1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 
58 #include "bnxt_hsi.h"
59 #include "bnxt.h"
60 #include "bnxt_ulp.h"
61 #include "bnxt_sriov.h"
62 #include "bnxt_ethtool.h"
63 #include "bnxt_dcb.h"
64 #include "bnxt_xdp.h"
65 #include "bnxt_vfr.h"
66 #include "bnxt_tc.h"
67 #include "bnxt_devlink.h"
68 #include "bnxt_debugfs.h"
69 
70 #define BNXT_TX_TIMEOUT		(5 * HZ)
71 
72 static const char version[] =
73 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
74 
75 MODULE_LICENSE("GPL");
76 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
77 MODULE_VERSION(DRV_MODULE_VERSION);
78 
79 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
80 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
81 #define BNXT_RX_COPY_THRESH 256
82 
83 #define BNXT_TX_PUSH_THRESH 164
84 
85 enum board_idx {
86 	BCM57301,
87 	BCM57302,
88 	BCM57304,
89 	BCM57417_NPAR,
90 	BCM58700,
91 	BCM57311,
92 	BCM57312,
93 	BCM57402,
94 	BCM57404,
95 	BCM57406,
96 	BCM57402_NPAR,
97 	BCM57407,
98 	BCM57412,
99 	BCM57414,
100 	BCM57416,
101 	BCM57417,
102 	BCM57412_NPAR,
103 	BCM57314,
104 	BCM57417_SFP,
105 	BCM57416_SFP,
106 	BCM57404_NPAR,
107 	BCM57406_NPAR,
108 	BCM57407_SFP,
109 	BCM57407_NPAR,
110 	BCM57414_NPAR,
111 	BCM57416_NPAR,
112 	BCM57452,
113 	BCM57454,
114 	BCM5745x_NPAR,
115 	BCM57508,
116 	BCM57504,
117 	BCM58802,
118 	BCM58804,
119 	BCM58808,
120 	NETXTREME_E_VF,
121 	NETXTREME_C_VF,
122 	NETXTREME_S_VF,
123 	NETXTREME_E_P5_VF,
124 };
125 
126 /* indexed by enum above */
127 static const struct {
128 	char *name;
129 } board_info[] = {
130 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
131 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
132 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
133 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
134 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
135 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
136 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
137 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
138 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
139 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
140 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
141 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
142 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
143 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
144 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
145 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
146 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
147 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
148 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
149 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
150 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
151 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
152 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
153 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
154 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
155 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
156 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
157 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
158 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
159 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
160 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
161 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
162 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
163 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
164 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
165 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
166 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
167 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
168 };
169 
170 static const struct pci_device_id bnxt_pci_tbl[] = {
171 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
176 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
178 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
185 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
194 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
195 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
196 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
197 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
198 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
199 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
200 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
201 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
205 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
206 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
207 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
208 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
209 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
210 #ifdef CONFIG_BNXT_SRIOV
211 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
212 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
213 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
214 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
215 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
216 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
217 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
218 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
219 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
220 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
221 #endif
222 	{ 0 }
223 };
224 
225 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
226 
227 static const u16 bnxt_vf_req_snif[] = {
228 	HWRM_FUNC_CFG,
229 	HWRM_FUNC_VF_CFG,
230 	HWRM_PORT_PHY_QCFG,
231 	HWRM_CFA_L2_FILTER_ALLOC,
232 };
233 
234 static const u16 bnxt_async_events_arr[] = {
235 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
236 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
238 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
239 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
240 };
241 
242 static struct workqueue_struct *bnxt_pf_wq;
243 
244 static bool bnxt_vf_pciid(enum board_idx idx)
245 {
246 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
247 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
262 
263 #define BNXT_DB_CQ_ARM(db, idx)						\
264 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
265 
266 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
267 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
268 
269 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
270 {
271 	if (bp->flags & BNXT_FLAG_CHIP_P5)
272 		BNXT_DB_NQ_P5(db, idx);
273 	else
274 		BNXT_DB_CQ(db, idx);
275 }
276 
277 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
278 {
279 	if (bp->flags & BNXT_FLAG_CHIP_P5)
280 		BNXT_DB_NQ_ARM_P5(db, idx);
281 	else
282 		BNXT_DB_CQ_ARM(db, idx);
283 }
284 
285 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
286 {
287 	if (bp->flags & BNXT_FLAG_CHIP_P5)
288 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
289 		       db->doorbell);
290 	else
291 		BNXT_DB_CQ(db, idx);
292 }
293 
294 const u16 bnxt_lhint_arr[] = {
295 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
296 	TX_BD_FLAGS_LHINT_512_TO_1023,
297 	TX_BD_FLAGS_LHINT_1024_TO_2047,
298 	TX_BD_FLAGS_LHINT_1024_TO_2047,
299 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
300 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 };
315 
316 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
317 {
318 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
319 
320 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
321 		return 0;
322 
323 	return md_dst->u.port_info.port_id;
324 }
325 
326 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
327 {
328 	struct bnxt *bp = netdev_priv(dev);
329 	struct tx_bd *txbd;
330 	struct tx_bd_ext *txbd1;
331 	struct netdev_queue *txq;
332 	int i;
333 	dma_addr_t mapping;
334 	unsigned int length, pad = 0;
335 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
336 	u16 prod, last_frag;
337 	struct pci_dev *pdev = bp->pdev;
338 	struct bnxt_tx_ring_info *txr;
339 	struct bnxt_sw_tx_bd *tx_buf;
340 
341 	i = skb_get_queue_mapping(skb);
342 	if (unlikely(i >= bp->tx_nr_rings)) {
343 		dev_kfree_skb_any(skb);
344 		return NETDEV_TX_OK;
345 	}
346 
347 	txq = netdev_get_tx_queue(dev, i);
348 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
349 	prod = txr->tx_prod;
350 
351 	free_size = bnxt_tx_avail(bp, txr);
352 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
353 		netif_tx_stop_queue(txq);
354 		return NETDEV_TX_BUSY;
355 	}
356 
357 	length = skb->len;
358 	len = skb_headlen(skb);
359 	last_frag = skb_shinfo(skb)->nr_frags;
360 
361 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
362 
363 	txbd->tx_bd_opaque = prod;
364 
365 	tx_buf = &txr->tx_buf_ring[prod];
366 	tx_buf->skb = skb;
367 	tx_buf->nr_frags = last_frag;
368 
369 	vlan_tag_flags = 0;
370 	cfa_action = bnxt_xmit_get_cfa_action(skb);
371 	if (skb_vlan_tag_present(skb)) {
372 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
373 				 skb_vlan_tag_get(skb);
374 		/* Currently supports 8021Q, 8021AD vlan offloads
375 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
376 		 */
377 		if (skb->vlan_proto == htons(ETH_P_8021Q))
378 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
379 	}
380 
381 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
382 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
383 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
384 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
385 		void __iomem *db = txr->tx_db.doorbell;
386 		void *pdata = tx_push_buf->data;
387 		u64 *end;
388 		int j, push_len;
389 
390 		/* Set COAL_NOW to be ready quickly for the next push */
391 		tx_push->tx_bd_len_flags_type =
392 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
393 					TX_BD_TYPE_LONG_TX_BD |
394 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
395 					TX_BD_FLAGS_COAL_NOW |
396 					TX_BD_FLAGS_PACKET_END |
397 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
398 
399 		if (skb->ip_summed == CHECKSUM_PARTIAL)
400 			tx_push1->tx_bd_hsize_lflags =
401 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
402 		else
403 			tx_push1->tx_bd_hsize_lflags = 0;
404 
405 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
406 		tx_push1->tx_bd_cfa_action =
407 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
408 
409 		end = pdata + length;
410 		end = PTR_ALIGN(end, 8) - 1;
411 		*end = 0;
412 
413 		skb_copy_from_linear_data(skb, pdata, len);
414 		pdata += len;
415 		for (j = 0; j < last_frag; j++) {
416 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
417 			void *fptr;
418 
419 			fptr = skb_frag_address_safe(frag);
420 			if (!fptr)
421 				goto normal_tx;
422 
423 			memcpy(pdata, fptr, skb_frag_size(frag));
424 			pdata += skb_frag_size(frag);
425 		}
426 
427 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
428 		txbd->tx_bd_haddr = txr->data_mapping;
429 		prod = NEXT_TX(prod);
430 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
431 		memcpy(txbd, tx_push1, sizeof(*txbd));
432 		prod = NEXT_TX(prod);
433 		tx_push->doorbell =
434 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
435 		txr->tx_prod = prod;
436 
437 		tx_buf->is_push = 1;
438 		netdev_tx_sent_queue(txq, skb->len);
439 		wmb();	/* Sync is_push and byte queue before pushing data */
440 
441 		push_len = (length + sizeof(*tx_push) + 7) / 8;
442 		if (push_len > 16) {
443 			__iowrite64_copy(db, tx_push_buf, 16);
444 			__iowrite32_copy(db + 4, tx_push_buf + 1,
445 					 (push_len - 16) << 1);
446 		} else {
447 			__iowrite64_copy(db, tx_push_buf, push_len);
448 		}
449 
450 		goto tx_done;
451 	}
452 
453 normal_tx:
454 	if (length < BNXT_MIN_PKT_SIZE) {
455 		pad = BNXT_MIN_PKT_SIZE - length;
456 		if (skb_pad(skb, pad)) {
457 			/* SKB already freed. */
458 			tx_buf->skb = NULL;
459 			return NETDEV_TX_OK;
460 		}
461 		length = BNXT_MIN_PKT_SIZE;
462 	}
463 
464 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
465 
466 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
467 		dev_kfree_skb_any(skb);
468 		tx_buf->skb = NULL;
469 		return NETDEV_TX_OK;
470 	}
471 
472 	dma_unmap_addr_set(tx_buf, mapping, mapping);
473 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
474 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
475 
476 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
477 
478 	prod = NEXT_TX(prod);
479 	txbd1 = (struct tx_bd_ext *)
480 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
481 
482 	txbd1->tx_bd_hsize_lflags = 0;
483 	if (skb_is_gso(skb)) {
484 		u32 hdr_len;
485 
486 		if (skb->encapsulation)
487 			hdr_len = skb_inner_network_offset(skb) +
488 				skb_inner_network_header_len(skb) +
489 				inner_tcp_hdrlen(skb);
490 		else
491 			hdr_len = skb_transport_offset(skb) +
492 				tcp_hdrlen(skb);
493 
494 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
495 					TX_BD_FLAGS_T_IPID |
496 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
497 		length = skb_shinfo(skb)->gso_size;
498 		txbd1->tx_bd_mss = cpu_to_le32(length);
499 		length += hdr_len;
500 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
501 		txbd1->tx_bd_hsize_lflags =
502 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
503 		txbd1->tx_bd_mss = 0;
504 	}
505 
506 	length >>= 9;
507 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
508 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
509 				     skb->len);
510 		i = 0;
511 		goto tx_dma_error;
512 	}
513 	flags |= bnxt_lhint_arr[length];
514 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
515 
516 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
517 	txbd1->tx_bd_cfa_action =
518 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
519 	for (i = 0; i < last_frag; i++) {
520 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
521 
522 		prod = NEXT_TX(prod);
523 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
524 
525 		len = skb_frag_size(frag);
526 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
527 					   DMA_TO_DEVICE);
528 
529 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
530 			goto tx_dma_error;
531 
532 		tx_buf = &txr->tx_buf_ring[prod];
533 		dma_unmap_addr_set(tx_buf, mapping, mapping);
534 
535 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
536 
537 		flags = len << TX_BD_LEN_SHIFT;
538 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
539 	}
540 
541 	flags &= ~TX_BD_LEN;
542 	txbd->tx_bd_len_flags_type =
543 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
544 			    TX_BD_FLAGS_PACKET_END);
545 
546 	netdev_tx_sent_queue(txq, skb->len);
547 
548 	/* Sync BD data before updating doorbell */
549 	wmb();
550 
551 	prod = NEXT_TX(prod);
552 	txr->tx_prod = prod;
553 
554 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
555 		bnxt_db_write(bp, &txr->tx_db, prod);
556 
557 tx_done:
558 
559 	mmiowb();
560 
561 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
562 		if (netdev_xmit_more() && !tx_buf->is_push)
563 			bnxt_db_write(bp, &txr->tx_db, prod);
564 
565 		netif_tx_stop_queue(txq);
566 
567 		/* netif_tx_stop_queue() must be done before checking
568 		 * tx index in bnxt_tx_avail() below, because in
569 		 * bnxt_tx_int(), we update tx index before checking for
570 		 * netif_tx_queue_stopped().
571 		 */
572 		smp_mb();
573 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
574 			netif_tx_wake_queue(txq);
575 	}
576 	return NETDEV_TX_OK;
577 
578 tx_dma_error:
579 	last_frag = i;
580 
581 	/* start back at beginning and unmap skb */
582 	prod = txr->tx_prod;
583 	tx_buf = &txr->tx_buf_ring[prod];
584 	tx_buf->skb = NULL;
585 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
586 			 skb_headlen(skb), PCI_DMA_TODEVICE);
587 	prod = NEXT_TX(prod);
588 
589 	/* unmap remaining mapped pages */
590 	for (i = 0; i < last_frag; i++) {
591 		prod = NEXT_TX(prod);
592 		tx_buf = &txr->tx_buf_ring[prod];
593 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
594 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
595 			       PCI_DMA_TODEVICE);
596 	}
597 
598 	dev_kfree_skb_any(skb);
599 	return NETDEV_TX_OK;
600 }
601 
602 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
603 {
604 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
605 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
606 	u16 cons = txr->tx_cons;
607 	struct pci_dev *pdev = bp->pdev;
608 	int i;
609 	unsigned int tx_bytes = 0;
610 
611 	for (i = 0; i < nr_pkts; i++) {
612 		struct bnxt_sw_tx_bd *tx_buf;
613 		struct sk_buff *skb;
614 		int j, last;
615 
616 		tx_buf = &txr->tx_buf_ring[cons];
617 		cons = NEXT_TX(cons);
618 		skb = tx_buf->skb;
619 		tx_buf->skb = NULL;
620 
621 		if (tx_buf->is_push) {
622 			tx_buf->is_push = 0;
623 			goto next_tx_int;
624 		}
625 
626 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
627 				 skb_headlen(skb), PCI_DMA_TODEVICE);
628 		last = tx_buf->nr_frags;
629 
630 		for (j = 0; j < last; j++) {
631 			cons = NEXT_TX(cons);
632 			tx_buf = &txr->tx_buf_ring[cons];
633 			dma_unmap_page(
634 				&pdev->dev,
635 				dma_unmap_addr(tx_buf, mapping),
636 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
637 				PCI_DMA_TODEVICE);
638 		}
639 
640 next_tx_int:
641 		cons = NEXT_TX(cons);
642 
643 		tx_bytes += skb->len;
644 		dev_kfree_skb_any(skb);
645 	}
646 
647 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
648 	txr->tx_cons = cons;
649 
650 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
651 	 * before checking for netif_tx_queue_stopped().  Without the
652 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
653 	 * will miss it and cause the queue to be stopped forever.
654 	 */
655 	smp_mb();
656 
657 	if (unlikely(netif_tx_queue_stopped(txq)) &&
658 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
659 		__netif_tx_lock(txq, smp_processor_id());
660 		if (netif_tx_queue_stopped(txq) &&
661 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
662 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
663 			netif_tx_wake_queue(txq);
664 		__netif_tx_unlock(txq);
665 	}
666 }
667 
668 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
669 					 gfp_t gfp)
670 {
671 	struct device *dev = &bp->pdev->dev;
672 	struct page *page;
673 
674 	page = alloc_page(gfp);
675 	if (!page)
676 		return NULL;
677 
678 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
679 				      DMA_ATTR_WEAK_ORDERING);
680 	if (dma_mapping_error(dev, *mapping)) {
681 		__free_page(page);
682 		return NULL;
683 	}
684 	*mapping += bp->rx_dma_offset;
685 	return page;
686 }
687 
688 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
689 				       gfp_t gfp)
690 {
691 	u8 *data;
692 	struct pci_dev *pdev = bp->pdev;
693 
694 	data = kmalloc(bp->rx_buf_size, gfp);
695 	if (!data)
696 		return NULL;
697 
698 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
699 					bp->rx_buf_use_size, bp->rx_dir,
700 					DMA_ATTR_WEAK_ORDERING);
701 
702 	if (dma_mapping_error(&pdev->dev, *mapping)) {
703 		kfree(data);
704 		data = NULL;
705 	}
706 	return data;
707 }
708 
709 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
710 		       u16 prod, gfp_t gfp)
711 {
712 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
713 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
714 	dma_addr_t mapping;
715 
716 	if (BNXT_RX_PAGE_MODE(bp)) {
717 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
718 
719 		if (!page)
720 			return -ENOMEM;
721 
722 		rx_buf->data = page;
723 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
724 	} else {
725 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
726 
727 		if (!data)
728 			return -ENOMEM;
729 
730 		rx_buf->data = data;
731 		rx_buf->data_ptr = data + bp->rx_offset;
732 	}
733 	rx_buf->mapping = mapping;
734 
735 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
736 	return 0;
737 }
738 
739 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
740 {
741 	u16 prod = rxr->rx_prod;
742 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
743 	struct rx_bd *cons_bd, *prod_bd;
744 
745 	prod_rx_buf = &rxr->rx_buf_ring[prod];
746 	cons_rx_buf = &rxr->rx_buf_ring[cons];
747 
748 	prod_rx_buf->data = data;
749 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
750 
751 	prod_rx_buf->mapping = cons_rx_buf->mapping;
752 
753 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
754 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
755 
756 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
757 }
758 
759 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
760 {
761 	u16 next, max = rxr->rx_agg_bmap_size;
762 
763 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
764 	if (next >= max)
765 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
766 	return next;
767 }
768 
769 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
770 				     struct bnxt_rx_ring_info *rxr,
771 				     u16 prod, gfp_t gfp)
772 {
773 	struct rx_bd *rxbd =
774 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
775 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
776 	struct pci_dev *pdev = bp->pdev;
777 	struct page *page;
778 	dma_addr_t mapping;
779 	u16 sw_prod = rxr->rx_sw_agg_prod;
780 	unsigned int offset = 0;
781 
782 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
783 		page = rxr->rx_page;
784 		if (!page) {
785 			page = alloc_page(gfp);
786 			if (!page)
787 				return -ENOMEM;
788 			rxr->rx_page = page;
789 			rxr->rx_page_offset = 0;
790 		}
791 		offset = rxr->rx_page_offset;
792 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
793 		if (rxr->rx_page_offset == PAGE_SIZE)
794 			rxr->rx_page = NULL;
795 		else
796 			get_page(page);
797 	} else {
798 		page = alloc_page(gfp);
799 		if (!page)
800 			return -ENOMEM;
801 	}
802 
803 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
804 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
805 				     DMA_ATTR_WEAK_ORDERING);
806 	if (dma_mapping_error(&pdev->dev, mapping)) {
807 		__free_page(page);
808 		return -EIO;
809 	}
810 
811 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
812 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
813 
814 	__set_bit(sw_prod, rxr->rx_agg_bmap);
815 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
816 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
817 
818 	rx_agg_buf->page = page;
819 	rx_agg_buf->offset = offset;
820 	rx_agg_buf->mapping = mapping;
821 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
822 	rxbd->rx_bd_opaque = sw_prod;
823 	return 0;
824 }
825 
826 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
827 				   u32 agg_bufs)
828 {
829 	struct bnxt_napi *bnapi = cpr->bnapi;
830 	struct bnxt *bp = bnapi->bp;
831 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
832 	u16 prod = rxr->rx_agg_prod;
833 	u16 sw_prod = rxr->rx_sw_agg_prod;
834 	u32 i;
835 
836 	for (i = 0; i < agg_bufs; i++) {
837 		u16 cons;
838 		struct rx_agg_cmp *agg;
839 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
840 		struct rx_bd *prod_bd;
841 		struct page *page;
842 
843 		agg = (struct rx_agg_cmp *)
844 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
845 		cons = agg->rx_agg_cmp_opaque;
846 		__clear_bit(cons, rxr->rx_agg_bmap);
847 
848 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
849 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
850 
851 		__set_bit(sw_prod, rxr->rx_agg_bmap);
852 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
853 		cons_rx_buf = &rxr->rx_agg_ring[cons];
854 
855 		/* It is possible for sw_prod to be equal to cons, so
856 		 * set cons_rx_buf->page to NULL first.
857 		 */
858 		page = cons_rx_buf->page;
859 		cons_rx_buf->page = NULL;
860 		prod_rx_buf->page = page;
861 		prod_rx_buf->offset = cons_rx_buf->offset;
862 
863 		prod_rx_buf->mapping = cons_rx_buf->mapping;
864 
865 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
866 
867 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
868 		prod_bd->rx_bd_opaque = sw_prod;
869 
870 		prod = NEXT_RX_AGG(prod);
871 		sw_prod = NEXT_RX_AGG(sw_prod);
872 		cp_cons = NEXT_CMP(cp_cons);
873 	}
874 	rxr->rx_agg_prod = prod;
875 	rxr->rx_sw_agg_prod = sw_prod;
876 }
877 
878 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
879 					struct bnxt_rx_ring_info *rxr,
880 					u16 cons, void *data, u8 *data_ptr,
881 					dma_addr_t dma_addr,
882 					unsigned int offset_and_len)
883 {
884 	unsigned int payload = offset_and_len >> 16;
885 	unsigned int len = offset_and_len & 0xffff;
886 	struct skb_frag_struct *frag;
887 	struct page *page = data;
888 	u16 prod = rxr->rx_prod;
889 	struct sk_buff *skb;
890 	int off, err;
891 
892 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
893 	if (unlikely(err)) {
894 		bnxt_reuse_rx_data(rxr, cons, data);
895 		return NULL;
896 	}
897 	dma_addr -= bp->rx_dma_offset;
898 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
899 			     DMA_ATTR_WEAK_ORDERING);
900 
901 	if (unlikely(!payload))
902 		payload = eth_get_headlen(data_ptr, len);
903 
904 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
905 	if (!skb) {
906 		__free_page(page);
907 		return NULL;
908 	}
909 
910 	off = (void *)data_ptr - page_address(page);
911 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
912 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
913 	       payload + NET_IP_ALIGN);
914 
915 	frag = &skb_shinfo(skb)->frags[0];
916 	skb_frag_size_sub(frag, payload);
917 	frag->page_offset += payload;
918 	skb->data_len -= payload;
919 	skb->tail += payload;
920 
921 	return skb;
922 }
923 
924 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
925 				   struct bnxt_rx_ring_info *rxr, u16 cons,
926 				   void *data, u8 *data_ptr,
927 				   dma_addr_t dma_addr,
928 				   unsigned int offset_and_len)
929 {
930 	u16 prod = rxr->rx_prod;
931 	struct sk_buff *skb;
932 	int err;
933 
934 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
935 	if (unlikely(err)) {
936 		bnxt_reuse_rx_data(rxr, cons, data);
937 		return NULL;
938 	}
939 
940 	skb = build_skb(data, 0);
941 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
942 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
943 	if (!skb) {
944 		kfree(data);
945 		return NULL;
946 	}
947 
948 	skb_reserve(skb, bp->rx_offset);
949 	skb_put(skb, offset_and_len & 0xffff);
950 	return skb;
951 }
952 
953 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
954 				     struct bnxt_cp_ring_info *cpr,
955 				     struct sk_buff *skb, u16 cp_cons,
956 				     u32 agg_bufs)
957 {
958 	struct bnxt_napi *bnapi = cpr->bnapi;
959 	struct pci_dev *pdev = bp->pdev;
960 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
961 	u16 prod = rxr->rx_agg_prod;
962 	u32 i;
963 
964 	for (i = 0; i < agg_bufs; i++) {
965 		u16 cons, frag_len;
966 		struct rx_agg_cmp *agg;
967 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
968 		struct page *page;
969 		dma_addr_t mapping;
970 
971 		agg = (struct rx_agg_cmp *)
972 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
973 		cons = agg->rx_agg_cmp_opaque;
974 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
975 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
976 
977 		cons_rx_buf = &rxr->rx_agg_ring[cons];
978 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
979 				   cons_rx_buf->offset, frag_len);
980 		__clear_bit(cons, rxr->rx_agg_bmap);
981 
982 		/* It is possible for bnxt_alloc_rx_page() to allocate
983 		 * a sw_prod index that equals the cons index, so we
984 		 * need to clear the cons entry now.
985 		 */
986 		mapping = cons_rx_buf->mapping;
987 		page = cons_rx_buf->page;
988 		cons_rx_buf->page = NULL;
989 
990 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
991 			struct skb_shared_info *shinfo;
992 			unsigned int nr_frags;
993 
994 			shinfo = skb_shinfo(skb);
995 			nr_frags = --shinfo->nr_frags;
996 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
997 
998 			dev_kfree_skb(skb);
999 
1000 			cons_rx_buf->page = page;
1001 
1002 			/* Update prod since possibly some pages have been
1003 			 * allocated already.
1004 			 */
1005 			rxr->rx_agg_prod = prod;
1006 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs - i);
1007 			return NULL;
1008 		}
1009 
1010 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1011 				     PCI_DMA_FROMDEVICE,
1012 				     DMA_ATTR_WEAK_ORDERING);
1013 
1014 		skb->data_len += frag_len;
1015 		skb->len += frag_len;
1016 		skb->truesize += PAGE_SIZE;
1017 
1018 		prod = NEXT_RX_AGG(prod);
1019 		cp_cons = NEXT_CMP(cp_cons);
1020 	}
1021 	rxr->rx_agg_prod = prod;
1022 	return skb;
1023 }
1024 
1025 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1026 			       u8 agg_bufs, u32 *raw_cons)
1027 {
1028 	u16 last;
1029 	struct rx_agg_cmp *agg;
1030 
1031 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1032 	last = RING_CMP(*raw_cons);
1033 	agg = (struct rx_agg_cmp *)
1034 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1035 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1036 }
1037 
1038 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1039 					    unsigned int len,
1040 					    dma_addr_t mapping)
1041 {
1042 	struct bnxt *bp = bnapi->bp;
1043 	struct pci_dev *pdev = bp->pdev;
1044 	struct sk_buff *skb;
1045 
1046 	skb = napi_alloc_skb(&bnapi->napi, len);
1047 	if (!skb)
1048 		return NULL;
1049 
1050 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1051 				bp->rx_dir);
1052 
1053 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1054 	       len + NET_IP_ALIGN);
1055 
1056 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1057 				   bp->rx_dir);
1058 
1059 	skb_put(skb, len);
1060 	return skb;
1061 }
1062 
1063 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1064 			   u32 *raw_cons, void *cmp)
1065 {
1066 	struct rx_cmp *rxcmp = cmp;
1067 	u32 tmp_raw_cons = *raw_cons;
1068 	u8 cmp_type, agg_bufs = 0;
1069 
1070 	cmp_type = RX_CMP_TYPE(rxcmp);
1071 
1072 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1073 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1074 			    RX_CMP_AGG_BUFS) >>
1075 			   RX_CMP_AGG_BUFS_SHIFT;
1076 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1077 		struct rx_tpa_end_cmp *tpa_end = cmp;
1078 
1079 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1080 			    RX_TPA_END_CMP_AGG_BUFS) >>
1081 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1082 	}
1083 
1084 	if (agg_bufs) {
1085 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1086 			return -EBUSY;
1087 	}
1088 	*raw_cons = tmp_raw_cons;
1089 	return 0;
1090 }
1091 
1092 static void bnxt_queue_sp_work(struct bnxt *bp)
1093 {
1094 	if (BNXT_PF(bp))
1095 		queue_work(bnxt_pf_wq, &bp->sp_task);
1096 	else
1097 		schedule_work(&bp->sp_task);
1098 }
1099 
1100 static void bnxt_cancel_sp_work(struct bnxt *bp)
1101 {
1102 	if (BNXT_PF(bp))
1103 		flush_workqueue(bnxt_pf_wq);
1104 	else
1105 		cancel_work_sync(&bp->sp_task);
1106 }
1107 
1108 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1109 {
1110 	if (!rxr->bnapi->in_reset) {
1111 		rxr->bnapi->in_reset = true;
1112 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1113 		bnxt_queue_sp_work(bp);
1114 	}
1115 	rxr->rx_next_cons = 0xffff;
1116 }
1117 
1118 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1119 			   struct rx_tpa_start_cmp *tpa_start,
1120 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1121 {
1122 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1123 	u16 cons, prod;
1124 	struct bnxt_tpa_info *tpa_info;
1125 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1126 	struct rx_bd *prod_bd;
1127 	dma_addr_t mapping;
1128 
1129 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1130 	prod = rxr->rx_prod;
1131 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1132 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1133 	tpa_info = &rxr->rx_tpa[agg_id];
1134 
1135 	if (unlikely(cons != rxr->rx_next_cons)) {
1136 		netdev_warn(bp->dev, "TPA cons %x != expected cons %x\n",
1137 			    cons, rxr->rx_next_cons);
1138 		bnxt_sched_reset(bp, rxr);
1139 		return;
1140 	}
1141 	/* Store cfa_code in tpa_info to use in tpa_end
1142 	 * completion processing.
1143 	 */
1144 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1145 	prod_rx_buf->data = tpa_info->data;
1146 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1147 
1148 	mapping = tpa_info->mapping;
1149 	prod_rx_buf->mapping = mapping;
1150 
1151 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1152 
1153 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1154 
1155 	tpa_info->data = cons_rx_buf->data;
1156 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1157 	cons_rx_buf->data = NULL;
1158 	tpa_info->mapping = cons_rx_buf->mapping;
1159 
1160 	tpa_info->len =
1161 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1162 				RX_TPA_START_CMP_LEN_SHIFT;
1163 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1164 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1165 
1166 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1167 		tpa_info->gso_type = SKB_GSO_TCPV4;
1168 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1169 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1170 			tpa_info->gso_type = SKB_GSO_TCPV6;
1171 		tpa_info->rss_hash =
1172 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1173 	} else {
1174 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1175 		tpa_info->gso_type = 0;
1176 		if (netif_msg_rx_err(bp))
1177 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1178 	}
1179 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1180 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1181 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1182 
1183 	rxr->rx_prod = NEXT_RX(prod);
1184 	cons = NEXT_RX(cons);
1185 	rxr->rx_next_cons = NEXT_RX(cons);
1186 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1187 
1188 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1189 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1190 	cons_rx_buf->data = NULL;
1191 }
1192 
1193 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
1194 			   u32 agg_bufs)
1195 {
1196 	if (agg_bufs)
1197 		bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1198 }
1199 
1200 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1201 					   int payload_off, int tcp_ts,
1202 					   struct sk_buff *skb)
1203 {
1204 #ifdef CONFIG_INET
1205 	struct tcphdr *th;
1206 	int len, nw_off;
1207 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1208 	u32 hdr_info = tpa_info->hdr_info;
1209 	bool loopback = false;
1210 
1211 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1212 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1213 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1214 
1215 	/* If the packet is an internal loopback packet, the offsets will
1216 	 * have an extra 4 bytes.
1217 	 */
1218 	if (inner_mac_off == 4) {
1219 		loopback = true;
1220 	} else if (inner_mac_off > 4) {
1221 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1222 					    ETH_HLEN - 2));
1223 
1224 		/* We only support inner iPv4/ipv6.  If we don't see the
1225 		 * correct protocol ID, it must be a loopback packet where
1226 		 * the offsets are off by 4.
1227 		 */
1228 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1229 			loopback = true;
1230 	}
1231 	if (loopback) {
1232 		/* internal loopback packet, subtract all offsets by 4 */
1233 		inner_ip_off -= 4;
1234 		inner_mac_off -= 4;
1235 		outer_ip_off -= 4;
1236 	}
1237 
1238 	nw_off = inner_ip_off - ETH_HLEN;
1239 	skb_set_network_header(skb, nw_off);
1240 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1241 		struct ipv6hdr *iph = ipv6_hdr(skb);
1242 
1243 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1244 		len = skb->len - skb_transport_offset(skb);
1245 		th = tcp_hdr(skb);
1246 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1247 	} else {
1248 		struct iphdr *iph = ip_hdr(skb);
1249 
1250 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1251 		len = skb->len - skb_transport_offset(skb);
1252 		th = tcp_hdr(skb);
1253 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1254 	}
1255 
1256 	if (inner_mac_off) { /* tunnel */
1257 		struct udphdr *uh = NULL;
1258 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1259 					    ETH_HLEN - 2));
1260 
1261 		if (proto == htons(ETH_P_IP)) {
1262 			struct iphdr *iph = (struct iphdr *)skb->data;
1263 
1264 			if (iph->protocol == IPPROTO_UDP)
1265 				uh = (struct udphdr *)(iph + 1);
1266 		} else {
1267 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1268 
1269 			if (iph->nexthdr == IPPROTO_UDP)
1270 				uh = (struct udphdr *)(iph + 1);
1271 		}
1272 		if (uh) {
1273 			if (uh->check)
1274 				skb_shinfo(skb)->gso_type |=
1275 					SKB_GSO_UDP_TUNNEL_CSUM;
1276 			else
1277 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1278 		}
1279 	}
1280 #endif
1281 	return skb;
1282 }
1283 
1284 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1285 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1286 
1287 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1288 					   int payload_off, int tcp_ts,
1289 					   struct sk_buff *skb)
1290 {
1291 #ifdef CONFIG_INET
1292 	struct tcphdr *th;
1293 	int len, nw_off, tcp_opt_len = 0;
1294 
1295 	if (tcp_ts)
1296 		tcp_opt_len = 12;
1297 
1298 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1299 		struct iphdr *iph;
1300 
1301 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1302 			 ETH_HLEN;
1303 		skb_set_network_header(skb, nw_off);
1304 		iph = ip_hdr(skb);
1305 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1306 		len = skb->len - skb_transport_offset(skb);
1307 		th = tcp_hdr(skb);
1308 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1309 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1310 		struct ipv6hdr *iph;
1311 
1312 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1313 			 ETH_HLEN;
1314 		skb_set_network_header(skb, nw_off);
1315 		iph = ipv6_hdr(skb);
1316 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1317 		len = skb->len - skb_transport_offset(skb);
1318 		th = tcp_hdr(skb);
1319 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1320 	} else {
1321 		dev_kfree_skb_any(skb);
1322 		return NULL;
1323 	}
1324 
1325 	if (nw_off) { /* tunnel */
1326 		struct udphdr *uh = NULL;
1327 
1328 		if (skb->protocol == htons(ETH_P_IP)) {
1329 			struct iphdr *iph = (struct iphdr *)skb->data;
1330 
1331 			if (iph->protocol == IPPROTO_UDP)
1332 				uh = (struct udphdr *)(iph + 1);
1333 		} else {
1334 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1335 
1336 			if (iph->nexthdr == IPPROTO_UDP)
1337 				uh = (struct udphdr *)(iph + 1);
1338 		}
1339 		if (uh) {
1340 			if (uh->check)
1341 				skb_shinfo(skb)->gso_type |=
1342 					SKB_GSO_UDP_TUNNEL_CSUM;
1343 			else
1344 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1345 		}
1346 	}
1347 #endif
1348 	return skb;
1349 }
1350 
1351 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1352 					   struct bnxt_tpa_info *tpa_info,
1353 					   struct rx_tpa_end_cmp *tpa_end,
1354 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1355 					   struct sk_buff *skb)
1356 {
1357 #ifdef CONFIG_INET
1358 	int payload_off;
1359 	u16 segs;
1360 
1361 	segs = TPA_END_TPA_SEGS(tpa_end);
1362 	if (segs == 1)
1363 		return skb;
1364 
1365 	NAPI_GRO_CB(skb)->count = segs;
1366 	skb_shinfo(skb)->gso_size =
1367 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1368 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1369 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1370 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1371 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1372 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1373 	if (likely(skb))
1374 		tcp_gro_complete(skb);
1375 #endif
1376 	return skb;
1377 }
1378 
1379 /* Given the cfa_code of a received packet determine which
1380  * netdev (vf-rep or PF) the packet is destined to.
1381  */
1382 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1383 {
1384 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1385 
1386 	/* if vf-rep dev is NULL, the must belongs to the PF */
1387 	return dev ? dev : bp->dev;
1388 }
1389 
1390 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1391 					   struct bnxt_cp_ring_info *cpr,
1392 					   u32 *raw_cons,
1393 					   struct rx_tpa_end_cmp *tpa_end,
1394 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1395 					   u8 *event)
1396 {
1397 	struct bnxt_napi *bnapi = cpr->bnapi;
1398 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1399 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1400 	u8 *data_ptr, agg_bufs;
1401 	u16 cp_cons = RING_CMP(*raw_cons);
1402 	unsigned int len;
1403 	struct bnxt_tpa_info *tpa_info;
1404 	dma_addr_t mapping;
1405 	struct sk_buff *skb;
1406 	void *data;
1407 
1408 	if (unlikely(bnapi->in_reset)) {
1409 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1410 
1411 		if (rc < 0)
1412 			return ERR_PTR(-EBUSY);
1413 		return NULL;
1414 	}
1415 
1416 	tpa_info = &rxr->rx_tpa[agg_id];
1417 	data = tpa_info->data;
1418 	data_ptr = tpa_info->data_ptr;
1419 	prefetch(data_ptr);
1420 	len = tpa_info->len;
1421 	mapping = tpa_info->mapping;
1422 
1423 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1424 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1425 
1426 	if (agg_bufs) {
1427 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1428 			return ERR_PTR(-EBUSY);
1429 
1430 		*event |= BNXT_AGG_EVENT;
1431 		cp_cons = NEXT_CMP(cp_cons);
1432 	}
1433 
1434 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1435 		bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1436 		if (agg_bufs > MAX_SKB_FRAGS)
1437 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1438 				    agg_bufs, (int)MAX_SKB_FRAGS);
1439 		return NULL;
1440 	}
1441 
1442 	if (len <= bp->rx_copy_thresh) {
1443 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1444 		if (!skb) {
1445 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1446 			return NULL;
1447 		}
1448 	} else {
1449 		u8 *new_data;
1450 		dma_addr_t new_mapping;
1451 
1452 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1453 		if (!new_data) {
1454 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1455 			return NULL;
1456 		}
1457 
1458 		tpa_info->data = new_data;
1459 		tpa_info->data_ptr = new_data + bp->rx_offset;
1460 		tpa_info->mapping = new_mapping;
1461 
1462 		skb = build_skb(data, 0);
1463 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1464 				       bp->rx_buf_use_size, bp->rx_dir,
1465 				       DMA_ATTR_WEAK_ORDERING);
1466 
1467 		if (!skb) {
1468 			kfree(data);
1469 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1470 			return NULL;
1471 		}
1472 		skb_reserve(skb, bp->rx_offset);
1473 		skb_put(skb, len);
1474 	}
1475 
1476 	if (agg_bufs) {
1477 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1478 		if (!skb) {
1479 			/* Page reuse already handled by bnxt_rx_pages(). */
1480 			return NULL;
1481 		}
1482 	}
1483 
1484 	skb->protocol =
1485 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1486 
1487 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1488 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1489 
1490 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1491 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1492 		u16 vlan_proto = tpa_info->metadata >>
1493 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1494 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1495 
1496 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1497 	}
1498 
1499 	skb_checksum_none_assert(skb);
1500 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1501 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1502 		skb->csum_level =
1503 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1504 	}
1505 
1506 	if (TPA_END_GRO(tpa_end))
1507 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1508 
1509 	return skb;
1510 }
1511 
1512 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1513 			     struct sk_buff *skb)
1514 {
1515 	if (skb->dev != bp->dev) {
1516 		/* this packet belongs to a vf-rep */
1517 		bnxt_vf_rep_rx(bp, skb);
1518 		return;
1519 	}
1520 	skb_record_rx_queue(skb, bnapi->index);
1521 	napi_gro_receive(&bnapi->napi, skb);
1522 }
1523 
1524 /* returns the following:
1525  * 1       - 1 packet successfully received
1526  * 0       - successful TPA_START, packet not completed yet
1527  * -EBUSY  - completion ring does not have all the agg buffers yet
1528  * -ENOMEM - packet aborted due to out of memory
1529  * -EIO    - packet aborted due to hw error indicated in BD
1530  */
1531 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1532 		       u32 *raw_cons, u8 *event)
1533 {
1534 	struct bnxt_napi *bnapi = cpr->bnapi;
1535 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1536 	struct net_device *dev = bp->dev;
1537 	struct rx_cmp *rxcmp;
1538 	struct rx_cmp_ext *rxcmp1;
1539 	u32 tmp_raw_cons = *raw_cons;
1540 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1541 	struct bnxt_sw_rx_bd *rx_buf;
1542 	unsigned int len;
1543 	u8 *data_ptr, agg_bufs, cmp_type;
1544 	dma_addr_t dma_addr;
1545 	struct sk_buff *skb;
1546 	void *data;
1547 	int rc = 0;
1548 	u32 misc;
1549 
1550 	rxcmp = (struct rx_cmp *)
1551 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1552 
1553 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1554 	cp_cons = RING_CMP(tmp_raw_cons);
1555 	rxcmp1 = (struct rx_cmp_ext *)
1556 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1557 
1558 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1559 		return -EBUSY;
1560 
1561 	cmp_type = RX_CMP_TYPE(rxcmp);
1562 
1563 	prod = rxr->rx_prod;
1564 
1565 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1566 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1567 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1568 
1569 		*event |= BNXT_RX_EVENT;
1570 		goto next_rx_no_prod_no_len;
1571 
1572 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1573 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1574 				   (struct rx_tpa_end_cmp *)rxcmp,
1575 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1576 
1577 		if (IS_ERR(skb))
1578 			return -EBUSY;
1579 
1580 		rc = -ENOMEM;
1581 		if (likely(skb)) {
1582 			bnxt_deliver_skb(bp, bnapi, skb);
1583 			rc = 1;
1584 		}
1585 		*event |= BNXT_RX_EVENT;
1586 		goto next_rx_no_prod_no_len;
1587 	}
1588 
1589 	cons = rxcmp->rx_cmp_opaque;
1590 	if (unlikely(cons != rxr->rx_next_cons)) {
1591 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1592 
1593 		netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1594 			    cons, rxr->rx_next_cons);
1595 		bnxt_sched_reset(bp, rxr);
1596 		return rc1;
1597 	}
1598 	rx_buf = &rxr->rx_buf_ring[cons];
1599 	data = rx_buf->data;
1600 	data_ptr = rx_buf->data_ptr;
1601 	prefetch(data_ptr);
1602 
1603 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1604 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1605 
1606 	if (agg_bufs) {
1607 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1608 			return -EBUSY;
1609 
1610 		cp_cons = NEXT_CMP(cp_cons);
1611 		*event |= BNXT_AGG_EVENT;
1612 	}
1613 	*event |= BNXT_RX_EVENT;
1614 
1615 	rx_buf->data = NULL;
1616 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1617 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1618 
1619 		bnxt_reuse_rx_data(rxr, cons, data);
1620 		if (agg_bufs)
1621 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1622 
1623 		rc = -EIO;
1624 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1625 			netdev_warn(bp->dev, "RX buffer error %x\n", rx_err);
1626 			bnxt_sched_reset(bp, rxr);
1627 		}
1628 		goto next_rx;
1629 	}
1630 
1631 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1632 	dma_addr = rx_buf->mapping;
1633 
1634 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1635 		rc = 1;
1636 		goto next_rx;
1637 	}
1638 
1639 	if (len <= bp->rx_copy_thresh) {
1640 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1641 		bnxt_reuse_rx_data(rxr, cons, data);
1642 		if (!skb) {
1643 			rc = -ENOMEM;
1644 			goto next_rx;
1645 		}
1646 	} else {
1647 		u32 payload;
1648 
1649 		if (rx_buf->data_ptr == data_ptr)
1650 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1651 		else
1652 			payload = 0;
1653 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1654 				      payload | len);
1655 		if (!skb) {
1656 			rc = -ENOMEM;
1657 			goto next_rx;
1658 		}
1659 	}
1660 
1661 	if (agg_bufs) {
1662 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1663 		if (!skb) {
1664 			rc = -ENOMEM;
1665 			goto next_rx;
1666 		}
1667 	}
1668 
1669 	if (RX_CMP_HASH_VALID(rxcmp)) {
1670 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1671 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1672 
1673 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1674 		if (hash_type != 1 && hash_type != 3)
1675 			type = PKT_HASH_TYPE_L3;
1676 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1677 	}
1678 
1679 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1680 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1681 
1682 	if ((rxcmp1->rx_cmp_flags2 &
1683 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1684 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1685 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1686 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1687 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1688 
1689 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1690 	}
1691 
1692 	skb_checksum_none_assert(skb);
1693 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1694 		if (dev->features & NETIF_F_RXCSUM) {
1695 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1696 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1697 		}
1698 	} else {
1699 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1700 			if (dev->features & NETIF_F_RXCSUM)
1701 				bnapi->cp_ring.rx_l4_csum_errors++;
1702 		}
1703 	}
1704 
1705 	bnxt_deliver_skb(bp, bnapi, skb);
1706 	rc = 1;
1707 
1708 next_rx:
1709 	rxr->rx_prod = NEXT_RX(prod);
1710 	rxr->rx_next_cons = NEXT_RX(cons);
1711 
1712 	cpr->rx_packets += 1;
1713 	cpr->rx_bytes += len;
1714 
1715 next_rx_no_prod_no_len:
1716 	*raw_cons = tmp_raw_cons;
1717 
1718 	return rc;
1719 }
1720 
1721 /* In netpoll mode, if we are using a combined completion ring, we need to
1722  * discard the rx packets and recycle the buffers.
1723  */
1724 static int bnxt_force_rx_discard(struct bnxt *bp,
1725 				 struct bnxt_cp_ring_info *cpr,
1726 				 u32 *raw_cons, u8 *event)
1727 {
1728 	u32 tmp_raw_cons = *raw_cons;
1729 	struct rx_cmp_ext *rxcmp1;
1730 	struct rx_cmp *rxcmp;
1731 	u16 cp_cons;
1732 	u8 cmp_type;
1733 
1734 	cp_cons = RING_CMP(tmp_raw_cons);
1735 	rxcmp = (struct rx_cmp *)
1736 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1737 
1738 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1739 	cp_cons = RING_CMP(tmp_raw_cons);
1740 	rxcmp1 = (struct rx_cmp_ext *)
1741 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1742 
1743 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1744 		return -EBUSY;
1745 
1746 	cmp_type = RX_CMP_TYPE(rxcmp);
1747 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1748 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1749 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1750 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1751 		struct rx_tpa_end_cmp_ext *tpa_end1;
1752 
1753 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1754 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1755 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1756 	}
1757 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1758 }
1759 
1760 #define BNXT_GET_EVENT_PORT(data)	\
1761 	((data) &			\
1762 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1763 
1764 static int bnxt_async_event_process(struct bnxt *bp,
1765 				    struct hwrm_async_event_cmpl *cmpl)
1766 {
1767 	u16 event_id = le16_to_cpu(cmpl->event_id);
1768 
1769 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1770 	switch (event_id) {
1771 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1772 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1773 		struct bnxt_link_info *link_info = &bp->link_info;
1774 
1775 		if (BNXT_VF(bp))
1776 			goto async_event_process_exit;
1777 
1778 		/* print unsupported speed warning in forced speed mode only */
1779 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1780 		    (data1 & 0x20000)) {
1781 			u16 fw_speed = link_info->force_link_speed;
1782 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1783 
1784 			if (speed != SPEED_UNKNOWN)
1785 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1786 					    speed);
1787 		}
1788 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1789 	}
1790 	/* fall through */
1791 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1792 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1793 		break;
1794 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1795 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1796 		break;
1797 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1798 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1799 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1800 
1801 		if (BNXT_VF(bp))
1802 			break;
1803 
1804 		if (bp->pf.port_id != port_id)
1805 			break;
1806 
1807 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1808 		break;
1809 	}
1810 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1811 		if (BNXT_PF(bp))
1812 			goto async_event_process_exit;
1813 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1814 		break;
1815 	default:
1816 		goto async_event_process_exit;
1817 	}
1818 	bnxt_queue_sp_work(bp);
1819 async_event_process_exit:
1820 	bnxt_ulp_async_events(bp, cmpl);
1821 	return 0;
1822 }
1823 
1824 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1825 {
1826 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1827 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1828 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1829 				(struct hwrm_fwd_req_cmpl *)txcmp;
1830 
1831 	switch (cmpl_type) {
1832 	case CMPL_BASE_TYPE_HWRM_DONE:
1833 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1834 		if (seq_id == bp->hwrm_intr_seq_id)
1835 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
1836 		else
1837 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1838 		break;
1839 
1840 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1841 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1842 
1843 		if ((vf_id < bp->pf.first_vf_id) ||
1844 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1845 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1846 				   vf_id);
1847 			return -EINVAL;
1848 		}
1849 
1850 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1851 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1852 		bnxt_queue_sp_work(bp);
1853 		break;
1854 
1855 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1856 		bnxt_async_event_process(bp,
1857 					 (struct hwrm_async_event_cmpl *)txcmp);
1858 
1859 	default:
1860 		break;
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1867 {
1868 	struct bnxt_napi *bnapi = dev_instance;
1869 	struct bnxt *bp = bnapi->bp;
1870 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1871 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1872 
1873 	cpr->event_ctr++;
1874 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1875 	napi_schedule(&bnapi->napi);
1876 	return IRQ_HANDLED;
1877 }
1878 
1879 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1880 {
1881 	u32 raw_cons = cpr->cp_raw_cons;
1882 	u16 cons = RING_CMP(raw_cons);
1883 	struct tx_cmp *txcmp;
1884 
1885 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1886 
1887 	return TX_CMP_VALID(txcmp, raw_cons);
1888 }
1889 
1890 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1891 {
1892 	struct bnxt_napi *bnapi = dev_instance;
1893 	struct bnxt *bp = bnapi->bp;
1894 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1895 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1896 	u32 int_status;
1897 
1898 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1899 
1900 	if (!bnxt_has_work(bp, cpr)) {
1901 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1902 		/* return if erroneous interrupt */
1903 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1904 			return IRQ_NONE;
1905 	}
1906 
1907 	/* disable ring IRQ */
1908 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
1909 
1910 	/* Return here if interrupt is shared and is disabled. */
1911 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1912 		return IRQ_HANDLED;
1913 
1914 	napi_schedule(&bnapi->napi);
1915 	return IRQ_HANDLED;
1916 }
1917 
1918 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1919 			    int budget)
1920 {
1921 	struct bnxt_napi *bnapi = cpr->bnapi;
1922 	u32 raw_cons = cpr->cp_raw_cons;
1923 	u32 cons;
1924 	int tx_pkts = 0;
1925 	int rx_pkts = 0;
1926 	u8 event = 0;
1927 	struct tx_cmp *txcmp;
1928 
1929 	cpr->has_more_work = 0;
1930 	while (1) {
1931 		int rc;
1932 
1933 		cons = RING_CMP(raw_cons);
1934 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1935 
1936 		if (!TX_CMP_VALID(txcmp, raw_cons))
1937 			break;
1938 
1939 		/* The valid test of the entry must be done first before
1940 		 * reading any further.
1941 		 */
1942 		dma_rmb();
1943 		cpr->had_work_done = 1;
1944 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1945 			tx_pkts++;
1946 			/* return full budget so NAPI will complete. */
1947 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
1948 				rx_pkts = budget;
1949 				raw_cons = NEXT_RAW_CMP(raw_cons);
1950 				if (budget)
1951 					cpr->has_more_work = 1;
1952 				break;
1953 			}
1954 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1955 			if (likely(budget))
1956 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
1957 			else
1958 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
1959 							   &event);
1960 			if (likely(rc >= 0))
1961 				rx_pkts += rc;
1962 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1963 			 * the NAPI budget.  Otherwise, we may potentially loop
1964 			 * here forever if we consistently cannot allocate
1965 			 * buffers.
1966 			 */
1967 			else if (rc == -ENOMEM && budget)
1968 				rx_pkts++;
1969 			else if (rc == -EBUSY)	/* partial completion */
1970 				break;
1971 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1972 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1973 				    (TX_CMP_TYPE(txcmp) ==
1974 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1975 				    (TX_CMP_TYPE(txcmp) ==
1976 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1977 			bnxt_hwrm_handler(bp, txcmp);
1978 		}
1979 		raw_cons = NEXT_RAW_CMP(raw_cons);
1980 
1981 		if (rx_pkts && rx_pkts == budget) {
1982 			cpr->has_more_work = 1;
1983 			break;
1984 		}
1985 	}
1986 
1987 	if (event & BNXT_TX_EVENT) {
1988 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1989 		u16 prod = txr->tx_prod;
1990 
1991 		/* Sync BD data before updating doorbell */
1992 		wmb();
1993 
1994 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
1995 	}
1996 
1997 	cpr->cp_raw_cons = raw_cons;
1998 	bnapi->tx_pkts += tx_pkts;
1999 	bnapi->events |= event;
2000 	return rx_pkts;
2001 }
2002 
2003 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2004 {
2005 	if (bnapi->tx_pkts) {
2006 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2007 		bnapi->tx_pkts = 0;
2008 	}
2009 
2010 	if (bnapi->events & BNXT_RX_EVENT) {
2011 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2012 
2013 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2014 		if (bnapi->events & BNXT_AGG_EVENT)
2015 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2016 	}
2017 	bnapi->events = 0;
2018 }
2019 
2020 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2021 			  int budget)
2022 {
2023 	struct bnxt_napi *bnapi = cpr->bnapi;
2024 	int rx_pkts;
2025 
2026 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2027 
2028 	/* ACK completion ring before freeing tx ring and producing new
2029 	 * buffers in rx/agg rings to prevent overflowing the completion
2030 	 * ring.
2031 	 */
2032 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2033 
2034 	__bnxt_poll_work_done(bp, bnapi);
2035 	return rx_pkts;
2036 }
2037 
2038 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2039 {
2040 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2041 	struct bnxt *bp = bnapi->bp;
2042 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2043 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2044 	struct tx_cmp *txcmp;
2045 	struct rx_cmp_ext *rxcmp1;
2046 	u32 cp_cons, tmp_raw_cons;
2047 	u32 raw_cons = cpr->cp_raw_cons;
2048 	u32 rx_pkts = 0;
2049 	u8 event = 0;
2050 
2051 	while (1) {
2052 		int rc;
2053 
2054 		cp_cons = RING_CMP(raw_cons);
2055 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2056 
2057 		if (!TX_CMP_VALID(txcmp, raw_cons))
2058 			break;
2059 
2060 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2061 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2062 			cp_cons = RING_CMP(tmp_raw_cons);
2063 			rxcmp1 = (struct rx_cmp_ext *)
2064 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2065 
2066 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2067 				break;
2068 
2069 			/* force an error to recycle the buffer */
2070 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2071 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2072 
2073 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2074 			if (likely(rc == -EIO) && budget)
2075 				rx_pkts++;
2076 			else if (rc == -EBUSY)	/* partial completion */
2077 				break;
2078 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2079 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2080 			bnxt_hwrm_handler(bp, txcmp);
2081 		} else {
2082 			netdev_err(bp->dev,
2083 				   "Invalid completion received on special ring\n");
2084 		}
2085 		raw_cons = NEXT_RAW_CMP(raw_cons);
2086 
2087 		if (rx_pkts == budget)
2088 			break;
2089 	}
2090 
2091 	cpr->cp_raw_cons = raw_cons;
2092 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2093 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2094 
2095 	if (event & BNXT_AGG_EVENT)
2096 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2097 
2098 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2099 		napi_complete_done(napi, rx_pkts);
2100 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2101 	}
2102 	return rx_pkts;
2103 }
2104 
2105 static int bnxt_poll(struct napi_struct *napi, int budget)
2106 {
2107 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2108 	struct bnxt *bp = bnapi->bp;
2109 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2110 	int work_done = 0;
2111 
2112 	while (1) {
2113 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2114 
2115 		if (work_done >= budget) {
2116 			if (!budget)
2117 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2118 			break;
2119 		}
2120 
2121 		if (!bnxt_has_work(bp, cpr)) {
2122 			if (napi_complete_done(napi, work_done))
2123 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2124 			break;
2125 		}
2126 	}
2127 	if (bp->flags & BNXT_FLAG_DIM) {
2128 		struct net_dim_sample dim_sample;
2129 
2130 		net_dim_sample(cpr->event_ctr,
2131 			       cpr->rx_packets,
2132 			       cpr->rx_bytes,
2133 			       &dim_sample);
2134 		net_dim(&cpr->dim, dim_sample);
2135 	}
2136 	mmiowb();
2137 	return work_done;
2138 }
2139 
2140 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2141 {
2142 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2143 	int i, work_done = 0;
2144 
2145 	for (i = 0; i < 2; i++) {
2146 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2147 
2148 		if (cpr2) {
2149 			work_done += __bnxt_poll_work(bp, cpr2,
2150 						      budget - work_done);
2151 			cpr->has_more_work |= cpr2->has_more_work;
2152 		}
2153 	}
2154 	return work_done;
2155 }
2156 
2157 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2158 				 u64 dbr_type, bool all)
2159 {
2160 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2161 	int i;
2162 
2163 	for (i = 0; i < 2; i++) {
2164 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2165 		struct bnxt_db_info *db;
2166 
2167 		if (cpr2 && (all || cpr2->had_work_done)) {
2168 			db = &cpr2->cp_db;
2169 			writeq(db->db_key64 | dbr_type |
2170 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2171 			cpr2->had_work_done = 0;
2172 		}
2173 	}
2174 	__bnxt_poll_work_done(bp, bnapi);
2175 }
2176 
2177 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2178 {
2179 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2180 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2181 	u32 raw_cons = cpr->cp_raw_cons;
2182 	struct bnxt *bp = bnapi->bp;
2183 	struct nqe_cn *nqcmp;
2184 	int work_done = 0;
2185 	u32 cons;
2186 
2187 	if (cpr->has_more_work) {
2188 		cpr->has_more_work = 0;
2189 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2190 		if (cpr->has_more_work) {
2191 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, false);
2192 			return work_done;
2193 		}
2194 		__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, true);
2195 		if (napi_complete_done(napi, work_done))
2196 			BNXT_DB_NQ_ARM_P5(&cpr->cp_db, cpr->cp_raw_cons);
2197 		return work_done;
2198 	}
2199 	while (1) {
2200 		cons = RING_CMP(raw_cons);
2201 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2202 
2203 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2204 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
2205 					     false);
2206 			cpr->cp_raw_cons = raw_cons;
2207 			if (napi_complete_done(napi, work_done))
2208 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2209 						  cpr->cp_raw_cons);
2210 			return work_done;
2211 		}
2212 
2213 		/* The valid test of the entry must be done first before
2214 		 * reading any further.
2215 		 */
2216 		dma_rmb();
2217 
2218 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2219 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2220 			struct bnxt_cp_ring_info *cpr2;
2221 
2222 			cpr2 = cpr->cp_ring_arr[idx];
2223 			work_done += __bnxt_poll_work(bp, cpr2,
2224 						      budget - work_done);
2225 			cpr->has_more_work = cpr2->has_more_work;
2226 		} else {
2227 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2228 		}
2229 		raw_cons = NEXT_RAW_CMP(raw_cons);
2230 		if (cpr->has_more_work)
2231 			break;
2232 	}
2233 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, true);
2234 	cpr->cp_raw_cons = raw_cons;
2235 	return work_done;
2236 }
2237 
2238 static void bnxt_free_tx_skbs(struct bnxt *bp)
2239 {
2240 	int i, max_idx;
2241 	struct pci_dev *pdev = bp->pdev;
2242 
2243 	if (!bp->tx_ring)
2244 		return;
2245 
2246 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2247 	for (i = 0; i < bp->tx_nr_rings; i++) {
2248 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2249 		int j;
2250 
2251 		for (j = 0; j < max_idx;) {
2252 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2253 			struct sk_buff *skb = tx_buf->skb;
2254 			int k, last;
2255 
2256 			if (!skb) {
2257 				j++;
2258 				continue;
2259 			}
2260 
2261 			tx_buf->skb = NULL;
2262 
2263 			if (tx_buf->is_push) {
2264 				dev_kfree_skb(skb);
2265 				j += 2;
2266 				continue;
2267 			}
2268 
2269 			dma_unmap_single(&pdev->dev,
2270 					 dma_unmap_addr(tx_buf, mapping),
2271 					 skb_headlen(skb),
2272 					 PCI_DMA_TODEVICE);
2273 
2274 			last = tx_buf->nr_frags;
2275 			j += 2;
2276 			for (k = 0; k < last; k++, j++) {
2277 				int ring_idx = j & bp->tx_ring_mask;
2278 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2279 
2280 				tx_buf = &txr->tx_buf_ring[ring_idx];
2281 				dma_unmap_page(
2282 					&pdev->dev,
2283 					dma_unmap_addr(tx_buf, mapping),
2284 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2285 			}
2286 			dev_kfree_skb(skb);
2287 		}
2288 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2289 	}
2290 }
2291 
2292 static void bnxt_free_rx_skbs(struct bnxt *bp)
2293 {
2294 	int i, max_idx, max_agg_idx;
2295 	struct pci_dev *pdev = bp->pdev;
2296 
2297 	if (!bp->rx_ring)
2298 		return;
2299 
2300 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2301 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2302 	for (i = 0; i < bp->rx_nr_rings; i++) {
2303 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2304 		int j;
2305 
2306 		if (rxr->rx_tpa) {
2307 			for (j = 0; j < MAX_TPA; j++) {
2308 				struct bnxt_tpa_info *tpa_info =
2309 							&rxr->rx_tpa[j];
2310 				u8 *data = tpa_info->data;
2311 
2312 				if (!data)
2313 					continue;
2314 
2315 				dma_unmap_single_attrs(&pdev->dev,
2316 						       tpa_info->mapping,
2317 						       bp->rx_buf_use_size,
2318 						       bp->rx_dir,
2319 						       DMA_ATTR_WEAK_ORDERING);
2320 
2321 				tpa_info->data = NULL;
2322 
2323 				kfree(data);
2324 			}
2325 		}
2326 
2327 		for (j = 0; j < max_idx; j++) {
2328 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2329 			dma_addr_t mapping = rx_buf->mapping;
2330 			void *data = rx_buf->data;
2331 
2332 			if (!data)
2333 				continue;
2334 
2335 			rx_buf->data = NULL;
2336 
2337 			if (BNXT_RX_PAGE_MODE(bp)) {
2338 				mapping -= bp->rx_dma_offset;
2339 				dma_unmap_page_attrs(&pdev->dev, mapping,
2340 						     PAGE_SIZE, bp->rx_dir,
2341 						     DMA_ATTR_WEAK_ORDERING);
2342 				__free_page(data);
2343 			} else {
2344 				dma_unmap_single_attrs(&pdev->dev, mapping,
2345 						       bp->rx_buf_use_size,
2346 						       bp->rx_dir,
2347 						       DMA_ATTR_WEAK_ORDERING);
2348 				kfree(data);
2349 			}
2350 		}
2351 
2352 		for (j = 0; j < max_agg_idx; j++) {
2353 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2354 				&rxr->rx_agg_ring[j];
2355 			struct page *page = rx_agg_buf->page;
2356 
2357 			if (!page)
2358 				continue;
2359 
2360 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2361 					     BNXT_RX_PAGE_SIZE,
2362 					     PCI_DMA_FROMDEVICE,
2363 					     DMA_ATTR_WEAK_ORDERING);
2364 
2365 			rx_agg_buf->page = NULL;
2366 			__clear_bit(j, rxr->rx_agg_bmap);
2367 
2368 			__free_page(page);
2369 		}
2370 		if (rxr->rx_page) {
2371 			__free_page(rxr->rx_page);
2372 			rxr->rx_page = NULL;
2373 		}
2374 	}
2375 }
2376 
2377 static void bnxt_free_skbs(struct bnxt *bp)
2378 {
2379 	bnxt_free_tx_skbs(bp);
2380 	bnxt_free_rx_skbs(bp);
2381 }
2382 
2383 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2384 {
2385 	struct pci_dev *pdev = bp->pdev;
2386 	int i;
2387 
2388 	for (i = 0; i < rmem->nr_pages; i++) {
2389 		if (!rmem->pg_arr[i])
2390 			continue;
2391 
2392 		dma_free_coherent(&pdev->dev, rmem->page_size,
2393 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2394 
2395 		rmem->pg_arr[i] = NULL;
2396 	}
2397 	if (rmem->pg_tbl) {
2398 		size_t pg_tbl_size = rmem->nr_pages * 8;
2399 
2400 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2401 			pg_tbl_size = rmem->page_size;
2402 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2403 				  rmem->pg_tbl, rmem->pg_tbl_map);
2404 		rmem->pg_tbl = NULL;
2405 	}
2406 	if (rmem->vmem_size && *rmem->vmem) {
2407 		vfree(*rmem->vmem);
2408 		*rmem->vmem = NULL;
2409 	}
2410 }
2411 
2412 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2413 {
2414 	struct pci_dev *pdev = bp->pdev;
2415 	u64 valid_bit = 0;
2416 	int i;
2417 
2418 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2419 		valid_bit = PTU_PTE_VALID;
2420 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2421 		size_t pg_tbl_size = rmem->nr_pages * 8;
2422 
2423 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2424 			pg_tbl_size = rmem->page_size;
2425 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2426 						  &rmem->pg_tbl_map,
2427 						  GFP_KERNEL);
2428 		if (!rmem->pg_tbl)
2429 			return -ENOMEM;
2430 	}
2431 
2432 	for (i = 0; i < rmem->nr_pages; i++) {
2433 		u64 extra_bits = valid_bit;
2434 
2435 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2436 						     rmem->page_size,
2437 						     &rmem->dma_arr[i],
2438 						     GFP_KERNEL);
2439 		if (!rmem->pg_arr[i])
2440 			return -ENOMEM;
2441 
2442 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2443 			if (i == rmem->nr_pages - 2 &&
2444 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2445 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2446 			else if (i == rmem->nr_pages - 1 &&
2447 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2448 				extra_bits |= PTU_PTE_LAST;
2449 			rmem->pg_tbl[i] =
2450 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2451 		}
2452 	}
2453 
2454 	if (rmem->vmem_size) {
2455 		*rmem->vmem = vzalloc(rmem->vmem_size);
2456 		if (!(*rmem->vmem))
2457 			return -ENOMEM;
2458 	}
2459 	return 0;
2460 }
2461 
2462 static void bnxt_free_rx_rings(struct bnxt *bp)
2463 {
2464 	int i;
2465 
2466 	if (!bp->rx_ring)
2467 		return;
2468 
2469 	for (i = 0; i < bp->rx_nr_rings; i++) {
2470 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2471 		struct bnxt_ring_struct *ring;
2472 
2473 		if (rxr->xdp_prog)
2474 			bpf_prog_put(rxr->xdp_prog);
2475 
2476 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2477 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2478 
2479 		kfree(rxr->rx_tpa);
2480 		rxr->rx_tpa = NULL;
2481 
2482 		kfree(rxr->rx_agg_bmap);
2483 		rxr->rx_agg_bmap = NULL;
2484 
2485 		ring = &rxr->rx_ring_struct;
2486 		bnxt_free_ring(bp, &ring->ring_mem);
2487 
2488 		ring = &rxr->rx_agg_ring_struct;
2489 		bnxt_free_ring(bp, &ring->ring_mem);
2490 	}
2491 }
2492 
2493 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2494 {
2495 	int i, rc, agg_rings = 0, tpa_rings = 0;
2496 
2497 	if (!bp->rx_ring)
2498 		return -ENOMEM;
2499 
2500 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2501 		agg_rings = 1;
2502 
2503 	if (bp->flags & BNXT_FLAG_TPA)
2504 		tpa_rings = 1;
2505 
2506 	for (i = 0; i < bp->rx_nr_rings; i++) {
2507 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2508 		struct bnxt_ring_struct *ring;
2509 
2510 		ring = &rxr->rx_ring_struct;
2511 
2512 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2513 		if (rc < 0)
2514 			return rc;
2515 
2516 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2517 		if (rc)
2518 			return rc;
2519 
2520 		ring->grp_idx = i;
2521 		if (agg_rings) {
2522 			u16 mem_size;
2523 
2524 			ring = &rxr->rx_agg_ring_struct;
2525 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2526 			if (rc)
2527 				return rc;
2528 
2529 			ring->grp_idx = i;
2530 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2531 			mem_size = rxr->rx_agg_bmap_size / 8;
2532 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2533 			if (!rxr->rx_agg_bmap)
2534 				return -ENOMEM;
2535 
2536 			if (tpa_rings) {
2537 				rxr->rx_tpa = kcalloc(MAX_TPA,
2538 						sizeof(struct bnxt_tpa_info),
2539 						GFP_KERNEL);
2540 				if (!rxr->rx_tpa)
2541 					return -ENOMEM;
2542 			}
2543 		}
2544 	}
2545 	return 0;
2546 }
2547 
2548 static void bnxt_free_tx_rings(struct bnxt *bp)
2549 {
2550 	int i;
2551 	struct pci_dev *pdev = bp->pdev;
2552 
2553 	if (!bp->tx_ring)
2554 		return;
2555 
2556 	for (i = 0; i < bp->tx_nr_rings; i++) {
2557 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2558 		struct bnxt_ring_struct *ring;
2559 
2560 		if (txr->tx_push) {
2561 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2562 					  txr->tx_push, txr->tx_push_mapping);
2563 			txr->tx_push = NULL;
2564 		}
2565 
2566 		ring = &txr->tx_ring_struct;
2567 
2568 		bnxt_free_ring(bp, &ring->ring_mem);
2569 	}
2570 }
2571 
2572 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2573 {
2574 	int i, j, rc;
2575 	struct pci_dev *pdev = bp->pdev;
2576 
2577 	bp->tx_push_size = 0;
2578 	if (bp->tx_push_thresh) {
2579 		int push_size;
2580 
2581 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2582 					bp->tx_push_thresh);
2583 
2584 		if (push_size > 256) {
2585 			push_size = 0;
2586 			bp->tx_push_thresh = 0;
2587 		}
2588 
2589 		bp->tx_push_size = push_size;
2590 	}
2591 
2592 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2593 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2594 		struct bnxt_ring_struct *ring;
2595 		u8 qidx;
2596 
2597 		ring = &txr->tx_ring_struct;
2598 
2599 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2600 		if (rc)
2601 			return rc;
2602 
2603 		ring->grp_idx = txr->bnapi->index;
2604 		if (bp->tx_push_size) {
2605 			dma_addr_t mapping;
2606 
2607 			/* One pre-allocated DMA buffer to backup
2608 			 * TX push operation
2609 			 */
2610 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2611 						bp->tx_push_size,
2612 						&txr->tx_push_mapping,
2613 						GFP_KERNEL);
2614 
2615 			if (!txr->tx_push)
2616 				return -ENOMEM;
2617 
2618 			mapping = txr->tx_push_mapping +
2619 				sizeof(struct tx_push_bd);
2620 			txr->data_mapping = cpu_to_le64(mapping);
2621 
2622 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2623 		}
2624 		qidx = bp->tc_to_qidx[j];
2625 		ring->queue_id = bp->q_info[qidx].queue_id;
2626 		if (i < bp->tx_nr_rings_xdp)
2627 			continue;
2628 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2629 			j++;
2630 	}
2631 	return 0;
2632 }
2633 
2634 static void bnxt_free_cp_rings(struct bnxt *bp)
2635 {
2636 	int i;
2637 
2638 	if (!bp->bnapi)
2639 		return;
2640 
2641 	for (i = 0; i < bp->cp_nr_rings; i++) {
2642 		struct bnxt_napi *bnapi = bp->bnapi[i];
2643 		struct bnxt_cp_ring_info *cpr;
2644 		struct bnxt_ring_struct *ring;
2645 		int j;
2646 
2647 		if (!bnapi)
2648 			continue;
2649 
2650 		cpr = &bnapi->cp_ring;
2651 		ring = &cpr->cp_ring_struct;
2652 
2653 		bnxt_free_ring(bp, &ring->ring_mem);
2654 
2655 		for (j = 0; j < 2; j++) {
2656 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2657 
2658 			if (cpr2) {
2659 				ring = &cpr2->cp_ring_struct;
2660 				bnxt_free_ring(bp, &ring->ring_mem);
2661 				kfree(cpr2);
2662 				cpr->cp_ring_arr[j] = NULL;
2663 			}
2664 		}
2665 	}
2666 }
2667 
2668 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2669 {
2670 	struct bnxt_ring_mem_info *rmem;
2671 	struct bnxt_ring_struct *ring;
2672 	struct bnxt_cp_ring_info *cpr;
2673 	int rc;
2674 
2675 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
2676 	if (!cpr)
2677 		return NULL;
2678 
2679 	ring = &cpr->cp_ring_struct;
2680 	rmem = &ring->ring_mem;
2681 	rmem->nr_pages = bp->cp_nr_pages;
2682 	rmem->page_size = HW_CMPD_RING_SIZE;
2683 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
2684 	rmem->dma_arr = cpr->cp_desc_mapping;
2685 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
2686 	rc = bnxt_alloc_ring(bp, rmem);
2687 	if (rc) {
2688 		bnxt_free_ring(bp, rmem);
2689 		kfree(cpr);
2690 		cpr = NULL;
2691 	}
2692 	return cpr;
2693 }
2694 
2695 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2696 {
2697 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
2698 	int i, rc, ulp_base_vec, ulp_msix;
2699 
2700 	ulp_msix = bnxt_get_ulp_msix_num(bp);
2701 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2702 	for (i = 0; i < bp->cp_nr_rings; i++) {
2703 		struct bnxt_napi *bnapi = bp->bnapi[i];
2704 		struct bnxt_cp_ring_info *cpr;
2705 		struct bnxt_ring_struct *ring;
2706 
2707 		if (!bnapi)
2708 			continue;
2709 
2710 		cpr = &bnapi->cp_ring;
2711 		cpr->bnapi = bnapi;
2712 		ring = &cpr->cp_ring_struct;
2713 
2714 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2715 		if (rc)
2716 			return rc;
2717 
2718 		if (ulp_msix && i >= ulp_base_vec)
2719 			ring->map_idx = i + ulp_msix;
2720 		else
2721 			ring->map_idx = i;
2722 
2723 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2724 			continue;
2725 
2726 		if (i < bp->rx_nr_rings) {
2727 			struct bnxt_cp_ring_info *cpr2 =
2728 				bnxt_alloc_cp_sub_ring(bp);
2729 
2730 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
2731 			if (!cpr2)
2732 				return -ENOMEM;
2733 			cpr2->bnapi = bnapi;
2734 		}
2735 		if ((sh && i < bp->tx_nr_rings) ||
2736 		    (!sh && i >= bp->rx_nr_rings)) {
2737 			struct bnxt_cp_ring_info *cpr2 =
2738 				bnxt_alloc_cp_sub_ring(bp);
2739 
2740 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
2741 			if (!cpr2)
2742 				return -ENOMEM;
2743 			cpr2->bnapi = bnapi;
2744 		}
2745 	}
2746 	return 0;
2747 }
2748 
2749 static void bnxt_init_ring_struct(struct bnxt *bp)
2750 {
2751 	int i;
2752 
2753 	for (i = 0; i < bp->cp_nr_rings; i++) {
2754 		struct bnxt_napi *bnapi = bp->bnapi[i];
2755 		struct bnxt_ring_mem_info *rmem;
2756 		struct bnxt_cp_ring_info *cpr;
2757 		struct bnxt_rx_ring_info *rxr;
2758 		struct bnxt_tx_ring_info *txr;
2759 		struct bnxt_ring_struct *ring;
2760 
2761 		if (!bnapi)
2762 			continue;
2763 
2764 		cpr = &bnapi->cp_ring;
2765 		ring = &cpr->cp_ring_struct;
2766 		rmem = &ring->ring_mem;
2767 		rmem->nr_pages = bp->cp_nr_pages;
2768 		rmem->page_size = HW_CMPD_RING_SIZE;
2769 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
2770 		rmem->dma_arr = cpr->cp_desc_mapping;
2771 		rmem->vmem_size = 0;
2772 
2773 		rxr = bnapi->rx_ring;
2774 		if (!rxr)
2775 			goto skip_rx;
2776 
2777 		ring = &rxr->rx_ring_struct;
2778 		rmem = &ring->ring_mem;
2779 		rmem->nr_pages = bp->rx_nr_pages;
2780 		rmem->page_size = HW_RXBD_RING_SIZE;
2781 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
2782 		rmem->dma_arr = rxr->rx_desc_mapping;
2783 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2784 		rmem->vmem = (void **)&rxr->rx_buf_ring;
2785 
2786 		ring = &rxr->rx_agg_ring_struct;
2787 		rmem = &ring->ring_mem;
2788 		rmem->nr_pages = bp->rx_agg_nr_pages;
2789 		rmem->page_size = HW_RXBD_RING_SIZE;
2790 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
2791 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
2792 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2793 		rmem->vmem = (void **)&rxr->rx_agg_ring;
2794 
2795 skip_rx:
2796 		txr = bnapi->tx_ring;
2797 		if (!txr)
2798 			continue;
2799 
2800 		ring = &txr->tx_ring_struct;
2801 		rmem = &ring->ring_mem;
2802 		rmem->nr_pages = bp->tx_nr_pages;
2803 		rmem->page_size = HW_RXBD_RING_SIZE;
2804 		rmem->pg_arr = (void **)txr->tx_desc_ring;
2805 		rmem->dma_arr = txr->tx_desc_mapping;
2806 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2807 		rmem->vmem = (void **)&txr->tx_buf_ring;
2808 	}
2809 }
2810 
2811 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2812 {
2813 	int i;
2814 	u32 prod;
2815 	struct rx_bd **rx_buf_ring;
2816 
2817 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
2818 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
2819 		int j;
2820 		struct rx_bd *rxbd;
2821 
2822 		rxbd = rx_buf_ring[i];
2823 		if (!rxbd)
2824 			continue;
2825 
2826 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2827 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2828 			rxbd->rx_bd_opaque = prod;
2829 		}
2830 	}
2831 }
2832 
2833 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2834 {
2835 	struct net_device *dev = bp->dev;
2836 	struct bnxt_rx_ring_info *rxr;
2837 	struct bnxt_ring_struct *ring;
2838 	u32 prod, type;
2839 	int i;
2840 
2841 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2842 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2843 
2844 	if (NET_IP_ALIGN == 2)
2845 		type |= RX_BD_FLAGS_SOP;
2846 
2847 	rxr = &bp->rx_ring[ring_nr];
2848 	ring = &rxr->rx_ring_struct;
2849 	bnxt_init_rxbd_pages(ring, type);
2850 
2851 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2852 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2853 		if (IS_ERR(rxr->xdp_prog)) {
2854 			int rc = PTR_ERR(rxr->xdp_prog);
2855 
2856 			rxr->xdp_prog = NULL;
2857 			return rc;
2858 		}
2859 	}
2860 	prod = rxr->rx_prod;
2861 	for (i = 0; i < bp->rx_ring_size; i++) {
2862 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2863 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2864 				    ring_nr, i, bp->rx_ring_size);
2865 			break;
2866 		}
2867 		prod = NEXT_RX(prod);
2868 	}
2869 	rxr->rx_prod = prod;
2870 	ring->fw_ring_id = INVALID_HW_RING_ID;
2871 
2872 	ring = &rxr->rx_agg_ring_struct;
2873 	ring->fw_ring_id = INVALID_HW_RING_ID;
2874 
2875 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2876 		return 0;
2877 
2878 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2879 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2880 
2881 	bnxt_init_rxbd_pages(ring, type);
2882 
2883 	prod = rxr->rx_agg_prod;
2884 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2885 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2886 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2887 				    ring_nr, i, bp->rx_ring_size);
2888 			break;
2889 		}
2890 		prod = NEXT_RX_AGG(prod);
2891 	}
2892 	rxr->rx_agg_prod = prod;
2893 
2894 	if (bp->flags & BNXT_FLAG_TPA) {
2895 		if (rxr->rx_tpa) {
2896 			u8 *data;
2897 			dma_addr_t mapping;
2898 
2899 			for (i = 0; i < MAX_TPA; i++) {
2900 				data = __bnxt_alloc_rx_data(bp, &mapping,
2901 							    GFP_KERNEL);
2902 				if (!data)
2903 					return -ENOMEM;
2904 
2905 				rxr->rx_tpa[i].data = data;
2906 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2907 				rxr->rx_tpa[i].mapping = mapping;
2908 			}
2909 		} else {
2910 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2911 			return -ENOMEM;
2912 		}
2913 	}
2914 
2915 	return 0;
2916 }
2917 
2918 static void bnxt_init_cp_rings(struct bnxt *bp)
2919 {
2920 	int i, j;
2921 
2922 	for (i = 0; i < bp->cp_nr_rings; i++) {
2923 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2924 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2925 
2926 		ring->fw_ring_id = INVALID_HW_RING_ID;
2927 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2928 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2929 		for (j = 0; j < 2; j++) {
2930 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2931 
2932 			if (!cpr2)
2933 				continue;
2934 
2935 			ring = &cpr2->cp_ring_struct;
2936 			ring->fw_ring_id = INVALID_HW_RING_ID;
2937 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2938 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2939 		}
2940 	}
2941 }
2942 
2943 static int bnxt_init_rx_rings(struct bnxt *bp)
2944 {
2945 	int i, rc = 0;
2946 
2947 	if (BNXT_RX_PAGE_MODE(bp)) {
2948 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2949 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2950 	} else {
2951 		bp->rx_offset = BNXT_RX_OFFSET;
2952 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2953 	}
2954 
2955 	for (i = 0; i < bp->rx_nr_rings; i++) {
2956 		rc = bnxt_init_one_rx_ring(bp, i);
2957 		if (rc)
2958 			break;
2959 	}
2960 
2961 	return rc;
2962 }
2963 
2964 static int bnxt_init_tx_rings(struct bnxt *bp)
2965 {
2966 	u16 i;
2967 
2968 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2969 				   MAX_SKB_FRAGS + 1);
2970 
2971 	for (i = 0; i < bp->tx_nr_rings; i++) {
2972 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2973 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2974 
2975 		ring->fw_ring_id = INVALID_HW_RING_ID;
2976 	}
2977 
2978 	return 0;
2979 }
2980 
2981 static void bnxt_free_ring_grps(struct bnxt *bp)
2982 {
2983 	kfree(bp->grp_info);
2984 	bp->grp_info = NULL;
2985 }
2986 
2987 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2988 {
2989 	int i;
2990 
2991 	if (irq_re_init) {
2992 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2993 				       sizeof(struct bnxt_ring_grp_info),
2994 				       GFP_KERNEL);
2995 		if (!bp->grp_info)
2996 			return -ENOMEM;
2997 	}
2998 	for (i = 0; i < bp->cp_nr_rings; i++) {
2999 		if (irq_re_init)
3000 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3001 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3002 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3003 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3004 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3005 	}
3006 	return 0;
3007 }
3008 
3009 static void bnxt_free_vnics(struct bnxt *bp)
3010 {
3011 	kfree(bp->vnic_info);
3012 	bp->vnic_info = NULL;
3013 	bp->nr_vnics = 0;
3014 }
3015 
3016 static int bnxt_alloc_vnics(struct bnxt *bp)
3017 {
3018 	int num_vnics = 1;
3019 
3020 #ifdef CONFIG_RFS_ACCEL
3021 	if (bp->flags & BNXT_FLAG_RFS)
3022 		num_vnics += bp->rx_nr_rings;
3023 #endif
3024 
3025 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3026 		num_vnics++;
3027 
3028 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3029 				GFP_KERNEL);
3030 	if (!bp->vnic_info)
3031 		return -ENOMEM;
3032 
3033 	bp->nr_vnics = num_vnics;
3034 	return 0;
3035 }
3036 
3037 static void bnxt_init_vnics(struct bnxt *bp)
3038 {
3039 	int i;
3040 
3041 	for (i = 0; i < bp->nr_vnics; i++) {
3042 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3043 		int j;
3044 
3045 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3046 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3047 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3048 
3049 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3050 
3051 		if (bp->vnic_info[i].rss_hash_key) {
3052 			if (i == 0)
3053 				prandom_bytes(vnic->rss_hash_key,
3054 					      HW_HASH_KEY_SIZE);
3055 			else
3056 				memcpy(vnic->rss_hash_key,
3057 				       bp->vnic_info[0].rss_hash_key,
3058 				       HW_HASH_KEY_SIZE);
3059 		}
3060 	}
3061 }
3062 
3063 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3064 {
3065 	int pages;
3066 
3067 	pages = ring_size / desc_per_pg;
3068 
3069 	if (!pages)
3070 		return 1;
3071 
3072 	pages++;
3073 
3074 	while (pages & (pages - 1))
3075 		pages++;
3076 
3077 	return pages;
3078 }
3079 
3080 void bnxt_set_tpa_flags(struct bnxt *bp)
3081 {
3082 	bp->flags &= ~BNXT_FLAG_TPA;
3083 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3084 		return;
3085 	if (bp->dev->features & NETIF_F_LRO)
3086 		bp->flags |= BNXT_FLAG_LRO;
3087 	else if (bp->dev->features & NETIF_F_GRO_HW)
3088 		bp->flags |= BNXT_FLAG_GRO;
3089 }
3090 
3091 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3092  * be set on entry.
3093  */
3094 void bnxt_set_ring_params(struct bnxt *bp)
3095 {
3096 	u32 ring_size, rx_size, rx_space;
3097 	u32 agg_factor = 0, agg_ring_size = 0;
3098 
3099 	/* 8 for CRC and VLAN */
3100 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3101 
3102 	rx_space = rx_size + NET_SKB_PAD +
3103 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3104 
3105 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3106 	ring_size = bp->rx_ring_size;
3107 	bp->rx_agg_ring_size = 0;
3108 	bp->rx_agg_nr_pages = 0;
3109 
3110 	if (bp->flags & BNXT_FLAG_TPA)
3111 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3112 
3113 	bp->flags &= ~BNXT_FLAG_JUMBO;
3114 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3115 		u32 jumbo_factor;
3116 
3117 		bp->flags |= BNXT_FLAG_JUMBO;
3118 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3119 		if (jumbo_factor > agg_factor)
3120 			agg_factor = jumbo_factor;
3121 	}
3122 	agg_ring_size = ring_size * agg_factor;
3123 
3124 	if (agg_ring_size) {
3125 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3126 							RX_DESC_CNT);
3127 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3128 			u32 tmp = agg_ring_size;
3129 
3130 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3131 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3132 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3133 				    tmp, agg_ring_size);
3134 		}
3135 		bp->rx_agg_ring_size = agg_ring_size;
3136 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3137 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3138 		rx_space = rx_size + NET_SKB_PAD +
3139 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3140 	}
3141 
3142 	bp->rx_buf_use_size = rx_size;
3143 	bp->rx_buf_size = rx_space;
3144 
3145 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3146 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3147 
3148 	ring_size = bp->tx_ring_size;
3149 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3150 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3151 
3152 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
3153 	bp->cp_ring_size = ring_size;
3154 
3155 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3156 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3157 		bp->cp_nr_pages = MAX_CP_PAGES;
3158 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3159 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3160 			    ring_size, bp->cp_ring_size);
3161 	}
3162 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3163 	bp->cp_ring_mask = bp->cp_bit - 1;
3164 }
3165 
3166 /* Changing allocation mode of RX rings.
3167  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3168  */
3169 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3170 {
3171 	if (page_mode) {
3172 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3173 			return -EOPNOTSUPP;
3174 		bp->dev->max_mtu =
3175 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3176 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3177 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3178 		bp->rx_dir = DMA_BIDIRECTIONAL;
3179 		bp->rx_skb_func = bnxt_rx_page_skb;
3180 		/* Disable LRO or GRO_HW */
3181 		netdev_update_features(bp->dev);
3182 	} else {
3183 		bp->dev->max_mtu = bp->max_mtu;
3184 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3185 		bp->rx_dir = DMA_FROM_DEVICE;
3186 		bp->rx_skb_func = bnxt_rx_skb;
3187 	}
3188 	return 0;
3189 }
3190 
3191 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3192 {
3193 	int i;
3194 	struct bnxt_vnic_info *vnic;
3195 	struct pci_dev *pdev = bp->pdev;
3196 
3197 	if (!bp->vnic_info)
3198 		return;
3199 
3200 	for (i = 0; i < bp->nr_vnics; i++) {
3201 		vnic = &bp->vnic_info[i];
3202 
3203 		kfree(vnic->fw_grp_ids);
3204 		vnic->fw_grp_ids = NULL;
3205 
3206 		kfree(vnic->uc_list);
3207 		vnic->uc_list = NULL;
3208 
3209 		if (vnic->mc_list) {
3210 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3211 					  vnic->mc_list, vnic->mc_list_mapping);
3212 			vnic->mc_list = NULL;
3213 		}
3214 
3215 		if (vnic->rss_table) {
3216 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
3217 					  vnic->rss_table,
3218 					  vnic->rss_table_dma_addr);
3219 			vnic->rss_table = NULL;
3220 		}
3221 
3222 		vnic->rss_hash_key = NULL;
3223 		vnic->flags = 0;
3224 	}
3225 }
3226 
3227 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3228 {
3229 	int i, rc = 0, size;
3230 	struct bnxt_vnic_info *vnic;
3231 	struct pci_dev *pdev = bp->pdev;
3232 	int max_rings;
3233 
3234 	for (i = 0; i < bp->nr_vnics; i++) {
3235 		vnic = &bp->vnic_info[i];
3236 
3237 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3238 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3239 
3240 			if (mem_size > 0) {
3241 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3242 				if (!vnic->uc_list) {
3243 					rc = -ENOMEM;
3244 					goto out;
3245 				}
3246 			}
3247 		}
3248 
3249 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3250 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3251 			vnic->mc_list =
3252 				dma_alloc_coherent(&pdev->dev,
3253 						   vnic->mc_list_size,
3254 						   &vnic->mc_list_mapping,
3255 						   GFP_KERNEL);
3256 			if (!vnic->mc_list) {
3257 				rc = -ENOMEM;
3258 				goto out;
3259 			}
3260 		}
3261 
3262 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3263 			goto vnic_skip_grps;
3264 
3265 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3266 			max_rings = bp->rx_nr_rings;
3267 		else
3268 			max_rings = 1;
3269 
3270 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3271 		if (!vnic->fw_grp_ids) {
3272 			rc = -ENOMEM;
3273 			goto out;
3274 		}
3275 vnic_skip_grps:
3276 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3277 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3278 			continue;
3279 
3280 		/* Allocate rss table and hash key */
3281 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3282 						     &vnic->rss_table_dma_addr,
3283 						     GFP_KERNEL);
3284 		if (!vnic->rss_table) {
3285 			rc = -ENOMEM;
3286 			goto out;
3287 		}
3288 
3289 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3290 
3291 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3292 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3293 	}
3294 	return 0;
3295 
3296 out:
3297 	return rc;
3298 }
3299 
3300 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3301 {
3302 	struct pci_dev *pdev = bp->pdev;
3303 
3304 	if (bp->hwrm_cmd_resp_addr) {
3305 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3306 				  bp->hwrm_cmd_resp_dma_addr);
3307 		bp->hwrm_cmd_resp_addr = NULL;
3308 	}
3309 
3310 	if (bp->hwrm_cmd_kong_resp_addr) {
3311 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3312 				  bp->hwrm_cmd_kong_resp_addr,
3313 				  bp->hwrm_cmd_kong_resp_dma_addr);
3314 		bp->hwrm_cmd_kong_resp_addr = NULL;
3315 	}
3316 }
3317 
3318 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3319 {
3320 	struct pci_dev *pdev = bp->pdev;
3321 
3322 	bp->hwrm_cmd_kong_resp_addr =
3323 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3324 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3325 				   GFP_KERNEL);
3326 	if (!bp->hwrm_cmd_kong_resp_addr)
3327 		return -ENOMEM;
3328 
3329 	return 0;
3330 }
3331 
3332 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3333 {
3334 	struct pci_dev *pdev = bp->pdev;
3335 
3336 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3337 						   &bp->hwrm_cmd_resp_dma_addr,
3338 						   GFP_KERNEL);
3339 	if (!bp->hwrm_cmd_resp_addr)
3340 		return -ENOMEM;
3341 
3342 	return 0;
3343 }
3344 
3345 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3346 {
3347 	if (bp->hwrm_short_cmd_req_addr) {
3348 		struct pci_dev *pdev = bp->pdev;
3349 
3350 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3351 				  bp->hwrm_short_cmd_req_addr,
3352 				  bp->hwrm_short_cmd_req_dma_addr);
3353 		bp->hwrm_short_cmd_req_addr = NULL;
3354 	}
3355 }
3356 
3357 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3358 {
3359 	struct pci_dev *pdev = bp->pdev;
3360 
3361 	bp->hwrm_short_cmd_req_addr =
3362 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3363 				   &bp->hwrm_short_cmd_req_dma_addr,
3364 				   GFP_KERNEL);
3365 	if (!bp->hwrm_short_cmd_req_addr)
3366 		return -ENOMEM;
3367 
3368 	return 0;
3369 }
3370 
3371 static void bnxt_free_port_stats(struct bnxt *bp)
3372 {
3373 	struct pci_dev *pdev = bp->pdev;
3374 
3375 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3376 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3377 
3378 	if (bp->hw_rx_port_stats) {
3379 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3380 				  bp->hw_rx_port_stats,
3381 				  bp->hw_rx_port_stats_map);
3382 		bp->hw_rx_port_stats = NULL;
3383 	}
3384 
3385 	if (bp->hw_tx_port_stats_ext) {
3386 		dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3387 				  bp->hw_tx_port_stats_ext,
3388 				  bp->hw_tx_port_stats_ext_map);
3389 		bp->hw_tx_port_stats_ext = NULL;
3390 	}
3391 
3392 	if (bp->hw_rx_port_stats_ext) {
3393 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3394 				  bp->hw_rx_port_stats_ext,
3395 				  bp->hw_rx_port_stats_ext_map);
3396 		bp->hw_rx_port_stats_ext = NULL;
3397 	}
3398 }
3399 
3400 static void bnxt_free_ring_stats(struct bnxt *bp)
3401 {
3402 	struct pci_dev *pdev = bp->pdev;
3403 	int size, i;
3404 
3405 	if (!bp->bnapi)
3406 		return;
3407 
3408 	size = sizeof(struct ctx_hw_stats);
3409 
3410 	for (i = 0; i < bp->cp_nr_rings; i++) {
3411 		struct bnxt_napi *bnapi = bp->bnapi[i];
3412 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3413 
3414 		if (cpr->hw_stats) {
3415 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3416 					  cpr->hw_stats_map);
3417 			cpr->hw_stats = NULL;
3418 		}
3419 	}
3420 }
3421 
3422 static int bnxt_alloc_stats(struct bnxt *bp)
3423 {
3424 	u32 size, i;
3425 	struct pci_dev *pdev = bp->pdev;
3426 
3427 	size = sizeof(struct ctx_hw_stats);
3428 
3429 	for (i = 0; i < bp->cp_nr_rings; i++) {
3430 		struct bnxt_napi *bnapi = bp->bnapi[i];
3431 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3432 
3433 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3434 						   &cpr->hw_stats_map,
3435 						   GFP_KERNEL);
3436 		if (!cpr->hw_stats)
3437 			return -ENOMEM;
3438 
3439 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3440 	}
3441 
3442 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3443 		if (bp->hw_rx_port_stats)
3444 			goto alloc_ext_stats;
3445 
3446 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3447 					 sizeof(struct tx_port_stats) + 1024;
3448 
3449 		bp->hw_rx_port_stats =
3450 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3451 					   &bp->hw_rx_port_stats_map,
3452 					   GFP_KERNEL);
3453 		if (!bp->hw_rx_port_stats)
3454 			return -ENOMEM;
3455 
3456 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3457 				       512;
3458 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3459 					   sizeof(struct rx_port_stats) + 512;
3460 		bp->flags |= BNXT_FLAG_PORT_STATS;
3461 
3462 alloc_ext_stats:
3463 		/* Display extended statistics only if FW supports it */
3464 		if (bp->hwrm_spec_code < 0x10804 ||
3465 		    bp->hwrm_spec_code == 0x10900)
3466 			return 0;
3467 
3468 		if (bp->hw_rx_port_stats_ext)
3469 			goto alloc_tx_ext_stats;
3470 
3471 		bp->hw_rx_port_stats_ext =
3472 			dma_alloc_coherent(&pdev->dev,
3473 					   sizeof(struct rx_port_stats_ext),
3474 					   &bp->hw_rx_port_stats_ext_map,
3475 					   GFP_KERNEL);
3476 		if (!bp->hw_rx_port_stats_ext)
3477 			return 0;
3478 
3479 alloc_tx_ext_stats:
3480 		if (bp->hw_tx_port_stats_ext)
3481 			return 0;
3482 
3483 		if (bp->hwrm_spec_code >= 0x10902) {
3484 			bp->hw_tx_port_stats_ext =
3485 				dma_alloc_coherent(&pdev->dev,
3486 						   sizeof(struct tx_port_stats_ext),
3487 						   &bp->hw_tx_port_stats_ext_map,
3488 						   GFP_KERNEL);
3489 		}
3490 		bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3491 	}
3492 	return 0;
3493 }
3494 
3495 static void bnxt_clear_ring_indices(struct bnxt *bp)
3496 {
3497 	int i;
3498 
3499 	if (!bp->bnapi)
3500 		return;
3501 
3502 	for (i = 0; i < bp->cp_nr_rings; i++) {
3503 		struct bnxt_napi *bnapi = bp->bnapi[i];
3504 		struct bnxt_cp_ring_info *cpr;
3505 		struct bnxt_rx_ring_info *rxr;
3506 		struct bnxt_tx_ring_info *txr;
3507 
3508 		if (!bnapi)
3509 			continue;
3510 
3511 		cpr = &bnapi->cp_ring;
3512 		cpr->cp_raw_cons = 0;
3513 
3514 		txr = bnapi->tx_ring;
3515 		if (txr) {
3516 			txr->tx_prod = 0;
3517 			txr->tx_cons = 0;
3518 		}
3519 
3520 		rxr = bnapi->rx_ring;
3521 		if (rxr) {
3522 			rxr->rx_prod = 0;
3523 			rxr->rx_agg_prod = 0;
3524 			rxr->rx_sw_agg_prod = 0;
3525 			rxr->rx_next_cons = 0;
3526 		}
3527 	}
3528 }
3529 
3530 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3531 {
3532 #ifdef CONFIG_RFS_ACCEL
3533 	int i;
3534 
3535 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3536 	 * safe to delete the hash table.
3537 	 */
3538 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3539 		struct hlist_head *head;
3540 		struct hlist_node *tmp;
3541 		struct bnxt_ntuple_filter *fltr;
3542 
3543 		head = &bp->ntp_fltr_hash_tbl[i];
3544 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3545 			hlist_del(&fltr->hash);
3546 			kfree(fltr);
3547 		}
3548 	}
3549 	if (irq_reinit) {
3550 		kfree(bp->ntp_fltr_bmap);
3551 		bp->ntp_fltr_bmap = NULL;
3552 	}
3553 	bp->ntp_fltr_count = 0;
3554 #endif
3555 }
3556 
3557 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3558 {
3559 #ifdef CONFIG_RFS_ACCEL
3560 	int i, rc = 0;
3561 
3562 	if (!(bp->flags & BNXT_FLAG_RFS))
3563 		return 0;
3564 
3565 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3566 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3567 
3568 	bp->ntp_fltr_count = 0;
3569 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3570 				    sizeof(long),
3571 				    GFP_KERNEL);
3572 
3573 	if (!bp->ntp_fltr_bmap)
3574 		rc = -ENOMEM;
3575 
3576 	return rc;
3577 #else
3578 	return 0;
3579 #endif
3580 }
3581 
3582 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3583 {
3584 	bnxt_free_vnic_attributes(bp);
3585 	bnxt_free_tx_rings(bp);
3586 	bnxt_free_rx_rings(bp);
3587 	bnxt_free_cp_rings(bp);
3588 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3589 	if (irq_re_init) {
3590 		bnxt_free_ring_stats(bp);
3591 		bnxt_free_ring_grps(bp);
3592 		bnxt_free_vnics(bp);
3593 		kfree(bp->tx_ring_map);
3594 		bp->tx_ring_map = NULL;
3595 		kfree(bp->tx_ring);
3596 		bp->tx_ring = NULL;
3597 		kfree(bp->rx_ring);
3598 		bp->rx_ring = NULL;
3599 		kfree(bp->bnapi);
3600 		bp->bnapi = NULL;
3601 	} else {
3602 		bnxt_clear_ring_indices(bp);
3603 	}
3604 }
3605 
3606 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3607 {
3608 	int i, j, rc, size, arr_size;
3609 	void *bnapi;
3610 
3611 	if (irq_re_init) {
3612 		/* Allocate bnapi mem pointer array and mem block for
3613 		 * all queues
3614 		 */
3615 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3616 				bp->cp_nr_rings);
3617 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3618 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3619 		if (!bnapi)
3620 			return -ENOMEM;
3621 
3622 		bp->bnapi = bnapi;
3623 		bnapi += arr_size;
3624 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3625 			bp->bnapi[i] = bnapi;
3626 			bp->bnapi[i]->index = i;
3627 			bp->bnapi[i]->bp = bp;
3628 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3629 				struct bnxt_cp_ring_info *cpr =
3630 					&bp->bnapi[i]->cp_ring;
3631 
3632 				cpr->cp_ring_struct.ring_mem.flags =
3633 					BNXT_RMEM_RING_PTE_FLAG;
3634 			}
3635 		}
3636 
3637 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3638 				      sizeof(struct bnxt_rx_ring_info),
3639 				      GFP_KERNEL);
3640 		if (!bp->rx_ring)
3641 			return -ENOMEM;
3642 
3643 		for (i = 0; i < bp->rx_nr_rings; i++) {
3644 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3645 
3646 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3647 				rxr->rx_ring_struct.ring_mem.flags =
3648 					BNXT_RMEM_RING_PTE_FLAG;
3649 				rxr->rx_agg_ring_struct.ring_mem.flags =
3650 					BNXT_RMEM_RING_PTE_FLAG;
3651 			}
3652 			rxr->bnapi = bp->bnapi[i];
3653 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3654 		}
3655 
3656 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3657 				      sizeof(struct bnxt_tx_ring_info),
3658 				      GFP_KERNEL);
3659 		if (!bp->tx_ring)
3660 			return -ENOMEM;
3661 
3662 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3663 					  GFP_KERNEL);
3664 
3665 		if (!bp->tx_ring_map)
3666 			return -ENOMEM;
3667 
3668 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3669 			j = 0;
3670 		else
3671 			j = bp->rx_nr_rings;
3672 
3673 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3674 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3675 
3676 			if (bp->flags & BNXT_FLAG_CHIP_P5)
3677 				txr->tx_ring_struct.ring_mem.flags =
3678 					BNXT_RMEM_RING_PTE_FLAG;
3679 			txr->bnapi = bp->bnapi[j];
3680 			bp->bnapi[j]->tx_ring = txr;
3681 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3682 			if (i >= bp->tx_nr_rings_xdp) {
3683 				txr->txq_index = i - bp->tx_nr_rings_xdp;
3684 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3685 			} else {
3686 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3687 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3688 			}
3689 		}
3690 
3691 		rc = bnxt_alloc_stats(bp);
3692 		if (rc)
3693 			goto alloc_mem_err;
3694 
3695 		rc = bnxt_alloc_ntp_fltrs(bp);
3696 		if (rc)
3697 			goto alloc_mem_err;
3698 
3699 		rc = bnxt_alloc_vnics(bp);
3700 		if (rc)
3701 			goto alloc_mem_err;
3702 	}
3703 
3704 	bnxt_init_ring_struct(bp);
3705 
3706 	rc = bnxt_alloc_rx_rings(bp);
3707 	if (rc)
3708 		goto alloc_mem_err;
3709 
3710 	rc = bnxt_alloc_tx_rings(bp);
3711 	if (rc)
3712 		goto alloc_mem_err;
3713 
3714 	rc = bnxt_alloc_cp_rings(bp);
3715 	if (rc)
3716 		goto alloc_mem_err;
3717 
3718 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3719 				  BNXT_VNIC_UCAST_FLAG;
3720 	rc = bnxt_alloc_vnic_attributes(bp);
3721 	if (rc)
3722 		goto alloc_mem_err;
3723 	return 0;
3724 
3725 alloc_mem_err:
3726 	bnxt_free_mem(bp, true);
3727 	return rc;
3728 }
3729 
3730 static void bnxt_disable_int(struct bnxt *bp)
3731 {
3732 	int i;
3733 
3734 	if (!bp->bnapi)
3735 		return;
3736 
3737 	for (i = 0; i < bp->cp_nr_rings; i++) {
3738 		struct bnxt_napi *bnapi = bp->bnapi[i];
3739 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3740 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3741 
3742 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3743 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
3744 	}
3745 }
3746 
3747 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3748 {
3749 	struct bnxt_napi *bnapi = bp->bnapi[n];
3750 	struct bnxt_cp_ring_info *cpr;
3751 
3752 	cpr = &bnapi->cp_ring;
3753 	return cpr->cp_ring_struct.map_idx;
3754 }
3755 
3756 static void bnxt_disable_int_sync(struct bnxt *bp)
3757 {
3758 	int i;
3759 
3760 	atomic_inc(&bp->intr_sem);
3761 
3762 	bnxt_disable_int(bp);
3763 	for (i = 0; i < bp->cp_nr_rings; i++) {
3764 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3765 
3766 		synchronize_irq(bp->irq_tbl[map_idx].vector);
3767 	}
3768 }
3769 
3770 static void bnxt_enable_int(struct bnxt *bp)
3771 {
3772 	int i;
3773 
3774 	atomic_set(&bp->intr_sem, 0);
3775 	for (i = 0; i < bp->cp_nr_rings; i++) {
3776 		struct bnxt_napi *bnapi = bp->bnapi[i];
3777 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3778 
3779 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
3780 	}
3781 }
3782 
3783 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3784 			    u16 cmpl_ring, u16 target_id)
3785 {
3786 	struct input *req = request;
3787 
3788 	req->req_type = cpu_to_le16(req_type);
3789 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3790 	req->target_id = cpu_to_le16(target_id);
3791 	if (bnxt_kong_hwrm_message(bp, req))
3792 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
3793 	else
3794 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3795 }
3796 
3797 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3798 				 int timeout, bool silent)
3799 {
3800 	int i, intr_process, rc, tmo_count;
3801 	struct input *req = msg;
3802 	u32 *data = msg;
3803 	__le32 *resp_len;
3804 	u8 *valid;
3805 	u16 cp_ring_id, len = 0;
3806 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3807 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3808 	struct hwrm_short_input short_input = {0};
3809 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
3810 	u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
3811 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
3812 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
3813 
3814 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3815 		if (msg_len > bp->hwrm_max_ext_req_len ||
3816 		    !bp->hwrm_short_cmd_req_addr)
3817 			return -EINVAL;
3818 	}
3819 
3820 	if (bnxt_hwrm_kong_chnl(bp, req)) {
3821 		dst = BNXT_HWRM_CHNL_KONG;
3822 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
3823 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
3824 		resp = bp->hwrm_cmd_kong_resp_addr;
3825 		resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
3826 	}
3827 
3828 	memset(resp, 0, PAGE_SIZE);
3829 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3830 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3831 
3832 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
3833 	/* currently supports only one outstanding message */
3834 	if (intr_process)
3835 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3836 
3837 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
3838 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3839 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3840 		u16 max_msg_len;
3841 
3842 		/* Set boundary for maximum extended request length for short
3843 		 * cmd format. If passed up from device use the max supported
3844 		 * internal req length.
3845 		 */
3846 		max_msg_len = bp->hwrm_max_ext_req_len;
3847 
3848 		memcpy(short_cmd_req, req, msg_len);
3849 		if (msg_len < max_msg_len)
3850 			memset(short_cmd_req + msg_len, 0,
3851 			       max_msg_len - msg_len);
3852 
3853 		short_input.req_type = req->req_type;
3854 		short_input.signature =
3855 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3856 		short_input.size = cpu_to_le16(msg_len);
3857 		short_input.req_addr =
3858 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3859 
3860 		data = (u32 *)&short_input;
3861 		msg_len = sizeof(short_input);
3862 
3863 		/* Sync memory write before updating doorbell */
3864 		wmb();
3865 
3866 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3867 	}
3868 
3869 	/* Write request msg to hwrm channel */
3870 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
3871 
3872 	for (i = msg_len; i < max_req_len; i += 4)
3873 		writel(0, bp->bar0 + bar_offset + i);
3874 
3875 	/* Ring channel doorbell */
3876 	writel(1, bp->bar0 + doorbell_offset);
3877 
3878 	if (!timeout)
3879 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3880 	/* convert timeout to usec */
3881 	timeout *= 1000;
3882 
3883 	i = 0;
3884 	/* Short timeout for the first few iterations:
3885 	 * number of loops = number of loops for short timeout +
3886 	 * number of loops for standard timeout.
3887 	 */
3888 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3889 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3890 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3891 	resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
3892 
3893 	if (intr_process) {
3894 		u16 seq_id = bp->hwrm_intr_seq_id;
3895 
3896 		/* Wait until hwrm response cmpl interrupt is processed */
3897 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
3898 		       i++ < tmo_count) {
3899 			/* on first few passes, just barely sleep */
3900 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3901 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3902 					     HWRM_SHORT_MAX_TIMEOUT);
3903 			else
3904 				usleep_range(HWRM_MIN_TIMEOUT,
3905 					     HWRM_MAX_TIMEOUT);
3906 		}
3907 
3908 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
3909 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3910 				   le16_to_cpu(req->req_type));
3911 			return -1;
3912 		}
3913 		len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3914 		      HWRM_RESP_LEN_SFT;
3915 		valid = resp_addr + len - 1;
3916 	} else {
3917 		int j;
3918 
3919 		/* Check if response len is updated */
3920 		for (i = 0; i < tmo_count; i++) {
3921 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3922 			      HWRM_RESP_LEN_SFT;
3923 			if (len)
3924 				break;
3925 			/* on first few passes, just barely sleep */
3926 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3927 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3928 					     HWRM_SHORT_MAX_TIMEOUT);
3929 			else
3930 				usleep_range(HWRM_MIN_TIMEOUT,
3931 					     HWRM_MAX_TIMEOUT);
3932 		}
3933 
3934 		if (i >= tmo_count) {
3935 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3936 				   HWRM_TOTAL_TIMEOUT(i),
3937 				   le16_to_cpu(req->req_type),
3938 				   le16_to_cpu(req->seq_id), len);
3939 			return -1;
3940 		}
3941 
3942 		/* Last byte of resp contains valid bit */
3943 		valid = resp_addr + len - 1;
3944 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
3945 			/* make sure we read from updated DMA memory */
3946 			dma_rmb();
3947 			if (*valid)
3948 				break;
3949 			usleep_range(1, 5);
3950 		}
3951 
3952 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
3953 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3954 				   HWRM_TOTAL_TIMEOUT(i),
3955 				   le16_to_cpu(req->req_type),
3956 				   le16_to_cpu(req->seq_id), len, *valid);
3957 			return -1;
3958 		}
3959 	}
3960 
3961 	/* Zero valid bit for compatibility.  Valid bit in an older spec
3962 	 * may become a new field in a newer spec.  We must make sure that
3963 	 * a new field not implemented by old spec will read zero.
3964 	 */
3965 	*valid = 0;
3966 	rc = le16_to_cpu(resp->error_code);
3967 	if (rc && !silent)
3968 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3969 			   le16_to_cpu(resp->req_type),
3970 			   le16_to_cpu(resp->seq_id), rc);
3971 	return rc;
3972 }
3973 
3974 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3975 {
3976 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3977 }
3978 
3979 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3980 			      int timeout)
3981 {
3982 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3983 }
3984 
3985 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3986 {
3987 	int rc;
3988 
3989 	mutex_lock(&bp->hwrm_cmd_lock);
3990 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3991 	mutex_unlock(&bp->hwrm_cmd_lock);
3992 	return rc;
3993 }
3994 
3995 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3996 			     int timeout)
3997 {
3998 	int rc;
3999 
4000 	mutex_lock(&bp->hwrm_cmd_lock);
4001 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4002 	mutex_unlock(&bp->hwrm_cmd_lock);
4003 	return rc;
4004 }
4005 
4006 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
4007 				     int bmap_size)
4008 {
4009 	struct hwrm_func_drv_rgtr_input req = {0};
4010 	DECLARE_BITMAP(async_events_bmap, 256);
4011 	u32 *events = (u32 *)async_events_bmap;
4012 	int i;
4013 
4014 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4015 
4016 	req.enables =
4017 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4018 
4019 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4020 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
4021 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4022 
4023 	if (bmap && bmap_size) {
4024 		for (i = 0; i < bmap_size; i++) {
4025 			if (test_bit(i, bmap))
4026 				__set_bit(i, async_events_bmap);
4027 		}
4028 	}
4029 
4030 	for (i = 0; i < 8; i++)
4031 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4032 
4033 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4034 }
4035 
4036 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
4037 {
4038 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4039 	struct hwrm_func_drv_rgtr_input req = {0};
4040 	int rc;
4041 
4042 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4043 
4044 	req.enables =
4045 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4046 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
4047 
4048 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4049 	req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
4050 	req.ver_maj_8b = DRV_VER_MAJ;
4051 	req.ver_min_8b = DRV_VER_MIN;
4052 	req.ver_upd_8b = DRV_VER_UPD;
4053 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4054 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4055 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4056 
4057 	if (BNXT_PF(bp)) {
4058 		u32 data[8];
4059 		int i;
4060 
4061 		memset(data, 0, sizeof(data));
4062 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4063 			u16 cmd = bnxt_vf_req_snif[i];
4064 			unsigned int bit, idx;
4065 
4066 			idx = cmd / 32;
4067 			bit = cmd % 32;
4068 			data[idx] |= 1 << bit;
4069 		}
4070 
4071 		for (i = 0; i < 8; i++)
4072 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4073 
4074 		req.enables |=
4075 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4076 	}
4077 
4078 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4079 		req.flags |= cpu_to_le32(
4080 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4081 
4082 	mutex_lock(&bp->hwrm_cmd_lock);
4083 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4084 	if (rc)
4085 		rc = -EIO;
4086 	else if (resp->flags &
4087 		 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4088 		bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4089 	mutex_unlock(&bp->hwrm_cmd_lock);
4090 	return rc;
4091 }
4092 
4093 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4094 {
4095 	struct hwrm_func_drv_unrgtr_input req = {0};
4096 
4097 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4098 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4099 }
4100 
4101 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4102 {
4103 	u32 rc = 0;
4104 	struct hwrm_tunnel_dst_port_free_input req = {0};
4105 
4106 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4107 	req.tunnel_type = tunnel_type;
4108 
4109 	switch (tunnel_type) {
4110 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4111 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4112 		break;
4113 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4114 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4115 		break;
4116 	default:
4117 		break;
4118 	}
4119 
4120 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4121 	if (rc)
4122 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4123 			   rc);
4124 	return rc;
4125 }
4126 
4127 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4128 					   u8 tunnel_type)
4129 {
4130 	u32 rc = 0;
4131 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4132 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4133 
4134 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4135 
4136 	req.tunnel_type = tunnel_type;
4137 	req.tunnel_dst_port_val = port;
4138 
4139 	mutex_lock(&bp->hwrm_cmd_lock);
4140 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4141 	if (rc) {
4142 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4143 			   rc);
4144 		goto err_out;
4145 	}
4146 
4147 	switch (tunnel_type) {
4148 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4149 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4150 		break;
4151 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4152 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4153 		break;
4154 	default:
4155 		break;
4156 	}
4157 
4158 err_out:
4159 	mutex_unlock(&bp->hwrm_cmd_lock);
4160 	return rc;
4161 }
4162 
4163 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4164 {
4165 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4166 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4167 
4168 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4169 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4170 
4171 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4172 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4173 	req.mask = cpu_to_le32(vnic->rx_mask);
4174 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4175 }
4176 
4177 #ifdef CONFIG_RFS_ACCEL
4178 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4179 					    struct bnxt_ntuple_filter *fltr)
4180 {
4181 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4182 
4183 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4184 	req.ntuple_filter_id = fltr->filter_id;
4185 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4186 }
4187 
4188 #define BNXT_NTP_FLTR_FLAGS					\
4189 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4190 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4191 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4192 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4193 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4194 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4195 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4196 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4197 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4198 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4199 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4200 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4201 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4202 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4203 
4204 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4205 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4206 
4207 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4208 					     struct bnxt_ntuple_filter *fltr)
4209 {
4210 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
4211 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4212 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4213 	struct flow_keys *keys = &fltr->fkeys;
4214 	int rc = 0;
4215 
4216 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4217 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4218 
4219 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4220 
4221 	req.ethertype = htons(ETH_P_IP);
4222 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4223 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4224 	req.ip_protocol = keys->basic.ip_proto;
4225 
4226 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4227 		int i;
4228 
4229 		req.ethertype = htons(ETH_P_IPV6);
4230 		req.ip_addr_type =
4231 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4232 		*(struct in6_addr *)&req.src_ipaddr[0] =
4233 			keys->addrs.v6addrs.src;
4234 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4235 			keys->addrs.v6addrs.dst;
4236 		for (i = 0; i < 4; i++) {
4237 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4238 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4239 		}
4240 	} else {
4241 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4242 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4243 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4244 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4245 	}
4246 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4247 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4248 		req.tunnel_type =
4249 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4250 	}
4251 
4252 	req.src_port = keys->ports.src;
4253 	req.src_port_mask = cpu_to_be16(0xffff);
4254 	req.dst_port = keys->ports.dst;
4255 	req.dst_port_mask = cpu_to_be16(0xffff);
4256 
4257 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4258 	mutex_lock(&bp->hwrm_cmd_lock);
4259 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4260 	if (!rc) {
4261 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4262 		fltr->filter_id = resp->ntuple_filter_id;
4263 	}
4264 	mutex_unlock(&bp->hwrm_cmd_lock);
4265 	return rc;
4266 }
4267 #endif
4268 
4269 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4270 				     u8 *mac_addr)
4271 {
4272 	u32 rc = 0;
4273 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4274 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4275 
4276 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4277 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4278 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4279 		req.flags |=
4280 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4281 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4282 	req.enables =
4283 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4284 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4285 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4286 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4287 	req.l2_addr_mask[0] = 0xff;
4288 	req.l2_addr_mask[1] = 0xff;
4289 	req.l2_addr_mask[2] = 0xff;
4290 	req.l2_addr_mask[3] = 0xff;
4291 	req.l2_addr_mask[4] = 0xff;
4292 	req.l2_addr_mask[5] = 0xff;
4293 
4294 	mutex_lock(&bp->hwrm_cmd_lock);
4295 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4296 	if (!rc)
4297 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4298 							resp->l2_filter_id;
4299 	mutex_unlock(&bp->hwrm_cmd_lock);
4300 	return rc;
4301 }
4302 
4303 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4304 {
4305 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4306 	int rc = 0;
4307 
4308 	/* Any associated ntuple filters will also be cleared by firmware. */
4309 	mutex_lock(&bp->hwrm_cmd_lock);
4310 	for (i = 0; i < num_of_vnics; i++) {
4311 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4312 
4313 		for (j = 0; j < vnic->uc_filter_count; j++) {
4314 			struct hwrm_cfa_l2_filter_free_input req = {0};
4315 
4316 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4317 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4318 
4319 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4320 
4321 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4322 						HWRM_CMD_TIMEOUT);
4323 		}
4324 		vnic->uc_filter_count = 0;
4325 	}
4326 	mutex_unlock(&bp->hwrm_cmd_lock);
4327 
4328 	return rc;
4329 }
4330 
4331 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4332 {
4333 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4334 	struct hwrm_vnic_tpa_cfg_input req = {0};
4335 
4336 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4337 		return 0;
4338 
4339 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4340 
4341 	if (tpa_flags) {
4342 		u16 mss = bp->dev->mtu - 40;
4343 		u32 nsegs, n, segs = 0, flags;
4344 
4345 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4346 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4347 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4348 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4349 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4350 		if (tpa_flags & BNXT_FLAG_GRO)
4351 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4352 
4353 		req.flags = cpu_to_le32(flags);
4354 
4355 		req.enables =
4356 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4357 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4358 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4359 
4360 		/* Number of segs are log2 units, and first packet is not
4361 		 * included as part of this units.
4362 		 */
4363 		if (mss <= BNXT_RX_PAGE_SIZE) {
4364 			n = BNXT_RX_PAGE_SIZE / mss;
4365 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4366 		} else {
4367 			n = mss / BNXT_RX_PAGE_SIZE;
4368 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4369 				n++;
4370 			nsegs = (MAX_SKB_FRAGS - n) / n;
4371 		}
4372 
4373 		segs = ilog2(nsegs);
4374 		req.max_agg_segs = cpu_to_le16(segs);
4375 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
4376 
4377 		req.min_agg_len = cpu_to_le32(512);
4378 	}
4379 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4380 
4381 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4382 }
4383 
4384 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4385 {
4386 	struct bnxt_ring_grp_info *grp_info;
4387 
4388 	grp_info = &bp->grp_info[ring->grp_idx];
4389 	return grp_info->cp_fw_ring_id;
4390 }
4391 
4392 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4393 {
4394 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4395 		struct bnxt_napi *bnapi = rxr->bnapi;
4396 		struct bnxt_cp_ring_info *cpr;
4397 
4398 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4399 		return cpr->cp_ring_struct.fw_ring_id;
4400 	} else {
4401 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4402 	}
4403 }
4404 
4405 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4406 {
4407 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4408 		struct bnxt_napi *bnapi = txr->bnapi;
4409 		struct bnxt_cp_ring_info *cpr;
4410 
4411 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4412 		return cpr->cp_ring_struct.fw_ring_id;
4413 	} else {
4414 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4415 	}
4416 }
4417 
4418 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4419 {
4420 	u32 i, j, max_rings;
4421 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4422 	struct hwrm_vnic_rss_cfg_input req = {0};
4423 
4424 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4425 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4426 		return 0;
4427 
4428 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4429 	if (set_rss) {
4430 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4431 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4432 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4433 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4434 				max_rings = bp->rx_nr_rings - 1;
4435 			else
4436 				max_rings = bp->rx_nr_rings;
4437 		} else {
4438 			max_rings = 1;
4439 		}
4440 
4441 		/* Fill the RSS indirection table with ring group ids */
4442 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4443 			if (j == max_rings)
4444 				j = 0;
4445 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4446 		}
4447 
4448 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4449 		req.hash_key_tbl_addr =
4450 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
4451 	}
4452 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4453 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4454 }
4455 
4456 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4457 {
4458 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4459 	u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4460 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4461 	struct hwrm_vnic_rss_cfg_input req = {0};
4462 
4463 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4464 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4465 	if (!set_rss) {
4466 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4467 		return 0;
4468 	}
4469 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4470 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4471 	req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4472 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4473 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4474 	for (i = 0, k = 0; i < nr_ctxs; i++) {
4475 		__le16 *ring_tbl = vnic->rss_table;
4476 		int rc;
4477 
4478 		req.ring_table_pair_index = i;
4479 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4480 		for (j = 0; j < 64; j++) {
4481 			u16 ring_id;
4482 
4483 			ring_id = rxr->rx_ring_struct.fw_ring_id;
4484 			*ring_tbl++ = cpu_to_le16(ring_id);
4485 			ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4486 			*ring_tbl++ = cpu_to_le16(ring_id);
4487 			rxr++;
4488 			k++;
4489 			if (k == max_rings) {
4490 				k = 0;
4491 				rxr = &bp->rx_ring[0];
4492 			}
4493 		}
4494 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4495 		if (rc)
4496 			return -EIO;
4497 	}
4498 	return 0;
4499 }
4500 
4501 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4502 {
4503 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4504 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
4505 
4506 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4507 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4508 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4509 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4510 	req.enables =
4511 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4512 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4513 	/* thresholds not implemented in firmware yet */
4514 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4515 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4516 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4517 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4518 }
4519 
4520 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4521 					u16 ctx_idx)
4522 {
4523 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4524 
4525 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4526 	req.rss_cos_lb_ctx_id =
4527 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4528 
4529 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4530 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4531 }
4532 
4533 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4534 {
4535 	int i, j;
4536 
4537 	for (i = 0; i < bp->nr_vnics; i++) {
4538 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4539 
4540 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4541 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4542 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4543 		}
4544 	}
4545 	bp->rsscos_nr_ctxs = 0;
4546 }
4547 
4548 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4549 {
4550 	int rc;
4551 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4552 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4553 						bp->hwrm_cmd_resp_addr;
4554 
4555 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4556 			       -1);
4557 
4558 	mutex_lock(&bp->hwrm_cmd_lock);
4559 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4560 	if (!rc)
4561 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4562 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4563 	mutex_unlock(&bp->hwrm_cmd_lock);
4564 
4565 	return rc;
4566 }
4567 
4568 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4569 {
4570 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4571 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4572 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4573 }
4574 
4575 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4576 {
4577 	unsigned int ring = 0, grp_idx;
4578 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4579 	struct hwrm_vnic_cfg_input req = {0};
4580 	u16 def_vlan = 0;
4581 
4582 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4583 
4584 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4585 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4586 
4587 		req.default_rx_ring_id =
4588 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
4589 		req.default_cmpl_ring_id =
4590 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
4591 		req.enables =
4592 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
4593 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
4594 		goto vnic_mru;
4595 	}
4596 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4597 	/* Only RSS support for now TBD: COS & LB */
4598 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4599 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4600 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4601 					   VNIC_CFG_REQ_ENABLES_MRU);
4602 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4603 		req.rss_rule =
4604 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4605 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4606 					   VNIC_CFG_REQ_ENABLES_MRU);
4607 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4608 	} else {
4609 		req.rss_rule = cpu_to_le16(0xffff);
4610 	}
4611 
4612 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4613 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4614 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4615 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4616 	} else {
4617 		req.cos_rule = cpu_to_le16(0xffff);
4618 	}
4619 
4620 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4621 		ring = 0;
4622 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4623 		ring = vnic_id - 1;
4624 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4625 		ring = bp->rx_nr_rings - 1;
4626 
4627 	grp_idx = bp->rx_ring[ring].bnapi->index;
4628 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4629 	req.lb_rule = cpu_to_le16(0xffff);
4630 vnic_mru:
4631 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4632 			      VLAN_HLEN);
4633 
4634 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4635 #ifdef CONFIG_BNXT_SRIOV
4636 	if (BNXT_VF(bp))
4637 		def_vlan = bp->vf.vlan;
4638 #endif
4639 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4640 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4641 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4642 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4643 
4644 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4645 }
4646 
4647 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4648 {
4649 	u32 rc = 0;
4650 
4651 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4652 		struct hwrm_vnic_free_input req = {0};
4653 
4654 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4655 		req.vnic_id =
4656 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4657 
4658 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4659 		if (rc)
4660 			return rc;
4661 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4662 	}
4663 	return rc;
4664 }
4665 
4666 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4667 {
4668 	u16 i;
4669 
4670 	for (i = 0; i < bp->nr_vnics; i++)
4671 		bnxt_hwrm_vnic_free_one(bp, i);
4672 }
4673 
4674 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4675 				unsigned int start_rx_ring_idx,
4676 				unsigned int nr_rings)
4677 {
4678 	int rc = 0;
4679 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4680 	struct hwrm_vnic_alloc_input req = {0};
4681 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4682 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4683 
4684 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4685 		goto vnic_no_ring_grps;
4686 
4687 	/* map ring groups to this vnic */
4688 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4689 		grp_idx = bp->rx_ring[i].bnapi->index;
4690 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4691 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4692 				   j, nr_rings);
4693 			break;
4694 		}
4695 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
4696 	}
4697 
4698 vnic_no_ring_grps:
4699 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
4700 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
4701 	if (vnic_id == 0)
4702 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4703 
4704 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4705 
4706 	mutex_lock(&bp->hwrm_cmd_lock);
4707 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4708 	if (!rc)
4709 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
4710 	mutex_unlock(&bp->hwrm_cmd_lock);
4711 	return rc;
4712 }
4713 
4714 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4715 {
4716 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4717 	struct hwrm_vnic_qcaps_input req = {0};
4718 	int rc;
4719 
4720 	if (bp->hwrm_spec_code < 0x10600)
4721 		return 0;
4722 
4723 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4724 	mutex_lock(&bp->hwrm_cmd_lock);
4725 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4726 	if (!rc) {
4727 		u32 flags = le32_to_cpu(resp->flags);
4728 
4729 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
4730 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4731 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4732 		if (flags &
4733 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4734 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4735 	}
4736 	mutex_unlock(&bp->hwrm_cmd_lock);
4737 	return rc;
4738 }
4739 
4740 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4741 {
4742 	u16 i;
4743 	u32 rc = 0;
4744 
4745 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4746 		return 0;
4747 
4748 	mutex_lock(&bp->hwrm_cmd_lock);
4749 	for (i = 0; i < bp->rx_nr_rings; i++) {
4750 		struct hwrm_ring_grp_alloc_input req = {0};
4751 		struct hwrm_ring_grp_alloc_output *resp =
4752 					bp->hwrm_cmd_resp_addr;
4753 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4754 
4755 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4756 
4757 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4758 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4759 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4760 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4761 
4762 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4763 					HWRM_CMD_TIMEOUT);
4764 		if (rc)
4765 			break;
4766 
4767 		bp->grp_info[grp_idx].fw_grp_id =
4768 			le32_to_cpu(resp->ring_group_id);
4769 	}
4770 	mutex_unlock(&bp->hwrm_cmd_lock);
4771 	return rc;
4772 }
4773 
4774 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4775 {
4776 	u16 i;
4777 	u32 rc = 0;
4778 	struct hwrm_ring_grp_free_input req = {0};
4779 
4780 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
4781 		return 0;
4782 
4783 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4784 
4785 	mutex_lock(&bp->hwrm_cmd_lock);
4786 	for (i = 0; i < bp->cp_nr_rings; i++) {
4787 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4788 			continue;
4789 		req.ring_group_id =
4790 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4791 
4792 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4793 					HWRM_CMD_TIMEOUT);
4794 		if (rc)
4795 			break;
4796 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4797 	}
4798 	mutex_unlock(&bp->hwrm_cmd_lock);
4799 	return rc;
4800 }
4801 
4802 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4803 				    struct bnxt_ring_struct *ring,
4804 				    u32 ring_type, u32 map_index)
4805 {
4806 	int rc = 0, err = 0;
4807 	struct hwrm_ring_alloc_input req = {0};
4808 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4809 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
4810 	struct bnxt_ring_grp_info *grp_info;
4811 	u16 ring_id;
4812 
4813 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4814 
4815 	req.enables = 0;
4816 	if (rmem->nr_pages > 1) {
4817 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
4818 		/* Page size is in log2 units */
4819 		req.page_size = BNXT_PAGE_SHIFT;
4820 		req.page_tbl_depth = 1;
4821 	} else {
4822 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
4823 	}
4824 	req.fbo = 0;
4825 	/* Association of ring index with doorbell index and MSIX number */
4826 	req.logical_id = cpu_to_le16(map_index);
4827 
4828 	switch (ring_type) {
4829 	case HWRM_RING_ALLOC_TX: {
4830 		struct bnxt_tx_ring_info *txr;
4831 
4832 		txr = container_of(ring, struct bnxt_tx_ring_info,
4833 				   tx_ring_struct);
4834 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4835 		/* Association of transmit ring with completion ring */
4836 		grp_info = &bp->grp_info[ring->grp_idx];
4837 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
4838 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4839 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4840 		req.queue_id = cpu_to_le16(ring->queue_id);
4841 		break;
4842 	}
4843 	case HWRM_RING_ALLOC_RX:
4844 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4845 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4846 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4847 			u16 flags = 0;
4848 
4849 			/* Association of rx ring with stats context */
4850 			grp_info = &bp->grp_info[ring->grp_idx];
4851 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
4852 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4853 			req.enables |= cpu_to_le32(
4854 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4855 			if (NET_IP_ALIGN == 2)
4856 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
4857 			req.flags = cpu_to_le16(flags);
4858 		}
4859 		break;
4860 	case HWRM_RING_ALLOC_AGG:
4861 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4862 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
4863 			/* Association of agg ring with rx ring */
4864 			grp_info = &bp->grp_info[ring->grp_idx];
4865 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
4866 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
4867 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4868 			req.enables |= cpu_to_le32(
4869 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
4870 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4871 		} else {
4872 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4873 		}
4874 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4875 		break;
4876 	case HWRM_RING_ALLOC_CMPL:
4877 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4878 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4879 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4880 			/* Association of cp ring with nq */
4881 			grp_info = &bp->grp_info[map_index];
4882 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4883 			req.cq_handle = cpu_to_le64(ring->handle);
4884 			req.enables |= cpu_to_le32(
4885 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
4886 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
4887 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4888 		}
4889 		break;
4890 	case HWRM_RING_ALLOC_NQ:
4891 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
4892 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4893 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4894 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4895 		break;
4896 	default:
4897 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4898 			   ring_type);
4899 		return -1;
4900 	}
4901 
4902 	mutex_lock(&bp->hwrm_cmd_lock);
4903 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4904 	err = le16_to_cpu(resp->error_code);
4905 	ring_id = le16_to_cpu(resp->ring_id);
4906 	mutex_unlock(&bp->hwrm_cmd_lock);
4907 
4908 	if (rc || err) {
4909 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4910 			   ring_type, rc, err);
4911 		return -EIO;
4912 	}
4913 	ring->fw_ring_id = ring_id;
4914 	return rc;
4915 }
4916 
4917 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4918 {
4919 	int rc;
4920 
4921 	if (BNXT_PF(bp)) {
4922 		struct hwrm_func_cfg_input req = {0};
4923 
4924 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4925 		req.fid = cpu_to_le16(0xffff);
4926 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4927 		req.async_event_cr = cpu_to_le16(idx);
4928 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4929 	} else {
4930 		struct hwrm_func_vf_cfg_input req = {0};
4931 
4932 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4933 		req.enables =
4934 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4935 		req.async_event_cr = cpu_to_le16(idx);
4936 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4937 	}
4938 	return rc;
4939 }
4940 
4941 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
4942 			u32 map_idx, u32 xid)
4943 {
4944 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4945 		if (BNXT_PF(bp))
4946 			db->doorbell = bp->bar1 + 0x10000;
4947 		else
4948 			db->doorbell = bp->bar1 + 0x4000;
4949 		switch (ring_type) {
4950 		case HWRM_RING_ALLOC_TX:
4951 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
4952 			break;
4953 		case HWRM_RING_ALLOC_RX:
4954 		case HWRM_RING_ALLOC_AGG:
4955 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
4956 			break;
4957 		case HWRM_RING_ALLOC_CMPL:
4958 			db->db_key64 = DBR_PATH_L2;
4959 			break;
4960 		case HWRM_RING_ALLOC_NQ:
4961 			db->db_key64 = DBR_PATH_L2;
4962 			break;
4963 		}
4964 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
4965 	} else {
4966 		db->doorbell = bp->bar1 + map_idx * 0x80;
4967 		switch (ring_type) {
4968 		case HWRM_RING_ALLOC_TX:
4969 			db->db_key32 = DB_KEY_TX;
4970 			break;
4971 		case HWRM_RING_ALLOC_RX:
4972 		case HWRM_RING_ALLOC_AGG:
4973 			db->db_key32 = DB_KEY_RX;
4974 			break;
4975 		case HWRM_RING_ALLOC_CMPL:
4976 			db->db_key32 = DB_KEY_CP;
4977 			break;
4978 		}
4979 	}
4980 }
4981 
4982 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4983 {
4984 	int i, rc = 0;
4985 	u32 type;
4986 
4987 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4988 		type = HWRM_RING_ALLOC_NQ;
4989 	else
4990 		type = HWRM_RING_ALLOC_CMPL;
4991 	for (i = 0; i < bp->cp_nr_rings; i++) {
4992 		struct bnxt_napi *bnapi = bp->bnapi[i];
4993 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4994 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4995 		u32 map_idx = ring->map_idx;
4996 		unsigned int vector;
4997 
4998 		vector = bp->irq_tbl[map_idx].vector;
4999 		disable_irq_nosync(vector);
5000 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5001 		if (rc) {
5002 			enable_irq(vector);
5003 			goto err_out;
5004 		}
5005 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5006 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5007 		enable_irq(vector);
5008 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5009 
5010 		if (!i) {
5011 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5012 			if (rc)
5013 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5014 		}
5015 	}
5016 
5017 	type = HWRM_RING_ALLOC_TX;
5018 	for (i = 0; i < bp->tx_nr_rings; i++) {
5019 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5020 		struct bnxt_ring_struct *ring;
5021 		u32 map_idx;
5022 
5023 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5024 			struct bnxt_napi *bnapi = txr->bnapi;
5025 			struct bnxt_cp_ring_info *cpr, *cpr2;
5026 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5027 
5028 			cpr = &bnapi->cp_ring;
5029 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5030 			ring = &cpr2->cp_ring_struct;
5031 			ring->handle = BNXT_TX_HDL;
5032 			map_idx = bnapi->index;
5033 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5034 			if (rc)
5035 				goto err_out;
5036 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5037 				    ring->fw_ring_id);
5038 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5039 		}
5040 		ring = &txr->tx_ring_struct;
5041 		map_idx = i;
5042 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5043 		if (rc)
5044 			goto err_out;
5045 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5046 	}
5047 
5048 	type = HWRM_RING_ALLOC_RX;
5049 	for (i = 0; i < bp->rx_nr_rings; i++) {
5050 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5051 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5052 		struct bnxt_napi *bnapi = rxr->bnapi;
5053 		u32 map_idx = bnapi->index;
5054 
5055 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5056 		if (rc)
5057 			goto err_out;
5058 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5059 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5060 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5061 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5062 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5063 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5064 			struct bnxt_cp_ring_info *cpr2;
5065 
5066 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5067 			ring = &cpr2->cp_ring_struct;
5068 			ring->handle = BNXT_RX_HDL;
5069 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5070 			if (rc)
5071 				goto err_out;
5072 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5073 				    ring->fw_ring_id);
5074 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5075 		}
5076 	}
5077 
5078 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5079 		type = HWRM_RING_ALLOC_AGG;
5080 		for (i = 0; i < bp->rx_nr_rings; i++) {
5081 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5082 			struct bnxt_ring_struct *ring =
5083 						&rxr->rx_agg_ring_struct;
5084 			u32 grp_idx = ring->grp_idx;
5085 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5086 
5087 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5088 			if (rc)
5089 				goto err_out;
5090 
5091 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5092 				    ring->fw_ring_id);
5093 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5094 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5095 		}
5096 	}
5097 err_out:
5098 	return rc;
5099 }
5100 
5101 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5102 				   struct bnxt_ring_struct *ring,
5103 				   u32 ring_type, int cmpl_ring_id)
5104 {
5105 	int rc;
5106 	struct hwrm_ring_free_input req = {0};
5107 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5108 	u16 error_code;
5109 
5110 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5111 	req.ring_type = ring_type;
5112 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5113 
5114 	mutex_lock(&bp->hwrm_cmd_lock);
5115 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5116 	error_code = le16_to_cpu(resp->error_code);
5117 	mutex_unlock(&bp->hwrm_cmd_lock);
5118 
5119 	if (rc || error_code) {
5120 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5121 			   ring_type, rc, error_code);
5122 		return -EIO;
5123 	}
5124 	return 0;
5125 }
5126 
5127 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5128 {
5129 	u32 type;
5130 	int i;
5131 
5132 	if (!bp->bnapi)
5133 		return;
5134 
5135 	for (i = 0; i < bp->tx_nr_rings; i++) {
5136 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5137 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5138 		u32 cmpl_ring_id;
5139 
5140 		cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5141 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5142 			hwrm_ring_free_send_msg(bp, ring,
5143 						RING_FREE_REQ_RING_TYPE_TX,
5144 						close_path ? cmpl_ring_id :
5145 						INVALID_HW_RING_ID);
5146 			ring->fw_ring_id = INVALID_HW_RING_ID;
5147 		}
5148 	}
5149 
5150 	for (i = 0; i < bp->rx_nr_rings; i++) {
5151 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5152 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5153 		u32 grp_idx = rxr->bnapi->index;
5154 		u32 cmpl_ring_id;
5155 
5156 		cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5157 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5158 			hwrm_ring_free_send_msg(bp, ring,
5159 						RING_FREE_REQ_RING_TYPE_RX,
5160 						close_path ? cmpl_ring_id :
5161 						INVALID_HW_RING_ID);
5162 			ring->fw_ring_id = INVALID_HW_RING_ID;
5163 			bp->grp_info[grp_idx].rx_fw_ring_id =
5164 				INVALID_HW_RING_ID;
5165 		}
5166 	}
5167 
5168 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5169 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5170 	else
5171 		type = RING_FREE_REQ_RING_TYPE_RX;
5172 	for (i = 0; i < bp->rx_nr_rings; i++) {
5173 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5174 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5175 		u32 grp_idx = rxr->bnapi->index;
5176 		u32 cmpl_ring_id;
5177 
5178 		cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5179 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5180 			hwrm_ring_free_send_msg(bp, ring, type,
5181 						close_path ? cmpl_ring_id :
5182 						INVALID_HW_RING_ID);
5183 			ring->fw_ring_id = INVALID_HW_RING_ID;
5184 			bp->grp_info[grp_idx].agg_fw_ring_id =
5185 				INVALID_HW_RING_ID;
5186 		}
5187 	}
5188 
5189 	/* The completion rings are about to be freed.  After that the
5190 	 * IRQ doorbell will not work anymore.  So we need to disable
5191 	 * IRQ here.
5192 	 */
5193 	bnxt_disable_int_sync(bp);
5194 
5195 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5196 		type = RING_FREE_REQ_RING_TYPE_NQ;
5197 	else
5198 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5199 	for (i = 0; i < bp->cp_nr_rings; i++) {
5200 		struct bnxt_napi *bnapi = bp->bnapi[i];
5201 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5202 		struct bnxt_ring_struct *ring;
5203 		int j;
5204 
5205 		for (j = 0; j < 2; j++) {
5206 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5207 
5208 			if (cpr2) {
5209 				ring = &cpr2->cp_ring_struct;
5210 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5211 					continue;
5212 				hwrm_ring_free_send_msg(bp, ring,
5213 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5214 					INVALID_HW_RING_ID);
5215 				ring->fw_ring_id = INVALID_HW_RING_ID;
5216 			}
5217 		}
5218 		ring = &cpr->cp_ring_struct;
5219 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5220 			hwrm_ring_free_send_msg(bp, ring, type,
5221 						INVALID_HW_RING_ID);
5222 			ring->fw_ring_id = INVALID_HW_RING_ID;
5223 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5224 		}
5225 	}
5226 }
5227 
5228 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5229 			   bool shared);
5230 
5231 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5232 {
5233 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5234 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5235 	struct hwrm_func_qcfg_input req = {0};
5236 	int rc;
5237 
5238 	if (bp->hwrm_spec_code < 0x10601)
5239 		return 0;
5240 
5241 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5242 	req.fid = cpu_to_le16(0xffff);
5243 	mutex_lock(&bp->hwrm_cmd_lock);
5244 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5245 	if (rc) {
5246 		mutex_unlock(&bp->hwrm_cmd_lock);
5247 		return -EIO;
5248 	}
5249 
5250 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5251 	if (BNXT_NEW_RM(bp)) {
5252 		u16 cp, stats;
5253 
5254 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5255 		hw_resc->resv_hw_ring_grps =
5256 			le32_to_cpu(resp->alloc_hw_ring_grps);
5257 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5258 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5259 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5260 		hw_resc->resv_irqs = cp;
5261 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5262 			int rx = hw_resc->resv_rx_rings;
5263 			int tx = hw_resc->resv_tx_rings;
5264 
5265 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5266 				rx >>= 1;
5267 			if (cp < (rx + tx)) {
5268 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5269 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5270 					rx <<= 1;
5271 				hw_resc->resv_rx_rings = rx;
5272 				hw_resc->resv_tx_rings = tx;
5273 			}
5274 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5275 			hw_resc->resv_hw_ring_grps = rx;
5276 		}
5277 		hw_resc->resv_cp_rings = cp;
5278 		hw_resc->resv_stat_ctxs = stats;
5279 	}
5280 	mutex_unlock(&bp->hwrm_cmd_lock);
5281 	return 0;
5282 }
5283 
5284 /* Caller must hold bp->hwrm_cmd_lock */
5285 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5286 {
5287 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5288 	struct hwrm_func_qcfg_input req = {0};
5289 	int rc;
5290 
5291 	if (bp->hwrm_spec_code < 0x10601)
5292 		return 0;
5293 
5294 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5295 	req.fid = cpu_to_le16(fid);
5296 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5297 	if (!rc)
5298 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5299 
5300 	return rc;
5301 }
5302 
5303 static bool bnxt_rfs_supported(struct bnxt *bp);
5304 
5305 static void
5306 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5307 			     int tx_rings, int rx_rings, int ring_grps,
5308 			     int cp_rings, int stats, int vnics)
5309 {
5310 	u32 enables = 0;
5311 
5312 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5313 	req->fid = cpu_to_le16(0xffff);
5314 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5315 	req->num_tx_rings = cpu_to_le16(tx_rings);
5316 	if (BNXT_NEW_RM(bp)) {
5317 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5318 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5319 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5320 			enables |= tx_rings + ring_grps ?
5321 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
5322 				   FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5323 			enables |= rx_rings ?
5324 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5325 		} else {
5326 			enables |= cp_rings ?
5327 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
5328 				   FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5329 			enables |= ring_grps ?
5330 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5331 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5332 		}
5333 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5334 
5335 		req->num_rx_rings = cpu_to_le16(rx_rings);
5336 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5337 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5338 			req->num_msix = cpu_to_le16(cp_rings);
5339 			req->num_rsscos_ctxs =
5340 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5341 		} else {
5342 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
5343 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5344 			req->num_rsscos_ctxs = cpu_to_le16(1);
5345 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5346 			    bnxt_rfs_supported(bp))
5347 				req->num_rsscos_ctxs =
5348 					cpu_to_le16(ring_grps + 1);
5349 		}
5350 		req->num_stat_ctxs = cpu_to_le16(stats);
5351 		req->num_vnics = cpu_to_le16(vnics);
5352 	}
5353 	req->enables = cpu_to_le32(enables);
5354 }
5355 
5356 static void
5357 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5358 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
5359 			     int rx_rings, int ring_grps, int cp_rings,
5360 			     int stats, int vnics)
5361 {
5362 	u32 enables = 0;
5363 
5364 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5365 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5366 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5367 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5368 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5369 		enables |= tx_rings + ring_grps ?
5370 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
5371 			   FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5372 	} else {
5373 		enables |= cp_rings ?
5374 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
5375 			   FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5376 		enables |= ring_grps ?
5377 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5378 	}
5379 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5380 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5381 
5382 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5383 	req->num_tx_rings = cpu_to_le16(tx_rings);
5384 	req->num_rx_rings = cpu_to_le16(rx_rings);
5385 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5386 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5387 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5388 	} else {
5389 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
5390 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5391 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5392 	}
5393 	req->num_stat_ctxs = cpu_to_le16(stats);
5394 	req->num_vnics = cpu_to_le16(vnics);
5395 
5396 	req->enables = cpu_to_le32(enables);
5397 }
5398 
5399 static int
5400 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5401 			   int ring_grps, int cp_rings, int stats, int vnics)
5402 {
5403 	struct hwrm_func_cfg_input req = {0};
5404 	int rc;
5405 
5406 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5407 				     cp_rings, stats, vnics);
5408 	if (!req.enables)
5409 		return 0;
5410 
5411 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5412 	if (rc)
5413 		return -ENOMEM;
5414 
5415 	if (bp->hwrm_spec_code < 0x10601)
5416 		bp->hw_resc.resv_tx_rings = tx_rings;
5417 
5418 	rc = bnxt_hwrm_get_rings(bp);
5419 	return rc;
5420 }
5421 
5422 static int
5423 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5424 			   int ring_grps, int cp_rings, int stats, int vnics)
5425 {
5426 	struct hwrm_func_vf_cfg_input req = {0};
5427 	int rc;
5428 
5429 	if (!BNXT_NEW_RM(bp)) {
5430 		bp->hw_resc.resv_tx_rings = tx_rings;
5431 		return 0;
5432 	}
5433 
5434 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5435 				     cp_rings, stats, vnics);
5436 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5437 	if (rc)
5438 		return -ENOMEM;
5439 
5440 	rc = bnxt_hwrm_get_rings(bp);
5441 	return rc;
5442 }
5443 
5444 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5445 				   int cp, int stat, int vnic)
5446 {
5447 	if (BNXT_PF(bp))
5448 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5449 						  vnic);
5450 	else
5451 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5452 						  vnic);
5453 }
5454 
5455 int bnxt_nq_rings_in_use(struct bnxt *bp)
5456 {
5457 	int cp = bp->cp_nr_rings;
5458 	int ulp_msix, ulp_base;
5459 
5460 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5461 	if (ulp_msix) {
5462 		ulp_base = bnxt_get_ulp_msix_base(bp);
5463 		cp += ulp_msix;
5464 		if ((ulp_base + ulp_msix) > cp)
5465 			cp = ulp_base + ulp_msix;
5466 	}
5467 	return cp;
5468 }
5469 
5470 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5471 {
5472 	int cp;
5473 
5474 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5475 		return bnxt_nq_rings_in_use(bp);
5476 
5477 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
5478 	return cp;
5479 }
5480 
5481 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5482 {
5483 	return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp);
5484 }
5485 
5486 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5487 {
5488 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5489 	int cp = bnxt_cp_rings_in_use(bp);
5490 	int nq = bnxt_nq_rings_in_use(bp);
5491 	int rx = bp->rx_nr_rings, stat;
5492 	int vnic = 1, grp = rx;
5493 
5494 	if (bp->hwrm_spec_code < 0x10601)
5495 		return false;
5496 
5497 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5498 		return true;
5499 
5500 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5501 		vnic = rx + 1;
5502 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5503 		rx <<= 1;
5504 	stat = bnxt_get_func_stat_ctxs(bp);
5505 	if (BNXT_NEW_RM(bp) &&
5506 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5507 	     hw_resc->resv_irqs < nq || hw_resc->resv_vnics != vnic ||
5508 	     hw_resc->resv_stat_ctxs != stat ||
5509 	     (hw_resc->resv_hw_ring_grps != grp &&
5510 	      !(bp->flags & BNXT_FLAG_CHIP_P5))))
5511 		return true;
5512 	return false;
5513 }
5514 
5515 static int __bnxt_reserve_rings(struct bnxt *bp)
5516 {
5517 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5518 	int cp = bnxt_nq_rings_in_use(bp);
5519 	int tx = bp->tx_nr_rings;
5520 	int rx = bp->rx_nr_rings;
5521 	int grp, rx_rings, rc;
5522 	int vnic = 1, stat;
5523 	bool sh = false;
5524 
5525 	if (!bnxt_need_reserve_rings(bp))
5526 		return 0;
5527 
5528 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5529 		sh = true;
5530 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5531 		vnic = rx + 1;
5532 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5533 		rx <<= 1;
5534 	grp = bp->rx_nr_rings;
5535 	stat = bnxt_get_func_stat_ctxs(bp);
5536 
5537 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5538 	if (rc)
5539 		return rc;
5540 
5541 	tx = hw_resc->resv_tx_rings;
5542 	if (BNXT_NEW_RM(bp)) {
5543 		rx = hw_resc->resv_rx_rings;
5544 		cp = hw_resc->resv_irqs;
5545 		grp = hw_resc->resv_hw_ring_grps;
5546 		vnic = hw_resc->resv_vnics;
5547 		stat = hw_resc->resv_stat_ctxs;
5548 	}
5549 
5550 	rx_rings = rx;
5551 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5552 		if (rx >= 2) {
5553 			rx_rings = rx >> 1;
5554 		} else {
5555 			if (netif_running(bp->dev))
5556 				return -ENOMEM;
5557 
5558 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5559 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5560 			bp->dev->hw_features &= ~NETIF_F_LRO;
5561 			bp->dev->features &= ~NETIF_F_LRO;
5562 			bnxt_set_ring_params(bp);
5563 		}
5564 	}
5565 	rx_rings = min_t(int, rx_rings, grp);
5566 	cp = min_t(int, cp, bp->cp_nr_rings);
5567 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
5568 		stat -= bnxt_get_ulp_stat_ctxs(bp);
5569 	cp = min_t(int, cp, stat);
5570 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5571 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5572 		rx = rx_rings << 1;
5573 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
5574 	bp->tx_nr_rings = tx;
5575 	bp->rx_nr_rings = rx_rings;
5576 	bp->cp_nr_rings = cp;
5577 
5578 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
5579 		return -ENOMEM;
5580 
5581 	return rc;
5582 }
5583 
5584 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5585 				    int ring_grps, int cp_rings, int stats,
5586 				    int vnics)
5587 {
5588 	struct hwrm_func_vf_cfg_input req = {0};
5589 	u32 flags;
5590 	int rc;
5591 
5592 	if (!BNXT_NEW_RM(bp))
5593 		return 0;
5594 
5595 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5596 				     cp_rings, stats, vnics);
5597 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
5598 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5599 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5600 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5601 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
5602 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
5603 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5604 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5605 
5606 	req.flags = cpu_to_le32(flags);
5607 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5608 	if (rc)
5609 		return -ENOMEM;
5610 	return 0;
5611 }
5612 
5613 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5614 				    int ring_grps, int cp_rings, int stats,
5615 				    int vnics)
5616 {
5617 	struct hwrm_func_cfg_input req = {0};
5618 	u32 flags;
5619 	int rc;
5620 
5621 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5622 				     cp_rings, stats, vnics);
5623 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
5624 	if (BNXT_NEW_RM(bp)) {
5625 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5626 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5627 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5628 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
5629 		if (bp->flags & BNXT_FLAG_CHIP_P5)
5630 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
5631 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
5632 		else
5633 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5634 	}
5635 
5636 	req.flags = cpu_to_le32(flags);
5637 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5638 	if (rc)
5639 		return -ENOMEM;
5640 	return 0;
5641 }
5642 
5643 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5644 				 int ring_grps, int cp_rings, int stats,
5645 				 int vnics)
5646 {
5647 	if (bp->hwrm_spec_code < 0x10801)
5648 		return 0;
5649 
5650 	if (BNXT_PF(bp))
5651 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
5652 						ring_grps, cp_rings, stats,
5653 						vnics);
5654 
5655 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
5656 					cp_rings, stats, vnics);
5657 }
5658 
5659 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
5660 {
5661 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5662 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5663 	struct hwrm_ring_aggint_qcaps_input req = {0};
5664 	int rc;
5665 
5666 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
5667 	coal_cap->num_cmpl_dma_aggr_max = 63;
5668 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
5669 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
5670 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
5671 	coal_cap->int_lat_tmr_min_max = 65535;
5672 	coal_cap->int_lat_tmr_max_max = 65535;
5673 	coal_cap->num_cmpl_aggr_int_max = 65535;
5674 	coal_cap->timer_units = 80;
5675 
5676 	if (bp->hwrm_spec_code < 0x10902)
5677 		return;
5678 
5679 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
5680 	mutex_lock(&bp->hwrm_cmd_lock);
5681 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5682 	if (!rc) {
5683 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
5684 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
5685 		coal_cap->num_cmpl_dma_aggr_max =
5686 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
5687 		coal_cap->num_cmpl_dma_aggr_during_int_max =
5688 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
5689 		coal_cap->cmpl_aggr_dma_tmr_max =
5690 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
5691 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
5692 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
5693 		coal_cap->int_lat_tmr_min_max =
5694 			le16_to_cpu(resp->int_lat_tmr_min_max);
5695 		coal_cap->int_lat_tmr_max_max =
5696 			le16_to_cpu(resp->int_lat_tmr_max_max);
5697 		coal_cap->num_cmpl_aggr_int_max =
5698 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
5699 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
5700 	}
5701 	mutex_unlock(&bp->hwrm_cmd_lock);
5702 }
5703 
5704 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
5705 {
5706 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5707 
5708 	return usec * 1000 / coal_cap->timer_units;
5709 }
5710 
5711 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
5712 	struct bnxt_coal *hw_coal,
5713 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
5714 {
5715 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5716 	u32 cmpl_params = coal_cap->cmpl_params;
5717 	u16 val, tmr, max, flags = 0;
5718 
5719 	max = hw_coal->bufs_per_record * 128;
5720 	if (hw_coal->budget)
5721 		max = hw_coal->bufs_per_record * hw_coal->budget;
5722 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
5723 
5724 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
5725 	req->num_cmpl_aggr_int = cpu_to_le16(val);
5726 
5727 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
5728 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
5729 
5730 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
5731 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
5732 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
5733 
5734 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
5735 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
5736 	req->int_lat_tmr_max = cpu_to_le16(tmr);
5737 
5738 	/* min timer set to 1/2 of interrupt timer */
5739 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
5740 		val = tmr / 2;
5741 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
5742 		req->int_lat_tmr_min = cpu_to_le16(val);
5743 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5744 	}
5745 
5746 	/* buf timer set to 1/4 of interrupt timer */
5747 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
5748 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
5749 
5750 	if (cmpl_params &
5751 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
5752 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
5753 		val = clamp_t(u16, tmr, 1,
5754 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
5755 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
5756 		req->enables |=
5757 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
5758 	}
5759 
5760 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
5761 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
5762 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
5763 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
5764 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
5765 	req->flags = cpu_to_le16(flags);
5766 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
5767 }
5768 
5769 /* Caller holds bp->hwrm_cmd_lock */
5770 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
5771 				   struct bnxt_coal *hw_coal)
5772 {
5773 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
5774 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5775 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5776 	u32 nq_params = coal_cap->nq_params;
5777 	u16 tmr;
5778 
5779 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
5780 		return 0;
5781 
5782 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
5783 			       -1, -1);
5784 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
5785 	req.flags =
5786 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
5787 
5788 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
5789 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
5790 	req.int_lat_tmr_min = cpu_to_le16(tmr);
5791 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5792 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5793 }
5794 
5795 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
5796 {
5797 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
5798 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5799 	struct bnxt_coal coal;
5800 
5801 	/* Tick values in micro seconds.
5802 	 * 1 coal_buf x bufs_per_record = 1 completion record.
5803 	 */
5804 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
5805 
5806 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
5807 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
5808 
5809 	if (!bnapi->rx_ring)
5810 		return -ENODEV;
5811 
5812 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5813 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5814 
5815 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
5816 
5817 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
5818 
5819 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
5820 				 HWRM_CMD_TIMEOUT);
5821 }
5822 
5823 int bnxt_hwrm_set_coal(struct bnxt *bp)
5824 {
5825 	int i, rc = 0;
5826 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
5827 							   req_tx = {0}, *req;
5828 
5829 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5830 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5831 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
5832 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5833 
5834 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
5835 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
5836 
5837 	mutex_lock(&bp->hwrm_cmd_lock);
5838 	for (i = 0; i < bp->cp_nr_rings; i++) {
5839 		struct bnxt_napi *bnapi = bp->bnapi[i];
5840 		struct bnxt_coal *hw_coal;
5841 		u16 ring_id;
5842 
5843 		req = &req_rx;
5844 		if (!bnapi->rx_ring) {
5845 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5846 			req = &req_tx;
5847 		} else {
5848 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
5849 		}
5850 		req->ring_id = cpu_to_le16(ring_id);
5851 
5852 		rc = _hwrm_send_message(bp, req, sizeof(*req),
5853 					HWRM_CMD_TIMEOUT);
5854 		if (rc)
5855 			break;
5856 
5857 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5858 			continue;
5859 
5860 		if (bnapi->rx_ring && bnapi->tx_ring) {
5861 			req = &req_tx;
5862 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5863 			req->ring_id = cpu_to_le16(ring_id);
5864 			rc = _hwrm_send_message(bp, req, sizeof(*req),
5865 						HWRM_CMD_TIMEOUT);
5866 			if (rc)
5867 				break;
5868 		}
5869 		if (bnapi->rx_ring)
5870 			hw_coal = &bp->rx_coal;
5871 		else
5872 			hw_coal = &bp->tx_coal;
5873 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
5874 	}
5875 	mutex_unlock(&bp->hwrm_cmd_lock);
5876 	return rc;
5877 }
5878 
5879 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5880 {
5881 	int rc = 0, i;
5882 	struct hwrm_stat_ctx_free_input req = {0};
5883 
5884 	if (!bp->bnapi)
5885 		return 0;
5886 
5887 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5888 		return 0;
5889 
5890 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5891 
5892 	mutex_lock(&bp->hwrm_cmd_lock);
5893 	for (i = 0; i < bp->cp_nr_rings; i++) {
5894 		struct bnxt_napi *bnapi = bp->bnapi[i];
5895 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5896 
5897 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5898 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5899 
5900 			rc = _hwrm_send_message(bp, &req, sizeof(req),
5901 						HWRM_CMD_TIMEOUT);
5902 			if (rc)
5903 				break;
5904 
5905 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5906 		}
5907 	}
5908 	mutex_unlock(&bp->hwrm_cmd_lock);
5909 	return rc;
5910 }
5911 
5912 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
5913 {
5914 	int rc = 0, i;
5915 	struct hwrm_stat_ctx_alloc_input req = {0};
5916 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5917 
5918 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5919 		return 0;
5920 
5921 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
5922 
5923 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
5924 
5925 	mutex_lock(&bp->hwrm_cmd_lock);
5926 	for (i = 0; i < bp->cp_nr_rings; i++) {
5927 		struct bnxt_napi *bnapi = bp->bnapi[i];
5928 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5929 
5930 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
5931 
5932 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5933 					HWRM_CMD_TIMEOUT);
5934 		if (rc)
5935 			break;
5936 
5937 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5938 
5939 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5940 	}
5941 	mutex_unlock(&bp->hwrm_cmd_lock);
5942 	return rc;
5943 }
5944 
5945 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5946 {
5947 	struct hwrm_func_qcfg_input req = {0};
5948 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5949 	u16 flags;
5950 	int rc;
5951 
5952 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5953 	req.fid = cpu_to_le16(0xffff);
5954 	mutex_lock(&bp->hwrm_cmd_lock);
5955 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5956 	if (rc)
5957 		goto func_qcfg_exit;
5958 
5959 #ifdef CONFIG_BNXT_SRIOV
5960 	if (BNXT_VF(bp)) {
5961 		struct bnxt_vf_info *vf = &bp->vf;
5962 
5963 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5964 	}
5965 #endif
5966 	flags = le16_to_cpu(resp->flags);
5967 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5968 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5969 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
5970 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5971 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
5972 	}
5973 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
5974 		bp->flags |= BNXT_FLAG_MULTI_HOST;
5975 
5976 	switch (resp->port_partition_type) {
5977 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
5978 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
5979 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
5980 		bp->port_partition_type = resp->port_partition_type;
5981 		break;
5982 	}
5983 	if (bp->hwrm_spec_code < 0x10707 ||
5984 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
5985 		bp->br_mode = BRIDGE_MODE_VEB;
5986 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
5987 		bp->br_mode = BRIDGE_MODE_VEPA;
5988 	else
5989 		bp->br_mode = BRIDGE_MODE_UNDEF;
5990 
5991 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
5992 	if (!bp->max_mtu)
5993 		bp->max_mtu = BNXT_MAX_MTU;
5994 
5995 func_qcfg_exit:
5996 	mutex_unlock(&bp->hwrm_cmd_lock);
5997 	return rc;
5998 }
5999 
6000 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6001 {
6002 	struct hwrm_func_backing_store_qcaps_input req = {0};
6003 	struct hwrm_func_backing_store_qcaps_output *resp =
6004 		bp->hwrm_cmd_resp_addr;
6005 	int rc;
6006 
6007 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6008 		return 0;
6009 
6010 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6011 	mutex_lock(&bp->hwrm_cmd_lock);
6012 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6013 	if (!rc) {
6014 		struct bnxt_ctx_pg_info *ctx_pg;
6015 		struct bnxt_ctx_mem_info *ctx;
6016 		int i;
6017 
6018 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6019 		if (!ctx) {
6020 			rc = -ENOMEM;
6021 			goto ctx_err;
6022 		}
6023 		ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
6024 		if (!ctx_pg) {
6025 			kfree(ctx);
6026 			rc = -ENOMEM;
6027 			goto ctx_err;
6028 		}
6029 		for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
6030 			ctx->tqm_mem[i] = ctx_pg;
6031 
6032 		bp->ctx = ctx;
6033 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6034 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6035 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6036 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6037 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6038 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6039 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6040 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6041 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6042 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6043 		ctx->vnic_max_vnic_entries =
6044 			le16_to_cpu(resp->vnic_max_vnic_entries);
6045 		ctx->vnic_max_ring_table_entries =
6046 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6047 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6048 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6049 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6050 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6051 		ctx->tqm_min_entries_per_ring =
6052 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6053 		ctx->tqm_max_entries_per_ring =
6054 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6055 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6056 		if (!ctx->tqm_entries_multiple)
6057 			ctx->tqm_entries_multiple = 1;
6058 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6059 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6060 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6061 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6062 	} else {
6063 		rc = 0;
6064 	}
6065 ctx_err:
6066 	mutex_unlock(&bp->hwrm_cmd_lock);
6067 	return rc;
6068 }
6069 
6070 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6071 				  __le64 *pg_dir)
6072 {
6073 	u8 pg_size = 0;
6074 
6075 	if (BNXT_PAGE_SHIFT == 13)
6076 		pg_size = 1 << 4;
6077 	else if (BNXT_PAGE_SIZE == 16)
6078 		pg_size = 2 << 4;
6079 
6080 	*pg_attr = pg_size;
6081 	if (rmem->depth >= 1) {
6082 		if (rmem->depth == 2)
6083 			*pg_attr |= 2;
6084 		else
6085 			*pg_attr |= 1;
6086 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6087 	} else {
6088 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6089 	}
6090 }
6091 
6092 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6093 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6094 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6095 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6096 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6097 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6098 
6099 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6100 {
6101 	struct hwrm_func_backing_store_cfg_input req = {0};
6102 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6103 	struct bnxt_ctx_pg_info *ctx_pg;
6104 	__le32 *num_entries;
6105 	__le64 *pg_dir;
6106 	u8 *pg_attr;
6107 	int i, rc;
6108 	u32 ena;
6109 
6110 	if (!ctx)
6111 		return 0;
6112 
6113 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6114 	req.enables = cpu_to_le32(enables);
6115 
6116 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6117 		ctx_pg = &ctx->qp_mem;
6118 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6119 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6120 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6121 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6122 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6123 				      &req.qpc_pg_size_qpc_lvl,
6124 				      &req.qpc_page_dir);
6125 	}
6126 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6127 		ctx_pg = &ctx->srq_mem;
6128 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6129 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6130 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6131 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6132 				      &req.srq_pg_size_srq_lvl,
6133 				      &req.srq_page_dir);
6134 	}
6135 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6136 		ctx_pg = &ctx->cq_mem;
6137 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6138 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6139 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6140 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6141 				      &req.cq_page_dir);
6142 	}
6143 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6144 		ctx_pg = &ctx->vnic_mem;
6145 		req.vnic_num_vnic_entries =
6146 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6147 		req.vnic_num_ring_table_entries =
6148 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6149 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6150 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6151 				      &req.vnic_pg_size_vnic_lvl,
6152 				      &req.vnic_page_dir);
6153 	}
6154 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6155 		ctx_pg = &ctx->stat_mem;
6156 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6157 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6158 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6159 				      &req.stat_pg_size_stat_lvl,
6160 				      &req.stat_page_dir);
6161 	}
6162 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6163 		ctx_pg = &ctx->mrav_mem;
6164 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6165 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6166 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6167 				      &req.mrav_pg_size_mrav_lvl,
6168 				      &req.mrav_page_dir);
6169 	}
6170 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6171 		ctx_pg = &ctx->tim_mem;
6172 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6173 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6174 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6175 				      &req.tim_pg_size_tim_lvl,
6176 				      &req.tim_page_dir);
6177 	}
6178 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6179 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6180 	     pg_dir = &req.tqm_sp_page_dir,
6181 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6182 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6183 		if (!(enables & ena))
6184 			continue;
6185 
6186 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6187 		ctx_pg = ctx->tqm_mem[i];
6188 		*num_entries = cpu_to_le32(ctx_pg->entries);
6189 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6190 	}
6191 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6192 	if (rc)
6193 		rc = -EIO;
6194 	return rc;
6195 }
6196 
6197 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6198 				  struct bnxt_ctx_pg_info *ctx_pg)
6199 {
6200 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6201 
6202 	rmem->page_size = BNXT_PAGE_SIZE;
6203 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6204 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6205 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6206 	if (rmem->depth >= 1)
6207 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6208 	return bnxt_alloc_ring(bp, rmem);
6209 }
6210 
6211 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6212 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6213 				  u8 depth)
6214 {
6215 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6216 	int rc;
6217 
6218 	if (!mem_size)
6219 		return 0;
6220 
6221 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6222 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6223 		ctx_pg->nr_pages = 0;
6224 		return -EINVAL;
6225 	}
6226 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6227 		int nr_tbls, i;
6228 
6229 		rmem->depth = 2;
6230 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6231 					     GFP_KERNEL);
6232 		if (!ctx_pg->ctx_pg_tbl)
6233 			return -ENOMEM;
6234 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6235 		rmem->nr_pages = nr_tbls;
6236 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6237 		if (rc)
6238 			return rc;
6239 		for (i = 0; i < nr_tbls; i++) {
6240 			struct bnxt_ctx_pg_info *pg_tbl;
6241 
6242 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6243 			if (!pg_tbl)
6244 				return -ENOMEM;
6245 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6246 			rmem = &pg_tbl->ring_mem;
6247 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6248 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6249 			rmem->depth = 1;
6250 			rmem->nr_pages = MAX_CTX_PAGES;
6251 			if (i == (nr_tbls - 1)) {
6252 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6253 
6254 				if (rem)
6255 					rmem->nr_pages = rem;
6256 			}
6257 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6258 			if (rc)
6259 				break;
6260 		}
6261 	} else {
6262 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6263 		if (rmem->nr_pages > 1 || depth)
6264 			rmem->depth = 1;
6265 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6266 	}
6267 	return rc;
6268 }
6269 
6270 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6271 				  struct bnxt_ctx_pg_info *ctx_pg)
6272 {
6273 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6274 
6275 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6276 	    ctx_pg->ctx_pg_tbl) {
6277 		int i, nr_tbls = rmem->nr_pages;
6278 
6279 		for (i = 0; i < nr_tbls; i++) {
6280 			struct bnxt_ctx_pg_info *pg_tbl;
6281 			struct bnxt_ring_mem_info *rmem2;
6282 
6283 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
6284 			if (!pg_tbl)
6285 				continue;
6286 			rmem2 = &pg_tbl->ring_mem;
6287 			bnxt_free_ring(bp, rmem2);
6288 			ctx_pg->ctx_pg_arr[i] = NULL;
6289 			kfree(pg_tbl);
6290 			ctx_pg->ctx_pg_tbl[i] = NULL;
6291 		}
6292 		kfree(ctx_pg->ctx_pg_tbl);
6293 		ctx_pg->ctx_pg_tbl = NULL;
6294 	}
6295 	bnxt_free_ring(bp, rmem);
6296 	ctx_pg->nr_pages = 0;
6297 }
6298 
6299 static void bnxt_free_ctx_mem(struct bnxt *bp)
6300 {
6301 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6302 	int i;
6303 
6304 	if (!ctx)
6305 		return;
6306 
6307 	if (ctx->tqm_mem[0]) {
6308 		for (i = 0; i < bp->max_q + 1; i++)
6309 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6310 		kfree(ctx->tqm_mem[0]);
6311 		ctx->tqm_mem[0] = NULL;
6312 	}
6313 
6314 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6315 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6316 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6317 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6318 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6319 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6320 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6321 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6322 }
6323 
6324 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6325 {
6326 	struct bnxt_ctx_pg_info *ctx_pg;
6327 	struct bnxt_ctx_mem_info *ctx;
6328 	u32 mem_size, ena, entries;
6329 	u32 extra_srqs = 0;
6330 	u32 extra_qps = 0;
6331 	u8 pg_lvl = 1;
6332 	int i, rc;
6333 
6334 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6335 	if (rc) {
6336 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6337 			   rc);
6338 		return rc;
6339 	}
6340 	ctx = bp->ctx;
6341 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6342 		return 0;
6343 
6344 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
6345 		pg_lvl = 2;
6346 		extra_qps = 65536;
6347 		extra_srqs = 8192;
6348 	}
6349 
6350 	ctx_pg = &ctx->qp_mem;
6351 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6352 			  extra_qps;
6353 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
6354 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6355 	if (rc)
6356 		return rc;
6357 
6358 	ctx_pg = &ctx->srq_mem;
6359 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6360 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
6361 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6362 	if (rc)
6363 		return rc;
6364 
6365 	ctx_pg = &ctx->cq_mem;
6366 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6367 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
6368 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6369 	if (rc)
6370 		return rc;
6371 
6372 	ctx_pg = &ctx->vnic_mem;
6373 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
6374 			  ctx->vnic_max_ring_table_entries;
6375 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6376 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6377 	if (rc)
6378 		return rc;
6379 
6380 	ctx_pg = &ctx->stat_mem;
6381 	ctx_pg->entries = ctx->stat_max_entries;
6382 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
6383 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6384 	if (rc)
6385 		return rc;
6386 
6387 	ena = 0;
6388 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6389 		goto skip_rdma;
6390 
6391 	ctx_pg = &ctx->mrav_mem;
6392 	ctx_pg->entries = extra_qps * 4;
6393 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6394 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2);
6395 	if (rc)
6396 		return rc;
6397 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6398 
6399 	ctx_pg = &ctx->tim_mem;
6400 	ctx_pg->entries = ctx->qp_mem.entries;
6401 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
6402 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6403 	if (rc)
6404 		return rc;
6405 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6406 
6407 skip_rdma:
6408 	entries = ctx->qp_max_l2_entries + extra_qps;
6409 	entries = roundup(entries, ctx->tqm_entries_multiple);
6410 	entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
6411 			  ctx->tqm_max_entries_per_ring);
6412 	for (i = 0; i < bp->max_q + 1; i++) {
6413 		ctx_pg = ctx->tqm_mem[i];
6414 		ctx_pg->entries = entries;
6415 		mem_size = ctx->tqm_entry_size * entries;
6416 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6417 		if (rc)
6418 			return rc;
6419 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6420 	}
6421 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6422 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6423 	if (rc)
6424 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6425 			   rc);
6426 	else
6427 		ctx->flags |= BNXT_CTX_FLAG_INITED;
6428 
6429 	return 0;
6430 }
6431 
6432 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6433 {
6434 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6435 	struct hwrm_func_resource_qcaps_input req = {0};
6436 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6437 	int rc;
6438 
6439 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6440 	req.fid = cpu_to_le16(0xffff);
6441 
6442 	mutex_lock(&bp->hwrm_cmd_lock);
6443 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6444 				       HWRM_CMD_TIMEOUT);
6445 	if (rc) {
6446 		rc = -EIO;
6447 		goto hwrm_func_resc_qcaps_exit;
6448 	}
6449 
6450 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6451 	if (!all)
6452 		goto hwrm_func_resc_qcaps_exit;
6453 
6454 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6455 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6456 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6457 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6458 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6459 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6460 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6461 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6462 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6463 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6464 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6465 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6466 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6467 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6468 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6469 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6470 
6471 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6472 		u16 max_msix = le16_to_cpu(resp->max_msix);
6473 
6474 		hw_resc->max_nqs = max_msix;
6475 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6476 	}
6477 
6478 	if (BNXT_PF(bp)) {
6479 		struct bnxt_pf_info *pf = &bp->pf;
6480 
6481 		pf->vf_resv_strategy =
6482 			le16_to_cpu(resp->vf_reservation_strategy);
6483 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6484 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6485 	}
6486 hwrm_func_resc_qcaps_exit:
6487 	mutex_unlock(&bp->hwrm_cmd_lock);
6488 	return rc;
6489 }
6490 
6491 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6492 {
6493 	int rc = 0;
6494 	struct hwrm_func_qcaps_input req = {0};
6495 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6496 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6497 	u32 flags;
6498 
6499 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6500 	req.fid = cpu_to_le16(0xffff);
6501 
6502 	mutex_lock(&bp->hwrm_cmd_lock);
6503 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6504 	if (rc)
6505 		goto hwrm_func_qcaps_exit;
6506 
6507 	flags = le32_to_cpu(resp->flags);
6508 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6509 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6510 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6511 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6512 
6513 	bp->tx_push_thresh = 0;
6514 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
6515 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6516 
6517 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6518 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6519 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6520 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6521 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
6522 	if (!hw_resc->max_hw_ring_grps)
6523 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
6524 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6525 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6526 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6527 
6528 	if (BNXT_PF(bp)) {
6529 		struct bnxt_pf_info *pf = &bp->pf;
6530 
6531 		pf->fw_fid = le16_to_cpu(resp->fid);
6532 		pf->port_id = le16_to_cpu(resp->port_id);
6533 		bp->dev->dev_port = pf->port_id;
6534 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
6535 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
6536 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
6537 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
6538 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
6539 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
6540 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
6541 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
6542 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
6543 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
6544 			bp->flags |= BNXT_FLAG_WOL_CAP;
6545 	} else {
6546 #ifdef CONFIG_BNXT_SRIOV
6547 		struct bnxt_vf_info *vf = &bp->vf;
6548 
6549 		vf->fw_fid = le16_to_cpu(resp->fid);
6550 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
6551 #endif
6552 	}
6553 
6554 hwrm_func_qcaps_exit:
6555 	mutex_unlock(&bp->hwrm_cmd_lock);
6556 	return rc;
6557 }
6558 
6559 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
6560 
6561 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
6562 {
6563 	int rc;
6564 
6565 	rc = __bnxt_hwrm_func_qcaps(bp);
6566 	if (rc)
6567 		return rc;
6568 	rc = bnxt_hwrm_queue_qportcfg(bp);
6569 	if (rc) {
6570 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
6571 		return rc;
6572 	}
6573 	if (bp->hwrm_spec_code >= 0x10803) {
6574 		rc = bnxt_alloc_ctx_mem(bp);
6575 		if (rc)
6576 			return rc;
6577 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
6578 		if (!rc)
6579 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
6580 	}
6581 	return 0;
6582 }
6583 
6584 static int bnxt_hwrm_func_reset(struct bnxt *bp)
6585 {
6586 	struct hwrm_func_reset_input req = {0};
6587 
6588 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
6589 	req.enables = 0;
6590 
6591 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
6592 }
6593 
6594 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
6595 {
6596 	int rc = 0;
6597 	struct hwrm_queue_qportcfg_input req = {0};
6598 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
6599 	u8 i, j, *qptr;
6600 	bool no_rdma;
6601 
6602 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
6603 
6604 	mutex_lock(&bp->hwrm_cmd_lock);
6605 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6606 	if (rc)
6607 		goto qportcfg_exit;
6608 
6609 	if (!resp->max_configurable_queues) {
6610 		rc = -EINVAL;
6611 		goto qportcfg_exit;
6612 	}
6613 	bp->max_tc = resp->max_configurable_queues;
6614 	bp->max_lltc = resp->max_configurable_lossless_queues;
6615 	if (bp->max_tc > BNXT_MAX_QUEUE)
6616 		bp->max_tc = BNXT_MAX_QUEUE;
6617 
6618 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
6619 	qptr = &resp->queue_id0;
6620 	for (i = 0, j = 0; i < bp->max_tc; i++) {
6621 		bp->q_info[j].queue_id = *qptr;
6622 		bp->q_ids[i] = *qptr++;
6623 		bp->q_info[j].queue_profile = *qptr++;
6624 		bp->tc_to_qidx[j] = j;
6625 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
6626 		    (no_rdma && BNXT_PF(bp)))
6627 			j++;
6628 	}
6629 	bp->max_q = bp->max_tc;
6630 	bp->max_tc = max_t(u8, j, 1);
6631 
6632 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
6633 		bp->max_tc = 1;
6634 
6635 	if (bp->max_lltc > bp->max_tc)
6636 		bp->max_lltc = bp->max_tc;
6637 
6638 qportcfg_exit:
6639 	mutex_unlock(&bp->hwrm_cmd_lock);
6640 	return rc;
6641 }
6642 
6643 static int bnxt_hwrm_ver_get(struct bnxt *bp)
6644 {
6645 	int rc;
6646 	struct hwrm_ver_get_input req = {0};
6647 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
6648 	u32 dev_caps_cfg;
6649 
6650 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
6651 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
6652 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
6653 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
6654 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
6655 	mutex_lock(&bp->hwrm_cmd_lock);
6656 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6657 	if (rc)
6658 		goto hwrm_ver_get_exit;
6659 
6660 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
6661 
6662 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
6663 			     resp->hwrm_intf_min_8b << 8 |
6664 			     resp->hwrm_intf_upd_8b;
6665 	if (resp->hwrm_intf_maj_8b < 1) {
6666 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
6667 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
6668 			    resp->hwrm_intf_upd_8b);
6669 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
6670 	}
6671 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
6672 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
6673 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
6674 
6675 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
6676 	if (!bp->hwrm_cmd_timeout)
6677 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
6678 
6679 	if (resp->hwrm_intf_maj_8b >= 1) {
6680 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
6681 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
6682 	}
6683 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
6684 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
6685 
6686 	bp->chip_num = le16_to_cpu(resp->chip_num);
6687 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
6688 	    !resp->chip_metal)
6689 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
6690 
6691 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
6692 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
6693 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
6694 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
6695 
6696 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
6697 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
6698 
6699 	if (dev_caps_cfg &
6700 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
6701 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
6702 
6703 	if (dev_caps_cfg &
6704 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
6705 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
6706 
6707 hwrm_ver_get_exit:
6708 	mutex_unlock(&bp->hwrm_cmd_lock);
6709 	return rc;
6710 }
6711 
6712 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
6713 {
6714 	struct hwrm_fw_set_time_input req = {0};
6715 	struct tm tm;
6716 	time64_t now = ktime_get_real_seconds();
6717 
6718 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
6719 	    bp->hwrm_spec_code < 0x10400)
6720 		return -EOPNOTSUPP;
6721 
6722 	time64_to_tm(now, 0, &tm);
6723 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
6724 	req.year = cpu_to_le16(1900 + tm.tm_year);
6725 	req.month = 1 + tm.tm_mon;
6726 	req.day = tm.tm_mday;
6727 	req.hour = tm.tm_hour;
6728 	req.minute = tm.tm_min;
6729 	req.second = tm.tm_sec;
6730 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6731 }
6732 
6733 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
6734 {
6735 	int rc;
6736 	struct bnxt_pf_info *pf = &bp->pf;
6737 	struct hwrm_port_qstats_input req = {0};
6738 
6739 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
6740 		return 0;
6741 
6742 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
6743 	req.port_id = cpu_to_le16(pf->port_id);
6744 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
6745 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
6746 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6747 	return rc;
6748 }
6749 
6750 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
6751 {
6752 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
6753 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
6754 	struct hwrm_port_qstats_ext_input req = {0};
6755 	struct bnxt_pf_info *pf = &bp->pf;
6756 	int rc;
6757 
6758 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
6759 		return 0;
6760 
6761 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
6762 	req.port_id = cpu_to_le16(pf->port_id);
6763 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
6764 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
6765 	req.tx_stat_size = cpu_to_le16(sizeof(struct tx_port_stats_ext));
6766 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
6767 	mutex_lock(&bp->hwrm_cmd_lock);
6768 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6769 	if (!rc) {
6770 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
6771 		bp->fw_tx_stats_ext_size = le16_to_cpu(resp->tx_stat_size) / 8;
6772 	} else {
6773 		bp->fw_rx_stats_ext_size = 0;
6774 		bp->fw_tx_stats_ext_size = 0;
6775 	}
6776 	if (bp->fw_tx_stats_ext_size <=
6777 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
6778 		mutex_unlock(&bp->hwrm_cmd_lock);
6779 		bp->pri2cos_valid = 0;
6780 		return rc;
6781 	}
6782 
6783 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
6784 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
6785 
6786 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
6787 	if (!rc) {
6788 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
6789 		u8 *pri2cos;
6790 		int i, j;
6791 
6792 		resp2 = bp->hwrm_cmd_resp_addr;
6793 		pri2cos = &resp2->pri0_cos_queue_id;
6794 		for (i = 0; i < 8; i++) {
6795 			u8 queue_id = pri2cos[i];
6796 
6797 			for (j = 0; j < bp->max_q; j++) {
6798 				if (bp->q_ids[j] == queue_id)
6799 					bp->pri2cos[i] = j;
6800 			}
6801 		}
6802 		bp->pri2cos_valid = 1;
6803 	}
6804 	mutex_unlock(&bp->hwrm_cmd_lock);
6805 	return rc;
6806 }
6807 
6808 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
6809 {
6810 	if (bp->vxlan_port_cnt) {
6811 		bnxt_hwrm_tunnel_dst_port_free(
6812 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6813 	}
6814 	bp->vxlan_port_cnt = 0;
6815 	if (bp->nge_port_cnt) {
6816 		bnxt_hwrm_tunnel_dst_port_free(
6817 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6818 	}
6819 	bp->nge_port_cnt = 0;
6820 }
6821 
6822 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
6823 {
6824 	int rc, i;
6825 	u32 tpa_flags = 0;
6826 
6827 	if (set_tpa)
6828 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
6829 	for (i = 0; i < bp->nr_vnics; i++) {
6830 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
6831 		if (rc) {
6832 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
6833 				   i, rc);
6834 			return rc;
6835 		}
6836 	}
6837 	return 0;
6838 }
6839 
6840 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
6841 {
6842 	int i;
6843 
6844 	for (i = 0; i < bp->nr_vnics; i++)
6845 		bnxt_hwrm_vnic_set_rss(bp, i, false);
6846 }
6847 
6848 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
6849 				    bool irq_re_init)
6850 {
6851 	if (bp->vnic_info) {
6852 		bnxt_hwrm_clear_vnic_filter(bp);
6853 		/* clear all RSS setting before free vnic ctx */
6854 		bnxt_hwrm_clear_vnic_rss(bp);
6855 		bnxt_hwrm_vnic_ctx_free(bp);
6856 		/* before free the vnic, undo the vnic tpa settings */
6857 		if (bp->flags & BNXT_FLAG_TPA)
6858 			bnxt_set_tpa(bp, false);
6859 		bnxt_hwrm_vnic_free(bp);
6860 	}
6861 	bnxt_hwrm_ring_free(bp, close_path);
6862 	bnxt_hwrm_ring_grp_free(bp);
6863 	if (irq_re_init) {
6864 		bnxt_hwrm_stat_ctx_free(bp);
6865 		bnxt_hwrm_free_tunnel_ports(bp);
6866 	}
6867 }
6868 
6869 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
6870 {
6871 	struct hwrm_func_cfg_input req = {0};
6872 	int rc;
6873 
6874 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
6875 	req.fid = cpu_to_le16(0xffff);
6876 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
6877 	if (br_mode == BRIDGE_MODE_VEB)
6878 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
6879 	else if (br_mode == BRIDGE_MODE_VEPA)
6880 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
6881 	else
6882 		return -EINVAL;
6883 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6884 	if (rc)
6885 		rc = -EIO;
6886 	return rc;
6887 }
6888 
6889 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
6890 {
6891 	struct hwrm_func_cfg_input req = {0};
6892 	int rc;
6893 
6894 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
6895 		return 0;
6896 
6897 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
6898 	req.fid = cpu_to_le16(0xffff);
6899 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
6900 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
6901 	if (size == 128)
6902 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
6903 
6904 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6905 	if (rc)
6906 		rc = -EIO;
6907 	return rc;
6908 }
6909 
6910 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
6911 {
6912 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6913 	int rc;
6914 
6915 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
6916 		goto skip_rss_ctx;
6917 
6918 	/* allocate context for vnic */
6919 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
6920 	if (rc) {
6921 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
6922 			   vnic_id, rc);
6923 		goto vnic_setup_err;
6924 	}
6925 	bp->rsscos_nr_ctxs++;
6926 
6927 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6928 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
6929 		if (rc) {
6930 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
6931 				   vnic_id, rc);
6932 			goto vnic_setup_err;
6933 		}
6934 		bp->rsscos_nr_ctxs++;
6935 	}
6936 
6937 skip_rss_ctx:
6938 	/* configure default vnic, ring grp */
6939 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
6940 	if (rc) {
6941 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
6942 			   vnic_id, rc);
6943 		goto vnic_setup_err;
6944 	}
6945 
6946 	/* Enable RSS hashing on vnic */
6947 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
6948 	if (rc) {
6949 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
6950 			   vnic_id, rc);
6951 		goto vnic_setup_err;
6952 	}
6953 
6954 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6955 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
6956 		if (rc) {
6957 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
6958 				   vnic_id, rc);
6959 		}
6960 	}
6961 
6962 vnic_setup_err:
6963 	return rc;
6964 }
6965 
6966 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
6967 {
6968 	int rc, i, nr_ctxs;
6969 
6970 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
6971 	for (i = 0; i < nr_ctxs; i++) {
6972 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
6973 		if (rc) {
6974 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
6975 				   vnic_id, i, rc);
6976 			break;
6977 		}
6978 		bp->rsscos_nr_ctxs++;
6979 	}
6980 	if (i < nr_ctxs)
6981 		return -ENOMEM;
6982 
6983 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
6984 	if (rc) {
6985 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
6986 			   vnic_id, rc);
6987 		return rc;
6988 	}
6989 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
6990 	if (rc) {
6991 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
6992 			   vnic_id, rc);
6993 		return rc;
6994 	}
6995 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6996 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
6997 		if (rc) {
6998 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
6999 				   vnic_id, rc);
7000 		}
7001 	}
7002 	return rc;
7003 }
7004 
7005 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7006 {
7007 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7008 		return __bnxt_setup_vnic_p5(bp, vnic_id);
7009 	else
7010 		return __bnxt_setup_vnic(bp, vnic_id);
7011 }
7012 
7013 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7014 {
7015 #ifdef CONFIG_RFS_ACCEL
7016 	int i, rc = 0;
7017 
7018 	for (i = 0; i < bp->rx_nr_rings; i++) {
7019 		struct bnxt_vnic_info *vnic;
7020 		u16 vnic_id = i + 1;
7021 		u16 ring_id = i;
7022 
7023 		if (vnic_id >= bp->nr_vnics)
7024 			break;
7025 
7026 		vnic = &bp->vnic_info[vnic_id];
7027 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
7028 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7029 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7030 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7031 		if (rc) {
7032 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7033 				   vnic_id, rc);
7034 			break;
7035 		}
7036 		rc = bnxt_setup_vnic(bp, vnic_id);
7037 		if (rc)
7038 			break;
7039 	}
7040 	return rc;
7041 #else
7042 	return 0;
7043 #endif
7044 }
7045 
7046 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7047 static bool bnxt_promisc_ok(struct bnxt *bp)
7048 {
7049 #ifdef CONFIG_BNXT_SRIOV
7050 	if (BNXT_VF(bp) && !bp->vf.vlan)
7051 		return false;
7052 #endif
7053 	return true;
7054 }
7055 
7056 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7057 {
7058 	unsigned int rc = 0;
7059 
7060 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7061 	if (rc) {
7062 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7063 			   rc);
7064 		return rc;
7065 	}
7066 
7067 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
7068 	if (rc) {
7069 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7070 			   rc);
7071 		return rc;
7072 	}
7073 	return rc;
7074 }
7075 
7076 static int bnxt_cfg_rx_mode(struct bnxt *);
7077 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7078 
7079 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7080 {
7081 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7082 	int rc = 0;
7083 	unsigned int rx_nr_rings = bp->rx_nr_rings;
7084 
7085 	if (irq_re_init) {
7086 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
7087 		if (rc) {
7088 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7089 				   rc);
7090 			goto err_out;
7091 		}
7092 	}
7093 
7094 	rc = bnxt_hwrm_ring_alloc(bp);
7095 	if (rc) {
7096 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7097 		goto err_out;
7098 	}
7099 
7100 	rc = bnxt_hwrm_ring_grp_alloc(bp);
7101 	if (rc) {
7102 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7103 		goto err_out;
7104 	}
7105 
7106 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7107 		rx_nr_rings--;
7108 
7109 	/* default vnic 0 */
7110 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7111 	if (rc) {
7112 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7113 		goto err_out;
7114 	}
7115 
7116 	rc = bnxt_setup_vnic(bp, 0);
7117 	if (rc)
7118 		goto err_out;
7119 
7120 	if (bp->flags & BNXT_FLAG_RFS) {
7121 		rc = bnxt_alloc_rfs_vnics(bp);
7122 		if (rc)
7123 			goto err_out;
7124 	}
7125 
7126 	if (bp->flags & BNXT_FLAG_TPA) {
7127 		rc = bnxt_set_tpa(bp, true);
7128 		if (rc)
7129 			goto err_out;
7130 	}
7131 
7132 	if (BNXT_VF(bp))
7133 		bnxt_update_vf_mac(bp);
7134 
7135 	/* Filter for default vnic 0 */
7136 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7137 	if (rc) {
7138 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7139 		goto err_out;
7140 	}
7141 	vnic->uc_filter_count = 1;
7142 
7143 	vnic->rx_mask = 0;
7144 	if (bp->dev->flags & IFF_BROADCAST)
7145 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7146 
7147 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7148 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7149 
7150 	if (bp->dev->flags & IFF_ALLMULTI) {
7151 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7152 		vnic->mc_list_count = 0;
7153 	} else {
7154 		u32 mask = 0;
7155 
7156 		bnxt_mc_list_updated(bp, &mask);
7157 		vnic->rx_mask |= mask;
7158 	}
7159 
7160 	rc = bnxt_cfg_rx_mode(bp);
7161 	if (rc)
7162 		goto err_out;
7163 
7164 	rc = bnxt_hwrm_set_coal(bp);
7165 	if (rc)
7166 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7167 				rc);
7168 
7169 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7170 		rc = bnxt_setup_nitroa0_vnic(bp);
7171 		if (rc)
7172 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7173 				   rc);
7174 	}
7175 
7176 	if (BNXT_VF(bp)) {
7177 		bnxt_hwrm_func_qcfg(bp);
7178 		netdev_update_features(bp->dev);
7179 	}
7180 
7181 	return 0;
7182 
7183 err_out:
7184 	bnxt_hwrm_resource_free(bp, 0, true);
7185 
7186 	return rc;
7187 }
7188 
7189 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7190 {
7191 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7192 	return 0;
7193 }
7194 
7195 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7196 {
7197 	bnxt_init_cp_rings(bp);
7198 	bnxt_init_rx_rings(bp);
7199 	bnxt_init_tx_rings(bp);
7200 	bnxt_init_ring_grps(bp, irq_re_init);
7201 	bnxt_init_vnics(bp);
7202 
7203 	return bnxt_init_chip(bp, irq_re_init);
7204 }
7205 
7206 static int bnxt_set_real_num_queues(struct bnxt *bp)
7207 {
7208 	int rc;
7209 	struct net_device *dev = bp->dev;
7210 
7211 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7212 					  bp->tx_nr_rings_xdp);
7213 	if (rc)
7214 		return rc;
7215 
7216 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7217 	if (rc)
7218 		return rc;
7219 
7220 #ifdef CONFIG_RFS_ACCEL
7221 	if (bp->flags & BNXT_FLAG_RFS)
7222 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7223 #endif
7224 
7225 	return rc;
7226 }
7227 
7228 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7229 			   bool shared)
7230 {
7231 	int _rx = *rx, _tx = *tx;
7232 
7233 	if (shared) {
7234 		*rx = min_t(int, _rx, max);
7235 		*tx = min_t(int, _tx, max);
7236 	} else {
7237 		if (max < 2)
7238 			return -ENOMEM;
7239 
7240 		while (_rx + _tx > max) {
7241 			if (_rx > _tx && _rx > 1)
7242 				_rx--;
7243 			else if (_tx > 1)
7244 				_tx--;
7245 		}
7246 		*rx = _rx;
7247 		*tx = _tx;
7248 	}
7249 	return 0;
7250 }
7251 
7252 static void bnxt_setup_msix(struct bnxt *bp)
7253 {
7254 	const int len = sizeof(bp->irq_tbl[0].name);
7255 	struct net_device *dev = bp->dev;
7256 	int tcs, i;
7257 
7258 	tcs = netdev_get_num_tc(dev);
7259 	if (tcs > 1) {
7260 		int i, off, count;
7261 
7262 		for (i = 0; i < tcs; i++) {
7263 			count = bp->tx_nr_rings_per_tc;
7264 			off = i * count;
7265 			netdev_set_tc_queue(dev, i, count, off);
7266 		}
7267 	}
7268 
7269 	for (i = 0; i < bp->cp_nr_rings; i++) {
7270 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7271 		char *attr;
7272 
7273 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7274 			attr = "TxRx";
7275 		else if (i < bp->rx_nr_rings)
7276 			attr = "rx";
7277 		else
7278 			attr = "tx";
7279 
7280 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7281 			 attr, i);
7282 		bp->irq_tbl[map_idx].handler = bnxt_msix;
7283 	}
7284 }
7285 
7286 static void bnxt_setup_inta(struct bnxt *bp)
7287 {
7288 	const int len = sizeof(bp->irq_tbl[0].name);
7289 
7290 	if (netdev_get_num_tc(bp->dev))
7291 		netdev_reset_tc(bp->dev);
7292 
7293 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7294 		 0);
7295 	bp->irq_tbl[0].handler = bnxt_inta;
7296 }
7297 
7298 static int bnxt_setup_int_mode(struct bnxt *bp)
7299 {
7300 	int rc;
7301 
7302 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7303 		bnxt_setup_msix(bp);
7304 	else
7305 		bnxt_setup_inta(bp);
7306 
7307 	rc = bnxt_set_real_num_queues(bp);
7308 	return rc;
7309 }
7310 
7311 #ifdef CONFIG_RFS_ACCEL
7312 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7313 {
7314 	return bp->hw_resc.max_rsscos_ctxs;
7315 }
7316 
7317 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7318 {
7319 	return bp->hw_resc.max_vnics;
7320 }
7321 #endif
7322 
7323 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
7324 {
7325 	return bp->hw_resc.max_stat_ctxs;
7326 }
7327 
7328 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
7329 {
7330 	return bp->hw_resc.max_cp_rings;
7331 }
7332 
7333 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
7334 {
7335 	unsigned int cp = bp->hw_resc.max_cp_rings;
7336 
7337 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7338 		cp -= bnxt_get_ulp_msix_num(bp);
7339 
7340 	return cp;
7341 }
7342 
7343 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
7344 {
7345 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7346 
7347 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7348 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
7349 
7350 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
7351 }
7352 
7353 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
7354 {
7355 	bp->hw_resc.max_irqs = max_irqs;
7356 }
7357 
7358 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
7359 {
7360 	unsigned int cp;
7361 
7362 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
7363 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7364 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
7365 	else
7366 		return cp - bp->cp_nr_rings;
7367 }
7368 
7369 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
7370 {
7371 	unsigned int stat;
7372 
7373 	stat = bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_ulp_stat_ctxs(bp);
7374 	stat -= bp->cp_nr_rings;
7375 	return stat;
7376 }
7377 
7378 int bnxt_get_avail_msix(struct bnxt *bp, int num)
7379 {
7380 	int max_cp = bnxt_get_max_func_cp_rings(bp);
7381 	int max_irq = bnxt_get_max_func_irqs(bp);
7382 	int total_req = bp->cp_nr_rings + num;
7383 	int max_idx, avail_msix;
7384 
7385 	max_idx = bp->total_irqs;
7386 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7387 		max_idx = min_t(int, bp->total_irqs, max_cp);
7388 	avail_msix = max_idx - bp->cp_nr_rings;
7389 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
7390 		return avail_msix;
7391 
7392 	if (max_irq < total_req) {
7393 		num = max_irq - bp->cp_nr_rings;
7394 		if (num <= 0)
7395 			return 0;
7396 	}
7397 	return num;
7398 }
7399 
7400 static int bnxt_get_num_msix(struct bnxt *bp)
7401 {
7402 	if (!BNXT_NEW_RM(bp))
7403 		return bnxt_get_max_func_irqs(bp);
7404 
7405 	return bnxt_nq_rings_in_use(bp);
7406 }
7407 
7408 static int bnxt_init_msix(struct bnxt *bp)
7409 {
7410 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
7411 	struct msix_entry *msix_ent;
7412 
7413 	total_vecs = bnxt_get_num_msix(bp);
7414 	max = bnxt_get_max_func_irqs(bp);
7415 	if (total_vecs > max)
7416 		total_vecs = max;
7417 
7418 	if (!total_vecs)
7419 		return 0;
7420 
7421 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
7422 	if (!msix_ent)
7423 		return -ENOMEM;
7424 
7425 	for (i = 0; i < total_vecs; i++) {
7426 		msix_ent[i].entry = i;
7427 		msix_ent[i].vector = 0;
7428 	}
7429 
7430 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
7431 		min = 2;
7432 
7433 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
7434 	ulp_msix = bnxt_get_ulp_msix_num(bp);
7435 	if (total_vecs < 0 || total_vecs < ulp_msix) {
7436 		rc = -ENODEV;
7437 		goto msix_setup_exit;
7438 	}
7439 
7440 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
7441 	if (bp->irq_tbl) {
7442 		for (i = 0; i < total_vecs; i++)
7443 			bp->irq_tbl[i].vector = msix_ent[i].vector;
7444 
7445 		bp->total_irqs = total_vecs;
7446 		/* Trim rings based upon num of vectors allocated */
7447 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
7448 				     total_vecs - ulp_msix, min == 1);
7449 		if (rc)
7450 			goto msix_setup_exit;
7451 
7452 		bp->cp_nr_rings = (min == 1) ?
7453 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7454 				  bp->tx_nr_rings + bp->rx_nr_rings;
7455 
7456 	} else {
7457 		rc = -ENOMEM;
7458 		goto msix_setup_exit;
7459 	}
7460 	bp->flags |= BNXT_FLAG_USING_MSIX;
7461 	kfree(msix_ent);
7462 	return 0;
7463 
7464 msix_setup_exit:
7465 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
7466 	kfree(bp->irq_tbl);
7467 	bp->irq_tbl = NULL;
7468 	pci_disable_msix(bp->pdev);
7469 	kfree(msix_ent);
7470 	return rc;
7471 }
7472 
7473 static int bnxt_init_inta(struct bnxt *bp)
7474 {
7475 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
7476 	if (!bp->irq_tbl)
7477 		return -ENOMEM;
7478 
7479 	bp->total_irqs = 1;
7480 	bp->rx_nr_rings = 1;
7481 	bp->tx_nr_rings = 1;
7482 	bp->cp_nr_rings = 1;
7483 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
7484 	bp->irq_tbl[0].vector = bp->pdev->irq;
7485 	return 0;
7486 }
7487 
7488 static int bnxt_init_int_mode(struct bnxt *bp)
7489 {
7490 	int rc = 0;
7491 
7492 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
7493 		rc = bnxt_init_msix(bp);
7494 
7495 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
7496 		/* fallback to INTA */
7497 		rc = bnxt_init_inta(bp);
7498 	}
7499 	return rc;
7500 }
7501 
7502 static void bnxt_clear_int_mode(struct bnxt *bp)
7503 {
7504 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7505 		pci_disable_msix(bp->pdev);
7506 
7507 	kfree(bp->irq_tbl);
7508 	bp->irq_tbl = NULL;
7509 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
7510 }
7511 
7512 int bnxt_reserve_rings(struct bnxt *bp)
7513 {
7514 	int tcs = netdev_get_num_tc(bp->dev);
7515 	bool reinit_irq = false;
7516 	int rc;
7517 
7518 	if (!bnxt_need_reserve_rings(bp))
7519 		return 0;
7520 
7521 	if (BNXT_NEW_RM(bp) && (bnxt_get_num_msix(bp) != bp->total_irqs)) {
7522 		bnxt_ulp_irq_stop(bp);
7523 		bnxt_clear_int_mode(bp);
7524 		reinit_irq = true;
7525 	}
7526 	rc = __bnxt_reserve_rings(bp);
7527 	if (reinit_irq) {
7528 		if (!rc)
7529 			rc = bnxt_init_int_mode(bp);
7530 		bnxt_ulp_irq_restart(bp, rc);
7531 	}
7532 	if (rc) {
7533 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
7534 		return rc;
7535 	}
7536 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
7537 		netdev_err(bp->dev, "tx ring reservation failure\n");
7538 		netdev_reset_tc(bp->dev);
7539 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
7540 		return -ENOMEM;
7541 	}
7542 	return 0;
7543 }
7544 
7545 static void bnxt_free_irq(struct bnxt *bp)
7546 {
7547 	struct bnxt_irq *irq;
7548 	int i;
7549 
7550 #ifdef CONFIG_RFS_ACCEL
7551 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
7552 	bp->dev->rx_cpu_rmap = NULL;
7553 #endif
7554 	if (!bp->irq_tbl || !bp->bnapi)
7555 		return;
7556 
7557 	for (i = 0; i < bp->cp_nr_rings; i++) {
7558 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7559 
7560 		irq = &bp->irq_tbl[map_idx];
7561 		if (irq->requested) {
7562 			if (irq->have_cpumask) {
7563 				irq_set_affinity_hint(irq->vector, NULL);
7564 				free_cpumask_var(irq->cpu_mask);
7565 				irq->have_cpumask = 0;
7566 			}
7567 			free_irq(irq->vector, bp->bnapi[i]);
7568 		}
7569 
7570 		irq->requested = 0;
7571 	}
7572 }
7573 
7574 static int bnxt_request_irq(struct bnxt *bp)
7575 {
7576 	int i, j, rc = 0;
7577 	unsigned long flags = 0;
7578 #ifdef CONFIG_RFS_ACCEL
7579 	struct cpu_rmap *rmap;
7580 #endif
7581 
7582 	rc = bnxt_setup_int_mode(bp);
7583 	if (rc) {
7584 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
7585 			   rc);
7586 		return rc;
7587 	}
7588 #ifdef CONFIG_RFS_ACCEL
7589 	rmap = bp->dev->rx_cpu_rmap;
7590 #endif
7591 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
7592 		flags = IRQF_SHARED;
7593 
7594 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
7595 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7596 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
7597 
7598 #ifdef CONFIG_RFS_ACCEL
7599 		if (rmap && bp->bnapi[i]->rx_ring) {
7600 			rc = irq_cpu_rmap_add(rmap, irq->vector);
7601 			if (rc)
7602 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
7603 					    j);
7604 			j++;
7605 		}
7606 #endif
7607 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
7608 				 bp->bnapi[i]);
7609 		if (rc)
7610 			break;
7611 
7612 		irq->requested = 1;
7613 
7614 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
7615 			int numa_node = dev_to_node(&bp->pdev->dev);
7616 
7617 			irq->have_cpumask = 1;
7618 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
7619 					irq->cpu_mask);
7620 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
7621 			if (rc) {
7622 				netdev_warn(bp->dev,
7623 					    "Set affinity failed, IRQ = %d\n",
7624 					    irq->vector);
7625 				break;
7626 			}
7627 		}
7628 	}
7629 	return rc;
7630 }
7631 
7632 static void bnxt_del_napi(struct bnxt *bp)
7633 {
7634 	int i;
7635 
7636 	if (!bp->bnapi)
7637 		return;
7638 
7639 	for (i = 0; i < bp->cp_nr_rings; i++) {
7640 		struct bnxt_napi *bnapi = bp->bnapi[i];
7641 
7642 		napi_hash_del(&bnapi->napi);
7643 		netif_napi_del(&bnapi->napi);
7644 	}
7645 	/* We called napi_hash_del() before netif_napi_del(), we need
7646 	 * to respect an RCU grace period before freeing napi structures.
7647 	 */
7648 	synchronize_net();
7649 }
7650 
7651 static void bnxt_init_napi(struct bnxt *bp)
7652 {
7653 	int i;
7654 	unsigned int cp_nr_rings = bp->cp_nr_rings;
7655 	struct bnxt_napi *bnapi;
7656 
7657 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
7658 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
7659 
7660 		if (bp->flags & BNXT_FLAG_CHIP_P5)
7661 			poll_fn = bnxt_poll_p5;
7662 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7663 			cp_nr_rings--;
7664 		for (i = 0; i < cp_nr_rings; i++) {
7665 			bnapi = bp->bnapi[i];
7666 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
7667 		}
7668 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7669 			bnapi = bp->bnapi[cp_nr_rings];
7670 			netif_napi_add(bp->dev, &bnapi->napi,
7671 				       bnxt_poll_nitroa0, 64);
7672 		}
7673 	} else {
7674 		bnapi = bp->bnapi[0];
7675 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
7676 	}
7677 }
7678 
7679 static void bnxt_disable_napi(struct bnxt *bp)
7680 {
7681 	int i;
7682 
7683 	if (!bp->bnapi)
7684 		return;
7685 
7686 	for (i = 0; i < bp->cp_nr_rings; i++) {
7687 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7688 
7689 		if (bp->bnapi[i]->rx_ring)
7690 			cancel_work_sync(&cpr->dim.work);
7691 
7692 		napi_disable(&bp->bnapi[i]->napi);
7693 	}
7694 }
7695 
7696 static void bnxt_enable_napi(struct bnxt *bp)
7697 {
7698 	int i;
7699 
7700 	for (i = 0; i < bp->cp_nr_rings; i++) {
7701 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7702 		bp->bnapi[i]->in_reset = false;
7703 
7704 		if (bp->bnapi[i]->rx_ring) {
7705 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
7706 			cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
7707 		}
7708 		napi_enable(&bp->bnapi[i]->napi);
7709 	}
7710 }
7711 
7712 void bnxt_tx_disable(struct bnxt *bp)
7713 {
7714 	int i;
7715 	struct bnxt_tx_ring_info *txr;
7716 
7717 	if (bp->tx_ring) {
7718 		for (i = 0; i < bp->tx_nr_rings; i++) {
7719 			txr = &bp->tx_ring[i];
7720 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
7721 		}
7722 	}
7723 	/* Stop all TX queues */
7724 	netif_tx_disable(bp->dev);
7725 	netif_carrier_off(bp->dev);
7726 }
7727 
7728 void bnxt_tx_enable(struct bnxt *bp)
7729 {
7730 	int i;
7731 	struct bnxt_tx_ring_info *txr;
7732 
7733 	for (i = 0; i < bp->tx_nr_rings; i++) {
7734 		txr = &bp->tx_ring[i];
7735 		txr->dev_state = 0;
7736 	}
7737 	netif_tx_wake_all_queues(bp->dev);
7738 	if (bp->link_info.link_up)
7739 		netif_carrier_on(bp->dev);
7740 }
7741 
7742 static void bnxt_report_link(struct bnxt *bp)
7743 {
7744 	if (bp->link_info.link_up) {
7745 		const char *duplex;
7746 		const char *flow_ctrl;
7747 		u32 speed;
7748 		u16 fec;
7749 
7750 		netif_carrier_on(bp->dev);
7751 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
7752 			duplex = "full";
7753 		else
7754 			duplex = "half";
7755 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
7756 			flow_ctrl = "ON - receive & transmit";
7757 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
7758 			flow_ctrl = "ON - transmit";
7759 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
7760 			flow_ctrl = "ON - receive";
7761 		else
7762 			flow_ctrl = "none";
7763 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
7764 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
7765 			    speed, duplex, flow_ctrl);
7766 		if (bp->flags & BNXT_FLAG_EEE_CAP)
7767 			netdev_info(bp->dev, "EEE is %s\n",
7768 				    bp->eee.eee_active ? "active" :
7769 							 "not active");
7770 		fec = bp->link_info.fec_cfg;
7771 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
7772 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
7773 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
7774 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
7775 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
7776 	} else {
7777 		netif_carrier_off(bp->dev);
7778 		netdev_err(bp->dev, "NIC Link is Down\n");
7779 	}
7780 }
7781 
7782 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
7783 {
7784 	int rc = 0;
7785 	struct hwrm_port_phy_qcaps_input req = {0};
7786 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7787 	struct bnxt_link_info *link_info = &bp->link_info;
7788 
7789 	if (bp->hwrm_spec_code < 0x10201)
7790 		return 0;
7791 
7792 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
7793 
7794 	mutex_lock(&bp->hwrm_cmd_lock);
7795 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7796 	if (rc)
7797 		goto hwrm_phy_qcaps_exit;
7798 
7799 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
7800 		struct ethtool_eee *eee = &bp->eee;
7801 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
7802 
7803 		bp->flags |= BNXT_FLAG_EEE_CAP;
7804 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7805 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
7806 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
7807 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
7808 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
7809 	}
7810 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
7811 		if (bp->test_info)
7812 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
7813 	}
7814 	if (resp->supported_speeds_auto_mode)
7815 		link_info->support_auto_speeds =
7816 			le16_to_cpu(resp->supported_speeds_auto_mode);
7817 
7818 	bp->port_count = resp->port_cnt;
7819 
7820 hwrm_phy_qcaps_exit:
7821 	mutex_unlock(&bp->hwrm_cmd_lock);
7822 	return rc;
7823 }
7824 
7825 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
7826 {
7827 	int rc = 0;
7828 	struct bnxt_link_info *link_info = &bp->link_info;
7829 	struct hwrm_port_phy_qcfg_input req = {0};
7830 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7831 	u8 link_up = link_info->link_up;
7832 	u16 diff;
7833 
7834 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
7835 
7836 	mutex_lock(&bp->hwrm_cmd_lock);
7837 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7838 	if (rc) {
7839 		mutex_unlock(&bp->hwrm_cmd_lock);
7840 		return rc;
7841 	}
7842 
7843 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
7844 	link_info->phy_link_status = resp->link;
7845 	link_info->duplex = resp->duplex_cfg;
7846 	if (bp->hwrm_spec_code >= 0x10800)
7847 		link_info->duplex = resp->duplex_state;
7848 	link_info->pause = resp->pause;
7849 	link_info->auto_mode = resp->auto_mode;
7850 	link_info->auto_pause_setting = resp->auto_pause;
7851 	link_info->lp_pause = resp->link_partner_adv_pause;
7852 	link_info->force_pause_setting = resp->force_pause;
7853 	link_info->duplex_setting = resp->duplex_cfg;
7854 	if (link_info->phy_link_status == BNXT_LINK_LINK)
7855 		link_info->link_speed = le16_to_cpu(resp->link_speed);
7856 	else
7857 		link_info->link_speed = 0;
7858 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
7859 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
7860 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
7861 	link_info->lp_auto_link_speeds =
7862 		le16_to_cpu(resp->link_partner_adv_speeds);
7863 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
7864 	link_info->phy_ver[0] = resp->phy_maj;
7865 	link_info->phy_ver[1] = resp->phy_min;
7866 	link_info->phy_ver[2] = resp->phy_bld;
7867 	link_info->media_type = resp->media_type;
7868 	link_info->phy_type = resp->phy_type;
7869 	link_info->transceiver = resp->xcvr_pkg_type;
7870 	link_info->phy_addr = resp->eee_config_phy_addr &
7871 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
7872 	link_info->module_status = resp->module_status;
7873 
7874 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
7875 		struct ethtool_eee *eee = &bp->eee;
7876 		u16 fw_speeds;
7877 
7878 		eee->eee_active = 0;
7879 		if (resp->eee_config_phy_addr &
7880 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
7881 			eee->eee_active = 1;
7882 			fw_speeds = le16_to_cpu(
7883 				resp->link_partner_adv_eee_link_speed_mask);
7884 			eee->lp_advertised =
7885 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7886 		}
7887 
7888 		/* Pull initial EEE config */
7889 		if (!chng_link_state) {
7890 			if (resp->eee_config_phy_addr &
7891 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
7892 				eee->eee_enabled = 1;
7893 
7894 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
7895 			eee->advertised =
7896 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7897 
7898 			if (resp->eee_config_phy_addr &
7899 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
7900 				__le32 tmr;
7901 
7902 				eee->tx_lpi_enabled = 1;
7903 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
7904 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
7905 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
7906 			}
7907 		}
7908 	}
7909 
7910 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
7911 	if (bp->hwrm_spec_code >= 0x10504)
7912 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
7913 
7914 	/* TODO: need to add more logic to report VF link */
7915 	if (chng_link_state) {
7916 		if (link_info->phy_link_status == BNXT_LINK_LINK)
7917 			link_info->link_up = 1;
7918 		else
7919 			link_info->link_up = 0;
7920 		if (link_up != link_info->link_up)
7921 			bnxt_report_link(bp);
7922 	} else {
7923 		/* alwasy link down if not require to update link state */
7924 		link_info->link_up = 0;
7925 	}
7926 	mutex_unlock(&bp->hwrm_cmd_lock);
7927 
7928 	if (!BNXT_SINGLE_PF(bp))
7929 		return 0;
7930 
7931 	diff = link_info->support_auto_speeds ^ link_info->advertising;
7932 	if ((link_info->support_auto_speeds | diff) !=
7933 	    link_info->support_auto_speeds) {
7934 		/* An advertised speed is no longer supported, so we need to
7935 		 * update the advertisement settings.  Caller holds RTNL
7936 		 * so we can modify link settings.
7937 		 */
7938 		link_info->advertising = link_info->support_auto_speeds;
7939 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
7940 			bnxt_hwrm_set_link_setting(bp, true, false);
7941 	}
7942 	return 0;
7943 }
7944 
7945 static void bnxt_get_port_module_status(struct bnxt *bp)
7946 {
7947 	struct bnxt_link_info *link_info = &bp->link_info;
7948 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
7949 	u8 module_status;
7950 
7951 	if (bnxt_update_link(bp, true))
7952 		return;
7953 
7954 	module_status = link_info->module_status;
7955 	switch (module_status) {
7956 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
7957 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
7958 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
7959 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
7960 			    bp->pf.port_id);
7961 		if (bp->hwrm_spec_code >= 0x10201) {
7962 			netdev_warn(bp->dev, "Module part number %s\n",
7963 				    resp->phy_vendor_partnumber);
7964 		}
7965 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
7966 			netdev_warn(bp->dev, "TX is disabled\n");
7967 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
7968 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
7969 	}
7970 }
7971 
7972 static void
7973 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
7974 {
7975 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
7976 		if (bp->hwrm_spec_code >= 0x10201)
7977 			req->auto_pause =
7978 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
7979 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
7980 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
7981 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
7982 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
7983 		req->enables |=
7984 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
7985 	} else {
7986 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
7987 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
7988 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
7989 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
7990 		req->enables |=
7991 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
7992 		if (bp->hwrm_spec_code >= 0x10201) {
7993 			req->auto_pause = req->force_pause;
7994 			req->enables |= cpu_to_le32(
7995 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
7996 		}
7997 	}
7998 }
7999 
8000 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8001 				      struct hwrm_port_phy_cfg_input *req)
8002 {
8003 	u8 autoneg = bp->link_info.autoneg;
8004 	u16 fw_link_speed = bp->link_info.req_link_speed;
8005 	u16 advertising = bp->link_info.advertising;
8006 
8007 	if (autoneg & BNXT_AUTONEG_SPEED) {
8008 		req->auto_mode |=
8009 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8010 
8011 		req->enables |= cpu_to_le32(
8012 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8013 		req->auto_link_speed_mask = cpu_to_le16(advertising);
8014 
8015 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8016 		req->flags |=
8017 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8018 	} else {
8019 		req->force_link_speed = cpu_to_le16(fw_link_speed);
8020 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8021 	}
8022 
8023 	/* tell chimp that the setting takes effect immediately */
8024 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8025 }
8026 
8027 int bnxt_hwrm_set_pause(struct bnxt *bp)
8028 {
8029 	struct hwrm_port_phy_cfg_input req = {0};
8030 	int rc;
8031 
8032 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8033 	bnxt_hwrm_set_pause_common(bp, &req);
8034 
8035 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8036 	    bp->link_info.force_link_chng)
8037 		bnxt_hwrm_set_link_common(bp, &req);
8038 
8039 	mutex_lock(&bp->hwrm_cmd_lock);
8040 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8041 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8042 		/* since changing of pause setting doesn't trigger any link
8043 		 * change event, the driver needs to update the current pause
8044 		 * result upon successfully return of the phy_cfg command
8045 		 */
8046 		bp->link_info.pause =
8047 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8048 		bp->link_info.auto_pause_setting = 0;
8049 		if (!bp->link_info.force_link_chng)
8050 			bnxt_report_link(bp);
8051 	}
8052 	bp->link_info.force_link_chng = false;
8053 	mutex_unlock(&bp->hwrm_cmd_lock);
8054 	return rc;
8055 }
8056 
8057 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8058 			      struct hwrm_port_phy_cfg_input *req)
8059 {
8060 	struct ethtool_eee *eee = &bp->eee;
8061 
8062 	if (eee->eee_enabled) {
8063 		u16 eee_speeds;
8064 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8065 
8066 		if (eee->tx_lpi_enabled)
8067 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8068 		else
8069 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8070 
8071 		req->flags |= cpu_to_le32(flags);
8072 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8073 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8074 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8075 	} else {
8076 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8077 	}
8078 }
8079 
8080 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8081 {
8082 	struct hwrm_port_phy_cfg_input req = {0};
8083 
8084 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8085 	if (set_pause)
8086 		bnxt_hwrm_set_pause_common(bp, &req);
8087 
8088 	bnxt_hwrm_set_link_common(bp, &req);
8089 
8090 	if (set_eee)
8091 		bnxt_hwrm_set_eee(bp, &req);
8092 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8093 }
8094 
8095 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8096 {
8097 	struct hwrm_port_phy_cfg_input req = {0};
8098 
8099 	if (!BNXT_SINGLE_PF(bp))
8100 		return 0;
8101 
8102 	if (pci_num_vf(bp->pdev))
8103 		return 0;
8104 
8105 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8106 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8107 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8108 }
8109 
8110 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8111 {
8112 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8113 	struct hwrm_func_drv_if_change_input req = {0};
8114 	bool resc_reinit = false;
8115 	int rc;
8116 
8117 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8118 		return 0;
8119 
8120 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8121 	if (up)
8122 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8123 	mutex_lock(&bp->hwrm_cmd_lock);
8124 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8125 	if (!rc && (resp->flags &
8126 		    cpu_to_le32(FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)))
8127 		resc_reinit = true;
8128 	mutex_unlock(&bp->hwrm_cmd_lock);
8129 
8130 	if (up && resc_reinit && BNXT_NEW_RM(bp)) {
8131 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8132 
8133 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8134 		hw_resc->resv_cp_rings = 0;
8135 		hw_resc->resv_stat_ctxs = 0;
8136 		hw_resc->resv_irqs = 0;
8137 		hw_resc->resv_tx_rings = 0;
8138 		hw_resc->resv_rx_rings = 0;
8139 		hw_resc->resv_hw_ring_grps = 0;
8140 		hw_resc->resv_vnics = 0;
8141 		bp->tx_nr_rings = 0;
8142 		bp->rx_nr_rings = 0;
8143 	}
8144 	return rc;
8145 }
8146 
8147 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8148 {
8149 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8150 	struct hwrm_port_led_qcaps_input req = {0};
8151 	struct bnxt_pf_info *pf = &bp->pf;
8152 	int rc;
8153 
8154 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8155 		return 0;
8156 
8157 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8158 	req.port_id = cpu_to_le16(pf->port_id);
8159 	mutex_lock(&bp->hwrm_cmd_lock);
8160 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8161 	if (rc) {
8162 		mutex_unlock(&bp->hwrm_cmd_lock);
8163 		return rc;
8164 	}
8165 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8166 		int i;
8167 
8168 		bp->num_leds = resp->num_leds;
8169 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8170 						 bp->num_leds);
8171 		for (i = 0; i < bp->num_leds; i++) {
8172 			struct bnxt_led_info *led = &bp->leds[i];
8173 			__le16 caps = led->led_state_caps;
8174 
8175 			if (!led->led_group_id ||
8176 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
8177 				bp->num_leds = 0;
8178 				break;
8179 			}
8180 		}
8181 	}
8182 	mutex_unlock(&bp->hwrm_cmd_lock);
8183 	return 0;
8184 }
8185 
8186 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8187 {
8188 	struct hwrm_wol_filter_alloc_input req = {0};
8189 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8190 	int rc;
8191 
8192 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8193 	req.port_id = cpu_to_le16(bp->pf.port_id);
8194 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8195 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8196 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8197 	mutex_lock(&bp->hwrm_cmd_lock);
8198 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8199 	if (!rc)
8200 		bp->wol_filter_id = resp->wol_filter_id;
8201 	mutex_unlock(&bp->hwrm_cmd_lock);
8202 	return rc;
8203 }
8204 
8205 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8206 {
8207 	struct hwrm_wol_filter_free_input req = {0};
8208 	int rc;
8209 
8210 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8211 	req.port_id = cpu_to_le16(bp->pf.port_id);
8212 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8213 	req.wol_filter_id = bp->wol_filter_id;
8214 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8215 	return rc;
8216 }
8217 
8218 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8219 {
8220 	struct hwrm_wol_filter_qcfg_input req = {0};
8221 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8222 	u16 next_handle = 0;
8223 	int rc;
8224 
8225 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8226 	req.port_id = cpu_to_le16(bp->pf.port_id);
8227 	req.handle = cpu_to_le16(handle);
8228 	mutex_lock(&bp->hwrm_cmd_lock);
8229 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8230 	if (!rc) {
8231 		next_handle = le16_to_cpu(resp->next_handle);
8232 		if (next_handle != 0) {
8233 			if (resp->wol_type ==
8234 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8235 				bp->wol = 1;
8236 				bp->wol_filter_id = resp->wol_filter_id;
8237 			}
8238 		}
8239 	}
8240 	mutex_unlock(&bp->hwrm_cmd_lock);
8241 	return next_handle;
8242 }
8243 
8244 static void bnxt_get_wol_settings(struct bnxt *bp)
8245 {
8246 	u16 handle = 0;
8247 
8248 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8249 		return;
8250 
8251 	do {
8252 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8253 	} while (handle && handle != 0xffff);
8254 }
8255 
8256 #ifdef CONFIG_BNXT_HWMON
8257 static ssize_t bnxt_show_temp(struct device *dev,
8258 			      struct device_attribute *devattr, char *buf)
8259 {
8260 	struct hwrm_temp_monitor_query_input req = {0};
8261 	struct hwrm_temp_monitor_query_output *resp;
8262 	struct bnxt *bp = dev_get_drvdata(dev);
8263 	u32 temp = 0;
8264 
8265 	resp = bp->hwrm_cmd_resp_addr;
8266 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8267 	mutex_lock(&bp->hwrm_cmd_lock);
8268 	if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8269 		temp = resp->temp * 1000; /* display millidegree */
8270 	mutex_unlock(&bp->hwrm_cmd_lock);
8271 
8272 	return sprintf(buf, "%u\n", temp);
8273 }
8274 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
8275 
8276 static struct attribute *bnxt_attrs[] = {
8277 	&sensor_dev_attr_temp1_input.dev_attr.attr,
8278 	NULL
8279 };
8280 ATTRIBUTE_GROUPS(bnxt);
8281 
8282 static void bnxt_hwmon_close(struct bnxt *bp)
8283 {
8284 	if (bp->hwmon_dev) {
8285 		hwmon_device_unregister(bp->hwmon_dev);
8286 		bp->hwmon_dev = NULL;
8287 	}
8288 }
8289 
8290 static void bnxt_hwmon_open(struct bnxt *bp)
8291 {
8292 	struct pci_dev *pdev = bp->pdev;
8293 
8294 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
8295 							  DRV_MODULE_NAME, bp,
8296 							  bnxt_groups);
8297 	if (IS_ERR(bp->hwmon_dev)) {
8298 		bp->hwmon_dev = NULL;
8299 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
8300 	}
8301 }
8302 #else
8303 static void bnxt_hwmon_close(struct bnxt *bp)
8304 {
8305 }
8306 
8307 static void bnxt_hwmon_open(struct bnxt *bp)
8308 {
8309 }
8310 #endif
8311 
8312 static bool bnxt_eee_config_ok(struct bnxt *bp)
8313 {
8314 	struct ethtool_eee *eee = &bp->eee;
8315 	struct bnxt_link_info *link_info = &bp->link_info;
8316 
8317 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
8318 		return true;
8319 
8320 	if (eee->eee_enabled) {
8321 		u32 advertising =
8322 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
8323 
8324 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8325 			eee->eee_enabled = 0;
8326 			return false;
8327 		}
8328 		if (eee->advertised & ~advertising) {
8329 			eee->advertised = advertising & eee->supported;
8330 			return false;
8331 		}
8332 	}
8333 	return true;
8334 }
8335 
8336 static int bnxt_update_phy_setting(struct bnxt *bp)
8337 {
8338 	int rc;
8339 	bool update_link = false;
8340 	bool update_pause = false;
8341 	bool update_eee = false;
8342 	struct bnxt_link_info *link_info = &bp->link_info;
8343 
8344 	rc = bnxt_update_link(bp, true);
8345 	if (rc) {
8346 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
8347 			   rc);
8348 		return rc;
8349 	}
8350 	if (!BNXT_SINGLE_PF(bp))
8351 		return 0;
8352 
8353 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8354 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
8355 	    link_info->req_flow_ctrl)
8356 		update_pause = true;
8357 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8358 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
8359 		update_pause = true;
8360 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8361 		if (BNXT_AUTO_MODE(link_info->auto_mode))
8362 			update_link = true;
8363 		if (link_info->req_link_speed != link_info->force_link_speed)
8364 			update_link = true;
8365 		if (link_info->req_duplex != link_info->duplex_setting)
8366 			update_link = true;
8367 	} else {
8368 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
8369 			update_link = true;
8370 		if (link_info->advertising != link_info->auto_link_speeds)
8371 			update_link = true;
8372 	}
8373 
8374 	/* The last close may have shutdown the link, so need to call
8375 	 * PHY_CFG to bring it back up.
8376 	 */
8377 	if (!netif_carrier_ok(bp->dev))
8378 		update_link = true;
8379 
8380 	if (!bnxt_eee_config_ok(bp))
8381 		update_eee = true;
8382 
8383 	if (update_link)
8384 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
8385 	else if (update_pause)
8386 		rc = bnxt_hwrm_set_pause(bp);
8387 	if (rc) {
8388 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
8389 			   rc);
8390 		return rc;
8391 	}
8392 
8393 	return rc;
8394 }
8395 
8396 /* Common routine to pre-map certain register block to different GRC window.
8397  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
8398  * in PF and 3 windows in VF that can be customized to map in different
8399  * register blocks.
8400  */
8401 static void bnxt_preset_reg_win(struct bnxt *bp)
8402 {
8403 	if (BNXT_PF(bp)) {
8404 		/* CAG registers map to GRC window #4 */
8405 		writel(BNXT_CAG_REG_BASE,
8406 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
8407 	}
8408 }
8409 
8410 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
8411 
8412 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8413 {
8414 	int rc = 0;
8415 
8416 	bnxt_preset_reg_win(bp);
8417 	netif_carrier_off(bp->dev);
8418 	if (irq_re_init) {
8419 		/* Reserve rings now if none were reserved at driver probe. */
8420 		rc = bnxt_init_dflt_ring_mode(bp);
8421 		if (rc) {
8422 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
8423 			return rc;
8424 		}
8425 	}
8426 	rc = bnxt_reserve_rings(bp);
8427 	if (rc)
8428 		return rc;
8429 	if ((bp->flags & BNXT_FLAG_RFS) &&
8430 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
8431 		/* disable RFS if falling back to INTA */
8432 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
8433 		bp->flags &= ~BNXT_FLAG_RFS;
8434 	}
8435 
8436 	rc = bnxt_alloc_mem(bp, irq_re_init);
8437 	if (rc) {
8438 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8439 		goto open_err_free_mem;
8440 	}
8441 
8442 	if (irq_re_init) {
8443 		bnxt_init_napi(bp);
8444 		rc = bnxt_request_irq(bp);
8445 		if (rc) {
8446 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
8447 			goto open_err_irq;
8448 		}
8449 	}
8450 
8451 	bnxt_enable_napi(bp);
8452 	bnxt_debug_dev_init(bp);
8453 
8454 	rc = bnxt_init_nic(bp, irq_re_init);
8455 	if (rc) {
8456 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8457 		goto open_err;
8458 	}
8459 
8460 	if (link_re_init) {
8461 		mutex_lock(&bp->link_lock);
8462 		rc = bnxt_update_phy_setting(bp);
8463 		mutex_unlock(&bp->link_lock);
8464 		if (rc) {
8465 			netdev_warn(bp->dev, "failed to update phy settings\n");
8466 			if (BNXT_SINGLE_PF(bp)) {
8467 				bp->link_info.phy_retry = true;
8468 				bp->link_info.phy_retry_expires =
8469 					jiffies + 5 * HZ;
8470 			}
8471 		}
8472 	}
8473 
8474 	if (irq_re_init)
8475 		udp_tunnel_get_rx_info(bp->dev);
8476 
8477 	set_bit(BNXT_STATE_OPEN, &bp->state);
8478 	bnxt_enable_int(bp);
8479 	/* Enable TX queues */
8480 	bnxt_tx_enable(bp);
8481 	mod_timer(&bp->timer, jiffies + bp->current_interval);
8482 	/* Poll link status and check for SFP+ module status */
8483 	bnxt_get_port_module_status(bp);
8484 
8485 	/* VF-reps may need to be re-opened after the PF is re-opened */
8486 	if (BNXT_PF(bp))
8487 		bnxt_vf_reps_open(bp);
8488 	return 0;
8489 
8490 open_err:
8491 	bnxt_debug_dev_exit(bp);
8492 	bnxt_disable_napi(bp);
8493 
8494 open_err_irq:
8495 	bnxt_del_napi(bp);
8496 
8497 open_err_free_mem:
8498 	bnxt_free_skbs(bp);
8499 	bnxt_free_irq(bp);
8500 	bnxt_free_mem(bp, true);
8501 	return rc;
8502 }
8503 
8504 /* rtnl_lock held */
8505 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8506 {
8507 	int rc = 0;
8508 
8509 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
8510 	if (rc) {
8511 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
8512 		dev_close(bp->dev);
8513 	}
8514 	return rc;
8515 }
8516 
8517 /* rtnl_lock held, open the NIC half way by allocating all resources, but
8518  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
8519  * self tests.
8520  */
8521 int bnxt_half_open_nic(struct bnxt *bp)
8522 {
8523 	int rc = 0;
8524 
8525 	rc = bnxt_alloc_mem(bp, false);
8526 	if (rc) {
8527 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8528 		goto half_open_err;
8529 	}
8530 	rc = bnxt_init_nic(bp, false);
8531 	if (rc) {
8532 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8533 		goto half_open_err;
8534 	}
8535 	return 0;
8536 
8537 half_open_err:
8538 	bnxt_free_skbs(bp);
8539 	bnxt_free_mem(bp, false);
8540 	dev_close(bp->dev);
8541 	return rc;
8542 }
8543 
8544 /* rtnl_lock held, this call can only be made after a previous successful
8545  * call to bnxt_half_open_nic().
8546  */
8547 void bnxt_half_close_nic(struct bnxt *bp)
8548 {
8549 	bnxt_hwrm_resource_free(bp, false, false);
8550 	bnxt_free_skbs(bp);
8551 	bnxt_free_mem(bp, false);
8552 }
8553 
8554 static int bnxt_open(struct net_device *dev)
8555 {
8556 	struct bnxt *bp = netdev_priv(dev);
8557 	int rc;
8558 
8559 	bnxt_hwrm_if_change(bp, true);
8560 	rc = __bnxt_open_nic(bp, true, true);
8561 	if (rc)
8562 		bnxt_hwrm_if_change(bp, false);
8563 
8564 	bnxt_hwmon_open(bp);
8565 
8566 	return rc;
8567 }
8568 
8569 static bool bnxt_drv_busy(struct bnxt *bp)
8570 {
8571 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
8572 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
8573 }
8574 
8575 static void bnxt_get_ring_stats(struct bnxt *bp,
8576 				struct rtnl_link_stats64 *stats);
8577 
8578 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
8579 			     bool link_re_init)
8580 {
8581 	/* Close the VF-reps before closing PF */
8582 	if (BNXT_PF(bp))
8583 		bnxt_vf_reps_close(bp);
8584 
8585 	/* Change device state to avoid TX queue wake up's */
8586 	bnxt_tx_disable(bp);
8587 
8588 	clear_bit(BNXT_STATE_OPEN, &bp->state);
8589 	smp_mb__after_atomic();
8590 	while (bnxt_drv_busy(bp))
8591 		msleep(20);
8592 
8593 	/* Flush rings and and disable interrupts */
8594 	bnxt_shutdown_nic(bp, irq_re_init);
8595 
8596 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
8597 
8598 	bnxt_debug_dev_exit(bp);
8599 	bnxt_disable_napi(bp);
8600 	del_timer_sync(&bp->timer);
8601 	bnxt_free_skbs(bp);
8602 
8603 	/* Save ring stats before shutdown */
8604 	if (bp->bnapi)
8605 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
8606 	if (irq_re_init) {
8607 		bnxt_free_irq(bp);
8608 		bnxt_del_napi(bp);
8609 	}
8610 	bnxt_free_mem(bp, irq_re_init);
8611 }
8612 
8613 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8614 {
8615 	int rc = 0;
8616 
8617 #ifdef CONFIG_BNXT_SRIOV
8618 	if (bp->sriov_cfg) {
8619 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
8620 						      !bp->sriov_cfg,
8621 						      BNXT_SRIOV_CFG_WAIT_TMO);
8622 		if (rc)
8623 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
8624 	}
8625 #endif
8626 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
8627 	return rc;
8628 }
8629 
8630 static int bnxt_close(struct net_device *dev)
8631 {
8632 	struct bnxt *bp = netdev_priv(dev);
8633 
8634 	bnxt_hwmon_close(bp);
8635 	bnxt_close_nic(bp, true, true);
8636 	bnxt_hwrm_shutdown_link(bp);
8637 	bnxt_hwrm_if_change(bp, false);
8638 	return 0;
8639 }
8640 
8641 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
8642 				   u16 *val)
8643 {
8644 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
8645 	struct hwrm_port_phy_mdio_read_input req = {0};
8646 	int rc;
8647 
8648 	if (bp->hwrm_spec_code < 0x10a00)
8649 		return -EOPNOTSUPP;
8650 
8651 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
8652 	req.port_id = cpu_to_le16(bp->pf.port_id);
8653 	req.phy_addr = phy_addr;
8654 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8655 	if (bp->link_info.support_speeds & BNXT_LINK_SPEED_MSK_10GB) {
8656 		req.cl45_mdio = 1;
8657 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8658 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8659 		req.reg_addr = cpu_to_le16(reg);
8660 	}
8661 
8662 	mutex_lock(&bp->hwrm_cmd_lock);
8663 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8664 	if (!rc)
8665 		*val = le16_to_cpu(resp->reg_data);
8666 	mutex_unlock(&bp->hwrm_cmd_lock);
8667 	return rc;
8668 }
8669 
8670 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
8671 				    u16 val)
8672 {
8673 	struct hwrm_port_phy_mdio_write_input req = {0};
8674 
8675 	if (bp->hwrm_spec_code < 0x10a00)
8676 		return -EOPNOTSUPP;
8677 
8678 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
8679 	req.port_id = cpu_to_le16(bp->pf.port_id);
8680 	req.phy_addr = phy_addr;
8681 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8682 	if (bp->link_info.support_speeds & BNXT_LINK_SPEED_MSK_10GB) {
8683 		req.cl45_mdio = 1;
8684 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8685 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8686 		req.reg_addr = cpu_to_le16(reg);
8687 	}
8688 	req.reg_data = cpu_to_le16(val);
8689 
8690 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8691 }
8692 
8693 /* rtnl_lock held */
8694 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
8695 {
8696 	struct mii_ioctl_data *mdio = if_mii(ifr);
8697 	struct bnxt *bp = netdev_priv(dev);
8698 	int rc;
8699 
8700 	switch (cmd) {
8701 	case SIOCGMIIPHY:
8702 		mdio->phy_id = bp->link_info.phy_addr;
8703 
8704 		/* fallthru */
8705 	case SIOCGMIIREG: {
8706 		u16 mii_regval = 0;
8707 
8708 		if (!netif_running(dev))
8709 			return -EAGAIN;
8710 
8711 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
8712 					     &mii_regval);
8713 		mdio->val_out = mii_regval;
8714 		return rc;
8715 	}
8716 
8717 	case SIOCSMIIREG:
8718 		if (!netif_running(dev))
8719 			return -EAGAIN;
8720 
8721 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
8722 						mdio->val_in);
8723 
8724 	default:
8725 		/* do nothing */
8726 		break;
8727 	}
8728 	return -EOPNOTSUPP;
8729 }
8730 
8731 static void bnxt_get_ring_stats(struct bnxt *bp,
8732 				struct rtnl_link_stats64 *stats)
8733 {
8734 	int i;
8735 
8736 
8737 	for (i = 0; i < bp->cp_nr_rings; i++) {
8738 		struct bnxt_napi *bnapi = bp->bnapi[i];
8739 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8740 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
8741 
8742 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
8743 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
8744 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
8745 
8746 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
8747 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
8748 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
8749 
8750 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
8751 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
8752 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
8753 
8754 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
8755 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
8756 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
8757 
8758 		stats->rx_missed_errors +=
8759 			le64_to_cpu(hw_stats->rx_discard_pkts);
8760 
8761 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
8762 
8763 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
8764 	}
8765 }
8766 
8767 static void bnxt_add_prev_stats(struct bnxt *bp,
8768 				struct rtnl_link_stats64 *stats)
8769 {
8770 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
8771 
8772 	stats->rx_packets += prev_stats->rx_packets;
8773 	stats->tx_packets += prev_stats->tx_packets;
8774 	stats->rx_bytes += prev_stats->rx_bytes;
8775 	stats->tx_bytes += prev_stats->tx_bytes;
8776 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
8777 	stats->multicast += prev_stats->multicast;
8778 	stats->tx_dropped += prev_stats->tx_dropped;
8779 }
8780 
8781 static void
8782 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
8783 {
8784 	struct bnxt *bp = netdev_priv(dev);
8785 
8786 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
8787 	/* Make sure bnxt_close_nic() sees that we are reading stats before
8788 	 * we check the BNXT_STATE_OPEN flag.
8789 	 */
8790 	smp_mb__after_atomic();
8791 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
8792 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8793 		*stats = bp->net_stats_prev;
8794 		return;
8795 	}
8796 
8797 	bnxt_get_ring_stats(bp, stats);
8798 	bnxt_add_prev_stats(bp, stats);
8799 
8800 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8801 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
8802 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
8803 
8804 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
8805 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
8806 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
8807 					  le64_to_cpu(rx->rx_ovrsz_frames) +
8808 					  le64_to_cpu(rx->rx_runt_frames);
8809 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
8810 				   le64_to_cpu(rx->rx_jbr_frames);
8811 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
8812 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
8813 		stats->tx_errors = le64_to_cpu(tx->tx_err);
8814 	}
8815 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8816 }
8817 
8818 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
8819 {
8820 	struct net_device *dev = bp->dev;
8821 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8822 	struct netdev_hw_addr *ha;
8823 	u8 *haddr;
8824 	int mc_count = 0;
8825 	bool update = false;
8826 	int off = 0;
8827 
8828 	netdev_for_each_mc_addr(ha, dev) {
8829 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
8830 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8831 			vnic->mc_list_count = 0;
8832 			return false;
8833 		}
8834 		haddr = ha->addr;
8835 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
8836 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
8837 			update = true;
8838 		}
8839 		off += ETH_ALEN;
8840 		mc_count++;
8841 	}
8842 	if (mc_count)
8843 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
8844 
8845 	if (mc_count != vnic->mc_list_count) {
8846 		vnic->mc_list_count = mc_count;
8847 		update = true;
8848 	}
8849 	return update;
8850 }
8851 
8852 static bool bnxt_uc_list_updated(struct bnxt *bp)
8853 {
8854 	struct net_device *dev = bp->dev;
8855 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8856 	struct netdev_hw_addr *ha;
8857 	int off = 0;
8858 
8859 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
8860 		return true;
8861 
8862 	netdev_for_each_uc_addr(ha, dev) {
8863 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
8864 			return true;
8865 
8866 		off += ETH_ALEN;
8867 	}
8868 	return false;
8869 }
8870 
8871 static void bnxt_set_rx_mode(struct net_device *dev)
8872 {
8873 	struct bnxt *bp = netdev_priv(dev);
8874 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8875 	u32 mask = vnic->rx_mask;
8876 	bool mc_update = false;
8877 	bool uc_update;
8878 
8879 	if (!netif_running(dev))
8880 		return;
8881 
8882 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
8883 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
8884 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
8885 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
8886 
8887 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
8888 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8889 
8890 	uc_update = bnxt_uc_list_updated(bp);
8891 
8892 	if (dev->flags & IFF_BROADCAST)
8893 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8894 	if (dev->flags & IFF_ALLMULTI) {
8895 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8896 		vnic->mc_list_count = 0;
8897 	} else {
8898 		mc_update = bnxt_mc_list_updated(bp, &mask);
8899 	}
8900 
8901 	if (mask != vnic->rx_mask || uc_update || mc_update) {
8902 		vnic->rx_mask = mask;
8903 
8904 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
8905 		bnxt_queue_sp_work(bp);
8906 	}
8907 }
8908 
8909 static int bnxt_cfg_rx_mode(struct bnxt *bp)
8910 {
8911 	struct net_device *dev = bp->dev;
8912 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8913 	struct netdev_hw_addr *ha;
8914 	int i, off = 0, rc;
8915 	bool uc_update;
8916 
8917 	netif_addr_lock_bh(dev);
8918 	uc_update = bnxt_uc_list_updated(bp);
8919 	netif_addr_unlock_bh(dev);
8920 
8921 	if (!uc_update)
8922 		goto skip_uc;
8923 
8924 	mutex_lock(&bp->hwrm_cmd_lock);
8925 	for (i = 1; i < vnic->uc_filter_count; i++) {
8926 		struct hwrm_cfa_l2_filter_free_input req = {0};
8927 
8928 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
8929 				       -1);
8930 
8931 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
8932 
8933 		rc = _hwrm_send_message(bp, &req, sizeof(req),
8934 					HWRM_CMD_TIMEOUT);
8935 	}
8936 	mutex_unlock(&bp->hwrm_cmd_lock);
8937 
8938 	vnic->uc_filter_count = 1;
8939 
8940 	netif_addr_lock_bh(dev);
8941 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
8942 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8943 	} else {
8944 		netdev_for_each_uc_addr(ha, dev) {
8945 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
8946 			off += ETH_ALEN;
8947 			vnic->uc_filter_count++;
8948 		}
8949 	}
8950 	netif_addr_unlock_bh(dev);
8951 
8952 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
8953 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
8954 		if (rc) {
8955 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
8956 				   rc);
8957 			vnic->uc_filter_count = i;
8958 			return rc;
8959 		}
8960 	}
8961 
8962 skip_uc:
8963 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
8964 	if (rc)
8965 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
8966 			   rc);
8967 
8968 	return rc;
8969 }
8970 
8971 static bool bnxt_can_reserve_rings(struct bnxt *bp)
8972 {
8973 #ifdef CONFIG_BNXT_SRIOV
8974 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
8975 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8976 
8977 		/* No minimum rings were provisioned by the PF.  Don't
8978 		 * reserve rings by default when device is down.
8979 		 */
8980 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
8981 			return true;
8982 
8983 		if (!netif_running(bp->dev))
8984 			return false;
8985 	}
8986 #endif
8987 	return true;
8988 }
8989 
8990 /* If the chip and firmware supports RFS */
8991 static bool bnxt_rfs_supported(struct bnxt *bp)
8992 {
8993 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8994 		return false;
8995 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
8996 		return true;
8997 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8998 		return true;
8999 	return false;
9000 }
9001 
9002 /* If runtime conditions support RFS */
9003 static bool bnxt_rfs_capable(struct bnxt *bp)
9004 {
9005 #ifdef CONFIG_RFS_ACCEL
9006 	int vnics, max_vnics, max_rss_ctxs;
9007 
9008 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9009 		return false;
9010 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9011 		return false;
9012 
9013 	vnics = 1 + bp->rx_nr_rings;
9014 	max_vnics = bnxt_get_max_func_vnics(bp);
9015 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9016 
9017 	/* RSS contexts not a limiting factor */
9018 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9019 		max_rss_ctxs = max_vnics;
9020 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
9021 		if (bp->rx_nr_rings > 1)
9022 			netdev_warn(bp->dev,
9023 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9024 				    min(max_rss_ctxs - 1, max_vnics - 1));
9025 		return false;
9026 	}
9027 
9028 	if (!BNXT_NEW_RM(bp))
9029 		return true;
9030 
9031 	if (vnics == bp->hw_resc.resv_vnics)
9032 		return true;
9033 
9034 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9035 	if (vnics <= bp->hw_resc.resv_vnics)
9036 		return true;
9037 
9038 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9039 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9040 	return false;
9041 #else
9042 	return false;
9043 #endif
9044 }
9045 
9046 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9047 					   netdev_features_t features)
9048 {
9049 	struct bnxt *bp = netdev_priv(dev);
9050 
9051 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9052 		features &= ~NETIF_F_NTUPLE;
9053 
9054 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9055 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9056 
9057 	if (!(features & NETIF_F_GRO))
9058 		features &= ~NETIF_F_GRO_HW;
9059 
9060 	if (features & NETIF_F_GRO_HW)
9061 		features &= ~NETIF_F_LRO;
9062 
9063 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
9064 	 * turned on or off together.
9065 	 */
9066 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
9067 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
9068 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9069 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9070 				      NETIF_F_HW_VLAN_STAG_RX);
9071 		else
9072 			features |= NETIF_F_HW_VLAN_CTAG_RX |
9073 				    NETIF_F_HW_VLAN_STAG_RX;
9074 	}
9075 #ifdef CONFIG_BNXT_SRIOV
9076 	if (BNXT_VF(bp)) {
9077 		if (bp->vf.vlan) {
9078 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9079 				      NETIF_F_HW_VLAN_STAG_RX);
9080 		}
9081 	}
9082 #endif
9083 	return features;
9084 }
9085 
9086 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9087 {
9088 	struct bnxt *bp = netdev_priv(dev);
9089 	u32 flags = bp->flags;
9090 	u32 changes;
9091 	int rc = 0;
9092 	bool re_init = false;
9093 	bool update_tpa = false;
9094 
9095 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9096 	if (features & NETIF_F_GRO_HW)
9097 		flags |= BNXT_FLAG_GRO;
9098 	else if (features & NETIF_F_LRO)
9099 		flags |= BNXT_FLAG_LRO;
9100 
9101 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9102 		flags &= ~BNXT_FLAG_TPA;
9103 
9104 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
9105 		flags |= BNXT_FLAG_STRIP_VLAN;
9106 
9107 	if (features & NETIF_F_NTUPLE)
9108 		flags |= BNXT_FLAG_RFS;
9109 
9110 	changes = flags ^ bp->flags;
9111 	if (changes & BNXT_FLAG_TPA) {
9112 		update_tpa = true;
9113 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9114 		    (flags & BNXT_FLAG_TPA) == 0)
9115 			re_init = true;
9116 	}
9117 
9118 	if (changes & ~BNXT_FLAG_TPA)
9119 		re_init = true;
9120 
9121 	if (flags != bp->flags) {
9122 		u32 old_flags = bp->flags;
9123 
9124 		bp->flags = flags;
9125 
9126 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9127 			if (update_tpa)
9128 				bnxt_set_ring_params(bp);
9129 			return rc;
9130 		}
9131 
9132 		if (re_init) {
9133 			bnxt_close_nic(bp, false, false);
9134 			if (update_tpa)
9135 				bnxt_set_ring_params(bp);
9136 
9137 			return bnxt_open_nic(bp, false, false);
9138 		}
9139 		if (update_tpa) {
9140 			rc = bnxt_set_tpa(bp,
9141 					  (flags & BNXT_FLAG_TPA) ?
9142 					  true : false);
9143 			if (rc)
9144 				bp->flags = old_flags;
9145 		}
9146 	}
9147 	return rc;
9148 }
9149 
9150 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9151 				       u32 ring_id, u32 *prod, u32 *cons)
9152 {
9153 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9154 	struct hwrm_dbg_ring_info_get_input req = {0};
9155 	int rc;
9156 
9157 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9158 	req.ring_type = ring_type;
9159 	req.fw_ring_id = cpu_to_le32(ring_id);
9160 	mutex_lock(&bp->hwrm_cmd_lock);
9161 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9162 	if (!rc) {
9163 		*prod = le32_to_cpu(resp->producer_index);
9164 		*cons = le32_to_cpu(resp->consumer_index);
9165 	}
9166 	mutex_unlock(&bp->hwrm_cmd_lock);
9167 	return rc;
9168 }
9169 
9170 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9171 {
9172 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9173 	int i = bnapi->index;
9174 
9175 	if (!txr)
9176 		return;
9177 
9178 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9179 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9180 		    txr->tx_cons);
9181 }
9182 
9183 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9184 {
9185 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9186 	int i = bnapi->index;
9187 
9188 	if (!rxr)
9189 		return;
9190 
9191 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9192 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9193 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9194 		    rxr->rx_sw_agg_prod);
9195 }
9196 
9197 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9198 {
9199 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9200 	int i = bnapi->index;
9201 
9202 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9203 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9204 }
9205 
9206 static void bnxt_dbg_dump_states(struct bnxt *bp)
9207 {
9208 	int i;
9209 	struct bnxt_napi *bnapi;
9210 
9211 	for (i = 0; i < bp->cp_nr_rings; i++) {
9212 		bnapi = bp->bnapi[i];
9213 		if (netif_msg_drv(bp)) {
9214 			bnxt_dump_tx_sw_state(bnapi);
9215 			bnxt_dump_rx_sw_state(bnapi);
9216 			bnxt_dump_cp_sw_state(bnapi);
9217 		}
9218 	}
9219 }
9220 
9221 static void bnxt_reset_task(struct bnxt *bp, bool silent)
9222 {
9223 	if (!silent)
9224 		bnxt_dbg_dump_states(bp);
9225 	if (netif_running(bp->dev)) {
9226 		int rc;
9227 
9228 		if (!silent)
9229 			bnxt_ulp_stop(bp);
9230 		bnxt_close_nic(bp, false, false);
9231 		rc = bnxt_open_nic(bp, false, false);
9232 		if (!silent && !rc)
9233 			bnxt_ulp_start(bp);
9234 	}
9235 }
9236 
9237 static void bnxt_tx_timeout(struct net_device *dev)
9238 {
9239 	struct bnxt *bp = netdev_priv(dev);
9240 
9241 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
9242 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
9243 	bnxt_queue_sp_work(bp);
9244 }
9245 
9246 static void bnxt_timer(struct timer_list *t)
9247 {
9248 	struct bnxt *bp = from_timer(bp, t, timer);
9249 	struct net_device *dev = bp->dev;
9250 
9251 	if (!netif_running(dev))
9252 		return;
9253 
9254 	if (atomic_read(&bp->intr_sem) != 0)
9255 		goto bnxt_restart_timer;
9256 
9257 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
9258 	    bp->stats_coal_ticks) {
9259 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
9260 		bnxt_queue_sp_work(bp);
9261 	}
9262 
9263 	if (bnxt_tc_flower_enabled(bp)) {
9264 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
9265 		bnxt_queue_sp_work(bp);
9266 	}
9267 
9268 	if (bp->link_info.phy_retry) {
9269 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
9270 			bp->link_info.phy_retry = 0;
9271 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
9272 		} else {
9273 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
9274 			bnxt_queue_sp_work(bp);
9275 		}
9276 	}
9277 
9278 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && netif_carrier_ok(dev)) {
9279 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
9280 		bnxt_queue_sp_work(bp);
9281 	}
9282 bnxt_restart_timer:
9283 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9284 }
9285 
9286 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
9287 {
9288 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
9289 	 * set.  If the device is being closed, bnxt_close() may be holding
9290 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
9291 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
9292 	 */
9293 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9294 	rtnl_lock();
9295 }
9296 
9297 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
9298 {
9299 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9300 	rtnl_unlock();
9301 }
9302 
9303 /* Only called from bnxt_sp_task() */
9304 static void bnxt_reset(struct bnxt *bp, bool silent)
9305 {
9306 	bnxt_rtnl_lock_sp(bp);
9307 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
9308 		bnxt_reset_task(bp, silent);
9309 	bnxt_rtnl_unlock_sp(bp);
9310 }
9311 
9312 static void bnxt_chk_missed_irq(struct bnxt *bp)
9313 {
9314 	int i;
9315 
9316 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9317 		return;
9318 
9319 	for (i = 0; i < bp->cp_nr_rings; i++) {
9320 		struct bnxt_napi *bnapi = bp->bnapi[i];
9321 		struct bnxt_cp_ring_info *cpr;
9322 		u32 fw_ring_id;
9323 		int j;
9324 
9325 		if (!bnapi)
9326 			continue;
9327 
9328 		cpr = &bnapi->cp_ring;
9329 		for (j = 0; j < 2; j++) {
9330 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
9331 			u32 val[2];
9332 
9333 			if (!cpr2 || cpr2->has_more_work ||
9334 			    !bnxt_has_work(bp, cpr2))
9335 				continue;
9336 
9337 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
9338 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
9339 				continue;
9340 			}
9341 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
9342 			bnxt_dbg_hwrm_ring_info_get(bp,
9343 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
9344 				fw_ring_id, &val[0], &val[1]);
9345 			cpr->missed_irqs++;
9346 		}
9347 	}
9348 }
9349 
9350 static void bnxt_cfg_ntp_filters(struct bnxt *);
9351 
9352 static void bnxt_sp_task(struct work_struct *work)
9353 {
9354 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
9355 
9356 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9357 	smp_mb__after_atomic();
9358 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9359 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9360 		return;
9361 	}
9362 
9363 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
9364 		bnxt_cfg_rx_mode(bp);
9365 
9366 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
9367 		bnxt_cfg_ntp_filters(bp);
9368 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
9369 		bnxt_hwrm_exec_fwd_req(bp);
9370 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9371 		bnxt_hwrm_tunnel_dst_port_alloc(
9372 			bp, bp->vxlan_port,
9373 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9374 	}
9375 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9376 		bnxt_hwrm_tunnel_dst_port_free(
9377 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9378 	}
9379 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9380 		bnxt_hwrm_tunnel_dst_port_alloc(
9381 			bp, bp->nge_port,
9382 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9383 	}
9384 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9385 		bnxt_hwrm_tunnel_dst_port_free(
9386 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9387 	}
9388 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
9389 		bnxt_hwrm_port_qstats(bp);
9390 		bnxt_hwrm_port_qstats_ext(bp);
9391 	}
9392 
9393 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
9394 		int rc;
9395 
9396 		mutex_lock(&bp->link_lock);
9397 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
9398 				       &bp->sp_event))
9399 			bnxt_hwrm_phy_qcaps(bp);
9400 
9401 		rc = bnxt_update_link(bp, true);
9402 		mutex_unlock(&bp->link_lock);
9403 		if (rc)
9404 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
9405 				   rc);
9406 	}
9407 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
9408 		int rc;
9409 
9410 		mutex_lock(&bp->link_lock);
9411 		rc = bnxt_update_phy_setting(bp);
9412 		mutex_unlock(&bp->link_lock);
9413 		if (rc) {
9414 			netdev_warn(bp->dev, "update phy settings retry failed\n");
9415 		} else {
9416 			bp->link_info.phy_retry = false;
9417 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
9418 		}
9419 	}
9420 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
9421 		mutex_lock(&bp->link_lock);
9422 		bnxt_get_port_module_status(bp);
9423 		mutex_unlock(&bp->link_lock);
9424 	}
9425 
9426 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
9427 		bnxt_tc_flow_stats_work(bp);
9428 
9429 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
9430 		bnxt_chk_missed_irq(bp);
9431 
9432 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
9433 	 * must be the last functions to be called before exiting.
9434 	 */
9435 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
9436 		bnxt_reset(bp, false);
9437 
9438 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
9439 		bnxt_reset(bp, true);
9440 
9441 	smp_mb__before_atomic();
9442 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9443 }
9444 
9445 /* Under rtnl_lock */
9446 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
9447 		     int tx_xdp)
9448 {
9449 	int max_rx, max_tx, tx_sets = 1;
9450 	int tx_rings_needed, stats;
9451 	int rx_rings = rx;
9452 	int cp, vnics, rc;
9453 
9454 	if (tcs)
9455 		tx_sets = tcs;
9456 
9457 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
9458 	if (rc)
9459 		return rc;
9460 
9461 	if (max_rx < rx)
9462 		return -ENOMEM;
9463 
9464 	tx_rings_needed = tx * tx_sets + tx_xdp;
9465 	if (max_tx < tx_rings_needed)
9466 		return -ENOMEM;
9467 
9468 	vnics = 1;
9469 	if (bp->flags & BNXT_FLAG_RFS)
9470 		vnics += rx_rings;
9471 
9472 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
9473 		rx_rings <<= 1;
9474 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
9475 	stats = cp;
9476 	if (BNXT_NEW_RM(bp)) {
9477 		cp += bnxt_get_ulp_msix_num(bp);
9478 		stats += bnxt_get_ulp_stat_ctxs(bp);
9479 	}
9480 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
9481 				     stats, vnics);
9482 }
9483 
9484 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
9485 {
9486 	if (bp->bar2) {
9487 		pci_iounmap(pdev, bp->bar2);
9488 		bp->bar2 = NULL;
9489 	}
9490 
9491 	if (bp->bar1) {
9492 		pci_iounmap(pdev, bp->bar1);
9493 		bp->bar1 = NULL;
9494 	}
9495 
9496 	if (bp->bar0) {
9497 		pci_iounmap(pdev, bp->bar0);
9498 		bp->bar0 = NULL;
9499 	}
9500 }
9501 
9502 static void bnxt_cleanup_pci(struct bnxt *bp)
9503 {
9504 	bnxt_unmap_bars(bp, bp->pdev);
9505 	pci_release_regions(bp->pdev);
9506 	pci_disable_device(bp->pdev);
9507 }
9508 
9509 static void bnxt_init_dflt_coal(struct bnxt *bp)
9510 {
9511 	struct bnxt_coal *coal;
9512 
9513 	/* Tick values in micro seconds.
9514 	 * 1 coal_buf x bufs_per_record = 1 completion record.
9515 	 */
9516 	coal = &bp->rx_coal;
9517 	coal->coal_ticks = 10;
9518 	coal->coal_bufs = 30;
9519 	coal->coal_ticks_irq = 1;
9520 	coal->coal_bufs_irq = 2;
9521 	coal->idle_thresh = 50;
9522 	coal->bufs_per_record = 2;
9523 	coal->budget = 64;		/* NAPI budget */
9524 
9525 	coal = &bp->tx_coal;
9526 	coal->coal_ticks = 28;
9527 	coal->coal_bufs = 30;
9528 	coal->coal_ticks_irq = 2;
9529 	coal->coal_bufs_irq = 2;
9530 	coal->bufs_per_record = 1;
9531 
9532 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
9533 }
9534 
9535 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
9536 {
9537 	int rc;
9538 	struct bnxt *bp = netdev_priv(dev);
9539 
9540 	SET_NETDEV_DEV(dev, &pdev->dev);
9541 
9542 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
9543 	rc = pci_enable_device(pdev);
9544 	if (rc) {
9545 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
9546 		goto init_err;
9547 	}
9548 
9549 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
9550 		dev_err(&pdev->dev,
9551 			"Cannot find PCI device base address, aborting\n");
9552 		rc = -ENODEV;
9553 		goto init_err_disable;
9554 	}
9555 
9556 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
9557 	if (rc) {
9558 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
9559 		goto init_err_disable;
9560 	}
9561 
9562 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
9563 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
9564 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
9565 		goto init_err_disable;
9566 	}
9567 
9568 	pci_set_master(pdev);
9569 
9570 	bp->dev = dev;
9571 	bp->pdev = pdev;
9572 
9573 	bp->bar0 = pci_ioremap_bar(pdev, 0);
9574 	if (!bp->bar0) {
9575 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
9576 		rc = -ENOMEM;
9577 		goto init_err_release;
9578 	}
9579 
9580 	bp->bar1 = pci_ioremap_bar(pdev, 2);
9581 	if (!bp->bar1) {
9582 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
9583 		rc = -ENOMEM;
9584 		goto init_err_release;
9585 	}
9586 
9587 	bp->bar2 = pci_ioremap_bar(pdev, 4);
9588 	if (!bp->bar2) {
9589 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
9590 		rc = -ENOMEM;
9591 		goto init_err_release;
9592 	}
9593 
9594 	pci_enable_pcie_error_reporting(pdev);
9595 
9596 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
9597 
9598 	spin_lock_init(&bp->ntp_fltr_lock);
9599 #if BITS_PER_LONG == 32
9600 	spin_lock_init(&bp->db_lock);
9601 #endif
9602 
9603 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
9604 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
9605 
9606 	bnxt_init_dflt_coal(bp);
9607 
9608 	timer_setup(&bp->timer, bnxt_timer, 0);
9609 	bp->current_interval = BNXT_TIMER_INTERVAL;
9610 
9611 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9612 	return 0;
9613 
9614 init_err_release:
9615 	bnxt_unmap_bars(bp, pdev);
9616 	pci_release_regions(pdev);
9617 
9618 init_err_disable:
9619 	pci_disable_device(pdev);
9620 
9621 init_err:
9622 	return rc;
9623 }
9624 
9625 /* rtnl_lock held */
9626 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
9627 {
9628 	struct sockaddr *addr = p;
9629 	struct bnxt *bp = netdev_priv(dev);
9630 	int rc = 0;
9631 
9632 	if (!is_valid_ether_addr(addr->sa_data))
9633 		return -EADDRNOTAVAIL;
9634 
9635 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
9636 		return 0;
9637 
9638 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
9639 	if (rc)
9640 		return rc;
9641 
9642 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
9643 	if (netif_running(dev)) {
9644 		bnxt_close_nic(bp, false, false);
9645 		rc = bnxt_open_nic(bp, false, false);
9646 	}
9647 
9648 	return rc;
9649 }
9650 
9651 /* rtnl_lock held */
9652 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
9653 {
9654 	struct bnxt *bp = netdev_priv(dev);
9655 
9656 	if (netif_running(dev))
9657 		bnxt_close_nic(bp, false, false);
9658 
9659 	dev->mtu = new_mtu;
9660 	bnxt_set_ring_params(bp);
9661 
9662 	if (netif_running(dev))
9663 		return bnxt_open_nic(bp, false, false);
9664 
9665 	return 0;
9666 }
9667 
9668 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
9669 {
9670 	struct bnxt *bp = netdev_priv(dev);
9671 	bool sh = false;
9672 	int rc;
9673 
9674 	if (tc > bp->max_tc) {
9675 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
9676 			   tc, bp->max_tc);
9677 		return -EINVAL;
9678 	}
9679 
9680 	if (netdev_get_num_tc(dev) == tc)
9681 		return 0;
9682 
9683 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9684 		sh = true;
9685 
9686 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
9687 			      sh, tc, bp->tx_nr_rings_xdp);
9688 	if (rc)
9689 		return rc;
9690 
9691 	/* Needs to close the device and do hw resource re-allocations */
9692 	if (netif_running(bp->dev))
9693 		bnxt_close_nic(bp, true, false);
9694 
9695 	if (tc) {
9696 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
9697 		netdev_set_num_tc(dev, tc);
9698 	} else {
9699 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
9700 		netdev_reset_tc(dev);
9701 	}
9702 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
9703 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9704 			       bp->tx_nr_rings + bp->rx_nr_rings;
9705 
9706 	if (netif_running(bp->dev))
9707 		return bnxt_open_nic(bp, true, false);
9708 
9709 	return 0;
9710 }
9711 
9712 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
9713 				  void *cb_priv)
9714 {
9715 	struct bnxt *bp = cb_priv;
9716 
9717 	if (!bnxt_tc_flower_enabled(bp) ||
9718 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
9719 		return -EOPNOTSUPP;
9720 
9721 	switch (type) {
9722 	case TC_SETUP_CLSFLOWER:
9723 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
9724 	default:
9725 		return -EOPNOTSUPP;
9726 	}
9727 }
9728 
9729 static int bnxt_setup_tc_block(struct net_device *dev,
9730 			       struct tc_block_offload *f)
9731 {
9732 	struct bnxt *bp = netdev_priv(dev);
9733 
9734 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9735 		return -EOPNOTSUPP;
9736 
9737 	switch (f->command) {
9738 	case TC_BLOCK_BIND:
9739 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
9740 					     bp, bp, f->extack);
9741 	case TC_BLOCK_UNBIND:
9742 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
9743 		return 0;
9744 	default:
9745 		return -EOPNOTSUPP;
9746 	}
9747 }
9748 
9749 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
9750 			 void *type_data)
9751 {
9752 	switch (type) {
9753 	case TC_SETUP_BLOCK:
9754 		return bnxt_setup_tc_block(dev, type_data);
9755 	case TC_SETUP_QDISC_MQPRIO: {
9756 		struct tc_mqprio_qopt *mqprio = type_data;
9757 
9758 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
9759 
9760 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
9761 	}
9762 	default:
9763 		return -EOPNOTSUPP;
9764 	}
9765 }
9766 
9767 #ifdef CONFIG_RFS_ACCEL
9768 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
9769 			    struct bnxt_ntuple_filter *f2)
9770 {
9771 	struct flow_keys *keys1 = &f1->fkeys;
9772 	struct flow_keys *keys2 = &f2->fkeys;
9773 
9774 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
9775 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
9776 	    keys1->ports.ports == keys2->ports.ports &&
9777 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
9778 	    keys1->basic.n_proto == keys2->basic.n_proto &&
9779 	    keys1->control.flags == keys2->control.flags &&
9780 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
9781 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
9782 		return true;
9783 
9784 	return false;
9785 }
9786 
9787 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
9788 			      u16 rxq_index, u32 flow_id)
9789 {
9790 	struct bnxt *bp = netdev_priv(dev);
9791 	struct bnxt_ntuple_filter *fltr, *new_fltr;
9792 	struct flow_keys *fkeys;
9793 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
9794 	int rc = 0, idx, bit_id, l2_idx = 0;
9795 	struct hlist_head *head;
9796 
9797 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
9798 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9799 		int off = 0, j;
9800 
9801 		netif_addr_lock_bh(dev);
9802 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
9803 			if (ether_addr_equal(eth->h_dest,
9804 					     vnic->uc_list + off)) {
9805 				l2_idx = j + 1;
9806 				break;
9807 			}
9808 		}
9809 		netif_addr_unlock_bh(dev);
9810 		if (!l2_idx)
9811 			return -EINVAL;
9812 	}
9813 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
9814 	if (!new_fltr)
9815 		return -ENOMEM;
9816 
9817 	fkeys = &new_fltr->fkeys;
9818 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
9819 		rc = -EPROTONOSUPPORT;
9820 		goto err_free;
9821 	}
9822 
9823 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
9824 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
9825 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
9826 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
9827 		rc = -EPROTONOSUPPORT;
9828 		goto err_free;
9829 	}
9830 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
9831 	    bp->hwrm_spec_code < 0x10601) {
9832 		rc = -EPROTONOSUPPORT;
9833 		goto err_free;
9834 	}
9835 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
9836 	    bp->hwrm_spec_code < 0x10601) {
9837 		rc = -EPROTONOSUPPORT;
9838 		goto err_free;
9839 	}
9840 
9841 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
9842 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
9843 
9844 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
9845 	head = &bp->ntp_fltr_hash_tbl[idx];
9846 	rcu_read_lock();
9847 	hlist_for_each_entry_rcu(fltr, head, hash) {
9848 		if (bnxt_fltr_match(fltr, new_fltr)) {
9849 			rcu_read_unlock();
9850 			rc = 0;
9851 			goto err_free;
9852 		}
9853 	}
9854 	rcu_read_unlock();
9855 
9856 	spin_lock_bh(&bp->ntp_fltr_lock);
9857 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
9858 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
9859 	if (bit_id < 0) {
9860 		spin_unlock_bh(&bp->ntp_fltr_lock);
9861 		rc = -ENOMEM;
9862 		goto err_free;
9863 	}
9864 
9865 	new_fltr->sw_id = (u16)bit_id;
9866 	new_fltr->flow_id = flow_id;
9867 	new_fltr->l2_fltr_idx = l2_idx;
9868 	new_fltr->rxq = rxq_index;
9869 	hlist_add_head_rcu(&new_fltr->hash, head);
9870 	bp->ntp_fltr_count++;
9871 	spin_unlock_bh(&bp->ntp_fltr_lock);
9872 
9873 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
9874 	bnxt_queue_sp_work(bp);
9875 
9876 	return new_fltr->sw_id;
9877 
9878 err_free:
9879 	kfree(new_fltr);
9880 	return rc;
9881 }
9882 
9883 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
9884 {
9885 	int i;
9886 
9887 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
9888 		struct hlist_head *head;
9889 		struct hlist_node *tmp;
9890 		struct bnxt_ntuple_filter *fltr;
9891 		int rc;
9892 
9893 		head = &bp->ntp_fltr_hash_tbl[i];
9894 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
9895 			bool del = false;
9896 
9897 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
9898 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
9899 							fltr->flow_id,
9900 							fltr->sw_id)) {
9901 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
9902 									 fltr);
9903 					del = true;
9904 				}
9905 			} else {
9906 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
9907 								       fltr);
9908 				if (rc)
9909 					del = true;
9910 				else
9911 					set_bit(BNXT_FLTR_VALID, &fltr->state);
9912 			}
9913 
9914 			if (del) {
9915 				spin_lock_bh(&bp->ntp_fltr_lock);
9916 				hlist_del_rcu(&fltr->hash);
9917 				bp->ntp_fltr_count--;
9918 				spin_unlock_bh(&bp->ntp_fltr_lock);
9919 				synchronize_rcu();
9920 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
9921 				kfree(fltr);
9922 			}
9923 		}
9924 	}
9925 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
9926 		netdev_info(bp->dev, "Receive PF driver unload event!");
9927 }
9928 
9929 #else
9930 
9931 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
9932 {
9933 }
9934 
9935 #endif /* CONFIG_RFS_ACCEL */
9936 
9937 static void bnxt_udp_tunnel_add(struct net_device *dev,
9938 				struct udp_tunnel_info *ti)
9939 {
9940 	struct bnxt *bp = netdev_priv(dev);
9941 
9942 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
9943 		return;
9944 
9945 	if (!netif_running(dev))
9946 		return;
9947 
9948 	switch (ti->type) {
9949 	case UDP_TUNNEL_TYPE_VXLAN:
9950 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
9951 			return;
9952 
9953 		bp->vxlan_port_cnt++;
9954 		if (bp->vxlan_port_cnt == 1) {
9955 			bp->vxlan_port = ti->port;
9956 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
9957 			bnxt_queue_sp_work(bp);
9958 		}
9959 		break;
9960 	case UDP_TUNNEL_TYPE_GENEVE:
9961 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
9962 			return;
9963 
9964 		bp->nge_port_cnt++;
9965 		if (bp->nge_port_cnt == 1) {
9966 			bp->nge_port = ti->port;
9967 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
9968 		}
9969 		break;
9970 	default:
9971 		return;
9972 	}
9973 
9974 	bnxt_queue_sp_work(bp);
9975 }
9976 
9977 static void bnxt_udp_tunnel_del(struct net_device *dev,
9978 				struct udp_tunnel_info *ti)
9979 {
9980 	struct bnxt *bp = netdev_priv(dev);
9981 
9982 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
9983 		return;
9984 
9985 	if (!netif_running(dev))
9986 		return;
9987 
9988 	switch (ti->type) {
9989 	case UDP_TUNNEL_TYPE_VXLAN:
9990 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
9991 			return;
9992 		bp->vxlan_port_cnt--;
9993 
9994 		if (bp->vxlan_port_cnt != 0)
9995 			return;
9996 
9997 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
9998 		break;
9999 	case UDP_TUNNEL_TYPE_GENEVE:
10000 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
10001 			return;
10002 		bp->nge_port_cnt--;
10003 
10004 		if (bp->nge_port_cnt != 0)
10005 			return;
10006 
10007 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
10008 		break;
10009 	default:
10010 		return;
10011 	}
10012 
10013 	bnxt_queue_sp_work(bp);
10014 }
10015 
10016 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
10017 			       struct net_device *dev, u32 filter_mask,
10018 			       int nlflags)
10019 {
10020 	struct bnxt *bp = netdev_priv(dev);
10021 
10022 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
10023 				       nlflags, filter_mask, NULL);
10024 }
10025 
10026 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
10027 			       u16 flags, struct netlink_ext_ack *extack)
10028 {
10029 	struct bnxt *bp = netdev_priv(dev);
10030 	struct nlattr *attr, *br_spec;
10031 	int rem, rc = 0;
10032 
10033 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
10034 		return -EOPNOTSUPP;
10035 
10036 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
10037 	if (!br_spec)
10038 		return -EINVAL;
10039 
10040 	nla_for_each_nested(attr, br_spec, rem) {
10041 		u16 mode;
10042 
10043 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
10044 			continue;
10045 
10046 		if (nla_len(attr) < sizeof(mode))
10047 			return -EINVAL;
10048 
10049 		mode = nla_get_u16(attr);
10050 		if (mode == bp->br_mode)
10051 			break;
10052 
10053 		rc = bnxt_hwrm_set_br_mode(bp, mode);
10054 		if (!rc)
10055 			bp->br_mode = mode;
10056 		break;
10057 	}
10058 	return rc;
10059 }
10060 
10061 int bnxt_get_port_parent_id(struct net_device *dev,
10062 			    struct netdev_phys_item_id *ppid)
10063 {
10064 	struct bnxt *bp = netdev_priv(dev);
10065 
10066 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
10067 		return -EOPNOTSUPP;
10068 
10069 	/* The PF and it's VF-reps only support the switchdev framework */
10070 	if (!BNXT_PF(bp))
10071 		return -EOPNOTSUPP;
10072 
10073 	ppid->id_len = sizeof(bp->switch_id);
10074 	memcpy(ppid->id, bp->switch_id, ppid->id_len);
10075 
10076 	return 0;
10077 }
10078 
10079 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
10080 {
10081 	struct bnxt *bp = netdev_priv(dev);
10082 
10083 	return &bp->dl_port;
10084 }
10085 
10086 static const struct net_device_ops bnxt_netdev_ops = {
10087 	.ndo_open		= bnxt_open,
10088 	.ndo_start_xmit		= bnxt_start_xmit,
10089 	.ndo_stop		= bnxt_close,
10090 	.ndo_get_stats64	= bnxt_get_stats64,
10091 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
10092 	.ndo_do_ioctl		= bnxt_ioctl,
10093 	.ndo_validate_addr	= eth_validate_addr,
10094 	.ndo_set_mac_address	= bnxt_change_mac_addr,
10095 	.ndo_change_mtu		= bnxt_change_mtu,
10096 	.ndo_fix_features	= bnxt_fix_features,
10097 	.ndo_set_features	= bnxt_set_features,
10098 	.ndo_tx_timeout		= bnxt_tx_timeout,
10099 #ifdef CONFIG_BNXT_SRIOV
10100 	.ndo_get_vf_config	= bnxt_get_vf_config,
10101 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
10102 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
10103 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
10104 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
10105 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
10106 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
10107 #endif
10108 	.ndo_setup_tc           = bnxt_setup_tc,
10109 #ifdef CONFIG_RFS_ACCEL
10110 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
10111 #endif
10112 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
10113 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
10114 	.ndo_bpf		= bnxt_xdp,
10115 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
10116 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
10117 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
10118 };
10119 
10120 static void bnxt_remove_one(struct pci_dev *pdev)
10121 {
10122 	struct net_device *dev = pci_get_drvdata(pdev);
10123 	struct bnxt *bp = netdev_priv(dev);
10124 
10125 	if (BNXT_PF(bp)) {
10126 		bnxt_sriov_disable(bp);
10127 		bnxt_dl_unregister(bp);
10128 	}
10129 
10130 	pci_disable_pcie_error_reporting(pdev);
10131 	unregister_netdev(dev);
10132 	bnxt_shutdown_tc(bp);
10133 	bnxt_cancel_sp_work(bp);
10134 	bp->sp_event = 0;
10135 
10136 	bnxt_clear_int_mode(bp);
10137 	bnxt_hwrm_func_drv_unrgtr(bp);
10138 	bnxt_free_hwrm_resources(bp);
10139 	bnxt_free_hwrm_short_cmd_req(bp);
10140 	bnxt_ethtool_free(bp);
10141 	bnxt_dcb_free(bp);
10142 	kfree(bp->edev);
10143 	bp->edev = NULL;
10144 	bnxt_free_ctx_mem(bp);
10145 	kfree(bp->ctx);
10146 	bp->ctx = NULL;
10147 	bnxt_cleanup_pci(bp);
10148 	bnxt_free_port_stats(bp);
10149 	free_netdev(dev);
10150 }
10151 
10152 static int bnxt_probe_phy(struct bnxt *bp)
10153 {
10154 	int rc = 0;
10155 	struct bnxt_link_info *link_info = &bp->link_info;
10156 
10157 	rc = bnxt_hwrm_phy_qcaps(bp);
10158 	if (rc) {
10159 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
10160 			   rc);
10161 		return rc;
10162 	}
10163 	mutex_init(&bp->link_lock);
10164 
10165 	rc = bnxt_update_link(bp, false);
10166 	if (rc) {
10167 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
10168 			   rc);
10169 		return rc;
10170 	}
10171 
10172 	/* Older firmware does not have supported_auto_speeds, so assume
10173 	 * that all supported speeds can be autonegotiated.
10174 	 */
10175 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
10176 		link_info->support_auto_speeds = link_info->support_speeds;
10177 
10178 	/*initialize the ethool setting copy with NVM settings */
10179 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10180 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10181 		if (bp->hwrm_spec_code >= 0x10201) {
10182 			if (link_info->auto_pause_setting &
10183 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10184 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10185 		} else {
10186 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10187 		}
10188 		link_info->advertising = link_info->auto_link_speeds;
10189 	} else {
10190 		link_info->req_link_speed = link_info->force_link_speed;
10191 		link_info->req_duplex = link_info->duplex_setting;
10192 	}
10193 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10194 		link_info->req_flow_ctrl =
10195 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10196 	else
10197 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10198 	return rc;
10199 }
10200 
10201 static int bnxt_get_max_irq(struct pci_dev *pdev)
10202 {
10203 	u16 ctrl;
10204 
10205 	if (!pdev->msix_cap)
10206 		return 1;
10207 
10208 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
10209 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
10210 }
10211 
10212 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10213 				int *max_cp)
10214 {
10215 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10216 	int max_ring_grps = 0, max_irq;
10217 
10218 	*max_tx = hw_resc->max_tx_rings;
10219 	*max_rx = hw_resc->max_rx_rings;
10220 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
10221 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
10222 			bnxt_get_ulp_msix_num(bp),
10223 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
10224 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10225 		*max_cp = min_t(int, *max_cp, max_irq);
10226 	max_ring_grps = hw_resc->max_hw_ring_grps;
10227 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
10228 		*max_cp -= 1;
10229 		*max_rx -= 2;
10230 	}
10231 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
10232 		*max_rx >>= 1;
10233 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10234 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
10235 		/* On P5 chips, max_cp output param should be available NQs */
10236 		*max_cp = max_irq;
10237 	}
10238 	*max_rx = min_t(int, *max_rx, max_ring_grps);
10239 }
10240 
10241 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
10242 {
10243 	int rx, tx, cp;
10244 
10245 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
10246 	*max_rx = rx;
10247 	*max_tx = tx;
10248 	if (!rx || !tx || !cp)
10249 		return -ENOMEM;
10250 
10251 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
10252 }
10253 
10254 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10255 			       bool shared)
10256 {
10257 	int rc;
10258 
10259 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10260 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
10261 		/* Not enough rings, try disabling agg rings. */
10262 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
10263 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10264 		if (rc) {
10265 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
10266 			bp->flags |= BNXT_FLAG_AGG_RINGS;
10267 			return rc;
10268 		}
10269 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
10270 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10271 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10272 		bnxt_set_ring_params(bp);
10273 	}
10274 
10275 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
10276 		int max_cp, max_stat, max_irq;
10277 
10278 		/* Reserve minimum resources for RoCE */
10279 		max_cp = bnxt_get_max_func_cp_rings(bp);
10280 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
10281 		max_irq = bnxt_get_max_func_irqs(bp);
10282 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
10283 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
10284 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
10285 			return 0;
10286 
10287 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
10288 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
10289 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
10290 		max_cp = min_t(int, max_cp, max_irq);
10291 		max_cp = min_t(int, max_cp, max_stat);
10292 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
10293 		if (rc)
10294 			rc = 0;
10295 	}
10296 	return rc;
10297 }
10298 
10299 /* In initial default shared ring setting, each shared ring must have a
10300  * RX/TX ring pair.
10301  */
10302 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
10303 {
10304 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
10305 	bp->rx_nr_rings = bp->cp_nr_rings;
10306 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
10307 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10308 }
10309 
10310 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
10311 {
10312 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
10313 
10314 	if (!bnxt_can_reserve_rings(bp))
10315 		return 0;
10316 
10317 	if (sh)
10318 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
10319 	dflt_rings = netif_get_num_default_rss_queues();
10320 	/* Reduce default rings on multi-port cards so that total default
10321 	 * rings do not exceed CPU count.
10322 	 */
10323 	if (bp->port_count > 1) {
10324 		int max_rings =
10325 			max_t(int, num_online_cpus() / bp->port_count, 1);
10326 
10327 		dflt_rings = min_t(int, dflt_rings, max_rings);
10328 	}
10329 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
10330 	if (rc)
10331 		return rc;
10332 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
10333 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
10334 	if (sh)
10335 		bnxt_trim_dflt_sh_rings(bp);
10336 	else
10337 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
10338 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10339 
10340 	rc = __bnxt_reserve_rings(bp);
10341 	if (rc)
10342 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
10343 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10344 	if (sh)
10345 		bnxt_trim_dflt_sh_rings(bp);
10346 
10347 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
10348 	if (bnxt_need_reserve_rings(bp)) {
10349 		rc = __bnxt_reserve_rings(bp);
10350 		if (rc)
10351 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
10352 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10353 	}
10354 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10355 		bp->rx_nr_rings++;
10356 		bp->cp_nr_rings++;
10357 	}
10358 	return rc;
10359 }
10360 
10361 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
10362 {
10363 	int rc;
10364 
10365 	if (bp->tx_nr_rings)
10366 		return 0;
10367 
10368 	bnxt_ulp_irq_stop(bp);
10369 	bnxt_clear_int_mode(bp);
10370 	rc = bnxt_set_dflt_rings(bp, true);
10371 	if (rc) {
10372 		netdev_err(bp->dev, "Not enough rings available.\n");
10373 		goto init_dflt_ring_err;
10374 	}
10375 	rc = bnxt_init_int_mode(bp);
10376 	if (rc)
10377 		goto init_dflt_ring_err;
10378 
10379 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10380 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
10381 		bp->flags |= BNXT_FLAG_RFS;
10382 		bp->dev->features |= NETIF_F_NTUPLE;
10383 	}
10384 init_dflt_ring_err:
10385 	bnxt_ulp_irq_restart(bp, rc);
10386 	return rc;
10387 }
10388 
10389 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
10390 {
10391 	int rc;
10392 
10393 	ASSERT_RTNL();
10394 	bnxt_hwrm_func_qcaps(bp);
10395 
10396 	if (netif_running(bp->dev))
10397 		__bnxt_close_nic(bp, true, false);
10398 
10399 	bnxt_ulp_irq_stop(bp);
10400 	bnxt_clear_int_mode(bp);
10401 	rc = bnxt_init_int_mode(bp);
10402 	bnxt_ulp_irq_restart(bp, rc);
10403 
10404 	if (netif_running(bp->dev)) {
10405 		if (rc)
10406 			dev_close(bp->dev);
10407 		else
10408 			rc = bnxt_open_nic(bp, true, false);
10409 	}
10410 
10411 	return rc;
10412 }
10413 
10414 static int bnxt_init_mac_addr(struct bnxt *bp)
10415 {
10416 	int rc = 0;
10417 
10418 	if (BNXT_PF(bp)) {
10419 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
10420 	} else {
10421 #ifdef CONFIG_BNXT_SRIOV
10422 		struct bnxt_vf_info *vf = &bp->vf;
10423 		bool strict_approval = true;
10424 
10425 		if (is_valid_ether_addr(vf->mac_addr)) {
10426 			/* overwrite netdev dev_addr with admin VF MAC */
10427 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
10428 			/* Older PF driver or firmware may not approve this
10429 			 * correctly.
10430 			 */
10431 			strict_approval = false;
10432 		} else {
10433 			eth_hw_addr_random(bp->dev);
10434 		}
10435 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
10436 #endif
10437 	}
10438 	return rc;
10439 }
10440 
10441 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
10442 {
10443 	struct pci_dev *pdev = bp->pdev;
10444 	int pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
10445 	u32 dw;
10446 
10447 	if (!pos) {
10448 		netdev_info(bp->dev, "Unable do read adapter's DSN");
10449 		return -EOPNOTSUPP;
10450 	}
10451 
10452 	/* DSN (two dw) is at an offset of 4 from the cap pos */
10453 	pos += 4;
10454 	pci_read_config_dword(pdev, pos, &dw);
10455 	put_unaligned_le32(dw, &dsn[0]);
10456 	pci_read_config_dword(pdev, pos + 4, &dw);
10457 	put_unaligned_le32(dw, &dsn[4]);
10458 	return 0;
10459 }
10460 
10461 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
10462 {
10463 	static int version_printed;
10464 	struct net_device *dev;
10465 	struct bnxt *bp;
10466 	int rc, max_irqs;
10467 
10468 	if (pci_is_bridge(pdev))
10469 		return -ENODEV;
10470 
10471 	if (version_printed++ == 0)
10472 		pr_info("%s", version);
10473 
10474 	max_irqs = bnxt_get_max_irq(pdev);
10475 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
10476 	if (!dev)
10477 		return -ENOMEM;
10478 
10479 	bp = netdev_priv(dev);
10480 	bnxt_set_max_func_irqs(bp, max_irqs);
10481 
10482 	if (bnxt_vf_pciid(ent->driver_data))
10483 		bp->flags |= BNXT_FLAG_VF;
10484 
10485 	if (pdev->msix_cap)
10486 		bp->flags |= BNXT_FLAG_MSIX_CAP;
10487 
10488 	rc = bnxt_init_board(pdev, dev);
10489 	if (rc < 0)
10490 		goto init_err_free;
10491 
10492 	dev->netdev_ops = &bnxt_netdev_ops;
10493 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
10494 	dev->ethtool_ops = &bnxt_ethtool_ops;
10495 	pci_set_drvdata(pdev, dev);
10496 
10497 	rc = bnxt_alloc_hwrm_resources(bp);
10498 	if (rc)
10499 		goto init_err_pci_clean;
10500 
10501 	mutex_init(&bp->hwrm_cmd_lock);
10502 	rc = bnxt_hwrm_ver_get(bp);
10503 	if (rc)
10504 		goto init_err_pci_clean;
10505 
10506 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10507 		rc = bnxt_alloc_kong_hwrm_resources(bp);
10508 		if (rc)
10509 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10510 	}
10511 
10512 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10513 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10514 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10515 		if (rc)
10516 			goto init_err_pci_clean;
10517 	}
10518 
10519 	if (BNXT_CHIP_P5(bp))
10520 		bp->flags |= BNXT_FLAG_CHIP_P5;
10521 
10522 	rc = bnxt_hwrm_func_reset(bp);
10523 	if (rc)
10524 		goto init_err_pci_clean;
10525 
10526 	bnxt_hwrm_fw_set_time(bp);
10527 
10528 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10529 			   NETIF_F_TSO | NETIF_F_TSO6 |
10530 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10531 			   NETIF_F_GSO_IPXIP4 |
10532 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10533 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
10534 			   NETIF_F_RXCSUM | NETIF_F_GRO;
10535 
10536 	if (BNXT_SUPPORTS_TPA(bp))
10537 		dev->hw_features |= NETIF_F_LRO;
10538 
10539 	dev->hw_enc_features =
10540 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10541 			NETIF_F_TSO | NETIF_F_TSO6 |
10542 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10543 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10544 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
10545 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
10546 				    NETIF_F_GSO_GRE_CSUM;
10547 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
10548 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
10549 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
10550 	if (BNXT_SUPPORTS_TPA(bp))
10551 		dev->hw_features |= NETIF_F_GRO_HW;
10552 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
10553 	if (dev->features & NETIF_F_GRO_HW)
10554 		dev->features &= ~NETIF_F_LRO;
10555 	dev->priv_flags |= IFF_UNICAST_FLT;
10556 
10557 #ifdef CONFIG_BNXT_SRIOV
10558 	init_waitqueue_head(&bp->sriov_cfg_wait);
10559 	mutex_init(&bp->sriov_lock);
10560 #endif
10561 	if (BNXT_SUPPORTS_TPA(bp)) {
10562 		bp->gro_func = bnxt_gro_func_5730x;
10563 		if (BNXT_CHIP_P4(bp))
10564 			bp->gro_func = bnxt_gro_func_5731x;
10565 	}
10566 	if (!BNXT_CHIP_P4_PLUS(bp))
10567 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
10568 
10569 	rc = bnxt_hwrm_func_drv_rgtr(bp);
10570 	if (rc)
10571 		goto init_err_pci_clean;
10572 
10573 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
10574 	if (rc)
10575 		goto init_err_pci_clean;
10576 
10577 	bp->ulp_probe = bnxt_ulp_probe;
10578 
10579 	rc = bnxt_hwrm_queue_qportcfg(bp);
10580 	if (rc) {
10581 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
10582 			   rc);
10583 		rc = -1;
10584 		goto init_err_pci_clean;
10585 	}
10586 	/* Get the MAX capabilities for this function */
10587 	rc = bnxt_hwrm_func_qcaps(bp);
10588 	if (rc) {
10589 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10590 			   rc);
10591 		rc = -1;
10592 		goto init_err_pci_clean;
10593 	}
10594 	rc = bnxt_init_mac_addr(bp);
10595 	if (rc) {
10596 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
10597 		rc = -EADDRNOTAVAIL;
10598 		goto init_err_pci_clean;
10599 	}
10600 
10601 	/* Read the adapter's DSN to use as the eswitch switch_id */
10602 	rc = bnxt_pcie_dsn_get(bp, bp->switch_id);
10603 	if (rc)
10604 		goto init_err_pci_clean;
10605 
10606 	bnxt_hwrm_func_qcfg(bp);
10607 	bnxt_hwrm_vnic_qcaps(bp);
10608 	bnxt_hwrm_port_led_qcaps(bp);
10609 	bnxt_ethtool_init(bp);
10610 	bnxt_dcb_init(bp);
10611 
10612 	/* MTU range: 60 - FW defined max */
10613 	dev->min_mtu = ETH_ZLEN;
10614 	dev->max_mtu = bp->max_mtu;
10615 
10616 	rc = bnxt_probe_phy(bp);
10617 	if (rc)
10618 		goto init_err_pci_clean;
10619 
10620 	bnxt_set_rx_skb_mode(bp, false);
10621 	bnxt_set_tpa_flags(bp);
10622 	bnxt_set_ring_params(bp);
10623 	rc = bnxt_set_dflt_rings(bp, true);
10624 	if (rc) {
10625 		netdev_err(bp->dev, "Not enough rings available.\n");
10626 		rc = -ENOMEM;
10627 		goto init_err_pci_clean;
10628 	}
10629 
10630 	/* Default RSS hash cfg. */
10631 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10632 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10633 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10634 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10635 	if (BNXT_CHIP_P4(bp) && bp->hwrm_spec_code >= 0x10501) {
10636 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10637 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10638 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10639 	}
10640 
10641 	if (bnxt_rfs_supported(bp)) {
10642 		dev->hw_features |= NETIF_F_NTUPLE;
10643 		if (bnxt_rfs_capable(bp)) {
10644 			bp->flags |= BNXT_FLAG_RFS;
10645 			dev->features |= NETIF_F_NTUPLE;
10646 		}
10647 	}
10648 
10649 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
10650 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
10651 
10652 	rc = bnxt_init_int_mode(bp);
10653 	if (rc)
10654 		goto init_err_pci_clean;
10655 
10656 	/* No TC has been set yet and rings may have been trimmed due to
10657 	 * limited MSIX, so we re-initialize the TX rings per TC.
10658 	 */
10659 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10660 
10661 	bnxt_get_wol_settings(bp);
10662 	if (bp->flags & BNXT_FLAG_WOL_CAP)
10663 		device_set_wakeup_enable(&pdev->dev, bp->wol);
10664 	else
10665 		device_set_wakeup_capable(&pdev->dev, false);
10666 
10667 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10668 
10669 	bnxt_hwrm_coal_params_qcaps(bp);
10670 
10671 	if (BNXT_PF(bp)) {
10672 		if (!bnxt_pf_wq) {
10673 			bnxt_pf_wq =
10674 				create_singlethread_workqueue("bnxt_pf_wq");
10675 			if (!bnxt_pf_wq) {
10676 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
10677 				goto init_err_pci_clean;
10678 			}
10679 		}
10680 		bnxt_init_tc(bp);
10681 	}
10682 
10683 	rc = register_netdev(dev);
10684 	if (rc)
10685 		goto init_err_cleanup_tc;
10686 
10687 	if (BNXT_PF(bp))
10688 		bnxt_dl_register(bp);
10689 
10690 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
10691 		    board_info[ent->driver_data].name,
10692 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
10693 	pcie_print_link_status(pdev);
10694 
10695 	return 0;
10696 
10697 init_err_cleanup_tc:
10698 	bnxt_shutdown_tc(bp);
10699 	bnxt_clear_int_mode(bp);
10700 
10701 init_err_pci_clean:
10702 	bnxt_free_hwrm_resources(bp);
10703 	bnxt_free_ctx_mem(bp);
10704 	kfree(bp->ctx);
10705 	bp->ctx = NULL;
10706 	bnxt_cleanup_pci(bp);
10707 
10708 init_err_free:
10709 	free_netdev(dev);
10710 	return rc;
10711 }
10712 
10713 static void bnxt_shutdown(struct pci_dev *pdev)
10714 {
10715 	struct net_device *dev = pci_get_drvdata(pdev);
10716 	struct bnxt *bp;
10717 
10718 	if (!dev)
10719 		return;
10720 
10721 	rtnl_lock();
10722 	bp = netdev_priv(dev);
10723 	if (!bp)
10724 		goto shutdown_exit;
10725 
10726 	if (netif_running(dev))
10727 		dev_close(dev);
10728 
10729 	bnxt_ulp_shutdown(bp);
10730 
10731 	if (system_state == SYSTEM_POWER_OFF) {
10732 		bnxt_clear_int_mode(bp);
10733 		pci_wake_from_d3(pdev, bp->wol);
10734 		pci_set_power_state(pdev, PCI_D3hot);
10735 	}
10736 
10737 shutdown_exit:
10738 	rtnl_unlock();
10739 }
10740 
10741 #ifdef CONFIG_PM_SLEEP
10742 static int bnxt_suspend(struct device *device)
10743 {
10744 	struct pci_dev *pdev = to_pci_dev(device);
10745 	struct net_device *dev = pci_get_drvdata(pdev);
10746 	struct bnxt *bp = netdev_priv(dev);
10747 	int rc = 0;
10748 
10749 	rtnl_lock();
10750 	if (netif_running(dev)) {
10751 		netif_device_detach(dev);
10752 		rc = bnxt_close(dev);
10753 	}
10754 	bnxt_hwrm_func_drv_unrgtr(bp);
10755 	rtnl_unlock();
10756 	return rc;
10757 }
10758 
10759 static int bnxt_resume(struct device *device)
10760 {
10761 	struct pci_dev *pdev = to_pci_dev(device);
10762 	struct net_device *dev = pci_get_drvdata(pdev);
10763 	struct bnxt *bp = netdev_priv(dev);
10764 	int rc = 0;
10765 
10766 	rtnl_lock();
10767 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
10768 		rc = -ENODEV;
10769 		goto resume_exit;
10770 	}
10771 	rc = bnxt_hwrm_func_reset(bp);
10772 	if (rc) {
10773 		rc = -EBUSY;
10774 		goto resume_exit;
10775 	}
10776 	bnxt_get_wol_settings(bp);
10777 	if (netif_running(dev)) {
10778 		rc = bnxt_open(dev);
10779 		if (!rc)
10780 			netif_device_attach(dev);
10781 	}
10782 
10783 resume_exit:
10784 	rtnl_unlock();
10785 	return rc;
10786 }
10787 
10788 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
10789 #define BNXT_PM_OPS (&bnxt_pm_ops)
10790 
10791 #else
10792 
10793 #define BNXT_PM_OPS NULL
10794 
10795 #endif /* CONFIG_PM_SLEEP */
10796 
10797 /**
10798  * bnxt_io_error_detected - called when PCI error is detected
10799  * @pdev: Pointer to PCI device
10800  * @state: The current pci connection state
10801  *
10802  * This function is called after a PCI bus error affecting
10803  * this device has been detected.
10804  */
10805 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
10806 					       pci_channel_state_t state)
10807 {
10808 	struct net_device *netdev = pci_get_drvdata(pdev);
10809 	struct bnxt *bp = netdev_priv(netdev);
10810 
10811 	netdev_info(netdev, "PCI I/O error detected\n");
10812 
10813 	rtnl_lock();
10814 	netif_device_detach(netdev);
10815 
10816 	bnxt_ulp_stop(bp);
10817 
10818 	if (state == pci_channel_io_perm_failure) {
10819 		rtnl_unlock();
10820 		return PCI_ERS_RESULT_DISCONNECT;
10821 	}
10822 
10823 	if (netif_running(netdev))
10824 		bnxt_close(netdev);
10825 
10826 	pci_disable_device(pdev);
10827 	rtnl_unlock();
10828 
10829 	/* Request a slot slot reset. */
10830 	return PCI_ERS_RESULT_NEED_RESET;
10831 }
10832 
10833 /**
10834  * bnxt_io_slot_reset - called after the pci bus has been reset.
10835  * @pdev: Pointer to PCI device
10836  *
10837  * Restart the card from scratch, as if from a cold-boot.
10838  * At this point, the card has exprienced a hard reset,
10839  * followed by fixups by BIOS, and has its config space
10840  * set up identically to what it was at cold boot.
10841  */
10842 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
10843 {
10844 	struct net_device *netdev = pci_get_drvdata(pdev);
10845 	struct bnxt *bp = netdev_priv(netdev);
10846 	int err = 0;
10847 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
10848 
10849 	netdev_info(bp->dev, "PCI Slot Reset\n");
10850 
10851 	rtnl_lock();
10852 
10853 	if (pci_enable_device(pdev)) {
10854 		dev_err(&pdev->dev,
10855 			"Cannot re-enable PCI device after reset.\n");
10856 	} else {
10857 		pci_set_master(pdev);
10858 
10859 		err = bnxt_hwrm_func_reset(bp);
10860 		if (!err && netif_running(netdev))
10861 			err = bnxt_open(netdev);
10862 
10863 		if (!err) {
10864 			result = PCI_ERS_RESULT_RECOVERED;
10865 			bnxt_ulp_start(bp);
10866 		}
10867 	}
10868 
10869 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
10870 		dev_close(netdev);
10871 
10872 	rtnl_unlock();
10873 
10874 	return PCI_ERS_RESULT_RECOVERED;
10875 }
10876 
10877 /**
10878  * bnxt_io_resume - called when traffic can start flowing again.
10879  * @pdev: Pointer to PCI device
10880  *
10881  * This callback is called when the error recovery driver tells
10882  * us that its OK to resume normal operation.
10883  */
10884 static void bnxt_io_resume(struct pci_dev *pdev)
10885 {
10886 	struct net_device *netdev = pci_get_drvdata(pdev);
10887 
10888 	rtnl_lock();
10889 
10890 	netif_device_attach(netdev);
10891 
10892 	rtnl_unlock();
10893 }
10894 
10895 static const struct pci_error_handlers bnxt_err_handler = {
10896 	.error_detected	= bnxt_io_error_detected,
10897 	.slot_reset	= bnxt_io_slot_reset,
10898 	.resume		= bnxt_io_resume
10899 };
10900 
10901 static struct pci_driver bnxt_pci_driver = {
10902 	.name		= DRV_MODULE_NAME,
10903 	.id_table	= bnxt_pci_tbl,
10904 	.probe		= bnxt_init_one,
10905 	.remove		= bnxt_remove_one,
10906 	.shutdown	= bnxt_shutdown,
10907 	.driver.pm	= BNXT_PM_OPS,
10908 	.err_handler	= &bnxt_err_handler,
10909 #if defined(CONFIG_BNXT_SRIOV)
10910 	.sriov_configure = bnxt_sriov_configure,
10911 #endif
10912 };
10913 
10914 static int __init bnxt_init(void)
10915 {
10916 	bnxt_debug_init();
10917 	return pci_register_driver(&bnxt_pci_driver);
10918 }
10919 
10920 static void __exit bnxt_exit(void)
10921 {
10922 	pci_unregister_driver(&bnxt_pci_driver);
10923 	if (bnxt_pf_wq)
10924 		destroy_workqueue(bnxt_pf_wq);
10925 	bnxt_debug_exit();
10926 }
10927 
10928 module_init(bnxt_init);
10929 module_exit(bnxt_exit);
10930