1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 
73 MODULE_LICENSE("GPL");
74 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
75 
76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
78 #define BNXT_RX_COPY_THRESH 256
79 
80 #define BNXT_TX_PUSH_THRESH 164
81 
82 enum board_idx {
83 	BCM57301,
84 	BCM57302,
85 	BCM57304,
86 	BCM57417_NPAR,
87 	BCM58700,
88 	BCM57311,
89 	BCM57312,
90 	BCM57402,
91 	BCM57404,
92 	BCM57406,
93 	BCM57402_NPAR,
94 	BCM57407,
95 	BCM57412,
96 	BCM57414,
97 	BCM57416,
98 	BCM57417,
99 	BCM57412_NPAR,
100 	BCM57314,
101 	BCM57417_SFP,
102 	BCM57416_SFP,
103 	BCM57404_NPAR,
104 	BCM57406_NPAR,
105 	BCM57407_SFP,
106 	BCM57407_NPAR,
107 	BCM57414_NPAR,
108 	BCM57416_NPAR,
109 	BCM57452,
110 	BCM57454,
111 	BCM5745x_NPAR,
112 	BCM57508,
113 	BCM57504,
114 	BCM57502,
115 	BCM57508_NPAR,
116 	BCM57504_NPAR,
117 	BCM57502_NPAR,
118 	BCM58802,
119 	BCM58804,
120 	BCM58808,
121 	NETXTREME_E_VF,
122 	NETXTREME_C_VF,
123 	NETXTREME_S_VF,
124 	NETXTREME_E_P5_VF,
125 };
126 
127 /* indexed by enum above */
128 static const struct {
129 	char *name;
130 } board_info[] = {
131 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
132 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
133 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
134 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
135 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
136 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
137 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
138 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
139 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
140 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
141 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
142 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
143 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
144 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
145 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
146 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
148 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
149 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
150 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
151 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
152 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
153 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
154 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
155 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
156 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
157 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
158 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
159 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
160 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
161 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
163 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
164 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
165 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
166 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
167 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
168 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
169 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
170 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
171 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
172 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
173 };
174 
175 static const struct pci_device_id bnxt_pci_tbl[] = {
176 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
185 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
197 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
198 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
203 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
207 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
208 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
210 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
211 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
212 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
213 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
214 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
215 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
217 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
218 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
219 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
220 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
221 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
222 #ifdef CONFIG_BNXT_SRIOV
223 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
224 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
225 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
226 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
227 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
228 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
229 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
230 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
231 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
232 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
233 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
234 #endif
235 	{ 0 }
236 };
237 
238 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
239 
240 static const u16 bnxt_vf_req_snif[] = {
241 	HWRM_FUNC_CFG,
242 	HWRM_FUNC_VF_CFG,
243 	HWRM_PORT_PHY_QCFG,
244 	HWRM_CFA_L2_FILTER_ALLOC,
245 };
246 
247 static const u16 bnxt_async_events_arr[] = {
248 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
249 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
250 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
251 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
252 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
253 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
254 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
255 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
256 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
257 };
258 
259 static struct workqueue_struct *bnxt_pf_wq;
260 
261 static bool bnxt_vf_pciid(enum board_idx idx)
262 {
263 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
264 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
265 }
266 
267 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
268 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
269 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
270 
271 #define BNXT_CP_DB_IRQ_DIS(db)						\
272 		writel(DB_CP_IRQ_DIS_FLAGS, db)
273 
274 #define BNXT_DB_CQ(db, idx)						\
275 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
276 
277 #define BNXT_DB_NQ_P5(db, idx)						\
278 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
279 
280 #define BNXT_DB_CQ_ARM(db, idx)						\
281 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
282 
283 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
284 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
285 
286 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
287 {
288 	if (bp->flags & BNXT_FLAG_CHIP_P5)
289 		BNXT_DB_NQ_P5(db, idx);
290 	else
291 		BNXT_DB_CQ(db, idx);
292 }
293 
294 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
295 {
296 	if (bp->flags & BNXT_FLAG_CHIP_P5)
297 		BNXT_DB_NQ_ARM_P5(db, idx);
298 	else
299 		BNXT_DB_CQ_ARM(db, idx);
300 }
301 
302 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
303 {
304 	if (bp->flags & BNXT_FLAG_CHIP_P5)
305 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
306 		       db->doorbell);
307 	else
308 		BNXT_DB_CQ(db, idx);
309 }
310 
311 const u16 bnxt_lhint_arr[] = {
312 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
313 	TX_BD_FLAGS_LHINT_512_TO_1023,
314 	TX_BD_FLAGS_LHINT_1024_TO_2047,
315 	TX_BD_FLAGS_LHINT_1024_TO_2047,
316 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
317 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
318 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
320 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
321 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
322 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
323 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
324 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
325 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
326 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
327 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
328 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
329 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
330 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
331 };
332 
333 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
334 {
335 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
336 
337 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
338 		return 0;
339 
340 	return md_dst->u.port_info.port_id;
341 }
342 
343 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
344 {
345 	struct bnxt *bp = netdev_priv(dev);
346 	struct tx_bd *txbd;
347 	struct tx_bd_ext *txbd1;
348 	struct netdev_queue *txq;
349 	int i;
350 	dma_addr_t mapping;
351 	unsigned int length, pad = 0;
352 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
353 	u16 prod, last_frag;
354 	struct pci_dev *pdev = bp->pdev;
355 	struct bnxt_tx_ring_info *txr;
356 	struct bnxt_sw_tx_bd *tx_buf;
357 
358 	i = skb_get_queue_mapping(skb);
359 	if (unlikely(i >= bp->tx_nr_rings)) {
360 		dev_kfree_skb_any(skb);
361 		return NETDEV_TX_OK;
362 	}
363 
364 	txq = netdev_get_tx_queue(dev, i);
365 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
366 	prod = txr->tx_prod;
367 
368 	free_size = bnxt_tx_avail(bp, txr);
369 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
370 		netif_tx_stop_queue(txq);
371 		return NETDEV_TX_BUSY;
372 	}
373 
374 	length = skb->len;
375 	len = skb_headlen(skb);
376 	last_frag = skb_shinfo(skb)->nr_frags;
377 
378 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
379 
380 	txbd->tx_bd_opaque = prod;
381 
382 	tx_buf = &txr->tx_buf_ring[prod];
383 	tx_buf->skb = skb;
384 	tx_buf->nr_frags = last_frag;
385 
386 	vlan_tag_flags = 0;
387 	cfa_action = bnxt_xmit_get_cfa_action(skb);
388 	if (skb_vlan_tag_present(skb)) {
389 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
390 				 skb_vlan_tag_get(skb);
391 		/* Currently supports 8021Q, 8021AD vlan offloads
392 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
393 		 */
394 		if (skb->vlan_proto == htons(ETH_P_8021Q))
395 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
396 	}
397 
398 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
399 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
400 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
401 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
402 		void __iomem *db = txr->tx_db.doorbell;
403 		void *pdata = tx_push_buf->data;
404 		u64 *end;
405 		int j, push_len;
406 
407 		/* Set COAL_NOW to be ready quickly for the next push */
408 		tx_push->tx_bd_len_flags_type =
409 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
410 					TX_BD_TYPE_LONG_TX_BD |
411 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
412 					TX_BD_FLAGS_COAL_NOW |
413 					TX_BD_FLAGS_PACKET_END |
414 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
415 
416 		if (skb->ip_summed == CHECKSUM_PARTIAL)
417 			tx_push1->tx_bd_hsize_lflags =
418 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
419 		else
420 			tx_push1->tx_bd_hsize_lflags = 0;
421 
422 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
423 		tx_push1->tx_bd_cfa_action =
424 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
425 
426 		end = pdata + length;
427 		end = PTR_ALIGN(end, 8) - 1;
428 		*end = 0;
429 
430 		skb_copy_from_linear_data(skb, pdata, len);
431 		pdata += len;
432 		for (j = 0; j < last_frag; j++) {
433 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
434 			void *fptr;
435 
436 			fptr = skb_frag_address_safe(frag);
437 			if (!fptr)
438 				goto normal_tx;
439 
440 			memcpy(pdata, fptr, skb_frag_size(frag));
441 			pdata += skb_frag_size(frag);
442 		}
443 
444 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
445 		txbd->tx_bd_haddr = txr->data_mapping;
446 		prod = NEXT_TX(prod);
447 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
448 		memcpy(txbd, tx_push1, sizeof(*txbd));
449 		prod = NEXT_TX(prod);
450 		tx_push->doorbell =
451 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
452 		txr->tx_prod = prod;
453 
454 		tx_buf->is_push = 1;
455 		netdev_tx_sent_queue(txq, skb->len);
456 		wmb();	/* Sync is_push and byte queue before pushing data */
457 
458 		push_len = (length + sizeof(*tx_push) + 7) / 8;
459 		if (push_len > 16) {
460 			__iowrite64_copy(db, tx_push_buf, 16);
461 			__iowrite32_copy(db + 4, tx_push_buf + 1,
462 					 (push_len - 16) << 1);
463 		} else {
464 			__iowrite64_copy(db, tx_push_buf, push_len);
465 		}
466 
467 		goto tx_done;
468 	}
469 
470 normal_tx:
471 	if (length < BNXT_MIN_PKT_SIZE) {
472 		pad = BNXT_MIN_PKT_SIZE - length;
473 		if (skb_pad(skb, pad)) {
474 			/* SKB already freed. */
475 			tx_buf->skb = NULL;
476 			return NETDEV_TX_OK;
477 		}
478 		length = BNXT_MIN_PKT_SIZE;
479 	}
480 
481 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
482 
483 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
484 		dev_kfree_skb_any(skb);
485 		tx_buf->skb = NULL;
486 		return NETDEV_TX_OK;
487 	}
488 
489 	dma_unmap_addr_set(tx_buf, mapping, mapping);
490 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
491 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
492 
493 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
494 
495 	prod = NEXT_TX(prod);
496 	txbd1 = (struct tx_bd_ext *)
497 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
498 
499 	txbd1->tx_bd_hsize_lflags = 0;
500 	if (skb_is_gso(skb)) {
501 		u32 hdr_len;
502 
503 		if (skb->encapsulation)
504 			hdr_len = skb_inner_network_offset(skb) +
505 				skb_inner_network_header_len(skb) +
506 				inner_tcp_hdrlen(skb);
507 		else
508 			hdr_len = skb_transport_offset(skb) +
509 				tcp_hdrlen(skb);
510 
511 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
512 					TX_BD_FLAGS_T_IPID |
513 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
514 		length = skb_shinfo(skb)->gso_size;
515 		txbd1->tx_bd_mss = cpu_to_le32(length);
516 		length += hdr_len;
517 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
518 		txbd1->tx_bd_hsize_lflags =
519 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
520 		txbd1->tx_bd_mss = 0;
521 	}
522 
523 	length >>= 9;
524 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
525 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
526 				     skb->len);
527 		i = 0;
528 		goto tx_dma_error;
529 	}
530 	flags |= bnxt_lhint_arr[length];
531 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
532 
533 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
534 	txbd1->tx_bd_cfa_action =
535 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
536 	for (i = 0; i < last_frag; i++) {
537 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
538 
539 		prod = NEXT_TX(prod);
540 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
541 
542 		len = skb_frag_size(frag);
543 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
544 					   DMA_TO_DEVICE);
545 
546 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
547 			goto tx_dma_error;
548 
549 		tx_buf = &txr->tx_buf_ring[prod];
550 		dma_unmap_addr_set(tx_buf, mapping, mapping);
551 
552 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
553 
554 		flags = len << TX_BD_LEN_SHIFT;
555 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
556 	}
557 
558 	flags &= ~TX_BD_LEN;
559 	txbd->tx_bd_len_flags_type =
560 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
561 			    TX_BD_FLAGS_PACKET_END);
562 
563 	netdev_tx_sent_queue(txq, skb->len);
564 
565 	/* Sync BD data before updating doorbell */
566 	wmb();
567 
568 	prod = NEXT_TX(prod);
569 	txr->tx_prod = prod;
570 
571 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
572 		bnxt_db_write(bp, &txr->tx_db, prod);
573 
574 tx_done:
575 
576 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
577 		if (netdev_xmit_more() && !tx_buf->is_push)
578 			bnxt_db_write(bp, &txr->tx_db, prod);
579 
580 		netif_tx_stop_queue(txq);
581 
582 		/* netif_tx_stop_queue() must be done before checking
583 		 * tx index in bnxt_tx_avail() below, because in
584 		 * bnxt_tx_int(), we update tx index before checking for
585 		 * netif_tx_queue_stopped().
586 		 */
587 		smp_mb();
588 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
589 			netif_tx_wake_queue(txq);
590 	}
591 	return NETDEV_TX_OK;
592 
593 tx_dma_error:
594 	last_frag = i;
595 
596 	/* start back at beginning and unmap skb */
597 	prod = txr->tx_prod;
598 	tx_buf = &txr->tx_buf_ring[prod];
599 	tx_buf->skb = NULL;
600 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
601 			 skb_headlen(skb), PCI_DMA_TODEVICE);
602 	prod = NEXT_TX(prod);
603 
604 	/* unmap remaining mapped pages */
605 	for (i = 0; i < last_frag; i++) {
606 		prod = NEXT_TX(prod);
607 		tx_buf = &txr->tx_buf_ring[prod];
608 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
609 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
610 			       PCI_DMA_TODEVICE);
611 	}
612 
613 	dev_kfree_skb_any(skb);
614 	return NETDEV_TX_OK;
615 }
616 
617 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
618 {
619 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
620 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
621 	u16 cons = txr->tx_cons;
622 	struct pci_dev *pdev = bp->pdev;
623 	int i;
624 	unsigned int tx_bytes = 0;
625 
626 	for (i = 0; i < nr_pkts; i++) {
627 		struct bnxt_sw_tx_bd *tx_buf;
628 		struct sk_buff *skb;
629 		int j, last;
630 
631 		tx_buf = &txr->tx_buf_ring[cons];
632 		cons = NEXT_TX(cons);
633 		skb = tx_buf->skb;
634 		tx_buf->skb = NULL;
635 
636 		if (tx_buf->is_push) {
637 			tx_buf->is_push = 0;
638 			goto next_tx_int;
639 		}
640 
641 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
642 				 skb_headlen(skb), PCI_DMA_TODEVICE);
643 		last = tx_buf->nr_frags;
644 
645 		for (j = 0; j < last; j++) {
646 			cons = NEXT_TX(cons);
647 			tx_buf = &txr->tx_buf_ring[cons];
648 			dma_unmap_page(
649 				&pdev->dev,
650 				dma_unmap_addr(tx_buf, mapping),
651 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
652 				PCI_DMA_TODEVICE);
653 		}
654 
655 next_tx_int:
656 		cons = NEXT_TX(cons);
657 
658 		tx_bytes += skb->len;
659 		dev_kfree_skb_any(skb);
660 	}
661 
662 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
663 	txr->tx_cons = cons;
664 
665 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
666 	 * before checking for netif_tx_queue_stopped().  Without the
667 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
668 	 * will miss it and cause the queue to be stopped forever.
669 	 */
670 	smp_mb();
671 
672 	if (unlikely(netif_tx_queue_stopped(txq)) &&
673 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
674 		__netif_tx_lock(txq, smp_processor_id());
675 		if (netif_tx_queue_stopped(txq) &&
676 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
677 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
678 			netif_tx_wake_queue(txq);
679 		__netif_tx_unlock(txq);
680 	}
681 }
682 
683 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
684 					 struct bnxt_rx_ring_info *rxr,
685 					 gfp_t gfp)
686 {
687 	struct device *dev = &bp->pdev->dev;
688 	struct page *page;
689 
690 	page = page_pool_dev_alloc_pages(rxr->page_pool);
691 	if (!page)
692 		return NULL;
693 
694 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
695 				      DMA_ATTR_WEAK_ORDERING);
696 	if (dma_mapping_error(dev, *mapping)) {
697 		page_pool_recycle_direct(rxr->page_pool, page);
698 		return NULL;
699 	}
700 	*mapping += bp->rx_dma_offset;
701 	return page;
702 }
703 
704 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
705 				       gfp_t gfp)
706 {
707 	u8 *data;
708 	struct pci_dev *pdev = bp->pdev;
709 
710 	data = kmalloc(bp->rx_buf_size, gfp);
711 	if (!data)
712 		return NULL;
713 
714 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
715 					bp->rx_buf_use_size, bp->rx_dir,
716 					DMA_ATTR_WEAK_ORDERING);
717 
718 	if (dma_mapping_error(&pdev->dev, *mapping)) {
719 		kfree(data);
720 		data = NULL;
721 	}
722 	return data;
723 }
724 
725 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
726 		       u16 prod, gfp_t gfp)
727 {
728 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
729 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
730 	dma_addr_t mapping;
731 
732 	if (BNXT_RX_PAGE_MODE(bp)) {
733 		struct page *page =
734 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
735 
736 		if (!page)
737 			return -ENOMEM;
738 
739 		rx_buf->data = page;
740 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
741 	} else {
742 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
743 
744 		if (!data)
745 			return -ENOMEM;
746 
747 		rx_buf->data = data;
748 		rx_buf->data_ptr = data + bp->rx_offset;
749 	}
750 	rx_buf->mapping = mapping;
751 
752 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
753 	return 0;
754 }
755 
756 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
757 {
758 	u16 prod = rxr->rx_prod;
759 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
760 	struct rx_bd *cons_bd, *prod_bd;
761 
762 	prod_rx_buf = &rxr->rx_buf_ring[prod];
763 	cons_rx_buf = &rxr->rx_buf_ring[cons];
764 
765 	prod_rx_buf->data = data;
766 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
767 
768 	prod_rx_buf->mapping = cons_rx_buf->mapping;
769 
770 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
771 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
772 
773 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
774 }
775 
776 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
777 {
778 	u16 next, max = rxr->rx_agg_bmap_size;
779 
780 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
781 	if (next >= max)
782 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
783 	return next;
784 }
785 
786 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
787 				     struct bnxt_rx_ring_info *rxr,
788 				     u16 prod, gfp_t gfp)
789 {
790 	struct rx_bd *rxbd =
791 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
792 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
793 	struct pci_dev *pdev = bp->pdev;
794 	struct page *page;
795 	dma_addr_t mapping;
796 	u16 sw_prod = rxr->rx_sw_agg_prod;
797 	unsigned int offset = 0;
798 
799 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
800 		page = rxr->rx_page;
801 		if (!page) {
802 			page = alloc_page(gfp);
803 			if (!page)
804 				return -ENOMEM;
805 			rxr->rx_page = page;
806 			rxr->rx_page_offset = 0;
807 		}
808 		offset = rxr->rx_page_offset;
809 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
810 		if (rxr->rx_page_offset == PAGE_SIZE)
811 			rxr->rx_page = NULL;
812 		else
813 			get_page(page);
814 	} else {
815 		page = alloc_page(gfp);
816 		if (!page)
817 			return -ENOMEM;
818 	}
819 
820 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
821 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
822 				     DMA_ATTR_WEAK_ORDERING);
823 	if (dma_mapping_error(&pdev->dev, mapping)) {
824 		__free_page(page);
825 		return -EIO;
826 	}
827 
828 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
829 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
830 
831 	__set_bit(sw_prod, rxr->rx_agg_bmap);
832 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
833 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
834 
835 	rx_agg_buf->page = page;
836 	rx_agg_buf->offset = offset;
837 	rx_agg_buf->mapping = mapping;
838 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
839 	rxbd->rx_bd_opaque = sw_prod;
840 	return 0;
841 }
842 
843 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
844 				       struct bnxt_cp_ring_info *cpr,
845 				       u16 cp_cons, u16 curr)
846 {
847 	struct rx_agg_cmp *agg;
848 
849 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
850 	agg = (struct rx_agg_cmp *)
851 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
852 	return agg;
853 }
854 
855 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
856 					      struct bnxt_rx_ring_info *rxr,
857 					      u16 agg_id, u16 curr)
858 {
859 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
860 
861 	return &tpa_info->agg_arr[curr];
862 }
863 
864 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
865 				   u16 start, u32 agg_bufs, bool tpa)
866 {
867 	struct bnxt_napi *bnapi = cpr->bnapi;
868 	struct bnxt *bp = bnapi->bp;
869 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
870 	u16 prod = rxr->rx_agg_prod;
871 	u16 sw_prod = rxr->rx_sw_agg_prod;
872 	bool p5_tpa = false;
873 	u32 i;
874 
875 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
876 		p5_tpa = true;
877 
878 	for (i = 0; i < agg_bufs; i++) {
879 		u16 cons;
880 		struct rx_agg_cmp *agg;
881 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
882 		struct rx_bd *prod_bd;
883 		struct page *page;
884 
885 		if (p5_tpa)
886 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
887 		else
888 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
889 		cons = agg->rx_agg_cmp_opaque;
890 		__clear_bit(cons, rxr->rx_agg_bmap);
891 
892 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
893 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
894 
895 		__set_bit(sw_prod, rxr->rx_agg_bmap);
896 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
897 		cons_rx_buf = &rxr->rx_agg_ring[cons];
898 
899 		/* It is possible for sw_prod to be equal to cons, so
900 		 * set cons_rx_buf->page to NULL first.
901 		 */
902 		page = cons_rx_buf->page;
903 		cons_rx_buf->page = NULL;
904 		prod_rx_buf->page = page;
905 		prod_rx_buf->offset = cons_rx_buf->offset;
906 
907 		prod_rx_buf->mapping = cons_rx_buf->mapping;
908 
909 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
910 
911 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
912 		prod_bd->rx_bd_opaque = sw_prod;
913 
914 		prod = NEXT_RX_AGG(prod);
915 		sw_prod = NEXT_RX_AGG(sw_prod);
916 	}
917 	rxr->rx_agg_prod = prod;
918 	rxr->rx_sw_agg_prod = sw_prod;
919 }
920 
921 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
922 					struct bnxt_rx_ring_info *rxr,
923 					u16 cons, void *data, u8 *data_ptr,
924 					dma_addr_t dma_addr,
925 					unsigned int offset_and_len)
926 {
927 	unsigned int payload = offset_and_len >> 16;
928 	unsigned int len = offset_and_len & 0xffff;
929 	skb_frag_t *frag;
930 	struct page *page = data;
931 	u16 prod = rxr->rx_prod;
932 	struct sk_buff *skb;
933 	int off, err;
934 
935 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
936 	if (unlikely(err)) {
937 		bnxt_reuse_rx_data(rxr, cons, data);
938 		return NULL;
939 	}
940 	dma_addr -= bp->rx_dma_offset;
941 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
942 			     DMA_ATTR_WEAK_ORDERING);
943 	page_pool_release_page(rxr->page_pool, page);
944 
945 	if (unlikely(!payload))
946 		payload = eth_get_headlen(bp->dev, data_ptr, len);
947 
948 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
949 	if (!skb) {
950 		__free_page(page);
951 		return NULL;
952 	}
953 
954 	off = (void *)data_ptr - page_address(page);
955 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
956 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
957 	       payload + NET_IP_ALIGN);
958 
959 	frag = &skb_shinfo(skb)->frags[0];
960 	skb_frag_size_sub(frag, payload);
961 	skb_frag_off_add(frag, payload);
962 	skb->data_len -= payload;
963 	skb->tail += payload;
964 
965 	return skb;
966 }
967 
968 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
969 				   struct bnxt_rx_ring_info *rxr, u16 cons,
970 				   void *data, u8 *data_ptr,
971 				   dma_addr_t dma_addr,
972 				   unsigned int offset_and_len)
973 {
974 	u16 prod = rxr->rx_prod;
975 	struct sk_buff *skb;
976 	int err;
977 
978 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
979 	if (unlikely(err)) {
980 		bnxt_reuse_rx_data(rxr, cons, data);
981 		return NULL;
982 	}
983 
984 	skb = build_skb(data, 0);
985 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
986 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
987 	if (!skb) {
988 		kfree(data);
989 		return NULL;
990 	}
991 
992 	skb_reserve(skb, bp->rx_offset);
993 	skb_put(skb, offset_and_len & 0xffff);
994 	return skb;
995 }
996 
997 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
998 				     struct bnxt_cp_ring_info *cpr,
999 				     struct sk_buff *skb, u16 idx,
1000 				     u32 agg_bufs, bool tpa)
1001 {
1002 	struct bnxt_napi *bnapi = cpr->bnapi;
1003 	struct pci_dev *pdev = bp->pdev;
1004 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1005 	u16 prod = rxr->rx_agg_prod;
1006 	bool p5_tpa = false;
1007 	u32 i;
1008 
1009 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1010 		p5_tpa = true;
1011 
1012 	for (i = 0; i < agg_bufs; i++) {
1013 		u16 cons, frag_len;
1014 		struct rx_agg_cmp *agg;
1015 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1016 		struct page *page;
1017 		dma_addr_t mapping;
1018 
1019 		if (p5_tpa)
1020 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1021 		else
1022 			agg = bnxt_get_agg(bp, cpr, idx, i);
1023 		cons = agg->rx_agg_cmp_opaque;
1024 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1025 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1026 
1027 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1028 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1029 				   cons_rx_buf->offset, frag_len);
1030 		__clear_bit(cons, rxr->rx_agg_bmap);
1031 
1032 		/* It is possible for bnxt_alloc_rx_page() to allocate
1033 		 * a sw_prod index that equals the cons index, so we
1034 		 * need to clear the cons entry now.
1035 		 */
1036 		mapping = cons_rx_buf->mapping;
1037 		page = cons_rx_buf->page;
1038 		cons_rx_buf->page = NULL;
1039 
1040 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1041 			struct skb_shared_info *shinfo;
1042 			unsigned int nr_frags;
1043 
1044 			shinfo = skb_shinfo(skb);
1045 			nr_frags = --shinfo->nr_frags;
1046 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1047 
1048 			dev_kfree_skb(skb);
1049 
1050 			cons_rx_buf->page = page;
1051 
1052 			/* Update prod since possibly some pages have been
1053 			 * allocated already.
1054 			 */
1055 			rxr->rx_agg_prod = prod;
1056 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1057 			return NULL;
1058 		}
1059 
1060 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1061 				     PCI_DMA_FROMDEVICE,
1062 				     DMA_ATTR_WEAK_ORDERING);
1063 
1064 		skb->data_len += frag_len;
1065 		skb->len += frag_len;
1066 		skb->truesize += PAGE_SIZE;
1067 
1068 		prod = NEXT_RX_AGG(prod);
1069 	}
1070 	rxr->rx_agg_prod = prod;
1071 	return skb;
1072 }
1073 
1074 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1075 			       u8 agg_bufs, u32 *raw_cons)
1076 {
1077 	u16 last;
1078 	struct rx_agg_cmp *agg;
1079 
1080 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1081 	last = RING_CMP(*raw_cons);
1082 	agg = (struct rx_agg_cmp *)
1083 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1084 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1085 }
1086 
1087 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1088 					    unsigned int len,
1089 					    dma_addr_t mapping)
1090 {
1091 	struct bnxt *bp = bnapi->bp;
1092 	struct pci_dev *pdev = bp->pdev;
1093 	struct sk_buff *skb;
1094 
1095 	skb = napi_alloc_skb(&bnapi->napi, len);
1096 	if (!skb)
1097 		return NULL;
1098 
1099 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1100 				bp->rx_dir);
1101 
1102 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1103 	       len + NET_IP_ALIGN);
1104 
1105 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1106 				   bp->rx_dir);
1107 
1108 	skb_put(skb, len);
1109 	return skb;
1110 }
1111 
1112 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1113 			   u32 *raw_cons, void *cmp)
1114 {
1115 	struct rx_cmp *rxcmp = cmp;
1116 	u32 tmp_raw_cons = *raw_cons;
1117 	u8 cmp_type, agg_bufs = 0;
1118 
1119 	cmp_type = RX_CMP_TYPE(rxcmp);
1120 
1121 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1122 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1123 			    RX_CMP_AGG_BUFS) >>
1124 			   RX_CMP_AGG_BUFS_SHIFT;
1125 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1126 		struct rx_tpa_end_cmp *tpa_end = cmp;
1127 
1128 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1129 			return 0;
1130 
1131 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1132 	}
1133 
1134 	if (agg_bufs) {
1135 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1136 			return -EBUSY;
1137 	}
1138 	*raw_cons = tmp_raw_cons;
1139 	return 0;
1140 }
1141 
1142 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1143 {
1144 	if (BNXT_PF(bp))
1145 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1146 	else
1147 		schedule_delayed_work(&bp->fw_reset_task, delay);
1148 }
1149 
1150 static void bnxt_queue_sp_work(struct bnxt *bp)
1151 {
1152 	if (BNXT_PF(bp))
1153 		queue_work(bnxt_pf_wq, &bp->sp_task);
1154 	else
1155 		schedule_work(&bp->sp_task);
1156 }
1157 
1158 static void bnxt_cancel_sp_work(struct bnxt *bp)
1159 {
1160 	if (BNXT_PF(bp))
1161 		flush_workqueue(bnxt_pf_wq);
1162 	else
1163 		cancel_work_sync(&bp->sp_task);
1164 }
1165 
1166 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1167 {
1168 	if (!rxr->bnapi->in_reset) {
1169 		rxr->bnapi->in_reset = true;
1170 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1171 		bnxt_queue_sp_work(bp);
1172 	}
1173 	rxr->rx_next_cons = 0xffff;
1174 }
1175 
1176 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1177 {
1178 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1179 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1180 
1181 	if (test_bit(idx, map->agg_idx_bmap))
1182 		idx = find_first_zero_bit(map->agg_idx_bmap,
1183 					  BNXT_AGG_IDX_BMAP_SIZE);
1184 	__set_bit(idx, map->agg_idx_bmap);
1185 	map->agg_id_tbl[agg_id] = idx;
1186 	return idx;
1187 }
1188 
1189 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1190 {
1191 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1192 
1193 	__clear_bit(idx, map->agg_idx_bmap);
1194 }
1195 
1196 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1197 {
1198 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1199 
1200 	return map->agg_id_tbl[agg_id];
1201 }
1202 
1203 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1204 			   struct rx_tpa_start_cmp *tpa_start,
1205 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1206 {
1207 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1208 	struct bnxt_tpa_info *tpa_info;
1209 	u16 cons, prod, agg_id;
1210 	struct rx_bd *prod_bd;
1211 	dma_addr_t mapping;
1212 
1213 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1214 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1215 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1216 	} else {
1217 		agg_id = TPA_START_AGG_ID(tpa_start);
1218 	}
1219 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1220 	prod = rxr->rx_prod;
1221 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1222 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1223 	tpa_info = &rxr->rx_tpa[agg_id];
1224 
1225 	if (unlikely(cons != rxr->rx_next_cons ||
1226 		     TPA_START_ERROR(tpa_start))) {
1227 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1228 			    cons, rxr->rx_next_cons,
1229 			    TPA_START_ERROR_CODE(tpa_start1));
1230 		bnxt_sched_reset(bp, rxr);
1231 		return;
1232 	}
1233 	/* Store cfa_code in tpa_info to use in tpa_end
1234 	 * completion processing.
1235 	 */
1236 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1237 	prod_rx_buf->data = tpa_info->data;
1238 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1239 
1240 	mapping = tpa_info->mapping;
1241 	prod_rx_buf->mapping = mapping;
1242 
1243 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1244 
1245 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1246 
1247 	tpa_info->data = cons_rx_buf->data;
1248 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1249 	cons_rx_buf->data = NULL;
1250 	tpa_info->mapping = cons_rx_buf->mapping;
1251 
1252 	tpa_info->len =
1253 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1254 				RX_TPA_START_CMP_LEN_SHIFT;
1255 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1256 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1257 
1258 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1259 		tpa_info->gso_type = SKB_GSO_TCPV4;
1260 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1261 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1262 			tpa_info->gso_type = SKB_GSO_TCPV6;
1263 		tpa_info->rss_hash =
1264 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1265 	} else {
1266 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1267 		tpa_info->gso_type = 0;
1268 		if (netif_msg_rx_err(bp))
1269 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1270 	}
1271 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1272 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1273 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1274 	tpa_info->agg_count = 0;
1275 
1276 	rxr->rx_prod = NEXT_RX(prod);
1277 	cons = NEXT_RX(cons);
1278 	rxr->rx_next_cons = NEXT_RX(cons);
1279 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1280 
1281 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1282 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1283 	cons_rx_buf->data = NULL;
1284 }
1285 
1286 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1287 {
1288 	if (agg_bufs)
1289 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1290 }
1291 
1292 #ifdef CONFIG_INET
1293 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1294 {
1295 	struct udphdr *uh = NULL;
1296 
1297 	if (ip_proto == htons(ETH_P_IP)) {
1298 		struct iphdr *iph = (struct iphdr *)skb->data;
1299 
1300 		if (iph->protocol == IPPROTO_UDP)
1301 			uh = (struct udphdr *)(iph + 1);
1302 	} else {
1303 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1304 
1305 		if (iph->nexthdr == IPPROTO_UDP)
1306 			uh = (struct udphdr *)(iph + 1);
1307 	}
1308 	if (uh) {
1309 		if (uh->check)
1310 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1311 		else
1312 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1313 	}
1314 }
1315 #endif
1316 
1317 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1318 					   int payload_off, int tcp_ts,
1319 					   struct sk_buff *skb)
1320 {
1321 #ifdef CONFIG_INET
1322 	struct tcphdr *th;
1323 	int len, nw_off;
1324 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1325 	u32 hdr_info = tpa_info->hdr_info;
1326 	bool loopback = false;
1327 
1328 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1329 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1330 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1331 
1332 	/* If the packet is an internal loopback packet, the offsets will
1333 	 * have an extra 4 bytes.
1334 	 */
1335 	if (inner_mac_off == 4) {
1336 		loopback = true;
1337 	} else if (inner_mac_off > 4) {
1338 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1339 					    ETH_HLEN - 2));
1340 
1341 		/* We only support inner iPv4/ipv6.  If we don't see the
1342 		 * correct protocol ID, it must be a loopback packet where
1343 		 * the offsets are off by 4.
1344 		 */
1345 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1346 			loopback = true;
1347 	}
1348 	if (loopback) {
1349 		/* internal loopback packet, subtract all offsets by 4 */
1350 		inner_ip_off -= 4;
1351 		inner_mac_off -= 4;
1352 		outer_ip_off -= 4;
1353 	}
1354 
1355 	nw_off = inner_ip_off - ETH_HLEN;
1356 	skb_set_network_header(skb, nw_off);
1357 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1358 		struct ipv6hdr *iph = ipv6_hdr(skb);
1359 
1360 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1361 		len = skb->len - skb_transport_offset(skb);
1362 		th = tcp_hdr(skb);
1363 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1364 	} else {
1365 		struct iphdr *iph = ip_hdr(skb);
1366 
1367 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1368 		len = skb->len - skb_transport_offset(skb);
1369 		th = tcp_hdr(skb);
1370 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1371 	}
1372 
1373 	if (inner_mac_off) { /* tunnel */
1374 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1375 					    ETH_HLEN - 2));
1376 
1377 		bnxt_gro_tunnel(skb, proto);
1378 	}
1379 #endif
1380 	return skb;
1381 }
1382 
1383 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1384 					   int payload_off, int tcp_ts,
1385 					   struct sk_buff *skb)
1386 {
1387 #ifdef CONFIG_INET
1388 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1389 	u32 hdr_info = tpa_info->hdr_info;
1390 	int iphdr_len, nw_off;
1391 
1392 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1393 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1394 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1395 
1396 	nw_off = inner_ip_off - ETH_HLEN;
1397 	skb_set_network_header(skb, nw_off);
1398 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1399 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1400 	skb_set_transport_header(skb, nw_off + iphdr_len);
1401 
1402 	if (inner_mac_off) { /* tunnel */
1403 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1404 					    ETH_HLEN - 2));
1405 
1406 		bnxt_gro_tunnel(skb, proto);
1407 	}
1408 #endif
1409 	return skb;
1410 }
1411 
1412 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1413 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1414 
1415 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1416 					   int payload_off, int tcp_ts,
1417 					   struct sk_buff *skb)
1418 {
1419 #ifdef CONFIG_INET
1420 	struct tcphdr *th;
1421 	int len, nw_off, tcp_opt_len = 0;
1422 
1423 	if (tcp_ts)
1424 		tcp_opt_len = 12;
1425 
1426 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1427 		struct iphdr *iph;
1428 
1429 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1430 			 ETH_HLEN;
1431 		skb_set_network_header(skb, nw_off);
1432 		iph = ip_hdr(skb);
1433 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1434 		len = skb->len - skb_transport_offset(skb);
1435 		th = tcp_hdr(skb);
1436 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1437 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1438 		struct ipv6hdr *iph;
1439 
1440 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1441 			 ETH_HLEN;
1442 		skb_set_network_header(skb, nw_off);
1443 		iph = ipv6_hdr(skb);
1444 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1445 		len = skb->len - skb_transport_offset(skb);
1446 		th = tcp_hdr(skb);
1447 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1448 	} else {
1449 		dev_kfree_skb_any(skb);
1450 		return NULL;
1451 	}
1452 
1453 	if (nw_off) /* tunnel */
1454 		bnxt_gro_tunnel(skb, skb->protocol);
1455 #endif
1456 	return skb;
1457 }
1458 
1459 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1460 					   struct bnxt_tpa_info *tpa_info,
1461 					   struct rx_tpa_end_cmp *tpa_end,
1462 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1463 					   struct sk_buff *skb)
1464 {
1465 #ifdef CONFIG_INET
1466 	int payload_off;
1467 	u16 segs;
1468 
1469 	segs = TPA_END_TPA_SEGS(tpa_end);
1470 	if (segs == 1)
1471 		return skb;
1472 
1473 	NAPI_GRO_CB(skb)->count = segs;
1474 	skb_shinfo(skb)->gso_size =
1475 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1476 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1477 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1478 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1479 	else
1480 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1481 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1482 	if (likely(skb))
1483 		tcp_gro_complete(skb);
1484 #endif
1485 	return skb;
1486 }
1487 
1488 /* Given the cfa_code of a received packet determine which
1489  * netdev (vf-rep or PF) the packet is destined to.
1490  */
1491 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1492 {
1493 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1494 
1495 	/* if vf-rep dev is NULL, the must belongs to the PF */
1496 	return dev ? dev : bp->dev;
1497 }
1498 
1499 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1500 					   struct bnxt_cp_ring_info *cpr,
1501 					   u32 *raw_cons,
1502 					   struct rx_tpa_end_cmp *tpa_end,
1503 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1504 					   u8 *event)
1505 {
1506 	struct bnxt_napi *bnapi = cpr->bnapi;
1507 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1508 	u8 *data_ptr, agg_bufs;
1509 	unsigned int len;
1510 	struct bnxt_tpa_info *tpa_info;
1511 	dma_addr_t mapping;
1512 	struct sk_buff *skb;
1513 	u16 idx = 0, agg_id;
1514 	void *data;
1515 	bool gro;
1516 
1517 	if (unlikely(bnapi->in_reset)) {
1518 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1519 
1520 		if (rc < 0)
1521 			return ERR_PTR(-EBUSY);
1522 		return NULL;
1523 	}
1524 
1525 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1526 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1527 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1528 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1529 		tpa_info = &rxr->rx_tpa[agg_id];
1530 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1531 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1532 				    agg_bufs, tpa_info->agg_count);
1533 			agg_bufs = tpa_info->agg_count;
1534 		}
1535 		tpa_info->agg_count = 0;
1536 		*event |= BNXT_AGG_EVENT;
1537 		bnxt_free_agg_idx(rxr, agg_id);
1538 		idx = agg_id;
1539 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1540 	} else {
1541 		agg_id = TPA_END_AGG_ID(tpa_end);
1542 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1543 		tpa_info = &rxr->rx_tpa[agg_id];
1544 		idx = RING_CMP(*raw_cons);
1545 		if (agg_bufs) {
1546 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1547 				return ERR_PTR(-EBUSY);
1548 
1549 			*event |= BNXT_AGG_EVENT;
1550 			idx = NEXT_CMP(idx);
1551 		}
1552 		gro = !!TPA_END_GRO(tpa_end);
1553 	}
1554 	data = tpa_info->data;
1555 	data_ptr = tpa_info->data_ptr;
1556 	prefetch(data_ptr);
1557 	len = tpa_info->len;
1558 	mapping = tpa_info->mapping;
1559 
1560 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1561 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1562 		if (agg_bufs > MAX_SKB_FRAGS)
1563 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1564 				    agg_bufs, (int)MAX_SKB_FRAGS);
1565 		return NULL;
1566 	}
1567 
1568 	if (len <= bp->rx_copy_thresh) {
1569 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1570 		if (!skb) {
1571 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1572 			return NULL;
1573 		}
1574 	} else {
1575 		u8 *new_data;
1576 		dma_addr_t new_mapping;
1577 
1578 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1579 		if (!new_data) {
1580 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1581 			return NULL;
1582 		}
1583 
1584 		tpa_info->data = new_data;
1585 		tpa_info->data_ptr = new_data + bp->rx_offset;
1586 		tpa_info->mapping = new_mapping;
1587 
1588 		skb = build_skb(data, 0);
1589 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1590 				       bp->rx_buf_use_size, bp->rx_dir,
1591 				       DMA_ATTR_WEAK_ORDERING);
1592 
1593 		if (!skb) {
1594 			kfree(data);
1595 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1596 			return NULL;
1597 		}
1598 		skb_reserve(skb, bp->rx_offset);
1599 		skb_put(skb, len);
1600 	}
1601 
1602 	if (agg_bufs) {
1603 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1604 		if (!skb) {
1605 			/* Page reuse already handled by bnxt_rx_pages(). */
1606 			return NULL;
1607 		}
1608 	}
1609 
1610 	skb->protocol =
1611 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1612 
1613 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1614 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1615 
1616 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1617 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1618 		u16 vlan_proto = tpa_info->metadata >>
1619 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1620 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1621 
1622 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1623 	}
1624 
1625 	skb_checksum_none_assert(skb);
1626 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1627 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1628 		skb->csum_level =
1629 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1630 	}
1631 
1632 	if (gro)
1633 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1634 
1635 	return skb;
1636 }
1637 
1638 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1639 			 struct rx_agg_cmp *rx_agg)
1640 {
1641 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1642 	struct bnxt_tpa_info *tpa_info;
1643 
1644 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1645 	tpa_info = &rxr->rx_tpa[agg_id];
1646 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1647 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1648 }
1649 
1650 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1651 			     struct sk_buff *skb)
1652 {
1653 	if (skb->dev != bp->dev) {
1654 		/* this packet belongs to a vf-rep */
1655 		bnxt_vf_rep_rx(bp, skb);
1656 		return;
1657 	}
1658 	skb_record_rx_queue(skb, bnapi->index);
1659 	napi_gro_receive(&bnapi->napi, skb);
1660 }
1661 
1662 /* returns the following:
1663  * 1       - 1 packet successfully received
1664  * 0       - successful TPA_START, packet not completed yet
1665  * -EBUSY  - completion ring does not have all the agg buffers yet
1666  * -ENOMEM - packet aborted due to out of memory
1667  * -EIO    - packet aborted due to hw error indicated in BD
1668  */
1669 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1670 		       u32 *raw_cons, u8 *event)
1671 {
1672 	struct bnxt_napi *bnapi = cpr->bnapi;
1673 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1674 	struct net_device *dev = bp->dev;
1675 	struct rx_cmp *rxcmp;
1676 	struct rx_cmp_ext *rxcmp1;
1677 	u32 tmp_raw_cons = *raw_cons;
1678 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1679 	struct bnxt_sw_rx_bd *rx_buf;
1680 	unsigned int len;
1681 	u8 *data_ptr, agg_bufs, cmp_type;
1682 	dma_addr_t dma_addr;
1683 	struct sk_buff *skb;
1684 	void *data;
1685 	int rc = 0;
1686 	u32 misc;
1687 
1688 	rxcmp = (struct rx_cmp *)
1689 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1690 
1691 	cmp_type = RX_CMP_TYPE(rxcmp);
1692 
1693 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1694 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1695 		goto next_rx_no_prod_no_len;
1696 	}
1697 
1698 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1699 	cp_cons = RING_CMP(tmp_raw_cons);
1700 	rxcmp1 = (struct rx_cmp_ext *)
1701 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1702 
1703 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1704 		return -EBUSY;
1705 
1706 	prod = rxr->rx_prod;
1707 
1708 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1709 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1710 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1711 
1712 		*event |= BNXT_RX_EVENT;
1713 		goto next_rx_no_prod_no_len;
1714 
1715 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1716 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1717 				   (struct rx_tpa_end_cmp *)rxcmp,
1718 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1719 
1720 		if (IS_ERR(skb))
1721 			return -EBUSY;
1722 
1723 		rc = -ENOMEM;
1724 		if (likely(skb)) {
1725 			bnxt_deliver_skb(bp, bnapi, skb);
1726 			rc = 1;
1727 		}
1728 		*event |= BNXT_RX_EVENT;
1729 		goto next_rx_no_prod_no_len;
1730 	}
1731 
1732 	cons = rxcmp->rx_cmp_opaque;
1733 	if (unlikely(cons != rxr->rx_next_cons)) {
1734 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1735 
1736 		netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1737 			    cons, rxr->rx_next_cons);
1738 		bnxt_sched_reset(bp, rxr);
1739 		return rc1;
1740 	}
1741 	rx_buf = &rxr->rx_buf_ring[cons];
1742 	data = rx_buf->data;
1743 	data_ptr = rx_buf->data_ptr;
1744 	prefetch(data_ptr);
1745 
1746 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1747 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1748 
1749 	if (agg_bufs) {
1750 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1751 			return -EBUSY;
1752 
1753 		cp_cons = NEXT_CMP(cp_cons);
1754 		*event |= BNXT_AGG_EVENT;
1755 	}
1756 	*event |= BNXT_RX_EVENT;
1757 
1758 	rx_buf->data = NULL;
1759 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1760 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1761 
1762 		bnxt_reuse_rx_data(rxr, cons, data);
1763 		if (agg_bufs)
1764 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1765 					       false);
1766 
1767 		rc = -EIO;
1768 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1769 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1770 			if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
1771 				netdev_warn(bp->dev, "RX buffer error %x\n",
1772 					    rx_err);
1773 				bnxt_sched_reset(bp, rxr);
1774 			}
1775 		}
1776 		goto next_rx_no_len;
1777 	}
1778 
1779 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1780 	dma_addr = rx_buf->mapping;
1781 
1782 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1783 		rc = 1;
1784 		goto next_rx;
1785 	}
1786 
1787 	if (len <= bp->rx_copy_thresh) {
1788 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1789 		bnxt_reuse_rx_data(rxr, cons, data);
1790 		if (!skb) {
1791 			if (agg_bufs)
1792 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1793 						       agg_bufs, false);
1794 			rc = -ENOMEM;
1795 			goto next_rx;
1796 		}
1797 	} else {
1798 		u32 payload;
1799 
1800 		if (rx_buf->data_ptr == data_ptr)
1801 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1802 		else
1803 			payload = 0;
1804 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1805 				      payload | len);
1806 		if (!skb) {
1807 			rc = -ENOMEM;
1808 			goto next_rx;
1809 		}
1810 	}
1811 
1812 	if (agg_bufs) {
1813 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1814 		if (!skb) {
1815 			rc = -ENOMEM;
1816 			goto next_rx;
1817 		}
1818 	}
1819 
1820 	if (RX_CMP_HASH_VALID(rxcmp)) {
1821 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1822 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1823 
1824 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1825 		if (hash_type != 1 && hash_type != 3)
1826 			type = PKT_HASH_TYPE_L3;
1827 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1828 	}
1829 
1830 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1831 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1832 
1833 	if ((rxcmp1->rx_cmp_flags2 &
1834 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1835 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1836 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1837 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1838 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1839 
1840 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1841 	}
1842 
1843 	skb_checksum_none_assert(skb);
1844 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1845 		if (dev->features & NETIF_F_RXCSUM) {
1846 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1847 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1848 		}
1849 	} else {
1850 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1851 			if (dev->features & NETIF_F_RXCSUM)
1852 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1853 		}
1854 	}
1855 
1856 	bnxt_deliver_skb(bp, bnapi, skb);
1857 	rc = 1;
1858 
1859 next_rx:
1860 	cpr->rx_packets += 1;
1861 	cpr->rx_bytes += len;
1862 
1863 next_rx_no_len:
1864 	rxr->rx_prod = NEXT_RX(prod);
1865 	rxr->rx_next_cons = NEXT_RX(cons);
1866 
1867 next_rx_no_prod_no_len:
1868 	*raw_cons = tmp_raw_cons;
1869 
1870 	return rc;
1871 }
1872 
1873 /* In netpoll mode, if we are using a combined completion ring, we need to
1874  * discard the rx packets and recycle the buffers.
1875  */
1876 static int bnxt_force_rx_discard(struct bnxt *bp,
1877 				 struct bnxt_cp_ring_info *cpr,
1878 				 u32 *raw_cons, u8 *event)
1879 {
1880 	u32 tmp_raw_cons = *raw_cons;
1881 	struct rx_cmp_ext *rxcmp1;
1882 	struct rx_cmp *rxcmp;
1883 	u16 cp_cons;
1884 	u8 cmp_type;
1885 
1886 	cp_cons = RING_CMP(tmp_raw_cons);
1887 	rxcmp = (struct rx_cmp *)
1888 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1889 
1890 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1891 	cp_cons = RING_CMP(tmp_raw_cons);
1892 	rxcmp1 = (struct rx_cmp_ext *)
1893 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1894 
1895 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1896 		return -EBUSY;
1897 
1898 	cmp_type = RX_CMP_TYPE(rxcmp);
1899 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1900 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1901 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1902 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1903 		struct rx_tpa_end_cmp_ext *tpa_end1;
1904 
1905 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1906 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1907 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1908 	}
1909 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1910 }
1911 
1912 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1913 {
1914 	struct bnxt_fw_health *fw_health = bp->fw_health;
1915 	u32 reg = fw_health->regs[reg_idx];
1916 	u32 reg_type, reg_off, val = 0;
1917 
1918 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1919 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1920 	switch (reg_type) {
1921 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
1922 		pci_read_config_dword(bp->pdev, reg_off, &val);
1923 		break;
1924 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
1925 		reg_off = fw_health->mapped_regs[reg_idx];
1926 		/* fall through */
1927 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1928 		val = readl(bp->bar0 + reg_off);
1929 		break;
1930 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1931 		val = readl(bp->bar1 + reg_off);
1932 		break;
1933 	}
1934 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1935 		val &= fw_health->fw_reset_inprog_reg_mask;
1936 	return val;
1937 }
1938 
1939 #define BNXT_GET_EVENT_PORT(data)	\
1940 	((data) &			\
1941 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1942 
1943 static int bnxt_async_event_process(struct bnxt *bp,
1944 				    struct hwrm_async_event_cmpl *cmpl)
1945 {
1946 	u16 event_id = le16_to_cpu(cmpl->event_id);
1947 
1948 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1949 	switch (event_id) {
1950 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1951 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1952 		struct bnxt_link_info *link_info = &bp->link_info;
1953 
1954 		if (BNXT_VF(bp))
1955 			goto async_event_process_exit;
1956 
1957 		/* print unsupported speed warning in forced speed mode only */
1958 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1959 		    (data1 & 0x20000)) {
1960 			u16 fw_speed = link_info->force_link_speed;
1961 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1962 
1963 			if (speed != SPEED_UNKNOWN)
1964 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1965 					    speed);
1966 		}
1967 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1968 	}
1969 	/* fall through */
1970 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
1971 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
1972 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
1973 		/* fall through */
1974 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1975 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1976 		break;
1977 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1978 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1979 		break;
1980 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1981 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1982 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1983 
1984 		if (BNXT_VF(bp))
1985 			break;
1986 
1987 		if (bp->pf.port_id != port_id)
1988 			break;
1989 
1990 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1991 		break;
1992 	}
1993 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1994 		if (BNXT_PF(bp))
1995 			goto async_event_process_exit;
1996 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1997 		break;
1998 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
1999 		u32 data1 = le32_to_cpu(cmpl->event_data1);
2000 
2001 		if (!bp->fw_health)
2002 			goto async_event_process_exit;
2003 
2004 		bp->fw_reset_timestamp = jiffies;
2005 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2006 		if (!bp->fw_reset_min_dsecs)
2007 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2008 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2009 		if (!bp->fw_reset_max_dsecs)
2010 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2011 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2012 			netdev_warn(bp->dev, "Firmware fatal reset event received\n");
2013 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2014 		} else {
2015 			netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n",
2016 				    bp->fw_reset_max_dsecs * 100);
2017 		}
2018 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2019 		break;
2020 	}
2021 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2022 		struct bnxt_fw_health *fw_health = bp->fw_health;
2023 		u32 data1 = le32_to_cpu(cmpl->event_data1);
2024 
2025 		if (!fw_health)
2026 			goto async_event_process_exit;
2027 
2028 		fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2029 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2030 		if (!fw_health->enabled)
2031 			break;
2032 
2033 		if (netif_msg_drv(bp))
2034 			netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n",
2035 				    fw_health->enabled, fw_health->master,
2036 				    bnxt_fw_health_readl(bp,
2037 							 BNXT_FW_RESET_CNT_REG),
2038 				    bnxt_fw_health_readl(bp,
2039 							 BNXT_FW_HEALTH_REG));
2040 		fw_health->tmr_multiplier =
2041 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2042 				     bp->current_interval * 10);
2043 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2044 		fw_health->last_fw_heartbeat =
2045 			bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2046 		fw_health->last_fw_reset_cnt =
2047 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2048 		goto async_event_process_exit;
2049 	}
2050 	default:
2051 		goto async_event_process_exit;
2052 	}
2053 	bnxt_queue_sp_work(bp);
2054 async_event_process_exit:
2055 	bnxt_ulp_async_events(bp, cmpl);
2056 	return 0;
2057 }
2058 
2059 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2060 {
2061 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2062 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2063 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2064 				(struct hwrm_fwd_req_cmpl *)txcmp;
2065 
2066 	switch (cmpl_type) {
2067 	case CMPL_BASE_TYPE_HWRM_DONE:
2068 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2069 		if (seq_id == bp->hwrm_intr_seq_id)
2070 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2071 		else
2072 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2073 		break;
2074 
2075 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2076 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2077 
2078 		if ((vf_id < bp->pf.first_vf_id) ||
2079 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2080 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2081 				   vf_id);
2082 			return -EINVAL;
2083 		}
2084 
2085 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2086 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2087 		bnxt_queue_sp_work(bp);
2088 		break;
2089 
2090 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2091 		bnxt_async_event_process(bp,
2092 					 (struct hwrm_async_event_cmpl *)txcmp);
2093 
2094 	default:
2095 		break;
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2102 {
2103 	struct bnxt_napi *bnapi = dev_instance;
2104 	struct bnxt *bp = bnapi->bp;
2105 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2106 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2107 
2108 	cpr->event_ctr++;
2109 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2110 	napi_schedule(&bnapi->napi);
2111 	return IRQ_HANDLED;
2112 }
2113 
2114 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2115 {
2116 	u32 raw_cons = cpr->cp_raw_cons;
2117 	u16 cons = RING_CMP(raw_cons);
2118 	struct tx_cmp *txcmp;
2119 
2120 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2121 
2122 	return TX_CMP_VALID(txcmp, raw_cons);
2123 }
2124 
2125 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2126 {
2127 	struct bnxt_napi *bnapi = dev_instance;
2128 	struct bnxt *bp = bnapi->bp;
2129 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2130 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2131 	u32 int_status;
2132 
2133 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2134 
2135 	if (!bnxt_has_work(bp, cpr)) {
2136 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2137 		/* return if erroneous interrupt */
2138 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2139 			return IRQ_NONE;
2140 	}
2141 
2142 	/* disable ring IRQ */
2143 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2144 
2145 	/* Return here if interrupt is shared and is disabled. */
2146 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2147 		return IRQ_HANDLED;
2148 
2149 	napi_schedule(&bnapi->napi);
2150 	return IRQ_HANDLED;
2151 }
2152 
2153 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2154 			    int budget)
2155 {
2156 	struct bnxt_napi *bnapi = cpr->bnapi;
2157 	u32 raw_cons = cpr->cp_raw_cons;
2158 	u32 cons;
2159 	int tx_pkts = 0;
2160 	int rx_pkts = 0;
2161 	u8 event = 0;
2162 	struct tx_cmp *txcmp;
2163 
2164 	cpr->has_more_work = 0;
2165 	cpr->had_work_done = 1;
2166 	while (1) {
2167 		int rc;
2168 
2169 		cons = RING_CMP(raw_cons);
2170 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2171 
2172 		if (!TX_CMP_VALID(txcmp, raw_cons))
2173 			break;
2174 
2175 		/* The valid test of the entry must be done first before
2176 		 * reading any further.
2177 		 */
2178 		dma_rmb();
2179 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2180 			tx_pkts++;
2181 			/* return full budget so NAPI will complete. */
2182 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2183 				rx_pkts = budget;
2184 				raw_cons = NEXT_RAW_CMP(raw_cons);
2185 				if (budget)
2186 					cpr->has_more_work = 1;
2187 				break;
2188 			}
2189 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2190 			if (likely(budget))
2191 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2192 			else
2193 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2194 							   &event);
2195 			if (likely(rc >= 0))
2196 				rx_pkts += rc;
2197 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2198 			 * the NAPI budget.  Otherwise, we may potentially loop
2199 			 * here forever if we consistently cannot allocate
2200 			 * buffers.
2201 			 */
2202 			else if (rc == -ENOMEM && budget)
2203 				rx_pkts++;
2204 			else if (rc == -EBUSY)	/* partial completion */
2205 				break;
2206 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2207 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2208 				    (TX_CMP_TYPE(txcmp) ==
2209 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2210 				    (TX_CMP_TYPE(txcmp) ==
2211 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2212 			bnxt_hwrm_handler(bp, txcmp);
2213 		}
2214 		raw_cons = NEXT_RAW_CMP(raw_cons);
2215 
2216 		if (rx_pkts && rx_pkts == budget) {
2217 			cpr->has_more_work = 1;
2218 			break;
2219 		}
2220 	}
2221 
2222 	if (event & BNXT_REDIRECT_EVENT)
2223 		xdp_do_flush_map();
2224 
2225 	if (event & BNXT_TX_EVENT) {
2226 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2227 		u16 prod = txr->tx_prod;
2228 
2229 		/* Sync BD data before updating doorbell */
2230 		wmb();
2231 
2232 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2233 	}
2234 
2235 	cpr->cp_raw_cons = raw_cons;
2236 	bnapi->tx_pkts += tx_pkts;
2237 	bnapi->events |= event;
2238 	return rx_pkts;
2239 }
2240 
2241 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2242 {
2243 	if (bnapi->tx_pkts) {
2244 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2245 		bnapi->tx_pkts = 0;
2246 	}
2247 
2248 	if (bnapi->events & BNXT_RX_EVENT) {
2249 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2250 
2251 		if (bnapi->events & BNXT_AGG_EVENT)
2252 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2253 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2254 	}
2255 	bnapi->events = 0;
2256 }
2257 
2258 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2259 			  int budget)
2260 {
2261 	struct bnxt_napi *bnapi = cpr->bnapi;
2262 	int rx_pkts;
2263 
2264 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2265 
2266 	/* ACK completion ring before freeing tx ring and producing new
2267 	 * buffers in rx/agg rings to prevent overflowing the completion
2268 	 * ring.
2269 	 */
2270 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2271 
2272 	__bnxt_poll_work_done(bp, bnapi);
2273 	return rx_pkts;
2274 }
2275 
2276 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2277 {
2278 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2279 	struct bnxt *bp = bnapi->bp;
2280 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2281 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2282 	struct tx_cmp *txcmp;
2283 	struct rx_cmp_ext *rxcmp1;
2284 	u32 cp_cons, tmp_raw_cons;
2285 	u32 raw_cons = cpr->cp_raw_cons;
2286 	u32 rx_pkts = 0;
2287 	u8 event = 0;
2288 
2289 	while (1) {
2290 		int rc;
2291 
2292 		cp_cons = RING_CMP(raw_cons);
2293 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2294 
2295 		if (!TX_CMP_VALID(txcmp, raw_cons))
2296 			break;
2297 
2298 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2299 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2300 			cp_cons = RING_CMP(tmp_raw_cons);
2301 			rxcmp1 = (struct rx_cmp_ext *)
2302 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2303 
2304 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2305 				break;
2306 
2307 			/* force an error to recycle the buffer */
2308 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2309 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2310 
2311 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2312 			if (likely(rc == -EIO) && budget)
2313 				rx_pkts++;
2314 			else if (rc == -EBUSY)	/* partial completion */
2315 				break;
2316 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2317 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2318 			bnxt_hwrm_handler(bp, txcmp);
2319 		} else {
2320 			netdev_err(bp->dev,
2321 				   "Invalid completion received on special ring\n");
2322 		}
2323 		raw_cons = NEXT_RAW_CMP(raw_cons);
2324 
2325 		if (rx_pkts == budget)
2326 			break;
2327 	}
2328 
2329 	cpr->cp_raw_cons = raw_cons;
2330 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2331 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2332 
2333 	if (event & BNXT_AGG_EVENT)
2334 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2335 
2336 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2337 		napi_complete_done(napi, rx_pkts);
2338 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2339 	}
2340 	return rx_pkts;
2341 }
2342 
2343 static int bnxt_poll(struct napi_struct *napi, int budget)
2344 {
2345 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2346 	struct bnxt *bp = bnapi->bp;
2347 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2348 	int work_done = 0;
2349 
2350 	while (1) {
2351 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2352 
2353 		if (work_done >= budget) {
2354 			if (!budget)
2355 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2356 			break;
2357 		}
2358 
2359 		if (!bnxt_has_work(bp, cpr)) {
2360 			if (napi_complete_done(napi, work_done))
2361 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2362 			break;
2363 		}
2364 	}
2365 	if (bp->flags & BNXT_FLAG_DIM) {
2366 		struct dim_sample dim_sample = {};
2367 
2368 		dim_update_sample(cpr->event_ctr,
2369 				  cpr->rx_packets,
2370 				  cpr->rx_bytes,
2371 				  &dim_sample);
2372 		net_dim(&cpr->dim, dim_sample);
2373 	}
2374 	return work_done;
2375 }
2376 
2377 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2378 {
2379 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2380 	int i, work_done = 0;
2381 
2382 	for (i = 0; i < 2; i++) {
2383 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2384 
2385 		if (cpr2) {
2386 			work_done += __bnxt_poll_work(bp, cpr2,
2387 						      budget - work_done);
2388 			cpr->has_more_work |= cpr2->has_more_work;
2389 		}
2390 	}
2391 	return work_done;
2392 }
2393 
2394 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2395 				 u64 dbr_type)
2396 {
2397 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2398 	int i;
2399 
2400 	for (i = 0; i < 2; i++) {
2401 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2402 		struct bnxt_db_info *db;
2403 
2404 		if (cpr2 && cpr2->had_work_done) {
2405 			db = &cpr2->cp_db;
2406 			writeq(db->db_key64 | dbr_type |
2407 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2408 			cpr2->had_work_done = 0;
2409 		}
2410 	}
2411 	__bnxt_poll_work_done(bp, bnapi);
2412 }
2413 
2414 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2415 {
2416 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2417 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2418 	u32 raw_cons = cpr->cp_raw_cons;
2419 	struct bnxt *bp = bnapi->bp;
2420 	struct nqe_cn *nqcmp;
2421 	int work_done = 0;
2422 	u32 cons;
2423 
2424 	if (cpr->has_more_work) {
2425 		cpr->has_more_work = 0;
2426 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2427 	}
2428 	while (1) {
2429 		cons = RING_CMP(raw_cons);
2430 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2431 
2432 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2433 			if (cpr->has_more_work)
2434 				break;
2435 
2436 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2437 			cpr->cp_raw_cons = raw_cons;
2438 			if (napi_complete_done(napi, work_done))
2439 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2440 						  cpr->cp_raw_cons);
2441 			return work_done;
2442 		}
2443 
2444 		/* The valid test of the entry must be done first before
2445 		 * reading any further.
2446 		 */
2447 		dma_rmb();
2448 
2449 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2450 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2451 			struct bnxt_cp_ring_info *cpr2;
2452 
2453 			cpr2 = cpr->cp_ring_arr[idx];
2454 			work_done += __bnxt_poll_work(bp, cpr2,
2455 						      budget - work_done);
2456 			cpr->has_more_work |= cpr2->has_more_work;
2457 		} else {
2458 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2459 		}
2460 		raw_cons = NEXT_RAW_CMP(raw_cons);
2461 	}
2462 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2463 	if (raw_cons != cpr->cp_raw_cons) {
2464 		cpr->cp_raw_cons = raw_cons;
2465 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2466 	}
2467 	return work_done;
2468 }
2469 
2470 static void bnxt_free_tx_skbs(struct bnxt *bp)
2471 {
2472 	int i, max_idx;
2473 	struct pci_dev *pdev = bp->pdev;
2474 
2475 	if (!bp->tx_ring)
2476 		return;
2477 
2478 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2479 	for (i = 0; i < bp->tx_nr_rings; i++) {
2480 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2481 		int j;
2482 
2483 		for (j = 0; j < max_idx;) {
2484 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2485 			struct sk_buff *skb;
2486 			int k, last;
2487 
2488 			if (i < bp->tx_nr_rings_xdp &&
2489 			    tx_buf->action == XDP_REDIRECT) {
2490 				dma_unmap_single(&pdev->dev,
2491 					dma_unmap_addr(tx_buf, mapping),
2492 					dma_unmap_len(tx_buf, len),
2493 					PCI_DMA_TODEVICE);
2494 				xdp_return_frame(tx_buf->xdpf);
2495 				tx_buf->action = 0;
2496 				tx_buf->xdpf = NULL;
2497 				j++;
2498 				continue;
2499 			}
2500 
2501 			skb = tx_buf->skb;
2502 			if (!skb) {
2503 				j++;
2504 				continue;
2505 			}
2506 
2507 			tx_buf->skb = NULL;
2508 
2509 			if (tx_buf->is_push) {
2510 				dev_kfree_skb(skb);
2511 				j += 2;
2512 				continue;
2513 			}
2514 
2515 			dma_unmap_single(&pdev->dev,
2516 					 dma_unmap_addr(tx_buf, mapping),
2517 					 skb_headlen(skb),
2518 					 PCI_DMA_TODEVICE);
2519 
2520 			last = tx_buf->nr_frags;
2521 			j += 2;
2522 			for (k = 0; k < last; k++, j++) {
2523 				int ring_idx = j & bp->tx_ring_mask;
2524 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2525 
2526 				tx_buf = &txr->tx_buf_ring[ring_idx];
2527 				dma_unmap_page(
2528 					&pdev->dev,
2529 					dma_unmap_addr(tx_buf, mapping),
2530 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2531 			}
2532 			dev_kfree_skb(skb);
2533 		}
2534 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2535 	}
2536 }
2537 
2538 static void bnxt_free_rx_skbs(struct bnxt *bp)
2539 {
2540 	int i, max_idx, max_agg_idx;
2541 	struct pci_dev *pdev = bp->pdev;
2542 
2543 	if (!bp->rx_ring)
2544 		return;
2545 
2546 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2547 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2548 	for (i = 0; i < bp->rx_nr_rings; i++) {
2549 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2550 		struct bnxt_tpa_idx_map *map;
2551 		int j;
2552 
2553 		if (rxr->rx_tpa) {
2554 			for (j = 0; j < bp->max_tpa; j++) {
2555 				struct bnxt_tpa_info *tpa_info =
2556 							&rxr->rx_tpa[j];
2557 				u8 *data = tpa_info->data;
2558 
2559 				if (!data)
2560 					continue;
2561 
2562 				dma_unmap_single_attrs(&pdev->dev,
2563 						       tpa_info->mapping,
2564 						       bp->rx_buf_use_size,
2565 						       bp->rx_dir,
2566 						       DMA_ATTR_WEAK_ORDERING);
2567 
2568 				tpa_info->data = NULL;
2569 
2570 				kfree(data);
2571 			}
2572 		}
2573 
2574 		for (j = 0; j < max_idx; j++) {
2575 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2576 			dma_addr_t mapping = rx_buf->mapping;
2577 			void *data = rx_buf->data;
2578 
2579 			if (!data)
2580 				continue;
2581 
2582 			rx_buf->data = NULL;
2583 
2584 			if (BNXT_RX_PAGE_MODE(bp)) {
2585 				mapping -= bp->rx_dma_offset;
2586 				dma_unmap_page_attrs(&pdev->dev, mapping,
2587 						     PAGE_SIZE, bp->rx_dir,
2588 						     DMA_ATTR_WEAK_ORDERING);
2589 				page_pool_recycle_direct(rxr->page_pool, data);
2590 			} else {
2591 				dma_unmap_single_attrs(&pdev->dev, mapping,
2592 						       bp->rx_buf_use_size,
2593 						       bp->rx_dir,
2594 						       DMA_ATTR_WEAK_ORDERING);
2595 				kfree(data);
2596 			}
2597 		}
2598 
2599 		for (j = 0; j < max_agg_idx; j++) {
2600 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2601 				&rxr->rx_agg_ring[j];
2602 			struct page *page = rx_agg_buf->page;
2603 
2604 			if (!page)
2605 				continue;
2606 
2607 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2608 					     BNXT_RX_PAGE_SIZE,
2609 					     PCI_DMA_FROMDEVICE,
2610 					     DMA_ATTR_WEAK_ORDERING);
2611 
2612 			rx_agg_buf->page = NULL;
2613 			__clear_bit(j, rxr->rx_agg_bmap);
2614 
2615 			__free_page(page);
2616 		}
2617 		if (rxr->rx_page) {
2618 			__free_page(rxr->rx_page);
2619 			rxr->rx_page = NULL;
2620 		}
2621 		map = rxr->rx_tpa_idx_map;
2622 		if (map)
2623 			memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2624 	}
2625 }
2626 
2627 static void bnxt_free_skbs(struct bnxt *bp)
2628 {
2629 	bnxt_free_tx_skbs(bp);
2630 	bnxt_free_rx_skbs(bp);
2631 }
2632 
2633 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2634 {
2635 	struct pci_dev *pdev = bp->pdev;
2636 	int i;
2637 
2638 	for (i = 0; i < rmem->nr_pages; i++) {
2639 		if (!rmem->pg_arr[i])
2640 			continue;
2641 
2642 		dma_free_coherent(&pdev->dev, rmem->page_size,
2643 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2644 
2645 		rmem->pg_arr[i] = NULL;
2646 	}
2647 	if (rmem->pg_tbl) {
2648 		size_t pg_tbl_size = rmem->nr_pages * 8;
2649 
2650 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2651 			pg_tbl_size = rmem->page_size;
2652 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2653 				  rmem->pg_tbl, rmem->pg_tbl_map);
2654 		rmem->pg_tbl = NULL;
2655 	}
2656 	if (rmem->vmem_size && *rmem->vmem) {
2657 		vfree(*rmem->vmem);
2658 		*rmem->vmem = NULL;
2659 	}
2660 }
2661 
2662 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2663 {
2664 	struct pci_dev *pdev = bp->pdev;
2665 	u64 valid_bit = 0;
2666 	int i;
2667 
2668 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2669 		valid_bit = PTU_PTE_VALID;
2670 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2671 		size_t pg_tbl_size = rmem->nr_pages * 8;
2672 
2673 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2674 			pg_tbl_size = rmem->page_size;
2675 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2676 						  &rmem->pg_tbl_map,
2677 						  GFP_KERNEL);
2678 		if (!rmem->pg_tbl)
2679 			return -ENOMEM;
2680 	}
2681 
2682 	for (i = 0; i < rmem->nr_pages; i++) {
2683 		u64 extra_bits = valid_bit;
2684 
2685 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2686 						     rmem->page_size,
2687 						     &rmem->dma_arr[i],
2688 						     GFP_KERNEL);
2689 		if (!rmem->pg_arr[i])
2690 			return -ENOMEM;
2691 
2692 		if (rmem->init_val)
2693 			memset(rmem->pg_arr[i], rmem->init_val,
2694 			       rmem->page_size);
2695 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2696 			if (i == rmem->nr_pages - 2 &&
2697 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2698 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2699 			else if (i == rmem->nr_pages - 1 &&
2700 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2701 				extra_bits |= PTU_PTE_LAST;
2702 			rmem->pg_tbl[i] =
2703 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2704 		}
2705 	}
2706 
2707 	if (rmem->vmem_size) {
2708 		*rmem->vmem = vzalloc(rmem->vmem_size);
2709 		if (!(*rmem->vmem))
2710 			return -ENOMEM;
2711 	}
2712 	return 0;
2713 }
2714 
2715 static void bnxt_free_tpa_info(struct bnxt *bp)
2716 {
2717 	int i;
2718 
2719 	for (i = 0; i < bp->rx_nr_rings; i++) {
2720 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2721 
2722 		kfree(rxr->rx_tpa_idx_map);
2723 		rxr->rx_tpa_idx_map = NULL;
2724 		if (rxr->rx_tpa) {
2725 			kfree(rxr->rx_tpa[0].agg_arr);
2726 			rxr->rx_tpa[0].agg_arr = NULL;
2727 		}
2728 		kfree(rxr->rx_tpa);
2729 		rxr->rx_tpa = NULL;
2730 	}
2731 }
2732 
2733 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2734 {
2735 	int i, j, total_aggs = 0;
2736 
2737 	bp->max_tpa = MAX_TPA;
2738 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
2739 		if (!bp->max_tpa_v2)
2740 			return 0;
2741 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2742 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2743 	}
2744 
2745 	for (i = 0; i < bp->rx_nr_rings; i++) {
2746 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2747 		struct rx_agg_cmp *agg;
2748 
2749 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2750 				      GFP_KERNEL);
2751 		if (!rxr->rx_tpa)
2752 			return -ENOMEM;
2753 
2754 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2755 			continue;
2756 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2757 		rxr->rx_tpa[0].agg_arr = agg;
2758 		if (!agg)
2759 			return -ENOMEM;
2760 		for (j = 1; j < bp->max_tpa; j++)
2761 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2762 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2763 					      GFP_KERNEL);
2764 		if (!rxr->rx_tpa_idx_map)
2765 			return -ENOMEM;
2766 	}
2767 	return 0;
2768 }
2769 
2770 static void bnxt_free_rx_rings(struct bnxt *bp)
2771 {
2772 	int i;
2773 
2774 	if (!bp->rx_ring)
2775 		return;
2776 
2777 	bnxt_free_tpa_info(bp);
2778 	for (i = 0; i < bp->rx_nr_rings; i++) {
2779 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2780 		struct bnxt_ring_struct *ring;
2781 
2782 		if (rxr->xdp_prog)
2783 			bpf_prog_put(rxr->xdp_prog);
2784 
2785 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2786 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2787 
2788 		page_pool_destroy(rxr->page_pool);
2789 		rxr->page_pool = NULL;
2790 
2791 		kfree(rxr->rx_agg_bmap);
2792 		rxr->rx_agg_bmap = NULL;
2793 
2794 		ring = &rxr->rx_ring_struct;
2795 		bnxt_free_ring(bp, &ring->ring_mem);
2796 
2797 		ring = &rxr->rx_agg_ring_struct;
2798 		bnxt_free_ring(bp, &ring->ring_mem);
2799 	}
2800 }
2801 
2802 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2803 				   struct bnxt_rx_ring_info *rxr)
2804 {
2805 	struct page_pool_params pp = { 0 };
2806 
2807 	pp.pool_size = bp->rx_ring_size;
2808 	pp.nid = dev_to_node(&bp->pdev->dev);
2809 	pp.dev = &bp->pdev->dev;
2810 	pp.dma_dir = DMA_BIDIRECTIONAL;
2811 
2812 	rxr->page_pool = page_pool_create(&pp);
2813 	if (IS_ERR(rxr->page_pool)) {
2814 		int err = PTR_ERR(rxr->page_pool);
2815 
2816 		rxr->page_pool = NULL;
2817 		return err;
2818 	}
2819 	return 0;
2820 }
2821 
2822 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2823 {
2824 	int i, rc = 0, agg_rings = 0;
2825 
2826 	if (!bp->rx_ring)
2827 		return -ENOMEM;
2828 
2829 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2830 		agg_rings = 1;
2831 
2832 	for (i = 0; i < bp->rx_nr_rings; i++) {
2833 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2834 		struct bnxt_ring_struct *ring;
2835 
2836 		ring = &rxr->rx_ring_struct;
2837 
2838 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2839 		if (rc)
2840 			return rc;
2841 
2842 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2843 		if (rc < 0)
2844 			return rc;
2845 
2846 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2847 						MEM_TYPE_PAGE_POOL,
2848 						rxr->page_pool);
2849 		if (rc) {
2850 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2851 			return rc;
2852 		}
2853 
2854 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2855 		if (rc)
2856 			return rc;
2857 
2858 		ring->grp_idx = i;
2859 		if (agg_rings) {
2860 			u16 mem_size;
2861 
2862 			ring = &rxr->rx_agg_ring_struct;
2863 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2864 			if (rc)
2865 				return rc;
2866 
2867 			ring->grp_idx = i;
2868 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2869 			mem_size = rxr->rx_agg_bmap_size / 8;
2870 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2871 			if (!rxr->rx_agg_bmap)
2872 				return -ENOMEM;
2873 		}
2874 	}
2875 	if (bp->flags & BNXT_FLAG_TPA)
2876 		rc = bnxt_alloc_tpa_info(bp);
2877 	return rc;
2878 }
2879 
2880 static void bnxt_free_tx_rings(struct bnxt *bp)
2881 {
2882 	int i;
2883 	struct pci_dev *pdev = bp->pdev;
2884 
2885 	if (!bp->tx_ring)
2886 		return;
2887 
2888 	for (i = 0; i < bp->tx_nr_rings; i++) {
2889 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2890 		struct bnxt_ring_struct *ring;
2891 
2892 		if (txr->tx_push) {
2893 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2894 					  txr->tx_push, txr->tx_push_mapping);
2895 			txr->tx_push = NULL;
2896 		}
2897 
2898 		ring = &txr->tx_ring_struct;
2899 
2900 		bnxt_free_ring(bp, &ring->ring_mem);
2901 	}
2902 }
2903 
2904 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2905 {
2906 	int i, j, rc;
2907 	struct pci_dev *pdev = bp->pdev;
2908 
2909 	bp->tx_push_size = 0;
2910 	if (bp->tx_push_thresh) {
2911 		int push_size;
2912 
2913 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2914 					bp->tx_push_thresh);
2915 
2916 		if (push_size > 256) {
2917 			push_size = 0;
2918 			bp->tx_push_thresh = 0;
2919 		}
2920 
2921 		bp->tx_push_size = push_size;
2922 	}
2923 
2924 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2925 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2926 		struct bnxt_ring_struct *ring;
2927 		u8 qidx;
2928 
2929 		ring = &txr->tx_ring_struct;
2930 
2931 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2932 		if (rc)
2933 			return rc;
2934 
2935 		ring->grp_idx = txr->bnapi->index;
2936 		if (bp->tx_push_size) {
2937 			dma_addr_t mapping;
2938 
2939 			/* One pre-allocated DMA buffer to backup
2940 			 * TX push operation
2941 			 */
2942 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2943 						bp->tx_push_size,
2944 						&txr->tx_push_mapping,
2945 						GFP_KERNEL);
2946 
2947 			if (!txr->tx_push)
2948 				return -ENOMEM;
2949 
2950 			mapping = txr->tx_push_mapping +
2951 				sizeof(struct tx_push_bd);
2952 			txr->data_mapping = cpu_to_le64(mapping);
2953 		}
2954 		qidx = bp->tc_to_qidx[j];
2955 		ring->queue_id = bp->q_info[qidx].queue_id;
2956 		if (i < bp->tx_nr_rings_xdp)
2957 			continue;
2958 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2959 			j++;
2960 	}
2961 	return 0;
2962 }
2963 
2964 static void bnxt_free_cp_rings(struct bnxt *bp)
2965 {
2966 	int i;
2967 
2968 	if (!bp->bnapi)
2969 		return;
2970 
2971 	for (i = 0; i < bp->cp_nr_rings; i++) {
2972 		struct bnxt_napi *bnapi = bp->bnapi[i];
2973 		struct bnxt_cp_ring_info *cpr;
2974 		struct bnxt_ring_struct *ring;
2975 		int j;
2976 
2977 		if (!bnapi)
2978 			continue;
2979 
2980 		cpr = &bnapi->cp_ring;
2981 		ring = &cpr->cp_ring_struct;
2982 
2983 		bnxt_free_ring(bp, &ring->ring_mem);
2984 
2985 		for (j = 0; j < 2; j++) {
2986 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2987 
2988 			if (cpr2) {
2989 				ring = &cpr2->cp_ring_struct;
2990 				bnxt_free_ring(bp, &ring->ring_mem);
2991 				kfree(cpr2);
2992 				cpr->cp_ring_arr[j] = NULL;
2993 			}
2994 		}
2995 	}
2996 }
2997 
2998 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2999 {
3000 	struct bnxt_ring_mem_info *rmem;
3001 	struct bnxt_ring_struct *ring;
3002 	struct bnxt_cp_ring_info *cpr;
3003 	int rc;
3004 
3005 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3006 	if (!cpr)
3007 		return NULL;
3008 
3009 	ring = &cpr->cp_ring_struct;
3010 	rmem = &ring->ring_mem;
3011 	rmem->nr_pages = bp->cp_nr_pages;
3012 	rmem->page_size = HW_CMPD_RING_SIZE;
3013 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3014 	rmem->dma_arr = cpr->cp_desc_mapping;
3015 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3016 	rc = bnxt_alloc_ring(bp, rmem);
3017 	if (rc) {
3018 		bnxt_free_ring(bp, rmem);
3019 		kfree(cpr);
3020 		cpr = NULL;
3021 	}
3022 	return cpr;
3023 }
3024 
3025 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3026 {
3027 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3028 	int i, rc, ulp_base_vec, ulp_msix;
3029 
3030 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3031 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3032 	for (i = 0; i < bp->cp_nr_rings; i++) {
3033 		struct bnxt_napi *bnapi = bp->bnapi[i];
3034 		struct bnxt_cp_ring_info *cpr;
3035 		struct bnxt_ring_struct *ring;
3036 
3037 		if (!bnapi)
3038 			continue;
3039 
3040 		cpr = &bnapi->cp_ring;
3041 		cpr->bnapi = bnapi;
3042 		ring = &cpr->cp_ring_struct;
3043 
3044 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3045 		if (rc)
3046 			return rc;
3047 
3048 		if (ulp_msix && i >= ulp_base_vec)
3049 			ring->map_idx = i + ulp_msix;
3050 		else
3051 			ring->map_idx = i;
3052 
3053 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3054 			continue;
3055 
3056 		if (i < bp->rx_nr_rings) {
3057 			struct bnxt_cp_ring_info *cpr2 =
3058 				bnxt_alloc_cp_sub_ring(bp);
3059 
3060 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3061 			if (!cpr2)
3062 				return -ENOMEM;
3063 			cpr2->bnapi = bnapi;
3064 		}
3065 		if ((sh && i < bp->tx_nr_rings) ||
3066 		    (!sh && i >= bp->rx_nr_rings)) {
3067 			struct bnxt_cp_ring_info *cpr2 =
3068 				bnxt_alloc_cp_sub_ring(bp);
3069 
3070 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3071 			if (!cpr2)
3072 				return -ENOMEM;
3073 			cpr2->bnapi = bnapi;
3074 		}
3075 	}
3076 	return 0;
3077 }
3078 
3079 static void bnxt_init_ring_struct(struct bnxt *bp)
3080 {
3081 	int i;
3082 
3083 	for (i = 0; i < bp->cp_nr_rings; i++) {
3084 		struct bnxt_napi *bnapi = bp->bnapi[i];
3085 		struct bnxt_ring_mem_info *rmem;
3086 		struct bnxt_cp_ring_info *cpr;
3087 		struct bnxt_rx_ring_info *rxr;
3088 		struct bnxt_tx_ring_info *txr;
3089 		struct bnxt_ring_struct *ring;
3090 
3091 		if (!bnapi)
3092 			continue;
3093 
3094 		cpr = &bnapi->cp_ring;
3095 		ring = &cpr->cp_ring_struct;
3096 		rmem = &ring->ring_mem;
3097 		rmem->nr_pages = bp->cp_nr_pages;
3098 		rmem->page_size = HW_CMPD_RING_SIZE;
3099 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3100 		rmem->dma_arr = cpr->cp_desc_mapping;
3101 		rmem->vmem_size = 0;
3102 
3103 		rxr = bnapi->rx_ring;
3104 		if (!rxr)
3105 			goto skip_rx;
3106 
3107 		ring = &rxr->rx_ring_struct;
3108 		rmem = &ring->ring_mem;
3109 		rmem->nr_pages = bp->rx_nr_pages;
3110 		rmem->page_size = HW_RXBD_RING_SIZE;
3111 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3112 		rmem->dma_arr = rxr->rx_desc_mapping;
3113 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3114 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3115 
3116 		ring = &rxr->rx_agg_ring_struct;
3117 		rmem = &ring->ring_mem;
3118 		rmem->nr_pages = bp->rx_agg_nr_pages;
3119 		rmem->page_size = HW_RXBD_RING_SIZE;
3120 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3121 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3122 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3123 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3124 
3125 skip_rx:
3126 		txr = bnapi->tx_ring;
3127 		if (!txr)
3128 			continue;
3129 
3130 		ring = &txr->tx_ring_struct;
3131 		rmem = &ring->ring_mem;
3132 		rmem->nr_pages = bp->tx_nr_pages;
3133 		rmem->page_size = HW_RXBD_RING_SIZE;
3134 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3135 		rmem->dma_arr = txr->tx_desc_mapping;
3136 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3137 		rmem->vmem = (void **)&txr->tx_buf_ring;
3138 	}
3139 }
3140 
3141 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3142 {
3143 	int i;
3144 	u32 prod;
3145 	struct rx_bd **rx_buf_ring;
3146 
3147 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3148 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3149 		int j;
3150 		struct rx_bd *rxbd;
3151 
3152 		rxbd = rx_buf_ring[i];
3153 		if (!rxbd)
3154 			continue;
3155 
3156 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3157 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3158 			rxbd->rx_bd_opaque = prod;
3159 		}
3160 	}
3161 }
3162 
3163 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3164 {
3165 	struct net_device *dev = bp->dev;
3166 	struct bnxt_rx_ring_info *rxr;
3167 	struct bnxt_ring_struct *ring;
3168 	u32 prod, type;
3169 	int i;
3170 
3171 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3172 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3173 
3174 	if (NET_IP_ALIGN == 2)
3175 		type |= RX_BD_FLAGS_SOP;
3176 
3177 	rxr = &bp->rx_ring[ring_nr];
3178 	ring = &rxr->rx_ring_struct;
3179 	bnxt_init_rxbd_pages(ring, type);
3180 
3181 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3182 		bpf_prog_add(bp->xdp_prog, 1);
3183 		rxr->xdp_prog = bp->xdp_prog;
3184 	}
3185 	prod = rxr->rx_prod;
3186 	for (i = 0; i < bp->rx_ring_size; i++) {
3187 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
3188 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3189 				    ring_nr, i, bp->rx_ring_size);
3190 			break;
3191 		}
3192 		prod = NEXT_RX(prod);
3193 	}
3194 	rxr->rx_prod = prod;
3195 	ring->fw_ring_id = INVALID_HW_RING_ID;
3196 
3197 	ring = &rxr->rx_agg_ring_struct;
3198 	ring->fw_ring_id = INVALID_HW_RING_ID;
3199 
3200 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3201 		return 0;
3202 
3203 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3204 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3205 
3206 	bnxt_init_rxbd_pages(ring, type);
3207 
3208 	prod = rxr->rx_agg_prod;
3209 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3210 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
3211 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3212 				    ring_nr, i, bp->rx_ring_size);
3213 			break;
3214 		}
3215 		prod = NEXT_RX_AGG(prod);
3216 	}
3217 	rxr->rx_agg_prod = prod;
3218 
3219 	if (bp->flags & BNXT_FLAG_TPA) {
3220 		if (rxr->rx_tpa) {
3221 			u8 *data;
3222 			dma_addr_t mapping;
3223 
3224 			for (i = 0; i < bp->max_tpa; i++) {
3225 				data = __bnxt_alloc_rx_data(bp, &mapping,
3226 							    GFP_KERNEL);
3227 				if (!data)
3228 					return -ENOMEM;
3229 
3230 				rxr->rx_tpa[i].data = data;
3231 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3232 				rxr->rx_tpa[i].mapping = mapping;
3233 			}
3234 		} else {
3235 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
3236 			return -ENOMEM;
3237 		}
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 static void bnxt_init_cp_rings(struct bnxt *bp)
3244 {
3245 	int i, j;
3246 
3247 	for (i = 0; i < bp->cp_nr_rings; i++) {
3248 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3249 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3250 
3251 		ring->fw_ring_id = INVALID_HW_RING_ID;
3252 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3253 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3254 		for (j = 0; j < 2; j++) {
3255 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3256 
3257 			if (!cpr2)
3258 				continue;
3259 
3260 			ring = &cpr2->cp_ring_struct;
3261 			ring->fw_ring_id = INVALID_HW_RING_ID;
3262 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3263 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3264 		}
3265 	}
3266 }
3267 
3268 static int bnxt_init_rx_rings(struct bnxt *bp)
3269 {
3270 	int i, rc = 0;
3271 
3272 	if (BNXT_RX_PAGE_MODE(bp)) {
3273 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3274 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3275 	} else {
3276 		bp->rx_offset = BNXT_RX_OFFSET;
3277 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3278 	}
3279 
3280 	for (i = 0; i < bp->rx_nr_rings; i++) {
3281 		rc = bnxt_init_one_rx_ring(bp, i);
3282 		if (rc)
3283 			break;
3284 	}
3285 
3286 	return rc;
3287 }
3288 
3289 static int bnxt_init_tx_rings(struct bnxt *bp)
3290 {
3291 	u16 i;
3292 
3293 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3294 				   MAX_SKB_FRAGS + 1);
3295 
3296 	for (i = 0; i < bp->tx_nr_rings; i++) {
3297 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3298 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3299 
3300 		ring->fw_ring_id = INVALID_HW_RING_ID;
3301 	}
3302 
3303 	return 0;
3304 }
3305 
3306 static void bnxt_free_ring_grps(struct bnxt *bp)
3307 {
3308 	kfree(bp->grp_info);
3309 	bp->grp_info = NULL;
3310 }
3311 
3312 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3313 {
3314 	int i;
3315 
3316 	if (irq_re_init) {
3317 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3318 				       sizeof(struct bnxt_ring_grp_info),
3319 				       GFP_KERNEL);
3320 		if (!bp->grp_info)
3321 			return -ENOMEM;
3322 	}
3323 	for (i = 0; i < bp->cp_nr_rings; i++) {
3324 		if (irq_re_init)
3325 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3326 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3327 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3328 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3329 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3330 	}
3331 	return 0;
3332 }
3333 
3334 static void bnxt_free_vnics(struct bnxt *bp)
3335 {
3336 	kfree(bp->vnic_info);
3337 	bp->vnic_info = NULL;
3338 	bp->nr_vnics = 0;
3339 }
3340 
3341 static int bnxt_alloc_vnics(struct bnxt *bp)
3342 {
3343 	int num_vnics = 1;
3344 
3345 #ifdef CONFIG_RFS_ACCEL
3346 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3347 		num_vnics += bp->rx_nr_rings;
3348 #endif
3349 
3350 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3351 		num_vnics++;
3352 
3353 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3354 				GFP_KERNEL);
3355 	if (!bp->vnic_info)
3356 		return -ENOMEM;
3357 
3358 	bp->nr_vnics = num_vnics;
3359 	return 0;
3360 }
3361 
3362 static void bnxt_init_vnics(struct bnxt *bp)
3363 {
3364 	int i;
3365 
3366 	for (i = 0; i < bp->nr_vnics; i++) {
3367 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3368 		int j;
3369 
3370 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3371 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3372 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3373 
3374 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3375 
3376 		if (bp->vnic_info[i].rss_hash_key) {
3377 			if (i == 0)
3378 				prandom_bytes(vnic->rss_hash_key,
3379 					      HW_HASH_KEY_SIZE);
3380 			else
3381 				memcpy(vnic->rss_hash_key,
3382 				       bp->vnic_info[0].rss_hash_key,
3383 				       HW_HASH_KEY_SIZE);
3384 		}
3385 	}
3386 }
3387 
3388 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3389 {
3390 	int pages;
3391 
3392 	pages = ring_size / desc_per_pg;
3393 
3394 	if (!pages)
3395 		return 1;
3396 
3397 	pages++;
3398 
3399 	while (pages & (pages - 1))
3400 		pages++;
3401 
3402 	return pages;
3403 }
3404 
3405 void bnxt_set_tpa_flags(struct bnxt *bp)
3406 {
3407 	bp->flags &= ~BNXT_FLAG_TPA;
3408 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3409 		return;
3410 	if (bp->dev->features & NETIF_F_LRO)
3411 		bp->flags |= BNXT_FLAG_LRO;
3412 	else if (bp->dev->features & NETIF_F_GRO_HW)
3413 		bp->flags |= BNXT_FLAG_GRO;
3414 }
3415 
3416 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3417  * be set on entry.
3418  */
3419 void bnxt_set_ring_params(struct bnxt *bp)
3420 {
3421 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3422 	u32 agg_factor = 0, agg_ring_size = 0;
3423 
3424 	/* 8 for CRC and VLAN */
3425 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3426 
3427 	rx_space = rx_size + NET_SKB_PAD +
3428 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3429 
3430 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3431 	ring_size = bp->rx_ring_size;
3432 	bp->rx_agg_ring_size = 0;
3433 	bp->rx_agg_nr_pages = 0;
3434 
3435 	if (bp->flags & BNXT_FLAG_TPA)
3436 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3437 
3438 	bp->flags &= ~BNXT_FLAG_JUMBO;
3439 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3440 		u32 jumbo_factor;
3441 
3442 		bp->flags |= BNXT_FLAG_JUMBO;
3443 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3444 		if (jumbo_factor > agg_factor)
3445 			agg_factor = jumbo_factor;
3446 	}
3447 	agg_ring_size = ring_size * agg_factor;
3448 
3449 	if (agg_ring_size) {
3450 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3451 							RX_DESC_CNT);
3452 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3453 			u32 tmp = agg_ring_size;
3454 
3455 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3456 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3457 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3458 				    tmp, agg_ring_size);
3459 		}
3460 		bp->rx_agg_ring_size = agg_ring_size;
3461 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3462 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3463 		rx_space = rx_size + NET_SKB_PAD +
3464 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3465 	}
3466 
3467 	bp->rx_buf_use_size = rx_size;
3468 	bp->rx_buf_size = rx_space;
3469 
3470 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3471 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3472 
3473 	ring_size = bp->tx_ring_size;
3474 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3475 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3476 
3477 	max_rx_cmpl = bp->rx_ring_size;
3478 	/* MAX TPA needs to be added because TPA_START completions are
3479 	 * immediately recycled, so the TPA completions are not bound by
3480 	 * the RX ring size.
3481 	 */
3482 	if (bp->flags & BNXT_FLAG_TPA)
3483 		max_rx_cmpl += bp->max_tpa;
3484 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3485 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3486 	bp->cp_ring_size = ring_size;
3487 
3488 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3489 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3490 		bp->cp_nr_pages = MAX_CP_PAGES;
3491 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3492 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3493 			    ring_size, bp->cp_ring_size);
3494 	}
3495 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3496 	bp->cp_ring_mask = bp->cp_bit - 1;
3497 }
3498 
3499 /* Changing allocation mode of RX rings.
3500  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3501  */
3502 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3503 {
3504 	if (page_mode) {
3505 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3506 			return -EOPNOTSUPP;
3507 		bp->dev->max_mtu =
3508 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3509 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3510 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3511 		bp->rx_dir = DMA_BIDIRECTIONAL;
3512 		bp->rx_skb_func = bnxt_rx_page_skb;
3513 		/* Disable LRO or GRO_HW */
3514 		netdev_update_features(bp->dev);
3515 	} else {
3516 		bp->dev->max_mtu = bp->max_mtu;
3517 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3518 		bp->rx_dir = DMA_FROM_DEVICE;
3519 		bp->rx_skb_func = bnxt_rx_skb;
3520 	}
3521 	return 0;
3522 }
3523 
3524 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3525 {
3526 	int i;
3527 	struct bnxt_vnic_info *vnic;
3528 	struct pci_dev *pdev = bp->pdev;
3529 
3530 	if (!bp->vnic_info)
3531 		return;
3532 
3533 	for (i = 0; i < bp->nr_vnics; i++) {
3534 		vnic = &bp->vnic_info[i];
3535 
3536 		kfree(vnic->fw_grp_ids);
3537 		vnic->fw_grp_ids = NULL;
3538 
3539 		kfree(vnic->uc_list);
3540 		vnic->uc_list = NULL;
3541 
3542 		if (vnic->mc_list) {
3543 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3544 					  vnic->mc_list, vnic->mc_list_mapping);
3545 			vnic->mc_list = NULL;
3546 		}
3547 
3548 		if (vnic->rss_table) {
3549 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
3550 					  vnic->rss_table,
3551 					  vnic->rss_table_dma_addr);
3552 			vnic->rss_table = NULL;
3553 		}
3554 
3555 		vnic->rss_hash_key = NULL;
3556 		vnic->flags = 0;
3557 	}
3558 }
3559 
3560 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3561 {
3562 	int i, rc = 0, size;
3563 	struct bnxt_vnic_info *vnic;
3564 	struct pci_dev *pdev = bp->pdev;
3565 	int max_rings;
3566 
3567 	for (i = 0; i < bp->nr_vnics; i++) {
3568 		vnic = &bp->vnic_info[i];
3569 
3570 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3571 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3572 
3573 			if (mem_size > 0) {
3574 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3575 				if (!vnic->uc_list) {
3576 					rc = -ENOMEM;
3577 					goto out;
3578 				}
3579 			}
3580 		}
3581 
3582 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3583 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3584 			vnic->mc_list =
3585 				dma_alloc_coherent(&pdev->dev,
3586 						   vnic->mc_list_size,
3587 						   &vnic->mc_list_mapping,
3588 						   GFP_KERNEL);
3589 			if (!vnic->mc_list) {
3590 				rc = -ENOMEM;
3591 				goto out;
3592 			}
3593 		}
3594 
3595 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3596 			goto vnic_skip_grps;
3597 
3598 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3599 			max_rings = bp->rx_nr_rings;
3600 		else
3601 			max_rings = 1;
3602 
3603 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3604 		if (!vnic->fw_grp_ids) {
3605 			rc = -ENOMEM;
3606 			goto out;
3607 		}
3608 vnic_skip_grps:
3609 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3610 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3611 			continue;
3612 
3613 		/* Allocate rss table and hash key */
3614 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3615 						     &vnic->rss_table_dma_addr,
3616 						     GFP_KERNEL);
3617 		if (!vnic->rss_table) {
3618 			rc = -ENOMEM;
3619 			goto out;
3620 		}
3621 
3622 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3623 
3624 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3625 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3626 	}
3627 	return 0;
3628 
3629 out:
3630 	return rc;
3631 }
3632 
3633 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3634 {
3635 	struct pci_dev *pdev = bp->pdev;
3636 
3637 	if (bp->hwrm_cmd_resp_addr) {
3638 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3639 				  bp->hwrm_cmd_resp_dma_addr);
3640 		bp->hwrm_cmd_resp_addr = NULL;
3641 	}
3642 
3643 	if (bp->hwrm_cmd_kong_resp_addr) {
3644 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3645 				  bp->hwrm_cmd_kong_resp_addr,
3646 				  bp->hwrm_cmd_kong_resp_dma_addr);
3647 		bp->hwrm_cmd_kong_resp_addr = NULL;
3648 	}
3649 }
3650 
3651 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3652 {
3653 	struct pci_dev *pdev = bp->pdev;
3654 
3655 	if (bp->hwrm_cmd_kong_resp_addr)
3656 		return 0;
3657 
3658 	bp->hwrm_cmd_kong_resp_addr =
3659 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3660 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3661 				   GFP_KERNEL);
3662 	if (!bp->hwrm_cmd_kong_resp_addr)
3663 		return -ENOMEM;
3664 
3665 	return 0;
3666 }
3667 
3668 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3669 {
3670 	struct pci_dev *pdev = bp->pdev;
3671 
3672 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3673 						   &bp->hwrm_cmd_resp_dma_addr,
3674 						   GFP_KERNEL);
3675 	if (!bp->hwrm_cmd_resp_addr)
3676 		return -ENOMEM;
3677 
3678 	return 0;
3679 }
3680 
3681 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3682 {
3683 	if (bp->hwrm_short_cmd_req_addr) {
3684 		struct pci_dev *pdev = bp->pdev;
3685 
3686 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3687 				  bp->hwrm_short_cmd_req_addr,
3688 				  bp->hwrm_short_cmd_req_dma_addr);
3689 		bp->hwrm_short_cmd_req_addr = NULL;
3690 	}
3691 }
3692 
3693 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3694 {
3695 	struct pci_dev *pdev = bp->pdev;
3696 
3697 	if (bp->hwrm_short_cmd_req_addr)
3698 		return 0;
3699 
3700 	bp->hwrm_short_cmd_req_addr =
3701 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3702 				   &bp->hwrm_short_cmd_req_dma_addr,
3703 				   GFP_KERNEL);
3704 	if (!bp->hwrm_short_cmd_req_addr)
3705 		return -ENOMEM;
3706 
3707 	return 0;
3708 }
3709 
3710 static void bnxt_free_port_stats(struct bnxt *bp)
3711 {
3712 	struct pci_dev *pdev = bp->pdev;
3713 
3714 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3715 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3716 
3717 	if (bp->hw_rx_port_stats) {
3718 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3719 				  bp->hw_rx_port_stats,
3720 				  bp->hw_rx_port_stats_map);
3721 		bp->hw_rx_port_stats = NULL;
3722 	}
3723 
3724 	if (bp->hw_tx_port_stats_ext) {
3725 		dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3726 				  bp->hw_tx_port_stats_ext,
3727 				  bp->hw_tx_port_stats_ext_map);
3728 		bp->hw_tx_port_stats_ext = NULL;
3729 	}
3730 
3731 	if (bp->hw_rx_port_stats_ext) {
3732 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3733 				  bp->hw_rx_port_stats_ext,
3734 				  bp->hw_rx_port_stats_ext_map);
3735 		bp->hw_rx_port_stats_ext = NULL;
3736 	}
3737 
3738 	if (bp->hw_pcie_stats) {
3739 		dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3740 				  bp->hw_pcie_stats, bp->hw_pcie_stats_map);
3741 		bp->hw_pcie_stats = NULL;
3742 	}
3743 }
3744 
3745 static void bnxt_free_ring_stats(struct bnxt *bp)
3746 {
3747 	struct pci_dev *pdev = bp->pdev;
3748 	int size, i;
3749 
3750 	if (!bp->bnapi)
3751 		return;
3752 
3753 	size = bp->hw_ring_stats_size;
3754 
3755 	for (i = 0; i < bp->cp_nr_rings; i++) {
3756 		struct bnxt_napi *bnapi = bp->bnapi[i];
3757 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3758 
3759 		if (cpr->hw_stats) {
3760 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3761 					  cpr->hw_stats_map);
3762 			cpr->hw_stats = NULL;
3763 		}
3764 	}
3765 }
3766 
3767 static int bnxt_alloc_stats(struct bnxt *bp)
3768 {
3769 	u32 size, i;
3770 	struct pci_dev *pdev = bp->pdev;
3771 
3772 	size = bp->hw_ring_stats_size;
3773 
3774 	for (i = 0; i < bp->cp_nr_rings; i++) {
3775 		struct bnxt_napi *bnapi = bp->bnapi[i];
3776 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3777 
3778 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3779 						   &cpr->hw_stats_map,
3780 						   GFP_KERNEL);
3781 		if (!cpr->hw_stats)
3782 			return -ENOMEM;
3783 
3784 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3785 	}
3786 
3787 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3788 		return 0;
3789 
3790 	if (bp->hw_rx_port_stats)
3791 		goto alloc_ext_stats;
3792 
3793 	bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3794 				 sizeof(struct tx_port_stats) + 1024;
3795 
3796 	bp->hw_rx_port_stats =
3797 		dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3798 				   &bp->hw_rx_port_stats_map,
3799 				   GFP_KERNEL);
3800 	if (!bp->hw_rx_port_stats)
3801 		return -ENOMEM;
3802 
3803 	bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512;
3804 	bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3805 				   sizeof(struct rx_port_stats) + 512;
3806 	bp->flags |= BNXT_FLAG_PORT_STATS;
3807 
3808 alloc_ext_stats:
3809 	/* Display extended statistics only if FW supports it */
3810 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3811 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3812 			return 0;
3813 
3814 	if (bp->hw_rx_port_stats_ext)
3815 		goto alloc_tx_ext_stats;
3816 
3817 	bp->hw_rx_port_stats_ext =
3818 		dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3819 				   &bp->hw_rx_port_stats_ext_map, GFP_KERNEL);
3820 	if (!bp->hw_rx_port_stats_ext)
3821 		return 0;
3822 
3823 alloc_tx_ext_stats:
3824 	if (bp->hw_tx_port_stats_ext)
3825 		goto alloc_pcie_stats;
3826 
3827 	if (bp->hwrm_spec_code >= 0x10902 ||
3828 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3829 		bp->hw_tx_port_stats_ext =
3830 			dma_alloc_coherent(&pdev->dev,
3831 					   sizeof(struct tx_port_stats_ext),
3832 					   &bp->hw_tx_port_stats_ext_map,
3833 					   GFP_KERNEL);
3834 	}
3835 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3836 
3837 alloc_pcie_stats:
3838 	if (bp->hw_pcie_stats ||
3839 	    !(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED))
3840 		return 0;
3841 
3842 	bp->hw_pcie_stats =
3843 		dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3844 				   &bp->hw_pcie_stats_map, GFP_KERNEL);
3845 	if (!bp->hw_pcie_stats)
3846 		return 0;
3847 
3848 	bp->flags |= BNXT_FLAG_PCIE_STATS;
3849 	return 0;
3850 }
3851 
3852 static void bnxt_clear_ring_indices(struct bnxt *bp)
3853 {
3854 	int i;
3855 
3856 	if (!bp->bnapi)
3857 		return;
3858 
3859 	for (i = 0; i < bp->cp_nr_rings; i++) {
3860 		struct bnxt_napi *bnapi = bp->bnapi[i];
3861 		struct bnxt_cp_ring_info *cpr;
3862 		struct bnxt_rx_ring_info *rxr;
3863 		struct bnxt_tx_ring_info *txr;
3864 
3865 		if (!bnapi)
3866 			continue;
3867 
3868 		cpr = &bnapi->cp_ring;
3869 		cpr->cp_raw_cons = 0;
3870 
3871 		txr = bnapi->tx_ring;
3872 		if (txr) {
3873 			txr->tx_prod = 0;
3874 			txr->tx_cons = 0;
3875 		}
3876 
3877 		rxr = bnapi->rx_ring;
3878 		if (rxr) {
3879 			rxr->rx_prod = 0;
3880 			rxr->rx_agg_prod = 0;
3881 			rxr->rx_sw_agg_prod = 0;
3882 			rxr->rx_next_cons = 0;
3883 		}
3884 	}
3885 }
3886 
3887 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3888 {
3889 #ifdef CONFIG_RFS_ACCEL
3890 	int i;
3891 
3892 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3893 	 * safe to delete the hash table.
3894 	 */
3895 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3896 		struct hlist_head *head;
3897 		struct hlist_node *tmp;
3898 		struct bnxt_ntuple_filter *fltr;
3899 
3900 		head = &bp->ntp_fltr_hash_tbl[i];
3901 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3902 			hlist_del(&fltr->hash);
3903 			kfree(fltr);
3904 		}
3905 	}
3906 	if (irq_reinit) {
3907 		kfree(bp->ntp_fltr_bmap);
3908 		bp->ntp_fltr_bmap = NULL;
3909 	}
3910 	bp->ntp_fltr_count = 0;
3911 #endif
3912 }
3913 
3914 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3915 {
3916 #ifdef CONFIG_RFS_ACCEL
3917 	int i, rc = 0;
3918 
3919 	if (!(bp->flags & BNXT_FLAG_RFS))
3920 		return 0;
3921 
3922 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3923 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3924 
3925 	bp->ntp_fltr_count = 0;
3926 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3927 				    sizeof(long),
3928 				    GFP_KERNEL);
3929 
3930 	if (!bp->ntp_fltr_bmap)
3931 		rc = -ENOMEM;
3932 
3933 	return rc;
3934 #else
3935 	return 0;
3936 #endif
3937 }
3938 
3939 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3940 {
3941 	bnxt_free_vnic_attributes(bp);
3942 	bnxt_free_tx_rings(bp);
3943 	bnxt_free_rx_rings(bp);
3944 	bnxt_free_cp_rings(bp);
3945 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3946 	if (irq_re_init) {
3947 		bnxt_free_ring_stats(bp);
3948 		bnxt_free_ring_grps(bp);
3949 		bnxt_free_vnics(bp);
3950 		kfree(bp->tx_ring_map);
3951 		bp->tx_ring_map = NULL;
3952 		kfree(bp->tx_ring);
3953 		bp->tx_ring = NULL;
3954 		kfree(bp->rx_ring);
3955 		bp->rx_ring = NULL;
3956 		kfree(bp->bnapi);
3957 		bp->bnapi = NULL;
3958 	} else {
3959 		bnxt_clear_ring_indices(bp);
3960 	}
3961 }
3962 
3963 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3964 {
3965 	int i, j, rc, size, arr_size;
3966 	void *bnapi;
3967 
3968 	if (irq_re_init) {
3969 		/* Allocate bnapi mem pointer array and mem block for
3970 		 * all queues
3971 		 */
3972 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3973 				bp->cp_nr_rings);
3974 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3975 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3976 		if (!bnapi)
3977 			return -ENOMEM;
3978 
3979 		bp->bnapi = bnapi;
3980 		bnapi += arr_size;
3981 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3982 			bp->bnapi[i] = bnapi;
3983 			bp->bnapi[i]->index = i;
3984 			bp->bnapi[i]->bp = bp;
3985 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3986 				struct bnxt_cp_ring_info *cpr =
3987 					&bp->bnapi[i]->cp_ring;
3988 
3989 				cpr->cp_ring_struct.ring_mem.flags =
3990 					BNXT_RMEM_RING_PTE_FLAG;
3991 			}
3992 		}
3993 
3994 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3995 				      sizeof(struct bnxt_rx_ring_info),
3996 				      GFP_KERNEL);
3997 		if (!bp->rx_ring)
3998 			return -ENOMEM;
3999 
4000 		for (i = 0; i < bp->rx_nr_rings; i++) {
4001 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4002 
4003 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4004 				rxr->rx_ring_struct.ring_mem.flags =
4005 					BNXT_RMEM_RING_PTE_FLAG;
4006 				rxr->rx_agg_ring_struct.ring_mem.flags =
4007 					BNXT_RMEM_RING_PTE_FLAG;
4008 			}
4009 			rxr->bnapi = bp->bnapi[i];
4010 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4011 		}
4012 
4013 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4014 				      sizeof(struct bnxt_tx_ring_info),
4015 				      GFP_KERNEL);
4016 		if (!bp->tx_ring)
4017 			return -ENOMEM;
4018 
4019 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4020 					  GFP_KERNEL);
4021 
4022 		if (!bp->tx_ring_map)
4023 			return -ENOMEM;
4024 
4025 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4026 			j = 0;
4027 		else
4028 			j = bp->rx_nr_rings;
4029 
4030 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4031 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4032 
4033 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4034 				txr->tx_ring_struct.ring_mem.flags =
4035 					BNXT_RMEM_RING_PTE_FLAG;
4036 			txr->bnapi = bp->bnapi[j];
4037 			bp->bnapi[j]->tx_ring = txr;
4038 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4039 			if (i >= bp->tx_nr_rings_xdp) {
4040 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4041 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4042 			} else {
4043 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4044 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4045 			}
4046 		}
4047 
4048 		rc = bnxt_alloc_stats(bp);
4049 		if (rc)
4050 			goto alloc_mem_err;
4051 
4052 		rc = bnxt_alloc_ntp_fltrs(bp);
4053 		if (rc)
4054 			goto alloc_mem_err;
4055 
4056 		rc = bnxt_alloc_vnics(bp);
4057 		if (rc)
4058 			goto alloc_mem_err;
4059 	}
4060 
4061 	bnxt_init_ring_struct(bp);
4062 
4063 	rc = bnxt_alloc_rx_rings(bp);
4064 	if (rc)
4065 		goto alloc_mem_err;
4066 
4067 	rc = bnxt_alloc_tx_rings(bp);
4068 	if (rc)
4069 		goto alloc_mem_err;
4070 
4071 	rc = bnxt_alloc_cp_rings(bp);
4072 	if (rc)
4073 		goto alloc_mem_err;
4074 
4075 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4076 				  BNXT_VNIC_UCAST_FLAG;
4077 	rc = bnxt_alloc_vnic_attributes(bp);
4078 	if (rc)
4079 		goto alloc_mem_err;
4080 	return 0;
4081 
4082 alloc_mem_err:
4083 	bnxt_free_mem(bp, true);
4084 	return rc;
4085 }
4086 
4087 static void bnxt_disable_int(struct bnxt *bp)
4088 {
4089 	int i;
4090 
4091 	if (!bp->bnapi)
4092 		return;
4093 
4094 	for (i = 0; i < bp->cp_nr_rings; i++) {
4095 		struct bnxt_napi *bnapi = bp->bnapi[i];
4096 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4097 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4098 
4099 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4100 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4101 	}
4102 }
4103 
4104 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4105 {
4106 	struct bnxt_napi *bnapi = bp->bnapi[n];
4107 	struct bnxt_cp_ring_info *cpr;
4108 
4109 	cpr = &bnapi->cp_ring;
4110 	return cpr->cp_ring_struct.map_idx;
4111 }
4112 
4113 static void bnxt_disable_int_sync(struct bnxt *bp)
4114 {
4115 	int i;
4116 
4117 	atomic_inc(&bp->intr_sem);
4118 
4119 	bnxt_disable_int(bp);
4120 	for (i = 0; i < bp->cp_nr_rings; i++) {
4121 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4122 
4123 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4124 	}
4125 }
4126 
4127 static void bnxt_enable_int(struct bnxt *bp)
4128 {
4129 	int i;
4130 
4131 	atomic_set(&bp->intr_sem, 0);
4132 	for (i = 0; i < bp->cp_nr_rings; i++) {
4133 		struct bnxt_napi *bnapi = bp->bnapi[i];
4134 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4135 
4136 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4137 	}
4138 }
4139 
4140 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4141 			    u16 cmpl_ring, u16 target_id)
4142 {
4143 	struct input *req = request;
4144 
4145 	req->req_type = cpu_to_le16(req_type);
4146 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
4147 	req->target_id = cpu_to_le16(target_id);
4148 	if (bnxt_kong_hwrm_message(bp, req))
4149 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4150 	else
4151 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4152 }
4153 
4154 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4155 {
4156 	switch (hwrm_err) {
4157 	case HWRM_ERR_CODE_SUCCESS:
4158 		return 0;
4159 	case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4160 		return -EACCES;
4161 	case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4162 		return -ENOSPC;
4163 	case HWRM_ERR_CODE_INVALID_PARAMS:
4164 	case HWRM_ERR_CODE_INVALID_FLAGS:
4165 	case HWRM_ERR_CODE_INVALID_ENABLES:
4166 	case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4167 	case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4168 		return -EINVAL;
4169 	case HWRM_ERR_CODE_NO_BUFFER:
4170 		return -ENOMEM;
4171 	case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4172 	case HWRM_ERR_CODE_BUSY:
4173 		return -EAGAIN;
4174 	case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4175 		return -EOPNOTSUPP;
4176 	default:
4177 		return -EIO;
4178 	}
4179 }
4180 
4181 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4182 				 int timeout, bool silent)
4183 {
4184 	int i, intr_process, rc, tmo_count;
4185 	struct input *req = msg;
4186 	u32 *data = msg;
4187 	u8 *valid;
4188 	u16 cp_ring_id, len = 0;
4189 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4190 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4191 	struct hwrm_short_input short_input = {0};
4192 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4193 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4194 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
4195 
4196 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4197 		return -EBUSY;
4198 
4199 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4200 		if (msg_len > bp->hwrm_max_ext_req_len ||
4201 		    !bp->hwrm_short_cmd_req_addr)
4202 			return -EINVAL;
4203 	}
4204 
4205 	if (bnxt_hwrm_kong_chnl(bp, req)) {
4206 		dst = BNXT_HWRM_CHNL_KONG;
4207 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4208 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4209 		resp = bp->hwrm_cmd_kong_resp_addr;
4210 	}
4211 
4212 	memset(resp, 0, PAGE_SIZE);
4213 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
4214 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4215 
4216 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4217 	/* currently supports only one outstanding message */
4218 	if (intr_process)
4219 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4220 
4221 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4222 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4223 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4224 		u16 max_msg_len;
4225 
4226 		/* Set boundary for maximum extended request length for short
4227 		 * cmd format. If passed up from device use the max supported
4228 		 * internal req length.
4229 		 */
4230 		max_msg_len = bp->hwrm_max_ext_req_len;
4231 
4232 		memcpy(short_cmd_req, req, msg_len);
4233 		if (msg_len < max_msg_len)
4234 			memset(short_cmd_req + msg_len, 0,
4235 			       max_msg_len - msg_len);
4236 
4237 		short_input.req_type = req->req_type;
4238 		short_input.signature =
4239 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4240 		short_input.size = cpu_to_le16(msg_len);
4241 		short_input.req_addr =
4242 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4243 
4244 		data = (u32 *)&short_input;
4245 		msg_len = sizeof(short_input);
4246 
4247 		/* Sync memory write before updating doorbell */
4248 		wmb();
4249 
4250 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4251 	}
4252 
4253 	/* Write request msg to hwrm channel */
4254 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4255 
4256 	for (i = msg_len; i < max_req_len; i += 4)
4257 		writel(0, bp->bar0 + bar_offset + i);
4258 
4259 	/* Ring channel doorbell */
4260 	writel(1, bp->bar0 + doorbell_offset);
4261 
4262 	if (!pci_is_enabled(bp->pdev))
4263 		return 0;
4264 
4265 	if (!timeout)
4266 		timeout = DFLT_HWRM_CMD_TIMEOUT;
4267 	/* convert timeout to usec */
4268 	timeout *= 1000;
4269 
4270 	i = 0;
4271 	/* Short timeout for the first few iterations:
4272 	 * number of loops = number of loops for short timeout +
4273 	 * number of loops for standard timeout.
4274 	 */
4275 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4276 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4277 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4278 
4279 	if (intr_process) {
4280 		u16 seq_id = bp->hwrm_intr_seq_id;
4281 
4282 		/* Wait until hwrm response cmpl interrupt is processed */
4283 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4284 		       i++ < tmo_count) {
4285 			/* Abort the wait for completion if the FW health
4286 			 * check has failed.
4287 			 */
4288 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4289 				return -EBUSY;
4290 			/* on first few passes, just barely sleep */
4291 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4292 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4293 					     HWRM_SHORT_MAX_TIMEOUT);
4294 			else
4295 				usleep_range(HWRM_MIN_TIMEOUT,
4296 					     HWRM_MAX_TIMEOUT);
4297 		}
4298 
4299 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4300 			if (!silent)
4301 				netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4302 					   le16_to_cpu(req->req_type));
4303 			return -EBUSY;
4304 		}
4305 		len = le16_to_cpu(resp->resp_len);
4306 		valid = ((u8 *)resp) + len - 1;
4307 	} else {
4308 		int j;
4309 
4310 		/* Check if response len is updated */
4311 		for (i = 0; i < tmo_count; i++) {
4312 			/* Abort the wait for completion if the FW health
4313 			 * check has failed.
4314 			 */
4315 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4316 				return -EBUSY;
4317 			len = le16_to_cpu(resp->resp_len);
4318 			if (len)
4319 				break;
4320 			/* on first few passes, just barely sleep */
4321 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4322 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4323 					     HWRM_SHORT_MAX_TIMEOUT);
4324 			else
4325 				usleep_range(HWRM_MIN_TIMEOUT,
4326 					     HWRM_MAX_TIMEOUT);
4327 		}
4328 
4329 		if (i >= tmo_count) {
4330 			if (!silent)
4331 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4332 					   HWRM_TOTAL_TIMEOUT(i),
4333 					   le16_to_cpu(req->req_type),
4334 					   le16_to_cpu(req->seq_id), len);
4335 			return -EBUSY;
4336 		}
4337 
4338 		/* Last byte of resp contains valid bit */
4339 		valid = ((u8 *)resp) + len - 1;
4340 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4341 			/* make sure we read from updated DMA memory */
4342 			dma_rmb();
4343 			if (*valid)
4344 				break;
4345 			usleep_range(1, 5);
4346 		}
4347 
4348 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4349 			if (!silent)
4350 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4351 					   HWRM_TOTAL_TIMEOUT(i),
4352 					   le16_to_cpu(req->req_type),
4353 					   le16_to_cpu(req->seq_id), len,
4354 					   *valid);
4355 			return -EBUSY;
4356 		}
4357 	}
4358 
4359 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4360 	 * may become a new field in a newer spec.  We must make sure that
4361 	 * a new field not implemented by old spec will read zero.
4362 	 */
4363 	*valid = 0;
4364 	rc = le16_to_cpu(resp->error_code);
4365 	if (rc && !silent)
4366 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4367 			   le16_to_cpu(resp->req_type),
4368 			   le16_to_cpu(resp->seq_id), rc);
4369 	return bnxt_hwrm_to_stderr(rc);
4370 }
4371 
4372 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4373 {
4374 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4375 }
4376 
4377 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4378 			      int timeout)
4379 {
4380 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4381 }
4382 
4383 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4384 {
4385 	int rc;
4386 
4387 	mutex_lock(&bp->hwrm_cmd_lock);
4388 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4389 	mutex_unlock(&bp->hwrm_cmd_lock);
4390 	return rc;
4391 }
4392 
4393 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4394 			     int timeout)
4395 {
4396 	int rc;
4397 
4398 	mutex_lock(&bp->hwrm_cmd_lock);
4399 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4400 	mutex_unlock(&bp->hwrm_cmd_lock);
4401 	return rc;
4402 }
4403 
4404 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4405 			    bool async_only)
4406 {
4407 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4408 	struct hwrm_func_drv_rgtr_input req = {0};
4409 	DECLARE_BITMAP(async_events_bmap, 256);
4410 	u32 *events = (u32 *)async_events_bmap;
4411 	u32 flags;
4412 	int rc, i;
4413 
4414 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4415 
4416 	req.enables =
4417 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4418 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
4419 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4420 
4421 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4422 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4423 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4424 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4425 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4426 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4427 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4428 	req.flags = cpu_to_le32(flags);
4429 	req.ver_maj_8b = DRV_VER_MAJ;
4430 	req.ver_min_8b = DRV_VER_MIN;
4431 	req.ver_upd_8b = DRV_VER_UPD;
4432 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4433 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4434 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4435 
4436 	if (BNXT_PF(bp)) {
4437 		u32 data[8];
4438 		int i;
4439 
4440 		memset(data, 0, sizeof(data));
4441 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4442 			u16 cmd = bnxt_vf_req_snif[i];
4443 			unsigned int bit, idx;
4444 
4445 			idx = cmd / 32;
4446 			bit = cmd % 32;
4447 			data[idx] |= 1 << bit;
4448 		}
4449 
4450 		for (i = 0; i < 8; i++)
4451 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4452 
4453 		req.enables |=
4454 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4455 	}
4456 
4457 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4458 		req.flags |= cpu_to_le32(
4459 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4460 
4461 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4462 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4463 		u16 event_id = bnxt_async_events_arr[i];
4464 
4465 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4466 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4467 			continue;
4468 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4469 	}
4470 	if (bmap && bmap_size) {
4471 		for (i = 0; i < bmap_size; i++) {
4472 			if (test_bit(i, bmap))
4473 				__set_bit(i, async_events_bmap);
4474 		}
4475 	}
4476 	for (i = 0; i < 8; i++)
4477 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4478 
4479 	if (async_only)
4480 		req.enables =
4481 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4482 
4483 	mutex_lock(&bp->hwrm_cmd_lock);
4484 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4485 	if (!rc) {
4486 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4487 		if (resp->flags &
4488 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4489 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4490 	}
4491 	mutex_unlock(&bp->hwrm_cmd_lock);
4492 	return rc;
4493 }
4494 
4495 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4496 {
4497 	struct hwrm_func_drv_unrgtr_input req = {0};
4498 
4499 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4500 		return 0;
4501 
4502 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4503 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4504 }
4505 
4506 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4507 {
4508 	u32 rc = 0;
4509 	struct hwrm_tunnel_dst_port_free_input req = {0};
4510 
4511 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4512 	req.tunnel_type = tunnel_type;
4513 
4514 	switch (tunnel_type) {
4515 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4516 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4517 		break;
4518 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4519 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4520 		break;
4521 	default:
4522 		break;
4523 	}
4524 
4525 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4526 	if (rc)
4527 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4528 			   rc);
4529 	return rc;
4530 }
4531 
4532 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4533 					   u8 tunnel_type)
4534 {
4535 	u32 rc = 0;
4536 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4537 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4538 
4539 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4540 
4541 	req.tunnel_type = tunnel_type;
4542 	req.tunnel_dst_port_val = port;
4543 
4544 	mutex_lock(&bp->hwrm_cmd_lock);
4545 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4546 	if (rc) {
4547 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4548 			   rc);
4549 		goto err_out;
4550 	}
4551 
4552 	switch (tunnel_type) {
4553 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4554 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4555 		break;
4556 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4557 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4558 		break;
4559 	default:
4560 		break;
4561 	}
4562 
4563 err_out:
4564 	mutex_unlock(&bp->hwrm_cmd_lock);
4565 	return rc;
4566 }
4567 
4568 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4569 {
4570 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4571 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4572 
4573 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4574 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4575 
4576 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4577 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4578 	req.mask = cpu_to_le32(vnic->rx_mask);
4579 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4580 }
4581 
4582 #ifdef CONFIG_RFS_ACCEL
4583 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4584 					    struct bnxt_ntuple_filter *fltr)
4585 {
4586 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4587 
4588 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4589 	req.ntuple_filter_id = fltr->filter_id;
4590 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4591 }
4592 
4593 #define BNXT_NTP_FLTR_FLAGS					\
4594 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4595 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4596 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4597 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4598 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4599 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4600 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4601 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4602 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4603 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4604 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4605 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4606 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4607 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4608 
4609 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4610 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4611 
4612 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4613 					     struct bnxt_ntuple_filter *fltr)
4614 {
4615 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4616 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4617 	struct flow_keys *keys = &fltr->fkeys;
4618 	struct bnxt_vnic_info *vnic;
4619 	u32 flags = 0;
4620 	int rc = 0;
4621 
4622 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4623 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4624 
4625 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4626 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4627 		req.dst_id = cpu_to_le16(fltr->rxq);
4628 	} else {
4629 		vnic = &bp->vnic_info[fltr->rxq + 1];
4630 		req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4631 	}
4632 	req.flags = cpu_to_le32(flags);
4633 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4634 
4635 	req.ethertype = htons(ETH_P_IP);
4636 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4637 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4638 	req.ip_protocol = keys->basic.ip_proto;
4639 
4640 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4641 		int i;
4642 
4643 		req.ethertype = htons(ETH_P_IPV6);
4644 		req.ip_addr_type =
4645 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4646 		*(struct in6_addr *)&req.src_ipaddr[0] =
4647 			keys->addrs.v6addrs.src;
4648 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4649 			keys->addrs.v6addrs.dst;
4650 		for (i = 0; i < 4; i++) {
4651 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4652 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4653 		}
4654 	} else {
4655 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4656 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4657 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4658 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4659 	}
4660 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4661 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4662 		req.tunnel_type =
4663 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4664 	}
4665 
4666 	req.src_port = keys->ports.src;
4667 	req.src_port_mask = cpu_to_be16(0xffff);
4668 	req.dst_port = keys->ports.dst;
4669 	req.dst_port_mask = cpu_to_be16(0xffff);
4670 
4671 	mutex_lock(&bp->hwrm_cmd_lock);
4672 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4673 	if (!rc) {
4674 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4675 		fltr->filter_id = resp->ntuple_filter_id;
4676 	}
4677 	mutex_unlock(&bp->hwrm_cmd_lock);
4678 	return rc;
4679 }
4680 #endif
4681 
4682 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4683 				     u8 *mac_addr)
4684 {
4685 	u32 rc = 0;
4686 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4687 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4688 
4689 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4690 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4691 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4692 		req.flags |=
4693 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4694 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4695 	req.enables =
4696 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4697 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4698 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4699 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4700 	req.l2_addr_mask[0] = 0xff;
4701 	req.l2_addr_mask[1] = 0xff;
4702 	req.l2_addr_mask[2] = 0xff;
4703 	req.l2_addr_mask[3] = 0xff;
4704 	req.l2_addr_mask[4] = 0xff;
4705 	req.l2_addr_mask[5] = 0xff;
4706 
4707 	mutex_lock(&bp->hwrm_cmd_lock);
4708 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4709 	if (!rc)
4710 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4711 							resp->l2_filter_id;
4712 	mutex_unlock(&bp->hwrm_cmd_lock);
4713 	return rc;
4714 }
4715 
4716 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4717 {
4718 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4719 	int rc = 0;
4720 
4721 	/* Any associated ntuple filters will also be cleared by firmware. */
4722 	mutex_lock(&bp->hwrm_cmd_lock);
4723 	for (i = 0; i < num_of_vnics; i++) {
4724 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4725 
4726 		for (j = 0; j < vnic->uc_filter_count; j++) {
4727 			struct hwrm_cfa_l2_filter_free_input req = {0};
4728 
4729 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4730 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4731 
4732 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4733 
4734 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4735 						HWRM_CMD_TIMEOUT);
4736 		}
4737 		vnic->uc_filter_count = 0;
4738 	}
4739 	mutex_unlock(&bp->hwrm_cmd_lock);
4740 
4741 	return rc;
4742 }
4743 
4744 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4745 {
4746 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4747 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4748 	struct hwrm_vnic_tpa_cfg_input req = {0};
4749 
4750 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4751 		return 0;
4752 
4753 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4754 
4755 	if (tpa_flags) {
4756 		u16 mss = bp->dev->mtu - 40;
4757 		u32 nsegs, n, segs = 0, flags;
4758 
4759 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4760 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4761 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4762 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4763 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4764 		if (tpa_flags & BNXT_FLAG_GRO)
4765 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4766 
4767 		req.flags = cpu_to_le32(flags);
4768 
4769 		req.enables =
4770 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4771 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4772 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4773 
4774 		/* Number of segs are log2 units, and first packet is not
4775 		 * included as part of this units.
4776 		 */
4777 		if (mss <= BNXT_RX_PAGE_SIZE) {
4778 			n = BNXT_RX_PAGE_SIZE / mss;
4779 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4780 		} else {
4781 			n = mss / BNXT_RX_PAGE_SIZE;
4782 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4783 				n++;
4784 			nsegs = (MAX_SKB_FRAGS - n) / n;
4785 		}
4786 
4787 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4788 			segs = MAX_TPA_SEGS_P5;
4789 			max_aggs = bp->max_tpa;
4790 		} else {
4791 			segs = ilog2(nsegs);
4792 		}
4793 		req.max_agg_segs = cpu_to_le16(segs);
4794 		req.max_aggs = cpu_to_le16(max_aggs);
4795 
4796 		req.min_agg_len = cpu_to_le32(512);
4797 	}
4798 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4799 
4800 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4801 }
4802 
4803 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4804 {
4805 	struct bnxt_ring_grp_info *grp_info;
4806 
4807 	grp_info = &bp->grp_info[ring->grp_idx];
4808 	return grp_info->cp_fw_ring_id;
4809 }
4810 
4811 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4812 {
4813 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4814 		struct bnxt_napi *bnapi = rxr->bnapi;
4815 		struct bnxt_cp_ring_info *cpr;
4816 
4817 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4818 		return cpr->cp_ring_struct.fw_ring_id;
4819 	} else {
4820 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4821 	}
4822 }
4823 
4824 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4825 {
4826 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4827 		struct bnxt_napi *bnapi = txr->bnapi;
4828 		struct bnxt_cp_ring_info *cpr;
4829 
4830 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4831 		return cpr->cp_ring_struct.fw_ring_id;
4832 	} else {
4833 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4834 	}
4835 }
4836 
4837 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4838 {
4839 	u32 i, j, max_rings;
4840 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4841 	struct hwrm_vnic_rss_cfg_input req = {0};
4842 
4843 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4844 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4845 		return 0;
4846 
4847 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4848 	if (set_rss) {
4849 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4850 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4851 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4852 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4853 				max_rings = bp->rx_nr_rings - 1;
4854 			else
4855 				max_rings = bp->rx_nr_rings;
4856 		} else {
4857 			max_rings = 1;
4858 		}
4859 
4860 		/* Fill the RSS indirection table with ring group ids */
4861 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4862 			if (j == max_rings)
4863 				j = 0;
4864 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4865 		}
4866 
4867 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4868 		req.hash_key_tbl_addr =
4869 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
4870 	}
4871 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4872 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4873 }
4874 
4875 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4876 {
4877 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4878 	u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4879 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4880 	struct hwrm_vnic_rss_cfg_input req = {0};
4881 
4882 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4883 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4884 	if (!set_rss) {
4885 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4886 		return 0;
4887 	}
4888 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4889 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4890 	req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4891 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4892 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4893 	for (i = 0, k = 0; i < nr_ctxs; i++) {
4894 		__le16 *ring_tbl = vnic->rss_table;
4895 		int rc;
4896 
4897 		req.ring_table_pair_index = i;
4898 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4899 		for (j = 0; j < 64; j++) {
4900 			u16 ring_id;
4901 
4902 			ring_id = rxr->rx_ring_struct.fw_ring_id;
4903 			*ring_tbl++ = cpu_to_le16(ring_id);
4904 			ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4905 			*ring_tbl++ = cpu_to_le16(ring_id);
4906 			rxr++;
4907 			k++;
4908 			if (k == max_rings) {
4909 				k = 0;
4910 				rxr = &bp->rx_ring[0];
4911 			}
4912 		}
4913 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4914 		if (rc)
4915 			return rc;
4916 	}
4917 	return 0;
4918 }
4919 
4920 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4921 {
4922 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4923 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
4924 
4925 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4926 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4927 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4928 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4929 	req.enables =
4930 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4931 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4932 	/* thresholds not implemented in firmware yet */
4933 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4934 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4935 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4936 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4937 }
4938 
4939 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4940 					u16 ctx_idx)
4941 {
4942 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4943 
4944 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4945 	req.rss_cos_lb_ctx_id =
4946 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4947 
4948 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4949 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4950 }
4951 
4952 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4953 {
4954 	int i, j;
4955 
4956 	for (i = 0; i < bp->nr_vnics; i++) {
4957 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4958 
4959 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4960 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4961 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4962 		}
4963 	}
4964 	bp->rsscos_nr_ctxs = 0;
4965 }
4966 
4967 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4968 {
4969 	int rc;
4970 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4971 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4972 						bp->hwrm_cmd_resp_addr;
4973 
4974 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4975 			       -1);
4976 
4977 	mutex_lock(&bp->hwrm_cmd_lock);
4978 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4979 	if (!rc)
4980 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4981 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4982 	mutex_unlock(&bp->hwrm_cmd_lock);
4983 
4984 	return rc;
4985 }
4986 
4987 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4988 {
4989 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4990 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4991 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4992 }
4993 
4994 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4995 {
4996 	unsigned int ring = 0, grp_idx;
4997 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4998 	struct hwrm_vnic_cfg_input req = {0};
4999 	u16 def_vlan = 0;
5000 
5001 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5002 
5003 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5004 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5005 
5006 		req.default_rx_ring_id =
5007 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5008 		req.default_cmpl_ring_id =
5009 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5010 		req.enables =
5011 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5012 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5013 		goto vnic_mru;
5014 	}
5015 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5016 	/* Only RSS support for now TBD: COS & LB */
5017 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5018 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5019 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5020 					   VNIC_CFG_REQ_ENABLES_MRU);
5021 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5022 		req.rss_rule =
5023 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5024 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5025 					   VNIC_CFG_REQ_ENABLES_MRU);
5026 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5027 	} else {
5028 		req.rss_rule = cpu_to_le16(0xffff);
5029 	}
5030 
5031 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5032 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5033 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5034 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5035 	} else {
5036 		req.cos_rule = cpu_to_le16(0xffff);
5037 	}
5038 
5039 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5040 		ring = 0;
5041 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5042 		ring = vnic_id - 1;
5043 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5044 		ring = bp->rx_nr_rings - 1;
5045 
5046 	grp_idx = bp->rx_ring[ring].bnapi->index;
5047 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5048 	req.lb_rule = cpu_to_le16(0xffff);
5049 vnic_mru:
5050 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5051 
5052 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5053 #ifdef CONFIG_BNXT_SRIOV
5054 	if (BNXT_VF(bp))
5055 		def_vlan = bp->vf.vlan;
5056 #endif
5057 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5058 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5059 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5060 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5061 
5062 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5063 }
5064 
5065 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5066 {
5067 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5068 		struct hwrm_vnic_free_input req = {0};
5069 
5070 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5071 		req.vnic_id =
5072 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5073 
5074 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5075 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5076 	}
5077 }
5078 
5079 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5080 {
5081 	u16 i;
5082 
5083 	for (i = 0; i < bp->nr_vnics; i++)
5084 		bnxt_hwrm_vnic_free_one(bp, i);
5085 }
5086 
5087 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5088 				unsigned int start_rx_ring_idx,
5089 				unsigned int nr_rings)
5090 {
5091 	int rc = 0;
5092 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5093 	struct hwrm_vnic_alloc_input req = {0};
5094 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5095 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5096 
5097 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5098 		goto vnic_no_ring_grps;
5099 
5100 	/* map ring groups to this vnic */
5101 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5102 		grp_idx = bp->rx_ring[i].bnapi->index;
5103 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5104 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5105 				   j, nr_rings);
5106 			break;
5107 		}
5108 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5109 	}
5110 
5111 vnic_no_ring_grps:
5112 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5113 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5114 	if (vnic_id == 0)
5115 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5116 
5117 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5118 
5119 	mutex_lock(&bp->hwrm_cmd_lock);
5120 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5121 	if (!rc)
5122 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5123 	mutex_unlock(&bp->hwrm_cmd_lock);
5124 	return rc;
5125 }
5126 
5127 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5128 {
5129 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5130 	struct hwrm_vnic_qcaps_input req = {0};
5131 	int rc;
5132 
5133 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5134 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5135 	if (bp->hwrm_spec_code < 0x10600)
5136 		return 0;
5137 
5138 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5139 	mutex_lock(&bp->hwrm_cmd_lock);
5140 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5141 	if (!rc) {
5142 		u32 flags = le32_to_cpu(resp->flags);
5143 
5144 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5145 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5146 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5147 		if (flags &
5148 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5149 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5150 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5151 		if (bp->max_tpa_v2)
5152 			bp->hw_ring_stats_size =
5153 				sizeof(struct ctx_hw_stats_ext);
5154 	}
5155 	mutex_unlock(&bp->hwrm_cmd_lock);
5156 	return rc;
5157 }
5158 
5159 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5160 {
5161 	u16 i;
5162 	u32 rc = 0;
5163 
5164 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5165 		return 0;
5166 
5167 	mutex_lock(&bp->hwrm_cmd_lock);
5168 	for (i = 0; i < bp->rx_nr_rings; i++) {
5169 		struct hwrm_ring_grp_alloc_input req = {0};
5170 		struct hwrm_ring_grp_alloc_output *resp =
5171 					bp->hwrm_cmd_resp_addr;
5172 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5173 
5174 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5175 
5176 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5177 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5178 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5179 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5180 
5181 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5182 					HWRM_CMD_TIMEOUT);
5183 		if (rc)
5184 			break;
5185 
5186 		bp->grp_info[grp_idx].fw_grp_id =
5187 			le32_to_cpu(resp->ring_group_id);
5188 	}
5189 	mutex_unlock(&bp->hwrm_cmd_lock);
5190 	return rc;
5191 }
5192 
5193 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5194 {
5195 	u16 i;
5196 	struct hwrm_ring_grp_free_input req = {0};
5197 
5198 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5199 		return;
5200 
5201 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5202 
5203 	mutex_lock(&bp->hwrm_cmd_lock);
5204 	for (i = 0; i < bp->cp_nr_rings; i++) {
5205 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5206 			continue;
5207 		req.ring_group_id =
5208 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5209 
5210 		_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5211 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5212 	}
5213 	mutex_unlock(&bp->hwrm_cmd_lock);
5214 }
5215 
5216 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5217 				    struct bnxt_ring_struct *ring,
5218 				    u32 ring_type, u32 map_index)
5219 {
5220 	int rc = 0, err = 0;
5221 	struct hwrm_ring_alloc_input req = {0};
5222 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5223 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5224 	struct bnxt_ring_grp_info *grp_info;
5225 	u16 ring_id;
5226 
5227 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5228 
5229 	req.enables = 0;
5230 	if (rmem->nr_pages > 1) {
5231 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5232 		/* Page size is in log2 units */
5233 		req.page_size = BNXT_PAGE_SHIFT;
5234 		req.page_tbl_depth = 1;
5235 	} else {
5236 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5237 	}
5238 	req.fbo = 0;
5239 	/* Association of ring index with doorbell index and MSIX number */
5240 	req.logical_id = cpu_to_le16(map_index);
5241 
5242 	switch (ring_type) {
5243 	case HWRM_RING_ALLOC_TX: {
5244 		struct bnxt_tx_ring_info *txr;
5245 
5246 		txr = container_of(ring, struct bnxt_tx_ring_info,
5247 				   tx_ring_struct);
5248 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5249 		/* Association of transmit ring with completion ring */
5250 		grp_info = &bp->grp_info[ring->grp_idx];
5251 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5252 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5253 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5254 		req.queue_id = cpu_to_le16(ring->queue_id);
5255 		break;
5256 	}
5257 	case HWRM_RING_ALLOC_RX:
5258 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5259 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5260 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5261 			u16 flags = 0;
5262 
5263 			/* Association of rx ring with stats context */
5264 			grp_info = &bp->grp_info[ring->grp_idx];
5265 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5266 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5267 			req.enables |= cpu_to_le32(
5268 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5269 			if (NET_IP_ALIGN == 2)
5270 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5271 			req.flags = cpu_to_le16(flags);
5272 		}
5273 		break;
5274 	case HWRM_RING_ALLOC_AGG:
5275 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5276 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5277 			/* Association of agg ring with rx ring */
5278 			grp_info = &bp->grp_info[ring->grp_idx];
5279 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5280 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5281 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5282 			req.enables |= cpu_to_le32(
5283 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5284 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5285 		} else {
5286 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5287 		}
5288 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5289 		break;
5290 	case HWRM_RING_ALLOC_CMPL:
5291 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5292 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5293 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5294 			/* Association of cp ring with nq */
5295 			grp_info = &bp->grp_info[map_index];
5296 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5297 			req.cq_handle = cpu_to_le64(ring->handle);
5298 			req.enables |= cpu_to_le32(
5299 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5300 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5301 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5302 		}
5303 		break;
5304 	case HWRM_RING_ALLOC_NQ:
5305 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5306 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5307 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5308 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5309 		break;
5310 	default:
5311 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5312 			   ring_type);
5313 		return -1;
5314 	}
5315 
5316 	mutex_lock(&bp->hwrm_cmd_lock);
5317 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5318 	err = le16_to_cpu(resp->error_code);
5319 	ring_id = le16_to_cpu(resp->ring_id);
5320 	mutex_unlock(&bp->hwrm_cmd_lock);
5321 
5322 	if (rc || err) {
5323 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5324 			   ring_type, rc, err);
5325 		return -EIO;
5326 	}
5327 	ring->fw_ring_id = ring_id;
5328 	return rc;
5329 }
5330 
5331 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5332 {
5333 	int rc;
5334 
5335 	if (BNXT_PF(bp)) {
5336 		struct hwrm_func_cfg_input req = {0};
5337 
5338 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5339 		req.fid = cpu_to_le16(0xffff);
5340 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5341 		req.async_event_cr = cpu_to_le16(idx);
5342 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5343 	} else {
5344 		struct hwrm_func_vf_cfg_input req = {0};
5345 
5346 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5347 		req.enables =
5348 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5349 		req.async_event_cr = cpu_to_le16(idx);
5350 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5351 	}
5352 	return rc;
5353 }
5354 
5355 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5356 			u32 map_idx, u32 xid)
5357 {
5358 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5359 		if (BNXT_PF(bp))
5360 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5361 		else
5362 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5363 		switch (ring_type) {
5364 		case HWRM_RING_ALLOC_TX:
5365 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5366 			break;
5367 		case HWRM_RING_ALLOC_RX:
5368 		case HWRM_RING_ALLOC_AGG:
5369 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5370 			break;
5371 		case HWRM_RING_ALLOC_CMPL:
5372 			db->db_key64 = DBR_PATH_L2;
5373 			break;
5374 		case HWRM_RING_ALLOC_NQ:
5375 			db->db_key64 = DBR_PATH_L2;
5376 			break;
5377 		}
5378 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5379 	} else {
5380 		db->doorbell = bp->bar1 + map_idx * 0x80;
5381 		switch (ring_type) {
5382 		case HWRM_RING_ALLOC_TX:
5383 			db->db_key32 = DB_KEY_TX;
5384 			break;
5385 		case HWRM_RING_ALLOC_RX:
5386 		case HWRM_RING_ALLOC_AGG:
5387 			db->db_key32 = DB_KEY_RX;
5388 			break;
5389 		case HWRM_RING_ALLOC_CMPL:
5390 			db->db_key32 = DB_KEY_CP;
5391 			break;
5392 		}
5393 	}
5394 }
5395 
5396 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5397 {
5398 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5399 	int i, rc = 0;
5400 	u32 type;
5401 
5402 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5403 		type = HWRM_RING_ALLOC_NQ;
5404 	else
5405 		type = HWRM_RING_ALLOC_CMPL;
5406 	for (i = 0; i < bp->cp_nr_rings; i++) {
5407 		struct bnxt_napi *bnapi = bp->bnapi[i];
5408 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5409 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5410 		u32 map_idx = ring->map_idx;
5411 		unsigned int vector;
5412 
5413 		vector = bp->irq_tbl[map_idx].vector;
5414 		disable_irq_nosync(vector);
5415 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5416 		if (rc) {
5417 			enable_irq(vector);
5418 			goto err_out;
5419 		}
5420 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5421 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5422 		enable_irq(vector);
5423 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5424 
5425 		if (!i) {
5426 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5427 			if (rc)
5428 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5429 		}
5430 	}
5431 
5432 	type = HWRM_RING_ALLOC_TX;
5433 	for (i = 0; i < bp->tx_nr_rings; i++) {
5434 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5435 		struct bnxt_ring_struct *ring;
5436 		u32 map_idx;
5437 
5438 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5439 			struct bnxt_napi *bnapi = txr->bnapi;
5440 			struct bnxt_cp_ring_info *cpr, *cpr2;
5441 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5442 
5443 			cpr = &bnapi->cp_ring;
5444 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5445 			ring = &cpr2->cp_ring_struct;
5446 			ring->handle = BNXT_TX_HDL;
5447 			map_idx = bnapi->index;
5448 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5449 			if (rc)
5450 				goto err_out;
5451 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5452 				    ring->fw_ring_id);
5453 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5454 		}
5455 		ring = &txr->tx_ring_struct;
5456 		map_idx = i;
5457 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5458 		if (rc)
5459 			goto err_out;
5460 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5461 	}
5462 
5463 	type = HWRM_RING_ALLOC_RX;
5464 	for (i = 0; i < bp->rx_nr_rings; i++) {
5465 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5466 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5467 		struct bnxt_napi *bnapi = rxr->bnapi;
5468 		u32 map_idx = bnapi->index;
5469 
5470 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5471 		if (rc)
5472 			goto err_out;
5473 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5474 		/* If we have agg rings, post agg buffers first. */
5475 		if (!agg_rings)
5476 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5477 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5478 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5479 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5480 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5481 			struct bnxt_cp_ring_info *cpr2;
5482 
5483 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5484 			ring = &cpr2->cp_ring_struct;
5485 			ring->handle = BNXT_RX_HDL;
5486 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5487 			if (rc)
5488 				goto err_out;
5489 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5490 				    ring->fw_ring_id);
5491 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5492 		}
5493 	}
5494 
5495 	if (agg_rings) {
5496 		type = HWRM_RING_ALLOC_AGG;
5497 		for (i = 0; i < bp->rx_nr_rings; i++) {
5498 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5499 			struct bnxt_ring_struct *ring =
5500 						&rxr->rx_agg_ring_struct;
5501 			u32 grp_idx = ring->grp_idx;
5502 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5503 
5504 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5505 			if (rc)
5506 				goto err_out;
5507 
5508 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5509 				    ring->fw_ring_id);
5510 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5511 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5512 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5513 		}
5514 	}
5515 err_out:
5516 	return rc;
5517 }
5518 
5519 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5520 				   struct bnxt_ring_struct *ring,
5521 				   u32 ring_type, int cmpl_ring_id)
5522 {
5523 	int rc;
5524 	struct hwrm_ring_free_input req = {0};
5525 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5526 	u16 error_code;
5527 
5528 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
5529 		return 0;
5530 
5531 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5532 	req.ring_type = ring_type;
5533 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5534 
5535 	mutex_lock(&bp->hwrm_cmd_lock);
5536 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5537 	error_code = le16_to_cpu(resp->error_code);
5538 	mutex_unlock(&bp->hwrm_cmd_lock);
5539 
5540 	if (rc || error_code) {
5541 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5542 			   ring_type, rc, error_code);
5543 		return -EIO;
5544 	}
5545 	return 0;
5546 }
5547 
5548 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5549 {
5550 	u32 type;
5551 	int i;
5552 
5553 	if (!bp->bnapi)
5554 		return;
5555 
5556 	for (i = 0; i < bp->tx_nr_rings; i++) {
5557 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5558 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5559 
5560 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5561 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5562 
5563 			hwrm_ring_free_send_msg(bp, ring,
5564 						RING_FREE_REQ_RING_TYPE_TX,
5565 						close_path ? cmpl_ring_id :
5566 						INVALID_HW_RING_ID);
5567 			ring->fw_ring_id = INVALID_HW_RING_ID;
5568 		}
5569 	}
5570 
5571 	for (i = 0; i < bp->rx_nr_rings; i++) {
5572 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5573 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5574 		u32 grp_idx = rxr->bnapi->index;
5575 
5576 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5577 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5578 
5579 			hwrm_ring_free_send_msg(bp, ring,
5580 						RING_FREE_REQ_RING_TYPE_RX,
5581 						close_path ? cmpl_ring_id :
5582 						INVALID_HW_RING_ID);
5583 			ring->fw_ring_id = INVALID_HW_RING_ID;
5584 			bp->grp_info[grp_idx].rx_fw_ring_id =
5585 				INVALID_HW_RING_ID;
5586 		}
5587 	}
5588 
5589 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5590 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5591 	else
5592 		type = RING_FREE_REQ_RING_TYPE_RX;
5593 	for (i = 0; i < bp->rx_nr_rings; i++) {
5594 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5595 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5596 		u32 grp_idx = rxr->bnapi->index;
5597 
5598 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5599 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5600 
5601 			hwrm_ring_free_send_msg(bp, ring, type,
5602 						close_path ? cmpl_ring_id :
5603 						INVALID_HW_RING_ID);
5604 			ring->fw_ring_id = INVALID_HW_RING_ID;
5605 			bp->grp_info[grp_idx].agg_fw_ring_id =
5606 				INVALID_HW_RING_ID;
5607 		}
5608 	}
5609 
5610 	/* The completion rings are about to be freed.  After that the
5611 	 * IRQ doorbell will not work anymore.  So we need to disable
5612 	 * IRQ here.
5613 	 */
5614 	bnxt_disable_int_sync(bp);
5615 
5616 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5617 		type = RING_FREE_REQ_RING_TYPE_NQ;
5618 	else
5619 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5620 	for (i = 0; i < bp->cp_nr_rings; i++) {
5621 		struct bnxt_napi *bnapi = bp->bnapi[i];
5622 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5623 		struct bnxt_ring_struct *ring;
5624 		int j;
5625 
5626 		for (j = 0; j < 2; j++) {
5627 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5628 
5629 			if (cpr2) {
5630 				ring = &cpr2->cp_ring_struct;
5631 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5632 					continue;
5633 				hwrm_ring_free_send_msg(bp, ring,
5634 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5635 					INVALID_HW_RING_ID);
5636 				ring->fw_ring_id = INVALID_HW_RING_ID;
5637 			}
5638 		}
5639 		ring = &cpr->cp_ring_struct;
5640 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5641 			hwrm_ring_free_send_msg(bp, ring, type,
5642 						INVALID_HW_RING_ID);
5643 			ring->fw_ring_id = INVALID_HW_RING_ID;
5644 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5645 		}
5646 	}
5647 }
5648 
5649 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5650 			   bool shared);
5651 
5652 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5653 {
5654 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5655 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5656 	struct hwrm_func_qcfg_input req = {0};
5657 	int rc;
5658 
5659 	if (bp->hwrm_spec_code < 0x10601)
5660 		return 0;
5661 
5662 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5663 	req.fid = cpu_to_le16(0xffff);
5664 	mutex_lock(&bp->hwrm_cmd_lock);
5665 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5666 	if (rc) {
5667 		mutex_unlock(&bp->hwrm_cmd_lock);
5668 		return rc;
5669 	}
5670 
5671 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5672 	if (BNXT_NEW_RM(bp)) {
5673 		u16 cp, stats;
5674 
5675 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5676 		hw_resc->resv_hw_ring_grps =
5677 			le32_to_cpu(resp->alloc_hw_ring_grps);
5678 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5679 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5680 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5681 		hw_resc->resv_irqs = cp;
5682 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5683 			int rx = hw_resc->resv_rx_rings;
5684 			int tx = hw_resc->resv_tx_rings;
5685 
5686 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5687 				rx >>= 1;
5688 			if (cp < (rx + tx)) {
5689 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5690 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5691 					rx <<= 1;
5692 				hw_resc->resv_rx_rings = rx;
5693 				hw_resc->resv_tx_rings = tx;
5694 			}
5695 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5696 			hw_resc->resv_hw_ring_grps = rx;
5697 		}
5698 		hw_resc->resv_cp_rings = cp;
5699 		hw_resc->resv_stat_ctxs = stats;
5700 	}
5701 	mutex_unlock(&bp->hwrm_cmd_lock);
5702 	return 0;
5703 }
5704 
5705 /* Caller must hold bp->hwrm_cmd_lock */
5706 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5707 {
5708 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5709 	struct hwrm_func_qcfg_input req = {0};
5710 	int rc;
5711 
5712 	if (bp->hwrm_spec_code < 0x10601)
5713 		return 0;
5714 
5715 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5716 	req.fid = cpu_to_le16(fid);
5717 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5718 	if (!rc)
5719 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5720 
5721 	return rc;
5722 }
5723 
5724 static bool bnxt_rfs_supported(struct bnxt *bp);
5725 
5726 static void
5727 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5728 			     int tx_rings, int rx_rings, int ring_grps,
5729 			     int cp_rings, int stats, int vnics)
5730 {
5731 	u32 enables = 0;
5732 
5733 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5734 	req->fid = cpu_to_le16(0xffff);
5735 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5736 	req->num_tx_rings = cpu_to_le16(tx_rings);
5737 	if (BNXT_NEW_RM(bp)) {
5738 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5739 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5740 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5741 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5742 			enables |= tx_rings + ring_grps ?
5743 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5744 			enables |= rx_rings ?
5745 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5746 		} else {
5747 			enables |= cp_rings ?
5748 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5749 			enables |= ring_grps ?
5750 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5751 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5752 		}
5753 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5754 
5755 		req->num_rx_rings = cpu_to_le16(rx_rings);
5756 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5757 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5758 			req->num_msix = cpu_to_le16(cp_rings);
5759 			req->num_rsscos_ctxs =
5760 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5761 		} else {
5762 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
5763 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5764 			req->num_rsscos_ctxs = cpu_to_le16(1);
5765 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5766 			    bnxt_rfs_supported(bp))
5767 				req->num_rsscos_ctxs =
5768 					cpu_to_le16(ring_grps + 1);
5769 		}
5770 		req->num_stat_ctxs = cpu_to_le16(stats);
5771 		req->num_vnics = cpu_to_le16(vnics);
5772 	}
5773 	req->enables = cpu_to_le32(enables);
5774 }
5775 
5776 static void
5777 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5778 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
5779 			     int rx_rings, int ring_grps, int cp_rings,
5780 			     int stats, int vnics)
5781 {
5782 	u32 enables = 0;
5783 
5784 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5785 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5786 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5787 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5788 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5789 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5790 		enables |= tx_rings + ring_grps ?
5791 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5792 	} else {
5793 		enables |= cp_rings ?
5794 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5795 		enables |= ring_grps ?
5796 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5797 	}
5798 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5799 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5800 
5801 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5802 	req->num_tx_rings = cpu_to_le16(tx_rings);
5803 	req->num_rx_rings = cpu_to_le16(rx_rings);
5804 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5805 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5806 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5807 	} else {
5808 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
5809 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5810 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5811 	}
5812 	req->num_stat_ctxs = cpu_to_le16(stats);
5813 	req->num_vnics = cpu_to_le16(vnics);
5814 
5815 	req->enables = cpu_to_le32(enables);
5816 }
5817 
5818 static int
5819 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5820 			   int ring_grps, int cp_rings, int stats, int vnics)
5821 {
5822 	struct hwrm_func_cfg_input req = {0};
5823 	int rc;
5824 
5825 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5826 				     cp_rings, stats, vnics);
5827 	if (!req.enables)
5828 		return 0;
5829 
5830 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5831 	if (rc)
5832 		return rc;
5833 
5834 	if (bp->hwrm_spec_code < 0x10601)
5835 		bp->hw_resc.resv_tx_rings = tx_rings;
5836 
5837 	return bnxt_hwrm_get_rings(bp);
5838 }
5839 
5840 static int
5841 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5842 			   int ring_grps, int cp_rings, int stats, int vnics)
5843 {
5844 	struct hwrm_func_vf_cfg_input req = {0};
5845 	int rc;
5846 
5847 	if (!BNXT_NEW_RM(bp)) {
5848 		bp->hw_resc.resv_tx_rings = tx_rings;
5849 		return 0;
5850 	}
5851 
5852 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5853 				     cp_rings, stats, vnics);
5854 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5855 	if (rc)
5856 		return rc;
5857 
5858 	return bnxt_hwrm_get_rings(bp);
5859 }
5860 
5861 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5862 				   int cp, int stat, int vnic)
5863 {
5864 	if (BNXT_PF(bp))
5865 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5866 						  vnic);
5867 	else
5868 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5869 						  vnic);
5870 }
5871 
5872 int bnxt_nq_rings_in_use(struct bnxt *bp)
5873 {
5874 	int cp = bp->cp_nr_rings;
5875 	int ulp_msix, ulp_base;
5876 
5877 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5878 	if (ulp_msix) {
5879 		ulp_base = bnxt_get_ulp_msix_base(bp);
5880 		cp += ulp_msix;
5881 		if ((ulp_base + ulp_msix) > cp)
5882 			cp = ulp_base + ulp_msix;
5883 	}
5884 	return cp;
5885 }
5886 
5887 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5888 {
5889 	int cp;
5890 
5891 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5892 		return bnxt_nq_rings_in_use(bp);
5893 
5894 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
5895 	return cp;
5896 }
5897 
5898 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5899 {
5900 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
5901 	int cp = bp->cp_nr_rings;
5902 
5903 	if (!ulp_stat)
5904 		return cp;
5905 
5906 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
5907 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
5908 
5909 	return cp + ulp_stat;
5910 }
5911 
5912 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5913 {
5914 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5915 	int cp = bnxt_cp_rings_in_use(bp);
5916 	int nq = bnxt_nq_rings_in_use(bp);
5917 	int rx = bp->rx_nr_rings, stat;
5918 	int vnic = 1, grp = rx;
5919 
5920 	if (bp->hwrm_spec_code < 0x10601)
5921 		return false;
5922 
5923 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5924 		return true;
5925 
5926 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5927 		vnic = rx + 1;
5928 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5929 		rx <<= 1;
5930 	stat = bnxt_get_func_stat_ctxs(bp);
5931 	if (BNXT_NEW_RM(bp) &&
5932 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5933 	     hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
5934 	     (hw_resc->resv_hw_ring_grps != grp &&
5935 	      !(bp->flags & BNXT_FLAG_CHIP_P5))))
5936 		return true;
5937 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
5938 	    hw_resc->resv_irqs != nq)
5939 		return true;
5940 	return false;
5941 }
5942 
5943 static int __bnxt_reserve_rings(struct bnxt *bp)
5944 {
5945 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5946 	int cp = bnxt_nq_rings_in_use(bp);
5947 	int tx = bp->tx_nr_rings;
5948 	int rx = bp->rx_nr_rings;
5949 	int grp, rx_rings, rc;
5950 	int vnic = 1, stat;
5951 	bool sh = false;
5952 
5953 	if (!bnxt_need_reserve_rings(bp))
5954 		return 0;
5955 
5956 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5957 		sh = true;
5958 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5959 		vnic = rx + 1;
5960 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5961 		rx <<= 1;
5962 	grp = bp->rx_nr_rings;
5963 	stat = bnxt_get_func_stat_ctxs(bp);
5964 
5965 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5966 	if (rc)
5967 		return rc;
5968 
5969 	tx = hw_resc->resv_tx_rings;
5970 	if (BNXT_NEW_RM(bp)) {
5971 		rx = hw_resc->resv_rx_rings;
5972 		cp = hw_resc->resv_irqs;
5973 		grp = hw_resc->resv_hw_ring_grps;
5974 		vnic = hw_resc->resv_vnics;
5975 		stat = hw_resc->resv_stat_ctxs;
5976 	}
5977 
5978 	rx_rings = rx;
5979 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5980 		if (rx >= 2) {
5981 			rx_rings = rx >> 1;
5982 		} else {
5983 			if (netif_running(bp->dev))
5984 				return -ENOMEM;
5985 
5986 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5987 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5988 			bp->dev->hw_features &= ~NETIF_F_LRO;
5989 			bp->dev->features &= ~NETIF_F_LRO;
5990 			bnxt_set_ring_params(bp);
5991 		}
5992 	}
5993 	rx_rings = min_t(int, rx_rings, grp);
5994 	cp = min_t(int, cp, bp->cp_nr_rings);
5995 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
5996 		stat -= bnxt_get_ulp_stat_ctxs(bp);
5997 	cp = min_t(int, cp, stat);
5998 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5999 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6000 		rx = rx_rings << 1;
6001 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6002 	bp->tx_nr_rings = tx;
6003 	bp->rx_nr_rings = rx_rings;
6004 	bp->cp_nr_rings = cp;
6005 
6006 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6007 		return -ENOMEM;
6008 
6009 	return rc;
6010 }
6011 
6012 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6013 				    int ring_grps, int cp_rings, int stats,
6014 				    int vnics)
6015 {
6016 	struct hwrm_func_vf_cfg_input req = {0};
6017 	u32 flags;
6018 
6019 	if (!BNXT_NEW_RM(bp))
6020 		return 0;
6021 
6022 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6023 				     cp_rings, stats, vnics);
6024 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6025 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6026 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6027 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6028 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6029 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6030 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6031 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6032 
6033 	req.flags = cpu_to_le32(flags);
6034 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6035 					HWRM_CMD_TIMEOUT);
6036 }
6037 
6038 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6039 				    int ring_grps, int cp_rings, int stats,
6040 				    int vnics)
6041 {
6042 	struct hwrm_func_cfg_input req = {0};
6043 	u32 flags;
6044 
6045 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6046 				     cp_rings, stats, vnics);
6047 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6048 	if (BNXT_NEW_RM(bp)) {
6049 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6050 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6051 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6052 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6053 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6054 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6055 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6056 		else
6057 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6058 	}
6059 
6060 	req.flags = cpu_to_le32(flags);
6061 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6062 					HWRM_CMD_TIMEOUT);
6063 }
6064 
6065 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6066 				 int ring_grps, int cp_rings, int stats,
6067 				 int vnics)
6068 {
6069 	if (bp->hwrm_spec_code < 0x10801)
6070 		return 0;
6071 
6072 	if (BNXT_PF(bp))
6073 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6074 						ring_grps, cp_rings, stats,
6075 						vnics);
6076 
6077 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6078 					cp_rings, stats, vnics);
6079 }
6080 
6081 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6082 {
6083 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6084 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6085 	struct hwrm_ring_aggint_qcaps_input req = {0};
6086 	int rc;
6087 
6088 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6089 	coal_cap->num_cmpl_dma_aggr_max = 63;
6090 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6091 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6092 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6093 	coal_cap->int_lat_tmr_min_max = 65535;
6094 	coal_cap->int_lat_tmr_max_max = 65535;
6095 	coal_cap->num_cmpl_aggr_int_max = 65535;
6096 	coal_cap->timer_units = 80;
6097 
6098 	if (bp->hwrm_spec_code < 0x10902)
6099 		return;
6100 
6101 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6102 	mutex_lock(&bp->hwrm_cmd_lock);
6103 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6104 	if (!rc) {
6105 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6106 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6107 		coal_cap->num_cmpl_dma_aggr_max =
6108 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6109 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6110 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6111 		coal_cap->cmpl_aggr_dma_tmr_max =
6112 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6113 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6114 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6115 		coal_cap->int_lat_tmr_min_max =
6116 			le16_to_cpu(resp->int_lat_tmr_min_max);
6117 		coal_cap->int_lat_tmr_max_max =
6118 			le16_to_cpu(resp->int_lat_tmr_max_max);
6119 		coal_cap->num_cmpl_aggr_int_max =
6120 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6121 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6122 	}
6123 	mutex_unlock(&bp->hwrm_cmd_lock);
6124 }
6125 
6126 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6127 {
6128 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6129 
6130 	return usec * 1000 / coal_cap->timer_units;
6131 }
6132 
6133 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6134 	struct bnxt_coal *hw_coal,
6135 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6136 {
6137 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6138 	u32 cmpl_params = coal_cap->cmpl_params;
6139 	u16 val, tmr, max, flags = 0;
6140 
6141 	max = hw_coal->bufs_per_record * 128;
6142 	if (hw_coal->budget)
6143 		max = hw_coal->bufs_per_record * hw_coal->budget;
6144 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6145 
6146 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6147 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6148 
6149 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6150 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6151 
6152 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6153 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6154 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6155 
6156 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6157 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6158 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6159 
6160 	/* min timer set to 1/2 of interrupt timer */
6161 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6162 		val = tmr / 2;
6163 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6164 		req->int_lat_tmr_min = cpu_to_le16(val);
6165 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6166 	}
6167 
6168 	/* buf timer set to 1/4 of interrupt timer */
6169 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6170 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6171 
6172 	if (cmpl_params &
6173 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6174 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6175 		val = clamp_t(u16, tmr, 1,
6176 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6177 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6178 		req->enables |=
6179 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6180 	}
6181 
6182 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6183 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6184 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6185 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6186 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6187 	req->flags = cpu_to_le16(flags);
6188 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6189 }
6190 
6191 /* Caller holds bp->hwrm_cmd_lock */
6192 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6193 				   struct bnxt_coal *hw_coal)
6194 {
6195 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6196 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6197 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6198 	u32 nq_params = coal_cap->nq_params;
6199 	u16 tmr;
6200 
6201 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6202 		return 0;
6203 
6204 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6205 			       -1, -1);
6206 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6207 	req.flags =
6208 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6209 
6210 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6211 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6212 	req.int_lat_tmr_min = cpu_to_le16(tmr);
6213 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6214 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6215 }
6216 
6217 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6218 {
6219 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6220 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6221 	struct bnxt_coal coal;
6222 
6223 	/* Tick values in micro seconds.
6224 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6225 	 */
6226 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6227 
6228 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6229 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6230 
6231 	if (!bnapi->rx_ring)
6232 		return -ENODEV;
6233 
6234 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6235 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6236 
6237 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6238 
6239 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6240 
6241 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6242 				 HWRM_CMD_TIMEOUT);
6243 }
6244 
6245 int bnxt_hwrm_set_coal(struct bnxt *bp)
6246 {
6247 	int i, rc = 0;
6248 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6249 							   req_tx = {0}, *req;
6250 
6251 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6252 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6253 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6254 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6255 
6256 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6257 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6258 
6259 	mutex_lock(&bp->hwrm_cmd_lock);
6260 	for (i = 0; i < bp->cp_nr_rings; i++) {
6261 		struct bnxt_napi *bnapi = bp->bnapi[i];
6262 		struct bnxt_coal *hw_coal;
6263 		u16 ring_id;
6264 
6265 		req = &req_rx;
6266 		if (!bnapi->rx_ring) {
6267 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6268 			req = &req_tx;
6269 		} else {
6270 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6271 		}
6272 		req->ring_id = cpu_to_le16(ring_id);
6273 
6274 		rc = _hwrm_send_message(bp, req, sizeof(*req),
6275 					HWRM_CMD_TIMEOUT);
6276 		if (rc)
6277 			break;
6278 
6279 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6280 			continue;
6281 
6282 		if (bnapi->rx_ring && bnapi->tx_ring) {
6283 			req = &req_tx;
6284 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6285 			req->ring_id = cpu_to_le16(ring_id);
6286 			rc = _hwrm_send_message(bp, req, sizeof(*req),
6287 						HWRM_CMD_TIMEOUT);
6288 			if (rc)
6289 				break;
6290 		}
6291 		if (bnapi->rx_ring)
6292 			hw_coal = &bp->rx_coal;
6293 		else
6294 			hw_coal = &bp->tx_coal;
6295 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6296 	}
6297 	mutex_unlock(&bp->hwrm_cmd_lock);
6298 	return rc;
6299 }
6300 
6301 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6302 {
6303 	struct hwrm_stat_ctx_clr_stats_input req0 = {0};
6304 	struct hwrm_stat_ctx_free_input req = {0};
6305 	int i;
6306 
6307 	if (!bp->bnapi)
6308 		return;
6309 
6310 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6311 		return;
6312 
6313 	bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1);
6314 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6315 
6316 	mutex_lock(&bp->hwrm_cmd_lock);
6317 	for (i = 0; i < bp->cp_nr_rings; i++) {
6318 		struct bnxt_napi *bnapi = bp->bnapi[i];
6319 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6320 
6321 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6322 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6323 			if (BNXT_FW_MAJ(bp) <= 20) {
6324 				req0.stat_ctx_id = req.stat_ctx_id;
6325 				_hwrm_send_message(bp, &req0, sizeof(req0),
6326 						   HWRM_CMD_TIMEOUT);
6327 			}
6328 			_hwrm_send_message(bp, &req, sizeof(req),
6329 					   HWRM_CMD_TIMEOUT);
6330 
6331 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6332 		}
6333 	}
6334 	mutex_unlock(&bp->hwrm_cmd_lock);
6335 }
6336 
6337 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6338 {
6339 	int rc = 0, i;
6340 	struct hwrm_stat_ctx_alloc_input req = {0};
6341 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6342 
6343 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6344 		return 0;
6345 
6346 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6347 
6348 	req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6349 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6350 
6351 	mutex_lock(&bp->hwrm_cmd_lock);
6352 	for (i = 0; i < bp->cp_nr_rings; i++) {
6353 		struct bnxt_napi *bnapi = bp->bnapi[i];
6354 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6355 
6356 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
6357 
6358 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6359 					HWRM_CMD_TIMEOUT);
6360 		if (rc)
6361 			break;
6362 
6363 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6364 
6365 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6366 	}
6367 	mutex_unlock(&bp->hwrm_cmd_lock);
6368 	return rc;
6369 }
6370 
6371 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6372 {
6373 	struct hwrm_func_qcfg_input req = {0};
6374 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6375 	u32 min_db_offset = 0;
6376 	u16 flags;
6377 	int rc;
6378 
6379 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6380 	req.fid = cpu_to_le16(0xffff);
6381 	mutex_lock(&bp->hwrm_cmd_lock);
6382 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6383 	if (rc)
6384 		goto func_qcfg_exit;
6385 
6386 #ifdef CONFIG_BNXT_SRIOV
6387 	if (BNXT_VF(bp)) {
6388 		struct bnxt_vf_info *vf = &bp->vf;
6389 
6390 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6391 	} else {
6392 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6393 	}
6394 #endif
6395 	flags = le16_to_cpu(resp->flags);
6396 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6397 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6398 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6399 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6400 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6401 	}
6402 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6403 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6404 
6405 	switch (resp->port_partition_type) {
6406 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6407 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6408 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6409 		bp->port_partition_type = resp->port_partition_type;
6410 		break;
6411 	}
6412 	if (bp->hwrm_spec_code < 0x10707 ||
6413 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6414 		bp->br_mode = BRIDGE_MODE_VEB;
6415 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6416 		bp->br_mode = BRIDGE_MODE_VEPA;
6417 	else
6418 		bp->br_mode = BRIDGE_MODE_UNDEF;
6419 
6420 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6421 	if (!bp->max_mtu)
6422 		bp->max_mtu = BNXT_MAX_MTU;
6423 
6424 	if (bp->db_size)
6425 		goto func_qcfg_exit;
6426 
6427 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6428 		if (BNXT_PF(bp))
6429 			min_db_offset = DB_PF_OFFSET_P5;
6430 		else
6431 			min_db_offset = DB_VF_OFFSET_P5;
6432 	}
6433 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6434 				 1024);
6435 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6436 	    bp->db_size <= min_db_offset)
6437 		bp->db_size = pci_resource_len(bp->pdev, 2);
6438 
6439 func_qcfg_exit:
6440 	mutex_unlock(&bp->hwrm_cmd_lock);
6441 	return rc;
6442 }
6443 
6444 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6445 {
6446 	struct hwrm_func_backing_store_qcaps_input req = {0};
6447 	struct hwrm_func_backing_store_qcaps_output *resp =
6448 		bp->hwrm_cmd_resp_addr;
6449 	int rc;
6450 
6451 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6452 		return 0;
6453 
6454 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6455 	mutex_lock(&bp->hwrm_cmd_lock);
6456 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6457 	if (!rc) {
6458 		struct bnxt_ctx_pg_info *ctx_pg;
6459 		struct bnxt_ctx_mem_info *ctx;
6460 		int i, tqm_rings;
6461 
6462 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6463 		if (!ctx) {
6464 			rc = -ENOMEM;
6465 			goto ctx_err;
6466 		}
6467 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6468 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6469 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6470 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6471 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6472 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6473 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6474 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6475 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6476 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6477 		ctx->vnic_max_vnic_entries =
6478 			le16_to_cpu(resp->vnic_max_vnic_entries);
6479 		ctx->vnic_max_ring_table_entries =
6480 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6481 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6482 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6483 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6484 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6485 		ctx->tqm_min_entries_per_ring =
6486 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6487 		ctx->tqm_max_entries_per_ring =
6488 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6489 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6490 		if (!ctx->tqm_entries_multiple)
6491 			ctx->tqm_entries_multiple = 1;
6492 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6493 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6494 		ctx->mrav_num_entries_units =
6495 			le16_to_cpu(resp->mrav_num_entries_units);
6496 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6497 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6498 		ctx->ctx_kind_initializer = resp->ctx_kind_initializer;
6499 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6500 		if (!ctx->tqm_fp_rings_count)
6501 			ctx->tqm_fp_rings_count = bp->max_q;
6502 
6503 		tqm_rings = ctx->tqm_fp_rings_count + 1;
6504 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6505 		if (!ctx_pg) {
6506 			kfree(ctx);
6507 			rc = -ENOMEM;
6508 			goto ctx_err;
6509 		}
6510 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6511 			ctx->tqm_mem[i] = ctx_pg;
6512 		bp->ctx = ctx;
6513 	} else {
6514 		rc = 0;
6515 	}
6516 ctx_err:
6517 	mutex_unlock(&bp->hwrm_cmd_lock);
6518 	return rc;
6519 }
6520 
6521 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6522 				  __le64 *pg_dir)
6523 {
6524 	u8 pg_size = 0;
6525 
6526 	if (BNXT_PAGE_SHIFT == 13)
6527 		pg_size = 1 << 4;
6528 	else if (BNXT_PAGE_SIZE == 16)
6529 		pg_size = 2 << 4;
6530 
6531 	*pg_attr = pg_size;
6532 	if (rmem->depth >= 1) {
6533 		if (rmem->depth == 2)
6534 			*pg_attr |= 2;
6535 		else
6536 			*pg_attr |= 1;
6537 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6538 	} else {
6539 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6540 	}
6541 }
6542 
6543 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6544 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6545 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6546 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6547 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6548 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6549 
6550 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6551 {
6552 	struct hwrm_func_backing_store_cfg_input req = {0};
6553 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6554 	struct bnxt_ctx_pg_info *ctx_pg;
6555 	__le32 *num_entries;
6556 	__le64 *pg_dir;
6557 	u32 flags = 0;
6558 	u8 *pg_attr;
6559 	u32 ena;
6560 	int i;
6561 
6562 	if (!ctx)
6563 		return 0;
6564 
6565 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6566 	req.enables = cpu_to_le32(enables);
6567 
6568 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6569 		ctx_pg = &ctx->qp_mem;
6570 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6571 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6572 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6573 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6574 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6575 				      &req.qpc_pg_size_qpc_lvl,
6576 				      &req.qpc_page_dir);
6577 	}
6578 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6579 		ctx_pg = &ctx->srq_mem;
6580 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6581 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6582 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6583 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6584 				      &req.srq_pg_size_srq_lvl,
6585 				      &req.srq_page_dir);
6586 	}
6587 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6588 		ctx_pg = &ctx->cq_mem;
6589 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6590 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6591 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6592 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6593 				      &req.cq_page_dir);
6594 	}
6595 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6596 		ctx_pg = &ctx->vnic_mem;
6597 		req.vnic_num_vnic_entries =
6598 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6599 		req.vnic_num_ring_table_entries =
6600 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6601 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6602 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6603 				      &req.vnic_pg_size_vnic_lvl,
6604 				      &req.vnic_page_dir);
6605 	}
6606 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6607 		ctx_pg = &ctx->stat_mem;
6608 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6609 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6610 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6611 				      &req.stat_pg_size_stat_lvl,
6612 				      &req.stat_page_dir);
6613 	}
6614 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6615 		ctx_pg = &ctx->mrav_mem;
6616 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6617 		if (ctx->mrav_num_entries_units)
6618 			flags |=
6619 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6620 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6621 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6622 				      &req.mrav_pg_size_mrav_lvl,
6623 				      &req.mrav_page_dir);
6624 	}
6625 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6626 		ctx_pg = &ctx->tim_mem;
6627 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6628 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6629 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6630 				      &req.tim_pg_size_tim_lvl,
6631 				      &req.tim_page_dir);
6632 	}
6633 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6634 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6635 	     pg_dir = &req.tqm_sp_page_dir,
6636 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6637 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6638 		if (!(enables & ena))
6639 			continue;
6640 
6641 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6642 		ctx_pg = ctx->tqm_mem[i];
6643 		*num_entries = cpu_to_le32(ctx_pg->entries);
6644 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6645 	}
6646 	req.flags = cpu_to_le32(flags);
6647 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6648 }
6649 
6650 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6651 				  struct bnxt_ctx_pg_info *ctx_pg)
6652 {
6653 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6654 
6655 	rmem->page_size = BNXT_PAGE_SIZE;
6656 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6657 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6658 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6659 	if (rmem->depth >= 1)
6660 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6661 	return bnxt_alloc_ring(bp, rmem);
6662 }
6663 
6664 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6665 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6666 				  u8 depth, bool use_init_val)
6667 {
6668 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6669 	int rc;
6670 
6671 	if (!mem_size)
6672 		return -EINVAL;
6673 
6674 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6675 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6676 		ctx_pg->nr_pages = 0;
6677 		return -EINVAL;
6678 	}
6679 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6680 		int nr_tbls, i;
6681 
6682 		rmem->depth = 2;
6683 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6684 					     GFP_KERNEL);
6685 		if (!ctx_pg->ctx_pg_tbl)
6686 			return -ENOMEM;
6687 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6688 		rmem->nr_pages = nr_tbls;
6689 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6690 		if (rc)
6691 			return rc;
6692 		for (i = 0; i < nr_tbls; i++) {
6693 			struct bnxt_ctx_pg_info *pg_tbl;
6694 
6695 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6696 			if (!pg_tbl)
6697 				return -ENOMEM;
6698 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6699 			rmem = &pg_tbl->ring_mem;
6700 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6701 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6702 			rmem->depth = 1;
6703 			rmem->nr_pages = MAX_CTX_PAGES;
6704 			if (use_init_val)
6705 				rmem->init_val = bp->ctx->ctx_kind_initializer;
6706 			if (i == (nr_tbls - 1)) {
6707 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6708 
6709 				if (rem)
6710 					rmem->nr_pages = rem;
6711 			}
6712 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6713 			if (rc)
6714 				break;
6715 		}
6716 	} else {
6717 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6718 		if (rmem->nr_pages > 1 || depth)
6719 			rmem->depth = 1;
6720 		if (use_init_val)
6721 			rmem->init_val = bp->ctx->ctx_kind_initializer;
6722 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6723 	}
6724 	return rc;
6725 }
6726 
6727 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6728 				  struct bnxt_ctx_pg_info *ctx_pg)
6729 {
6730 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6731 
6732 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6733 	    ctx_pg->ctx_pg_tbl) {
6734 		int i, nr_tbls = rmem->nr_pages;
6735 
6736 		for (i = 0; i < nr_tbls; i++) {
6737 			struct bnxt_ctx_pg_info *pg_tbl;
6738 			struct bnxt_ring_mem_info *rmem2;
6739 
6740 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
6741 			if (!pg_tbl)
6742 				continue;
6743 			rmem2 = &pg_tbl->ring_mem;
6744 			bnxt_free_ring(bp, rmem2);
6745 			ctx_pg->ctx_pg_arr[i] = NULL;
6746 			kfree(pg_tbl);
6747 			ctx_pg->ctx_pg_tbl[i] = NULL;
6748 		}
6749 		kfree(ctx_pg->ctx_pg_tbl);
6750 		ctx_pg->ctx_pg_tbl = NULL;
6751 	}
6752 	bnxt_free_ring(bp, rmem);
6753 	ctx_pg->nr_pages = 0;
6754 }
6755 
6756 static void bnxt_free_ctx_mem(struct bnxt *bp)
6757 {
6758 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6759 	int i;
6760 
6761 	if (!ctx)
6762 		return;
6763 
6764 	if (ctx->tqm_mem[0]) {
6765 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
6766 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6767 		kfree(ctx->tqm_mem[0]);
6768 		ctx->tqm_mem[0] = NULL;
6769 	}
6770 
6771 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6772 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6773 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6774 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6775 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6776 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6777 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6778 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6779 }
6780 
6781 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6782 {
6783 	struct bnxt_ctx_pg_info *ctx_pg;
6784 	struct bnxt_ctx_mem_info *ctx;
6785 	u32 mem_size, ena, entries;
6786 	u32 entries_sp, min;
6787 	u32 num_mr, num_ah;
6788 	u32 extra_srqs = 0;
6789 	u32 extra_qps = 0;
6790 	u8 pg_lvl = 1;
6791 	int i, rc;
6792 
6793 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6794 	if (rc) {
6795 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6796 			   rc);
6797 		return rc;
6798 	}
6799 	ctx = bp->ctx;
6800 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6801 		return 0;
6802 
6803 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
6804 		pg_lvl = 2;
6805 		extra_qps = 65536;
6806 		extra_srqs = 8192;
6807 	}
6808 
6809 	ctx_pg = &ctx->qp_mem;
6810 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6811 			  extra_qps;
6812 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
6813 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
6814 	if (rc)
6815 		return rc;
6816 
6817 	ctx_pg = &ctx->srq_mem;
6818 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6819 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
6820 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
6821 	if (rc)
6822 		return rc;
6823 
6824 	ctx_pg = &ctx->cq_mem;
6825 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6826 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
6827 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
6828 	if (rc)
6829 		return rc;
6830 
6831 	ctx_pg = &ctx->vnic_mem;
6832 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
6833 			  ctx->vnic_max_ring_table_entries;
6834 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6835 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
6836 	if (rc)
6837 		return rc;
6838 
6839 	ctx_pg = &ctx->stat_mem;
6840 	ctx_pg->entries = ctx->stat_max_entries;
6841 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
6842 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
6843 	if (rc)
6844 		return rc;
6845 
6846 	ena = 0;
6847 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6848 		goto skip_rdma;
6849 
6850 	ctx_pg = &ctx->mrav_mem;
6851 	/* 128K extra is needed to accommodate static AH context
6852 	 * allocation by f/w.
6853 	 */
6854 	num_mr = 1024 * 256;
6855 	num_ah = 1024 * 128;
6856 	ctx_pg->entries = num_mr + num_ah;
6857 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6858 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, true);
6859 	if (rc)
6860 		return rc;
6861 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6862 	if (ctx->mrav_num_entries_units)
6863 		ctx_pg->entries =
6864 			((num_mr / ctx->mrav_num_entries_units) << 16) |
6865 			 (num_ah / ctx->mrav_num_entries_units);
6866 
6867 	ctx_pg = &ctx->tim_mem;
6868 	ctx_pg->entries = ctx->qp_mem.entries;
6869 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
6870 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
6871 	if (rc)
6872 		return rc;
6873 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6874 
6875 skip_rdma:
6876 	min = ctx->tqm_min_entries_per_ring;
6877 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
6878 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
6879 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
6880 	entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries;
6881 	entries = roundup(entries, ctx->tqm_entries_multiple);
6882 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
6883 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
6884 		ctx_pg = ctx->tqm_mem[i];
6885 		ctx_pg->entries = i ? entries : entries_sp;
6886 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
6887 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
6888 		if (rc)
6889 			return rc;
6890 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6891 	}
6892 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6893 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6894 	if (rc) {
6895 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6896 			   rc);
6897 		return rc;
6898 	}
6899 	ctx->flags |= BNXT_CTX_FLAG_INITED;
6900 	return 0;
6901 }
6902 
6903 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6904 {
6905 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6906 	struct hwrm_func_resource_qcaps_input req = {0};
6907 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6908 	int rc;
6909 
6910 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6911 	req.fid = cpu_to_le16(0xffff);
6912 
6913 	mutex_lock(&bp->hwrm_cmd_lock);
6914 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6915 				       HWRM_CMD_TIMEOUT);
6916 	if (rc)
6917 		goto hwrm_func_resc_qcaps_exit;
6918 
6919 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6920 	if (!all)
6921 		goto hwrm_func_resc_qcaps_exit;
6922 
6923 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6924 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6925 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6926 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6927 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6928 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6929 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6930 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6931 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6932 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6933 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6934 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6935 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6936 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6937 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6938 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6939 
6940 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6941 		u16 max_msix = le16_to_cpu(resp->max_msix);
6942 
6943 		hw_resc->max_nqs = max_msix;
6944 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6945 	}
6946 
6947 	if (BNXT_PF(bp)) {
6948 		struct bnxt_pf_info *pf = &bp->pf;
6949 
6950 		pf->vf_resv_strategy =
6951 			le16_to_cpu(resp->vf_reservation_strategy);
6952 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6953 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6954 	}
6955 hwrm_func_resc_qcaps_exit:
6956 	mutex_unlock(&bp->hwrm_cmd_lock);
6957 	return rc;
6958 }
6959 
6960 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6961 {
6962 	int rc = 0;
6963 	struct hwrm_func_qcaps_input req = {0};
6964 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6965 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6966 	u32 flags;
6967 
6968 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6969 	req.fid = cpu_to_le16(0xffff);
6970 
6971 	mutex_lock(&bp->hwrm_cmd_lock);
6972 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6973 	if (rc)
6974 		goto hwrm_func_qcaps_exit;
6975 
6976 	flags = le32_to_cpu(resp->flags);
6977 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6978 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6979 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6980 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6981 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
6982 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
6983 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
6984 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
6985 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
6986 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
6987 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
6988 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
6989 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
6990 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
6991 
6992 	bp->tx_push_thresh = 0;
6993 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
6994 	    BNXT_FW_MAJ(bp) > 217)
6995 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6996 
6997 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6998 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6999 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7000 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7001 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7002 	if (!hw_resc->max_hw_ring_grps)
7003 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7004 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7005 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7006 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7007 
7008 	if (BNXT_PF(bp)) {
7009 		struct bnxt_pf_info *pf = &bp->pf;
7010 
7011 		pf->fw_fid = le16_to_cpu(resp->fid);
7012 		pf->port_id = le16_to_cpu(resp->port_id);
7013 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7014 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7015 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7016 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7017 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7018 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7019 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7020 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7021 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7022 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7023 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7024 			bp->flags |= BNXT_FLAG_WOL_CAP;
7025 	} else {
7026 #ifdef CONFIG_BNXT_SRIOV
7027 		struct bnxt_vf_info *vf = &bp->vf;
7028 
7029 		vf->fw_fid = le16_to_cpu(resp->fid);
7030 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7031 #endif
7032 	}
7033 
7034 hwrm_func_qcaps_exit:
7035 	mutex_unlock(&bp->hwrm_cmd_lock);
7036 	return rc;
7037 }
7038 
7039 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7040 
7041 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7042 {
7043 	int rc;
7044 
7045 	rc = __bnxt_hwrm_func_qcaps(bp);
7046 	if (rc)
7047 		return rc;
7048 	rc = bnxt_hwrm_queue_qportcfg(bp);
7049 	if (rc) {
7050 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7051 		return rc;
7052 	}
7053 	if (bp->hwrm_spec_code >= 0x10803) {
7054 		rc = bnxt_alloc_ctx_mem(bp);
7055 		if (rc)
7056 			return rc;
7057 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7058 		if (!rc)
7059 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7060 	}
7061 	return 0;
7062 }
7063 
7064 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7065 {
7066 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7067 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7068 	int rc = 0;
7069 	u32 flags;
7070 
7071 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7072 		return 0;
7073 
7074 	resp = bp->hwrm_cmd_resp_addr;
7075 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7076 
7077 	mutex_lock(&bp->hwrm_cmd_lock);
7078 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7079 	if (rc)
7080 		goto hwrm_cfa_adv_qcaps_exit;
7081 
7082 	flags = le32_to_cpu(resp->flags);
7083 	if (flags &
7084 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7085 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7086 
7087 hwrm_cfa_adv_qcaps_exit:
7088 	mutex_unlock(&bp->hwrm_cmd_lock);
7089 	return rc;
7090 }
7091 
7092 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7093 {
7094 	struct bnxt_fw_health *fw_health = bp->fw_health;
7095 	u32 reg_base = 0xffffffff;
7096 	int i;
7097 
7098 	/* Only pre-map the monitoring GRC registers using window 3 */
7099 	for (i = 0; i < 4; i++) {
7100 		u32 reg = fw_health->regs[i];
7101 
7102 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7103 			continue;
7104 		if (reg_base == 0xffffffff)
7105 			reg_base = reg & BNXT_GRC_BASE_MASK;
7106 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7107 			return -ERANGE;
7108 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_BASE +
7109 					    (reg & BNXT_GRC_OFFSET_MASK);
7110 	}
7111 	if (reg_base == 0xffffffff)
7112 		return 0;
7113 
7114 	writel(reg_base, bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7115 			 BNXT_FW_HEALTH_WIN_MAP_OFF);
7116 	return 0;
7117 }
7118 
7119 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7120 {
7121 	struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7122 	struct bnxt_fw_health *fw_health = bp->fw_health;
7123 	struct hwrm_error_recovery_qcfg_input req = {0};
7124 	int rc, i;
7125 
7126 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7127 		return 0;
7128 
7129 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7130 	mutex_lock(&bp->hwrm_cmd_lock);
7131 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7132 	if (rc)
7133 		goto err_recovery_out;
7134 	fw_health->flags = le32_to_cpu(resp->flags);
7135 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7136 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7137 		rc = -EINVAL;
7138 		goto err_recovery_out;
7139 	}
7140 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7141 	fw_health->master_func_wait_dsecs =
7142 		le32_to_cpu(resp->master_func_wait_period);
7143 	fw_health->normal_func_wait_dsecs =
7144 		le32_to_cpu(resp->normal_func_wait_period);
7145 	fw_health->post_reset_wait_dsecs =
7146 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7147 	fw_health->post_reset_max_wait_dsecs =
7148 		le32_to_cpu(resp->max_bailout_time_after_reset);
7149 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7150 		le32_to_cpu(resp->fw_health_status_reg);
7151 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7152 		le32_to_cpu(resp->fw_heartbeat_reg);
7153 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7154 		le32_to_cpu(resp->fw_reset_cnt_reg);
7155 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7156 		le32_to_cpu(resp->reset_inprogress_reg);
7157 	fw_health->fw_reset_inprog_reg_mask =
7158 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7159 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7160 	if (fw_health->fw_reset_seq_cnt >= 16) {
7161 		rc = -EINVAL;
7162 		goto err_recovery_out;
7163 	}
7164 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7165 		fw_health->fw_reset_seq_regs[i] =
7166 			le32_to_cpu(resp->reset_reg[i]);
7167 		fw_health->fw_reset_seq_vals[i] =
7168 			le32_to_cpu(resp->reset_reg_val[i]);
7169 		fw_health->fw_reset_seq_delay_msec[i] =
7170 			resp->delay_after_reset[i];
7171 	}
7172 err_recovery_out:
7173 	mutex_unlock(&bp->hwrm_cmd_lock);
7174 	if (!rc)
7175 		rc = bnxt_map_fw_health_regs(bp);
7176 	if (rc)
7177 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7178 	return rc;
7179 }
7180 
7181 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7182 {
7183 	struct hwrm_func_reset_input req = {0};
7184 
7185 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7186 	req.enables = 0;
7187 
7188 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7189 }
7190 
7191 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7192 {
7193 	int rc = 0;
7194 	struct hwrm_queue_qportcfg_input req = {0};
7195 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7196 	u8 i, j, *qptr;
7197 	bool no_rdma;
7198 
7199 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7200 
7201 	mutex_lock(&bp->hwrm_cmd_lock);
7202 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7203 	if (rc)
7204 		goto qportcfg_exit;
7205 
7206 	if (!resp->max_configurable_queues) {
7207 		rc = -EINVAL;
7208 		goto qportcfg_exit;
7209 	}
7210 	bp->max_tc = resp->max_configurable_queues;
7211 	bp->max_lltc = resp->max_configurable_lossless_queues;
7212 	if (bp->max_tc > BNXT_MAX_QUEUE)
7213 		bp->max_tc = BNXT_MAX_QUEUE;
7214 
7215 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7216 	qptr = &resp->queue_id0;
7217 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7218 		bp->q_info[j].queue_id = *qptr;
7219 		bp->q_ids[i] = *qptr++;
7220 		bp->q_info[j].queue_profile = *qptr++;
7221 		bp->tc_to_qidx[j] = j;
7222 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7223 		    (no_rdma && BNXT_PF(bp)))
7224 			j++;
7225 	}
7226 	bp->max_q = bp->max_tc;
7227 	bp->max_tc = max_t(u8, j, 1);
7228 
7229 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7230 		bp->max_tc = 1;
7231 
7232 	if (bp->max_lltc > bp->max_tc)
7233 		bp->max_lltc = bp->max_tc;
7234 
7235 qportcfg_exit:
7236 	mutex_unlock(&bp->hwrm_cmd_lock);
7237 	return rc;
7238 }
7239 
7240 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7241 {
7242 	struct hwrm_ver_get_input req = {0};
7243 	int rc;
7244 
7245 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7246 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7247 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
7248 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7249 
7250 	rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7251 				   silent);
7252 	return rc;
7253 }
7254 
7255 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7256 {
7257 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7258 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7259 	u32 dev_caps_cfg, hwrm_ver;
7260 	int rc, len;
7261 
7262 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7263 	mutex_lock(&bp->hwrm_cmd_lock);
7264 	rc = __bnxt_hwrm_ver_get(bp, false);
7265 	if (rc)
7266 		goto hwrm_ver_get_exit;
7267 
7268 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7269 
7270 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7271 			     resp->hwrm_intf_min_8b << 8 |
7272 			     resp->hwrm_intf_upd_8b;
7273 	if (resp->hwrm_intf_maj_8b < 1) {
7274 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7275 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7276 			    resp->hwrm_intf_upd_8b);
7277 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7278 	}
7279 
7280 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7281 			HWRM_VERSION_UPDATE;
7282 
7283 	if (bp->hwrm_spec_code > hwrm_ver)
7284 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7285 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7286 			 HWRM_VERSION_UPDATE);
7287 	else
7288 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7289 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7290 			 resp->hwrm_intf_upd_8b);
7291 
7292 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7293 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7294 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7295 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7296 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7297 		len = FW_VER_STR_LEN;
7298 	} else {
7299 		fw_maj = resp->hwrm_fw_maj_8b;
7300 		fw_min = resp->hwrm_fw_min_8b;
7301 		fw_bld = resp->hwrm_fw_bld_8b;
7302 		fw_rsv = resp->hwrm_fw_rsvd_8b;
7303 		len = BC_HWRM_STR_LEN;
7304 	}
7305 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7306 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7307 		 fw_rsv);
7308 
7309 	if (strlen(resp->active_pkg_name)) {
7310 		int fw_ver_len = strlen(bp->fw_ver_str);
7311 
7312 		snprintf(bp->fw_ver_str + fw_ver_len,
7313 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7314 			 resp->active_pkg_name);
7315 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7316 	}
7317 
7318 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7319 	if (!bp->hwrm_cmd_timeout)
7320 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7321 
7322 	if (resp->hwrm_intf_maj_8b >= 1) {
7323 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7324 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7325 	}
7326 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7327 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7328 
7329 	bp->chip_num = le16_to_cpu(resp->chip_num);
7330 	bp->chip_rev = resp->chip_rev;
7331 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7332 	    !resp->chip_metal)
7333 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7334 
7335 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7336 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7337 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7338 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7339 
7340 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7341 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7342 
7343 	if (dev_caps_cfg &
7344 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7345 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7346 
7347 	if (dev_caps_cfg &
7348 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7349 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7350 
7351 	if (dev_caps_cfg &
7352 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7353 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7354 
7355 hwrm_ver_get_exit:
7356 	mutex_unlock(&bp->hwrm_cmd_lock);
7357 	return rc;
7358 }
7359 
7360 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7361 {
7362 	struct hwrm_fw_set_time_input req = {0};
7363 	struct tm tm;
7364 	time64_t now = ktime_get_real_seconds();
7365 
7366 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7367 	    bp->hwrm_spec_code < 0x10400)
7368 		return -EOPNOTSUPP;
7369 
7370 	time64_to_tm(now, 0, &tm);
7371 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7372 	req.year = cpu_to_le16(1900 + tm.tm_year);
7373 	req.month = 1 + tm.tm_mon;
7374 	req.day = tm.tm_mday;
7375 	req.hour = tm.tm_hour;
7376 	req.minute = tm.tm_min;
7377 	req.second = tm.tm_sec;
7378 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7379 }
7380 
7381 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
7382 {
7383 	struct bnxt_pf_info *pf = &bp->pf;
7384 	struct hwrm_port_qstats_input req = {0};
7385 
7386 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
7387 		return 0;
7388 
7389 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
7390 	req.port_id = cpu_to_le16(pf->port_id);
7391 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
7392 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
7393 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7394 }
7395 
7396 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
7397 {
7398 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
7399 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
7400 	struct hwrm_port_qstats_ext_input req = {0};
7401 	struct bnxt_pf_info *pf = &bp->pf;
7402 	u32 tx_stat_size;
7403 	int rc;
7404 
7405 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
7406 		return 0;
7407 
7408 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
7409 	req.port_id = cpu_to_le16(pf->port_id);
7410 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
7411 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
7412 	tx_stat_size = bp->hw_tx_port_stats_ext ?
7413 		       sizeof(*bp->hw_tx_port_stats_ext) : 0;
7414 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
7415 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
7416 	mutex_lock(&bp->hwrm_cmd_lock);
7417 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7418 	if (!rc) {
7419 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
7420 		bp->fw_tx_stats_ext_size = tx_stat_size ?
7421 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
7422 	} else {
7423 		bp->fw_rx_stats_ext_size = 0;
7424 		bp->fw_tx_stats_ext_size = 0;
7425 	}
7426 	if (bp->fw_tx_stats_ext_size <=
7427 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
7428 		mutex_unlock(&bp->hwrm_cmd_lock);
7429 		bp->pri2cos_valid = 0;
7430 		return rc;
7431 	}
7432 
7433 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
7434 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
7435 
7436 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
7437 	if (!rc) {
7438 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
7439 		u8 *pri2cos;
7440 		int i, j;
7441 
7442 		resp2 = bp->hwrm_cmd_resp_addr;
7443 		pri2cos = &resp2->pri0_cos_queue_id;
7444 		for (i = 0; i < 8; i++) {
7445 			u8 queue_id = pri2cos[i];
7446 			u8 queue_idx;
7447 
7448 			/* Per port queue IDs start from 0, 10, 20, etc */
7449 			queue_idx = queue_id % 10;
7450 			if (queue_idx > BNXT_MAX_QUEUE) {
7451 				bp->pri2cos_valid = false;
7452 				goto qstats_done;
7453 			}
7454 			for (j = 0; j < bp->max_q; j++) {
7455 				if (bp->q_ids[j] == queue_id)
7456 					bp->pri2cos_idx[i] = queue_idx;
7457 			}
7458 		}
7459 		bp->pri2cos_valid = 1;
7460 	}
7461 qstats_done:
7462 	mutex_unlock(&bp->hwrm_cmd_lock);
7463 	return rc;
7464 }
7465 
7466 static int bnxt_hwrm_pcie_qstats(struct bnxt *bp)
7467 {
7468 	struct hwrm_pcie_qstats_input req = {0};
7469 
7470 	if (!(bp->flags & BNXT_FLAG_PCIE_STATS))
7471 		return 0;
7472 
7473 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1);
7474 	req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats));
7475 	req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map);
7476 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7477 }
7478 
7479 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
7480 {
7481 	if (bp->vxlan_port_cnt) {
7482 		bnxt_hwrm_tunnel_dst_port_free(
7483 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7484 	}
7485 	bp->vxlan_port_cnt = 0;
7486 	if (bp->nge_port_cnt) {
7487 		bnxt_hwrm_tunnel_dst_port_free(
7488 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7489 	}
7490 	bp->nge_port_cnt = 0;
7491 }
7492 
7493 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
7494 {
7495 	int rc, i;
7496 	u32 tpa_flags = 0;
7497 
7498 	if (set_tpa)
7499 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
7500 	else if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
7501 		return 0;
7502 	for (i = 0; i < bp->nr_vnics; i++) {
7503 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7504 		if (rc) {
7505 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7506 				   i, rc);
7507 			return rc;
7508 		}
7509 	}
7510 	return 0;
7511 }
7512 
7513 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7514 {
7515 	int i;
7516 
7517 	for (i = 0; i < bp->nr_vnics; i++)
7518 		bnxt_hwrm_vnic_set_rss(bp, i, false);
7519 }
7520 
7521 static void bnxt_clear_vnic(struct bnxt *bp)
7522 {
7523 	if (!bp->vnic_info)
7524 		return;
7525 
7526 	bnxt_hwrm_clear_vnic_filter(bp);
7527 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
7528 		/* clear all RSS setting before free vnic ctx */
7529 		bnxt_hwrm_clear_vnic_rss(bp);
7530 		bnxt_hwrm_vnic_ctx_free(bp);
7531 	}
7532 	/* before free the vnic, undo the vnic tpa settings */
7533 	if (bp->flags & BNXT_FLAG_TPA)
7534 		bnxt_set_tpa(bp, false);
7535 	bnxt_hwrm_vnic_free(bp);
7536 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7537 		bnxt_hwrm_vnic_ctx_free(bp);
7538 }
7539 
7540 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7541 				    bool irq_re_init)
7542 {
7543 	bnxt_clear_vnic(bp);
7544 	bnxt_hwrm_ring_free(bp, close_path);
7545 	bnxt_hwrm_ring_grp_free(bp);
7546 	if (irq_re_init) {
7547 		bnxt_hwrm_stat_ctx_free(bp);
7548 		bnxt_hwrm_free_tunnel_ports(bp);
7549 	}
7550 }
7551 
7552 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
7553 {
7554 	struct hwrm_func_cfg_input req = {0};
7555 
7556 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7557 	req.fid = cpu_to_le16(0xffff);
7558 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
7559 	if (br_mode == BRIDGE_MODE_VEB)
7560 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
7561 	else if (br_mode == BRIDGE_MODE_VEPA)
7562 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
7563 	else
7564 		return -EINVAL;
7565 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7566 }
7567 
7568 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
7569 {
7570 	struct hwrm_func_cfg_input req = {0};
7571 
7572 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7573 		return 0;
7574 
7575 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7576 	req.fid = cpu_to_le16(0xffff);
7577 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7578 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7579 	if (size == 128)
7580 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7581 
7582 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7583 }
7584 
7585 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7586 {
7587 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7588 	int rc;
7589 
7590 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7591 		goto skip_rss_ctx;
7592 
7593 	/* allocate context for vnic */
7594 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7595 	if (rc) {
7596 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7597 			   vnic_id, rc);
7598 		goto vnic_setup_err;
7599 	}
7600 	bp->rsscos_nr_ctxs++;
7601 
7602 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7603 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7604 		if (rc) {
7605 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7606 				   vnic_id, rc);
7607 			goto vnic_setup_err;
7608 		}
7609 		bp->rsscos_nr_ctxs++;
7610 	}
7611 
7612 skip_rss_ctx:
7613 	/* configure default vnic, ring grp */
7614 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7615 	if (rc) {
7616 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7617 			   vnic_id, rc);
7618 		goto vnic_setup_err;
7619 	}
7620 
7621 	/* Enable RSS hashing on vnic */
7622 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7623 	if (rc) {
7624 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7625 			   vnic_id, rc);
7626 		goto vnic_setup_err;
7627 	}
7628 
7629 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7630 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7631 		if (rc) {
7632 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7633 				   vnic_id, rc);
7634 		}
7635 	}
7636 
7637 vnic_setup_err:
7638 	return rc;
7639 }
7640 
7641 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7642 {
7643 	int rc, i, nr_ctxs;
7644 
7645 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
7646 	for (i = 0; i < nr_ctxs; i++) {
7647 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7648 		if (rc) {
7649 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7650 				   vnic_id, i, rc);
7651 			break;
7652 		}
7653 		bp->rsscos_nr_ctxs++;
7654 	}
7655 	if (i < nr_ctxs)
7656 		return -ENOMEM;
7657 
7658 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7659 	if (rc) {
7660 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7661 			   vnic_id, rc);
7662 		return rc;
7663 	}
7664 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7665 	if (rc) {
7666 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7667 			   vnic_id, rc);
7668 		return rc;
7669 	}
7670 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7671 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7672 		if (rc) {
7673 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7674 				   vnic_id, rc);
7675 		}
7676 	}
7677 	return rc;
7678 }
7679 
7680 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7681 {
7682 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7683 		return __bnxt_setup_vnic_p5(bp, vnic_id);
7684 	else
7685 		return __bnxt_setup_vnic(bp, vnic_id);
7686 }
7687 
7688 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7689 {
7690 #ifdef CONFIG_RFS_ACCEL
7691 	int i, rc = 0;
7692 
7693 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7694 		return 0;
7695 
7696 	for (i = 0; i < bp->rx_nr_rings; i++) {
7697 		struct bnxt_vnic_info *vnic;
7698 		u16 vnic_id = i + 1;
7699 		u16 ring_id = i;
7700 
7701 		if (vnic_id >= bp->nr_vnics)
7702 			break;
7703 
7704 		vnic = &bp->vnic_info[vnic_id];
7705 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
7706 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7707 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7708 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7709 		if (rc) {
7710 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7711 				   vnic_id, rc);
7712 			break;
7713 		}
7714 		rc = bnxt_setup_vnic(bp, vnic_id);
7715 		if (rc)
7716 			break;
7717 	}
7718 	return rc;
7719 #else
7720 	return 0;
7721 #endif
7722 }
7723 
7724 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7725 static bool bnxt_promisc_ok(struct bnxt *bp)
7726 {
7727 #ifdef CONFIG_BNXT_SRIOV
7728 	if (BNXT_VF(bp) && !bp->vf.vlan)
7729 		return false;
7730 #endif
7731 	return true;
7732 }
7733 
7734 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7735 {
7736 	unsigned int rc = 0;
7737 
7738 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7739 	if (rc) {
7740 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7741 			   rc);
7742 		return rc;
7743 	}
7744 
7745 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
7746 	if (rc) {
7747 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7748 			   rc);
7749 		return rc;
7750 	}
7751 	return rc;
7752 }
7753 
7754 static int bnxt_cfg_rx_mode(struct bnxt *);
7755 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7756 
7757 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7758 {
7759 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7760 	int rc = 0;
7761 	unsigned int rx_nr_rings = bp->rx_nr_rings;
7762 
7763 	if (irq_re_init) {
7764 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
7765 		if (rc) {
7766 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7767 				   rc);
7768 			goto err_out;
7769 		}
7770 	}
7771 
7772 	rc = bnxt_hwrm_ring_alloc(bp);
7773 	if (rc) {
7774 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7775 		goto err_out;
7776 	}
7777 
7778 	rc = bnxt_hwrm_ring_grp_alloc(bp);
7779 	if (rc) {
7780 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7781 		goto err_out;
7782 	}
7783 
7784 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7785 		rx_nr_rings--;
7786 
7787 	/* default vnic 0 */
7788 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7789 	if (rc) {
7790 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7791 		goto err_out;
7792 	}
7793 
7794 	rc = bnxt_setup_vnic(bp, 0);
7795 	if (rc)
7796 		goto err_out;
7797 
7798 	if (bp->flags & BNXT_FLAG_RFS) {
7799 		rc = bnxt_alloc_rfs_vnics(bp);
7800 		if (rc)
7801 			goto err_out;
7802 	}
7803 
7804 	if (bp->flags & BNXT_FLAG_TPA) {
7805 		rc = bnxt_set_tpa(bp, true);
7806 		if (rc)
7807 			goto err_out;
7808 	}
7809 
7810 	if (BNXT_VF(bp))
7811 		bnxt_update_vf_mac(bp);
7812 
7813 	/* Filter for default vnic 0 */
7814 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7815 	if (rc) {
7816 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7817 		goto err_out;
7818 	}
7819 	vnic->uc_filter_count = 1;
7820 
7821 	vnic->rx_mask = 0;
7822 	if (bp->dev->flags & IFF_BROADCAST)
7823 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7824 
7825 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7826 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7827 
7828 	if (bp->dev->flags & IFF_ALLMULTI) {
7829 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7830 		vnic->mc_list_count = 0;
7831 	} else {
7832 		u32 mask = 0;
7833 
7834 		bnxt_mc_list_updated(bp, &mask);
7835 		vnic->rx_mask |= mask;
7836 	}
7837 
7838 	rc = bnxt_cfg_rx_mode(bp);
7839 	if (rc)
7840 		goto err_out;
7841 
7842 	rc = bnxt_hwrm_set_coal(bp);
7843 	if (rc)
7844 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7845 				rc);
7846 
7847 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7848 		rc = bnxt_setup_nitroa0_vnic(bp);
7849 		if (rc)
7850 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7851 				   rc);
7852 	}
7853 
7854 	if (BNXT_VF(bp)) {
7855 		bnxt_hwrm_func_qcfg(bp);
7856 		netdev_update_features(bp->dev);
7857 	}
7858 
7859 	return 0;
7860 
7861 err_out:
7862 	bnxt_hwrm_resource_free(bp, 0, true);
7863 
7864 	return rc;
7865 }
7866 
7867 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7868 {
7869 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7870 	return 0;
7871 }
7872 
7873 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7874 {
7875 	bnxt_init_cp_rings(bp);
7876 	bnxt_init_rx_rings(bp);
7877 	bnxt_init_tx_rings(bp);
7878 	bnxt_init_ring_grps(bp, irq_re_init);
7879 	bnxt_init_vnics(bp);
7880 
7881 	return bnxt_init_chip(bp, irq_re_init);
7882 }
7883 
7884 static int bnxt_set_real_num_queues(struct bnxt *bp)
7885 {
7886 	int rc;
7887 	struct net_device *dev = bp->dev;
7888 
7889 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7890 					  bp->tx_nr_rings_xdp);
7891 	if (rc)
7892 		return rc;
7893 
7894 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7895 	if (rc)
7896 		return rc;
7897 
7898 #ifdef CONFIG_RFS_ACCEL
7899 	if (bp->flags & BNXT_FLAG_RFS)
7900 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7901 #endif
7902 
7903 	return rc;
7904 }
7905 
7906 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7907 			   bool shared)
7908 {
7909 	int _rx = *rx, _tx = *tx;
7910 
7911 	if (shared) {
7912 		*rx = min_t(int, _rx, max);
7913 		*tx = min_t(int, _tx, max);
7914 	} else {
7915 		if (max < 2)
7916 			return -ENOMEM;
7917 
7918 		while (_rx + _tx > max) {
7919 			if (_rx > _tx && _rx > 1)
7920 				_rx--;
7921 			else if (_tx > 1)
7922 				_tx--;
7923 		}
7924 		*rx = _rx;
7925 		*tx = _tx;
7926 	}
7927 	return 0;
7928 }
7929 
7930 static void bnxt_setup_msix(struct bnxt *bp)
7931 {
7932 	const int len = sizeof(bp->irq_tbl[0].name);
7933 	struct net_device *dev = bp->dev;
7934 	int tcs, i;
7935 
7936 	tcs = netdev_get_num_tc(dev);
7937 	if (tcs) {
7938 		int i, off, count;
7939 
7940 		for (i = 0; i < tcs; i++) {
7941 			count = bp->tx_nr_rings_per_tc;
7942 			off = i * count;
7943 			netdev_set_tc_queue(dev, i, count, off);
7944 		}
7945 	}
7946 
7947 	for (i = 0; i < bp->cp_nr_rings; i++) {
7948 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7949 		char *attr;
7950 
7951 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7952 			attr = "TxRx";
7953 		else if (i < bp->rx_nr_rings)
7954 			attr = "rx";
7955 		else
7956 			attr = "tx";
7957 
7958 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7959 			 attr, i);
7960 		bp->irq_tbl[map_idx].handler = bnxt_msix;
7961 	}
7962 }
7963 
7964 static void bnxt_setup_inta(struct bnxt *bp)
7965 {
7966 	const int len = sizeof(bp->irq_tbl[0].name);
7967 
7968 	if (netdev_get_num_tc(bp->dev))
7969 		netdev_reset_tc(bp->dev);
7970 
7971 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7972 		 0);
7973 	bp->irq_tbl[0].handler = bnxt_inta;
7974 }
7975 
7976 static int bnxt_setup_int_mode(struct bnxt *bp)
7977 {
7978 	int rc;
7979 
7980 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7981 		bnxt_setup_msix(bp);
7982 	else
7983 		bnxt_setup_inta(bp);
7984 
7985 	rc = bnxt_set_real_num_queues(bp);
7986 	return rc;
7987 }
7988 
7989 #ifdef CONFIG_RFS_ACCEL
7990 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7991 {
7992 	return bp->hw_resc.max_rsscos_ctxs;
7993 }
7994 
7995 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7996 {
7997 	return bp->hw_resc.max_vnics;
7998 }
7999 #endif
8000 
8001 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8002 {
8003 	return bp->hw_resc.max_stat_ctxs;
8004 }
8005 
8006 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8007 {
8008 	return bp->hw_resc.max_cp_rings;
8009 }
8010 
8011 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8012 {
8013 	unsigned int cp = bp->hw_resc.max_cp_rings;
8014 
8015 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8016 		cp -= bnxt_get_ulp_msix_num(bp);
8017 
8018 	return cp;
8019 }
8020 
8021 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8022 {
8023 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8024 
8025 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8026 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8027 
8028 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8029 }
8030 
8031 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8032 {
8033 	bp->hw_resc.max_irqs = max_irqs;
8034 }
8035 
8036 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8037 {
8038 	unsigned int cp;
8039 
8040 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8041 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8042 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8043 	else
8044 		return cp - bp->cp_nr_rings;
8045 }
8046 
8047 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8048 {
8049 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8050 }
8051 
8052 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8053 {
8054 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8055 	int max_irq = bnxt_get_max_func_irqs(bp);
8056 	int total_req = bp->cp_nr_rings + num;
8057 	int max_idx, avail_msix;
8058 
8059 	max_idx = bp->total_irqs;
8060 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8061 		max_idx = min_t(int, bp->total_irqs, max_cp);
8062 	avail_msix = max_idx - bp->cp_nr_rings;
8063 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8064 		return avail_msix;
8065 
8066 	if (max_irq < total_req) {
8067 		num = max_irq - bp->cp_nr_rings;
8068 		if (num <= 0)
8069 			return 0;
8070 	}
8071 	return num;
8072 }
8073 
8074 static int bnxt_get_num_msix(struct bnxt *bp)
8075 {
8076 	if (!BNXT_NEW_RM(bp))
8077 		return bnxt_get_max_func_irqs(bp);
8078 
8079 	return bnxt_nq_rings_in_use(bp);
8080 }
8081 
8082 static int bnxt_init_msix(struct bnxt *bp)
8083 {
8084 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8085 	struct msix_entry *msix_ent;
8086 
8087 	total_vecs = bnxt_get_num_msix(bp);
8088 	max = bnxt_get_max_func_irqs(bp);
8089 	if (total_vecs > max)
8090 		total_vecs = max;
8091 
8092 	if (!total_vecs)
8093 		return 0;
8094 
8095 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8096 	if (!msix_ent)
8097 		return -ENOMEM;
8098 
8099 	for (i = 0; i < total_vecs; i++) {
8100 		msix_ent[i].entry = i;
8101 		msix_ent[i].vector = 0;
8102 	}
8103 
8104 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8105 		min = 2;
8106 
8107 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8108 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8109 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8110 		rc = -ENODEV;
8111 		goto msix_setup_exit;
8112 	}
8113 
8114 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8115 	if (bp->irq_tbl) {
8116 		for (i = 0; i < total_vecs; i++)
8117 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8118 
8119 		bp->total_irqs = total_vecs;
8120 		/* Trim rings based upon num of vectors allocated */
8121 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8122 				     total_vecs - ulp_msix, min == 1);
8123 		if (rc)
8124 			goto msix_setup_exit;
8125 
8126 		bp->cp_nr_rings = (min == 1) ?
8127 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8128 				  bp->tx_nr_rings + bp->rx_nr_rings;
8129 
8130 	} else {
8131 		rc = -ENOMEM;
8132 		goto msix_setup_exit;
8133 	}
8134 	bp->flags |= BNXT_FLAG_USING_MSIX;
8135 	kfree(msix_ent);
8136 	return 0;
8137 
8138 msix_setup_exit:
8139 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8140 	kfree(bp->irq_tbl);
8141 	bp->irq_tbl = NULL;
8142 	pci_disable_msix(bp->pdev);
8143 	kfree(msix_ent);
8144 	return rc;
8145 }
8146 
8147 static int bnxt_init_inta(struct bnxt *bp)
8148 {
8149 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
8150 	if (!bp->irq_tbl)
8151 		return -ENOMEM;
8152 
8153 	bp->total_irqs = 1;
8154 	bp->rx_nr_rings = 1;
8155 	bp->tx_nr_rings = 1;
8156 	bp->cp_nr_rings = 1;
8157 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8158 	bp->irq_tbl[0].vector = bp->pdev->irq;
8159 	return 0;
8160 }
8161 
8162 static int bnxt_init_int_mode(struct bnxt *bp)
8163 {
8164 	int rc = 0;
8165 
8166 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8167 		rc = bnxt_init_msix(bp);
8168 
8169 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8170 		/* fallback to INTA */
8171 		rc = bnxt_init_inta(bp);
8172 	}
8173 	return rc;
8174 }
8175 
8176 static void bnxt_clear_int_mode(struct bnxt *bp)
8177 {
8178 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8179 		pci_disable_msix(bp->pdev);
8180 
8181 	kfree(bp->irq_tbl);
8182 	bp->irq_tbl = NULL;
8183 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
8184 }
8185 
8186 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8187 {
8188 	int tcs = netdev_get_num_tc(bp->dev);
8189 	bool irq_cleared = false;
8190 	int rc;
8191 
8192 	if (!bnxt_need_reserve_rings(bp))
8193 		return 0;
8194 
8195 	if (irq_re_init && BNXT_NEW_RM(bp) &&
8196 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
8197 		bnxt_ulp_irq_stop(bp);
8198 		bnxt_clear_int_mode(bp);
8199 		irq_cleared = true;
8200 	}
8201 	rc = __bnxt_reserve_rings(bp);
8202 	if (irq_cleared) {
8203 		if (!rc)
8204 			rc = bnxt_init_int_mode(bp);
8205 		bnxt_ulp_irq_restart(bp, rc);
8206 	}
8207 	if (rc) {
8208 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8209 		return rc;
8210 	}
8211 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8212 		netdev_err(bp->dev, "tx ring reservation failure\n");
8213 		netdev_reset_tc(bp->dev);
8214 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8215 		return -ENOMEM;
8216 	}
8217 	return 0;
8218 }
8219 
8220 static void bnxt_free_irq(struct bnxt *bp)
8221 {
8222 	struct bnxt_irq *irq;
8223 	int i;
8224 
8225 #ifdef CONFIG_RFS_ACCEL
8226 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8227 	bp->dev->rx_cpu_rmap = NULL;
8228 #endif
8229 	if (!bp->irq_tbl || !bp->bnapi)
8230 		return;
8231 
8232 	for (i = 0; i < bp->cp_nr_rings; i++) {
8233 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8234 
8235 		irq = &bp->irq_tbl[map_idx];
8236 		if (irq->requested) {
8237 			if (irq->have_cpumask) {
8238 				irq_set_affinity_hint(irq->vector, NULL);
8239 				free_cpumask_var(irq->cpu_mask);
8240 				irq->have_cpumask = 0;
8241 			}
8242 			free_irq(irq->vector, bp->bnapi[i]);
8243 		}
8244 
8245 		irq->requested = 0;
8246 	}
8247 }
8248 
8249 static int bnxt_request_irq(struct bnxt *bp)
8250 {
8251 	int i, j, rc = 0;
8252 	unsigned long flags = 0;
8253 #ifdef CONFIG_RFS_ACCEL
8254 	struct cpu_rmap *rmap;
8255 #endif
8256 
8257 	rc = bnxt_setup_int_mode(bp);
8258 	if (rc) {
8259 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8260 			   rc);
8261 		return rc;
8262 	}
8263 #ifdef CONFIG_RFS_ACCEL
8264 	rmap = bp->dev->rx_cpu_rmap;
8265 #endif
8266 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8267 		flags = IRQF_SHARED;
8268 
8269 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8270 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8271 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8272 
8273 #ifdef CONFIG_RFS_ACCEL
8274 		if (rmap && bp->bnapi[i]->rx_ring) {
8275 			rc = irq_cpu_rmap_add(rmap, irq->vector);
8276 			if (rc)
8277 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8278 					    j);
8279 			j++;
8280 		}
8281 #endif
8282 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8283 				 bp->bnapi[i]);
8284 		if (rc)
8285 			break;
8286 
8287 		irq->requested = 1;
8288 
8289 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8290 			int numa_node = dev_to_node(&bp->pdev->dev);
8291 
8292 			irq->have_cpumask = 1;
8293 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8294 					irq->cpu_mask);
8295 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8296 			if (rc) {
8297 				netdev_warn(bp->dev,
8298 					    "Set affinity failed, IRQ = %d\n",
8299 					    irq->vector);
8300 				break;
8301 			}
8302 		}
8303 	}
8304 	return rc;
8305 }
8306 
8307 static void bnxt_del_napi(struct bnxt *bp)
8308 {
8309 	int i;
8310 
8311 	if (!bp->bnapi)
8312 		return;
8313 
8314 	for (i = 0; i < bp->cp_nr_rings; i++) {
8315 		struct bnxt_napi *bnapi = bp->bnapi[i];
8316 
8317 		napi_hash_del(&bnapi->napi);
8318 		netif_napi_del(&bnapi->napi);
8319 	}
8320 	/* We called napi_hash_del() before netif_napi_del(), we need
8321 	 * to respect an RCU grace period before freeing napi structures.
8322 	 */
8323 	synchronize_net();
8324 }
8325 
8326 static void bnxt_init_napi(struct bnxt *bp)
8327 {
8328 	int i;
8329 	unsigned int cp_nr_rings = bp->cp_nr_rings;
8330 	struct bnxt_napi *bnapi;
8331 
8332 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
8333 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8334 
8335 		if (bp->flags & BNXT_FLAG_CHIP_P5)
8336 			poll_fn = bnxt_poll_p5;
8337 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8338 			cp_nr_rings--;
8339 		for (i = 0; i < cp_nr_rings; i++) {
8340 			bnapi = bp->bnapi[i];
8341 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8342 		}
8343 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8344 			bnapi = bp->bnapi[cp_nr_rings];
8345 			netif_napi_add(bp->dev, &bnapi->napi,
8346 				       bnxt_poll_nitroa0, 64);
8347 		}
8348 	} else {
8349 		bnapi = bp->bnapi[0];
8350 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8351 	}
8352 }
8353 
8354 static void bnxt_disable_napi(struct bnxt *bp)
8355 {
8356 	int i;
8357 
8358 	if (!bp->bnapi)
8359 		return;
8360 
8361 	for (i = 0; i < bp->cp_nr_rings; i++) {
8362 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8363 
8364 		if (bp->bnapi[i]->rx_ring)
8365 			cancel_work_sync(&cpr->dim.work);
8366 
8367 		napi_disable(&bp->bnapi[i]->napi);
8368 	}
8369 }
8370 
8371 static void bnxt_enable_napi(struct bnxt *bp)
8372 {
8373 	int i;
8374 
8375 	for (i = 0; i < bp->cp_nr_rings; i++) {
8376 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8377 		bp->bnapi[i]->in_reset = false;
8378 
8379 		if (bp->bnapi[i]->rx_ring) {
8380 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
8381 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
8382 		}
8383 		napi_enable(&bp->bnapi[i]->napi);
8384 	}
8385 }
8386 
8387 void bnxt_tx_disable(struct bnxt *bp)
8388 {
8389 	int i;
8390 	struct bnxt_tx_ring_info *txr;
8391 
8392 	if (bp->tx_ring) {
8393 		for (i = 0; i < bp->tx_nr_rings; i++) {
8394 			txr = &bp->tx_ring[i];
8395 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
8396 		}
8397 	}
8398 	/* Stop all TX queues */
8399 	netif_tx_disable(bp->dev);
8400 	netif_carrier_off(bp->dev);
8401 }
8402 
8403 void bnxt_tx_enable(struct bnxt *bp)
8404 {
8405 	int i;
8406 	struct bnxt_tx_ring_info *txr;
8407 
8408 	for (i = 0; i < bp->tx_nr_rings; i++) {
8409 		txr = &bp->tx_ring[i];
8410 		txr->dev_state = 0;
8411 	}
8412 	netif_tx_wake_all_queues(bp->dev);
8413 	if (bp->link_info.link_up)
8414 		netif_carrier_on(bp->dev);
8415 }
8416 
8417 static void bnxt_report_link(struct bnxt *bp)
8418 {
8419 	if (bp->link_info.link_up) {
8420 		const char *duplex;
8421 		const char *flow_ctrl;
8422 		u32 speed;
8423 		u16 fec;
8424 
8425 		netif_carrier_on(bp->dev);
8426 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
8427 			duplex = "full";
8428 		else
8429 			duplex = "half";
8430 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
8431 			flow_ctrl = "ON - receive & transmit";
8432 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
8433 			flow_ctrl = "ON - transmit";
8434 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
8435 			flow_ctrl = "ON - receive";
8436 		else
8437 			flow_ctrl = "none";
8438 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
8439 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
8440 			    speed, duplex, flow_ctrl);
8441 		if (bp->flags & BNXT_FLAG_EEE_CAP)
8442 			netdev_info(bp->dev, "EEE is %s\n",
8443 				    bp->eee.eee_active ? "active" :
8444 							 "not active");
8445 		fec = bp->link_info.fec_cfg;
8446 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
8447 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
8448 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
8449 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
8450 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
8451 	} else {
8452 		netif_carrier_off(bp->dev);
8453 		netdev_err(bp->dev, "NIC Link is Down\n");
8454 	}
8455 }
8456 
8457 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
8458 {
8459 	int rc = 0;
8460 	struct hwrm_port_phy_qcaps_input req = {0};
8461 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8462 	struct bnxt_link_info *link_info = &bp->link_info;
8463 
8464 	bp->flags &= ~BNXT_FLAG_EEE_CAP;
8465 	if (bp->test_info)
8466 		bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK |
8467 					  BNXT_TEST_FL_AN_PHY_LPBK);
8468 	if (bp->hwrm_spec_code < 0x10201)
8469 		return 0;
8470 
8471 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
8472 
8473 	mutex_lock(&bp->hwrm_cmd_lock);
8474 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8475 	if (rc)
8476 		goto hwrm_phy_qcaps_exit;
8477 
8478 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
8479 		struct ethtool_eee *eee = &bp->eee;
8480 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
8481 
8482 		bp->flags |= BNXT_FLAG_EEE_CAP;
8483 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8484 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
8485 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
8486 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
8487 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
8488 	}
8489 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
8490 		if (bp->test_info)
8491 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
8492 	}
8493 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) {
8494 		if (bp->test_info)
8495 			bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK;
8496 	}
8497 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) {
8498 		if (BNXT_PF(bp))
8499 			bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG;
8500 	}
8501 	if (resp->supported_speeds_auto_mode)
8502 		link_info->support_auto_speeds =
8503 			le16_to_cpu(resp->supported_speeds_auto_mode);
8504 
8505 	bp->port_count = resp->port_cnt;
8506 
8507 hwrm_phy_qcaps_exit:
8508 	mutex_unlock(&bp->hwrm_cmd_lock);
8509 	return rc;
8510 }
8511 
8512 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
8513 {
8514 	int rc = 0;
8515 	struct bnxt_link_info *link_info = &bp->link_info;
8516 	struct hwrm_port_phy_qcfg_input req = {0};
8517 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8518 	u8 link_up = link_info->link_up;
8519 	u16 diff;
8520 
8521 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
8522 
8523 	mutex_lock(&bp->hwrm_cmd_lock);
8524 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8525 	if (rc) {
8526 		mutex_unlock(&bp->hwrm_cmd_lock);
8527 		return rc;
8528 	}
8529 
8530 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
8531 	link_info->phy_link_status = resp->link;
8532 	link_info->duplex = resp->duplex_cfg;
8533 	if (bp->hwrm_spec_code >= 0x10800)
8534 		link_info->duplex = resp->duplex_state;
8535 	link_info->pause = resp->pause;
8536 	link_info->auto_mode = resp->auto_mode;
8537 	link_info->auto_pause_setting = resp->auto_pause;
8538 	link_info->lp_pause = resp->link_partner_adv_pause;
8539 	link_info->force_pause_setting = resp->force_pause;
8540 	link_info->duplex_setting = resp->duplex_cfg;
8541 	if (link_info->phy_link_status == BNXT_LINK_LINK)
8542 		link_info->link_speed = le16_to_cpu(resp->link_speed);
8543 	else
8544 		link_info->link_speed = 0;
8545 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
8546 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
8547 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
8548 	link_info->lp_auto_link_speeds =
8549 		le16_to_cpu(resp->link_partner_adv_speeds);
8550 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
8551 	link_info->phy_ver[0] = resp->phy_maj;
8552 	link_info->phy_ver[1] = resp->phy_min;
8553 	link_info->phy_ver[2] = resp->phy_bld;
8554 	link_info->media_type = resp->media_type;
8555 	link_info->phy_type = resp->phy_type;
8556 	link_info->transceiver = resp->xcvr_pkg_type;
8557 	link_info->phy_addr = resp->eee_config_phy_addr &
8558 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
8559 	link_info->module_status = resp->module_status;
8560 
8561 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
8562 		struct ethtool_eee *eee = &bp->eee;
8563 		u16 fw_speeds;
8564 
8565 		eee->eee_active = 0;
8566 		if (resp->eee_config_phy_addr &
8567 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
8568 			eee->eee_active = 1;
8569 			fw_speeds = le16_to_cpu(
8570 				resp->link_partner_adv_eee_link_speed_mask);
8571 			eee->lp_advertised =
8572 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8573 		}
8574 
8575 		/* Pull initial EEE config */
8576 		if (!chng_link_state) {
8577 			if (resp->eee_config_phy_addr &
8578 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
8579 				eee->eee_enabled = 1;
8580 
8581 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8582 			eee->advertised =
8583 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8584 
8585 			if (resp->eee_config_phy_addr &
8586 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8587 				__le32 tmr;
8588 
8589 				eee->tx_lpi_enabled = 1;
8590 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8591 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
8592 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8593 			}
8594 		}
8595 	}
8596 
8597 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8598 	if (bp->hwrm_spec_code >= 0x10504)
8599 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8600 
8601 	/* TODO: need to add more logic to report VF link */
8602 	if (chng_link_state) {
8603 		if (link_info->phy_link_status == BNXT_LINK_LINK)
8604 			link_info->link_up = 1;
8605 		else
8606 			link_info->link_up = 0;
8607 		if (link_up != link_info->link_up)
8608 			bnxt_report_link(bp);
8609 	} else {
8610 		/* alwasy link down if not require to update link state */
8611 		link_info->link_up = 0;
8612 	}
8613 	mutex_unlock(&bp->hwrm_cmd_lock);
8614 
8615 	if (!BNXT_PHY_CFG_ABLE(bp))
8616 		return 0;
8617 
8618 	diff = link_info->support_auto_speeds ^ link_info->advertising;
8619 	if ((link_info->support_auto_speeds | diff) !=
8620 	    link_info->support_auto_speeds) {
8621 		/* An advertised speed is no longer supported, so we need to
8622 		 * update the advertisement settings.  Caller holds RTNL
8623 		 * so we can modify link settings.
8624 		 */
8625 		link_info->advertising = link_info->support_auto_speeds;
8626 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8627 			bnxt_hwrm_set_link_setting(bp, true, false);
8628 	}
8629 	return 0;
8630 }
8631 
8632 static void bnxt_get_port_module_status(struct bnxt *bp)
8633 {
8634 	struct bnxt_link_info *link_info = &bp->link_info;
8635 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8636 	u8 module_status;
8637 
8638 	if (bnxt_update_link(bp, true))
8639 		return;
8640 
8641 	module_status = link_info->module_status;
8642 	switch (module_status) {
8643 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8644 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8645 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8646 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8647 			    bp->pf.port_id);
8648 		if (bp->hwrm_spec_code >= 0x10201) {
8649 			netdev_warn(bp->dev, "Module part number %s\n",
8650 				    resp->phy_vendor_partnumber);
8651 		}
8652 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8653 			netdev_warn(bp->dev, "TX is disabled\n");
8654 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8655 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8656 	}
8657 }
8658 
8659 static void
8660 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8661 {
8662 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8663 		if (bp->hwrm_spec_code >= 0x10201)
8664 			req->auto_pause =
8665 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8666 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8667 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8668 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8669 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8670 		req->enables |=
8671 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8672 	} else {
8673 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8674 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8675 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8676 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
8677 		req->enables |=
8678 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
8679 		if (bp->hwrm_spec_code >= 0x10201) {
8680 			req->auto_pause = req->force_pause;
8681 			req->enables |= cpu_to_le32(
8682 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8683 		}
8684 	}
8685 }
8686 
8687 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8688 				      struct hwrm_port_phy_cfg_input *req)
8689 {
8690 	u8 autoneg = bp->link_info.autoneg;
8691 	u16 fw_link_speed = bp->link_info.req_link_speed;
8692 	u16 advertising = bp->link_info.advertising;
8693 
8694 	if (autoneg & BNXT_AUTONEG_SPEED) {
8695 		req->auto_mode |=
8696 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8697 
8698 		req->enables |= cpu_to_le32(
8699 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8700 		req->auto_link_speed_mask = cpu_to_le16(advertising);
8701 
8702 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8703 		req->flags |=
8704 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8705 	} else {
8706 		req->force_link_speed = cpu_to_le16(fw_link_speed);
8707 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8708 	}
8709 
8710 	/* tell chimp that the setting takes effect immediately */
8711 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8712 }
8713 
8714 int bnxt_hwrm_set_pause(struct bnxt *bp)
8715 {
8716 	struct hwrm_port_phy_cfg_input req = {0};
8717 	int rc;
8718 
8719 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8720 	bnxt_hwrm_set_pause_common(bp, &req);
8721 
8722 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8723 	    bp->link_info.force_link_chng)
8724 		bnxt_hwrm_set_link_common(bp, &req);
8725 
8726 	mutex_lock(&bp->hwrm_cmd_lock);
8727 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8728 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8729 		/* since changing of pause setting doesn't trigger any link
8730 		 * change event, the driver needs to update the current pause
8731 		 * result upon successfully return of the phy_cfg command
8732 		 */
8733 		bp->link_info.pause =
8734 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8735 		bp->link_info.auto_pause_setting = 0;
8736 		if (!bp->link_info.force_link_chng)
8737 			bnxt_report_link(bp);
8738 	}
8739 	bp->link_info.force_link_chng = false;
8740 	mutex_unlock(&bp->hwrm_cmd_lock);
8741 	return rc;
8742 }
8743 
8744 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8745 			      struct hwrm_port_phy_cfg_input *req)
8746 {
8747 	struct ethtool_eee *eee = &bp->eee;
8748 
8749 	if (eee->eee_enabled) {
8750 		u16 eee_speeds;
8751 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8752 
8753 		if (eee->tx_lpi_enabled)
8754 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8755 		else
8756 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8757 
8758 		req->flags |= cpu_to_le32(flags);
8759 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8760 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8761 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8762 	} else {
8763 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8764 	}
8765 }
8766 
8767 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8768 {
8769 	struct hwrm_port_phy_cfg_input req = {0};
8770 
8771 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8772 	if (set_pause)
8773 		bnxt_hwrm_set_pause_common(bp, &req);
8774 
8775 	bnxt_hwrm_set_link_common(bp, &req);
8776 
8777 	if (set_eee)
8778 		bnxt_hwrm_set_eee(bp, &req);
8779 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8780 }
8781 
8782 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8783 {
8784 	struct hwrm_port_phy_cfg_input req = {0};
8785 
8786 	if (!BNXT_SINGLE_PF(bp))
8787 		return 0;
8788 
8789 	if (pci_num_vf(bp->pdev))
8790 		return 0;
8791 
8792 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8793 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8794 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8795 }
8796 
8797 static int bnxt_fw_init_one(struct bnxt *bp);
8798 
8799 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8800 {
8801 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8802 	struct hwrm_func_drv_if_change_input req = {0};
8803 	bool resc_reinit = false, fw_reset = false;
8804 	u32 flags = 0;
8805 	int rc;
8806 
8807 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8808 		return 0;
8809 
8810 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8811 	if (up)
8812 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8813 	mutex_lock(&bp->hwrm_cmd_lock);
8814 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8815 	if (!rc)
8816 		flags = le32_to_cpu(resp->flags);
8817 	mutex_unlock(&bp->hwrm_cmd_lock);
8818 	if (rc)
8819 		return rc;
8820 
8821 	if (!up)
8822 		return 0;
8823 
8824 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
8825 		resc_reinit = true;
8826 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
8827 		fw_reset = true;
8828 
8829 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
8830 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
8831 		return -ENODEV;
8832 	}
8833 	if (resc_reinit || fw_reset) {
8834 		if (fw_reset) {
8835 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
8836 				bnxt_ulp_stop(bp);
8837 			bnxt_free_ctx_mem(bp);
8838 			kfree(bp->ctx);
8839 			bp->ctx = NULL;
8840 			bnxt_dcb_free(bp);
8841 			rc = bnxt_fw_init_one(bp);
8842 			if (rc) {
8843 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
8844 				return rc;
8845 			}
8846 			bnxt_clear_int_mode(bp);
8847 			rc = bnxt_init_int_mode(bp);
8848 			if (rc) {
8849 				netdev_err(bp->dev, "init int mode failed\n");
8850 				return rc;
8851 			}
8852 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
8853 		}
8854 		if (BNXT_NEW_RM(bp)) {
8855 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8856 
8857 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8858 			hw_resc->resv_cp_rings = 0;
8859 			hw_resc->resv_stat_ctxs = 0;
8860 			hw_resc->resv_irqs = 0;
8861 			hw_resc->resv_tx_rings = 0;
8862 			hw_resc->resv_rx_rings = 0;
8863 			hw_resc->resv_hw_ring_grps = 0;
8864 			hw_resc->resv_vnics = 0;
8865 			if (!fw_reset) {
8866 				bp->tx_nr_rings = 0;
8867 				bp->rx_nr_rings = 0;
8868 			}
8869 		}
8870 	}
8871 	return 0;
8872 }
8873 
8874 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8875 {
8876 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8877 	struct hwrm_port_led_qcaps_input req = {0};
8878 	struct bnxt_pf_info *pf = &bp->pf;
8879 	int rc;
8880 
8881 	bp->num_leds = 0;
8882 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8883 		return 0;
8884 
8885 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8886 	req.port_id = cpu_to_le16(pf->port_id);
8887 	mutex_lock(&bp->hwrm_cmd_lock);
8888 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8889 	if (rc) {
8890 		mutex_unlock(&bp->hwrm_cmd_lock);
8891 		return rc;
8892 	}
8893 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8894 		int i;
8895 
8896 		bp->num_leds = resp->num_leds;
8897 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8898 						 bp->num_leds);
8899 		for (i = 0; i < bp->num_leds; i++) {
8900 			struct bnxt_led_info *led = &bp->leds[i];
8901 			__le16 caps = led->led_state_caps;
8902 
8903 			if (!led->led_group_id ||
8904 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
8905 				bp->num_leds = 0;
8906 				break;
8907 			}
8908 		}
8909 	}
8910 	mutex_unlock(&bp->hwrm_cmd_lock);
8911 	return 0;
8912 }
8913 
8914 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8915 {
8916 	struct hwrm_wol_filter_alloc_input req = {0};
8917 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8918 	int rc;
8919 
8920 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8921 	req.port_id = cpu_to_le16(bp->pf.port_id);
8922 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8923 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8924 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8925 	mutex_lock(&bp->hwrm_cmd_lock);
8926 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8927 	if (!rc)
8928 		bp->wol_filter_id = resp->wol_filter_id;
8929 	mutex_unlock(&bp->hwrm_cmd_lock);
8930 	return rc;
8931 }
8932 
8933 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8934 {
8935 	struct hwrm_wol_filter_free_input req = {0};
8936 
8937 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8938 	req.port_id = cpu_to_le16(bp->pf.port_id);
8939 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8940 	req.wol_filter_id = bp->wol_filter_id;
8941 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8942 }
8943 
8944 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8945 {
8946 	struct hwrm_wol_filter_qcfg_input req = {0};
8947 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8948 	u16 next_handle = 0;
8949 	int rc;
8950 
8951 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8952 	req.port_id = cpu_to_le16(bp->pf.port_id);
8953 	req.handle = cpu_to_le16(handle);
8954 	mutex_lock(&bp->hwrm_cmd_lock);
8955 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8956 	if (!rc) {
8957 		next_handle = le16_to_cpu(resp->next_handle);
8958 		if (next_handle != 0) {
8959 			if (resp->wol_type ==
8960 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8961 				bp->wol = 1;
8962 				bp->wol_filter_id = resp->wol_filter_id;
8963 			}
8964 		}
8965 	}
8966 	mutex_unlock(&bp->hwrm_cmd_lock);
8967 	return next_handle;
8968 }
8969 
8970 static void bnxt_get_wol_settings(struct bnxt *bp)
8971 {
8972 	u16 handle = 0;
8973 
8974 	bp->wol = 0;
8975 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8976 		return;
8977 
8978 	do {
8979 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8980 	} while (handle && handle != 0xffff);
8981 }
8982 
8983 #ifdef CONFIG_BNXT_HWMON
8984 static ssize_t bnxt_show_temp(struct device *dev,
8985 			      struct device_attribute *devattr, char *buf)
8986 {
8987 	struct hwrm_temp_monitor_query_input req = {0};
8988 	struct hwrm_temp_monitor_query_output *resp;
8989 	struct bnxt *bp = dev_get_drvdata(dev);
8990 	u32 temp = 0;
8991 
8992 	resp = bp->hwrm_cmd_resp_addr;
8993 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8994 	mutex_lock(&bp->hwrm_cmd_lock);
8995 	if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8996 		temp = resp->temp * 1000; /* display millidegree */
8997 	mutex_unlock(&bp->hwrm_cmd_lock);
8998 
8999 	return sprintf(buf, "%u\n", temp);
9000 }
9001 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9002 
9003 static struct attribute *bnxt_attrs[] = {
9004 	&sensor_dev_attr_temp1_input.dev_attr.attr,
9005 	NULL
9006 };
9007 ATTRIBUTE_GROUPS(bnxt);
9008 
9009 static void bnxt_hwmon_close(struct bnxt *bp)
9010 {
9011 	if (bp->hwmon_dev) {
9012 		hwmon_device_unregister(bp->hwmon_dev);
9013 		bp->hwmon_dev = NULL;
9014 	}
9015 }
9016 
9017 static void bnxt_hwmon_open(struct bnxt *bp)
9018 {
9019 	struct pci_dev *pdev = bp->pdev;
9020 
9021 	if (bp->hwmon_dev)
9022 		return;
9023 
9024 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
9025 							  DRV_MODULE_NAME, bp,
9026 							  bnxt_groups);
9027 	if (IS_ERR(bp->hwmon_dev)) {
9028 		bp->hwmon_dev = NULL;
9029 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
9030 	}
9031 }
9032 #else
9033 static void bnxt_hwmon_close(struct bnxt *bp)
9034 {
9035 }
9036 
9037 static void bnxt_hwmon_open(struct bnxt *bp)
9038 {
9039 }
9040 #endif
9041 
9042 static bool bnxt_eee_config_ok(struct bnxt *bp)
9043 {
9044 	struct ethtool_eee *eee = &bp->eee;
9045 	struct bnxt_link_info *link_info = &bp->link_info;
9046 
9047 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
9048 		return true;
9049 
9050 	if (eee->eee_enabled) {
9051 		u32 advertising =
9052 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
9053 
9054 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9055 			eee->eee_enabled = 0;
9056 			return false;
9057 		}
9058 		if (eee->advertised & ~advertising) {
9059 			eee->advertised = advertising & eee->supported;
9060 			return false;
9061 		}
9062 	}
9063 	return true;
9064 }
9065 
9066 static int bnxt_update_phy_setting(struct bnxt *bp)
9067 {
9068 	int rc;
9069 	bool update_link = false;
9070 	bool update_pause = false;
9071 	bool update_eee = false;
9072 	struct bnxt_link_info *link_info = &bp->link_info;
9073 
9074 	rc = bnxt_update_link(bp, true);
9075 	if (rc) {
9076 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9077 			   rc);
9078 		return rc;
9079 	}
9080 	if (!BNXT_SINGLE_PF(bp))
9081 		return 0;
9082 
9083 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9084 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9085 	    link_info->req_flow_ctrl)
9086 		update_pause = true;
9087 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9088 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
9089 		update_pause = true;
9090 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9091 		if (BNXT_AUTO_MODE(link_info->auto_mode))
9092 			update_link = true;
9093 		if (link_info->req_link_speed != link_info->force_link_speed)
9094 			update_link = true;
9095 		if (link_info->req_duplex != link_info->duplex_setting)
9096 			update_link = true;
9097 	} else {
9098 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9099 			update_link = true;
9100 		if (link_info->advertising != link_info->auto_link_speeds)
9101 			update_link = true;
9102 	}
9103 
9104 	/* The last close may have shutdown the link, so need to call
9105 	 * PHY_CFG to bring it back up.
9106 	 */
9107 	if (!bp->link_info.link_up)
9108 		update_link = true;
9109 
9110 	if (!bnxt_eee_config_ok(bp))
9111 		update_eee = true;
9112 
9113 	if (update_link)
9114 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9115 	else if (update_pause)
9116 		rc = bnxt_hwrm_set_pause(bp);
9117 	if (rc) {
9118 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9119 			   rc);
9120 		return rc;
9121 	}
9122 
9123 	return rc;
9124 }
9125 
9126 /* Common routine to pre-map certain register block to different GRC window.
9127  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9128  * in PF and 3 windows in VF that can be customized to map in different
9129  * register blocks.
9130  */
9131 static void bnxt_preset_reg_win(struct bnxt *bp)
9132 {
9133 	if (BNXT_PF(bp)) {
9134 		/* CAG registers map to GRC window #4 */
9135 		writel(BNXT_CAG_REG_BASE,
9136 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9137 	}
9138 }
9139 
9140 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9141 
9142 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9143 {
9144 	int rc = 0;
9145 
9146 	bnxt_preset_reg_win(bp);
9147 	netif_carrier_off(bp->dev);
9148 	if (irq_re_init) {
9149 		/* Reserve rings now if none were reserved at driver probe. */
9150 		rc = bnxt_init_dflt_ring_mode(bp);
9151 		if (rc) {
9152 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9153 			return rc;
9154 		}
9155 	}
9156 	rc = bnxt_reserve_rings(bp, irq_re_init);
9157 	if (rc)
9158 		return rc;
9159 	if ((bp->flags & BNXT_FLAG_RFS) &&
9160 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
9161 		/* disable RFS if falling back to INTA */
9162 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
9163 		bp->flags &= ~BNXT_FLAG_RFS;
9164 	}
9165 
9166 	rc = bnxt_alloc_mem(bp, irq_re_init);
9167 	if (rc) {
9168 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9169 		goto open_err_free_mem;
9170 	}
9171 
9172 	if (irq_re_init) {
9173 		bnxt_init_napi(bp);
9174 		rc = bnxt_request_irq(bp);
9175 		if (rc) {
9176 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
9177 			goto open_err_irq;
9178 		}
9179 	}
9180 
9181 	bnxt_enable_napi(bp);
9182 	bnxt_debug_dev_init(bp);
9183 
9184 	rc = bnxt_init_nic(bp, irq_re_init);
9185 	if (rc) {
9186 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9187 		goto open_err;
9188 	}
9189 
9190 	if (link_re_init) {
9191 		mutex_lock(&bp->link_lock);
9192 		rc = bnxt_update_phy_setting(bp);
9193 		mutex_unlock(&bp->link_lock);
9194 		if (rc) {
9195 			netdev_warn(bp->dev, "failed to update phy settings\n");
9196 			if (BNXT_SINGLE_PF(bp)) {
9197 				bp->link_info.phy_retry = true;
9198 				bp->link_info.phy_retry_expires =
9199 					jiffies + 5 * HZ;
9200 			}
9201 		}
9202 	}
9203 
9204 	if (irq_re_init)
9205 		udp_tunnel_get_rx_info(bp->dev);
9206 
9207 	set_bit(BNXT_STATE_OPEN, &bp->state);
9208 	bnxt_enable_int(bp);
9209 	/* Enable TX queues */
9210 	bnxt_tx_enable(bp);
9211 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9212 	/* Poll link status and check for SFP+ module status */
9213 	bnxt_get_port_module_status(bp);
9214 
9215 	/* VF-reps may need to be re-opened after the PF is re-opened */
9216 	if (BNXT_PF(bp))
9217 		bnxt_vf_reps_open(bp);
9218 	return 0;
9219 
9220 open_err:
9221 	bnxt_debug_dev_exit(bp);
9222 	bnxt_disable_napi(bp);
9223 
9224 open_err_irq:
9225 	bnxt_del_napi(bp);
9226 
9227 open_err_free_mem:
9228 	bnxt_free_skbs(bp);
9229 	bnxt_free_irq(bp);
9230 	bnxt_free_mem(bp, true);
9231 	return rc;
9232 }
9233 
9234 /* rtnl_lock held */
9235 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9236 {
9237 	int rc = 0;
9238 
9239 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
9240 	if (rc) {
9241 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
9242 		dev_close(bp->dev);
9243 	}
9244 	return rc;
9245 }
9246 
9247 /* rtnl_lock held, open the NIC half way by allocating all resources, but
9248  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
9249  * self tests.
9250  */
9251 int bnxt_half_open_nic(struct bnxt *bp)
9252 {
9253 	int rc = 0;
9254 
9255 	rc = bnxt_alloc_mem(bp, false);
9256 	if (rc) {
9257 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9258 		goto half_open_err;
9259 	}
9260 	rc = bnxt_init_nic(bp, false);
9261 	if (rc) {
9262 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9263 		goto half_open_err;
9264 	}
9265 	return 0;
9266 
9267 half_open_err:
9268 	bnxt_free_skbs(bp);
9269 	bnxt_free_mem(bp, false);
9270 	dev_close(bp->dev);
9271 	return rc;
9272 }
9273 
9274 /* rtnl_lock held, this call can only be made after a previous successful
9275  * call to bnxt_half_open_nic().
9276  */
9277 void bnxt_half_close_nic(struct bnxt *bp)
9278 {
9279 	bnxt_hwrm_resource_free(bp, false, false);
9280 	bnxt_free_skbs(bp);
9281 	bnxt_free_mem(bp, false);
9282 }
9283 
9284 static void bnxt_reenable_sriov(struct bnxt *bp)
9285 {
9286 	if (BNXT_PF(bp)) {
9287 		struct bnxt_pf_info *pf = &bp->pf;
9288 		int n = pf->active_vfs;
9289 
9290 		if (n)
9291 			bnxt_cfg_hw_sriov(bp, &n, true);
9292 	}
9293 }
9294 
9295 static int bnxt_open(struct net_device *dev)
9296 {
9297 	struct bnxt *bp = netdev_priv(dev);
9298 	int rc;
9299 
9300 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
9301 		netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n");
9302 		return -ENODEV;
9303 	}
9304 
9305 	rc = bnxt_hwrm_if_change(bp, true);
9306 	if (rc)
9307 		return rc;
9308 	rc = __bnxt_open_nic(bp, true, true);
9309 	if (rc) {
9310 		bnxt_hwrm_if_change(bp, false);
9311 	} else {
9312 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
9313 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9314 				bnxt_ulp_start(bp, 0);
9315 				bnxt_reenable_sriov(bp);
9316 			}
9317 		}
9318 		bnxt_hwmon_open(bp);
9319 	}
9320 
9321 	return rc;
9322 }
9323 
9324 static bool bnxt_drv_busy(struct bnxt *bp)
9325 {
9326 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
9327 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
9328 }
9329 
9330 static void bnxt_get_ring_stats(struct bnxt *bp,
9331 				struct rtnl_link_stats64 *stats);
9332 
9333 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
9334 			     bool link_re_init)
9335 {
9336 	/* Close the VF-reps before closing PF */
9337 	if (BNXT_PF(bp))
9338 		bnxt_vf_reps_close(bp);
9339 
9340 	/* Change device state to avoid TX queue wake up's */
9341 	bnxt_tx_disable(bp);
9342 
9343 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9344 	smp_mb__after_atomic();
9345 	while (bnxt_drv_busy(bp))
9346 		msleep(20);
9347 
9348 	/* Flush rings and and disable interrupts */
9349 	bnxt_shutdown_nic(bp, irq_re_init);
9350 
9351 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
9352 
9353 	bnxt_debug_dev_exit(bp);
9354 	bnxt_disable_napi(bp);
9355 	del_timer_sync(&bp->timer);
9356 	bnxt_free_skbs(bp);
9357 
9358 	/* Save ring stats before shutdown */
9359 	if (bp->bnapi && irq_re_init)
9360 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
9361 	if (irq_re_init) {
9362 		bnxt_free_irq(bp);
9363 		bnxt_del_napi(bp);
9364 	}
9365 	bnxt_free_mem(bp, irq_re_init);
9366 }
9367 
9368 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9369 {
9370 	int rc = 0;
9371 
9372 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9373 		/* If we get here, it means firmware reset is in progress
9374 		 * while we are trying to close.  We can safely proceed with
9375 		 * the close because we are holding rtnl_lock().  Some firmware
9376 		 * messages may fail as we proceed to close.  We set the
9377 		 * ABORT_ERR flag here so that the FW reset thread will later
9378 		 * abort when it gets the rtnl_lock() and sees the flag.
9379 		 */
9380 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
9381 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9382 	}
9383 
9384 #ifdef CONFIG_BNXT_SRIOV
9385 	if (bp->sriov_cfg) {
9386 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
9387 						      !bp->sriov_cfg,
9388 						      BNXT_SRIOV_CFG_WAIT_TMO);
9389 		if (rc)
9390 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
9391 	}
9392 #endif
9393 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
9394 	return rc;
9395 }
9396 
9397 static int bnxt_close(struct net_device *dev)
9398 {
9399 	struct bnxt *bp = netdev_priv(dev);
9400 
9401 	bnxt_hwmon_close(bp);
9402 	bnxt_close_nic(bp, true, true);
9403 	bnxt_hwrm_shutdown_link(bp);
9404 	bnxt_hwrm_if_change(bp, false);
9405 	return 0;
9406 }
9407 
9408 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
9409 				   u16 *val)
9410 {
9411 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
9412 	struct hwrm_port_phy_mdio_read_input req = {0};
9413 	int rc;
9414 
9415 	if (bp->hwrm_spec_code < 0x10a00)
9416 		return -EOPNOTSUPP;
9417 
9418 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
9419 	req.port_id = cpu_to_le16(bp->pf.port_id);
9420 	req.phy_addr = phy_addr;
9421 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9422 	if (mdio_phy_id_is_c45(phy_addr)) {
9423 		req.cl45_mdio = 1;
9424 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9425 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9426 		req.reg_addr = cpu_to_le16(reg);
9427 	}
9428 
9429 	mutex_lock(&bp->hwrm_cmd_lock);
9430 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9431 	if (!rc)
9432 		*val = le16_to_cpu(resp->reg_data);
9433 	mutex_unlock(&bp->hwrm_cmd_lock);
9434 	return rc;
9435 }
9436 
9437 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
9438 				    u16 val)
9439 {
9440 	struct hwrm_port_phy_mdio_write_input req = {0};
9441 
9442 	if (bp->hwrm_spec_code < 0x10a00)
9443 		return -EOPNOTSUPP;
9444 
9445 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
9446 	req.port_id = cpu_to_le16(bp->pf.port_id);
9447 	req.phy_addr = phy_addr;
9448 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9449 	if (mdio_phy_id_is_c45(phy_addr)) {
9450 		req.cl45_mdio = 1;
9451 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9452 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9453 		req.reg_addr = cpu_to_le16(reg);
9454 	}
9455 	req.reg_data = cpu_to_le16(val);
9456 
9457 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9458 }
9459 
9460 /* rtnl_lock held */
9461 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
9462 {
9463 	struct mii_ioctl_data *mdio = if_mii(ifr);
9464 	struct bnxt *bp = netdev_priv(dev);
9465 	int rc;
9466 
9467 	switch (cmd) {
9468 	case SIOCGMIIPHY:
9469 		mdio->phy_id = bp->link_info.phy_addr;
9470 
9471 		/* fallthru */
9472 	case SIOCGMIIREG: {
9473 		u16 mii_regval = 0;
9474 
9475 		if (!netif_running(dev))
9476 			return -EAGAIN;
9477 
9478 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
9479 					     &mii_regval);
9480 		mdio->val_out = mii_regval;
9481 		return rc;
9482 	}
9483 
9484 	case SIOCSMIIREG:
9485 		if (!netif_running(dev))
9486 			return -EAGAIN;
9487 
9488 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
9489 						mdio->val_in);
9490 
9491 	default:
9492 		/* do nothing */
9493 		break;
9494 	}
9495 	return -EOPNOTSUPP;
9496 }
9497 
9498 static void bnxt_get_ring_stats(struct bnxt *bp,
9499 				struct rtnl_link_stats64 *stats)
9500 {
9501 	int i;
9502 
9503 
9504 	for (i = 0; i < bp->cp_nr_rings; i++) {
9505 		struct bnxt_napi *bnapi = bp->bnapi[i];
9506 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9507 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
9508 
9509 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
9510 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
9511 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
9512 
9513 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
9514 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
9515 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
9516 
9517 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
9518 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
9519 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
9520 
9521 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
9522 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
9523 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
9524 
9525 		stats->rx_missed_errors +=
9526 			le64_to_cpu(hw_stats->rx_discard_pkts);
9527 
9528 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
9529 
9530 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
9531 	}
9532 }
9533 
9534 static void bnxt_add_prev_stats(struct bnxt *bp,
9535 				struct rtnl_link_stats64 *stats)
9536 {
9537 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
9538 
9539 	stats->rx_packets += prev_stats->rx_packets;
9540 	stats->tx_packets += prev_stats->tx_packets;
9541 	stats->rx_bytes += prev_stats->rx_bytes;
9542 	stats->tx_bytes += prev_stats->tx_bytes;
9543 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
9544 	stats->multicast += prev_stats->multicast;
9545 	stats->tx_dropped += prev_stats->tx_dropped;
9546 }
9547 
9548 static void
9549 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
9550 {
9551 	struct bnxt *bp = netdev_priv(dev);
9552 
9553 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
9554 	/* Make sure bnxt_close_nic() sees that we are reading stats before
9555 	 * we check the BNXT_STATE_OPEN flag.
9556 	 */
9557 	smp_mb__after_atomic();
9558 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9559 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9560 		*stats = bp->net_stats_prev;
9561 		return;
9562 	}
9563 
9564 	bnxt_get_ring_stats(bp, stats);
9565 	bnxt_add_prev_stats(bp, stats);
9566 
9567 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9568 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
9569 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
9570 
9571 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
9572 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
9573 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
9574 					  le64_to_cpu(rx->rx_ovrsz_frames) +
9575 					  le64_to_cpu(rx->rx_runt_frames);
9576 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
9577 				   le64_to_cpu(rx->rx_jbr_frames);
9578 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
9579 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
9580 		stats->tx_errors = le64_to_cpu(tx->tx_err);
9581 	}
9582 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9583 }
9584 
9585 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
9586 {
9587 	struct net_device *dev = bp->dev;
9588 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9589 	struct netdev_hw_addr *ha;
9590 	u8 *haddr;
9591 	int mc_count = 0;
9592 	bool update = false;
9593 	int off = 0;
9594 
9595 	netdev_for_each_mc_addr(ha, dev) {
9596 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
9597 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9598 			vnic->mc_list_count = 0;
9599 			return false;
9600 		}
9601 		haddr = ha->addr;
9602 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
9603 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
9604 			update = true;
9605 		}
9606 		off += ETH_ALEN;
9607 		mc_count++;
9608 	}
9609 	if (mc_count)
9610 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
9611 
9612 	if (mc_count != vnic->mc_list_count) {
9613 		vnic->mc_list_count = mc_count;
9614 		update = true;
9615 	}
9616 	return update;
9617 }
9618 
9619 static bool bnxt_uc_list_updated(struct bnxt *bp)
9620 {
9621 	struct net_device *dev = bp->dev;
9622 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9623 	struct netdev_hw_addr *ha;
9624 	int off = 0;
9625 
9626 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
9627 		return true;
9628 
9629 	netdev_for_each_uc_addr(ha, dev) {
9630 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
9631 			return true;
9632 
9633 		off += ETH_ALEN;
9634 	}
9635 	return false;
9636 }
9637 
9638 static void bnxt_set_rx_mode(struct net_device *dev)
9639 {
9640 	struct bnxt *bp = netdev_priv(dev);
9641 	struct bnxt_vnic_info *vnic;
9642 	bool mc_update = false;
9643 	bool uc_update;
9644 	u32 mask;
9645 
9646 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
9647 		return;
9648 
9649 	vnic = &bp->vnic_info[0];
9650 	mask = vnic->rx_mask;
9651 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
9652 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
9653 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
9654 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
9655 
9656 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
9657 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9658 
9659 	uc_update = bnxt_uc_list_updated(bp);
9660 
9661 	if (dev->flags & IFF_BROADCAST)
9662 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9663 	if (dev->flags & IFF_ALLMULTI) {
9664 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9665 		vnic->mc_list_count = 0;
9666 	} else {
9667 		mc_update = bnxt_mc_list_updated(bp, &mask);
9668 	}
9669 
9670 	if (mask != vnic->rx_mask || uc_update || mc_update) {
9671 		vnic->rx_mask = mask;
9672 
9673 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
9674 		bnxt_queue_sp_work(bp);
9675 	}
9676 }
9677 
9678 static int bnxt_cfg_rx_mode(struct bnxt *bp)
9679 {
9680 	struct net_device *dev = bp->dev;
9681 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9682 	struct netdev_hw_addr *ha;
9683 	int i, off = 0, rc;
9684 	bool uc_update;
9685 
9686 	netif_addr_lock_bh(dev);
9687 	uc_update = bnxt_uc_list_updated(bp);
9688 	netif_addr_unlock_bh(dev);
9689 
9690 	if (!uc_update)
9691 		goto skip_uc;
9692 
9693 	mutex_lock(&bp->hwrm_cmd_lock);
9694 	for (i = 1; i < vnic->uc_filter_count; i++) {
9695 		struct hwrm_cfa_l2_filter_free_input req = {0};
9696 
9697 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
9698 				       -1);
9699 
9700 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
9701 
9702 		rc = _hwrm_send_message(bp, &req, sizeof(req),
9703 					HWRM_CMD_TIMEOUT);
9704 	}
9705 	mutex_unlock(&bp->hwrm_cmd_lock);
9706 
9707 	vnic->uc_filter_count = 1;
9708 
9709 	netif_addr_lock_bh(dev);
9710 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
9711 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9712 	} else {
9713 		netdev_for_each_uc_addr(ha, dev) {
9714 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
9715 			off += ETH_ALEN;
9716 			vnic->uc_filter_count++;
9717 		}
9718 	}
9719 	netif_addr_unlock_bh(dev);
9720 
9721 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
9722 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
9723 		if (rc) {
9724 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
9725 				   rc);
9726 			vnic->uc_filter_count = i;
9727 			return rc;
9728 		}
9729 	}
9730 
9731 skip_uc:
9732 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9733 	if (rc && vnic->mc_list_count) {
9734 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
9735 			    rc);
9736 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9737 		vnic->mc_list_count = 0;
9738 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9739 	}
9740 	if (rc)
9741 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
9742 			   rc);
9743 
9744 	return rc;
9745 }
9746 
9747 static bool bnxt_can_reserve_rings(struct bnxt *bp)
9748 {
9749 #ifdef CONFIG_BNXT_SRIOV
9750 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
9751 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9752 
9753 		/* No minimum rings were provisioned by the PF.  Don't
9754 		 * reserve rings by default when device is down.
9755 		 */
9756 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
9757 			return true;
9758 
9759 		if (!netif_running(bp->dev))
9760 			return false;
9761 	}
9762 #endif
9763 	return true;
9764 }
9765 
9766 /* If the chip and firmware supports RFS */
9767 static bool bnxt_rfs_supported(struct bnxt *bp)
9768 {
9769 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
9770 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
9771 			return true;
9772 		return false;
9773 	}
9774 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
9775 		return true;
9776 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9777 		return true;
9778 	return false;
9779 }
9780 
9781 /* If runtime conditions support RFS */
9782 static bool bnxt_rfs_capable(struct bnxt *bp)
9783 {
9784 #ifdef CONFIG_RFS_ACCEL
9785 	int vnics, max_vnics, max_rss_ctxs;
9786 
9787 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9788 		return bnxt_rfs_supported(bp);
9789 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9790 		return false;
9791 
9792 	vnics = 1 + bp->rx_nr_rings;
9793 	max_vnics = bnxt_get_max_func_vnics(bp);
9794 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9795 
9796 	/* RSS contexts not a limiting factor */
9797 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9798 		max_rss_ctxs = max_vnics;
9799 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
9800 		if (bp->rx_nr_rings > 1)
9801 			netdev_warn(bp->dev,
9802 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9803 				    min(max_rss_ctxs - 1, max_vnics - 1));
9804 		return false;
9805 	}
9806 
9807 	if (!BNXT_NEW_RM(bp))
9808 		return true;
9809 
9810 	if (vnics == bp->hw_resc.resv_vnics)
9811 		return true;
9812 
9813 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9814 	if (vnics <= bp->hw_resc.resv_vnics)
9815 		return true;
9816 
9817 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9818 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9819 	return false;
9820 #else
9821 	return false;
9822 #endif
9823 }
9824 
9825 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9826 					   netdev_features_t features)
9827 {
9828 	struct bnxt *bp = netdev_priv(dev);
9829 	netdev_features_t vlan_features;
9830 
9831 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9832 		features &= ~NETIF_F_NTUPLE;
9833 
9834 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9835 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9836 
9837 	if (!(features & NETIF_F_GRO))
9838 		features &= ~NETIF_F_GRO_HW;
9839 
9840 	if (features & NETIF_F_GRO_HW)
9841 		features &= ~NETIF_F_LRO;
9842 
9843 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
9844 	 * turned on or off together.
9845 	 */
9846 	vlan_features = features & (NETIF_F_HW_VLAN_CTAG_RX |
9847 				    NETIF_F_HW_VLAN_STAG_RX);
9848 	if (vlan_features != (NETIF_F_HW_VLAN_CTAG_RX |
9849 			      NETIF_F_HW_VLAN_STAG_RX)) {
9850 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9851 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9852 				      NETIF_F_HW_VLAN_STAG_RX);
9853 		else if (vlan_features)
9854 			features |= NETIF_F_HW_VLAN_CTAG_RX |
9855 				    NETIF_F_HW_VLAN_STAG_RX;
9856 	}
9857 #ifdef CONFIG_BNXT_SRIOV
9858 	if (BNXT_VF(bp)) {
9859 		if (bp->vf.vlan) {
9860 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9861 				      NETIF_F_HW_VLAN_STAG_RX);
9862 		}
9863 	}
9864 #endif
9865 	return features;
9866 }
9867 
9868 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9869 {
9870 	struct bnxt *bp = netdev_priv(dev);
9871 	u32 flags = bp->flags;
9872 	u32 changes;
9873 	int rc = 0;
9874 	bool re_init = false;
9875 	bool update_tpa = false;
9876 
9877 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9878 	if (features & NETIF_F_GRO_HW)
9879 		flags |= BNXT_FLAG_GRO;
9880 	else if (features & NETIF_F_LRO)
9881 		flags |= BNXT_FLAG_LRO;
9882 
9883 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9884 		flags &= ~BNXT_FLAG_TPA;
9885 
9886 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
9887 		flags |= BNXT_FLAG_STRIP_VLAN;
9888 
9889 	if (features & NETIF_F_NTUPLE)
9890 		flags |= BNXT_FLAG_RFS;
9891 
9892 	changes = flags ^ bp->flags;
9893 	if (changes & BNXT_FLAG_TPA) {
9894 		update_tpa = true;
9895 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9896 		    (flags & BNXT_FLAG_TPA) == 0 ||
9897 		    (bp->flags & BNXT_FLAG_CHIP_P5))
9898 			re_init = true;
9899 	}
9900 
9901 	if (changes & ~BNXT_FLAG_TPA)
9902 		re_init = true;
9903 
9904 	if (flags != bp->flags) {
9905 		u32 old_flags = bp->flags;
9906 
9907 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9908 			bp->flags = flags;
9909 			if (update_tpa)
9910 				bnxt_set_ring_params(bp);
9911 			return rc;
9912 		}
9913 
9914 		if (re_init) {
9915 			bnxt_close_nic(bp, false, false);
9916 			bp->flags = flags;
9917 			if (update_tpa)
9918 				bnxt_set_ring_params(bp);
9919 
9920 			return bnxt_open_nic(bp, false, false);
9921 		}
9922 		if (update_tpa) {
9923 			bp->flags = flags;
9924 			rc = bnxt_set_tpa(bp,
9925 					  (flags & BNXT_FLAG_TPA) ?
9926 					  true : false);
9927 			if (rc)
9928 				bp->flags = old_flags;
9929 		}
9930 	}
9931 	return rc;
9932 }
9933 
9934 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9935 				       u32 ring_id, u32 *prod, u32 *cons)
9936 {
9937 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9938 	struct hwrm_dbg_ring_info_get_input req = {0};
9939 	int rc;
9940 
9941 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9942 	req.ring_type = ring_type;
9943 	req.fw_ring_id = cpu_to_le32(ring_id);
9944 	mutex_lock(&bp->hwrm_cmd_lock);
9945 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9946 	if (!rc) {
9947 		*prod = le32_to_cpu(resp->producer_index);
9948 		*cons = le32_to_cpu(resp->consumer_index);
9949 	}
9950 	mutex_unlock(&bp->hwrm_cmd_lock);
9951 	return rc;
9952 }
9953 
9954 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9955 {
9956 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9957 	int i = bnapi->index;
9958 
9959 	if (!txr)
9960 		return;
9961 
9962 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9963 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9964 		    txr->tx_cons);
9965 }
9966 
9967 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9968 {
9969 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9970 	int i = bnapi->index;
9971 
9972 	if (!rxr)
9973 		return;
9974 
9975 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9976 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9977 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9978 		    rxr->rx_sw_agg_prod);
9979 }
9980 
9981 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9982 {
9983 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9984 	int i = bnapi->index;
9985 
9986 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9987 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9988 }
9989 
9990 static void bnxt_dbg_dump_states(struct bnxt *bp)
9991 {
9992 	int i;
9993 	struct bnxt_napi *bnapi;
9994 
9995 	for (i = 0; i < bp->cp_nr_rings; i++) {
9996 		bnapi = bp->bnapi[i];
9997 		if (netif_msg_drv(bp)) {
9998 			bnxt_dump_tx_sw_state(bnapi);
9999 			bnxt_dump_rx_sw_state(bnapi);
10000 			bnxt_dump_cp_sw_state(bnapi);
10001 		}
10002 	}
10003 }
10004 
10005 static void bnxt_reset_task(struct bnxt *bp, bool silent)
10006 {
10007 	if (!silent)
10008 		bnxt_dbg_dump_states(bp);
10009 	if (netif_running(bp->dev)) {
10010 		int rc;
10011 
10012 		if (silent) {
10013 			bnxt_close_nic(bp, false, false);
10014 			bnxt_open_nic(bp, false, false);
10015 		} else {
10016 			bnxt_ulp_stop(bp);
10017 			bnxt_close_nic(bp, true, false);
10018 			rc = bnxt_open_nic(bp, true, false);
10019 			bnxt_ulp_start(bp, rc);
10020 		}
10021 	}
10022 }
10023 
10024 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
10025 {
10026 	struct bnxt *bp = netdev_priv(dev);
10027 
10028 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
10029 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
10030 	bnxt_queue_sp_work(bp);
10031 }
10032 
10033 static void bnxt_fw_health_check(struct bnxt *bp)
10034 {
10035 	struct bnxt_fw_health *fw_health = bp->fw_health;
10036 	u32 val;
10037 
10038 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10039 		return;
10040 
10041 	if (fw_health->tmr_counter) {
10042 		fw_health->tmr_counter--;
10043 		return;
10044 	}
10045 
10046 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10047 	if (val == fw_health->last_fw_heartbeat)
10048 		goto fw_reset;
10049 
10050 	fw_health->last_fw_heartbeat = val;
10051 
10052 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10053 	if (val != fw_health->last_fw_reset_cnt)
10054 		goto fw_reset;
10055 
10056 	fw_health->tmr_counter = fw_health->tmr_multiplier;
10057 	return;
10058 
10059 fw_reset:
10060 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
10061 	bnxt_queue_sp_work(bp);
10062 }
10063 
10064 static void bnxt_timer(struct timer_list *t)
10065 {
10066 	struct bnxt *bp = from_timer(bp, t, timer);
10067 	struct net_device *dev = bp->dev;
10068 
10069 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
10070 		return;
10071 
10072 	if (atomic_read(&bp->intr_sem) != 0)
10073 		goto bnxt_restart_timer;
10074 
10075 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
10076 		bnxt_fw_health_check(bp);
10077 
10078 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
10079 	    bp->stats_coal_ticks) {
10080 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
10081 		bnxt_queue_sp_work(bp);
10082 	}
10083 
10084 	if (bnxt_tc_flower_enabled(bp)) {
10085 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
10086 		bnxt_queue_sp_work(bp);
10087 	}
10088 
10089 #ifdef CONFIG_RFS_ACCEL
10090 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
10091 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10092 		bnxt_queue_sp_work(bp);
10093 	}
10094 #endif /*CONFIG_RFS_ACCEL*/
10095 
10096 	if (bp->link_info.phy_retry) {
10097 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
10098 			bp->link_info.phy_retry = false;
10099 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
10100 		} else {
10101 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
10102 			bnxt_queue_sp_work(bp);
10103 		}
10104 	}
10105 
10106 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
10107 	    netif_carrier_ok(dev)) {
10108 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
10109 		bnxt_queue_sp_work(bp);
10110 	}
10111 bnxt_restart_timer:
10112 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10113 }
10114 
10115 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
10116 {
10117 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
10118 	 * set.  If the device is being closed, bnxt_close() may be holding
10119 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
10120 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
10121 	 */
10122 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10123 	rtnl_lock();
10124 }
10125 
10126 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
10127 {
10128 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10129 	rtnl_unlock();
10130 }
10131 
10132 /* Only called from bnxt_sp_task() */
10133 static void bnxt_reset(struct bnxt *bp, bool silent)
10134 {
10135 	bnxt_rtnl_lock_sp(bp);
10136 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
10137 		bnxt_reset_task(bp, silent);
10138 	bnxt_rtnl_unlock_sp(bp);
10139 }
10140 
10141 static void bnxt_fw_reset_close(struct bnxt *bp)
10142 {
10143 	bnxt_ulp_stop(bp);
10144 	/* When firmware is fatal state, disable PCI device to prevent
10145 	 * any potential bad DMAs before freeing kernel memory.
10146 	 */
10147 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10148 		pci_disable_device(bp->pdev);
10149 	__bnxt_close_nic(bp, true, false);
10150 	bnxt_clear_int_mode(bp);
10151 	bnxt_hwrm_func_drv_unrgtr(bp);
10152 	if (pci_is_enabled(bp->pdev))
10153 		pci_disable_device(bp->pdev);
10154 	bnxt_free_ctx_mem(bp);
10155 	kfree(bp->ctx);
10156 	bp->ctx = NULL;
10157 }
10158 
10159 static bool is_bnxt_fw_ok(struct bnxt *bp)
10160 {
10161 	struct bnxt_fw_health *fw_health = bp->fw_health;
10162 	bool no_heartbeat = false, has_reset = false;
10163 	u32 val;
10164 
10165 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10166 	if (val == fw_health->last_fw_heartbeat)
10167 		no_heartbeat = true;
10168 
10169 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10170 	if (val != fw_health->last_fw_reset_cnt)
10171 		has_reset = true;
10172 
10173 	if (!no_heartbeat && has_reset)
10174 		return true;
10175 
10176 	return false;
10177 }
10178 
10179 /* rtnl_lock is acquired before calling this function */
10180 static void bnxt_force_fw_reset(struct bnxt *bp)
10181 {
10182 	struct bnxt_fw_health *fw_health = bp->fw_health;
10183 	u32 wait_dsecs;
10184 
10185 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
10186 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10187 		return;
10188 
10189 	set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10190 	bnxt_fw_reset_close(bp);
10191 	wait_dsecs = fw_health->master_func_wait_dsecs;
10192 	if (fw_health->master) {
10193 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
10194 			wait_dsecs = 0;
10195 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10196 	} else {
10197 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
10198 		wait_dsecs = fw_health->normal_func_wait_dsecs;
10199 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10200 	}
10201 
10202 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
10203 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
10204 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10205 }
10206 
10207 void bnxt_fw_exception(struct bnxt *bp)
10208 {
10209 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
10210 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10211 	bnxt_rtnl_lock_sp(bp);
10212 	bnxt_force_fw_reset(bp);
10213 	bnxt_rtnl_unlock_sp(bp);
10214 }
10215 
10216 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
10217  * < 0 on error.
10218  */
10219 static int bnxt_get_registered_vfs(struct bnxt *bp)
10220 {
10221 #ifdef CONFIG_BNXT_SRIOV
10222 	int rc;
10223 
10224 	if (!BNXT_PF(bp))
10225 		return 0;
10226 
10227 	rc = bnxt_hwrm_func_qcfg(bp);
10228 	if (rc) {
10229 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
10230 		return rc;
10231 	}
10232 	if (bp->pf.registered_vfs)
10233 		return bp->pf.registered_vfs;
10234 	if (bp->sriov_cfg)
10235 		return 1;
10236 #endif
10237 	return 0;
10238 }
10239 
10240 void bnxt_fw_reset(struct bnxt *bp)
10241 {
10242 	bnxt_rtnl_lock_sp(bp);
10243 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
10244 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10245 		int n = 0, tmo;
10246 
10247 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10248 		if (bp->pf.active_vfs &&
10249 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10250 			n = bnxt_get_registered_vfs(bp);
10251 		if (n < 0) {
10252 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
10253 				   n);
10254 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10255 			dev_close(bp->dev);
10256 			goto fw_reset_exit;
10257 		} else if (n > 0) {
10258 			u16 vf_tmo_dsecs = n * 10;
10259 
10260 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
10261 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
10262 			bp->fw_reset_state =
10263 				BNXT_FW_RESET_STATE_POLL_VF;
10264 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10265 			goto fw_reset_exit;
10266 		}
10267 		bnxt_fw_reset_close(bp);
10268 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10269 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10270 			tmo = HZ / 10;
10271 		} else {
10272 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10273 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
10274 		}
10275 		bnxt_queue_fw_reset_work(bp, tmo);
10276 	}
10277 fw_reset_exit:
10278 	bnxt_rtnl_unlock_sp(bp);
10279 }
10280 
10281 static void bnxt_chk_missed_irq(struct bnxt *bp)
10282 {
10283 	int i;
10284 
10285 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10286 		return;
10287 
10288 	for (i = 0; i < bp->cp_nr_rings; i++) {
10289 		struct bnxt_napi *bnapi = bp->bnapi[i];
10290 		struct bnxt_cp_ring_info *cpr;
10291 		u32 fw_ring_id;
10292 		int j;
10293 
10294 		if (!bnapi)
10295 			continue;
10296 
10297 		cpr = &bnapi->cp_ring;
10298 		for (j = 0; j < 2; j++) {
10299 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
10300 			u32 val[2];
10301 
10302 			if (!cpr2 || cpr2->has_more_work ||
10303 			    !bnxt_has_work(bp, cpr2))
10304 				continue;
10305 
10306 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
10307 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
10308 				continue;
10309 			}
10310 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
10311 			bnxt_dbg_hwrm_ring_info_get(bp,
10312 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
10313 				fw_ring_id, &val[0], &val[1]);
10314 			cpr->sw_stats.cmn.missed_irqs++;
10315 		}
10316 	}
10317 }
10318 
10319 static void bnxt_cfg_ntp_filters(struct bnxt *);
10320 
10321 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
10322 {
10323 	struct bnxt_link_info *link_info = &bp->link_info;
10324 
10325 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10326 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10327 		if (bp->hwrm_spec_code >= 0x10201) {
10328 			if (link_info->auto_pause_setting &
10329 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10330 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10331 		} else {
10332 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10333 		}
10334 		link_info->advertising = link_info->auto_link_speeds;
10335 	} else {
10336 		link_info->req_link_speed = link_info->force_link_speed;
10337 		link_info->req_duplex = link_info->duplex_setting;
10338 	}
10339 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10340 		link_info->req_flow_ctrl =
10341 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10342 	else
10343 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10344 }
10345 
10346 static void bnxt_sp_task(struct work_struct *work)
10347 {
10348 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
10349 
10350 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10351 	smp_mb__after_atomic();
10352 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10353 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10354 		return;
10355 	}
10356 
10357 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
10358 		bnxt_cfg_rx_mode(bp);
10359 
10360 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
10361 		bnxt_cfg_ntp_filters(bp);
10362 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
10363 		bnxt_hwrm_exec_fwd_req(bp);
10364 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
10365 		bnxt_hwrm_tunnel_dst_port_alloc(
10366 			bp, bp->vxlan_port,
10367 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
10368 	}
10369 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
10370 		bnxt_hwrm_tunnel_dst_port_free(
10371 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
10372 	}
10373 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
10374 		bnxt_hwrm_tunnel_dst_port_alloc(
10375 			bp, bp->nge_port,
10376 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
10377 	}
10378 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
10379 		bnxt_hwrm_tunnel_dst_port_free(
10380 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
10381 	}
10382 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
10383 		bnxt_hwrm_port_qstats(bp);
10384 		bnxt_hwrm_port_qstats_ext(bp);
10385 		bnxt_hwrm_pcie_qstats(bp);
10386 	}
10387 
10388 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
10389 		int rc;
10390 
10391 		mutex_lock(&bp->link_lock);
10392 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
10393 				       &bp->sp_event))
10394 			bnxt_hwrm_phy_qcaps(bp);
10395 
10396 		rc = bnxt_update_link(bp, true);
10397 		if (rc)
10398 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
10399 				   rc);
10400 
10401 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
10402 				       &bp->sp_event))
10403 			bnxt_init_ethtool_link_settings(bp);
10404 		mutex_unlock(&bp->link_lock);
10405 	}
10406 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
10407 		int rc;
10408 
10409 		mutex_lock(&bp->link_lock);
10410 		rc = bnxt_update_phy_setting(bp);
10411 		mutex_unlock(&bp->link_lock);
10412 		if (rc) {
10413 			netdev_warn(bp->dev, "update phy settings retry failed\n");
10414 		} else {
10415 			bp->link_info.phy_retry = false;
10416 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
10417 		}
10418 	}
10419 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
10420 		mutex_lock(&bp->link_lock);
10421 		bnxt_get_port_module_status(bp);
10422 		mutex_unlock(&bp->link_lock);
10423 	}
10424 
10425 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
10426 		bnxt_tc_flow_stats_work(bp);
10427 
10428 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
10429 		bnxt_chk_missed_irq(bp);
10430 
10431 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
10432 	 * must be the last functions to be called before exiting.
10433 	 */
10434 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
10435 		bnxt_reset(bp, false);
10436 
10437 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
10438 		bnxt_reset(bp, true);
10439 
10440 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
10441 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
10442 
10443 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
10444 		if (!is_bnxt_fw_ok(bp))
10445 			bnxt_devlink_health_report(bp,
10446 						   BNXT_FW_EXCEPTION_SP_EVENT);
10447 	}
10448 
10449 	smp_mb__before_atomic();
10450 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10451 }
10452 
10453 /* Under rtnl_lock */
10454 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
10455 		     int tx_xdp)
10456 {
10457 	int max_rx, max_tx, tx_sets = 1;
10458 	int tx_rings_needed, stats;
10459 	int rx_rings = rx;
10460 	int cp, vnics, rc;
10461 
10462 	if (tcs)
10463 		tx_sets = tcs;
10464 
10465 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
10466 	if (rc)
10467 		return rc;
10468 
10469 	if (max_rx < rx)
10470 		return -ENOMEM;
10471 
10472 	tx_rings_needed = tx * tx_sets + tx_xdp;
10473 	if (max_tx < tx_rings_needed)
10474 		return -ENOMEM;
10475 
10476 	vnics = 1;
10477 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
10478 		vnics += rx_rings;
10479 
10480 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
10481 		rx_rings <<= 1;
10482 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
10483 	stats = cp;
10484 	if (BNXT_NEW_RM(bp)) {
10485 		cp += bnxt_get_ulp_msix_num(bp);
10486 		stats += bnxt_get_ulp_stat_ctxs(bp);
10487 	}
10488 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
10489 				     stats, vnics);
10490 }
10491 
10492 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
10493 {
10494 	if (bp->bar2) {
10495 		pci_iounmap(pdev, bp->bar2);
10496 		bp->bar2 = NULL;
10497 	}
10498 
10499 	if (bp->bar1) {
10500 		pci_iounmap(pdev, bp->bar1);
10501 		bp->bar1 = NULL;
10502 	}
10503 
10504 	if (bp->bar0) {
10505 		pci_iounmap(pdev, bp->bar0);
10506 		bp->bar0 = NULL;
10507 	}
10508 }
10509 
10510 static void bnxt_cleanup_pci(struct bnxt *bp)
10511 {
10512 	bnxt_unmap_bars(bp, bp->pdev);
10513 	pci_release_regions(bp->pdev);
10514 	if (pci_is_enabled(bp->pdev))
10515 		pci_disable_device(bp->pdev);
10516 }
10517 
10518 static void bnxt_init_dflt_coal(struct bnxt *bp)
10519 {
10520 	struct bnxt_coal *coal;
10521 
10522 	/* Tick values in micro seconds.
10523 	 * 1 coal_buf x bufs_per_record = 1 completion record.
10524 	 */
10525 	coal = &bp->rx_coal;
10526 	coal->coal_ticks = 10;
10527 	coal->coal_bufs = 30;
10528 	coal->coal_ticks_irq = 1;
10529 	coal->coal_bufs_irq = 2;
10530 	coal->idle_thresh = 50;
10531 	coal->bufs_per_record = 2;
10532 	coal->budget = 64;		/* NAPI budget */
10533 
10534 	coal = &bp->tx_coal;
10535 	coal->coal_ticks = 28;
10536 	coal->coal_bufs = 30;
10537 	coal->coal_ticks_irq = 2;
10538 	coal->coal_bufs_irq = 2;
10539 	coal->bufs_per_record = 1;
10540 
10541 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
10542 }
10543 
10544 static void bnxt_alloc_fw_health(struct bnxt *bp)
10545 {
10546 	if (bp->fw_health)
10547 		return;
10548 
10549 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
10550 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
10551 		return;
10552 
10553 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
10554 	if (!bp->fw_health) {
10555 		netdev_warn(bp->dev, "Failed to allocate fw_health\n");
10556 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
10557 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
10558 	}
10559 }
10560 
10561 static int bnxt_fw_init_one_p1(struct bnxt *bp)
10562 {
10563 	int rc;
10564 
10565 	bp->fw_cap = 0;
10566 	rc = bnxt_hwrm_ver_get(bp);
10567 	if (rc)
10568 		return rc;
10569 
10570 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10571 		rc = bnxt_alloc_kong_hwrm_resources(bp);
10572 		if (rc)
10573 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10574 	}
10575 
10576 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10577 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10578 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10579 		if (rc)
10580 			return rc;
10581 	}
10582 	rc = bnxt_hwrm_func_reset(bp);
10583 	if (rc)
10584 		return -ENODEV;
10585 
10586 	bnxt_hwrm_fw_set_time(bp);
10587 	return 0;
10588 }
10589 
10590 static int bnxt_fw_init_one_p2(struct bnxt *bp)
10591 {
10592 	int rc;
10593 
10594 	/* Get the MAX capabilities for this function */
10595 	rc = bnxt_hwrm_func_qcaps(bp);
10596 	if (rc) {
10597 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10598 			   rc);
10599 		return -ENODEV;
10600 	}
10601 
10602 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10603 	if (rc)
10604 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10605 			    rc);
10606 
10607 	bnxt_alloc_fw_health(bp);
10608 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
10609 	if (rc)
10610 		netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
10611 			    rc);
10612 
10613 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
10614 	if (rc)
10615 		return -ENODEV;
10616 
10617 	bnxt_hwrm_func_qcfg(bp);
10618 	bnxt_hwrm_vnic_qcaps(bp);
10619 	bnxt_hwrm_port_led_qcaps(bp);
10620 	bnxt_ethtool_init(bp);
10621 	bnxt_dcb_init(bp);
10622 	return 0;
10623 }
10624 
10625 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
10626 {
10627 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
10628 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10629 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10630 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10631 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10632 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
10633 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10634 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10635 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10636 	}
10637 }
10638 
10639 static void bnxt_set_dflt_rfs(struct bnxt *bp)
10640 {
10641 	struct net_device *dev = bp->dev;
10642 
10643 	dev->hw_features &= ~NETIF_F_NTUPLE;
10644 	dev->features &= ~NETIF_F_NTUPLE;
10645 	bp->flags &= ~BNXT_FLAG_RFS;
10646 	if (bnxt_rfs_supported(bp)) {
10647 		dev->hw_features |= NETIF_F_NTUPLE;
10648 		if (bnxt_rfs_capable(bp)) {
10649 			bp->flags |= BNXT_FLAG_RFS;
10650 			dev->features |= NETIF_F_NTUPLE;
10651 		}
10652 	}
10653 }
10654 
10655 static void bnxt_fw_init_one_p3(struct bnxt *bp)
10656 {
10657 	struct pci_dev *pdev = bp->pdev;
10658 
10659 	bnxt_set_dflt_rss_hash_type(bp);
10660 	bnxt_set_dflt_rfs(bp);
10661 
10662 	bnxt_get_wol_settings(bp);
10663 	if (bp->flags & BNXT_FLAG_WOL_CAP)
10664 		device_set_wakeup_enable(&pdev->dev, bp->wol);
10665 	else
10666 		device_set_wakeup_capable(&pdev->dev, false);
10667 
10668 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10669 	bnxt_hwrm_coal_params_qcaps(bp);
10670 }
10671 
10672 static int bnxt_fw_init_one(struct bnxt *bp)
10673 {
10674 	int rc;
10675 
10676 	rc = bnxt_fw_init_one_p1(bp);
10677 	if (rc) {
10678 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
10679 		return rc;
10680 	}
10681 	rc = bnxt_fw_init_one_p2(bp);
10682 	if (rc) {
10683 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
10684 		return rc;
10685 	}
10686 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
10687 	if (rc)
10688 		return rc;
10689 
10690 	/* In case fw capabilities have changed, destroy the unneeded
10691 	 * reporters and create newly capable ones.
10692 	 */
10693 	bnxt_dl_fw_reporters_destroy(bp, false);
10694 	bnxt_dl_fw_reporters_create(bp);
10695 	bnxt_fw_init_one_p3(bp);
10696 	return 0;
10697 }
10698 
10699 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
10700 {
10701 	struct bnxt_fw_health *fw_health = bp->fw_health;
10702 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
10703 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
10704 	u32 reg_type, reg_off, delay_msecs;
10705 
10706 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
10707 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
10708 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
10709 	switch (reg_type) {
10710 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
10711 		pci_write_config_dword(bp->pdev, reg_off, val);
10712 		break;
10713 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
10714 		writel(reg_off & BNXT_GRC_BASE_MASK,
10715 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
10716 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
10717 		/* fall through */
10718 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
10719 		writel(val, bp->bar0 + reg_off);
10720 		break;
10721 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
10722 		writel(val, bp->bar1 + reg_off);
10723 		break;
10724 	}
10725 	if (delay_msecs) {
10726 		pci_read_config_dword(bp->pdev, 0, &val);
10727 		msleep(delay_msecs);
10728 	}
10729 }
10730 
10731 static void bnxt_reset_all(struct bnxt *bp)
10732 {
10733 	struct bnxt_fw_health *fw_health = bp->fw_health;
10734 	int i, rc;
10735 
10736 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10737 #ifdef CONFIG_TEE_BNXT_FW
10738 		rc = tee_bnxt_fw_load();
10739 		if (rc)
10740 			netdev_err(bp->dev, "Unable to reset FW rc=%d\n", rc);
10741 		bp->fw_reset_timestamp = jiffies;
10742 #endif
10743 		return;
10744 	}
10745 
10746 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
10747 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
10748 			bnxt_fw_reset_writel(bp, i);
10749 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
10750 		struct hwrm_fw_reset_input req = {0};
10751 
10752 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
10753 		req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
10754 		req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
10755 		req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
10756 		req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
10757 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10758 		if (rc)
10759 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
10760 	}
10761 	bp->fw_reset_timestamp = jiffies;
10762 }
10763 
10764 static void bnxt_fw_reset_task(struct work_struct *work)
10765 {
10766 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
10767 	int rc;
10768 
10769 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10770 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
10771 		return;
10772 	}
10773 
10774 	switch (bp->fw_reset_state) {
10775 	case BNXT_FW_RESET_STATE_POLL_VF: {
10776 		int n = bnxt_get_registered_vfs(bp);
10777 		int tmo;
10778 
10779 		if (n < 0) {
10780 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
10781 				   n, jiffies_to_msecs(jiffies -
10782 				   bp->fw_reset_timestamp));
10783 			goto fw_reset_abort;
10784 		} else if (n > 0) {
10785 			if (time_after(jiffies, bp->fw_reset_timestamp +
10786 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
10787 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10788 				bp->fw_reset_state = 0;
10789 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
10790 					   n);
10791 				return;
10792 			}
10793 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10794 			return;
10795 		}
10796 		bp->fw_reset_timestamp = jiffies;
10797 		rtnl_lock();
10798 		bnxt_fw_reset_close(bp);
10799 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10800 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10801 			tmo = HZ / 10;
10802 		} else {
10803 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10804 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
10805 		}
10806 		rtnl_unlock();
10807 		bnxt_queue_fw_reset_work(bp, tmo);
10808 		return;
10809 	}
10810 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
10811 		u32 val;
10812 
10813 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
10814 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
10815 		    !time_after(jiffies, bp->fw_reset_timestamp +
10816 		    (bp->fw_reset_max_dsecs * HZ / 10))) {
10817 			bnxt_queue_fw_reset_work(bp, HZ / 5);
10818 			return;
10819 		}
10820 
10821 		if (!bp->fw_health->master) {
10822 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
10823 
10824 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10825 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10826 			return;
10827 		}
10828 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10829 	}
10830 	/* fall through */
10831 	case BNXT_FW_RESET_STATE_RESET_FW:
10832 		bnxt_reset_all(bp);
10833 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10834 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
10835 		return;
10836 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
10837 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
10838 			u32 val;
10839 
10840 			val = bnxt_fw_health_readl(bp,
10841 						   BNXT_FW_RESET_INPROG_REG);
10842 			if (val)
10843 				netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n",
10844 					    val);
10845 		}
10846 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10847 		if (pci_enable_device(bp->pdev)) {
10848 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
10849 			goto fw_reset_abort;
10850 		}
10851 		pci_set_master(bp->pdev);
10852 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
10853 		/* fall through */
10854 	case BNXT_FW_RESET_STATE_POLL_FW:
10855 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
10856 		rc = __bnxt_hwrm_ver_get(bp, true);
10857 		if (rc) {
10858 			if (time_after(jiffies, bp->fw_reset_timestamp +
10859 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
10860 				netdev_err(bp->dev, "Firmware reset aborted\n");
10861 				goto fw_reset_abort;
10862 			}
10863 			bnxt_queue_fw_reset_work(bp, HZ / 5);
10864 			return;
10865 		}
10866 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
10867 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
10868 		/* fall through */
10869 	case BNXT_FW_RESET_STATE_OPENING:
10870 		while (!rtnl_trylock()) {
10871 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10872 			return;
10873 		}
10874 		rc = bnxt_open(bp->dev);
10875 		if (rc) {
10876 			netdev_err(bp->dev, "bnxt_open_nic() failed\n");
10877 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10878 			dev_close(bp->dev);
10879 		}
10880 
10881 		bp->fw_reset_state = 0;
10882 		/* Make sure fw_reset_state is 0 before clearing the flag */
10883 		smp_mb__before_atomic();
10884 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10885 		bnxt_ulp_start(bp, rc);
10886 		if (!rc)
10887 			bnxt_reenable_sriov(bp);
10888 		bnxt_dl_health_recovery_done(bp);
10889 		bnxt_dl_health_status_update(bp, true);
10890 		rtnl_unlock();
10891 		break;
10892 	}
10893 	return;
10894 
10895 fw_reset_abort:
10896 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10897 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
10898 		bnxt_dl_health_status_update(bp, false);
10899 	bp->fw_reset_state = 0;
10900 	rtnl_lock();
10901 	dev_close(bp->dev);
10902 	rtnl_unlock();
10903 }
10904 
10905 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
10906 {
10907 	int rc;
10908 	struct bnxt *bp = netdev_priv(dev);
10909 
10910 	SET_NETDEV_DEV(dev, &pdev->dev);
10911 
10912 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
10913 	rc = pci_enable_device(pdev);
10914 	if (rc) {
10915 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
10916 		goto init_err;
10917 	}
10918 
10919 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10920 		dev_err(&pdev->dev,
10921 			"Cannot find PCI device base address, aborting\n");
10922 		rc = -ENODEV;
10923 		goto init_err_disable;
10924 	}
10925 
10926 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10927 	if (rc) {
10928 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
10929 		goto init_err_disable;
10930 	}
10931 
10932 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
10933 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
10934 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
10935 		goto init_err_disable;
10936 	}
10937 
10938 	pci_set_master(pdev);
10939 
10940 	bp->dev = dev;
10941 	bp->pdev = pdev;
10942 
10943 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
10944 	 * determines the BAR size.
10945 	 */
10946 	bp->bar0 = pci_ioremap_bar(pdev, 0);
10947 	if (!bp->bar0) {
10948 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
10949 		rc = -ENOMEM;
10950 		goto init_err_release;
10951 	}
10952 
10953 	bp->bar2 = pci_ioremap_bar(pdev, 4);
10954 	if (!bp->bar2) {
10955 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
10956 		rc = -ENOMEM;
10957 		goto init_err_release;
10958 	}
10959 
10960 	pci_enable_pcie_error_reporting(pdev);
10961 
10962 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
10963 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
10964 
10965 	spin_lock_init(&bp->ntp_fltr_lock);
10966 #if BITS_PER_LONG == 32
10967 	spin_lock_init(&bp->db_lock);
10968 #endif
10969 
10970 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
10971 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
10972 
10973 	bnxt_init_dflt_coal(bp);
10974 
10975 	timer_setup(&bp->timer, bnxt_timer, 0);
10976 	bp->current_interval = BNXT_TIMER_INTERVAL;
10977 
10978 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10979 	return 0;
10980 
10981 init_err_release:
10982 	bnxt_unmap_bars(bp, pdev);
10983 	pci_release_regions(pdev);
10984 
10985 init_err_disable:
10986 	pci_disable_device(pdev);
10987 
10988 init_err:
10989 	return rc;
10990 }
10991 
10992 /* rtnl_lock held */
10993 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
10994 {
10995 	struct sockaddr *addr = p;
10996 	struct bnxt *bp = netdev_priv(dev);
10997 	int rc = 0;
10998 
10999 	if (!is_valid_ether_addr(addr->sa_data))
11000 		return -EADDRNOTAVAIL;
11001 
11002 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
11003 		return 0;
11004 
11005 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
11006 	if (rc)
11007 		return rc;
11008 
11009 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
11010 	if (netif_running(dev)) {
11011 		bnxt_close_nic(bp, false, false);
11012 		rc = bnxt_open_nic(bp, false, false);
11013 	}
11014 
11015 	return rc;
11016 }
11017 
11018 /* rtnl_lock held */
11019 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
11020 {
11021 	struct bnxt *bp = netdev_priv(dev);
11022 
11023 	if (netif_running(dev))
11024 		bnxt_close_nic(bp, true, false);
11025 
11026 	dev->mtu = new_mtu;
11027 	bnxt_set_ring_params(bp);
11028 
11029 	if (netif_running(dev))
11030 		return bnxt_open_nic(bp, true, false);
11031 
11032 	return 0;
11033 }
11034 
11035 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
11036 {
11037 	struct bnxt *bp = netdev_priv(dev);
11038 	bool sh = false;
11039 	int rc;
11040 
11041 	if (tc > bp->max_tc) {
11042 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
11043 			   tc, bp->max_tc);
11044 		return -EINVAL;
11045 	}
11046 
11047 	if (netdev_get_num_tc(dev) == tc)
11048 		return 0;
11049 
11050 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
11051 		sh = true;
11052 
11053 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
11054 			      sh, tc, bp->tx_nr_rings_xdp);
11055 	if (rc)
11056 		return rc;
11057 
11058 	/* Needs to close the device and do hw resource re-allocations */
11059 	if (netif_running(bp->dev))
11060 		bnxt_close_nic(bp, true, false);
11061 
11062 	if (tc) {
11063 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
11064 		netdev_set_num_tc(dev, tc);
11065 	} else {
11066 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11067 		netdev_reset_tc(dev);
11068 	}
11069 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
11070 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
11071 			       bp->tx_nr_rings + bp->rx_nr_rings;
11072 
11073 	if (netif_running(bp->dev))
11074 		return bnxt_open_nic(bp, true, false);
11075 
11076 	return 0;
11077 }
11078 
11079 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
11080 				  void *cb_priv)
11081 {
11082 	struct bnxt *bp = cb_priv;
11083 
11084 	if (!bnxt_tc_flower_enabled(bp) ||
11085 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
11086 		return -EOPNOTSUPP;
11087 
11088 	switch (type) {
11089 	case TC_SETUP_CLSFLOWER:
11090 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
11091 	default:
11092 		return -EOPNOTSUPP;
11093 	}
11094 }
11095 
11096 LIST_HEAD(bnxt_block_cb_list);
11097 
11098 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
11099 			 void *type_data)
11100 {
11101 	struct bnxt *bp = netdev_priv(dev);
11102 
11103 	switch (type) {
11104 	case TC_SETUP_BLOCK:
11105 		return flow_block_cb_setup_simple(type_data,
11106 						  &bnxt_block_cb_list,
11107 						  bnxt_setup_tc_block_cb,
11108 						  bp, bp, true);
11109 	case TC_SETUP_QDISC_MQPRIO: {
11110 		struct tc_mqprio_qopt *mqprio = type_data;
11111 
11112 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
11113 
11114 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
11115 	}
11116 	default:
11117 		return -EOPNOTSUPP;
11118 	}
11119 }
11120 
11121 #ifdef CONFIG_RFS_ACCEL
11122 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
11123 			    struct bnxt_ntuple_filter *f2)
11124 {
11125 	struct flow_keys *keys1 = &f1->fkeys;
11126 	struct flow_keys *keys2 = &f2->fkeys;
11127 
11128 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
11129 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
11130 		return false;
11131 
11132 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
11133 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
11134 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
11135 			return false;
11136 	} else {
11137 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
11138 			   sizeof(keys1->addrs.v6addrs.src)) ||
11139 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
11140 			   sizeof(keys1->addrs.v6addrs.dst)))
11141 			return false;
11142 	}
11143 
11144 	if (keys1->ports.ports == keys2->ports.ports &&
11145 	    keys1->control.flags == keys2->control.flags &&
11146 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
11147 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
11148 		return true;
11149 
11150 	return false;
11151 }
11152 
11153 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
11154 			      u16 rxq_index, u32 flow_id)
11155 {
11156 	struct bnxt *bp = netdev_priv(dev);
11157 	struct bnxt_ntuple_filter *fltr, *new_fltr;
11158 	struct flow_keys *fkeys;
11159 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
11160 	int rc = 0, idx, bit_id, l2_idx = 0;
11161 	struct hlist_head *head;
11162 	u32 flags;
11163 
11164 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
11165 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11166 		int off = 0, j;
11167 
11168 		netif_addr_lock_bh(dev);
11169 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
11170 			if (ether_addr_equal(eth->h_dest,
11171 					     vnic->uc_list + off)) {
11172 				l2_idx = j + 1;
11173 				break;
11174 			}
11175 		}
11176 		netif_addr_unlock_bh(dev);
11177 		if (!l2_idx)
11178 			return -EINVAL;
11179 	}
11180 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
11181 	if (!new_fltr)
11182 		return -ENOMEM;
11183 
11184 	fkeys = &new_fltr->fkeys;
11185 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
11186 		rc = -EPROTONOSUPPORT;
11187 		goto err_free;
11188 	}
11189 
11190 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
11191 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
11192 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
11193 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
11194 		rc = -EPROTONOSUPPORT;
11195 		goto err_free;
11196 	}
11197 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
11198 	    bp->hwrm_spec_code < 0x10601) {
11199 		rc = -EPROTONOSUPPORT;
11200 		goto err_free;
11201 	}
11202 	flags = fkeys->control.flags;
11203 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
11204 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
11205 		rc = -EPROTONOSUPPORT;
11206 		goto err_free;
11207 	}
11208 
11209 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
11210 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
11211 
11212 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
11213 	head = &bp->ntp_fltr_hash_tbl[idx];
11214 	rcu_read_lock();
11215 	hlist_for_each_entry_rcu(fltr, head, hash) {
11216 		if (bnxt_fltr_match(fltr, new_fltr)) {
11217 			rcu_read_unlock();
11218 			rc = 0;
11219 			goto err_free;
11220 		}
11221 	}
11222 	rcu_read_unlock();
11223 
11224 	spin_lock_bh(&bp->ntp_fltr_lock);
11225 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
11226 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
11227 	if (bit_id < 0) {
11228 		spin_unlock_bh(&bp->ntp_fltr_lock);
11229 		rc = -ENOMEM;
11230 		goto err_free;
11231 	}
11232 
11233 	new_fltr->sw_id = (u16)bit_id;
11234 	new_fltr->flow_id = flow_id;
11235 	new_fltr->l2_fltr_idx = l2_idx;
11236 	new_fltr->rxq = rxq_index;
11237 	hlist_add_head_rcu(&new_fltr->hash, head);
11238 	bp->ntp_fltr_count++;
11239 	spin_unlock_bh(&bp->ntp_fltr_lock);
11240 
11241 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11242 	bnxt_queue_sp_work(bp);
11243 
11244 	return new_fltr->sw_id;
11245 
11246 err_free:
11247 	kfree(new_fltr);
11248 	return rc;
11249 }
11250 
11251 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11252 {
11253 	int i;
11254 
11255 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
11256 		struct hlist_head *head;
11257 		struct hlist_node *tmp;
11258 		struct bnxt_ntuple_filter *fltr;
11259 		int rc;
11260 
11261 		head = &bp->ntp_fltr_hash_tbl[i];
11262 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
11263 			bool del = false;
11264 
11265 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
11266 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
11267 							fltr->flow_id,
11268 							fltr->sw_id)) {
11269 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
11270 									 fltr);
11271 					del = true;
11272 				}
11273 			} else {
11274 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
11275 								       fltr);
11276 				if (rc)
11277 					del = true;
11278 				else
11279 					set_bit(BNXT_FLTR_VALID, &fltr->state);
11280 			}
11281 
11282 			if (del) {
11283 				spin_lock_bh(&bp->ntp_fltr_lock);
11284 				hlist_del_rcu(&fltr->hash);
11285 				bp->ntp_fltr_count--;
11286 				spin_unlock_bh(&bp->ntp_fltr_lock);
11287 				synchronize_rcu();
11288 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
11289 				kfree(fltr);
11290 			}
11291 		}
11292 	}
11293 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
11294 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
11295 }
11296 
11297 #else
11298 
11299 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11300 {
11301 }
11302 
11303 #endif /* CONFIG_RFS_ACCEL */
11304 
11305 static void bnxt_udp_tunnel_add(struct net_device *dev,
11306 				struct udp_tunnel_info *ti)
11307 {
11308 	struct bnxt *bp = netdev_priv(dev);
11309 
11310 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
11311 		return;
11312 
11313 	if (!netif_running(dev))
11314 		return;
11315 
11316 	switch (ti->type) {
11317 	case UDP_TUNNEL_TYPE_VXLAN:
11318 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
11319 			return;
11320 
11321 		bp->vxlan_port_cnt++;
11322 		if (bp->vxlan_port_cnt == 1) {
11323 			bp->vxlan_port = ti->port;
11324 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
11325 			bnxt_queue_sp_work(bp);
11326 		}
11327 		break;
11328 	case UDP_TUNNEL_TYPE_GENEVE:
11329 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
11330 			return;
11331 
11332 		bp->nge_port_cnt++;
11333 		if (bp->nge_port_cnt == 1) {
11334 			bp->nge_port = ti->port;
11335 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
11336 		}
11337 		break;
11338 	default:
11339 		return;
11340 	}
11341 
11342 	bnxt_queue_sp_work(bp);
11343 }
11344 
11345 static void bnxt_udp_tunnel_del(struct net_device *dev,
11346 				struct udp_tunnel_info *ti)
11347 {
11348 	struct bnxt *bp = netdev_priv(dev);
11349 
11350 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
11351 		return;
11352 
11353 	if (!netif_running(dev))
11354 		return;
11355 
11356 	switch (ti->type) {
11357 	case UDP_TUNNEL_TYPE_VXLAN:
11358 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
11359 			return;
11360 		bp->vxlan_port_cnt--;
11361 
11362 		if (bp->vxlan_port_cnt != 0)
11363 			return;
11364 
11365 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
11366 		break;
11367 	case UDP_TUNNEL_TYPE_GENEVE:
11368 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
11369 			return;
11370 		bp->nge_port_cnt--;
11371 
11372 		if (bp->nge_port_cnt != 0)
11373 			return;
11374 
11375 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
11376 		break;
11377 	default:
11378 		return;
11379 	}
11380 
11381 	bnxt_queue_sp_work(bp);
11382 }
11383 
11384 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11385 			       struct net_device *dev, u32 filter_mask,
11386 			       int nlflags)
11387 {
11388 	struct bnxt *bp = netdev_priv(dev);
11389 
11390 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
11391 				       nlflags, filter_mask, NULL);
11392 }
11393 
11394 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
11395 			       u16 flags, struct netlink_ext_ack *extack)
11396 {
11397 	struct bnxt *bp = netdev_priv(dev);
11398 	struct nlattr *attr, *br_spec;
11399 	int rem, rc = 0;
11400 
11401 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
11402 		return -EOPNOTSUPP;
11403 
11404 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
11405 	if (!br_spec)
11406 		return -EINVAL;
11407 
11408 	nla_for_each_nested(attr, br_spec, rem) {
11409 		u16 mode;
11410 
11411 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
11412 			continue;
11413 
11414 		if (nla_len(attr) < sizeof(mode))
11415 			return -EINVAL;
11416 
11417 		mode = nla_get_u16(attr);
11418 		if (mode == bp->br_mode)
11419 			break;
11420 
11421 		rc = bnxt_hwrm_set_br_mode(bp, mode);
11422 		if (!rc)
11423 			bp->br_mode = mode;
11424 		break;
11425 	}
11426 	return rc;
11427 }
11428 
11429 int bnxt_get_port_parent_id(struct net_device *dev,
11430 			    struct netdev_phys_item_id *ppid)
11431 {
11432 	struct bnxt *bp = netdev_priv(dev);
11433 
11434 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
11435 		return -EOPNOTSUPP;
11436 
11437 	/* The PF and it's VF-reps only support the switchdev framework */
11438 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
11439 		return -EOPNOTSUPP;
11440 
11441 	ppid->id_len = sizeof(bp->dsn);
11442 	memcpy(ppid->id, bp->dsn, ppid->id_len);
11443 
11444 	return 0;
11445 }
11446 
11447 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
11448 {
11449 	struct bnxt *bp = netdev_priv(dev);
11450 
11451 	return &bp->dl_port;
11452 }
11453 
11454 static const struct net_device_ops bnxt_netdev_ops = {
11455 	.ndo_open		= bnxt_open,
11456 	.ndo_start_xmit		= bnxt_start_xmit,
11457 	.ndo_stop		= bnxt_close,
11458 	.ndo_get_stats64	= bnxt_get_stats64,
11459 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
11460 	.ndo_do_ioctl		= bnxt_ioctl,
11461 	.ndo_validate_addr	= eth_validate_addr,
11462 	.ndo_set_mac_address	= bnxt_change_mac_addr,
11463 	.ndo_change_mtu		= bnxt_change_mtu,
11464 	.ndo_fix_features	= bnxt_fix_features,
11465 	.ndo_set_features	= bnxt_set_features,
11466 	.ndo_tx_timeout		= bnxt_tx_timeout,
11467 #ifdef CONFIG_BNXT_SRIOV
11468 	.ndo_get_vf_config	= bnxt_get_vf_config,
11469 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
11470 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
11471 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
11472 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
11473 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
11474 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
11475 #endif
11476 	.ndo_setup_tc           = bnxt_setup_tc,
11477 #ifdef CONFIG_RFS_ACCEL
11478 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
11479 #endif
11480 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
11481 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
11482 	.ndo_bpf		= bnxt_xdp,
11483 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
11484 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
11485 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
11486 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
11487 };
11488 
11489 static void bnxt_remove_one(struct pci_dev *pdev)
11490 {
11491 	struct net_device *dev = pci_get_drvdata(pdev);
11492 	struct bnxt *bp = netdev_priv(dev);
11493 
11494 	if (BNXT_PF(bp))
11495 		bnxt_sriov_disable(bp);
11496 
11497 	bnxt_dl_fw_reporters_destroy(bp, true);
11498 	if (BNXT_PF(bp))
11499 		devlink_port_type_clear(&bp->dl_port);
11500 	pci_disable_pcie_error_reporting(pdev);
11501 	unregister_netdev(dev);
11502 	bnxt_dl_unregister(bp);
11503 	bnxt_shutdown_tc(bp);
11504 	bnxt_cancel_sp_work(bp);
11505 	bp->sp_event = 0;
11506 
11507 	bnxt_clear_int_mode(bp);
11508 	bnxt_hwrm_func_drv_unrgtr(bp);
11509 	bnxt_free_hwrm_resources(bp);
11510 	bnxt_free_hwrm_short_cmd_req(bp);
11511 	bnxt_ethtool_free(bp);
11512 	bnxt_dcb_free(bp);
11513 	kfree(bp->edev);
11514 	bp->edev = NULL;
11515 	kfree(bp->fw_health);
11516 	bp->fw_health = NULL;
11517 	bnxt_cleanup_pci(bp);
11518 	bnxt_free_ctx_mem(bp);
11519 	kfree(bp->ctx);
11520 	bp->ctx = NULL;
11521 	bnxt_free_port_stats(bp);
11522 	free_netdev(dev);
11523 }
11524 
11525 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
11526 {
11527 	int rc = 0;
11528 	struct bnxt_link_info *link_info = &bp->link_info;
11529 
11530 	rc = bnxt_hwrm_phy_qcaps(bp);
11531 	if (rc) {
11532 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
11533 			   rc);
11534 		return rc;
11535 	}
11536 	if (!fw_dflt)
11537 		return 0;
11538 
11539 	rc = bnxt_update_link(bp, false);
11540 	if (rc) {
11541 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
11542 			   rc);
11543 		return rc;
11544 	}
11545 
11546 	/* Older firmware does not have supported_auto_speeds, so assume
11547 	 * that all supported speeds can be autonegotiated.
11548 	 */
11549 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
11550 		link_info->support_auto_speeds = link_info->support_speeds;
11551 
11552 	bnxt_init_ethtool_link_settings(bp);
11553 	return 0;
11554 }
11555 
11556 static int bnxt_get_max_irq(struct pci_dev *pdev)
11557 {
11558 	u16 ctrl;
11559 
11560 	if (!pdev->msix_cap)
11561 		return 1;
11562 
11563 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
11564 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
11565 }
11566 
11567 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11568 				int *max_cp)
11569 {
11570 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11571 	int max_ring_grps = 0, max_irq;
11572 
11573 	*max_tx = hw_resc->max_tx_rings;
11574 	*max_rx = hw_resc->max_rx_rings;
11575 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
11576 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
11577 			bnxt_get_ulp_msix_num(bp),
11578 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
11579 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11580 		*max_cp = min_t(int, *max_cp, max_irq);
11581 	max_ring_grps = hw_resc->max_hw_ring_grps;
11582 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
11583 		*max_cp -= 1;
11584 		*max_rx -= 2;
11585 	}
11586 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11587 		*max_rx >>= 1;
11588 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11589 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
11590 		/* On P5 chips, max_cp output param should be available NQs */
11591 		*max_cp = max_irq;
11592 	}
11593 	*max_rx = min_t(int, *max_rx, max_ring_grps);
11594 }
11595 
11596 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
11597 {
11598 	int rx, tx, cp;
11599 
11600 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
11601 	*max_rx = rx;
11602 	*max_tx = tx;
11603 	if (!rx || !tx || !cp)
11604 		return -ENOMEM;
11605 
11606 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
11607 }
11608 
11609 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11610 			       bool shared)
11611 {
11612 	int rc;
11613 
11614 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11615 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
11616 		/* Not enough rings, try disabling agg rings. */
11617 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
11618 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11619 		if (rc) {
11620 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
11621 			bp->flags |= BNXT_FLAG_AGG_RINGS;
11622 			return rc;
11623 		}
11624 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
11625 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11626 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11627 		bnxt_set_ring_params(bp);
11628 	}
11629 
11630 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
11631 		int max_cp, max_stat, max_irq;
11632 
11633 		/* Reserve minimum resources for RoCE */
11634 		max_cp = bnxt_get_max_func_cp_rings(bp);
11635 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
11636 		max_irq = bnxt_get_max_func_irqs(bp);
11637 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
11638 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
11639 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
11640 			return 0;
11641 
11642 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
11643 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
11644 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
11645 		max_cp = min_t(int, max_cp, max_irq);
11646 		max_cp = min_t(int, max_cp, max_stat);
11647 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
11648 		if (rc)
11649 			rc = 0;
11650 	}
11651 	return rc;
11652 }
11653 
11654 /* In initial default shared ring setting, each shared ring must have a
11655  * RX/TX ring pair.
11656  */
11657 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
11658 {
11659 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
11660 	bp->rx_nr_rings = bp->cp_nr_rings;
11661 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
11662 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11663 }
11664 
11665 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
11666 {
11667 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
11668 
11669 	if (!bnxt_can_reserve_rings(bp))
11670 		return 0;
11671 
11672 	if (sh)
11673 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
11674 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
11675 	/* Reduce default rings on multi-port cards so that total default
11676 	 * rings do not exceed CPU count.
11677 	 */
11678 	if (bp->port_count > 1) {
11679 		int max_rings =
11680 			max_t(int, num_online_cpus() / bp->port_count, 1);
11681 
11682 		dflt_rings = min_t(int, dflt_rings, max_rings);
11683 	}
11684 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
11685 	if (rc)
11686 		return rc;
11687 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
11688 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
11689 	if (sh)
11690 		bnxt_trim_dflt_sh_rings(bp);
11691 	else
11692 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
11693 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11694 
11695 	rc = __bnxt_reserve_rings(bp);
11696 	if (rc)
11697 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
11698 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11699 	if (sh)
11700 		bnxt_trim_dflt_sh_rings(bp);
11701 
11702 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
11703 	if (bnxt_need_reserve_rings(bp)) {
11704 		rc = __bnxt_reserve_rings(bp);
11705 		if (rc)
11706 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
11707 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11708 	}
11709 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
11710 		bp->rx_nr_rings++;
11711 		bp->cp_nr_rings++;
11712 	}
11713 	if (rc) {
11714 		bp->tx_nr_rings = 0;
11715 		bp->rx_nr_rings = 0;
11716 	}
11717 	return rc;
11718 }
11719 
11720 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
11721 {
11722 	int rc;
11723 
11724 	if (bp->tx_nr_rings)
11725 		return 0;
11726 
11727 	bnxt_ulp_irq_stop(bp);
11728 	bnxt_clear_int_mode(bp);
11729 	rc = bnxt_set_dflt_rings(bp, true);
11730 	if (rc) {
11731 		netdev_err(bp->dev, "Not enough rings available.\n");
11732 		goto init_dflt_ring_err;
11733 	}
11734 	rc = bnxt_init_int_mode(bp);
11735 	if (rc)
11736 		goto init_dflt_ring_err;
11737 
11738 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11739 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
11740 		bp->flags |= BNXT_FLAG_RFS;
11741 		bp->dev->features |= NETIF_F_NTUPLE;
11742 	}
11743 init_dflt_ring_err:
11744 	bnxt_ulp_irq_restart(bp, rc);
11745 	return rc;
11746 }
11747 
11748 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
11749 {
11750 	int rc;
11751 
11752 	ASSERT_RTNL();
11753 	bnxt_hwrm_func_qcaps(bp);
11754 
11755 	if (netif_running(bp->dev))
11756 		__bnxt_close_nic(bp, true, false);
11757 
11758 	bnxt_ulp_irq_stop(bp);
11759 	bnxt_clear_int_mode(bp);
11760 	rc = bnxt_init_int_mode(bp);
11761 	bnxt_ulp_irq_restart(bp, rc);
11762 
11763 	if (netif_running(bp->dev)) {
11764 		if (rc)
11765 			dev_close(bp->dev);
11766 		else
11767 			rc = bnxt_open_nic(bp, true, false);
11768 	}
11769 
11770 	return rc;
11771 }
11772 
11773 static int bnxt_init_mac_addr(struct bnxt *bp)
11774 {
11775 	int rc = 0;
11776 
11777 	if (BNXT_PF(bp)) {
11778 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
11779 	} else {
11780 #ifdef CONFIG_BNXT_SRIOV
11781 		struct bnxt_vf_info *vf = &bp->vf;
11782 		bool strict_approval = true;
11783 
11784 		if (is_valid_ether_addr(vf->mac_addr)) {
11785 			/* overwrite netdev dev_addr with admin VF MAC */
11786 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
11787 			/* Older PF driver or firmware may not approve this
11788 			 * correctly.
11789 			 */
11790 			strict_approval = false;
11791 		} else {
11792 			eth_hw_addr_random(bp->dev);
11793 		}
11794 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
11795 #endif
11796 	}
11797 	return rc;
11798 }
11799 
11800 #define BNXT_VPD_LEN	512
11801 static void bnxt_vpd_read_info(struct bnxt *bp)
11802 {
11803 	struct pci_dev *pdev = bp->pdev;
11804 	int i, len, pos, ro_size;
11805 	ssize_t vpd_size;
11806 	u8 *vpd_data;
11807 
11808 	vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
11809 	if (!vpd_data)
11810 		return;
11811 
11812 	vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
11813 	if (vpd_size <= 0) {
11814 		netdev_err(bp->dev, "Unable to read VPD\n");
11815 		goto exit;
11816 	}
11817 
11818 	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
11819 	if (i < 0) {
11820 		netdev_err(bp->dev, "VPD READ-Only not found\n");
11821 		goto exit;
11822 	}
11823 
11824 	ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
11825 	i += PCI_VPD_LRDT_TAG_SIZE;
11826 	if (i + ro_size > vpd_size)
11827 		goto exit;
11828 
11829 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
11830 					PCI_VPD_RO_KEYWORD_PARTNO);
11831 	if (pos < 0)
11832 		goto read_sn;
11833 
11834 	len = pci_vpd_info_field_size(&vpd_data[pos]);
11835 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
11836 	if (len + pos > vpd_size)
11837 		goto read_sn;
11838 
11839 	strlcpy(bp->board_partno, &vpd_data[pos], min(len, BNXT_VPD_FLD_LEN));
11840 
11841 read_sn:
11842 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
11843 					PCI_VPD_RO_KEYWORD_SERIALNO);
11844 	if (pos < 0)
11845 		goto exit;
11846 
11847 	len = pci_vpd_info_field_size(&vpd_data[pos]);
11848 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
11849 	if (len + pos > vpd_size)
11850 		goto exit;
11851 
11852 	strlcpy(bp->board_serialno, &vpd_data[pos], min(len, BNXT_VPD_FLD_LEN));
11853 exit:
11854 	kfree(vpd_data);
11855 }
11856 
11857 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
11858 {
11859 	struct pci_dev *pdev = bp->pdev;
11860 	u64 qword;
11861 
11862 	qword = pci_get_dsn(pdev);
11863 	if (!qword) {
11864 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
11865 		return -EOPNOTSUPP;
11866 	}
11867 
11868 	put_unaligned_le64(qword, dsn);
11869 
11870 	bp->flags |= BNXT_FLAG_DSN_VALID;
11871 	return 0;
11872 }
11873 
11874 static int bnxt_map_db_bar(struct bnxt *bp)
11875 {
11876 	if (!bp->db_size)
11877 		return -ENODEV;
11878 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
11879 	if (!bp->bar1)
11880 		return -ENOMEM;
11881 	return 0;
11882 }
11883 
11884 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
11885 {
11886 	struct net_device *dev;
11887 	struct bnxt *bp;
11888 	int rc, max_irqs;
11889 
11890 	if (pci_is_bridge(pdev))
11891 		return -ENODEV;
11892 
11893 	/* Clear any pending DMA transactions from crash kernel
11894 	 * while loading driver in capture kernel.
11895 	 */
11896 	if (is_kdump_kernel()) {
11897 		pci_clear_master(pdev);
11898 		pcie_flr(pdev);
11899 	}
11900 
11901 	max_irqs = bnxt_get_max_irq(pdev);
11902 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
11903 	if (!dev)
11904 		return -ENOMEM;
11905 
11906 	bp = netdev_priv(dev);
11907 	bnxt_set_max_func_irqs(bp, max_irqs);
11908 
11909 	if (bnxt_vf_pciid(ent->driver_data))
11910 		bp->flags |= BNXT_FLAG_VF;
11911 
11912 	if (pdev->msix_cap)
11913 		bp->flags |= BNXT_FLAG_MSIX_CAP;
11914 
11915 	rc = bnxt_init_board(pdev, dev);
11916 	if (rc < 0)
11917 		goto init_err_free;
11918 
11919 	dev->netdev_ops = &bnxt_netdev_ops;
11920 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
11921 	dev->ethtool_ops = &bnxt_ethtool_ops;
11922 	pci_set_drvdata(pdev, dev);
11923 
11924 	if (BNXT_PF(bp))
11925 		bnxt_vpd_read_info(bp);
11926 
11927 	rc = bnxt_alloc_hwrm_resources(bp);
11928 	if (rc)
11929 		goto init_err_pci_clean;
11930 
11931 	mutex_init(&bp->hwrm_cmd_lock);
11932 	mutex_init(&bp->link_lock);
11933 
11934 	rc = bnxt_fw_init_one_p1(bp);
11935 	if (rc)
11936 		goto init_err_pci_clean;
11937 
11938 	if (BNXT_CHIP_P5(bp))
11939 		bp->flags |= BNXT_FLAG_CHIP_P5;
11940 
11941 	rc = bnxt_fw_init_one_p2(bp);
11942 	if (rc)
11943 		goto init_err_pci_clean;
11944 
11945 	rc = bnxt_map_db_bar(bp);
11946 	if (rc) {
11947 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
11948 			rc);
11949 		goto init_err_pci_clean;
11950 	}
11951 
11952 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
11953 			   NETIF_F_TSO | NETIF_F_TSO6 |
11954 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
11955 			   NETIF_F_GSO_IPXIP4 |
11956 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
11957 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
11958 			   NETIF_F_RXCSUM | NETIF_F_GRO;
11959 
11960 	if (BNXT_SUPPORTS_TPA(bp))
11961 		dev->hw_features |= NETIF_F_LRO;
11962 
11963 	dev->hw_enc_features =
11964 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
11965 			NETIF_F_TSO | NETIF_F_TSO6 |
11966 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
11967 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
11968 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
11969 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
11970 				    NETIF_F_GSO_GRE_CSUM;
11971 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
11972 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
11973 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
11974 	if (BNXT_SUPPORTS_TPA(bp))
11975 		dev->hw_features |= NETIF_F_GRO_HW;
11976 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
11977 	if (dev->features & NETIF_F_GRO_HW)
11978 		dev->features &= ~NETIF_F_LRO;
11979 	dev->priv_flags |= IFF_UNICAST_FLT;
11980 
11981 #ifdef CONFIG_BNXT_SRIOV
11982 	init_waitqueue_head(&bp->sriov_cfg_wait);
11983 	mutex_init(&bp->sriov_lock);
11984 #endif
11985 	if (BNXT_SUPPORTS_TPA(bp)) {
11986 		bp->gro_func = bnxt_gro_func_5730x;
11987 		if (BNXT_CHIP_P4(bp))
11988 			bp->gro_func = bnxt_gro_func_5731x;
11989 		else if (BNXT_CHIP_P5(bp))
11990 			bp->gro_func = bnxt_gro_func_5750x;
11991 	}
11992 	if (!BNXT_CHIP_P4_PLUS(bp))
11993 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
11994 
11995 	bp->ulp_probe = bnxt_ulp_probe;
11996 
11997 	rc = bnxt_init_mac_addr(bp);
11998 	if (rc) {
11999 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
12000 		rc = -EADDRNOTAVAIL;
12001 		goto init_err_pci_clean;
12002 	}
12003 
12004 	if (BNXT_PF(bp)) {
12005 		/* Read the adapter's DSN to use as the eswitch switch_id */
12006 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
12007 	}
12008 
12009 	/* MTU range: 60 - FW defined max */
12010 	dev->min_mtu = ETH_ZLEN;
12011 	dev->max_mtu = bp->max_mtu;
12012 
12013 	rc = bnxt_probe_phy(bp, true);
12014 	if (rc)
12015 		goto init_err_pci_clean;
12016 
12017 	bnxt_set_rx_skb_mode(bp, false);
12018 	bnxt_set_tpa_flags(bp);
12019 	bnxt_set_ring_params(bp);
12020 	rc = bnxt_set_dflt_rings(bp, true);
12021 	if (rc) {
12022 		netdev_err(bp->dev, "Not enough rings available.\n");
12023 		rc = -ENOMEM;
12024 		goto init_err_pci_clean;
12025 	}
12026 
12027 	bnxt_fw_init_one_p3(bp);
12028 
12029 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
12030 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
12031 
12032 	rc = bnxt_init_int_mode(bp);
12033 	if (rc)
12034 		goto init_err_pci_clean;
12035 
12036 	/* No TC has been set yet and rings may have been trimmed due to
12037 	 * limited MSIX, so we re-initialize the TX rings per TC.
12038 	 */
12039 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12040 
12041 	if (BNXT_PF(bp)) {
12042 		if (!bnxt_pf_wq) {
12043 			bnxt_pf_wq =
12044 				create_singlethread_workqueue("bnxt_pf_wq");
12045 			if (!bnxt_pf_wq) {
12046 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
12047 				goto init_err_pci_clean;
12048 			}
12049 		}
12050 		bnxt_init_tc(bp);
12051 	}
12052 
12053 	bnxt_dl_register(bp);
12054 
12055 	rc = register_netdev(dev);
12056 	if (rc)
12057 		goto init_err_cleanup;
12058 
12059 	if (BNXT_PF(bp))
12060 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
12061 	bnxt_dl_fw_reporters_create(bp);
12062 
12063 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
12064 		    board_info[ent->driver_data].name,
12065 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
12066 	pcie_print_link_status(pdev);
12067 
12068 	return 0;
12069 
12070 init_err_cleanup:
12071 	bnxt_dl_unregister(bp);
12072 	bnxt_shutdown_tc(bp);
12073 	bnxt_clear_int_mode(bp);
12074 
12075 init_err_pci_clean:
12076 	bnxt_hwrm_func_drv_unrgtr(bp);
12077 	bnxt_free_hwrm_short_cmd_req(bp);
12078 	bnxt_free_hwrm_resources(bp);
12079 	kfree(bp->fw_health);
12080 	bp->fw_health = NULL;
12081 	bnxt_cleanup_pci(bp);
12082 	bnxt_free_ctx_mem(bp);
12083 	kfree(bp->ctx);
12084 	bp->ctx = NULL;
12085 
12086 init_err_free:
12087 	free_netdev(dev);
12088 	return rc;
12089 }
12090 
12091 static void bnxt_shutdown(struct pci_dev *pdev)
12092 {
12093 	struct net_device *dev = pci_get_drvdata(pdev);
12094 	struct bnxt *bp;
12095 
12096 	if (!dev)
12097 		return;
12098 
12099 	rtnl_lock();
12100 	bp = netdev_priv(dev);
12101 	if (!bp)
12102 		goto shutdown_exit;
12103 
12104 	if (netif_running(dev))
12105 		dev_close(dev);
12106 
12107 	bnxt_ulp_shutdown(bp);
12108 	bnxt_clear_int_mode(bp);
12109 	pci_disable_device(pdev);
12110 
12111 	if (system_state == SYSTEM_POWER_OFF) {
12112 		pci_wake_from_d3(pdev, bp->wol);
12113 		pci_set_power_state(pdev, PCI_D3hot);
12114 	}
12115 
12116 shutdown_exit:
12117 	rtnl_unlock();
12118 }
12119 
12120 #ifdef CONFIG_PM_SLEEP
12121 static int bnxt_suspend(struct device *device)
12122 {
12123 	struct net_device *dev = dev_get_drvdata(device);
12124 	struct bnxt *bp = netdev_priv(dev);
12125 	int rc = 0;
12126 
12127 	rtnl_lock();
12128 	bnxt_ulp_stop(bp);
12129 	if (netif_running(dev)) {
12130 		netif_device_detach(dev);
12131 		rc = bnxt_close(dev);
12132 	}
12133 	bnxt_hwrm_func_drv_unrgtr(bp);
12134 	pci_disable_device(bp->pdev);
12135 	bnxt_free_ctx_mem(bp);
12136 	kfree(bp->ctx);
12137 	bp->ctx = NULL;
12138 	rtnl_unlock();
12139 	return rc;
12140 }
12141 
12142 static int bnxt_resume(struct device *device)
12143 {
12144 	struct net_device *dev = dev_get_drvdata(device);
12145 	struct bnxt *bp = netdev_priv(dev);
12146 	int rc = 0;
12147 
12148 	rtnl_lock();
12149 	rc = pci_enable_device(bp->pdev);
12150 	if (rc) {
12151 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
12152 			   rc);
12153 		goto resume_exit;
12154 	}
12155 	pci_set_master(bp->pdev);
12156 	if (bnxt_hwrm_ver_get(bp)) {
12157 		rc = -ENODEV;
12158 		goto resume_exit;
12159 	}
12160 	rc = bnxt_hwrm_func_reset(bp);
12161 	if (rc) {
12162 		rc = -EBUSY;
12163 		goto resume_exit;
12164 	}
12165 
12166 	rc = bnxt_hwrm_func_qcaps(bp);
12167 	if (rc)
12168 		goto resume_exit;
12169 
12170 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
12171 		rc = -ENODEV;
12172 		goto resume_exit;
12173 	}
12174 
12175 	bnxt_get_wol_settings(bp);
12176 	if (netif_running(dev)) {
12177 		rc = bnxt_open(dev);
12178 		if (!rc)
12179 			netif_device_attach(dev);
12180 	}
12181 
12182 resume_exit:
12183 	bnxt_ulp_start(bp, rc);
12184 	if (!rc)
12185 		bnxt_reenable_sriov(bp);
12186 	rtnl_unlock();
12187 	return rc;
12188 }
12189 
12190 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
12191 #define BNXT_PM_OPS (&bnxt_pm_ops)
12192 
12193 #else
12194 
12195 #define BNXT_PM_OPS NULL
12196 
12197 #endif /* CONFIG_PM_SLEEP */
12198 
12199 /**
12200  * bnxt_io_error_detected - called when PCI error is detected
12201  * @pdev: Pointer to PCI device
12202  * @state: The current pci connection state
12203  *
12204  * This function is called after a PCI bus error affecting
12205  * this device has been detected.
12206  */
12207 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
12208 					       pci_channel_state_t state)
12209 {
12210 	struct net_device *netdev = pci_get_drvdata(pdev);
12211 	struct bnxt *bp = netdev_priv(netdev);
12212 
12213 	netdev_info(netdev, "PCI I/O error detected\n");
12214 
12215 	rtnl_lock();
12216 	netif_device_detach(netdev);
12217 
12218 	bnxt_ulp_stop(bp);
12219 
12220 	if (state == pci_channel_io_perm_failure) {
12221 		rtnl_unlock();
12222 		return PCI_ERS_RESULT_DISCONNECT;
12223 	}
12224 
12225 	if (netif_running(netdev))
12226 		bnxt_close(netdev);
12227 
12228 	pci_disable_device(pdev);
12229 	bnxt_free_ctx_mem(bp);
12230 	kfree(bp->ctx);
12231 	bp->ctx = NULL;
12232 	rtnl_unlock();
12233 
12234 	/* Request a slot slot reset. */
12235 	return PCI_ERS_RESULT_NEED_RESET;
12236 }
12237 
12238 /**
12239  * bnxt_io_slot_reset - called after the pci bus has been reset.
12240  * @pdev: Pointer to PCI device
12241  *
12242  * Restart the card from scratch, as if from a cold-boot.
12243  * At this point, the card has exprienced a hard reset,
12244  * followed by fixups by BIOS, and has its config space
12245  * set up identically to what it was at cold boot.
12246  */
12247 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
12248 {
12249 	struct net_device *netdev = pci_get_drvdata(pdev);
12250 	struct bnxt *bp = netdev_priv(netdev);
12251 	int err = 0;
12252 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
12253 
12254 	netdev_info(bp->dev, "PCI Slot Reset\n");
12255 
12256 	rtnl_lock();
12257 
12258 	if (pci_enable_device(pdev)) {
12259 		dev_err(&pdev->dev,
12260 			"Cannot re-enable PCI device after reset.\n");
12261 	} else {
12262 		pci_set_master(pdev);
12263 
12264 		err = bnxt_hwrm_func_reset(bp);
12265 		if (!err) {
12266 			err = bnxt_hwrm_func_qcaps(bp);
12267 			if (!err && netif_running(netdev))
12268 				err = bnxt_open(netdev);
12269 		}
12270 		bnxt_ulp_start(bp, err);
12271 		if (!err) {
12272 			bnxt_reenable_sriov(bp);
12273 			result = PCI_ERS_RESULT_RECOVERED;
12274 		}
12275 	}
12276 
12277 	if (result != PCI_ERS_RESULT_RECOVERED) {
12278 		if (netif_running(netdev))
12279 			dev_close(netdev);
12280 		pci_disable_device(pdev);
12281 	}
12282 
12283 	rtnl_unlock();
12284 
12285 	return result;
12286 }
12287 
12288 /**
12289  * bnxt_io_resume - called when traffic can start flowing again.
12290  * @pdev: Pointer to PCI device
12291  *
12292  * This callback is called when the error recovery driver tells
12293  * us that its OK to resume normal operation.
12294  */
12295 static void bnxt_io_resume(struct pci_dev *pdev)
12296 {
12297 	struct net_device *netdev = pci_get_drvdata(pdev);
12298 
12299 	rtnl_lock();
12300 
12301 	netif_device_attach(netdev);
12302 
12303 	rtnl_unlock();
12304 }
12305 
12306 static const struct pci_error_handlers bnxt_err_handler = {
12307 	.error_detected	= bnxt_io_error_detected,
12308 	.slot_reset	= bnxt_io_slot_reset,
12309 	.resume		= bnxt_io_resume
12310 };
12311 
12312 static struct pci_driver bnxt_pci_driver = {
12313 	.name		= DRV_MODULE_NAME,
12314 	.id_table	= bnxt_pci_tbl,
12315 	.probe		= bnxt_init_one,
12316 	.remove		= bnxt_remove_one,
12317 	.shutdown	= bnxt_shutdown,
12318 	.driver.pm	= BNXT_PM_OPS,
12319 	.err_handler	= &bnxt_err_handler,
12320 #if defined(CONFIG_BNXT_SRIOV)
12321 	.sriov_configure = bnxt_sriov_configure,
12322 #endif
12323 };
12324 
12325 static int __init bnxt_init(void)
12326 {
12327 	bnxt_debug_init();
12328 	return pci_register_driver(&bnxt_pci_driver);
12329 }
12330 
12331 static void __exit bnxt_exit(void)
12332 {
12333 	pci_unregister_driver(&bnxt_pci_driver);
12334 	if (bnxt_pf_wq)
12335 		destroy_workqueue(bnxt_pf_wq);
12336 	bnxt_debug_exit();
12337 }
12338 
12339 module_init(bnxt_init);
12340 module_exit(bnxt_exit);
12341