxt_approve_mac(bp, bp->dev->dev_addr); 4698 } 4699 return rc; 4700 #endif 4701 } 4702 4703 hwrm_func_qcaps_exit: 4704 mutex_unlock(&bp->hwrm_cmd_lock); 4705 return rc; 4706 } 4707 4708 static int bnxt_hwrm_func_reset(struct bnxt *bp) 4709 { 4710 struct hwrm_func_reset_input req = {0}; 4711 4712 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 4713 req.enables = 0; 4714 4715 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 4716 } 4717 4718 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 4719 { 4720 int rc = 0; 4721 struct hwrm_queue_qportcfg_input req = {0}; 4722 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 4723 u8 i, *qptr; 4724 4725 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 4726 4727 mutex_lock(&bp->hwrm_cmd_lock); 4728 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4729 if (rc) 4730 goto qportcfg_exit; 4731 4732 if (!resp->max_configurable_queues) { 4733 rc = -EINVAL; 4734 goto qportcfg_exit; 4735 } 4736 bp->max_tc = resp->max_configurable_queues; 4737 bp->max_lltc = resp->max_configurable_lossless_queues; 4738 if (bp->max_tc > BNXT_MAX_QUEUE) 4739 bp->max_tc = BNXT_MAX_QUEUE; 4740 4741 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 4742 bp->max_tc = 1; 4743 4744 if (bp->max_lltc > bp->max_tc) 4745 bp->max_lltc = bp->max_tc; 4746 4747 qptr = &resp->queue_id0; 4748 for (i = 0; i < bp->max_tc; i++) { 4749 bp->q_info[i].queue_id = *qptr++; 4750 bp->q_info[i].queue_profile = *qptr++; 4751 } 4752 4753 qportcfg_exit: 4754 mutex_unlock(&bp->hwrm_cmd_lock); 4755 return rc; 4756 } 4757 4758 static int bnxt_hwrm_ver_get(struct bnxt *bp) 4759 { 4760 int rc; 4761 struct hwrm_ver_get_input req = {0}; 4762 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 4763 u32 dev_caps_cfg; 4764 4765 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 4766 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 4767 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 4768 req.hwrm_intf_min = HWRM_VERSION_MINOR; 4769 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 4770 mutex_lock(&bp->hwrm_cmd_lock); 4771 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4772 if (rc) 4773 goto hwrm_ver_get_exit; 4774 4775 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 4776 4777 bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 | 4778 resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd; 4779 if (resp->hwrm_intf_maj < 1) { 4780 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 4781 resp->hwrm_intf_maj, resp->hwrm_intf_min, 4782 resp->hwrm_intf_upd); 4783 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 4784 } 4785 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d", 4786 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld, 4787 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd); 4788 4789 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 4790 if (!bp->hwrm_cmd_timeout) 4791 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 4792 4793 if (resp->hwrm_intf_maj >= 1) 4794 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 4795 4796 bp->chip_num = le16_to_cpu(resp->chip_num); 4797 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 4798 !resp->chip_metal) 4799 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 4800 4801 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 4802 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 4803 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 4804 bp->flags |= BNXT_FLAG_SHORT_CMD; 4805 4806 hwrm_ver_get_exit: 4807 mutex_unlock(&bp->hwrm_cmd_lock); 4808 return rc; 4809 } 4810 4811 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 4812 { 4813 #if IS_ENABLED(CONFIG_RTC_LIB) 4814 struct hwrm_fw_set_time_input req = {0}; 4815 struct rtc_time tm; 4816 struct timeval tv; 4817 4818 if (bp->hwrm_spec_code < 0x10400) 4819 return -EOPNOTSUPP; 4820 4821 do_gettimeofday(&tv); 4822 rtc_time_to_tm(tv.tv_sec, &tm); 4823 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1); 4824 req.year = cpu_to_le16(1900 + tm.tm_year); 4825 req.month = 1 + tm.tm_mon; 4826 req.day = tm.tm_mday; 4827 req.hour = tm.tm_hour; 4828 req.minute = tm.tm_min; 4829 req.second = tm.tm_sec; 4830 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4831 #else 4832 return -EOPNOTSUPP; 4833 #endif 4834 } 4835 4836 static int bnxt_hwrm_port_qstats(struct bnxt *bp) 4837 { 4838 int rc; 4839 struct bnxt_pf_info *pf = &bp->pf; 4840 struct hwrm_port_qstats_input req = {0}; 4841 4842 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 4843 return 0; 4844 4845 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); 4846 req.port_id = cpu_to_le16(pf->port_id); 4847 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map); 4848 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map); 4849 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4850 return rc; 4851 } 4852 4853 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 4854 { 4855 if (bp->vxlan_port_cnt) { 4856 bnxt_hwrm_tunnel_dst_port_free( 4857 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 4858 } 4859 bp->vxlan_port_cnt = 0; 4860 if (bp->nge_port_cnt) { 4861 bnxt_hwrm_tunnel_dst_port_free( 4862 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 4863 } 4864 bp->nge_port_cnt = 0; 4865 } 4866 4867 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 4868 { 4869 int rc, i; 4870 u32 tpa_flags = 0; 4871 4872 if (set_tpa) 4873 tpa_flags = bp->flags & BNXT_FLAG_TPA; 4874 for (i = 0; i < bp->nr_vnics; i++) { 4875 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 4876 if (rc) { 4877 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 4878 i, rc); 4879 return rc; 4880 } 4881 } 4882 return 0; 4883 } 4884 4885 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 4886 { 4887 int i; 4888 4889 for (i = 0; i < bp->nr_vnics; i++) 4890 bnxt_hwrm_vnic_set_rss(bp, i, false); 4891 } 4892 4893 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 4894 bool irq_re_init) 4895 { 4896 if (bp->vnic_info) { 4897 bnxt_hwrm_clear_vnic_filter(bp); 4898 /* clear all RSS setting before free vnic ctx */ 4899 bnxt_hwrm_clear_vnic_rss(bp); 4900 bnxt_hwrm_vnic_ctx_free(bp); 4901 /* before free the vnic, undo the vnic tpa settings */ 4902 if (bp->flags & BNXT_FLAG_TPA) 4903 bnxt_set_tpa(bp, false); 4904 bnxt_hwrm_vnic_free(bp); 4905 } 4906 bnxt_hwrm_ring_free(bp, close_path); 4907 bnxt_hwrm_ring_grp_free(bp); 4908 if (irq_re_init) { 4909 bnxt_hwrm_stat_ctx_free(bp); 4910 bnxt_hwrm_free_tunnel_ports(bp); 4911 } 4912 } 4913 4914 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 4915 { 4916 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4917 int rc; 4918 4919 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 4920 goto skip_rss_ctx; 4921 4922 /* allocate context for vnic */ 4923 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 4924 if (rc) { 4925 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 4926 vnic_id, rc); 4927 goto vnic_setup_err; 4928 } 4929 bp->rsscos_nr_ctxs++; 4930 4931 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 4932 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 4933 if (rc) { 4934 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 4935 vnic_id, rc); 4936 goto vnic_setup_err; 4937 } 4938 bp->rsscos_nr_ctxs++; 4939 } 4940 4941 skip_rss_ctx: 4942 /* configure default vnic, ring grp */ 4943 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 4944 if (rc) { 4945 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 4946 vnic_id, rc); 4947 goto vnic_setup_err; 4948 } 4949 4950 /* Enable RSS hashing on vnic */ 4951 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 4952 if (rc) { 4953 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 4954 vnic_id, rc); 4955 goto vnic_setup_err; 4956 } 4957 4958 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 4959 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 4960 if (rc) { 4961 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 4962 vnic_id, rc); 4963 } 4964 } 4965 4966 vnic_setup_err: 4967 return rc; 4968 } 4969 4970 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 4971 { 4972 #ifdef CONFIG_RFS_ACCEL 4973 int i, rc = 0; 4974 4975 for (i = 0; i < bp->rx_nr_rings; i++) { 4976 struct bnxt_vnic_info *vnic; 4977 u16 vnic_id = i + 1; 4978 u16 ring_id = i; 4979 4980 if (vnic_id >= bp->nr_vnics) 4981 break; 4982 4983 vnic = &bp->vnic_info[vnic_id]; 4984 vnic->flags |= BNXT_VNIC_RFS_FLAG; 4985 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 4986 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 4987 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 4988 if (rc) { 4989 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 4990 vnic_id, rc); 4991 break; 4992 } 4993 rc = bnxt_setup_vnic(bp, vnic_id); 4994 if (rc) 4995 break; 4996 } 4997 return rc; 4998 #else 4999 return 0; 5000 #endif 5001 } 5002 5003 /* Allow PF and VF with default VLAN to be in promiscuous mode */ 5004 static bool bnxt_promisc_ok(struct bnxt *bp) 5005 { 5006 #ifdef CONFIG_BNXT_SRIOV 5007 if (BNXT_VF(bp) && !bp->vf.vlan) 5008 return false; 5009 #endif 5010 return true; 5011 } 5012 5013 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 5014 { 5015 unsigned int rc = 0; 5016 5017 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 5018 if (rc) { 5019 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 5020 rc); 5021 return rc; 5022 } 5023 5024 rc = bnxt_hwrm_vnic_cfg(bp, 1); 5025 if (rc) { 5026 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 5027 rc); 5028 return rc; 5029 } 5030 return rc; 5031 } 5032 5033 static int bnxt_cfg_rx_mode(struct bnxt *); 5034 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 5035 5036 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 5037 { 5038 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 5039 int rc = 0; 5040 unsigned int rx_nr_rings = bp->rx_nr_rings; 5041 5042 if (irq_re_init) { 5043 rc = bnxt_hwrm_stat_ctx_alloc(bp); 5044 if (rc) { 5045 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 5046 rc); 5047 goto err_out; 5048 } 5049 } 5050 5051 rc = bnxt_hwrm_ring_alloc(bp); 5052 if (rc) { 5053 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 5054 goto err_out; 5055 } 5056 5057 rc = bnxt_hwrm_ring_grp_alloc(bp); 5058 if (rc) { 5059 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 5060 goto err_out; 5061 } 5062 5063 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5064 rx_nr_rings--; 5065 5066 /* default vnic 0 */ 5067 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 5068 if (rc) { 5069 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 5070 goto err_out; 5071 } 5072 5073 rc = bnxt_setup_vnic(bp, 0); 5074 if (rc) 5075 goto err_out; 5076 5077 if (bp->flags & BNXT_FLAG_RFS) { 5078 rc = bnxt_alloc_rfs_vnics(bp); 5079 if (rc) 5080 goto err_out; 5081 } 5082 5083 if (bp->flags & BNXT_FLAG_TPA) { 5084 rc = bnxt_set_tpa(bp, true); 5085 if (rc) 5086 goto err_out; 5087 } 5088 5089 if (BNXT_VF(bp)) 5090 bnxt_update_vf_mac(bp); 5091 5092 /* Filter for default vnic 0 */ 5093 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 5094 if (rc) { 5095 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 5096 goto err_out; 5097 } 5098 vnic->uc_filter_count = 1; 5099 5100 vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 5101 5102 if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) 5103 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 5104 5105 if (bp->dev->flags & IFF_ALLMULTI) { 5106 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 5107 vnic->mc_list_count = 0; 5108 } else { 5109 u32 mask = 0; 5110 5111 bnxt_mc_list_updated(bp, &mask); 5112 vnic->rx_mask |= mask; 5113 } 5114 5115 rc = bnxt_cfg_rx_mode(bp); 5116 if (rc) 5117 goto err_out; 5118 5119 rc = bnxt_hwrm_set_coal(bp); 5120 if (rc) 5121 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 5122 rc); 5123 5124 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 5125 rc = bnxt_setup_nitroa0_vnic(bp); 5126 if (rc) 5127 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 5128 rc); 5129 } 5130 5131 if (BNXT_VF(bp)) { 5132 bnxt_hwrm_func_qcfg(bp); 5133 netdev_update_features(bp->dev); 5134 } 5135 5136 return 0; 5137 5138 err_out: 5139 bnxt_hwrm_resource_free(bp, 0, true); 5140 5141 return rc; 5142 } 5143 5144 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 5145 { 5146 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 5147 return 0; 5148 } 5149 5150 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 5151 { 5152 bnxt_init_cp_rings(bp); 5153 bnxt_init_rx_rings(bp); 5154 bnxt_init_tx_rings(bp); 5155 bnxt_init_ring_grps(bp, irq_re_init); 5156 bnxt_init_vnics(bp); 5157 5158 return bnxt_init_chip(bp, irq_re_init); 5159 } 5160 5161 static int bnxt_set_real_num_queues(struct bnxt *bp) 5162 { 5163 int rc; 5164 struct net_device *dev = bp->dev; 5165 5166 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 5167 bp->tx_nr_rings_xdp); 5168 if (rc) 5169 return rc; 5170 5171 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 5172 if (rc) 5173 return rc; 5174 5175 #ifdef CONFIG_RFS_ACCEL 5176 if (bp->flags & BNXT_FLAG_RFS) 5177 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 5178 #endif 5179 5180 return rc; 5181 } 5182 5183 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5184 bool shared) 5185 { 5186 int _rx = *rx, _tx = *tx; 5187 5188 if (shared) { 5189 *rx = min_t(int, _rx, max); 5190 *tx = min_t(int, _tx, max); 5191 } else { 5192 if (max < 2) 5193 return -ENOMEM; 5194 5195 while (_rx + _tx > max) { 5196 if (_rx > _tx && _rx > 1) 5197 _rx--; 5198 else if (_tx > 1) 5199 _tx--; 5200 } 5201 *rx = _rx; 5202 *tx = _tx; 5203 } 5204 return 0; 5205 } 5206 5207 static void bnxt_setup_msix(struct bnxt *bp) 5208 { 5209 const int len = sizeof(bp->irq_tbl[0].name); 5210 struct net_device *dev = bp->dev; 5211 int tcs, i; 5212 5213 tcs = netdev_get_num_tc(dev); 5214 if (tcs > 1) { 5215 int i, off, count; 5216 5217 for (i = 0; i < tcs; i++) { 5218 count = bp->tx_nr_rings_per_tc; 5219 off = i * count; 5220 netdev_set_tc_queue(dev, i, count, off); 5221 } 5222 } 5223 5224 for (i = 0; i < bp->cp_nr_rings; i++) { 5225 char *attr; 5226 5227 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5228 attr = "TxRx"; 5229 else if (i < bp->rx_nr_rings) 5230 attr = "rx"; 5231 else 5232 attr = "tx"; 5233 5234 snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr, 5235 i); 5236 bp->irq_tbl[i].handler = bnxt_msix; 5237 } 5238 } 5239 5240 static void bnxt_setup_inta(struct bnxt *bp) 5241 { 5242 const int len = sizeof(bp->irq_tbl[0].name); 5243 5244 if (netdev_get_num_tc(bp->dev)) 5245 netdev_reset_tc(bp->dev); 5246 5247 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 5248 0); 5249 bp->irq_tbl[0].handler = bnxt_inta; 5250 } 5251 5252 static int bnxt_setup_int_mode(struct bnxt *bp) 5253 { 5254 int rc; 5255 5256 if (bp->flags & BNXT_FLAG_USING_MSIX) 5257 bnxt_setup_msix(bp); 5258 else 5259 bnxt_setup_inta(bp); 5260 5261 rc = bnxt_set_real_num_queues(bp); 5262 return rc; 5263 } 5264 5265 #ifdef CONFIG_RFS_ACCEL 5266 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 5267 { 5268 #if defined(CONFIG_BNXT_SRIOV) 5269 if (BNXT_VF(bp)) 5270 return bp->vf.max_rsscos_ctxs; 5271 #endif 5272 return bp->pf.max_rsscos_ctxs; 5273 } 5274 5275 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 5276 { 5277 #if defined(CONFIG_BNXT_SRIOV) 5278 if (BNXT_VF(bp)) 5279 return bp->vf.max_vnics; 5280 #endif 5281 return bp->pf.max_vnics; 5282 } 5283 #endif 5284 5285 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 5286 { 5287 #if defined(CONFIG_BNXT_SRIOV) 5288 if (BNXT_VF(bp)) 5289 return bp->vf.max_stat_ctxs; 5290 #endif 5291 return bp->pf.max_stat_ctxs; 5292 } 5293 5294 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max) 5295 { 5296 #if defined(CONFIG_BNXT_SRIOV) 5297 if (BNXT_VF(bp)) 5298 bp->vf.max_stat_ctxs = max; 5299 else 5300 #endif 5301 bp->pf.max_stat_ctxs = max; 5302 } 5303 5304 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 5305 { 5306 #if defined(CONFIG_BNXT_SRIOV) 5307 if (BNXT_VF(bp)) 5308 return bp->vf.max_cp_rings; 5309 #endif 5310 return bp->pf.max_cp_rings; 5311 } 5312 5313 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max) 5314 { 5315 #if defined(CONFIG_BNXT_SRIOV) 5316 if (BNXT_VF(bp)) 5317 bp->vf.max_cp_rings = max; 5318 else 5319 #endif 5320 bp->pf.max_cp_rings = max; 5321 } 5322 5323 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 5324 { 5325 #if defined(CONFIG_BNXT_SRIOV) 5326 if (BNXT_VF(bp)) 5327 return min_t(unsigned int, bp->vf.max_irqs, 5328 bp->vf.max_cp_rings); 5329 #endif 5330 return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings); 5331 } 5332 5333 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 5334 { 5335 #if defined(CONFIG_BNXT_SRIOV) 5336 if (BNXT_VF(bp)) 5337 bp->vf.max_irqs = max_irqs; 5338 else 5339 #endif 5340 bp->pf.max_irqs = max_irqs; 5341 } 5342 5343 static int bnxt_init_msix(struct bnxt *bp) 5344 { 5345 int i, total_vecs, rc = 0, min = 1; 5346 struct msix_entry *msix_ent; 5347 5348 total_vecs = bnxt_get_max_func_irqs(bp); 5349 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 5350 if (!msix_ent) 5351 return -ENOMEM; 5352 5353 for (i = 0; i < total_vecs; i++) { 5354 msix_ent[i].entry = i; 5355 msix_ent[i].vector = 0; 5356 } 5357 5358 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 5359 min = 2; 5360 5361 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 5362 if (total_vecs < 0) { 5363 rc = -ENODEV; 5364 goto msix_setup_exit; 5365 } 5366 5367 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 5368 if (bp->irq_tbl) { 5369 for (i = 0; i < total_vecs; i++) 5370 bp->irq_tbl[i].vector = msix_ent[i].vector; 5371 5372 bp->total_irqs = total_vecs; 5373 /* Trim rings based upon num of vectors allocated */ 5374 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 5375 total_vecs, min == 1); 5376 if (rc) 5377 goto msix_setup_exit; 5378 5379 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 5380 bp->cp_nr_rings = (min == 1) ? 5381 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 5382 bp->tx_nr_rings + bp->rx_nr_rings; 5383 5384 } else { 5385 rc = -ENOMEM; 5386 goto msix_setup_exit; 5387 } 5388 bp->flags |= BNXT_FLAG_USING_MSIX; 5389 kfree(msix_ent); 5390 return 0; 5391 5392 msix_setup_exit: 5393 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 5394 kfree(bp->irq_tbl); 5395 bp->irq_tbl = NULL; 5396 pci_disable_msix(bp->pdev); 5397 kfree(msix_ent); 5398 return rc; 5399 } 5400 5401 static int bnxt_init_inta(struct bnxt *bp) 5402 { 5403 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL); 5404 if (!bp->irq_tbl) 5405 return -ENOMEM; 5406 5407 bp->total_irqs = 1; 5408 bp->rx_nr_rings = 1; 5409 bp->tx_nr_rings = 1; 5410 bp->cp_nr_rings = 1; 5411 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 5412 bp->flags |= BNXT_FLAG_SHARED_RINGS; 5413 bp->irq_tbl[0].vector = bp->pdev->irq; 5414 return 0; 5415 } 5416 5417 static int bnxt_init_int_mode(struct bnxt *bp) 5418 { 5419 int rc = 0; 5420 5421 if (bp->flags & BNXT_FLAG_MSIX_CAP) 5422 rc = bnxt_init_msix(bp); 5423 5424 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 5425 /* fallback to INTA */ 5426 rc = bnxt_init_inta(bp); 5427 } 5428 return rc; 5429 } 5430 5431 static void bnxt_clear_int_mode(struct bnxt *bp) 5432 { 5433 if (bp->flags & BNXT_FLAG_USING_MSIX) 5434 pci_disable_msix(bp->pdev); 5435 5436 kfree(bp->irq_tbl); 5437 bp->irq_tbl = NULL; 5438 bp->flags &= ~BNXT_FLAG_USING_MSIX; 5439 } 5440 5441 static void bnxt_free_irq(struct bnxt *bp) 5442 { 5443 struct bnxt_irq *irq; 5444 int i; 5445 5446 #ifdef CONFIG_RFS_ACCEL 5447 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 5448 bp->dev->rx_cpu_rmap = NULL; 5449 #endif 5450 if (!bp->irq_tbl) 5451 return; 5452 5453 for (i = 0; i < bp->cp_nr_rings; i++) { 5454 irq = &bp->irq_tbl[i]; 5455 if (irq->requested) 5456 free_irq(irq->vector, bp->bnapi[i]); 5457 irq->requested = 0; 5458 } 5459 } 5460 5461 static int bnxt_request_irq(struct bnxt *bp) 5462 { 5463 int i, j, rc = 0; 5464 unsigned long flags = 0; 5465 #ifdef CONFIG_RFS_ACCEL 5466 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap; 5467 #endif 5468 5469 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 5470 flags = IRQF_SHARED; 5471 5472 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 5473 struct bnxt_irq *irq = &bp->irq_tbl[i]; 5474 #ifdef CONFIG_RFS_ACCEL 5475 if (rmap && bp->bnapi[i]->rx_ring) { 5476 rc = irq_cpu_rmap_add(rmap, irq->vector); 5477 if (rc) 5478 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 5479 j); 5480 j++; 5481 } 5482 #endif 5483 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 5484 bp->bnapi[i]); 5485 if (rc) 5486 break; 5487 5488 irq->requested = 1; 5489 } 5490 return rc; 5491 } 5492 5493 static void bnxt_del_napi(struct bnxt *bp) 5494 { 5495 int i; 5496 5497 if (!bp->bnapi) 5498 return; 5499 5500 for (i = 0; i < bp->cp_nr_rings; i++) { 5501 struct bnxt_napi *bnapi = bp->bnapi[i]; 5502 5503 napi_hash_del(&bnapi->napi); 5504 netif_napi_del(&bnapi->napi); 5505 } 5506 /* We called napi_hash_del() before netif_napi_del(), we need 5507 * to respect an RCU grace period before freeing napi structures. 5508 */ 5509 synchronize_net(); 5510 } 5511 5512 static void bnxt_init_napi(struct bnxt *bp) 5513 { 5514 int i; 5515 unsigned int cp_nr_rings = bp->cp_nr_rings; 5516 struct bnxt_napi *bnapi; 5517 5518 if (bp->flags & BNXT_FLAG_USING_MSIX) { 5519 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5520 cp_nr_rings--; 5521 for (i = 0; i < cp_nr_rings; i++) { 5522 bnapi = bp->bnapi[i]; 5523 netif_napi_add(bp->dev, &bnapi->napi, 5524 bnxt_poll, 64); 5525 } 5526 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 5527 bnapi = bp->bnapi[cp_nr_rings]; 5528 netif_napi_add(bp->dev, &bnapi->napi, 5529 bnxt_poll_nitroa0, 64); 5530 } 5531 } else { 5532 bnapi = bp->bnapi[0]; 5533 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 5534 } 5535 } 5536 5537 static void bnxt_disable_napi(struct bnxt *bp) 5538 { 5539 int i; 5540 5541 if (!bp->bnapi) 5542 return; 5543 5544 for (i = 0; i < bp->cp_nr_rings; i++) 5545 napi_disable(&bp->bnapi[i]->napi); 5546 } 5547 5548 static void bnxt_enable_napi(struct bnxt *bp) 5549 { 5550 int i; 5551 5552 for (i = 0; i < bp->cp_nr_rings; i++) { 5553 bp->bnapi[i]->in_reset = false; 5554 napi_enable(&bp->bnapi[i]->napi); 5555 } 5556 } 5557 5558 void bnxt_tx_disable(struct bnxt *bp) 5559 { 5560 int i; 5561 struct bnxt_tx_ring_info *txr; 5562 struct netdev_queue *txq; 5563 5564 if (bp->tx_ring) { 5565 for (i = 0; i < bp->tx_nr_rings; i++) { 5566 txr = &bp->tx_ring[i]; 5567 txq = netdev_get_tx_queue(bp->dev, i); 5568 txr->dev_state = BNXT_DEV_STATE_CLOSING; 5569 } 5570 } 5571 /* Stop all TX queues */ 5572 netif_tx_disable(bp->dev); 5573 netif_carrier_off(bp->dev); 5574 } 5575 5576 void bnxt_tx_enable(struct bnxt *bp) 5577 { 5578 int i; 5579 struct bnxt_tx_ring_info *txr; 5580 struct netdev_queue *txq; 5581 5582 for (i = 0; i < bp->tx_nr_rings; i++) { 5583 txr = &bp->tx_ring[i]; 5584 txq = netdev_get_tx_queue(bp->dev, i); 5585 txr->dev_state = 0; 5586 } 5587 netif_tx_wake_all_queues(bp->dev); 5588 if (bp->link_info.link_up) 5589 netif_carrier_on(bp->dev); 5590 } 5591 5592 static void bnxt_report_link(struct bnxt *bp) 5593 { 5594 if (bp->link_info.link_up) { 5595 const char *duplex; 5596 const char *flow_ctrl; 5597 u32 speed; 5598 u16 fec; 5599 5600 netif_carrier_on(bp->dev); 5601 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 5602 duplex = "full"; 5603 else 5604 duplex = "half"; 5605 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 5606 flow_ctrl = "ON - receive & transmit"; 5607 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 5608 flow_ctrl = "ON - transmit"; 5609 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 5610 flow_ctrl = "ON - receive"; 5611 else 5612 flow_ctrl = "none"; 5613 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 5614 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n", 5615 speed, duplex, flow_ctrl); 5616 if (bp->flags & BNXT_FLAG_EEE_CAP) 5617 netdev_info(bp->dev, "EEE is %s\n", 5618 bp->eee.eee_active ? "active" : 5619 "not active"); 5620 fec = bp->link_info.fec_cfg; 5621 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 5622 netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n", 5623 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 5624 (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" : 5625 (fec & BNXT_FEC_ENC_RS) ? "RS" : "None"); 5626 } else { 5627 netif_carrier_off(bp->dev); 5628 netdev_err(bp->dev, "NIC Link is Down\n"); 5629 } 5630 } 5631 5632 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 5633 { 5634 int rc = 0; 5635 struct hwrm_port_phy_qcaps_input req = {0}; 5636 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 5637 struct bnxt_link_info *link_info = &bp->link_info; 5638 5639 if (bp->hwrm_spec_code < 0x10201) 5640 return 0; 5641 5642 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1); 5643 5644 mutex_lock(&bp->hwrm_cmd_lock); 5645 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5646 if (rc) 5647 goto hwrm_phy_qcaps_exit; 5648 5649 if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) { 5650 struct ethtool_eee *eee = &bp->eee; 5651 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 5652 5653 bp->flags |= BNXT_FLAG_EEE_CAP; 5654 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 5655 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 5656 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 5657 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 5658 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 5659 } 5660 if (resp->supported_speeds_auto_mode) 5661 link_info->support_auto_speeds = 5662 le16_to_cpu(resp->supported_speeds_auto_mode); 5663 5664 hwrm_phy_qcaps_exit: 5665 mutex_unlock(&bp->hwrm_cmd_lock); 5666 return rc; 5667 } 5668 5669 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 5670 { 5671 int rc = 0; 5672 struct bnxt_link_info *link_info = &bp->link_info; 5673 struct hwrm_port_phy_qcfg_input req = {0}; 5674 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 5675 u8 link_up = link_info->link_up; 5676 u16 diff; 5677 5678 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 5679 5680 mutex_lock(&bp->hwrm_cmd_lock); 5681 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5682 if (rc) { 5683 mutex_unlock(&bp->hwrm_cmd_lock); 5684 return rc; 5685 } 5686 5687 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 5688 link_info->phy_link_status = resp->link; 5689 link_info->duplex = resp->duplex; 5690 link_info->pause = resp->pause; 5691 link_info->auto_mode = resp->auto_mode; 5692 link_info->auto_pause_setting = resp->auto_pause; 5693 link_info->lp_pause = resp->link_partner_adv_pause; 5694 link_info->force_pause_setting = resp->force_pause; 5695 link_info->duplex_setting = resp->duplex; 5696 if (link_info->phy_link_status == BNXT_LINK_LINK) 5697 link_info->link_speed = le16_to_cpu(resp->link_speed); 5698 else 5699 link_info->link_speed = 0; 5700 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 5701 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 5702 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 5703 link_info->lp_auto_link_speeds = 5704 le16_to_cpu(resp->link_partner_adv_speeds); 5705 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 5706 link_info->phy_ver[0] = resp->phy_maj; 5707 link_info->phy_ver[1] = resp->phy_min; 5708 link_info->phy_ver[2] = resp->phy_bld; 5709 link_info->media_type = resp->media_type; 5710 link_info->phy_type = resp->phy_type; 5711 link_info->transceiver = resp->xcvr_pkg_type; 5712 link_info->phy_addr = resp->eee_config_phy_addr & 5713 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 5714 link_info->module_status = resp->module_status; 5715 5716 if (bp->flags & BNXT_FLAG_EEE_CAP) { 5717 struct ethtool_eee *eee = &bp->eee; 5718 u16 fw_speeds; 5719 5720 eee->eee_active = 0; 5721 if (resp->eee_config_phy_addr & 5722 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 5723 eee->eee_active = 1; 5724 fw_speeds = le16_to_cpu( 5725 resp->link_partner_adv_eee_link_speed_mask); 5726 eee->lp_advertised = 5727 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 5728 } 5729 5730 /* Pull initial EEE config */ 5731 if (!chng_link_state) { 5732 if (resp->eee_config_phy_addr & 5733 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 5734 eee->eee_enabled = 1; 5735 5736 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 5737 eee->advertised = 5738 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 5739 5740 if (resp->eee_config_phy_addr & 5741 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 5742 __le32 tmr; 5743 5744 eee->tx_lpi_enabled = 1; 5745 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 5746 eee->tx_lpi_timer = le32_to_cpu(tmr) & 5747 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 5748 } 5749 } 5750 } 5751 5752 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 5753 if (bp->hwrm_spec_code >= 0x10504) 5754 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 5755 5756 /* TODO: need to add more logic to report VF link */ 5757 if (chng_link_state) { 5758 if (link_info->phy_link_status == BNXT_LINK_LINK) 5759 link_info->link_up = 1; 5760 else 5761 link_info->link_up = 0; 5762 if (link_up != link_info->link_up) 5763 bnxt_report_link(bp); 5764 } else { 5765 /* alwasy link down if not require to update link state */ 5766 link_info->link_up = 0; 5767 } 5768 mutex_unlock(&bp->hwrm_cmd_lock); 5769 5770 diff = link_info->support_auto_speeds ^ link_info->advertising; 5771 if ((link_info->support_auto_speeds | diff) != 5772 link_info->support_auto_speeds) { 5773 /* An advertised speed is no longer supported, so we need to 5774 * update the advertisement settings. Caller holds RTNL 5775 * so we can modify link settings. 5776 */ 5777 link_info->advertising = link_info->support_auto_speeds; 5778 if (link_info->autoneg & BNXT_AUTONEG_SPEED) 5779 bnxt_hwrm_set_link_setting(bp, true, false); 5780 } 5781 return 0; 5782 } 5783 5784 static void bnxt_get_port_module_status(struct bnxt *bp) 5785 { 5786 struct bnxt_link_info *link_info = &bp->link_info; 5787 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 5788 u8 module_status; 5789 5790 if (bnxt_update_link(bp, true)) 5791 return; 5792 5793 module_status = link_info->module_status; 5794 switch (module_status) { 5795 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 5796 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 5797 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 5798 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 5799 bp->pf.port_id); 5800 if (bp->hwrm_spec_code >= 0x10201) { 5801 netdev_warn(bp->dev, "Module part number %s\n", 5802 resp->phy_vendor_partnumber); 5803 } 5804 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 5805 netdev_warn(bp->dev, "TX is disabled\n"); 5806 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 5807 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 5808 } 5809 } 5810 5811 static void 5812 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 5813 { 5814 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 5815 if (bp->hwrm_spec_code >= 0x10201) 5816 req->auto_pause = 5817 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 5818 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 5819 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 5820 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 5821 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 5822 req->enables |= 5823 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 5824 } else { 5825 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 5826 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 5827 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 5828 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 5829 req->enables |= 5830 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 5831 if (bp->hwrm_spec_code >= 0x10201) { 5832 req->auto_pause = req->force_pause; 5833 req->enables |= cpu_to_le32( 5834 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 5835 } 5836 } 5837 } 5838 5839 static void bnxt_hwrm_set_link_common(struct bnxt *bp, 5840 struct hwrm_port_phy_cfg_input *req) 5841 { 5842 u8 autoneg = bp->link_info.autoneg; 5843 u16 fw_link_speed = bp->link_info.req_link_speed; 5844 u16 advertising = bp->link_info.advertising; 5845 5846 if (autoneg & BNXT_AUTONEG_SPEED) { 5847 req->auto_mode |= 5848 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 5849 5850 req->enables |= cpu_to_le32( 5851 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 5852 req->auto_link_speed_mask = cpu_to_le16(advertising); 5853 5854 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 5855 req->flags |= 5856 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 5857 } else { 5858 req->force_link_speed = cpu_to_le16(fw_link_speed); 5859 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 5860 } 5861 5862 /* tell chimp that the setting takes effect immediately */ 5863 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 5864 } 5865 5866 int bnxt_hwrm_set_pause(struct bnxt *bp) 5867 { 5868 struct hwrm_port_phy_cfg_input req = {0}; 5869 int rc; 5870 5871 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 5872 bnxt_hwrm_set_pause_common(bp, &req); 5873 5874 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 5875 bp->link_info.force_link_chng) 5876 bnxt_hwrm_set_link_common(bp, &req); 5877 5878 mutex_lock(&bp->hwrm_cmd_lock); 5879 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5880 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 5881 /* since changing of pause setting doesn't trigger any link 5882 * change event, the driver needs to update the current pause 5883 * result upon successfully return of the phy_cfg command 5884 */ 5885 bp->link_info.pause = 5886 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 5887 bp->link_info.auto_pause_setting = 0; 5888 if (!bp->link_info.force_link_chng) 5889 bnxt_report_link(bp); 5890 } 5891 bp->link_info.force_link_chng = false; 5892 mutex_unlock(&bp->hwrm_cmd_lock); 5893 return rc; 5894 } 5895 5896 static void bnxt_hwrm_set_eee(struct bnxt *bp, 5897 struct hwrm_port_phy_cfg_input *req) 5898 { 5899 struct ethtool_eee *eee = &bp->eee; 5900 5901 if (eee->eee_enabled) { 5902 u16 eee_speeds; 5903 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 5904 5905 if (eee->tx_lpi_enabled) 5906 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 5907 else 5908 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 5909 5910 req->flags |= cpu_to_le32(flags); 5911 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 5912 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 5913 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 5914 } else { 5915 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 5916 } 5917 } 5918 5919 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 5920 { 5921 struct hwrm_port_phy_cfg_input req = {0}; 5922 5923 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 5924 if (set_pause) 5925 bnxt_hwrm_set_pause_common(bp, &req); 5926 5927 bnxt_hwrm_set_link_common(bp, &req); 5928 5929 if (set_eee) 5930 bnxt_hwrm_set_eee(bp, &req); 5931 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5932 } 5933 5934 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 5935 { 5936 struct hwrm_port_phy_cfg_input req = {0}; 5937 5938 if (!BNXT_SINGLE_PF(bp)) 5939 return 0; 5940 5941 if (pci_num_vf(bp->pdev)) 5942 return 0; 5943 5944 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 5945 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 5946 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5947 } 5948 5949 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 5950 { 5951 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 5952 struct hwrm_port_led_qcaps_input req = {0}; 5953 struct bnxt_pf_info *pf = &bp->pf; 5954 int rc; 5955 5956 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 5957 return 0; 5958 5959 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1); 5960 req.port_id = cpu_to_le16(pf->port_id); 5961 mutex_lock(&bp->hwrm_cmd_lock); 5962 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5963 if (rc) { 5964 mutex_unlock(&bp->hwrm_cmd_lock); 5965 return rc; 5966 } 5967 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 5968 int i; 5969 5970 bp->num_leds = resp->num_leds; 5971 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 5972 bp->num_leds); 5973 for (i = 0; i < bp->num_leds; i++) { 5974 struct bnxt_led_info *led = &bp->leds[i]; 5975 __le16 caps = led->led_state_caps; 5976 5977 if (!led->led_group_id || 5978 !BNXT_LED_ALT_BLINK_CAP(caps)) { 5979 bp->num_leds = 0; 5980 break; 5981 } 5982 } 5983 } 5984 mutex_unlock(&bp->hwrm_cmd_lock); 5985 return 0; 5986 } 5987 5988 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 5989 { 5990 struct hwrm_wol_filter_alloc_input req = {0}; 5991 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5992 int rc; 5993 5994 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1); 5995 req.port_id = cpu_to_le16(bp->pf.port_id); 5996 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 5997 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 5998 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN); 5999 mutex_lock(&bp->hwrm_cmd_lock); 6000 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6001 if (!rc) 6002 bp->wol_filter_id = resp->wol_filter_id; 6003 mutex_unlock(&bp->hwrm_cmd_lock); 6004 return rc; 6005 } 6006 6007 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 6008 { 6009 struct hwrm_wol_filter_free_input req = {0}; 6010 int rc; 6011 6012 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1); 6013 req.port_id = cpu_to_le16(bp->pf.port_id); 6014 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 6015 req.wol_filter_id = bp->wol_filter_id; 6016 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6017 return rc; 6018 } 6019 6020 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 6021 { 6022 struct hwrm_wol_filter_qcfg_input req = {0}; 6023 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6024 u16 next_handle = 0; 6025 int rc; 6026 6027 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1); 6028 req.port_id = cpu_to_le16(bp->pf.port_id); 6029 req.handle = cpu_to_le16(handle); 6030 mutex_lock(&bp->hwrm_cmd_lock); 6031 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6032 if (!rc) { 6033 next_handle = le16_to_cpu(resp->next_handle); 6034 if (next_handle != 0) { 6035 if (resp->wol_type == 6036 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 6037 bp->wol = 1; 6038 bp->wol_filter_id = resp->wol_filter_id; 6039 } 6040 } 6041 } 6042 mutex_unlock(&bp->hwrm_cmd_lock); 6043 return next_handle; 6044 } 6045 6046 static void bnxt_get_wol_settings(struct bnxt *bp) 6047 { 6048 u16 handle = 0; 6049 6050 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 6051 return; 6052 6053 do { 6054 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 6055 } while (handle && handle != 0xffff); 6056 } 6057 6058 static bool bnxt_eee_config_ok(struct bnxt *bp) 6059 { 6060 struct ethtool_eee *eee = &bp->eee; 6061 struct bnxt_link_info *link_info = &bp->link_info; 6062 6063 if (!(bp->flags & BNXT_FLAG_EEE_CAP)) 6064 return true; 6065 6066 if (eee->eee_enabled) { 6067 u32 advertising = 6068 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 6069 6070 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 6071 eee->eee_enabled = 0; 6072 return false; 6073 } 6074 if (eee->advertised & ~advertising) { 6075 eee->advertised = advertising & eee->supported; 6076 return false; 6077 } 6078 } 6079 return true; 6080 } 6081 6082 static int bnxt_update_phy_setting(struct bnxt *bp) 6083 { 6084 int rc; 6085 bool update_link = false; 6086 bool update_pause = false; 6087 bool update_eee = false; 6088 struct bnxt_link_info *link_info = &bp->link_info; 6089 6090 rc = bnxt_update_link(bp, true); 6091 if (rc) { 6092 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 6093 rc); 6094 return rc; 6095 } 6096 if (!BNXT_SINGLE_PF(bp)) 6097 return 0; 6098 6099 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 6100 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 6101 link_info->req_flow_ctrl) 6102 update_pause = true; 6103 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 6104 link_info->force_pause_setting != link_info->req_flow_ctrl) 6105 update_pause = true; 6106 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 6107 if (BNXT_AUTO_MODE(link_info->auto_mode)) 6108 update_link = true; 6109 if (link_info->req_link_speed != link_info->force_link_speed) 6110 update_link = true; 6111 if (link_info->req_duplex != link_info->duplex_setting) 6112 update_link = true; 6113 } else { 6114 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 6115 update_link = true; 6116 if (link_info->advertising != link_info->auto_link_speeds) 6117 update_link = true; 6118 } 6119 6120 /* The last close may have shutdown the link, so need to call 6121 * PHY_CFG to bring it back up. 6122 */ 6123 if (!netif_carrier_ok(bp->dev)) 6124 update_link = true; 6125 6126 if (!bnxt_eee_config_ok(bp)) 6127 update_eee = true; 6128 6129 if (update_link) 6130 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 6131 else if (update_pause) 6132 rc = bnxt_hwrm_set_pause(bp); 6133 if (rc) { 6134 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 6135 rc); 6136 return rc; 6137 } 6138 6139 return rc; 6140 } 6141 6142 /* Common routine to pre-map certain register block to different GRC window. 6143 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 6144 * in PF and 3 windows in VF that can be customized to map in different 6145 * register blocks. 6146 */ 6147 static void bnxt_preset_reg_win(struct bnxt *bp) 6148 { 6149 if (BNXT_PF(bp)) { 6150 /* CAG registers map to GRC window #4 */ 6151 writel(BNXT_CAG_REG_BASE, 6152 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 6153 } 6154 } 6155 6156 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 6157 { 6158 int rc = 0; 6159 6160 bnxt_preset_reg_win(bp); 6161 netif_carrier_off(bp->dev); 6162 if (irq_re_init) { 6163 rc = bnxt_setup_int_mode(bp); 6164 if (rc) { 6165 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 6166 rc); 6167 return rc; 6168 } 6169 } 6170 if ((bp->flags & BNXT_FLAG_RFS) && 6171 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 6172 /* disable RFS if falling back to INTA */ 6173 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 6174 bp->flags &= ~BNXT_FLAG_RFS; 6175 } 6176 6177 rc = bnxt_alloc_mem(bp, irq_re_init); 6178 if (rc) { 6179 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 6180 goto open_err_free_mem; 6181 } 6182 6183 if (irq_re_init) { 6184 bnxt_init_napi(bp); 6185 rc = bnxt_request_irq(bp); 6186 if (rc) { 6187 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 6188 goto open_err; 6189 } 6190 } 6191 6192 bnxt_enable_napi(bp); 6193 6194 rc = bnxt_init_nic(bp, irq_re_init); 6195 if (rc) { 6196 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 6197 goto open_err; 6198 } 6199 6200 if (link_re_init) { 6201 rc = bnxt_update_phy_setting(bp); 6202 if (rc) 6203 netdev_warn(bp->dev, "failed to update phy settings\n"); 6204 } 6205 6206 if (irq_re_init) 6207 udp_tunnel_get_rx_info(bp->dev); 6208 6209 set_bit(BNXT_STATE_OPEN, &bp->state); 6210 bnxt_enable_int(bp); 6211 /* Enable TX queues */ 6212 bnxt_tx_enable(bp); 6213 mod_timer(&bp->timer, jiffies + bp->current_interval); 6214 /* Poll link status and check for SFP+ module status */ 6215 bnxt_get_port_module_status(bp); 6216 6217 return 0; 6218 6219 open_err: 6220 bnxt_disable_napi(bp); 6221 bnxt_del_napi(bp); 6222 6223 open_err_free_mem: 6224 bnxt_free_skbs(bp); 6225 bnxt_free_irq(bp); 6226 bnxt_free_mem(bp, true); 6227 return rc; 6228 } 6229 6230 /* rtnl_lock held */ 6231 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 6232 { 6233 int rc = 0; 6234 6235 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 6236 if (rc) { 6237 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 6238 dev_close(bp->dev); 6239 } 6240 return rc; 6241 } 6242 6243 /* rtnl_lock held, open the NIC half way by allocating all resources, but 6244 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 6245 * self tests. 6246 */ 6247 int bnxt_half_open_nic(struct bnxt *bp) 6248 { 6249 int rc = 0; 6250 6251 rc = bnxt_alloc_mem(bp, false); 6252 if (rc) { 6253 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 6254 goto half_open_err; 6255 } 6256 rc = bnxt_init_nic(bp, false); 6257 if (rc) { 6258 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 6259 goto half_open_err; 6260 } 6261 return 0; 6262 6263 half_open_err: 6264 bnxt_free_skbs(bp); 6265 bnxt_free_mem(bp, false); 6266 dev_close(bp->dev); 6267 return rc; 6268 } 6269 6270 /* rtnl_lock held, this call can only be made after a previous successful 6271 * call to bnxt_half_open_nic(). 6272 */ 6273 void bnxt_half_close_nic(struct bnxt *bp) 6274 { 6275 bnxt_hwrm_resource_free(bp, false, false); 6276 bnxt_free_skbs(bp); 6277 bnxt_free_mem(bp, false); 6278 } 6279 6280 static int bnxt_open(struct net_device *dev) 6281 { 6282 struct bnxt *bp = netdev_priv(dev); 6283 6284 return __bnxt_open_nic(bp, true, true); 6285 } 6286 6287 static bool bnxt_drv_busy(struct bnxt *bp) 6288 { 6289 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 6290 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 6291 } 6292 6293 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 6294 { 6295 int rc = 0; 6296 6297 #ifdef CONFIG_BNXT_SRIOV 6298 if (bp->sriov_cfg) { 6299 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 6300 !bp->sriov_cfg, 6301 BNXT_SRIOV_CFG_WAIT_TMO); 6302 if (rc) 6303 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 6304 } 6305 #endif 6306 /* Change device state to avoid TX queue wake up's */ 6307 bnxt_tx_disable(bp); 6308 6309 clear_bit(BNXT_STATE_OPEN, &bp->state); 6310 smp_mb__after_atomic(); 6311 while (bnxt_drv_busy(bp)) 6312 msleep(20); 6313 6314 /* Flush rings and and disable interrupts */ 6315 bnxt_shutdown_nic(bp, irq_re_init); 6316 6317 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 6318 6319 bnxt_disable_napi(bp); 6320 del_timer_sync(&bp->timer); 6321 bnxt_free_skbs(bp); 6322 6323 if (irq_re_init) { 6324 bnxt_free_irq(bp); 6325 bnxt_del_napi(bp); 6326 } 6327 bnxt_free_mem(bp, irq_re_init); 6328 return rc; 6329 } 6330 6331 static int bnxt_close(struct net_device *dev) 6332 { 6333 struct bnxt *bp = netdev_priv(dev); 6334 6335 bnxt_close_nic(bp, true, true); 6336 bnxt_hwrm_shutdown_link(bp); 6337 return 0; 6338 } 6339 6340 /* rtnl_lock held */ 6341 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 6342 { 6343 switch (cmd) { 6344 case SIOCGMIIPHY: 6345 /* fallthru */ 6346 case SIOCGMIIREG: { 6347 if (!netif_running(dev)) 6348 return -EAGAIN; 6349 6350 return 0; 6351 } 6352 6353 case SIOCSMIIREG: 6354 if (!netif_running(dev)) 6355 return -EAGAIN; 6356 6357 return 0; 6358 6359 default: 6360 /* do nothing */ 6361 break; 6362 } 6363 return -EOPNOTSUPP; 6364 } 6365 6366 static void 6367 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 6368 { 6369 u32 i; 6370 struct bnxt *bp = netdev_priv(dev); 6371 6372 set_bit(BNXT_STATE_READ_STATS, &bp->state); 6373 /* Make sure bnxt_close_nic() sees that we are reading stats before 6374 * we check the BNXT_STATE_OPEN flag. 6375 */ 6376 smp_mb__after_atomic(); 6377 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 6378 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 6379 return; 6380 } 6381 6382 /* TODO check if we need to synchronize with bnxt_close path */ 6383 for (i = 0; i < bp->cp_nr_rings; i++) { 6384 struct bnxt_napi *bnapi = bp->bnapi[i]; 6385 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6386 struct ctx_hw_stats *hw_stats = cpr->hw_stats; 6387 6388 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts); 6389 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts); 6390 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts); 6391 6392 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts); 6393 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts); 6394 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts); 6395 6396 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes); 6397 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes); 6398 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes); 6399 6400 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes); 6401 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes); 6402 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes); 6403 6404 stats->rx_missed_errors += 6405 le64_to_cpu(hw_stats->rx_discard_pkts); 6406 6407 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts); 6408 6409 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts); 6410 } 6411 6412 if (bp->flags & BNXT_FLAG_PORT_STATS) { 6413 struct rx_port_stats *rx = bp->hw_rx_port_stats; 6414 struct tx_port_stats *tx = bp->hw_tx_port_stats; 6415 6416 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames); 6417 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames); 6418 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) + 6419 le64_to_cpu(rx->rx_ovrsz_frames) + 6420 le64_to_cpu(rx->rx_runt_frames); 6421 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) + 6422 le64_to_cpu(rx->rx_jbr_frames); 6423 stats->collisions = le64_to_cpu(tx->tx_total_collisions); 6424 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns); 6425 stats->tx_errors = le64_to_cpu(tx->tx_err); 6426 } 6427 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 6428 } 6429 6430 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 6431 { 6432 struct net_device *dev = bp->dev; 6433 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 6434 struct netdev_hw_addr *ha; 6435 u8 *haddr; 6436 int mc_count = 0; 6437 bool update = false; 6438 int off = 0; 6439 6440 netdev_for_each_mc_addr(ha, dev) { 6441 if (mc_count >= BNXT_MAX_MC_ADDRS) { 6442 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 6443 vnic->mc_list_count = 0; 6444 return false; 6445 } 6446 haddr = ha->addr; 6447 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 6448 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 6449 update = true; 6450 } 6451 off += ETH_ALEN; 6452 mc_count++; 6453 } 6454 if (mc_count) 6455 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 6456 6457 if (mc_count != vnic->mc_list_count) { 6458 vnic->mc_list_count = mc_count; 6459 update = true; 6460 } 6461 return update; 6462 } 6463 6464 static bool bnxt_uc_list_updated(struct bnxt *bp) 6465 { 6466 struct net_device *dev = bp->dev; 6467 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 6468 struct netdev_hw_addr *ha; 6469 int off = 0; 6470 6471 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 6472 return true; 6473 6474 netdev_for_each_uc_addr(ha, dev) { 6475 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 6476 return true; 6477 6478 off += ETH_ALEN; 6479 } 6480 return false; 6481 } 6482 6483 static void bnxt_set_rx_mode(struct net_device *dev) 6484 { 6485 struct bnxt *bp = netdev_priv(dev); 6486 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 6487 u32 mask = vnic->rx_mask; 6488 bool mc_update = false; 6489 bool uc_update; 6490 6491 if (!netif_running(dev)) 6492 return; 6493 6494 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 6495 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 6496 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST); 6497 6498 if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) 6499 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 6500 6501 uc_update = bnxt_uc_list_updated(bp); 6502 6503 if (dev->flags & IFF_ALLMULTI) { 6504 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 6505 vnic->mc_list_count = 0; 6506 } else { 6507 mc_update = bnxt_mc_list_updated(bp, &mask); 6508 } 6509 6510 if (mask != vnic->rx_mask || uc_update || mc_update) { 6511 vnic->rx_mask = mask; 6512 6513 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 6514 schedule_work(&bp->sp_task); 6515 } 6516 } 6517 6518 static int bnxt_cfg_rx_mode(struct bnxt *bp) 6519 { 6520 struct net_device *dev = bp->dev; 6521 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 6522 struct netdev_hw_addr *ha; 6523 int i, off = 0, rc; 6524 bool uc_update; 6525 6526 netif_addr_lock_bh(dev); 6527 uc_update = bnxt_uc_list_updated(bp); 6528 netif_addr_unlock_bh(dev); 6529 6530 if (!uc_update) 6531 goto skip_uc; 6532 6533 mutex_lock(&bp->hwrm_cmd_lock); 6534 for (i = 1; i < vnic->uc_filter_count; i++) { 6535 struct hwrm_cfa_l2_filter_free_input req = {0}; 6536 6537 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 6538 -1); 6539 6540 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 6541 6542 rc = _hwrm_send_message(bp, &req, sizeof(req), 6543 HWRM_CMD_TIMEOUT); 6544 } 6545 mutex_unlock(&bp->hwrm_cmd_lock); 6546 6547 vnic->uc_filter_count = 1; 6548 6549 netif_addr_lock_bh(dev); 6550 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 6551 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 6552 } else { 6553 netdev_for_each_uc_addr(ha, dev) { 6554 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 6555 off += ETH_ALEN; 6556 vnic->uc_filter_count++; 6557 } 6558 } 6559 netif_addr_unlock_bh(dev); 6560 6561 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 6562 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 6563 if (rc) { 6564 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 6565 rc); 6566 vnic->uc_filter_count = i; 6567 return rc; 6568 } 6569 } 6570 6571 skip_uc: 6572 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 6573 if (rc) 6574 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n", 6575 rc); 6576 6577 return rc; 6578 } 6579 6580 /* If the chip and firmware supports RFS */ 6581 static bool bnxt_rfs_supported(struct bnxt *bp) 6582 { 6583 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 6584 return true; 6585 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 6586 return true; 6587 return false; 6588 } 6589 6590 /* If runtime conditions support RFS */ 6591 static bool bnxt_rfs_capable(struct bnxt *bp) 6592 { 6593 #ifdef CONFIG_RFS_ACCEL 6594 int vnics, max_vnics, max_rss_ctxs; 6595 6596 if (!(bp->flags & BNXT_FLAG_MSIX_CAP)) 6597 return false; 6598 6599 vnics = 1 + bp->rx_nr_rings; 6600 max_vnics = bnxt_get_max_func_vnics(bp); 6601 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 6602 6603 /* RSS contexts not a limiting factor */ 6604 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 6605 max_rss_ctxs = max_vnics; 6606 if (vnics > max_vnics || vnics > max_rss_ctxs) { 6607 netdev_warn(bp->dev, 6608 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 6609 min(max_rss_ctxs - 1, max_vnics - 1)); 6610 return false; 6611 } 6612 6613 return true; 6614 #else 6615 return false; 6616 #endif 6617 } 6618 6619 static netdev_features_t bnxt_fix_features(struct net_device *dev, 6620 netdev_features_t features) 6621 { 6622 struct bnxt *bp = netdev_priv(dev); 6623 6624 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 6625 features &= ~NETIF_F_NTUPLE; 6626 6627 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 6628 * turned on or off together. 6629 */ 6630 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) != 6631 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) { 6632 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX) 6633 features &= ~(NETIF_F_HW_VLAN_CTAG_RX | 6634 NETIF_F_HW_VLAN_STAG_RX); 6635 else 6636 features |= NETIF_F_HW_VLAN_CTAG_RX | 6637 NETIF_F_HW_VLAN_STAG_RX; 6638 } 6639 #ifdef CONFIG_BNXT_SRIOV 6640 if (BNXT_VF(bp)) { 6641 if (bp->vf.vlan) { 6642 features &= ~(NETIF_F_HW_VLAN_CTAG_RX | 6643 NETIF_F_HW_VLAN_STAG_RX); 6644 } 6645 } 6646 #endif 6647 return features; 6648 } 6649 6650 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 6651 { 6652 struct bnxt *bp = netdev_priv(dev); 6653 u32 flags = bp->flags; 6654 u32 changes; 6655 int rc = 0; 6656 bool re_init = false; 6657 bool update_tpa = false; 6658 6659 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 6660 if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 6661 flags |= BNXT_FLAG_GRO; 6662 if (features & NETIF_F_LRO) 6663 flags |= BNXT_FLAG_LRO; 6664 6665 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 6666 flags &= ~BNXT_FLAG_TPA; 6667 6668 if (features & NETIF_F_HW_VLAN_CTAG_RX) 6669 flags |= BNXT_FLAG_STRIP_VLAN; 6670 6671 if (features & NETIF_F_NTUPLE) 6672 flags |= BNXT_FLAG_RFS; 6673 6674 changes = flags ^ bp->flags; 6675 if (changes & BNXT_FLAG_TPA) { 6676 update_tpa = true; 6677 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 6678 (flags & BNXT_FLAG_TPA) == 0) 6679 re_init = true; 6680 } 6681 6682 if (changes & ~BNXT_FLAG_TPA) 6683 re_init = true; 6684 6685 if (flags != bp->flags) { 6686 u32 old_flags = bp->flags; 6687 6688 bp->flags = flags; 6689 6690 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 6691 if (update_tpa) 6692 bnxt_set_ring_params(bp); 6693 return rc; 6694 } 6695 6696 if (re_init) { 6697 bnxt_close_nic(bp, false, false); 6698 if (update_tpa) 6699 bnxt_set_ring_params(bp); 6700 6701 return bnxt_open_nic(bp, false, false); 6702 } 6703 if (update_tpa) { 6704 rc = bnxt_set_tpa(bp, 6705 (flags & BNXT_FLAG_TPA) ? 6706 true : false); 6707 if (rc) 6708 bp->flags = old_flags; 6709 } 6710 } 6711 return rc; 6712 } 6713 6714 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 6715 { 6716 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 6717 int i = bnapi->index; 6718 6719 if (!txr) 6720 return; 6721 6722 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 6723 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 6724 txr->tx_cons); 6725 } 6726 6727 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 6728 { 6729 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 6730 int i = bnapi->index; 6731 6732 if (!rxr) 6733 return; 6734 6735 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 6736 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 6737 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 6738 rxr->rx_sw_agg_prod); 6739 } 6740 6741 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 6742 { 6743 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6744 int i = bnapi->index; 6745 6746 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 6747 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 6748 } 6749 6750 static void bnxt_dbg_dump_states(struct bnxt *bp) 6751 { 6752 int i; 6753 struct bnxt_napi *bnapi; 6754 6755 for (i = 0; i < bp->cp_nr_rings; i++) { 6756 bnapi = bp->bnapi[i]; 6757 if (netif_msg_drv(bp)) { 6758 bnxt_dump_tx_sw_state(bnapi); 6759 bnxt_dump_rx_sw_state(bnapi); 6760 bnxt_dump_cp_sw_state(bnapi); 6761 } 6762 } 6763 } 6764 6765 static void bnxt_reset_task(struct bnxt *bp, bool silent) 6766 { 6767 if (!silent) 6768 bnxt_dbg_dump_states(bp); 6769 if (netif_running(bp->dev)) { 6770 int rc; 6771 6772 if (!silent) 6773 bnxt_ulp_stop(bp); 6774 bnxt_close_nic(bp, false, false); 6775 rc = bnxt_open_nic(bp, false, false); 6776 if (!silent && !rc) 6777 bnxt_ulp_start(bp); 6778 } 6779 } 6780 6781 static void bnxt_tx_timeout(struct net_device *dev) 6782 { 6783 struct bnxt *bp = netdev_priv(dev); 6784 6785 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 6786 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 6787 schedule_work(&bp->sp_task); 6788 } 6789 6790 #ifdef CONFIG_NET_POLL_CONTROLLER 6791 static void bnxt_poll_controller(struct net_device *dev) 6792 { 6793 struct bnxt *bp = netdev_priv(dev); 6794 int i; 6795 6796 /* Only process tx rings/combined rings in netpoll mode. */ 6797 for (i = 0; i < bp->tx_nr_rings; i++) { 6798 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6799 6800 napi_schedule(&txr->bnapi->napi); 6801 } 6802 } 6803 #endif 6804 6805 static void bnxt_timer(unsigned long data) 6806 { 6807 struct bnxt *bp = (struct bnxt *)data; 6808 struct net_device *dev = bp->dev; 6809 6810 if (!netif_running(dev)) 6811 return; 6812 6813 if (atomic_read(&bp->intr_sem) != 0) 6814 goto bnxt_restart_timer; 6815 6816 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) { 6817 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 6818 schedule_work(&bp->sp_task); 6819 } 6820 bnxt_restart_timer: 6821 mod_timer(&bp->timer, jiffies + bp->current_interval); 6822 } 6823 6824 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 6825 { 6826 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 6827 * set. If the device is being closed, bnxt_close() may be holding 6828 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 6829 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 6830 */ 6831 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 6832 rtnl_lock(); 6833 } 6834 6835 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 6836 { 6837 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 6838 rtnl_unlock(); 6839 } 6840 6841 /* Only called from bnxt_sp_task() */ 6842 static void bnxt_reset(struct bnxt *bp, bool silent) 6843 { 6844 bnxt_rtnl_lock_sp(bp); 6845 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 6846 bnxt_reset_task(bp, silent); 6847 bnxt_rtnl_unlock_sp(bp); 6848 } 6849 6850 static void bnxt_cfg_ntp_filters(struct bnxt *); 6851 6852 static void bnxt_sp_task(struct work_struct *work) 6853 { 6854 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 6855 6856 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 6857 smp_mb__after_atomic(); 6858 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 6859 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 6860 return; 6861 } 6862 6863 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 6864 bnxt_cfg_rx_mode(bp); 6865 6866 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 6867 bnxt_cfg_ntp_filters(bp); 6868 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 6869 bnxt_hwrm_exec_fwd_req(bp); 6870 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) { 6871 bnxt_hwrm_tunnel_dst_port_alloc( 6872 bp, bp->vxlan_port, 6873 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 6874 } 6875 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) { 6876 bnxt_hwrm_tunnel_dst_port_free( 6877 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 6878 } 6879 if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) { 6880 bnxt_hwrm_tunnel_dst_port_alloc( 6881 bp, bp->nge_port, 6882 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 6883 } 6884 if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) { 6885 bnxt_hwrm_tunnel_dst_port_free( 6886 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 6887 } 6888 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) 6889 bnxt_hwrm_port_qstats(bp); 6890 6891 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 6892 * must be the last functions to be called before exiting. 6893 */ 6894 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 6895 int rc = 0; 6896 6897 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 6898 &bp->sp_event)) 6899 bnxt_hwrm_phy_qcaps(bp); 6900 6901 bnxt_rtnl_lock_sp(bp); 6902 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 6903 rc = bnxt_update_link(bp, true); 6904 bnxt_rtnl_unlock_sp(bp); 6905 if (rc) 6906 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 6907 rc); 6908 } 6909 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 6910 bnxt_rtnl_lock_sp(bp); 6911 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 6912 bnxt_get_port_module_status(bp); 6913 bnxt_rtnl_unlock_sp(bp); 6914 } 6915 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 6916 bnxt_reset(bp, false); 6917 6918 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 6919 bnxt_reset(bp, true); 6920 6921 smp_mb__before_atomic(); 6922 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 6923 } 6924 6925 /* Under rtnl_lock */ 6926 int bnxt_reserve_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 6927 int tx_xdp) 6928 { 6929 int max_rx, max_tx, tx_sets = 1; 6930 int tx_rings_needed; 6931 int rc; 6932 6933 if (tcs) 6934 tx_sets = tcs; 6935 6936 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 6937 if (rc) 6938 return rc; 6939 6940 if (max_rx < rx) 6941 return -ENOMEM; 6942 6943 tx_rings_needed = tx * tx_sets + tx_xdp; 6944 if (max_tx < tx_rings_needed) 6945 return -ENOMEM; 6946 6947 if (bnxt_hwrm_reserve_tx_rings(bp, &tx_rings_needed) || 6948 tx_rings_needed < (tx * tx_sets + tx_xdp)) 6949 return -ENOMEM; 6950 return 0; 6951 } 6952 6953 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 6954 { 6955 if (bp->bar2) { 6956 pci_iounmap(pdev, bp->bar2); 6957 bp->bar2 = NULL; 6958 } 6959 6960 if (bp->bar1) { 6961 pci_iounmap(pdev, bp->bar1); 6962 bp->bar1 = NULL; 6963 } 6964 6965 if (bp->bar0) { 6966 pci_iounmap(pdev, bp->bar0); 6967 bp->bar0 = NULL; 6968 } 6969 } 6970 6971 static void bnxt_cleanup_pci(struct bnxt *bp) 6972 { 6973 bnxt_unmap_bars(bp, bp->pdev); 6974 pci_release_regions(bp->pdev); 6975 pci_disable_device(bp->pdev); 6976 } 6977 6978 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 6979 { 6980 int rc; 6981 struct bnxt *bp = netdev_priv(dev); 6982 6983 SET_NETDEV_DEV(dev, &pdev->dev); 6984 6985 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 6986 rc = pci_enable_device(pdev); 6987 if (rc) { 6988 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 6989 goto init_err; 6990 } 6991 6992 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 6993 dev_err(&pdev->dev, 6994 "Cannot find PCI device base address, aborting\n"); 6995 rc = -ENODEV; 6996 goto init_err_disable; 6997 } 6998 6999 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 7000 if (rc) { 7001 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 7002 goto init_err_disable; 7003 } 7004 7005 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 7006 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 7007 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 7008 goto init_err_disable; 7009 } 7010 7011 pci_set_master(pdev); 7012 7013 bp->dev = dev; 7014 bp->pdev = pdev; 7015 7016 bp->bar0 = pci_ioremap_bar(pdev, 0); 7017 if (!bp->bar0) { 7018 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 7019 rc = -ENOMEM; 7020 goto init_err_release; 7021 } 7022 7023 bp->bar1 = pci_ioremap_bar(pdev, 2); 7024 if (!bp->bar1) { 7025 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n"); 7026 rc = -ENOMEM; 7027 goto init_err_release; 7028 } 7029 7030 bp->bar2 = pci_ioremap_bar(pdev, 4); 7031 if (!bp->bar2) { 7032 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 7033 rc = -ENOMEM; 7034 goto init_err_release; 7035 } 7036 7037 pci_enable_pcie_error_reporting(pdev); 7038 7039 INIT_WORK(&bp->sp_task, bnxt_sp_task); 7040 7041 spin_lock_init(&bp->ntp_fltr_lock); 7042 7043 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 7044 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 7045 7046 /* tick values in micro seconds */ 7047 bp->rx_coal_ticks = 12; 7048 bp->rx_coal_bufs = 30; 7049 bp->rx_coal_ticks_irq = 1; 7050 bp->rx_coal_bufs_irq = 2; 7051 7052 bp->tx_coal_ticks = 25; 7053 bp->tx_coal_bufs = 30; 7054 bp->tx_coal_ticks_irq = 2; 7055 bp->tx_coal_bufs_irq = 2; 7056 7057 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 7058 7059 init_timer(&bp->timer); 7060 bp->timer.data = (unsigned long)bp; 7061 bp->timer.function = bnxt_timer; 7062 bp->current_interval = BNXT_TIMER_INTERVAL; 7063 7064 clear_bit(BNXT_STATE_OPEN, &bp->state); 7065 return 0; 7066 7067 init_err_release: 7068 bnxt_unmap_bars(bp, pdev); 7069 pci_release_regions(pdev); 7070 7071 init_err_disable: 7072 pci_disable_device(pdev); 7073 7074 init_err: 7075 return rc; 7076 } 7077 7078 /* rtnl_lock held */ 7079 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 7080 { 7081 struct sockaddr *addr = p; 7082 struct bnxt *bp = netdev_priv(dev); 7083 int rc = 0; 7084 7085 if (!is_valid_ether_addr(addr->sa_data)) 7086 return -EADDRNOTAVAIL; 7087 7088 rc = bnxt_approve_mac(bp, addr->sa_data); 7089 if (rc) 7090 return rc; 7091 7092 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 7093 return 0; 7094 7095 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 7096 if (netif_running(dev)) { 7097 bnxt_close_nic(bp, false, false); 7098 rc = bnxt_open_nic(bp, false, false); 7099 } 7100 7101 return rc; 7102 } 7103 7104 /* rtnl_lock held */ 7105 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 7106 { 7107 struct bnxt *bp = netdev_priv(dev); 7108 7109 if (netif_running(dev)) 7110 bnxt_close_nic(bp, false, false); 7111 7112 dev->mtu = new_mtu; 7113 bnxt_set_ring_params(bp); 7114 7115 if (netif_running(dev)) 7116 return bnxt_open_nic(bp, false, false); 7117 7118 return 0; 7119 } 7120 7121 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 7122 { 7123 struct bnxt *bp = netdev_priv(dev); 7124 bool sh = false; 7125 int rc; 7126 7127 if (tc > bp->max_tc) { 7128 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 7129 tc, bp->max_tc); 7130 return -EINVAL; 7131 } 7132 7133 if (netdev_get_num_tc(dev) == tc) 7134 return 0; 7135 7136 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7137 sh = true; 7138 7139 rc = bnxt_reserve_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 7140 sh, tc, bp->tx_nr_rings_xdp); 7141 if (rc) 7142 return rc; 7143 7144 /* Needs to close the device and do hw resource re-allocations */ 7145 if (netif_running(bp->dev)) 7146 bnxt_close_nic(bp, true, false); 7147 7148 if (tc) { 7149 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 7150 netdev_set_num_tc(dev, tc); 7151 } else { 7152 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 7153 netdev_reset_tc(dev); 7154 } 7155 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 7156 bp->tx_nr_rings + bp->rx_nr_rings; 7157 bp->num_stat_ctxs = bp->cp_nr_rings; 7158 7159 if (netif_running(bp->dev)) 7160 return bnxt_open_nic(bp, true, false); 7161 7162 return 0; 7163 } 7164 7165 static int bnxt_setup_tc(struct net_device *dev, u32 handle, u32 chain_index, 7166 __be16 proto, struct tc_to_netdev *ntc) 7167 { 7168 if (ntc->type != TC_SETUP_MQPRIO) 7169 return -EINVAL; 7170 7171 ntc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 7172 7173 return bnxt_setup_mq_tc(dev, ntc->mqprio->num_tc); 7174 } 7175 7176 #ifdef CONFIG_RFS_ACCEL 7177 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 7178 struct bnxt_ntuple_filter *f2) 7179 { 7180 struct flow_keys *keys1 = &f1->fkeys; 7181 struct flow_keys *keys2 = &f2->fkeys; 7182 7183 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src && 7184 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst && 7185 keys1->ports.ports == keys2->ports.ports && 7186 keys1->basic.ip_proto == keys2->basic.ip_proto && 7187 keys1->basic.n_proto == keys2->basic.n_proto && 7188 keys1->control.flags == keys2->control.flags && 7189 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 7190 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 7191 return true; 7192 7193 return false; 7194 } 7195 7196 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 7197 u16 rxq_index, u32 flow_id) 7198 { 7199 struct bnxt *bp = netdev_priv(dev); 7200 struct bnxt_ntuple_filter *fltr, *new_fltr; 7201 struct flow_keys *fkeys; 7202 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 7203 int rc = 0, idx, bit_id, l2_idx = 0; 7204 struct hlist_head *head; 7205 7206 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 7207 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 7208 int off = 0, j; 7209 7210 netif_addr_lock_bh(dev); 7211 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 7212 if (ether_addr_equal(eth->h_dest, 7213 vnic->uc_list + off)) { 7214 l2_idx = j + 1; 7215 break; 7216 } 7217 } 7218 netif_addr_unlock_bh(dev); 7219 if (!l2_idx) 7220 return -EINVAL; 7221 } 7222 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 7223 if (!new_fltr) 7224 return -ENOMEM; 7225 7226 fkeys = &new_fltr->fkeys; 7227 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 7228 rc = -EPROTONOSUPPORT; 7229 goto err_free; 7230 } 7231 7232 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 7233 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 7234 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 7235 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 7236 rc = -EPROTONOSUPPORT; 7237 goto err_free; 7238 } 7239 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 7240 bp->hwrm_spec_code < 0x10601) { 7241 rc = -EPROTONOSUPPORT; 7242 goto err_free; 7243 } 7244 if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) && 7245 bp->hwrm_spec_code < 0x10601) { 7246 rc = -EPROTONOSUPPORT; 7247 goto err_free; 7248 } 7249 7250 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 7251 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 7252 7253 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 7254 head = &bp->ntp_fltr_hash_tbl[idx]; 7255 rcu_read_lock(); 7256 hlist_for_each_entry_rcu(fltr, head, hash) { 7257 if (bnxt_fltr_match(fltr, new_fltr)) { 7258 rcu_read_unlock(); 7259 rc = 0; 7260 goto err_free; 7261 } 7262 } 7263 rcu_read_unlock(); 7264 7265 spin_lock_bh(&bp->ntp_fltr_lock); 7266 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 7267 BNXT_NTP_FLTR_MAX_FLTR, 0); 7268 if (bit_id < 0) { 7269 spin_unlock_bh(&bp->ntp_fltr_lock); 7270 rc = -ENOMEM; 7271 goto err_free; 7272 } 7273 7274 new_fltr->sw_id = (u16)bit_id; 7275 new_fltr->flow_id = flow_id; 7276 new_fltr->l2_fltr_idx = l2_idx; 7277 new_fltr->rxq = rxq_index; 7278 hlist_add_head_rcu(&new_fltr->hash, head); 7279 bp->ntp_fltr_count++; 7280 spin_unlock_bh(&bp->ntp_fltr_lock); 7281 7282 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 7283 schedule_work(&bp->sp_task); 7284 7285 return new_fltr->sw_id; 7286 7287 err_free: 7288 kfree(new_fltr); 7289 return rc; 7290 } 7291 7292 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 7293 { 7294 int i; 7295 7296 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 7297 struct hlist_head *head; 7298 struct hlist_node *tmp; 7299 struct bnxt_ntuple_filter *fltr; 7300 int rc; 7301 7302 head = &bp->ntp_fltr_hash_tbl[i]; 7303 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 7304 bool del = false; 7305 7306 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 7307 if (rps_may_expire_flow(bp->dev, fltr->rxq, 7308 fltr->flow_id, 7309 fltr->sw_id)) { 7310 bnxt_hwrm_cfa_ntuple_filter_free(bp, 7311 fltr); 7312 del = true; 7313 } 7314 } else { 7315 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 7316 fltr); 7317 if (rc) 7318 del = true; 7319 else 7320 set_bit(BNXT_FLTR_VALID, &fltr->state); 7321 } 7322 7323 if (del) { 7324 spin_lock_bh(&bp->ntp_fltr_lock); 7325 hlist_del_rcu(&fltr->hash); 7326 bp->ntp_fltr_count--; 7327 spin_unlock_bh(&bp->ntp_fltr_lock); 7328 synchronize_rcu(); 7329 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 7330 kfree(fltr); 7331 } 7332 } 7333 } 7334 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 7335 netdev_info(bp->dev, "Receive PF driver unload event!"); 7336 } 7337 7338 #else 7339 7340 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 7341 { 7342 } 7343 7344 #endif /* CONFIG_RFS_ACCEL */ 7345 7346 static void bnxt_udp_tunnel_add(struct net_device *dev, 7347 struct udp_tunnel_info *ti) 7348 { 7349 struct bnxt *bp = netdev_priv(dev); 7350 7351 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET) 7352 return; 7353 7354 if (!netif_running(dev)) 7355 return; 7356 7357 switch (ti->type) { 7358 case UDP_TUNNEL_TYPE_VXLAN: 7359 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port) 7360 return; 7361 7362 bp->vxlan_port_cnt++; 7363 if (bp->vxlan_port_cnt == 1) { 7364 bp->vxlan_port = ti->port; 7365 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event); 7366 schedule_work(&bp->sp_task); 7367 } 7368 break; 7369 case UDP_TUNNEL_TYPE_GENEVE: 7370 if (bp->nge_port_cnt && bp->nge_port != ti->port) 7371 return; 7372 7373 bp->nge_port_cnt++; 7374 if (bp->nge_port_cnt == 1) { 7375 bp->nge_port = ti->port; 7376 set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event); 7377 } 7378 break; 7379 default: 7380 return; 7381 } 7382 7383 schedule_work(&bp->sp_task); 7384 } 7385 7386 static void bnxt_udp_tunnel_del(struct net_device *dev, 7387 struct udp_tunnel_info *ti) 7388 { 7389 struct bnxt *bp = netdev_priv(dev); 7390 7391 if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET) 7392 return; 7393 7394 if (!netif_running(dev)) 7395 return; 7396 7397 switch (ti->type) { 7398 case UDP_TUNNEL_TYPE_VXLAN: 7399 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port) 7400 return; 7401 bp->vxlan_port_cnt--; 7402 7403 if (bp->vxlan_port_cnt != 0) 7404 return; 7405 7406 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event); 7407 break; 7408 case UDP_TUNNEL_TYPE_GENEVE: 7409 if (!bp->nge_port_cnt || bp->nge_port != ti->port) 7410 return; 7411 bp->nge_port_cnt--; 7412 7413 if (bp->nge_port_cnt != 0) 7414 return; 7415 7416 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event); 7417 break; 7418 default: 7419 return; 7420 } 7421 7422 schedule_work(&bp->sp_task); 7423 } 7424 7425 static const struct net_device_ops bnxt_netdev_ops = { 7426 .ndo_open = bnxt_open, 7427 .ndo_start_xmit = bnxt_start_xmit, 7428 .ndo_stop = bnxt_close, 7429 .ndo_get_stats64 = bnxt_get_stats64, 7430 .ndo_set_rx_mode = bnxt_set_rx_mode, 7431 .ndo_do_ioctl = bnxt_ioctl, 7432 .ndo_validate_addr = eth_validate_addr, 7433 .ndo_set_mac_address = bnxt_change_mac_addr, 7434 .ndo_change_mtu = bnxt_change_mtu, 7435 .ndo_fix_features = bnxt_fix_features, 7436 .ndo_set_features = bnxt_set_features, 7437 .ndo_tx_timeout = bnxt_tx_timeout, 7438 #ifdef CONFIG_BNXT_SRIOV 7439 .ndo_get_vf_config = bnxt_get_vf_config, 7440 .ndo_set_vf_mac = bnxt_set_vf_mac, 7441 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 7442 .ndo_set_vf_rate = bnxt_set_vf_bw, 7443 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 7444 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 7445 #endif 7446 #ifdef CONFIG_NET_POLL_CONTROLLER 7447 .ndo_poll_controller = bnxt_poll_controller, 7448 #endif 7449 .ndo_setup_tc = bnxt_setup_tc, 7450 #ifdef CONFIG_RFS_ACCEL 7451 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 7452 #endif 7453 .ndo_udp_tunnel_add = bnxt_udp_tunnel_add, 7454 .ndo_udp_tunnel_del = bnxt_udp_tunnel_del, 7455 .ndo_xdp = bnxt_xdp, 7456 }; 7457 7458 static void bnxt_remove_one(struct pci_dev *pdev) 7459 { 7460 struct net_device *dev = pci_get_drvdata(pdev); 7461 struct bnxt *bp = netdev_priv(dev); 7462 7463 if (BNXT_PF(bp)) 7464 bnxt_sriov_disable(bp); 7465 7466 pci_disable_pcie_error_reporting(pdev); 7467 unregister_netdev(dev); 7468 cancel_work_sync(&bp->sp_task); 7469 bp->sp_event = 0; 7470 7471 bnxt_clear_int_mode(bp); 7472 bnxt_hwrm_func_drv_unrgtr(bp); 7473 bnxt_free_hwrm_resources(bp); 7474 bnxt_free_hwrm_short_cmd_req(bp); 7475 bnxt_ethtool_free(bp); 7476 bnxt_dcb_free(bp); 7477 kfree(bp->edev); 7478 bp->edev = NULL; 7479 if (bp->xdp_prog) 7480 bpf_prog_put(bp->xdp_prog); 7481 bnxt_cleanup_pci(bp); 7482 free_netdev(dev); 7483 } 7484 7485 static int bnxt_probe_phy(struct bnxt *bp) 7486 { 7487 int rc = 0; 7488 struct bnxt_link_info *link_info = &bp->link_info; 7489 7490 rc = bnxt_hwrm_phy_qcaps(bp); 7491 if (rc) { 7492 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 7493 rc); 7494 return rc; 7495 } 7496 7497 rc = bnxt_update_link(bp, false); 7498 if (rc) { 7499 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 7500 rc); 7501 return rc; 7502 } 7503 7504 /* Older firmware does not have supported_auto_speeds, so assume 7505 * that all supported speeds can be autonegotiated. 7506 */ 7507 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 7508 link_info->support_auto_speeds = link_info->support_speeds; 7509 7510 /*initialize the ethool setting copy with NVM settings */ 7511 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 7512 link_info->autoneg = BNXT_AUTONEG_SPEED; 7513 if (bp->hwrm_spec_code >= 0x10201) { 7514 if (link_info->auto_pause_setting & 7515 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 7516 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 7517 } else { 7518 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 7519 } 7520 link_info->advertising = link_info->auto_link_speeds; 7521 } else { 7522 link_info->req_link_speed = link_info->force_link_speed; 7523 link_info->req_duplex = link_info->duplex_setting; 7524 } 7525 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 7526 link_info->req_flow_ctrl = 7527 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 7528 else 7529 link_info->req_flow_ctrl = link_info->force_pause_setting; 7530 return rc; 7531 } 7532 7533 static int bnxt_get_max_irq(struct pci_dev *pdev) 7534 { 7535 u16 ctrl; 7536 7537 if (!pdev->msix_cap) 7538 return 1; 7539 7540 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 7541 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 7542 } 7543 7544 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 7545 int *max_cp) 7546 { 7547 int max_ring_grps = 0; 7548 7549 #ifdef CONFIG_BNXT_SRIOV 7550 if (!BNXT_PF(bp)) { 7551 *max_tx = bp->vf.max_tx_rings; 7552 *max_rx = bp->vf.max_rx_rings; 7553 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings); 7554 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs); 7555 max_ring_grps = bp->vf.max_hw_ring_grps; 7556 } else 7557 #endif 7558 { 7559 *max_tx = bp->pf.max_tx_rings; 7560 *max_rx = bp->pf.max_rx_rings; 7561 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings); 7562 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs); 7563 max_ring_grps = bp->pf.max_hw_ring_grps; 7564 } 7565 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 7566 *max_cp -= 1; 7567 *max_rx -= 2; 7568 } 7569 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7570 *max_rx >>= 1; 7571 *max_rx = min_t(int, *max_rx, max_ring_grps); 7572 } 7573 7574 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 7575 { 7576 int rx, tx, cp; 7577 7578 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 7579 if (!rx || !tx || !cp) 7580 return -ENOMEM; 7581 7582 *max_rx = rx; 7583 *max_tx = tx; 7584 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 7585 } 7586 7587 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 7588 bool shared) 7589 { 7590 int rc; 7591 7592 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 7593 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 7594 /* Not enough rings, try disabling agg rings. */ 7595 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7596 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 7597 if (rc) 7598 return rc; 7599 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7600 bp->dev->hw_features &= ~NETIF_F_LRO; 7601 bp->dev->features &= ~NETIF_F_LRO; 7602 bnxt_set_ring_params(bp); 7603 } 7604 7605 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 7606 int max_cp, max_stat, max_irq; 7607 7608 /* Reserve minimum resources for RoCE */ 7609 max_cp = bnxt_get_max_func_cp_rings(bp); 7610 max_stat = bnxt_get_max_func_stat_ctxs(bp); 7611 max_irq = bnxt_get_max_func_irqs(bp); 7612 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 7613 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 7614 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 7615 return 0; 7616 7617 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 7618 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 7619 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 7620 max_cp = min_t(int, max_cp, max_irq); 7621 max_cp = min_t(int, max_cp, max_stat); 7622 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 7623 if (rc) 7624 rc = 0; 7625 } 7626 return rc; 7627 } 7628 7629 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 7630 { 7631 int dflt_rings, max_rx_rings, max_tx_rings, rc; 7632 7633 if (sh) 7634 bp->flags |= BNXT_FLAG_SHARED_RINGS; 7635 dflt_rings = netif_get_num_default_rss_queues(); 7636 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 7637 if (rc) 7638 return rc; 7639 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 7640 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 7641 7642 rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc); 7643 if (rc) 7644 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 7645 7646 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 7647 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 7648 bp->tx_nr_rings + bp->rx_nr_rings; 7649 bp->num_stat_ctxs = bp->cp_nr_rings; 7650 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 7651 bp->rx_nr_rings++; 7652 bp->cp_nr_rings++; 7653 } 7654 return rc; 7655 } 7656 7657 void bnxt_restore_pf_fw_resources(struct bnxt *bp) 7658 { 7659 ASSERT_RTNL(); 7660 bnxt_hwrm_func_qcaps(bp); 7661 bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP); 7662 } 7663 7664 static void bnxt_parse_log_pcie_link(struct bnxt *bp) 7665 { 7666 enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN; 7667 enum pci_bus_speed speed = PCI_SPEED_UNKNOWN; 7668 7669 if (pcie_get_minimum_link(bp->pdev, &speed, &width) || 7670 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) 7671 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n"); 7672 else 7673 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n", 7674 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : 7675 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : 7676 speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : 7677 "Unknown", width); 7678 } 7679 7680 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 7681 { 7682 static int version_printed; 7683 struct net_device *dev; 7684 struct bnxt *bp; 7685 int rc, max_irqs; 7686 7687 if (pci_is_bridge(pdev)) 7688 return -ENODEV; 7689 7690 if (version_printed++ == 0) 7691 pr_info("%s", version); 7692 7693 max_irqs = bnxt_get_max_irq(pdev); 7694 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 7695 if (!dev) 7696 return -ENOMEM; 7697 7698 bp = netdev_priv(dev); 7699 7700 if (bnxt_vf_pciid(ent->driver_data)) 7701 bp->flags |= BNXT_FLAG_VF; 7702 7703 if (pdev->msix_cap) 7704 bp->flags |= BNXT_FLAG_MSIX_CAP; 7705 7706 rc = bnxt_init_board(pdev, dev); 7707 if (rc < 0) 7708 goto init_err_free; 7709 7710 dev->netdev_ops = &bnxt_netdev_ops; 7711 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 7712 dev->ethtool_ops = &bnxt_ethtool_ops; 7713 pci_set_drvdata(pdev, dev); 7714 7715 rc = bnxt_alloc_hwrm_resources(bp); 7716 if (rc) 7717 goto init_err_pci_clean; 7718 7719 mutex_init(&bp->hwrm_cmd_lock); 7720 rc = bnxt_hwrm_ver_get(bp); 7721 if (rc) 7722 goto init_err_pci_clean; 7723 7724 if (bp->flags & BNXT_FLAG_SHORT_CMD) { 7725 rc = bnxt_alloc_hwrm_short_cmd_req(bp); 7726 if (rc) 7727 goto init_err_pci_clean; 7728 } 7729 7730 rc = bnxt_hwrm_func_reset(bp); 7731 if (rc) 7732 goto init_err_pci_clean; 7733 7734 bnxt_hwrm_fw_set_time(bp); 7735 7736 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 7737 NETIF_F_TSO | NETIF_F_TSO6 | 7738 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 7739 NETIF_F_GSO_IPXIP4 | 7740 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 7741 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 7742 NETIF_F_RXCSUM | NETIF_F_GRO; 7743 7744 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 7745 dev->hw_features |= NETIF_F_LRO; 7746 7747 dev->hw_enc_features = 7748 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 7749 NETIF_F_TSO | NETIF_F_TSO6 | 7750 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 7751 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 7752 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 7753 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 7754 NETIF_F_GSO_GRE_CSUM; 7755 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 7756 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 7757 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX; 7758 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 7759 dev->priv_flags |= IFF_UNICAST_FLT; 7760 7761 /* MTU range: 60 - 9500 */ 7762 dev->min_mtu = ETH_ZLEN; 7763 dev->max_mtu = BNXT_MAX_MTU; 7764 7765 #ifdef CONFIG_BNXT_SRIOV 7766 init_waitqueue_head(&bp->sriov_cfg_wait); 7767 #endif 7768 bp->gro_func = bnxt_gro_func_5730x; 7769 if (BNXT_CHIP_P4_PLUS(bp)) 7770 bp->gro_func = bnxt_gro_func_5731x; 7771 else 7772 bp->flags |= BNXT_FLAG_DOUBLE_DB; 7773 7774 rc = bnxt_hwrm_func_drv_rgtr(bp); 7775 if (rc) 7776 goto init_err_pci_clean; 7777 7778 rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0); 7779 if (rc) 7780 goto init_err_pci_clean; 7781 7782 bp->ulp_probe = bnxt_ulp_probe; 7783 7784 /* Get the MAX capabilities for this function */ 7785 rc = bnxt_hwrm_func_qcaps(bp); 7786 if (rc) { 7787 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 7788 rc); 7789 rc = -1; 7790 goto init_err_pci_clean; 7791 } 7792 7793 rc = bnxt_hwrm_queue_qportcfg(bp); 7794 if (rc) { 7795 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n", 7796 rc); 7797 rc = -1; 7798 goto init_err_pci_clean; 7799 } 7800 7801 bnxt_hwrm_func_qcfg(bp); 7802 bnxt_hwrm_port_led_qcaps(bp); 7803 bnxt_ethtool_init(bp); 7804 bnxt_dcb_init(bp); 7805 7806 bnxt_set_rx_skb_mode(bp, false); 7807 bnxt_set_tpa_flags(bp); 7808 bnxt_set_ring_params(bp); 7809 bnxt_set_max_func_irqs(bp, max_irqs); 7810 rc = bnxt_set_dflt_rings(bp, true); 7811 if (rc) { 7812 netdev_err(bp->dev, "Not enough rings available.\n"); 7813 rc = -ENOMEM; 7814 goto init_err_pci_clean; 7815 } 7816 7817 /* Default RSS hash cfg. */ 7818 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 7819 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 7820 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 7821 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 7822 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 7823 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 7824 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 7825 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 7826 } 7827 7828 bnxt_hwrm_vnic_qcaps(bp); 7829 if (bnxt_rfs_supported(bp)) { 7830 dev->hw_features |= NETIF_F_NTUPLE; 7831 if (bnxt_rfs_capable(bp)) { 7832 bp->flags |= BNXT_FLAG_RFS; 7833 dev->features |= NETIF_F_NTUPLE; 7834 } 7835 } 7836 7837 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX) 7838 bp->flags |= BNXT_FLAG_STRIP_VLAN; 7839 7840 rc = bnxt_probe_phy(bp); 7841 if (rc) 7842 goto init_err_pci_clean; 7843 7844 rc = bnxt_init_int_mode(bp); 7845 if (rc) 7846 goto init_err_pci_clean; 7847 7848 bnxt_get_wol_settings(bp); 7849 if (bp->flags & BNXT_FLAG_WOL_CAP) 7850 device_set_wakeup_enable(&pdev->dev, bp->wol); 7851 else 7852 device_set_wakeup_capable(&pdev->dev, false); 7853 7854 rc = register_netdev(dev); 7855 if (rc) 7856 goto init_err_clr_int; 7857 7858 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 7859 board_info[ent->driver_data].name, 7860 (long)pci_resource_start(pdev, 0), dev->dev_addr); 7861 7862 bnxt_parse_log_pcie_link(bp); 7863 7864 return 0; 7865 7866 init_err_clr_int: 7867 bnxt_clear_int_mode(bp); 7868 7869 init_err_pci_clean: 7870 bnxt_cleanup_pci(bp); 7871 7872 init_err_free: 7873 free_netdev(dev); 7874 return rc; 7875 } 7876 7877 static void bnxt_shutdown(struct pci_dev *pdev) 7878 { 7879 struct net_device *dev = pci_get_drvdata(pdev); 7880 struct bnxt *bp; 7881 7882 if (!dev) 7883 return; 7884 7885 rtnl_lock(); 7886 bp = netdev_priv(dev); 7887 if (!bp) 7888 goto shutdown_exit; 7889 7890 if (netif_running(dev)) 7891 dev_close(dev); 7892 7893 if (system_state == SYSTEM_POWER_OFF) { 7894 bnxt_ulp_shutdown(bp); 7895 bnxt_clear_int_mode(bp); 7896 pci_wake_from_d3(pdev, bp->wol); 7897 pci_set_power_state(pdev, PCI_D3hot); 7898 } 7899 7900 shutdown_exit: 7901 rtnl_unlock(); 7902 } 7903 7904 #ifdef CONFIG_PM_SLEEP 7905 static int bnxt_suspend(struct device *device) 7906 { 7907 struct pci_dev *pdev = to_pci_dev(device); 7908 struct net_device *dev = pci_get_drvdata(pdev); 7909 struct bnxt *bp = netdev_priv(dev); 7910 int rc = 0; 7911 7912 rtnl_lock(); 7913 if (netif_running(dev)) { 7914 netif_device_detach(dev); 7915 rc = bnxt_close(dev); 7916 } 7917 bnxt_hwrm_func_drv_unrgtr(bp); 7918 rtnl_unlock(); 7919 return rc; 7920 } 7921 7922 static int bnxt_resume(struct device *device) 7923 { 7924 struct pci_dev *pdev = to_pci_dev(device); 7925 struct net_device *dev = pci_get_drvdata(pdev); 7926 struct bnxt *bp = netdev_priv(dev); 7927 int rc = 0; 7928 7929 rtnl_lock(); 7930 if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) { 7931 rc = -ENODEV; 7932 goto resume_exit; 7933 } 7934 rc = bnxt_hwrm_func_reset(bp); 7935 if (rc) { 7936 rc = -EBUSY; 7937 goto resume_exit; 7938 } 7939 bnxt_get_wol_settings(bp); 7940 if (netif_running(dev)) { 7941 rc = bnxt_open(dev); 7942 if (!rc) 7943 netif_device_attach(dev); 7944 } 7945 7946 resume_exit: 7947 rtnl_unlock(); 7948 return rc; 7949 } 7950 7951 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 7952 #define BNXT_PM_OPS (&bnxt_pm_ops) 7953 7954 #else 7955 7956 #define BNXT_PM_OPS NULL 7957 7958 #endif /* CONFIG_PM_SLEEP */ 7959 7960 /** 7961 * bnxt_io_error_detected - called when PCI error is detected 7962 * @pdev: Pointer to PCI device 7963 * @state: The current pci connection state 7964 * 7965 * This function is called after a PCI bus error affecting 7966 * this device has been detected. 7967 */ 7968 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 7969 pci_channel_state_t state) 7970 { 7971 struct net_device *netdev = pci_get_drvdata(pdev); 7972 struct bnxt *bp = netdev_priv(netdev); 7973 7974 netdev_info(netdev, "PCI I/O error detected\n"); 7975 7976 rtnl_lock(); 7977 netif_device_detach(netdev); 7978 7979 bnxt_ulp_stop(bp); 7980 7981 if (state == pci_channel_io_perm_failure) { 7982 rtnl_unlock(); 7983 return PCI_ERS_RESULT_DISCONNECT; 7984 } 7985 7986 if (netif_running(netdev)) 7987 bnxt_close(netdev); 7988 7989 pci_disable_device(pdev); 7990 rtnl_unlock(); 7991 7992 /* Request a slot slot reset. */ 7993 return PCI_ERS_RESULT_NEED_RESET; 7994 } 7995 7996 /** 7997 * bnxt_io_slot_reset - called after the pci bus has been reset. 7998 * @pdev: Pointer to PCI device 7999 * 8000 * Restart the card from scratch, as if from a cold-boot. 8001 * At this point, the card has exprienced a hard reset, 8002 * followed by fixups by BIOS, and has its config space 8003 * set up identically to what it was at cold boot. 8004 */ 8005 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 8006 { 8007 struct net_device *netdev = pci_get_drvdata(pdev); 8008 struct bnxt *bp = netdev_priv(netdev); 8009 int err = 0; 8010 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 8011 8012 netdev_info(bp->dev, "PCI Slot Reset\n"); 8013 8014 rtnl_lock(); 8015 8016 if (pci_enable_device(pdev)) { 8017 dev_err(&pdev->dev, 8018 "Cannot re-enable PCI device after reset.\n"); 8019 } else { 8020 pci_set_master(pdev); 8021 8022 err = bnxt_hwrm_func_reset(bp); 8023 if (!err && netif_running(netdev)) 8024 err = bnxt_open(netdev); 8025 8026 if (!err) { 8027 result = PCI_ERS_RESULT_RECOVERED; 8028 bnxt_ulp_start(bp); 8029 } 8030 } 8031 8032 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev)) 8033 dev_close(netdev); 8034 8035 rtnl_unlock(); 8036 8037 err = pci_cleanup_aer_uncorrect_error_status(pdev); 8038 if (err) { 8039 dev_err(&pdev->dev, 8040 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 8041 err); /* non-fatal, continue */ 8042 } 8043 8044 return PCI_ERS_RESULT_RECOVERED; 8045 } 8046 8047 /** 8048 * bnxt_io_resume - called when traffic can start flowing again. 8049 * @pdev: Pointer to PCI device 8050 * 8051 * This callback is called when the error recovery driver tells 8052 * us that its OK to resume normal operation. 8053 */ 8054 static void bnxt_io_resume(struct pci_dev *pdev) 8055 { 8056 struct net_device *netdev = pci_get_drvdata(pdev); 8057 8058 rtnl_lock(); 8059 8060 netif_device_attach(netdev); 8061 8062 rtnl_unlock(); 8063 } 8064 8065 static const struct pci_error_handlers bnxt_err_handler = { 8066 .error_detected = bnxt_io_error_detected, 8067 .slot_reset = bnxt_io_slot_reset, 8068 .resume = bnxt_io_resume 8069 }; 8070 8071 static struct pci_driver bnxt_pci_driver = { 8072 .name = DRV_MODULE_NAME, 8073 .id_table = bnxt_pci_tbl, 8074 .probe = bnxt_init_one, 8075 .remove = bnxt_remove_one, 8076 .shutdown = bnxt_shutdown, 8077 .driver.pm = BNXT_PM_OPS, 8078 .err_handler = &bnxt_err_handler, 8079 #if defined(CONFIG_BNXT_SRIOV) 8080 .sriov_configure = bnxt_sriov_configure, 8081 #endif 8082 }; 8083 8084 module_pci_driver(bnxt_pci_driver); 8085