xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 
58 #include "bnxt_hsi.h"
59 #include "bnxt.h"
60 #include "bnxt_ulp.h"
61 #include "bnxt_sriov.h"
62 #include "bnxt_ethtool.h"
63 #include "bnxt_dcb.h"
64 #include "bnxt_xdp.h"
65 #include "bnxt_vfr.h"
66 #include "bnxt_tc.h"
67 #include "bnxt_devlink.h"
68 #include "bnxt_debugfs.h"
69 
70 #define BNXT_TX_TIMEOUT		(5 * HZ)
71 
72 static const char version[] =
73 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
74 
75 MODULE_LICENSE("GPL");
76 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
77 MODULE_VERSION(DRV_MODULE_VERSION);
78 
79 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
80 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
81 #define BNXT_RX_COPY_THRESH 256
82 
83 #define BNXT_TX_PUSH_THRESH 164
84 
85 enum board_idx {
86 	BCM57301,
87 	BCM57302,
88 	BCM57304,
89 	BCM57417_NPAR,
90 	BCM58700,
91 	BCM57311,
92 	BCM57312,
93 	BCM57402,
94 	BCM57404,
95 	BCM57406,
96 	BCM57402_NPAR,
97 	BCM57407,
98 	BCM57412,
99 	BCM57414,
100 	BCM57416,
101 	BCM57417,
102 	BCM57412_NPAR,
103 	BCM57314,
104 	BCM57417_SFP,
105 	BCM57416_SFP,
106 	BCM57404_NPAR,
107 	BCM57406_NPAR,
108 	BCM57407_SFP,
109 	BCM57407_NPAR,
110 	BCM57414_NPAR,
111 	BCM57416_NPAR,
112 	BCM57452,
113 	BCM57454,
114 	BCM5745x_NPAR,
115 	BCM57508,
116 	BCM57504,
117 	BCM57502,
118 	BCM58802,
119 	BCM58804,
120 	BCM58808,
121 	NETXTREME_E_VF,
122 	NETXTREME_C_VF,
123 	NETXTREME_S_VF,
124 	NETXTREME_E_P5_VF,
125 };
126 
127 /* indexed by enum above */
128 static const struct {
129 	char *name;
130 } board_info[] = {
131 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
132 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
133 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
134 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
135 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
136 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
137 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
138 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
139 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
140 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
141 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
142 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
143 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
144 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
145 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
146 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
148 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
149 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
150 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
151 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
152 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
153 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
154 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
155 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
156 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
157 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
158 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
159 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
160 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
161 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
163 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
164 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
165 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
166 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
167 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
168 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
169 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
170 };
171 
172 static const struct pci_device_id bnxt_pci_tbl[] = {
173 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
176 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
178 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
185 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
194 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
196 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
197 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
198 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
200 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
201 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
207 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
208 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
209 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
210 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
211 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
212 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
213 #ifdef CONFIG_BNXT_SRIOV
214 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
215 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
216 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
217 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
218 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
219 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
220 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
221 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
222 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
223 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
224 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
225 #endif
226 	{ 0 }
227 };
228 
229 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
230 
231 static const u16 bnxt_vf_req_snif[] = {
232 	HWRM_FUNC_CFG,
233 	HWRM_FUNC_VF_CFG,
234 	HWRM_PORT_PHY_QCFG,
235 	HWRM_CFA_L2_FILTER_ALLOC,
236 };
237 
238 static const u16 bnxt_async_events_arr[] = {
239 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
240 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
241 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
242 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
243 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
244 };
245 
246 static struct workqueue_struct *bnxt_pf_wq;
247 
248 static bool bnxt_vf_pciid(enum board_idx idx)
249 {
250 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
251 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
252 }
253 
254 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
255 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
256 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
257 
258 #define BNXT_CP_DB_IRQ_DIS(db)						\
259 		writel(DB_CP_IRQ_DIS_FLAGS, db)
260 
261 #define BNXT_DB_CQ(db, idx)						\
262 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
263 
264 #define BNXT_DB_NQ_P5(db, idx)						\
265 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_CQ_ARM(db, idx)						\
268 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
269 
270 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
271 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
272 
273 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
274 {
275 	if (bp->flags & BNXT_FLAG_CHIP_P5)
276 		BNXT_DB_NQ_P5(db, idx);
277 	else
278 		BNXT_DB_CQ(db, idx);
279 }
280 
281 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
282 {
283 	if (bp->flags & BNXT_FLAG_CHIP_P5)
284 		BNXT_DB_NQ_ARM_P5(db, idx);
285 	else
286 		BNXT_DB_CQ_ARM(db, idx);
287 }
288 
289 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
290 {
291 	if (bp->flags & BNXT_FLAG_CHIP_P5)
292 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
293 		       db->doorbell);
294 	else
295 		BNXT_DB_CQ(db, idx);
296 }
297 
298 const u16 bnxt_lhint_arr[] = {
299 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
300 	TX_BD_FLAGS_LHINT_512_TO_1023,
301 	TX_BD_FLAGS_LHINT_1024_TO_2047,
302 	TX_BD_FLAGS_LHINT_1024_TO_2047,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
317 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
318 };
319 
320 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
321 {
322 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
323 
324 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
325 		return 0;
326 
327 	return md_dst->u.port_info.port_id;
328 }
329 
330 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
331 {
332 	struct bnxt *bp = netdev_priv(dev);
333 	struct tx_bd *txbd;
334 	struct tx_bd_ext *txbd1;
335 	struct netdev_queue *txq;
336 	int i;
337 	dma_addr_t mapping;
338 	unsigned int length, pad = 0;
339 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
340 	u16 prod, last_frag;
341 	struct pci_dev *pdev = bp->pdev;
342 	struct bnxt_tx_ring_info *txr;
343 	struct bnxt_sw_tx_bd *tx_buf;
344 
345 	i = skb_get_queue_mapping(skb);
346 	if (unlikely(i >= bp->tx_nr_rings)) {
347 		dev_kfree_skb_any(skb);
348 		return NETDEV_TX_OK;
349 	}
350 
351 	txq = netdev_get_tx_queue(dev, i);
352 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
353 	prod = txr->tx_prod;
354 
355 	free_size = bnxt_tx_avail(bp, txr);
356 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
357 		netif_tx_stop_queue(txq);
358 		return NETDEV_TX_BUSY;
359 	}
360 
361 	length = skb->len;
362 	len = skb_headlen(skb);
363 	last_frag = skb_shinfo(skb)->nr_frags;
364 
365 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
366 
367 	txbd->tx_bd_opaque = prod;
368 
369 	tx_buf = &txr->tx_buf_ring[prod];
370 	tx_buf->skb = skb;
371 	tx_buf->nr_frags = last_frag;
372 
373 	vlan_tag_flags = 0;
374 	cfa_action = bnxt_xmit_get_cfa_action(skb);
375 	if (skb_vlan_tag_present(skb)) {
376 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
377 				 skb_vlan_tag_get(skb);
378 		/* Currently supports 8021Q, 8021AD vlan offloads
379 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
380 		 */
381 		if (skb->vlan_proto == htons(ETH_P_8021Q))
382 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
383 	}
384 
385 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
386 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
387 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
388 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
389 		void __iomem *db = txr->tx_db.doorbell;
390 		void *pdata = tx_push_buf->data;
391 		u64 *end;
392 		int j, push_len;
393 
394 		/* Set COAL_NOW to be ready quickly for the next push */
395 		tx_push->tx_bd_len_flags_type =
396 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
397 					TX_BD_TYPE_LONG_TX_BD |
398 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
399 					TX_BD_FLAGS_COAL_NOW |
400 					TX_BD_FLAGS_PACKET_END |
401 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
402 
403 		if (skb->ip_summed == CHECKSUM_PARTIAL)
404 			tx_push1->tx_bd_hsize_lflags =
405 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
406 		else
407 			tx_push1->tx_bd_hsize_lflags = 0;
408 
409 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
410 		tx_push1->tx_bd_cfa_action =
411 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
412 
413 		end = pdata + length;
414 		end = PTR_ALIGN(end, 8) - 1;
415 		*end = 0;
416 
417 		skb_copy_from_linear_data(skb, pdata, len);
418 		pdata += len;
419 		for (j = 0; j < last_frag; j++) {
420 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
421 			void *fptr;
422 
423 			fptr = skb_frag_address_safe(frag);
424 			if (!fptr)
425 				goto normal_tx;
426 
427 			memcpy(pdata, fptr, skb_frag_size(frag));
428 			pdata += skb_frag_size(frag);
429 		}
430 
431 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
432 		txbd->tx_bd_haddr = txr->data_mapping;
433 		prod = NEXT_TX(prod);
434 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
435 		memcpy(txbd, tx_push1, sizeof(*txbd));
436 		prod = NEXT_TX(prod);
437 		tx_push->doorbell =
438 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
439 		txr->tx_prod = prod;
440 
441 		tx_buf->is_push = 1;
442 		netdev_tx_sent_queue(txq, skb->len);
443 		wmb();	/* Sync is_push and byte queue before pushing data */
444 
445 		push_len = (length + sizeof(*tx_push) + 7) / 8;
446 		if (push_len > 16) {
447 			__iowrite64_copy(db, tx_push_buf, 16);
448 			__iowrite32_copy(db + 4, tx_push_buf + 1,
449 					 (push_len - 16) << 1);
450 		} else {
451 			__iowrite64_copy(db, tx_push_buf, push_len);
452 		}
453 
454 		goto tx_done;
455 	}
456 
457 normal_tx:
458 	if (length < BNXT_MIN_PKT_SIZE) {
459 		pad = BNXT_MIN_PKT_SIZE - length;
460 		if (skb_pad(skb, pad)) {
461 			/* SKB already freed. */
462 			tx_buf->skb = NULL;
463 			return NETDEV_TX_OK;
464 		}
465 		length = BNXT_MIN_PKT_SIZE;
466 	}
467 
468 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
469 
470 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
471 		dev_kfree_skb_any(skb);
472 		tx_buf->skb = NULL;
473 		return NETDEV_TX_OK;
474 	}
475 
476 	dma_unmap_addr_set(tx_buf, mapping, mapping);
477 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
478 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
479 
480 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
481 
482 	prod = NEXT_TX(prod);
483 	txbd1 = (struct tx_bd_ext *)
484 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
485 
486 	txbd1->tx_bd_hsize_lflags = 0;
487 	if (skb_is_gso(skb)) {
488 		u32 hdr_len;
489 
490 		if (skb->encapsulation)
491 			hdr_len = skb_inner_network_offset(skb) +
492 				skb_inner_network_header_len(skb) +
493 				inner_tcp_hdrlen(skb);
494 		else
495 			hdr_len = skb_transport_offset(skb) +
496 				tcp_hdrlen(skb);
497 
498 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
499 					TX_BD_FLAGS_T_IPID |
500 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
501 		length = skb_shinfo(skb)->gso_size;
502 		txbd1->tx_bd_mss = cpu_to_le32(length);
503 		length += hdr_len;
504 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
505 		txbd1->tx_bd_hsize_lflags =
506 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
507 		txbd1->tx_bd_mss = 0;
508 	}
509 
510 	length >>= 9;
511 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
512 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
513 				     skb->len);
514 		i = 0;
515 		goto tx_dma_error;
516 	}
517 	flags |= bnxt_lhint_arr[length];
518 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
519 
520 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
521 	txbd1->tx_bd_cfa_action =
522 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
523 	for (i = 0; i < last_frag; i++) {
524 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
525 
526 		prod = NEXT_TX(prod);
527 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
528 
529 		len = skb_frag_size(frag);
530 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
531 					   DMA_TO_DEVICE);
532 
533 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
534 			goto tx_dma_error;
535 
536 		tx_buf = &txr->tx_buf_ring[prod];
537 		dma_unmap_addr_set(tx_buf, mapping, mapping);
538 
539 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
540 
541 		flags = len << TX_BD_LEN_SHIFT;
542 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
543 	}
544 
545 	flags &= ~TX_BD_LEN;
546 	txbd->tx_bd_len_flags_type =
547 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
548 			    TX_BD_FLAGS_PACKET_END);
549 
550 	netdev_tx_sent_queue(txq, skb->len);
551 
552 	/* Sync BD data before updating doorbell */
553 	wmb();
554 
555 	prod = NEXT_TX(prod);
556 	txr->tx_prod = prod;
557 
558 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
559 		bnxt_db_write(bp, &txr->tx_db, prod);
560 
561 tx_done:
562 
563 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
564 		if (netdev_xmit_more() && !tx_buf->is_push)
565 			bnxt_db_write(bp, &txr->tx_db, prod);
566 
567 		netif_tx_stop_queue(txq);
568 
569 		/* netif_tx_stop_queue() must be done before checking
570 		 * tx index in bnxt_tx_avail() below, because in
571 		 * bnxt_tx_int(), we update tx index before checking for
572 		 * netif_tx_queue_stopped().
573 		 */
574 		smp_mb();
575 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
576 			netif_tx_wake_queue(txq);
577 	}
578 	return NETDEV_TX_OK;
579 
580 tx_dma_error:
581 	last_frag = i;
582 
583 	/* start back at beginning and unmap skb */
584 	prod = txr->tx_prod;
585 	tx_buf = &txr->tx_buf_ring[prod];
586 	tx_buf->skb = NULL;
587 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
588 			 skb_headlen(skb), PCI_DMA_TODEVICE);
589 	prod = NEXT_TX(prod);
590 
591 	/* unmap remaining mapped pages */
592 	for (i = 0; i < last_frag; i++) {
593 		prod = NEXT_TX(prod);
594 		tx_buf = &txr->tx_buf_ring[prod];
595 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
596 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
597 			       PCI_DMA_TODEVICE);
598 	}
599 
600 	dev_kfree_skb_any(skb);
601 	return NETDEV_TX_OK;
602 }
603 
604 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
605 {
606 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
607 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
608 	u16 cons = txr->tx_cons;
609 	struct pci_dev *pdev = bp->pdev;
610 	int i;
611 	unsigned int tx_bytes = 0;
612 
613 	for (i = 0; i < nr_pkts; i++) {
614 		struct bnxt_sw_tx_bd *tx_buf;
615 		struct sk_buff *skb;
616 		int j, last;
617 
618 		tx_buf = &txr->tx_buf_ring[cons];
619 		cons = NEXT_TX(cons);
620 		skb = tx_buf->skb;
621 		tx_buf->skb = NULL;
622 
623 		if (tx_buf->is_push) {
624 			tx_buf->is_push = 0;
625 			goto next_tx_int;
626 		}
627 
628 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
629 				 skb_headlen(skb), PCI_DMA_TODEVICE);
630 		last = tx_buf->nr_frags;
631 
632 		for (j = 0; j < last; j++) {
633 			cons = NEXT_TX(cons);
634 			tx_buf = &txr->tx_buf_ring[cons];
635 			dma_unmap_page(
636 				&pdev->dev,
637 				dma_unmap_addr(tx_buf, mapping),
638 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
639 				PCI_DMA_TODEVICE);
640 		}
641 
642 next_tx_int:
643 		cons = NEXT_TX(cons);
644 
645 		tx_bytes += skb->len;
646 		dev_kfree_skb_any(skb);
647 	}
648 
649 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
650 	txr->tx_cons = cons;
651 
652 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
653 	 * before checking for netif_tx_queue_stopped().  Without the
654 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
655 	 * will miss it and cause the queue to be stopped forever.
656 	 */
657 	smp_mb();
658 
659 	if (unlikely(netif_tx_queue_stopped(txq)) &&
660 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
661 		__netif_tx_lock(txq, smp_processor_id());
662 		if (netif_tx_queue_stopped(txq) &&
663 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
664 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
665 			netif_tx_wake_queue(txq);
666 		__netif_tx_unlock(txq);
667 	}
668 }
669 
670 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
671 					 gfp_t gfp)
672 {
673 	struct device *dev = &bp->pdev->dev;
674 	struct page *page;
675 
676 	page = alloc_page(gfp);
677 	if (!page)
678 		return NULL;
679 
680 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
681 				      DMA_ATTR_WEAK_ORDERING);
682 	if (dma_mapping_error(dev, *mapping)) {
683 		__free_page(page);
684 		return NULL;
685 	}
686 	*mapping += bp->rx_dma_offset;
687 	return page;
688 }
689 
690 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
691 				       gfp_t gfp)
692 {
693 	u8 *data;
694 	struct pci_dev *pdev = bp->pdev;
695 
696 	data = kmalloc(bp->rx_buf_size, gfp);
697 	if (!data)
698 		return NULL;
699 
700 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
701 					bp->rx_buf_use_size, bp->rx_dir,
702 					DMA_ATTR_WEAK_ORDERING);
703 
704 	if (dma_mapping_error(&pdev->dev, *mapping)) {
705 		kfree(data);
706 		data = NULL;
707 	}
708 	return data;
709 }
710 
711 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
712 		       u16 prod, gfp_t gfp)
713 {
714 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
715 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
716 	dma_addr_t mapping;
717 
718 	if (BNXT_RX_PAGE_MODE(bp)) {
719 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
720 
721 		if (!page)
722 			return -ENOMEM;
723 
724 		rx_buf->data = page;
725 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
726 	} else {
727 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
728 
729 		if (!data)
730 			return -ENOMEM;
731 
732 		rx_buf->data = data;
733 		rx_buf->data_ptr = data + bp->rx_offset;
734 	}
735 	rx_buf->mapping = mapping;
736 
737 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
738 	return 0;
739 }
740 
741 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
742 {
743 	u16 prod = rxr->rx_prod;
744 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
745 	struct rx_bd *cons_bd, *prod_bd;
746 
747 	prod_rx_buf = &rxr->rx_buf_ring[prod];
748 	cons_rx_buf = &rxr->rx_buf_ring[cons];
749 
750 	prod_rx_buf->data = data;
751 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
752 
753 	prod_rx_buf->mapping = cons_rx_buf->mapping;
754 
755 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
756 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
757 
758 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
759 }
760 
761 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
762 {
763 	u16 next, max = rxr->rx_agg_bmap_size;
764 
765 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
766 	if (next >= max)
767 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
768 	return next;
769 }
770 
771 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
772 				     struct bnxt_rx_ring_info *rxr,
773 				     u16 prod, gfp_t gfp)
774 {
775 	struct rx_bd *rxbd =
776 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
777 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
778 	struct pci_dev *pdev = bp->pdev;
779 	struct page *page;
780 	dma_addr_t mapping;
781 	u16 sw_prod = rxr->rx_sw_agg_prod;
782 	unsigned int offset = 0;
783 
784 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
785 		page = rxr->rx_page;
786 		if (!page) {
787 			page = alloc_page(gfp);
788 			if (!page)
789 				return -ENOMEM;
790 			rxr->rx_page = page;
791 			rxr->rx_page_offset = 0;
792 		}
793 		offset = rxr->rx_page_offset;
794 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
795 		if (rxr->rx_page_offset == PAGE_SIZE)
796 			rxr->rx_page = NULL;
797 		else
798 			get_page(page);
799 	} else {
800 		page = alloc_page(gfp);
801 		if (!page)
802 			return -ENOMEM;
803 	}
804 
805 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
806 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
807 				     DMA_ATTR_WEAK_ORDERING);
808 	if (dma_mapping_error(&pdev->dev, mapping)) {
809 		__free_page(page);
810 		return -EIO;
811 	}
812 
813 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
814 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
815 
816 	__set_bit(sw_prod, rxr->rx_agg_bmap);
817 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
818 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
819 
820 	rx_agg_buf->page = page;
821 	rx_agg_buf->offset = offset;
822 	rx_agg_buf->mapping = mapping;
823 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
824 	rxbd->rx_bd_opaque = sw_prod;
825 	return 0;
826 }
827 
828 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
829 				   u32 agg_bufs)
830 {
831 	struct bnxt_napi *bnapi = cpr->bnapi;
832 	struct bnxt *bp = bnapi->bp;
833 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
834 	u16 prod = rxr->rx_agg_prod;
835 	u16 sw_prod = rxr->rx_sw_agg_prod;
836 	u32 i;
837 
838 	for (i = 0; i < agg_bufs; i++) {
839 		u16 cons;
840 		struct rx_agg_cmp *agg;
841 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
842 		struct rx_bd *prod_bd;
843 		struct page *page;
844 
845 		agg = (struct rx_agg_cmp *)
846 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
847 		cons = agg->rx_agg_cmp_opaque;
848 		__clear_bit(cons, rxr->rx_agg_bmap);
849 
850 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
851 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
852 
853 		__set_bit(sw_prod, rxr->rx_agg_bmap);
854 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
855 		cons_rx_buf = &rxr->rx_agg_ring[cons];
856 
857 		/* It is possible for sw_prod to be equal to cons, so
858 		 * set cons_rx_buf->page to NULL first.
859 		 */
860 		page = cons_rx_buf->page;
861 		cons_rx_buf->page = NULL;
862 		prod_rx_buf->page = page;
863 		prod_rx_buf->offset = cons_rx_buf->offset;
864 
865 		prod_rx_buf->mapping = cons_rx_buf->mapping;
866 
867 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
868 
869 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
870 		prod_bd->rx_bd_opaque = sw_prod;
871 
872 		prod = NEXT_RX_AGG(prod);
873 		sw_prod = NEXT_RX_AGG(sw_prod);
874 		cp_cons = NEXT_CMP(cp_cons);
875 	}
876 	rxr->rx_agg_prod = prod;
877 	rxr->rx_sw_agg_prod = sw_prod;
878 }
879 
880 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
881 					struct bnxt_rx_ring_info *rxr,
882 					u16 cons, void *data, u8 *data_ptr,
883 					dma_addr_t dma_addr,
884 					unsigned int offset_and_len)
885 {
886 	unsigned int payload = offset_and_len >> 16;
887 	unsigned int len = offset_and_len & 0xffff;
888 	struct skb_frag_struct *frag;
889 	struct page *page = data;
890 	u16 prod = rxr->rx_prod;
891 	struct sk_buff *skb;
892 	int off, err;
893 
894 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
895 	if (unlikely(err)) {
896 		bnxt_reuse_rx_data(rxr, cons, data);
897 		return NULL;
898 	}
899 	dma_addr -= bp->rx_dma_offset;
900 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
901 			     DMA_ATTR_WEAK_ORDERING);
902 
903 	if (unlikely(!payload))
904 		payload = eth_get_headlen(bp->dev, data_ptr, len);
905 
906 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
907 	if (!skb) {
908 		__free_page(page);
909 		return NULL;
910 	}
911 
912 	off = (void *)data_ptr - page_address(page);
913 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
914 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
915 	       payload + NET_IP_ALIGN);
916 
917 	frag = &skb_shinfo(skb)->frags[0];
918 	skb_frag_size_sub(frag, payload);
919 	frag->page_offset += payload;
920 	skb->data_len -= payload;
921 	skb->tail += payload;
922 
923 	return skb;
924 }
925 
926 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
927 				   struct bnxt_rx_ring_info *rxr, u16 cons,
928 				   void *data, u8 *data_ptr,
929 				   dma_addr_t dma_addr,
930 				   unsigned int offset_and_len)
931 {
932 	u16 prod = rxr->rx_prod;
933 	struct sk_buff *skb;
934 	int err;
935 
936 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
937 	if (unlikely(err)) {
938 		bnxt_reuse_rx_data(rxr, cons, data);
939 		return NULL;
940 	}
941 
942 	skb = build_skb(data, 0);
943 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
944 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
945 	if (!skb) {
946 		kfree(data);
947 		return NULL;
948 	}
949 
950 	skb_reserve(skb, bp->rx_offset);
951 	skb_put(skb, offset_and_len & 0xffff);
952 	return skb;
953 }
954 
955 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
956 				     struct bnxt_cp_ring_info *cpr,
957 				     struct sk_buff *skb, u16 cp_cons,
958 				     u32 agg_bufs)
959 {
960 	struct bnxt_napi *bnapi = cpr->bnapi;
961 	struct pci_dev *pdev = bp->pdev;
962 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
963 	u16 prod = rxr->rx_agg_prod;
964 	u32 i;
965 
966 	for (i = 0; i < agg_bufs; i++) {
967 		u16 cons, frag_len;
968 		struct rx_agg_cmp *agg;
969 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
970 		struct page *page;
971 		dma_addr_t mapping;
972 
973 		agg = (struct rx_agg_cmp *)
974 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
975 		cons = agg->rx_agg_cmp_opaque;
976 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
977 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
978 
979 		cons_rx_buf = &rxr->rx_agg_ring[cons];
980 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
981 				   cons_rx_buf->offset, frag_len);
982 		__clear_bit(cons, rxr->rx_agg_bmap);
983 
984 		/* It is possible for bnxt_alloc_rx_page() to allocate
985 		 * a sw_prod index that equals the cons index, so we
986 		 * need to clear the cons entry now.
987 		 */
988 		mapping = cons_rx_buf->mapping;
989 		page = cons_rx_buf->page;
990 		cons_rx_buf->page = NULL;
991 
992 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
993 			struct skb_shared_info *shinfo;
994 			unsigned int nr_frags;
995 
996 			shinfo = skb_shinfo(skb);
997 			nr_frags = --shinfo->nr_frags;
998 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
999 
1000 			dev_kfree_skb(skb);
1001 
1002 			cons_rx_buf->page = page;
1003 
1004 			/* Update prod since possibly some pages have been
1005 			 * allocated already.
1006 			 */
1007 			rxr->rx_agg_prod = prod;
1008 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs - i);
1009 			return NULL;
1010 		}
1011 
1012 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1013 				     PCI_DMA_FROMDEVICE,
1014 				     DMA_ATTR_WEAK_ORDERING);
1015 
1016 		skb->data_len += frag_len;
1017 		skb->len += frag_len;
1018 		skb->truesize += PAGE_SIZE;
1019 
1020 		prod = NEXT_RX_AGG(prod);
1021 		cp_cons = NEXT_CMP(cp_cons);
1022 	}
1023 	rxr->rx_agg_prod = prod;
1024 	return skb;
1025 }
1026 
1027 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1028 			       u8 agg_bufs, u32 *raw_cons)
1029 {
1030 	u16 last;
1031 	struct rx_agg_cmp *agg;
1032 
1033 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1034 	last = RING_CMP(*raw_cons);
1035 	agg = (struct rx_agg_cmp *)
1036 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1037 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1038 }
1039 
1040 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1041 					    unsigned int len,
1042 					    dma_addr_t mapping)
1043 {
1044 	struct bnxt *bp = bnapi->bp;
1045 	struct pci_dev *pdev = bp->pdev;
1046 	struct sk_buff *skb;
1047 
1048 	skb = napi_alloc_skb(&bnapi->napi, len);
1049 	if (!skb)
1050 		return NULL;
1051 
1052 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1053 				bp->rx_dir);
1054 
1055 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1056 	       len + NET_IP_ALIGN);
1057 
1058 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1059 				   bp->rx_dir);
1060 
1061 	skb_put(skb, len);
1062 	return skb;
1063 }
1064 
1065 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1066 			   u32 *raw_cons, void *cmp)
1067 {
1068 	struct rx_cmp *rxcmp = cmp;
1069 	u32 tmp_raw_cons = *raw_cons;
1070 	u8 cmp_type, agg_bufs = 0;
1071 
1072 	cmp_type = RX_CMP_TYPE(rxcmp);
1073 
1074 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1075 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1076 			    RX_CMP_AGG_BUFS) >>
1077 			   RX_CMP_AGG_BUFS_SHIFT;
1078 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1079 		struct rx_tpa_end_cmp *tpa_end = cmp;
1080 
1081 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1082 			    RX_TPA_END_CMP_AGG_BUFS) >>
1083 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1084 	}
1085 
1086 	if (agg_bufs) {
1087 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1088 			return -EBUSY;
1089 	}
1090 	*raw_cons = tmp_raw_cons;
1091 	return 0;
1092 }
1093 
1094 static void bnxt_queue_sp_work(struct bnxt *bp)
1095 {
1096 	if (BNXT_PF(bp))
1097 		queue_work(bnxt_pf_wq, &bp->sp_task);
1098 	else
1099 		schedule_work(&bp->sp_task);
1100 }
1101 
1102 static void bnxt_cancel_sp_work(struct bnxt *bp)
1103 {
1104 	if (BNXT_PF(bp))
1105 		flush_workqueue(bnxt_pf_wq);
1106 	else
1107 		cancel_work_sync(&bp->sp_task);
1108 }
1109 
1110 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1111 {
1112 	if (!rxr->bnapi->in_reset) {
1113 		rxr->bnapi->in_reset = true;
1114 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1115 		bnxt_queue_sp_work(bp);
1116 	}
1117 	rxr->rx_next_cons = 0xffff;
1118 }
1119 
1120 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1121 			   struct rx_tpa_start_cmp *tpa_start,
1122 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1123 {
1124 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1125 	u16 cons, prod;
1126 	struct bnxt_tpa_info *tpa_info;
1127 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1128 	struct rx_bd *prod_bd;
1129 	dma_addr_t mapping;
1130 
1131 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1132 	prod = rxr->rx_prod;
1133 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1134 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1135 	tpa_info = &rxr->rx_tpa[agg_id];
1136 
1137 	if (unlikely(cons != rxr->rx_next_cons)) {
1138 		netdev_warn(bp->dev, "TPA cons %x != expected cons %x\n",
1139 			    cons, rxr->rx_next_cons);
1140 		bnxt_sched_reset(bp, rxr);
1141 		return;
1142 	}
1143 	/* Store cfa_code in tpa_info to use in tpa_end
1144 	 * completion processing.
1145 	 */
1146 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1147 	prod_rx_buf->data = tpa_info->data;
1148 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1149 
1150 	mapping = tpa_info->mapping;
1151 	prod_rx_buf->mapping = mapping;
1152 
1153 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1154 
1155 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1156 
1157 	tpa_info->data = cons_rx_buf->data;
1158 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1159 	cons_rx_buf->data = NULL;
1160 	tpa_info->mapping = cons_rx_buf->mapping;
1161 
1162 	tpa_info->len =
1163 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1164 				RX_TPA_START_CMP_LEN_SHIFT;
1165 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1166 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1167 
1168 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1169 		tpa_info->gso_type = SKB_GSO_TCPV4;
1170 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1171 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1172 			tpa_info->gso_type = SKB_GSO_TCPV6;
1173 		tpa_info->rss_hash =
1174 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1175 	} else {
1176 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1177 		tpa_info->gso_type = 0;
1178 		if (netif_msg_rx_err(bp))
1179 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1180 	}
1181 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1182 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1183 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1184 
1185 	rxr->rx_prod = NEXT_RX(prod);
1186 	cons = NEXT_RX(cons);
1187 	rxr->rx_next_cons = NEXT_RX(cons);
1188 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1189 
1190 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1191 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1192 	cons_rx_buf->data = NULL;
1193 }
1194 
1195 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
1196 			   u32 agg_bufs)
1197 {
1198 	if (agg_bufs)
1199 		bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1200 }
1201 
1202 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1203 					   int payload_off, int tcp_ts,
1204 					   struct sk_buff *skb)
1205 {
1206 #ifdef CONFIG_INET
1207 	struct tcphdr *th;
1208 	int len, nw_off;
1209 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1210 	u32 hdr_info = tpa_info->hdr_info;
1211 	bool loopback = false;
1212 
1213 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1214 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1215 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1216 
1217 	/* If the packet is an internal loopback packet, the offsets will
1218 	 * have an extra 4 bytes.
1219 	 */
1220 	if (inner_mac_off == 4) {
1221 		loopback = true;
1222 	} else if (inner_mac_off > 4) {
1223 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1224 					    ETH_HLEN - 2));
1225 
1226 		/* We only support inner iPv4/ipv6.  If we don't see the
1227 		 * correct protocol ID, it must be a loopback packet where
1228 		 * the offsets are off by 4.
1229 		 */
1230 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1231 			loopback = true;
1232 	}
1233 	if (loopback) {
1234 		/* internal loopback packet, subtract all offsets by 4 */
1235 		inner_ip_off -= 4;
1236 		inner_mac_off -= 4;
1237 		outer_ip_off -= 4;
1238 	}
1239 
1240 	nw_off = inner_ip_off - ETH_HLEN;
1241 	skb_set_network_header(skb, nw_off);
1242 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1243 		struct ipv6hdr *iph = ipv6_hdr(skb);
1244 
1245 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1246 		len = skb->len - skb_transport_offset(skb);
1247 		th = tcp_hdr(skb);
1248 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1249 	} else {
1250 		struct iphdr *iph = ip_hdr(skb);
1251 
1252 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1253 		len = skb->len - skb_transport_offset(skb);
1254 		th = tcp_hdr(skb);
1255 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1256 	}
1257 
1258 	if (inner_mac_off) { /* tunnel */
1259 		struct udphdr *uh = NULL;
1260 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1261 					    ETH_HLEN - 2));
1262 
1263 		if (proto == htons(ETH_P_IP)) {
1264 			struct iphdr *iph = (struct iphdr *)skb->data;
1265 
1266 			if (iph->protocol == IPPROTO_UDP)
1267 				uh = (struct udphdr *)(iph + 1);
1268 		} else {
1269 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1270 
1271 			if (iph->nexthdr == IPPROTO_UDP)
1272 				uh = (struct udphdr *)(iph + 1);
1273 		}
1274 		if (uh) {
1275 			if (uh->check)
1276 				skb_shinfo(skb)->gso_type |=
1277 					SKB_GSO_UDP_TUNNEL_CSUM;
1278 			else
1279 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1280 		}
1281 	}
1282 #endif
1283 	return skb;
1284 }
1285 
1286 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1287 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1288 
1289 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1290 					   int payload_off, int tcp_ts,
1291 					   struct sk_buff *skb)
1292 {
1293 #ifdef CONFIG_INET
1294 	struct tcphdr *th;
1295 	int len, nw_off, tcp_opt_len = 0;
1296 
1297 	if (tcp_ts)
1298 		tcp_opt_len = 12;
1299 
1300 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1301 		struct iphdr *iph;
1302 
1303 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1304 			 ETH_HLEN;
1305 		skb_set_network_header(skb, nw_off);
1306 		iph = ip_hdr(skb);
1307 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1308 		len = skb->len - skb_transport_offset(skb);
1309 		th = tcp_hdr(skb);
1310 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1311 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1312 		struct ipv6hdr *iph;
1313 
1314 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1315 			 ETH_HLEN;
1316 		skb_set_network_header(skb, nw_off);
1317 		iph = ipv6_hdr(skb);
1318 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1319 		len = skb->len - skb_transport_offset(skb);
1320 		th = tcp_hdr(skb);
1321 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1322 	} else {
1323 		dev_kfree_skb_any(skb);
1324 		return NULL;
1325 	}
1326 
1327 	if (nw_off) { /* tunnel */
1328 		struct udphdr *uh = NULL;
1329 
1330 		if (skb->protocol == htons(ETH_P_IP)) {
1331 			struct iphdr *iph = (struct iphdr *)skb->data;
1332 
1333 			if (iph->protocol == IPPROTO_UDP)
1334 				uh = (struct udphdr *)(iph + 1);
1335 		} else {
1336 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1337 
1338 			if (iph->nexthdr == IPPROTO_UDP)
1339 				uh = (struct udphdr *)(iph + 1);
1340 		}
1341 		if (uh) {
1342 			if (uh->check)
1343 				skb_shinfo(skb)->gso_type |=
1344 					SKB_GSO_UDP_TUNNEL_CSUM;
1345 			else
1346 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1347 		}
1348 	}
1349 #endif
1350 	return skb;
1351 }
1352 
1353 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1354 					   struct bnxt_tpa_info *tpa_info,
1355 					   struct rx_tpa_end_cmp *tpa_end,
1356 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1357 					   struct sk_buff *skb)
1358 {
1359 #ifdef CONFIG_INET
1360 	int payload_off;
1361 	u16 segs;
1362 
1363 	segs = TPA_END_TPA_SEGS(tpa_end);
1364 	if (segs == 1)
1365 		return skb;
1366 
1367 	NAPI_GRO_CB(skb)->count = segs;
1368 	skb_shinfo(skb)->gso_size =
1369 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1370 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1371 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1372 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1373 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1374 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1375 	if (likely(skb))
1376 		tcp_gro_complete(skb);
1377 #endif
1378 	return skb;
1379 }
1380 
1381 /* Given the cfa_code of a received packet determine which
1382  * netdev (vf-rep or PF) the packet is destined to.
1383  */
1384 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1385 {
1386 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1387 
1388 	/* if vf-rep dev is NULL, the must belongs to the PF */
1389 	return dev ? dev : bp->dev;
1390 }
1391 
1392 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1393 					   struct bnxt_cp_ring_info *cpr,
1394 					   u32 *raw_cons,
1395 					   struct rx_tpa_end_cmp *tpa_end,
1396 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1397 					   u8 *event)
1398 {
1399 	struct bnxt_napi *bnapi = cpr->bnapi;
1400 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1401 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1402 	u8 *data_ptr, agg_bufs;
1403 	u16 cp_cons = RING_CMP(*raw_cons);
1404 	unsigned int len;
1405 	struct bnxt_tpa_info *tpa_info;
1406 	dma_addr_t mapping;
1407 	struct sk_buff *skb;
1408 	void *data;
1409 
1410 	if (unlikely(bnapi->in_reset)) {
1411 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1412 
1413 		if (rc < 0)
1414 			return ERR_PTR(-EBUSY);
1415 		return NULL;
1416 	}
1417 
1418 	tpa_info = &rxr->rx_tpa[agg_id];
1419 	data = tpa_info->data;
1420 	data_ptr = tpa_info->data_ptr;
1421 	prefetch(data_ptr);
1422 	len = tpa_info->len;
1423 	mapping = tpa_info->mapping;
1424 
1425 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1426 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1427 
1428 	if (agg_bufs) {
1429 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1430 			return ERR_PTR(-EBUSY);
1431 
1432 		*event |= BNXT_AGG_EVENT;
1433 		cp_cons = NEXT_CMP(cp_cons);
1434 	}
1435 
1436 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1437 		bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1438 		if (agg_bufs > MAX_SKB_FRAGS)
1439 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1440 				    agg_bufs, (int)MAX_SKB_FRAGS);
1441 		return NULL;
1442 	}
1443 
1444 	if (len <= bp->rx_copy_thresh) {
1445 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1446 		if (!skb) {
1447 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1448 			return NULL;
1449 		}
1450 	} else {
1451 		u8 *new_data;
1452 		dma_addr_t new_mapping;
1453 
1454 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1455 		if (!new_data) {
1456 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1457 			return NULL;
1458 		}
1459 
1460 		tpa_info->data = new_data;
1461 		tpa_info->data_ptr = new_data + bp->rx_offset;
1462 		tpa_info->mapping = new_mapping;
1463 
1464 		skb = build_skb(data, 0);
1465 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1466 				       bp->rx_buf_use_size, bp->rx_dir,
1467 				       DMA_ATTR_WEAK_ORDERING);
1468 
1469 		if (!skb) {
1470 			kfree(data);
1471 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1472 			return NULL;
1473 		}
1474 		skb_reserve(skb, bp->rx_offset);
1475 		skb_put(skb, len);
1476 	}
1477 
1478 	if (agg_bufs) {
1479 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1480 		if (!skb) {
1481 			/* Page reuse already handled by bnxt_rx_pages(). */
1482 			return NULL;
1483 		}
1484 	}
1485 
1486 	skb->protocol =
1487 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1488 
1489 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1490 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1491 
1492 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1493 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1494 		u16 vlan_proto = tpa_info->metadata >>
1495 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1496 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1497 
1498 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1499 	}
1500 
1501 	skb_checksum_none_assert(skb);
1502 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1503 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1504 		skb->csum_level =
1505 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1506 	}
1507 
1508 	if (TPA_END_GRO(tpa_end))
1509 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1510 
1511 	return skb;
1512 }
1513 
1514 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1515 			     struct sk_buff *skb)
1516 {
1517 	if (skb->dev != bp->dev) {
1518 		/* this packet belongs to a vf-rep */
1519 		bnxt_vf_rep_rx(bp, skb);
1520 		return;
1521 	}
1522 	skb_record_rx_queue(skb, bnapi->index);
1523 	napi_gro_receive(&bnapi->napi, skb);
1524 }
1525 
1526 /* returns the following:
1527  * 1       - 1 packet successfully received
1528  * 0       - successful TPA_START, packet not completed yet
1529  * -EBUSY  - completion ring does not have all the agg buffers yet
1530  * -ENOMEM - packet aborted due to out of memory
1531  * -EIO    - packet aborted due to hw error indicated in BD
1532  */
1533 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1534 		       u32 *raw_cons, u8 *event)
1535 {
1536 	struct bnxt_napi *bnapi = cpr->bnapi;
1537 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1538 	struct net_device *dev = bp->dev;
1539 	struct rx_cmp *rxcmp;
1540 	struct rx_cmp_ext *rxcmp1;
1541 	u32 tmp_raw_cons = *raw_cons;
1542 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1543 	struct bnxt_sw_rx_bd *rx_buf;
1544 	unsigned int len;
1545 	u8 *data_ptr, agg_bufs, cmp_type;
1546 	dma_addr_t dma_addr;
1547 	struct sk_buff *skb;
1548 	void *data;
1549 	int rc = 0;
1550 	u32 misc;
1551 
1552 	rxcmp = (struct rx_cmp *)
1553 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1554 
1555 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1556 	cp_cons = RING_CMP(tmp_raw_cons);
1557 	rxcmp1 = (struct rx_cmp_ext *)
1558 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1559 
1560 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1561 		return -EBUSY;
1562 
1563 	cmp_type = RX_CMP_TYPE(rxcmp);
1564 
1565 	prod = rxr->rx_prod;
1566 
1567 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1568 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1569 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1570 
1571 		*event |= BNXT_RX_EVENT;
1572 		goto next_rx_no_prod_no_len;
1573 
1574 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1575 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1576 				   (struct rx_tpa_end_cmp *)rxcmp,
1577 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1578 
1579 		if (IS_ERR(skb))
1580 			return -EBUSY;
1581 
1582 		rc = -ENOMEM;
1583 		if (likely(skb)) {
1584 			bnxt_deliver_skb(bp, bnapi, skb);
1585 			rc = 1;
1586 		}
1587 		*event |= BNXT_RX_EVENT;
1588 		goto next_rx_no_prod_no_len;
1589 	}
1590 
1591 	cons = rxcmp->rx_cmp_opaque;
1592 	if (unlikely(cons != rxr->rx_next_cons)) {
1593 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1594 
1595 		netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1596 			    cons, rxr->rx_next_cons);
1597 		bnxt_sched_reset(bp, rxr);
1598 		return rc1;
1599 	}
1600 	rx_buf = &rxr->rx_buf_ring[cons];
1601 	data = rx_buf->data;
1602 	data_ptr = rx_buf->data_ptr;
1603 	prefetch(data_ptr);
1604 
1605 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1606 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1607 
1608 	if (agg_bufs) {
1609 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1610 			return -EBUSY;
1611 
1612 		cp_cons = NEXT_CMP(cp_cons);
1613 		*event |= BNXT_AGG_EVENT;
1614 	}
1615 	*event |= BNXT_RX_EVENT;
1616 
1617 	rx_buf->data = NULL;
1618 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1619 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1620 
1621 		bnxt_reuse_rx_data(rxr, cons, data);
1622 		if (agg_bufs)
1623 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1624 
1625 		rc = -EIO;
1626 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1627 			netdev_warn(bp->dev, "RX buffer error %x\n", rx_err);
1628 			bnxt_sched_reset(bp, rxr);
1629 		}
1630 		goto next_rx_no_len;
1631 	}
1632 
1633 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1634 	dma_addr = rx_buf->mapping;
1635 
1636 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1637 		rc = 1;
1638 		goto next_rx;
1639 	}
1640 
1641 	if (len <= bp->rx_copy_thresh) {
1642 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1643 		bnxt_reuse_rx_data(rxr, cons, data);
1644 		if (!skb) {
1645 			rc = -ENOMEM;
1646 			goto next_rx;
1647 		}
1648 	} else {
1649 		u32 payload;
1650 
1651 		if (rx_buf->data_ptr == data_ptr)
1652 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1653 		else
1654 			payload = 0;
1655 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1656 				      payload | len);
1657 		if (!skb) {
1658 			rc = -ENOMEM;
1659 			goto next_rx;
1660 		}
1661 	}
1662 
1663 	if (agg_bufs) {
1664 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1665 		if (!skb) {
1666 			rc = -ENOMEM;
1667 			goto next_rx;
1668 		}
1669 	}
1670 
1671 	if (RX_CMP_HASH_VALID(rxcmp)) {
1672 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1673 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1674 
1675 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1676 		if (hash_type != 1 && hash_type != 3)
1677 			type = PKT_HASH_TYPE_L3;
1678 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1679 	}
1680 
1681 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1682 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1683 
1684 	if ((rxcmp1->rx_cmp_flags2 &
1685 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1686 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1687 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1688 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1689 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1690 
1691 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1692 	}
1693 
1694 	skb_checksum_none_assert(skb);
1695 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1696 		if (dev->features & NETIF_F_RXCSUM) {
1697 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1698 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1699 		}
1700 	} else {
1701 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1702 			if (dev->features & NETIF_F_RXCSUM)
1703 				bnapi->cp_ring.rx_l4_csum_errors++;
1704 		}
1705 	}
1706 
1707 	bnxt_deliver_skb(bp, bnapi, skb);
1708 	rc = 1;
1709 
1710 next_rx:
1711 	cpr->rx_packets += 1;
1712 	cpr->rx_bytes += len;
1713 
1714 next_rx_no_len:
1715 	rxr->rx_prod = NEXT_RX(prod);
1716 	rxr->rx_next_cons = NEXT_RX(cons);
1717 
1718 next_rx_no_prod_no_len:
1719 	*raw_cons = tmp_raw_cons;
1720 
1721 	return rc;
1722 }
1723 
1724 /* In netpoll mode, if we are using a combined completion ring, we need to
1725  * discard the rx packets and recycle the buffers.
1726  */
1727 static int bnxt_force_rx_discard(struct bnxt *bp,
1728 				 struct bnxt_cp_ring_info *cpr,
1729 				 u32 *raw_cons, u8 *event)
1730 {
1731 	u32 tmp_raw_cons = *raw_cons;
1732 	struct rx_cmp_ext *rxcmp1;
1733 	struct rx_cmp *rxcmp;
1734 	u16 cp_cons;
1735 	u8 cmp_type;
1736 
1737 	cp_cons = RING_CMP(tmp_raw_cons);
1738 	rxcmp = (struct rx_cmp *)
1739 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1740 
1741 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1742 	cp_cons = RING_CMP(tmp_raw_cons);
1743 	rxcmp1 = (struct rx_cmp_ext *)
1744 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1745 
1746 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1747 		return -EBUSY;
1748 
1749 	cmp_type = RX_CMP_TYPE(rxcmp);
1750 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1751 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1752 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1753 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1754 		struct rx_tpa_end_cmp_ext *tpa_end1;
1755 
1756 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1757 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1758 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1759 	}
1760 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1761 }
1762 
1763 #define BNXT_GET_EVENT_PORT(data)	\
1764 	((data) &			\
1765 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1766 
1767 static int bnxt_async_event_process(struct bnxt *bp,
1768 				    struct hwrm_async_event_cmpl *cmpl)
1769 {
1770 	u16 event_id = le16_to_cpu(cmpl->event_id);
1771 
1772 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1773 	switch (event_id) {
1774 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1775 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1776 		struct bnxt_link_info *link_info = &bp->link_info;
1777 
1778 		if (BNXT_VF(bp))
1779 			goto async_event_process_exit;
1780 
1781 		/* print unsupported speed warning in forced speed mode only */
1782 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1783 		    (data1 & 0x20000)) {
1784 			u16 fw_speed = link_info->force_link_speed;
1785 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1786 
1787 			if (speed != SPEED_UNKNOWN)
1788 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1789 					    speed);
1790 		}
1791 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1792 	}
1793 	/* fall through */
1794 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1795 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1796 		break;
1797 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1798 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1799 		break;
1800 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1801 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1802 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1803 
1804 		if (BNXT_VF(bp))
1805 			break;
1806 
1807 		if (bp->pf.port_id != port_id)
1808 			break;
1809 
1810 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1811 		break;
1812 	}
1813 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1814 		if (BNXT_PF(bp))
1815 			goto async_event_process_exit;
1816 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1817 		break;
1818 	default:
1819 		goto async_event_process_exit;
1820 	}
1821 	bnxt_queue_sp_work(bp);
1822 async_event_process_exit:
1823 	bnxt_ulp_async_events(bp, cmpl);
1824 	return 0;
1825 }
1826 
1827 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1828 {
1829 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1830 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1831 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1832 				(struct hwrm_fwd_req_cmpl *)txcmp;
1833 
1834 	switch (cmpl_type) {
1835 	case CMPL_BASE_TYPE_HWRM_DONE:
1836 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1837 		if (seq_id == bp->hwrm_intr_seq_id)
1838 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
1839 		else
1840 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1841 		break;
1842 
1843 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1844 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1845 
1846 		if ((vf_id < bp->pf.first_vf_id) ||
1847 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1848 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1849 				   vf_id);
1850 			return -EINVAL;
1851 		}
1852 
1853 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1854 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1855 		bnxt_queue_sp_work(bp);
1856 		break;
1857 
1858 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1859 		bnxt_async_event_process(bp,
1860 					 (struct hwrm_async_event_cmpl *)txcmp);
1861 
1862 	default:
1863 		break;
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1870 {
1871 	struct bnxt_napi *bnapi = dev_instance;
1872 	struct bnxt *bp = bnapi->bp;
1873 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1874 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1875 
1876 	cpr->event_ctr++;
1877 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1878 	napi_schedule(&bnapi->napi);
1879 	return IRQ_HANDLED;
1880 }
1881 
1882 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1883 {
1884 	u32 raw_cons = cpr->cp_raw_cons;
1885 	u16 cons = RING_CMP(raw_cons);
1886 	struct tx_cmp *txcmp;
1887 
1888 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1889 
1890 	return TX_CMP_VALID(txcmp, raw_cons);
1891 }
1892 
1893 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1894 {
1895 	struct bnxt_napi *bnapi = dev_instance;
1896 	struct bnxt *bp = bnapi->bp;
1897 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1898 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1899 	u32 int_status;
1900 
1901 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1902 
1903 	if (!bnxt_has_work(bp, cpr)) {
1904 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1905 		/* return if erroneous interrupt */
1906 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1907 			return IRQ_NONE;
1908 	}
1909 
1910 	/* disable ring IRQ */
1911 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
1912 
1913 	/* Return here if interrupt is shared and is disabled. */
1914 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1915 		return IRQ_HANDLED;
1916 
1917 	napi_schedule(&bnapi->napi);
1918 	return IRQ_HANDLED;
1919 }
1920 
1921 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1922 			    int budget)
1923 {
1924 	struct bnxt_napi *bnapi = cpr->bnapi;
1925 	u32 raw_cons = cpr->cp_raw_cons;
1926 	u32 cons;
1927 	int tx_pkts = 0;
1928 	int rx_pkts = 0;
1929 	u8 event = 0;
1930 	struct tx_cmp *txcmp;
1931 
1932 	cpr->has_more_work = 0;
1933 	while (1) {
1934 		int rc;
1935 
1936 		cons = RING_CMP(raw_cons);
1937 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1938 
1939 		if (!TX_CMP_VALID(txcmp, raw_cons))
1940 			break;
1941 
1942 		/* The valid test of the entry must be done first before
1943 		 * reading any further.
1944 		 */
1945 		dma_rmb();
1946 		cpr->had_work_done = 1;
1947 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1948 			tx_pkts++;
1949 			/* return full budget so NAPI will complete. */
1950 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
1951 				rx_pkts = budget;
1952 				raw_cons = NEXT_RAW_CMP(raw_cons);
1953 				if (budget)
1954 					cpr->has_more_work = 1;
1955 				break;
1956 			}
1957 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1958 			if (likely(budget))
1959 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
1960 			else
1961 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
1962 							   &event);
1963 			if (likely(rc >= 0))
1964 				rx_pkts += rc;
1965 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1966 			 * the NAPI budget.  Otherwise, we may potentially loop
1967 			 * here forever if we consistently cannot allocate
1968 			 * buffers.
1969 			 */
1970 			else if (rc == -ENOMEM && budget)
1971 				rx_pkts++;
1972 			else if (rc == -EBUSY)	/* partial completion */
1973 				break;
1974 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1975 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1976 				    (TX_CMP_TYPE(txcmp) ==
1977 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1978 				    (TX_CMP_TYPE(txcmp) ==
1979 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1980 			bnxt_hwrm_handler(bp, txcmp);
1981 		}
1982 		raw_cons = NEXT_RAW_CMP(raw_cons);
1983 
1984 		if (rx_pkts && rx_pkts == budget) {
1985 			cpr->has_more_work = 1;
1986 			break;
1987 		}
1988 	}
1989 
1990 	if (event & BNXT_TX_EVENT) {
1991 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1992 		u16 prod = txr->tx_prod;
1993 
1994 		/* Sync BD data before updating doorbell */
1995 		wmb();
1996 
1997 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
1998 	}
1999 
2000 	cpr->cp_raw_cons = raw_cons;
2001 	bnapi->tx_pkts += tx_pkts;
2002 	bnapi->events |= event;
2003 	return rx_pkts;
2004 }
2005 
2006 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2007 {
2008 	if (bnapi->tx_pkts) {
2009 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2010 		bnapi->tx_pkts = 0;
2011 	}
2012 
2013 	if (bnapi->events & BNXT_RX_EVENT) {
2014 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2015 
2016 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2017 		if (bnapi->events & BNXT_AGG_EVENT)
2018 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2019 	}
2020 	bnapi->events = 0;
2021 }
2022 
2023 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2024 			  int budget)
2025 {
2026 	struct bnxt_napi *bnapi = cpr->bnapi;
2027 	int rx_pkts;
2028 
2029 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2030 
2031 	/* ACK completion ring before freeing tx ring and producing new
2032 	 * buffers in rx/agg rings to prevent overflowing the completion
2033 	 * ring.
2034 	 */
2035 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2036 
2037 	__bnxt_poll_work_done(bp, bnapi);
2038 	return rx_pkts;
2039 }
2040 
2041 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2042 {
2043 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2044 	struct bnxt *bp = bnapi->bp;
2045 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2046 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2047 	struct tx_cmp *txcmp;
2048 	struct rx_cmp_ext *rxcmp1;
2049 	u32 cp_cons, tmp_raw_cons;
2050 	u32 raw_cons = cpr->cp_raw_cons;
2051 	u32 rx_pkts = 0;
2052 	u8 event = 0;
2053 
2054 	while (1) {
2055 		int rc;
2056 
2057 		cp_cons = RING_CMP(raw_cons);
2058 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2059 
2060 		if (!TX_CMP_VALID(txcmp, raw_cons))
2061 			break;
2062 
2063 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2064 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2065 			cp_cons = RING_CMP(tmp_raw_cons);
2066 			rxcmp1 = (struct rx_cmp_ext *)
2067 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2068 
2069 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2070 				break;
2071 
2072 			/* force an error to recycle the buffer */
2073 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2074 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2075 
2076 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2077 			if (likely(rc == -EIO) && budget)
2078 				rx_pkts++;
2079 			else if (rc == -EBUSY)	/* partial completion */
2080 				break;
2081 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2082 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2083 			bnxt_hwrm_handler(bp, txcmp);
2084 		} else {
2085 			netdev_err(bp->dev,
2086 				   "Invalid completion received on special ring\n");
2087 		}
2088 		raw_cons = NEXT_RAW_CMP(raw_cons);
2089 
2090 		if (rx_pkts == budget)
2091 			break;
2092 	}
2093 
2094 	cpr->cp_raw_cons = raw_cons;
2095 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2096 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2097 
2098 	if (event & BNXT_AGG_EVENT)
2099 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2100 
2101 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2102 		napi_complete_done(napi, rx_pkts);
2103 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2104 	}
2105 	return rx_pkts;
2106 }
2107 
2108 static int bnxt_poll(struct napi_struct *napi, int budget)
2109 {
2110 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2111 	struct bnxt *bp = bnapi->bp;
2112 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2113 	int work_done = 0;
2114 
2115 	while (1) {
2116 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2117 
2118 		if (work_done >= budget) {
2119 			if (!budget)
2120 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2121 			break;
2122 		}
2123 
2124 		if (!bnxt_has_work(bp, cpr)) {
2125 			if (napi_complete_done(napi, work_done))
2126 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2127 			break;
2128 		}
2129 	}
2130 	if (bp->flags & BNXT_FLAG_DIM) {
2131 		struct net_dim_sample dim_sample;
2132 
2133 		net_dim_sample(cpr->event_ctr,
2134 			       cpr->rx_packets,
2135 			       cpr->rx_bytes,
2136 			       &dim_sample);
2137 		net_dim(&cpr->dim, dim_sample);
2138 	}
2139 	return work_done;
2140 }
2141 
2142 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2143 {
2144 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2145 	int i, work_done = 0;
2146 
2147 	for (i = 0; i < 2; i++) {
2148 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2149 
2150 		if (cpr2) {
2151 			work_done += __bnxt_poll_work(bp, cpr2,
2152 						      budget - work_done);
2153 			cpr->has_more_work |= cpr2->has_more_work;
2154 		}
2155 	}
2156 	return work_done;
2157 }
2158 
2159 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2160 				 u64 dbr_type, bool all)
2161 {
2162 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2163 	int i;
2164 
2165 	for (i = 0; i < 2; i++) {
2166 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2167 		struct bnxt_db_info *db;
2168 
2169 		if (cpr2 && (all || cpr2->had_work_done)) {
2170 			db = &cpr2->cp_db;
2171 			writeq(db->db_key64 | dbr_type |
2172 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2173 			cpr2->had_work_done = 0;
2174 		}
2175 	}
2176 	__bnxt_poll_work_done(bp, bnapi);
2177 }
2178 
2179 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2180 {
2181 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2182 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2183 	u32 raw_cons = cpr->cp_raw_cons;
2184 	struct bnxt *bp = bnapi->bp;
2185 	struct nqe_cn *nqcmp;
2186 	int work_done = 0;
2187 	u32 cons;
2188 
2189 	if (cpr->has_more_work) {
2190 		cpr->has_more_work = 0;
2191 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2192 		if (cpr->has_more_work) {
2193 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, false);
2194 			return work_done;
2195 		}
2196 		__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, true);
2197 		if (napi_complete_done(napi, work_done))
2198 			BNXT_DB_NQ_ARM_P5(&cpr->cp_db, cpr->cp_raw_cons);
2199 		return work_done;
2200 	}
2201 	while (1) {
2202 		cons = RING_CMP(raw_cons);
2203 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2204 
2205 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2206 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
2207 					     false);
2208 			cpr->cp_raw_cons = raw_cons;
2209 			if (napi_complete_done(napi, work_done))
2210 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2211 						  cpr->cp_raw_cons);
2212 			return work_done;
2213 		}
2214 
2215 		/* The valid test of the entry must be done first before
2216 		 * reading any further.
2217 		 */
2218 		dma_rmb();
2219 
2220 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2221 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2222 			struct bnxt_cp_ring_info *cpr2;
2223 
2224 			cpr2 = cpr->cp_ring_arr[idx];
2225 			work_done += __bnxt_poll_work(bp, cpr2,
2226 						      budget - work_done);
2227 			cpr->has_more_work = cpr2->has_more_work;
2228 		} else {
2229 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2230 		}
2231 		raw_cons = NEXT_RAW_CMP(raw_cons);
2232 		if (cpr->has_more_work)
2233 			break;
2234 	}
2235 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, true);
2236 	cpr->cp_raw_cons = raw_cons;
2237 	return work_done;
2238 }
2239 
2240 static void bnxt_free_tx_skbs(struct bnxt *bp)
2241 {
2242 	int i, max_idx;
2243 	struct pci_dev *pdev = bp->pdev;
2244 
2245 	if (!bp->tx_ring)
2246 		return;
2247 
2248 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2249 	for (i = 0; i < bp->tx_nr_rings; i++) {
2250 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2251 		int j;
2252 
2253 		for (j = 0; j < max_idx;) {
2254 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2255 			struct sk_buff *skb = tx_buf->skb;
2256 			int k, last;
2257 
2258 			if (!skb) {
2259 				j++;
2260 				continue;
2261 			}
2262 
2263 			tx_buf->skb = NULL;
2264 
2265 			if (tx_buf->is_push) {
2266 				dev_kfree_skb(skb);
2267 				j += 2;
2268 				continue;
2269 			}
2270 
2271 			dma_unmap_single(&pdev->dev,
2272 					 dma_unmap_addr(tx_buf, mapping),
2273 					 skb_headlen(skb),
2274 					 PCI_DMA_TODEVICE);
2275 
2276 			last = tx_buf->nr_frags;
2277 			j += 2;
2278 			for (k = 0; k < last; k++, j++) {
2279 				int ring_idx = j & bp->tx_ring_mask;
2280 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2281 
2282 				tx_buf = &txr->tx_buf_ring[ring_idx];
2283 				dma_unmap_page(
2284 					&pdev->dev,
2285 					dma_unmap_addr(tx_buf, mapping),
2286 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2287 			}
2288 			dev_kfree_skb(skb);
2289 		}
2290 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2291 	}
2292 }
2293 
2294 static void bnxt_free_rx_skbs(struct bnxt *bp)
2295 {
2296 	int i, max_idx, max_agg_idx;
2297 	struct pci_dev *pdev = bp->pdev;
2298 
2299 	if (!bp->rx_ring)
2300 		return;
2301 
2302 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2303 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2304 	for (i = 0; i < bp->rx_nr_rings; i++) {
2305 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2306 		int j;
2307 
2308 		if (rxr->rx_tpa) {
2309 			for (j = 0; j < MAX_TPA; j++) {
2310 				struct bnxt_tpa_info *tpa_info =
2311 							&rxr->rx_tpa[j];
2312 				u8 *data = tpa_info->data;
2313 
2314 				if (!data)
2315 					continue;
2316 
2317 				dma_unmap_single_attrs(&pdev->dev,
2318 						       tpa_info->mapping,
2319 						       bp->rx_buf_use_size,
2320 						       bp->rx_dir,
2321 						       DMA_ATTR_WEAK_ORDERING);
2322 
2323 				tpa_info->data = NULL;
2324 
2325 				kfree(data);
2326 			}
2327 		}
2328 
2329 		for (j = 0; j < max_idx; j++) {
2330 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2331 			dma_addr_t mapping = rx_buf->mapping;
2332 			void *data = rx_buf->data;
2333 
2334 			if (!data)
2335 				continue;
2336 
2337 			rx_buf->data = NULL;
2338 
2339 			if (BNXT_RX_PAGE_MODE(bp)) {
2340 				mapping -= bp->rx_dma_offset;
2341 				dma_unmap_page_attrs(&pdev->dev, mapping,
2342 						     PAGE_SIZE, bp->rx_dir,
2343 						     DMA_ATTR_WEAK_ORDERING);
2344 				__free_page(data);
2345 			} else {
2346 				dma_unmap_single_attrs(&pdev->dev, mapping,
2347 						       bp->rx_buf_use_size,
2348 						       bp->rx_dir,
2349 						       DMA_ATTR_WEAK_ORDERING);
2350 				kfree(data);
2351 			}
2352 		}
2353 
2354 		for (j = 0; j < max_agg_idx; j++) {
2355 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2356 				&rxr->rx_agg_ring[j];
2357 			struct page *page = rx_agg_buf->page;
2358 
2359 			if (!page)
2360 				continue;
2361 
2362 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2363 					     BNXT_RX_PAGE_SIZE,
2364 					     PCI_DMA_FROMDEVICE,
2365 					     DMA_ATTR_WEAK_ORDERING);
2366 
2367 			rx_agg_buf->page = NULL;
2368 			__clear_bit(j, rxr->rx_agg_bmap);
2369 
2370 			__free_page(page);
2371 		}
2372 		if (rxr->rx_page) {
2373 			__free_page(rxr->rx_page);
2374 			rxr->rx_page = NULL;
2375 		}
2376 	}
2377 }
2378 
2379 static void bnxt_free_skbs(struct bnxt *bp)
2380 {
2381 	bnxt_free_tx_skbs(bp);
2382 	bnxt_free_rx_skbs(bp);
2383 }
2384 
2385 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2386 {
2387 	struct pci_dev *pdev = bp->pdev;
2388 	int i;
2389 
2390 	for (i = 0; i < rmem->nr_pages; i++) {
2391 		if (!rmem->pg_arr[i])
2392 			continue;
2393 
2394 		dma_free_coherent(&pdev->dev, rmem->page_size,
2395 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2396 
2397 		rmem->pg_arr[i] = NULL;
2398 	}
2399 	if (rmem->pg_tbl) {
2400 		size_t pg_tbl_size = rmem->nr_pages * 8;
2401 
2402 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2403 			pg_tbl_size = rmem->page_size;
2404 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2405 				  rmem->pg_tbl, rmem->pg_tbl_map);
2406 		rmem->pg_tbl = NULL;
2407 	}
2408 	if (rmem->vmem_size && *rmem->vmem) {
2409 		vfree(*rmem->vmem);
2410 		*rmem->vmem = NULL;
2411 	}
2412 }
2413 
2414 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2415 {
2416 	struct pci_dev *pdev = bp->pdev;
2417 	u64 valid_bit = 0;
2418 	int i;
2419 
2420 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2421 		valid_bit = PTU_PTE_VALID;
2422 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2423 		size_t pg_tbl_size = rmem->nr_pages * 8;
2424 
2425 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2426 			pg_tbl_size = rmem->page_size;
2427 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2428 						  &rmem->pg_tbl_map,
2429 						  GFP_KERNEL);
2430 		if (!rmem->pg_tbl)
2431 			return -ENOMEM;
2432 	}
2433 
2434 	for (i = 0; i < rmem->nr_pages; i++) {
2435 		u64 extra_bits = valid_bit;
2436 
2437 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2438 						     rmem->page_size,
2439 						     &rmem->dma_arr[i],
2440 						     GFP_KERNEL);
2441 		if (!rmem->pg_arr[i])
2442 			return -ENOMEM;
2443 
2444 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2445 			if (i == rmem->nr_pages - 2 &&
2446 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2447 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2448 			else if (i == rmem->nr_pages - 1 &&
2449 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2450 				extra_bits |= PTU_PTE_LAST;
2451 			rmem->pg_tbl[i] =
2452 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2453 		}
2454 	}
2455 
2456 	if (rmem->vmem_size) {
2457 		*rmem->vmem = vzalloc(rmem->vmem_size);
2458 		if (!(*rmem->vmem))
2459 			return -ENOMEM;
2460 	}
2461 	return 0;
2462 }
2463 
2464 static void bnxt_free_rx_rings(struct bnxt *bp)
2465 {
2466 	int i;
2467 
2468 	if (!bp->rx_ring)
2469 		return;
2470 
2471 	for (i = 0; i < bp->rx_nr_rings; i++) {
2472 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2473 		struct bnxt_ring_struct *ring;
2474 
2475 		if (rxr->xdp_prog)
2476 			bpf_prog_put(rxr->xdp_prog);
2477 
2478 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2479 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2480 
2481 		kfree(rxr->rx_tpa);
2482 		rxr->rx_tpa = NULL;
2483 
2484 		kfree(rxr->rx_agg_bmap);
2485 		rxr->rx_agg_bmap = NULL;
2486 
2487 		ring = &rxr->rx_ring_struct;
2488 		bnxt_free_ring(bp, &ring->ring_mem);
2489 
2490 		ring = &rxr->rx_agg_ring_struct;
2491 		bnxt_free_ring(bp, &ring->ring_mem);
2492 	}
2493 }
2494 
2495 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2496 {
2497 	int i, rc, agg_rings = 0, tpa_rings = 0;
2498 
2499 	if (!bp->rx_ring)
2500 		return -ENOMEM;
2501 
2502 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2503 		agg_rings = 1;
2504 
2505 	if (bp->flags & BNXT_FLAG_TPA)
2506 		tpa_rings = 1;
2507 
2508 	for (i = 0; i < bp->rx_nr_rings; i++) {
2509 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2510 		struct bnxt_ring_struct *ring;
2511 
2512 		ring = &rxr->rx_ring_struct;
2513 
2514 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2515 		if (rc < 0)
2516 			return rc;
2517 
2518 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2519 		if (rc)
2520 			return rc;
2521 
2522 		ring->grp_idx = i;
2523 		if (agg_rings) {
2524 			u16 mem_size;
2525 
2526 			ring = &rxr->rx_agg_ring_struct;
2527 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2528 			if (rc)
2529 				return rc;
2530 
2531 			ring->grp_idx = i;
2532 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2533 			mem_size = rxr->rx_agg_bmap_size / 8;
2534 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2535 			if (!rxr->rx_agg_bmap)
2536 				return -ENOMEM;
2537 
2538 			if (tpa_rings) {
2539 				rxr->rx_tpa = kcalloc(MAX_TPA,
2540 						sizeof(struct bnxt_tpa_info),
2541 						GFP_KERNEL);
2542 				if (!rxr->rx_tpa)
2543 					return -ENOMEM;
2544 			}
2545 		}
2546 	}
2547 	return 0;
2548 }
2549 
2550 static void bnxt_free_tx_rings(struct bnxt *bp)
2551 {
2552 	int i;
2553 	struct pci_dev *pdev = bp->pdev;
2554 
2555 	if (!bp->tx_ring)
2556 		return;
2557 
2558 	for (i = 0; i < bp->tx_nr_rings; i++) {
2559 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2560 		struct bnxt_ring_struct *ring;
2561 
2562 		if (txr->tx_push) {
2563 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2564 					  txr->tx_push, txr->tx_push_mapping);
2565 			txr->tx_push = NULL;
2566 		}
2567 
2568 		ring = &txr->tx_ring_struct;
2569 
2570 		bnxt_free_ring(bp, &ring->ring_mem);
2571 	}
2572 }
2573 
2574 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2575 {
2576 	int i, j, rc;
2577 	struct pci_dev *pdev = bp->pdev;
2578 
2579 	bp->tx_push_size = 0;
2580 	if (bp->tx_push_thresh) {
2581 		int push_size;
2582 
2583 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2584 					bp->tx_push_thresh);
2585 
2586 		if (push_size > 256) {
2587 			push_size = 0;
2588 			bp->tx_push_thresh = 0;
2589 		}
2590 
2591 		bp->tx_push_size = push_size;
2592 	}
2593 
2594 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2595 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2596 		struct bnxt_ring_struct *ring;
2597 		u8 qidx;
2598 
2599 		ring = &txr->tx_ring_struct;
2600 
2601 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2602 		if (rc)
2603 			return rc;
2604 
2605 		ring->grp_idx = txr->bnapi->index;
2606 		if (bp->tx_push_size) {
2607 			dma_addr_t mapping;
2608 
2609 			/* One pre-allocated DMA buffer to backup
2610 			 * TX push operation
2611 			 */
2612 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2613 						bp->tx_push_size,
2614 						&txr->tx_push_mapping,
2615 						GFP_KERNEL);
2616 
2617 			if (!txr->tx_push)
2618 				return -ENOMEM;
2619 
2620 			mapping = txr->tx_push_mapping +
2621 				sizeof(struct tx_push_bd);
2622 			txr->data_mapping = cpu_to_le64(mapping);
2623 
2624 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2625 		}
2626 		qidx = bp->tc_to_qidx[j];
2627 		ring->queue_id = bp->q_info[qidx].queue_id;
2628 		if (i < bp->tx_nr_rings_xdp)
2629 			continue;
2630 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2631 			j++;
2632 	}
2633 	return 0;
2634 }
2635 
2636 static void bnxt_free_cp_rings(struct bnxt *bp)
2637 {
2638 	int i;
2639 
2640 	if (!bp->bnapi)
2641 		return;
2642 
2643 	for (i = 0; i < bp->cp_nr_rings; i++) {
2644 		struct bnxt_napi *bnapi = bp->bnapi[i];
2645 		struct bnxt_cp_ring_info *cpr;
2646 		struct bnxt_ring_struct *ring;
2647 		int j;
2648 
2649 		if (!bnapi)
2650 			continue;
2651 
2652 		cpr = &bnapi->cp_ring;
2653 		ring = &cpr->cp_ring_struct;
2654 
2655 		bnxt_free_ring(bp, &ring->ring_mem);
2656 
2657 		for (j = 0; j < 2; j++) {
2658 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2659 
2660 			if (cpr2) {
2661 				ring = &cpr2->cp_ring_struct;
2662 				bnxt_free_ring(bp, &ring->ring_mem);
2663 				kfree(cpr2);
2664 				cpr->cp_ring_arr[j] = NULL;
2665 			}
2666 		}
2667 	}
2668 }
2669 
2670 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2671 {
2672 	struct bnxt_ring_mem_info *rmem;
2673 	struct bnxt_ring_struct *ring;
2674 	struct bnxt_cp_ring_info *cpr;
2675 	int rc;
2676 
2677 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
2678 	if (!cpr)
2679 		return NULL;
2680 
2681 	ring = &cpr->cp_ring_struct;
2682 	rmem = &ring->ring_mem;
2683 	rmem->nr_pages = bp->cp_nr_pages;
2684 	rmem->page_size = HW_CMPD_RING_SIZE;
2685 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
2686 	rmem->dma_arr = cpr->cp_desc_mapping;
2687 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
2688 	rc = bnxt_alloc_ring(bp, rmem);
2689 	if (rc) {
2690 		bnxt_free_ring(bp, rmem);
2691 		kfree(cpr);
2692 		cpr = NULL;
2693 	}
2694 	return cpr;
2695 }
2696 
2697 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2698 {
2699 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
2700 	int i, rc, ulp_base_vec, ulp_msix;
2701 
2702 	ulp_msix = bnxt_get_ulp_msix_num(bp);
2703 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2704 	for (i = 0; i < bp->cp_nr_rings; i++) {
2705 		struct bnxt_napi *bnapi = bp->bnapi[i];
2706 		struct bnxt_cp_ring_info *cpr;
2707 		struct bnxt_ring_struct *ring;
2708 
2709 		if (!bnapi)
2710 			continue;
2711 
2712 		cpr = &bnapi->cp_ring;
2713 		cpr->bnapi = bnapi;
2714 		ring = &cpr->cp_ring_struct;
2715 
2716 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2717 		if (rc)
2718 			return rc;
2719 
2720 		if (ulp_msix && i >= ulp_base_vec)
2721 			ring->map_idx = i + ulp_msix;
2722 		else
2723 			ring->map_idx = i;
2724 
2725 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2726 			continue;
2727 
2728 		if (i < bp->rx_nr_rings) {
2729 			struct bnxt_cp_ring_info *cpr2 =
2730 				bnxt_alloc_cp_sub_ring(bp);
2731 
2732 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
2733 			if (!cpr2)
2734 				return -ENOMEM;
2735 			cpr2->bnapi = bnapi;
2736 		}
2737 		if ((sh && i < bp->tx_nr_rings) ||
2738 		    (!sh && i >= bp->rx_nr_rings)) {
2739 			struct bnxt_cp_ring_info *cpr2 =
2740 				bnxt_alloc_cp_sub_ring(bp);
2741 
2742 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
2743 			if (!cpr2)
2744 				return -ENOMEM;
2745 			cpr2->bnapi = bnapi;
2746 		}
2747 	}
2748 	return 0;
2749 }
2750 
2751 static void bnxt_init_ring_struct(struct bnxt *bp)
2752 {
2753 	int i;
2754 
2755 	for (i = 0; i < bp->cp_nr_rings; i++) {
2756 		struct bnxt_napi *bnapi = bp->bnapi[i];
2757 		struct bnxt_ring_mem_info *rmem;
2758 		struct bnxt_cp_ring_info *cpr;
2759 		struct bnxt_rx_ring_info *rxr;
2760 		struct bnxt_tx_ring_info *txr;
2761 		struct bnxt_ring_struct *ring;
2762 
2763 		if (!bnapi)
2764 			continue;
2765 
2766 		cpr = &bnapi->cp_ring;
2767 		ring = &cpr->cp_ring_struct;
2768 		rmem = &ring->ring_mem;
2769 		rmem->nr_pages = bp->cp_nr_pages;
2770 		rmem->page_size = HW_CMPD_RING_SIZE;
2771 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
2772 		rmem->dma_arr = cpr->cp_desc_mapping;
2773 		rmem->vmem_size = 0;
2774 
2775 		rxr = bnapi->rx_ring;
2776 		if (!rxr)
2777 			goto skip_rx;
2778 
2779 		ring = &rxr->rx_ring_struct;
2780 		rmem = &ring->ring_mem;
2781 		rmem->nr_pages = bp->rx_nr_pages;
2782 		rmem->page_size = HW_RXBD_RING_SIZE;
2783 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
2784 		rmem->dma_arr = rxr->rx_desc_mapping;
2785 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2786 		rmem->vmem = (void **)&rxr->rx_buf_ring;
2787 
2788 		ring = &rxr->rx_agg_ring_struct;
2789 		rmem = &ring->ring_mem;
2790 		rmem->nr_pages = bp->rx_agg_nr_pages;
2791 		rmem->page_size = HW_RXBD_RING_SIZE;
2792 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
2793 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
2794 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2795 		rmem->vmem = (void **)&rxr->rx_agg_ring;
2796 
2797 skip_rx:
2798 		txr = bnapi->tx_ring;
2799 		if (!txr)
2800 			continue;
2801 
2802 		ring = &txr->tx_ring_struct;
2803 		rmem = &ring->ring_mem;
2804 		rmem->nr_pages = bp->tx_nr_pages;
2805 		rmem->page_size = HW_RXBD_RING_SIZE;
2806 		rmem->pg_arr = (void **)txr->tx_desc_ring;
2807 		rmem->dma_arr = txr->tx_desc_mapping;
2808 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2809 		rmem->vmem = (void **)&txr->tx_buf_ring;
2810 	}
2811 }
2812 
2813 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2814 {
2815 	int i;
2816 	u32 prod;
2817 	struct rx_bd **rx_buf_ring;
2818 
2819 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
2820 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
2821 		int j;
2822 		struct rx_bd *rxbd;
2823 
2824 		rxbd = rx_buf_ring[i];
2825 		if (!rxbd)
2826 			continue;
2827 
2828 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2829 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2830 			rxbd->rx_bd_opaque = prod;
2831 		}
2832 	}
2833 }
2834 
2835 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2836 {
2837 	struct net_device *dev = bp->dev;
2838 	struct bnxt_rx_ring_info *rxr;
2839 	struct bnxt_ring_struct *ring;
2840 	u32 prod, type;
2841 	int i;
2842 
2843 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2844 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2845 
2846 	if (NET_IP_ALIGN == 2)
2847 		type |= RX_BD_FLAGS_SOP;
2848 
2849 	rxr = &bp->rx_ring[ring_nr];
2850 	ring = &rxr->rx_ring_struct;
2851 	bnxt_init_rxbd_pages(ring, type);
2852 
2853 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2854 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2855 		if (IS_ERR(rxr->xdp_prog)) {
2856 			int rc = PTR_ERR(rxr->xdp_prog);
2857 
2858 			rxr->xdp_prog = NULL;
2859 			return rc;
2860 		}
2861 	}
2862 	prod = rxr->rx_prod;
2863 	for (i = 0; i < bp->rx_ring_size; i++) {
2864 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2865 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2866 				    ring_nr, i, bp->rx_ring_size);
2867 			break;
2868 		}
2869 		prod = NEXT_RX(prod);
2870 	}
2871 	rxr->rx_prod = prod;
2872 	ring->fw_ring_id = INVALID_HW_RING_ID;
2873 
2874 	ring = &rxr->rx_agg_ring_struct;
2875 	ring->fw_ring_id = INVALID_HW_RING_ID;
2876 
2877 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2878 		return 0;
2879 
2880 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2881 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2882 
2883 	bnxt_init_rxbd_pages(ring, type);
2884 
2885 	prod = rxr->rx_agg_prod;
2886 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2887 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2888 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2889 				    ring_nr, i, bp->rx_ring_size);
2890 			break;
2891 		}
2892 		prod = NEXT_RX_AGG(prod);
2893 	}
2894 	rxr->rx_agg_prod = prod;
2895 
2896 	if (bp->flags & BNXT_FLAG_TPA) {
2897 		if (rxr->rx_tpa) {
2898 			u8 *data;
2899 			dma_addr_t mapping;
2900 
2901 			for (i = 0; i < MAX_TPA; i++) {
2902 				data = __bnxt_alloc_rx_data(bp, &mapping,
2903 							    GFP_KERNEL);
2904 				if (!data)
2905 					return -ENOMEM;
2906 
2907 				rxr->rx_tpa[i].data = data;
2908 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2909 				rxr->rx_tpa[i].mapping = mapping;
2910 			}
2911 		} else {
2912 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2913 			return -ENOMEM;
2914 		}
2915 	}
2916 
2917 	return 0;
2918 }
2919 
2920 static void bnxt_init_cp_rings(struct bnxt *bp)
2921 {
2922 	int i, j;
2923 
2924 	for (i = 0; i < bp->cp_nr_rings; i++) {
2925 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2926 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2927 
2928 		ring->fw_ring_id = INVALID_HW_RING_ID;
2929 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2930 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2931 		for (j = 0; j < 2; j++) {
2932 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2933 
2934 			if (!cpr2)
2935 				continue;
2936 
2937 			ring = &cpr2->cp_ring_struct;
2938 			ring->fw_ring_id = INVALID_HW_RING_ID;
2939 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2940 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2941 		}
2942 	}
2943 }
2944 
2945 static int bnxt_init_rx_rings(struct bnxt *bp)
2946 {
2947 	int i, rc = 0;
2948 
2949 	if (BNXT_RX_PAGE_MODE(bp)) {
2950 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2951 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2952 	} else {
2953 		bp->rx_offset = BNXT_RX_OFFSET;
2954 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2955 	}
2956 
2957 	for (i = 0; i < bp->rx_nr_rings; i++) {
2958 		rc = bnxt_init_one_rx_ring(bp, i);
2959 		if (rc)
2960 			break;
2961 	}
2962 
2963 	return rc;
2964 }
2965 
2966 static int bnxt_init_tx_rings(struct bnxt *bp)
2967 {
2968 	u16 i;
2969 
2970 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2971 				   MAX_SKB_FRAGS + 1);
2972 
2973 	for (i = 0; i < bp->tx_nr_rings; i++) {
2974 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2975 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2976 
2977 		ring->fw_ring_id = INVALID_HW_RING_ID;
2978 	}
2979 
2980 	return 0;
2981 }
2982 
2983 static void bnxt_free_ring_grps(struct bnxt *bp)
2984 {
2985 	kfree(bp->grp_info);
2986 	bp->grp_info = NULL;
2987 }
2988 
2989 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2990 {
2991 	int i;
2992 
2993 	if (irq_re_init) {
2994 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2995 				       sizeof(struct bnxt_ring_grp_info),
2996 				       GFP_KERNEL);
2997 		if (!bp->grp_info)
2998 			return -ENOMEM;
2999 	}
3000 	for (i = 0; i < bp->cp_nr_rings; i++) {
3001 		if (irq_re_init)
3002 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3003 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3004 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3005 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3006 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3007 	}
3008 	return 0;
3009 }
3010 
3011 static void bnxt_free_vnics(struct bnxt *bp)
3012 {
3013 	kfree(bp->vnic_info);
3014 	bp->vnic_info = NULL;
3015 	bp->nr_vnics = 0;
3016 }
3017 
3018 static int bnxt_alloc_vnics(struct bnxt *bp)
3019 {
3020 	int num_vnics = 1;
3021 
3022 #ifdef CONFIG_RFS_ACCEL
3023 	if (bp->flags & BNXT_FLAG_RFS)
3024 		num_vnics += bp->rx_nr_rings;
3025 #endif
3026 
3027 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3028 		num_vnics++;
3029 
3030 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3031 				GFP_KERNEL);
3032 	if (!bp->vnic_info)
3033 		return -ENOMEM;
3034 
3035 	bp->nr_vnics = num_vnics;
3036 	return 0;
3037 }
3038 
3039 static void bnxt_init_vnics(struct bnxt *bp)
3040 {
3041 	int i;
3042 
3043 	for (i = 0; i < bp->nr_vnics; i++) {
3044 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3045 		int j;
3046 
3047 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3048 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3049 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3050 
3051 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3052 
3053 		if (bp->vnic_info[i].rss_hash_key) {
3054 			if (i == 0)
3055 				prandom_bytes(vnic->rss_hash_key,
3056 					      HW_HASH_KEY_SIZE);
3057 			else
3058 				memcpy(vnic->rss_hash_key,
3059 				       bp->vnic_info[0].rss_hash_key,
3060 				       HW_HASH_KEY_SIZE);
3061 		}
3062 	}
3063 }
3064 
3065 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3066 {
3067 	int pages;
3068 
3069 	pages = ring_size / desc_per_pg;
3070 
3071 	if (!pages)
3072 		return 1;
3073 
3074 	pages++;
3075 
3076 	while (pages & (pages - 1))
3077 		pages++;
3078 
3079 	return pages;
3080 }
3081 
3082 void bnxt_set_tpa_flags(struct bnxt *bp)
3083 {
3084 	bp->flags &= ~BNXT_FLAG_TPA;
3085 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3086 		return;
3087 	if (bp->dev->features & NETIF_F_LRO)
3088 		bp->flags |= BNXT_FLAG_LRO;
3089 	else if (bp->dev->features & NETIF_F_GRO_HW)
3090 		bp->flags |= BNXT_FLAG_GRO;
3091 }
3092 
3093 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3094  * be set on entry.
3095  */
3096 void bnxt_set_ring_params(struct bnxt *bp)
3097 {
3098 	u32 ring_size, rx_size, rx_space;
3099 	u32 agg_factor = 0, agg_ring_size = 0;
3100 
3101 	/* 8 for CRC and VLAN */
3102 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3103 
3104 	rx_space = rx_size + NET_SKB_PAD +
3105 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3106 
3107 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3108 	ring_size = bp->rx_ring_size;
3109 	bp->rx_agg_ring_size = 0;
3110 	bp->rx_agg_nr_pages = 0;
3111 
3112 	if (bp->flags & BNXT_FLAG_TPA)
3113 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3114 
3115 	bp->flags &= ~BNXT_FLAG_JUMBO;
3116 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3117 		u32 jumbo_factor;
3118 
3119 		bp->flags |= BNXT_FLAG_JUMBO;
3120 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3121 		if (jumbo_factor > agg_factor)
3122 			agg_factor = jumbo_factor;
3123 	}
3124 	agg_ring_size = ring_size * agg_factor;
3125 
3126 	if (agg_ring_size) {
3127 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3128 							RX_DESC_CNT);
3129 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3130 			u32 tmp = agg_ring_size;
3131 
3132 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3133 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3134 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3135 				    tmp, agg_ring_size);
3136 		}
3137 		bp->rx_agg_ring_size = agg_ring_size;
3138 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3139 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3140 		rx_space = rx_size + NET_SKB_PAD +
3141 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3142 	}
3143 
3144 	bp->rx_buf_use_size = rx_size;
3145 	bp->rx_buf_size = rx_space;
3146 
3147 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3148 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3149 
3150 	ring_size = bp->tx_ring_size;
3151 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3152 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3153 
3154 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
3155 	bp->cp_ring_size = ring_size;
3156 
3157 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3158 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3159 		bp->cp_nr_pages = MAX_CP_PAGES;
3160 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3161 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3162 			    ring_size, bp->cp_ring_size);
3163 	}
3164 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3165 	bp->cp_ring_mask = bp->cp_bit - 1;
3166 }
3167 
3168 /* Changing allocation mode of RX rings.
3169  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3170  */
3171 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3172 {
3173 	if (page_mode) {
3174 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3175 			return -EOPNOTSUPP;
3176 		bp->dev->max_mtu =
3177 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3178 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3179 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3180 		bp->rx_dir = DMA_BIDIRECTIONAL;
3181 		bp->rx_skb_func = bnxt_rx_page_skb;
3182 		/* Disable LRO or GRO_HW */
3183 		netdev_update_features(bp->dev);
3184 	} else {
3185 		bp->dev->max_mtu = bp->max_mtu;
3186 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3187 		bp->rx_dir = DMA_FROM_DEVICE;
3188 		bp->rx_skb_func = bnxt_rx_skb;
3189 	}
3190 	return 0;
3191 }
3192 
3193 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3194 {
3195 	int i;
3196 	struct bnxt_vnic_info *vnic;
3197 	struct pci_dev *pdev = bp->pdev;
3198 
3199 	if (!bp->vnic_info)
3200 		return;
3201 
3202 	for (i = 0; i < bp->nr_vnics; i++) {
3203 		vnic = &bp->vnic_info[i];
3204 
3205 		kfree(vnic->fw_grp_ids);
3206 		vnic->fw_grp_ids = NULL;
3207 
3208 		kfree(vnic->uc_list);
3209 		vnic->uc_list = NULL;
3210 
3211 		if (vnic->mc_list) {
3212 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3213 					  vnic->mc_list, vnic->mc_list_mapping);
3214 			vnic->mc_list = NULL;
3215 		}
3216 
3217 		if (vnic->rss_table) {
3218 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
3219 					  vnic->rss_table,
3220 					  vnic->rss_table_dma_addr);
3221 			vnic->rss_table = NULL;
3222 		}
3223 
3224 		vnic->rss_hash_key = NULL;
3225 		vnic->flags = 0;
3226 	}
3227 }
3228 
3229 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3230 {
3231 	int i, rc = 0, size;
3232 	struct bnxt_vnic_info *vnic;
3233 	struct pci_dev *pdev = bp->pdev;
3234 	int max_rings;
3235 
3236 	for (i = 0; i < bp->nr_vnics; i++) {
3237 		vnic = &bp->vnic_info[i];
3238 
3239 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3240 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3241 
3242 			if (mem_size > 0) {
3243 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3244 				if (!vnic->uc_list) {
3245 					rc = -ENOMEM;
3246 					goto out;
3247 				}
3248 			}
3249 		}
3250 
3251 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3252 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3253 			vnic->mc_list =
3254 				dma_alloc_coherent(&pdev->dev,
3255 						   vnic->mc_list_size,
3256 						   &vnic->mc_list_mapping,
3257 						   GFP_KERNEL);
3258 			if (!vnic->mc_list) {
3259 				rc = -ENOMEM;
3260 				goto out;
3261 			}
3262 		}
3263 
3264 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3265 			goto vnic_skip_grps;
3266 
3267 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3268 			max_rings = bp->rx_nr_rings;
3269 		else
3270 			max_rings = 1;
3271 
3272 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3273 		if (!vnic->fw_grp_ids) {
3274 			rc = -ENOMEM;
3275 			goto out;
3276 		}
3277 vnic_skip_grps:
3278 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3279 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3280 			continue;
3281 
3282 		/* Allocate rss table and hash key */
3283 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3284 						     &vnic->rss_table_dma_addr,
3285 						     GFP_KERNEL);
3286 		if (!vnic->rss_table) {
3287 			rc = -ENOMEM;
3288 			goto out;
3289 		}
3290 
3291 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3292 
3293 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3294 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3295 	}
3296 	return 0;
3297 
3298 out:
3299 	return rc;
3300 }
3301 
3302 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3303 {
3304 	struct pci_dev *pdev = bp->pdev;
3305 
3306 	if (bp->hwrm_cmd_resp_addr) {
3307 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3308 				  bp->hwrm_cmd_resp_dma_addr);
3309 		bp->hwrm_cmd_resp_addr = NULL;
3310 	}
3311 
3312 	if (bp->hwrm_cmd_kong_resp_addr) {
3313 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3314 				  bp->hwrm_cmd_kong_resp_addr,
3315 				  bp->hwrm_cmd_kong_resp_dma_addr);
3316 		bp->hwrm_cmd_kong_resp_addr = NULL;
3317 	}
3318 }
3319 
3320 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3321 {
3322 	struct pci_dev *pdev = bp->pdev;
3323 
3324 	bp->hwrm_cmd_kong_resp_addr =
3325 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3326 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3327 				   GFP_KERNEL);
3328 	if (!bp->hwrm_cmd_kong_resp_addr)
3329 		return -ENOMEM;
3330 
3331 	return 0;
3332 }
3333 
3334 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3335 {
3336 	struct pci_dev *pdev = bp->pdev;
3337 
3338 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3339 						   &bp->hwrm_cmd_resp_dma_addr,
3340 						   GFP_KERNEL);
3341 	if (!bp->hwrm_cmd_resp_addr)
3342 		return -ENOMEM;
3343 
3344 	return 0;
3345 }
3346 
3347 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3348 {
3349 	if (bp->hwrm_short_cmd_req_addr) {
3350 		struct pci_dev *pdev = bp->pdev;
3351 
3352 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3353 				  bp->hwrm_short_cmd_req_addr,
3354 				  bp->hwrm_short_cmd_req_dma_addr);
3355 		bp->hwrm_short_cmd_req_addr = NULL;
3356 	}
3357 }
3358 
3359 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3360 {
3361 	struct pci_dev *pdev = bp->pdev;
3362 
3363 	bp->hwrm_short_cmd_req_addr =
3364 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3365 				   &bp->hwrm_short_cmd_req_dma_addr,
3366 				   GFP_KERNEL);
3367 	if (!bp->hwrm_short_cmd_req_addr)
3368 		return -ENOMEM;
3369 
3370 	return 0;
3371 }
3372 
3373 static void bnxt_free_port_stats(struct bnxt *bp)
3374 {
3375 	struct pci_dev *pdev = bp->pdev;
3376 
3377 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3378 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3379 
3380 	if (bp->hw_rx_port_stats) {
3381 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3382 				  bp->hw_rx_port_stats,
3383 				  bp->hw_rx_port_stats_map);
3384 		bp->hw_rx_port_stats = NULL;
3385 	}
3386 
3387 	if (bp->hw_tx_port_stats_ext) {
3388 		dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3389 				  bp->hw_tx_port_stats_ext,
3390 				  bp->hw_tx_port_stats_ext_map);
3391 		bp->hw_tx_port_stats_ext = NULL;
3392 	}
3393 
3394 	if (bp->hw_rx_port_stats_ext) {
3395 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3396 				  bp->hw_rx_port_stats_ext,
3397 				  bp->hw_rx_port_stats_ext_map);
3398 		bp->hw_rx_port_stats_ext = NULL;
3399 	}
3400 
3401 	if (bp->hw_pcie_stats) {
3402 		dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3403 				  bp->hw_pcie_stats, bp->hw_pcie_stats_map);
3404 		bp->hw_pcie_stats = NULL;
3405 	}
3406 }
3407 
3408 static void bnxt_free_ring_stats(struct bnxt *bp)
3409 {
3410 	struct pci_dev *pdev = bp->pdev;
3411 	int size, i;
3412 
3413 	if (!bp->bnapi)
3414 		return;
3415 
3416 	size = sizeof(struct ctx_hw_stats);
3417 
3418 	for (i = 0; i < bp->cp_nr_rings; i++) {
3419 		struct bnxt_napi *bnapi = bp->bnapi[i];
3420 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3421 
3422 		if (cpr->hw_stats) {
3423 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3424 					  cpr->hw_stats_map);
3425 			cpr->hw_stats = NULL;
3426 		}
3427 	}
3428 }
3429 
3430 static int bnxt_alloc_stats(struct bnxt *bp)
3431 {
3432 	u32 size, i;
3433 	struct pci_dev *pdev = bp->pdev;
3434 
3435 	size = sizeof(struct ctx_hw_stats);
3436 
3437 	for (i = 0; i < bp->cp_nr_rings; i++) {
3438 		struct bnxt_napi *bnapi = bp->bnapi[i];
3439 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3440 
3441 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3442 						   &cpr->hw_stats_map,
3443 						   GFP_KERNEL);
3444 		if (!cpr->hw_stats)
3445 			return -ENOMEM;
3446 
3447 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3448 	}
3449 
3450 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3451 		return 0;
3452 
3453 	if (bp->hw_rx_port_stats)
3454 		goto alloc_ext_stats;
3455 
3456 	bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3457 				 sizeof(struct tx_port_stats) + 1024;
3458 
3459 	bp->hw_rx_port_stats =
3460 		dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3461 				   &bp->hw_rx_port_stats_map,
3462 				   GFP_KERNEL);
3463 	if (!bp->hw_rx_port_stats)
3464 		return -ENOMEM;
3465 
3466 	bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512;
3467 	bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3468 				   sizeof(struct rx_port_stats) + 512;
3469 	bp->flags |= BNXT_FLAG_PORT_STATS;
3470 
3471 alloc_ext_stats:
3472 	/* Display extended statistics only if FW supports it */
3473 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3474 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3475 			return 0;
3476 
3477 	if (bp->hw_rx_port_stats_ext)
3478 		goto alloc_tx_ext_stats;
3479 
3480 	bp->hw_rx_port_stats_ext =
3481 		dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3482 				   &bp->hw_rx_port_stats_ext_map, GFP_KERNEL);
3483 	if (!bp->hw_rx_port_stats_ext)
3484 		return 0;
3485 
3486 alloc_tx_ext_stats:
3487 	if (bp->hw_tx_port_stats_ext)
3488 		goto alloc_pcie_stats;
3489 
3490 	if (bp->hwrm_spec_code >= 0x10902 ||
3491 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3492 		bp->hw_tx_port_stats_ext =
3493 			dma_alloc_coherent(&pdev->dev,
3494 					   sizeof(struct tx_port_stats_ext),
3495 					   &bp->hw_tx_port_stats_ext_map,
3496 					   GFP_KERNEL);
3497 	}
3498 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3499 
3500 alloc_pcie_stats:
3501 	if (bp->hw_pcie_stats ||
3502 	    !(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED))
3503 		return 0;
3504 
3505 	bp->hw_pcie_stats =
3506 		dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3507 				   &bp->hw_pcie_stats_map, GFP_KERNEL);
3508 	if (!bp->hw_pcie_stats)
3509 		return 0;
3510 
3511 	bp->flags |= BNXT_FLAG_PCIE_STATS;
3512 	return 0;
3513 }
3514 
3515 static void bnxt_clear_ring_indices(struct bnxt *bp)
3516 {
3517 	int i;
3518 
3519 	if (!bp->bnapi)
3520 		return;
3521 
3522 	for (i = 0; i < bp->cp_nr_rings; i++) {
3523 		struct bnxt_napi *bnapi = bp->bnapi[i];
3524 		struct bnxt_cp_ring_info *cpr;
3525 		struct bnxt_rx_ring_info *rxr;
3526 		struct bnxt_tx_ring_info *txr;
3527 
3528 		if (!bnapi)
3529 			continue;
3530 
3531 		cpr = &bnapi->cp_ring;
3532 		cpr->cp_raw_cons = 0;
3533 
3534 		txr = bnapi->tx_ring;
3535 		if (txr) {
3536 			txr->tx_prod = 0;
3537 			txr->tx_cons = 0;
3538 		}
3539 
3540 		rxr = bnapi->rx_ring;
3541 		if (rxr) {
3542 			rxr->rx_prod = 0;
3543 			rxr->rx_agg_prod = 0;
3544 			rxr->rx_sw_agg_prod = 0;
3545 			rxr->rx_next_cons = 0;
3546 		}
3547 	}
3548 }
3549 
3550 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3551 {
3552 #ifdef CONFIG_RFS_ACCEL
3553 	int i;
3554 
3555 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3556 	 * safe to delete the hash table.
3557 	 */
3558 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3559 		struct hlist_head *head;
3560 		struct hlist_node *tmp;
3561 		struct bnxt_ntuple_filter *fltr;
3562 
3563 		head = &bp->ntp_fltr_hash_tbl[i];
3564 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3565 			hlist_del(&fltr->hash);
3566 			kfree(fltr);
3567 		}
3568 	}
3569 	if (irq_reinit) {
3570 		kfree(bp->ntp_fltr_bmap);
3571 		bp->ntp_fltr_bmap = NULL;
3572 	}
3573 	bp->ntp_fltr_count = 0;
3574 #endif
3575 }
3576 
3577 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3578 {
3579 #ifdef CONFIG_RFS_ACCEL
3580 	int i, rc = 0;
3581 
3582 	if (!(bp->flags & BNXT_FLAG_RFS))
3583 		return 0;
3584 
3585 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3586 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3587 
3588 	bp->ntp_fltr_count = 0;
3589 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3590 				    sizeof(long),
3591 				    GFP_KERNEL);
3592 
3593 	if (!bp->ntp_fltr_bmap)
3594 		rc = -ENOMEM;
3595 
3596 	return rc;
3597 #else
3598 	return 0;
3599 #endif
3600 }
3601 
3602 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3603 {
3604 	bnxt_free_vnic_attributes(bp);
3605 	bnxt_free_tx_rings(bp);
3606 	bnxt_free_rx_rings(bp);
3607 	bnxt_free_cp_rings(bp);
3608 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3609 	if (irq_re_init) {
3610 		bnxt_free_ring_stats(bp);
3611 		bnxt_free_ring_grps(bp);
3612 		bnxt_free_vnics(bp);
3613 		kfree(bp->tx_ring_map);
3614 		bp->tx_ring_map = NULL;
3615 		kfree(bp->tx_ring);
3616 		bp->tx_ring = NULL;
3617 		kfree(bp->rx_ring);
3618 		bp->rx_ring = NULL;
3619 		kfree(bp->bnapi);
3620 		bp->bnapi = NULL;
3621 	} else {
3622 		bnxt_clear_ring_indices(bp);
3623 	}
3624 }
3625 
3626 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3627 {
3628 	int i, j, rc, size, arr_size;
3629 	void *bnapi;
3630 
3631 	if (irq_re_init) {
3632 		/* Allocate bnapi mem pointer array and mem block for
3633 		 * all queues
3634 		 */
3635 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3636 				bp->cp_nr_rings);
3637 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3638 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3639 		if (!bnapi)
3640 			return -ENOMEM;
3641 
3642 		bp->bnapi = bnapi;
3643 		bnapi += arr_size;
3644 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3645 			bp->bnapi[i] = bnapi;
3646 			bp->bnapi[i]->index = i;
3647 			bp->bnapi[i]->bp = bp;
3648 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3649 				struct bnxt_cp_ring_info *cpr =
3650 					&bp->bnapi[i]->cp_ring;
3651 
3652 				cpr->cp_ring_struct.ring_mem.flags =
3653 					BNXT_RMEM_RING_PTE_FLAG;
3654 			}
3655 		}
3656 
3657 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3658 				      sizeof(struct bnxt_rx_ring_info),
3659 				      GFP_KERNEL);
3660 		if (!bp->rx_ring)
3661 			return -ENOMEM;
3662 
3663 		for (i = 0; i < bp->rx_nr_rings; i++) {
3664 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3665 
3666 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3667 				rxr->rx_ring_struct.ring_mem.flags =
3668 					BNXT_RMEM_RING_PTE_FLAG;
3669 				rxr->rx_agg_ring_struct.ring_mem.flags =
3670 					BNXT_RMEM_RING_PTE_FLAG;
3671 			}
3672 			rxr->bnapi = bp->bnapi[i];
3673 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3674 		}
3675 
3676 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3677 				      sizeof(struct bnxt_tx_ring_info),
3678 				      GFP_KERNEL);
3679 		if (!bp->tx_ring)
3680 			return -ENOMEM;
3681 
3682 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3683 					  GFP_KERNEL);
3684 
3685 		if (!bp->tx_ring_map)
3686 			return -ENOMEM;
3687 
3688 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3689 			j = 0;
3690 		else
3691 			j = bp->rx_nr_rings;
3692 
3693 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3694 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3695 
3696 			if (bp->flags & BNXT_FLAG_CHIP_P5)
3697 				txr->tx_ring_struct.ring_mem.flags =
3698 					BNXT_RMEM_RING_PTE_FLAG;
3699 			txr->bnapi = bp->bnapi[j];
3700 			bp->bnapi[j]->tx_ring = txr;
3701 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3702 			if (i >= bp->tx_nr_rings_xdp) {
3703 				txr->txq_index = i - bp->tx_nr_rings_xdp;
3704 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3705 			} else {
3706 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3707 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3708 			}
3709 		}
3710 
3711 		rc = bnxt_alloc_stats(bp);
3712 		if (rc)
3713 			goto alloc_mem_err;
3714 
3715 		rc = bnxt_alloc_ntp_fltrs(bp);
3716 		if (rc)
3717 			goto alloc_mem_err;
3718 
3719 		rc = bnxt_alloc_vnics(bp);
3720 		if (rc)
3721 			goto alloc_mem_err;
3722 	}
3723 
3724 	bnxt_init_ring_struct(bp);
3725 
3726 	rc = bnxt_alloc_rx_rings(bp);
3727 	if (rc)
3728 		goto alloc_mem_err;
3729 
3730 	rc = bnxt_alloc_tx_rings(bp);
3731 	if (rc)
3732 		goto alloc_mem_err;
3733 
3734 	rc = bnxt_alloc_cp_rings(bp);
3735 	if (rc)
3736 		goto alloc_mem_err;
3737 
3738 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3739 				  BNXT_VNIC_UCAST_FLAG;
3740 	rc = bnxt_alloc_vnic_attributes(bp);
3741 	if (rc)
3742 		goto alloc_mem_err;
3743 	return 0;
3744 
3745 alloc_mem_err:
3746 	bnxt_free_mem(bp, true);
3747 	return rc;
3748 }
3749 
3750 static void bnxt_disable_int(struct bnxt *bp)
3751 {
3752 	int i;
3753 
3754 	if (!bp->bnapi)
3755 		return;
3756 
3757 	for (i = 0; i < bp->cp_nr_rings; i++) {
3758 		struct bnxt_napi *bnapi = bp->bnapi[i];
3759 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3760 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3761 
3762 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3763 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
3764 	}
3765 }
3766 
3767 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3768 {
3769 	struct bnxt_napi *bnapi = bp->bnapi[n];
3770 	struct bnxt_cp_ring_info *cpr;
3771 
3772 	cpr = &bnapi->cp_ring;
3773 	return cpr->cp_ring_struct.map_idx;
3774 }
3775 
3776 static void bnxt_disable_int_sync(struct bnxt *bp)
3777 {
3778 	int i;
3779 
3780 	atomic_inc(&bp->intr_sem);
3781 
3782 	bnxt_disable_int(bp);
3783 	for (i = 0; i < bp->cp_nr_rings; i++) {
3784 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3785 
3786 		synchronize_irq(bp->irq_tbl[map_idx].vector);
3787 	}
3788 }
3789 
3790 static void bnxt_enable_int(struct bnxt *bp)
3791 {
3792 	int i;
3793 
3794 	atomic_set(&bp->intr_sem, 0);
3795 	for (i = 0; i < bp->cp_nr_rings; i++) {
3796 		struct bnxt_napi *bnapi = bp->bnapi[i];
3797 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3798 
3799 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
3800 	}
3801 }
3802 
3803 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3804 			    u16 cmpl_ring, u16 target_id)
3805 {
3806 	struct input *req = request;
3807 
3808 	req->req_type = cpu_to_le16(req_type);
3809 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3810 	req->target_id = cpu_to_le16(target_id);
3811 	if (bnxt_kong_hwrm_message(bp, req))
3812 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
3813 	else
3814 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3815 }
3816 
3817 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3818 				 int timeout, bool silent)
3819 {
3820 	int i, intr_process, rc, tmo_count;
3821 	struct input *req = msg;
3822 	u32 *data = msg;
3823 	__le32 *resp_len;
3824 	u8 *valid;
3825 	u16 cp_ring_id, len = 0;
3826 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3827 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3828 	struct hwrm_short_input short_input = {0};
3829 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
3830 	u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
3831 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
3832 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
3833 
3834 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3835 		if (msg_len > bp->hwrm_max_ext_req_len ||
3836 		    !bp->hwrm_short_cmd_req_addr)
3837 			return -EINVAL;
3838 	}
3839 
3840 	if (bnxt_hwrm_kong_chnl(bp, req)) {
3841 		dst = BNXT_HWRM_CHNL_KONG;
3842 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
3843 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
3844 		resp = bp->hwrm_cmd_kong_resp_addr;
3845 		resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
3846 	}
3847 
3848 	memset(resp, 0, PAGE_SIZE);
3849 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3850 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3851 
3852 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
3853 	/* currently supports only one outstanding message */
3854 	if (intr_process)
3855 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3856 
3857 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
3858 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3859 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3860 		u16 max_msg_len;
3861 
3862 		/* Set boundary for maximum extended request length for short
3863 		 * cmd format. If passed up from device use the max supported
3864 		 * internal req length.
3865 		 */
3866 		max_msg_len = bp->hwrm_max_ext_req_len;
3867 
3868 		memcpy(short_cmd_req, req, msg_len);
3869 		if (msg_len < max_msg_len)
3870 			memset(short_cmd_req + msg_len, 0,
3871 			       max_msg_len - msg_len);
3872 
3873 		short_input.req_type = req->req_type;
3874 		short_input.signature =
3875 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3876 		short_input.size = cpu_to_le16(msg_len);
3877 		short_input.req_addr =
3878 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3879 
3880 		data = (u32 *)&short_input;
3881 		msg_len = sizeof(short_input);
3882 
3883 		/* Sync memory write before updating doorbell */
3884 		wmb();
3885 
3886 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3887 	}
3888 
3889 	/* Write request msg to hwrm channel */
3890 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
3891 
3892 	for (i = msg_len; i < max_req_len; i += 4)
3893 		writel(0, bp->bar0 + bar_offset + i);
3894 
3895 	/* Ring channel doorbell */
3896 	writel(1, bp->bar0 + doorbell_offset);
3897 
3898 	if (!timeout)
3899 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3900 	/* convert timeout to usec */
3901 	timeout *= 1000;
3902 
3903 	i = 0;
3904 	/* Short timeout for the first few iterations:
3905 	 * number of loops = number of loops for short timeout +
3906 	 * number of loops for standard timeout.
3907 	 */
3908 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3909 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3910 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3911 	resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
3912 
3913 	if (intr_process) {
3914 		u16 seq_id = bp->hwrm_intr_seq_id;
3915 
3916 		/* Wait until hwrm response cmpl interrupt is processed */
3917 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
3918 		       i++ < tmo_count) {
3919 			/* on first few passes, just barely sleep */
3920 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3921 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3922 					     HWRM_SHORT_MAX_TIMEOUT);
3923 			else
3924 				usleep_range(HWRM_MIN_TIMEOUT,
3925 					     HWRM_MAX_TIMEOUT);
3926 		}
3927 
3928 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
3929 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3930 				   le16_to_cpu(req->req_type));
3931 			return -1;
3932 		}
3933 		len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3934 		      HWRM_RESP_LEN_SFT;
3935 		valid = resp_addr + len - 1;
3936 	} else {
3937 		int j;
3938 
3939 		/* Check if response len is updated */
3940 		for (i = 0; i < tmo_count; i++) {
3941 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3942 			      HWRM_RESP_LEN_SFT;
3943 			if (len)
3944 				break;
3945 			/* on first few passes, just barely sleep */
3946 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3947 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3948 					     HWRM_SHORT_MAX_TIMEOUT);
3949 			else
3950 				usleep_range(HWRM_MIN_TIMEOUT,
3951 					     HWRM_MAX_TIMEOUT);
3952 		}
3953 
3954 		if (i >= tmo_count) {
3955 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3956 				   HWRM_TOTAL_TIMEOUT(i),
3957 				   le16_to_cpu(req->req_type),
3958 				   le16_to_cpu(req->seq_id), len);
3959 			return -1;
3960 		}
3961 
3962 		/* Last byte of resp contains valid bit */
3963 		valid = resp_addr + len - 1;
3964 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
3965 			/* make sure we read from updated DMA memory */
3966 			dma_rmb();
3967 			if (*valid)
3968 				break;
3969 			usleep_range(1, 5);
3970 		}
3971 
3972 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
3973 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3974 				   HWRM_TOTAL_TIMEOUT(i),
3975 				   le16_to_cpu(req->req_type),
3976 				   le16_to_cpu(req->seq_id), len, *valid);
3977 			return -1;
3978 		}
3979 	}
3980 
3981 	/* Zero valid bit for compatibility.  Valid bit in an older spec
3982 	 * may become a new field in a newer spec.  We must make sure that
3983 	 * a new field not implemented by old spec will read zero.
3984 	 */
3985 	*valid = 0;
3986 	rc = le16_to_cpu(resp->error_code);
3987 	if (rc && !silent)
3988 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3989 			   le16_to_cpu(resp->req_type),
3990 			   le16_to_cpu(resp->seq_id), rc);
3991 	return rc;
3992 }
3993 
3994 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3995 {
3996 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3997 }
3998 
3999 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4000 			      int timeout)
4001 {
4002 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4003 }
4004 
4005 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4006 {
4007 	int rc;
4008 
4009 	mutex_lock(&bp->hwrm_cmd_lock);
4010 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4011 	mutex_unlock(&bp->hwrm_cmd_lock);
4012 	return rc;
4013 }
4014 
4015 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4016 			     int timeout)
4017 {
4018 	int rc;
4019 
4020 	mutex_lock(&bp->hwrm_cmd_lock);
4021 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4022 	mutex_unlock(&bp->hwrm_cmd_lock);
4023 	return rc;
4024 }
4025 
4026 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
4027 				     int bmap_size)
4028 {
4029 	struct hwrm_func_drv_rgtr_input req = {0};
4030 	DECLARE_BITMAP(async_events_bmap, 256);
4031 	u32 *events = (u32 *)async_events_bmap;
4032 	int i;
4033 
4034 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4035 
4036 	req.enables =
4037 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4038 
4039 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4040 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
4041 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4042 
4043 	if (bmap && bmap_size) {
4044 		for (i = 0; i < bmap_size; i++) {
4045 			if (test_bit(i, bmap))
4046 				__set_bit(i, async_events_bmap);
4047 		}
4048 	}
4049 
4050 	for (i = 0; i < 8; i++)
4051 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4052 
4053 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4054 }
4055 
4056 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
4057 {
4058 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4059 	struct hwrm_func_drv_rgtr_input req = {0};
4060 	int rc;
4061 
4062 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4063 
4064 	req.enables =
4065 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4066 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
4067 
4068 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4069 	req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
4070 	req.ver_maj_8b = DRV_VER_MAJ;
4071 	req.ver_min_8b = DRV_VER_MIN;
4072 	req.ver_upd_8b = DRV_VER_UPD;
4073 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4074 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4075 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4076 
4077 	if (BNXT_PF(bp)) {
4078 		u32 data[8];
4079 		int i;
4080 
4081 		memset(data, 0, sizeof(data));
4082 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4083 			u16 cmd = bnxt_vf_req_snif[i];
4084 			unsigned int bit, idx;
4085 
4086 			idx = cmd / 32;
4087 			bit = cmd % 32;
4088 			data[idx] |= 1 << bit;
4089 		}
4090 
4091 		for (i = 0; i < 8; i++)
4092 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4093 
4094 		req.enables |=
4095 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4096 	}
4097 
4098 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4099 		req.flags |= cpu_to_le32(
4100 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4101 
4102 	mutex_lock(&bp->hwrm_cmd_lock);
4103 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4104 	if (rc)
4105 		rc = -EIO;
4106 	else if (resp->flags &
4107 		 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4108 		bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4109 	mutex_unlock(&bp->hwrm_cmd_lock);
4110 	return rc;
4111 }
4112 
4113 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4114 {
4115 	struct hwrm_func_drv_unrgtr_input req = {0};
4116 
4117 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4118 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4119 }
4120 
4121 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4122 {
4123 	u32 rc = 0;
4124 	struct hwrm_tunnel_dst_port_free_input req = {0};
4125 
4126 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4127 	req.tunnel_type = tunnel_type;
4128 
4129 	switch (tunnel_type) {
4130 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4131 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4132 		break;
4133 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4134 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4135 		break;
4136 	default:
4137 		break;
4138 	}
4139 
4140 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4141 	if (rc)
4142 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4143 			   rc);
4144 	return rc;
4145 }
4146 
4147 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4148 					   u8 tunnel_type)
4149 {
4150 	u32 rc = 0;
4151 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4152 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4153 
4154 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4155 
4156 	req.tunnel_type = tunnel_type;
4157 	req.tunnel_dst_port_val = port;
4158 
4159 	mutex_lock(&bp->hwrm_cmd_lock);
4160 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4161 	if (rc) {
4162 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4163 			   rc);
4164 		goto err_out;
4165 	}
4166 
4167 	switch (tunnel_type) {
4168 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4169 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4170 		break;
4171 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4172 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4173 		break;
4174 	default:
4175 		break;
4176 	}
4177 
4178 err_out:
4179 	mutex_unlock(&bp->hwrm_cmd_lock);
4180 	return rc;
4181 }
4182 
4183 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4184 {
4185 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4186 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4187 
4188 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4189 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4190 
4191 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4192 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4193 	req.mask = cpu_to_le32(vnic->rx_mask);
4194 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4195 }
4196 
4197 #ifdef CONFIG_RFS_ACCEL
4198 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4199 					    struct bnxt_ntuple_filter *fltr)
4200 {
4201 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4202 
4203 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4204 	req.ntuple_filter_id = fltr->filter_id;
4205 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4206 }
4207 
4208 #define BNXT_NTP_FLTR_FLAGS					\
4209 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4210 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4211 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4212 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4213 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4214 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4215 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4216 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4217 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4218 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4219 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4220 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4221 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4222 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4223 
4224 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4225 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4226 
4227 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4228 					     struct bnxt_ntuple_filter *fltr)
4229 {
4230 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4231 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4232 	struct flow_keys *keys = &fltr->fkeys;
4233 	struct bnxt_vnic_info *vnic;
4234 	u32 dst_ena = 0;
4235 	int rc = 0;
4236 
4237 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4238 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4239 
4240 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX) {
4241 		dst_ena = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
4242 		req.rfs_ring_tbl_idx = cpu_to_le16(fltr->rxq);
4243 		vnic = &bp->vnic_info[0];
4244 	} else {
4245 		vnic = &bp->vnic_info[fltr->rxq + 1];
4246 	}
4247 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4248 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS | dst_ena);
4249 
4250 	req.ethertype = htons(ETH_P_IP);
4251 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4252 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4253 	req.ip_protocol = keys->basic.ip_proto;
4254 
4255 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4256 		int i;
4257 
4258 		req.ethertype = htons(ETH_P_IPV6);
4259 		req.ip_addr_type =
4260 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4261 		*(struct in6_addr *)&req.src_ipaddr[0] =
4262 			keys->addrs.v6addrs.src;
4263 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4264 			keys->addrs.v6addrs.dst;
4265 		for (i = 0; i < 4; i++) {
4266 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4267 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4268 		}
4269 	} else {
4270 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4271 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4272 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4273 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4274 	}
4275 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4276 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4277 		req.tunnel_type =
4278 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4279 	}
4280 
4281 	req.src_port = keys->ports.src;
4282 	req.src_port_mask = cpu_to_be16(0xffff);
4283 	req.dst_port = keys->ports.dst;
4284 	req.dst_port_mask = cpu_to_be16(0xffff);
4285 
4286 	mutex_lock(&bp->hwrm_cmd_lock);
4287 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4288 	if (!rc) {
4289 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4290 		fltr->filter_id = resp->ntuple_filter_id;
4291 	}
4292 	mutex_unlock(&bp->hwrm_cmd_lock);
4293 	return rc;
4294 }
4295 #endif
4296 
4297 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4298 				     u8 *mac_addr)
4299 {
4300 	u32 rc = 0;
4301 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4302 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4303 
4304 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4305 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4306 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4307 		req.flags |=
4308 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4309 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4310 	req.enables =
4311 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4312 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4313 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4314 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4315 	req.l2_addr_mask[0] = 0xff;
4316 	req.l2_addr_mask[1] = 0xff;
4317 	req.l2_addr_mask[2] = 0xff;
4318 	req.l2_addr_mask[3] = 0xff;
4319 	req.l2_addr_mask[4] = 0xff;
4320 	req.l2_addr_mask[5] = 0xff;
4321 
4322 	mutex_lock(&bp->hwrm_cmd_lock);
4323 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4324 	if (!rc)
4325 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4326 							resp->l2_filter_id;
4327 	mutex_unlock(&bp->hwrm_cmd_lock);
4328 	return rc;
4329 }
4330 
4331 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4332 {
4333 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4334 	int rc = 0;
4335 
4336 	/* Any associated ntuple filters will also be cleared by firmware. */
4337 	mutex_lock(&bp->hwrm_cmd_lock);
4338 	for (i = 0; i < num_of_vnics; i++) {
4339 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4340 
4341 		for (j = 0; j < vnic->uc_filter_count; j++) {
4342 			struct hwrm_cfa_l2_filter_free_input req = {0};
4343 
4344 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4345 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4346 
4347 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4348 
4349 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4350 						HWRM_CMD_TIMEOUT);
4351 		}
4352 		vnic->uc_filter_count = 0;
4353 	}
4354 	mutex_unlock(&bp->hwrm_cmd_lock);
4355 
4356 	return rc;
4357 }
4358 
4359 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4360 {
4361 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4362 	struct hwrm_vnic_tpa_cfg_input req = {0};
4363 
4364 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4365 		return 0;
4366 
4367 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4368 
4369 	if (tpa_flags) {
4370 		u16 mss = bp->dev->mtu - 40;
4371 		u32 nsegs, n, segs = 0, flags;
4372 
4373 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4374 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4375 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4376 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4377 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4378 		if (tpa_flags & BNXT_FLAG_GRO)
4379 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4380 
4381 		req.flags = cpu_to_le32(flags);
4382 
4383 		req.enables =
4384 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4385 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4386 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4387 
4388 		/* Number of segs are log2 units, and first packet is not
4389 		 * included as part of this units.
4390 		 */
4391 		if (mss <= BNXT_RX_PAGE_SIZE) {
4392 			n = BNXT_RX_PAGE_SIZE / mss;
4393 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4394 		} else {
4395 			n = mss / BNXT_RX_PAGE_SIZE;
4396 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4397 				n++;
4398 			nsegs = (MAX_SKB_FRAGS - n) / n;
4399 		}
4400 
4401 		segs = ilog2(nsegs);
4402 		req.max_agg_segs = cpu_to_le16(segs);
4403 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
4404 
4405 		req.min_agg_len = cpu_to_le32(512);
4406 	}
4407 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4408 
4409 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4410 }
4411 
4412 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4413 {
4414 	struct bnxt_ring_grp_info *grp_info;
4415 
4416 	grp_info = &bp->grp_info[ring->grp_idx];
4417 	return grp_info->cp_fw_ring_id;
4418 }
4419 
4420 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4421 {
4422 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4423 		struct bnxt_napi *bnapi = rxr->bnapi;
4424 		struct bnxt_cp_ring_info *cpr;
4425 
4426 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4427 		return cpr->cp_ring_struct.fw_ring_id;
4428 	} else {
4429 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4430 	}
4431 }
4432 
4433 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4434 {
4435 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4436 		struct bnxt_napi *bnapi = txr->bnapi;
4437 		struct bnxt_cp_ring_info *cpr;
4438 
4439 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4440 		return cpr->cp_ring_struct.fw_ring_id;
4441 	} else {
4442 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4443 	}
4444 }
4445 
4446 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4447 {
4448 	u32 i, j, max_rings;
4449 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4450 	struct hwrm_vnic_rss_cfg_input req = {0};
4451 
4452 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4453 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4454 		return 0;
4455 
4456 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4457 	if (set_rss) {
4458 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4459 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4460 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4461 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4462 				max_rings = bp->rx_nr_rings - 1;
4463 			else
4464 				max_rings = bp->rx_nr_rings;
4465 		} else {
4466 			max_rings = 1;
4467 		}
4468 
4469 		/* Fill the RSS indirection table with ring group ids */
4470 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4471 			if (j == max_rings)
4472 				j = 0;
4473 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4474 		}
4475 
4476 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4477 		req.hash_key_tbl_addr =
4478 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
4479 	}
4480 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4481 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4482 }
4483 
4484 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4485 {
4486 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4487 	u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4488 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4489 	struct hwrm_vnic_rss_cfg_input req = {0};
4490 
4491 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4492 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4493 	if (!set_rss) {
4494 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4495 		return 0;
4496 	}
4497 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4498 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4499 	req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4500 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4501 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4502 	for (i = 0, k = 0; i < nr_ctxs; i++) {
4503 		__le16 *ring_tbl = vnic->rss_table;
4504 		int rc;
4505 
4506 		req.ring_table_pair_index = i;
4507 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4508 		for (j = 0; j < 64; j++) {
4509 			u16 ring_id;
4510 
4511 			ring_id = rxr->rx_ring_struct.fw_ring_id;
4512 			*ring_tbl++ = cpu_to_le16(ring_id);
4513 			ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4514 			*ring_tbl++ = cpu_to_le16(ring_id);
4515 			rxr++;
4516 			k++;
4517 			if (k == max_rings) {
4518 				k = 0;
4519 				rxr = &bp->rx_ring[0];
4520 			}
4521 		}
4522 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4523 		if (rc)
4524 			return -EIO;
4525 	}
4526 	return 0;
4527 }
4528 
4529 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4530 {
4531 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4532 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
4533 
4534 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4535 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4536 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4537 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4538 	req.enables =
4539 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4540 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4541 	/* thresholds not implemented in firmware yet */
4542 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4543 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4544 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4545 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4546 }
4547 
4548 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4549 					u16 ctx_idx)
4550 {
4551 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4552 
4553 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4554 	req.rss_cos_lb_ctx_id =
4555 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4556 
4557 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4558 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4559 }
4560 
4561 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4562 {
4563 	int i, j;
4564 
4565 	for (i = 0; i < bp->nr_vnics; i++) {
4566 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4567 
4568 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4569 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4570 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4571 		}
4572 	}
4573 	bp->rsscos_nr_ctxs = 0;
4574 }
4575 
4576 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4577 {
4578 	int rc;
4579 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4580 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4581 						bp->hwrm_cmd_resp_addr;
4582 
4583 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4584 			       -1);
4585 
4586 	mutex_lock(&bp->hwrm_cmd_lock);
4587 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4588 	if (!rc)
4589 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4590 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4591 	mutex_unlock(&bp->hwrm_cmd_lock);
4592 
4593 	return rc;
4594 }
4595 
4596 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4597 {
4598 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4599 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4600 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4601 }
4602 
4603 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4604 {
4605 	unsigned int ring = 0, grp_idx;
4606 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4607 	struct hwrm_vnic_cfg_input req = {0};
4608 	u16 def_vlan = 0;
4609 
4610 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4611 
4612 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4613 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4614 
4615 		req.default_rx_ring_id =
4616 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
4617 		req.default_cmpl_ring_id =
4618 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
4619 		req.enables =
4620 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
4621 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
4622 		goto vnic_mru;
4623 	}
4624 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4625 	/* Only RSS support for now TBD: COS & LB */
4626 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4627 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4628 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4629 					   VNIC_CFG_REQ_ENABLES_MRU);
4630 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4631 		req.rss_rule =
4632 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4633 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4634 					   VNIC_CFG_REQ_ENABLES_MRU);
4635 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4636 	} else {
4637 		req.rss_rule = cpu_to_le16(0xffff);
4638 	}
4639 
4640 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4641 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4642 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4643 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4644 	} else {
4645 		req.cos_rule = cpu_to_le16(0xffff);
4646 	}
4647 
4648 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4649 		ring = 0;
4650 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4651 		ring = vnic_id - 1;
4652 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4653 		ring = bp->rx_nr_rings - 1;
4654 
4655 	grp_idx = bp->rx_ring[ring].bnapi->index;
4656 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4657 	req.lb_rule = cpu_to_le16(0xffff);
4658 vnic_mru:
4659 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4660 			      VLAN_HLEN);
4661 
4662 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4663 #ifdef CONFIG_BNXT_SRIOV
4664 	if (BNXT_VF(bp))
4665 		def_vlan = bp->vf.vlan;
4666 #endif
4667 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4668 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4669 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4670 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4671 
4672 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4673 }
4674 
4675 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4676 {
4677 	u32 rc = 0;
4678 
4679 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4680 		struct hwrm_vnic_free_input req = {0};
4681 
4682 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4683 		req.vnic_id =
4684 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4685 
4686 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4687 		if (rc)
4688 			return rc;
4689 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4690 	}
4691 	return rc;
4692 }
4693 
4694 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4695 {
4696 	u16 i;
4697 
4698 	for (i = 0; i < bp->nr_vnics; i++)
4699 		bnxt_hwrm_vnic_free_one(bp, i);
4700 }
4701 
4702 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4703 				unsigned int start_rx_ring_idx,
4704 				unsigned int nr_rings)
4705 {
4706 	int rc = 0;
4707 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4708 	struct hwrm_vnic_alloc_input req = {0};
4709 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4710 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4711 
4712 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4713 		goto vnic_no_ring_grps;
4714 
4715 	/* map ring groups to this vnic */
4716 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4717 		grp_idx = bp->rx_ring[i].bnapi->index;
4718 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4719 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4720 				   j, nr_rings);
4721 			break;
4722 		}
4723 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
4724 	}
4725 
4726 vnic_no_ring_grps:
4727 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
4728 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
4729 	if (vnic_id == 0)
4730 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4731 
4732 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4733 
4734 	mutex_lock(&bp->hwrm_cmd_lock);
4735 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4736 	if (!rc)
4737 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
4738 	mutex_unlock(&bp->hwrm_cmd_lock);
4739 	return rc;
4740 }
4741 
4742 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4743 {
4744 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4745 	struct hwrm_vnic_qcaps_input req = {0};
4746 	int rc;
4747 
4748 	if (bp->hwrm_spec_code < 0x10600)
4749 		return 0;
4750 
4751 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4752 	mutex_lock(&bp->hwrm_cmd_lock);
4753 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4754 	if (!rc) {
4755 		u32 flags = le32_to_cpu(resp->flags);
4756 
4757 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
4758 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4759 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4760 		if (flags &
4761 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4762 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4763 	}
4764 	mutex_unlock(&bp->hwrm_cmd_lock);
4765 	return rc;
4766 }
4767 
4768 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4769 {
4770 	u16 i;
4771 	u32 rc = 0;
4772 
4773 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4774 		return 0;
4775 
4776 	mutex_lock(&bp->hwrm_cmd_lock);
4777 	for (i = 0; i < bp->rx_nr_rings; i++) {
4778 		struct hwrm_ring_grp_alloc_input req = {0};
4779 		struct hwrm_ring_grp_alloc_output *resp =
4780 					bp->hwrm_cmd_resp_addr;
4781 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4782 
4783 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4784 
4785 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4786 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4787 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4788 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4789 
4790 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4791 					HWRM_CMD_TIMEOUT);
4792 		if (rc)
4793 			break;
4794 
4795 		bp->grp_info[grp_idx].fw_grp_id =
4796 			le32_to_cpu(resp->ring_group_id);
4797 	}
4798 	mutex_unlock(&bp->hwrm_cmd_lock);
4799 	return rc;
4800 }
4801 
4802 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4803 {
4804 	u16 i;
4805 	u32 rc = 0;
4806 	struct hwrm_ring_grp_free_input req = {0};
4807 
4808 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
4809 		return 0;
4810 
4811 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4812 
4813 	mutex_lock(&bp->hwrm_cmd_lock);
4814 	for (i = 0; i < bp->cp_nr_rings; i++) {
4815 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4816 			continue;
4817 		req.ring_group_id =
4818 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4819 
4820 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4821 					HWRM_CMD_TIMEOUT);
4822 		if (rc)
4823 			break;
4824 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4825 	}
4826 	mutex_unlock(&bp->hwrm_cmd_lock);
4827 	return rc;
4828 }
4829 
4830 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4831 				    struct bnxt_ring_struct *ring,
4832 				    u32 ring_type, u32 map_index)
4833 {
4834 	int rc = 0, err = 0;
4835 	struct hwrm_ring_alloc_input req = {0};
4836 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4837 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
4838 	struct bnxt_ring_grp_info *grp_info;
4839 	u16 ring_id;
4840 
4841 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4842 
4843 	req.enables = 0;
4844 	if (rmem->nr_pages > 1) {
4845 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
4846 		/* Page size is in log2 units */
4847 		req.page_size = BNXT_PAGE_SHIFT;
4848 		req.page_tbl_depth = 1;
4849 	} else {
4850 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
4851 	}
4852 	req.fbo = 0;
4853 	/* Association of ring index with doorbell index and MSIX number */
4854 	req.logical_id = cpu_to_le16(map_index);
4855 
4856 	switch (ring_type) {
4857 	case HWRM_RING_ALLOC_TX: {
4858 		struct bnxt_tx_ring_info *txr;
4859 
4860 		txr = container_of(ring, struct bnxt_tx_ring_info,
4861 				   tx_ring_struct);
4862 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4863 		/* Association of transmit ring with completion ring */
4864 		grp_info = &bp->grp_info[ring->grp_idx];
4865 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
4866 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4867 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4868 		req.queue_id = cpu_to_le16(ring->queue_id);
4869 		break;
4870 	}
4871 	case HWRM_RING_ALLOC_RX:
4872 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4873 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4874 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4875 			u16 flags = 0;
4876 
4877 			/* Association of rx ring with stats context */
4878 			grp_info = &bp->grp_info[ring->grp_idx];
4879 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
4880 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4881 			req.enables |= cpu_to_le32(
4882 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4883 			if (NET_IP_ALIGN == 2)
4884 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
4885 			req.flags = cpu_to_le16(flags);
4886 		}
4887 		break;
4888 	case HWRM_RING_ALLOC_AGG:
4889 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4890 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
4891 			/* Association of agg ring with rx ring */
4892 			grp_info = &bp->grp_info[ring->grp_idx];
4893 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
4894 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
4895 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4896 			req.enables |= cpu_to_le32(
4897 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
4898 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4899 		} else {
4900 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4901 		}
4902 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4903 		break;
4904 	case HWRM_RING_ALLOC_CMPL:
4905 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4906 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4907 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4908 			/* Association of cp ring with nq */
4909 			grp_info = &bp->grp_info[map_index];
4910 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4911 			req.cq_handle = cpu_to_le64(ring->handle);
4912 			req.enables |= cpu_to_le32(
4913 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
4914 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
4915 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4916 		}
4917 		break;
4918 	case HWRM_RING_ALLOC_NQ:
4919 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
4920 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4921 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4922 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4923 		break;
4924 	default:
4925 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4926 			   ring_type);
4927 		return -1;
4928 	}
4929 
4930 	mutex_lock(&bp->hwrm_cmd_lock);
4931 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4932 	err = le16_to_cpu(resp->error_code);
4933 	ring_id = le16_to_cpu(resp->ring_id);
4934 	mutex_unlock(&bp->hwrm_cmd_lock);
4935 
4936 	if (rc || err) {
4937 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4938 			   ring_type, rc, err);
4939 		return -EIO;
4940 	}
4941 	ring->fw_ring_id = ring_id;
4942 	return rc;
4943 }
4944 
4945 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4946 {
4947 	int rc;
4948 
4949 	if (BNXT_PF(bp)) {
4950 		struct hwrm_func_cfg_input req = {0};
4951 
4952 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4953 		req.fid = cpu_to_le16(0xffff);
4954 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4955 		req.async_event_cr = cpu_to_le16(idx);
4956 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4957 	} else {
4958 		struct hwrm_func_vf_cfg_input req = {0};
4959 
4960 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4961 		req.enables =
4962 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4963 		req.async_event_cr = cpu_to_le16(idx);
4964 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4965 	}
4966 	return rc;
4967 }
4968 
4969 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
4970 			u32 map_idx, u32 xid)
4971 {
4972 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4973 		if (BNXT_PF(bp))
4974 			db->doorbell = bp->bar1 + 0x10000;
4975 		else
4976 			db->doorbell = bp->bar1 + 0x4000;
4977 		switch (ring_type) {
4978 		case HWRM_RING_ALLOC_TX:
4979 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
4980 			break;
4981 		case HWRM_RING_ALLOC_RX:
4982 		case HWRM_RING_ALLOC_AGG:
4983 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
4984 			break;
4985 		case HWRM_RING_ALLOC_CMPL:
4986 			db->db_key64 = DBR_PATH_L2;
4987 			break;
4988 		case HWRM_RING_ALLOC_NQ:
4989 			db->db_key64 = DBR_PATH_L2;
4990 			break;
4991 		}
4992 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
4993 	} else {
4994 		db->doorbell = bp->bar1 + map_idx * 0x80;
4995 		switch (ring_type) {
4996 		case HWRM_RING_ALLOC_TX:
4997 			db->db_key32 = DB_KEY_TX;
4998 			break;
4999 		case HWRM_RING_ALLOC_RX:
5000 		case HWRM_RING_ALLOC_AGG:
5001 			db->db_key32 = DB_KEY_RX;
5002 			break;
5003 		case HWRM_RING_ALLOC_CMPL:
5004 			db->db_key32 = DB_KEY_CP;
5005 			break;
5006 		}
5007 	}
5008 }
5009 
5010 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5011 {
5012 	int i, rc = 0;
5013 	u32 type;
5014 
5015 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5016 		type = HWRM_RING_ALLOC_NQ;
5017 	else
5018 		type = HWRM_RING_ALLOC_CMPL;
5019 	for (i = 0; i < bp->cp_nr_rings; i++) {
5020 		struct bnxt_napi *bnapi = bp->bnapi[i];
5021 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5022 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5023 		u32 map_idx = ring->map_idx;
5024 		unsigned int vector;
5025 
5026 		vector = bp->irq_tbl[map_idx].vector;
5027 		disable_irq_nosync(vector);
5028 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5029 		if (rc) {
5030 			enable_irq(vector);
5031 			goto err_out;
5032 		}
5033 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5034 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5035 		enable_irq(vector);
5036 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5037 
5038 		if (!i) {
5039 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5040 			if (rc)
5041 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5042 		}
5043 	}
5044 
5045 	type = HWRM_RING_ALLOC_TX;
5046 	for (i = 0; i < bp->tx_nr_rings; i++) {
5047 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5048 		struct bnxt_ring_struct *ring;
5049 		u32 map_idx;
5050 
5051 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5052 			struct bnxt_napi *bnapi = txr->bnapi;
5053 			struct bnxt_cp_ring_info *cpr, *cpr2;
5054 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5055 
5056 			cpr = &bnapi->cp_ring;
5057 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5058 			ring = &cpr2->cp_ring_struct;
5059 			ring->handle = BNXT_TX_HDL;
5060 			map_idx = bnapi->index;
5061 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5062 			if (rc)
5063 				goto err_out;
5064 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5065 				    ring->fw_ring_id);
5066 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5067 		}
5068 		ring = &txr->tx_ring_struct;
5069 		map_idx = i;
5070 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5071 		if (rc)
5072 			goto err_out;
5073 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5074 	}
5075 
5076 	type = HWRM_RING_ALLOC_RX;
5077 	for (i = 0; i < bp->rx_nr_rings; i++) {
5078 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5079 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5080 		struct bnxt_napi *bnapi = rxr->bnapi;
5081 		u32 map_idx = bnapi->index;
5082 
5083 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5084 		if (rc)
5085 			goto err_out;
5086 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5087 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5088 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5089 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5090 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5091 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5092 			struct bnxt_cp_ring_info *cpr2;
5093 
5094 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5095 			ring = &cpr2->cp_ring_struct;
5096 			ring->handle = BNXT_RX_HDL;
5097 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5098 			if (rc)
5099 				goto err_out;
5100 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5101 				    ring->fw_ring_id);
5102 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5103 		}
5104 	}
5105 
5106 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5107 		type = HWRM_RING_ALLOC_AGG;
5108 		for (i = 0; i < bp->rx_nr_rings; i++) {
5109 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5110 			struct bnxt_ring_struct *ring =
5111 						&rxr->rx_agg_ring_struct;
5112 			u32 grp_idx = ring->grp_idx;
5113 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5114 
5115 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5116 			if (rc)
5117 				goto err_out;
5118 
5119 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5120 				    ring->fw_ring_id);
5121 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5122 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5123 		}
5124 	}
5125 err_out:
5126 	return rc;
5127 }
5128 
5129 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5130 				   struct bnxt_ring_struct *ring,
5131 				   u32 ring_type, int cmpl_ring_id)
5132 {
5133 	int rc;
5134 	struct hwrm_ring_free_input req = {0};
5135 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5136 	u16 error_code;
5137 
5138 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5139 	req.ring_type = ring_type;
5140 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5141 
5142 	mutex_lock(&bp->hwrm_cmd_lock);
5143 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5144 	error_code = le16_to_cpu(resp->error_code);
5145 	mutex_unlock(&bp->hwrm_cmd_lock);
5146 
5147 	if (rc || error_code) {
5148 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5149 			   ring_type, rc, error_code);
5150 		return -EIO;
5151 	}
5152 	return 0;
5153 }
5154 
5155 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5156 {
5157 	u32 type;
5158 	int i;
5159 
5160 	if (!bp->bnapi)
5161 		return;
5162 
5163 	for (i = 0; i < bp->tx_nr_rings; i++) {
5164 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5165 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5166 
5167 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5168 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5169 
5170 			hwrm_ring_free_send_msg(bp, ring,
5171 						RING_FREE_REQ_RING_TYPE_TX,
5172 						close_path ? cmpl_ring_id :
5173 						INVALID_HW_RING_ID);
5174 			ring->fw_ring_id = INVALID_HW_RING_ID;
5175 		}
5176 	}
5177 
5178 	for (i = 0; i < bp->rx_nr_rings; i++) {
5179 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5180 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5181 		u32 grp_idx = rxr->bnapi->index;
5182 
5183 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5184 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5185 
5186 			hwrm_ring_free_send_msg(bp, ring,
5187 						RING_FREE_REQ_RING_TYPE_RX,
5188 						close_path ? cmpl_ring_id :
5189 						INVALID_HW_RING_ID);
5190 			ring->fw_ring_id = INVALID_HW_RING_ID;
5191 			bp->grp_info[grp_idx].rx_fw_ring_id =
5192 				INVALID_HW_RING_ID;
5193 		}
5194 	}
5195 
5196 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5197 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5198 	else
5199 		type = RING_FREE_REQ_RING_TYPE_RX;
5200 	for (i = 0; i < bp->rx_nr_rings; i++) {
5201 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5202 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5203 		u32 grp_idx = rxr->bnapi->index;
5204 
5205 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5206 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5207 
5208 			hwrm_ring_free_send_msg(bp, ring, type,
5209 						close_path ? cmpl_ring_id :
5210 						INVALID_HW_RING_ID);
5211 			ring->fw_ring_id = INVALID_HW_RING_ID;
5212 			bp->grp_info[grp_idx].agg_fw_ring_id =
5213 				INVALID_HW_RING_ID;
5214 		}
5215 	}
5216 
5217 	/* The completion rings are about to be freed.  After that the
5218 	 * IRQ doorbell will not work anymore.  So we need to disable
5219 	 * IRQ here.
5220 	 */
5221 	bnxt_disable_int_sync(bp);
5222 
5223 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5224 		type = RING_FREE_REQ_RING_TYPE_NQ;
5225 	else
5226 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5227 	for (i = 0; i < bp->cp_nr_rings; i++) {
5228 		struct bnxt_napi *bnapi = bp->bnapi[i];
5229 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5230 		struct bnxt_ring_struct *ring;
5231 		int j;
5232 
5233 		for (j = 0; j < 2; j++) {
5234 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5235 
5236 			if (cpr2) {
5237 				ring = &cpr2->cp_ring_struct;
5238 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5239 					continue;
5240 				hwrm_ring_free_send_msg(bp, ring,
5241 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5242 					INVALID_HW_RING_ID);
5243 				ring->fw_ring_id = INVALID_HW_RING_ID;
5244 			}
5245 		}
5246 		ring = &cpr->cp_ring_struct;
5247 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5248 			hwrm_ring_free_send_msg(bp, ring, type,
5249 						INVALID_HW_RING_ID);
5250 			ring->fw_ring_id = INVALID_HW_RING_ID;
5251 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5252 		}
5253 	}
5254 }
5255 
5256 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5257 			   bool shared);
5258 
5259 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5260 {
5261 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5262 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5263 	struct hwrm_func_qcfg_input req = {0};
5264 	int rc;
5265 
5266 	if (bp->hwrm_spec_code < 0x10601)
5267 		return 0;
5268 
5269 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5270 	req.fid = cpu_to_le16(0xffff);
5271 	mutex_lock(&bp->hwrm_cmd_lock);
5272 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5273 	if (rc) {
5274 		mutex_unlock(&bp->hwrm_cmd_lock);
5275 		return -EIO;
5276 	}
5277 
5278 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5279 	if (BNXT_NEW_RM(bp)) {
5280 		u16 cp, stats;
5281 
5282 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5283 		hw_resc->resv_hw_ring_grps =
5284 			le32_to_cpu(resp->alloc_hw_ring_grps);
5285 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5286 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5287 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5288 		hw_resc->resv_irqs = cp;
5289 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5290 			int rx = hw_resc->resv_rx_rings;
5291 			int tx = hw_resc->resv_tx_rings;
5292 
5293 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5294 				rx >>= 1;
5295 			if (cp < (rx + tx)) {
5296 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5297 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5298 					rx <<= 1;
5299 				hw_resc->resv_rx_rings = rx;
5300 				hw_resc->resv_tx_rings = tx;
5301 			}
5302 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5303 			hw_resc->resv_hw_ring_grps = rx;
5304 		}
5305 		hw_resc->resv_cp_rings = cp;
5306 		hw_resc->resv_stat_ctxs = stats;
5307 	}
5308 	mutex_unlock(&bp->hwrm_cmd_lock);
5309 	return 0;
5310 }
5311 
5312 /* Caller must hold bp->hwrm_cmd_lock */
5313 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5314 {
5315 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5316 	struct hwrm_func_qcfg_input req = {0};
5317 	int rc;
5318 
5319 	if (bp->hwrm_spec_code < 0x10601)
5320 		return 0;
5321 
5322 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5323 	req.fid = cpu_to_le16(fid);
5324 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5325 	if (!rc)
5326 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5327 
5328 	return rc;
5329 }
5330 
5331 static bool bnxt_rfs_supported(struct bnxt *bp);
5332 
5333 static void
5334 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5335 			     int tx_rings, int rx_rings, int ring_grps,
5336 			     int cp_rings, int stats, int vnics)
5337 {
5338 	u32 enables = 0;
5339 
5340 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5341 	req->fid = cpu_to_le16(0xffff);
5342 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5343 	req->num_tx_rings = cpu_to_le16(tx_rings);
5344 	if (BNXT_NEW_RM(bp)) {
5345 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5346 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5347 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5348 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5349 			enables |= tx_rings + ring_grps ?
5350 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5351 			enables |= rx_rings ?
5352 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5353 		} else {
5354 			enables |= cp_rings ?
5355 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5356 			enables |= ring_grps ?
5357 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5358 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5359 		}
5360 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5361 
5362 		req->num_rx_rings = cpu_to_le16(rx_rings);
5363 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5364 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5365 			req->num_msix = cpu_to_le16(cp_rings);
5366 			req->num_rsscos_ctxs =
5367 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5368 		} else {
5369 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
5370 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5371 			req->num_rsscos_ctxs = cpu_to_le16(1);
5372 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5373 			    bnxt_rfs_supported(bp))
5374 				req->num_rsscos_ctxs =
5375 					cpu_to_le16(ring_grps + 1);
5376 		}
5377 		req->num_stat_ctxs = cpu_to_le16(stats);
5378 		req->num_vnics = cpu_to_le16(vnics);
5379 	}
5380 	req->enables = cpu_to_le32(enables);
5381 }
5382 
5383 static void
5384 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5385 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
5386 			     int rx_rings, int ring_grps, int cp_rings,
5387 			     int stats, int vnics)
5388 {
5389 	u32 enables = 0;
5390 
5391 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5392 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5393 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5394 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5395 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5396 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5397 		enables |= tx_rings + ring_grps ?
5398 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5399 	} else {
5400 		enables |= cp_rings ?
5401 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5402 		enables |= ring_grps ?
5403 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5404 	}
5405 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5406 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5407 
5408 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5409 	req->num_tx_rings = cpu_to_le16(tx_rings);
5410 	req->num_rx_rings = cpu_to_le16(rx_rings);
5411 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5412 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5413 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5414 	} else {
5415 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
5416 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5417 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5418 	}
5419 	req->num_stat_ctxs = cpu_to_le16(stats);
5420 	req->num_vnics = cpu_to_le16(vnics);
5421 
5422 	req->enables = cpu_to_le32(enables);
5423 }
5424 
5425 static int
5426 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5427 			   int ring_grps, int cp_rings, int stats, int vnics)
5428 {
5429 	struct hwrm_func_cfg_input req = {0};
5430 	int rc;
5431 
5432 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5433 				     cp_rings, stats, vnics);
5434 	if (!req.enables)
5435 		return 0;
5436 
5437 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5438 	if (rc)
5439 		return -ENOMEM;
5440 
5441 	if (bp->hwrm_spec_code < 0x10601)
5442 		bp->hw_resc.resv_tx_rings = tx_rings;
5443 
5444 	rc = bnxt_hwrm_get_rings(bp);
5445 	return rc;
5446 }
5447 
5448 static int
5449 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5450 			   int ring_grps, int cp_rings, int stats, int vnics)
5451 {
5452 	struct hwrm_func_vf_cfg_input req = {0};
5453 	int rc;
5454 
5455 	if (!BNXT_NEW_RM(bp)) {
5456 		bp->hw_resc.resv_tx_rings = tx_rings;
5457 		return 0;
5458 	}
5459 
5460 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5461 				     cp_rings, stats, vnics);
5462 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5463 	if (rc)
5464 		return -ENOMEM;
5465 
5466 	rc = bnxt_hwrm_get_rings(bp);
5467 	return rc;
5468 }
5469 
5470 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5471 				   int cp, int stat, int vnic)
5472 {
5473 	if (BNXT_PF(bp))
5474 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5475 						  vnic);
5476 	else
5477 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5478 						  vnic);
5479 }
5480 
5481 int bnxt_nq_rings_in_use(struct bnxt *bp)
5482 {
5483 	int cp = bp->cp_nr_rings;
5484 	int ulp_msix, ulp_base;
5485 
5486 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5487 	if (ulp_msix) {
5488 		ulp_base = bnxt_get_ulp_msix_base(bp);
5489 		cp += ulp_msix;
5490 		if ((ulp_base + ulp_msix) > cp)
5491 			cp = ulp_base + ulp_msix;
5492 	}
5493 	return cp;
5494 }
5495 
5496 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5497 {
5498 	int cp;
5499 
5500 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5501 		return bnxt_nq_rings_in_use(bp);
5502 
5503 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
5504 	return cp;
5505 }
5506 
5507 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5508 {
5509 	return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp);
5510 }
5511 
5512 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5513 {
5514 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5515 	int cp = bnxt_cp_rings_in_use(bp);
5516 	int nq = bnxt_nq_rings_in_use(bp);
5517 	int rx = bp->rx_nr_rings, stat;
5518 	int vnic = 1, grp = rx;
5519 
5520 	if (bp->hwrm_spec_code < 0x10601)
5521 		return false;
5522 
5523 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5524 		return true;
5525 
5526 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5527 		vnic = rx + 1;
5528 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5529 		rx <<= 1;
5530 	stat = bnxt_get_func_stat_ctxs(bp);
5531 	if (BNXT_NEW_RM(bp) &&
5532 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5533 	     hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
5534 	     (hw_resc->resv_hw_ring_grps != grp &&
5535 	      !(bp->flags & BNXT_FLAG_CHIP_P5))))
5536 		return true;
5537 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
5538 	    hw_resc->resv_irqs != nq)
5539 		return true;
5540 	return false;
5541 }
5542 
5543 static int __bnxt_reserve_rings(struct bnxt *bp)
5544 {
5545 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5546 	int cp = bnxt_nq_rings_in_use(bp);
5547 	int tx = bp->tx_nr_rings;
5548 	int rx = bp->rx_nr_rings;
5549 	int grp, rx_rings, rc;
5550 	int vnic = 1, stat;
5551 	bool sh = false;
5552 
5553 	if (!bnxt_need_reserve_rings(bp))
5554 		return 0;
5555 
5556 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5557 		sh = true;
5558 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5559 		vnic = rx + 1;
5560 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5561 		rx <<= 1;
5562 	grp = bp->rx_nr_rings;
5563 	stat = bnxt_get_func_stat_ctxs(bp);
5564 
5565 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5566 	if (rc)
5567 		return rc;
5568 
5569 	tx = hw_resc->resv_tx_rings;
5570 	if (BNXT_NEW_RM(bp)) {
5571 		rx = hw_resc->resv_rx_rings;
5572 		cp = hw_resc->resv_irqs;
5573 		grp = hw_resc->resv_hw_ring_grps;
5574 		vnic = hw_resc->resv_vnics;
5575 		stat = hw_resc->resv_stat_ctxs;
5576 	}
5577 
5578 	rx_rings = rx;
5579 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5580 		if (rx >= 2) {
5581 			rx_rings = rx >> 1;
5582 		} else {
5583 			if (netif_running(bp->dev))
5584 				return -ENOMEM;
5585 
5586 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5587 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5588 			bp->dev->hw_features &= ~NETIF_F_LRO;
5589 			bp->dev->features &= ~NETIF_F_LRO;
5590 			bnxt_set_ring_params(bp);
5591 		}
5592 	}
5593 	rx_rings = min_t(int, rx_rings, grp);
5594 	cp = min_t(int, cp, bp->cp_nr_rings);
5595 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
5596 		stat -= bnxt_get_ulp_stat_ctxs(bp);
5597 	cp = min_t(int, cp, stat);
5598 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5599 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5600 		rx = rx_rings << 1;
5601 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
5602 	bp->tx_nr_rings = tx;
5603 	bp->rx_nr_rings = rx_rings;
5604 	bp->cp_nr_rings = cp;
5605 
5606 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
5607 		return -ENOMEM;
5608 
5609 	return rc;
5610 }
5611 
5612 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5613 				    int ring_grps, int cp_rings, int stats,
5614 				    int vnics)
5615 {
5616 	struct hwrm_func_vf_cfg_input req = {0};
5617 	u32 flags;
5618 	int rc;
5619 
5620 	if (!BNXT_NEW_RM(bp))
5621 		return 0;
5622 
5623 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5624 				     cp_rings, stats, vnics);
5625 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
5626 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5627 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5628 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5629 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
5630 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
5631 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5632 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5633 
5634 	req.flags = cpu_to_le32(flags);
5635 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5636 	if (rc)
5637 		return -ENOMEM;
5638 	return 0;
5639 }
5640 
5641 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5642 				    int ring_grps, int cp_rings, int stats,
5643 				    int vnics)
5644 {
5645 	struct hwrm_func_cfg_input req = {0};
5646 	u32 flags;
5647 	int rc;
5648 
5649 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5650 				     cp_rings, stats, vnics);
5651 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
5652 	if (BNXT_NEW_RM(bp)) {
5653 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5654 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5655 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5656 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
5657 		if (bp->flags & BNXT_FLAG_CHIP_P5)
5658 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
5659 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
5660 		else
5661 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5662 	}
5663 
5664 	req.flags = cpu_to_le32(flags);
5665 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5666 	if (rc)
5667 		return -ENOMEM;
5668 	return 0;
5669 }
5670 
5671 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5672 				 int ring_grps, int cp_rings, int stats,
5673 				 int vnics)
5674 {
5675 	if (bp->hwrm_spec_code < 0x10801)
5676 		return 0;
5677 
5678 	if (BNXT_PF(bp))
5679 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
5680 						ring_grps, cp_rings, stats,
5681 						vnics);
5682 
5683 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
5684 					cp_rings, stats, vnics);
5685 }
5686 
5687 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
5688 {
5689 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5690 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5691 	struct hwrm_ring_aggint_qcaps_input req = {0};
5692 	int rc;
5693 
5694 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
5695 	coal_cap->num_cmpl_dma_aggr_max = 63;
5696 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
5697 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
5698 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
5699 	coal_cap->int_lat_tmr_min_max = 65535;
5700 	coal_cap->int_lat_tmr_max_max = 65535;
5701 	coal_cap->num_cmpl_aggr_int_max = 65535;
5702 	coal_cap->timer_units = 80;
5703 
5704 	if (bp->hwrm_spec_code < 0x10902)
5705 		return;
5706 
5707 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
5708 	mutex_lock(&bp->hwrm_cmd_lock);
5709 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5710 	if (!rc) {
5711 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
5712 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
5713 		coal_cap->num_cmpl_dma_aggr_max =
5714 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
5715 		coal_cap->num_cmpl_dma_aggr_during_int_max =
5716 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
5717 		coal_cap->cmpl_aggr_dma_tmr_max =
5718 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
5719 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
5720 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
5721 		coal_cap->int_lat_tmr_min_max =
5722 			le16_to_cpu(resp->int_lat_tmr_min_max);
5723 		coal_cap->int_lat_tmr_max_max =
5724 			le16_to_cpu(resp->int_lat_tmr_max_max);
5725 		coal_cap->num_cmpl_aggr_int_max =
5726 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
5727 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
5728 	}
5729 	mutex_unlock(&bp->hwrm_cmd_lock);
5730 }
5731 
5732 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
5733 {
5734 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5735 
5736 	return usec * 1000 / coal_cap->timer_units;
5737 }
5738 
5739 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
5740 	struct bnxt_coal *hw_coal,
5741 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
5742 {
5743 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5744 	u32 cmpl_params = coal_cap->cmpl_params;
5745 	u16 val, tmr, max, flags = 0;
5746 
5747 	max = hw_coal->bufs_per_record * 128;
5748 	if (hw_coal->budget)
5749 		max = hw_coal->bufs_per_record * hw_coal->budget;
5750 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
5751 
5752 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
5753 	req->num_cmpl_aggr_int = cpu_to_le16(val);
5754 
5755 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
5756 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
5757 
5758 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
5759 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
5760 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
5761 
5762 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
5763 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
5764 	req->int_lat_tmr_max = cpu_to_le16(tmr);
5765 
5766 	/* min timer set to 1/2 of interrupt timer */
5767 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
5768 		val = tmr / 2;
5769 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
5770 		req->int_lat_tmr_min = cpu_to_le16(val);
5771 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5772 	}
5773 
5774 	/* buf timer set to 1/4 of interrupt timer */
5775 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
5776 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
5777 
5778 	if (cmpl_params &
5779 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
5780 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
5781 		val = clamp_t(u16, tmr, 1,
5782 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
5783 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
5784 		req->enables |=
5785 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
5786 	}
5787 
5788 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
5789 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
5790 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
5791 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
5792 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
5793 	req->flags = cpu_to_le16(flags);
5794 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
5795 }
5796 
5797 /* Caller holds bp->hwrm_cmd_lock */
5798 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
5799 				   struct bnxt_coal *hw_coal)
5800 {
5801 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
5802 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5803 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5804 	u32 nq_params = coal_cap->nq_params;
5805 	u16 tmr;
5806 
5807 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
5808 		return 0;
5809 
5810 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
5811 			       -1, -1);
5812 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
5813 	req.flags =
5814 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
5815 
5816 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
5817 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
5818 	req.int_lat_tmr_min = cpu_to_le16(tmr);
5819 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5820 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5821 }
5822 
5823 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
5824 {
5825 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
5826 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5827 	struct bnxt_coal coal;
5828 
5829 	/* Tick values in micro seconds.
5830 	 * 1 coal_buf x bufs_per_record = 1 completion record.
5831 	 */
5832 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
5833 
5834 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
5835 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
5836 
5837 	if (!bnapi->rx_ring)
5838 		return -ENODEV;
5839 
5840 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5841 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5842 
5843 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
5844 
5845 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
5846 
5847 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
5848 				 HWRM_CMD_TIMEOUT);
5849 }
5850 
5851 int bnxt_hwrm_set_coal(struct bnxt *bp)
5852 {
5853 	int i, rc = 0;
5854 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
5855 							   req_tx = {0}, *req;
5856 
5857 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5858 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5859 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
5860 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5861 
5862 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
5863 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
5864 
5865 	mutex_lock(&bp->hwrm_cmd_lock);
5866 	for (i = 0; i < bp->cp_nr_rings; i++) {
5867 		struct bnxt_napi *bnapi = bp->bnapi[i];
5868 		struct bnxt_coal *hw_coal;
5869 		u16 ring_id;
5870 
5871 		req = &req_rx;
5872 		if (!bnapi->rx_ring) {
5873 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5874 			req = &req_tx;
5875 		} else {
5876 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
5877 		}
5878 		req->ring_id = cpu_to_le16(ring_id);
5879 
5880 		rc = _hwrm_send_message(bp, req, sizeof(*req),
5881 					HWRM_CMD_TIMEOUT);
5882 		if (rc)
5883 			break;
5884 
5885 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5886 			continue;
5887 
5888 		if (bnapi->rx_ring && bnapi->tx_ring) {
5889 			req = &req_tx;
5890 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5891 			req->ring_id = cpu_to_le16(ring_id);
5892 			rc = _hwrm_send_message(bp, req, sizeof(*req),
5893 						HWRM_CMD_TIMEOUT);
5894 			if (rc)
5895 				break;
5896 		}
5897 		if (bnapi->rx_ring)
5898 			hw_coal = &bp->rx_coal;
5899 		else
5900 			hw_coal = &bp->tx_coal;
5901 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
5902 	}
5903 	mutex_unlock(&bp->hwrm_cmd_lock);
5904 	return rc;
5905 }
5906 
5907 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5908 {
5909 	int rc = 0, i;
5910 	struct hwrm_stat_ctx_free_input req = {0};
5911 
5912 	if (!bp->bnapi)
5913 		return 0;
5914 
5915 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5916 		return 0;
5917 
5918 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5919 
5920 	mutex_lock(&bp->hwrm_cmd_lock);
5921 	for (i = 0; i < bp->cp_nr_rings; i++) {
5922 		struct bnxt_napi *bnapi = bp->bnapi[i];
5923 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5924 
5925 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5926 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5927 
5928 			rc = _hwrm_send_message(bp, &req, sizeof(req),
5929 						HWRM_CMD_TIMEOUT);
5930 			if (rc)
5931 				break;
5932 
5933 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5934 		}
5935 	}
5936 	mutex_unlock(&bp->hwrm_cmd_lock);
5937 	return rc;
5938 }
5939 
5940 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
5941 {
5942 	int rc = 0, i;
5943 	struct hwrm_stat_ctx_alloc_input req = {0};
5944 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5945 
5946 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5947 		return 0;
5948 
5949 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
5950 
5951 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
5952 
5953 	mutex_lock(&bp->hwrm_cmd_lock);
5954 	for (i = 0; i < bp->cp_nr_rings; i++) {
5955 		struct bnxt_napi *bnapi = bp->bnapi[i];
5956 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5957 
5958 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
5959 
5960 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5961 					HWRM_CMD_TIMEOUT);
5962 		if (rc)
5963 			break;
5964 
5965 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5966 
5967 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5968 	}
5969 	mutex_unlock(&bp->hwrm_cmd_lock);
5970 	return rc;
5971 }
5972 
5973 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5974 {
5975 	struct hwrm_func_qcfg_input req = {0};
5976 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5977 	u16 flags;
5978 	int rc;
5979 
5980 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5981 	req.fid = cpu_to_le16(0xffff);
5982 	mutex_lock(&bp->hwrm_cmd_lock);
5983 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5984 	if (rc)
5985 		goto func_qcfg_exit;
5986 
5987 #ifdef CONFIG_BNXT_SRIOV
5988 	if (BNXT_VF(bp)) {
5989 		struct bnxt_vf_info *vf = &bp->vf;
5990 
5991 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5992 	}
5993 #endif
5994 	flags = le16_to_cpu(resp->flags);
5995 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5996 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5997 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
5998 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5999 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6000 	}
6001 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6002 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6003 
6004 	switch (resp->port_partition_type) {
6005 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6006 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6007 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6008 		bp->port_partition_type = resp->port_partition_type;
6009 		break;
6010 	}
6011 	if (bp->hwrm_spec_code < 0x10707 ||
6012 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6013 		bp->br_mode = BRIDGE_MODE_VEB;
6014 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6015 		bp->br_mode = BRIDGE_MODE_VEPA;
6016 	else
6017 		bp->br_mode = BRIDGE_MODE_UNDEF;
6018 
6019 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6020 	if (!bp->max_mtu)
6021 		bp->max_mtu = BNXT_MAX_MTU;
6022 
6023 func_qcfg_exit:
6024 	mutex_unlock(&bp->hwrm_cmd_lock);
6025 	return rc;
6026 }
6027 
6028 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6029 {
6030 	struct hwrm_func_backing_store_qcaps_input req = {0};
6031 	struct hwrm_func_backing_store_qcaps_output *resp =
6032 		bp->hwrm_cmd_resp_addr;
6033 	int rc;
6034 
6035 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6036 		return 0;
6037 
6038 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6039 	mutex_lock(&bp->hwrm_cmd_lock);
6040 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6041 	if (!rc) {
6042 		struct bnxt_ctx_pg_info *ctx_pg;
6043 		struct bnxt_ctx_mem_info *ctx;
6044 		int i;
6045 
6046 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6047 		if (!ctx) {
6048 			rc = -ENOMEM;
6049 			goto ctx_err;
6050 		}
6051 		ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
6052 		if (!ctx_pg) {
6053 			kfree(ctx);
6054 			rc = -ENOMEM;
6055 			goto ctx_err;
6056 		}
6057 		for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
6058 			ctx->tqm_mem[i] = ctx_pg;
6059 
6060 		bp->ctx = ctx;
6061 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6062 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6063 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6064 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6065 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6066 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6067 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6068 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6069 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6070 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6071 		ctx->vnic_max_vnic_entries =
6072 			le16_to_cpu(resp->vnic_max_vnic_entries);
6073 		ctx->vnic_max_ring_table_entries =
6074 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6075 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6076 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6077 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6078 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6079 		ctx->tqm_min_entries_per_ring =
6080 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6081 		ctx->tqm_max_entries_per_ring =
6082 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6083 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6084 		if (!ctx->tqm_entries_multiple)
6085 			ctx->tqm_entries_multiple = 1;
6086 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6087 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6088 		ctx->mrav_num_entries_units =
6089 			le16_to_cpu(resp->mrav_num_entries_units);
6090 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6091 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6092 	} else {
6093 		rc = 0;
6094 	}
6095 ctx_err:
6096 	mutex_unlock(&bp->hwrm_cmd_lock);
6097 	return rc;
6098 }
6099 
6100 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6101 				  __le64 *pg_dir)
6102 {
6103 	u8 pg_size = 0;
6104 
6105 	if (BNXT_PAGE_SHIFT == 13)
6106 		pg_size = 1 << 4;
6107 	else if (BNXT_PAGE_SIZE == 16)
6108 		pg_size = 2 << 4;
6109 
6110 	*pg_attr = pg_size;
6111 	if (rmem->depth >= 1) {
6112 		if (rmem->depth == 2)
6113 			*pg_attr |= 2;
6114 		else
6115 			*pg_attr |= 1;
6116 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6117 	} else {
6118 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6119 	}
6120 }
6121 
6122 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6123 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6124 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6125 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6126 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6127 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6128 
6129 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6130 {
6131 	struct hwrm_func_backing_store_cfg_input req = {0};
6132 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6133 	struct bnxt_ctx_pg_info *ctx_pg;
6134 	__le32 *num_entries;
6135 	__le64 *pg_dir;
6136 	u32 flags = 0;
6137 	u8 *pg_attr;
6138 	int i, rc;
6139 	u32 ena;
6140 
6141 	if (!ctx)
6142 		return 0;
6143 
6144 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6145 	req.enables = cpu_to_le32(enables);
6146 
6147 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6148 		ctx_pg = &ctx->qp_mem;
6149 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6150 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6151 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6152 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6153 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6154 				      &req.qpc_pg_size_qpc_lvl,
6155 				      &req.qpc_page_dir);
6156 	}
6157 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6158 		ctx_pg = &ctx->srq_mem;
6159 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6160 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6161 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6162 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6163 				      &req.srq_pg_size_srq_lvl,
6164 				      &req.srq_page_dir);
6165 	}
6166 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6167 		ctx_pg = &ctx->cq_mem;
6168 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6169 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6170 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6171 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6172 				      &req.cq_page_dir);
6173 	}
6174 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6175 		ctx_pg = &ctx->vnic_mem;
6176 		req.vnic_num_vnic_entries =
6177 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6178 		req.vnic_num_ring_table_entries =
6179 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6180 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6181 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6182 				      &req.vnic_pg_size_vnic_lvl,
6183 				      &req.vnic_page_dir);
6184 	}
6185 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6186 		ctx_pg = &ctx->stat_mem;
6187 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6188 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6189 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6190 				      &req.stat_pg_size_stat_lvl,
6191 				      &req.stat_page_dir);
6192 	}
6193 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6194 		ctx_pg = &ctx->mrav_mem;
6195 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6196 		if (ctx->mrav_num_entries_units)
6197 			flags |=
6198 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6199 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6200 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6201 				      &req.mrav_pg_size_mrav_lvl,
6202 				      &req.mrav_page_dir);
6203 	}
6204 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6205 		ctx_pg = &ctx->tim_mem;
6206 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6207 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6208 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6209 				      &req.tim_pg_size_tim_lvl,
6210 				      &req.tim_page_dir);
6211 	}
6212 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6213 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6214 	     pg_dir = &req.tqm_sp_page_dir,
6215 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6216 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6217 		if (!(enables & ena))
6218 			continue;
6219 
6220 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6221 		ctx_pg = ctx->tqm_mem[i];
6222 		*num_entries = cpu_to_le32(ctx_pg->entries);
6223 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6224 	}
6225 	req.flags = cpu_to_le32(flags);
6226 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6227 	if (rc)
6228 		rc = -EIO;
6229 	return rc;
6230 }
6231 
6232 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6233 				  struct bnxt_ctx_pg_info *ctx_pg)
6234 {
6235 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6236 
6237 	rmem->page_size = BNXT_PAGE_SIZE;
6238 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6239 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6240 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6241 	if (rmem->depth >= 1)
6242 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6243 	return bnxt_alloc_ring(bp, rmem);
6244 }
6245 
6246 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6247 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6248 				  u8 depth)
6249 {
6250 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6251 	int rc;
6252 
6253 	if (!mem_size)
6254 		return 0;
6255 
6256 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6257 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6258 		ctx_pg->nr_pages = 0;
6259 		return -EINVAL;
6260 	}
6261 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6262 		int nr_tbls, i;
6263 
6264 		rmem->depth = 2;
6265 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6266 					     GFP_KERNEL);
6267 		if (!ctx_pg->ctx_pg_tbl)
6268 			return -ENOMEM;
6269 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6270 		rmem->nr_pages = nr_tbls;
6271 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6272 		if (rc)
6273 			return rc;
6274 		for (i = 0; i < nr_tbls; i++) {
6275 			struct bnxt_ctx_pg_info *pg_tbl;
6276 
6277 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6278 			if (!pg_tbl)
6279 				return -ENOMEM;
6280 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6281 			rmem = &pg_tbl->ring_mem;
6282 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6283 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6284 			rmem->depth = 1;
6285 			rmem->nr_pages = MAX_CTX_PAGES;
6286 			if (i == (nr_tbls - 1)) {
6287 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6288 
6289 				if (rem)
6290 					rmem->nr_pages = rem;
6291 			}
6292 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6293 			if (rc)
6294 				break;
6295 		}
6296 	} else {
6297 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6298 		if (rmem->nr_pages > 1 || depth)
6299 			rmem->depth = 1;
6300 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6301 	}
6302 	return rc;
6303 }
6304 
6305 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6306 				  struct bnxt_ctx_pg_info *ctx_pg)
6307 {
6308 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6309 
6310 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6311 	    ctx_pg->ctx_pg_tbl) {
6312 		int i, nr_tbls = rmem->nr_pages;
6313 
6314 		for (i = 0; i < nr_tbls; i++) {
6315 			struct bnxt_ctx_pg_info *pg_tbl;
6316 			struct bnxt_ring_mem_info *rmem2;
6317 
6318 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
6319 			if (!pg_tbl)
6320 				continue;
6321 			rmem2 = &pg_tbl->ring_mem;
6322 			bnxt_free_ring(bp, rmem2);
6323 			ctx_pg->ctx_pg_arr[i] = NULL;
6324 			kfree(pg_tbl);
6325 			ctx_pg->ctx_pg_tbl[i] = NULL;
6326 		}
6327 		kfree(ctx_pg->ctx_pg_tbl);
6328 		ctx_pg->ctx_pg_tbl = NULL;
6329 	}
6330 	bnxt_free_ring(bp, rmem);
6331 	ctx_pg->nr_pages = 0;
6332 }
6333 
6334 static void bnxt_free_ctx_mem(struct bnxt *bp)
6335 {
6336 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6337 	int i;
6338 
6339 	if (!ctx)
6340 		return;
6341 
6342 	if (ctx->tqm_mem[0]) {
6343 		for (i = 0; i < bp->max_q + 1; i++)
6344 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6345 		kfree(ctx->tqm_mem[0]);
6346 		ctx->tqm_mem[0] = NULL;
6347 	}
6348 
6349 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6350 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6351 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6352 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6353 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6354 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6355 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6356 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6357 }
6358 
6359 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6360 {
6361 	struct bnxt_ctx_pg_info *ctx_pg;
6362 	struct bnxt_ctx_mem_info *ctx;
6363 	u32 mem_size, ena, entries;
6364 	u32 num_mr, num_ah;
6365 	u32 extra_srqs = 0;
6366 	u32 extra_qps = 0;
6367 	u8 pg_lvl = 1;
6368 	int i, rc;
6369 
6370 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6371 	if (rc) {
6372 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6373 			   rc);
6374 		return rc;
6375 	}
6376 	ctx = bp->ctx;
6377 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6378 		return 0;
6379 
6380 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
6381 		pg_lvl = 2;
6382 		extra_qps = 65536;
6383 		extra_srqs = 8192;
6384 	}
6385 
6386 	ctx_pg = &ctx->qp_mem;
6387 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6388 			  extra_qps;
6389 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
6390 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6391 	if (rc)
6392 		return rc;
6393 
6394 	ctx_pg = &ctx->srq_mem;
6395 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6396 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
6397 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6398 	if (rc)
6399 		return rc;
6400 
6401 	ctx_pg = &ctx->cq_mem;
6402 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6403 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
6404 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6405 	if (rc)
6406 		return rc;
6407 
6408 	ctx_pg = &ctx->vnic_mem;
6409 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
6410 			  ctx->vnic_max_ring_table_entries;
6411 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6412 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6413 	if (rc)
6414 		return rc;
6415 
6416 	ctx_pg = &ctx->stat_mem;
6417 	ctx_pg->entries = ctx->stat_max_entries;
6418 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
6419 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6420 	if (rc)
6421 		return rc;
6422 
6423 	ena = 0;
6424 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6425 		goto skip_rdma;
6426 
6427 	ctx_pg = &ctx->mrav_mem;
6428 	/* 128K extra is needed to accommodate static AH context
6429 	 * allocation by f/w.
6430 	 */
6431 	num_mr = 1024 * 256;
6432 	num_ah = 1024 * 128;
6433 	ctx_pg->entries = num_mr + num_ah;
6434 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6435 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2);
6436 	if (rc)
6437 		return rc;
6438 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6439 	if (ctx->mrav_num_entries_units)
6440 		ctx_pg->entries =
6441 			((num_mr / ctx->mrav_num_entries_units) << 16) |
6442 			 (num_ah / ctx->mrav_num_entries_units);
6443 
6444 	ctx_pg = &ctx->tim_mem;
6445 	ctx_pg->entries = ctx->qp_mem.entries;
6446 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
6447 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6448 	if (rc)
6449 		return rc;
6450 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6451 
6452 skip_rdma:
6453 	entries = ctx->qp_max_l2_entries + extra_qps;
6454 	entries = roundup(entries, ctx->tqm_entries_multiple);
6455 	entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
6456 			  ctx->tqm_max_entries_per_ring);
6457 	for (i = 0; i < bp->max_q + 1; i++) {
6458 		ctx_pg = ctx->tqm_mem[i];
6459 		ctx_pg->entries = entries;
6460 		mem_size = ctx->tqm_entry_size * entries;
6461 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6462 		if (rc)
6463 			return rc;
6464 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6465 	}
6466 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6467 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6468 	if (rc)
6469 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6470 			   rc);
6471 	else
6472 		ctx->flags |= BNXT_CTX_FLAG_INITED;
6473 
6474 	return 0;
6475 }
6476 
6477 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6478 {
6479 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6480 	struct hwrm_func_resource_qcaps_input req = {0};
6481 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6482 	int rc;
6483 
6484 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6485 	req.fid = cpu_to_le16(0xffff);
6486 
6487 	mutex_lock(&bp->hwrm_cmd_lock);
6488 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6489 				       HWRM_CMD_TIMEOUT);
6490 	if (rc) {
6491 		rc = -EIO;
6492 		goto hwrm_func_resc_qcaps_exit;
6493 	}
6494 
6495 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6496 	if (!all)
6497 		goto hwrm_func_resc_qcaps_exit;
6498 
6499 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6500 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6501 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6502 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6503 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6504 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6505 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6506 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6507 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6508 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6509 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6510 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6511 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6512 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6513 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6514 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6515 
6516 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6517 		u16 max_msix = le16_to_cpu(resp->max_msix);
6518 
6519 		hw_resc->max_nqs = max_msix;
6520 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6521 	}
6522 
6523 	if (BNXT_PF(bp)) {
6524 		struct bnxt_pf_info *pf = &bp->pf;
6525 
6526 		pf->vf_resv_strategy =
6527 			le16_to_cpu(resp->vf_reservation_strategy);
6528 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6529 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6530 	}
6531 hwrm_func_resc_qcaps_exit:
6532 	mutex_unlock(&bp->hwrm_cmd_lock);
6533 	return rc;
6534 }
6535 
6536 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6537 {
6538 	int rc = 0;
6539 	struct hwrm_func_qcaps_input req = {0};
6540 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6541 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6542 	u32 flags;
6543 
6544 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6545 	req.fid = cpu_to_le16(0xffff);
6546 
6547 	mutex_lock(&bp->hwrm_cmd_lock);
6548 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6549 	if (rc)
6550 		goto hwrm_func_qcaps_exit;
6551 
6552 	flags = le32_to_cpu(resp->flags);
6553 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6554 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6555 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6556 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6557 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
6558 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
6559 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
6560 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
6561 
6562 	bp->tx_push_thresh = 0;
6563 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
6564 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6565 
6566 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6567 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6568 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6569 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6570 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
6571 	if (!hw_resc->max_hw_ring_grps)
6572 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
6573 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6574 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6575 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6576 
6577 	if (BNXT_PF(bp)) {
6578 		struct bnxt_pf_info *pf = &bp->pf;
6579 
6580 		pf->fw_fid = le16_to_cpu(resp->fid);
6581 		pf->port_id = le16_to_cpu(resp->port_id);
6582 		bp->dev->dev_port = pf->port_id;
6583 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
6584 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
6585 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
6586 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
6587 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
6588 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
6589 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
6590 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
6591 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
6592 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
6593 			bp->flags |= BNXT_FLAG_WOL_CAP;
6594 	} else {
6595 #ifdef CONFIG_BNXT_SRIOV
6596 		struct bnxt_vf_info *vf = &bp->vf;
6597 
6598 		vf->fw_fid = le16_to_cpu(resp->fid);
6599 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
6600 #endif
6601 	}
6602 
6603 hwrm_func_qcaps_exit:
6604 	mutex_unlock(&bp->hwrm_cmd_lock);
6605 	return rc;
6606 }
6607 
6608 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
6609 
6610 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
6611 {
6612 	int rc;
6613 
6614 	rc = __bnxt_hwrm_func_qcaps(bp);
6615 	if (rc)
6616 		return rc;
6617 	rc = bnxt_hwrm_queue_qportcfg(bp);
6618 	if (rc) {
6619 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
6620 		return rc;
6621 	}
6622 	if (bp->hwrm_spec_code >= 0x10803) {
6623 		rc = bnxt_alloc_ctx_mem(bp);
6624 		if (rc)
6625 			return rc;
6626 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
6627 		if (!rc)
6628 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
6629 	}
6630 	return 0;
6631 }
6632 
6633 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
6634 {
6635 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
6636 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
6637 	int rc = 0;
6638 	u32 flags;
6639 
6640 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
6641 		return 0;
6642 
6643 	resp = bp->hwrm_cmd_resp_addr;
6644 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
6645 
6646 	mutex_lock(&bp->hwrm_cmd_lock);
6647 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6648 	if (rc)
6649 		goto hwrm_cfa_adv_qcaps_exit;
6650 
6651 	flags = le32_to_cpu(resp->flags);
6652 	if (flags &
6653 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_SUPPORTED)
6654 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX;
6655 
6656 hwrm_cfa_adv_qcaps_exit:
6657 	mutex_unlock(&bp->hwrm_cmd_lock);
6658 	return rc;
6659 }
6660 
6661 static int bnxt_hwrm_func_reset(struct bnxt *bp)
6662 {
6663 	struct hwrm_func_reset_input req = {0};
6664 
6665 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
6666 	req.enables = 0;
6667 
6668 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
6669 }
6670 
6671 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
6672 {
6673 	int rc = 0;
6674 	struct hwrm_queue_qportcfg_input req = {0};
6675 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
6676 	u8 i, j, *qptr;
6677 	bool no_rdma;
6678 
6679 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
6680 
6681 	mutex_lock(&bp->hwrm_cmd_lock);
6682 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6683 	if (rc)
6684 		goto qportcfg_exit;
6685 
6686 	if (!resp->max_configurable_queues) {
6687 		rc = -EINVAL;
6688 		goto qportcfg_exit;
6689 	}
6690 	bp->max_tc = resp->max_configurable_queues;
6691 	bp->max_lltc = resp->max_configurable_lossless_queues;
6692 	if (bp->max_tc > BNXT_MAX_QUEUE)
6693 		bp->max_tc = BNXT_MAX_QUEUE;
6694 
6695 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
6696 	qptr = &resp->queue_id0;
6697 	for (i = 0, j = 0; i < bp->max_tc; i++) {
6698 		bp->q_info[j].queue_id = *qptr;
6699 		bp->q_ids[i] = *qptr++;
6700 		bp->q_info[j].queue_profile = *qptr++;
6701 		bp->tc_to_qidx[j] = j;
6702 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
6703 		    (no_rdma && BNXT_PF(bp)))
6704 			j++;
6705 	}
6706 	bp->max_q = bp->max_tc;
6707 	bp->max_tc = max_t(u8, j, 1);
6708 
6709 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
6710 		bp->max_tc = 1;
6711 
6712 	if (bp->max_lltc > bp->max_tc)
6713 		bp->max_lltc = bp->max_tc;
6714 
6715 qportcfg_exit:
6716 	mutex_unlock(&bp->hwrm_cmd_lock);
6717 	return rc;
6718 }
6719 
6720 static int bnxt_hwrm_ver_get(struct bnxt *bp)
6721 {
6722 	int rc;
6723 	struct hwrm_ver_get_input req = {0};
6724 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
6725 	u32 dev_caps_cfg;
6726 
6727 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
6728 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
6729 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
6730 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
6731 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
6732 	mutex_lock(&bp->hwrm_cmd_lock);
6733 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6734 	if (rc)
6735 		goto hwrm_ver_get_exit;
6736 
6737 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
6738 
6739 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
6740 			     resp->hwrm_intf_min_8b << 8 |
6741 			     resp->hwrm_intf_upd_8b;
6742 	if (resp->hwrm_intf_maj_8b < 1) {
6743 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
6744 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
6745 			    resp->hwrm_intf_upd_8b);
6746 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
6747 	}
6748 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
6749 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
6750 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
6751 
6752 	if (strlen(resp->active_pkg_name)) {
6753 		int fw_ver_len = strlen(bp->fw_ver_str);
6754 
6755 		snprintf(bp->fw_ver_str + fw_ver_len,
6756 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
6757 			 resp->active_pkg_name);
6758 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
6759 	}
6760 
6761 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
6762 	if (!bp->hwrm_cmd_timeout)
6763 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
6764 
6765 	if (resp->hwrm_intf_maj_8b >= 1) {
6766 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
6767 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
6768 	}
6769 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
6770 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
6771 
6772 	bp->chip_num = le16_to_cpu(resp->chip_num);
6773 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
6774 	    !resp->chip_metal)
6775 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
6776 
6777 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
6778 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
6779 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
6780 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
6781 
6782 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
6783 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
6784 
6785 	if (dev_caps_cfg &
6786 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
6787 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
6788 
6789 	if (dev_caps_cfg &
6790 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
6791 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
6792 
6793 	if (dev_caps_cfg &
6794 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
6795 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
6796 
6797 hwrm_ver_get_exit:
6798 	mutex_unlock(&bp->hwrm_cmd_lock);
6799 	return rc;
6800 }
6801 
6802 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
6803 {
6804 	struct hwrm_fw_set_time_input req = {0};
6805 	struct tm tm;
6806 	time64_t now = ktime_get_real_seconds();
6807 
6808 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
6809 	    bp->hwrm_spec_code < 0x10400)
6810 		return -EOPNOTSUPP;
6811 
6812 	time64_to_tm(now, 0, &tm);
6813 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
6814 	req.year = cpu_to_le16(1900 + tm.tm_year);
6815 	req.month = 1 + tm.tm_mon;
6816 	req.day = tm.tm_mday;
6817 	req.hour = tm.tm_hour;
6818 	req.minute = tm.tm_min;
6819 	req.second = tm.tm_sec;
6820 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6821 }
6822 
6823 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
6824 {
6825 	int rc;
6826 	struct bnxt_pf_info *pf = &bp->pf;
6827 	struct hwrm_port_qstats_input req = {0};
6828 
6829 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
6830 		return 0;
6831 
6832 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
6833 	req.port_id = cpu_to_le16(pf->port_id);
6834 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
6835 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
6836 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6837 	return rc;
6838 }
6839 
6840 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
6841 {
6842 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
6843 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
6844 	struct hwrm_port_qstats_ext_input req = {0};
6845 	struct bnxt_pf_info *pf = &bp->pf;
6846 	u32 tx_stat_size;
6847 	int rc;
6848 
6849 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
6850 		return 0;
6851 
6852 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
6853 	req.port_id = cpu_to_le16(pf->port_id);
6854 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
6855 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
6856 	tx_stat_size = bp->hw_tx_port_stats_ext ?
6857 		       sizeof(*bp->hw_tx_port_stats_ext) : 0;
6858 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
6859 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
6860 	mutex_lock(&bp->hwrm_cmd_lock);
6861 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6862 	if (!rc) {
6863 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
6864 		bp->fw_tx_stats_ext_size = tx_stat_size ?
6865 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
6866 	} else {
6867 		bp->fw_rx_stats_ext_size = 0;
6868 		bp->fw_tx_stats_ext_size = 0;
6869 	}
6870 	if (bp->fw_tx_stats_ext_size <=
6871 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
6872 		mutex_unlock(&bp->hwrm_cmd_lock);
6873 		bp->pri2cos_valid = 0;
6874 		return rc;
6875 	}
6876 
6877 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
6878 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
6879 
6880 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
6881 	if (!rc) {
6882 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
6883 		u8 *pri2cos;
6884 		int i, j;
6885 
6886 		resp2 = bp->hwrm_cmd_resp_addr;
6887 		pri2cos = &resp2->pri0_cos_queue_id;
6888 		for (i = 0; i < 8; i++) {
6889 			u8 queue_id = pri2cos[i];
6890 
6891 			for (j = 0; j < bp->max_q; j++) {
6892 				if (bp->q_ids[j] == queue_id)
6893 					bp->pri2cos[i] = j;
6894 			}
6895 		}
6896 		bp->pri2cos_valid = 1;
6897 	}
6898 	mutex_unlock(&bp->hwrm_cmd_lock);
6899 	return rc;
6900 }
6901 
6902 static int bnxt_hwrm_pcie_qstats(struct bnxt *bp)
6903 {
6904 	struct hwrm_pcie_qstats_input req = {0};
6905 
6906 	if (!(bp->flags & BNXT_FLAG_PCIE_STATS))
6907 		return 0;
6908 
6909 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1);
6910 	req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats));
6911 	req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map);
6912 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6913 }
6914 
6915 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
6916 {
6917 	if (bp->vxlan_port_cnt) {
6918 		bnxt_hwrm_tunnel_dst_port_free(
6919 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6920 	}
6921 	bp->vxlan_port_cnt = 0;
6922 	if (bp->nge_port_cnt) {
6923 		bnxt_hwrm_tunnel_dst_port_free(
6924 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6925 	}
6926 	bp->nge_port_cnt = 0;
6927 }
6928 
6929 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
6930 {
6931 	int rc, i;
6932 	u32 tpa_flags = 0;
6933 
6934 	if (set_tpa)
6935 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
6936 	for (i = 0; i < bp->nr_vnics; i++) {
6937 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
6938 		if (rc) {
6939 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
6940 				   i, rc);
6941 			return rc;
6942 		}
6943 	}
6944 	return 0;
6945 }
6946 
6947 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
6948 {
6949 	int i;
6950 
6951 	for (i = 0; i < bp->nr_vnics; i++)
6952 		bnxt_hwrm_vnic_set_rss(bp, i, false);
6953 }
6954 
6955 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
6956 				    bool irq_re_init)
6957 {
6958 	if (bp->vnic_info) {
6959 		bnxt_hwrm_clear_vnic_filter(bp);
6960 		/* clear all RSS setting before free vnic ctx */
6961 		bnxt_hwrm_clear_vnic_rss(bp);
6962 		bnxt_hwrm_vnic_ctx_free(bp);
6963 		/* before free the vnic, undo the vnic tpa settings */
6964 		if (bp->flags & BNXT_FLAG_TPA)
6965 			bnxt_set_tpa(bp, false);
6966 		bnxt_hwrm_vnic_free(bp);
6967 	}
6968 	bnxt_hwrm_ring_free(bp, close_path);
6969 	bnxt_hwrm_ring_grp_free(bp);
6970 	if (irq_re_init) {
6971 		bnxt_hwrm_stat_ctx_free(bp);
6972 		bnxt_hwrm_free_tunnel_ports(bp);
6973 	}
6974 }
6975 
6976 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
6977 {
6978 	struct hwrm_func_cfg_input req = {0};
6979 	int rc;
6980 
6981 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
6982 	req.fid = cpu_to_le16(0xffff);
6983 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
6984 	if (br_mode == BRIDGE_MODE_VEB)
6985 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
6986 	else if (br_mode == BRIDGE_MODE_VEPA)
6987 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
6988 	else
6989 		return -EINVAL;
6990 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6991 	if (rc)
6992 		rc = -EIO;
6993 	return rc;
6994 }
6995 
6996 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
6997 {
6998 	struct hwrm_func_cfg_input req = {0};
6999 	int rc;
7000 
7001 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7002 		return 0;
7003 
7004 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7005 	req.fid = cpu_to_le16(0xffff);
7006 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7007 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7008 	if (size == 128)
7009 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7010 
7011 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7012 	if (rc)
7013 		rc = -EIO;
7014 	return rc;
7015 }
7016 
7017 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7018 {
7019 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7020 	int rc;
7021 
7022 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7023 		goto skip_rss_ctx;
7024 
7025 	/* allocate context for vnic */
7026 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7027 	if (rc) {
7028 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7029 			   vnic_id, rc);
7030 		goto vnic_setup_err;
7031 	}
7032 	bp->rsscos_nr_ctxs++;
7033 
7034 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7035 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7036 		if (rc) {
7037 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7038 				   vnic_id, rc);
7039 			goto vnic_setup_err;
7040 		}
7041 		bp->rsscos_nr_ctxs++;
7042 	}
7043 
7044 skip_rss_ctx:
7045 	/* configure default vnic, ring grp */
7046 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7047 	if (rc) {
7048 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7049 			   vnic_id, rc);
7050 		goto vnic_setup_err;
7051 	}
7052 
7053 	/* Enable RSS hashing on vnic */
7054 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7055 	if (rc) {
7056 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7057 			   vnic_id, rc);
7058 		goto vnic_setup_err;
7059 	}
7060 
7061 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7062 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7063 		if (rc) {
7064 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7065 				   vnic_id, rc);
7066 		}
7067 	}
7068 
7069 vnic_setup_err:
7070 	return rc;
7071 }
7072 
7073 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7074 {
7075 	int rc, i, nr_ctxs;
7076 
7077 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
7078 	for (i = 0; i < nr_ctxs; i++) {
7079 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7080 		if (rc) {
7081 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7082 				   vnic_id, i, rc);
7083 			break;
7084 		}
7085 		bp->rsscos_nr_ctxs++;
7086 	}
7087 	if (i < nr_ctxs)
7088 		return -ENOMEM;
7089 
7090 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7091 	if (rc) {
7092 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7093 			   vnic_id, rc);
7094 		return rc;
7095 	}
7096 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7097 	if (rc) {
7098 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7099 			   vnic_id, rc);
7100 		return rc;
7101 	}
7102 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7103 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7104 		if (rc) {
7105 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7106 				   vnic_id, rc);
7107 		}
7108 	}
7109 	return rc;
7110 }
7111 
7112 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7113 {
7114 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7115 		return __bnxt_setup_vnic_p5(bp, vnic_id);
7116 	else
7117 		return __bnxt_setup_vnic(bp, vnic_id);
7118 }
7119 
7120 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7121 {
7122 #ifdef CONFIG_RFS_ACCEL
7123 	int i, rc = 0;
7124 
7125 	for (i = 0; i < bp->rx_nr_rings; i++) {
7126 		struct bnxt_vnic_info *vnic;
7127 		u16 vnic_id = i + 1;
7128 		u16 ring_id = i;
7129 
7130 		if (vnic_id >= bp->nr_vnics)
7131 			break;
7132 
7133 		vnic = &bp->vnic_info[vnic_id];
7134 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
7135 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7136 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7137 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7138 		if (rc) {
7139 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7140 				   vnic_id, rc);
7141 			break;
7142 		}
7143 		rc = bnxt_setup_vnic(bp, vnic_id);
7144 		if (rc)
7145 			break;
7146 	}
7147 	return rc;
7148 #else
7149 	return 0;
7150 #endif
7151 }
7152 
7153 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7154 static bool bnxt_promisc_ok(struct bnxt *bp)
7155 {
7156 #ifdef CONFIG_BNXT_SRIOV
7157 	if (BNXT_VF(bp) && !bp->vf.vlan)
7158 		return false;
7159 #endif
7160 	return true;
7161 }
7162 
7163 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7164 {
7165 	unsigned int rc = 0;
7166 
7167 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7168 	if (rc) {
7169 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7170 			   rc);
7171 		return rc;
7172 	}
7173 
7174 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
7175 	if (rc) {
7176 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7177 			   rc);
7178 		return rc;
7179 	}
7180 	return rc;
7181 }
7182 
7183 static int bnxt_cfg_rx_mode(struct bnxt *);
7184 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7185 
7186 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7187 {
7188 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7189 	int rc = 0;
7190 	unsigned int rx_nr_rings = bp->rx_nr_rings;
7191 
7192 	if (irq_re_init) {
7193 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
7194 		if (rc) {
7195 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7196 				   rc);
7197 			goto err_out;
7198 		}
7199 	}
7200 
7201 	rc = bnxt_hwrm_ring_alloc(bp);
7202 	if (rc) {
7203 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7204 		goto err_out;
7205 	}
7206 
7207 	rc = bnxt_hwrm_ring_grp_alloc(bp);
7208 	if (rc) {
7209 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7210 		goto err_out;
7211 	}
7212 
7213 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7214 		rx_nr_rings--;
7215 
7216 	/* default vnic 0 */
7217 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7218 	if (rc) {
7219 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7220 		goto err_out;
7221 	}
7222 
7223 	rc = bnxt_setup_vnic(bp, 0);
7224 	if (rc)
7225 		goto err_out;
7226 
7227 	if (bp->flags & BNXT_FLAG_RFS) {
7228 		rc = bnxt_alloc_rfs_vnics(bp);
7229 		if (rc)
7230 			goto err_out;
7231 	}
7232 
7233 	if (bp->flags & BNXT_FLAG_TPA) {
7234 		rc = bnxt_set_tpa(bp, true);
7235 		if (rc)
7236 			goto err_out;
7237 	}
7238 
7239 	if (BNXT_VF(bp))
7240 		bnxt_update_vf_mac(bp);
7241 
7242 	/* Filter for default vnic 0 */
7243 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7244 	if (rc) {
7245 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7246 		goto err_out;
7247 	}
7248 	vnic->uc_filter_count = 1;
7249 
7250 	vnic->rx_mask = 0;
7251 	if (bp->dev->flags & IFF_BROADCAST)
7252 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7253 
7254 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7255 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7256 
7257 	if (bp->dev->flags & IFF_ALLMULTI) {
7258 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7259 		vnic->mc_list_count = 0;
7260 	} else {
7261 		u32 mask = 0;
7262 
7263 		bnxt_mc_list_updated(bp, &mask);
7264 		vnic->rx_mask |= mask;
7265 	}
7266 
7267 	rc = bnxt_cfg_rx_mode(bp);
7268 	if (rc)
7269 		goto err_out;
7270 
7271 	rc = bnxt_hwrm_set_coal(bp);
7272 	if (rc)
7273 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7274 				rc);
7275 
7276 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7277 		rc = bnxt_setup_nitroa0_vnic(bp);
7278 		if (rc)
7279 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7280 				   rc);
7281 	}
7282 
7283 	if (BNXT_VF(bp)) {
7284 		bnxt_hwrm_func_qcfg(bp);
7285 		netdev_update_features(bp->dev);
7286 	}
7287 
7288 	return 0;
7289 
7290 err_out:
7291 	bnxt_hwrm_resource_free(bp, 0, true);
7292 
7293 	return rc;
7294 }
7295 
7296 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7297 {
7298 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7299 	return 0;
7300 }
7301 
7302 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7303 {
7304 	bnxt_init_cp_rings(bp);
7305 	bnxt_init_rx_rings(bp);
7306 	bnxt_init_tx_rings(bp);
7307 	bnxt_init_ring_grps(bp, irq_re_init);
7308 	bnxt_init_vnics(bp);
7309 
7310 	return bnxt_init_chip(bp, irq_re_init);
7311 }
7312 
7313 static int bnxt_set_real_num_queues(struct bnxt *bp)
7314 {
7315 	int rc;
7316 	struct net_device *dev = bp->dev;
7317 
7318 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7319 					  bp->tx_nr_rings_xdp);
7320 	if (rc)
7321 		return rc;
7322 
7323 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7324 	if (rc)
7325 		return rc;
7326 
7327 #ifdef CONFIG_RFS_ACCEL
7328 	if (bp->flags & BNXT_FLAG_RFS)
7329 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7330 #endif
7331 
7332 	return rc;
7333 }
7334 
7335 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7336 			   bool shared)
7337 {
7338 	int _rx = *rx, _tx = *tx;
7339 
7340 	if (shared) {
7341 		*rx = min_t(int, _rx, max);
7342 		*tx = min_t(int, _tx, max);
7343 	} else {
7344 		if (max < 2)
7345 			return -ENOMEM;
7346 
7347 		while (_rx + _tx > max) {
7348 			if (_rx > _tx && _rx > 1)
7349 				_rx--;
7350 			else if (_tx > 1)
7351 				_tx--;
7352 		}
7353 		*rx = _rx;
7354 		*tx = _tx;
7355 	}
7356 	return 0;
7357 }
7358 
7359 static void bnxt_setup_msix(struct bnxt *bp)
7360 {
7361 	const int len = sizeof(bp->irq_tbl[0].name);
7362 	struct net_device *dev = bp->dev;
7363 	int tcs, i;
7364 
7365 	tcs = netdev_get_num_tc(dev);
7366 	if (tcs > 1) {
7367 		int i, off, count;
7368 
7369 		for (i = 0; i < tcs; i++) {
7370 			count = bp->tx_nr_rings_per_tc;
7371 			off = i * count;
7372 			netdev_set_tc_queue(dev, i, count, off);
7373 		}
7374 	}
7375 
7376 	for (i = 0; i < bp->cp_nr_rings; i++) {
7377 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7378 		char *attr;
7379 
7380 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7381 			attr = "TxRx";
7382 		else if (i < bp->rx_nr_rings)
7383 			attr = "rx";
7384 		else
7385 			attr = "tx";
7386 
7387 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7388 			 attr, i);
7389 		bp->irq_tbl[map_idx].handler = bnxt_msix;
7390 	}
7391 }
7392 
7393 static void bnxt_setup_inta(struct bnxt *bp)
7394 {
7395 	const int len = sizeof(bp->irq_tbl[0].name);
7396 
7397 	if (netdev_get_num_tc(bp->dev))
7398 		netdev_reset_tc(bp->dev);
7399 
7400 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7401 		 0);
7402 	bp->irq_tbl[0].handler = bnxt_inta;
7403 }
7404 
7405 static int bnxt_setup_int_mode(struct bnxt *bp)
7406 {
7407 	int rc;
7408 
7409 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7410 		bnxt_setup_msix(bp);
7411 	else
7412 		bnxt_setup_inta(bp);
7413 
7414 	rc = bnxt_set_real_num_queues(bp);
7415 	return rc;
7416 }
7417 
7418 #ifdef CONFIG_RFS_ACCEL
7419 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7420 {
7421 	return bp->hw_resc.max_rsscos_ctxs;
7422 }
7423 
7424 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7425 {
7426 	return bp->hw_resc.max_vnics;
7427 }
7428 #endif
7429 
7430 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
7431 {
7432 	return bp->hw_resc.max_stat_ctxs;
7433 }
7434 
7435 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
7436 {
7437 	return bp->hw_resc.max_cp_rings;
7438 }
7439 
7440 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
7441 {
7442 	unsigned int cp = bp->hw_resc.max_cp_rings;
7443 
7444 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7445 		cp -= bnxt_get_ulp_msix_num(bp);
7446 
7447 	return cp;
7448 }
7449 
7450 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
7451 {
7452 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7453 
7454 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7455 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
7456 
7457 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
7458 }
7459 
7460 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
7461 {
7462 	bp->hw_resc.max_irqs = max_irqs;
7463 }
7464 
7465 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
7466 {
7467 	unsigned int cp;
7468 
7469 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
7470 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7471 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
7472 	else
7473 		return cp - bp->cp_nr_rings;
7474 }
7475 
7476 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
7477 {
7478 	unsigned int stat;
7479 
7480 	stat = bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_ulp_stat_ctxs(bp);
7481 	stat -= bp->cp_nr_rings;
7482 	return stat;
7483 }
7484 
7485 int bnxt_get_avail_msix(struct bnxt *bp, int num)
7486 {
7487 	int max_cp = bnxt_get_max_func_cp_rings(bp);
7488 	int max_irq = bnxt_get_max_func_irqs(bp);
7489 	int total_req = bp->cp_nr_rings + num;
7490 	int max_idx, avail_msix;
7491 
7492 	max_idx = bp->total_irqs;
7493 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7494 		max_idx = min_t(int, bp->total_irqs, max_cp);
7495 	avail_msix = max_idx - bp->cp_nr_rings;
7496 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
7497 		return avail_msix;
7498 
7499 	if (max_irq < total_req) {
7500 		num = max_irq - bp->cp_nr_rings;
7501 		if (num <= 0)
7502 			return 0;
7503 	}
7504 	return num;
7505 }
7506 
7507 static int bnxt_get_num_msix(struct bnxt *bp)
7508 {
7509 	if (!BNXT_NEW_RM(bp))
7510 		return bnxt_get_max_func_irqs(bp);
7511 
7512 	return bnxt_nq_rings_in_use(bp);
7513 }
7514 
7515 static int bnxt_init_msix(struct bnxt *bp)
7516 {
7517 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
7518 	struct msix_entry *msix_ent;
7519 
7520 	total_vecs = bnxt_get_num_msix(bp);
7521 	max = bnxt_get_max_func_irqs(bp);
7522 	if (total_vecs > max)
7523 		total_vecs = max;
7524 
7525 	if (!total_vecs)
7526 		return 0;
7527 
7528 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
7529 	if (!msix_ent)
7530 		return -ENOMEM;
7531 
7532 	for (i = 0; i < total_vecs; i++) {
7533 		msix_ent[i].entry = i;
7534 		msix_ent[i].vector = 0;
7535 	}
7536 
7537 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
7538 		min = 2;
7539 
7540 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
7541 	ulp_msix = bnxt_get_ulp_msix_num(bp);
7542 	if (total_vecs < 0 || total_vecs < ulp_msix) {
7543 		rc = -ENODEV;
7544 		goto msix_setup_exit;
7545 	}
7546 
7547 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
7548 	if (bp->irq_tbl) {
7549 		for (i = 0; i < total_vecs; i++)
7550 			bp->irq_tbl[i].vector = msix_ent[i].vector;
7551 
7552 		bp->total_irqs = total_vecs;
7553 		/* Trim rings based upon num of vectors allocated */
7554 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
7555 				     total_vecs - ulp_msix, min == 1);
7556 		if (rc)
7557 			goto msix_setup_exit;
7558 
7559 		bp->cp_nr_rings = (min == 1) ?
7560 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7561 				  bp->tx_nr_rings + bp->rx_nr_rings;
7562 
7563 	} else {
7564 		rc = -ENOMEM;
7565 		goto msix_setup_exit;
7566 	}
7567 	bp->flags |= BNXT_FLAG_USING_MSIX;
7568 	kfree(msix_ent);
7569 	return 0;
7570 
7571 msix_setup_exit:
7572 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
7573 	kfree(bp->irq_tbl);
7574 	bp->irq_tbl = NULL;
7575 	pci_disable_msix(bp->pdev);
7576 	kfree(msix_ent);
7577 	return rc;
7578 }
7579 
7580 static int bnxt_init_inta(struct bnxt *bp)
7581 {
7582 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
7583 	if (!bp->irq_tbl)
7584 		return -ENOMEM;
7585 
7586 	bp->total_irqs = 1;
7587 	bp->rx_nr_rings = 1;
7588 	bp->tx_nr_rings = 1;
7589 	bp->cp_nr_rings = 1;
7590 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
7591 	bp->irq_tbl[0].vector = bp->pdev->irq;
7592 	return 0;
7593 }
7594 
7595 static int bnxt_init_int_mode(struct bnxt *bp)
7596 {
7597 	int rc = 0;
7598 
7599 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
7600 		rc = bnxt_init_msix(bp);
7601 
7602 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
7603 		/* fallback to INTA */
7604 		rc = bnxt_init_inta(bp);
7605 	}
7606 	return rc;
7607 }
7608 
7609 static void bnxt_clear_int_mode(struct bnxt *bp)
7610 {
7611 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7612 		pci_disable_msix(bp->pdev);
7613 
7614 	kfree(bp->irq_tbl);
7615 	bp->irq_tbl = NULL;
7616 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
7617 }
7618 
7619 int bnxt_reserve_rings(struct bnxt *bp)
7620 {
7621 	int tcs = netdev_get_num_tc(bp->dev);
7622 	bool reinit_irq = false;
7623 	int rc;
7624 
7625 	if (!bnxt_need_reserve_rings(bp))
7626 		return 0;
7627 
7628 	if (BNXT_NEW_RM(bp) && (bnxt_get_num_msix(bp) != bp->total_irqs)) {
7629 		bnxt_ulp_irq_stop(bp);
7630 		bnxt_clear_int_mode(bp);
7631 		reinit_irq = true;
7632 	}
7633 	rc = __bnxt_reserve_rings(bp);
7634 	if (reinit_irq) {
7635 		if (!rc)
7636 			rc = bnxt_init_int_mode(bp);
7637 		bnxt_ulp_irq_restart(bp, rc);
7638 	}
7639 	if (rc) {
7640 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
7641 		return rc;
7642 	}
7643 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
7644 		netdev_err(bp->dev, "tx ring reservation failure\n");
7645 		netdev_reset_tc(bp->dev);
7646 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
7647 		return -ENOMEM;
7648 	}
7649 	return 0;
7650 }
7651 
7652 static void bnxt_free_irq(struct bnxt *bp)
7653 {
7654 	struct bnxt_irq *irq;
7655 	int i;
7656 
7657 #ifdef CONFIG_RFS_ACCEL
7658 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
7659 	bp->dev->rx_cpu_rmap = NULL;
7660 #endif
7661 	if (!bp->irq_tbl || !bp->bnapi)
7662 		return;
7663 
7664 	for (i = 0; i < bp->cp_nr_rings; i++) {
7665 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7666 
7667 		irq = &bp->irq_tbl[map_idx];
7668 		if (irq->requested) {
7669 			if (irq->have_cpumask) {
7670 				irq_set_affinity_hint(irq->vector, NULL);
7671 				free_cpumask_var(irq->cpu_mask);
7672 				irq->have_cpumask = 0;
7673 			}
7674 			free_irq(irq->vector, bp->bnapi[i]);
7675 		}
7676 
7677 		irq->requested = 0;
7678 	}
7679 }
7680 
7681 static int bnxt_request_irq(struct bnxt *bp)
7682 {
7683 	int i, j, rc = 0;
7684 	unsigned long flags = 0;
7685 #ifdef CONFIG_RFS_ACCEL
7686 	struct cpu_rmap *rmap;
7687 #endif
7688 
7689 	rc = bnxt_setup_int_mode(bp);
7690 	if (rc) {
7691 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
7692 			   rc);
7693 		return rc;
7694 	}
7695 #ifdef CONFIG_RFS_ACCEL
7696 	rmap = bp->dev->rx_cpu_rmap;
7697 #endif
7698 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
7699 		flags = IRQF_SHARED;
7700 
7701 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
7702 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7703 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
7704 
7705 #ifdef CONFIG_RFS_ACCEL
7706 		if (rmap && bp->bnapi[i]->rx_ring) {
7707 			rc = irq_cpu_rmap_add(rmap, irq->vector);
7708 			if (rc)
7709 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
7710 					    j);
7711 			j++;
7712 		}
7713 #endif
7714 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
7715 				 bp->bnapi[i]);
7716 		if (rc)
7717 			break;
7718 
7719 		irq->requested = 1;
7720 
7721 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
7722 			int numa_node = dev_to_node(&bp->pdev->dev);
7723 
7724 			irq->have_cpumask = 1;
7725 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
7726 					irq->cpu_mask);
7727 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
7728 			if (rc) {
7729 				netdev_warn(bp->dev,
7730 					    "Set affinity failed, IRQ = %d\n",
7731 					    irq->vector);
7732 				break;
7733 			}
7734 		}
7735 	}
7736 	return rc;
7737 }
7738 
7739 static void bnxt_del_napi(struct bnxt *bp)
7740 {
7741 	int i;
7742 
7743 	if (!bp->bnapi)
7744 		return;
7745 
7746 	for (i = 0; i < bp->cp_nr_rings; i++) {
7747 		struct bnxt_napi *bnapi = bp->bnapi[i];
7748 
7749 		napi_hash_del(&bnapi->napi);
7750 		netif_napi_del(&bnapi->napi);
7751 	}
7752 	/* We called napi_hash_del() before netif_napi_del(), we need
7753 	 * to respect an RCU grace period before freeing napi structures.
7754 	 */
7755 	synchronize_net();
7756 }
7757 
7758 static void bnxt_init_napi(struct bnxt *bp)
7759 {
7760 	int i;
7761 	unsigned int cp_nr_rings = bp->cp_nr_rings;
7762 	struct bnxt_napi *bnapi;
7763 
7764 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
7765 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
7766 
7767 		if (bp->flags & BNXT_FLAG_CHIP_P5)
7768 			poll_fn = bnxt_poll_p5;
7769 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7770 			cp_nr_rings--;
7771 		for (i = 0; i < cp_nr_rings; i++) {
7772 			bnapi = bp->bnapi[i];
7773 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
7774 		}
7775 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7776 			bnapi = bp->bnapi[cp_nr_rings];
7777 			netif_napi_add(bp->dev, &bnapi->napi,
7778 				       bnxt_poll_nitroa0, 64);
7779 		}
7780 	} else {
7781 		bnapi = bp->bnapi[0];
7782 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
7783 	}
7784 }
7785 
7786 static void bnxt_disable_napi(struct bnxt *bp)
7787 {
7788 	int i;
7789 
7790 	if (!bp->bnapi)
7791 		return;
7792 
7793 	for (i = 0; i < bp->cp_nr_rings; i++) {
7794 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7795 
7796 		if (bp->bnapi[i]->rx_ring)
7797 			cancel_work_sync(&cpr->dim.work);
7798 
7799 		napi_disable(&bp->bnapi[i]->napi);
7800 	}
7801 }
7802 
7803 static void bnxt_enable_napi(struct bnxt *bp)
7804 {
7805 	int i;
7806 
7807 	for (i = 0; i < bp->cp_nr_rings; i++) {
7808 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7809 		bp->bnapi[i]->in_reset = false;
7810 
7811 		if (bp->bnapi[i]->rx_ring) {
7812 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
7813 			cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
7814 		}
7815 		napi_enable(&bp->bnapi[i]->napi);
7816 	}
7817 }
7818 
7819 void bnxt_tx_disable(struct bnxt *bp)
7820 {
7821 	int i;
7822 	struct bnxt_tx_ring_info *txr;
7823 
7824 	if (bp->tx_ring) {
7825 		for (i = 0; i < bp->tx_nr_rings; i++) {
7826 			txr = &bp->tx_ring[i];
7827 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
7828 		}
7829 	}
7830 	/* Stop all TX queues */
7831 	netif_tx_disable(bp->dev);
7832 	netif_carrier_off(bp->dev);
7833 }
7834 
7835 void bnxt_tx_enable(struct bnxt *bp)
7836 {
7837 	int i;
7838 	struct bnxt_tx_ring_info *txr;
7839 
7840 	for (i = 0; i < bp->tx_nr_rings; i++) {
7841 		txr = &bp->tx_ring[i];
7842 		txr->dev_state = 0;
7843 	}
7844 	netif_tx_wake_all_queues(bp->dev);
7845 	if (bp->link_info.link_up)
7846 		netif_carrier_on(bp->dev);
7847 }
7848 
7849 static void bnxt_report_link(struct bnxt *bp)
7850 {
7851 	if (bp->link_info.link_up) {
7852 		const char *duplex;
7853 		const char *flow_ctrl;
7854 		u32 speed;
7855 		u16 fec;
7856 
7857 		netif_carrier_on(bp->dev);
7858 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
7859 			duplex = "full";
7860 		else
7861 			duplex = "half";
7862 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
7863 			flow_ctrl = "ON - receive & transmit";
7864 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
7865 			flow_ctrl = "ON - transmit";
7866 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
7867 			flow_ctrl = "ON - receive";
7868 		else
7869 			flow_ctrl = "none";
7870 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
7871 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
7872 			    speed, duplex, flow_ctrl);
7873 		if (bp->flags & BNXT_FLAG_EEE_CAP)
7874 			netdev_info(bp->dev, "EEE is %s\n",
7875 				    bp->eee.eee_active ? "active" :
7876 							 "not active");
7877 		fec = bp->link_info.fec_cfg;
7878 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
7879 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
7880 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
7881 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
7882 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
7883 	} else {
7884 		netif_carrier_off(bp->dev);
7885 		netdev_err(bp->dev, "NIC Link is Down\n");
7886 	}
7887 }
7888 
7889 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
7890 {
7891 	int rc = 0;
7892 	struct hwrm_port_phy_qcaps_input req = {0};
7893 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7894 	struct bnxt_link_info *link_info = &bp->link_info;
7895 
7896 	if (bp->hwrm_spec_code < 0x10201)
7897 		return 0;
7898 
7899 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
7900 
7901 	mutex_lock(&bp->hwrm_cmd_lock);
7902 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7903 	if (rc)
7904 		goto hwrm_phy_qcaps_exit;
7905 
7906 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
7907 		struct ethtool_eee *eee = &bp->eee;
7908 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
7909 
7910 		bp->flags |= BNXT_FLAG_EEE_CAP;
7911 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7912 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
7913 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
7914 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
7915 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
7916 	}
7917 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
7918 		if (bp->test_info)
7919 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
7920 	}
7921 	if (resp->supported_speeds_auto_mode)
7922 		link_info->support_auto_speeds =
7923 			le16_to_cpu(resp->supported_speeds_auto_mode);
7924 
7925 	bp->port_count = resp->port_cnt;
7926 
7927 hwrm_phy_qcaps_exit:
7928 	mutex_unlock(&bp->hwrm_cmd_lock);
7929 	return rc;
7930 }
7931 
7932 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
7933 {
7934 	int rc = 0;
7935 	struct bnxt_link_info *link_info = &bp->link_info;
7936 	struct hwrm_port_phy_qcfg_input req = {0};
7937 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7938 	u8 link_up = link_info->link_up;
7939 	u16 diff;
7940 
7941 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
7942 
7943 	mutex_lock(&bp->hwrm_cmd_lock);
7944 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7945 	if (rc) {
7946 		mutex_unlock(&bp->hwrm_cmd_lock);
7947 		return rc;
7948 	}
7949 
7950 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
7951 	link_info->phy_link_status = resp->link;
7952 	link_info->duplex = resp->duplex_cfg;
7953 	if (bp->hwrm_spec_code >= 0x10800)
7954 		link_info->duplex = resp->duplex_state;
7955 	link_info->pause = resp->pause;
7956 	link_info->auto_mode = resp->auto_mode;
7957 	link_info->auto_pause_setting = resp->auto_pause;
7958 	link_info->lp_pause = resp->link_partner_adv_pause;
7959 	link_info->force_pause_setting = resp->force_pause;
7960 	link_info->duplex_setting = resp->duplex_cfg;
7961 	if (link_info->phy_link_status == BNXT_LINK_LINK)
7962 		link_info->link_speed = le16_to_cpu(resp->link_speed);
7963 	else
7964 		link_info->link_speed = 0;
7965 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
7966 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
7967 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
7968 	link_info->lp_auto_link_speeds =
7969 		le16_to_cpu(resp->link_partner_adv_speeds);
7970 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
7971 	link_info->phy_ver[0] = resp->phy_maj;
7972 	link_info->phy_ver[1] = resp->phy_min;
7973 	link_info->phy_ver[2] = resp->phy_bld;
7974 	link_info->media_type = resp->media_type;
7975 	link_info->phy_type = resp->phy_type;
7976 	link_info->transceiver = resp->xcvr_pkg_type;
7977 	link_info->phy_addr = resp->eee_config_phy_addr &
7978 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
7979 	link_info->module_status = resp->module_status;
7980 
7981 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
7982 		struct ethtool_eee *eee = &bp->eee;
7983 		u16 fw_speeds;
7984 
7985 		eee->eee_active = 0;
7986 		if (resp->eee_config_phy_addr &
7987 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
7988 			eee->eee_active = 1;
7989 			fw_speeds = le16_to_cpu(
7990 				resp->link_partner_adv_eee_link_speed_mask);
7991 			eee->lp_advertised =
7992 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7993 		}
7994 
7995 		/* Pull initial EEE config */
7996 		if (!chng_link_state) {
7997 			if (resp->eee_config_phy_addr &
7998 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
7999 				eee->eee_enabled = 1;
8000 
8001 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8002 			eee->advertised =
8003 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8004 
8005 			if (resp->eee_config_phy_addr &
8006 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8007 				__le32 tmr;
8008 
8009 				eee->tx_lpi_enabled = 1;
8010 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8011 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
8012 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8013 			}
8014 		}
8015 	}
8016 
8017 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8018 	if (bp->hwrm_spec_code >= 0x10504)
8019 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8020 
8021 	/* TODO: need to add more logic to report VF link */
8022 	if (chng_link_state) {
8023 		if (link_info->phy_link_status == BNXT_LINK_LINK)
8024 			link_info->link_up = 1;
8025 		else
8026 			link_info->link_up = 0;
8027 		if (link_up != link_info->link_up)
8028 			bnxt_report_link(bp);
8029 	} else {
8030 		/* alwasy link down if not require to update link state */
8031 		link_info->link_up = 0;
8032 	}
8033 	mutex_unlock(&bp->hwrm_cmd_lock);
8034 
8035 	if (!BNXT_SINGLE_PF(bp))
8036 		return 0;
8037 
8038 	diff = link_info->support_auto_speeds ^ link_info->advertising;
8039 	if ((link_info->support_auto_speeds | diff) !=
8040 	    link_info->support_auto_speeds) {
8041 		/* An advertised speed is no longer supported, so we need to
8042 		 * update the advertisement settings.  Caller holds RTNL
8043 		 * so we can modify link settings.
8044 		 */
8045 		link_info->advertising = link_info->support_auto_speeds;
8046 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8047 			bnxt_hwrm_set_link_setting(bp, true, false);
8048 	}
8049 	return 0;
8050 }
8051 
8052 static void bnxt_get_port_module_status(struct bnxt *bp)
8053 {
8054 	struct bnxt_link_info *link_info = &bp->link_info;
8055 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8056 	u8 module_status;
8057 
8058 	if (bnxt_update_link(bp, true))
8059 		return;
8060 
8061 	module_status = link_info->module_status;
8062 	switch (module_status) {
8063 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8064 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8065 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8066 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8067 			    bp->pf.port_id);
8068 		if (bp->hwrm_spec_code >= 0x10201) {
8069 			netdev_warn(bp->dev, "Module part number %s\n",
8070 				    resp->phy_vendor_partnumber);
8071 		}
8072 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8073 			netdev_warn(bp->dev, "TX is disabled\n");
8074 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8075 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8076 	}
8077 }
8078 
8079 static void
8080 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8081 {
8082 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8083 		if (bp->hwrm_spec_code >= 0x10201)
8084 			req->auto_pause =
8085 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8086 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8087 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8088 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8089 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8090 		req->enables |=
8091 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8092 	} else {
8093 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8094 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8095 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8096 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
8097 		req->enables |=
8098 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
8099 		if (bp->hwrm_spec_code >= 0x10201) {
8100 			req->auto_pause = req->force_pause;
8101 			req->enables |= cpu_to_le32(
8102 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8103 		}
8104 	}
8105 }
8106 
8107 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8108 				      struct hwrm_port_phy_cfg_input *req)
8109 {
8110 	u8 autoneg = bp->link_info.autoneg;
8111 	u16 fw_link_speed = bp->link_info.req_link_speed;
8112 	u16 advertising = bp->link_info.advertising;
8113 
8114 	if (autoneg & BNXT_AUTONEG_SPEED) {
8115 		req->auto_mode |=
8116 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8117 
8118 		req->enables |= cpu_to_le32(
8119 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8120 		req->auto_link_speed_mask = cpu_to_le16(advertising);
8121 
8122 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8123 		req->flags |=
8124 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8125 	} else {
8126 		req->force_link_speed = cpu_to_le16(fw_link_speed);
8127 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8128 	}
8129 
8130 	/* tell chimp that the setting takes effect immediately */
8131 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8132 }
8133 
8134 int bnxt_hwrm_set_pause(struct bnxt *bp)
8135 {
8136 	struct hwrm_port_phy_cfg_input req = {0};
8137 	int rc;
8138 
8139 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8140 	bnxt_hwrm_set_pause_common(bp, &req);
8141 
8142 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8143 	    bp->link_info.force_link_chng)
8144 		bnxt_hwrm_set_link_common(bp, &req);
8145 
8146 	mutex_lock(&bp->hwrm_cmd_lock);
8147 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8148 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8149 		/* since changing of pause setting doesn't trigger any link
8150 		 * change event, the driver needs to update the current pause
8151 		 * result upon successfully return of the phy_cfg command
8152 		 */
8153 		bp->link_info.pause =
8154 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8155 		bp->link_info.auto_pause_setting = 0;
8156 		if (!bp->link_info.force_link_chng)
8157 			bnxt_report_link(bp);
8158 	}
8159 	bp->link_info.force_link_chng = false;
8160 	mutex_unlock(&bp->hwrm_cmd_lock);
8161 	return rc;
8162 }
8163 
8164 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8165 			      struct hwrm_port_phy_cfg_input *req)
8166 {
8167 	struct ethtool_eee *eee = &bp->eee;
8168 
8169 	if (eee->eee_enabled) {
8170 		u16 eee_speeds;
8171 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8172 
8173 		if (eee->tx_lpi_enabled)
8174 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8175 		else
8176 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8177 
8178 		req->flags |= cpu_to_le32(flags);
8179 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8180 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8181 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8182 	} else {
8183 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8184 	}
8185 }
8186 
8187 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8188 {
8189 	struct hwrm_port_phy_cfg_input req = {0};
8190 
8191 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8192 	if (set_pause)
8193 		bnxt_hwrm_set_pause_common(bp, &req);
8194 
8195 	bnxt_hwrm_set_link_common(bp, &req);
8196 
8197 	if (set_eee)
8198 		bnxt_hwrm_set_eee(bp, &req);
8199 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8200 }
8201 
8202 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8203 {
8204 	struct hwrm_port_phy_cfg_input req = {0};
8205 
8206 	if (!BNXT_SINGLE_PF(bp))
8207 		return 0;
8208 
8209 	if (pci_num_vf(bp->pdev))
8210 		return 0;
8211 
8212 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8213 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8214 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8215 }
8216 
8217 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8218 {
8219 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8220 	struct hwrm_func_drv_if_change_input req = {0};
8221 	bool resc_reinit = false;
8222 	int rc;
8223 
8224 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8225 		return 0;
8226 
8227 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8228 	if (up)
8229 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8230 	mutex_lock(&bp->hwrm_cmd_lock);
8231 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8232 	if (!rc && (resp->flags &
8233 		    cpu_to_le32(FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)))
8234 		resc_reinit = true;
8235 	mutex_unlock(&bp->hwrm_cmd_lock);
8236 
8237 	if (up && resc_reinit && BNXT_NEW_RM(bp)) {
8238 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8239 
8240 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8241 		hw_resc->resv_cp_rings = 0;
8242 		hw_resc->resv_stat_ctxs = 0;
8243 		hw_resc->resv_irqs = 0;
8244 		hw_resc->resv_tx_rings = 0;
8245 		hw_resc->resv_rx_rings = 0;
8246 		hw_resc->resv_hw_ring_grps = 0;
8247 		hw_resc->resv_vnics = 0;
8248 		bp->tx_nr_rings = 0;
8249 		bp->rx_nr_rings = 0;
8250 	}
8251 	return rc;
8252 }
8253 
8254 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8255 {
8256 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8257 	struct hwrm_port_led_qcaps_input req = {0};
8258 	struct bnxt_pf_info *pf = &bp->pf;
8259 	int rc;
8260 
8261 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8262 		return 0;
8263 
8264 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8265 	req.port_id = cpu_to_le16(pf->port_id);
8266 	mutex_lock(&bp->hwrm_cmd_lock);
8267 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8268 	if (rc) {
8269 		mutex_unlock(&bp->hwrm_cmd_lock);
8270 		return rc;
8271 	}
8272 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8273 		int i;
8274 
8275 		bp->num_leds = resp->num_leds;
8276 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8277 						 bp->num_leds);
8278 		for (i = 0; i < bp->num_leds; i++) {
8279 			struct bnxt_led_info *led = &bp->leds[i];
8280 			__le16 caps = led->led_state_caps;
8281 
8282 			if (!led->led_group_id ||
8283 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
8284 				bp->num_leds = 0;
8285 				break;
8286 			}
8287 		}
8288 	}
8289 	mutex_unlock(&bp->hwrm_cmd_lock);
8290 	return 0;
8291 }
8292 
8293 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8294 {
8295 	struct hwrm_wol_filter_alloc_input req = {0};
8296 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8297 	int rc;
8298 
8299 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8300 	req.port_id = cpu_to_le16(bp->pf.port_id);
8301 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8302 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8303 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8304 	mutex_lock(&bp->hwrm_cmd_lock);
8305 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8306 	if (!rc)
8307 		bp->wol_filter_id = resp->wol_filter_id;
8308 	mutex_unlock(&bp->hwrm_cmd_lock);
8309 	return rc;
8310 }
8311 
8312 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8313 {
8314 	struct hwrm_wol_filter_free_input req = {0};
8315 	int rc;
8316 
8317 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8318 	req.port_id = cpu_to_le16(bp->pf.port_id);
8319 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8320 	req.wol_filter_id = bp->wol_filter_id;
8321 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8322 	return rc;
8323 }
8324 
8325 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8326 {
8327 	struct hwrm_wol_filter_qcfg_input req = {0};
8328 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8329 	u16 next_handle = 0;
8330 	int rc;
8331 
8332 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8333 	req.port_id = cpu_to_le16(bp->pf.port_id);
8334 	req.handle = cpu_to_le16(handle);
8335 	mutex_lock(&bp->hwrm_cmd_lock);
8336 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8337 	if (!rc) {
8338 		next_handle = le16_to_cpu(resp->next_handle);
8339 		if (next_handle != 0) {
8340 			if (resp->wol_type ==
8341 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8342 				bp->wol = 1;
8343 				bp->wol_filter_id = resp->wol_filter_id;
8344 			}
8345 		}
8346 	}
8347 	mutex_unlock(&bp->hwrm_cmd_lock);
8348 	return next_handle;
8349 }
8350 
8351 static void bnxt_get_wol_settings(struct bnxt *bp)
8352 {
8353 	u16 handle = 0;
8354 
8355 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8356 		return;
8357 
8358 	do {
8359 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8360 	} while (handle && handle != 0xffff);
8361 }
8362 
8363 #ifdef CONFIG_BNXT_HWMON
8364 static ssize_t bnxt_show_temp(struct device *dev,
8365 			      struct device_attribute *devattr, char *buf)
8366 {
8367 	struct hwrm_temp_monitor_query_input req = {0};
8368 	struct hwrm_temp_monitor_query_output *resp;
8369 	struct bnxt *bp = dev_get_drvdata(dev);
8370 	u32 temp = 0;
8371 
8372 	resp = bp->hwrm_cmd_resp_addr;
8373 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8374 	mutex_lock(&bp->hwrm_cmd_lock);
8375 	if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8376 		temp = resp->temp * 1000; /* display millidegree */
8377 	mutex_unlock(&bp->hwrm_cmd_lock);
8378 
8379 	return sprintf(buf, "%u\n", temp);
8380 }
8381 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
8382 
8383 static struct attribute *bnxt_attrs[] = {
8384 	&sensor_dev_attr_temp1_input.dev_attr.attr,
8385 	NULL
8386 };
8387 ATTRIBUTE_GROUPS(bnxt);
8388 
8389 static void bnxt_hwmon_close(struct bnxt *bp)
8390 {
8391 	if (bp->hwmon_dev) {
8392 		hwmon_device_unregister(bp->hwmon_dev);
8393 		bp->hwmon_dev = NULL;
8394 	}
8395 }
8396 
8397 static void bnxt_hwmon_open(struct bnxt *bp)
8398 {
8399 	struct pci_dev *pdev = bp->pdev;
8400 
8401 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
8402 							  DRV_MODULE_NAME, bp,
8403 							  bnxt_groups);
8404 	if (IS_ERR(bp->hwmon_dev)) {
8405 		bp->hwmon_dev = NULL;
8406 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
8407 	}
8408 }
8409 #else
8410 static void bnxt_hwmon_close(struct bnxt *bp)
8411 {
8412 }
8413 
8414 static void bnxt_hwmon_open(struct bnxt *bp)
8415 {
8416 }
8417 #endif
8418 
8419 static bool bnxt_eee_config_ok(struct bnxt *bp)
8420 {
8421 	struct ethtool_eee *eee = &bp->eee;
8422 	struct bnxt_link_info *link_info = &bp->link_info;
8423 
8424 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
8425 		return true;
8426 
8427 	if (eee->eee_enabled) {
8428 		u32 advertising =
8429 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
8430 
8431 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8432 			eee->eee_enabled = 0;
8433 			return false;
8434 		}
8435 		if (eee->advertised & ~advertising) {
8436 			eee->advertised = advertising & eee->supported;
8437 			return false;
8438 		}
8439 	}
8440 	return true;
8441 }
8442 
8443 static int bnxt_update_phy_setting(struct bnxt *bp)
8444 {
8445 	int rc;
8446 	bool update_link = false;
8447 	bool update_pause = false;
8448 	bool update_eee = false;
8449 	struct bnxt_link_info *link_info = &bp->link_info;
8450 
8451 	rc = bnxt_update_link(bp, true);
8452 	if (rc) {
8453 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
8454 			   rc);
8455 		return rc;
8456 	}
8457 	if (!BNXT_SINGLE_PF(bp))
8458 		return 0;
8459 
8460 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8461 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
8462 	    link_info->req_flow_ctrl)
8463 		update_pause = true;
8464 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8465 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
8466 		update_pause = true;
8467 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8468 		if (BNXT_AUTO_MODE(link_info->auto_mode))
8469 			update_link = true;
8470 		if (link_info->req_link_speed != link_info->force_link_speed)
8471 			update_link = true;
8472 		if (link_info->req_duplex != link_info->duplex_setting)
8473 			update_link = true;
8474 	} else {
8475 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
8476 			update_link = true;
8477 		if (link_info->advertising != link_info->auto_link_speeds)
8478 			update_link = true;
8479 	}
8480 
8481 	/* The last close may have shutdown the link, so need to call
8482 	 * PHY_CFG to bring it back up.
8483 	 */
8484 	if (!netif_carrier_ok(bp->dev))
8485 		update_link = true;
8486 
8487 	if (!bnxt_eee_config_ok(bp))
8488 		update_eee = true;
8489 
8490 	if (update_link)
8491 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
8492 	else if (update_pause)
8493 		rc = bnxt_hwrm_set_pause(bp);
8494 	if (rc) {
8495 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
8496 			   rc);
8497 		return rc;
8498 	}
8499 
8500 	return rc;
8501 }
8502 
8503 /* Common routine to pre-map certain register block to different GRC window.
8504  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
8505  * in PF and 3 windows in VF that can be customized to map in different
8506  * register blocks.
8507  */
8508 static void bnxt_preset_reg_win(struct bnxt *bp)
8509 {
8510 	if (BNXT_PF(bp)) {
8511 		/* CAG registers map to GRC window #4 */
8512 		writel(BNXT_CAG_REG_BASE,
8513 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
8514 	}
8515 }
8516 
8517 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
8518 
8519 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8520 {
8521 	int rc = 0;
8522 
8523 	bnxt_preset_reg_win(bp);
8524 	netif_carrier_off(bp->dev);
8525 	if (irq_re_init) {
8526 		/* Reserve rings now if none were reserved at driver probe. */
8527 		rc = bnxt_init_dflt_ring_mode(bp);
8528 		if (rc) {
8529 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
8530 			return rc;
8531 		}
8532 	}
8533 	rc = bnxt_reserve_rings(bp);
8534 	if (rc)
8535 		return rc;
8536 	if ((bp->flags & BNXT_FLAG_RFS) &&
8537 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
8538 		/* disable RFS if falling back to INTA */
8539 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
8540 		bp->flags &= ~BNXT_FLAG_RFS;
8541 	}
8542 
8543 	rc = bnxt_alloc_mem(bp, irq_re_init);
8544 	if (rc) {
8545 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8546 		goto open_err_free_mem;
8547 	}
8548 
8549 	if (irq_re_init) {
8550 		bnxt_init_napi(bp);
8551 		rc = bnxt_request_irq(bp);
8552 		if (rc) {
8553 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
8554 			goto open_err_irq;
8555 		}
8556 	}
8557 
8558 	bnxt_enable_napi(bp);
8559 	bnxt_debug_dev_init(bp);
8560 
8561 	rc = bnxt_init_nic(bp, irq_re_init);
8562 	if (rc) {
8563 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8564 		goto open_err;
8565 	}
8566 
8567 	if (link_re_init) {
8568 		mutex_lock(&bp->link_lock);
8569 		rc = bnxt_update_phy_setting(bp);
8570 		mutex_unlock(&bp->link_lock);
8571 		if (rc) {
8572 			netdev_warn(bp->dev, "failed to update phy settings\n");
8573 			if (BNXT_SINGLE_PF(bp)) {
8574 				bp->link_info.phy_retry = true;
8575 				bp->link_info.phy_retry_expires =
8576 					jiffies + 5 * HZ;
8577 			}
8578 		}
8579 	}
8580 
8581 	if (irq_re_init)
8582 		udp_tunnel_get_rx_info(bp->dev);
8583 
8584 	set_bit(BNXT_STATE_OPEN, &bp->state);
8585 	bnxt_enable_int(bp);
8586 	/* Enable TX queues */
8587 	bnxt_tx_enable(bp);
8588 	mod_timer(&bp->timer, jiffies + bp->current_interval);
8589 	/* Poll link status and check for SFP+ module status */
8590 	bnxt_get_port_module_status(bp);
8591 
8592 	/* VF-reps may need to be re-opened after the PF is re-opened */
8593 	if (BNXT_PF(bp))
8594 		bnxt_vf_reps_open(bp);
8595 	return 0;
8596 
8597 open_err:
8598 	bnxt_debug_dev_exit(bp);
8599 	bnxt_disable_napi(bp);
8600 
8601 open_err_irq:
8602 	bnxt_del_napi(bp);
8603 
8604 open_err_free_mem:
8605 	bnxt_free_skbs(bp);
8606 	bnxt_free_irq(bp);
8607 	bnxt_free_mem(bp, true);
8608 	return rc;
8609 }
8610 
8611 /* rtnl_lock held */
8612 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8613 {
8614 	int rc = 0;
8615 
8616 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
8617 	if (rc) {
8618 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
8619 		dev_close(bp->dev);
8620 	}
8621 	return rc;
8622 }
8623 
8624 /* rtnl_lock held, open the NIC half way by allocating all resources, but
8625  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
8626  * self tests.
8627  */
8628 int bnxt_half_open_nic(struct bnxt *bp)
8629 {
8630 	int rc = 0;
8631 
8632 	rc = bnxt_alloc_mem(bp, false);
8633 	if (rc) {
8634 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8635 		goto half_open_err;
8636 	}
8637 	rc = bnxt_init_nic(bp, false);
8638 	if (rc) {
8639 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8640 		goto half_open_err;
8641 	}
8642 	return 0;
8643 
8644 half_open_err:
8645 	bnxt_free_skbs(bp);
8646 	bnxt_free_mem(bp, false);
8647 	dev_close(bp->dev);
8648 	return rc;
8649 }
8650 
8651 /* rtnl_lock held, this call can only be made after a previous successful
8652  * call to bnxt_half_open_nic().
8653  */
8654 void bnxt_half_close_nic(struct bnxt *bp)
8655 {
8656 	bnxt_hwrm_resource_free(bp, false, false);
8657 	bnxt_free_skbs(bp);
8658 	bnxt_free_mem(bp, false);
8659 }
8660 
8661 static int bnxt_open(struct net_device *dev)
8662 {
8663 	struct bnxt *bp = netdev_priv(dev);
8664 	int rc;
8665 
8666 	bnxt_hwrm_if_change(bp, true);
8667 	rc = __bnxt_open_nic(bp, true, true);
8668 	if (rc)
8669 		bnxt_hwrm_if_change(bp, false);
8670 
8671 	bnxt_hwmon_open(bp);
8672 
8673 	return rc;
8674 }
8675 
8676 static bool bnxt_drv_busy(struct bnxt *bp)
8677 {
8678 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
8679 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
8680 }
8681 
8682 static void bnxt_get_ring_stats(struct bnxt *bp,
8683 				struct rtnl_link_stats64 *stats);
8684 
8685 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
8686 			     bool link_re_init)
8687 {
8688 	/* Close the VF-reps before closing PF */
8689 	if (BNXT_PF(bp))
8690 		bnxt_vf_reps_close(bp);
8691 
8692 	/* Change device state to avoid TX queue wake up's */
8693 	bnxt_tx_disable(bp);
8694 
8695 	clear_bit(BNXT_STATE_OPEN, &bp->state);
8696 	smp_mb__after_atomic();
8697 	while (bnxt_drv_busy(bp))
8698 		msleep(20);
8699 
8700 	/* Flush rings and and disable interrupts */
8701 	bnxt_shutdown_nic(bp, irq_re_init);
8702 
8703 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
8704 
8705 	bnxt_debug_dev_exit(bp);
8706 	bnxt_disable_napi(bp);
8707 	del_timer_sync(&bp->timer);
8708 	bnxt_free_skbs(bp);
8709 
8710 	/* Save ring stats before shutdown */
8711 	if (bp->bnapi)
8712 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
8713 	if (irq_re_init) {
8714 		bnxt_free_irq(bp);
8715 		bnxt_del_napi(bp);
8716 	}
8717 	bnxt_free_mem(bp, irq_re_init);
8718 }
8719 
8720 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8721 {
8722 	int rc = 0;
8723 
8724 #ifdef CONFIG_BNXT_SRIOV
8725 	if (bp->sriov_cfg) {
8726 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
8727 						      !bp->sriov_cfg,
8728 						      BNXT_SRIOV_CFG_WAIT_TMO);
8729 		if (rc)
8730 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
8731 	}
8732 #endif
8733 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
8734 	return rc;
8735 }
8736 
8737 static int bnxt_close(struct net_device *dev)
8738 {
8739 	struct bnxt *bp = netdev_priv(dev);
8740 
8741 	bnxt_hwmon_close(bp);
8742 	bnxt_close_nic(bp, true, true);
8743 	bnxt_hwrm_shutdown_link(bp);
8744 	bnxt_hwrm_if_change(bp, false);
8745 	return 0;
8746 }
8747 
8748 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
8749 				   u16 *val)
8750 {
8751 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
8752 	struct hwrm_port_phy_mdio_read_input req = {0};
8753 	int rc;
8754 
8755 	if (bp->hwrm_spec_code < 0x10a00)
8756 		return -EOPNOTSUPP;
8757 
8758 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
8759 	req.port_id = cpu_to_le16(bp->pf.port_id);
8760 	req.phy_addr = phy_addr;
8761 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8762 	if (mdio_phy_id_is_c45(phy_addr)) {
8763 		req.cl45_mdio = 1;
8764 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8765 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8766 		req.reg_addr = cpu_to_le16(reg);
8767 	}
8768 
8769 	mutex_lock(&bp->hwrm_cmd_lock);
8770 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8771 	if (!rc)
8772 		*val = le16_to_cpu(resp->reg_data);
8773 	mutex_unlock(&bp->hwrm_cmd_lock);
8774 	return rc;
8775 }
8776 
8777 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
8778 				    u16 val)
8779 {
8780 	struct hwrm_port_phy_mdio_write_input req = {0};
8781 
8782 	if (bp->hwrm_spec_code < 0x10a00)
8783 		return -EOPNOTSUPP;
8784 
8785 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
8786 	req.port_id = cpu_to_le16(bp->pf.port_id);
8787 	req.phy_addr = phy_addr;
8788 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8789 	if (mdio_phy_id_is_c45(phy_addr)) {
8790 		req.cl45_mdio = 1;
8791 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8792 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8793 		req.reg_addr = cpu_to_le16(reg);
8794 	}
8795 	req.reg_data = cpu_to_le16(val);
8796 
8797 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8798 }
8799 
8800 /* rtnl_lock held */
8801 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
8802 {
8803 	struct mii_ioctl_data *mdio = if_mii(ifr);
8804 	struct bnxt *bp = netdev_priv(dev);
8805 	int rc;
8806 
8807 	switch (cmd) {
8808 	case SIOCGMIIPHY:
8809 		mdio->phy_id = bp->link_info.phy_addr;
8810 
8811 		/* fallthru */
8812 	case SIOCGMIIREG: {
8813 		u16 mii_regval = 0;
8814 
8815 		if (!netif_running(dev))
8816 			return -EAGAIN;
8817 
8818 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
8819 					     &mii_regval);
8820 		mdio->val_out = mii_regval;
8821 		return rc;
8822 	}
8823 
8824 	case SIOCSMIIREG:
8825 		if (!netif_running(dev))
8826 			return -EAGAIN;
8827 
8828 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
8829 						mdio->val_in);
8830 
8831 	default:
8832 		/* do nothing */
8833 		break;
8834 	}
8835 	return -EOPNOTSUPP;
8836 }
8837 
8838 static void bnxt_get_ring_stats(struct bnxt *bp,
8839 				struct rtnl_link_stats64 *stats)
8840 {
8841 	int i;
8842 
8843 
8844 	for (i = 0; i < bp->cp_nr_rings; i++) {
8845 		struct bnxt_napi *bnapi = bp->bnapi[i];
8846 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8847 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
8848 
8849 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
8850 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
8851 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
8852 
8853 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
8854 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
8855 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
8856 
8857 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
8858 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
8859 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
8860 
8861 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
8862 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
8863 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
8864 
8865 		stats->rx_missed_errors +=
8866 			le64_to_cpu(hw_stats->rx_discard_pkts);
8867 
8868 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
8869 
8870 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
8871 	}
8872 }
8873 
8874 static void bnxt_add_prev_stats(struct bnxt *bp,
8875 				struct rtnl_link_stats64 *stats)
8876 {
8877 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
8878 
8879 	stats->rx_packets += prev_stats->rx_packets;
8880 	stats->tx_packets += prev_stats->tx_packets;
8881 	stats->rx_bytes += prev_stats->rx_bytes;
8882 	stats->tx_bytes += prev_stats->tx_bytes;
8883 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
8884 	stats->multicast += prev_stats->multicast;
8885 	stats->tx_dropped += prev_stats->tx_dropped;
8886 }
8887 
8888 static void
8889 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
8890 {
8891 	struct bnxt *bp = netdev_priv(dev);
8892 
8893 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
8894 	/* Make sure bnxt_close_nic() sees that we are reading stats before
8895 	 * we check the BNXT_STATE_OPEN flag.
8896 	 */
8897 	smp_mb__after_atomic();
8898 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
8899 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8900 		*stats = bp->net_stats_prev;
8901 		return;
8902 	}
8903 
8904 	bnxt_get_ring_stats(bp, stats);
8905 	bnxt_add_prev_stats(bp, stats);
8906 
8907 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8908 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
8909 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
8910 
8911 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
8912 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
8913 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
8914 					  le64_to_cpu(rx->rx_ovrsz_frames) +
8915 					  le64_to_cpu(rx->rx_runt_frames);
8916 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
8917 				   le64_to_cpu(rx->rx_jbr_frames);
8918 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
8919 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
8920 		stats->tx_errors = le64_to_cpu(tx->tx_err);
8921 	}
8922 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8923 }
8924 
8925 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
8926 {
8927 	struct net_device *dev = bp->dev;
8928 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8929 	struct netdev_hw_addr *ha;
8930 	u8 *haddr;
8931 	int mc_count = 0;
8932 	bool update = false;
8933 	int off = 0;
8934 
8935 	netdev_for_each_mc_addr(ha, dev) {
8936 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
8937 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8938 			vnic->mc_list_count = 0;
8939 			return false;
8940 		}
8941 		haddr = ha->addr;
8942 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
8943 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
8944 			update = true;
8945 		}
8946 		off += ETH_ALEN;
8947 		mc_count++;
8948 	}
8949 	if (mc_count)
8950 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
8951 
8952 	if (mc_count != vnic->mc_list_count) {
8953 		vnic->mc_list_count = mc_count;
8954 		update = true;
8955 	}
8956 	return update;
8957 }
8958 
8959 static bool bnxt_uc_list_updated(struct bnxt *bp)
8960 {
8961 	struct net_device *dev = bp->dev;
8962 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8963 	struct netdev_hw_addr *ha;
8964 	int off = 0;
8965 
8966 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
8967 		return true;
8968 
8969 	netdev_for_each_uc_addr(ha, dev) {
8970 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
8971 			return true;
8972 
8973 		off += ETH_ALEN;
8974 	}
8975 	return false;
8976 }
8977 
8978 static void bnxt_set_rx_mode(struct net_device *dev)
8979 {
8980 	struct bnxt *bp = netdev_priv(dev);
8981 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8982 	u32 mask = vnic->rx_mask;
8983 	bool mc_update = false;
8984 	bool uc_update;
8985 
8986 	if (!netif_running(dev))
8987 		return;
8988 
8989 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
8990 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
8991 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
8992 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
8993 
8994 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
8995 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8996 
8997 	uc_update = bnxt_uc_list_updated(bp);
8998 
8999 	if (dev->flags & IFF_BROADCAST)
9000 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9001 	if (dev->flags & IFF_ALLMULTI) {
9002 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9003 		vnic->mc_list_count = 0;
9004 	} else {
9005 		mc_update = bnxt_mc_list_updated(bp, &mask);
9006 	}
9007 
9008 	if (mask != vnic->rx_mask || uc_update || mc_update) {
9009 		vnic->rx_mask = mask;
9010 
9011 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
9012 		bnxt_queue_sp_work(bp);
9013 	}
9014 }
9015 
9016 static int bnxt_cfg_rx_mode(struct bnxt *bp)
9017 {
9018 	struct net_device *dev = bp->dev;
9019 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9020 	struct netdev_hw_addr *ha;
9021 	int i, off = 0, rc;
9022 	bool uc_update;
9023 
9024 	netif_addr_lock_bh(dev);
9025 	uc_update = bnxt_uc_list_updated(bp);
9026 	netif_addr_unlock_bh(dev);
9027 
9028 	if (!uc_update)
9029 		goto skip_uc;
9030 
9031 	mutex_lock(&bp->hwrm_cmd_lock);
9032 	for (i = 1; i < vnic->uc_filter_count; i++) {
9033 		struct hwrm_cfa_l2_filter_free_input req = {0};
9034 
9035 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
9036 				       -1);
9037 
9038 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
9039 
9040 		rc = _hwrm_send_message(bp, &req, sizeof(req),
9041 					HWRM_CMD_TIMEOUT);
9042 	}
9043 	mutex_unlock(&bp->hwrm_cmd_lock);
9044 
9045 	vnic->uc_filter_count = 1;
9046 
9047 	netif_addr_lock_bh(dev);
9048 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
9049 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9050 	} else {
9051 		netdev_for_each_uc_addr(ha, dev) {
9052 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
9053 			off += ETH_ALEN;
9054 			vnic->uc_filter_count++;
9055 		}
9056 	}
9057 	netif_addr_unlock_bh(dev);
9058 
9059 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
9060 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
9061 		if (rc) {
9062 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
9063 				   rc);
9064 			vnic->uc_filter_count = i;
9065 			return rc;
9066 		}
9067 	}
9068 
9069 skip_uc:
9070 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9071 	if (rc && vnic->mc_list_count) {
9072 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
9073 			    rc);
9074 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9075 		vnic->mc_list_count = 0;
9076 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9077 	}
9078 	if (rc)
9079 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
9080 			   rc);
9081 
9082 	return rc;
9083 }
9084 
9085 static bool bnxt_can_reserve_rings(struct bnxt *bp)
9086 {
9087 #ifdef CONFIG_BNXT_SRIOV
9088 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
9089 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9090 
9091 		/* No minimum rings were provisioned by the PF.  Don't
9092 		 * reserve rings by default when device is down.
9093 		 */
9094 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
9095 			return true;
9096 
9097 		if (!netif_running(bp->dev))
9098 			return false;
9099 	}
9100 #endif
9101 	return true;
9102 }
9103 
9104 /* If the chip and firmware supports RFS */
9105 static bool bnxt_rfs_supported(struct bnxt *bp)
9106 {
9107 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
9108 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX)
9109 			return true;
9110 		return false;
9111 	}
9112 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
9113 		return true;
9114 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9115 		return true;
9116 	return false;
9117 }
9118 
9119 /* If runtime conditions support RFS */
9120 static bool bnxt_rfs_capable(struct bnxt *bp)
9121 {
9122 #ifdef CONFIG_RFS_ACCEL
9123 	int vnics, max_vnics, max_rss_ctxs;
9124 
9125 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9126 		return bnxt_rfs_supported(bp);
9127 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9128 		return false;
9129 
9130 	vnics = 1 + bp->rx_nr_rings;
9131 	max_vnics = bnxt_get_max_func_vnics(bp);
9132 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9133 
9134 	/* RSS contexts not a limiting factor */
9135 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9136 		max_rss_ctxs = max_vnics;
9137 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
9138 		if (bp->rx_nr_rings > 1)
9139 			netdev_warn(bp->dev,
9140 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9141 				    min(max_rss_ctxs - 1, max_vnics - 1));
9142 		return false;
9143 	}
9144 
9145 	if (!BNXT_NEW_RM(bp))
9146 		return true;
9147 
9148 	if (vnics == bp->hw_resc.resv_vnics)
9149 		return true;
9150 
9151 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9152 	if (vnics <= bp->hw_resc.resv_vnics)
9153 		return true;
9154 
9155 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9156 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9157 	return false;
9158 #else
9159 	return false;
9160 #endif
9161 }
9162 
9163 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9164 					   netdev_features_t features)
9165 {
9166 	struct bnxt *bp = netdev_priv(dev);
9167 
9168 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9169 		features &= ~NETIF_F_NTUPLE;
9170 
9171 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9172 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9173 
9174 	if (!(features & NETIF_F_GRO))
9175 		features &= ~NETIF_F_GRO_HW;
9176 
9177 	if (features & NETIF_F_GRO_HW)
9178 		features &= ~NETIF_F_LRO;
9179 
9180 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
9181 	 * turned on or off together.
9182 	 */
9183 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
9184 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
9185 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9186 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9187 				      NETIF_F_HW_VLAN_STAG_RX);
9188 		else
9189 			features |= NETIF_F_HW_VLAN_CTAG_RX |
9190 				    NETIF_F_HW_VLAN_STAG_RX;
9191 	}
9192 #ifdef CONFIG_BNXT_SRIOV
9193 	if (BNXT_VF(bp)) {
9194 		if (bp->vf.vlan) {
9195 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9196 				      NETIF_F_HW_VLAN_STAG_RX);
9197 		}
9198 	}
9199 #endif
9200 	return features;
9201 }
9202 
9203 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9204 {
9205 	struct bnxt *bp = netdev_priv(dev);
9206 	u32 flags = bp->flags;
9207 	u32 changes;
9208 	int rc = 0;
9209 	bool re_init = false;
9210 	bool update_tpa = false;
9211 
9212 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9213 	if (features & NETIF_F_GRO_HW)
9214 		flags |= BNXT_FLAG_GRO;
9215 	else if (features & NETIF_F_LRO)
9216 		flags |= BNXT_FLAG_LRO;
9217 
9218 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9219 		flags &= ~BNXT_FLAG_TPA;
9220 
9221 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
9222 		flags |= BNXT_FLAG_STRIP_VLAN;
9223 
9224 	if (features & NETIF_F_NTUPLE)
9225 		flags |= BNXT_FLAG_RFS;
9226 
9227 	changes = flags ^ bp->flags;
9228 	if (changes & BNXT_FLAG_TPA) {
9229 		update_tpa = true;
9230 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9231 		    (flags & BNXT_FLAG_TPA) == 0)
9232 			re_init = true;
9233 	}
9234 
9235 	if (changes & ~BNXT_FLAG_TPA)
9236 		re_init = true;
9237 
9238 	if (flags != bp->flags) {
9239 		u32 old_flags = bp->flags;
9240 
9241 		bp->flags = flags;
9242 
9243 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9244 			if (update_tpa)
9245 				bnxt_set_ring_params(bp);
9246 			return rc;
9247 		}
9248 
9249 		if (re_init) {
9250 			bnxt_close_nic(bp, false, false);
9251 			if (update_tpa)
9252 				bnxt_set_ring_params(bp);
9253 
9254 			return bnxt_open_nic(bp, false, false);
9255 		}
9256 		if (update_tpa) {
9257 			rc = bnxt_set_tpa(bp,
9258 					  (flags & BNXT_FLAG_TPA) ?
9259 					  true : false);
9260 			if (rc)
9261 				bp->flags = old_flags;
9262 		}
9263 	}
9264 	return rc;
9265 }
9266 
9267 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9268 				       u32 ring_id, u32 *prod, u32 *cons)
9269 {
9270 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9271 	struct hwrm_dbg_ring_info_get_input req = {0};
9272 	int rc;
9273 
9274 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9275 	req.ring_type = ring_type;
9276 	req.fw_ring_id = cpu_to_le32(ring_id);
9277 	mutex_lock(&bp->hwrm_cmd_lock);
9278 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9279 	if (!rc) {
9280 		*prod = le32_to_cpu(resp->producer_index);
9281 		*cons = le32_to_cpu(resp->consumer_index);
9282 	}
9283 	mutex_unlock(&bp->hwrm_cmd_lock);
9284 	return rc;
9285 }
9286 
9287 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9288 {
9289 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9290 	int i = bnapi->index;
9291 
9292 	if (!txr)
9293 		return;
9294 
9295 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9296 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9297 		    txr->tx_cons);
9298 }
9299 
9300 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9301 {
9302 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9303 	int i = bnapi->index;
9304 
9305 	if (!rxr)
9306 		return;
9307 
9308 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9309 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9310 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9311 		    rxr->rx_sw_agg_prod);
9312 }
9313 
9314 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9315 {
9316 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9317 	int i = bnapi->index;
9318 
9319 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9320 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9321 }
9322 
9323 static void bnxt_dbg_dump_states(struct bnxt *bp)
9324 {
9325 	int i;
9326 	struct bnxt_napi *bnapi;
9327 
9328 	for (i = 0; i < bp->cp_nr_rings; i++) {
9329 		bnapi = bp->bnapi[i];
9330 		if (netif_msg_drv(bp)) {
9331 			bnxt_dump_tx_sw_state(bnapi);
9332 			bnxt_dump_rx_sw_state(bnapi);
9333 			bnxt_dump_cp_sw_state(bnapi);
9334 		}
9335 	}
9336 }
9337 
9338 static void bnxt_reset_task(struct bnxt *bp, bool silent)
9339 {
9340 	if (!silent)
9341 		bnxt_dbg_dump_states(bp);
9342 	if (netif_running(bp->dev)) {
9343 		int rc;
9344 
9345 		if (!silent)
9346 			bnxt_ulp_stop(bp);
9347 		bnxt_close_nic(bp, false, false);
9348 		rc = bnxt_open_nic(bp, false, false);
9349 		if (!silent && !rc)
9350 			bnxt_ulp_start(bp);
9351 	}
9352 }
9353 
9354 static void bnxt_tx_timeout(struct net_device *dev)
9355 {
9356 	struct bnxt *bp = netdev_priv(dev);
9357 
9358 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
9359 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
9360 	bnxt_queue_sp_work(bp);
9361 }
9362 
9363 static void bnxt_timer(struct timer_list *t)
9364 {
9365 	struct bnxt *bp = from_timer(bp, t, timer);
9366 	struct net_device *dev = bp->dev;
9367 
9368 	if (!netif_running(dev))
9369 		return;
9370 
9371 	if (atomic_read(&bp->intr_sem) != 0)
9372 		goto bnxt_restart_timer;
9373 
9374 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
9375 	    bp->stats_coal_ticks) {
9376 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
9377 		bnxt_queue_sp_work(bp);
9378 	}
9379 
9380 	if (bnxt_tc_flower_enabled(bp)) {
9381 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
9382 		bnxt_queue_sp_work(bp);
9383 	}
9384 
9385 	if (bp->link_info.phy_retry) {
9386 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
9387 			bp->link_info.phy_retry = 0;
9388 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
9389 		} else {
9390 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
9391 			bnxt_queue_sp_work(bp);
9392 		}
9393 	}
9394 
9395 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && netif_carrier_ok(dev)) {
9396 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
9397 		bnxt_queue_sp_work(bp);
9398 	}
9399 bnxt_restart_timer:
9400 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9401 }
9402 
9403 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
9404 {
9405 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
9406 	 * set.  If the device is being closed, bnxt_close() may be holding
9407 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
9408 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
9409 	 */
9410 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9411 	rtnl_lock();
9412 }
9413 
9414 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
9415 {
9416 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9417 	rtnl_unlock();
9418 }
9419 
9420 /* Only called from bnxt_sp_task() */
9421 static void bnxt_reset(struct bnxt *bp, bool silent)
9422 {
9423 	bnxt_rtnl_lock_sp(bp);
9424 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
9425 		bnxt_reset_task(bp, silent);
9426 	bnxt_rtnl_unlock_sp(bp);
9427 }
9428 
9429 static void bnxt_chk_missed_irq(struct bnxt *bp)
9430 {
9431 	int i;
9432 
9433 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9434 		return;
9435 
9436 	for (i = 0; i < bp->cp_nr_rings; i++) {
9437 		struct bnxt_napi *bnapi = bp->bnapi[i];
9438 		struct bnxt_cp_ring_info *cpr;
9439 		u32 fw_ring_id;
9440 		int j;
9441 
9442 		if (!bnapi)
9443 			continue;
9444 
9445 		cpr = &bnapi->cp_ring;
9446 		for (j = 0; j < 2; j++) {
9447 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
9448 			u32 val[2];
9449 
9450 			if (!cpr2 || cpr2->has_more_work ||
9451 			    !bnxt_has_work(bp, cpr2))
9452 				continue;
9453 
9454 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
9455 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
9456 				continue;
9457 			}
9458 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
9459 			bnxt_dbg_hwrm_ring_info_get(bp,
9460 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
9461 				fw_ring_id, &val[0], &val[1]);
9462 			cpr->missed_irqs++;
9463 		}
9464 	}
9465 }
9466 
9467 static void bnxt_cfg_ntp_filters(struct bnxt *);
9468 
9469 static void bnxt_sp_task(struct work_struct *work)
9470 {
9471 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
9472 
9473 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9474 	smp_mb__after_atomic();
9475 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9476 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9477 		return;
9478 	}
9479 
9480 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
9481 		bnxt_cfg_rx_mode(bp);
9482 
9483 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
9484 		bnxt_cfg_ntp_filters(bp);
9485 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
9486 		bnxt_hwrm_exec_fwd_req(bp);
9487 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9488 		bnxt_hwrm_tunnel_dst_port_alloc(
9489 			bp, bp->vxlan_port,
9490 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9491 	}
9492 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9493 		bnxt_hwrm_tunnel_dst_port_free(
9494 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9495 	}
9496 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9497 		bnxt_hwrm_tunnel_dst_port_alloc(
9498 			bp, bp->nge_port,
9499 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9500 	}
9501 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9502 		bnxt_hwrm_tunnel_dst_port_free(
9503 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9504 	}
9505 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
9506 		bnxt_hwrm_port_qstats(bp);
9507 		bnxt_hwrm_port_qstats_ext(bp);
9508 		bnxt_hwrm_pcie_qstats(bp);
9509 	}
9510 
9511 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
9512 		int rc;
9513 
9514 		mutex_lock(&bp->link_lock);
9515 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
9516 				       &bp->sp_event))
9517 			bnxt_hwrm_phy_qcaps(bp);
9518 
9519 		rc = bnxt_update_link(bp, true);
9520 		mutex_unlock(&bp->link_lock);
9521 		if (rc)
9522 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
9523 				   rc);
9524 	}
9525 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
9526 		int rc;
9527 
9528 		mutex_lock(&bp->link_lock);
9529 		rc = bnxt_update_phy_setting(bp);
9530 		mutex_unlock(&bp->link_lock);
9531 		if (rc) {
9532 			netdev_warn(bp->dev, "update phy settings retry failed\n");
9533 		} else {
9534 			bp->link_info.phy_retry = false;
9535 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
9536 		}
9537 	}
9538 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
9539 		mutex_lock(&bp->link_lock);
9540 		bnxt_get_port_module_status(bp);
9541 		mutex_unlock(&bp->link_lock);
9542 	}
9543 
9544 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
9545 		bnxt_tc_flow_stats_work(bp);
9546 
9547 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
9548 		bnxt_chk_missed_irq(bp);
9549 
9550 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
9551 	 * must be the last functions to be called before exiting.
9552 	 */
9553 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
9554 		bnxt_reset(bp, false);
9555 
9556 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
9557 		bnxt_reset(bp, true);
9558 
9559 	smp_mb__before_atomic();
9560 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9561 }
9562 
9563 /* Under rtnl_lock */
9564 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
9565 		     int tx_xdp)
9566 {
9567 	int max_rx, max_tx, tx_sets = 1;
9568 	int tx_rings_needed, stats;
9569 	int rx_rings = rx;
9570 	int cp, vnics, rc;
9571 
9572 	if (tcs)
9573 		tx_sets = tcs;
9574 
9575 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
9576 	if (rc)
9577 		return rc;
9578 
9579 	if (max_rx < rx)
9580 		return -ENOMEM;
9581 
9582 	tx_rings_needed = tx * tx_sets + tx_xdp;
9583 	if (max_tx < tx_rings_needed)
9584 		return -ENOMEM;
9585 
9586 	vnics = 1;
9587 	if (bp->flags & BNXT_FLAG_RFS)
9588 		vnics += rx_rings;
9589 
9590 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
9591 		rx_rings <<= 1;
9592 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
9593 	stats = cp;
9594 	if (BNXT_NEW_RM(bp)) {
9595 		cp += bnxt_get_ulp_msix_num(bp);
9596 		stats += bnxt_get_ulp_stat_ctxs(bp);
9597 	}
9598 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
9599 				     stats, vnics);
9600 }
9601 
9602 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
9603 {
9604 	if (bp->bar2) {
9605 		pci_iounmap(pdev, bp->bar2);
9606 		bp->bar2 = NULL;
9607 	}
9608 
9609 	if (bp->bar1) {
9610 		pci_iounmap(pdev, bp->bar1);
9611 		bp->bar1 = NULL;
9612 	}
9613 
9614 	if (bp->bar0) {
9615 		pci_iounmap(pdev, bp->bar0);
9616 		bp->bar0 = NULL;
9617 	}
9618 }
9619 
9620 static void bnxt_cleanup_pci(struct bnxt *bp)
9621 {
9622 	bnxt_unmap_bars(bp, bp->pdev);
9623 	pci_release_regions(bp->pdev);
9624 	pci_disable_device(bp->pdev);
9625 }
9626 
9627 static void bnxt_init_dflt_coal(struct bnxt *bp)
9628 {
9629 	struct bnxt_coal *coal;
9630 
9631 	/* Tick values in micro seconds.
9632 	 * 1 coal_buf x bufs_per_record = 1 completion record.
9633 	 */
9634 	coal = &bp->rx_coal;
9635 	coal->coal_ticks = 10;
9636 	coal->coal_bufs = 30;
9637 	coal->coal_ticks_irq = 1;
9638 	coal->coal_bufs_irq = 2;
9639 	coal->idle_thresh = 50;
9640 	coal->bufs_per_record = 2;
9641 	coal->budget = 64;		/* NAPI budget */
9642 
9643 	coal = &bp->tx_coal;
9644 	coal->coal_ticks = 28;
9645 	coal->coal_bufs = 30;
9646 	coal->coal_ticks_irq = 2;
9647 	coal->coal_bufs_irq = 2;
9648 	coal->bufs_per_record = 1;
9649 
9650 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
9651 }
9652 
9653 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
9654 {
9655 	int rc;
9656 	struct bnxt *bp = netdev_priv(dev);
9657 
9658 	SET_NETDEV_DEV(dev, &pdev->dev);
9659 
9660 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
9661 	rc = pci_enable_device(pdev);
9662 	if (rc) {
9663 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
9664 		goto init_err;
9665 	}
9666 
9667 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
9668 		dev_err(&pdev->dev,
9669 			"Cannot find PCI device base address, aborting\n");
9670 		rc = -ENODEV;
9671 		goto init_err_disable;
9672 	}
9673 
9674 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
9675 	if (rc) {
9676 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
9677 		goto init_err_disable;
9678 	}
9679 
9680 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
9681 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
9682 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
9683 		goto init_err_disable;
9684 	}
9685 
9686 	pci_set_master(pdev);
9687 
9688 	bp->dev = dev;
9689 	bp->pdev = pdev;
9690 
9691 	bp->bar0 = pci_ioremap_bar(pdev, 0);
9692 	if (!bp->bar0) {
9693 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
9694 		rc = -ENOMEM;
9695 		goto init_err_release;
9696 	}
9697 
9698 	bp->bar1 = pci_ioremap_bar(pdev, 2);
9699 	if (!bp->bar1) {
9700 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
9701 		rc = -ENOMEM;
9702 		goto init_err_release;
9703 	}
9704 
9705 	bp->bar2 = pci_ioremap_bar(pdev, 4);
9706 	if (!bp->bar2) {
9707 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
9708 		rc = -ENOMEM;
9709 		goto init_err_release;
9710 	}
9711 
9712 	pci_enable_pcie_error_reporting(pdev);
9713 
9714 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
9715 
9716 	spin_lock_init(&bp->ntp_fltr_lock);
9717 #if BITS_PER_LONG == 32
9718 	spin_lock_init(&bp->db_lock);
9719 #endif
9720 
9721 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
9722 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
9723 
9724 	bnxt_init_dflt_coal(bp);
9725 
9726 	timer_setup(&bp->timer, bnxt_timer, 0);
9727 	bp->current_interval = BNXT_TIMER_INTERVAL;
9728 
9729 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9730 	return 0;
9731 
9732 init_err_release:
9733 	bnxt_unmap_bars(bp, pdev);
9734 	pci_release_regions(pdev);
9735 
9736 init_err_disable:
9737 	pci_disable_device(pdev);
9738 
9739 init_err:
9740 	return rc;
9741 }
9742 
9743 /* rtnl_lock held */
9744 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
9745 {
9746 	struct sockaddr *addr = p;
9747 	struct bnxt *bp = netdev_priv(dev);
9748 	int rc = 0;
9749 
9750 	if (!is_valid_ether_addr(addr->sa_data))
9751 		return -EADDRNOTAVAIL;
9752 
9753 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
9754 		return 0;
9755 
9756 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
9757 	if (rc)
9758 		return rc;
9759 
9760 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
9761 	if (netif_running(dev)) {
9762 		bnxt_close_nic(bp, false, false);
9763 		rc = bnxt_open_nic(bp, false, false);
9764 	}
9765 
9766 	return rc;
9767 }
9768 
9769 /* rtnl_lock held */
9770 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
9771 {
9772 	struct bnxt *bp = netdev_priv(dev);
9773 
9774 	if (netif_running(dev))
9775 		bnxt_close_nic(bp, false, false);
9776 
9777 	dev->mtu = new_mtu;
9778 	bnxt_set_ring_params(bp);
9779 
9780 	if (netif_running(dev))
9781 		return bnxt_open_nic(bp, false, false);
9782 
9783 	return 0;
9784 }
9785 
9786 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
9787 {
9788 	struct bnxt *bp = netdev_priv(dev);
9789 	bool sh = false;
9790 	int rc;
9791 
9792 	if (tc > bp->max_tc) {
9793 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
9794 			   tc, bp->max_tc);
9795 		return -EINVAL;
9796 	}
9797 
9798 	if (netdev_get_num_tc(dev) == tc)
9799 		return 0;
9800 
9801 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9802 		sh = true;
9803 
9804 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
9805 			      sh, tc, bp->tx_nr_rings_xdp);
9806 	if (rc)
9807 		return rc;
9808 
9809 	/* Needs to close the device and do hw resource re-allocations */
9810 	if (netif_running(bp->dev))
9811 		bnxt_close_nic(bp, true, false);
9812 
9813 	if (tc) {
9814 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
9815 		netdev_set_num_tc(dev, tc);
9816 	} else {
9817 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
9818 		netdev_reset_tc(dev);
9819 	}
9820 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
9821 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9822 			       bp->tx_nr_rings + bp->rx_nr_rings;
9823 
9824 	if (netif_running(bp->dev))
9825 		return bnxt_open_nic(bp, true, false);
9826 
9827 	return 0;
9828 }
9829 
9830 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
9831 				  void *cb_priv)
9832 {
9833 	struct bnxt *bp = cb_priv;
9834 
9835 	if (!bnxt_tc_flower_enabled(bp) ||
9836 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
9837 		return -EOPNOTSUPP;
9838 
9839 	switch (type) {
9840 	case TC_SETUP_CLSFLOWER:
9841 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
9842 	default:
9843 		return -EOPNOTSUPP;
9844 	}
9845 }
9846 
9847 static int bnxt_setup_tc_block(struct net_device *dev,
9848 			       struct tc_block_offload *f)
9849 {
9850 	struct bnxt *bp = netdev_priv(dev);
9851 
9852 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9853 		return -EOPNOTSUPP;
9854 
9855 	switch (f->command) {
9856 	case TC_BLOCK_BIND:
9857 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
9858 					     bp, bp, f->extack);
9859 	case TC_BLOCK_UNBIND:
9860 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
9861 		return 0;
9862 	default:
9863 		return -EOPNOTSUPP;
9864 	}
9865 }
9866 
9867 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
9868 			 void *type_data)
9869 {
9870 	switch (type) {
9871 	case TC_SETUP_BLOCK:
9872 		return bnxt_setup_tc_block(dev, type_data);
9873 	case TC_SETUP_QDISC_MQPRIO: {
9874 		struct tc_mqprio_qopt *mqprio = type_data;
9875 
9876 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
9877 
9878 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
9879 	}
9880 	default:
9881 		return -EOPNOTSUPP;
9882 	}
9883 }
9884 
9885 #ifdef CONFIG_RFS_ACCEL
9886 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
9887 			    struct bnxt_ntuple_filter *f2)
9888 {
9889 	struct flow_keys *keys1 = &f1->fkeys;
9890 	struct flow_keys *keys2 = &f2->fkeys;
9891 
9892 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
9893 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
9894 	    keys1->ports.ports == keys2->ports.ports &&
9895 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
9896 	    keys1->basic.n_proto == keys2->basic.n_proto &&
9897 	    keys1->control.flags == keys2->control.flags &&
9898 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
9899 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
9900 		return true;
9901 
9902 	return false;
9903 }
9904 
9905 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
9906 			      u16 rxq_index, u32 flow_id)
9907 {
9908 	struct bnxt *bp = netdev_priv(dev);
9909 	struct bnxt_ntuple_filter *fltr, *new_fltr;
9910 	struct flow_keys *fkeys;
9911 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
9912 	int rc = 0, idx, bit_id, l2_idx = 0;
9913 	struct hlist_head *head;
9914 
9915 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
9916 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9917 		int off = 0, j;
9918 
9919 		netif_addr_lock_bh(dev);
9920 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
9921 			if (ether_addr_equal(eth->h_dest,
9922 					     vnic->uc_list + off)) {
9923 				l2_idx = j + 1;
9924 				break;
9925 			}
9926 		}
9927 		netif_addr_unlock_bh(dev);
9928 		if (!l2_idx)
9929 			return -EINVAL;
9930 	}
9931 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
9932 	if (!new_fltr)
9933 		return -ENOMEM;
9934 
9935 	fkeys = &new_fltr->fkeys;
9936 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
9937 		rc = -EPROTONOSUPPORT;
9938 		goto err_free;
9939 	}
9940 
9941 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
9942 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
9943 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
9944 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
9945 		rc = -EPROTONOSUPPORT;
9946 		goto err_free;
9947 	}
9948 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
9949 	    bp->hwrm_spec_code < 0x10601) {
9950 		rc = -EPROTONOSUPPORT;
9951 		goto err_free;
9952 	}
9953 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
9954 	    bp->hwrm_spec_code < 0x10601) {
9955 		rc = -EPROTONOSUPPORT;
9956 		goto err_free;
9957 	}
9958 
9959 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
9960 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
9961 
9962 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
9963 	head = &bp->ntp_fltr_hash_tbl[idx];
9964 	rcu_read_lock();
9965 	hlist_for_each_entry_rcu(fltr, head, hash) {
9966 		if (bnxt_fltr_match(fltr, new_fltr)) {
9967 			rcu_read_unlock();
9968 			rc = 0;
9969 			goto err_free;
9970 		}
9971 	}
9972 	rcu_read_unlock();
9973 
9974 	spin_lock_bh(&bp->ntp_fltr_lock);
9975 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
9976 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
9977 	if (bit_id < 0) {
9978 		spin_unlock_bh(&bp->ntp_fltr_lock);
9979 		rc = -ENOMEM;
9980 		goto err_free;
9981 	}
9982 
9983 	new_fltr->sw_id = (u16)bit_id;
9984 	new_fltr->flow_id = flow_id;
9985 	new_fltr->l2_fltr_idx = l2_idx;
9986 	new_fltr->rxq = rxq_index;
9987 	hlist_add_head_rcu(&new_fltr->hash, head);
9988 	bp->ntp_fltr_count++;
9989 	spin_unlock_bh(&bp->ntp_fltr_lock);
9990 
9991 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
9992 	bnxt_queue_sp_work(bp);
9993 
9994 	return new_fltr->sw_id;
9995 
9996 err_free:
9997 	kfree(new_fltr);
9998 	return rc;
9999 }
10000 
10001 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
10002 {
10003 	int i;
10004 
10005 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
10006 		struct hlist_head *head;
10007 		struct hlist_node *tmp;
10008 		struct bnxt_ntuple_filter *fltr;
10009 		int rc;
10010 
10011 		head = &bp->ntp_fltr_hash_tbl[i];
10012 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
10013 			bool del = false;
10014 
10015 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
10016 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
10017 							fltr->flow_id,
10018 							fltr->sw_id)) {
10019 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
10020 									 fltr);
10021 					del = true;
10022 				}
10023 			} else {
10024 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
10025 								       fltr);
10026 				if (rc)
10027 					del = true;
10028 				else
10029 					set_bit(BNXT_FLTR_VALID, &fltr->state);
10030 			}
10031 
10032 			if (del) {
10033 				spin_lock_bh(&bp->ntp_fltr_lock);
10034 				hlist_del_rcu(&fltr->hash);
10035 				bp->ntp_fltr_count--;
10036 				spin_unlock_bh(&bp->ntp_fltr_lock);
10037 				synchronize_rcu();
10038 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
10039 				kfree(fltr);
10040 			}
10041 		}
10042 	}
10043 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
10044 		netdev_info(bp->dev, "Receive PF driver unload event!");
10045 }
10046 
10047 #else
10048 
10049 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
10050 {
10051 }
10052 
10053 #endif /* CONFIG_RFS_ACCEL */
10054 
10055 static void bnxt_udp_tunnel_add(struct net_device *dev,
10056 				struct udp_tunnel_info *ti)
10057 {
10058 	struct bnxt *bp = netdev_priv(dev);
10059 
10060 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
10061 		return;
10062 
10063 	if (!netif_running(dev))
10064 		return;
10065 
10066 	switch (ti->type) {
10067 	case UDP_TUNNEL_TYPE_VXLAN:
10068 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
10069 			return;
10070 
10071 		bp->vxlan_port_cnt++;
10072 		if (bp->vxlan_port_cnt == 1) {
10073 			bp->vxlan_port = ti->port;
10074 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
10075 			bnxt_queue_sp_work(bp);
10076 		}
10077 		break;
10078 	case UDP_TUNNEL_TYPE_GENEVE:
10079 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
10080 			return;
10081 
10082 		bp->nge_port_cnt++;
10083 		if (bp->nge_port_cnt == 1) {
10084 			bp->nge_port = ti->port;
10085 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
10086 		}
10087 		break;
10088 	default:
10089 		return;
10090 	}
10091 
10092 	bnxt_queue_sp_work(bp);
10093 }
10094 
10095 static void bnxt_udp_tunnel_del(struct net_device *dev,
10096 				struct udp_tunnel_info *ti)
10097 {
10098 	struct bnxt *bp = netdev_priv(dev);
10099 
10100 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
10101 		return;
10102 
10103 	if (!netif_running(dev))
10104 		return;
10105 
10106 	switch (ti->type) {
10107 	case UDP_TUNNEL_TYPE_VXLAN:
10108 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
10109 			return;
10110 		bp->vxlan_port_cnt--;
10111 
10112 		if (bp->vxlan_port_cnt != 0)
10113 			return;
10114 
10115 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
10116 		break;
10117 	case UDP_TUNNEL_TYPE_GENEVE:
10118 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
10119 			return;
10120 		bp->nge_port_cnt--;
10121 
10122 		if (bp->nge_port_cnt != 0)
10123 			return;
10124 
10125 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
10126 		break;
10127 	default:
10128 		return;
10129 	}
10130 
10131 	bnxt_queue_sp_work(bp);
10132 }
10133 
10134 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
10135 			       struct net_device *dev, u32 filter_mask,
10136 			       int nlflags)
10137 {
10138 	struct bnxt *bp = netdev_priv(dev);
10139 
10140 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
10141 				       nlflags, filter_mask, NULL);
10142 }
10143 
10144 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
10145 			       u16 flags, struct netlink_ext_ack *extack)
10146 {
10147 	struct bnxt *bp = netdev_priv(dev);
10148 	struct nlattr *attr, *br_spec;
10149 	int rem, rc = 0;
10150 
10151 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
10152 		return -EOPNOTSUPP;
10153 
10154 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
10155 	if (!br_spec)
10156 		return -EINVAL;
10157 
10158 	nla_for_each_nested(attr, br_spec, rem) {
10159 		u16 mode;
10160 
10161 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
10162 			continue;
10163 
10164 		if (nla_len(attr) < sizeof(mode))
10165 			return -EINVAL;
10166 
10167 		mode = nla_get_u16(attr);
10168 		if (mode == bp->br_mode)
10169 			break;
10170 
10171 		rc = bnxt_hwrm_set_br_mode(bp, mode);
10172 		if (!rc)
10173 			bp->br_mode = mode;
10174 		break;
10175 	}
10176 	return rc;
10177 }
10178 
10179 int bnxt_get_port_parent_id(struct net_device *dev,
10180 			    struct netdev_phys_item_id *ppid)
10181 {
10182 	struct bnxt *bp = netdev_priv(dev);
10183 
10184 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
10185 		return -EOPNOTSUPP;
10186 
10187 	/* The PF and it's VF-reps only support the switchdev framework */
10188 	if (!BNXT_PF(bp))
10189 		return -EOPNOTSUPP;
10190 
10191 	ppid->id_len = sizeof(bp->switch_id);
10192 	memcpy(ppid->id, bp->switch_id, ppid->id_len);
10193 
10194 	return 0;
10195 }
10196 
10197 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
10198 {
10199 	struct bnxt *bp = netdev_priv(dev);
10200 
10201 	return &bp->dl_port;
10202 }
10203 
10204 static const struct net_device_ops bnxt_netdev_ops = {
10205 	.ndo_open		= bnxt_open,
10206 	.ndo_start_xmit		= bnxt_start_xmit,
10207 	.ndo_stop		= bnxt_close,
10208 	.ndo_get_stats64	= bnxt_get_stats64,
10209 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
10210 	.ndo_do_ioctl		= bnxt_ioctl,
10211 	.ndo_validate_addr	= eth_validate_addr,
10212 	.ndo_set_mac_address	= bnxt_change_mac_addr,
10213 	.ndo_change_mtu		= bnxt_change_mtu,
10214 	.ndo_fix_features	= bnxt_fix_features,
10215 	.ndo_set_features	= bnxt_set_features,
10216 	.ndo_tx_timeout		= bnxt_tx_timeout,
10217 #ifdef CONFIG_BNXT_SRIOV
10218 	.ndo_get_vf_config	= bnxt_get_vf_config,
10219 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
10220 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
10221 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
10222 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
10223 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
10224 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
10225 #endif
10226 	.ndo_setup_tc           = bnxt_setup_tc,
10227 #ifdef CONFIG_RFS_ACCEL
10228 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
10229 #endif
10230 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
10231 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
10232 	.ndo_bpf		= bnxt_xdp,
10233 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
10234 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
10235 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
10236 };
10237 
10238 static void bnxt_remove_one(struct pci_dev *pdev)
10239 {
10240 	struct net_device *dev = pci_get_drvdata(pdev);
10241 	struct bnxt *bp = netdev_priv(dev);
10242 
10243 	if (BNXT_PF(bp)) {
10244 		bnxt_sriov_disable(bp);
10245 		bnxt_dl_unregister(bp);
10246 	}
10247 
10248 	pci_disable_pcie_error_reporting(pdev);
10249 	unregister_netdev(dev);
10250 	bnxt_shutdown_tc(bp);
10251 	bnxt_cancel_sp_work(bp);
10252 	bp->sp_event = 0;
10253 
10254 	bnxt_clear_int_mode(bp);
10255 	bnxt_hwrm_func_drv_unrgtr(bp);
10256 	bnxt_free_hwrm_resources(bp);
10257 	bnxt_free_hwrm_short_cmd_req(bp);
10258 	bnxt_ethtool_free(bp);
10259 	bnxt_dcb_free(bp);
10260 	kfree(bp->edev);
10261 	bp->edev = NULL;
10262 	bnxt_free_ctx_mem(bp);
10263 	kfree(bp->ctx);
10264 	bp->ctx = NULL;
10265 	bnxt_cleanup_pci(bp);
10266 	bnxt_free_port_stats(bp);
10267 	free_netdev(dev);
10268 }
10269 
10270 static int bnxt_probe_phy(struct bnxt *bp)
10271 {
10272 	int rc = 0;
10273 	struct bnxt_link_info *link_info = &bp->link_info;
10274 
10275 	rc = bnxt_hwrm_phy_qcaps(bp);
10276 	if (rc) {
10277 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
10278 			   rc);
10279 		return rc;
10280 	}
10281 	mutex_init(&bp->link_lock);
10282 
10283 	rc = bnxt_update_link(bp, false);
10284 	if (rc) {
10285 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
10286 			   rc);
10287 		return rc;
10288 	}
10289 
10290 	/* Older firmware does not have supported_auto_speeds, so assume
10291 	 * that all supported speeds can be autonegotiated.
10292 	 */
10293 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
10294 		link_info->support_auto_speeds = link_info->support_speeds;
10295 
10296 	/*initialize the ethool setting copy with NVM settings */
10297 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10298 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10299 		if (bp->hwrm_spec_code >= 0x10201) {
10300 			if (link_info->auto_pause_setting &
10301 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10302 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10303 		} else {
10304 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10305 		}
10306 		link_info->advertising = link_info->auto_link_speeds;
10307 	} else {
10308 		link_info->req_link_speed = link_info->force_link_speed;
10309 		link_info->req_duplex = link_info->duplex_setting;
10310 	}
10311 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10312 		link_info->req_flow_ctrl =
10313 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10314 	else
10315 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10316 	return rc;
10317 }
10318 
10319 static int bnxt_get_max_irq(struct pci_dev *pdev)
10320 {
10321 	u16 ctrl;
10322 
10323 	if (!pdev->msix_cap)
10324 		return 1;
10325 
10326 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
10327 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
10328 }
10329 
10330 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10331 				int *max_cp)
10332 {
10333 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10334 	int max_ring_grps = 0, max_irq;
10335 
10336 	*max_tx = hw_resc->max_tx_rings;
10337 	*max_rx = hw_resc->max_rx_rings;
10338 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
10339 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
10340 			bnxt_get_ulp_msix_num(bp),
10341 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
10342 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10343 		*max_cp = min_t(int, *max_cp, max_irq);
10344 	max_ring_grps = hw_resc->max_hw_ring_grps;
10345 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
10346 		*max_cp -= 1;
10347 		*max_rx -= 2;
10348 	}
10349 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
10350 		*max_rx >>= 1;
10351 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10352 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
10353 		/* On P5 chips, max_cp output param should be available NQs */
10354 		*max_cp = max_irq;
10355 	}
10356 	*max_rx = min_t(int, *max_rx, max_ring_grps);
10357 }
10358 
10359 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
10360 {
10361 	int rx, tx, cp;
10362 
10363 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
10364 	*max_rx = rx;
10365 	*max_tx = tx;
10366 	if (!rx || !tx || !cp)
10367 		return -ENOMEM;
10368 
10369 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
10370 }
10371 
10372 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10373 			       bool shared)
10374 {
10375 	int rc;
10376 
10377 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10378 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
10379 		/* Not enough rings, try disabling agg rings. */
10380 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
10381 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10382 		if (rc) {
10383 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
10384 			bp->flags |= BNXT_FLAG_AGG_RINGS;
10385 			return rc;
10386 		}
10387 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
10388 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10389 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10390 		bnxt_set_ring_params(bp);
10391 	}
10392 
10393 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
10394 		int max_cp, max_stat, max_irq;
10395 
10396 		/* Reserve minimum resources for RoCE */
10397 		max_cp = bnxt_get_max_func_cp_rings(bp);
10398 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
10399 		max_irq = bnxt_get_max_func_irqs(bp);
10400 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
10401 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
10402 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
10403 			return 0;
10404 
10405 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
10406 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
10407 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
10408 		max_cp = min_t(int, max_cp, max_irq);
10409 		max_cp = min_t(int, max_cp, max_stat);
10410 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
10411 		if (rc)
10412 			rc = 0;
10413 	}
10414 	return rc;
10415 }
10416 
10417 /* In initial default shared ring setting, each shared ring must have a
10418  * RX/TX ring pair.
10419  */
10420 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
10421 {
10422 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
10423 	bp->rx_nr_rings = bp->cp_nr_rings;
10424 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
10425 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10426 }
10427 
10428 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
10429 {
10430 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
10431 
10432 	if (!bnxt_can_reserve_rings(bp))
10433 		return 0;
10434 
10435 	if (sh)
10436 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
10437 	dflt_rings = netif_get_num_default_rss_queues();
10438 	/* Reduce default rings on multi-port cards so that total default
10439 	 * rings do not exceed CPU count.
10440 	 */
10441 	if (bp->port_count > 1) {
10442 		int max_rings =
10443 			max_t(int, num_online_cpus() / bp->port_count, 1);
10444 
10445 		dflt_rings = min_t(int, dflt_rings, max_rings);
10446 	}
10447 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
10448 	if (rc)
10449 		return rc;
10450 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
10451 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
10452 	if (sh)
10453 		bnxt_trim_dflt_sh_rings(bp);
10454 	else
10455 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
10456 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10457 
10458 	rc = __bnxt_reserve_rings(bp);
10459 	if (rc)
10460 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
10461 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10462 	if (sh)
10463 		bnxt_trim_dflt_sh_rings(bp);
10464 
10465 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
10466 	if (bnxt_need_reserve_rings(bp)) {
10467 		rc = __bnxt_reserve_rings(bp);
10468 		if (rc)
10469 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
10470 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10471 	}
10472 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10473 		bp->rx_nr_rings++;
10474 		bp->cp_nr_rings++;
10475 	}
10476 	return rc;
10477 }
10478 
10479 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
10480 {
10481 	int rc;
10482 
10483 	if (bp->tx_nr_rings)
10484 		return 0;
10485 
10486 	bnxt_ulp_irq_stop(bp);
10487 	bnxt_clear_int_mode(bp);
10488 	rc = bnxt_set_dflt_rings(bp, true);
10489 	if (rc) {
10490 		netdev_err(bp->dev, "Not enough rings available.\n");
10491 		goto init_dflt_ring_err;
10492 	}
10493 	rc = bnxt_init_int_mode(bp);
10494 	if (rc)
10495 		goto init_dflt_ring_err;
10496 
10497 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10498 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
10499 		bp->flags |= BNXT_FLAG_RFS;
10500 		bp->dev->features |= NETIF_F_NTUPLE;
10501 	}
10502 init_dflt_ring_err:
10503 	bnxt_ulp_irq_restart(bp, rc);
10504 	return rc;
10505 }
10506 
10507 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
10508 {
10509 	int rc;
10510 
10511 	ASSERT_RTNL();
10512 	bnxt_hwrm_func_qcaps(bp);
10513 
10514 	if (netif_running(bp->dev))
10515 		__bnxt_close_nic(bp, true, false);
10516 
10517 	bnxt_ulp_irq_stop(bp);
10518 	bnxt_clear_int_mode(bp);
10519 	rc = bnxt_init_int_mode(bp);
10520 	bnxt_ulp_irq_restart(bp, rc);
10521 
10522 	if (netif_running(bp->dev)) {
10523 		if (rc)
10524 			dev_close(bp->dev);
10525 		else
10526 			rc = bnxt_open_nic(bp, true, false);
10527 	}
10528 
10529 	return rc;
10530 }
10531 
10532 static int bnxt_init_mac_addr(struct bnxt *bp)
10533 {
10534 	int rc = 0;
10535 
10536 	if (BNXT_PF(bp)) {
10537 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
10538 	} else {
10539 #ifdef CONFIG_BNXT_SRIOV
10540 		struct bnxt_vf_info *vf = &bp->vf;
10541 		bool strict_approval = true;
10542 
10543 		if (is_valid_ether_addr(vf->mac_addr)) {
10544 			/* overwrite netdev dev_addr with admin VF MAC */
10545 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
10546 			/* Older PF driver or firmware may not approve this
10547 			 * correctly.
10548 			 */
10549 			strict_approval = false;
10550 		} else {
10551 			eth_hw_addr_random(bp->dev);
10552 		}
10553 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
10554 #endif
10555 	}
10556 	return rc;
10557 }
10558 
10559 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
10560 {
10561 	struct pci_dev *pdev = bp->pdev;
10562 	int pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
10563 	u32 dw;
10564 
10565 	if (!pos) {
10566 		netdev_info(bp->dev, "Unable do read adapter's DSN");
10567 		return -EOPNOTSUPP;
10568 	}
10569 
10570 	/* DSN (two dw) is at an offset of 4 from the cap pos */
10571 	pos += 4;
10572 	pci_read_config_dword(pdev, pos, &dw);
10573 	put_unaligned_le32(dw, &dsn[0]);
10574 	pci_read_config_dword(pdev, pos + 4, &dw);
10575 	put_unaligned_le32(dw, &dsn[4]);
10576 	return 0;
10577 }
10578 
10579 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
10580 {
10581 	static int version_printed;
10582 	struct net_device *dev;
10583 	struct bnxt *bp;
10584 	int rc, max_irqs;
10585 
10586 	if (pci_is_bridge(pdev))
10587 		return -ENODEV;
10588 
10589 	if (version_printed++ == 0)
10590 		pr_info("%s", version);
10591 
10592 	max_irqs = bnxt_get_max_irq(pdev);
10593 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
10594 	if (!dev)
10595 		return -ENOMEM;
10596 
10597 	bp = netdev_priv(dev);
10598 	bnxt_set_max_func_irqs(bp, max_irqs);
10599 
10600 	if (bnxt_vf_pciid(ent->driver_data))
10601 		bp->flags |= BNXT_FLAG_VF;
10602 
10603 	if (pdev->msix_cap)
10604 		bp->flags |= BNXT_FLAG_MSIX_CAP;
10605 
10606 	rc = bnxt_init_board(pdev, dev);
10607 	if (rc < 0)
10608 		goto init_err_free;
10609 
10610 	dev->netdev_ops = &bnxt_netdev_ops;
10611 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
10612 	dev->ethtool_ops = &bnxt_ethtool_ops;
10613 	pci_set_drvdata(pdev, dev);
10614 
10615 	rc = bnxt_alloc_hwrm_resources(bp);
10616 	if (rc)
10617 		goto init_err_pci_clean;
10618 
10619 	mutex_init(&bp->hwrm_cmd_lock);
10620 	rc = bnxt_hwrm_ver_get(bp);
10621 	if (rc)
10622 		goto init_err_pci_clean;
10623 
10624 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10625 		rc = bnxt_alloc_kong_hwrm_resources(bp);
10626 		if (rc)
10627 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10628 	}
10629 
10630 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10631 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10632 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10633 		if (rc)
10634 			goto init_err_pci_clean;
10635 	}
10636 
10637 	if (BNXT_CHIP_P5(bp))
10638 		bp->flags |= BNXT_FLAG_CHIP_P5;
10639 
10640 	rc = bnxt_hwrm_func_reset(bp);
10641 	if (rc)
10642 		goto init_err_pci_clean;
10643 
10644 	bnxt_hwrm_fw_set_time(bp);
10645 
10646 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10647 			   NETIF_F_TSO | NETIF_F_TSO6 |
10648 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10649 			   NETIF_F_GSO_IPXIP4 |
10650 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10651 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
10652 			   NETIF_F_RXCSUM | NETIF_F_GRO;
10653 
10654 	if (BNXT_SUPPORTS_TPA(bp))
10655 		dev->hw_features |= NETIF_F_LRO;
10656 
10657 	dev->hw_enc_features =
10658 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10659 			NETIF_F_TSO | NETIF_F_TSO6 |
10660 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10661 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10662 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
10663 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
10664 				    NETIF_F_GSO_GRE_CSUM;
10665 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
10666 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
10667 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
10668 	if (BNXT_SUPPORTS_TPA(bp))
10669 		dev->hw_features |= NETIF_F_GRO_HW;
10670 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
10671 	if (dev->features & NETIF_F_GRO_HW)
10672 		dev->features &= ~NETIF_F_LRO;
10673 	dev->priv_flags |= IFF_UNICAST_FLT;
10674 
10675 #ifdef CONFIG_BNXT_SRIOV
10676 	init_waitqueue_head(&bp->sriov_cfg_wait);
10677 	mutex_init(&bp->sriov_lock);
10678 #endif
10679 	if (BNXT_SUPPORTS_TPA(bp)) {
10680 		bp->gro_func = bnxt_gro_func_5730x;
10681 		if (BNXT_CHIP_P4(bp))
10682 			bp->gro_func = bnxt_gro_func_5731x;
10683 	}
10684 	if (!BNXT_CHIP_P4_PLUS(bp))
10685 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
10686 
10687 	rc = bnxt_hwrm_func_drv_rgtr(bp);
10688 	if (rc)
10689 		goto init_err_pci_clean;
10690 
10691 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
10692 	if (rc)
10693 		goto init_err_pci_clean;
10694 
10695 	bp->ulp_probe = bnxt_ulp_probe;
10696 
10697 	rc = bnxt_hwrm_queue_qportcfg(bp);
10698 	if (rc) {
10699 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
10700 			   rc);
10701 		rc = -1;
10702 		goto init_err_pci_clean;
10703 	}
10704 	/* Get the MAX capabilities for this function */
10705 	rc = bnxt_hwrm_func_qcaps(bp);
10706 	if (rc) {
10707 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10708 			   rc);
10709 		rc = -1;
10710 		goto init_err_pci_clean;
10711 	}
10712 
10713 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10714 	if (rc)
10715 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10716 			    rc);
10717 
10718 	rc = bnxt_init_mac_addr(bp);
10719 	if (rc) {
10720 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
10721 		rc = -EADDRNOTAVAIL;
10722 		goto init_err_pci_clean;
10723 	}
10724 
10725 	/* Read the adapter's DSN to use as the eswitch switch_id */
10726 	rc = bnxt_pcie_dsn_get(bp, bp->switch_id);
10727 	if (rc)
10728 		goto init_err_pci_clean;
10729 
10730 	bnxt_hwrm_func_qcfg(bp);
10731 	bnxt_hwrm_vnic_qcaps(bp);
10732 	bnxt_hwrm_port_led_qcaps(bp);
10733 	bnxt_ethtool_init(bp);
10734 	bnxt_dcb_init(bp);
10735 
10736 	/* MTU range: 60 - FW defined max */
10737 	dev->min_mtu = ETH_ZLEN;
10738 	dev->max_mtu = bp->max_mtu;
10739 
10740 	rc = bnxt_probe_phy(bp);
10741 	if (rc)
10742 		goto init_err_pci_clean;
10743 
10744 	bnxt_set_rx_skb_mode(bp, false);
10745 	bnxt_set_tpa_flags(bp);
10746 	bnxt_set_ring_params(bp);
10747 	rc = bnxt_set_dflt_rings(bp, true);
10748 	if (rc) {
10749 		netdev_err(bp->dev, "Not enough rings available.\n");
10750 		rc = -ENOMEM;
10751 		goto init_err_pci_clean;
10752 	}
10753 
10754 	/* Default RSS hash cfg. */
10755 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10756 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10757 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10758 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10759 	if (BNXT_CHIP_P4(bp) && bp->hwrm_spec_code >= 0x10501) {
10760 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10761 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10762 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10763 	}
10764 
10765 	if (bnxt_rfs_supported(bp)) {
10766 		dev->hw_features |= NETIF_F_NTUPLE;
10767 		if (bnxt_rfs_capable(bp)) {
10768 			bp->flags |= BNXT_FLAG_RFS;
10769 			dev->features |= NETIF_F_NTUPLE;
10770 		}
10771 	}
10772 
10773 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
10774 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
10775 
10776 	rc = bnxt_init_int_mode(bp);
10777 	if (rc)
10778 		goto init_err_pci_clean;
10779 
10780 	/* No TC has been set yet and rings may have been trimmed due to
10781 	 * limited MSIX, so we re-initialize the TX rings per TC.
10782 	 */
10783 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10784 
10785 	bnxt_get_wol_settings(bp);
10786 	if (bp->flags & BNXT_FLAG_WOL_CAP)
10787 		device_set_wakeup_enable(&pdev->dev, bp->wol);
10788 	else
10789 		device_set_wakeup_capable(&pdev->dev, false);
10790 
10791 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10792 
10793 	bnxt_hwrm_coal_params_qcaps(bp);
10794 
10795 	if (BNXT_PF(bp)) {
10796 		if (!bnxt_pf_wq) {
10797 			bnxt_pf_wq =
10798 				create_singlethread_workqueue("bnxt_pf_wq");
10799 			if (!bnxt_pf_wq) {
10800 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
10801 				goto init_err_pci_clean;
10802 			}
10803 		}
10804 		bnxt_init_tc(bp);
10805 	}
10806 
10807 	rc = register_netdev(dev);
10808 	if (rc)
10809 		goto init_err_cleanup_tc;
10810 
10811 	if (BNXT_PF(bp))
10812 		bnxt_dl_register(bp);
10813 
10814 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
10815 		    board_info[ent->driver_data].name,
10816 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
10817 	pcie_print_link_status(pdev);
10818 
10819 	return 0;
10820 
10821 init_err_cleanup_tc:
10822 	bnxt_shutdown_tc(bp);
10823 	bnxt_clear_int_mode(bp);
10824 
10825 init_err_pci_clean:
10826 	bnxt_free_hwrm_short_cmd_req(bp);
10827 	bnxt_free_hwrm_resources(bp);
10828 	bnxt_free_ctx_mem(bp);
10829 	kfree(bp->ctx);
10830 	bp->ctx = NULL;
10831 	bnxt_cleanup_pci(bp);
10832 
10833 init_err_free:
10834 	free_netdev(dev);
10835 	return rc;
10836 }
10837 
10838 static void bnxt_shutdown(struct pci_dev *pdev)
10839 {
10840 	struct net_device *dev = pci_get_drvdata(pdev);
10841 	struct bnxt *bp;
10842 
10843 	if (!dev)
10844 		return;
10845 
10846 	rtnl_lock();
10847 	bp = netdev_priv(dev);
10848 	if (!bp)
10849 		goto shutdown_exit;
10850 
10851 	if (netif_running(dev))
10852 		dev_close(dev);
10853 
10854 	bnxt_ulp_shutdown(bp);
10855 
10856 	if (system_state == SYSTEM_POWER_OFF) {
10857 		bnxt_clear_int_mode(bp);
10858 		pci_wake_from_d3(pdev, bp->wol);
10859 		pci_set_power_state(pdev, PCI_D3hot);
10860 	}
10861 
10862 shutdown_exit:
10863 	rtnl_unlock();
10864 }
10865 
10866 #ifdef CONFIG_PM_SLEEP
10867 static int bnxt_suspend(struct device *device)
10868 {
10869 	struct pci_dev *pdev = to_pci_dev(device);
10870 	struct net_device *dev = pci_get_drvdata(pdev);
10871 	struct bnxt *bp = netdev_priv(dev);
10872 	int rc = 0;
10873 
10874 	rtnl_lock();
10875 	if (netif_running(dev)) {
10876 		netif_device_detach(dev);
10877 		rc = bnxt_close(dev);
10878 	}
10879 	bnxt_hwrm_func_drv_unrgtr(bp);
10880 	rtnl_unlock();
10881 	return rc;
10882 }
10883 
10884 static int bnxt_resume(struct device *device)
10885 {
10886 	struct pci_dev *pdev = to_pci_dev(device);
10887 	struct net_device *dev = pci_get_drvdata(pdev);
10888 	struct bnxt *bp = netdev_priv(dev);
10889 	int rc = 0;
10890 
10891 	rtnl_lock();
10892 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
10893 		rc = -ENODEV;
10894 		goto resume_exit;
10895 	}
10896 	rc = bnxt_hwrm_func_reset(bp);
10897 	if (rc) {
10898 		rc = -EBUSY;
10899 		goto resume_exit;
10900 	}
10901 	bnxt_get_wol_settings(bp);
10902 	if (netif_running(dev)) {
10903 		rc = bnxt_open(dev);
10904 		if (!rc)
10905 			netif_device_attach(dev);
10906 	}
10907 
10908 resume_exit:
10909 	rtnl_unlock();
10910 	return rc;
10911 }
10912 
10913 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
10914 #define BNXT_PM_OPS (&bnxt_pm_ops)
10915 
10916 #else
10917 
10918 #define BNXT_PM_OPS NULL
10919 
10920 #endif /* CONFIG_PM_SLEEP */
10921 
10922 /**
10923  * bnxt_io_error_detected - called when PCI error is detected
10924  * @pdev: Pointer to PCI device
10925  * @state: The current pci connection state
10926  *
10927  * This function is called after a PCI bus error affecting
10928  * this device has been detected.
10929  */
10930 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
10931 					       pci_channel_state_t state)
10932 {
10933 	struct net_device *netdev = pci_get_drvdata(pdev);
10934 	struct bnxt *bp = netdev_priv(netdev);
10935 
10936 	netdev_info(netdev, "PCI I/O error detected\n");
10937 
10938 	rtnl_lock();
10939 	netif_device_detach(netdev);
10940 
10941 	bnxt_ulp_stop(bp);
10942 
10943 	if (state == pci_channel_io_perm_failure) {
10944 		rtnl_unlock();
10945 		return PCI_ERS_RESULT_DISCONNECT;
10946 	}
10947 
10948 	if (netif_running(netdev))
10949 		bnxt_close(netdev);
10950 
10951 	pci_disable_device(pdev);
10952 	rtnl_unlock();
10953 
10954 	/* Request a slot slot reset. */
10955 	return PCI_ERS_RESULT_NEED_RESET;
10956 }
10957 
10958 /**
10959  * bnxt_io_slot_reset - called after the pci bus has been reset.
10960  * @pdev: Pointer to PCI device
10961  *
10962  * Restart the card from scratch, as if from a cold-boot.
10963  * At this point, the card has exprienced a hard reset,
10964  * followed by fixups by BIOS, and has its config space
10965  * set up identically to what it was at cold boot.
10966  */
10967 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
10968 {
10969 	struct net_device *netdev = pci_get_drvdata(pdev);
10970 	struct bnxt *bp = netdev_priv(netdev);
10971 	int err = 0;
10972 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
10973 
10974 	netdev_info(bp->dev, "PCI Slot Reset\n");
10975 
10976 	rtnl_lock();
10977 
10978 	if (pci_enable_device(pdev)) {
10979 		dev_err(&pdev->dev,
10980 			"Cannot re-enable PCI device after reset.\n");
10981 	} else {
10982 		pci_set_master(pdev);
10983 
10984 		err = bnxt_hwrm_func_reset(bp);
10985 		if (!err && netif_running(netdev))
10986 			err = bnxt_open(netdev);
10987 
10988 		if (!err) {
10989 			result = PCI_ERS_RESULT_RECOVERED;
10990 			bnxt_ulp_start(bp);
10991 		}
10992 	}
10993 
10994 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
10995 		dev_close(netdev);
10996 
10997 	rtnl_unlock();
10998 
10999 	return PCI_ERS_RESULT_RECOVERED;
11000 }
11001 
11002 /**
11003  * bnxt_io_resume - called when traffic can start flowing again.
11004  * @pdev: Pointer to PCI device
11005  *
11006  * This callback is called when the error recovery driver tells
11007  * us that its OK to resume normal operation.
11008  */
11009 static void bnxt_io_resume(struct pci_dev *pdev)
11010 {
11011 	struct net_device *netdev = pci_get_drvdata(pdev);
11012 
11013 	rtnl_lock();
11014 
11015 	netif_device_attach(netdev);
11016 
11017 	rtnl_unlock();
11018 }
11019 
11020 static const struct pci_error_handlers bnxt_err_handler = {
11021 	.error_detected	= bnxt_io_error_detected,
11022 	.slot_reset	= bnxt_io_slot_reset,
11023 	.resume		= bnxt_io_resume
11024 };
11025 
11026 static struct pci_driver bnxt_pci_driver = {
11027 	.name		= DRV_MODULE_NAME,
11028 	.id_table	= bnxt_pci_tbl,
11029 	.probe		= bnxt_init_one,
11030 	.remove		= bnxt_remove_one,
11031 	.shutdown	= bnxt_shutdown,
11032 	.driver.pm	= BNXT_PM_OPS,
11033 	.err_handler	= &bnxt_err_handler,
11034 #if defined(CONFIG_BNXT_SRIOV)
11035 	.sriov_configure = bnxt_sriov_configure,
11036 #endif
11037 };
11038 
11039 static int __init bnxt_init(void)
11040 {
11041 	bnxt_debug_init();
11042 	return pci_register_driver(&bnxt_pci_driver);
11043 }
11044 
11045 static void __exit bnxt_exit(void)
11046 {
11047 	pci_unregister_driver(&bnxt_pci_driver);
11048 	if (bnxt_pf_wq)
11049 		destroy_workqueue(bnxt_pf_wq);
11050 	bnxt_debug_exit();
11051 }
11052 
11053 module_init(bnxt_init);
11054 module_exit(bnxt_exit);
11055