1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 #include <linux/align.h>
59 #include <net/netdev_queues.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
336 {
337 	struct bnxt *bp = netdev_priv(dev);
338 	struct tx_bd *txbd;
339 	struct tx_bd_ext *txbd1;
340 	struct netdev_queue *txq;
341 	int i;
342 	dma_addr_t mapping;
343 	unsigned int length, pad = 0;
344 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
345 	u16 prod, last_frag;
346 	struct pci_dev *pdev = bp->pdev;
347 	struct bnxt_tx_ring_info *txr;
348 	struct bnxt_sw_tx_bd *tx_buf;
349 	__le32 lflags = 0;
350 
351 	i = skb_get_queue_mapping(skb);
352 	if (unlikely(i >= bp->tx_nr_rings)) {
353 		dev_kfree_skb_any(skb);
354 		dev_core_stats_tx_dropped_inc(dev);
355 		return NETDEV_TX_OK;
356 	}
357 
358 	txq = netdev_get_tx_queue(dev, i);
359 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
360 	prod = txr->tx_prod;
361 
362 	free_size = bnxt_tx_avail(bp, txr);
363 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
364 		/* We must have raced with NAPI cleanup */
365 		if (net_ratelimit() && txr->kick_pending)
366 			netif_warn(bp, tx_err, dev,
367 				   "bnxt: ring busy w/ flush pending!\n");
368 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
369 					bp->tx_wake_thresh))
370 			return NETDEV_TX_BUSY;
371 	}
372 
373 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
374 		goto tx_free;
375 
376 	length = skb->len;
377 	len = skb_headlen(skb);
378 	last_frag = skb_shinfo(skb)->nr_frags;
379 
380 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
381 
382 	txbd->tx_bd_opaque = prod;
383 
384 	tx_buf = &txr->tx_buf_ring[prod];
385 	tx_buf->skb = skb;
386 	tx_buf->nr_frags = last_frag;
387 
388 	vlan_tag_flags = 0;
389 	cfa_action = bnxt_xmit_get_cfa_action(skb);
390 	if (skb_vlan_tag_present(skb)) {
391 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
392 				 skb_vlan_tag_get(skb);
393 		/* Currently supports 8021Q, 8021AD vlan offloads
394 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
395 		 */
396 		if (skb->vlan_proto == htons(ETH_P_8021Q))
397 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
398 	}
399 
400 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
401 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
402 
403 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
404 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
405 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
406 					    &ptp->tx_hdr_off)) {
407 				if (vlan_tag_flags)
408 					ptp->tx_hdr_off += VLAN_HLEN;
409 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
410 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
411 			} else {
412 				atomic_inc(&bp->ptp_cfg->tx_avail);
413 			}
414 		}
415 	}
416 
417 	if (unlikely(skb->no_fcs))
418 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
419 
420 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
421 	    !lflags) {
422 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
423 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
424 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
425 		void __iomem *db = txr->tx_db.doorbell;
426 		void *pdata = tx_push_buf->data;
427 		u64 *end;
428 		int j, push_len;
429 
430 		/* Set COAL_NOW to be ready quickly for the next push */
431 		tx_push->tx_bd_len_flags_type =
432 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
433 					TX_BD_TYPE_LONG_TX_BD |
434 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
435 					TX_BD_FLAGS_COAL_NOW |
436 					TX_BD_FLAGS_PACKET_END |
437 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
438 
439 		if (skb->ip_summed == CHECKSUM_PARTIAL)
440 			tx_push1->tx_bd_hsize_lflags =
441 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
442 		else
443 			tx_push1->tx_bd_hsize_lflags = 0;
444 
445 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
446 		tx_push1->tx_bd_cfa_action =
447 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
448 
449 		end = pdata + length;
450 		end = PTR_ALIGN(end, 8) - 1;
451 		*end = 0;
452 
453 		skb_copy_from_linear_data(skb, pdata, len);
454 		pdata += len;
455 		for (j = 0; j < last_frag; j++) {
456 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
457 			void *fptr;
458 
459 			fptr = skb_frag_address_safe(frag);
460 			if (!fptr)
461 				goto normal_tx;
462 
463 			memcpy(pdata, fptr, skb_frag_size(frag));
464 			pdata += skb_frag_size(frag);
465 		}
466 
467 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
468 		txbd->tx_bd_haddr = txr->data_mapping;
469 		prod = NEXT_TX(prod);
470 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
471 		memcpy(txbd, tx_push1, sizeof(*txbd));
472 		prod = NEXT_TX(prod);
473 		tx_push->doorbell =
474 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
475 		WRITE_ONCE(txr->tx_prod, prod);
476 
477 		tx_buf->is_push = 1;
478 		netdev_tx_sent_queue(txq, skb->len);
479 		wmb();	/* Sync is_push and byte queue before pushing data */
480 
481 		push_len = (length + sizeof(*tx_push) + 7) / 8;
482 		if (push_len > 16) {
483 			__iowrite64_copy(db, tx_push_buf, 16);
484 			__iowrite32_copy(db + 4, tx_push_buf + 1,
485 					 (push_len - 16) << 1);
486 		} else {
487 			__iowrite64_copy(db, tx_push_buf, push_len);
488 		}
489 
490 		goto tx_done;
491 	}
492 
493 normal_tx:
494 	if (length < BNXT_MIN_PKT_SIZE) {
495 		pad = BNXT_MIN_PKT_SIZE - length;
496 		if (skb_pad(skb, pad))
497 			/* SKB already freed. */
498 			goto tx_kick_pending;
499 		length = BNXT_MIN_PKT_SIZE;
500 	}
501 
502 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
503 
504 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
505 		goto tx_free;
506 
507 	dma_unmap_addr_set(tx_buf, mapping, mapping);
508 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
509 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
510 
511 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
512 
513 	prod = NEXT_TX(prod);
514 	txbd1 = (struct tx_bd_ext *)
515 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
516 
517 	txbd1->tx_bd_hsize_lflags = lflags;
518 	if (skb_is_gso(skb)) {
519 		u32 hdr_len;
520 
521 		if (skb->encapsulation)
522 			hdr_len = skb_inner_tcp_all_headers(skb);
523 		else
524 			hdr_len = skb_tcp_all_headers(skb);
525 
526 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
527 					TX_BD_FLAGS_T_IPID |
528 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
529 		length = skb_shinfo(skb)->gso_size;
530 		txbd1->tx_bd_mss = cpu_to_le32(length);
531 		length += hdr_len;
532 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
533 		txbd1->tx_bd_hsize_lflags |=
534 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
535 		txbd1->tx_bd_mss = 0;
536 	}
537 
538 	length >>= 9;
539 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
540 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
541 				     skb->len);
542 		i = 0;
543 		goto tx_dma_error;
544 	}
545 	flags |= bnxt_lhint_arr[length];
546 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
547 
548 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
549 	txbd1->tx_bd_cfa_action =
550 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
551 	for (i = 0; i < last_frag; i++) {
552 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
553 
554 		prod = NEXT_TX(prod);
555 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
556 
557 		len = skb_frag_size(frag);
558 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
559 					   DMA_TO_DEVICE);
560 
561 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
562 			goto tx_dma_error;
563 
564 		tx_buf = &txr->tx_buf_ring[prod];
565 		dma_unmap_addr_set(tx_buf, mapping, mapping);
566 
567 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
568 
569 		flags = len << TX_BD_LEN_SHIFT;
570 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
571 	}
572 
573 	flags &= ~TX_BD_LEN;
574 	txbd->tx_bd_len_flags_type =
575 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
576 			    TX_BD_FLAGS_PACKET_END);
577 
578 	netdev_tx_sent_queue(txq, skb->len);
579 
580 	skb_tx_timestamp(skb);
581 
582 	/* Sync BD data before updating doorbell */
583 	wmb();
584 
585 	prod = NEXT_TX(prod);
586 	WRITE_ONCE(txr->tx_prod, prod);
587 
588 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
589 		bnxt_txr_db_kick(bp, txr, prod);
590 	else
591 		txr->kick_pending = 1;
592 
593 tx_done:
594 
595 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
596 		if (netdev_xmit_more() && !tx_buf->is_push)
597 			bnxt_txr_db_kick(bp, txr, prod);
598 
599 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
600 				   bp->tx_wake_thresh);
601 	}
602 	return NETDEV_TX_OK;
603 
604 tx_dma_error:
605 	if (BNXT_TX_PTP_IS_SET(lflags))
606 		atomic_inc(&bp->ptp_cfg->tx_avail);
607 
608 	last_frag = i;
609 
610 	/* start back at beginning and unmap skb */
611 	prod = txr->tx_prod;
612 	tx_buf = &txr->tx_buf_ring[prod];
613 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
614 			 skb_headlen(skb), DMA_TO_DEVICE);
615 	prod = NEXT_TX(prod);
616 
617 	/* unmap remaining mapped pages */
618 	for (i = 0; i < last_frag; i++) {
619 		prod = NEXT_TX(prod);
620 		tx_buf = &txr->tx_buf_ring[prod];
621 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
622 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
623 			       DMA_TO_DEVICE);
624 	}
625 
626 tx_free:
627 	dev_kfree_skb_any(skb);
628 tx_kick_pending:
629 	if (txr->kick_pending)
630 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
631 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
632 	dev_core_stats_tx_dropped_inc(dev);
633 	return NETDEV_TX_OK;
634 }
635 
636 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
637 {
638 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
639 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
640 	u16 cons = txr->tx_cons;
641 	struct pci_dev *pdev = bp->pdev;
642 	int i;
643 	unsigned int tx_bytes = 0;
644 
645 	for (i = 0; i < nr_pkts; i++) {
646 		struct bnxt_sw_tx_bd *tx_buf;
647 		struct sk_buff *skb;
648 		int j, last;
649 
650 		tx_buf = &txr->tx_buf_ring[cons];
651 		cons = NEXT_TX(cons);
652 		skb = tx_buf->skb;
653 		tx_buf->skb = NULL;
654 
655 		tx_bytes += skb->len;
656 
657 		if (tx_buf->is_push) {
658 			tx_buf->is_push = 0;
659 			goto next_tx_int;
660 		}
661 
662 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
663 				 skb_headlen(skb), DMA_TO_DEVICE);
664 		last = tx_buf->nr_frags;
665 
666 		for (j = 0; j < last; j++) {
667 			cons = NEXT_TX(cons);
668 			tx_buf = &txr->tx_buf_ring[cons];
669 			dma_unmap_page(
670 				&pdev->dev,
671 				dma_unmap_addr(tx_buf, mapping),
672 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
673 				DMA_TO_DEVICE);
674 		}
675 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
676 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
677 				/* PTP worker takes ownership of the skb */
678 				if (!bnxt_get_tx_ts_p5(bp, skb))
679 					skb = NULL;
680 				else
681 					atomic_inc(&bp->ptp_cfg->tx_avail);
682 			}
683 		}
684 
685 next_tx_int:
686 		cons = NEXT_TX(cons);
687 
688 		dev_kfree_skb_any(skb);
689 	}
690 
691 	WRITE_ONCE(txr->tx_cons, cons);
692 
693 	__netif_txq_completed_wake(txq, nr_pkts, tx_bytes,
694 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
695 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
696 }
697 
698 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
699 					 struct bnxt_rx_ring_info *rxr,
700 					 gfp_t gfp)
701 {
702 	struct device *dev = &bp->pdev->dev;
703 	struct page *page;
704 
705 	page = page_pool_dev_alloc_pages(rxr->page_pool);
706 	if (!page)
707 		return NULL;
708 
709 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
710 				      DMA_ATTR_WEAK_ORDERING);
711 	if (dma_mapping_error(dev, *mapping)) {
712 		page_pool_recycle_direct(rxr->page_pool, page);
713 		return NULL;
714 	}
715 	return page;
716 }
717 
718 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
719 				       gfp_t gfp)
720 {
721 	u8 *data;
722 	struct pci_dev *pdev = bp->pdev;
723 
724 	if (gfp == GFP_ATOMIC)
725 		data = napi_alloc_frag(bp->rx_buf_size);
726 	else
727 		data = netdev_alloc_frag(bp->rx_buf_size);
728 	if (!data)
729 		return NULL;
730 
731 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
732 					bp->rx_buf_use_size, bp->rx_dir,
733 					DMA_ATTR_WEAK_ORDERING);
734 
735 	if (dma_mapping_error(&pdev->dev, *mapping)) {
736 		skb_free_frag(data);
737 		data = NULL;
738 	}
739 	return data;
740 }
741 
742 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
743 		       u16 prod, gfp_t gfp)
744 {
745 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
746 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
747 	dma_addr_t mapping;
748 
749 	if (BNXT_RX_PAGE_MODE(bp)) {
750 		struct page *page =
751 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
752 
753 		if (!page)
754 			return -ENOMEM;
755 
756 		mapping += bp->rx_dma_offset;
757 		rx_buf->data = page;
758 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
759 	} else {
760 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
761 
762 		if (!data)
763 			return -ENOMEM;
764 
765 		rx_buf->data = data;
766 		rx_buf->data_ptr = data + bp->rx_offset;
767 	}
768 	rx_buf->mapping = mapping;
769 
770 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
771 	return 0;
772 }
773 
774 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
775 {
776 	u16 prod = rxr->rx_prod;
777 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
778 	struct rx_bd *cons_bd, *prod_bd;
779 
780 	prod_rx_buf = &rxr->rx_buf_ring[prod];
781 	cons_rx_buf = &rxr->rx_buf_ring[cons];
782 
783 	prod_rx_buf->data = data;
784 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
785 
786 	prod_rx_buf->mapping = cons_rx_buf->mapping;
787 
788 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
789 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
790 
791 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
792 }
793 
794 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
795 {
796 	u16 next, max = rxr->rx_agg_bmap_size;
797 
798 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
799 	if (next >= max)
800 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
801 	return next;
802 }
803 
804 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
805 				     struct bnxt_rx_ring_info *rxr,
806 				     u16 prod, gfp_t gfp)
807 {
808 	struct rx_bd *rxbd =
809 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
810 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
811 	struct pci_dev *pdev = bp->pdev;
812 	struct page *page;
813 	dma_addr_t mapping;
814 	u16 sw_prod = rxr->rx_sw_agg_prod;
815 	unsigned int offset = 0;
816 
817 	if (BNXT_RX_PAGE_MODE(bp)) {
818 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
819 
820 		if (!page)
821 			return -ENOMEM;
822 
823 	} else {
824 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
825 			page = rxr->rx_page;
826 			if (!page) {
827 				page = alloc_page(gfp);
828 				if (!page)
829 					return -ENOMEM;
830 				rxr->rx_page = page;
831 				rxr->rx_page_offset = 0;
832 			}
833 			offset = rxr->rx_page_offset;
834 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
835 			if (rxr->rx_page_offset == PAGE_SIZE)
836 				rxr->rx_page = NULL;
837 			else
838 				get_page(page);
839 		} else {
840 			page = alloc_page(gfp);
841 			if (!page)
842 				return -ENOMEM;
843 		}
844 
845 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
846 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
847 					     DMA_ATTR_WEAK_ORDERING);
848 		if (dma_mapping_error(&pdev->dev, mapping)) {
849 			__free_page(page);
850 			return -EIO;
851 		}
852 	}
853 
854 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
855 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
856 
857 	__set_bit(sw_prod, rxr->rx_agg_bmap);
858 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
859 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
860 
861 	rx_agg_buf->page = page;
862 	rx_agg_buf->offset = offset;
863 	rx_agg_buf->mapping = mapping;
864 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
865 	rxbd->rx_bd_opaque = sw_prod;
866 	return 0;
867 }
868 
869 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
870 				       struct bnxt_cp_ring_info *cpr,
871 				       u16 cp_cons, u16 curr)
872 {
873 	struct rx_agg_cmp *agg;
874 
875 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
876 	agg = (struct rx_agg_cmp *)
877 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
878 	return agg;
879 }
880 
881 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
882 					      struct bnxt_rx_ring_info *rxr,
883 					      u16 agg_id, u16 curr)
884 {
885 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
886 
887 	return &tpa_info->agg_arr[curr];
888 }
889 
890 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
891 				   u16 start, u32 agg_bufs, bool tpa)
892 {
893 	struct bnxt_napi *bnapi = cpr->bnapi;
894 	struct bnxt *bp = bnapi->bp;
895 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
896 	u16 prod = rxr->rx_agg_prod;
897 	u16 sw_prod = rxr->rx_sw_agg_prod;
898 	bool p5_tpa = false;
899 	u32 i;
900 
901 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
902 		p5_tpa = true;
903 
904 	for (i = 0; i < agg_bufs; i++) {
905 		u16 cons;
906 		struct rx_agg_cmp *agg;
907 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
908 		struct rx_bd *prod_bd;
909 		struct page *page;
910 
911 		if (p5_tpa)
912 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
913 		else
914 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
915 		cons = agg->rx_agg_cmp_opaque;
916 		__clear_bit(cons, rxr->rx_agg_bmap);
917 
918 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
919 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
920 
921 		__set_bit(sw_prod, rxr->rx_agg_bmap);
922 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
923 		cons_rx_buf = &rxr->rx_agg_ring[cons];
924 
925 		/* It is possible for sw_prod to be equal to cons, so
926 		 * set cons_rx_buf->page to NULL first.
927 		 */
928 		page = cons_rx_buf->page;
929 		cons_rx_buf->page = NULL;
930 		prod_rx_buf->page = page;
931 		prod_rx_buf->offset = cons_rx_buf->offset;
932 
933 		prod_rx_buf->mapping = cons_rx_buf->mapping;
934 
935 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
936 
937 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
938 		prod_bd->rx_bd_opaque = sw_prod;
939 
940 		prod = NEXT_RX_AGG(prod);
941 		sw_prod = NEXT_RX_AGG(sw_prod);
942 	}
943 	rxr->rx_agg_prod = prod;
944 	rxr->rx_sw_agg_prod = sw_prod;
945 }
946 
947 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
948 					      struct bnxt_rx_ring_info *rxr,
949 					      u16 cons, void *data, u8 *data_ptr,
950 					      dma_addr_t dma_addr,
951 					      unsigned int offset_and_len)
952 {
953 	unsigned int len = offset_and_len & 0xffff;
954 	struct page *page = data;
955 	u16 prod = rxr->rx_prod;
956 	struct sk_buff *skb;
957 	int err;
958 
959 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
960 	if (unlikely(err)) {
961 		bnxt_reuse_rx_data(rxr, cons, data);
962 		return NULL;
963 	}
964 	dma_addr -= bp->rx_dma_offset;
965 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
966 			     DMA_ATTR_WEAK_ORDERING);
967 	skb = build_skb(page_address(page), PAGE_SIZE);
968 	if (!skb) {
969 		page_pool_recycle_direct(rxr->page_pool, page);
970 		return NULL;
971 	}
972 	skb_mark_for_recycle(skb);
973 	skb_reserve(skb, bp->rx_dma_offset);
974 	__skb_put(skb, len);
975 
976 	return skb;
977 }
978 
979 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
980 					struct bnxt_rx_ring_info *rxr,
981 					u16 cons, void *data, u8 *data_ptr,
982 					dma_addr_t dma_addr,
983 					unsigned int offset_and_len)
984 {
985 	unsigned int payload = offset_and_len >> 16;
986 	unsigned int len = offset_and_len & 0xffff;
987 	skb_frag_t *frag;
988 	struct page *page = data;
989 	u16 prod = rxr->rx_prod;
990 	struct sk_buff *skb;
991 	int off, err;
992 
993 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
994 	if (unlikely(err)) {
995 		bnxt_reuse_rx_data(rxr, cons, data);
996 		return NULL;
997 	}
998 	dma_addr -= bp->rx_dma_offset;
999 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1000 			     DMA_ATTR_WEAK_ORDERING);
1001 
1002 	if (unlikely(!payload))
1003 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1004 
1005 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1006 	if (!skb) {
1007 		page_pool_recycle_direct(rxr->page_pool, page);
1008 		return NULL;
1009 	}
1010 
1011 	skb_mark_for_recycle(skb);
1012 	off = (void *)data_ptr - page_address(page);
1013 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1014 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1015 	       payload + NET_IP_ALIGN);
1016 
1017 	frag = &skb_shinfo(skb)->frags[0];
1018 	skb_frag_size_sub(frag, payload);
1019 	skb_frag_off_add(frag, payload);
1020 	skb->data_len -= payload;
1021 	skb->tail += payload;
1022 
1023 	return skb;
1024 }
1025 
1026 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1027 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1028 				   void *data, u8 *data_ptr,
1029 				   dma_addr_t dma_addr,
1030 				   unsigned int offset_and_len)
1031 {
1032 	u16 prod = rxr->rx_prod;
1033 	struct sk_buff *skb;
1034 	int err;
1035 
1036 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1037 	if (unlikely(err)) {
1038 		bnxt_reuse_rx_data(rxr, cons, data);
1039 		return NULL;
1040 	}
1041 
1042 	skb = build_skb(data, bp->rx_buf_size);
1043 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1044 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1045 	if (!skb) {
1046 		skb_free_frag(data);
1047 		return NULL;
1048 	}
1049 
1050 	skb_reserve(skb, bp->rx_offset);
1051 	skb_put(skb, offset_and_len & 0xffff);
1052 	return skb;
1053 }
1054 
1055 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1056 			       struct bnxt_cp_ring_info *cpr,
1057 			       struct skb_shared_info *shinfo,
1058 			       u16 idx, u32 agg_bufs, bool tpa,
1059 			       struct xdp_buff *xdp)
1060 {
1061 	struct bnxt_napi *bnapi = cpr->bnapi;
1062 	struct pci_dev *pdev = bp->pdev;
1063 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1064 	u16 prod = rxr->rx_agg_prod;
1065 	u32 i, total_frag_len = 0;
1066 	bool p5_tpa = false;
1067 
1068 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1069 		p5_tpa = true;
1070 
1071 	for (i = 0; i < agg_bufs; i++) {
1072 		skb_frag_t *frag = &shinfo->frags[i];
1073 		u16 cons, frag_len;
1074 		struct rx_agg_cmp *agg;
1075 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1076 		struct page *page;
1077 		dma_addr_t mapping;
1078 
1079 		if (p5_tpa)
1080 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1081 		else
1082 			agg = bnxt_get_agg(bp, cpr, idx, i);
1083 		cons = agg->rx_agg_cmp_opaque;
1084 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1085 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1086 
1087 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1088 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1089 					cons_rx_buf->offset, frag_len);
1090 		shinfo->nr_frags = i + 1;
1091 		__clear_bit(cons, rxr->rx_agg_bmap);
1092 
1093 		/* It is possible for bnxt_alloc_rx_page() to allocate
1094 		 * a sw_prod index that equals the cons index, so we
1095 		 * need to clear the cons entry now.
1096 		 */
1097 		mapping = cons_rx_buf->mapping;
1098 		page = cons_rx_buf->page;
1099 		cons_rx_buf->page = NULL;
1100 
1101 		if (xdp && page_is_pfmemalloc(page))
1102 			xdp_buff_set_frag_pfmemalloc(xdp);
1103 
1104 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1105 			--shinfo->nr_frags;
1106 			cons_rx_buf->page = page;
1107 
1108 			/* Update prod since possibly some pages have been
1109 			 * allocated already.
1110 			 */
1111 			rxr->rx_agg_prod = prod;
1112 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1113 			return 0;
1114 		}
1115 
1116 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1117 				     bp->rx_dir,
1118 				     DMA_ATTR_WEAK_ORDERING);
1119 
1120 		total_frag_len += frag_len;
1121 		prod = NEXT_RX_AGG(prod);
1122 	}
1123 	rxr->rx_agg_prod = prod;
1124 	return total_frag_len;
1125 }
1126 
1127 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1128 					     struct bnxt_cp_ring_info *cpr,
1129 					     struct sk_buff *skb, u16 idx,
1130 					     u32 agg_bufs, bool tpa)
1131 {
1132 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1133 	u32 total_frag_len = 0;
1134 
1135 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1136 					     agg_bufs, tpa, NULL);
1137 	if (!total_frag_len) {
1138 		dev_kfree_skb(skb);
1139 		return NULL;
1140 	}
1141 
1142 	skb->data_len += total_frag_len;
1143 	skb->len += total_frag_len;
1144 	skb->truesize += PAGE_SIZE * agg_bufs;
1145 	return skb;
1146 }
1147 
1148 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1149 				 struct bnxt_cp_ring_info *cpr,
1150 				 struct xdp_buff *xdp, u16 idx,
1151 				 u32 agg_bufs, bool tpa)
1152 {
1153 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1154 	u32 total_frag_len = 0;
1155 
1156 	if (!xdp_buff_has_frags(xdp))
1157 		shinfo->nr_frags = 0;
1158 
1159 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1160 					     idx, agg_bufs, tpa, xdp);
1161 	if (total_frag_len) {
1162 		xdp_buff_set_frags_flag(xdp);
1163 		shinfo->nr_frags = agg_bufs;
1164 		shinfo->xdp_frags_size = total_frag_len;
1165 	}
1166 	return total_frag_len;
1167 }
1168 
1169 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1170 			       u8 agg_bufs, u32 *raw_cons)
1171 {
1172 	u16 last;
1173 	struct rx_agg_cmp *agg;
1174 
1175 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1176 	last = RING_CMP(*raw_cons);
1177 	agg = (struct rx_agg_cmp *)
1178 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1179 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1180 }
1181 
1182 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1183 					    unsigned int len,
1184 					    dma_addr_t mapping)
1185 {
1186 	struct bnxt *bp = bnapi->bp;
1187 	struct pci_dev *pdev = bp->pdev;
1188 	struct sk_buff *skb;
1189 
1190 	skb = napi_alloc_skb(&bnapi->napi, len);
1191 	if (!skb)
1192 		return NULL;
1193 
1194 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1195 				bp->rx_dir);
1196 
1197 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1198 	       len + NET_IP_ALIGN);
1199 
1200 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1201 				   bp->rx_dir);
1202 
1203 	skb_put(skb, len);
1204 	return skb;
1205 }
1206 
1207 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1208 			   u32 *raw_cons, void *cmp)
1209 {
1210 	struct rx_cmp *rxcmp = cmp;
1211 	u32 tmp_raw_cons = *raw_cons;
1212 	u8 cmp_type, agg_bufs = 0;
1213 
1214 	cmp_type = RX_CMP_TYPE(rxcmp);
1215 
1216 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1217 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1218 			    RX_CMP_AGG_BUFS) >>
1219 			   RX_CMP_AGG_BUFS_SHIFT;
1220 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1221 		struct rx_tpa_end_cmp *tpa_end = cmp;
1222 
1223 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1224 			return 0;
1225 
1226 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1227 	}
1228 
1229 	if (agg_bufs) {
1230 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1231 			return -EBUSY;
1232 	}
1233 	*raw_cons = tmp_raw_cons;
1234 	return 0;
1235 }
1236 
1237 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1238 {
1239 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1240 		return;
1241 
1242 	if (BNXT_PF(bp))
1243 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1244 	else
1245 		schedule_delayed_work(&bp->fw_reset_task, delay);
1246 }
1247 
1248 static void bnxt_queue_sp_work(struct bnxt *bp)
1249 {
1250 	if (BNXT_PF(bp))
1251 		queue_work(bnxt_pf_wq, &bp->sp_task);
1252 	else
1253 		schedule_work(&bp->sp_task);
1254 }
1255 
1256 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1257 {
1258 	if (!rxr->bnapi->in_reset) {
1259 		rxr->bnapi->in_reset = true;
1260 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1261 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1262 		else
1263 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1264 		bnxt_queue_sp_work(bp);
1265 	}
1266 	rxr->rx_next_cons = 0xffff;
1267 }
1268 
1269 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1270 {
1271 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1272 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1273 
1274 	if (test_bit(idx, map->agg_idx_bmap))
1275 		idx = find_first_zero_bit(map->agg_idx_bmap,
1276 					  BNXT_AGG_IDX_BMAP_SIZE);
1277 	__set_bit(idx, map->agg_idx_bmap);
1278 	map->agg_id_tbl[agg_id] = idx;
1279 	return idx;
1280 }
1281 
1282 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1283 {
1284 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1285 
1286 	__clear_bit(idx, map->agg_idx_bmap);
1287 }
1288 
1289 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1290 {
1291 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1292 
1293 	return map->agg_id_tbl[agg_id];
1294 }
1295 
1296 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1297 			   struct rx_tpa_start_cmp *tpa_start,
1298 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1299 {
1300 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1301 	struct bnxt_tpa_info *tpa_info;
1302 	u16 cons, prod, agg_id;
1303 	struct rx_bd *prod_bd;
1304 	dma_addr_t mapping;
1305 
1306 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1307 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1308 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1309 	} else {
1310 		agg_id = TPA_START_AGG_ID(tpa_start);
1311 	}
1312 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1313 	prod = rxr->rx_prod;
1314 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1315 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1316 	tpa_info = &rxr->rx_tpa[agg_id];
1317 
1318 	if (unlikely(cons != rxr->rx_next_cons ||
1319 		     TPA_START_ERROR(tpa_start))) {
1320 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1321 			    cons, rxr->rx_next_cons,
1322 			    TPA_START_ERROR_CODE(tpa_start1));
1323 		bnxt_sched_reset(bp, rxr);
1324 		return;
1325 	}
1326 	/* Store cfa_code in tpa_info to use in tpa_end
1327 	 * completion processing.
1328 	 */
1329 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1330 	prod_rx_buf->data = tpa_info->data;
1331 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1332 
1333 	mapping = tpa_info->mapping;
1334 	prod_rx_buf->mapping = mapping;
1335 
1336 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1337 
1338 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1339 
1340 	tpa_info->data = cons_rx_buf->data;
1341 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1342 	cons_rx_buf->data = NULL;
1343 	tpa_info->mapping = cons_rx_buf->mapping;
1344 
1345 	tpa_info->len =
1346 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1347 				RX_TPA_START_CMP_LEN_SHIFT;
1348 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1349 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1350 
1351 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1352 		tpa_info->gso_type = SKB_GSO_TCPV4;
1353 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1354 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1355 			tpa_info->gso_type = SKB_GSO_TCPV6;
1356 		tpa_info->rss_hash =
1357 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1358 	} else {
1359 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1360 		tpa_info->gso_type = 0;
1361 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1362 	}
1363 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1364 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1365 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1366 	tpa_info->agg_count = 0;
1367 
1368 	rxr->rx_prod = NEXT_RX(prod);
1369 	cons = NEXT_RX(cons);
1370 	rxr->rx_next_cons = NEXT_RX(cons);
1371 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1372 
1373 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1374 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1375 	cons_rx_buf->data = NULL;
1376 }
1377 
1378 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1379 {
1380 	if (agg_bufs)
1381 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1382 }
1383 
1384 #ifdef CONFIG_INET
1385 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1386 {
1387 	struct udphdr *uh = NULL;
1388 
1389 	if (ip_proto == htons(ETH_P_IP)) {
1390 		struct iphdr *iph = (struct iphdr *)skb->data;
1391 
1392 		if (iph->protocol == IPPROTO_UDP)
1393 			uh = (struct udphdr *)(iph + 1);
1394 	} else {
1395 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1396 
1397 		if (iph->nexthdr == IPPROTO_UDP)
1398 			uh = (struct udphdr *)(iph + 1);
1399 	}
1400 	if (uh) {
1401 		if (uh->check)
1402 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1403 		else
1404 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1405 	}
1406 }
1407 #endif
1408 
1409 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1410 					   int payload_off, int tcp_ts,
1411 					   struct sk_buff *skb)
1412 {
1413 #ifdef CONFIG_INET
1414 	struct tcphdr *th;
1415 	int len, nw_off;
1416 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1417 	u32 hdr_info = tpa_info->hdr_info;
1418 	bool loopback = false;
1419 
1420 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1421 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1422 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1423 
1424 	/* If the packet is an internal loopback packet, the offsets will
1425 	 * have an extra 4 bytes.
1426 	 */
1427 	if (inner_mac_off == 4) {
1428 		loopback = true;
1429 	} else if (inner_mac_off > 4) {
1430 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1431 					    ETH_HLEN - 2));
1432 
1433 		/* We only support inner iPv4/ipv6.  If we don't see the
1434 		 * correct protocol ID, it must be a loopback packet where
1435 		 * the offsets are off by 4.
1436 		 */
1437 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1438 			loopback = true;
1439 	}
1440 	if (loopback) {
1441 		/* internal loopback packet, subtract all offsets by 4 */
1442 		inner_ip_off -= 4;
1443 		inner_mac_off -= 4;
1444 		outer_ip_off -= 4;
1445 	}
1446 
1447 	nw_off = inner_ip_off - ETH_HLEN;
1448 	skb_set_network_header(skb, nw_off);
1449 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1450 		struct ipv6hdr *iph = ipv6_hdr(skb);
1451 
1452 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1453 		len = skb->len - skb_transport_offset(skb);
1454 		th = tcp_hdr(skb);
1455 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1456 	} else {
1457 		struct iphdr *iph = ip_hdr(skb);
1458 
1459 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1460 		len = skb->len - skb_transport_offset(skb);
1461 		th = tcp_hdr(skb);
1462 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1463 	}
1464 
1465 	if (inner_mac_off) { /* tunnel */
1466 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1467 					    ETH_HLEN - 2));
1468 
1469 		bnxt_gro_tunnel(skb, proto);
1470 	}
1471 #endif
1472 	return skb;
1473 }
1474 
1475 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1476 					   int payload_off, int tcp_ts,
1477 					   struct sk_buff *skb)
1478 {
1479 #ifdef CONFIG_INET
1480 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1481 	u32 hdr_info = tpa_info->hdr_info;
1482 	int iphdr_len, nw_off;
1483 
1484 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1485 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1486 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1487 
1488 	nw_off = inner_ip_off - ETH_HLEN;
1489 	skb_set_network_header(skb, nw_off);
1490 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1491 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1492 	skb_set_transport_header(skb, nw_off + iphdr_len);
1493 
1494 	if (inner_mac_off) { /* tunnel */
1495 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1496 					    ETH_HLEN - 2));
1497 
1498 		bnxt_gro_tunnel(skb, proto);
1499 	}
1500 #endif
1501 	return skb;
1502 }
1503 
1504 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1505 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1506 
1507 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1508 					   int payload_off, int tcp_ts,
1509 					   struct sk_buff *skb)
1510 {
1511 #ifdef CONFIG_INET
1512 	struct tcphdr *th;
1513 	int len, nw_off, tcp_opt_len = 0;
1514 
1515 	if (tcp_ts)
1516 		tcp_opt_len = 12;
1517 
1518 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1519 		struct iphdr *iph;
1520 
1521 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1522 			 ETH_HLEN;
1523 		skb_set_network_header(skb, nw_off);
1524 		iph = ip_hdr(skb);
1525 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1526 		len = skb->len - skb_transport_offset(skb);
1527 		th = tcp_hdr(skb);
1528 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1529 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1530 		struct ipv6hdr *iph;
1531 
1532 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1533 			 ETH_HLEN;
1534 		skb_set_network_header(skb, nw_off);
1535 		iph = ipv6_hdr(skb);
1536 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1537 		len = skb->len - skb_transport_offset(skb);
1538 		th = tcp_hdr(skb);
1539 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1540 	} else {
1541 		dev_kfree_skb_any(skb);
1542 		return NULL;
1543 	}
1544 
1545 	if (nw_off) /* tunnel */
1546 		bnxt_gro_tunnel(skb, skb->protocol);
1547 #endif
1548 	return skb;
1549 }
1550 
1551 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1552 					   struct bnxt_tpa_info *tpa_info,
1553 					   struct rx_tpa_end_cmp *tpa_end,
1554 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1555 					   struct sk_buff *skb)
1556 {
1557 #ifdef CONFIG_INET
1558 	int payload_off;
1559 	u16 segs;
1560 
1561 	segs = TPA_END_TPA_SEGS(tpa_end);
1562 	if (segs == 1)
1563 		return skb;
1564 
1565 	NAPI_GRO_CB(skb)->count = segs;
1566 	skb_shinfo(skb)->gso_size =
1567 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1568 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1569 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1570 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1571 	else
1572 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1573 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1574 	if (likely(skb))
1575 		tcp_gro_complete(skb);
1576 #endif
1577 	return skb;
1578 }
1579 
1580 /* Given the cfa_code of a received packet determine which
1581  * netdev (vf-rep or PF) the packet is destined to.
1582  */
1583 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1584 {
1585 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1586 
1587 	/* if vf-rep dev is NULL, the must belongs to the PF */
1588 	return dev ? dev : bp->dev;
1589 }
1590 
1591 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1592 					   struct bnxt_cp_ring_info *cpr,
1593 					   u32 *raw_cons,
1594 					   struct rx_tpa_end_cmp *tpa_end,
1595 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1596 					   u8 *event)
1597 {
1598 	struct bnxt_napi *bnapi = cpr->bnapi;
1599 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1600 	u8 *data_ptr, agg_bufs;
1601 	unsigned int len;
1602 	struct bnxt_tpa_info *tpa_info;
1603 	dma_addr_t mapping;
1604 	struct sk_buff *skb;
1605 	u16 idx = 0, agg_id;
1606 	void *data;
1607 	bool gro;
1608 
1609 	if (unlikely(bnapi->in_reset)) {
1610 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1611 
1612 		if (rc < 0)
1613 			return ERR_PTR(-EBUSY);
1614 		return NULL;
1615 	}
1616 
1617 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1618 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1619 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1620 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1621 		tpa_info = &rxr->rx_tpa[agg_id];
1622 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1623 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1624 				    agg_bufs, tpa_info->agg_count);
1625 			agg_bufs = tpa_info->agg_count;
1626 		}
1627 		tpa_info->agg_count = 0;
1628 		*event |= BNXT_AGG_EVENT;
1629 		bnxt_free_agg_idx(rxr, agg_id);
1630 		idx = agg_id;
1631 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1632 	} else {
1633 		agg_id = TPA_END_AGG_ID(tpa_end);
1634 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1635 		tpa_info = &rxr->rx_tpa[agg_id];
1636 		idx = RING_CMP(*raw_cons);
1637 		if (agg_bufs) {
1638 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1639 				return ERR_PTR(-EBUSY);
1640 
1641 			*event |= BNXT_AGG_EVENT;
1642 			idx = NEXT_CMP(idx);
1643 		}
1644 		gro = !!TPA_END_GRO(tpa_end);
1645 	}
1646 	data = tpa_info->data;
1647 	data_ptr = tpa_info->data_ptr;
1648 	prefetch(data_ptr);
1649 	len = tpa_info->len;
1650 	mapping = tpa_info->mapping;
1651 
1652 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1653 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1654 		if (agg_bufs > MAX_SKB_FRAGS)
1655 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1656 				    agg_bufs, (int)MAX_SKB_FRAGS);
1657 		return NULL;
1658 	}
1659 
1660 	if (len <= bp->rx_copy_thresh) {
1661 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1662 		if (!skb) {
1663 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1664 			cpr->sw_stats.rx.rx_oom_discards += 1;
1665 			return NULL;
1666 		}
1667 	} else {
1668 		u8 *new_data;
1669 		dma_addr_t new_mapping;
1670 
1671 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1672 		if (!new_data) {
1673 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1674 			cpr->sw_stats.rx.rx_oom_discards += 1;
1675 			return NULL;
1676 		}
1677 
1678 		tpa_info->data = new_data;
1679 		tpa_info->data_ptr = new_data + bp->rx_offset;
1680 		tpa_info->mapping = new_mapping;
1681 
1682 		skb = build_skb(data, bp->rx_buf_size);
1683 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1684 				       bp->rx_buf_use_size, bp->rx_dir,
1685 				       DMA_ATTR_WEAK_ORDERING);
1686 
1687 		if (!skb) {
1688 			skb_free_frag(data);
1689 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1690 			cpr->sw_stats.rx.rx_oom_discards += 1;
1691 			return NULL;
1692 		}
1693 		skb_reserve(skb, bp->rx_offset);
1694 		skb_put(skb, len);
1695 	}
1696 
1697 	if (agg_bufs) {
1698 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1699 		if (!skb) {
1700 			/* Page reuse already handled by bnxt_rx_pages(). */
1701 			cpr->sw_stats.rx.rx_oom_discards += 1;
1702 			return NULL;
1703 		}
1704 	}
1705 
1706 	skb->protocol =
1707 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1708 
1709 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1710 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1711 
1712 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1713 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1714 		__be16 vlan_proto = htons(tpa_info->metadata >>
1715 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1716 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1717 
1718 		if (eth_type_vlan(vlan_proto)) {
1719 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1720 		} else {
1721 			dev_kfree_skb(skb);
1722 			return NULL;
1723 		}
1724 	}
1725 
1726 	skb_checksum_none_assert(skb);
1727 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1728 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1729 		skb->csum_level =
1730 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1731 	}
1732 
1733 	if (gro)
1734 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1735 
1736 	return skb;
1737 }
1738 
1739 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1740 			 struct rx_agg_cmp *rx_agg)
1741 {
1742 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1743 	struct bnxt_tpa_info *tpa_info;
1744 
1745 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1746 	tpa_info = &rxr->rx_tpa[agg_id];
1747 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1748 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1749 }
1750 
1751 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1752 			     struct sk_buff *skb)
1753 {
1754 	if (skb->dev != bp->dev) {
1755 		/* this packet belongs to a vf-rep */
1756 		bnxt_vf_rep_rx(bp, skb);
1757 		return;
1758 	}
1759 	skb_record_rx_queue(skb, bnapi->index);
1760 	napi_gro_receive(&bnapi->napi, skb);
1761 }
1762 
1763 /* returns the following:
1764  * 1       - 1 packet successfully received
1765  * 0       - successful TPA_START, packet not completed yet
1766  * -EBUSY  - completion ring does not have all the agg buffers yet
1767  * -ENOMEM - packet aborted due to out of memory
1768  * -EIO    - packet aborted due to hw error indicated in BD
1769  */
1770 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1771 		       u32 *raw_cons, u8 *event)
1772 {
1773 	struct bnxt_napi *bnapi = cpr->bnapi;
1774 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1775 	struct net_device *dev = bp->dev;
1776 	struct rx_cmp *rxcmp;
1777 	struct rx_cmp_ext *rxcmp1;
1778 	u32 tmp_raw_cons = *raw_cons;
1779 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1780 	struct bnxt_sw_rx_bd *rx_buf;
1781 	unsigned int len;
1782 	u8 *data_ptr, agg_bufs, cmp_type;
1783 	bool xdp_active = false;
1784 	dma_addr_t dma_addr;
1785 	struct sk_buff *skb;
1786 	struct xdp_buff xdp;
1787 	u32 flags, misc;
1788 	void *data;
1789 	int rc = 0;
1790 
1791 	rxcmp = (struct rx_cmp *)
1792 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1793 
1794 	cmp_type = RX_CMP_TYPE(rxcmp);
1795 
1796 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1797 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1798 		goto next_rx_no_prod_no_len;
1799 	}
1800 
1801 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1802 	cp_cons = RING_CMP(tmp_raw_cons);
1803 	rxcmp1 = (struct rx_cmp_ext *)
1804 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1805 
1806 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1807 		return -EBUSY;
1808 
1809 	/* The valid test of the entry must be done first before
1810 	 * reading any further.
1811 	 */
1812 	dma_rmb();
1813 	prod = rxr->rx_prod;
1814 
1815 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1816 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1817 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1818 
1819 		*event |= BNXT_RX_EVENT;
1820 		goto next_rx_no_prod_no_len;
1821 
1822 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1823 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1824 				   (struct rx_tpa_end_cmp *)rxcmp,
1825 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1826 
1827 		if (IS_ERR(skb))
1828 			return -EBUSY;
1829 
1830 		rc = -ENOMEM;
1831 		if (likely(skb)) {
1832 			bnxt_deliver_skb(bp, bnapi, skb);
1833 			rc = 1;
1834 		}
1835 		*event |= BNXT_RX_EVENT;
1836 		goto next_rx_no_prod_no_len;
1837 	}
1838 
1839 	cons = rxcmp->rx_cmp_opaque;
1840 	if (unlikely(cons != rxr->rx_next_cons)) {
1841 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1842 
1843 		/* 0xffff is forced error, don't print it */
1844 		if (rxr->rx_next_cons != 0xffff)
1845 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1846 				    cons, rxr->rx_next_cons);
1847 		bnxt_sched_reset(bp, rxr);
1848 		if (rc1)
1849 			return rc1;
1850 		goto next_rx_no_prod_no_len;
1851 	}
1852 	rx_buf = &rxr->rx_buf_ring[cons];
1853 	data = rx_buf->data;
1854 	data_ptr = rx_buf->data_ptr;
1855 	prefetch(data_ptr);
1856 
1857 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1858 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1859 
1860 	if (agg_bufs) {
1861 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1862 			return -EBUSY;
1863 
1864 		cp_cons = NEXT_CMP(cp_cons);
1865 		*event |= BNXT_AGG_EVENT;
1866 	}
1867 	*event |= BNXT_RX_EVENT;
1868 
1869 	rx_buf->data = NULL;
1870 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1871 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1872 
1873 		bnxt_reuse_rx_data(rxr, cons, data);
1874 		if (agg_bufs)
1875 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1876 					       false);
1877 
1878 		rc = -EIO;
1879 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1880 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1881 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1882 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1883 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1884 						 rx_err);
1885 				bnxt_sched_reset(bp, rxr);
1886 			}
1887 		}
1888 		goto next_rx_no_len;
1889 	}
1890 
1891 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1892 	len = flags >> RX_CMP_LEN_SHIFT;
1893 	dma_addr = rx_buf->mapping;
1894 
1895 	if (bnxt_xdp_attached(bp, rxr)) {
1896 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
1897 		if (agg_bufs) {
1898 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1899 							     cp_cons, agg_bufs,
1900 							     false);
1901 			if (!frag_len) {
1902 				cpr->sw_stats.rx.rx_oom_discards += 1;
1903 				rc = -ENOMEM;
1904 				goto next_rx;
1905 			}
1906 		}
1907 		xdp_active = true;
1908 	}
1909 
1910 	if (xdp_active) {
1911 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
1912 			rc = 1;
1913 			goto next_rx;
1914 		}
1915 	}
1916 
1917 	if (len <= bp->rx_copy_thresh) {
1918 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1919 		bnxt_reuse_rx_data(rxr, cons, data);
1920 		if (!skb) {
1921 			if (agg_bufs) {
1922 				if (!xdp_active)
1923 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1924 							       agg_bufs, false);
1925 				else
1926 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1927 			}
1928 			cpr->sw_stats.rx.rx_oom_discards += 1;
1929 			rc = -ENOMEM;
1930 			goto next_rx;
1931 		}
1932 	} else {
1933 		u32 payload;
1934 
1935 		if (rx_buf->data_ptr == data_ptr)
1936 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1937 		else
1938 			payload = 0;
1939 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1940 				      payload | len);
1941 		if (!skb) {
1942 			cpr->sw_stats.rx.rx_oom_discards += 1;
1943 			rc = -ENOMEM;
1944 			goto next_rx;
1945 		}
1946 	}
1947 
1948 	if (agg_bufs) {
1949 		if (!xdp_active) {
1950 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1951 			if (!skb) {
1952 				cpr->sw_stats.rx.rx_oom_discards += 1;
1953 				rc = -ENOMEM;
1954 				goto next_rx;
1955 			}
1956 		} else {
1957 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1958 			if (!skb) {
1959 				/* we should be able to free the old skb here */
1960 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1961 				cpr->sw_stats.rx.rx_oom_discards += 1;
1962 				rc = -ENOMEM;
1963 				goto next_rx;
1964 			}
1965 		}
1966 	}
1967 
1968 	if (RX_CMP_HASH_VALID(rxcmp)) {
1969 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1970 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1971 
1972 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1973 		if (hash_type != 1 && hash_type != 3)
1974 			type = PKT_HASH_TYPE_L3;
1975 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1976 	}
1977 
1978 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1979 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1980 
1981 	if ((rxcmp1->rx_cmp_flags2 &
1982 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1983 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1984 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1985 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1986 		__be16 vlan_proto = htons(meta_data >>
1987 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1988 
1989 		if (eth_type_vlan(vlan_proto)) {
1990 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1991 		} else {
1992 			dev_kfree_skb(skb);
1993 			goto next_rx;
1994 		}
1995 	}
1996 
1997 	skb_checksum_none_assert(skb);
1998 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1999 		if (dev->features & NETIF_F_RXCSUM) {
2000 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2001 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2002 		}
2003 	} else {
2004 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2005 			if (dev->features & NETIF_F_RXCSUM)
2006 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2007 		}
2008 	}
2009 
2010 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2011 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2012 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2013 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2014 			u64 ns, ts;
2015 
2016 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2017 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2018 
2019 				spin_lock_bh(&ptp->ptp_lock);
2020 				ns = timecounter_cyc2time(&ptp->tc, ts);
2021 				spin_unlock_bh(&ptp->ptp_lock);
2022 				memset(skb_hwtstamps(skb), 0,
2023 				       sizeof(*skb_hwtstamps(skb)));
2024 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2025 			}
2026 		}
2027 	}
2028 	bnxt_deliver_skb(bp, bnapi, skb);
2029 	rc = 1;
2030 
2031 next_rx:
2032 	cpr->rx_packets += 1;
2033 	cpr->rx_bytes += len;
2034 
2035 next_rx_no_len:
2036 	rxr->rx_prod = NEXT_RX(prod);
2037 	rxr->rx_next_cons = NEXT_RX(cons);
2038 
2039 next_rx_no_prod_no_len:
2040 	*raw_cons = tmp_raw_cons;
2041 
2042 	return rc;
2043 }
2044 
2045 /* In netpoll mode, if we are using a combined completion ring, we need to
2046  * discard the rx packets and recycle the buffers.
2047  */
2048 static int bnxt_force_rx_discard(struct bnxt *bp,
2049 				 struct bnxt_cp_ring_info *cpr,
2050 				 u32 *raw_cons, u8 *event)
2051 {
2052 	u32 tmp_raw_cons = *raw_cons;
2053 	struct rx_cmp_ext *rxcmp1;
2054 	struct rx_cmp *rxcmp;
2055 	u16 cp_cons;
2056 	u8 cmp_type;
2057 	int rc;
2058 
2059 	cp_cons = RING_CMP(tmp_raw_cons);
2060 	rxcmp = (struct rx_cmp *)
2061 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2062 
2063 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2064 	cp_cons = RING_CMP(tmp_raw_cons);
2065 	rxcmp1 = (struct rx_cmp_ext *)
2066 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2067 
2068 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2069 		return -EBUSY;
2070 
2071 	/* The valid test of the entry must be done first before
2072 	 * reading any further.
2073 	 */
2074 	dma_rmb();
2075 	cmp_type = RX_CMP_TYPE(rxcmp);
2076 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2077 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2078 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2079 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2080 		struct rx_tpa_end_cmp_ext *tpa_end1;
2081 
2082 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2083 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2084 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2085 	}
2086 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2087 	if (rc && rc != -EBUSY)
2088 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2089 	return rc;
2090 }
2091 
2092 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2093 {
2094 	struct bnxt_fw_health *fw_health = bp->fw_health;
2095 	u32 reg = fw_health->regs[reg_idx];
2096 	u32 reg_type, reg_off, val = 0;
2097 
2098 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2099 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2100 	switch (reg_type) {
2101 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2102 		pci_read_config_dword(bp->pdev, reg_off, &val);
2103 		break;
2104 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2105 		reg_off = fw_health->mapped_regs[reg_idx];
2106 		fallthrough;
2107 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2108 		val = readl(bp->bar0 + reg_off);
2109 		break;
2110 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2111 		val = readl(bp->bar1 + reg_off);
2112 		break;
2113 	}
2114 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2115 		val &= fw_health->fw_reset_inprog_reg_mask;
2116 	return val;
2117 }
2118 
2119 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2120 {
2121 	int i;
2122 
2123 	for (i = 0; i < bp->rx_nr_rings; i++) {
2124 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2125 		struct bnxt_ring_grp_info *grp_info;
2126 
2127 		grp_info = &bp->grp_info[grp_idx];
2128 		if (grp_info->agg_fw_ring_id == ring_id)
2129 			return grp_idx;
2130 	}
2131 	return INVALID_HW_RING_ID;
2132 }
2133 
2134 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2135 {
2136 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2137 
2138 	switch (err_type) {
2139 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2140 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2141 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2142 		break;
2143 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2144 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2145 		break;
2146 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2147 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2148 		break;
2149 	default:
2150 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2151 			   err_type);
2152 		break;
2153 	}
2154 }
2155 
2156 #define BNXT_GET_EVENT_PORT(data)	\
2157 	((data) &			\
2158 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2159 
2160 #define BNXT_EVENT_RING_TYPE(data2)	\
2161 	((data2) &			\
2162 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2163 
2164 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2165 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2166 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2167 
2168 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2169 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2170 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2171 
2172 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2173 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2174 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2175 
2176 #define BNXT_PHC_BITS	48
2177 
2178 static int bnxt_async_event_process(struct bnxt *bp,
2179 				    struct hwrm_async_event_cmpl *cmpl)
2180 {
2181 	u16 event_id = le16_to_cpu(cmpl->event_id);
2182 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2183 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2184 
2185 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2186 		   event_id, data1, data2);
2187 
2188 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2189 	switch (event_id) {
2190 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2191 		struct bnxt_link_info *link_info = &bp->link_info;
2192 
2193 		if (BNXT_VF(bp))
2194 			goto async_event_process_exit;
2195 
2196 		/* print unsupported speed warning in forced speed mode only */
2197 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2198 		    (data1 & 0x20000)) {
2199 			u16 fw_speed = link_info->force_link_speed;
2200 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2201 
2202 			if (speed != SPEED_UNKNOWN)
2203 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2204 					    speed);
2205 		}
2206 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2207 	}
2208 		fallthrough;
2209 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2210 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2211 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2212 		fallthrough;
2213 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2214 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2215 		break;
2216 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2217 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2218 		break;
2219 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2220 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2221 
2222 		if (BNXT_VF(bp))
2223 			break;
2224 
2225 		if (bp->pf.port_id != port_id)
2226 			break;
2227 
2228 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2229 		break;
2230 	}
2231 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2232 		if (BNXT_PF(bp))
2233 			goto async_event_process_exit;
2234 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2235 		break;
2236 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2237 		char *type_str = "Solicited";
2238 
2239 		if (!bp->fw_health)
2240 			goto async_event_process_exit;
2241 
2242 		bp->fw_reset_timestamp = jiffies;
2243 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2244 		if (!bp->fw_reset_min_dsecs)
2245 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2246 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2247 		if (!bp->fw_reset_max_dsecs)
2248 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2249 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2250 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2251 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2252 			type_str = "Fatal";
2253 			bp->fw_health->fatalities++;
2254 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2255 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2256 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2257 			type_str = "Non-fatal";
2258 			bp->fw_health->survivals++;
2259 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2260 		}
2261 		netif_warn(bp, hw, bp->dev,
2262 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2263 			   type_str, data1, data2,
2264 			   bp->fw_reset_min_dsecs * 100,
2265 			   bp->fw_reset_max_dsecs * 100);
2266 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2267 		break;
2268 	}
2269 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2270 		struct bnxt_fw_health *fw_health = bp->fw_health;
2271 		char *status_desc = "healthy";
2272 		u32 status;
2273 
2274 		if (!fw_health)
2275 			goto async_event_process_exit;
2276 
2277 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2278 			fw_health->enabled = false;
2279 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2280 			break;
2281 		}
2282 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2283 		fw_health->tmr_multiplier =
2284 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2285 				     bp->current_interval * 10);
2286 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2287 		if (!fw_health->enabled)
2288 			fw_health->last_fw_heartbeat =
2289 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2290 		fw_health->last_fw_reset_cnt =
2291 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2292 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2293 		if (status != BNXT_FW_STATUS_HEALTHY)
2294 			status_desc = "unhealthy";
2295 		netif_info(bp, drv, bp->dev,
2296 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2297 			   fw_health->primary ? "primary" : "backup", status,
2298 			   status_desc, fw_health->last_fw_reset_cnt);
2299 		if (!fw_health->enabled) {
2300 			/* Make sure tmr_counter is set and visible to
2301 			 * bnxt_health_check() before setting enabled to true.
2302 			 */
2303 			smp_wmb();
2304 			fw_health->enabled = true;
2305 		}
2306 		goto async_event_process_exit;
2307 	}
2308 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2309 		netif_notice(bp, hw, bp->dev,
2310 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2311 			     data1, data2);
2312 		goto async_event_process_exit;
2313 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2314 		struct bnxt_rx_ring_info *rxr;
2315 		u16 grp_idx;
2316 
2317 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2318 			goto async_event_process_exit;
2319 
2320 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2321 			    BNXT_EVENT_RING_TYPE(data2), data1);
2322 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2323 			goto async_event_process_exit;
2324 
2325 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2326 		if (grp_idx == INVALID_HW_RING_ID) {
2327 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2328 				    data1);
2329 			goto async_event_process_exit;
2330 		}
2331 		rxr = bp->bnapi[grp_idx]->rx_ring;
2332 		bnxt_sched_reset(bp, rxr);
2333 		goto async_event_process_exit;
2334 	}
2335 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2336 		struct bnxt_fw_health *fw_health = bp->fw_health;
2337 
2338 		netif_notice(bp, hw, bp->dev,
2339 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2340 			     data1, data2);
2341 		if (fw_health) {
2342 			fw_health->echo_req_data1 = data1;
2343 			fw_health->echo_req_data2 = data2;
2344 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2345 			break;
2346 		}
2347 		goto async_event_process_exit;
2348 	}
2349 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2350 		bnxt_ptp_pps_event(bp, data1, data2);
2351 		goto async_event_process_exit;
2352 	}
2353 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2354 		bnxt_event_error_report(bp, data1, data2);
2355 		goto async_event_process_exit;
2356 	}
2357 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2358 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2359 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2360 			if (BNXT_PTP_USE_RTC(bp)) {
2361 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2362 				u64 ns;
2363 
2364 				if (!ptp)
2365 					goto async_event_process_exit;
2366 
2367 				spin_lock_bh(&ptp->ptp_lock);
2368 				bnxt_ptp_update_current_time(bp);
2369 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2370 				       BNXT_PHC_BITS) | ptp->current_time);
2371 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2372 				spin_unlock_bh(&ptp->ptp_lock);
2373 			}
2374 			break;
2375 		}
2376 		goto async_event_process_exit;
2377 	}
2378 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2379 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2380 
2381 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2382 		goto async_event_process_exit;
2383 	}
2384 	default:
2385 		goto async_event_process_exit;
2386 	}
2387 	bnxt_queue_sp_work(bp);
2388 async_event_process_exit:
2389 	return 0;
2390 }
2391 
2392 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2393 {
2394 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2395 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2396 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2397 				(struct hwrm_fwd_req_cmpl *)txcmp;
2398 
2399 	switch (cmpl_type) {
2400 	case CMPL_BASE_TYPE_HWRM_DONE:
2401 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2402 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2403 		break;
2404 
2405 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2406 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2407 
2408 		if ((vf_id < bp->pf.first_vf_id) ||
2409 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2410 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2411 				   vf_id);
2412 			return -EINVAL;
2413 		}
2414 
2415 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2416 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2417 		bnxt_queue_sp_work(bp);
2418 		break;
2419 
2420 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2421 		bnxt_async_event_process(bp,
2422 					 (struct hwrm_async_event_cmpl *)txcmp);
2423 		break;
2424 
2425 	default:
2426 		break;
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2433 {
2434 	struct bnxt_napi *bnapi = dev_instance;
2435 	struct bnxt *bp = bnapi->bp;
2436 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2437 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2438 
2439 	cpr->event_ctr++;
2440 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2441 	napi_schedule(&bnapi->napi);
2442 	return IRQ_HANDLED;
2443 }
2444 
2445 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2446 {
2447 	u32 raw_cons = cpr->cp_raw_cons;
2448 	u16 cons = RING_CMP(raw_cons);
2449 	struct tx_cmp *txcmp;
2450 
2451 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2452 
2453 	return TX_CMP_VALID(txcmp, raw_cons);
2454 }
2455 
2456 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2457 {
2458 	struct bnxt_napi *bnapi = dev_instance;
2459 	struct bnxt *bp = bnapi->bp;
2460 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2461 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2462 	u32 int_status;
2463 
2464 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2465 
2466 	if (!bnxt_has_work(bp, cpr)) {
2467 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2468 		/* return if erroneous interrupt */
2469 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2470 			return IRQ_NONE;
2471 	}
2472 
2473 	/* disable ring IRQ */
2474 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2475 
2476 	/* Return here if interrupt is shared and is disabled. */
2477 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2478 		return IRQ_HANDLED;
2479 
2480 	napi_schedule(&bnapi->napi);
2481 	return IRQ_HANDLED;
2482 }
2483 
2484 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2485 			    int budget)
2486 {
2487 	struct bnxt_napi *bnapi = cpr->bnapi;
2488 	u32 raw_cons = cpr->cp_raw_cons;
2489 	u32 cons;
2490 	int tx_pkts = 0;
2491 	int rx_pkts = 0;
2492 	u8 event = 0;
2493 	struct tx_cmp *txcmp;
2494 
2495 	cpr->has_more_work = 0;
2496 	cpr->had_work_done = 1;
2497 	while (1) {
2498 		int rc;
2499 
2500 		cons = RING_CMP(raw_cons);
2501 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2502 
2503 		if (!TX_CMP_VALID(txcmp, raw_cons))
2504 			break;
2505 
2506 		/* The valid test of the entry must be done first before
2507 		 * reading any further.
2508 		 */
2509 		dma_rmb();
2510 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2511 			tx_pkts++;
2512 			/* return full budget so NAPI will complete. */
2513 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2514 				rx_pkts = budget;
2515 				raw_cons = NEXT_RAW_CMP(raw_cons);
2516 				if (budget)
2517 					cpr->has_more_work = 1;
2518 				break;
2519 			}
2520 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2521 			if (likely(budget))
2522 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2523 			else
2524 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2525 							   &event);
2526 			if (likely(rc >= 0))
2527 				rx_pkts += rc;
2528 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2529 			 * the NAPI budget.  Otherwise, we may potentially loop
2530 			 * here forever if we consistently cannot allocate
2531 			 * buffers.
2532 			 */
2533 			else if (rc == -ENOMEM && budget)
2534 				rx_pkts++;
2535 			else if (rc == -EBUSY)	/* partial completion */
2536 				break;
2537 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2538 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2539 				    (TX_CMP_TYPE(txcmp) ==
2540 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2541 				    (TX_CMP_TYPE(txcmp) ==
2542 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2543 			bnxt_hwrm_handler(bp, txcmp);
2544 		}
2545 		raw_cons = NEXT_RAW_CMP(raw_cons);
2546 
2547 		if (rx_pkts && rx_pkts == budget) {
2548 			cpr->has_more_work = 1;
2549 			break;
2550 		}
2551 	}
2552 
2553 	if (event & BNXT_REDIRECT_EVENT)
2554 		xdp_do_flush();
2555 
2556 	if (event & BNXT_TX_EVENT) {
2557 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2558 		u16 prod = txr->tx_prod;
2559 
2560 		/* Sync BD data before updating doorbell */
2561 		wmb();
2562 
2563 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2564 	}
2565 
2566 	cpr->cp_raw_cons = raw_cons;
2567 	bnapi->tx_pkts += tx_pkts;
2568 	bnapi->events |= event;
2569 	return rx_pkts;
2570 }
2571 
2572 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2573 {
2574 	if (bnapi->tx_pkts) {
2575 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2576 		bnapi->tx_pkts = 0;
2577 	}
2578 
2579 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2580 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2581 
2582 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2583 	}
2584 	if (bnapi->events & BNXT_AGG_EVENT) {
2585 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2586 
2587 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2588 	}
2589 	bnapi->events = 0;
2590 }
2591 
2592 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2593 			  int budget)
2594 {
2595 	struct bnxt_napi *bnapi = cpr->bnapi;
2596 	int rx_pkts;
2597 
2598 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2599 
2600 	/* ACK completion ring before freeing tx ring and producing new
2601 	 * buffers in rx/agg rings to prevent overflowing the completion
2602 	 * ring.
2603 	 */
2604 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2605 
2606 	__bnxt_poll_work_done(bp, bnapi);
2607 	return rx_pkts;
2608 }
2609 
2610 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2611 {
2612 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2613 	struct bnxt *bp = bnapi->bp;
2614 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2615 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2616 	struct tx_cmp *txcmp;
2617 	struct rx_cmp_ext *rxcmp1;
2618 	u32 cp_cons, tmp_raw_cons;
2619 	u32 raw_cons = cpr->cp_raw_cons;
2620 	u32 rx_pkts = 0;
2621 	u8 event = 0;
2622 
2623 	while (1) {
2624 		int rc;
2625 
2626 		cp_cons = RING_CMP(raw_cons);
2627 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2628 
2629 		if (!TX_CMP_VALID(txcmp, raw_cons))
2630 			break;
2631 
2632 		/* The valid test of the entry must be done first before
2633 		 * reading any further.
2634 		 */
2635 		dma_rmb();
2636 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2637 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2638 			cp_cons = RING_CMP(tmp_raw_cons);
2639 			rxcmp1 = (struct rx_cmp_ext *)
2640 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2641 
2642 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2643 				break;
2644 
2645 			/* force an error to recycle the buffer */
2646 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2647 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2648 
2649 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2650 			if (likely(rc == -EIO) && budget)
2651 				rx_pkts++;
2652 			else if (rc == -EBUSY)	/* partial completion */
2653 				break;
2654 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2655 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2656 			bnxt_hwrm_handler(bp, txcmp);
2657 		} else {
2658 			netdev_err(bp->dev,
2659 				   "Invalid completion received on special ring\n");
2660 		}
2661 		raw_cons = NEXT_RAW_CMP(raw_cons);
2662 
2663 		if (rx_pkts == budget)
2664 			break;
2665 	}
2666 
2667 	cpr->cp_raw_cons = raw_cons;
2668 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2669 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2670 
2671 	if (event & BNXT_AGG_EVENT)
2672 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2673 
2674 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2675 		napi_complete_done(napi, rx_pkts);
2676 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2677 	}
2678 	return rx_pkts;
2679 }
2680 
2681 static int bnxt_poll(struct napi_struct *napi, int budget)
2682 {
2683 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2684 	struct bnxt *bp = bnapi->bp;
2685 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2686 	int work_done = 0;
2687 
2688 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2689 		napi_complete(napi);
2690 		return 0;
2691 	}
2692 	while (1) {
2693 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2694 
2695 		if (work_done >= budget) {
2696 			if (!budget)
2697 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2698 			break;
2699 		}
2700 
2701 		if (!bnxt_has_work(bp, cpr)) {
2702 			if (napi_complete_done(napi, work_done))
2703 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2704 			break;
2705 		}
2706 	}
2707 	if (bp->flags & BNXT_FLAG_DIM) {
2708 		struct dim_sample dim_sample = {};
2709 
2710 		dim_update_sample(cpr->event_ctr,
2711 				  cpr->rx_packets,
2712 				  cpr->rx_bytes,
2713 				  &dim_sample);
2714 		net_dim(&cpr->dim, dim_sample);
2715 	}
2716 	return work_done;
2717 }
2718 
2719 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2720 {
2721 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2722 	int i, work_done = 0;
2723 
2724 	for (i = 0; i < 2; i++) {
2725 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2726 
2727 		if (cpr2) {
2728 			work_done += __bnxt_poll_work(bp, cpr2,
2729 						      budget - work_done);
2730 			cpr->has_more_work |= cpr2->has_more_work;
2731 		}
2732 	}
2733 	return work_done;
2734 }
2735 
2736 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2737 				 u64 dbr_type)
2738 {
2739 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2740 	int i;
2741 
2742 	for (i = 0; i < 2; i++) {
2743 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2744 		struct bnxt_db_info *db;
2745 
2746 		if (cpr2 && cpr2->had_work_done) {
2747 			db = &cpr2->cp_db;
2748 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2749 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2750 			cpr2->had_work_done = 0;
2751 		}
2752 	}
2753 	__bnxt_poll_work_done(bp, bnapi);
2754 }
2755 
2756 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2757 {
2758 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2759 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2760 	struct bnxt_cp_ring_info *cpr_rx;
2761 	u32 raw_cons = cpr->cp_raw_cons;
2762 	struct bnxt *bp = bnapi->bp;
2763 	struct nqe_cn *nqcmp;
2764 	int work_done = 0;
2765 	u32 cons;
2766 
2767 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2768 		napi_complete(napi);
2769 		return 0;
2770 	}
2771 	if (cpr->has_more_work) {
2772 		cpr->has_more_work = 0;
2773 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2774 	}
2775 	while (1) {
2776 		cons = RING_CMP(raw_cons);
2777 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2778 
2779 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2780 			if (cpr->has_more_work)
2781 				break;
2782 
2783 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2784 			cpr->cp_raw_cons = raw_cons;
2785 			if (napi_complete_done(napi, work_done))
2786 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2787 						  cpr->cp_raw_cons);
2788 			goto poll_done;
2789 		}
2790 
2791 		/* The valid test of the entry must be done first before
2792 		 * reading any further.
2793 		 */
2794 		dma_rmb();
2795 
2796 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2797 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2798 			struct bnxt_cp_ring_info *cpr2;
2799 
2800 			/* No more budget for RX work */
2801 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2802 				break;
2803 
2804 			cpr2 = cpr->cp_ring_arr[idx];
2805 			work_done += __bnxt_poll_work(bp, cpr2,
2806 						      budget - work_done);
2807 			cpr->has_more_work |= cpr2->has_more_work;
2808 		} else {
2809 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2810 		}
2811 		raw_cons = NEXT_RAW_CMP(raw_cons);
2812 	}
2813 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2814 	if (raw_cons != cpr->cp_raw_cons) {
2815 		cpr->cp_raw_cons = raw_cons;
2816 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2817 	}
2818 poll_done:
2819 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2820 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2821 		struct dim_sample dim_sample = {};
2822 
2823 		dim_update_sample(cpr->event_ctr,
2824 				  cpr_rx->rx_packets,
2825 				  cpr_rx->rx_bytes,
2826 				  &dim_sample);
2827 		net_dim(&cpr->dim, dim_sample);
2828 	}
2829 	return work_done;
2830 }
2831 
2832 static void bnxt_free_tx_skbs(struct bnxt *bp)
2833 {
2834 	int i, max_idx;
2835 	struct pci_dev *pdev = bp->pdev;
2836 
2837 	if (!bp->tx_ring)
2838 		return;
2839 
2840 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2841 	for (i = 0; i < bp->tx_nr_rings; i++) {
2842 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2843 		int j;
2844 
2845 		if (!txr->tx_buf_ring)
2846 			continue;
2847 
2848 		for (j = 0; j < max_idx;) {
2849 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2850 			struct sk_buff *skb;
2851 			int k, last;
2852 
2853 			if (i < bp->tx_nr_rings_xdp &&
2854 			    tx_buf->action == XDP_REDIRECT) {
2855 				dma_unmap_single(&pdev->dev,
2856 					dma_unmap_addr(tx_buf, mapping),
2857 					dma_unmap_len(tx_buf, len),
2858 					DMA_TO_DEVICE);
2859 				xdp_return_frame(tx_buf->xdpf);
2860 				tx_buf->action = 0;
2861 				tx_buf->xdpf = NULL;
2862 				j++;
2863 				continue;
2864 			}
2865 
2866 			skb = tx_buf->skb;
2867 			if (!skb) {
2868 				j++;
2869 				continue;
2870 			}
2871 
2872 			tx_buf->skb = NULL;
2873 
2874 			if (tx_buf->is_push) {
2875 				dev_kfree_skb(skb);
2876 				j += 2;
2877 				continue;
2878 			}
2879 
2880 			dma_unmap_single(&pdev->dev,
2881 					 dma_unmap_addr(tx_buf, mapping),
2882 					 skb_headlen(skb),
2883 					 DMA_TO_DEVICE);
2884 
2885 			last = tx_buf->nr_frags;
2886 			j += 2;
2887 			for (k = 0; k < last; k++, j++) {
2888 				int ring_idx = j & bp->tx_ring_mask;
2889 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2890 
2891 				tx_buf = &txr->tx_buf_ring[ring_idx];
2892 				dma_unmap_page(
2893 					&pdev->dev,
2894 					dma_unmap_addr(tx_buf, mapping),
2895 					skb_frag_size(frag), DMA_TO_DEVICE);
2896 			}
2897 			dev_kfree_skb(skb);
2898 		}
2899 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2900 	}
2901 }
2902 
2903 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2904 {
2905 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2906 	struct pci_dev *pdev = bp->pdev;
2907 	struct bnxt_tpa_idx_map *map;
2908 	int i, max_idx, max_agg_idx;
2909 
2910 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2911 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2912 	if (!rxr->rx_tpa)
2913 		goto skip_rx_tpa_free;
2914 
2915 	for (i = 0; i < bp->max_tpa; i++) {
2916 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2917 		u8 *data = tpa_info->data;
2918 
2919 		if (!data)
2920 			continue;
2921 
2922 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2923 				       bp->rx_buf_use_size, bp->rx_dir,
2924 				       DMA_ATTR_WEAK_ORDERING);
2925 
2926 		tpa_info->data = NULL;
2927 
2928 		skb_free_frag(data);
2929 	}
2930 
2931 skip_rx_tpa_free:
2932 	if (!rxr->rx_buf_ring)
2933 		goto skip_rx_buf_free;
2934 
2935 	for (i = 0; i < max_idx; i++) {
2936 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2937 		dma_addr_t mapping = rx_buf->mapping;
2938 		void *data = rx_buf->data;
2939 
2940 		if (!data)
2941 			continue;
2942 
2943 		rx_buf->data = NULL;
2944 		if (BNXT_RX_PAGE_MODE(bp)) {
2945 			mapping -= bp->rx_dma_offset;
2946 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2947 					     bp->rx_dir,
2948 					     DMA_ATTR_WEAK_ORDERING);
2949 			page_pool_recycle_direct(rxr->page_pool, data);
2950 		} else {
2951 			dma_unmap_single_attrs(&pdev->dev, mapping,
2952 					       bp->rx_buf_use_size, bp->rx_dir,
2953 					       DMA_ATTR_WEAK_ORDERING);
2954 			skb_free_frag(data);
2955 		}
2956 	}
2957 
2958 skip_rx_buf_free:
2959 	if (!rxr->rx_agg_ring)
2960 		goto skip_rx_agg_free;
2961 
2962 	for (i = 0; i < max_agg_idx; i++) {
2963 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2964 		struct page *page = rx_agg_buf->page;
2965 
2966 		if (!page)
2967 			continue;
2968 
2969 		if (BNXT_RX_PAGE_MODE(bp)) {
2970 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2971 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
2972 					     DMA_ATTR_WEAK_ORDERING);
2973 			rx_agg_buf->page = NULL;
2974 			__clear_bit(i, rxr->rx_agg_bmap);
2975 
2976 			page_pool_recycle_direct(rxr->page_pool, page);
2977 		} else {
2978 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2979 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
2980 					     DMA_ATTR_WEAK_ORDERING);
2981 			rx_agg_buf->page = NULL;
2982 			__clear_bit(i, rxr->rx_agg_bmap);
2983 
2984 			__free_page(page);
2985 		}
2986 	}
2987 
2988 skip_rx_agg_free:
2989 	if (rxr->rx_page) {
2990 		__free_page(rxr->rx_page);
2991 		rxr->rx_page = NULL;
2992 	}
2993 	map = rxr->rx_tpa_idx_map;
2994 	if (map)
2995 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2996 }
2997 
2998 static void bnxt_free_rx_skbs(struct bnxt *bp)
2999 {
3000 	int i;
3001 
3002 	if (!bp->rx_ring)
3003 		return;
3004 
3005 	for (i = 0; i < bp->rx_nr_rings; i++)
3006 		bnxt_free_one_rx_ring_skbs(bp, i);
3007 }
3008 
3009 static void bnxt_free_skbs(struct bnxt *bp)
3010 {
3011 	bnxt_free_tx_skbs(bp);
3012 	bnxt_free_rx_skbs(bp);
3013 }
3014 
3015 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3016 {
3017 	u8 init_val = mem_init->init_val;
3018 	u16 offset = mem_init->offset;
3019 	u8 *p2 = p;
3020 	int i;
3021 
3022 	if (!init_val)
3023 		return;
3024 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3025 		memset(p, init_val, len);
3026 		return;
3027 	}
3028 	for (i = 0; i < len; i += mem_init->size)
3029 		*(p2 + i + offset) = init_val;
3030 }
3031 
3032 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3033 {
3034 	struct pci_dev *pdev = bp->pdev;
3035 	int i;
3036 
3037 	if (!rmem->pg_arr)
3038 		goto skip_pages;
3039 
3040 	for (i = 0; i < rmem->nr_pages; i++) {
3041 		if (!rmem->pg_arr[i])
3042 			continue;
3043 
3044 		dma_free_coherent(&pdev->dev, rmem->page_size,
3045 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3046 
3047 		rmem->pg_arr[i] = NULL;
3048 	}
3049 skip_pages:
3050 	if (rmem->pg_tbl) {
3051 		size_t pg_tbl_size = rmem->nr_pages * 8;
3052 
3053 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3054 			pg_tbl_size = rmem->page_size;
3055 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3056 				  rmem->pg_tbl, rmem->pg_tbl_map);
3057 		rmem->pg_tbl = NULL;
3058 	}
3059 	if (rmem->vmem_size && *rmem->vmem) {
3060 		vfree(*rmem->vmem);
3061 		*rmem->vmem = NULL;
3062 	}
3063 }
3064 
3065 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3066 {
3067 	struct pci_dev *pdev = bp->pdev;
3068 	u64 valid_bit = 0;
3069 	int i;
3070 
3071 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3072 		valid_bit = PTU_PTE_VALID;
3073 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3074 		size_t pg_tbl_size = rmem->nr_pages * 8;
3075 
3076 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3077 			pg_tbl_size = rmem->page_size;
3078 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3079 						  &rmem->pg_tbl_map,
3080 						  GFP_KERNEL);
3081 		if (!rmem->pg_tbl)
3082 			return -ENOMEM;
3083 	}
3084 
3085 	for (i = 0; i < rmem->nr_pages; i++) {
3086 		u64 extra_bits = valid_bit;
3087 
3088 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3089 						     rmem->page_size,
3090 						     &rmem->dma_arr[i],
3091 						     GFP_KERNEL);
3092 		if (!rmem->pg_arr[i])
3093 			return -ENOMEM;
3094 
3095 		if (rmem->mem_init)
3096 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3097 					  rmem->page_size);
3098 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3099 			if (i == rmem->nr_pages - 2 &&
3100 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3101 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3102 			else if (i == rmem->nr_pages - 1 &&
3103 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3104 				extra_bits |= PTU_PTE_LAST;
3105 			rmem->pg_tbl[i] =
3106 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3107 		}
3108 	}
3109 
3110 	if (rmem->vmem_size) {
3111 		*rmem->vmem = vzalloc(rmem->vmem_size);
3112 		if (!(*rmem->vmem))
3113 			return -ENOMEM;
3114 	}
3115 	return 0;
3116 }
3117 
3118 static void bnxt_free_tpa_info(struct bnxt *bp)
3119 {
3120 	int i, j;
3121 
3122 	for (i = 0; i < bp->rx_nr_rings; i++) {
3123 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3124 
3125 		kfree(rxr->rx_tpa_idx_map);
3126 		rxr->rx_tpa_idx_map = NULL;
3127 		if (rxr->rx_tpa) {
3128 			for (j = 0; j < bp->max_tpa; j++) {
3129 				kfree(rxr->rx_tpa[j].agg_arr);
3130 				rxr->rx_tpa[j].agg_arr = NULL;
3131 			}
3132 		}
3133 		kfree(rxr->rx_tpa);
3134 		rxr->rx_tpa = NULL;
3135 	}
3136 }
3137 
3138 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3139 {
3140 	int i, j;
3141 
3142 	bp->max_tpa = MAX_TPA;
3143 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3144 		if (!bp->max_tpa_v2)
3145 			return 0;
3146 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3147 	}
3148 
3149 	for (i = 0; i < bp->rx_nr_rings; i++) {
3150 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3151 		struct rx_agg_cmp *agg;
3152 
3153 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3154 				      GFP_KERNEL);
3155 		if (!rxr->rx_tpa)
3156 			return -ENOMEM;
3157 
3158 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3159 			continue;
3160 		for (j = 0; j < bp->max_tpa; j++) {
3161 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3162 			if (!agg)
3163 				return -ENOMEM;
3164 			rxr->rx_tpa[j].agg_arr = agg;
3165 		}
3166 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3167 					      GFP_KERNEL);
3168 		if (!rxr->rx_tpa_idx_map)
3169 			return -ENOMEM;
3170 	}
3171 	return 0;
3172 }
3173 
3174 static void bnxt_free_rx_rings(struct bnxt *bp)
3175 {
3176 	int i;
3177 
3178 	if (!bp->rx_ring)
3179 		return;
3180 
3181 	bnxt_free_tpa_info(bp);
3182 	for (i = 0; i < bp->rx_nr_rings; i++) {
3183 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3184 		struct bnxt_ring_struct *ring;
3185 
3186 		if (rxr->xdp_prog)
3187 			bpf_prog_put(rxr->xdp_prog);
3188 
3189 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3190 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3191 
3192 		page_pool_destroy(rxr->page_pool);
3193 		rxr->page_pool = NULL;
3194 
3195 		kfree(rxr->rx_agg_bmap);
3196 		rxr->rx_agg_bmap = NULL;
3197 
3198 		ring = &rxr->rx_ring_struct;
3199 		bnxt_free_ring(bp, &ring->ring_mem);
3200 
3201 		ring = &rxr->rx_agg_ring_struct;
3202 		bnxt_free_ring(bp, &ring->ring_mem);
3203 	}
3204 }
3205 
3206 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3207 				   struct bnxt_rx_ring_info *rxr)
3208 {
3209 	struct page_pool_params pp = { 0 };
3210 
3211 	pp.pool_size = bp->rx_ring_size;
3212 	pp.nid = dev_to_node(&bp->pdev->dev);
3213 	pp.napi = &rxr->bnapi->napi;
3214 	pp.dev = &bp->pdev->dev;
3215 	pp.dma_dir = DMA_BIDIRECTIONAL;
3216 
3217 	rxr->page_pool = page_pool_create(&pp);
3218 	if (IS_ERR(rxr->page_pool)) {
3219 		int err = PTR_ERR(rxr->page_pool);
3220 
3221 		rxr->page_pool = NULL;
3222 		return err;
3223 	}
3224 	return 0;
3225 }
3226 
3227 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3228 {
3229 	int i, rc = 0, agg_rings = 0;
3230 
3231 	if (!bp->rx_ring)
3232 		return -ENOMEM;
3233 
3234 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3235 		agg_rings = 1;
3236 
3237 	for (i = 0; i < bp->rx_nr_rings; i++) {
3238 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3239 		struct bnxt_ring_struct *ring;
3240 
3241 		ring = &rxr->rx_ring_struct;
3242 
3243 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3244 		if (rc)
3245 			return rc;
3246 
3247 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3248 		if (rc < 0)
3249 			return rc;
3250 
3251 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3252 						MEM_TYPE_PAGE_POOL,
3253 						rxr->page_pool);
3254 		if (rc) {
3255 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3256 			return rc;
3257 		}
3258 
3259 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3260 		if (rc)
3261 			return rc;
3262 
3263 		ring->grp_idx = i;
3264 		if (agg_rings) {
3265 			u16 mem_size;
3266 
3267 			ring = &rxr->rx_agg_ring_struct;
3268 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3269 			if (rc)
3270 				return rc;
3271 
3272 			ring->grp_idx = i;
3273 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3274 			mem_size = rxr->rx_agg_bmap_size / 8;
3275 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3276 			if (!rxr->rx_agg_bmap)
3277 				return -ENOMEM;
3278 		}
3279 	}
3280 	if (bp->flags & BNXT_FLAG_TPA)
3281 		rc = bnxt_alloc_tpa_info(bp);
3282 	return rc;
3283 }
3284 
3285 static void bnxt_free_tx_rings(struct bnxt *bp)
3286 {
3287 	int i;
3288 	struct pci_dev *pdev = bp->pdev;
3289 
3290 	if (!bp->tx_ring)
3291 		return;
3292 
3293 	for (i = 0; i < bp->tx_nr_rings; i++) {
3294 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3295 		struct bnxt_ring_struct *ring;
3296 
3297 		if (txr->tx_push) {
3298 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3299 					  txr->tx_push, txr->tx_push_mapping);
3300 			txr->tx_push = NULL;
3301 		}
3302 
3303 		ring = &txr->tx_ring_struct;
3304 
3305 		bnxt_free_ring(bp, &ring->ring_mem);
3306 	}
3307 }
3308 
3309 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3310 {
3311 	int i, j, rc;
3312 	struct pci_dev *pdev = bp->pdev;
3313 
3314 	bp->tx_push_size = 0;
3315 	if (bp->tx_push_thresh) {
3316 		int push_size;
3317 
3318 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3319 					bp->tx_push_thresh);
3320 
3321 		if (push_size > 256) {
3322 			push_size = 0;
3323 			bp->tx_push_thresh = 0;
3324 		}
3325 
3326 		bp->tx_push_size = push_size;
3327 	}
3328 
3329 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3330 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3331 		struct bnxt_ring_struct *ring;
3332 		u8 qidx;
3333 
3334 		ring = &txr->tx_ring_struct;
3335 
3336 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3337 		if (rc)
3338 			return rc;
3339 
3340 		ring->grp_idx = txr->bnapi->index;
3341 		if (bp->tx_push_size) {
3342 			dma_addr_t mapping;
3343 
3344 			/* One pre-allocated DMA buffer to backup
3345 			 * TX push operation
3346 			 */
3347 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3348 						bp->tx_push_size,
3349 						&txr->tx_push_mapping,
3350 						GFP_KERNEL);
3351 
3352 			if (!txr->tx_push)
3353 				return -ENOMEM;
3354 
3355 			mapping = txr->tx_push_mapping +
3356 				sizeof(struct tx_push_bd);
3357 			txr->data_mapping = cpu_to_le64(mapping);
3358 		}
3359 		qidx = bp->tc_to_qidx[j];
3360 		ring->queue_id = bp->q_info[qidx].queue_id;
3361 		spin_lock_init(&txr->xdp_tx_lock);
3362 		if (i < bp->tx_nr_rings_xdp)
3363 			continue;
3364 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3365 			j++;
3366 	}
3367 	return 0;
3368 }
3369 
3370 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3371 {
3372 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3373 
3374 	kfree(cpr->cp_desc_ring);
3375 	cpr->cp_desc_ring = NULL;
3376 	ring->ring_mem.pg_arr = NULL;
3377 	kfree(cpr->cp_desc_mapping);
3378 	cpr->cp_desc_mapping = NULL;
3379 	ring->ring_mem.dma_arr = NULL;
3380 }
3381 
3382 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3383 {
3384 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3385 	if (!cpr->cp_desc_ring)
3386 		return -ENOMEM;
3387 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3388 				       GFP_KERNEL);
3389 	if (!cpr->cp_desc_mapping)
3390 		return -ENOMEM;
3391 	return 0;
3392 }
3393 
3394 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3395 {
3396 	int i;
3397 
3398 	if (!bp->bnapi)
3399 		return;
3400 	for (i = 0; i < bp->cp_nr_rings; i++) {
3401 		struct bnxt_napi *bnapi = bp->bnapi[i];
3402 
3403 		if (!bnapi)
3404 			continue;
3405 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3406 	}
3407 }
3408 
3409 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3410 {
3411 	int i, n = bp->cp_nr_pages;
3412 
3413 	for (i = 0; i < bp->cp_nr_rings; i++) {
3414 		struct bnxt_napi *bnapi = bp->bnapi[i];
3415 		int rc;
3416 
3417 		if (!bnapi)
3418 			continue;
3419 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3420 		if (rc)
3421 			return rc;
3422 	}
3423 	return 0;
3424 }
3425 
3426 static void bnxt_free_cp_rings(struct bnxt *bp)
3427 {
3428 	int i;
3429 
3430 	if (!bp->bnapi)
3431 		return;
3432 
3433 	for (i = 0; i < bp->cp_nr_rings; i++) {
3434 		struct bnxt_napi *bnapi = bp->bnapi[i];
3435 		struct bnxt_cp_ring_info *cpr;
3436 		struct bnxt_ring_struct *ring;
3437 		int j;
3438 
3439 		if (!bnapi)
3440 			continue;
3441 
3442 		cpr = &bnapi->cp_ring;
3443 		ring = &cpr->cp_ring_struct;
3444 
3445 		bnxt_free_ring(bp, &ring->ring_mem);
3446 
3447 		for (j = 0; j < 2; j++) {
3448 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3449 
3450 			if (cpr2) {
3451 				ring = &cpr2->cp_ring_struct;
3452 				bnxt_free_ring(bp, &ring->ring_mem);
3453 				bnxt_free_cp_arrays(cpr2);
3454 				kfree(cpr2);
3455 				cpr->cp_ring_arr[j] = NULL;
3456 			}
3457 		}
3458 	}
3459 }
3460 
3461 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3462 {
3463 	struct bnxt_ring_mem_info *rmem;
3464 	struct bnxt_ring_struct *ring;
3465 	struct bnxt_cp_ring_info *cpr;
3466 	int rc;
3467 
3468 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3469 	if (!cpr)
3470 		return NULL;
3471 
3472 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3473 	if (rc) {
3474 		bnxt_free_cp_arrays(cpr);
3475 		kfree(cpr);
3476 		return NULL;
3477 	}
3478 	ring = &cpr->cp_ring_struct;
3479 	rmem = &ring->ring_mem;
3480 	rmem->nr_pages = bp->cp_nr_pages;
3481 	rmem->page_size = HW_CMPD_RING_SIZE;
3482 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3483 	rmem->dma_arr = cpr->cp_desc_mapping;
3484 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3485 	rc = bnxt_alloc_ring(bp, rmem);
3486 	if (rc) {
3487 		bnxt_free_ring(bp, rmem);
3488 		bnxt_free_cp_arrays(cpr);
3489 		kfree(cpr);
3490 		cpr = NULL;
3491 	}
3492 	return cpr;
3493 }
3494 
3495 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3496 {
3497 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3498 	int i, rc, ulp_base_vec, ulp_msix;
3499 
3500 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3501 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3502 	for (i = 0; i < bp->cp_nr_rings; i++) {
3503 		struct bnxt_napi *bnapi = bp->bnapi[i];
3504 		struct bnxt_cp_ring_info *cpr;
3505 		struct bnxt_ring_struct *ring;
3506 
3507 		if (!bnapi)
3508 			continue;
3509 
3510 		cpr = &bnapi->cp_ring;
3511 		cpr->bnapi = bnapi;
3512 		ring = &cpr->cp_ring_struct;
3513 
3514 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3515 		if (rc)
3516 			return rc;
3517 
3518 		if (ulp_msix && i >= ulp_base_vec)
3519 			ring->map_idx = i + ulp_msix;
3520 		else
3521 			ring->map_idx = i;
3522 
3523 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3524 			continue;
3525 
3526 		if (i < bp->rx_nr_rings) {
3527 			struct bnxt_cp_ring_info *cpr2 =
3528 				bnxt_alloc_cp_sub_ring(bp);
3529 
3530 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3531 			if (!cpr2)
3532 				return -ENOMEM;
3533 			cpr2->bnapi = bnapi;
3534 		}
3535 		if ((sh && i < bp->tx_nr_rings) ||
3536 		    (!sh && i >= bp->rx_nr_rings)) {
3537 			struct bnxt_cp_ring_info *cpr2 =
3538 				bnxt_alloc_cp_sub_ring(bp);
3539 
3540 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3541 			if (!cpr2)
3542 				return -ENOMEM;
3543 			cpr2->bnapi = bnapi;
3544 		}
3545 	}
3546 	return 0;
3547 }
3548 
3549 static void bnxt_init_ring_struct(struct bnxt *bp)
3550 {
3551 	int i;
3552 
3553 	for (i = 0; i < bp->cp_nr_rings; i++) {
3554 		struct bnxt_napi *bnapi = bp->bnapi[i];
3555 		struct bnxt_ring_mem_info *rmem;
3556 		struct bnxt_cp_ring_info *cpr;
3557 		struct bnxt_rx_ring_info *rxr;
3558 		struct bnxt_tx_ring_info *txr;
3559 		struct bnxt_ring_struct *ring;
3560 
3561 		if (!bnapi)
3562 			continue;
3563 
3564 		cpr = &bnapi->cp_ring;
3565 		ring = &cpr->cp_ring_struct;
3566 		rmem = &ring->ring_mem;
3567 		rmem->nr_pages = bp->cp_nr_pages;
3568 		rmem->page_size = HW_CMPD_RING_SIZE;
3569 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3570 		rmem->dma_arr = cpr->cp_desc_mapping;
3571 		rmem->vmem_size = 0;
3572 
3573 		rxr = bnapi->rx_ring;
3574 		if (!rxr)
3575 			goto skip_rx;
3576 
3577 		ring = &rxr->rx_ring_struct;
3578 		rmem = &ring->ring_mem;
3579 		rmem->nr_pages = bp->rx_nr_pages;
3580 		rmem->page_size = HW_RXBD_RING_SIZE;
3581 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3582 		rmem->dma_arr = rxr->rx_desc_mapping;
3583 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3584 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3585 
3586 		ring = &rxr->rx_agg_ring_struct;
3587 		rmem = &ring->ring_mem;
3588 		rmem->nr_pages = bp->rx_agg_nr_pages;
3589 		rmem->page_size = HW_RXBD_RING_SIZE;
3590 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3591 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3592 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3593 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3594 
3595 skip_rx:
3596 		txr = bnapi->tx_ring;
3597 		if (!txr)
3598 			continue;
3599 
3600 		ring = &txr->tx_ring_struct;
3601 		rmem = &ring->ring_mem;
3602 		rmem->nr_pages = bp->tx_nr_pages;
3603 		rmem->page_size = HW_RXBD_RING_SIZE;
3604 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3605 		rmem->dma_arr = txr->tx_desc_mapping;
3606 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3607 		rmem->vmem = (void **)&txr->tx_buf_ring;
3608 	}
3609 }
3610 
3611 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3612 {
3613 	int i;
3614 	u32 prod;
3615 	struct rx_bd **rx_buf_ring;
3616 
3617 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3618 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3619 		int j;
3620 		struct rx_bd *rxbd;
3621 
3622 		rxbd = rx_buf_ring[i];
3623 		if (!rxbd)
3624 			continue;
3625 
3626 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3627 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3628 			rxbd->rx_bd_opaque = prod;
3629 		}
3630 	}
3631 }
3632 
3633 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3634 {
3635 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3636 	struct net_device *dev = bp->dev;
3637 	u32 prod;
3638 	int i;
3639 
3640 	prod = rxr->rx_prod;
3641 	for (i = 0; i < bp->rx_ring_size; i++) {
3642 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3643 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3644 				    ring_nr, i, bp->rx_ring_size);
3645 			break;
3646 		}
3647 		prod = NEXT_RX(prod);
3648 	}
3649 	rxr->rx_prod = prod;
3650 
3651 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3652 		return 0;
3653 
3654 	prod = rxr->rx_agg_prod;
3655 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3656 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3657 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3658 				    ring_nr, i, bp->rx_ring_size);
3659 			break;
3660 		}
3661 		prod = NEXT_RX_AGG(prod);
3662 	}
3663 	rxr->rx_agg_prod = prod;
3664 
3665 	if (rxr->rx_tpa) {
3666 		dma_addr_t mapping;
3667 		u8 *data;
3668 
3669 		for (i = 0; i < bp->max_tpa; i++) {
3670 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3671 			if (!data)
3672 				return -ENOMEM;
3673 
3674 			rxr->rx_tpa[i].data = data;
3675 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3676 			rxr->rx_tpa[i].mapping = mapping;
3677 		}
3678 	}
3679 	return 0;
3680 }
3681 
3682 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3683 {
3684 	struct bnxt_rx_ring_info *rxr;
3685 	struct bnxt_ring_struct *ring;
3686 	u32 type;
3687 
3688 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3689 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3690 
3691 	if (NET_IP_ALIGN == 2)
3692 		type |= RX_BD_FLAGS_SOP;
3693 
3694 	rxr = &bp->rx_ring[ring_nr];
3695 	ring = &rxr->rx_ring_struct;
3696 	bnxt_init_rxbd_pages(ring, type);
3697 
3698 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3699 		bpf_prog_add(bp->xdp_prog, 1);
3700 		rxr->xdp_prog = bp->xdp_prog;
3701 	}
3702 	ring->fw_ring_id = INVALID_HW_RING_ID;
3703 
3704 	ring = &rxr->rx_agg_ring_struct;
3705 	ring->fw_ring_id = INVALID_HW_RING_ID;
3706 
3707 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3708 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3709 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3710 
3711 		bnxt_init_rxbd_pages(ring, type);
3712 	}
3713 
3714 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3715 }
3716 
3717 static void bnxt_init_cp_rings(struct bnxt *bp)
3718 {
3719 	int i, j;
3720 
3721 	for (i = 0; i < bp->cp_nr_rings; i++) {
3722 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3723 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3724 
3725 		ring->fw_ring_id = INVALID_HW_RING_ID;
3726 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3727 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3728 		for (j = 0; j < 2; j++) {
3729 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3730 
3731 			if (!cpr2)
3732 				continue;
3733 
3734 			ring = &cpr2->cp_ring_struct;
3735 			ring->fw_ring_id = INVALID_HW_RING_ID;
3736 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3737 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3738 		}
3739 	}
3740 }
3741 
3742 static int bnxt_init_rx_rings(struct bnxt *bp)
3743 {
3744 	int i, rc = 0;
3745 
3746 	if (BNXT_RX_PAGE_MODE(bp)) {
3747 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3748 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3749 	} else {
3750 		bp->rx_offset = BNXT_RX_OFFSET;
3751 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3752 	}
3753 
3754 	for (i = 0; i < bp->rx_nr_rings; i++) {
3755 		rc = bnxt_init_one_rx_ring(bp, i);
3756 		if (rc)
3757 			break;
3758 	}
3759 
3760 	return rc;
3761 }
3762 
3763 static int bnxt_init_tx_rings(struct bnxt *bp)
3764 {
3765 	u16 i;
3766 
3767 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3768 				   BNXT_MIN_TX_DESC_CNT);
3769 
3770 	for (i = 0; i < bp->tx_nr_rings; i++) {
3771 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3772 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3773 
3774 		ring->fw_ring_id = INVALID_HW_RING_ID;
3775 	}
3776 
3777 	return 0;
3778 }
3779 
3780 static void bnxt_free_ring_grps(struct bnxt *bp)
3781 {
3782 	kfree(bp->grp_info);
3783 	bp->grp_info = NULL;
3784 }
3785 
3786 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3787 {
3788 	int i;
3789 
3790 	if (irq_re_init) {
3791 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3792 				       sizeof(struct bnxt_ring_grp_info),
3793 				       GFP_KERNEL);
3794 		if (!bp->grp_info)
3795 			return -ENOMEM;
3796 	}
3797 	for (i = 0; i < bp->cp_nr_rings; i++) {
3798 		if (irq_re_init)
3799 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3800 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3801 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3802 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3803 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3804 	}
3805 	return 0;
3806 }
3807 
3808 static void bnxt_free_vnics(struct bnxt *bp)
3809 {
3810 	kfree(bp->vnic_info);
3811 	bp->vnic_info = NULL;
3812 	bp->nr_vnics = 0;
3813 }
3814 
3815 static int bnxt_alloc_vnics(struct bnxt *bp)
3816 {
3817 	int num_vnics = 1;
3818 
3819 #ifdef CONFIG_RFS_ACCEL
3820 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3821 		num_vnics += bp->rx_nr_rings;
3822 #endif
3823 
3824 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3825 		num_vnics++;
3826 
3827 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3828 				GFP_KERNEL);
3829 	if (!bp->vnic_info)
3830 		return -ENOMEM;
3831 
3832 	bp->nr_vnics = num_vnics;
3833 	return 0;
3834 }
3835 
3836 static void bnxt_init_vnics(struct bnxt *bp)
3837 {
3838 	int i;
3839 
3840 	for (i = 0; i < bp->nr_vnics; i++) {
3841 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3842 		int j;
3843 
3844 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3845 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3846 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3847 
3848 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3849 
3850 		if (bp->vnic_info[i].rss_hash_key) {
3851 			if (i == 0)
3852 				get_random_bytes(vnic->rss_hash_key,
3853 					      HW_HASH_KEY_SIZE);
3854 			else
3855 				memcpy(vnic->rss_hash_key,
3856 				       bp->vnic_info[0].rss_hash_key,
3857 				       HW_HASH_KEY_SIZE);
3858 		}
3859 	}
3860 }
3861 
3862 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3863 {
3864 	int pages;
3865 
3866 	pages = ring_size / desc_per_pg;
3867 
3868 	if (!pages)
3869 		return 1;
3870 
3871 	pages++;
3872 
3873 	while (pages & (pages - 1))
3874 		pages++;
3875 
3876 	return pages;
3877 }
3878 
3879 void bnxt_set_tpa_flags(struct bnxt *bp)
3880 {
3881 	bp->flags &= ~BNXT_FLAG_TPA;
3882 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3883 		return;
3884 	if (bp->dev->features & NETIF_F_LRO)
3885 		bp->flags |= BNXT_FLAG_LRO;
3886 	else if (bp->dev->features & NETIF_F_GRO_HW)
3887 		bp->flags |= BNXT_FLAG_GRO;
3888 }
3889 
3890 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3891  * be set on entry.
3892  */
3893 void bnxt_set_ring_params(struct bnxt *bp)
3894 {
3895 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3896 	u32 agg_factor = 0, agg_ring_size = 0;
3897 
3898 	/* 8 for CRC and VLAN */
3899 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3900 
3901 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3902 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3903 
3904 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3905 	ring_size = bp->rx_ring_size;
3906 	bp->rx_agg_ring_size = 0;
3907 	bp->rx_agg_nr_pages = 0;
3908 
3909 	if (bp->flags & BNXT_FLAG_TPA)
3910 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3911 
3912 	bp->flags &= ~BNXT_FLAG_JUMBO;
3913 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3914 		u32 jumbo_factor;
3915 
3916 		bp->flags |= BNXT_FLAG_JUMBO;
3917 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3918 		if (jumbo_factor > agg_factor)
3919 			agg_factor = jumbo_factor;
3920 	}
3921 	if (agg_factor) {
3922 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3923 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3924 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3925 				    bp->rx_ring_size, ring_size);
3926 			bp->rx_ring_size = ring_size;
3927 		}
3928 		agg_ring_size = ring_size * agg_factor;
3929 
3930 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3931 							RX_DESC_CNT);
3932 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3933 			u32 tmp = agg_ring_size;
3934 
3935 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3936 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3937 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3938 				    tmp, agg_ring_size);
3939 		}
3940 		bp->rx_agg_ring_size = agg_ring_size;
3941 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3942 
3943 		if (BNXT_RX_PAGE_MODE(bp)) {
3944 			rx_space = PAGE_SIZE;
3945 			rx_size = PAGE_SIZE -
3946 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
3947 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3948 		} else {
3949 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3950 			rx_space = rx_size + NET_SKB_PAD +
3951 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3952 		}
3953 	}
3954 
3955 	bp->rx_buf_use_size = rx_size;
3956 	bp->rx_buf_size = rx_space;
3957 
3958 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3959 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3960 
3961 	ring_size = bp->tx_ring_size;
3962 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3963 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3964 
3965 	max_rx_cmpl = bp->rx_ring_size;
3966 	/* MAX TPA needs to be added because TPA_START completions are
3967 	 * immediately recycled, so the TPA completions are not bound by
3968 	 * the RX ring size.
3969 	 */
3970 	if (bp->flags & BNXT_FLAG_TPA)
3971 		max_rx_cmpl += bp->max_tpa;
3972 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3973 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3974 	bp->cp_ring_size = ring_size;
3975 
3976 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3977 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3978 		bp->cp_nr_pages = MAX_CP_PAGES;
3979 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3980 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3981 			    ring_size, bp->cp_ring_size);
3982 	}
3983 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3984 	bp->cp_ring_mask = bp->cp_bit - 1;
3985 }
3986 
3987 /* Changing allocation mode of RX rings.
3988  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3989  */
3990 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3991 {
3992 	if (page_mode) {
3993 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3994 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
3995 
3996 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
3997 			bp->flags |= BNXT_FLAG_JUMBO;
3998 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
3999 			bp->dev->max_mtu =
4000 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4001 		} else {
4002 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4003 			bp->rx_skb_func = bnxt_rx_page_skb;
4004 			bp->dev->max_mtu =
4005 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4006 		}
4007 		bp->rx_dir = DMA_BIDIRECTIONAL;
4008 		/* Disable LRO or GRO_HW */
4009 		netdev_update_features(bp->dev);
4010 	} else {
4011 		bp->dev->max_mtu = bp->max_mtu;
4012 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4013 		bp->rx_dir = DMA_FROM_DEVICE;
4014 		bp->rx_skb_func = bnxt_rx_skb;
4015 	}
4016 	return 0;
4017 }
4018 
4019 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4020 {
4021 	int i;
4022 	struct bnxt_vnic_info *vnic;
4023 	struct pci_dev *pdev = bp->pdev;
4024 
4025 	if (!bp->vnic_info)
4026 		return;
4027 
4028 	for (i = 0; i < bp->nr_vnics; i++) {
4029 		vnic = &bp->vnic_info[i];
4030 
4031 		kfree(vnic->fw_grp_ids);
4032 		vnic->fw_grp_ids = NULL;
4033 
4034 		kfree(vnic->uc_list);
4035 		vnic->uc_list = NULL;
4036 
4037 		if (vnic->mc_list) {
4038 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4039 					  vnic->mc_list, vnic->mc_list_mapping);
4040 			vnic->mc_list = NULL;
4041 		}
4042 
4043 		if (vnic->rss_table) {
4044 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4045 					  vnic->rss_table,
4046 					  vnic->rss_table_dma_addr);
4047 			vnic->rss_table = NULL;
4048 		}
4049 
4050 		vnic->rss_hash_key = NULL;
4051 		vnic->flags = 0;
4052 	}
4053 }
4054 
4055 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4056 {
4057 	int i, rc = 0, size;
4058 	struct bnxt_vnic_info *vnic;
4059 	struct pci_dev *pdev = bp->pdev;
4060 	int max_rings;
4061 
4062 	for (i = 0; i < bp->nr_vnics; i++) {
4063 		vnic = &bp->vnic_info[i];
4064 
4065 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4066 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4067 
4068 			if (mem_size > 0) {
4069 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4070 				if (!vnic->uc_list) {
4071 					rc = -ENOMEM;
4072 					goto out;
4073 				}
4074 			}
4075 		}
4076 
4077 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4078 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4079 			vnic->mc_list =
4080 				dma_alloc_coherent(&pdev->dev,
4081 						   vnic->mc_list_size,
4082 						   &vnic->mc_list_mapping,
4083 						   GFP_KERNEL);
4084 			if (!vnic->mc_list) {
4085 				rc = -ENOMEM;
4086 				goto out;
4087 			}
4088 		}
4089 
4090 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4091 			goto vnic_skip_grps;
4092 
4093 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4094 			max_rings = bp->rx_nr_rings;
4095 		else
4096 			max_rings = 1;
4097 
4098 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4099 		if (!vnic->fw_grp_ids) {
4100 			rc = -ENOMEM;
4101 			goto out;
4102 		}
4103 vnic_skip_grps:
4104 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4105 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4106 			continue;
4107 
4108 		/* Allocate rss table and hash key */
4109 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4110 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4111 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4112 
4113 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4114 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4115 						     vnic->rss_table_size,
4116 						     &vnic->rss_table_dma_addr,
4117 						     GFP_KERNEL);
4118 		if (!vnic->rss_table) {
4119 			rc = -ENOMEM;
4120 			goto out;
4121 		}
4122 
4123 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4124 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4125 	}
4126 	return 0;
4127 
4128 out:
4129 	return rc;
4130 }
4131 
4132 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4133 {
4134 	struct bnxt_hwrm_wait_token *token;
4135 
4136 	dma_pool_destroy(bp->hwrm_dma_pool);
4137 	bp->hwrm_dma_pool = NULL;
4138 
4139 	rcu_read_lock();
4140 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4141 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4142 	rcu_read_unlock();
4143 }
4144 
4145 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4146 {
4147 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4148 					    BNXT_HWRM_DMA_SIZE,
4149 					    BNXT_HWRM_DMA_ALIGN, 0);
4150 	if (!bp->hwrm_dma_pool)
4151 		return -ENOMEM;
4152 
4153 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4154 
4155 	return 0;
4156 }
4157 
4158 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4159 {
4160 	kfree(stats->hw_masks);
4161 	stats->hw_masks = NULL;
4162 	kfree(stats->sw_stats);
4163 	stats->sw_stats = NULL;
4164 	if (stats->hw_stats) {
4165 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4166 				  stats->hw_stats_map);
4167 		stats->hw_stats = NULL;
4168 	}
4169 }
4170 
4171 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4172 				bool alloc_masks)
4173 {
4174 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4175 					     &stats->hw_stats_map, GFP_KERNEL);
4176 	if (!stats->hw_stats)
4177 		return -ENOMEM;
4178 
4179 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4180 	if (!stats->sw_stats)
4181 		goto stats_mem_err;
4182 
4183 	if (alloc_masks) {
4184 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4185 		if (!stats->hw_masks)
4186 			goto stats_mem_err;
4187 	}
4188 	return 0;
4189 
4190 stats_mem_err:
4191 	bnxt_free_stats_mem(bp, stats);
4192 	return -ENOMEM;
4193 }
4194 
4195 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4196 {
4197 	int i;
4198 
4199 	for (i = 0; i < count; i++)
4200 		mask_arr[i] = mask;
4201 }
4202 
4203 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4204 {
4205 	int i;
4206 
4207 	for (i = 0; i < count; i++)
4208 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4209 }
4210 
4211 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4212 				    struct bnxt_stats_mem *stats)
4213 {
4214 	struct hwrm_func_qstats_ext_output *resp;
4215 	struct hwrm_func_qstats_ext_input *req;
4216 	__le64 *hw_masks;
4217 	int rc;
4218 
4219 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4220 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4221 		return -EOPNOTSUPP;
4222 
4223 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4224 	if (rc)
4225 		return rc;
4226 
4227 	req->fid = cpu_to_le16(0xffff);
4228 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4229 
4230 	resp = hwrm_req_hold(bp, req);
4231 	rc = hwrm_req_send(bp, req);
4232 	if (!rc) {
4233 		hw_masks = &resp->rx_ucast_pkts;
4234 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4235 	}
4236 	hwrm_req_drop(bp, req);
4237 	return rc;
4238 }
4239 
4240 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4241 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4242 
4243 static void bnxt_init_stats(struct bnxt *bp)
4244 {
4245 	struct bnxt_napi *bnapi = bp->bnapi[0];
4246 	struct bnxt_cp_ring_info *cpr;
4247 	struct bnxt_stats_mem *stats;
4248 	__le64 *rx_stats, *tx_stats;
4249 	int rc, rx_count, tx_count;
4250 	u64 *rx_masks, *tx_masks;
4251 	u64 mask;
4252 	u8 flags;
4253 
4254 	cpr = &bnapi->cp_ring;
4255 	stats = &cpr->stats;
4256 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4257 	if (rc) {
4258 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4259 			mask = (1ULL << 48) - 1;
4260 		else
4261 			mask = -1ULL;
4262 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4263 	}
4264 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4265 		stats = &bp->port_stats;
4266 		rx_stats = stats->hw_stats;
4267 		rx_masks = stats->hw_masks;
4268 		rx_count = sizeof(struct rx_port_stats) / 8;
4269 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4270 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4271 		tx_count = sizeof(struct tx_port_stats) / 8;
4272 
4273 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4274 		rc = bnxt_hwrm_port_qstats(bp, flags);
4275 		if (rc) {
4276 			mask = (1ULL << 40) - 1;
4277 
4278 			bnxt_fill_masks(rx_masks, mask, rx_count);
4279 			bnxt_fill_masks(tx_masks, mask, tx_count);
4280 		} else {
4281 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4282 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4283 			bnxt_hwrm_port_qstats(bp, 0);
4284 		}
4285 	}
4286 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4287 		stats = &bp->rx_port_stats_ext;
4288 		rx_stats = stats->hw_stats;
4289 		rx_masks = stats->hw_masks;
4290 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4291 		stats = &bp->tx_port_stats_ext;
4292 		tx_stats = stats->hw_stats;
4293 		tx_masks = stats->hw_masks;
4294 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4295 
4296 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4297 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4298 		if (rc) {
4299 			mask = (1ULL << 40) - 1;
4300 
4301 			bnxt_fill_masks(rx_masks, mask, rx_count);
4302 			if (tx_stats)
4303 				bnxt_fill_masks(tx_masks, mask, tx_count);
4304 		} else {
4305 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4306 			if (tx_stats)
4307 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4308 						   tx_count);
4309 			bnxt_hwrm_port_qstats_ext(bp, 0);
4310 		}
4311 	}
4312 }
4313 
4314 static void bnxt_free_port_stats(struct bnxt *bp)
4315 {
4316 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4317 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4318 
4319 	bnxt_free_stats_mem(bp, &bp->port_stats);
4320 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4321 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4322 }
4323 
4324 static void bnxt_free_ring_stats(struct bnxt *bp)
4325 {
4326 	int i;
4327 
4328 	if (!bp->bnapi)
4329 		return;
4330 
4331 	for (i = 0; i < bp->cp_nr_rings; i++) {
4332 		struct bnxt_napi *bnapi = bp->bnapi[i];
4333 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4334 
4335 		bnxt_free_stats_mem(bp, &cpr->stats);
4336 	}
4337 }
4338 
4339 static int bnxt_alloc_stats(struct bnxt *bp)
4340 {
4341 	u32 size, i;
4342 	int rc;
4343 
4344 	size = bp->hw_ring_stats_size;
4345 
4346 	for (i = 0; i < bp->cp_nr_rings; i++) {
4347 		struct bnxt_napi *bnapi = bp->bnapi[i];
4348 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4349 
4350 		cpr->stats.len = size;
4351 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4352 		if (rc)
4353 			return rc;
4354 
4355 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4356 	}
4357 
4358 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4359 		return 0;
4360 
4361 	if (bp->port_stats.hw_stats)
4362 		goto alloc_ext_stats;
4363 
4364 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4365 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4366 	if (rc)
4367 		return rc;
4368 
4369 	bp->flags |= BNXT_FLAG_PORT_STATS;
4370 
4371 alloc_ext_stats:
4372 	/* Display extended statistics only if FW supports it */
4373 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4374 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4375 			return 0;
4376 
4377 	if (bp->rx_port_stats_ext.hw_stats)
4378 		goto alloc_tx_ext_stats;
4379 
4380 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4381 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4382 	/* Extended stats are optional */
4383 	if (rc)
4384 		return 0;
4385 
4386 alloc_tx_ext_stats:
4387 	if (bp->tx_port_stats_ext.hw_stats)
4388 		return 0;
4389 
4390 	if (bp->hwrm_spec_code >= 0x10902 ||
4391 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4392 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4393 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4394 		/* Extended stats are optional */
4395 		if (rc)
4396 			return 0;
4397 	}
4398 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4399 	return 0;
4400 }
4401 
4402 static void bnxt_clear_ring_indices(struct bnxt *bp)
4403 {
4404 	int i;
4405 
4406 	if (!bp->bnapi)
4407 		return;
4408 
4409 	for (i = 0; i < bp->cp_nr_rings; i++) {
4410 		struct bnxt_napi *bnapi = bp->bnapi[i];
4411 		struct bnxt_cp_ring_info *cpr;
4412 		struct bnxt_rx_ring_info *rxr;
4413 		struct bnxt_tx_ring_info *txr;
4414 
4415 		if (!bnapi)
4416 			continue;
4417 
4418 		cpr = &bnapi->cp_ring;
4419 		cpr->cp_raw_cons = 0;
4420 
4421 		txr = bnapi->tx_ring;
4422 		if (txr) {
4423 			txr->tx_prod = 0;
4424 			txr->tx_cons = 0;
4425 		}
4426 
4427 		rxr = bnapi->rx_ring;
4428 		if (rxr) {
4429 			rxr->rx_prod = 0;
4430 			rxr->rx_agg_prod = 0;
4431 			rxr->rx_sw_agg_prod = 0;
4432 			rxr->rx_next_cons = 0;
4433 		}
4434 	}
4435 }
4436 
4437 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4438 {
4439 #ifdef CONFIG_RFS_ACCEL
4440 	int i;
4441 
4442 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4443 	 * safe to delete the hash table.
4444 	 */
4445 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4446 		struct hlist_head *head;
4447 		struct hlist_node *tmp;
4448 		struct bnxt_ntuple_filter *fltr;
4449 
4450 		head = &bp->ntp_fltr_hash_tbl[i];
4451 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4452 			hlist_del(&fltr->hash);
4453 			kfree(fltr);
4454 		}
4455 	}
4456 	if (irq_reinit) {
4457 		bitmap_free(bp->ntp_fltr_bmap);
4458 		bp->ntp_fltr_bmap = NULL;
4459 	}
4460 	bp->ntp_fltr_count = 0;
4461 #endif
4462 }
4463 
4464 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4465 {
4466 #ifdef CONFIG_RFS_ACCEL
4467 	int i, rc = 0;
4468 
4469 	if (!(bp->flags & BNXT_FLAG_RFS))
4470 		return 0;
4471 
4472 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4473 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4474 
4475 	bp->ntp_fltr_count = 0;
4476 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4477 
4478 	if (!bp->ntp_fltr_bmap)
4479 		rc = -ENOMEM;
4480 
4481 	return rc;
4482 #else
4483 	return 0;
4484 #endif
4485 }
4486 
4487 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4488 {
4489 	bnxt_free_vnic_attributes(bp);
4490 	bnxt_free_tx_rings(bp);
4491 	bnxt_free_rx_rings(bp);
4492 	bnxt_free_cp_rings(bp);
4493 	bnxt_free_all_cp_arrays(bp);
4494 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4495 	if (irq_re_init) {
4496 		bnxt_free_ring_stats(bp);
4497 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4498 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4499 			bnxt_free_port_stats(bp);
4500 		bnxt_free_ring_grps(bp);
4501 		bnxt_free_vnics(bp);
4502 		kfree(bp->tx_ring_map);
4503 		bp->tx_ring_map = NULL;
4504 		kfree(bp->tx_ring);
4505 		bp->tx_ring = NULL;
4506 		kfree(bp->rx_ring);
4507 		bp->rx_ring = NULL;
4508 		kfree(bp->bnapi);
4509 		bp->bnapi = NULL;
4510 	} else {
4511 		bnxt_clear_ring_indices(bp);
4512 	}
4513 }
4514 
4515 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4516 {
4517 	int i, j, rc, size, arr_size;
4518 	void *bnapi;
4519 
4520 	if (irq_re_init) {
4521 		/* Allocate bnapi mem pointer array and mem block for
4522 		 * all queues
4523 		 */
4524 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4525 				bp->cp_nr_rings);
4526 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4527 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4528 		if (!bnapi)
4529 			return -ENOMEM;
4530 
4531 		bp->bnapi = bnapi;
4532 		bnapi += arr_size;
4533 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4534 			bp->bnapi[i] = bnapi;
4535 			bp->bnapi[i]->index = i;
4536 			bp->bnapi[i]->bp = bp;
4537 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4538 				struct bnxt_cp_ring_info *cpr =
4539 					&bp->bnapi[i]->cp_ring;
4540 
4541 				cpr->cp_ring_struct.ring_mem.flags =
4542 					BNXT_RMEM_RING_PTE_FLAG;
4543 			}
4544 		}
4545 
4546 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4547 				      sizeof(struct bnxt_rx_ring_info),
4548 				      GFP_KERNEL);
4549 		if (!bp->rx_ring)
4550 			return -ENOMEM;
4551 
4552 		for (i = 0; i < bp->rx_nr_rings; i++) {
4553 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4554 
4555 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4556 				rxr->rx_ring_struct.ring_mem.flags =
4557 					BNXT_RMEM_RING_PTE_FLAG;
4558 				rxr->rx_agg_ring_struct.ring_mem.flags =
4559 					BNXT_RMEM_RING_PTE_FLAG;
4560 			}
4561 			rxr->bnapi = bp->bnapi[i];
4562 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4563 		}
4564 
4565 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4566 				      sizeof(struct bnxt_tx_ring_info),
4567 				      GFP_KERNEL);
4568 		if (!bp->tx_ring)
4569 			return -ENOMEM;
4570 
4571 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4572 					  GFP_KERNEL);
4573 
4574 		if (!bp->tx_ring_map)
4575 			return -ENOMEM;
4576 
4577 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4578 			j = 0;
4579 		else
4580 			j = bp->rx_nr_rings;
4581 
4582 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4583 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4584 
4585 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4586 				txr->tx_ring_struct.ring_mem.flags =
4587 					BNXT_RMEM_RING_PTE_FLAG;
4588 			txr->bnapi = bp->bnapi[j];
4589 			bp->bnapi[j]->tx_ring = txr;
4590 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4591 			if (i >= bp->tx_nr_rings_xdp) {
4592 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4593 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4594 			} else {
4595 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4596 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4597 			}
4598 		}
4599 
4600 		rc = bnxt_alloc_stats(bp);
4601 		if (rc)
4602 			goto alloc_mem_err;
4603 		bnxt_init_stats(bp);
4604 
4605 		rc = bnxt_alloc_ntp_fltrs(bp);
4606 		if (rc)
4607 			goto alloc_mem_err;
4608 
4609 		rc = bnxt_alloc_vnics(bp);
4610 		if (rc)
4611 			goto alloc_mem_err;
4612 	}
4613 
4614 	rc = bnxt_alloc_all_cp_arrays(bp);
4615 	if (rc)
4616 		goto alloc_mem_err;
4617 
4618 	bnxt_init_ring_struct(bp);
4619 
4620 	rc = bnxt_alloc_rx_rings(bp);
4621 	if (rc)
4622 		goto alloc_mem_err;
4623 
4624 	rc = bnxt_alloc_tx_rings(bp);
4625 	if (rc)
4626 		goto alloc_mem_err;
4627 
4628 	rc = bnxt_alloc_cp_rings(bp);
4629 	if (rc)
4630 		goto alloc_mem_err;
4631 
4632 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4633 				  BNXT_VNIC_UCAST_FLAG;
4634 	rc = bnxt_alloc_vnic_attributes(bp);
4635 	if (rc)
4636 		goto alloc_mem_err;
4637 	return 0;
4638 
4639 alloc_mem_err:
4640 	bnxt_free_mem(bp, true);
4641 	return rc;
4642 }
4643 
4644 static void bnxt_disable_int(struct bnxt *bp)
4645 {
4646 	int i;
4647 
4648 	if (!bp->bnapi)
4649 		return;
4650 
4651 	for (i = 0; i < bp->cp_nr_rings; i++) {
4652 		struct bnxt_napi *bnapi = bp->bnapi[i];
4653 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4654 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4655 
4656 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4657 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4658 	}
4659 }
4660 
4661 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4662 {
4663 	struct bnxt_napi *bnapi = bp->bnapi[n];
4664 	struct bnxt_cp_ring_info *cpr;
4665 
4666 	cpr = &bnapi->cp_ring;
4667 	return cpr->cp_ring_struct.map_idx;
4668 }
4669 
4670 static void bnxt_disable_int_sync(struct bnxt *bp)
4671 {
4672 	int i;
4673 
4674 	if (!bp->irq_tbl)
4675 		return;
4676 
4677 	atomic_inc(&bp->intr_sem);
4678 
4679 	bnxt_disable_int(bp);
4680 	for (i = 0; i < bp->cp_nr_rings; i++) {
4681 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4682 
4683 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4684 	}
4685 }
4686 
4687 static void bnxt_enable_int(struct bnxt *bp)
4688 {
4689 	int i;
4690 
4691 	atomic_set(&bp->intr_sem, 0);
4692 	for (i = 0; i < bp->cp_nr_rings; i++) {
4693 		struct bnxt_napi *bnapi = bp->bnapi[i];
4694 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4695 
4696 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4697 	}
4698 }
4699 
4700 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4701 			    bool async_only)
4702 {
4703 	DECLARE_BITMAP(async_events_bmap, 256);
4704 	u32 *events = (u32 *)async_events_bmap;
4705 	struct hwrm_func_drv_rgtr_output *resp;
4706 	struct hwrm_func_drv_rgtr_input *req;
4707 	u32 flags;
4708 	int rc, i;
4709 
4710 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4711 	if (rc)
4712 		return rc;
4713 
4714 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4715 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4716 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4717 
4718 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4719 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4720 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4721 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4722 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4723 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4724 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4725 	req->flags = cpu_to_le32(flags);
4726 	req->ver_maj_8b = DRV_VER_MAJ;
4727 	req->ver_min_8b = DRV_VER_MIN;
4728 	req->ver_upd_8b = DRV_VER_UPD;
4729 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4730 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4731 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4732 
4733 	if (BNXT_PF(bp)) {
4734 		u32 data[8];
4735 		int i;
4736 
4737 		memset(data, 0, sizeof(data));
4738 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4739 			u16 cmd = bnxt_vf_req_snif[i];
4740 			unsigned int bit, idx;
4741 
4742 			idx = cmd / 32;
4743 			bit = cmd % 32;
4744 			data[idx] |= 1 << bit;
4745 		}
4746 
4747 		for (i = 0; i < 8; i++)
4748 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4749 
4750 		req->enables |=
4751 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4752 	}
4753 
4754 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4755 		req->flags |= cpu_to_le32(
4756 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4757 
4758 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4759 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4760 		u16 event_id = bnxt_async_events_arr[i];
4761 
4762 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4763 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4764 			continue;
4765 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
4766 		    !bp->ptp_cfg)
4767 			continue;
4768 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4769 	}
4770 	if (bmap && bmap_size) {
4771 		for (i = 0; i < bmap_size; i++) {
4772 			if (test_bit(i, bmap))
4773 				__set_bit(i, async_events_bmap);
4774 		}
4775 	}
4776 	for (i = 0; i < 8; i++)
4777 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4778 
4779 	if (async_only)
4780 		req->enables =
4781 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4782 
4783 	resp = hwrm_req_hold(bp, req);
4784 	rc = hwrm_req_send(bp, req);
4785 	if (!rc) {
4786 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4787 		if (resp->flags &
4788 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4789 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4790 	}
4791 	hwrm_req_drop(bp, req);
4792 	return rc;
4793 }
4794 
4795 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4796 {
4797 	struct hwrm_func_drv_unrgtr_input *req;
4798 	int rc;
4799 
4800 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4801 		return 0;
4802 
4803 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4804 	if (rc)
4805 		return rc;
4806 	return hwrm_req_send(bp, req);
4807 }
4808 
4809 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4810 {
4811 	struct hwrm_tunnel_dst_port_free_input *req;
4812 	int rc;
4813 
4814 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4815 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4816 		return 0;
4817 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4818 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4819 		return 0;
4820 
4821 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4822 	if (rc)
4823 		return rc;
4824 
4825 	req->tunnel_type = tunnel_type;
4826 
4827 	switch (tunnel_type) {
4828 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4829 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4830 		bp->vxlan_port = 0;
4831 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4832 		break;
4833 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4834 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4835 		bp->nge_port = 0;
4836 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4837 		break;
4838 	default:
4839 		break;
4840 	}
4841 
4842 	rc = hwrm_req_send(bp, req);
4843 	if (rc)
4844 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4845 			   rc);
4846 	return rc;
4847 }
4848 
4849 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4850 					   u8 tunnel_type)
4851 {
4852 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4853 	struct hwrm_tunnel_dst_port_alloc_input *req;
4854 	int rc;
4855 
4856 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4857 	if (rc)
4858 		return rc;
4859 
4860 	req->tunnel_type = tunnel_type;
4861 	req->tunnel_dst_port_val = port;
4862 
4863 	resp = hwrm_req_hold(bp, req);
4864 	rc = hwrm_req_send(bp, req);
4865 	if (rc) {
4866 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4867 			   rc);
4868 		goto err_out;
4869 	}
4870 
4871 	switch (tunnel_type) {
4872 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4873 		bp->vxlan_port = port;
4874 		bp->vxlan_fw_dst_port_id =
4875 			le16_to_cpu(resp->tunnel_dst_port_id);
4876 		break;
4877 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4878 		bp->nge_port = port;
4879 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4880 		break;
4881 	default:
4882 		break;
4883 	}
4884 
4885 err_out:
4886 	hwrm_req_drop(bp, req);
4887 	return rc;
4888 }
4889 
4890 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4891 {
4892 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4893 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4894 	int rc;
4895 
4896 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4897 	if (rc)
4898 		return rc;
4899 
4900 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4901 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4902 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4903 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4904 	}
4905 	req->mask = cpu_to_le32(vnic->rx_mask);
4906 	return hwrm_req_send_silent(bp, req);
4907 }
4908 
4909 #ifdef CONFIG_RFS_ACCEL
4910 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4911 					    struct bnxt_ntuple_filter *fltr)
4912 {
4913 	struct hwrm_cfa_ntuple_filter_free_input *req;
4914 	int rc;
4915 
4916 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4917 	if (rc)
4918 		return rc;
4919 
4920 	req->ntuple_filter_id = fltr->filter_id;
4921 	return hwrm_req_send(bp, req);
4922 }
4923 
4924 #define BNXT_NTP_FLTR_FLAGS					\
4925 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4926 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4927 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4928 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4929 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4930 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4931 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4932 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4933 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4934 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4935 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4936 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4937 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4938 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4939 
4940 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4941 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4942 
4943 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4944 					     struct bnxt_ntuple_filter *fltr)
4945 {
4946 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4947 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4948 	struct flow_keys *keys = &fltr->fkeys;
4949 	struct bnxt_vnic_info *vnic;
4950 	u32 flags = 0;
4951 	int rc;
4952 
4953 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4954 	if (rc)
4955 		return rc;
4956 
4957 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4958 
4959 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4960 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4961 		req->dst_id = cpu_to_le16(fltr->rxq);
4962 	} else {
4963 		vnic = &bp->vnic_info[fltr->rxq + 1];
4964 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4965 	}
4966 	req->flags = cpu_to_le32(flags);
4967 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4968 
4969 	req->ethertype = htons(ETH_P_IP);
4970 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4971 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4972 	req->ip_protocol = keys->basic.ip_proto;
4973 
4974 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4975 		int i;
4976 
4977 		req->ethertype = htons(ETH_P_IPV6);
4978 		req->ip_addr_type =
4979 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4980 		*(struct in6_addr *)&req->src_ipaddr[0] =
4981 			keys->addrs.v6addrs.src;
4982 		*(struct in6_addr *)&req->dst_ipaddr[0] =
4983 			keys->addrs.v6addrs.dst;
4984 		for (i = 0; i < 4; i++) {
4985 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4986 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4987 		}
4988 	} else {
4989 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
4990 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4991 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4992 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4993 	}
4994 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4995 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4996 		req->tunnel_type =
4997 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4998 	}
4999 
5000 	req->src_port = keys->ports.src;
5001 	req->src_port_mask = cpu_to_be16(0xffff);
5002 	req->dst_port = keys->ports.dst;
5003 	req->dst_port_mask = cpu_to_be16(0xffff);
5004 
5005 	resp = hwrm_req_hold(bp, req);
5006 	rc = hwrm_req_send(bp, req);
5007 	if (!rc)
5008 		fltr->filter_id = resp->ntuple_filter_id;
5009 	hwrm_req_drop(bp, req);
5010 	return rc;
5011 }
5012 #endif
5013 
5014 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5015 				     const u8 *mac_addr)
5016 {
5017 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5018 	struct hwrm_cfa_l2_filter_alloc_input *req;
5019 	int rc;
5020 
5021 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5022 	if (rc)
5023 		return rc;
5024 
5025 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5026 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5027 		req->flags |=
5028 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5029 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5030 	req->enables =
5031 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5032 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5033 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5034 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5035 	req->l2_addr_mask[0] = 0xff;
5036 	req->l2_addr_mask[1] = 0xff;
5037 	req->l2_addr_mask[2] = 0xff;
5038 	req->l2_addr_mask[3] = 0xff;
5039 	req->l2_addr_mask[4] = 0xff;
5040 	req->l2_addr_mask[5] = 0xff;
5041 
5042 	resp = hwrm_req_hold(bp, req);
5043 	rc = hwrm_req_send(bp, req);
5044 	if (!rc)
5045 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5046 							resp->l2_filter_id;
5047 	hwrm_req_drop(bp, req);
5048 	return rc;
5049 }
5050 
5051 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5052 {
5053 	struct hwrm_cfa_l2_filter_free_input *req;
5054 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5055 	int rc;
5056 
5057 	/* Any associated ntuple filters will also be cleared by firmware. */
5058 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5059 	if (rc)
5060 		return rc;
5061 	hwrm_req_hold(bp, req);
5062 	for (i = 0; i < num_of_vnics; i++) {
5063 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5064 
5065 		for (j = 0; j < vnic->uc_filter_count; j++) {
5066 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5067 
5068 			rc = hwrm_req_send(bp, req);
5069 		}
5070 		vnic->uc_filter_count = 0;
5071 	}
5072 	hwrm_req_drop(bp, req);
5073 	return rc;
5074 }
5075 
5076 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5077 {
5078 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5079 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5080 	struct hwrm_vnic_tpa_cfg_input *req;
5081 	int rc;
5082 
5083 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5084 		return 0;
5085 
5086 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5087 	if (rc)
5088 		return rc;
5089 
5090 	if (tpa_flags) {
5091 		u16 mss = bp->dev->mtu - 40;
5092 		u32 nsegs, n, segs = 0, flags;
5093 
5094 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5095 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5096 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5097 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5098 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5099 		if (tpa_flags & BNXT_FLAG_GRO)
5100 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5101 
5102 		req->flags = cpu_to_le32(flags);
5103 
5104 		req->enables =
5105 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5106 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5107 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5108 
5109 		/* Number of segs are log2 units, and first packet is not
5110 		 * included as part of this units.
5111 		 */
5112 		if (mss <= BNXT_RX_PAGE_SIZE) {
5113 			n = BNXT_RX_PAGE_SIZE / mss;
5114 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5115 		} else {
5116 			n = mss / BNXT_RX_PAGE_SIZE;
5117 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5118 				n++;
5119 			nsegs = (MAX_SKB_FRAGS - n) / n;
5120 		}
5121 
5122 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5123 			segs = MAX_TPA_SEGS_P5;
5124 			max_aggs = bp->max_tpa;
5125 		} else {
5126 			segs = ilog2(nsegs);
5127 		}
5128 		req->max_agg_segs = cpu_to_le16(segs);
5129 		req->max_aggs = cpu_to_le16(max_aggs);
5130 
5131 		req->min_agg_len = cpu_to_le32(512);
5132 	}
5133 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5134 
5135 	return hwrm_req_send(bp, req);
5136 }
5137 
5138 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5139 {
5140 	struct bnxt_ring_grp_info *grp_info;
5141 
5142 	grp_info = &bp->grp_info[ring->grp_idx];
5143 	return grp_info->cp_fw_ring_id;
5144 }
5145 
5146 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5147 {
5148 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5149 		struct bnxt_napi *bnapi = rxr->bnapi;
5150 		struct bnxt_cp_ring_info *cpr;
5151 
5152 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5153 		return cpr->cp_ring_struct.fw_ring_id;
5154 	} else {
5155 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5156 	}
5157 }
5158 
5159 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5160 {
5161 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5162 		struct bnxt_napi *bnapi = txr->bnapi;
5163 		struct bnxt_cp_ring_info *cpr;
5164 
5165 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5166 		return cpr->cp_ring_struct.fw_ring_id;
5167 	} else {
5168 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5169 	}
5170 }
5171 
5172 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5173 {
5174 	int entries;
5175 
5176 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5177 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5178 	else
5179 		entries = HW_HASH_INDEX_SIZE;
5180 
5181 	bp->rss_indir_tbl_entries = entries;
5182 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5183 					  GFP_KERNEL);
5184 	if (!bp->rss_indir_tbl)
5185 		return -ENOMEM;
5186 	return 0;
5187 }
5188 
5189 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5190 {
5191 	u16 max_rings, max_entries, pad, i;
5192 
5193 	if (!bp->rx_nr_rings)
5194 		return;
5195 
5196 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5197 		max_rings = bp->rx_nr_rings - 1;
5198 	else
5199 		max_rings = bp->rx_nr_rings;
5200 
5201 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5202 
5203 	for (i = 0; i < max_entries; i++)
5204 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5205 
5206 	pad = bp->rss_indir_tbl_entries - max_entries;
5207 	if (pad)
5208 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5209 }
5210 
5211 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5212 {
5213 	u16 i, tbl_size, max_ring = 0;
5214 
5215 	if (!bp->rss_indir_tbl)
5216 		return 0;
5217 
5218 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5219 	for (i = 0; i < tbl_size; i++)
5220 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5221 	return max_ring;
5222 }
5223 
5224 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5225 {
5226 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5227 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5228 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5229 		return 2;
5230 	return 1;
5231 }
5232 
5233 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5234 {
5235 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5236 	u16 i, j;
5237 
5238 	/* Fill the RSS indirection table with ring group ids */
5239 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5240 		if (!no_rss)
5241 			j = bp->rss_indir_tbl[i];
5242 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5243 	}
5244 }
5245 
5246 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5247 				    struct bnxt_vnic_info *vnic)
5248 {
5249 	__le16 *ring_tbl = vnic->rss_table;
5250 	struct bnxt_rx_ring_info *rxr;
5251 	u16 tbl_size, i;
5252 
5253 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5254 
5255 	for (i = 0; i < tbl_size; i++) {
5256 		u16 ring_id, j;
5257 
5258 		j = bp->rss_indir_tbl[i];
5259 		rxr = &bp->rx_ring[j];
5260 
5261 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5262 		*ring_tbl++ = cpu_to_le16(ring_id);
5263 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5264 		*ring_tbl++ = cpu_to_le16(ring_id);
5265 	}
5266 }
5267 
5268 static void
5269 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5270 			 struct bnxt_vnic_info *vnic)
5271 {
5272 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5273 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5274 	else
5275 		bnxt_fill_hw_rss_tbl(bp, vnic);
5276 
5277 	if (bp->rss_hash_delta) {
5278 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5279 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5280 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5281 		else
5282 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5283 	} else {
5284 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5285 	}
5286 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5287 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5288 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5289 }
5290 
5291 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5292 {
5293 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5294 	struct hwrm_vnic_rss_cfg_input *req;
5295 	int rc;
5296 
5297 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5298 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5299 		return 0;
5300 
5301 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5302 	if (rc)
5303 		return rc;
5304 
5305 	if (set_rss)
5306 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5307 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5308 	return hwrm_req_send(bp, req);
5309 }
5310 
5311 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5312 {
5313 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5314 	struct hwrm_vnic_rss_cfg_input *req;
5315 	dma_addr_t ring_tbl_map;
5316 	u32 i, nr_ctxs;
5317 	int rc;
5318 
5319 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5320 	if (rc)
5321 		return rc;
5322 
5323 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5324 	if (!set_rss)
5325 		return hwrm_req_send(bp, req);
5326 
5327 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5328 	ring_tbl_map = vnic->rss_table_dma_addr;
5329 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5330 
5331 	hwrm_req_hold(bp, req);
5332 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5333 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5334 		req->ring_table_pair_index = i;
5335 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5336 		rc = hwrm_req_send(bp, req);
5337 		if (rc)
5338 			goto exit;
5339 	}
5340 
5341 exit:
5342 	hwrm_req_drop(bp, req);
5343 	return rc;
5344 }
5345 
5346 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5347 {
5348 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5349 	struct hwrm_vnic_rss_qcfg_output *resp;
5350 	struct hwrm_vnic_rss_qcfg_input *req;
5351 
5352 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5353 		return;
5354 
5355 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5356 	/* all contexts configured to same hash_type, zero always exists */
5357 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5358 	resp = hwrm_req_hold(bp, req);
5359 	if (!hwrm_req_send(bp, req)) {
5360 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5361 		bp->rss_hash_delta = 0;
5362 	}
5363 	hwrm_req_drop(bp, req);
5364 }
5365 
5366 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5367 {
5368 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5369 	struct hwrm_vnic_plcmodes_cfg_input *req;
5370 	int rc;
5371 
5372 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5373 	if (rc)
5374 		return rc;
5375 
5376 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5377 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5378 
5379 	if (BNXT_RX_PAGE_MODE(bp)) {
5380 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
5381 	} else {
5382 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5383 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5384 		req->enables |=
5385 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5386 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5387 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5388 	}
5389 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5390 	return hwrm_req_send(bp, req);
5391 }
5392 
5393 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5394 					u16 ctx_idx)
5395 {
5396 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5397 
5398 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5399 		return;
5400 
5401 	req->rss_cos_lb_ctx_id =
5402 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5403 
5404 	hwrm_req_send(bp, req);
5405 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5406 }
5407 
5408 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5409 {
5410 	int i, j;
5411 
5412 	for (i = 0; i < bp->nr_vnics; i++) {
5413 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5414 
5415 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5416 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5417 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5418 		}
5419 	}
5420 	bp->rsscos_nr_ctxs = 0;
5421 }
5422 
5423 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5424 {
5425 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5426 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5427 	int rc;
5428 
5429 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5430 	if (rc)
5431 		return rc;
5432 
5433 	resp = hwrm_req_hold(bp, req);
5434 	rc = hwrm_req_send(bp, req);
5435 	if (!rc)
5436 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5437 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5438 	hwrm_req_drop(bp, req);
5439 
5440 	return rc;
5441 }
5442 
5443 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5444 {
5445 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5446 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5447 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5448 }
5449 
5450 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5451 {
5452 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5453 	struct hwrm_vnic_cfg_input *req;
5454 	unsigned int ring = 0, grp_idx;
5455 	u16 def_vlan = 0;
5456 	int rc;
5457 
5458 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5459 	if (rc)
5460 		return rc;
5461 
5462 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5463 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5464 
5465 		req->default_rx_ring_id =
5466 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5467 		req->default_cmpl_ring_id =
5468 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5469 		req->enables =
5470 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5471 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5472 		goto vnic_mru;
5473 	}
5474 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5475 	/* Only RSS support for now TBD: COS & LB */
5476 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5477 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5478 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5479 					   VNIC_CFG_REQ_ENABLES_MRU);
5480 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5481 		req->rss_rule =
5482 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5483 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5484 					   VNIC_CFG_REQ_ENABLES_MRU);
5485 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5486 	} else {
5487 		req->rss_rule = cpu_to_le16(0xffff);
5488 	}
5489 
5490 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5491 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5492 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5493 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5494 	} else {
5495 		req->cos_rule = cpu_to_le16(0xffff);
5496 	}
5497 
5498 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5499 		ring = 0;
5500 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5501 		ring = vnic_id - 1;
5502 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5503 		ring = bp->rx_nr_rings - 1;
5504 
5505 	grp_idx = bp->rx_ring[ring].bnapi->index;
5506 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5507 	req->lb_rule = cpu_to_le16(0xffff);
5508 vnic_mru:
5509 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5510 
5511 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5512 #ifdef CONFIG_BNXT_SRIOV
5513 	if (BNXT_VF(bp))
5514 		def_vlan = bp->vf.vlan;
5515 #endif
5516 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5517 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5518 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
5519 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5520 
5521 	return hwrm_req_send(bp, req);
5522 }
5523 
5524 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5525 {
5526 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5527 		struct hwrm_vnic_free_input *req;
5528 
5529 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5530 			return;
5531 
5532 		req->vnic_id =
5533 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5534 
5535 		hwrm_req_send(bp, req);
5536 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5537 	}
5538 }
5539 
5540 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5541 {
5542 	u16 i;
5543 
5544 	for (i = 0; i < bp->nr_vnics; i++)
5545 		bnxt_hwrm_vnic_free_one(bp, i);
5546 }
5547 
5548 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5549 				unsigned int start_rx_ring_idx,
5550 				unsigned int nr_rings)
5551 {
5552 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5553 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5554 	struct hwrm_vnic_alloc_output *resp;
5555 	struct hwrm_vnic_alloc_input *req;
5556 	int rc;
5557 
5558 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5559 	if (rc)
5560 		return rc;
5561 
5562 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5563 		goto vnic_no_ring_grps;
5564 
5565 	/* map ring groups to this vnic */
5566 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5567 		grp_idx = bp->rx_ring[i].bnapi->index;
5568 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5569 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5570 				   j, nr_rings);
5571 			break;
5572 		}
5573 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5574 	}
5575 
5576 vnic_no_ring_grps:
5577 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5578 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5579 	if (vnic_id == 0)
5580 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5581 
5582 	resp = hwrm_req_hold(bp, req);
5583 	rc = hwrm_req_send(bp, req);
5584 	if (!rc)
5585 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5586 	hwrm_req_drop(bp, req);
5587 	return rc;
5588 }
5589 
5590 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5591 {
5592 	struct hwrm_vnic_qcaps_output *resp;
5593 	struct hwrm_vnic_qcaps_input *req;
5594 	int rc;
5595 
5596 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5597 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5598 	if (bp->hwrm_spec_code < 0x10600)
5599 		return 0;
5600 
5601 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5602 	if (rc)
5603 		return rc;
5604 
5605 	resp = hwrm_req_hold(bp, req);
5606 	rc = hwrm_req_send(bp, req);
5607 	if (!rc) {
5608 		u32 flags = le32_to_cpu(resp->flags);
5609 
5610 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5611 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5612 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5613 		if (flags &
5614 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5615 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5616 
5617 		/* Older P5 fw before EXT_HW_STATS support did not set
5618 		 * VLAN_STRIP_CAP properly.
5619 		 */
5620 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5621 		    (BNXT_CHIP_P5_THOR(bp) &&
5622 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5623 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5624 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
5625 			bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA;
5626 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5627 		if (bp->max_tpa_v2) {
5628 			if (BNXT_CHIP_P5_THOR(bp))
5629 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5630 			else
5631 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5632 		}
5633 	}
5634 	hwrm_req_drop(bp, req);
5635 	return rc;
5636 }
5637 
5638 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5639 {
5640 	struct hwrm_ring_grp_alloc_output *resp;
5641 	struct hwrm_ring_grp_alloc_input *req;
5642 	int rc;
5643 	u16 i;
5644 
5645 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5646 		return 0;
5647 
5648 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5649 	if (rc)
5650 		return rc;
5651 
5652 	resp = hwrm_req_hold(bp, req);
5653 	for (i = 0; i < bp->rx_nr_rings; i++) {
5654 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5655 
5656 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5657 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5658 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5659 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5660 
5661 		rc = hwrm_req_send(bp, req);
5662 
5663 		if (rc)
5664 			break;
5665 
5666 		bp->grp_info[grp_idx].fw_grp_id =
5667 			le32_to_cpu(resp->ring_group_id);
5668 	}
5669 	hwrm_req_drop(bp, req);
5670 	return rc;
5671 }
5672 
5673 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5674 {
5675 	struct hwrm_ring_grp_free_input *req;
5676 	u16 i;
5677 
5678 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5679 		return;
5680 
5681 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5682 		return;
5683 
5684 	hwrm_req_hold(bp, req);
5685 	for (i = 0; i < bp->cp_nr_rings; i++) {
5686 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5687 			continue;
5688 		req->ring_group_id =
5689 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5690 
5691 		hwrm_req_send(bp, req);
5692 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5693 	}
5694 	hwrm_req_drop(bp, req);
5695 }
5696 
5697 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5698 				    struct bnxt_ring_struct *ring,
5699 				    u32 ring_type, u32 map_index)
5700 {
5701 	struct hwrm_ring_alloc_output *resp;
5702 	struct hwrm_ring_alloc_input *req;
5703 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5704 	struct bnxt_ring_grp_info *grp_info;
5705 	int rc, err = 0;
5706 	u16 ring_id;
5707 
5708 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5709 	if (rc)
5710 		goto exit;
5711 
5712 	req->enables = 0;
5713 	if (rmem->nr_pages > 1) {
5714 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5715 		/* Page size is in log2 units */
5716 		req->page_size = BNXT_PAGE_SHIFT;
5717 		req->page_tbl_depth = 1;
5718 	} else {
5719 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5720 	}
5721 	req->fbo = 0;
5722 	/* Association of ring index with doorbell index and MSIX number */
5723 	req->logical_id = cpu_to_le16(map_index);
5724 
5725 	switch (ring_type) {
5726 	case HWRM_RING_ALLOC_TX: {
5727 		struct bnxt_tx_ring_info *txr;
5728 
5729 		txr = container_of(ring, struct bnxt_tx_ring_info,
5730 				   tx_ring_struct);
5731 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5732 		/* Association of transmit ring with completion ring */
5733 		grp_info = &bp->grp_info[ring->grp_idx];
5734 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5735 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5736 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5737 		req->queue_id = cpu_to_le16(ring->queue_id);
5738 		break;
5739 	}
5740 	case HWRM_RING_ALLOC_RX:
5741 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5742 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5743 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5744 			u16 flags = 0;
5745 
5746 			/* Association of rx ring with stats context */
5747 			grp_info = &bp->grp_info[ring->grp_idx];
5748 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5749 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5750 			req->enables |= cpu_to_le32(
5751 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5752 			if (NET_IP_ALIGN == 2)
5753 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5754 			req->flags = cpu_to_le16(flags);
5755 		}
5756 		break;
5757 	case HWRM_RING_ALLOC_AGG:
5758 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5759 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5760 			/* Association of agg ring with rx ring */
5761 			grp_info = &bp->grp_info[ring->grp_idx];
5762 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5763 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5764 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5765 			req->enables |= cpu_to_le32(
5766 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5767 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5768 		} else {
5769 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5770 		}
5771 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5772 		break;
5773 	case HWRM_RING_ALLOC_CMPL:
5774 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5775 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5776 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5777 			/* Association of cp ring with nq */
5778 			grp_info = &bp->grp_info[map_index];
5779 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5780 			req->cq_handle = cpu_to_le64(ring->handle);
5781 			req->enables |= cpu_to_le32(
5782 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5783 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5784 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5785 		}
5786 		break;
5787 	case HWRM_RING_ALLOC_NQ:
5788 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5789 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5790 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5791 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5792 		break;
5793 	default:
5794 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5795 			   ring_type);
5796 		return -1;
5797 	}
5798 
5799 	resp = hwrm_req_hold(bp, req);
5800 	rc = hwrm_req_send(bp, req);
5801 	err = le16_to_cpu(resp->error_code);
5802 	ring_id = le16_to_cpu(resp->ring_id);
5803 	hwrm_req_drop(bp, req);
5804 
5805 exit:
5806 	if (rc || err) {
5807 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5808 			   ring_type, rc, err);
5809 		return -EIO;
5810 	}
5811 	ring->fw_ring_id = ring_id;
5812 	return rc;
5813 }
5814 
5815 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5816 {
5817 	int rc;
5818 
5819 	if (BNXT_PF(bp)) {
5820 		struct hwrm_func_cfg_input *req;
5821 
5822 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5823 		if (rc)
5824 			return rc;
5825 
5826 		req->fid = cpu_to_le16(0xffff);
5827 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5828 		req->async_event_cr = cpu_to_le16(idx);
5829 		return hwrm_req_send(bp, req);
5830 	} else {
5831 		struct hwrm_func_vf_cfg_input *req;
5832 
5833 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5834 		if (rc)
5835 			return rc;
5836 
5837 		req->enables =
5838 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5839 		req->async_event_cr = cpu_to_le16(idx);
5840 		return hwrm_req_send(bp, req);
5841 	}
5842 }
5843 
5844 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5845 			u32 map_idx, u32 xid)
5846 {
5847 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5848 		if (BNXT_PF(bp))
5849 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5850 		else
5851 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5852 		switch (ring_type) {
5853 		case HWRM_RING_ALLOC_TX:
5854 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5855 			break;
5856 		case HWRM_RING_ALLOC_RX:
5857 		case HWRM_RING_ALLOC_AGG:
5858 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5859 			break;
5860 		case HWRM_RING_ALLOC_CMPL:
5861 			db->db_key64 = DBR_PATH_L2;
5862 			break;
5863 		case HWRM_RING_ALLOC_NQ:
5864 			db->db_key64 = DBR_PATH_L2;
5865 			break;
5866 		}
5867 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5868 	} else {
5869 		db->doorbell = bp->bar1 + map_idx * 0x80;
5870 		switch (ring_type) {
5871 		case HWRM_RING_ALLOC_TX:
5872 			db->db_key32 = DB_KEY_TX;
5873 			break;
5874 		case HWRM_RING_ALLOC_RX:
5875 		case HWRM_RING_ALLOC_AGG:
5876 			db->db_key32 = DB_KEY_RX;
5877 			break;
5878 		case HWRM_RING_ALLOC_CMPL:
5879 			db->db_key32 = DB_KEY_CP;
5880 			break;
5881 		}
5882 	}
5883 }
5884 
5885 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5886 {
5887 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5888 	int i, rc = 0;
5889 	u32 type;
5890 
5891 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5892 		type = HWRM_RING_ALLOC_NQ;
5893 	else
5894 		type = HWRM_RING_ALLOC_CMPL;
5895 	for (i = 0; i < bp->cp_nr_rings; i++) {
5896 		struct bnxt_napi *bnapi = bp->bnapi[i];
5897 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5898 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5899 		u32 map_idx = ring->map_idx;
5900 		unsigned int vector;
5901 
5902 		vector = bp->irq_tbl[map_idx].vector;
5903 		disable_irq_nosync(vector);
5904 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5905 		if (rc) {
5906 			enable_irq(vector);
5907 			goto err_out;
5908 		}
5909 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5910 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5911 		enable_irq(vector);
5912 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5913 
5914 		if (!i) {
5915 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5916 			if (rc)
5917 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5918 		}
5919 	}
5920 
5921 	type = HWRM_RING_ALLOC_TX;
5922 	for (i = 0; i < bp->tx_nr_rings; i++) {
5923 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5924 		struct bnxt_ring_struct *ring;
5925 		u32 map_idx;
5926 
5927 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5928 			struct bnxt_napi *bnapi = txr->bnapi;
5929 			struct bnxt_cp_ring_info *cpr, *cpr2;
5930 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5931 
5932 			cpr = &bnapi->cp_ring;
5933 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5934 			ring = &cpr2->cp_ring_struct;
5935 			ring->handle = BNXT_TX_HDL;
5936 			map_idx = bnapi->index;
5937 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5938 			if (rc)
5939 				goto err_out;
5940 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5941 				    ring->fw_ring_id);
5942 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5943 		}
5944 		ring = &txr->tx_ring_struct;
5945 		map_idx = i;
5946 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5947 		if (rc)
5948 			goto err_out;
5949 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5950 	}
5951 
5952 	type = HWRM_RING_ALLOC_RX;
5953 	for (i = 0; i < bp->rx_nr_rings; i++) {
5954 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5955 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5956 		struct bnxt_napi *bnapi = rxr->bnapi;
5957 		u32 map_idx = bnapi->index;
5958 
5959 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5960 		if (rc)
5961 			goto err_out;
5962 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5963 		/* If we have agg rings, post agg buffers first. */
5964 		if (!agg_rings)
5965 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5966 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5967 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5968 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5969 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5970 			struct bnxt_cp_ring_info *cpr2;
5971 
5972 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5973 			ring = &cpr2->cp_ring_struct;
5974 			ring->handle = BNXT_RX_HDL;
5975 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5976 			if (rc)
5977 				goto err_out;
5978 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5979 				    ring->fw_ring_id);
5980 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5981 		}
5982 	}
5983 
5984 	if (agg_rings) {
5985 		type = HWRM_RING_ALLOC_AGG;
5986 		for (i = 0; i < bp->rx_nr_rings; i++) {
5987 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5988 			struct bnxt_ring_struct *ring =
5989 						&rxr->rx_agg_ring_struct;
5990 			u32 grp_idx = ring->grp_idx;
5991 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5992 
5993 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5994 			if (rc)
5995 				goto err_out;
5996 
5997 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5998 				    ring->fw_ring_id);
5999 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6000 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6001 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6002 		}
6003 	}
6004 err_out:
6005 	return rc;
6006 }
6007 
6008 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6009 				   struct bnxt_ring_struct *ring,
6010 				   u32 ring_type, int cmpl_ring_id)
6011 {
6012 	struct hwrm_ring_free_output *resp;
6013 	struct hwrm_ring_free_input *req;
6014 	u16 error_code = 0;
6015 	int rc;
6016 
6017 	if (BNXT_NO_FW_ACCESS(bp))
6018 		return 0;
6019 
6020 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6021 	if (rc)
6022 		goto exit;
6023 
6024 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6025 	req->ring_type = ring_type;
6026 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6027 
6028 	resp = hwrm_req_hold(bp, req);
6029 	rc = hwrm_req_send(bp, req);
6030 	error_code = le16_to_cpu(resp->error_code);
6031 	hwrm_req_drop(bp, req);
6032 exit:
6033 	if (rc || error_code) {
6034 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6035 			   ring_type, rc, error_code);
6036 		return -EIO;
6037 	}
6038 	return 0;
6039 }
6040 
6041 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6042 {
6043 	u32 type;
6044 	int i;
6045 
6046 	if (!bp->bnapi)
6047 		return;
6048 
6049 	for (i = 0; i < bp->tx_nr_rings; i++) {
6050 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6051 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6052 
6053 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6054 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6055 
6056 			hwrm_ring_free_send_msg(bp, ring,
6057 						RING_FREE_REQ_RING_TYPE_TX,
6058 						close_path ? cmpl_ring_id :
6059 						INVALID_HW_RING_ID);
6060 			ring->fw_ring_id = INVALID_HW_RING_ID;
6061 		}
6062 	}
6063 
6064 	for (i = 0; i < bp->rx_nr_rings; i++) {
6065 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6066 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6067 		u32 grp_idx = rxr->bnapi->index;
6068 
6069 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6070 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6071 
6072 			hwrm_ring_free_send_msg(bp, ring,
6073 						RING_FREE_REQ_RING_TYPE_RX,
6074 						close_path ? cmpl_ring_id :
6075 						INVALID_HW_RING_ID);
6076 			ring->fw_ring_id = INVALID_HW_RING_ID;
6077 			bp->grp_info[grp_idx].rx_fw_ring_id =
6078 				INVALID_HW_RING_ID;
6079 		}
6080 	}
6081 
6082 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6083 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6084 	else
6085 		type = RING_FREE_REQ_RING_TYPE_RX;
6086 	for (i = 0; i < bp->rx_nr_rings; i++) {
6087 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6088 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6089 		u32 grp_idx = rxr->bnapi->index;
6090 
6091 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6092 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6093 
6094 			hwrm_ring_free_send_msg(bp, ring, type,
6095 						close_path ? cmpl_ring_id :
6096 						INVALID_HW_RING_ID);
6097 			ring->fw_ring_id = INVALID_HW_RING_ID;
6098 			bp->grp_info[grp_idx].agg_fw_ring_id =
6099 				INVALID_HW_RING_ID;
6100 		}
6101 	}
6102 
6103 	/* The completion rings are about to be freed.  After that the
6104 	 * IRQ doorbell will not work anymore.  So we need to disable
6105 	 * IRQ here.
6106 	 */
6107 	bnxt_disable_int_sync(bp);
6108 
6109 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6110 		type = RING_FREE_REQ_RING_TYPE_NQ;
6111 	else
6112 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6113 	for (i = 0; i < bp->cp_nr_rings; i++) {
6114 		struct bnxt_napi *bnapi = bp->bnapi[i];
6115 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6116 		struct bnxt_ring_struct *ring;
6117 		int j;
6118 
6119 		for (j = 0; j < 2; j++) {
6120 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6121 
6122 			if (cpr2) {
6123 				ring = &cpr2->cp_ring_struct;
6124 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6125 					continue;
6126 				hwrm_ring_free_send_msg(bp, ring,
6127 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6128 					INVALID_HW_RING_ID);
6129 				ring->fw_ring_id = INVALID_HW_RING_ID;
6130 			}
6131 		}
6132 		ring = &cpr->cp_ring_struct;
6133 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6134 			hwrm_ring_free_send_msg(bp, ring, type,
6135 						INVALID_HW_RING_ID);
6136 			ring->fw_ring_id = INVALID_HW_RING_ID;
6137 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6138 		}
6139 	}
6140 }
6141 
6142 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6143 			   bool shared);
6144 
6145 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6146 {
6147 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6148 	struct hwrm_func_qcfg_output *resp;
6149 	struct hwrm_func_qcfg_input *req;
6150 	int rc;
6151 
6152 	if (bp->hwrm_spec_code < 0x10601)
6153 		return 0;
6154 
6155 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6156 	if (rc)
6157 		return rc;
6158 
6159 	req->fid = cpu_to_le16(0xffff);
6160 	resp = hwrm_req_hold(bp, req);
6161 	rc = hwrm_req_send(bp, req);
6162 	if (rc) {
6163 		hwrm_req_drop(bp, req);
6164 		return rc;
6165 	}
6166 
6167 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6168 	if (BNXT_NEW_RM(bp)) {
6169 		u16 cp, stats;
6170 
6171 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6172 		hw_resc->resv_hw_ring_grps =
6173 			le32_to_cpu(resp->alloc_hw_ring_grps);
6174 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6175 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6176 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6177 		hw_resc->resv_irqs = cp;
6178 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6179 			int rx = hw_resc->resv_rx_rings;
6180 			int tx = hw_resc->resv_tx_rings;
6181 
6182 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6183 				rx >>= 1;
6184 			if (cp < (rx + tx)) {
6185 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6186 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6187 					rx <<= 1;
6188 				hw_resc->resv_rx_rings = rx;
6189 				hw_resc->resv_tx_rings = tx;
6190 			}
6191 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6192 			hw_resc->resv_hw_ring_grps = rx;
6193 		}
6194 		hw_resc->resv_cp_rings = cp;
6195 		hw_resc->resv_stat_ctxs = stats;
6196 	}
6197 	hwrm_req_drop(bp, req);
6198 	return 0;
6199 }
6200 
6201 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6202 {
6203 	struct hwrm_func_qcfg_output *resp;
6204 	struct hwrm_func_qcfg_input *req;
6205 	int rc;
6206 
6207 	if (bp->hwrm_spec_code < 0x10601)
6208 		return 0;
6209 
6210 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6211 	if (rc)
6212 		return rc;
6213 
6214 	req->fid = cpu_to_le16(fid);
6215 	resp = hwrm_req_hold(bp, req);
6216 	rc = hwrm_req_send(bp, req);
6217 	if (!rc)
6218 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6219 
6220 	hwrm_req_drop(bp, req);
6221 	return rc;
6222 }
6223 
6224 static bool bnxt_rfs_supported(struct bnxt *bp);
6225 
6226 static struct hwrm_func_cfg_input *
6227 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6228 			     int ring_grps, int cp_rings, int stats, int vnics)
6229 {
6230 	struct hwrm_func_cfg_input *req;
6231 	u32 enables = 0;
6232 
6233 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6234 		return NULL;
6235 
6236 	req->fid = cpu_to_le16(0xffff);
6237 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6238 	req->num_tx_rings = cpu_to_le16(tx_rings);
6239 	if (BNXT_NEW_RM(bp)) {
6240 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6241 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6242 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6243 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6244 			enables |= tx_rings + ring_grps ?
6245 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6246 			enables |= rx_rings ?
6247 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6248 		} else {
6249 			enables |= cp_rings ?
6250 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6251 			enables |= ring_grps ?
6252 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6253 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6254 		}
6255 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6256 
6257 		req->num_rx_rings = cpu_to_le16(rx_rings);
6258 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6259 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6260 			req->num_msix = cpu_to_le16(cp_rings);
6261 			req->num_rsscos_ctxs =
6262 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6263 		} else {
6264 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6265 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6266 			req->num_rsscos_ctxs = cpu_to_le16(1);
6267 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6268 			    bnxt_rfs_supported(bp))
6269 				req->num_rsscos_ctxs =
6270 					cpu_to_le16(ring_grps + 1);
6271 		}
6272 		req->num_stat_ctxs = cpu_to_le16(stats);
6273 		req->num_vnics = cpu_to_le16(vnics);
6274 	}
6275 	req->enables = cpu_to_le32(enables);
6276 	return req;
6277 }
6278 
6279 static struct hwrm_func_vf_cfg_input *
6280 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6281 			     int ring_grps, int cp_rings, int stats, int vnics)
6282 {
6283 	struct hwrm_func_vf_cfg_input *req;
6284 	u32 enables = 0;
6285 
6286 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6287 		return NULL;
6288 
6289 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6290 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6291 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6292 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6293 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6294 		enables |= tx_rings + ring_grps ?
6295 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6296 	} else {
6297 		enables |= cp_rings ?
6298 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6299 		enables |= ring_grps ?
6300 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6301 	}
6302 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6303 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6304 
6305 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6306 	req->num_tx_rings = cpu_to_le16(tx_rings);
6307 	req->num_rx_rings = cpu_to_le16(rx_rings);
6308 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6309 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6310 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6311 	} else {
6312 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6313 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6314 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6315 	}
6316 	req->num_stat_ctxs = cpu_to_le16(stats);
6317 	req->num_vnics = cpu_to_le16(vnics);
6318 
6319 	req->enables = cpu_to_le32(enables);
6320 	return req;
6321 }
6322 
6323 static int
6324 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6325 			   int ring_grps, int cp_rings, int stats, int vnics)
6326 {
6327 	struct hwrm_func_cfg_input *req;
6328 	int rc;
6329 
6330 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6331 					   cp_rings, stats, vnics);
6332 	if (!req)
6333 		return -ENOMEM;
6334 
6335 	if (!req->enables) {
6336 		hwrm_req_drop(bp, req);
6337 		return 0;
6338 	}
6339 
6340 	rc = hwrm_req_send(bp, req);
6341 	if (rc)
6342 		return rc;
6343 
6344 	if (bp->hwrm_spec_code < 0x10601)
6345 		bp->hw_resc.resv_tx_rings = tx_rings;
6346 
6347 	return bnxt_hwrm_get_rings(bp);
6348 }
6349 
6350 static int
6351 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6352 			   int ring_grps, int cp_rings, int stats, int vnics)
6353 {
6354 	struct hwrm_func_vf_cfg_input *req;
6355 	int rc;
6356 
6357 	if (!BNXT_NEW_RM(bp)) {
6358 		bp->hw_resc.resv_tx_rings = tx_rings;
6359 		return 0;
6360 	}
6361 
6362 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6363 					   cp_rings, stats, vnics);
6364 	if (!req)
6365 		return -ENOMEM;
6366 
6367 	rc = hwrm_req_send(bp, req);
6368 	if (rc)
6369 		return rc;
6370 
6371 	return bnxt_hwrm_get_rings(bp);
6372 }
6373 
6374 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6375 				   int cp, int stat, int vnic)
6376 {
6377 	if (BNXT_PF(bp))
6378 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6379 						  vnic);
6380 	else
6381 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6382 						  vnic);
6383 }
6384 
6385 int bnxt_nq_rings_in_use(struct bnxt *bp)
6386 {
6387 	int cp = bp->cp_nr_rings;
6388 	int ulp_msix, ulp_base;
6389 
6390 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6391 	if (ulp_msix) {
6392 		ulp_base = bnxt_get_ulp_msix_base(bp);
6393 		cp += ulp_msix;
6394 		if ((ulp_base + ulp_msix) > cp)
6395 			cp = ulp_base + ulp_msix;
6396 	}
6397 	return cp;
6398 }
6399 
6400 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6401 {
6402 	int cp;
6403 
6404 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6405 		return bnxt_nq_rings_in_use(bp);
6406 
6407 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6408 	return cp;
6409 }
6410 
6411 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6412 {
6413 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6414 	int cp = bp->cp_nr_rings;
6415 
6416 	if (!ulp_stat)
6417 		return cp;
6418 
6419 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6420 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6421 
6422 	return cp + ulp_stat;
6423 }
6424 
6425 /* Check if a default RSS map needs to be setup.  This function is only
6426  * used on older firmware that does not require reserving RX rings.
6427  */
6428 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6429 {
6430 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6431 
6432 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6433 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6434 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6435 		if (!netif_is_rxfh_configured(bp->dev))
6436 			bnxt_set_dflt_rss_indir_tbl(bp);
6437 	}
6438 }
6439 
6440 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6441 {
6442 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6443 	int cp = bnxt_cp_rings_in_use(bp);
6444 	int nq = bnxt_nq_rings_in_use(bp);
6445 	int rx = bp->rx_nr_rings, stat;
6446 	int vnic = 1, grp = rx;
6447 
6448 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6449 	    bp->hwrm_spec_code >= 0x10601)
6450 		return true;
6451 
6452 	/* Old firmware does not need RX ring reservations but we still
6453 	 * need to setup a default RSS map when needed.  With new firmware
6454 	 * we go through RX ring reservations first and then set up the
6455 	 * RSS map for the successfully reserved RX rings when needed.
6456 	 */
6457 	if (!BNXT_NEW_RM(bp)) {
6458 		bnxt_check_rss_tbl_no_rmgr(bp);
6459 		return false;
6460 	}
6461 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6462 		vnic = rx + 1;
6463 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6464 		rx <<= 1;
6465 	stat = bnxt_get_func_stat_ctxs(bp);
6466 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6467 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6468 	    (hw_resc->resv_hw_ring_grps != grp &&
6469 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6470 		return true;
6471 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6472 	    hw_resc->resv_irqs != nq)
6473 		return true;
6474 	return false;
6475 }
6476 
6477 static int __bnxt_reserve_rings(struct bnxt *bp)
6478 {
6479 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6480 	int cp = bnxt_nq_rings_in_use(bp);
6481 	int tx = bp->tx_nr_rings;
6482 	int rx = bp->rx_nr_rings;
6483 	int grp, rx_rings, rc;
6484 	int vnic = 1, stat;
6485 	bool sh = false;
6486 
6487 	if (!bnxt_need_reserve_rings(bp))
6488 		return 0;
6489 
6490 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6491 		sh = true;
6492 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6493 		vnic = rx + 1;
6494 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6495 		rx <<= 1;
6496 	grp = bp->rx_nr_rings;
6497 	stat = bnxt_get_func_stat_ctxs(bp);
6498 
6499 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6500 	if (rc)
6501 		return rc;
6502 
6503 	tx = hw_resc->resv_tx_rings;
6504 	if (BNXT_NEW_RM(bp)) {
6505 		rx = hw_resc->resv_rx_rings;
6506 		cp = hw_resc->resv_irqs;
6507 		grp = hw_resc->resv_hw_ring_grps;
6508 		vnic = hw_resc->resv_vnics;
6509 		stat = hw_resc->resv_stat_ctxs;
6510 	}
6511 
6512 	rx_rings = rx;
6513 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6514 		if (rx >= 2) {
6515 			rx_rings = rx >> 1;
6516 		} else {
6517 			if (netif_running(bp->dev))
6518 				return -ENOMEM;
6519 
6520 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6521 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6522 			bp->dev->hw_features &= ~NETIF_F_LRO;
6523 			bp->dev->features &= ~NETIF_F_LRO;
6524 			bnxt_set_ring_params(bp);
6525 		}
6526 	}
6527 	rx_rings = min_t(int, rx_rings, grp);
6528 	cp = min_t(int, cp, bp->cp_nr_rings);
6529 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6530 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6531 	cp = min_t(int, cp, stat);
6532 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6533 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6534 		rx = rx_rings << 1;
6535 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6536 	bp->tx_nr_rings = tx;
6537 
6538 	/* If we cannot reserve all the RX rings, reset the RSS map only
6539 	 * if absolutely necessary
6540 	 */
6541 	if (rx_rings != bp->rx_nr_rings) {
6542 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6543 			    rx_rings, bp->rx_nr_rings);
6544 		if (netif_is_rxfh_configured(bp->dev) &&
6545 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6546 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6547 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6548 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6549 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6550 		}
6551 	}
6552 	bp->rx_nr_rings = rx_rings;
6553 	bp->cp_nr_rings = cp;
6554 
6555 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6556 		return -ENOMEM;
6557 
6558 	if (!netif_is_rxfh_configured(bp->dev))
6559 		bnxt_set_dflt_rss_indir_tbl(bp);
6560 
6561 	return rc;
6562 }
6563 
6564 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6565 				    int ring_grps, int cp_rings, int stats,
6566 				    int vnics)
6567 {
6568 	struct hwrm_func_vf_cfg_input *req;
6569 	u32 flags;
6570 
6571 	if (!BNXT_NEW_RM(bp))
6572 		return 0;
6573 
6574 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6575 					   cp_rings, stats, vnics);
6576 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6577 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6578 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6579 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6580 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6581 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6582 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6583 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6584 
6585 	req->flags = cpu_to_le32(flags);
6586 	return hwrm_req_send_silent(bp, req);
6587 }
6588 
6589 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6590 				    int ring_grps, int cp_rings, int stats,
6591 				    int vnics)
6592 {
6593 	struct hwrm_func_cfg_input *req;
6594 	u32 flags;
6595 
6596 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6597 					   cp_rings, stats, vnics);
6598 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6599 	if (BNXT_NEW_RM(bp)) {
6600 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6601 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6602 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6603 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6604 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6605 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6606 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6607 		else
6608 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6609 	}
6610 
6611 	req->flags = cpu_to_le32(flags);
6612 	return hwrm_req_send_silent(bp, req);
6613 }
6614 
6615 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6616 				 int ring_grps, int cp_rings, int stats,
6617 				 int vnics)
6618 {
6619 	if (bp->hwrm_spec_code < 0x10801)
6620 		return 0;
6621 
6622 	if (BNXT_PF(bp))
6623 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6624 						ring_grps, cp_rings, stats,
6625 						vnics);
6626 
6627 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6628 					cp_rings, stats, vnics);
6629 }
6630 
6631 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6632 {
6633 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6634 	struct hwrm_ring_aggint_qcaps_output *resp;
6635 	struct hwrm_ring_aggint_qcaps_input *req;
6636 	int rc;
6637 
6638 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6639 	coal_cap->num_cmpl_dma_aggr_max = 63;
6640 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6641 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6642 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6643 	coal_cap->int_lat_tmr_min_max = 65535;
6644 	coal_cap->int_lat_tmr_max_max = 65535;
6645 	coal_cap->num_cmpl_aggr_int_max = 65535;
6646 	coal_cap->timer_units = 80;
6647 
6648 	if (bp->hwrm_spec_code < 0x10902)
6649 		return;
6650 
6651 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6652 		return;
6653 
6654 	resp = hwrm_req_hold(bp, req);
6655 	rc = hwrm_req_send_silent(bp, req);
6656 	if (!rc) {
6657 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6658 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6659 		coal_cap->num_cmpl_dma_aggr_max =
6660 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6661 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6662 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6663 		coal_cap->cmpl_aggr_dma_tmr_max =
6664 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6665 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6666 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6667 		coal_cap->int_lat_tmr_min_max =
6668 			le16_to_cpu(resp->int_lat_tmr_min_max);
6669 		coal_cap->int_lat_tmr_max_max =
6670 			le16_to_cpu(resp->int_lat_tmr_max_max);
6671 		coal_cap->num_cmpl_aggr_int_max =
6672 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6673 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6674 	}
6675 	hwrm_req_drop(bp, req);
6676 }
6677 
6678 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6679 {
6680 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6681 
6682 	return usec * 1000 / coal_cap->timer_units;
6683 }
6684 
6685 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6686 	struct bnxt_coal *hw_coal,
6687 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6688 {
6689 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6690 	u16 val, tmr, max, flags = hw_coal->flags;
6691 	u32 cmpl_params = coal_cap->cmpl_params;
6692 
6693 	max = hw_coal->bufs_per_record * 128;
6694 	if (hw_coal->budget)
6695 		max = hw_coal->bufs_per_record * hw_coal->budget;
6696 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6697 
6698 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6699 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6700 
6701 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6702 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6703 
6704 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6705 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6706 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6707 
6708 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6709 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6710 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6711 
6712 	/* min timer set to 1/2 of interrupt timer */
6713 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6714 		val = tmr / 2;
6715 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6716 		req->int_lat_tmr_min = cpu_to_le16(val);
6717 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6718 	}
6719 
6720 	/* buf timer set to 1/4 of interrupt timer */
6721 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6722 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6723 
6724 	if (cmpl_params &
6725 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6726 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6727 		val = clamp_t(u16, tmr, 1,
6728 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6729 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6730 		req->enables |=
6731 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6732 	}
6733 
6734 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6735 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6736 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6737 	req->flags = cpu_to_le16(flags);
6738 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6739 }
6740 
6741 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6742 				   struct bnxt_coal *hw_coal)
6743 {
6744 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6745 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6746 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6747 	u32 nq_params = coal_cap->nq_params;
6748 	u16 tmr;
6749 	int rc;
6750 
6751 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6752 		return 0;
6753 
6754 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6755 	if (rc)
6756 		return rc;
6757 
6758 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6759 	req->flags =
6760 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6761 
6762 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6763 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6764 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6765 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6766 	return hwrm_req_send(bp, req);
6767 }
6768 
6769 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6770 {
6771 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6772 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6773 	struct bnxt_coal coal;
6774 	int rc;
6775 
6776 	/* Tick values in micro seconds.
6777 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6778 	 */
6779 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6780 
6781 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6782 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6783 
6784 	if (!bnapi->rx_ring)
6785 		return -ENODEV;
6786 
6787 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6788 	if (rc)
6789 		return rc;
6790 
6791 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6792 
6793 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6794 
6795 	return hwrm_req_send(bp, req_rx);
6796 }
6797 
6798 int bnxt_hwrm_set_coal(struct bnxt *bp)
6799 {
6800 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6801 							   *req;
6802 	int i, rc;
6803 
6804 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6805 	if (rc)
6806 		return rc;
6807 
6808 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6809 	if (rc) {
6810 		hwrm_req_drop(bp, req_rx);
6811 		return rc;
6812 	}
6813 
6814 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6815 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6816 
6817 	hwrm_req_hold(bp, req_rx);
6818 	hwrm_req_hold(bp, req_tx);
6819 	for (i = 0; i < bp->cp_nr_rings; i++) {
6820 		struct bnxt_napi *bnapi = bp->bnapi[i];
6821 		struct bnxt_coal *hw_coal;
6822 		u16 ring_id;
6823 
6824 		req = req_rx;
6825 		if (!bnapi->rx_ring) {
6826 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6827 			req = req_tx;
6828 		} else {
6829 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6830 		}
6831 		req->ring_id = cpu_to_le16(ring_id);
6832 
6833 		rc = hwrm_req_send(bp, req);
6834 		if (rc)
6835 			break;
6836 
6837 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6838 			continue;
6839 
6840 		if (bnapi->rx_ring && bnapi->tx_ring) {
6841 			req = req_tx;
6842 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6843 			req->ring_id = cpu_to_le16(ring_id);
6844 			rc = hwrm_req_send(bp, req);
6845 			if (rc)
6846 				break;
6847 		}
6848 		if (bnapi->rx_ring)
6849 			hw_coal = &bp->rx_coal;
6850 		else
6851 			hw_coal = &bp->tx_coal;
6852 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6853 	}
6854 	hwrm_req_drop(bp, req_rx);
6855 	hwrm_req_drop(bp, req_tx);
6856 	return rc;
6857 }
6858 
6859 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6860 {
6861 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6862 	struct hwrm_stat_ctx_free_input *req;
6863 	int i;
6864 
6865 	if (!bp->bnapi)
6866 		return;
6867 
6868 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6869 		return;
6870 
6871 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6872 		return;
6873 	if (BNXT_FW_MAJ(bp) <= 20) {
6874 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6875 			hwrm_req_drop(bp, req);
6876 			return;
6877 		}
6878 		hwrm_req_hold(bp, req0);
6879 	}
6880 	hwrm_req_hold(bp, req);
6881 	for (i = 0; i < bp->cp_nr_rings; i++) {
6882 		struct bnxt_napi *bnapi = bp->bnapi[i];
6883 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6884 
6885 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6886 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6887 			if (req0) {
6888 				req0->stat_ctx_id = req->stat_ctx_id;
6889 				hwrm_req_send(bp, req0);
6890 			}
6891 			hwrm_req_send(bp, req);
6892 
6893 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6894 		}
6895 	}
6896 	hwrm_req_drop(bp, req);
6897 	if (req0)
6898 		hwrm_req_drop(bp, req0);
6899 }
6900 
6901 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6902 {
6903 	struct hwrm_stat_ctx_alloc_output *resp;
6904 	struct hwrm_stat_ctx_alloc_input *req;
6905 	int rc, i;
6906 
6907 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6908 		return 0;
6909 
6910 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6911 	if (rc)
6912 		return rc;
6913 
6914 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6915 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6916 
6917 	resp = hwrm_req_hold(bp, req);
6918 	for (i = 0; i < bp->cp_nr_rings; i++) {
6919 		struct bnxt_napi *bnapi = bp->bnapi[i];
6920 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6921 
6922 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6923 
6924 		rc = hwrm_req_send(bp, req);
6925 		if (rc)
6926 			break;
6927 
6928 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6929 
6930 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6931 	}
6932 	hwrm_req_drop(bp, req);
6933 	return rc;
6934 }
6935 
6936 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6937 {
6938 	struct hwrm_func_qcfg_output *resp;
6939 	struct hwrm_func_qcfg_input *req;
6940 	u32 min_db_offset = 0;
6941 	u16 flags;
6942 	int rc;
6943 
6944 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6945 	if (rc)
6946 		return rc;
6947 
6948 	req->fid = cpu_to_le16(0xffff);
6949 	resp = hwrm_req_hold(bp, req);
6950 	rc = hwrm_req_send(bp, req);
6951 	if (rc)
6952 		goto func_qcfg_exit;
6953 
6954 #ifdef CONFIG_BNXT_SRIOV
6955 	if (BNXT_VF(bp)) {
6956 		struct bnxt_vf_info *vf = &bp->vf;
6957 
6958 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6959 	} else {
6960 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6961 	}
6962 #endif
6963 	flags = le16_to_cpu(resp->flags);
6964 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6965 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6966 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6967 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6968 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6969 	}
6970 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6971 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6972 
6973 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6974 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6975 
6976 	switch (resp->port_partition_type) {
6977 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6978 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6979 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6980 		bp->port_partition_type = resp->port_partition_type;
6981 		break;
6982 	}
6983 	if (bp->hwrm_spec_code < 0x10707 ||
6984 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6985 		bp->br_mode = BRIDGE_MODE_VEB;
6986 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6987 		bp->br_mode = BRIDGE_MODE_VEPA;
6988 	else
6989 		bp->br_mode = BRIDGE_MODE_UNDEF;
6990 
6991 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6992 	if (!bp->max_mtu)
6993 		bp->max_mtu = BNXT_MAX_MTU;
6994 
6995 	if (bp->db_size)
6996 		goto func_qcfg_exit;
6997 
6998 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6999 		if (BNXT_PF(bp))
7000 			min_db_offset = DB_PF_OFFSET_P5;
7001 		else
7002 			min_db_offset = DB_VF_OFFSET_P5;
7003 	}
7004 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7005 				 1024);
7006 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7007 	    bp->db_size <= min_db_offset)
7008 		bp->db_size = pci_resource_len(bp->pdev, 2);
7009 
7010 func_qcfg_exit:
7011 	hwrm_req_drop(bp, req);
7012 	return rc;
7013 }
7014 
7015 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7016 			struct hwrm_func_backing_store_qcaps_output *resp)
7017 {
7018 	struct bnxt_mem_init *mem_init;
7019 	u16 init_mask;
7020 	u8 init_val;
7021 	u8 *offset;
7022 	int i;
7023 
7024 	init_val = resp->ctx_kind_initializer;
7025 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7026 	offset = &resp->qp_init_offset;
7027 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7028 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7029 		mem_init->init_val = init_val;
7030 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7031 		if (!init_mask)
7032 			continue;
7033 		if (i == BNXT_CTX_MEM_INIT_STAT)
7034 			offset = &resp->stat_init_offset;
7035 		if (init_mask & (1 << i))
7036 			mem_init->offset = *offset * 4;
7037 		else
7038 			mem_init->init_val = 0;
7039 	}
7040 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7041 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7042 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7043 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7044 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7045 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7046 }
7047 
7048 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7049 {
7050 	struct hwrm_func_backing_store_qcaps_output *resp;
7051 	struct hwrm_func_backing_store_qcaps_input *req;
7052 	int rc;
7053 
7054 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7055 		return 0;
7056 
7057 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7058 	if (rc)
7059 		return rc;
7060 
7061 	resp = hwrm_req_hold(bp, req);
7062 	rc = hwrm_req_send_silent(bp, req);
7063 	if (!rc) {
7064 		struct bnxt_ctx_pg_info *ctx_pg;
7065 		struct bnxt_ctx_mem_info *ctx;
7066 		int i, tqm_rings;
7067 
7068 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7069 		if (!ctx) {
7070 			rc = -ENOMEM;
7071 			goto ctx_err;
7072 		}
7073 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7074 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7075 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7076 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7077 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7078 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7079 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7080 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7081 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7082 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7083 		ctx->vnic_max_vnic_entries =
7084 			le16_to_cpu(resp->vnic_max_vnic_entries);
7085 		ctx->vnic_max_ring_table_entries =
7086 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7087 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7088 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7089 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7090 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7091 		ctx->tqm_min_entries_per_ring =
7092 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7093 		ctx->tqm_max_entries_per_ring =
7094 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7095 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7096 		if (!ctx->tqm_entries_multiple)
7097 			ctx->tqm_entries_multiple = 1;
7098 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7099 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7100 		ctx->mrav_num_entries_units =
7101 			le16_to_cpu(resp->mrav_num_entries_units);
7102 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7103 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7104 
7105 		bnxt_init_ctx_initializer(ctx, resp);
7106 
7107 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7108 		if (!ctx->tqm_fp_rings_count)
7109 			ctx->tqm_fp_rings_count = bp->max_q;
7110 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7111 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7112 
7113 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7114 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7115 		if (!ctx_pg) {
7116 			kfree(ctx);
7117 			rc = -ENOMEM;
7118 			goto ctx_err;
7119 		}
7120 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7121 			ctx->tqm_mem[i] = ctx_pg;
7122 		bp->ctx = ctx;
7123 	} else {
7124 		rc = 0;
7125 	}
7126 ctx_err:
7127 	hwrm_req_drop(bp, req);
7128 	return rc;
7129 }
7130 
7131 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7132 				  __le64 *pg_dir)
7133 {
7134 	if (!rmem->nr_pages)
7135 		return;
7136 
7137 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7138 	if (rmem->depth >= 1) {
7139 		if (rmem->depth == 2)
7140 			*pg_attr |= 2;
7141 		else
7142 			*pg_attr |= 1;
7143 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7144 	} else {
7145 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7146 	}
7147 }
7148 
7149 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7150 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7151 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7152 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7153 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7154 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7155 
7156 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7157 {
7158 	struct hwrm_func_backing_store_cfg_input *req;
7159 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7160 	struct bnxt_ctx_pg_info *ctx_pg;
7161 	void **__req = (void **)&req;
7162 	u32 req_len = sizeof(*req);
7163 	__le32 *num_entries;
7164 	__le64 *pg_dir;
7165 	u32 flags = 0;
7166 	u8 *pg_attr;
7167 	u32 ena;
7168 	int rc;
7169 	int i;
7170 
7171 	if (!ctx)
7172 		return 0;
7173 
7174 	if (req_len > bp->hwrm_max_ext_req_len)
7175 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7176 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7177 	if (rc)
7178 		return rc;
7179 
7180 	req->enables = cpu_to_le32(enables);
7181 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7182 		ctx_pg = &ctx->qp_mem;
7183 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7184 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7185 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7186 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7187 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7188 				      &req->qpc_pg_size_qpc_lvl,
7189 				      &req->qpc_page_dir);
7190 	}
7191 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7192 		ctx_pg = &ctx->srq_mem;
7193 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7194 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7195 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7196 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7197 				      &req->srq_pg_size_srq_lvl,
7198 				      &req->srq_page_dir);
7199 	}
7200 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7201 		ctx_pg = &ctx->cq_mem;
7202 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7203 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7204 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7205 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7206 				      &req->cq_pg_size_cq_lvl,
7207 				      &req->cq_page_dir);
7208 	}
7209 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7210 		ctx_pg = &ctx->vnic_mem;
7211 		req->vnic_num_vnic_entries =
7212 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7213 		req->vnic_num_ring_table_entries =
7214 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7215 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7216 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7217 				      &req->vnic_pg_size_vnic_lvl,
7218 				      &req->vnic_page_dir);
7219 	}
7220 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7221 		ctx_pg = &ctx->stat_mem;
7222 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7223 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7224 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7225 				      &req->stat_pg_size_stat_lvl,
7226 				      &req->stat_page_dir);
7227 	}
7228 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7229 		ctx_pg = &ctx->mrav_mem;
7230 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7231 		if (ctx->mrav_num_entries_units)
7232 			flags |=
7233 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7234 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7235 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7236 				      &req->mrav_pg_size_mrav_lvl,
7237 				      &req->mrav_page_dir);
7238 	}
7239 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7240 		ctx_pg = &ctx->tim_mem;
7241 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7242 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7243 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7244 				      &req->tim_pg_size_tim_lvl,
7245 				      &req->tim_page_dir);
7246 	}
7247 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7248 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7249 	     pg_dir = &req->tqm_sp_page_dir,
7250 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7251 	     i < BNXT_MAX_TQM_RINGS;
7252 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7253 		if (!(enables & ena))
7254 			continue;
7255 
7256 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7257 		ctx_pg = ctx->tqm_mem[i];
7258 		*num_entries = cpu_to_le32(ctx_pg->entries);
7259 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7260 	}
7261 	req->flags = cpu_to_le32(flags);
7262 	return hwrm_req_send(bp, req);
7263 }
7264 
7265 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7266 				  struct bnxt_ctx_pg_info *ctx_pg)
7267 {
7268 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7269 
7270 	rmem->page_size = BNXT_PAGE_SIZE;
7271 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7272 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7273 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7274 	if (rmem->depth >= 1)
7275 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7276 	return bnxt_alloc_ring(bp, rmem);
7277 }
7278 
7279 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7280 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7281 				  u8 depth, struct bnxt_mem_init *mem_init)
7282 {
7283 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7284 	int rc;
7285 
7286 	if (!mem_size)
7287 		return -EINVAL;
7288 
7289 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7290 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7291 		ctx_pg->nr_pages = 0;
7292 		return -EINVAL;
7293 	}
7294 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7295 		int nr_tbls, i;
7296 
7297 		rmem->depth = 2;
7298 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7299 					     GFP_KERNEL);
7300 		if (!ctx_pg->ctx_pg_tbl)
7301 			return -ENOMEM;
7302 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7303 		rmem->nr_pages = nr_tbls;
7304 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7305 		if (rc)
7306 			return rc;
7307 		for (i = 0; i < nr_tbls; i++) {
7308 			struct bnxt_ctx_pg_info *pg_tbl;
7309 
7310 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7311 			if (!pg_tbl)
7312 				return -ENOMEM;
7313 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7314 			rmem = &pg_tbl->ring_mem;
7315 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7316 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7317 			rmem->depth = 1;
7318 			rmem->nr_pages = MAX_CTX_PAGES;
7319 			rmem->mem_init = mem_init;
7320 			if (i == (nr_tbls - 1)) {
7321 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7322 
7323 				if (rem)
7324 					rmem->nr_pages = rem;
7325 			}
7326 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7327 			if (rc)
7328 				break;
7329 		}
7330 	} else {
7331 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7332 		if (rmem->nr_pages > 1 || depth)
7333 			rmem->depth = 1;
7334 		rmem->mem_init = mem_init;
7335 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7336 	}
7337 	return rc;
7338 }
7339 
7340 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7341 				  struct bnxt_ctx_pg_info *ctx_pg)
7342 {
7343 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7344 
7345 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7346 	    ctx_pg->ctx_pg_tbl) {
7347 		int i, nr_tbls = rmem->nr_pages;
7348 
7349 		for (i = 0; i < nr_tbls; i++) {
7350 			struct bnxt_ctx_pg_info *pg_tbl;
7351 			struct bnxt_ring_mem_info *rmem2;
7352 
7353 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7354 			if (!pg_tbl)
7355 				continue;
7356 			rmem2 = &pg_tbl->ring_mem;
7357 			bnxt_free_ring(bp, rmem2);
7358 			ctx_pg->ctx_pg_arr[i] = NULL;
7359 			kfree(pg_tbl);
7360 			ctx_pg->ctx_pg_tbl[i] = NULL;
7361 		}
7362 		kfree(ctx_pg->ctx_pg_tbl);
7363 		ctx_pg->ctx_pg_tbl = NULL;
7364 	}
7365 	bnxt_free_ring(bp, rmem);
7366 	ctx_pg->nr_pages = 0;
7367 }
7368 
7369 void bnxt_free_ctx_mem(struct bnxt *bp)
7370 {
7371 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7372 	int i;
7373 
7374 	if (!ctx)
7375 		return;
7376 
7377 	if (ctx->tqm_mem[0]) {
7378 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7379 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7380 		kfree(ctx->tqm_mem[0]);
7381 		ctx->tqm_mem[0] = NULL;
7382 	}
7383 
7384 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7385 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7386 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7387 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7388 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7389 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7390 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7391 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7392 }
7393 
7394 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7395 {
7396 	struct bnxt_ctx_pg_info *ctx_pg;
7397 	struct bnxt_ctx_mem_info *ctx;
7398 	struct bnxt_mem_init *init;
7399 	u32 mem_size, ena, entries;
7400 	u32 entries_sp, min;
7401 	u32 num_mr, num_ah;
7402 	u32 extra_srqs = 0;
7403 	u32 extra_qps = 0;
7404 	u8 pg_lvl = 1;
7405 	int i, rc;
7406 
7407 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7408 	if (rc) {
7409 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7410 			   rc);
7411 		return rc;
7412 	}
7413 	ctx = bp->ctx;
7414 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7415 		return 0;
7416 
7417 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7418 		pg_lvl = 2;
7419 		extra_qps = 65536;
7420 		extra_srqs = 8192;
7421 	}
7422 
7423 	ctx_pg = &ctx->qp_mem;
7424 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7425 			  extra_qps;
7426 	if (ctx->qp_entry_size) {
7427 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7428 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7429 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7430 		if (rc)
7431 			return rc;
7432 	}
7433 
7434 	ctx_pg = &ctx->srq_mem;
7435 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7436 	if (ctx->srq_entry_size) {
7437 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7438 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7439 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7440 		if (rc)
7441 			return rc;
7442 	}
7443 
7444 	ctx_pg = &ctx->cq_mem;
7445 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7446 	if (ctx->cq_entry_size) {
7447 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7448 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7449 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7450 		if (rc)
7451 			return rc;
7452 	}
7453 
7454 	ctx_pg = &ctx->vnic_mem;
7455 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7456 			  ctx->vnic_max_ring_table_entries;
7457 	if (ctx->vnic_entry_size) {
7458 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7459 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7460 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7461 		if (rc)
7462 			return rc;
7463 	}
7464 
7465 	ctx_pg = &ctx->stat_mem;
7466 	ctx_pg->entries = ctx->stat_max_entries;
7467 	if (ctx->stat_entry_size) {
7468 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7469 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7470 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7471 		if (rc)
7472 			return rc;
7473 	}
7474 
7475 	ena = 0;
7476 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7477 		goto skip_rdma;
7478 
7479 	ctx_pg = &ctx->mrav_mem;
7480 	/* 128K extra is needed to accommodate static AH context
7481 	 * allocation by f/w.
7482 	 */
7483 	num_mr = 1024 * 256;
7484 	num_ah = 1024 * 128;
7485 	ctx_pg->entries = num_mr + num_ah;
7486 	if (ctx->mrav_entry_size) {
7487 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7488 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7489 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7490 		if (rc)
7491 			return rc;
7492 	}
7493 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7494 	if (ctx->mrav_num_entries_units)
7495 		ctx_pg->entries =
7496 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7497 			 (num_ah / ctx->mrav_num_entries_units);
7498 
7499 	ctx_pg = &ctx->tim_mem;
7500 	ctx_pg->entries = ctx->qp_mem.entries;
7501 	if (ctx->tim_entry_size) {
7502 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7503 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7504 		if (rc)
7505 			return rc;
7506 	}
7507 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7508 
7509 skip_rdma:
7510 	min = ctx->tqm_min_entries_per_ring;
7511 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7512 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7513 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7514 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7515 	entries = roundup(entries, ctx->tqm_entries_multiple);
7516 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7517 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7518 		ctx_pg = ctx->tqm_mem[i];
7519 		ctx_pg->entries = i ? entries : entries_sp;
7520 		if (ctx->tqm_entry_size) {
7521 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7522 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7523 						    NULL);
7524 			if (rc)
7525 				return rc;
7526 		}
7527 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7528 	}
7529 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7530 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7531 	if (rc) {
7532 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7533 			   rc);
7534 		return rc;
7535 	}
7536 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7537 	return 0;
7538 }
7539 
7540 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7541 {
7542 	struct hwrm_func_resource_qcaps_output *resp;
7543 	struct hwrm_func_resource_qcaps_input *req;
7544 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7545 	int rc;
7546 
7547 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7548 	if (rc)
7549 		return rc;
7550 
7551 	req->fid = cpu_to_le16(0xffff);
7552 	resp = hwrm_req_hold(bp, req);
7553 	rc = hwrm_req_send_silent(bp, req);
7554 	if (rc)
7555 		goto hwrm_func_resc_qcaps_exit;
7556 
7557 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7558 	if (!all)
7559 		goto hwrm_func_resc_qcaps_exit;
7560 
7561 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7562 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7563 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7564 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7565 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7566 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7567 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7568 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7569 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7570 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7571 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7572 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7573 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7574 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7575 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7576 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7577 
7578 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7579 		u16 max_msix = le16_to_cpu(resp->max_msix);
7580 
7581 		hw_resc->max_nqs = max_msix;
7582 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7583 	}
7584 
7585 	if (BNXT_PF(bp)) {
7586 		struct bnxt_pf_info *pf = &bp->pf;
7587 
7588 		pf->vf_resv_strategy =
7589 			le16_to_cpu(resp->vf_reservation_strategy);
7590 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7591 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7592 	}
7593 hwrm_func_resc_qcaps_exit:
7594 	hwrm_req_drop(bp, req);
7595 	return rc;
7596 }
7597 
7598 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7599 {
7600 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7601 	struct hwrm_port_mac_ptp_qcfg_input *req;
7602 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7603 	bool phc_cfg;
7604 	u8 flags;
7605 	int rc;
7606 
7607 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_THOR(bp)) {
7608 		rc = -ENODEV;
7609 		goto no_ptp;
7610 	}
7611 
7612 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7613 	if (rc)
7614 		goto no_ptp;
7615 
7616 	req->port_id = cpu_to_le16(bp->pf.port_id);
7617 	resp = hwrm_req_hold(bp, req);
7618 	rc = hwrm_req_send(bp, req);
7619 	if (rc)
7620 		goto exit;
7621 
7622 	flags = resp->flags;
7623 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7624 		rc = -ENODEV;
7625 		goto exit;
7626 	}
7627 	if (!ptp) {
7628 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7629 		if (!ptp) {
7630 			rc = -ENOMEM;
7631 			goto exit;
7632 		}
7633 		ptp->bp = bp;
7634 		bp->ptp_cfg = ptp;
7635 	}
7636 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7637 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7638 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7639 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7640 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7641 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7642 	} else {
7643 		rc = -ENODEV;
7644 		goto exit;
7645 	}
7646 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7647 	rc = bnxt_ptp_init(bp, phc_cfg);
7648 	if (rc)
7649 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7650 exit:
7651 	hwrm_req_drop(bp, req);
7652 	if (!rc)
7653 		return 0;
7654 
7655 no_ptp:
7656 	bnxt_ptp_clear(bp);
7657 	kfree(ptp);
7658 	bp->ptp_cfg = NULL;
7659 	return rc;
7660 }
7661 
7662 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7663 {
7664 	struct hwrm_func_qcaps_output *resp;
7665 	struct hwrm_func_qcaps_input *req;
7666 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7667 	u32 flags, flags_ext, flags_ext2;
7668 	int rc;
7669 
7670 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7671 	if (rc)
7672 		return rc;
7673 
7674 	req->fid = cpu_to_le16(0xffff);
7675 	resp = hwrm_req_hold(bp, req);
7676 	rc = hwrm_req_send(bp, req);
7677 	if (rc)
7678 		goto hwrm_func_qcaps_exit;
7679 
7680 	flags = le32_to_cpu(resp->flags);
7681 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7682 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7683 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7684 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7685 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7686 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7687 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7688 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7689 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7690 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7691 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7692 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7693 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7694 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7695 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7696 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7697 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7698 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7699 
7700 	flags_ext = le32_to_cpu(resp->flags_ext);
7701 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7702 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7703 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7704 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7705 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7706 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7707 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7708 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7709 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7710 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7711 
7712 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7713 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7714 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7715 
7716 	bp->tx_push_thresh = 0;
7717 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7718 	    BNXT_FW_MAJ(bp) > 217)
7719 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7720 
7721 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7722 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7723 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7724 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7725 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7726 	if (!hw_resc->max_hw_ring_grps)
7727 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7728 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7729 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7730 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7731 
7732 	if (BNXT_PF(bp)) {
7733 		struct bnxt_pf_info *pf = &bp->pf;
7734 
7735 		pf->fw_fid = le16_to_cpu(resp->fid);
7736 		pf->port_id = le16_to_cpu(resp->port_id);
7737 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7738 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7739 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7740 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7741 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7742 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7743 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7744 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7745 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7746 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7747 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7748 			bp->flags |= BNXT_FLAG_WOL_CAP;
7749 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7750 			bp->fw_cap |= BNXT_FW_CAP_PTP;
7751 		} else {
7752 			bnxt_ptp_clear(bp);
7753 			kfree(bp->ptp_cfg);
7754 			bp->ptp_cfg = NULL;
7755 		}
7756 	} else {
7757 #ifdef CONFIG_BNXT_SRIOV
7758 		struct bnxt_vf_info *vf = &bp->vf;
7759 
7760 		vf->fw_fid = le16_to_cpu(resp->fid);
7761 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7762 #endif
7763 	}
7764 
7765 hwrm_func_qcaps_exit:
7766 	hwrm_req_drop(bp, req);
7767 	return rc;
7768 }
7769 
7770 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7771 {
7772 	struct hwrm_dbg_qcaps_output *resp;
7773 	struct hwrm_dbg_qcaps_input *req;
7774 	int rc;
7775 
7776 	bp->fw_dbg_cap = 0;
7777 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7778 		return;
7779 
7780 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7781 	if (rc)
7782 		return;
7783 
7784 	req->fid = cpu_to_le16(0xffff);
7785 	resp = hwrm_req_hold(bp, req);
7786 	rc = hwrm_req_send(bp, req);
7787 	if (rc)
7788 		goto hwrm_dbg_qcaps_exit;
7789 
7790 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7791 
7792 hwrm_dbg_qcaps_exit:
7793 	hwrm_req_drop(bp, req);
7794 }
7795 
7796 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7797 
7798 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7799 {
7800 	int rc;
7801 
7802 	rc = __bnxt_hwrm_func_qcaps(bp);
7803 	if (rc)
7804 		return rc;
7805 
7806 	bnxt_hwrm_dbg_qcaps(bp);
7807 
7808 	rc = bnxt_hwrm_queue_qportcfg(bp);
7809 	if (rc) {
7810 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7811 		return rc;
7812 	}
7813 	if (bp->hwrm_spec_code >= 0x10803) {
7814 		rc = bnxt_alloc_ctx_mem(bp);
7815 		if (rc)
7816 			return rc;
7817 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7818 		if (!rc)
7819 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7820 	}
7821 	return 0;
7822 }
7823 
7824 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7825 {
7826 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7827 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7828 	u32 flags;
7829 	int rc;
7830 
7831 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7832 		return 0;
7833 
7834 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7835 	if (rc)
7836 		return rc;
7837 
7838 	resp = hwrm_req_hold(bp, req);
7839 	rc = hwrm_req_send(bp, req);
7840 	if (rc)
7841 		goto hwrm_cfa_adv_qcaps_exit;
7842 
7843 	flags = le32_to_cpu(resp->flags);
7844 	if (flags &
7845 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7846 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7847 
7848 hwrm_cfa_adv_qcaps_exit:
7849 	hwrm_req_drop(bp, req);
7850 	return rc;
7851 }
7852 
7853 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7854 {
7855 	if (bp->fw_health)
7856 		return 0;
7857 
7858 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7859 	if (!bp->fw_health)
7860 		return -ENOMEM;
7861 
7862 	mutex_init(&bp->fw_health->lock);
7863 	return 0;
7864 }
7865 
7866 static int bnxt_alloc_fw_health(struct bnxt *bp)
7867 {
7868 	int rc;
7869 
7870 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7871 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7872 		return 0;
7873 
7874 	rc = __bnxt_alloc_fw_health(bp);
7875 	if (rc) {
7876 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7877 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7878 		return rc;
7879 	}
7880 
7881 	return 0;
7882 }
7883 
7884 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7885 {
7886 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7887 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7888 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7889 }
7890 
7891 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7892 {
7893 	struct bnxt_fw_health *fw_health = bp->fw_health;
7894 	u32 reg_type;
7895 
7896 	if (!fw_health)
7897 		return;
7898 
7899 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7900 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7901 		fw_health->status_reliable = false;
7902 
7903 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7904 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7905 		fw_health->resets_reliable = false;
7906 }
7907 
7908 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7909 {
7910 	void __iomem *hs;
7911 	u32 status_loc;
7912 	u32 reg_type;
7913 	u32 sig;
7914 
7915 	if (bp->fw_health)
7916 		bp->fw_health->status_reliable = false;
7917 
7918 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7919 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7920 
7921 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7922 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7923 		if (!bp->chip_num) {
7924 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7925 			bp->chip_num = readl(bp->bar0 +
7926 					     BNXT_FW_HEALTH_WIN_BASE +
7927 					     BNXT_GRC_REG_CHIP_NUM);
7928 		}
7929 		if (!BNXT_CHIP_P5(bp))
7930 			return;
7931 
7932 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7933 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7934 	} else {
7935 		status_loc = readl(hs + offsetof(struct hcomm_status,
7936 						 fw_status_loc));
7937 	}
7938 
7939 	if (__bnxt_alloc_fw_health(bp)) {
7940 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7941 		return;
7942 	}
7943 
7944 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7945 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7946 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7947 		__bnxt_map_fw_health_reg(bp, status_loc);
7948 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7949 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7950 	}
7951 
7952 	bp->fw_health->status_reliable = true;
7953 }
7954 
7955 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7956 {
7957 	struct bnxt_fw_health *fw_health = bp->fw_health;
7958 	u32 reg_base = 0xffffffff;
7959 	int i;
7960 
7961 	bp->fw_health->status_reliable = false;
7962 	bp->fw_health->resets_reliable = false;
7963 	/* Only pre-map the monitoring GRC registers using window 3 */
7964 	for (i = 0; i < 4; i++) {
7965 		u32 reg = fw_health->regs[i];
7966 
7967 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7968 			continue;
7969 		if (reg_base == 0xffffffff)
7970 			reg_base = reg & BNXT_GRC_BASE_MASK;
7971 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7972 			return -ERANGE;
7973 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7974 	}
7975 	bp->fw_health->status_reliable = true;
7976 	bp->fw_health->resets_reliable = true;
7977 	if (reg_base == 0xffffffff)
7978 		return 0;
7979 
7980 	__bnxt_map_fw_health_reg(bp, reg_base);
7981 	return 0;
7982 }
7983 
7984 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
7985 {
7986 	if (!bp->fw_health)
7987 		return;
7988 
7989 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
7990 		bp->fw_health->status_reliable = true;
7991 		bp->fw_health->resets_reliable = true;
7992 	} else {
7993 		bnxt_try_map_fw_health_reg(bp);
7994 	}
7995 }
7996 
7997 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7998 {
7999 	struct bnxt_fw_health *fw_health = bp->fw_health;
8000 	struct hwrm_error_recovery_qcfg_output *resp;
8001 	struct hwrm_error_recovery_qcfg_input *req;
8002 	int rc, i;
8003 
8004 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8005 		return 0;
8006 
8007 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8008 	if (rc)
8009 		return rc;
8010 
8011 	resp = hwrm_req_hold(bp, req);
8012 	rc = hwrm_req_send(bp, req);
8013 	if (rc)
8014 		goto err_recovery_out;
8015 	fw_health->flags = le32_to_cpu(resp->flags);
8016 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8017 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8018 		rc = -EINVAL;
8019 		goto err_recovery_out;
8020 	}
8021 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8022 	fw_health->master_func_wait_dsecs =
8023 		le32_to_cpu(resp->master_func_wait_period);
8024 	fw_health->normal_func_wait_dsecs =
8025 		le32_to_cpu(resp->normal_func_wait_period);
8026 	fw_health->post_reset_wait_dsecs =
8027 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8028 	fw_health->post_reset_max_wait_dsecs =
8029 		le32_to_cpu(resp->max_bailout_time_after_reset);
8030 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8031 		le32_to_cpu(resp->fw_health_status_reg);
8032 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8033 		le32_to_cpu(resp->fw_heartbeat_reg);
8034 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8035 		le32_to_cpu(resp->fw_reset_cnt_reg);
8036 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8037 		le32_to_cpu(resp->reset_inprogress_reg);
8038 	fw_health->fw_reset_inprog_reg_mask =
8039 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8040 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8041 	if (fw_health->fw_reset_seq_cnt >= 16) {
8042 		rc = -EINVAL;
8043 		goto err_recovery_out;
8044 	}
8045 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8046 		fw_health->fw_reset_seq_regs[i] =
8047 			le32_to_cpu(resp->reset_reg[i]);
8048 		fw_health->fw_reset_seq_vals[i] =
8049 			le32_to_cpu(resp->reset_reg_val[i]);
8050 		fw_health->fw_reset_seq_delay_msec[i] =
8051 			resp->delay_after_reset[i];
8052 	}
8053 err_recovery_out:
8054 	hwrm_req_drop(bp, req);
8055 	if (!rc)
8056 		rc = bnxt_map_fw_health_regs(bp);
8057 	if (rc)
8058 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8059 	return rc;
8060 }
8061 
8062 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8063 {
8064 	struct hwrm_func_reset_input *req;
8065 	int rc;
8066 
8067 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8068 	if (rc)
8069 		return rc;
8070 
8071 	req->enables = 0;
8072 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8073 	return hwrm_req_send(bp, req);
8074 }
8075 
8076 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8077 {
8078 	struct hwrm_nvm_get_dev_info_output nvm_info;
8079 
8080 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8081 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8082 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8083 			 nvm_info.nvm_cfg_ver_upd);
8084 }
8085 
8086 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8087 {
8088 	struct hwrm_queue_qportcfg_output *resp;
8089 	struct hwrm_queue_qportcfg_input *req;
8090 	u8 i, j, *qptr;
8091 	bool no_rdma;
8092 	int rc = 0;
8093 
8094 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8095 	if (rc)
8096 		return rc;
8097 
8098 	resp = hwrm_req_hold(bp, req);
8099 	rc = hwrm_req_send(bp, req);
8100 	if (rc)
8101 		goto qportcfg_exit;
8102 
8103 	if (!resp->max_configurable_queues) {
8104 		rc = -EINVAL;
8105 		goto qportcfg_exit;
8106 	}
8107 	bp->max_tc = resp->max_configurable_queues;
8108 	bp->max_lltc = resp->max_configurable_lossless_queues;
8109 	if (bp->max_tc > BNXT_MAX_QUEUE)
8110 		bp->max_tc = BNXT_MAX_QUEUE;
8111 
8112 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8113 	qptr = &resp->queue_id0;
8114 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8115 		bp->q_info[j].queue_id = *qptr;
8116 		bp->q_ids[i] = *qptr++;
8117 		bp->q_info[j].queue_profile = *qptr++;
8118 		bp->tc_to_qidx[j] = j;
8119 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8120 		    (no_rdma && BNXT_PF(bp)))
8121 			j++;
8122 	}
8123 	bp->max_q = bp->max_tc;
8124 	bp->max_tc = max_t(u8, j, 1);
8125 
8126 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8127 		bp->max_tc = 1;
8128 
8129 	if (bp->max_lltc > bp->max_tc)
8130 		bp->max_lltc = bp->max_tc;
8131 
8132 qportcfg_exit:
8133 	hwrm_req_drop(bp, req);
8134 	return rc;
8135 }
8136 
8137 static int bnxt_hwrm_poll(struct bnxt *bp)
8138 {
8139 	struct hwrm_ver_get_input *req;
8140 	int rc;
8141 
8142 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8143 	if (rc)
8144 		return rc;
8145 
8146 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8147 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8148 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8149 
8150 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8151 	rc = hwrm_req_send(bp, req);
8152 	return rc;
8153 }
8154 
8155 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8156 {
8157 	struct hwrm_ver_get_output *resp;
8158 	struct hwrm_ver_get_input *req;
8159 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8160 	u32 dev_caps_cfg, hwrm_ver;
8161 	int rc, len;
8162 
8163 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8164 	if (rc)
8165 		return rc;
8166 
8167 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8168 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8169 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8170 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8171 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8172 
8173 	resp = hwrm_req_hold(bp, req);
8174 	rc = hwrm_req_send(bp, req);
8175 	if (rc)
8176 		goto hwrm_ver_get_exit;
8177 
8178 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8179 
8180 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8181 			     resp->hwrm_intf_min_8b << 8 |
8182 			     resp->hwrm_intf_upd_8b;
8183 	if (resp->hwrm_intf_maj_8b < 1) {
8184 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8185 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8186 			    resp->hwrm_intf_upd_8b);
8187 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8188 	}
8189 
8190 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8191 			HWRM_VERSION_UPDATE;
8192 
8193 	if (bp->hwrm_spec_code > hwrm_ver)
8194 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8195 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8196 			 HWRM_VERSION_UPDATE);
8197 	else
8198 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8199 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8200 			 resp->hwrm_intf_upd_8b);
8201 
8202 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8203 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8204 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8205 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8206 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8207 		len = FW_VER_STR_LEN;
8208 	} else {
8209 		fw_maj = resp->hwrm_fw_maj_8b;
8210 		fw_min = resp->hwrm_fw_min_8b;
8211 		fw_bld = resp->hwrm_fw_bld_8b;
8212 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8213 		len = BC_HWRM_STR_LEN;
8214 	}
8215 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8216 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8217 		 fw_rsv);
8218 
8219 	if (strlen(resp->active_pkg_name)) {
8220 		int fw_ver_len = strlen(bp->fw_ver_str);
8221 
8222 		snprintf(bp->fw_ver_str + fw_ver_len,
8223 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8224 			 resp->active_pkg_name);
8225 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8226 	}
8227 
8228 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8229 	if (!bp->hwrm_cmd_timeout)
8230 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8231 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8232 	if (!bp->hwrm_cmd_max_timeout)
8233 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8234 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8235 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8236 			    bp->hwrm_cmd_max_timeout / 1000);
8237 
8238 	if (resp->hwrm_intf_maj_8b >= 1) {
8239 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8240 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8241 	}
8242 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8243 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8244 
8245 	bp->chip_num = le16_to_cpu(resp->chip_num);
8246 	bp->chip_rev = resp->chip_rev;
8247 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8248 	    !resp->chip_metal)
8249 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8250 
8251 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8252 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8253 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8254 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8255 
8256 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8257 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8258 
8259 	if (dev_caps_cfg &
8260 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8261 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8262 
8263 	if (dev_caps_cfg &
8264 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8265 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8266 
8267 	if (dev_caps_cfg &
8268 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8269 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8270 
8271 hwrm_ver_get_exit:
8272 	hwrm_req_drop(bp, req);
8273 	return rc;
8274 }
8275 
8276 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8277 {
8278 	struct hwrm_fw_set_time_input *req;
8279 	struct tm tm;
8280 	time64_t now = ktime_get_real_seconds();
8281 	int rc;
8282 
8283 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8284 	    bp->hwrm_spec_code < 0x10400)
8285 		return -EOPNOTSUPP;
8286 
8287 	time64_to_tm(now, 0, &tm);
8288 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8289 	if (rc)
8290 		return rc;
8291 
8292 	req->year = cpu_to_le16(1900 + tm.tm_year);
8293 	req->month = 1 + tm.tm_mon;
8294 	req->day = tm.tm_mday;
8295 	req->hour = tm.tm_hour;
8296 	req->minute = tm.tm_min;
8297 	req->second = tm.tm_sec;
8298 	return hwrm_req_send(bp, req);
8299 }
8300 
8301 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8302 {
8303 	u64 sw_tmp;
8304 
8305 	hw &= mask;
8306 	sw_tmp = (*sw & ~mask) | hw;
8307 	if (hw < (*sw & mask))
8308 		sw_tmp += mask + 1;
8309 	WRITE_ONCE(*sw, sw_tmp);
8310 }
8311 
8312 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8313 				    int count, bool ignore_zero)
8314 {
8315 	int i;
8316 
8317 	for (i = 0; i < count; i++) {
8318 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8319 
8320 		if (ignore_zero && !hw)
8321 			continue;
8322 
8323 		if (masks[i] == -1ULL)
8324 			sw_stats[i] = hw;
8325 		else
8326 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8327 	}
8328 }
8329 
8330 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8331 {
8332 	if (!stats->hw_stats)
8333 		return;
8334 
8335 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8336 				stats->hw_masks, stats->len / 8, false);
8337 }
8338 
8339 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8340 {
8341 	struct bnxt_stats_mem *ring0_stats;
8342 	bool ignore_zero = false;
8343 	int i;
8344 
8345 	/* Chip bug.  Counter intermittently becomes 0. */
8346 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8347 		ignore_zero = true;
8348 
8349 	for (i = 0; i < bp->cp_nr_rings; i++) {
8350 		struct bnxt_napi *bnapi = bp->bnapi[i];
8351 		struct bnxt_cp_ring_info *cpr;
8352 		struct bnxt_stats_mem *stats;
8353 
8354 		cpr = &bnapi->cp_ring;
8355 		stats = &cpr->stats;
8356 		if (!i)
8357 			ring0_stats = stats;
8358 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8359 					ring0_stats->hw_masks,
8360 					ring0_stats->len / 8, ignore_zero);
8361 	}
8362 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8363 		struct bnxt_stats_mem *stats = &bp->port_stats;
8364 		__le64 *hw_stats = stats->hw_stats;
8365 		u64 *sw_stats = stats->sw_stats;
8366 		u64 *masks = stats->hw_masks;
8367 		int cnt;
8368 
8369 		cnt = sizeof(struct rx_port_stats) / 8;
8370 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8371 
8372 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8373 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8374 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8375 		cnt = sizeof(struct tx_port_stats) / 8;
8376 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8377 	}
8378 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8379 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8380 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8381 	}
8382 }
8383 
8384 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8385 {
8386 	struct hwrm_port_qstats_input *req;
8387 	struct bnxt_pf_info *pf = &bp->pf;
8388 	int rc;
8389 
8390 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8391 		return 0;
8392 
8393 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8394 		return -EOPNOTSUPP;
8395 
8396 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8397 	if (rc)
8398 		return rc;
8399 
8400 	req->flags = flags;
8401 	req->port_id = cpu_to_le16(pf->port_id);
8402 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8403 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8404 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8405 	return hwrm_req_send(bp, req);
8406 }
8407 
8408 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8409 {
8410 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8411 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8412 	struct hwrm_port_qstats_ext_output *resp_qs;
8413 	struct hwrm_port_qstats_ext_input *req_qs;
8414 	struct bnxt_pf_info *pf = &bp->pf;
8415 	u32 tx_stat_size;
8416 	int rc;
8417 
8418 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8419 		return 0;
8420 
8421 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8422 		return -EOPNOTSUPP;
8423 
8424 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8425 	if (rc)
8426 		return rc;
8427 
8428 	req_qs->flags = flags;
8429 	req_qs->port_id = cpu_to_le16(pf->port_id);
8430 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8431 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8432 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8433 		       sizeof(struct tx_port_stats_ext) : 0;
8434 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8435 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8436 	resp_qs = hwrm_req_hold(bp, req_qs);
8437 	rc = hwrm_req_send(bp, req_qs);
8438 	if (!rc) {
8439 		bp->fw_rx_stats_ext_size =
8440 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8441 		if (BNXT_FW_MAJ(bp) < 220 &&
8442 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8443 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8444 
8445 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8446 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8447 	} else {
8448 		bp->fw_rx_stats_ext_size = 0;
8449 		bp->fw_tx_stats_ext_size = 0;
8450 	}
8451 	hwrm_req_drop(bp, req_qs);
8452 
8453 	if (flags)
8454 		return rc;
8455 
8456 	if (bp->fw_tx_stats_ext_size <=
8457 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8458 		bp->pri2cos_valid = 0;
8459 		return rc;
8460 	}
8461 
8462 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8463 	if (rc)
8464 		return rc;
8465 
8466 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8467 
8468 	resp_qc = hwrm_req_hold(bp, req_qc);
8469 	rc = hwrm_req_send(bp, req_qc);
8470 	if (!rc) {
8471 		u8 *pri2cos;
8472 		int i, j;
8473 
8474 		pri2cos = &resp_qc->pri0_cos_queue_id;
8475 		for (i = 0; i < 8; i++) {
8476 			u8 queue_id = pri2cos[i];
8477 			u8 queue_idx;
8478 
8479 			/* Per port queue IDs start from 0, 10, 20, etc */
8480 			queue_idx = queue_id % 10;
8481 			if (queue_idx > BNXT_MAX_QUEUE) {
8482 				bp->pri2cos_valid = false;
8483 				hwrm_req_drop(bp, req_qc);
8484 				return rc;
8485 			}
8486 			for (j = 0; j < bp->max_q; j++) {
8487 				if (bp->q_ids[j] == queue_id)
8488 					bp->pri2cos_idx[i] = queue_idx;
8489 			}
8490 		}
8491 		bp->pri2cos_valid = true;
8492 	}
8493 	hwrm_req_drop(bp, req_qc);
8494 
8495 	return rc;
8496 }
8497 
8498 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8499 {
8500 	bnxt_hwrm_tunnel_dst_port_free(bp,
8501 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8502 	bnxt_hwrm_tunnel_dst_port_free(bp,
8503 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8504 }
8505 
8506 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8507 {
8508 	int rc, i;
8509 	u32 tpa_flags = 0;
8510 
8511 	if (set_tpa)
8512 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8513 	else if (BNXT_NO_FW_ACCESS(bp))
8514 		return 0;
8515 	for (i = 0; i < bp->nr_vnics; i++) {
8516 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8517 		if (rc) {
8518 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8519 				   i, rc);
8520 			return rc;
8521 		}
8522 	}
8523 	return 0;
8524 }
8525 
8526 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8527 {
8528 	int i;
8529 
8530 	for (i = 0; i < bp->nr_vnics; i++)
8531 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8532 }
8533 
8534 static void bnxt_clear_vnic(struct bnxt *bp)
8535 {
8536 	if (!bp->vnic_info)
8537 		return;
8538 
8539 	bnxt_hwrm_clear_vnic_filter(bp);
8540 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8541 		/* clear all RSS setting before free vnic ctx */
8542 		bnxt_hwrm_clear_vnic_rss(bp);
8543 		bnxt_hwrm_vnic_ctx_free(bp);
8544 	}
8545 	/* before free the vnic, undo the vnic tpa settings */
8546 	if (bp->flags & BNXT_FLAG_TPA)
8547 		bnxt_set_tpa(bp, false);
8548 	bnxt_hwrm_vnic_free(bp);
8549 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8550 		bnxt_hwrm_vnic_ctx_free(bp);
8551 }
8552 
8553 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8554 				    bool irq_re_init)
8555 {
8556 	bnxt_clear_vnic(bp);
8557 	bnxt_hwrm_ring_free(bp, close_path);
8558 	bnxt_hwrm_ring_grp_free(bp);
8559 	if (irq_re_init) {
8560 		bnxt_hwrm_stat_ctx_free(bp);
8561 		bnxt_hwrm_free_tunnel_ports(bp);
8562 	}
8563 }
8564 
8565 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8566 {
8567 	struct hwrm_func_cfg_input *req;
8568 	u8 evb_mode;
8569 	int rc;
8570 
8571 	if (br_mode == BRIDGE_MODE_VEB)
8572 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8573 	else if (br_mode == BRIDGE_MODE_VEPA)
8574 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8575 	else
8576 		return -EINVAL;
8577 
8578 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8579 	if (rc)
8580 		return rc;
8581 
8582 	req->fid = cpu_to_le16(0xffff);
8583 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8584 	req->evb_mode = evb_mode;
8585 	return hwrm_req_send(bp, req);
8586 }
8587 
8588 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8589 {
8590 	struct hwrm_func_cfg_input *req;
8591 	int rc;
8592 
8593 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8594 		return 0;
8595 
8596 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8597 	if (rc)
8598 		return rc;
8599 
8600 	req->fid = cpu_to_le16(0xffff);
8601 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8602 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8603 	if (size == 128)
8604 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8605 
8606 	return hwrm_req_send(bp, req);
8607 }
8608 
8609 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8610 {
8611 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8612 	int rc;
8613 
8614 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8615 		goto skip_rss_ctx;
8616 
8617 	/* allocate context for vnic */
8618 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8619 	if (rc) {
8620 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8621 			   vnic_id, rc);
8622 		goto vnic_setup_err;
8623 	}
8624 	bp->rsscos_nr_ctxs++;
8625 
8626 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8627 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8628 		if (rc) {
8629 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8630 				   vnic_id, rc);
8631 			goto vnic_setup_err;
8632 		}
8633 		bp->rsscos_nr_ctxs++;
8634 	}
8635 
8636 skip_rss_ctx:
8637 	/* configure default vnic, ring grp */
8638 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8639 	if (rc) {
8640 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8641 			   vnic_id, rc);
8642 		goto vnic_setup_err;
8643 	}
8644 
8645 	/* Enable RSS hashing on vnic */
8646 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8647 	if (rc) {
8648 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8649 			   vnic_id, rc);
8650 		goto vnic_setup_err;
8651 	}
8652 
8653 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8654 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8655 		if (rc) {
8656 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8657 				   vnic_id, rc);
8658 		}
8659 	}
8660 
8661 vnic_setup_err:
8662 	return rc;
8663 }
8664 
8665 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8666 {
8667 	int rc, i, nr_ctxs;
8668 
8669 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8670 	for (i = 0; i < nr_ctxs; i++) {
8671 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8672 		if (rc) {
8673 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8674 				   vnic_id, i, rc);
8675 			break;
8676 		}
8677 		bp->rsscos_nr_ctxs++;
8678 	}
8679 	if (i < nr_ctxs)
8680 		return -ENOMEM;
8681 
8682 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8683 	if (rc) {
8684 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8685 			   vnic_id, rc);
8686 		return rc;
8687 	}
8688 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8689 	if (rc) {
8690 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8691 			   vnic_id, rc);
8692 		return rc;
8693 	}
8694 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8695 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8696 		if (rc) {
8697 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8698 				   vnic_id, rc);
8699 		}
8700 	}
8701 	return rc;
8702 }
8703 
8704 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8705 {
8706 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8707 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8708 	else
8709 		return __bnxt_setup_vnic(bp, vnic_id);
8710 }
8711 
8712 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8713 {
8714 #ifdef CONFIG_RFS_ACCEL
8715 	int i, rc = 0;
8716 
8717 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8718 		return 0;
8719 
8720 	for (i = 0; i < bp->rx_nr_rings; i++) {
8721 		struct bnxt_vnic_info *vnic;
8722 		u16 vnic_id = i + 1;
8723 		u16 ring_id = i;
8724 
8725 		if (vnic_id >= bp->nr_vnics)
8726 			break;
8727 
8728 		vnic = &bp->vnic_info[vnic_id];
8729 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8730 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8731 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8732 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8733 		if (rc) {
8734 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8735 				   vnic_id, rc);
8736 			break;
8737 		}
8738 		rc = bnxt_setup_vnic(bp, vnic_id);
8739 		if (rc)
8740 			break;
8741 	}
8742 	return rc;
8743 #else
8744 	return 0;
8745 #endif
8746 }
8747 
8748 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8749 static bool bnxt_promisc_ok(struct bnxt *bp)
8750 {
8751 #ifdef CONFIG_BNXT_SRIOV
8752 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8753 		return false;
8754 #endif
8755 	return true;
8756 }
8757 
8758 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8759 {
8760 	unsigned int rc = 0;
8761 
8762 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8763 	if (rc) {
8764 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8765 			   rc);
8766 		return rc;
8767 	}
8768 
8769 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8770 	if (rc) {
8771 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8772 			   rc);
8773 		return rc;
8774 	}
8775 	return rc;
8776 }
8777 
8778 static int bnxt_cfg_rx_mode(struct bnxt *);
8779 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8780 
8781 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8782 {
8783 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8784 	int rc = 0;
8785 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8786 
8787 	if (irq_re_init) {
8788 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8789 		if (rc) {
8790 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8791 				   rc);
8792 			goto err_out;
8793 		}
8794 	}
8795 
8796 	rc = bnxt_hwrm_ring_alloc(bp);
8797 	if (rc) {
8798 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8799 		goto err_out;
8800 	}
8801 
8802 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8803 	if (rc) {
8804 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8805 		goto err_out;
8806 	}
8807 
8808 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8809 		rx_nr_rings--;
8810 
8811 	/* default vnic 0 */
8812 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8813 	if (rc) {
8814 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8815 		goto err_out;
8816 	}
8817 
8818 	if (BNXT_VF(bp))
8819 		bnxt_hwrm_func_qcfg(bp);
8820 
8821 	rc = bnxt_setup_vnic(bp, 0);
8822 	if (rc)
8823 		goto err_out;
8824 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
8825 		bnxt_hwrm_update_rss_hash_cfg(bp);
8826 
8827 	if (bp->flags & BNXT_FLAG_RFS) {
8828 		rc = bnxt_alloc_rfs_vnics(bp);
8829 		if (rc)
8830 			goto err_out;
8831 	}
8832 
8833 	if (bp->flags & BNXT_FLAG_TPA) {
8834 		rc = bnxt_set_tpa(bp, true);
8835 		if (rc)
8836 			goto err_out;
8837 	}
8838 
8839 	if (BNXT_VF(bp))
8840 		bnxt_update_vf_mac(bp);
8841 
8842 	/* Filter for default vnic 0 */
8843 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8844 	if (rc) {
8845 		if (BNXT_VF(bp) && rc == -ENODEV)
8846 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8847 		else
8848 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8849 		goto err_out;
8850 	}
8851 	vnic->uc_filter_count = 1;
8852 
8853 	vnic->rx_mask = 0;
8854 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8855 		goto skip_rx_mask;
8856 
8857 	if (bp->dev->flags & IFF_BROADCAST)
8858 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8859 
8860 	if (bp->dev->flags & IFF_PROMISC)
8861 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8862 
8863 	if (bp->dev->flags & IFF_ALLMULTI) {
8864 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8865 		vnic->mc_list_count = 0;
8866 	} else if (bp->dev->flags & IFF_MULTICAST) {
8867 		u32 mask = 0;
8868 
8869 		bnxt_mc_list_updated(bp, &mask);
8870 		vnic->rx_mask |= mask;
8871 	}
8872 
8873 	rc = bnxt_cfg_rx_mode(bp);
8874 	if (rc)
8875 		goto err_out;
8876 
8877 skip_rx_mask:
8878 	rc = bnxt_hwrm_set_coal(bp);
8879 	if (rc)
8880 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8881 				rc);
8882 
8883 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8884 		rc = bnxt_setup_nitroa0_vnic(bp);
8885 		if (rc)
8886 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8887 				   rc);
8888 	}
8889 
8890 	if (BNXT_VF(bp)) {
8891 		bnxt_hwrm_func_qcfg(bp);
8892 		netdev_update_features(bp->dev);
8893 	}
8894 
8895 	return 0;
8896 
8897 err_out:
8898 	bnxt_hwrm_resource_free(bp, 0, true);
8899 
8900 	return rc;
8901 }
8902 
8903 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8904 {
8905 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8906 	return 0;
8907 }
8908 
8909 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8910 {
8911 	bnxt_init_cp_rings(bp);
8912 	bnxt_init_rx_rings(bp);
8913 	bnxt_init_tx_rings(bp);
8914 	bnxt_init_ring_grps(bp, irq_re_init);
8915 	bnxt_init_vnics(bp);
8916 
8917 	return bnxt_init_chip(bp, irq_re_init);
8918 }
8919 
8920 static int bnxt_set_real_num_queues(struct bnxt *bp)
8921 {
8922 	int rc;
8923 	struct net_device *dev = bp->dev;
8924 
8925 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8926 					  bp->tx_nr_rings_xdp);
8927 	if (rc)
8928 		return rc;
8929 
8930 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8931 	if (rc)
8932 		return rc;
8933 
8934 #ifdef CONFIG_RFS_ACCEL
8935 	if (bp->flags & BNXT_FLAG_RFS)
8936 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8937 #endif
8938 
8939 	return rc;
8940 }
8941 
8942 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8943 			   bool shared)
8944 {
8945 	int _rx = *rx, _tx = *tx;
8946 
8947 	if (shared) {
8948 		*rx = min_t(int, _rx, max);
8949 		*tx = min_t(int, _tx, max);
8950 	} else {
8951 		if (max < 2)
8952 			return -ENOMEM;
8953 
8954 		while (_rx + _tx > max) {
8955 			if (_rx > _tx && _rx > 1)
8956 				_rx--;
8957 			else if (_tx > 1)
8958 				_tx--;
8959 		}
8960 		*rx = _rx;
8961 		*tx = _tx;
8962 	}
8963 	return 0;
8964 }
8965 
8966 static void bnxt_setup_msix(struct bnxt *bp)
8967 {
8968 	const int len = sizeof(bp->irq_tbl[0].name);
8969 	struct net_device *dev = bp->dev;
8970 	int tcs, i;
8971 
8972 	tcs = netdev_get_num_tc(dev);
8973 	if (tcs) {
8974 		int i, off, count;
8975 
8976 		for (i = 0; i < tcs; i++) {
8977 			count = bp->tx_nr_rings_per_tc;
8978 			off = i * count;
8979 			netdev_set_tc_queue(dev, i, count, off);
8980 		}
8981 	}
8982 
8983 	for (i = 0; i < bp->cp_nr_rings; i++) {
8984 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8985 		char *attr;
8986 
8987 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8988 			attr = "TxRx";
8989 		else if (i < bp->rx_nr_rings)
8990 			attr = "rx";
8991 		else
8992 			attr = "tx";
8993 
8994 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8995 			 attr, i);
8996 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8997 	}
8998 }
8999 
9000 static void bnxt_setup_inta(struct bnxt *bp)
9001 {
9002 	const int len = sizeof(bp->irq_tbl[0].name);
9003 
9004 	if (netdev_get_num_tc(bp->dev))
9005 		netdev_reset_tc(bp->dev);
9006 
9007 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
9008 		 0);
9009 	bp->irq_tbl[0].handler = bnxt_inta;
9010 }
9011 
9012 static int bnxt_init_int_mode(struct bnxt *bp);
9013 
9014 static int bnxt_setup_int_mode(struct bnxt *bp)
9015 {
9016 	int rc;
9017 
9018 	if (!bp->irq_tbl) {
9019 		rc = bnxt_init_int_mode(bp);
9020 		if (rc || !bp->irq_tbl)
9021 			return rc ?: -ENODEV;
9022 	}
9023 
9024 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9025 		bnxt_setup_msix(bp);
9026 	else
9027 		bnxt_setup_inta(bp);
9028 
9029 	rc = bnxt_set_real_num_queues(bp);
9030 	return rc;
9031 }
9032 
9033 #ifdef CONFIG_RFS_ACCEL
9034 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9035 {
9036 	return bp->hw_resc.max_rsscos_ctxs;
9037 }
9038 
9039 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9040 {
9041 	return bp->hw_resc.max_vnics;
9042 }
9043 #endif
9044 
9045 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9046 {
9047 	return bp->hw_resc.max_stat_ctxs;
9048 }
9049 
9050 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9051 {
9052 	return bp->hw_resc.max_cp_rings;
9053 }
9054 
9055 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9056 {
9057 	unsigned int cp = bp->hw_resc.max_cp_rings;
9058 
9059 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9060 		cp -= bnxt_get_ulp_msix_num(bp);
9061 
9062 	return cp;
9063 }
9064 
9065 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9066 {
9067 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9068 
9069 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9070 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9071 
9072 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9073 }
9074 
9075 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9076 {
9077 	bp->hw_resc.max_irqs = max_irqs;
9078 }
9079 
9080 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9081 {
9082 	unsigned int cp;
9083 
9084 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9085 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9086 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9087 	else
9088 		return cp - bp->cp_nr_rings;
9089 }
9090 
9091 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9092 {
9093 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9094 }
9095 
9096 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9097 {
9098 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9099 	int max_irq = bnxt_get_max_func_irqs(bp);
9100 	int total_req = bp->cp_nr_rings + num;
9101 	int max_idx, avail_msix;
9102 
9103 	max_idx = bp->total_irqs;
9104 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9105 		max_idx = min_t(int, bp->total_irqs, max_cp);
9106 	avail_msix = max_idx - bp->cp_nr_rings;
9107 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9108 		return avail_msix;
9109 
9110 	if (max_irq < total_req) {
9111 		num = max_irq - bp->cp_nr_rings;
9112 		if (num <= 0)
9113 			return 0;
9114 	}
9115 	return num;
9116 }
9117 
9118 static int bnxt_get_num_msix(struct bnxt *bp)
9119 {
9120 	if (!BNXT_NEW_RM(bp))
9121 		return bnxt_get_max_func_irqs(bp);
9122 
9123 	return bnxt_nq_rings_in_use(bp);
9124 }
9125 
9126 static int bnxt_init_msix(struct bnxt *bp)
9127 {
9128 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9129 	struct msix_entry *msix_ent;
9130 
9131 	total_vecs = bnxt_get_num_msix(bp);
9132 	max = bnxt_get_max_func_irqs(bp);
9133 	if (total_vecs > max)
9134 		total_vecs = max;
9135 
9136 	if (!total_vecs)
9137 		return 0;
9138 
9139 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9140 	if (!msix_ent)
9141 		return -ENOMEM;
9142 
9143 	for (i = 0; i < total_vecs; i++) {
9144 		msix_ent[i].entry = i;
9145 		msix_ent[i].vector = 0;
9146 	}
9147 
9148 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9149 		min = 2;
9150 
9151 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9152 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9153 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9154 		rc = -ENODEV;
9155 		goto msix_setup_exit;
9156 	}
9157 
9158 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9159 	if (bp->irq_tbl) {
9160 		for (i = 0; i < total_vecs; i++)
9161 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9162 
9163 		bp->total_irqs = total_vecs;
9164 		/* Trim rings based upon num of vectors allocated */
9165 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9166 				     total_vecs - ulp_msix, min == 1);
9167 		if (rc)
9168 			goto msix_setup_exit;
9169 
9170 		bp->cp_nr_rings = (min == 1) ?
9171 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9172 				  bp->tx_nr_rings + bp->rx_nr_rings;
9173 
9174 	} else {
9175 		rc = -ENOMEM;
9176 		goto msix_setup_exit;
9177 	}
9178 	bp->flags |= BNXT_FLAG_USING_MSIX;
9179 	kfree(msix_ent);
9180 	return 0;
9181 
9182 msix_setup_exit:
9183 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9184 	kfree(bp->irq_tbl);
9185 	bp->irq_tbl = NULL;
9186 	pci_disable_msix(bp->pdev);
9187 	kfree(msix_ent);
9188 	return rc;
9189 }
9190 
9191 static int bnxt_init_inta(struct bnxt *bp)
9192 {
9193 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9194 	if (!bp->irq_tbl)
9195 		return -ENOMEM;
9196 
9197 	bp->total_irqs = 1;
9198 	bp->rx_nr_rings = 1;
9199 	bp->tx_nr_rings = 1;
9200 	bp->cp_nr_rings = 1;
9201 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9202 	bp->irq_tbl[0].vector = bp->pdev->irq;
9203 	return 0;
9204 }
9205 
9206 static int bnxt_init_int_mode(struct bnxt *bp)
9207 {
9208 	int rc = -ENODEV;
9209 
9210 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9211 		rc = bnxt_init_msix(bp);
9212 
9213 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9214 		/* fallback to INTA */
9215 		rc = bnxt_init_inta(bp);
9216 	}
9217 	return rc;
9218 }
9219 
9220 static void bnxt_clear_int_mode(struct bnxt *bp)
9221 {
9222 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9223 		pci_disable_msix(bp->pdev);
9224 
9225 	kfree(bp->irq_tbl);
9226 	bp->irq_tbl = NULL;
9227 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9228 }
9229 
9230 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9231 {
9232 	int tcs = netdev_get_num_tc(bp->dev);
9233 	bool irq_cleared = false;
9234 	int rc;
9235 
9236 	if (!bnxt_need_reserve_rings(bp))
9237 		return 0;
9238 
9239 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9240 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9241 		bnxt_ulp_irq_stop(bp);
9242 		bnxt_clear_int_mode(bp);
9243 		irq_cleared = true;
9244 	}
9245 	rc = __bnxt_reserve_rings(bp);
9246 	if (irq_cleared) {
9247 		if (!rc)
9248 			rc = bnxt_init_int_mode(bp);
9249 		bnxt_ulp_irq_restart(bp, rc);
9250 	}
9251 	if (rc) {
9252 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9253 		return rc;
9254 	}
9255 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
9256 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
9257 		netdev_err(bp->dev, "tx ring reservation failure\n");
9258 		netdev_reset_tc(bp->dev);
9259 		if (bp->tx_nr_rings_xdp)
9260 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
9261 		else
9262 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9263 		return -ENOMEM;
9264 	}
9265 	return 0;
9266 }
9267 
9268 static void bnxt_free_irq(struct bnxt *bp)
9269 {
9270 	struct bnxt_irq *irq;
9271 	int i;
9272 
9273 #ifdef CONFIG_RFS_ACCEL
9274 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9275 	bp->dev->rx_cpu_rmap = NULL;
9276 #endif
9277 	if (!bp->irq_tbl || !bp->bnapi)
9278 		return;
9279 
9280 	for (i = 0; i < bp->cp_nr_rings; i++) {
9281 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9282 
9283 		irq = &bp->irq_tbl[map_idx];
9284 		if (irq->requested) {
9285 			if (irq->have_cpumask) {
9286 				irq_set_affinity_hint(irq->vector, NULL);
9287 				free_cpumask_var(irq->cpu_mask);
9288 				irq->have_cpumask = 0;
9289 			}
9290 			free_irq(irq->vector, bp->bnapi[i]);
9291 		}
9292 
9293 		irq->requested = 0;
9294 	}
9295 }
9296 
9297 static int bnxt_request_irq(struct bnxt *bp)
9298 {
9299 	int i, j, rc = 0;
9300 	unsigned long flags = 0;
9301 #ifdef CONFIG_RFS_ACCEL
9302 	struct cpu_rmap *rmap;
9303 #endif
9304 
9305 	rc = bnxt_setup_int_mode(bp);
9306 	if (rc) {
9307 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9308 			   rc);
9309 		return rc;
9310 	}
9311 #ifdef CONFIG_RFS_ACCEL
9312 	rmap = bp->dev->rx_cpu_rmap;
9313 #endif
9314 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9315 		flags = IRQF_SHARED;
9316 
9317 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9318 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9319 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9320 
9321 #ifdef CONFIG_RFS_ACCEL
9322 		if (rmap && bp->bnapi[i]->rx_ring) {
9323 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9324 			if (rc)
9325 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9326 					    j);
9327 			j++;
9328 		}
9329 #endif
9330 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9331 				 bp->bnapi[i]);
9332 		if (rc)
9333 			break;
9334 
9335 		irq->requested = 1;
9336 
9337 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9338 			int numa_node = dev_to_node(&bp->pdev->dev);
9339 
9340 			irq->have_cpumask = 1;
9341 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9342 					irq->cpu_mask);
9343 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9344 			if (rc) {
9345 				netdev_warn(bp->dev,
9346 					    "Set affinity failed, IRQ = %d\n",
9347 					    irq->vector);
9348 				break;
9349 			}
9350 		}
9351 	}
9352 	return rc;
9353 }
9354 
9355 static void bnxt_del_napi(struct bnxt *bp)
9356 {
9357 	int i;
9358 
9359 	if (!bp->bnapi)
9360 		return;
9361 
9362 	for (i = 0; i < bp->cp_nr_rings; i++) {
9363 		struct bnxt_napi *bnapi = bp->bnapi[i];
9364 
9365 		__netif_napi_del(&bnapi->napi);
9366 	}
9367 	/* We called __netif_napi_del(), we need
9368 	 * to respect an RCU grace period before freeing napi structures.
9369 	 */
9370 	synchronize_net();
9371 }
9372 
9373 static void bnxt_init_napi(struct bnxt *bp)
9374 {
9375 	int i;
9376 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9377 	struct bnxt_napi *bnapi;
9378 
9379 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9380 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9381 
9382 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9383 			poll_fn = bnxt_poll_p5;
9384 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9385 			cp_nr_rings--;
9386 		for (i = 0; i < cp_nr_rings; i++) {
9387 			bnapi = bp->bnapi[i];
9388 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
9389 		}
9390 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9391 			bnapi = bp->bnapi[cp_nr_rings];
9392 			netif_napi_add(bp->dev, &bnapi->napi,
9393 				       bnxt_poll_nitroa0);
9394 		}
9395 	} else {
9396 		bnapi = bp->bnapi[0];
9397 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
9398 	}
9399 }
9400 
9401 static void bnxt_disable_napi(struct bnxt *bp)
9402 {
9403 	int i;
9404 
9405 	if (!bp->bnapi ||
9406 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9407 		return;
9408 
9409 	for (i = 0; i < bp->cp_nr_rings; i++) {
9410 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9411 
9412 		napi_disable(&bp->bnapi[i]->napi);
9413 		if (bp->bnapi[i]->rx_ring)
9414 			cancel_work_sync(&cpr->dim.work);
9415 	}
9416 }
9417 
9418 static void bnxt_enable_napi(struct bnxt *bp)
9419 {
9420 	int i;
9421 
9422 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9423 	for (i = 0; i < bp->cp_nr_rings; i++) {
9424 		struct bnxt_napi *bnapi = bp->bnapi[i];
9425 		struct bnxt_cp_ring_info *cpr;
9426 
9427 		cpr = &bnapi->cp_ring;
9428 		if (bnapi->in_reset)
9429 			cpr->sw_stats.rx.rx_resets++;
9430 		bnapi->in_reset = false;
9431 
9432 		if (bnapi->rx_ring) {
9433 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9434 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9435 		}
9436 		napi_enable(&bnapi->napi);
9437 	}
9438 }
9439 
9440 void bnxt_tx_disable(struct bnxt *bp)
9441 {
9442 	int i;
9443 	struct bnxt_tx_ring_info *txr;
9444 
9445 	if (bp->tx_ring) {
9446 		for (i = 0; i < bp->tx_nr_rings; i++) {
9447 			txr = &bp->tx_ring[i];
9448 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9449 		}
9450 	}
9451 	/* Make sure napi polls see @dev_state change */
9452 	synchronize_net();
9453 	/* Drop carrier first to prevent TX timeout */
9454 	netif_carrier_off(bp->dev);
9455 	/* Stop all TX queues */
9456 	netif_tx_disable(bp->dev);
9457 }
9458 
9459 void bnxt_tx_enable(struct bnxt *bp)
9460 {
9461 	int i;
9462 	struct bnxt_tx_ring_info *txr;
9463 
9464 	for (i = 0; i < bp->tx_nr_rings; i++) {
9465 		txr = &bp->tx_ring[i];
9466 		WRITE_ONCE(txr->dev_state, 0);
9467 	}
9468 	/* Make sure napi polls see @dev_state change */
9469 	synchronize_net();
9470 	netif_tx_wake_all_queues(bp->dev);
9471 	if (BNXT_LINK_IS_UP(bp))
9472 		netif_carrier_on(bp->dev);
9473 }
9474 
9475 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9476 {
9477 	u8 active_fec = link_info->active_fec_sig_mode &
9478 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9479 
9480 	switch (active_fec) {
9481 	default:
9482 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9483 		return "None";
9484 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9485 		return "Clause 74 BaseR";
9486 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9487 		return "Clause 91 RS(528,514)";
9488 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9489 		return "Clause 91 RS544_1XN";
9490 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9491 		return "Clause 91 RS(544,514)";
9492 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9493 		return "Clause 91 RS272_1XN";
9494 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9495 		return "Clause 91 RS(272,257)";
9496 	}
9497 }
9498 
9499 void bnxt_report_link(struct bnxt *bp)
9500 {
9501 	if (BNXT_LINK_IS_UP(bp)) {
9502 		const char *signal = "";
9503 		const char *flow_ctrl;
9504 		const char *duplex;
9505 		u32 speed;
9506 		u16 fec;
9507 
9508 		netif_carrier_on(bp->dev);
9509 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9510 		if (speed == SPEED_UNKNOWN) {
9511 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9512 			return;
9513 		}
9514 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9515 			duplex = "full";
9516 		else
9517 			duplex = "half";
9518 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9519 			flow_ctrl = "ON - receive & transmit";
9520 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9521 			flow_ctrl = "ON - transmit";
9522 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9523 			flow_ctrl = "ON - receive";
9524 		else
9525 			flow_ctrl = "none";
9526 		if (bp->link_info.phy_qcfg_resp.option_flags &
9527 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9528 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9529 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9530 			switch (sig_mode) {
9531 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9532 				signal = "(NRZ) ";
9533 				break;
9534 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9535 				signal = "(PAM4) ";
9536 				break;
9537 			default:
9538 				break;
9539 			}
9540 		}
9541 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9542 			    speed, signal, duplex, flow_ctrl);
9543 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9544 			netdev_info(bp->dev, "EEE is %s\n",
9545 				    bp->eee.eee_active ? "active" :
9546 							 "not active");
9547 		fec = bp->link_info.fec_cfg;
9548 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9549 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9550 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9551 				    bnxt_report_fec(&bp->link_info));
9552 	} else {
9553 		netif_carrier_off(bp->dev);
9554 		netdev_err(bp->dev, "NIC Link is Down\n");
9555 	}
9556 }
9557 
9558 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9559 {
9560 	if (!resp->supported_speeds_auto_mode &&
9561 	    !resp->supported_speeds_force_mode &&
9562 	    !resp->supported_pam4_speeds_auto_mode &&
9563 	    !resp->supported_pam4_speeds_force_mode)
9564 		return true;
9565 	return false;
9566 }
9567 
9568 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9569 {
9570 	struct bnxt_link_info *link_info = &bp->link_info;
9571 	struct hwrm_port_phy_qcaps_output *resp;
9572 	struct hwrm_port_phy_qcaps_input *req;
9573 	int rc = 0;
9574 
9575 	if (bp->hwrm_spec_code < 0x10201)
9576 		return 0;
9577 
9578 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9579 	if (rc)
9580 		return rc;
9581 
9582 	resp = hwrm_req_hold(bp, req);
9583 	rc = hwrm_req_send(bp, req);
9584 	if (rc)
9585 		goto hwrm_phy_qcaps_exit;
9586 
9587 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9588 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9589 		struct ethtool_eee *eee = &bp->eee;
9590 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9591 
9592 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9593 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9594 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9595 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9596 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9597 	}
9598 
9599 	if (bp->hwrm_spec_code >= 0x10a01) {
9600 		if (bnxt_phy_qcaps_no_speed(resp)) {
9601 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9602 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9603 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9604 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9605 			netdev_info(bp->dev, "Ethernet link enabled\n");
9606 			/* Phy re-enabled, reprobe the speeds */
9607 			link_info->support_auto_speeds = 0;
9608 			link_info->support_pam4_auto_speeds = 0;
9609 		}
9610 	}
9611 	if (resp->supported_speeds_auto_mode)
9612 		link_info->support_auto_speeds =
9613 			le16_to_cpu(resp->supported_speeds_auto_mode);
9614 	if (resp->supported_pam4_speeds_auto_mode)
9615 		link_info->support_pam4_auto_speeds =
9616 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9617 
9618 	bp->port_count = resp->port_cnt;
9619 
9620 hwrm_phy_qcaps_exit:
9621 	hwrm_req_drop(bp, req);
9622 	return rc;
9623 }
9624 
9625 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9626 {
9627 	u16 diff = advertising ^ supported;
9628 
9629 	return ((supported | diff) != supported);
9630 }
9631 
9632 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9633 {
9634 	struct bnxt_link_info *link_info = &bp->link_info;
9635 	struct hwrm_port_phy_qcfg_output *resp;
9636 	struct hwrm_port_phy_qcfg_input *req;
9637 	u8 link_state = link_info->link_state;
9638 	bool support_changed = false;
9639 	int rc;
9640 
9641 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9642 	if (rc)
9643 		return rc;
9644 
9645 	resp = hwrm_req_hold(bp, req);
9646 	rc = hwrm_req_send(bp, req);
9647 	if (rc) {
9648 		hwrm_req_drop(bp, req);
9649 		if (BNXT_VF(bp) && rc == -ENODEV) {
9650 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9651 			rc = 0;
9652 		}
9653 		return rc;
9654 	}
9655 
9656 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9657 	link_info->phy_link_status = resp->link;
9658 	link_info->duplex = resp->duplex_cfg;
9659 	if (bp->hwrm_spec_code >= 0x10800)
9660 		link_info->duplex = resp->duplex_state;
9661 	link_info->pause = resp->pause;
9662 	link_info->auto_mode = resp->auto_mode;
9663 	link_info->auto_pause_setting = resp->auto_pause;
9664 	link_info->lp_pause = resp->link_partner_adv_pause;
9665 	link_info->force_pause_setting = resp->force_pause;
9666 	link_info->duplex_setting = resp->duplex_cfg;
9667 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9668 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9669 	else
9670 		link_info->link_speed = 0;
9671 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9672 	link_info->force_pam4_link_speed =
9673 		le16_to_cpu(resp->force_pam4_link_speed);
9674 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9675 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9676 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9677 	link_info->auto_pam4_link_speeds =
9678 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9679 	link_info->lp_auto_link_speeds =
9680 		le16_to_cpu(resp->link_partner_adv_speeds);
9681 	link_info->lp_auto_pam4_link_speeds =
9682 		resp->link_partner_pam4_adv_speeds;
9683 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9684 	link_info->phy_ver[0] = resp->phy_maj;
9685 	link_info->phy_ver[1] = resp->phy_min;
9686 	link_info->phy_ver[2] = resp->phy_bld;
9687 	link_info->media_type = resp->media_type;
9688 	link_info->phy_type = resp->phy_type;
9689 	link_info->transceiver = resp->xcvr_pkg_type;
9690 	link_info->phy_addr = resp->eee_config_phy_addr &
9691 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9692 	link_info->module_status = resp->module_status;
9693 
9694 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9695 		struct ethtool_eee *eee = &bp->eee;
9696 		u16 fw_speeds;
9697 
9698 		eee->eee_active = 0;
9699 		if (resp->eee_config_phy_addr &
9700 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9701 			eee->eee_active = 1;
9702 			fw_speeds = le16_to_cpu(
9703 				resp->link_partner_adv_eee_link_speed_mask);
9704 			eee->lp_advertised =
9705 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9706 		}
9707 
9708 		/* Pull initial EEE config */
9709 		if (!chng_link_state) {
9710 			if (resp->eee_config_phy_addr &
9711 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9712 				eee->eee_enabled = 1;
9713 
9714 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9715 			eee->advertised =
9716 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9717 
9718 			if (resp->eee_config_phy_addr &
9719 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9720 				__le32 tmr;
9721 
9722 				eee->tx_lpi_enabled = 1;
9723 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9724 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9725 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9726 			}
9727 		}
9728 	}
9729 
9730 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9731 	if (bp->hwrm_spec_code >= 0x10504) {
9732 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9733 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9734 	}
9735 	/* TODO: need to add more logic to report VF link */
9736 	if (chng_link_state) {
9737 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9738 			link_info->link_state = BNXT_LINK_STATE_UP;
9739 		else
9740 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9741 		if (link_state != link_info->link_state)
9742 			bnxt_report_link(bp);
9743 	} else {
9744 		/* always link down if not require to update link state */
9745 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9746 	}
9747 	hwrm_req_drop(bp, req);
9748 
9749 	if (!BNXT_PHY_CFG_ABLE(bp))
9750 		return 0;
9751 
9752 	/* Check if any advertised speeds are no longer supported. The caller
9753 	 * holds the link_lock mutex, so we can modify link_info settings.
9754 	 */
9755 	if (bnxt_support_dropped(link_info->advertising,
9756 				 link_info->support_auto_speeds)) {
9757 		link_info->advertising = link_info->support_auto_speeds;
9758 		support_changed = true;
9759 	}
9760 	if (bnxt_support_dropped(link_info->advertising_pam4,
9761 				 link_info->support_pam4_auto_speeds)) {
9762 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9763 		support_changed = true;
9764 	}
9765 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9766 		bnxt_hwrm_set_link_setting(bp, true, false);
9767 	return 0;
9768 }
9769 
9770 static void bnxt_get_port_module_status(struct bnxt *bp)
9771 {
9772 	struct bnxt_link_info *link_info = &bp->link_info;
9773 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9774 	u8 module_status;
9775 
9776 	if (bnxt_update_link(bp, true))
9777 		return;
9778 
9779 	module_status = link_info->module_status;
9780 	switch (module_status) {
9781 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9782 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9783 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9784 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9785 			    bp->pf.port_id);
9786 		if (bp->hwrm_spec_code >= 0x10201) {
9787 			netdev_warn(bp->dev, "Module part number %s\n",
9788 				    resp->phy_vendor_partnumber);
9789 		}
9790 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9791 			netdev_warn(bp->dev, "TX is disabled\n");
9792 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9793 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9794 	}
9795 }
9796 
9797 static void
9798 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9799 {
9800 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9801 		if (bp->hwrm_spec_code >= 0x10201)
9802 			req->auto_pause =
9803 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9804 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9805 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9806 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9807 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9808 		req->enables |=
9809 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9810 	} else {
9811 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9812 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9813 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9814 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9815 		req->enables |=
9816 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9817 		if (bp->hwrm_spec_code >= 0x10201) {
9818 			req->auto_pause = req->force_pause;
9819 			req->enables |= cpu_to_le32(
9820 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9821 		}
9822 	}
9823 }
9824 
9825 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9826 {
9827 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9828 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9829 		if (bp->link_info.advertising) {
9830 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9831 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9832 		}
9833 		if (bp->link_info.advertising_pam4) {
9834 			req->enables |=
9835 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9836 			req->auto_link_pam4_speed_mask =
9837 				cpu_to_le16(bp->link_info.advertising_pam4);
9838 		}
9839 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9840 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9841 	} else {
9842 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9843 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9844 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9845 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9846 		} else {
9847 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9848 		}
9849 	}
9850 
9851 	/* tell chimp that the setting takes effect immediately */
9852 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9853 }
9854 
9855 int bnxt_hwrm_set_pause(struct bnxt *bp)
9856 {
9857 	struct hwrm_port_phy_cfg_input *req;
9858 	int rc;
9859 
9860 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9861 	if (rc)
9862 		return rc;
9863 
9864 	bnxt_hwrm_set_pause_common(bp, req);
9865 
9866 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9867 	    bp->link_info.force_link_chng)
9868 		bnxt_hwrm_set_link_common(bp, req);
9869 
9870 	rc = hwrm_req_send(bp, req);
9871 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9872 		/* since changing of pause setting doesn't trigger any link
9873 		 * change event, the driver needs to update the current pause
9874 		 * result upon successfully return of the phy_cfg command
9875 		 */
9876 		bp->link_info.pause =
9877 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9878 		bp->link_info.auto_pause_setting = 0;
9879 		if (!bp->link_info.force_link_chng)
9880 			bnxt_report_link(bp);
9881 	}
9882 	bp->link_info.force_link_chng = false;
9883 	return rc;
9884 }
9885 
9886 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9887 			      struct hwrm_port_phy_cfg_input *req)
9888 {
9889 	struct ethtool_eee *eee = &bp->eee;
9890 
9891 	if (eee->eee_enabled) {
9892 		u16 eee_speeds;
9893 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9894 
9895 		if (eee->tx_lpi_enabled)
9896 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9897 		else
9898 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9899 
9900 		req->flags |= cpu_to_le32(flags);
9901 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9902 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9903 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9904 	} else {
9905 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9906 	}
9907 }
9908 
9909 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9910 {
9911 	struct hwrm_port_phy_cfg_input *req;
9912 	int rc;
9913 
9914 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9915 	if (rc)
9916 		return rc;
9917 
9918 	if (set_pause)
9919 		bnxt_hwrm_set_pause_common(bp, req);
9920 
9921 	bnxt_hwrm_set_link_common(bp, req);
9922 
9923 	if (set_eee)
9924 		bnxt_hwrm_set_eee(bp, req);
9925 	return hwrm_req_send(bp, req);
9926 }
9927 
9928 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9929 {
9930 	struct hwrm_port_phy_cfg_input *req;
9931 	int rc;
9932 
9933 	if (!BNXT_SINGLE_PF(bp))
9934 		return 0;
9935 
9936 	if (pci_num_vf(bp->pdev) &&
9937 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9938 		return 0;
9939 
9940 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9941 	if (rc)
9942 		return rc;
9943 
9944 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9945 	rc = hwrm_req_send(bp, req);
9946 	if (!rc) {
9947 		mutex_lock(&bp->link_lock);
9948 		/* Device is not obliged link down in certain scenarios, even
9949 		 * when forced. Setting the state unknown is consistent with
9950 		 * driver startup and will force link state to be reported
9951 		 * during subsequent open based on PORT_PHY_QCFG.
9952 		 */
9953 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9954 		mutex_unlock(&bp->link_lock);
9955 	}
9956 	return rc;
9957 }
9958 
9959 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9960 {
9961 #ifdef CONFIG_TEE_BNXT_FW
9962 	int rc = tee_bnxt_fw_load();
9963 
9964 	if (rc)
9965 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9966 
9967 	return rc;
9968 #else
9969 	netdev_err(bp->dev, "OP-TEE not supported\n");
9970 	return -ENODEV;
9971 #endif
9972 }
9973 
9974 static int bnxt_try_recover_fw(struct bnxt *bp)
9975 {
9976 	if (bp->fw_health && bp->fw_health->status_reliable) {
9977 		int retry = 0, rc;
9978 		u32 sts;
9979 
9980 		do {
9981 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9982 			rc = bnxt_hwrm_poll(bp);
9983 			if (!BNXT_FW_IS_BOOTING(sts) &&
9984 			    !BNXT_FW_IS_RECOVERING(sts))
9985 				break;
9986 			retry++;
9987 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9988 
9989 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9990 			netdev_err(bp->dev,
9991 				   "Firmware not responding, status: 0x%x\n",
9992 				   sts);
9993 			rc = -ENODEV;
9994 		}
9995 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9996 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9997 			return bnxt_fw_reset_via_optee(bp);
9998 		}
9999 		return rc;
10000 	}
10001 
10002 	return -ENODEV;
10003 }
10004 
10005 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10006 {
10007 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10008 
10009 	if (!BNXT_NEW_RM(bp))
10010 		return; /* no resource reservations required */
10011 
10012 	hw_resc->resv_cp_rings = 0;
10013 	hw_resc->resv_stat_ctxs = 0;
10014 	hw_resc->resv_irqs = 0;
10015 	hw_resc->resv_tx_rings = 0;
10016 	hw_resc->resv_rx_rings = 0;
10017 	hw_resc->resv_hw_ring_grps = 0;
10018 	hw_resc->resv_vnics = 0;
10019 	if (!fw_reset) {
10020 		bp->tx_nr_rings = 0;
10021 		bp->rx_nr_rings = 0;
10022 	}
10023 }
10024 
10025 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10026 {
10027 	int rc;
10028 
10029 	if (!BNXT_NEW_RM(bp))
10030 		return 0; /* no resource reservations required */
10031 
10032 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10033 	if (rc)
10034 		netdev_err(bp->dev, "resc_qcaps failed\n");
10035 
10036 	bnxt_clear_reservations(bp, fw_reset);
10037 
10038 	return rc;
10039 }
10040 
10041 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10042 {
10043 	struct hwrm_func_drv_if_change_output *resp;
10044 	struct hwrm_func_drv_if_change_input *req;
10045 	bool fw_reset = !bp->irq_tbl;
10046 	bool resc_reinit = false;
10047 	int rc, retry = 0;
10048 	u32 flags = 0;
10049 
10050 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10051 		return 0;
10052 
10053 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10054 	if (rc)
10055 		return rc;
10056 
10057 	if (up)
10058 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10059 	resp = hwrm_req_hold(bp, req);
10060 
10061 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10062 	while (retry < BNXT_FW_IF_RETRY) {
10063 		rc = hwrm_req_send(bp, req);
10064 		if (rc != -EAGAIN)
10065 			break;
10066 
10067 		msleep(50);
10068 		retry++;
10069 	}
10070 
10071 	if (rc == -EAGAIN) {
10072 		hwrm_req_drop(bp, req);
10073 		return rc;
10074 	} else if (!rc) {
10075 		flags = le32_to_cpu(resp->flags);
10076 	} else if (up) {
10077 		rc = bnxt_try_recover_fw(bp);
10078 		fw_reset = true;
10079 	}
10080 	hwrm_req_drop(bp, req);
10081 	if (rc)
10082 		return rc;
10083 
10084 	if (!up) {
10085 		bnxt_inv_fw_health_reg(bp);
10086 		return 0;
10087 	}
10088 
10089 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10090 		resc_reinit = true;
10091 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10092 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10093 		fw_reset = true;
10094 	else
10095 		bnxt_remap_fw_health_regs(bp);
10096 
10097 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10098 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10099 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10100 		return -ENODEV;
10101 	}
10102 	if (resc_reinit || fw_reset) {
10103 		if (fw_reset) {
10104 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10105 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10106 				bnxt_ulp_stop(bp);
10107 			bnxt_free_ctx_mem(bp);
10108 			kfree(bp->ctx);
10109 			bp->ctx = NULL;
10110 			bnxt_dcb_free(bp);
10111 			rc = bnxt_fw_init_one(bp);
10112 			if (rc) {
10113 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10114 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10115 				return rc;
10116 			}
10117 			bnxt_clear_int_mode(bp);
10118 			rc = bnxt_init_int_mode(bp);
10119 			if (rc) {
10120 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10121 				netdev_err(bp->dev, "init int mode failed\n");
10122 				return rc;
10123 			}
10124 		}
10125 		rc = bnxt_cancel_reservations(bp, fw_reset);
10126 	}
10127 	return rc;
10128 }
10129 
10130 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10131 {
10132 	struct hwrm_port_led_qcaps_output *resp;
10133 	struct hwrm_port_led_qcaps_input *req;
10134 	struct bnxt_pf_info *pf = &bp->pf;
10135 	int rc;
10136 
10137 	bp->num_leds = 0;
10138 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10139 		return 0;
10140 
10141 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10142 	if (rc)
10143 		return rc;
10144 
10145 	req->port_id = cpu_to_le16(pf->port_id);
10146 	resp = hwrm_req_hold(bp, req);
10147 	rc = hwrm_req_send(bp, req);
10148 	if (rc) {
10149 		hwrm_req_drop(bp, req);
10150 		return rc;
10151 	}
10152 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10153 		int i;
10154 
10155 		bp->num_leds = resp->num_leds;
10156 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10157 						 bp->num_leds);
10158 		for (i = 0; i < bp->num_leds; i++) {
10159 			struct bnxt_led_info *led = &bp->leds[i];
10160 			__le16 caps = led->led_state_caps;
10161 
10162 			if (!led->led_group_id ||
10163 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10164 				bp->num_leds = 0;
10165 				break;
10166 			}
10167 		}
10168 	}
10169 	hwrm_req_drop(bp, req);
10170 	return 0;
10171 }
10172 
10173 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10174 {
10175 	struct hwrm_wol_filter_alloc_output *resp;
10176 	struct hwrm_wol_filter_alloc_input *req;
10177 	int rc;
10178 
10179 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10180 	if (rc)
10181 		return rc;
10182 
10183 	req->port_id = cpu_to_le16(bp->pf.port_id);
10184 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10185 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10186 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10187 
10188 	resp = hwrm_req_hold(bp, req);
10189 	rc = hwrm_req_send(bp, req);
10190 	if (!rc)
10191 		bp->wol_filter_id = resp->wol_filter_id;
10192 	hwrm_req_drop(bp, req);
10193 	return rc;
10194 }
10195 
10196 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10197 {
10198 	struct hwrm_wol_filter_free_input *req;
10199 	int rc;
10200 
10201 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10202 	if (rc)
10203 		return rc;
10204 
10205 	req->port_id = cpu_to_le16(bp->pf.port_id);
10206 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10207 	req->wol_filter_id = bp->wol_filter_id;
10208 
10209 	return hwrm_req_send(bp, req);
10210 }
10211 
10212 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10213 {
10214 	struct hwrm_wol_filter_qcfg_output *resp;
10215 	struct hwrm_wol_filter_qcfg_input *req;
10216 	u16 next_handle = 0;
10217 	int rc;
10218 
10219 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10220 	if (rc)
10221 		return rc;
10222 
10223 	req->port_id = cpu_to_le16(bp->pf.port_id);
10224 	req->handle = cpu_to_le16(handle);
10225 	resp = hwrm_req_hold(bp, req);
10226 	rc = hwrm_req_send(bp, req);
10227 	if (!rc) {
10228 		next_handle = le16_to_cpu(resp->next_handle);
10229 		if (next_handle != 0) {
10230 			if (resp->wol_type ==
10231 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10232 				bp->wol = 1;
10233 				bp->wol_filter_id = resp->wol_filter_id;
10234 			}
10235 		}
10236 	}
10237 	hwrm_req_drop(bp, req);
10238 	return next_handle;
10239 }
10240 
10241 static void bnxt_get_wol_settings(struct bnxt *bp)
10242 {
10243 	u16 handle = 0;
10244 
10245 	bp->wol = 0;
10246 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10247 		return;
10248 
10249 	do {
10250 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10251 	} while (handle && handle != 0xffff);
10252 }
10253 
10254 #ifdef CONFIG_BNXT_HWMON
10255 static ssize_t bnxt_show_temp(struct device *dev,
10256 			      struct device_attribute *devattr, char *buf)
10257 {
10258 	struct hwrm_temp_monitor_query_output *resp;
10259 	struct hwrm_temp_monitor_query_input *req;
10260 	struct bnxt *bp = dev_get_drvdata(dev);
10261 	u32 len = 0;
10262 	int rc;
10263 
10264 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10265 	if (rc)
10266 		return rc;
10267 	resp = hwrm_req_hold(bp, req);
10268 	rc = hwrm_req_send(bp, req);
10269 	if (!rc)
10270 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10271 	hwrm_req_drop(bp, req);
10272 	if (rc)
10273 		return rc;
10274 	return len;
10275 }
10276 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10277 
10278 static struct attribute *bnxt_attrs[] = {
10279 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10280 	NULL
10281 };
10282 ATTRIBUTE_GROUPS(bnxt);
10283 
10284 static void bnxt_hwmon_close(struct bnxt *bp)
10285 {
10286 	if (bp->hwmon_dev) {
10287 		hwmon_device_unregister(bp->hwmon_dev);
10288 		bp->hwmon_dev = NULL;
10289 	}
10290 }
10291 
10292 static void bnxt_hwmon_open(struct bnxt *bp)
10293 {
10294 	struct hwrm_temp_monitor_query_input *req;
10295 	struct pci_dev *pdev = bp->pdev;
10296 	int rc;
10297 
10298 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10299 	if (!rc)
10300 		rc = hwrm_req_send_silent(bp, req);
10301 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10302 		bnxt_hwmon_close(bp);
10303 		return;
10304 	}
10305 
10306 	if (bp->hwmon_dev)
10307 		return;
10308 
10309 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10310 							  DRV_MODULE_NAME, bp,
10311 							  bnxt_groups);
10312 	if (IS_ERR(bp->hwmon_dev)) {
10313 		bp->hwmon_dev = NULL;
10314 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10315 	}
10316 }
10317 #else
10318 static void bnxt_hwmon_close(struct bnxt *bp)
10319 {
10320 }
10321 
10322 static void bnxt_hwmon_open(struct bnxt *bp)
10323 {
10324 }
10325 #endif
10326 
10327 static bool bnxt_eee_config_ok(struct bnxt *bp)
10328 {
10329 	struct ethtool_eee *eee = &bp->eee;
10330 	struct bnxt_link_info *link_info = &bp->link_info;
10331 
10332 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10333 		return true;
10334 
10335 	if (eee->eee_enabled) {
10336 		u32 advertising =
10337 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10338 
10339 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10340 			eee->eee_enabled = 0;
10341 			return false;
10342 		}
10343 		if (eee->advertised & ~advertising) {
10344 			eee->advertised = advertising & eee->supported;
10345 			return false;
10346 		}
10347 	}
10348 	return true;
10349 }
10350 
10351 static int bnxt_update_phy_setting(struct bnxt *bp)
10352 {
10353 	int rc;
10354 	bool update_link = false;
10355 	bool update_pause = false;
10356 	bool update_eee = false;
10357 	struct bnxt_link_info *link_info = &bp->link_info;
10358 
10359 	rc = bnxt_update_link(bp, true);
10360 	if (rc) {
10361 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10362 			   rc);
10363 		return rc;
10364 	}
10365 	if (!BNXT_SINGLE_PF(bp))
10366 		return 0;
10367 
10368 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10369 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10370 	    link_info->req_flow_ctrl)
10371 		update_pause = true;
10372 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10373 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10374 		update_pause = true;
10375 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10376 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10377 			update_link = true;
10378 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10379 		    link_info->req_link_speed != link_info->force_link_speed)
10380 			update_link = true;
10381 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10382 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10383 			update_link = true;
10384 		if (link_info->req_duplex != link_info->duplex_setting)
10385 			update_link = true;
10386 	} else {
10387 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10388 			update_link = true;
10389 		if (link_info->advertising != link_info->auto_link_speeds ||
10390 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10391 			update_link = true;
10392 	}
10393 
10394 	/* The last close may have shutdown the link, so need to call
10395 	 * PHY_CFG to bring it back up.
10396 	 */
10397 	if (!BNXT_LINK_IS_UP(bp))
10398 		update_link = true;
10399 
10400 	if (!bnxt_eee_config_ok(bp))
10401 		update_eee = true;
10402 
10403 	if (update_link)
10404 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10405 	else if (update_pause)
10406 		rc = bnxt_hwrm_set_pause(bp);
10407 	if (rc) {
10408 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10409 			   rc);
10410 		return rc;
10411 	}
10412 
10413 	return rc;
10414 }
10415 
10416 /* Common routine to pre-map certain register block to different GRC window.
10417  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10418  * in PF and 3 windows in VF that can be customized to map in different
10419  * register blocks.
10420  */
10421 static void bnxt_preset_reg_win(struct bnxt *bp)
10422 {
10423 	if (BNXT_PF(bp)) {
10424 		/* CAG registers map to GRC window #4 */
10425 		writel(BNXT_CAG_REG_BASE,
10426 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10427 	}
10428 }
10429 
10430 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10431 
10432 static int bnxt_reinit_after_abort(struct bnxt *bp)
10433 {
10434 	int rc;
10435 
10436 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10437 		return -EBUSY;
10438 
10439 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10440 		return -ENODEV;
10441 
10442 	rc = bnxt_fw_init_one(bp);
10443 	if (!rc) {
10444 		bnxt_clear_int_mode(bp);
10445 		rc = bnxt_init_int_mode(bp);
10446 		if (!rc) {
10447 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10448 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10449 		}
10450 	}
10451 	return rc;
10452 }
10453 
10454 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10455 {
10456 	int rc = 0;
10457 
10458 	bnxt_preset_reg_win(bp);
10459 	netif_carrier_off(bp->dev);
10460 	if (irq_re_init) {
10461 		/* Reserve rings now if none were reserved at driver probe. */
10462 		rc = bnxt_init_dflt_ring_mode(bp);
10463 		if (rc) {
10464 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10465 			return rc;
10466 		}
10467 	}
10468 	rc = bnxt_reserve_rings(bp, irq_re_init);
10469 	if (rc)
10470 		return rc;
10471 	if ((bp->flags & BNXT_FLAG_RFS) &&
10472 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10473 		/* disable RFS if falling back to INTA */
10474 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10475 		bp->flags &= ~BNXT_FLAG_RFS;
10476 	}
10477 
10478 	rc = bnxt_alloc_mem(bp, irq_re_init);
10479 	if (rc) {
10480 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10481 		goto open_err_free_mem;
10482 	}
10483 
10484 	if (irq_re_init) {
10485 		bnxt_init_napi(bp);
10486 		rc = bnxt_request_irq(bp);
10487 		if (rc) {
10488 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10489 			goto open_err_irq;
10490 		}
10491 	}
10492 
10493 	rc = bnxt_init_nic(bp, irq_re_init);
10494 	if (rc) {
10495 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10496 		goto open_err_irq;
10497 	}
10498 
10499 	bnxt_enable_napi(bp);
10500 	bnxt_debug_dev_init(bp);
10501 
10502 	if (link_re_init) {
10503 		mutex_lock(&bp->link_lock);
10504 		rc = bnxt_update_phy_setting(bp);
10505 		mutex_unlock(&bp->link_lock);
10506 		if (rc) {
10507 			netdev_warn(bp->dev, "failed to update phy settings\n");
10508 			if (BNXT_SINGLE_PF(bp)) {
10509 				bp->link_info.phy_retry = true;
10510 				bp->link_info.phy_retry_expires =
10511 					jiffies + 5 * HZ;
10512 			}
10513 		}
10514 	}
10515 
10516 	if (irq_re_init)
10517 		udp_tunnel_nic_reset_ntf(bp->dev);
10518 
10519 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10520 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10521 			static_branch_enable(&bnxt_xdp_locking_key);
10522 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10523 		static_branch_disable(&bnxt_xdp_locking_key);
10524 	}
10525 	set_bit(BNXT_STATE_OPEN, &bp->state);
10526 	bnxt_enable_int(bp);
10527 	/* Enable TX queues */
10528 	bnxt_tx_enable(bp);
10529 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10530 	/* Poll link status and check for SFP+ module status */
10531 	mutex_lock(&bp->link_lock);
10532 	bnxt_get_port_module_status(bp);
10533 	mutex_unlock(&bp->link_lock);
10534 
10535 	/* VF-reps may need to be re-opened after the PF is re-opened */
10536 	if (BNXT_PF(bp))
10537 		bnxt_vf_reps_open(bp);
10538 	bnxt_ptp_init_rtc(bp, true);
10539 	bnxt_ptp_cfg_tstamp_filters(bp);
10540 	return 0;
10541 
10542 open_err_irq:
10543 	bnxt_del_napi(bp);
10544 
10545 open_err_free_mem:
10546 	bnxt_free_skbs(bp);
10547 	bnxt_free_irq(bp);
10548 	bnxt_free_mem(bp, true);
10549 	return rc;
10550 }
10551 
10552 /* rtnl_lock held */
10553 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10554 {
10555 	int rc = 0;
10556 
10557 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10558 		rc = -EIO;
10559 	if (!rc)
10560 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10561 	if (rc) {
10562 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10563 		dev_close(bp->dev);
10564 	}
10565 	return rc;
10566 }
10567 
10568 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10569  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10570  * self tests.
10571  */
10572 int bnxt_half_open_nic(struct bnxt *bp)
10573 {
10574 	int rc = 0;
10575 
10576 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10577 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10578 		rc = -ENODEV;
10579 		goto half_open_err;
10580 	}
10581 
10582 	rc = bnxt_alloc_mem(bp, true);
10583 	if (rc) {
10584 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10585 		goto half_open_err;
10586 	}
10587 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10588 	rc = bnxt_init_nic(bp, true);
10589 	if (rc) {
10590 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10591 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10592 		goto half_open_err;
10593 	}
10594 	return 0;
10595 
10596 half_open_err:
10597 	bnxt_free_skbs(bp);
10598 	bnxt_free_mem(bp, true);
10599 	dev_close(bp->dev);
10600 	return rc;
10601 }
10602 
10603 /* rtnl_lock held, this call can only be made after a previous successful
10604  * call to bnxt_half_open_nic().
10605  */
10606 void bnxt_half_close_nic(struct bnxt *bp)
10607 {
10608 	bnxt_hwrm_resource_free(bp, false, true);
10609 	bnxt_free_skbs(bp);
10610 	bnxt_free_mem(bp, true);
10611 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10612 }
10613 
10614 void bnxt_reenable_sriov(struct bnxt *bp)
10615 {
10616 	if (BNXT_PF(bp)) {
10617 		struct bnxt_pf_info *pf = &bp->pf;
10618 		int n = pf->active_vfs;
10619 
10620 		if (n)
10621 			bnxt_cfg_hw_sriov(bp, &n, true);
10622 	}
10623 }
10624 
10625 static int bnxt_open(struct net_device *dev)
10626 {
10627 	struct bnxt *bp = netdev_priv(dev);
10628 	int rc;
10629 
10630 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10631 		rc = bnxt_reinit_after_abort(bp);
10632 		if (rc) {
10633 			if (rc == -EBUSY)
10634 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10635 			else
10636 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10637 			return -ENODEV;
10638 		}
10639 	}
10640 
10641 	rc = bnxt_hwrm_if_change(bp, true);
10642 	if (rc)
10643 		return rc;
10644 
10645 	rc = __bnxt_open_nic(bp, true, true);
10646 	if (rc) {
10647 		bnxt_hwrm_if_change(bp, false);
10648 	} else {
10649 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10650 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10651 				bnxt_ulp_start(bp, 0);
10652 				bnxt_reenable_sriov(bp);
10653 			}
10654 		}
10655 		bnxt_hwmon_open(bp);
10656 	}
10657 
10658 	return rc;
10659 }
10660 
10661 static bool bnxt_drv_busy(struct bnxt *bp)
10662 {
10663 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10664 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10665 }
10666 
10667 static void bnxt_get_ring_stats(struct bnxt *bp,
10668 				struct rtnl_link_stats64 *stats);
10669 
10670 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10671 			     bool link_re_init)
10672 {
10673 	/* Close the VF-reps before closing PF */
10674 	if (BNXT_PF(bp))
10675 		bnxt_vf_reps_close(bp);
10676 
10677 	/* Change device state to avoid TX queue wake up's */
10678 	bnxt_tx_disable(bp);
10679 
10680 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10681 	smp_mb__after_atomic();
10682 	while (bnxt_drv_busy(bp))
10683 		msleep(20);
10684 
10685 	/* Flush rings and disable interrupts */
10686 	bnxt_shutdown_nic(bp, irq_re_init);
10687 
10688 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10689 
10690 	bnxt_debug_dev_exit(bp);
10691 	bnxt_disable_napi(bp);
10692 	del_timer_sync(&bp->timer);
10693 	bnxt_free_skbs(bp);
10694 
10695 	/* Save ring stats before shutdown */
10696 	if (bp->bnapi && irq_re_init)
10697 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10698 	if (irq_re_init) {
10699 		bnxt_free_irq(bp);
10700 		bnxt_del_napi(bp);
10701 	}
10702 	bnxt_free_mem(bp, irq_re_init);
10703 }
10704 
10705 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10706 {
10707 	int rc = 0;
10708 
10709 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10710 		/* If we get here, it means firmware reset is in progress
10711 		 * while we are trying to close.  We can safely proceed with
10712 		 * the close because we are holding rtnl_lock().  Some firmware
10713 		 * messages may fail as we proceed to close.  We set the
10714 		 * ABORT_ERR flag here so that the FW reset thread will later
10715 		 * abort when it gets the rtnl_lock() and sees the flag.
10716 		 */
10717 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10718 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10719 	}
10720 
10721 #ifdef CONFIG_BNXT_SRIOV
10722 	if (bp->sriov_cfg) {
10723 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10724 						      !bp->sriov_cfg,
10725 						      BNXT_SRIOV_CFG_WAIT_TMO);
10726 		if (rc)
10727 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10728 	}
10729 #endif
10730 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10731 	return rc;
10732 }
10733 
10734 static int bnxt_close(struct net_device *dev)
10735 {
10736 	struct bnxt *bp = netdev_priv(dev);
10737 
10738 	bnxt_hwmon_close(bp);
10739 	bnxt_close_nic(bp, true, true);
10740 	bnxt_hwrm_shutdown_link(bp);
10741 	bnxt_hwrm_if_change(bp, false);
10742 	return 0;
10743 }
10744 
10745 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10746 				   u16 *val)
10747 {
10748 	struct hwrm_port_phy_mdio_read_output *resp;
10749 	struct hwrm_port_phy_mdio_read_input *req;
10750 	int rc;
10751 
10752 	if (bp->hwrm_spec_code < 0x10a00)
10753 		return -EOPNOTSUPP;
10754 
10755 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10756 	if (rc)
10757 		return rc;
10758 
10759 	req->port_id = cpu_to_le16(bp->pf.port_id);
10760 	req->phy_addr = phy_addr;
10761 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10762 	if (mdio_phy_id_is_c45(phy_addr)) {
10763 		req->cl45_mdio = 1;
10764 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10765 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10766 		req->reg_addr = cpu_to_le16(reg);
10767 	}
10768 
10769 	resp = hwrm_req_hold(bp, req);
10770 	rc = hwrm_req_send(bp, req);
10771 	if (!rc)
10772 		*val = le16_to_cpu(resp->reg_data);
10773 	hwrm_req_drop(bp, req);
10774 	return rc;
10775 }
10776 
10777 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10778 				    u16 val)
10779 {
10780 	struct hwrm_port_phy_mdio_write_input *req;
10781 	int rc;
10782 
10783 	if (bp->hwrm_spec_code < 0x10a00)
10784 		return -EOPNOTSUPP;
10785 
10786 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10787 	if (rc)
10788 		return rc;
10789 
10790 	req->port_id = cpu_to_le16(bp->pf.port_id);
10791 	req->phy_addr = phy_addr;
10792 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10793 	if (mdio_phy_id_is_c45(phy_addr)) {
10794 		req->cl45_mdio = 1;
10795 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10796 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10797 		req->reg_addr = cpu_to_le16(reg);
10798 	}
10799 	req->reg_data = cpu_to_le16(val);
10800 
10801 	return hwrm_req_send(bp, req);
10802 }
10803 
10804 /* rtnl_lock held */
10805 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10806 {
10807 	struct mii_ioctl_data *mdio = if_mii(ifr);
10808 	struct bnxt *bp = netdev_priv(dev);
10809 	int rc;
10810 
10811 	switch (cmd) {
10812 	case SIOCGMIIPHY:
10813 		mdio->phy_id = bp->link_info.phy_addr;
10814 
10815 		fallthrough;
10816 	case SIOCGMIIREG: {
10817 		u16 mii_regval = 0;
10818 
10819 		if (!netif_running(dev))
10820 			return -EAGAIN;
10821 
10822 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10823 					     &mii_regval);
10824 		mdio->val_out = mii_regval;
10825 		return rc;
10826 	}
10827 
10828 	case SIOCSMIIREG:
10829 		if (!netif_running(dev))
10830 			return -EAGAIN;
10831 
10832 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10833 						mdio->val_in);
10834 
10835 	case SIOCSHWTSTAMP:
10836 		return bnxt_hwtstamp_set(dev, ifr);
10837 
10838 	case SIOCGHWTSTAMP:
10839 		return bnxt_hwtstamp_get(dev, ifr);
10840 
10841 	default:
10842 		/* do nothing */
10843 		break;
10844 	}
10845 	return -EOPNOTSUPP;
10846 }
10847 
10848 static void bnxt_get_ring_stats(struct bnxt *bp,
10849 				struct rtnl_link_stats64 *stats)
10850 {
10851 	int i;
10852 
10853 	for (i = 0; i < bp->cp_nr_rings; i++) {
10854 		struct bnxt_napi *bnapi = bp->bnapi[i];
10855 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10856 		u64 *sw = cpr->stats.sw_stats;
10857 
10858 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10859 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10860 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10861 
10862 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10863 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10864 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10865 
10866 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10867 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10868 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10869 
10870 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10871 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10872 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10873 
10874 		stats->rx_missed_errors +=
10875 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10876 
10877 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10878 
10879 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10880 
10881 		stats->rx_dropped +=
10882 			cpr->sw_stats.rx.rx_netpoll_discards +
10883 			cpr->sw_stats.rx.rx_oom_discards;
10884 	}
10885 }
10886 
10887 static void bnxt_add_prev_stats(struct bnxt *bp,
10888 				struct rtnl_link_stats64 *stats)
10889 {
10890 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10891 
10892 	stats->rx_packets += prev_stats->rx_packets;
10893 	stats->tx_packets += prev_stats->tx_packets;
10894 	stats->rx_bytes += prev_stats->rx_bytes;
10895 	stats->tx_bytes += prev_stats->tx_bytes;
10896 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10897 	stats->multicast += prev_stats->multicast;
10898 	stats->rx_dropped += prev_stats->rx_dropped;
10899 	stats->tx_dropped += prev_stats->tx_dropped;
10900 }
10901 
10902 static void
10903 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10904 {
10905 	struct bnxt *bp = netdev_priv(dev);
10906 
10907 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10908 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10909 	 * we check the BNXT_STATE_OPEN flag.
10910 	 */
10911 	smp_mb__after_atomic();
10912 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10913 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10914 		*stats = bp->net_stats_prev;
10915 		return;
10916 	}
10917 
10918 	bnxt_get_ring_stats(bp, stats);
10919 	bnxt_add_prev_stats(bp, stats);
10920 
10921 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10922 		u64 *rx = bp->port_stats.sw_stats;
10923 		u64 *tx = bp->port_stats.sw_stats +
10924 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10925 
10926 		stats->rx_crc_errors =
10927 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10928 		stats->rx_frame_errors =
10929 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10930 		stats->rx_length_errors =
10931 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10932 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10933 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10934 		stats->rx_errors =
10935 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10936 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10937 		stats->collisions =
10938 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10939 		stats->tx_fifo_errors =
10940 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10941 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10942 	}
10943 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10944 }
10945 
10946 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10947 {
10948 	struct net_device *dev = bp->dev;
10949 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10950 	struct netdev_hw_addr *ha;
10951 	u8 *haddr;
10952 	int mc_count = 0;
10953 	bool update = false;
10954 	int off = 0;
10955 
10956 	netdev_for_each_mc_addr(ha, dev) {
10957 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10958 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10959 			vnic->mc_list_count = 0;
10960 			return false;
10961 		}
10962 		haddr = ha->addr;
10963 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10964 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10965 			update = true;
10966 		}
10967 		off += ETH_ALEN;
10968 		mc_count++;
10969 	}
10970 	if (mc_count)
10971 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10972 
10973 	if (mc_count != vnic->mc_list_count) {
10974 		vnic->mc_list_count = mc_count;
10975 		update = true;
10976 	}
10977 	return update;
10978 }
10979 
10980 static bool bnxt_uc_list_updated(struct bnxt *bp)
10981 {
10982 	struct net_device *dev = bp->dev;
10983 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10984 	struct netdev_hw_addr *ha;
10985 	int off = 0;
10986 
10987 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10988 		return true;
10989 
10990 	netdev_for_each_uc_addr(ha, dev) {
10991 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10992 			return true;
10993 
10994 		off += ETH_ALEN;
10995 	}
10996 	return false;
10997 }
10998 
10999 static void bnxt_set_rx_mode(struct net_device *dev)
11000 {
11001 	struct bnxt *bp = netdev_priv(dev);
11002 	struct bnxt_vnic_info *vnic;
11003 	bool mc_update = false;
11004 	bool uc_update;
11005 	u32 mask;
11006 
11007 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11008 		return;
11009 
11010 	vnic = &bp->vnic_info[0];
11011 	mask = vnic->rx_mask;
11012 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11013 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11014 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11015 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11016 
11017 	if (dev->flags & IFF_PROMISC)
11018 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11019 
11020 	uc_update = bnxt_uc_list_updated(bp);
11021 
11022 	if (dev->flags & IFF_BROADCAST)
11023 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11024 	if (dev->flags & IFF_ALLMULTI) {
11025 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11026 		vnic->mc_list_count = 0;
11027 	} else if (dev->flags & IFF_MULTICAST) {
11028 		mc_update = bnxt_mc_list_updated(bp, &mask);
11029 	}
11030 
11031 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11032 		vnic->rx_mask = mask;
11033 
11034 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11035 		bnxt_queue_sp_work(bp);
11036 	}
11037 }
11038 
11039 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11040 {
11041 	struct net_device *dev = bp->dev;
11042 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11043 	struct hwrm_cfa_l2_filter_free_input *req;
11044 	struct netdev_hw_addr *ha;
11045 	int i, off = 0, rc;
11046 	bool uc_update;
11047 
11048 	netif_addr_lock_bh(dev);
11049 	uc_update = bnxt_uc_list_updated(bp);
11050 	netif_addr_unlock_bh(dev);
11051 
11052 	if (!uc_update)
11053 		goto skip_uc;
11054 
11055 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11056 	if (rc)
11057 		return rc;
11058 	hwrm_req_hold(bp, req);
11059 	for (i = 1; i < vnic->uc_filter_count; i++) {
11060 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11061 
11062 		rc = hwrm_req_send(bp, req);
11063 	}
11064 	hwrm_req_drop(bp, req);
11065 
11066 	vnic->uc_filter_count = 1;
11067 
11068 	netif_addr_lock_bh(dev);
11069 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11070 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11071 	} else {
11072 		netdev_for_each_uc_addr(ha, dev) {
11073 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11074 			off += ETH_ALEN;
11075 			vnic->uc_filter_count++;
11076 		}
11077 	}
11078 	netif_addr_unlock_bh(dev);
11079 
11080 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11081 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11082 		if (rc) {
11083 			if (BNXT_VF(bp) && rc == -ENODEV) {
11084 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11085 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11086 				else
11087 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11088 				rc = 0;
11089 			} else {
11090 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11091 			}
11092 			vnic->uc_filter_count = i;
11093 			return rc;
11094 		}
11095 	}
11096 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11097 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11098 
11099 skip_uc:
11100 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11101 	    !bnxt_promisc_ok(bp))
11102 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11103 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11104 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11105 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11106 			    rc);
11107 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11108 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11109 		vnic->mc_list_count = 0;
11110 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11111 	}
11112 	if (rc)
11113 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11114 			   rc);
11115 
11116 	return rc;
11117 }
11118 
11119 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11120 {
11121 #ifdef CONFIG_BNXT_SRIOV
11122 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11123 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11124 
11125 		/* No minimum rings were provisioned by the PF.  Don't
11126 		 * reserve rings by default when device is down.
11127 		 */
11128 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11129 			return true;
11130 
11131 		if (!netif_running(bp->dev))
11132 			return false;
11133 	}
11134 #endif
11135 	return true;
11136 }
11137 
11138 /* If the chip and firmware supports RFS */
11139 static bool bnxt_rfs_supported(struct bnxt *bp)
11140 {
11141 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11142 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11143 			return true;
11144 		return false;
11145 	}
11146 	/* 212 firmware is broken for aRFS */
11147 	if (BNXT_FW_MAJ(bp) == 212)
11148 		return false;
11149 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11150 		return true;
11151 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11152 		return true;
11153 	return false;
11154 }
11155 
11156 /* If runtime conditions support RFS */
11157 static bool bnxt_rfs_capable(struct bnxt *bp)
11158 {
11159 #ifdef CONFIG_RFS_ACCEL
11160 	int vnics, max_vnics, max_rss_ctxs;
11161 
11162 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11163 		return bnxt_rfs_supported(bp);
11164 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11165 		return false;
11166 
11167 	vnics = 1 + bp->rx_nr_rings;
11168 	max_vnics = bnxt_get_max_func_vnics(bp);
11169 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11170 
11171 	/* RSS contexts not a limiting factor */
11172 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11173 		max_rss_ctxs = max_vnics;
11174 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11175 		if (bp->rx_nr_rings > 1)
11176 			netdev_warn(bp->dev,
11177 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11178 				    min(max_rss_ctxs - 1, max_vnics - 1));
11179 		return false;
11180 	}
11181 
11182 	if (!BNXT_NEW_RM(bp))
11183 		return true;
11184 
11185 	if (vnics == bp->hw_resc.resv_vnics)
11186 		return true;
11187 
11188 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11189 	if (vnics <= bp->hw_resc.resv_vnics)
11190 		return true;
11191 
11192 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11193 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11194 	return false;
11195 #else
11196 	return false;
11197 #endif
11198 }
11199 
11200 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11201 					   netdev_features_t features)
11202 {
11203 	struct bnxt *bp = netdev_priv(dev);
11204 	netdev_features_t vlan_features;
11205 
11206 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11207 		features &= ~NETIF_F_NTUPLE;
11208 
11209 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11210 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11211 
11212 	if (!(features & NETIF_F_GRO))
11213 		features &= ~NETIF_F_GRO_HW;
11214 
11215 	if (features & NETIF_F_GRO_HW)
11216 		features &= ~NETIF_F_LRO;
11217 
11218 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11219 	 * turned on or off together.
11220 	 */
11221 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11222 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11223 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11224 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11225 		else if (vlan_features)
11226 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11227 	}
11228 #ifdef CONFIG_BNXT_SRIOV
11229 	if (BNXT_VF(bp) && bp->vf.vlan)
11230 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11231 #endif
11232 	return features;
11233 }
11234 
11235 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11236 {
11237 	struct bnxt *bp = netdev_priv(dev);
11238 	u32 flags = bp->flags;
11239 	u32 changes;
11240 	int rc = 0;
11241 	bool re_init = false;
11242 	bool update_tpa = false;
11243 
11244 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11245 	if (features & NETIF_F_GRO_HW)
11246 		flags |= BNXT_FLAG_GRO;
11247 	else if (features & NETIF_F_LRO)
11248 		flags |= BNXT_FLAG_LRO;
11249 
11250 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11251 		flags &= ~BNXT_FLAG_TPA;
11252 
11253 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11254 		flags |= BNXT_FLAG_STRIP_VLAN;
11255 
11256 	if (features & NETIF_F_NTUPLE)
11257 		flags |= BNXT_FLAG_RFS;
11258 
11259 	changes = flags ^ bp->flags;
11260 	if (changes & BNXT_FLAG_TPA) {
11261 		update_tpa = true;
11262 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11263 		    (flags & BNXT_FLAG_TPA) == 0 ||
11264 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11265 			re_init = true;
11266 	}
11267 
11268 	if (changes & ~BNXT_FLAG_TPA)
11269 		re_init = true;
11270 
11271 	if (flags != bp->flags) {
11272 		u32 old_flags = bp->flags;
11273 
11274 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11275 			bp->flags = flags;
11276 			if (update_tpa)
11277 				bnxt_set_ring_params(bp);
11278 			return rc;
11279 		}
11280 
11281 		if (re_init) {
11282 			bnxt_close_nic(bp, false, false);
11283 			bp->flags = flags;
11284 			if (update_tpa)
11285 				bnxt_set_ring_params(bp);
11286 
11287 			return bnxt_open_nic(bp, false, false);
11288 		}
11289 		if (update_tpa) {
11290 			bp->flags = flags;
11291 			rc = bnxt_set_tpa(bp,
11292 					  (flags & BNXT_FLAG_TPA) ?
11293 					  true : false);
11294 			if (rc)
11295 				bp->flags = old_flags;
11296 		}
11297 	}
11298 	return rc;
11299 }
11300 
11301 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11302 			      u8 **nextp)
11303 {
11304 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11305 	struct hop_jumbo_hdr *jhdr;
11306 	int hdr_count = 0;
11307 	u8 *nexthdr;
11308 	int start;
11309 
11310 	/* Check that there are at most 2 IPv6 extension headers, no
11311 	 * fragment header, and each is <= 64 bytes.
11312 	 */
11313 	start = nw_off + sizeof(*ip6h);
11314 	nexthdr = &ip6h->nexthdr;
11315 	while (ipv6_ext_hdr(*nexthdr)) {
11316 		struct ipv6_opt_hdr *hp;
11317 		int hdrlen;
11318 
11319 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11320 		    *nexthdr == NEXTHDR_FRAGMENT)
11321 			return false;
11322 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11323 					  skb_headlen(skb), NULL);
11324 		if (!hp)
11325 			return false;
11326 		if (*nexthdr == NEXTHDR_AUTH)
11327 			hdrlen = ipv6_authlen(hp);
11328 		else
11329 			hdrlen = ipv6_optlen(hp);
11330 
11331 		if (hdrlen > 64)
11332 			return false;
11333 
11334 		/* The ext header may be a hop-by-hop header inserted for
11335 		 * big TCP purposes. This will be removed before sending
11336 		 * from NIC, so do not count it.
11337 		 */
11338 		if (*nexthdr == NEXTHDR_HOP) {
11339 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
11340 				goto increment_hdr;
11341 
11342 			jhdr = (struct hop_jumbo_hdr *)hp;
11343 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
11344 			    jhdr->nexthdr != IPPROTO_TCP)
11345 				goto increment_hdr;
11346 
11347 			goto next_hdr;
11348 		}
11349 increment_hdr:
11350 		hdr_count++;
11351 next_hdr:
11352 		nexthdr = &hp->nexthdr;
11353 		start += hdrlen;
11354 	}
11355 	if (nextp) {
11356 		/* Caller will check inner protocol */
11357 		if (skb->encapsulation) {
11358 			*nextp = nexthdr;
11359 			return true;
11360 		}
11361 		*nextp = NULL;
11362 	}
11363 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11364 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11365 }
11366 
11367 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11368 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11369 {
11370 	struct udphdr *uh = udp_hdr(skb);
11371 	__be16 udp_port = uh->dest;
11372 
11373 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11374 		return false;
11375 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11376 		struct ethhdr *eh = inner_eth_hdr(skb);
11377 
11378 		switch (eh->h_proto) {
11379 		case htons(ETH_P_IP):
11380 			return true;
11381 		case htons(ETH_P_IPV6):
11382 			return bnxt_exthdr_check(bp, skb,
11383 						 skb_inner_network_offset(skb),
11384 						 NULL);
11385 		}
11386 	}
11387 	return false;
11388 }
11389 
11390 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11391 {
11392 	switch (l4_proto) {
11393 	case IPPROTO_UDP:
11394 		return bnxt_udp_tunl_check(bp, skb);
11395 	case IPPROTO_IPIP:
11396 		return true;
11397 	case IPPROTO_GRE: {
11398 		switch (skb->inner_protocol) {
11399 		default:
11400 			return false;
11401 		case htons(ETH_P_IP):
11402 			return true;
11403 		case htons(ETH_P_IPV6):
11404 			fallthrough;
11405 		}
11406 	}
11407 	case IPPROTO_IPV6:
11408 		/* Check ext headers of inner ipv6 */
11409 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11410 					 NULL);
11411 	}
11412 	return false;
11413 }
11414 
11415 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11416 					     struct net_device *dev,
11417 					     netdev_features_t features)
11418 {
11419 	struct bnxt *bp = netdev_priv(dev);
11420 	u8 *l4_proto;
11421 
11422 	features = vlan_features_check(skb, features);
11423 	switch (vlan_get_protocol(skb)) {
11424 	case htons(ETH_P_IP):
11425 		if (!skb->encapsulation)
11426 			return features;
11427 		l4_proto = &ip_hdr(skb)->protocol;
11428 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11429 			return features;
11430 		break;
11431 	case htons(ETH_P_IPV6):
11432 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11433 				       &l4_proto))
11434 			break;
11435 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11436 			return features;
11437 		break;
11438 	}
11439 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11440 }
11441 
11442 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11443 			 u32 *reg_buf)
11444 {
11445 	struct hwrm_dbg_read_direct_output *resp;
11446 	struct hwrm_dbg_read_direct_input *req;
11447 	__le32 *dbg_reg_buf;
11448 	dma_addr_t mapping;
11449 	int rc, i;
11450 
11451 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11452 	if (rc)
11453 		return rc;
11454 
11455 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11456 					 &mapping);
11457 	if (!dbg_reg_buf) {
11458 		rc = -ENOMEM;
11459 		goto dbg_rd_reg_exit;
11460 	}
11461 
11462 	req->host_dest_addr = cpu_to_le64(mapping);
11463 
11464 	resp = hwrm_req_hold(bp, req);
11465 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11466 	req->read_len32 = cpu_to_le32(num_words);
11467 
11468 	rc = hwrm_req_send(bp, req);
11469 	if (rc || resp->error_code) {
11470 		rc = -EIO;
11471 		goto dbg_rd_reg_exit;
11472 	}
11473 	for (i = 0; i < num_words; i++)
11474 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11475 
11476 dbg_rd_reg_exit:
11477 	hwrm_req_drop(bp, req);
11478 	return rc;
11479 }
11480 
11481 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11482 				       u32 ring_id, u32 *prod, u32 *cons)
11483 {
11484 	struct hwrm_dbg_ring_info_get_output *resp;
11485 	struct hwrm_dbg_ring_info_get_input *req;
11486 	int rc;
11487 
11488 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11489 	if (rc)
11490 		return rc;
11491 
11492 	req->ring_type = ring_type;
11493 	req->fw_ring_id = cpu_to_le32(ring_id);
11494 	resp = hwrm_req_hold(bp, req);
11495 	rc = hwrm_req_send(bp, req);
11496 	if (!rc) {
11497 		*prod = le32_to_cpu(resp->producer_index);
11498 		*cons = le32_to_cpu(resp->consumer_index);
11499 	}
11500 	hwrm_req_drop(bp, req);
11501 	return rc;
11502 }
11503 
11504 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11505 {
11506 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11507 	int i = bnapi->index;
11508 
11509 	if (!txr)
11510 		return;
11511 
11512 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11513 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11514 		    txr->tx_cons);
11515 }
11516 
11517 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11518 {
11519 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11520 	int i = bnapi->index;
11521 
11522 	if (!rxr)
11523 		return;
11524 
11525 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11526 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11527 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11528 		    rxr->rx_sw_agg_prod);
11529 }
11530 
11531 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11532 {
11533 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11534 	int i = bnapi->index;
11535 
11536 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11537 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11538 }
11539 
11540 static void bnxt_dbg_dump_states(struct bnxt *bp)
11541 {
11542 	int i;
11543 	struct bnxt_napi *bnapi;
11544 
11545 	for (i = 0; i < bp->cp_nr_rings; i++) {
11546 		bnapi = bp->bnapi[i];
11547 		if (netif_msg_drv(bp)) {
11548 			bnxt_dump_tx_sw_state(bnapi);
11549 			bnxt_dump_rx_sw_state(bnapi);
11550 			bnxt_dump_cp_sw_state(bnapi);
11551 		}
11552 	}
11553 }
11554 
11555 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11556 {
11557 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11558 	struct hwrm_ring_reset_input *req;
11559 	struct bnxt_napi *bnapi = rxr->bnapi;
11560 	struct bnxt_cp_ring_info *cpr;
11561 	u16 cp_ring_id;
11562 	int rc;
11563 
11564 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11565 	if (rc)
11566 		return rc;
11567 
11568 	cpr = &bnapi->cp_ring;
11569 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11570 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11571 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11572 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11573 	return hwrm_req_send_silent(bp, req);
11574 }
11575 
11576 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11577 {
11578 	if (!silent)
11579 		bnxt_dbg_dump_states(bp);
11580 	if (netif_running(bp->dev)) {
11581 		int rc;
11582 
11583 		if (silent) {
11584 			bnxt_close_nic(bp, false, false);
11585 			bnxt_open_nic(bp, false, false);
11586 		} else {
11587 			bnxt_ulp_stop(bp);
11588 			bnxt_close_nic(bp, true, false);
11589 			rc = bnxt_open_nic(bp, true, false);
11590 			bnxt_ulp_start(bp, rc);
11591 		}
11592 	}
11593 }
11594 
11595 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11596 {
11597 	struct bnxt *bp = netdev_priv(dev);
11598 
11599 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11600 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11601 	bnxt_queue_sp_work(bp);
11602 }
11603 
11604 static void bnxt_fw_health_check(struct bnxt *bp)
11605 {
11606 	struct bnxt_fw_health *fw_health = bp->fw_health;
11607 	struct pci_dev *pdev = bp->pdev;
11608 	u32 val;
11609 
11610 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11611 		return;
11612 
11613 	/* Make sure it is enabled before checking the tmr_counter. */
11614 	smp_rmb();
11615 	if (fw_health->tmr_counter) {
11616 		fw_health->tmr_counter--;
11617 		return;
11618 	}
11619 
11620 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11621 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
11622 		fw_health->arrests++;
11623 		goto fw_reset;
11624 	}
11625 
11626 	fw_health->last_fw_heartbeat = val;
11627 
11628 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11629 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
11630 		fw_health->discoveries++;
11631 		goto fw_reset;
11632 	}
11633 
11634 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11635 	return;
11636 
11637 fw_reset:
11638 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11639 	bnxt_queue_sp_work(bp);
11640 }
11641 
11642 static void bnxt_timer(struct timer_list *t)
11643 {
11644 	struct bnxt *bp = from_timer(bp, t, timer);
11645 	struct net_device *dev = bp->dev;
11646 
11647 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11648 		return;
11649 
11650 	if (atomic_read(&bp->intr_sem) != 0)
11651 		goto bnxt_restart_timer;
11652 
11653 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11654 		bnxt_fw_health_check(bp);
11655 
11656 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11657 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11658 		bnxt_queue_sp_work(bp);
11659 	}
11660 
11661 	if (bnxt_tc_flower_enabled(bp)) {
11662 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11663 		bnxt_queue_sp_work(bp);
11664 	}
11665 
11666 #ifdef CONFIG_RFS_ACCEL
11667 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11668 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11669 		bnxt_queue_sp_work(bp);
11670 	}
11671 #endif /*CONFIG_RFS_ACCEL*/
11672 
11673 	if (bp->link_info.phy_retry) {
11674 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11675 			bp->link_info.phy_retry = false;
11676 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11677 		} else {
11678 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11679 			bnxt_queue_sp_work(bp);
11680 		}
11681 	}
11682 
11683 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11684 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11685 		bnxt_queue_sp_work(bp);
11686 	}
11687 
11688 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11689 	    netif_carrier_ok(dev)) {
11690 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11691 		bnxt_queue_sp_work(bp);
11692 	}
11693 bnxt_restart_timer:
11694 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11695 }
11696 
11697 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11698 {
11699 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11700 	 * set.  If the device is being closed, bnxt_close() may be holding
11701 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11702 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11703 	 */
11704 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11705 	rtnl_lock();
11706 }
11707 
11708 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11709 {
11710 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11711 	rtnl_unlock();
11712 }
11713 
11714 /* Only called from bnxt_sp_task() */
11715 static void bnxt_reset(struct bnxt *bp, bool silent)
11716 {
11717 	bnxt_rtnl_lock_sp(bp);
11718 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11719 		bnxt_reset_task(bp, silent);
11720 	bnxt_rtnl_unlock_sp(bp);
11721 }
11722 
11723 /* Only called from bnxt_sp_task() */
11724 static void bnxt_rx_ring_reset(struct bnxt *bp)
11725 {
11726 	int i;
11727 
11728 	bnxt_rtnl_lock_sp(bp);
11729 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11730 		bnxt_rtnl_unlock_sp(bp);
11731 		return;
11732 	}
11733 	/* Disable and flush TPA before resetting the RX ring */
11734 	if (bp->flags & BNXT_FLAG_TPA)
11735 		bnxt_set_tpa(bp, false);
11736 	for (i = 0; i < bp->rx_nr_rings; i++) {
11737 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11738 		struct bnxt_cp_ring_info *cpr;
11739 		int rc;
11740 
11741 		if (!rxr->bnapi->in_reset)
11742 			continue;
11743 
11744 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11745 		if (rc) {
11746 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11747 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11748 			else
11749 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11750 					    rc);
11751 			bnxt_reset_task(bp, true);
11752 			break;
11753 		}
11754 		bnxt_free_one_rx_ring_skbs(bp, i);
11755 		rxr->rx_prod = 0;
11756 		rxr->rx_agg_prod = 0;
11757 		rxr->rx_sw_agg_prod = 0;
11758 		rxr->rx_next_cons = 0;
11759 		rxr->bnapi->in_reset = false;
11760 		bnxt_alloc_one_rx_ring(bp, i);
11761 		cpr = &rxr->bnapi->cp_ring;
11762 		cpr->sw_stats.rx.rx_resets++;
11763 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11764 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11765 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11766 	}
11767 	if (bp->flags & BNXT_FLAG_TPA)
11768 		bnxt_set_tpa(bp, true);
11769 	bnxt_rtnl_unlock_sp(bp);
11770 }
11771 
11772 static void bnxt_fw_reset_close(struct bnxt *bp)
11773 {
11774 	bnxt_ulp_stop(bp);
11775 	/* When firmware is in fatal state, quiesce device and disable
11776 	 * bus master to prevent any potential bad DMAs before freeing
11777 	 * kernel memory.
11778 	 */
11779 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11780 		u16 val = 0;
11781 
11782 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11783 		if (val == 0xffff)
11784 			bp->fw_reset_min_dsecs = 0;
11785 		bnxt_tx_disable(bp);
11786 		bnxt_disable_napi(bp);
11787 		bnxt_disable_int_sync(bp);
11788 		bnxt_free_irq(bp);
11789 		bnxt_clear_int_mode(bp);
11790 		pci_disable_device(bp->pdev);
11791 	}
11792 	__bnxt_close_nic(bp, true, false);
11793 	bnxt_vf_reps_free(bp);
11794 	bnxt_clear_int_mode(bp);
11795 	bnxt_hwrm_func_drv_unrgtr(bp);
11796 	if (pci_is_enabled(bp->pdev))
11797 		pci_disable_device(bp->pdev);
11798 	bnxt_free_ctx_mem(bp);
11799 	kfree(bp->ctx);
11800 	bp->ctx = NULL;
11801 }
11802 
11803 static bool is_bnxt_fw_ok(struct bnxt *bp)
11804 {
11805 	struct bnxt_fw_health *fw_health = bp->fw_health;
11806 	bool no_heartbeat = false, has_reset = false;
11807 	u32 val;
11808 
11809 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11810 	if (val == fw_health->last_fw_heartbeat)
11811 		no_heartbeat = true;
11812 
11813 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11814 	if (val != fw_health->last_fw_reset_cnt)
11815 		has_reset = true;
11816 
11817 	if (!no_heartbeat && has_reset)
11818 		return true;
11819 
11820 	return false;
11821 }
11822 
11823 /* rtnl_lock is acquired before calling this function */
11824 static void bnxt_force_fw_reset(struct bnxt *bp)
11825 {
11826 	struct bnxt_fw_health *fw_health = bp->fw_health;
11827 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11828 	u32 wait_dsecs;
11829 
11830 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11831 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11832 		return;
11833 
11834 	if (ptp) {
11835 		spin_lock_bh(&ptp->ptp_lock);
11836 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11837 		spin_unlock_bh(&ptp->ptp_lock);
11838 	} else {
11839 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11840 	}
11841 	bnxt_fw_reset_close(bp);
11842 	wait_dsecs = fw_health->master_func_wait_dsecs;
11843 	if (fw_health->primary) {
11844 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11845 			wait_dsecs = 0;
11846 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11847 	} else {
11848 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11849 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11850 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11851 	}
11852 
11853 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11854 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11855 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11856 }
11857 
11858 void bnxt_fw_exception(struct bnxt *bp)
11859 {
11860 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11861 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11862 	bnxt_rtnl_lock_sp(bp);
11863 	bnxt_force_fw_reset(bp);
11864 	bnxt_rtnl_unlock_sp(bp);
11865 }
11866 
11867 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11868  * < 0 on error.
11869  */
11870 static int bnxt_get_registered_vfs(struct bnxt *bp)
11871 {
11872 #ifdef CONFIG_BNXT_SRIOV
11873 	int rc;
11874 
11875 	if (!BNXT_PF(bp))
11876 		return 0;
11877 
11878 	rc = bnxt_hwrm_func_qcfg(bp);
11879 	if (rc) {
11880 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11881 		return rc;
11882 	}
11883 	if (bp->pf.registered_vfs)
11884 		return bp->pf.registered_vfs;
11885 	if (bp->sriov_cfg)
11886 		return 1;
11887 #endif
11888 	return 0;
11889 }
11890 
11891 void bnxt_fw_reset(struct bnxt *bp)
11892 {
11893 	bnxt_rtnl_lock_sp(bp);
11894 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11895 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11896 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11897 		int n = 0, tmo;
11898 
11899 		if (ptp) {
11900 			spin_lock_bh(&ptp->ptp_lock);
11901 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11902 			spin_unlock_bh(&ptp->ptp_lock);
11903 		} else {
11904 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11905 		}
11906 		if (bp->pf.active_vfs &&
11907 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11908 			n = bnxt_get_registered_vfs(bp);
11909 		if (n < 0) {
11910 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11911 				   n);
11912 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11913 			dev_close(bp->dev);
11914 			goto fw_reset_exit;
11915 		} else if (n > 0) {
11916 			u16 vf_tmo_dsecs = n * 10;
11917 
11918 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11919 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11920 			bp->fw_reset_state =
11921 				BNXT_FW_RESET_STATE_POLL_VF;
11922 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11923 			goto fw_reset_exit;
11924 		}
11925 		bnxt_fw_reset_close(bp);
11926 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11927 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11928 			tmo = HZ / 10;
11929 		} else {
11930 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11931 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11932 		}
11933 		bnxt_queue_fw_reset_work(bp, tmo);
11934 	}
11935 fw_reset_exit:
11936 	bnxt_rtnl_unlock_sp(bp);
11937 }
11938 
11939 static void bnxt_chk_missed_irq(struct bnxt *bp)
11940 {
11941 	int i;
11942 
11943 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11944 		return;
11945 
11946 	for (i = 0; i < bp->cp_nr_rings; i++) {
11947 		struct bnxt_napi *bnapi = bp->bnapi[i];
11948 		struct bnxt_cp_ring_info *cpr;
11949 		u32 fw_ring_id;
11950 		int j;
11951 
11952 		if (!bnapi)
11953 			continue;
11954 
11955 		cpr = &bnapi->cp_ring;
11956 		for (j = 0; j < 2; j++) {
11957 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11958 			u32 val[2];
11959 
11960 			if (!cpr2 || cpr2->has_more_work ||
11961 			    !bnxt_has_work(bp, cpr2))
11962 				continue;
11963 
11964 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11965 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11966 				continue;
11967 			}
11968 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11969 			bnxt_dbg_hwrm_ring_info_get(bp,
11970 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11971 				fw_ring_id, &val[0], &val[1]);
11972 			cpr->sw_stats.cmn.missed_irqs++;
11973 		}
11974 	}
11975 }
11976 
11977 static void bnxt_cfg_ntp_filters(struct bnxt *);
11978 
11979 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11980 {
11981 	struct bnxt_link_info *link_info = &bp->link_info;
11982 
11983 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11984 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11985 		if (bp->hwrm_spec_code >= 0x10201) {
11986 			if (link_info->auto_pause_setting &
11987 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11988 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11989 		} else {
11990 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11991 		}
11992 		link_info->advertising = link_info->auto_link_speeds;
11993 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11994 	} else {
11995 		link_info->req_link_speed = link_info->force_link_speed;
11996 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11997 		if (link_info->force_pam4_link_speed) {
11998 			link_info->req_link_speed =
11999 				link_info->force_pam4_link_speed;
12000 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
12001 		}
12002 		link_info->req_duplex = link_info->duplex_setting;
12003 	}
12004 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12005 		link_info->req_flow_ctrl =
12006 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12007 	else
12008 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12009 }
12010 
12011 static void bnxt_fw_echo_reply(struct bnxt *bp)
12012 {
12013 	struct bnxt_fw_health *fw_health = bp->fw_health;
12014 	struct hwrm_func_echo_response_input *req;
12015 	int rc;
12016 
12017 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12018 	if (rc)
12019 		return;
12020 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12021 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12022 	hwrm_req_send(bp, req);
12023 }
12024 
12025 static void bnxt_sp_task(struct work_struct *work)
12026 {
12027 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12028 
12029 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12030 	smp_mb__after_atomic();
12031 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12032 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12033 		return;
12034 	}
12035 
12036 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12037 		bnxt_cfg_rx_mode(bp);
12038 
12039 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12040 		bnxt_cfg_ntp_filters(bp);
12041 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12042 		bnxt_hwrm_exec_fwd_req(bp);
12043 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12044 		bnxt_hwrm_port_qstats(bp, 0);
12045 		bnxt_hwrm_port_qstats_ext(bp, 0);
12046 		bnxt_accumulate_all_stats(bp);
12047 	}
12048 
12049 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12050 		int rc;
12051 
12052 		mutex_lock(&bp->link_lock);
12053 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12054 				       &bp->sp_event))
12055 			bnxt_hwrm_phy_qcaps(bp);
12056 
12057 		rc = bnxt_update_link(bp, true);
12058 		if (rc)
12059 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12060 				   rc);
12061 
12062 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12063 				       &bp->sp_event))
12064 			bnxt_init_ethtool_link_settings(bp);
12065 		mutex_unlock(&bp->link_lock);
12066 	}
12067 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12068 		int rc;
12069 
12070 		mutex_lock(&bp->link_lock);
12071 		rc = bnxt_update_phy_setting(bp);
12072 		mutex_unlock(&bp->link_lock);
12073 		if (rc) {
12074 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12075 		} else {
12076 			bp->link_info.phy_retry = false;
12077 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12078 		}
12079 	}
12080 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12081 		mutex_lock(&bp->link_lock);
12082 		bnxt_get_port_module_status(bp);
12083 		mutex_unlock(&bp->link_lock);
12084 	}
12085 
12086 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12087 		bnxt_tc_flow_stats_work(bp);
12088 
12089 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12090 		bnxt_chk_missed_irq(bp);
12091 
12092 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12093 		bnxt_fw_echo_reply(bp);
12094 
12095 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12096 	 * must be the last functions to be called before exiting.
12097 	 */
12098 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12099 		bnxt_reset(bp, false);
12100 
12101 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12102 		bnxt_reset(bp, true);
12103 
12104 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12105 		bnxt_rx_ring_reset(bp);
12106 
12107 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12108 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12109 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12110 			bnxt_devlink_health_fw_report(bp);
12111 		else
12112 			bnxt_fw_reset(bp);
12113 	}
12114 
12115 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12116 		if (!is_bnxt_fw_ok(bp))
12117 			bnxt_devlink_health_fw_report(bp);
12118 	}
12119 
12120 	smp_mb__before_atomic();
12121 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12122 }
12123 
12124 /* Under rtnl_lock */
12125 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12126 		     int tx_xdp)
12127 {
12128 	int max_rx, max_tx, tx_sets = 1;
12129 	int tx_rings_needed, stats;
12130 	int rx_rings = rx;
12131 	int cp, vnics, rc;
12132 
12133 	if (tcs)
12134 		tx_sets = tcs;
12135 
12136 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12137 	if (rc)
12138 		return rc;
12139 
12140 	if (max_rx < rx)
12141 		return -ENOMEM;
12142 
12143 	tx_rings_needed = tx * tx_sets + tx_xdp;
12144 	if (max_tx < tx_rings_needed)
12145 		return -ENOMEM;
12146 
12147 	vnics = 1;
12148 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12149 		vnics += rx_rings;
12150 
12151 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12152 		rx_rings <<= 1;
12153 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12154 	stats = cp;
12155 	if (BNXT_NEW_RM(bp)) {
12156 		cp += bnxt_get_ulp_msix_num(bp);
12157 		stats += bnxt_get_ulp_stat_ctxs(bp);
12158 	}
12159 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12160 				     stats, vnics);
12161 }
12162 
12163 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12164 {
12165 	if (bp->bar2) {
12166 		pci_iounmap(pdev, bp->bar2);
12167 		bp->bar2 = NULL;
12168 	}
12169 
12170 	if (bp->bar1) {
12171 		pci_iounmap(pdev, bp->bar1);
12172 		bp->bar1 = NULL;
12173 	}
12174 
12175 	if (bp->bar0) {
12176 		pci_iounmap(pdev, bp->bar0);
12177 		bp->bar0 = NULL;
12178 	}
12179 }
12180 
12181 static void bnxt_cleanup_pci(struct bnxt *bp)
12182 {
12183 	bnxt_unmap_bars(bp, bp->pdev);
12184 	pci_release_regions(bp->pdev);
12185 	if (pci_is_enabled(bp->pdev))
12186 		pci_disable_device(bp->pdev);
12187 }
12188 
12189 static void bnxt_init_dflt_coal(struct bnxt *bp)
12190 {
12191 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12192 	struct bnxt_coal *coal;
12193 	u16 flags = 0;
12194 
12195 	if (coal_cap->cmpl_params &
12196 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12197 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12198 
12199 	/* Tick values in micro seconds.
12200 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12201 	 */
12202 	coal = &bp->rx_coal;
12203 	coal->coal_ticks = 10;
12204 	coal->coal_bufs = 30;
12205 	coal->coal_ticks_irq = 1;
12206 	coal->coal_bufs_irq = 2;
12207 	coal->idle_thresh = 50;
12208 	coal->bufs_per_record = 2;
12209 	coal->budget = 64;		/* NAPI budget */
12210 	coal->flags = flags;
12211 
12212 	coal = &bp->tx_coal;
12213 	coal->coal_ticks = 28;
12214 	coal->coal_bufs = 30;
12215 	coal->coal_ticks_irq = 2;
12216 	coal->coal_bufs_irq = 2;
12217 	coal->bufs_per_record = 1;
12218 	coal->flags = flags;
12219 
12220 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12221 }
12222 
12223 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12224 {
12225 	int rc;
12226 
12227 	bp->fw_cap = 0;
12228 	rc = bnxt_hwrm_ver_get(bp);
12229 	bnxt_try_map_fw_health_reg(bp);
12230 	if (rc) {
12231 		rc = bnxt_try_recover_fw(bp);
12232 		if (rc)
12233 			return rc;
12234 		rc = bnxt_hwrm_ver_get(bp);
12235 		if (rc)
12236 			return rc;
12237 	}
12238 
12239 	bnxt_nvm_cfg_ver_get(bp);
12240 
12241 	rc = bnxt_hwrm_func_reset(bp);
12242 	if (rc)
12243 		return -ENODEV;
12244 
12245 	bnxt_hwrm_fw_set_time(bp);
12246 	return 0;
12247 }
12248 
12249 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12250 {
12251 	int rc;
12252 
12253 	/* Get the MAX capabilities for this function */
12254 	rc = bnxt_hwrm_func_qcaps(bp);
12255 	if (rc) {
12256 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12257 			   rc);
12258 		return -ENODEV;
12259 	}
12260 
12261 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12262 	if (rc)
12263 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12264 			    rc);
12265 
12266 	if (bnxt_alloc_fw_health(bp)) {
12267 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12268 	} else {
12269 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12270 		if (rc)
12271 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12272 				    rc);
12273 	}
12274 
12275 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12276 	if (rc)
12277 		return -ENODEV;
12278 
12279 	bnxt_hwrm_func_qcfg(bp);
12280 	bnxt_hwrm_vnic_qcaps(bp);
12281 	bnxt_hwrm_port_led_qcaps(bp);
12282 	bnxt_ethtool_init(bp);
12283 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
12284 		__bnxt_hwrm_ptp_qcfg(bp);
12285 	bnxt_dcb_init(bp);
12286 	return 0;
12287 }
12288 
12289 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12290 {
12291 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12292 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12293 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12294 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12295 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12296 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
12297 		bp->rss_hash_delta = bp->rss_hash_cfg;
12298 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12299 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12300 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12301 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12302 	}
12303 }
12304 
12305 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12306 {
12307 	struct net_device *dev = bp->dev;
12308 
12309 	dev->hw_features &= ~NETIF_F_NTUPLE;
12310 	dev->features &= ~NETIF_F_NTUPLE;
12311 	bp->flags &= ~BNXT_FLAG_RFS;
12312 	if (bnxt_rfs_supported(bp)) {
12313 		dev->hw_features |= NETIF_F_NTUPLE;
12314 		if (bnxt_rfs_capable(bp)) {
12315 			bp->flags |= BNXT_FLAG_RFS;
12316 			dev->features |= NETIF_F_NTUPLE;
12317 		}
12318 	}
12319 }
12320 
12321 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12322 {
12323 	struct pci_dev *pdev = bp->pdev;
12324 
12325 	bnxt_set_dflt_rss_hash_type(bp);
12326 	bnxt_set_dflt_rfs(bp);
12327 
12328 	bnxt_get_wol_settings(bp);
12329 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12330 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12331 	else
12332 		device_set_wakeup_capable(&pdev->dev, false);
12333 
12334 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12335 	bnxt_hwrm_coal_params_qcaps(bp);
12336 }
12337 
12338 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12339 
12340 int bnxt_fw_init_one(struct bnxt *bp)
12341 {
12342 	int rc;
12343 
12344 	rc = bnxt_fw_init_one_p1(bp);
12345 	if (rc) {
12346 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12347 		return rc;
12348 	}
12349 	rc = bnxt_fw_init_one_p2(bp);
12350 	if (rc) {
12351 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12352 		return rc;
12353 	}
12354 	rc = bnxt_probe_phy(bp, false);
12355 	if (rc)
12356 		return rc;
12357 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12358 	if (rc)
12359 		return rc;
12360 
12361 	bnxt_fw_init_one_p3(bp);
12362 	return 0;
12363 }
12364 
12365 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12366 {
12367 	struct bnxt_fw_health *fw_health = bp->fw_health;
12368 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12369 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12370 	u32 reg_type, reg_off, delay_msecs;
12371 
12372 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12373 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12374 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12375 	switch (reg_type) {
12376 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12377 		pci_write_config_dword(bp->pdev, reg_off, val);
12378 		break;
12379 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12380 		writel(reg_off & BNXT_GRC_BASE_MASK,
12381 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12382 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12383 		fallthrough;
12384 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12385 		writel(val, bp->bar0 + reg_off);
12386 		break;
12387 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12388 		writel(val, bp->bar1 + reg_off);
12389 		break;
12390 	}
12391 	if (delay_msecs) {
12392 		pci_read_config_dword(bp->pdev, 0, &val);
12393 		msleep(delay_msecs);
12394 	}
12395 }
12396 
12397 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12398 {
12399 	struct hwrm_func_qcfg_output *resp;
12400 	struct hwrm_func_qcfg_input *req;
12401 	bool result = true; /* firmware will enforce if unknown */
12402 
12403 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12404 		return result;
12405 
12406 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12407 		return result;
12408 
12409 	req->fid = cpu_to_le16(0xffff);
12410 	resp = hwrm_req_hold(bp, req);
12411 	if (!hwrm_req_send(bp, req))
12412 		result = !!(le16_to_cpu(resp->flags) &
12413 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12414 	hwrm_req_drop(bp, req);
12415 	return result;
12416 }
12417 
12418 static void bnxt_reset_all(struct bnxt *bp)
12419 {
12420 	struct bnxt_fw_health *fw_health = bp->fw_health;
12421 	int i, rc;
12422 
12423 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12424 		bnxt_fw_reset_via_optee(bp);
12425 		bp->fw_reset_timestamp = jiffies;
12426 		return;
12427 	}
12428 
12429 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12430 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12431 			bnxt_fw_reset_writel(bp, i);
12432 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12433 		struct hwrm_fw_reset_input *req;
12434 
12435 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12436 		if (!rc) {
12437 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12438 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12439 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12440 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12441 			rc = hwrm_req_send(bp, req);
12442 		}
12443 		if (rc != -ENODEV)
12444 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12445 	}
12446 	bp->fw_reset_timestamp = jiffies;
12447 }
12448 
12449 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12450 {
12451 	return time_after(jiffies, bp->fw_reset_timestamp +
12452 			  (bp->fw_reset_max_dsecs * HZ / 10));
12453 }
12454 
12455 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12456 {
12457 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12458 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12459 		bnxt_ulp_start(bp, rc);
12460 		bnxt_dl_health_fw_status_update(bp, false);
12461 	}
12462 	bp->fw_reset_state = 0;
12463 	dev_close(bp->dev);
12464 }
12465 
12466 static void bnxt_fw_reset_task(struct work_struct *work)
12467 {
12468 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12469 	int rc = 0;
12470 
12471 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12472 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12473 		return;
12474 	}
12475 
12476 	switch (bp->fw_reset_state) {
12477 	case BNXT_FW_RESET_STATE_POLL_VF: {
12478 		int n = bnxt_get_registered_vfs(bp);
12479 		int tmo;
12480 
12481 		if (n < 0) {
12482 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12483 				   n, jiffies_to_msecs(jiffies -
12484 				   bp->fw_reset_timestamp));
12485 			goto fw_reset_abort;
12486 		} else if (n > 0) {
12487 			if (bnxt_fw_reset_timeout(bp)) {
12488 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12489 				bp->fw_reset_state = 0;
12490 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12491 					   n);
12492 				return;
12493 			}
12494 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12495 			return;
12496 		}
12497 		bp->fw_reset_timestamp = jiffies;
12498 		rtnl_lock();
12499 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12500 			bnxt_fw_reset_abort(bp, rc);
12501 			rtnl_unlock();
12502 			return;
12503 		}
12504 		bnxt_fw_reset_close(bp);
12505 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12506 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12507 			tmo = HZ / 10;
12508 		} else {
12509 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12510 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12511 		}
12512 		rtnl_unlock();
12513 		bnxt_queue_fw_reset_work(bp, tmo);
12514 		return;
12515 	}
12516 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12517 		u32 val;
12518 
12519 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12520 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12521 		    !bnxt_fw_reset_timeout(bp)) {
12522 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12523 			return;
12524 		}
12525 
12526 		if (!bp->fw_health->primary) {
12527 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12528 
12529 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12530 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12531 			return;
12532 		}
12533 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12534 	}
12535 		fallthrough;
12536 	case BNXT_FW_RESET_STATE_RESET_FW:
12537 		bnxt_reset_all(bp);
12538 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12539 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12540 		return;
12541 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12542 		bnxt_inv_fw_health_reg(bp);
12543 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12544 		    !bp->fw_reset_min_dsecs) {
12545 			u16 val;
12546 
12547 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12548 			if (val == 0xffff) {
12549 				if (bnxt_fw_reset_timeout(bp)) {
12550 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12551 					rc = -ETIMEDOUT;
12552 					goto fw_reset_abort;
12553 				}
12554 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12555 				return;
12556 			}
12557 		}
12558 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12559 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12560 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12561 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12562 			bnxt_dl_remote_reload(bp);
12563 		if (pci_enable_device(bp->pdev)) {
12564 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12565 			rc = -ENODEV;
12566 			goto fw_reset_abort;
12567 		}
12568 		pci_set_master(bp->pdev);
12569 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12570 		fallthrough;
12571 	case BNXT_FW_RESET_STATE_POLL_FW:
12572 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12573 		rc = bnxt_hwrm_poll(bp);
12574 		if (rc) {
12575 			if (bnxt_fw_reset_timeout(bp)) {
12576 				netdev_err(bp->dev, "Firmware reset aborted\n");
12577 				goto fw_reset_abort_status;
12578 			}
12579 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12580 			return;
12581 		}
12582 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12583 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12584 		fallthrough;
12585 	case BNXT_FW_RESET_STATE_OPENING:
12586 		while (!rtnl_trylock()) {
12587 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12588 			return;
12589 		}
12590 		rc = bnxt_open(bp->dev);
12591 		if (rc) {
12592 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12593 			bnxt_fw_reset_abort(bp, rc);
12594 			rtnl_unlock();
12595 			return;
12596 		}
12597 
12598 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12599 		    bp->fw_health->enabled) {
12600 			bp->fw_health->last_fw_reset_cnt =
12601 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12602 		}
12603 		bp->fw_reset_state = 0;
12604 		/* Make sure fw_reset_state is 0 before clearing the flag */
12605 		smp_mb__before_atomic();
12606 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12607 		bnxt_ulp_start(bp, 0);
12608 		bnxt_reenable_sriov(bp);
12609 		bnxt_vf_reps_alloc(bp);
12610 		bnxt_vf_reps_open(bp);
12611 		bnxt_ptp_reapply_pps(bp);
12612 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12613 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12614 			bnxt_dl_health_fw_recovery_done(bp);
12615 			bnxt_dl_health_fw_status_update(bp, true);
12616 		}
12617 		rtnl_unlock();
12618 		break;
12619 	}
12620 	return;
12621 
12622 fw_reset_abort_status:
12623 	if (bp->fw_health->status_reliable ||
12624 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12625 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12626 
12627 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12628 	}
12629 fw_reset_abort:
12630 	rtnl_lock();
12631 	bnxt_fw_reset_abort(bp, rc);
12632 	rtnl_unlock();
12633 }
12634 
12635 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12636 {
12637 	int rc;
12638 	struct bnxt *bp = netdev_priv(dev);
12639 
12640 	SET_NETDEV_DEV(dev, &pdev->dev);
12641 
12642 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12643 	rc = pci_enable_device(pdev);
12644 	if (rc) {
12645 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12646 		goto init_err;
12647 	}
12648 
12649 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12650 		dev_err(&pdev->dev,
12651 			"Cannot find PCI device base address, aborting\n");
12652 		rc = -ENODEV;
12653 		goto init_err_disable;
12654 	}
12655 
12656 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12657 	if (rc) {
12658 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12659 		goto init_err_disable;
12660 	}
12661 
12662 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12663 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12664 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12665 		rc = -EIO;
12666 		goto init_err_release;
12667 	}
12668 
12669 	pci_set_master(pdev);
12670 
12671 	bp->dev = dev;
12672 	bp->pdev = pdev;
12673 
12674 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12675 	 * determines the BAR size.
12676 	 */
12677 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12678 	if (!bp->bar0) {
12679 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12680 		rc = -ENOMEM;
12681 		goto init_err_release;
12682 	}
12683 
12684 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12685 	if (!bp->bar2) {
12686 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12687 		rc = -ENOMEM;
12688 		goto init_err_release;
12689 	}
12690 
12691 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12692 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12693 
12694 	spin_lock_init(&bp->ntp_fltr_lock);
12695 #if BITS_PER_LONG == 32
12696 	spin_lock_init(&bp->db_lock);
12697 #endif
12698 
12699 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12700 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12701 
12702 	timer_setup(&bp->timer, bnxt_timer, 0);
12703 	bp->current_interval = BNXT_TIMER_INTERVAL;
12704 
12705 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12706 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12707 
12708 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12709 	return 0;
12710 
12711 init_err_release:
12712 	bnxt_unmap_bars(bp, pdev);
12713 	pci_release_regions(pdev);
12714 
12715 init_err_disable:
12716 	pci_disable_device(pdev);
12717 
12718 init_err:
12719 	return rc;
12720 }
12721 
12722 /* rtnl_lock held */
12723 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12724 {
12725 	struct sockaddr *addr = p;
12726 	struct bnxt *bp = netdev_priv(dev);
12727 	int rc = 0;
12728 
12729 	if (!is_valid_ether_addr(addr->sa_data))
12730 		return -EADDRNOTAVAIL;
12731 
12732 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12733 		return 0;
12734 
12735 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12736 	if (rc)
12737 		return rc;
12738 
12739 	eth_hw_addr_set(dev, addr->sa_data);
12740 	if (netif_running(dev)) {
12741 		bnxt_close_nic(bp, false, false);
12742 		rc = bnxt_open_nic(bp, false, false);
12743 	}
12744 
12745 	return rc;
12746 }
12747 
12748 /* rtnl_lock held */
12749 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12750 {
12751 	struct bnxt *bp = netdev_priv(dev);
12752 
12753 	if (netif_running(dev))
12754 		bnxt_close_nic(bp, true, false);
12755 
12756 	dev->mtu = new_mtu;
12757 	bnxt_set_ring_params(bp);
12758 
12759 	if (netif_running(dev))
12760 		return bnxt_open_nic(bp, true, false);
12761 
12762 	return 0;
12763 }
12764 
12765 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12766 {
12767 	struct bnxt *bp = netdev_priv(dev);
12768 	bool sh = false;
12769 	int rc;
12770 
12771 	if (tc > bp->max_tc) {
12772 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12773 			   tc, bp->max_tc);
12774 		return -EINVAL;
12775 	}
12776 
12777 	if (netdev_get_num_tc(dev) == tc)
12778 		return 0;
12779 
12780 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12781 		sh = true;
12782 
12783 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12784 			      sh, tc, bp->tx_nr_rings_xdp);
12785 	if (rc)
12786 		return rc;
12787 
12788 	/* Needs to close the device and do hw resource re-allocations */
12789 	if (netif_running(bp->dev))
12790 		bnxt_close_nic(bp, true, false);
12791 
12792 	if (tc) {
12793 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12794 		netdev_set_num_tc(dev, tc);
12795 	} else {
12796 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12797 		netdev_reset_tc(dev);
12798 	}
12799 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12800 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12801 			       bp->tx_nr_rings + bp->rx_nr_rings;
12802 
12803 	if (netif_running(bp->dev))
12804 		return bnxt_open_nic(bp, true, false);
12805 
12806 	return 0;
12807 }
12808 
12809 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12810 				  void *cb_priv)
12811 {
12812 	struct bnxt *bp = cb_priv;
12813 
12814 	if (!bnxt_tc_flower_enabled(bp) ||
12815 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12816 		return -EOPNOTSUPP;
12817 
12818 	switch (type) {
12819 	case TC_SETUP_CLSFLOWER:
12820 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12821 	default:
12822 		return -EOPNOTSUPP;
12823 	}
12824 }
12825 
12826 LIST_HEAD(bnxt_block_cb_list);
12827 
12828 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12829 			 void *type_data)
12830 {
12831 	struct bnxt *bp = netdev_priv(dev);
12832 
12833 	switch (type) {
12834 	case TC_SETUP_BLOCK:
12835 		return flow_block_cb_setup_simple(type_data,
12836 						  &bnxt_block_cb_list,
12837 						  bnxt_setup_tc_block_cb,
12838 						  bp, bp, true);
12839 	case TC_SETUP_QDISC_MQPRIO: {
12840 		struct tc_mqprio_qopt *mqprio = type_data;
12841 
12842 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12843 
12844 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12845 	}
12846 	default:
12847 		return -EOPNOTSUPP;
12848 	}
12849 }
12850 
12851 #ifdef CONFIG_RFS_ACCEL
12852 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12853 			    struct bnxt_ntuple_filter *f2)
12854 {
12855 	struct flow_keys *keys1 = &f1->fkeys;
12856 	struct flow_keys *keys2 = &f2->fkeys;
12857 
12858 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12859 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12860 		return false;
12861 
12862 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12863 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12864 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12865 			return false;
12866 	} else {
12867 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12868 			   sizeof(keys1->addrs.v6addrs.src)) ||
12869 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12870 			   sizeof(keys1->addrs.v6addrs.dst)))
12871 			return false;
12872 	}
12873 
12874 	if (keys1->ports.ports == keys2->ports.ports &&
12875 	    keys1->control.flags == keys2->control.flags &&
12876 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12877 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12878 		return true;
12879 
12880 	return false;
12881 }
12882 
12883 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12884 			      u16 rxq_index, u32 flow_id)
12885 {
12886 	struct bnxt *bp = netdev_priv(dev);
12887 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12888 	struct flow_keys *fkeys;
12889 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12890 	int rc = 0, idx, bit_id, l2_idx = 0;
12891 	struct hlist_head *head;
12892 	u32 flags;
12893 
12894 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12895 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12896 		int off = 0, j;
12897 
12898 		netif_addr_lock_bh(dev);
12899 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12900 			if (ether_addr_equal(eth->h_dest,
12901 					     vnic->uc_list + off)) {
12902 				l2_idx = j + 1;
12903 				break;
12904 			}
12905 		}
12906 		netif_addr_unlock_bh(dev);
12907 		if (!l2_idx)
12908 			return -EINVAL;
12909 	}
12910 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12911 	if (!new_fltr)
12912 		return -ENOMEM;
12913 
12914 	fkeys = &new_fltr->fkeys;
12915 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12916 		rc = -EPROTONOSUPPORT;
12917 		goto err_free;
12918 	}
12919 
12920 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12921 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12922 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12923 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12924 		rc = -EPROTONOSUPPORT;
12925 		goto err_free;
12926 	}
12927 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12928 	    bp->hwrm_spec_code < 0x10601) {
12929 		rc = -EPROTONOSUPPORT;
12930 		goto err_free;
12931 	}
12932 	flags = fkeys->control.flags;
12933 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12934 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12935 		rc = -EPROTONOSUPPORT;
12936 		goto err_free;
12937 	}
12938 
12939 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12940 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12941 
12942 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12943 	head = &bp->ntp_fltr_hash_tbl[idx];
12944 	rcu_read_lock();
12945 	hlist_for_each_entry_rcu(fltr, head, hash) {
12946 		if (bnxt_fltr_match(fltr, new_fltr)) {
12947 			rc = fltr->sw_id;
12948 			rcu_read_unlock();
12949 			goto err_free;
12950 		}
12951 	}
12952 	rcu_read_unlock();
12953 
12954 	spin_lock_bh(&bp->ntp_fltr_lock);
12955 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12956 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12957 	if (bit_id < 0) {
12958 		spin_unlock_bh(&bp->ntp_fltr_lock);
12959 		rc = -ENOMEM;
12960 		goto err_free;
12961 	}
12962 
12963 	new_fltr->sw_id = (u16)bit_id;
12964 	new_fltr->flow_id = flow_id;
12965 	new_fltr->l2_fltr_idx = l2_idx;
12966 	new_fltr->rxq = rxq_index;
12967 	hlist_add_head_rcu(&new_fltr->hash, head);
12968 	bp->ntp_fltr_count++;
12969 	spin_unlock_bh(&bp->ntp_fltr_lock);
12970 
12971 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12972 	bnxt_queue_sp_work(bp);
12973 
12974 	return new_fltr->sw_id;
12975 
12976 err_free:
12977 	kfree(new_fltr);
12978 	return rc;
12979 }
12980 
12981 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12982 {
12983 	int i;
12984 
12985 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12986 		struct hlist_head *head;
12987 		struct hlist_node *tmp;
12988 		struct bnxt_ntuple_filter *fltr;
12989 		int rc;
12990 
12991 		head = &bp->ntp_fltr_hash_tbl[i];
12992 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12993 			bool del = false;
12994 
12995 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12996 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12997 							fltr->flow_id,
12998 							fltr->sw_id)) {
12999 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13000 									 fltr);
13001 					del = true;
13002 				}
13003 			} else {
13004 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13005 								       fltr);
13006 				if (rc)
13007 					del = true;
13008 				else
13009 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13010 			}
13011 
13012 			if (del) {
13013 				spin_lock_bh(&bp->ntp_fltr_lock);
13014 				hlist_del_rcu(&fltr->hash);
13015 				bp->ntp_fltr_count--;
13016 				spin_unlock_bh(&bp->ntp_fltr_lock);
13017 				synchronize_rcu();
13018 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13019 				kfree(fltr);
13020 			}
13021 		}
13022 	}
13023 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13024 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13025 }
13026 
13027 #else
13028 
13029 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13030 {
13031 }
13032 
13033 #endif /* CONFIG_RFS_ACCEL */
13034 
13035 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
13036 				    unsigned int entry, struct udp_tunnel_info *ti)
13037 {
13038 	struct bnxt *bp = netdev_priv(netdev);
13039 	unsigned int cmd;
13040 
13041 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13042 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13043 	else
13044 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13045 
13046 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
13047 }
13048 
13049 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
13050 				      unsigned int entry, struct udp_tunnel_info *ti)
13051 {
13052 	struct bnxt *bp = netdev_priv(netdev);
13053 	unsigned int cmd;
13054 
13055 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13056 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13057 	else
13058 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13059 
13060 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13061 }
13062 
13063 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13064 	.set_port	= bnxt_udp_tunnel_set_port,
13065 	.unset_port	= bnxt_udp_tunnel_unset_port,
13066 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13067 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13068 	.tables		= {
13069 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13070 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13071 	},
13072 };
13073 
13074 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13075 			       struct net_device *dev, u32 filter_mask,
13076 			       int nlflags)
13077 {
13078 	struct bnxt *bp = netdev_priv(dev);
13079 
13080 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13081 				       nlflags, filter_mask, NULL);
13082 }
13083 
13084 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13085 			       u16 flags, struct netlink_ext_ack *extack)
13086 {
13087 	struct bnxt *bp = netdev_priv(dev);
13088 	struct nlattr *attr, *br_spec;
13089 	int rem, rc = 0;
13090 
13091 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13092 		return -EOPNOTSUPP;
13093 
13094 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13095 	if (!br_spec)
13096 		return -EINVAL;
13097 
13098 	nla_for_each_nested(attr, br_spec, rem) {
13099 		u16 mode;
13100 
13101 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13102 			continue;
13103 
13104 		if (nla_len(attr) < sizeof(mode))
13105 			return -EINVAL;
13106 
13107 		mode = nla_get_u16(attr);
13108 		if (mode == bp->br_mode)
13109 			break;
13110 
13111 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13112 		if (!rc)
13113 			bp->br_mode = mode;
13114 		break;
13115 	}
13116 	return rc;
13117 }
13118 
13119 int bnxt_get_port_parent_id(struct net_device *dev,
13120 			    struct netdev_phys_item_id *ppid)
13121 {
13122 	struct bnxt *bp = netdev_priv(dev);
13123 
13124 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13125 		return -EOPNOTSUPP;
13126 
13127 	/* The PF and it's VF-reps only support the switchdev framework */
13128 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13129 		return -EOPNOTSUPP;
13130 
13131 	ppid->id_len = sizeof(bp->dsn);
13132 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13133 
13134 	return 0;
13135 }
13136 
13137 static const struct net_device_ops bnxt_netdev_ops = {
13138 	.ndo_open		= bnxt_open,
13139 	.ndo_start_xmit		= bnxt_start_xmit,
13140 	.ndo_stop		= bnxt_close,
13141 	.ndo_get_stats64	= bnxt_get_stats64,
13142 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13143 	.ndo_eth_ioctl		= bnxt_ioctl,
13144 	.ndo_validate_addr	= eth_validate_addr,
13145 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13146 	.ndo_change_mtu		= bnxt_change_mtu,
13147 	.ndo_fix_features	= bnxt_fix_features,
13148 	.ndo_set_features	= bnxt_set_features,
13149 	.ndo_features_check	= bnxt_features_check,
13150 	.ndo_tx_timeout		= bnxt_tx_timeout,
13151 #ifdef CONFIG_BNXT_SRIOV
13152 	.ndo_get_vf_config	= bnxt_get_vf_config,
13153 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13154 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13155 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13156 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13157 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13158 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13159 #endif
13160 	.ndo_setup_tc           = bnxt_setup_tc,
13161 #ifdef CONFIG_RFS_ACCEL
13162 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13163 #endif
13164 	.ndo_bpf		= bnxt_xdp,
13165 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13166 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13167 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13168 };
13169 
13170 static void bnxt_remove_one(struct pci_dev *pdev)
13171 {
13172 	struct net_device *dev = pci_get_drvdata(pdev);
13173 	struct bnxt *bp = netdev_priv(dev);
13174 
13175 	if (BNXT_PF(bp))
13176 		bnxt_sriov_disable(bp);
13177 
13178 	bnxt_rdma_aux_device_uninit(bp);
13179 
13180 	bnxt_ptp_clear(bp);
13181 	unregister_netdev(dev);
13182 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13183 	/* Flush any pending tasks */
13184 	cancel_work_sync(&bp->sp_task);
13185 	cancel_delayed_work_sync(&bp->fw_reset_task);
13186 	bp->sp_event = 0;
13187 
13188 	bnxt_dl_fw_reporters_destroy(bp);
13189 	bnxt_dl_unregister(bp);
13190 	bnxt_shutdown_tc(bp);
13191 
13192 	bnxt_clear_int_mode(bp);
13193 	bnxt_hwrm_func_drv_unrgtr(bp);
13194 	bnxt_free_hwrm_resources(bp);
13195 	bnxt_ethtool_free(bp);
13196 	bnxt_dcb_free(bp);
13197 	kfree(bp->ptp_cfg);
13198 	bp->ptp_cfg = NULL;
13199 	kfree(bp->fw_health);
13200 	bp->fw_health = NULL;
13201 	bnxt_cleanup_pci(bp);
13202 	bnxt_free_ctx_mem(bp);
13203 	kfree(bp->ctx);
13204 	bp->ctx = NULL;
13205 	kfree(bp->rss_indir_tbl);
13206 	bp->rss_indir_tbl = NULL;
13207 	bnxt_free_port_stats(bp);
13208 	free_netdev(dev);
13209 }
13210 
13211 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13212 {
13213 	int rc = 0;
13214 	struct bnxt_link_info *link_info = &bp->link_info;
13215 
13216 	bp->phy_flags = 0;
13217 	rc = bnxt_hwrm_phy_qcaps(bp);
13218 	if (rc) {
13219 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13220 			   rc);
13221 		return rc;
13222 	}
13223 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13224 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13225 	else
13226 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13227 	if (!fw_dflt)
13228 		return 0;
13229 
13230 	mutex_lock(&bp->link_lock);
13231 	rc = bnxt_update_link(bp, false);
13232 	if (rc) {
13233 		mutex_unlock(&bp->link_lock);
13234 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13235 			   rc);
13236 		return rc;
13237 	}
13238 
13239 	/* Older firmware does not have supported_auto_speeds, so assume
13240 	 * that all supported speeds can be autonegotiated.
13241 	 */
13242 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13243 		link_info->support_auto_speeds = link_info->support_speeds;
13244 
13245 	bnxt_init_ethtool_link_settings(bp);
13246 	mutex_unlock(&bp->link_lock);
13247 	return 0;
13248 }
13249 
13250 static int bnxt_get_max_irq(struct pci_dev *pdev)
13251 {
13252 	u16 ctrl;
13253 
13254 	if (!pdev->msix_cap)
13255 		return 1;
13256 
13257 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13258 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13259 }
13260 
13261 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13262 				int *max_cp)
13263 {
13264 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13265 	int max_ring_grps = 0, max_irq;
13266 
13267 	*max_tx = hw_resc->max_tx_rings;
13268 	*max_rx = hw_resc->max_rx_rings;
13269 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13270 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13271 			bnxt_get_ulp_msix_num(bp),
13272 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13273 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13274 		*max_cp = min_t(int, *max_cp, max_irq);
13275 	max_ring_grps = hw_resc->max_hw_ring_grps;
13276 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13277 		*max_cp -= 1;
13278 		*max_rx -= 2;
13279 	}
13280 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13281 		*max_rx >>= 1;
13282 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13283 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13284 		/* On P5 chips, max_cp output param should be available NQs */
13285 		*max_cp = max_irq;
13286 	}
13287 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13288 }
13289 
13290 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13291 {
13292 	int rx, tx, cp;
13293 
13294 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13295 	*max_rx = rx;
13296 	*max_tx = tx;
13297 	if (!rx || !tx || !cp)
13298 		return -ENOMEM;
13299 
13300 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13301 }
13302 
13303 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13304 			       bool shared)
13305 {
13306 	int rc;
13307 
13308 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13309 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13310 		/* Not enough rings, try disabling agg rings. */
13311 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13312 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13313 		if (rc) {
13314 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13315 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13316 			return rc;
13317 		}
13318 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13319 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13320 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13321 		bnxt_set_ring_params(bp);
13322 	}
13323 
13324 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13325 		int max_cp, max_stat, max_irq;
13326 
13327 		/* Reserve minimum resources for RoCE */
13328 		max_cp = bnxt_get_max_func_cp_rings(bp);
13329 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13330 		max_irq = bnxt_get_max_func_irqs(bp);
13331 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13332 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13333 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13334 			return 0;
13335 
13336 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13337 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13338 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13339 		max_cp = min_t(int, max_cp, max_irq);
13340 		max_cp = min_t(int, max_cp, max_stat);
13341 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13342 		if (rc)
13343 			rc = 0;
13344 	}
13345 	return rc;
13346 }
13347 
13348 /* In initial default shared ring setting, each shared ring must have a
13349  * RX/TX ring pair.
13350  */
13351 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13352 {
13353 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13354 	bp->rx_nr_rings = bp->cp_nr_rings;
13355 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13356 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13357 }
13358 
13359 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13360 {
13361 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13362 
13363 	if (!bnxt_can_reserve_rings(bp))
13364 		return 0;
13365 
13366 	if (sh)
13367 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13368 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13369 	/* Reduce default rings on multi-port cards so that total default
13370 	 * rings do not exceed CPU count.
13371 	 */
13372 	if (bp->port_count > 1) {
13373 		int max_rings =
13374 			max_t(int, num_online_cpus() / bp->port_count, 1);
13375 
13376 		dflt_rings = min_t(int, dflt_rings, max_rings);
13377 	}
13378 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13379 	if (rc)
13380 		return rc;
13381 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13382 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13383 	if (sh)
13384 		bnxt_trim_dflt_sh_rings(bp);
13385 	else
13386 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13387 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13388 
13389 	rc = __bnxt_reserve_rings(bp);
13390 	if (rc && rc != -ENODEV)
13391 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13392 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13393 	if (sh)
13394 		bnxt_trim_dflt_sh_rings(bp);
13395 
13396 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13397 	if (bnxt_need_reserve_rings(bp)) {
13398 		rc = __bnxt_reserve_rings(bp);
13399 		if (rc && rc != -ENODEV)
13400 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13401 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13402 	}
13403 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13404 		bp->rx_nr_rings++;
13405 		bp->cp_nr_rings++;
13406 	}
13407 	if (rc) {
13408 		bp->tx_nr_rings = 0;
13409 		bp->rx_nr_rings = 0;
13410 	}
13411 	return rc;
13412 }
13413 
13414 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13415 {
13416 	int rc;
13417 
13418 	if (bp->tx_nr_rings)
13419 		return 0;
13420 
13421 	bnxt_ulp_irq_stop(bp);
13422 	bnxt_clear_int_mode(bp);
13423 	rc = bnxt_set_dflt_rings(bp, true);
13424 	if (rc) {
13425 		if (BNXT_VF(bp) && rc == -ENODEV)
13426 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13427 		else
13428 			netdev_err(bp->dev, "Not enough rings available.\n");
13429 		goto init_dflt_ring_err;
13430 	}
13431 	rc = bnxt_init_int_mode(bp);
13432 	if (rc)
13433 		goto init_dflt_ring_err;
13434 
13435 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13436 
13437 	bnxt_set_dflt_rfs(bp);
13438 
13439 init_dflt_ring_err:
13440 	bnxt_ulp_irq_restart(bp, rc);
13441 	return rc;
13442 }
13443 
13444 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13445 {
13446 	int rc;
13447 
13448 	ASSERT_RTNL();
13449 	bnxt_hwrm_func_qcaps(bp);
13450 
13451 	if (netif_running(bp->dev))
13452 		__bnxt_close_nic(bp, true, false);
13453 
13454 	bnxt_ulp_irq_stop(bp);
13455 	bnxt_clear_int_mode(bp);
13456 	rc = bnxt_init_int_mode(bp);
13457 	bnxt_ulp_irq_restart(bp, rc);
13458 
13459 	if (netif_running(bp->dev)) {
13460 		if (rc)
13461 			dev_close(bp->dev);
13462 		else
13463 			rc = bnxt_open_nic(bp, true, false);
13464 	}
13465 
13466 	return rc;
13467 }
13468 
13469 static int bnxt_init_mac_addr(struct bnxt *bp)
13470 {
13471 	int rc = 0;
13472 
13473 	if (BNXT_PF(bp)) {
13474 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13475 	} else {
13476 #ifdef CONFIG_BNXT_SRIOV
13477 		struct bnxt_vf_info *vf = &bp->vf;
13478 		bool strict_approval = true;
13479 
13480 		if (is_valid_ether_addr(vf->mac_addr)) {
13481 			/* overwrite netdev dev_addr with admin VF MAC */
13482 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13483 			/* Older PF driver or firmware may not approve this
13484 			 * correctly.
13485 			 */
13486 			strict_approval = false;
13487 		} else {
13488 			eth_hw_addr_random(bp->dev);
13489 		}
13490 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13491 #endif
13492 	}
13493 	return rc;
13494 }
13495 
13496 static void bnxt_vpd_read_info(struct bnxt *bp)
13497 {
13498 	struct pci_dev *pdev = bp->pdev;
13499 	unsigned int vpd_size, kw_len;
13500 	int pos, size;
13501 	u8 *vpd_data;
13502 
13503 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13504 	if (IS_ERR(vpd_data)) {
13505 		pci_warn(pdev, "Unable to read VPD\n");
13506 		return;
13507 	}
13508 
13509 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13510 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13511 	if (pos < 0)
13512 		goto read_sn;
13513 
13514 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13515 	memcpy(bp->board_partno, &vpd_data[pos], size);
13516 
13517 read_sn:
13518 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13519 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13520 					   &kw_len);
13521 	if (pos < 0)
13522 		goto exit;
13523 
13524 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13525 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13526 exit:
13527 	kfree(vpd_data);
13528 }
13529 
13530 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13531 {
13532 	struct pci_dev *pdev = bp->pdev;
13533 	u64 qword;
13534 
13535 	qword = pci_get_dsn(pdev);
13536 	if (!qword) {
13537 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13538 		return -EOPNOTSUPP;
13539 	}
13540 
13541 	put_unaligned_le64(qword, dsn);
13542 
13543 	bp->flags |= BNXT_FLAG_DSN_VALID;
13544 	return 0;
13545 }
13546 
13547 static int bnxt_map_db_bar(struct bnxt *bp)
13548 {
13549 	if (!bp->db_size)
13550 		return -ENODEV;
13551 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13552 	if (!bp->bar1)
13553 		return -ENOMEM;
13554 	return 0;
13555 }
13556 
13557 void bnxt_print_device_info(struct bnxt *bp)
13558 {
13559 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13560 		    board_info[bp->board_idx].name,
13561 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13562 
13563 	pcie_print_link_status(bp->pdev);
13564 }
13565 
13566 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13567 {
13568 	struct net_device *dev;
13569 	struct bnxt *bp;
13570 	int rc, max_irqs;
13571 
13572 	if (pci_is_bridge(pdev))
13573 		return -ENODEV;
13574 
13575 	/* Clear any pending DMA transactions from crash kernel
13576 	 * while loading driver in capture kernel.
13577 	 */
13578 	if (is_kdump_kernel()) {
13579 		pci_clear_master(pdev);
13580 		pcie_flr(pdev);
13581 	}
13582 
13583 	max_irqs = bnxt_get_max_irq(pdev);
13584 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13585 	if (!dev)
13586 		return -ENOMEM;
13587 
13588 	bp = netdev_priv(dev);
13589 	bp->board_idx = ent->driver_data;
13590 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13591 	bnxt_set_max_func_irqs(bp, max_irqs);
13592 
13593 	if (bnxt_vf_pciid(bp->board_idx))
13594 		bp->flags |= BNXT_FLAG_VF;
13595 
13596 	/* No devlink port registration in case of a VF */
13597 	if (BNXT_PF(bp))
13598 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
13599 
13600 	if (pdev->msix_cap)
13601 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13602 
13603 	rc = bnxt_init_board(pdev, dev);
13604 	if (rc < 0)
13605 		goto init_err_free;
13606 
13607 	dev->netdev_ops = &bnxt_netdev_ops;
13608 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13609 	dev->ethtool_ops = &bnxt_ethtool_ops;
13610 	pci_set_drvdata(pdev, dev);
13611 
13612 	rc = bnxt_alloc_hwrm_resources(bp);
13613 	if (rc)
13614 		goto init_err_pci_clean;
13615 
13616 	mutex_init(&bp->hwrm_cmd_lock);
13617 	mutex_init(&bp->link_lock);
13618 
13619 	rc = bnxt_fw_init_one_p1(bp);
13620 	if (rc)
13621 		goto init_err_pci_clean;
13622 
13623 	if (BNXT_PF(bp))
13624 		bnxt_vpd_read_info(bp);
13625 
13626 	if (BNXT_CHIP_P5(bp)) {
13627 		bp->flags |= BNXT_FLAG_CHIP_P5;
13628 		if (BNXT_CHIP_SR2(bp))
13629 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13630 	}
13631 
13632 	rc = bnxt_alloc_rss_indir_tbl(bp);
13633 	if (rc)
13634 		goto init_err_pci_clean;
13635 
13636 	rc = bnxt_fw_init_one_p2(bp);
13637 	if (rc)
13638 		goto init_err_pci_clean;
13639 
13640 	rc = bnxt_map_db_bar(bp);
13641 	if (rc) {
13642 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13643 			rc);
13644 		goto init_err_pci_clean;
13645 	}
13646 
13647 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13648 			   NETIF_F_TSO | NETIF_F_TSO6 |
13649 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13650 			   NETIF_F_GSO_IPXIP4 |
13651 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13652 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13653 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13654 
13655 	if (BNXT_SUPPORTS_TPA(bp))
13656 		dev->hw_features |= NETIF_F_LRO;
13657 
13658 	dev->hw_enc_features =
13659 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13660 			NETIF_F_TSO | NETIF_F_TSO6 |
13661 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13662 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13663 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13664 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13665 
13666 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13667 				    NETIF_F_GSO_GRE_CSUM;
13668 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13669 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13670 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13671 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13672 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13673 	if (BNXT_SUPPORTS_TPA(bp))
13674 		dev->hw_features |= NETIF_F_GRO_HW;
13675 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13676 	if (dev->features & NETIF_F_GRO_HW)
13677 		dev->features &= ~NETIF_F_LRO;
13678 	dev->priv_flags |= IFF_UNICAST_FLT;
13679 
13680 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
13681 
13682 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
13683 			    NETDEV_XDP_ACT_RX_SG;
13684 
13685 #ifdef CONFIG_BNXT_SRIOV
13686 	init_waitqueue_head(&bp->sriov_cfg_wait);
13687 #endif
13688 	if (BNXT_SUPPORTS_TPA(bp)) {
13689 		bp->gro_func = bnxt_gro_func_5730x;
13690 		if (BNXT_CHIP_P4(bp))
13691 			bp->gro_func = bnxt_gro_func_5731x;
13692 		else if (BNXT_CHIP_P5(bp))
13693 			bp->gro_func = bnxt_gro_func_5750x;
13694 	}
13695 	if (!BNXT_CHIP_P4_PLUS(bp))
13696 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13697 
13698 	rc = bnxt_init_mac_addr(bp);
13699 	if (rc) {
13700 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13701 		rc = -EADDRNOTAVAIL;
13702 		goto init_err_pci_clean;
13703 	}
13704 
13705 	if (BNXT_PF(bp)) {
13706 		/* Read the adapter's DSN to use as the eswitch switch_id */
13707 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13708 	}
13709 
13710 	/* MTU range: 60 - FW defined max */
13711 	dev->min_mtu = ETH_ZLEN;
13712 	dev->max_mtu = bp->max_mtu;
13713 
13714 	rc = bnxt_probe_phy(bp, true);
13715 	if (rc)
13716 		goto init_err_pci_clean;
13717 
13718 	bnxt_set_rx_skb_mode(bp, false);
13719 	bnxt_set_tpa_flags(bp);
13720 	bnxt_set_ring_params(bp);
13721 	rc = bnxt_set_dflt_rings(bp, true);
13722 	if (rc) {
13723 		if (BNXT_VF(bp) && rc == -ENODEV) {
13724 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13725 		} else {
13726 			netdev_err(bp->dev, "Not enough rings available.\n");
13727 			rc = -ENOMEM;
13728 		}
13729 		goto init_err_pci_clean;
13730 	}
13731 
13732 	bnxt_fw_init_one_p3(bp);
13733 
13734 	bnxt_init_dflt_coal(bp);
13735 
13736 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13737 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13738 
13739 	rc = bnxt_init_int_mode(bp);
13740 	if (rc)
13741 		goto init_err_pci_clean;
13742 
13743 	/* No TC has been set yet and rings may have been trimmed due to
13744 	 * limited MSIX, so we re-initialize the TX rings per TC.
13745 	 */
13746 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13747 
13748 	if (BNXT_PF(bp)) {
13749 		if (!bnxt_pf_wq) {
13750 			bnxt_pf_wq =
13751 				create_singlethread_workqueue("bnxt_pf_wq");
13752 			if (!bnxt_pf_wq) {
13753 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13754 				rc = -ENOMEM;
13755 				goto init_err_pci_clean;
13756 			}
13757 		}
13758 		rc = bnxt_init_tc(bp);
13759 		if (rc)
13760 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13761 				   rc);
13762 	}
13763 
13764 	bnxt_inv_fw_health_reg(bp);
13765 	rc = bnxt_dl_register(bp);
13766 	if (rc)
13767 		goto init_err_dl;
13768 
13769 	rc = register_netdev(dev);
13770 	if (rc)
13771 		goto init_err_cleanup;
13772 
13773 	bnxt_dl_fw_reporters_create(bp);
13774 
13775 	bnxt_rdma_aux_device_init(bp);
13776 
13777 	bnxt_print_device_info(bp);
13778 
13779 	pci_save_state(pdev);
13780 
13781 	return 0;
13782 init_err_cleanup:
13783 	bnxt_dl_unregister(bp);
13784 init_err_dl:
13785 	bnxt_shutdown_tc(bp);
13786 	bnxt_clear_int_mode(bp);
13787 
13788 init_err_pci_clean:
13789 	bnxt_hwrm_func_drv_unrgtr(bp);
13790 	bnxt_free_hwrm_resources(bp);
13791 	bnxt_ethtool_free(bp);
13792 	bnxt_ptp_clear(bp);
13793 	kfree(bp->ptp_cfg);
13794 	bp->ptp_cfg = NULL;
13795 	kfree(bp->fw_health);
13796 	bp->fw_health = NULL;
13797 	bnxt_cleanup_pci(bp);
13798 	bnxt_free_ctx_mem(bp);
13799 	kfree(bp->ctx);
13800 	bp->ctx = NULL;
13801 	kfree(bp->rss_indir_tbl);
13802 	bp->rss_indir_tbl = NULL;
13803 
13804 init_err_free:
13805 	free_netdev(dev);
13806 	return rc;
13807 }
13808 
13809 static void bnxt_shutdown(struct pci_dev *pdev)
13810 {
13811 	struct net_device *dev = pci_get_drvdata(pdev);
13812 	struct bnxt *bp;
13813 
13814 	if (!dev)
13815 		return;
13816 
13817 	rtnl_lock();
13818 	bp = netdev_priv(dev);
13819 	if (!bp)
13820 		goto shutdown_exit;
13821 
13822 	if (netif_running(dev))
13823 		dev_close(dev);
13824 
13825 	bnxt_clear_int_mode(bp);
13826 	pci_disable_device(pdev);
13827 
13828 	if (system_state == SYSTEM_POWER_OFF) {
13829 		pci_wake_from_d3(pdev, bp->wol);
13830 		pci_set_power_state(pdev, PCI_D3hot);
13831 	}
13832 
13833 shutdown_exit:
13834 	rtnl_unlock();
13835 }
13836 
13837 #ifdef CONFIG_PM_SLEEP
13838 static int bnxt_suspend(struct device *device)
13839 {
13840 	struct net_device *dev = dev_get_drvdata(device);
13841 	struct bnxt *bp = netdev_priv(dev);
13842 	int rc = 0;
13843 
13844 	rtnl_lock();
13845 	bnxt_ulp_stop(bp);
13846 	if (netif_running(dev)) {
13847 		netif_device_detach(dev);
13848 		rc = bnxt_close(dev);
13849 	}
13850 	bnxt_hwrm_func_drv_unrgtr(bp);
13851 	pci_disable_device(bp->pdev);
13852 	bnxt_free_ctx_mem(bp);
13853 	kfree(bp->ctx);
13854 	bp->ctx = NULL;
13855 	rtnl_unlock();
13856 	return rc;
13857 }
13858 
13859 static int bnxt_resume(struct device *device)
13860 {
13861 	struct net_device *dev = dev_get_drvdata(device);
13862 	struct bnxt *bp = netdev_priv(dev);
13863 	int rc = 0;
13864 
13865 	rtnl_lock();
13866 	rc = pci_enable_device(bp->pdev);
13867 	if (rc) {
13868 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13869 			   rc);
13870 		goto resume_exit;
13871 	}
13872 	pci_set_master(bp->pdev);
13873 	if (bnxt_hwrm_ver_get(bp)) {
13874 		rc = -ENODEV;
13875 		goto resume_exit;
13876 	}
13877 	rc = bnxt_hwrm_func_reset(bp);
13878 	if (rc) {
13879 		rc = -EBUSY;
13880 		goto resume_exit;
13881 	}
13882 
13883 	rc = bnxt_hwrm_func_qcaps(bp);
13884 	if (rc)
13885 		goto resume_exit;
13886 
13887 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13888 		rc = -ENODEV;
13889 		goto resume_exit;
13890 	}
13891 
13892 	bnxt_get_wol_settings(bp);
13893 	if (netif_running(dev)) {
13894 		rc = bnxt_open(dev);
13895 		if (!rc)
13896 			netif_device_attach(dev);
13897 	}
13898 
13899 resume_exit:
13900 	bnxt_ulp_start(bp, rc);
13901 	if (!rc)
13902 		bnxt_reenable_sriov(bp);
13903 	rtnl_unlock();
13904 	return rc;
13905 }
13906 
13907 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13908 #define BNXT_PM_OPS (&bnxt_pm_ops)
13909 
13910 #else
13911 
13912 #define BNXT_PM_OPS NULL
13913 
13914 #endif /* CONFIG_PM_SLEEP */
13915 
13916 /**
13917  * bnxt_io_error_detected - called when PCI error is detected
13918  * @pdev: Pointer to PCI device
13919  * @state: The current pci connection state
13920  *
13921  * This function is called after a PCI bus error affecting
13922  * this device has been detected.
13923  */
13924 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13925 					       pci_channel_state_t state)
13926 {
13927 	struct net_device *netdev = pci_get_drvdata(pdev);
13928 	struct bnxt *bp = netdev_priv(netdev);
13929 
13930 	netdev_info(netdev, "PCI I/O error detected\n");
13931 
13932 	rtnl_lock();
13933 	netif_device_detach(netdev);
13934 
13935 	bnxt_ulp_stop(bp);
13936 
13937 	if (state == pci_channel_io_perm_failure) {
13938 		rtnl_unlock();
13939 		return PCI_ERS_RESULT_DISCONNECT;
13940 	}
13941 
13942 	if (state == pci_channel_io_frozen)
13943 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13944 
13945 	if (netif_running(netdev))
13946 		bnxt_close(netdev);
13947 
13948 	if (pci_is_enabled(pdev))
13949 		pci_disable_device(pdev);
13950 	bnxt_free_ctx_mem(bp);
13951 	kfree(bp->ctx);
13952 	bp->ctx = NULL;
13953 	rtnl_unlock();
13954 
13955 	/* Request a slot slot reset. */
13956 	return PCI_ERS_RESULT_NEED_RESET;
13957 }
13958 
13959 /**
13960  * bnxt_io_slot_reset - called after the pci bus has been reset.
13961  * @pdev: Pointer to PCI device
13962  *
13963  * Restart the card from scratch, as if from a cold-boot.
13964  * At this point, the card has exprienced a hard reset,
13965  * followed by fixups by BIOS, and has its config space
13966  * set up identically to what it was at cold boot.
13967  */
13968 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13969 {
13970 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13971 	struct net_device *netdev = pci_get_drvdata(pdev);
13972 	struct bnxt *bp = netdev_priv(netdev);
13973 	int retry = 0;
13974 	int err = 0;
13975 	int off;
13976 
13977 	netdev_info(bp->dev, "PCI Slot Reset\n");
13978 
13979 	rtnl_lock();
13980 
13981 	if (pci_enable_device(pdev)) {
13982 		dev_err(&pdev->dev,
13983 			"Cannot re-enable PCI device after reset.\n");
13984 	} else {
13985 		pci_set_master(pdev);
13986 		/* Upon fatal error, our device internal logic that latches to
13987 		 * BAR value is getting reset and will restore only upon
13988 		 * rewritting the BARs.
13989 		 *
13990 		 * As pci_restore_state() does not re-write the BARs if the
13991 		 * value is same as saved value earlier, driver needs to
13992 		 * write the BARs to 0 to force restore, in case of fatal error.
13993 		 */
13994 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13995 				       &bp->state)) {
13996 			for (off = PCI_BASE_ADDRESS_0;
13997 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13998 				pci_write_config_dword(bp->pdev, off, 0);
13999 		}
14000 		pci_restore_state(pdev);
14001 		pci_save_state(pdev);
14002 
14003 		bnxt_inv_fw_health_reg(bp);
14004 		bnxt_try_map_fw_health_reg(bp);
14005 
14006 		/* In some PCIe AER scenarios, firmware may take up to
14007 		 * 10 seconds to become ready in the worst case.
14008 		 */
14009 		do {
14010 			err = bnxt_try_recover_fw(bp);
14011 			if (!err)
14012 				break;
14013 			retry++;
14014 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14015 
14016 		if (err) {
14017 			dev_err(&pdev->dev, "Firmware not ready\n");
14018 			goto reset_exit;
14019 		}
14020 
14021 		err = bnxt_hwrm_func_reset(bp);
14022 		if (!err)
14023 			result = PCI_ERS_RESULT_RECOVERED;
14024 
14025 		bnxt_ulp_irq_stop(bp);
14026 		bnxt_clear_int_mode(bp);
14027 		err = bnxt_init_int_mode(bp);
14028 		bnxt_ulp_irq_restart(bp, err);
14029 	}
14030 
14031 reset_exit:
14032 	bnxt_clear_reservations(bp, true);
14033 	rtnl_unlock();
14034 
14035 	return result;
14036 }
14037 
14038 /**
14039  * bnxt_io_resume - called when traffic can start flowing again.
14040  * @pdev: Pointer to PCI device
14041  *
14042  * This callback is called when the error recovery driver tells
14043  * us that its OK to resume normal operation.
14044  */
14045 static void bnxt_io_resume(struct pci_dev *pdev)
14046 {
14047 	struct net_device *netdev = pci_get_drvdata(pdev);
14048 	struct bnxt *bp = netdev_priv(netdev);
14049 	int err;
14050 
14051 	netdev_info(bp->dev, "PCI Slot Resume\n");
14052 	rtnl_lock();
14053 
14054 	err = bnxt_hwrm_func_qcaps(bp);
14055 	if (!err && netif_running(netdev))
14056 		err = bnxt_open(netdev);
14057 
14058 	bnxt_ulp_start(bp, err);
14059 	if (!err) {
14060 		bnxt_reenable_sriov(bp);
14061 		netif_device_attach(netdev);
14062 	}
14063 
14064 	rtnl_unlock();
14065 }
14066 
14067 static const struct pci_error_handlers bnxt_err_handler = {
14068 	.error_detected	= bnxt_io_error_detected,
14069 	.slot_reset	= bnxt_io_slot_reset,
14070 	.resume		= bnxt_io_resume
14071 };
14072 
14073 static struct pci_driver bnxt_pci_driver = {
14074 	.name		= DRV_MODULE_NAME,
14075 	.id_table	= bnxt_pci_tbl,
14076 	.probe		= bnxt_init_one,
14077 	.remove		= bnxt_remove_one,
14078 	.shutdown	= bnxt_shutdown,
14079 	.driver.pm	= BNXT_PM_OPS,
14080 	.err_handler	= &bnxt_err_handler,
14081 #if defined(CONFIG_BNXT_SRIOV)
14082 	.sriov_configure = bnxt_sriov_configure,
14083 #endif
14084 };
14085 
14086 static int __init bnxt_init(void)
14087 {
14088 	int err;
14089 
14090 	bnxt_debug_init();
14091 	err = pci_register_driver(&bnxt_pci_driver);
14092 	if (err) {
14093 		bnxt_debug_exit();
14094 		return err;
14095 	}
14096 
14097 	return 0;
14098 }
14099 
14100 static void __exit bnxt_exit(void)
14101 {
14102 	pci_unregister_driver(&bnxt_pci_driver);
14103 	if (bnxt_pf_wq)
14104 		destroy_workqueue(bnxt_pf_wq);
14105 	bnxt_debug_exit();
14106 }
14107 
14108 module_init(bnxt_init);
14109 module_exit(bnxt_exit);
14110