1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 #include <linux/align.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
336 					  struct bnxt_tx_ring_info *txr,
337 					  struct netdev_queue *txq)
338 {
339 	netif_tx_stop_queue(txq);
340 
341 	/* netif_tx_stop_queue() must be done before checking
342 	 * tx index in bnxt_tx_avail() below, because in
343 	 * bnxt_tx_int(), we update tx index before checking for
344 	 * netif_tx_queue_stopped().
345 	 */
346 	smp_mb();
347 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
348 		netif_tx_wake_queue(txq);
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct bnxt *bp = netdev_priv(dev);
358 	struct tx_bd *txbd;
359 	struct tx_bd_ext *txbd1;
360 	struct netdev_queue *txq;
361 	int i;
362 	dma_addr_t mapping;
363 	unsigned int length, pad = 0;
364 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
365 	u16 prod, last_frag;
366 	struct pci_dev *pdev = bp->pdev;
367 	struct bnxt_tx_ring_info *txr;
368 	struct bnxt_sw_tx_bd *tx_buf;
369 	__le32 lflags = 0;
370 
371 	i = skb_get_queue_mapping(skb);
372 	if (unlikely(i >= bp->tx_nr_rings)) {
373 		dev_kfree_skb_any(skb);
374 		dev_core_stats_tx_dropped_inc(dev);
375 		return NETDEV_TX_OK;
376 	}
377 
378 	txq = netdev_get_tx_queue(dev, i);
379 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
380 	prod = txr->tx_prod;
381 
382 	free_size = bnxt_tx_avail(bp, txr);
383 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
384 		/* We must have raced with NAPI cleanup */
385 		if (net_ratelimit() && txr->kick_pending)
386 			netif_warn(bp, tx_err, dev,
387 				   "bnxt: ring busy w/ flush pending!\n");
388 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
389 			return NETDEV_TX_BUSY;
390 	}
391 
392 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
393 		goto tx_free;
394 
395 	length = skb->len;
396 	len = skb_headlen(skb);
397 	last_frag = skb_shinfo(skb)->nr_frags;
398 
399 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
400 
401 	txbd->tx_bd_opaque = prod;
402 
403 	tx_buf = &txr->tx_buf_ring[prod];
404 	tx_buf->skb = skb;
405 	tx_buf->nr_frags = last_frag;
406 
407 	vlan_tag_flags = 0;
408 	cfa_action = bnxt_xmit_get_cfa_action(skb);
409 	if (skb_vlan_tag_present(skb)) {
410 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
411 				 skb_vlan_tag_get(skb);
412 		/* Currently supports 8021Q, 8021AD vlan offloads
413 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
414 		 */
415 		if (skb->vlan_proto == htons(ETH_P_8021Q))
416 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
417 	}
418 
419 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
420 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
421 
422 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
423 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
424 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
425 					    &ptp->tx_hdr_off)) {
426 				if (vlan_tag_flags)
427 					ptp->tx_hdr_off += VLAN_HLEN;
428 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
429 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
430 			} else {
431 				atomic_inc(&bp->ptp_cfg->tx_avail);
432 			}
433 		}
434 	}
435 
436 	if (unlikely(skb->no_fcs))
437 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
438 
439 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
440 	    !lflags) {
441 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
442 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
443 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
444 		void __iomem *db = txr->tx_db.doorbell;
445 		void *pdata = tx_push_buf->data;
446 		u64 *end;
447 		int j, push_len;
448 
449 		/* Set COAL_NOW to be ready quickly for the next push */
450 		tx_push->tx_bd_len_flags_type =
451 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
452 					TX_BD_TYPE_LONG_TX_BD |
453 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
454 					TX_BD_FLAGS_COAL_NOW |
455 					TX_BD_FLAGS_PACKET_END |
456 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
457 
458 		if (skb->ip_summed == CHECKSUM_PARTIAL)
459 			tx_push1->tx_bd_hsize_lflags =
460 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
461 		else
462 			tx_push1->tx_bd_hsize_lflags = 0;
463 
464 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
465 		tx_push1->tx_bd_cfa_action =
466 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
467 
468 		end = pdata + length;
469 		end = PTR_ALIGN(end, 8) - 1;
470 		*end = 0;
471 
472 		skb_copy_from_linear_data(skb, pdata, len);
473 		pdata += len;
474 		for (j = 0; j < last_frag; j++) {
475 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
476 			void *fptr;
477 
478 			fptr = skb_frag_address_safe(frag);
479 			if (!fptr)
480 				goto normal_tx;
481 
482 			memcpy(pdata, fptr, skb_frag_size(frag));
483 			pdata += skb_frag_size(frag);
484 		}
485 
486 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
487 		txbd->tx_bd_haddr = txr->data_mapping;
488 		prod = NEXT_TX(prod);
489 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
490 		memcpy(txbd, tx_push1, sizeof(*txbd));
491 		prod = NEXT_TX(prod);
492 		tx_push->doorbell =
493 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
494 		txr->tx_prod = prod;
495 
496 		tx_buf->is_push = 1;
497 		netdev_tx_sent_queue(txq, skb->len);
498 		wmb();	/* Sync is_push and byte queue before pushing data */
499 
500 		push_len = (length + sizeof(*tx_push) + 7) / 8;
501 		if (push_len > 16) {
502 			__iowrite64_copy(db, tx_push_buf, 16);
503 			__iowrite32_copy(db + 4, tx_push_buf + 1,
504 					 (push_len - 16) << 1);
505 		} else {
506 			__iowrite64_copy(db, tx_push_buf, push_len);
507 		}
508 
509 		goto tx_done;
510 	}
511 
512 normal_tx:
513 	if (length < BNXT_MIN_PKT_SIZE) {
514 		pad = BNXT_MIN_PKT_SIZE - length;
515 		if (skb_pad(skb, pad))
516 			/* SKB already freed. */
517 			goto tx_kick_pending;
518 		length = BNXT_MIN_PKT_SIZE;
519 	}
520 
521 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
522 
523 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
524 		goto tx_free;
525 
526 	dma_unmap_addr_set(tx_buf, mapping, mapping);
527 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
528 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
529 
530 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
531 
532 	prod = NEXT_TX(prod);
533 	txbd1 = (struct tx_bd_ext *)
534 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
535 
536 	txbd1->tx_bd_hsize_lflags = lflags;
537 	if (skb_is_gso(skb)) {
538 		u32 hdr_len;
539 
540 		if (skb->encapsulation)
541 			hdr_len = skb_inner_tcp_all_headers(skb);
542 		else
543 			hdr_len = skb_tcp_all_headers(skb);
544 
545 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
546 					TX_BD_FLAGS_T_IPID |
547 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
548 		length = skb_shinfo(skb)->gso_size;
549 		txbd1->tx_bd_mss = cpu_to_le32(length);
550 		length += hdr_len;
551 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
552 		txbd1->tx_bd_hsize_lflags |=
553 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
554 		txbd1->tx_bd_mss = 0;
555 	}
556 
557 	length >>= 9;
558 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
559 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
560 				     skb->len);
561 		i = 0;
562 		goto tx_dma_error;
563 	}
564 	flags |= bnxt_lhint_arr[length];
565 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
566 
567 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
568 	txbd1->tx_bd_cfa_action =
569 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
570 	for (i = 0; i < last_frag; i++) {
571 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
572 
573 		prod = NEXT_TX(prod);
574 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
575 
576 		len = skb_frag_size(frag);
577 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
578 					   DMA_TO_DEVICE);
579 
580 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
581 			goto tx_dma_error;
582 
583 		tx_buf = &txr->tx_buf_ring[prod];
584 		dma_unmap_addr_set(tx_buf, mapping, mapping);
585 
586 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
587 
588 		flags = len << TX_BD_LEN_SHIFT;
589 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
590 	}
591 
592 	flags &= ~TX_BD_LEN;
593 	txbd->tx_bd_len_flags_type =
594 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
595 			    TX_BD_FLAGS_PACKET_END);
596 
597 	netdev_tx_sent_queue(txq, skb->len);
598 
599 	skb_tx_timestamp(skb);
600 
601 	/* Sync BD data before updating doorbell */
602 	wmb();
603 
604 	prod = NEXT_TX(prod);
605 	txr->tx_prod = prod;
606 
607 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
608 		bnxt_txr_db_kick(bp, txr, prod);
609 	else
610 		txr->kick_pending = 1;
611 
612 tx_done:
613 
614 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
615 		if (netdev_xmit_more() && !tx_buf->is_push)
616 			bnxt_txr_db_kick(bp, txr, prod);
617 
618 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
619 	}
620 	return NETDEV_TX_OK;
621 
622 tx_dma_error:
623 	if (BNXT_TX_PTP_IS_SET(lflags))
624 		atomic_inc(&bp->ptp_cfg->tx_avail);
625 
626 	last_frag = i;
627 
628 	/* start back at beginning and unmap skb */
629 	prod = txr->tx_prod;
630 	tx_buf = &txr->tx_buf_ring[prod];
631 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
632 			 skb_headlen(skb), DMA_TO_DEVICE);
633 	prod = NEXT_TX(prod);
634 
635 	/* unmap remaining mapped pages */
636 	for (i = 0; i < last_frag; i++) {
637 		prod = NEXT_TX(prod);
638 		tx_buf = &txr->tx_buf_ring[prod];
639 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
640 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
641 			       DMA_TO_DEVICE);
642 	}
643 
644 tx_free:
645 	dev_kfree_skb_any(skb);
646 tx_kick_pending:
647 	if (txr->kick_pending)
648 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
649 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
650 	dev_core_stats_tx_dropped_inc(dev);
651 	return NETDEV_TX_OK;
652 }
653 
654 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
655 {
656 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
657 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
658 	u16 cons = txr->tx_cons;
659 	struct pci_dev *pdev = bp->pdev;
660 	int i;
661 	unsigned int tx_bytes = 0;
662 
663 	for (i = 0; i < nr_pkts; i++) {
664 		struct bnxt_sw_tx_bd *tx_buf;
665 		struct sk_buff *skb;
666 		int j, last;
667 
668 		tx_buf = &txr->tx_buf_ring[cons];
669 		cons = NEXT_TX(cons);
670 		skb = tx_buf->skb;
671 		tx_buf->skb = NULL;
672 
673 		tx_bytes += skb->len;
674 
675 		if (tx_buf->is_push) {
676 			tx_buf->is_push = 0;
677 			goto next_tx_int;
678 		}
679 
680 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
681 				 skb_headlen(skb), DMA_TO_DEVICE);
682 		last = tx_buf->nr_frags;
683 
684 		for (j = 0; j < last; j++) {
685 			cons = NEXT_TX(cons);
686 			tx_buf = &txr->tx_buf_ring[cons];
687 			dma_unmap_page(
688 				&pdev->dev,
689 				dma_unmap_addr(tx_buf, mapping),
690 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
691 				DMA_TO_DEVICE);
692 		}
693 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
694 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
695 				/* PTP worker takes ownership of the skb */
696 				if (!bnxt_get_tx_ts_p5(bp, skb))
697 					skb = NULL;
698 				else
699 					atomic_inc(&bp->ptp_cfg->tx_avail);
700 			}
701 		}
702 
703 next_tx_int:
704 		cons = NEXT_TX(cons);
705 
706 		dev_kfree_skb_any(skb);
707 	}
708 
709 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
710 	txr->tx_cons = cons;
711 
712 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
713 	 * before checking for netif_tx_queue_stopped().  Without the
714 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
715 	 * will miss it and cause the queue to be stopped forever.
716 	 */
717 	smp_mb();
718 
719 	if (unlikely(netif_tx_queue_stopped(txq)) &&
720 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
721 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
722 		netif_tx_wake_queue(txq);
723 }
724 
725 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
726 					 struct bnxt_rx_ring_info *rxr,
727 					 gfp_t gfp)
728 {
729 	struct device *dev = &bp->pdev->dev;
730 	struct page *page;
731 
732 	page = page_pool_dev_alloc_pages(rxr->page_pool);
733 	if (!page)
734 		return NULL;
735 
736 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
737 				      DMA_ATTR_WEAK_ORDERING);
738 	if (dma_mapping_error(dev, *mapping)) {
739 		page_pool_recycle_direct(rxr->page_pool, page);
740 		return NULL;
741 	}
742 	return page;
743 }
744 
745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
746 				       gfp_t gfp)
747 {
748 	u8 *data;
749 	struct pci_dev *pdev = bp->pdev;
750 
751 	if (gfp == GFP_ATOMIC)
752 		data = napi_alloc_frag(bp->rx_buf_size);
753 	else
754 		data = netdev_alloc_frag(bp->rx_buf_size);
755 	if (!data)
756 		return NULL;
757 
758 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
759 					bp->rx_buf_use_size, bp->rx_dir,
760 					DMA_ATTR_WEAK_ORDERING);
761 
762 	if (dma_mapping_error(&pdev->dev, *mapping)) {
763 		skb_free_frag(data);
764 		data = NULL;
765 	}
766 	return data;
767 }
768 
769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
770 		       u16 prod, gfp_t gfp)
771 {
772 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
774 	dma_addr_t mapping;
775 
776 	if (BNXT_RX_PAGE_MODE(bp)) {
777 		struct page *page =
778 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
779 
780 		if (!page)
781 			return -ENOMEM;
782 
783 		mapping += bp->rx_dma_offset;
784 		rx_buf->data = page;
785 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
786 	} else {
787 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
788 
789 		if (!data)
790 			return -ENOMEM;
791 
792 		rx_buf->data = data;
793 		rx_buf->data_ptr = data + bp->rx_offset;
794 	}
795 	rx_buf->mapping = mapping;
796 
797 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
798 	return 0;
799 }
800 
801 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
802 {
803 	u16 prod = rxr->rx_prod;
804 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
805 	struct rx_bd *cons_bd, *prod_bd;
806 
807 	prod_rx_buf = &rxr->rx_buf_ring[prod];
808 	cons_rx_buf = &rxr->rx_buf_ring[cons];
809 
810 	prod_rx_buf->data = data;
811 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
812 
813 	prod_rx_buf->mapping = cons_rx_buf->mapping;
814 
815 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
816 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
817 
818 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
819 }
820 
821 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
822 {
823 	u16 next, max = rxr->rx_agg_bmap_size;
824 
825 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
826 	if (next >= max)
827 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
828 	return next;
829 }
830 
831 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
832 				     struct bnxt_rx_ring_info *rxr,
833 				     u16 prod, gfp_t gfp)
834 {
835 	struct rx_bd *rxbd =
836 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
837 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
838 	struct pci_dev *pdev = bp->pdev;
839 	struct page *page;
840 	dma_addr_t mapping;
841 	u16 sw_prod = rxr->rx_sw_agg_prod;
842 	unsigned int offset = 0;
843 
844 	if (BNXT_RX_PAGE_MODE(bp)) {
845 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
846 
847 		if (!page)
848 			return -ENOMEM;
849 
850 	} else {
851 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
852 			page = rxr->rx_page;
853 			if (!page) {
854 				page = alloc_page(gfp);
855 				if (!page)
856 					return -ENOMEM;
857 				rxr->rx_page = page;
858 				rxr->rx_page_offset = 0;
859 			}
860 			offset = rxr->rx_page_offset;
861 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
862 			if (rxr->rx_page_offset == PAGE_SIZE)
863 				rxr->rx_page = NULL;
864 			else
865 				get_page(page);
866 		} else {
867 			page = alloc_page(gfp);
868 			if (!page)
869 				return -ENOMEM;
870 		}
871 
872 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
873 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
874 					     DMA_ATTR_WEAK_ORDERING);
875 		if (dma_mapping_error(&pdev->dev, mapping)) {
876 			__free_page(page);
877 			return -EIO;
878 		}
879 	}
880 
881 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
882 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
883 
884 	__set_bit(sw_prod, rxr->rx_agg_bmap);
885 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
886 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
887 
888 	rx_agg_buf->page = page;
889 	rx_agg_buf->offset = offset;
890 	rx_agg_buf->mapping = mapping;
891 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
892 	rxbd->rx_bd_opaque = sw_prod;
893 	return 0;
894 }
895 
896 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
897 				       struct bnxt_cp_ring_info *cpr,
898 				       u16 cp_cons, u16 curr)
899 {
900 	struct rx_agg_cmp *agg;
901 
902 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
903 	agg = (struct rx_agg_cmp *)
904 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
905 	return agg;
906 }
907 
908 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
909 					      struct bnxt_rx_ring_info *rxr,
910 					      u16 agg_id, u16 curr)
911 {
912 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
913 
914 	return &tpa_info->agg_arr[curr];
915 }
916 
917 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
918 				   u16 start, u32 agg_bufs, bool tpa)
919 {
920 	struct bnxt_napi *bnapi = cpr->bnapi;
921 	struct bnxt *bp = bnapi->bp;
922 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
923 	u16 prod = rxr->rx_agg_prod;
924 	u16 sw_prod = rxr->rx_sw_agg_prod;
925 	bool p5_tpa = false;
926 	u32 i;
927 
928 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
929 		p5_tpa = true;
930 
931 	for (i = 0; i < agg_bufs; i++) {
932 		u16 cons;
933 		struct rx_agg_cmp *agg;
934 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
935 		struct rx_bd *prod_bd;
936 		struct page *page;
937 
938 		if (p5_tpa)
939 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
940 		else
941 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
942 		cons = agg->rx_agg_cmp_opaque;
943 		__clear_bit(cons, rxr->rx_agg_bmap);
944 
945 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
946 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
947 
948 		__set_bit(sw_prod, rxr->rx_agg_bmap);
949 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
950 		cons_rx_buf = &rxr->rx_agg_ring[cons];
951 
952 		/* It is possible for sw_prod to be equal to cons, so
953 		 * set cons_rx_buf->page to NULL first.
954 		 */
955 		page = cons_rx_buf->page;
956 		cons_rx_buf->page = NULL;
957 		prod_rx_buf->page = page;
958 		prod_rx_buf->offset = cons_rx_buf->offset;
959 
960 		prod_rx_buf->mapping = cons_rx_buf->mapping;
961 
962 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
963 
964 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
965 		prod_bd->rx_bd_opaque = sw_prod;
966 
967 		prod = NEXT_RX_AGG(prod);
968 		sw_prod = NEXT_RX_AGG(sw_prod);
969 	}
970 	rxr->rx_agg_prod = prod;
971 	rxr->rx_sw_agg_prod = sw_prod;
972 }
973 
974 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
975 					      struct bnxt_rx_ring_info *rxr,
976 					      u16 cons, void *data, u8 *data_ptr,
977 					      dma_addr_t dma_addr,
978 					      unsigned int offset_and_len)
979 {
980 	unsigned int len = offset_and_len & 0xffff;
981 	struct page *page = data;
982 	u16 prod = rxr->rx_prod;
983 	struct sk_buff *skb;
984 	int err;
985 
986 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
987 	if (unlikely(err)) {
988 		bnxt_reuse_rx_data(rxr, cons, data);
989 		return NULL;
990 	}
991 	dma_addr -= bp->rx_dma_offset;
992 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
993 			     DMA_ATTR_WEAK_ORDERING);
994 	skb = build_skb(page_address(page), PAGE_SIZE);
995 	if (!skb) {
996 		page_pool_recycle_direct(rxr->page_pool, page);
997 		return NULL;
998 	}
999 	skb_mark_for_recycle(skb);
1000 	skb_reserve(skb, bp->rx_dma_offset);
1001 	__skb_put(skb, len);
1002 
1003 	return skb;
1004 }
1005 
1006 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1007 					struct bnxt_rx_ring_info *rxr,
1008 					u16 cons, void *data, u8 *data_ptr,
1009 					dma_addr_t dma_addr,
1010 					unsigned int offset_and_len)
1011 {
1012 	unsigned int payload = offset_and_len >> 16;
1013 	unsigned int len = offset_and_len & 0xffff;
1014 	skb_frag_t *frag;
1015 	struct page *page = data;
1016 	u16 prod = rxr->rx_prod;
1017 	struct sk_buff *skb;
1018 	int off, err;
1019 
1020 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1021 	if (unlikely(err)) {
1022 		bnxt_reuse_rx_data(rxr, cons, data);
1023 		return NULL;
1024 	}
1025 	dma_addr -= bp->rx_dma_offset;
1026 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1027 			     DMA_ATTR_WEAK_ORDERING);
1028 
1029 	if (unlikely(!payload))
1030 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1031 
1032 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1033 	if (!skb) {
1034 		page_pool_recycle_direct(rxr->page_pool, page);
1035 		return NULL;
1036 	}
1037 
1038 	skb_mark_for_recycle(skb);
1039 	off = (void *)data_ptr - page_address(page);
1040 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1041 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1042 	       payload + NET_IP_ALIGN);
1043 
1044 	frag = &skb_shinfo(skb)->frags[0];
1045 	skb_frag_size_sub(frag, payload);
1046 	skb_frag_off_add(frag, payload);
1047 	skb->data_len -= payload;
1048 	skb->tail += payload;
1049 
1050 	return skb;
1051 }
1052 
1053 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1054 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1055 				   void *data, u8 *data_ptr,
1056 				   dma_addr_t dma_addr,
1057 				   unsigned int offset_and_len)
1058 {
1059 	u16 prod = rxr->rx_prod;
1060 	struct sk_buff *skb;
1061 	int err;
1062 
1063 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1064 	if (unlikely(err)) {
1065 		bnxt_reuse_rx_data(rxr, cons, data);
1066 		return NULL;
1067 	}
1068 
1069 	skb = build_skb(data, bp->rx_buf_size);
1070 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1071 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1072 	if (!skb) {
1073 		skb_free_frag(data);
1074 		return NULL;
1075 	}
1076 
1077 	skb_reserve(skb, bp->rx_offset);
1078 	skb_put(skb, offset_and_len & 0xffff);
1079 	return skb;
1080 }
1081 
1082 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1083 			       struct bnxt_cp_ring_info *cpr,
1084 			       struct skb_shared_info *shinfo,
1085 			       u16 idx, u32 agg_bufs, bool tpa,
1086 			       struct xdp_buff *xdp)
1087 {
1088 	struct bnxt_napi *bnapi = cpr->bnapi;
1089 	struct pci_dev *pdev = bp->pdev;
1090 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1091 	u16 prod = rxr->rx_agg_prod;
1092 	u32 i, total_frag_len = 0;
1093 	bool p5_tpa = false;
1094 
1095 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1096 		p5_tpa = true;
1097 
1098 	for (i = 0; i < agg_bufs; i++) {
1099 		skb_frag_t *frag = &shinfo->frags[i];
1100 		u16 cons, frag_len;
1101 		struct rx_agg_cmp *agg;
1102 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1103 		struct page *page;
1104 		dma_addr_t mapping;
1105 
1106 		if (p5_tpa)
1107 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1108 		else
1109 			agg = bnxt_get_agg(bp, cpr, idx, i);
1110 		cons = agg->rx_agg_cmp_opaque;
1111 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1112 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1113 
1114 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1115 		skb_frag_off_set(frag, cons_rx_buf->offset);
1116 		skb_frag_size_set(frag, frag_len);
1117 		__skb_frag_set_page(frag, cons_rx_buf->page);
1118 		shinfo->nr_frags = i + 1;
1119 		__clear_bit(cons, rxr->rx_agg_bmap);
1120 
1121 		/* It is possible for bnxt_alloc_rx_page() to allocate
1122 		 * a sw_prod index that equals the cons index, so we
1123 		 * need to clear the cons entry now.
1124 		 */
1125 		mapping = cons_rx_buf->mapping;
1126 		page = cons_rx_buf->page;
1127 		cons_rx_buf->page = NULL;
1128 
1129 		if (xdp && page_is_pfmemalloc(page))
1130 			xdp_buff_set_frag_pfmemalloc(xdp);
1131 
1132 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1133 			unsigned int nr_frags;
1134 
1135 			nr_frags = --shinfo->nr_frags;
1136 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1137 			cons_rx_buf->page = page;
1138 
1139 			/* Update prod since possibly some pages have been
1140 			 * allocated already.
1141 			 */
1142 			rxr->rx_agg_prod = prod;
1143 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1144 			return 0;
1145 		}
1146 
1147 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1148 				     bp->rx_dir,
1149 				     DMA_ATTR_WEAK_ORDERING);
1150 
1151 		total_frag_len += frag_len;
1152 		prod = NEXT_RX_AGG(prod);
1153 	}
1154 	rxr->rx_agg_prod = prod;
1155 	return total_frag_len;
1156 }
1157 
1158 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1159 					     struct bnxt_cp_ring_info *cpr,
1160 					     struct sk_buff *skb, u16 idx,
1161 					     u32 agg_bufs, bool tpa)
1162 {
1163 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1164 	u32 total_frag_len = 0;
1165 
1166 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1167 					     agg_bufs, tpa, NULL);
1168 	if (!total_frag_len) {
1169 		dev_kfree_skb(skb);
1170 		return NULL;
1171 	}
1172 
1173 	skb->data_len += total_frag_len;
1174 	skb->len += total_frag_len;
1175 	skb->truesize += PAGE_SIZE * agg_bufs;
1176 	return skb;
1177 }
1178 
1179 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1180 				 struct bnxt_cp_ring_info *cpr,
1181 				 struct xdp_buff *xdp, u16 idx,
1182 				 u32 agg_bufs, bool tpa)
1183 {
1184 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1185 	u32 total_frag_len = 0;
1186 
1187 	if (!xdp_buff_has_frags(xdp))
1188 		shinfo->nr_frags = 0;
1189 
1190 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1191 					     idx, agg_bufs, tpa, xdp);
1192 	if (total_frag_len) {
1193 		xdp_buff_set_frags_flag(xdp);
1194 		shinfo->nr_frags = agg_bufs;
1195 		shinfo->xdp_frags_size = total_frag_len;
1196 	}
1197 	return total_frag_len;
1198 }
1199 
1200 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1201 			       u8 agg_bufs, u32 *raw_cons)
1202 {
1203 	u16 last;
1204 	struct rx_agg_cmp *agg;
1205 
1206 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1207 	last = RING_CMP(*raw_cons);
1208 	agg = (struct rx_agg_cmp *)
1209 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1210 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1211 }
1212 
1213 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1214 					    unsigned int len,
1215 					    dma_addr_t mapping)
1216 {
1217 	struct bnxt *bp = bnapi->bp;
1218 	struct pci_dev *pdev = bp->pdev;
1219 	struct sk_buff *skb;
1220 
1221 	skb = napi_alloc_skb(&bnapi->napi, len);
1222 	if (!skb)
1223 		return NULL;
1224 
1225 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1226 				bp->rx_dir);
1227 
1228 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1229 	       len + NET_IP_ALIGN);
1230 
1231 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1232 				   bp->rx_dir);
1233 
1234 	skb_put(skb, len);
1235 	return skb;
1236 }
1237 
1238 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1239 			   u32 *raw_cons, void *cmp)
1240 {
1241 	struct rx_cmp *rxcmp = cmp;
1242 	u32 tmp_raw_cons = *raw_cons;
1243 	u8 cmp_type, agg_bufs = 0;
1244 
1245 	cmp_type = RX_CMP_TYPE(rxcmp);
1246 
1247 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1248 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1249 			    RX_CMP_AGG_BUFS) >>
1250 			   RX_CMP_AGG_BUFS_SHIFT;
1251 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1252 		struct rx_tpa_end_cmp *tpa_end = cmp;
1253 
1254 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1255 			return 0;
1256 
1257 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1258 	}
1259 
1260 	if (agg_bufs) {
1261 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1262 			return -EBUSY;
1263 	}
1264 	*raw_cons = tmp_raw_cons;
1265 	return 0;
1266 }
1267 
1268 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1269 {
1270 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1271 		return;
1272 
1273 	if (BNXT_PF(bp))
1274 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1275 	else
1276 		schedule_delayed_work(&bp->fw_reset_task, delay);
1277 }
1278 
1279 static void bnxt_queue_sp_work(struct bnxt *bp)
1280 {
1281 	if (BNXT_PF(bp))
1282 		queue_work(bnxt_pf_wq, &bp->sp_task);
1283 	else
1284 		schedule_work(&bp->sp_task);
1285 }
1286 
1287 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1288 {
1289 	if (!rxr->bnapi->in_reset) {
1290 		rxr->bnapi->in_reset = true;
1291 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1292 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1293 		else
1294 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1295 		bnxt_queue_sp_work(bp);
1296 	}
1297 	rxr->rx_next_cons = 0xffff;
1298 }
1299 
1300 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1301 {
1302 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1303 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1304 
1305 	if (test_bit(idx, map->agg_idx_bmap))
1306 		idx = find_first_zero_bit(map->agg_idx_bmap,
1307 					  BNXT_AGG_IDX_BMAP_SIZE);
1308 	__set_bit(idx, map->agg_idx_bmap);
1309 	map->agg_id_tbl[agg_id] = idx;
1310 	return idx;
1311 }
1312 
1313 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1314 {
1315 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1316 
1317 	__clear_bit(idx, map->agg_idx_bmap);
1318 }
1319 
1320 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1321 {
1322 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1323 
1324 	return map->agg_id_tbl[agg_id];
1325 }
1326 
1327 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1328 			   struct rx_tpa_start_cmp *tpa_start,
1329 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1330 {
1331 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1332 	struct bnxt_tpa_info *tpa_info;
1333 	u16 cons, prod, agg_id;
1334 	struct rx_bd *prod_bd;
1335 	dma_addr_t mapping;
1336 
1337 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1338 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1339 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1340 	} else {
1341 		agg_id = TPA_START_AGG_ID(tpa_start);
1342 	}
1343 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1344 	prod = rxr->rx_prod;
1345 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1346 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1347 	tpa_info = &rxr->rx_tpa[agg_id];
1348 
1349 	if (unlikely(cons != rxr->rx_next_cons ||
1350 		     TPA_START_ERROR(tpa_start))) {
1351 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1352 			    cons, rxr->rx_next_cons,
1353 			    TPA_START_ERROR_CODE(tpa_start1));
1354 		bnxt_sched_reset(bp, rxr);
1355 		return;
1356 	}
1357 	/* Store cfa_code in tpa_info to use in tpa_end
1358 	 * completion processing.
1359 	 */
1360 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1361 	prod_rx_buf->data = tpa_info->data;
1362 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1363 
1364 	mapping = tpa_info->mapping;
1365 	prod_rx_buf->mapping = mapping;
1366 
1367 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1368 
1369 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1370 
1371 	tpa_info->data = cons_rx_buf->data;
1372 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1373 	cons_rx_buf->data = NULL;
1374 	tpa_info->mapping = cons_rx_buf->mapping;
1375 
1376 	tpa_info->len =
1377 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1378 				RX_TPA_START_CMP_LEN_SHIFT;
1379 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1380 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1381 
1382 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1383 		tpa_info->gso_type = SKB_GSO_TCPV4;
1384 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1385 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1386 			tpa_info->gso_type = SKB_GSO_TCPV6;
1387 		tpa_info->rss_hash =
1388 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1389 	} else {
1390 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1391 		tpa_info->gso_type = 0;
1392 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1393 	}
1394 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1395 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1396 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1397 	tpa_info->agg_count = 0;
1398 
1399 	rxr->rx_prod = NEXT_RX(prod);
1400 	cons = NEXT_RX(cons);
1401 	rxr->rx_next_cons = NEXT_RX(cons);
1402 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1403 
1404 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1405 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1406 	cons_rx_buf->data = NULL;
1407 }
1408 
1409 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1410 {
1411 	if (agg_bufs)
1412 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1413 }
1414 
1415 #ifdef CONFIG_INET
1416 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1417 {
1418 	struct udphdr *uh = NULL;
1419 
1420 	if (ip_proto == htons(ETH_P_IP)) {
1421 		struct iphdr *iph = (struct iphdr *)skb->data;
1422 
1423 		if (iph->protocol == IPPROTO_UDP)
1424 			uh = (struct udphdr *)(iph + 1);
1425 	} else {
1426 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1427 
1428 		if (iph->nexthdr == IPPROTO_UDP)
1429 			uh = (struct udphdr *)(iph + 1);
1430 	}
1431 	if (uh) {
1432 		if (uh->check)
1433 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1434 		else
1435 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1436 	}
1437 }
1438 #endif
1439 
1440 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1441 					   int payload_off, int tcp_ts,
1442 					   struct sk_buff *skb)
1443 {
1444 #ifdef CONFIG_INET
1445 	struct tcphdr *th;
1446 	int len, nw_off;
1447 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1448 	u32 hdr_info = tpa_info->hdr_info;
1449 	bool loopback = false;
1450 
1451 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1452 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1453 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1454 
1455 	/* If the packet is an internal loopback packet, the offsets will
1456 	 * have an extra 4 bytes.
1457 	 */
1458 	if (inner_mac_off == 4) {
1459 		loopback = true;
1460 	} else if (inner_mac_off > 4) {
1461 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1462 					    ETH_HLEN - 2));
1463 
1464 		/* We only support inner iPv4/ipv6.  If we don't see the
1465 		 * correct protocol ID, it must be a loopback packet where
1466 		 * the offsets are off by 4.
1467 		 */
1468 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1469 			loopback = true;
1470 	}
1471 	if (loopback) {
1472 		/* internal loopback packet, subtract all offsets by 4 */
1473 		inner_ip_off -= 4;
1474 		inner_mac_off -= 4;
1475 		outer_ip_off -= 4;
1476 	}
1477 
1478 	nw_off = inner_ip_off - ETH_HLEN;
1479 	skb_set_network_header(skb, nw_off);
1480 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1481 		struct ipv6hdr *iph = ipv6_hdr(skb);
1482 
1483 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1484 		len = skb->len - skb_transport_offset(skb);
1485 		th = tcp_hdr(skb);
1486 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1487 	} else {
1488 		struct iphdr *iph = ip_hdr(skb);
1489 
1490 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1491 		len = skb->len - skb_transport_offset(skb);
1492 		th = tcp_hdr(skb);
1493 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1494 	}
1495 
1496 	if (inner_mac_off) { /* tunnel */
1497 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1498 					    ETH_HLEN - 2));
1499 
1500 		bnxt_gro_tunnel(skb, proto);
1501 	}
1502 #endif
1503 	return skb;
1504 }
1505 
1506 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1507 					   int payload_off, int tcp_ts,
1508 					   struct sk_buff *skb)
1509 {
1510 #ifdef CONFIG_INET
1511 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1512 	u32 hdr_info = tpa_info->hdr_info;
1513 	int iphdr_len, nw_off;
1514 
1515 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1516 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1517 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1518 
1519 	nw_off = inner_ip_off - ETH_HLEN;
1520 	skb_set_network_header(skb, nw_off);
1521 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1522 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1523 	skb_set_transport_header(skb, nw_off + iphdr_len);
1524 
1525 	if (inner_mac_off) { /* tunnel */
1526 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1527 					    ETH_HLEN - 2));
1528 
1529 		bnxt_gro_tunnel(skb, proto);
1530 	}
1531 #endif
1532 	return skb;
1533 }
1534 
1535 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1536 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1537 
1538 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1539 					   int payload_off, int tcp_ts,
1540 					   struct sk_buff *skb)
1541 {
1542 #ifdef CONFIG_INET
1543 	struct tcphdr *th;
1544 	int len, nw_off, tcp_opt_len = 0;
1545 
1546 	if (tcp_ts)
1547 		tcp_opt_len = 12;
1548 
1549 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1550 		struct iphdr *iph;
1551 
1552 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1553 			 ETH_HLEN;
1554 		skb_set_network_header(skb, nw_off);
1555 		iph = ip_hdr(skb);
1556 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1557 		len = skb->len - skb_transport_offset(skb);
1558 		th = tcp_hdr(skb);
1559 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1560 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1561 		struct ipv6hdr *iph;
1562 
1563 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1564 			 ETH_HLEN;
1565 		skb_set_network_header(skb, nw_off);
1566 		iph = ipv6_hdr(skb);
1567 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1568 		len = skb->len - skb_transport_offset(skb);
1569 		th = tcp_hdr(skb);
1570 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1571 	} else {
1572 		dev_kfree_skb_any(skb);
1573 		return NULL;
1574 	}
1575 
1576 	if (nw_off) /* tunnel */
1577 		bnxt_gro_tunnel(skb, skb->protocol);
1578 #endif
1579 	return skb;
1580 }
1581 
1582 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1583 					   struct bnxt_tpa_info *tpa_info,
1584 					   struct rx_tpa_end_cmp *tpa_end,
1585 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1586 					   struct sk_buff *skb)
1587 {
1588 #ifdef CONFIG_INET
1589 	int payload_off;
1590 	u16 segs;
1591 
1592 	segs = TPA_END_TPA_SEGS(tpa_end);
1593 	if (segs == 1)
1594 		return skb;
1595 
1596 	NAPI_GRO_CB(skb)->count = segs;
1597 	skb_shinfo(skb)->gso_size =
1598 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1599 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1600 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1601 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1602 	else
1603 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1604 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1605 	if (likely(skb))
1606 		tcp_gro_complete(skb);
1607 #endif
1608 	return skb;
1609 }
1610 
1611 /* Given the cfa_code of a received packet determine which
1612  * netdev (vf-rep or PF) the packet is destined to.
1613  */
1614 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1615 {
1616 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1617 
1618 	/* if vf-rep dev is NULL, the must belongs to the PF */
1619 	return dev ? dev : bp->dev;
1620 }
1621 
1622 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1623 					   struct bnxt_cp_ring_info *cpr,
1624 					   u32 *raw_cons,
1625 					   struct rx_tpa_end_cmp *tpa_end,
1626 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1627 					   u8 *event)
1628 {
1629 	struct bnxt_napi *bnapi = cpr->bnapi;
1630 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1631 	u8 *data_ptr, agg_bufs;
1632 	unsigned int len;
1633 	struct bnxt_tpa_info *tpa_info;
1634 	dma_addr_t mapping;
1635 	struct sk_buff *skb;
1636 	u16 idx = 0, agg_id;
1637 	void *data;
1638 	bool gro;
1639 
1640 	if (unlikely(bnapi->in_reset)) {
1641 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1642 
1643 		if (rc < 0)
1644 			return ERR_PTR(-EBUSY);
1645 		return NULL;
1646 	}
1647 
1648 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1649 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1650 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1651 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1652 		tpa_info = &rxr->rx_tpa[agg_id];
1653 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1654 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1655 				    agg_bufs, tpa_info->agg_count);
1656 			agg_bufs = tpa_info->agg_count;
1657 		}
1658 		tpa_info->agg_count = 0;
1659 		*event |= BNXT_AGG_EVENT;
1660 		bnxt_free_agg_idx(rxr, agg_id);
1661 		idx = agg_id;
1662 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1663 	} else {
1664 		agg_id = TPA_END_AGG_ID(tpa_end);
1665 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1666 		tpa_info = &rxr->rx_tpa[agg_id];
1667 		idx = RING_CMP(*raw_cons);
1668 		if (agg_bufs) {
1669 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1670 				return ERR_PTR(-EBUSY);
1671 
1672 			*event |= BNXT_AGG_EVENT;
1673 			idx = NEXT_CMP(idx);
1674 		}
1675 		gro = !!TPA_END_GRO(tpa_end);
1676 	}
1677 	data = tpa_info->data;
1678 	data_ptr = tpa_info->data_ptr;
1679 	prefetch(data_ptr);
1680 	len = tpa_info->len;
1681 	mapping = tpa_info->mapping;
1682 
1683 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1684 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1685 		if (agg_bufs > MAX_SKB_FRAGS)
1686 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1687 				    agg_bufs, (int)MAX_SKB_FRAGS);
1688 		return NULL;
1689 	}
1690 
1691 	if (len <= bp->rx_copy_thresh) {
1692 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1693 		if (!skb) {
1694 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1695 			cpr->sw_stats.rx.rx_oom_discards += 1;
1696 			return NULL;
1697 		}
1698 	} else {
1699 		u8 *new_data;
1700 		dma_addr_t new_mapping;
1701 
1702 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1703 		if (!new_data) {
1704 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1705 			cpr->sw_stats.rx.rx_oom_discards += 1;
1706 			return NULL;
1707 		}
1708 
1709 		tpa_info->data = new_data;
1710 		tpa_info->data_ptr = new_data + bp->rx_offset;
1711 		tpa_info->mapping = new_mapping;
1712 
1713 		skb = build_skb(data, bp->rx_buf_size);
1714 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1715 				       bp->rx_buf_use_size, bp->rx_dir,
1716 				       DMA_ATTR_WEAK_ORDERING);
1717 
1718 		if (!skb) {
1719 			skb_free_frag(data);
1720 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1721 			cpr->sw_stats.rx.rx_oom_discards += 1;
1722 			return NULL;
1723 		}
1724 		skb_reserve(skb, bp->rx_offset);
1725 		skb_put(skb, len);
1726 	}
1727 
1728 	if (agg_bufs) {
1729 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1730 		if (!skb) {
1731 			/* Page reuse already handled by bnxt_rx_pages(). */
1732 			cpr->sw_stats.rx.rx_oom_discards += 1;
1733 			return NULL;
1734 		}
1735 	}
1736 
1737 	skb->protocol =
1738 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1739 
1740 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1741 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1742 
1743 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1744 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1745 		__be16 vlan_proto = htons(tpa_info->metadata >>
1746 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1747 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1748 
1749 		if (eth_type_vlan(vlan_proto)) {
1750 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1751 		} else {
1752 			dev_kfree_skb(skb);
1753 			return NULL;
1754 		}
1755 	}
1756 
1757 	skb_checksum_none_assert(skb);
1758 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1759 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1760 		skb->csum_level =
1761 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1762 	}
1763 
1764 	if (gro)
1765 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1766 
1767 	return skb;
1768 }
1769 
1770 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1771 			 struct rx_agg_cmp *rx_agg)
1772 {
1773 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1774 	struct bnxt_tpa_info *tpa_info;
1775 
1776 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1777 	tpa_info = &rxr->rx_tpa[agg_id];
1778 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1779 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1780 }
1781 
1782 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1783 			     struct sk_buff *skb)
1784 {
1785 	if (skb->dev != bp->dev) {
1786 		/* this packet belongs to a vf-rep */
1787 		bnxt_vf_rep_rx(bp, skb);
1788 		return;
1789 	}
1790 	skb_record_rx_queue(skb, bnapi->index);
1791 	napi_gro_receive(&bnapi->napi, skb);
1792 }
1793 
1794 /* returns the following:
1795  * 1       - 1 packet successfully received
1796  * 0       - successful TPA_START, packet not completed yet
1797  * -EBUSY  - completion ring does not have all the agg buffers yet
1798  * -ENOMEM - packet aborted due to out of memory
1799  * -EIO    - packet aborted due to hw error indicated in BD
1800  */
1801 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1802 		       u32 *raw_cons, u8 *event)
1803 {
1804 	struct bnxt_napi *bnapi = cpr->bnapi;
1805 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1806 	struct net_device *dev = bp->dev;
1807 	struct rx_cmp *rxcmp;
1808 	struct rx_cmp_ext *rxcmp1;
1809 	u32 tmp_raw_cons = *raw_cons;
1810 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1811 	struct bnxt_sw_rx_bd *rx_buf;
1812 	unsigned int len;
1813 	u8 *data_ptr, agg_bufs, cmp_type;
1814 	bool xdp_active = false;
1815 	dma_addr_t dma_addr;
1816 	struct sk_buff *skb;
1817 	struct xdp_buff xdp;
1818 	u32 flags, misc;
1819 	void *data;
1820 	int rc = 0;
1821 
1822 	rxcmp = (struct rx_cmp *)
1823 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1824 
1825 	cmp_type = RX_CMP_TYPE(rxcmp);
1826 
1827 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1828 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1829 		goto next_rx_no_prod_no_len;
1830 	}
1831 
1832 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1833 	cp_cons = RING_CMP(tmp_raw_cons);
1834 	rxcmp1 = (struct rx_cmp_ext *)
1835 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1836 
1837 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1838 		return -EBUSY;
1839 
1840 	/* The valid test of the entry must be done first before
1841 	 * reading any further.
1842 	 */
1843 	dma_rmb();
1844 	prod = rxr->rx_prod;
1845 
1846 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1847 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1848 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1849 
1850 		*event |= BNXT_RX_EVENT;
1851 		goto next_rx_no_prod_no_len;
1852 
1853 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1854 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1855 				   (struct rx_tpa_end_cmp *)rxcmp,
1856 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1857 
1858 		if (IS_ERR(skb))
1859 			return -EBUSY;
1860 
1861 		rc = -ENOMEM;
1862 		if (likely(skb)) {
1863 			bnxt_deliver_skb(bp, bnapi, skb);
1864 			rc = 1;
1865 		}
1866 		*event |= BNXT_RX_EVENT;
1867 		goto next_rx_no_prod_no_len;
1868 	}
1869 
1870 	cons = rxcmp->rx_cmp_opaque;
1871 	if (unlikely(cons != rxr->rx_next_cons)) {
1872 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1873 
1874 		/* 0xffff is forced error, don't print it */
1875 		if (rxr->rx_next_cons != 0xffff)
1876 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1877 				    cons, rxr->rx_next_cons);
1878 		bnxt_sched_reset(bp, rxr);
1879 		if (rc1)
1880 			return rc1;
1881 		goto next_rx_no_prod_no_len;
1882 	}
1883 	rx_buf = &rxr->rx_buf_ring[cons];
1884 	data = rx_buf->data;
1885 	data_ptr = rx_buf->data_ptr;
1886 	prefetch(data_ptr);
1887 
1888 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1889 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1890 
1891 	if (agg_bufs) {
1892 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1893 			return -EBUSY;
1894 
1895 		cp_cons = NEXT_CMP(cp_cons);
1896 		*event |= BNXT_AGG_EVENT;
1897 	}
1898 	*event |= BNXT_RX_EVENT;
1899 
1900 	rx_buf->data = NULL;
1901 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1902 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1903 
1904 		bnxt_reuse_rx_data(rxr, cons, data);
1905 		if (agg_bufs)
1906 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1907 					       false);
1908 
1909 		rc = -EIO;
1910 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1911 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1912 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1913 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1914 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1915 						 rx_err);
1916 				bnxt_sched_reset(bp, rxr);
1917 			}
1918 		}
1919 		goto next_rx_no_len;
1920 	}
1921 
1922 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1923 	len = flags >> RX_CMP_LEN_SHIFT;
1924 	dma_addr = rx_buf->mapping;
1925 
1926 	if (bnxt_xdp_attached(bp, rxr)) {
1927 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
1928 		if (agg_bufs) {
1929 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1930 							     cp_cons, agg_bufs,
1931 							     false);
1932 			if (!frag_len) {
1933 				cpr->sw_stats.rx.rx_oom_discards += 1;
1934 				rc = -ENOMEM;
1935 				goto next_rx;
1936 			}
1937 		}
1938 		xdp_active = true;
1939 	}
1940 
1941 	if (xdp_active) {
1942 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
1943 			rc = 1;
1944 			goto next_rx;
1945 		}
1946 	}
1947 
1948 	if (len <= bp->rx_copy_thresh) {
1949 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1950 		bnxt_reuse_rx_data(rxr, cons, data);
1951 		if (!skb) {
1952 			if (agg_bufs) {
1953 				if (!xdp_active)
1954 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1955 							       agg_bufs, false);
1956 				else
1957 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1958 			}
1959 			cpr->sw_stats.rx.rx_oom_discards += 1;
1960 			rc = -ENOMEM;
1961 			goto next_rx;
1962 		}
1963 	} else {
1964 		u32 payload;
1965 
1966 		if (rx_buf->data_ptr == data_ptr)
1967 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1968 		else
1969 			payload = 0;
1970 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1971 				      payload | len);
1972 		if (!skb) {
1973 			cpr->sw_stats.rx.rx_oom_discards += 1;
1974 			rc = -ENOMEM;
1975 			goto next_rx;
1976 		}
1977 	}
1978 
1979 	if (agg_bufs) {
1980 		if (!xdp_active) {
1981 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1982 			if (!skb) {
1983 				cpr->sw_stats.rx.rx_oom_discards += 1;
1984 				rc = -ENOMEM;
1985 				goto next_rx;
1986 			}
1987 		} else {
1988 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1989 			if (!skb) {
1990 				/* we should be able to free the old skb here */
1991 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1992 				cpr->sw_stats.rx.rx_oom_discards += 1;
1993 				rc = -ENOMEM;
1994 				goto next_rx;
1995 			}
1996 		}
1997 	}
1998 
1999 	if (RX_CMP_HASH_VALID(rxcmp)) {
2000 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2001 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
2002 
2003 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
2004 		if (hash_type != 1 && hash_type != 3)
2005 			type = PKT_HASH_TYPE_L3;
2006 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2007 	}
2008 
2009 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
2010 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
2011 
2012 	if ((rxcmp1->rx_cmp_flags2 &
2013 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
2014 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
2015 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
2016 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
2017 		__be16 vlan_proto = htons(meta_data >>
2018 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
2019 
2020 		if (eth_type_vlan(vlan_proto)) {
2021 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2022 		} else {
2023 			dev_kfree_skb(skb);
2024 			goto next_rx;
2025 		}
2026 	}
2027 
2028 	skb_checksum_none_assert(skb);
2029 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2030 		if (dev->features & NETIF_F_RXCSUM) {
2031 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2032 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2033 		}
2034 	} else {
2035 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2036 			if (dev->features & NETIF_F_RXCSUM)
2037 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2038 		}
2039 	}
2040 
2041 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2042 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2043 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2044 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2045 			u64 ns, ts;
2046 
2047 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2048 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2049 
2050 				spin_lock_bh(&ptp->ptp_lock);
2051 				ns = timecounter_cyc2time(&ptp->tc, ts);
2052 				spin_unlock_bh(&ptp->ptp_lock);
2053 				memset(skb_hwtstamps(skb), 0,
2054 				       sizeof(*skb_hwtstamps(skb)));
2055 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2056 			}
2057 		}
2058 	}
2059 	bnxt_deliver_skb(bp, bnapi, skb);
2060 	rc = 1;
2061 
2062 next_rx:
2063 	cpr->rx_packets += 1;
2064 	cpr->rx_bytes += len;
2065 
2066 next_rx_no_len:
2067 	rxr->rx_prod = NEXT_RX(prod);
2068 	rxr->rx_next_cons = NEXT_RX(cons);
2069 
2070 next_rx_no_prod_no_len:
2071 	*raw_cons = tmp_raw_cons;
2072 
2073 	return rc;
2074 }
2075 
2076 /* In netpoll mode, if we are using a combined completion ring, we need to
2077  * discard the rx packets and recycle the buffers.
2078  */
2079 static int bnxt_force_rx_discard(struct bnxt *bp,
2080 				 struct bnxt_cp_ring_info *cpr,
2081 				 u32 *raw_cons, u8 *event)
2082 {
2083 	u32 tmp_raw_cons = *raw_cons;
2084 	struct rx_cmp_ext *rxcmp1;
2085 	struct rx_cmp *rxcmp;
2086 	u16 cp_cons;
2087 	u8 cmp_type;
2088 	int rc;
2089 
2090 	cp_cons = RING_CMP(tmp_raw_cons);
2091 	rxcmp = (struct rx_cmp *)
2092 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2093 
2094 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2095 	cp_cons = RING_CMP(tmp_raw_cons);
2096 	rxcmp1 = (struct rx_cmp_ext *)
2097 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2098 
2099 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2100 		return -EBUSY;
2101 
2102 	/* The valid test of the entry must be done first before
2103 	 * reading any further.
2104 	 */
2105 	dma_rmb();
2106 	cmp_type = RX_CMP_TYPE(rxcmp);
2107 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2108 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2109 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2110 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2111 		struct rx_tpa_end_cmp_ext *tpa_end1;
2112 
2113 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2114 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2115 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2116 	}
2117 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2118 	if (rc && rc != -EBUSY)
2119 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2120 	return rc;
2121 }
2122 
2123 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2124 {
2125 	struct bnxt_fw_health *fw_health = bp->fw_health;
2126 	u32 reg = fw_health->regs[reg_idx];
2127 	u32 reg_type, reg_off, val = 0;
2128 
2129 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2130 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2131 	switch (reg_type) {
2132 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2133 		pci_read_config_dword(bp->pdev, reg_off, &val);
2134 		break;
2135 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2136 		reg_off = fw_health->mapped_regs[reg_idx];
2137 		fallthrough;
2138 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2139 		val = readl(bp->bar0 + reg_off);
2140 		break;
2141 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2142 		val = readl(bp->bar1 + reg_off);
2143 		break;
2144 	}
2145 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2146 		val &= fw_health->fw_reset_inprog_reg_mask;
2147 	return val;
2148 }
2149 
2150 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2151 {
2152 	int i;
2153 
2154 	for (i = 0; i < bp->rx_nr_rings; i++) {
2155 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2156 		struct bnxt_ring_grp_info *grp_info;
2157 
2158 		grp_info = &bp->grp_info[grp_idx];
2159 		if (grp_info->agg_fw_ring_id == ring_id)
2160 			return grp_idx;
2161 	}
2162 	return INVALID_HW_RING_ID;
2163 }
2164 
2165 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2166 {
2167 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2168 
2169 	switch (err_type) {
2170 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2171 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2172 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2173 		break;
2174 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2175 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2176 		break;
2177 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2178 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2179 		break;
2180 	default:
2181 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2182 			   err_type);
2183 		break;
2184 	}
2185 }
2186 
2187 #define BNXT_GET_EVENT_PORT(data)	\
2188 	((data) &			\
2189 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2190 
2191 #define BNXT_EVENT_RING_TYPE(data2)	\
2192 	((data2) &			\
2193 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2194 
2195 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2196 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2197 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2198 
2199 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2200 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2201 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2202 
2203 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2204 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2205 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2206 
2207 #define BNXT_PHC_BITS	48
2208 
2209 static int bnxt_async_event_process(struct bnxt *bp,
2210 				    struct hwrm_async_event_cmpl *cmpl)
2211 {
2212 	u16 event_id = le16_to_cpu(cmpl->event_id);
2213 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2214 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2215 
2216 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2217 		   event_id, data1, data2);
2218 
2219 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2220 	switch (event_id) {
2221 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2222 		struct bnxt_link_info *link_info = &bp->link_info;
2223 
2224 		if (BNXT_VF(bp))
2225 			goto async_event_process_exit;
2226 
2227 		/* print unsupported speed warning in forced speed mode only */
2228 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2229 		    (data1 & 0x20000)) {
2230 			u16 fw_speed = link_info->force_link_speed;
2231 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2232 
2233 			if (speed != SPEED_UNKNOWN)
2234 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2235 					    speed);
2236 		}
2237 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2238 	}
2239 		fallthrough;
2240 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2241 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2242 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2243 		fallthrough;
2244 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2245 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2246 		break;
2247 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2248 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2249 		break;
2250 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2251 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2252 
2253 		if (BNXT_VF(bp))
2254 			break;
2255 
2256 		if (bp->pf.port_id != port_id)
2257 			break;
2258 
2259 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2260 		break;
2261 	}
2262 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2263 		if (BNXT_PF(bp))
2264 			goto async_event_process_exit;
2265 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2266 		break;
2267 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2268 		char *type_str = "Solicited";
2269 
2270 		if (!bp->fw_health)
2271 			goto async_event_process_exit;
2272 
2273 		bp->fw_reset_timestamp = jiffies;
2274 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2275 		if (!bp->fw_reset_min_dsecs)
2276 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2277 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2278 		if (!bp->fw_reset_max_dsecs)
2279 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2280 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2281 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2282 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2283 			type_str = "Fatal";
2284 			bp->fw_health->fatalities++;
2285 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2286 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2287 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2288 			type_str = "Non-fatal";
2289 			bp->fw_health->survivals++;
2290 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2291 		}
2292 		netif_warn(bp, hw, bp->dev,
2293 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2294 			   type_str, data1, data2,
2295 			   bp->fw_reset_min_dsecs * 100,
2296 			   bp->fw_reset_max_dsecs * 100);
2297 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2298 		break;
2299 	}
2300 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2301 		struct bnxt_fw_health *fw_health = bp->fw_health;
2302 		char *status_desc = "healthy";
2303 		u32 status;
2304 
2305 		if (!fw_health)
2306 			goto async_event_process_exit;
2307 
2308 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2309 			fw_health->enabled = false;
2310 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2311 			break;
2312 		}
2313 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2314 		fw_health->tmr_multiplier =
2315 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2316 				     bp->current_interval * 10);
2317 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2318 		if (!fw_health->enabled)
2319 			fw_health->last_fw_heartbeat =
2320 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2321 		fw_health->last_fw_reset_cnt =
2322 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2323 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2324 		if (status != BNXT_FW_STATUS_HEALTHY)
2325 			status_desc = "unhealthy";
2326 		netif_info(bp, drv, bp->dev,
2327 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2328 			   fw_health->primary ? "primary" : "backup", status,
2329 			   status_desc, fw_health->last_fw_reset_cnt);
2330 		if (!fw_health->enabled) {
2331 			/* Make sure tmr_counter is set and visible to
2332 			 * bnxt_health_check() before setting enabled to true.
2333 			 */
2334 			smp_wmb();
2335 			fw_health->enabled = true;
2336 		}
2337 		goto async_event_process_exit;
2338 	}
2339 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2340 		netif_notice(bp, hw, bp->dev,
2341 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2342 			     data1, data2);
2343 		goto async_event_process_exit;
2344 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2345 		struct bnxt_rx_ring_info *rxr;
2346 		u16 grp_idx;
2347 
2348 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2349 			goto async_event_process_exit;
2350 
2351 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2352 			    BNXT_EVENT_RING_TYPE(data2), data1);
2353 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2354 			goto async_event_process_exit;
2355 
2356 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2357 		if (grp_idx == INVALID_HW_RING_ID) {
2358 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2359 				    data1);
2360 			goto async_event_process_exit;
2361 		}
2362 		rxr = bp->bnapi[grp_idx]->rx_ring;
2363 		bnxt_sched_reset(bp, rxr);
2364 		goto async_event_process_exit;
2365 	}
2366 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2367 		struct bnxt_fw_health *fw_health = bp->fw_health;
2368 
2369 		netif_notice(bp, hw, bp->dev,
2370 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2371 			     data1, data2);
2372 		if (fw_health) {
2373 			fw_health->echo_req_data1 = data1;
2374 			fw_health->echo_req_data2 = data2;
2375 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2376 			break;
2377 		}
2378 		goto async_event_process_exit;
2379 	}
2380 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2381 		bnxt_ptp_pps_event(bp, data1, data2);
2382 		goto async_event_process_exit;
2383 	}
2384 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2385 		bnxt_event_error_report(bp, data1, data2);
2386 		goto async_event_process_exit;
2387 	}
2388 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2389 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2390 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2391 			if (BNXT_PTP_USE_RTC(bp)) {
2392 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2393 				u64 ns;
2394 
2395 				spin_lock_bh(&ptp->ptp_lock);
2396 				bnxt_ptp_update_current_time(bp);
2397 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2398 				       BNXT_PHC_BITS) | ptp->current_time);
2399 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2400 				spin_unlock_bh(&ptp->ptp_lock);
2401 			}
2402 			break;
2403 		}
2404 		goto async_event_process_exit;
2405 	}
2406 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2407 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2408 
2409 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2410 		goto async_event_process_exit;
2411 	}
2412 	default:
2413 		goto async_event_process_exit;
2414 	}
2415 	bnxt_queue_sp_work(bp);
2416 async_event_process_exit:
2417 	return 0;
2418 }
2419 
2420 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2421 {
2422 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2423 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2424 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2425 				(struct hwrm_fwd_req_cmpl *)txcmp;
2426 
2427 	switch (cmpl_type) {
2428 	case CMPL_BASE_TYPE_HWRM_DONE:
2429 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2430 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2431 		break;
2432 
2433 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2434 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2435 
2436 		if ((vf_id < bp->pf.first_vf_id) ||
2437 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2438 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2439 				   vf_id);
2440 			return -EINVAL;
2441 		}
2442 
2443 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2444 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2445 		bnxt_queue_sp_work(bp);
2446 		break;
2447 
2448 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2449 		bnxt_async_event_process(bp,
2450 					 (struct hwrm_async_event_cmpl *)txcmp);
2451 		break;
2452 
2453 	default:
2454 		break;
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2461 {
2462 	struct bnxt_napi *bnapi = dev_instance;
2463 	struct bnxt *bp = bnapi->bp;
2464 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2465 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2466 
2467 	cpr->event_ctr++;
2468 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2469 	napi_schedule(&bnapi->napi);
2470 	return IRQ_HANDLED;
2471 }
2472 
2473 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2474 {
2475 	u32 raw_cons = cpr->cp_raw_cons;
2476 	u16 cons = RING_CMP(raw_cons);
2477 	struct tx_cmp *txcmp;
2478 
2479 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2480 
2481 	return TX_CMP_VALID(txcmp, raw_cons);
2482 }
2483 
2484 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2485 {
2486 	struct bnxt_napi *bnapi = dev_instance;
2487 	struct bnxt *bp = bnapi->bp;
2488 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2489 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2490 	u32 int_status;
2491 
2492 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2493 
2494 	if (!bnxt_has_work(bp, cpr)) {
2495 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2496 		/* return if erroneous interrupt */
2497 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2498 			return IRQ_NONE;
2499 	}
2500 
2501 	/* disable ring IRQ */
2502 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2503 
2504 	/* Return here if interrupt is shared and is disabled. */
2505 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2506 		return IRQ_HANDLED;
2507 
2508 	napi_schedule(&bnapi->napi);
2509 	return IRQ_HANDLED;
2510 }
2511 
2512 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2513 			    int budget)
2514 {
2515 	struct bnxt_napi *bnapi = cpr->bnapi;
2516 	u32 raw_cons = cpr->cp_raw_cons;
2517 	u32 cons;
2518 	int tx_pkts = 0;
2519 	int rx_pkts = 0;
2520 	u8 event = 0;
2521 	struct tx_cmp *txcmp;
2522 
2523 	cpr->has_more_work = 0;
2524 	cpr->had_work_done = 1;
2525 	while (1) {
2526 		int rc;
2527 
2528 		cons = RING_CMP(raw_cons);
2529 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2530 
2531 		if (!TX_CMP_VALID(txcmp, raw_cons))
2532 			break;
2533 
2534 		/* The valid test of the entry must be done first before
2535 		 * reading any further.
2536 		 */
2537 		dma_rmb();
2538 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2539 			tx_pkts++;
2540 			/* return full budget so NAPI will complete. */
2541 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2542 				rx_pkts = budget;
2543 				raw_cons = NEXT_RAW_CMP(raw_cons);
2544 				if (budget)
2545 					cpr->has_more_work = 1;
2546 				break;
2547 			}
2548 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2549 			if (likely(budget))
2550 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2551 			else
2552 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2553 							   &event);
2554 			if (likely(rc >= 0))
2555 				rx_pkts += rc;
2556 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2557 			 * the NAPI budget.  Otherwise, we may potentially loop
2558 			 * here forever if we consistently cannot allocate
2559 			 * buffers.
2560 			 */
2561 			else if (rc == -ENOMEM && budget)
2562 				rx_pkts++;
2563 			else if (rc == -EBUSY)	/* partial completion */
2564 				break;
2565 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2566 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2567 				    (TX_CMP_TYPE(txcmp) ==
2568 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2569 				    (TX_CMP_TYPE(txcmp) ==
2570 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2571 			bnxt_hwrm_handler(bp, txcmp);
2572 		}
2573 		raw_cons = NEXT_RAW_CMP(raw_cons);
2574 
2575 		if (rx_pkts && rx_pkts == budget) {
2576 			cpr->has_more_work = 1;
2577 			break;
2578 		}
2579 	}
2580 
2581 	if (event & BNXT_REDIRECT_EVENT)
2582 		xdp_do_flush();
2583 
2584 	if (event & BNXT_TX_EVENT) {
2585 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2586 		u16 prod = txr->tx_prod;
2587 
2588 		/* Sync BD data before updating doorbell */
2589 		wmb();
2590 
2591 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2592 	}
2593 
2594 	cpr->cp_raw_cons = raw_cons;
2595 	bnapi->tx_pkts += tx_pkts;
2596 	bnapi->events |= event;
2597 	return rx_pkts;
2598 }
2599 
2600 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2601 {
2602 	if (bnapi->tx_pkts) {
2603 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2604 		bnapi->tx_pkts = 0;
2605 	}
2606 
2607 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2608 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2609 
2610 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2611 	}
2612 	if (bnapi->events & BNXT_AGG_EVENT) {
2613 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2614 
2615 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2616 	}
2617 	bnapi->events = 0;
2618 }
2619 
2620 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2621 			  int budget)
2622 {
2623 	struct bnxt_napi *bnapi = cpr->bnapi;
2624 	int rx_pkts;
2625 
2626 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2627 
2628 	/* ACK completion ring before freeing tx ring and producing new
2629 	 * buffers in rx/agg rings to prevent overflowing the completion
2630 	 * ring.
2631 	 */
2632 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2633 
2634 	__bnxt_poll_work_done(bp, bnapi);
2635 	return rx_pkts;
2636 }
2637 
2638 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2639 {
2640 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2641 	struct bnxt *bp = bnapi->bp;
2642 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2643 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2644 	struct tx_cmp *txcmp;
2645 	struct rx_cmp_ext *rxcmp1;
2646 	u32 cp_cons, tmp_raw_cons;
2647 	u32 raw_cons = cpr->cp_raw_cons;
2648 	u32 rx_pkts = 0;
2649 	u8 event = 0;
2650 
2651 	while (1) {
2652 		int rc;
2653 
2654 		cp_cons = RING_CMP(raw_cons);
2655 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2656 
2657 		if (!TX_CMP_VALID(txcmp, raw_cons))
2658 			break;
2659 
2660 		/* The valid test of the entry must be done first before
2661 		 * reading any further.
2662 		 */
2663 		dma_rmb();
2664 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2665 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2666 			cp_cons = RING_CMP(tmp_raw_cons);
2667 			rxcmp1 = (struct rx_cmp_ext *)
2668 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2669 
2670 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2671 				break;
2672 
2673 			/* force an error to recycle the buffer */
2674 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2675 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2676 
2677 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2678 			if (likely(rc == -EIO) && budget)
2679 				rx_pkts++;
2680 			else if (rc == -EBUSY)	/* partial completion */
2681 				break;
2682 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2683 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2684 			bnxt_hwrm_handler(bp, txcmp);
2685 		} else {
2686 			netdev_err(bp->dev,
2687 				   "Invalid completion received on special ring\n");
2688 		}
2689 		raw_cons = NEXT_RAW_CMP(raw_cons);
2690 
2691 		if (rx_pkts == budget)
2692 			break;
2693 	}
2694 
2695 	cpr->cp_raw_cons = raw_cons;
2696 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2697 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2698 
2699 	if (event & BNXT_AGG_EVENT)
2700 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2701 
2702 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2703 		napi_complete_done(napi, rx_pkts);
2704 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2705 	}
2706 	return rx_pkts;
2707 }
2708 
2709 static int bnxt_poll(struct napi_struct *napi, int budget)
2710 {
2711 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2712 	struct bnxt *bp = bnapi->bp;
2713 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2714 	int work_done = 0;
2715 
2716 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2717 		napi_complete(napi);
2718 		return 0;
2719 	}
2720 	while (1) {
2721 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2722 
2723 		if (work_done >= budget) {
2724 			if (!budget)
2725 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2726 			break;
2727 		}
2728 
2729 		if (!bnxt_has_work(bp, cpr)) {
2730 			if (napi_complete_done(napi, work_done))
2731 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2732 			break;
2733 		}
2734 	}
2735 	if (bp->flags & BNXT_FLAG_DIM) {
2736 		struct dim_sample dim_sample = {};
2737 
2738 		dim_update_sample(cpr->event_ctr,
2739 				  cpr->rx_packets,
2740 				  cpr->rx_bytes,
2741 				  &dim_sample);
2742 		net_dim(&cpr->dim, dim_sample);
2743 	}
2744 	return work_done;
2745 }
2746 
2747 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2748 {
2749 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2750 	int i, work_done = 0;
2751 
2752 	for (i = 0; i < 2; i++) {
2753 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2754 
2755 		if (cpr2) {
2756 			work_done += __bnxt_poll_work(bp, cpr2,
2757 						      budget - work_done);
2758 			cpr->has_more_work |= cpr2->has_more_work;
2759 		}
2760 	}
2761 	return work_done;
2762 }
2763 
2764 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2765 				 u64 dbr_type)
2766 {
2767 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2768 	int i;
2769 
2770 	for (i = 0; i < 2; i++) {
2771 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2772 		struct bnxt_db_info *db;
2773 
2774 		if (cpr2 && cpr2->had_work_done) {
2775 			db = &cpr2->cp_db;
2776 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2777 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2778 			cpr2->had_work_done = 0;
2779 		}
2780 	}
2781 	__bnxt_poll_work_done(bp, bnapi);
2782 }
2783 
2784 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2785 {
2786 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2787 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2788 	struct bnxt_cp_ring_info *cpr_rx;
2789 	u32 raw_cons = cpr->cp_raw_cons;
2790 	struct bnxt *bp = bnapi->bp;
2791 	struct nqe_cn *nqcmp;
2792 	int work_done = 0;
2793 	u32 cons;
2794 
2795 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2796 		napi_complete(napi);
2797 		return 0;
2798 	}
2799 	if (cpr->has_more_work) {
2800 		cpr->has_more_work = 0;
2801 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2802 	}
2803 	while (1) {
2804 		cons = RING_CMP(raw_cons);
2805 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2806 
2807 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2808 			if (cpr->has_more_work)
2809 				break;
2810 
2811 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2812 			cpr->cp_raw_cons = raw_cons;
2813 			if (napi_complete_done(napi, work_done))
2814 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2815 						  cpr->cp_raw_cons);
2816 			goto poll_done;
2817 		}
2818 
2819 		/* The valid test of the entry must be done first before
2820 		 * reading any further.
2821 		 */
2822 		dma_rmb();
2823 
2824 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2825 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2826 			struct bnxt_cp_ring_info *cpr2;
2827 
2828 			/* No more budget for RX work */
2829 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2830 				break;
2831 
2832 			cpr2 = cpr->cp_ring_arr[idx];
2833 			work_done += __bnxt_poll_work(bp, cpr2,
2834 						      budget - work_done);
2835 			cpr->has_more_work |= cpr2->has_more_work;
2836 		} else {
2837 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2838 		}
2839 		raw_cons = NEXT_RAW_CMP(raw_cons);
2840 	}
2841 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2842 	if (raw_cons != cpr->cp_raw_cons) {
2843 		cpr->cp_raw_cons = raw_cons;
2844 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2845 	}
2846 poll_done:
2847 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2848 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2849 		struct dim_sample dim_sample = {};
2850 
2851 		dim_update_sample(cpr->event_ctr,
2852 				  cpr_rx->rx_packets,
2853 				  cpr_rx->rx_bytes,
2854 				  &dim_sample);
2855 		net_dim(&cpr->dim, dim_sample);
2856 	}
2857 	return work_done;
2858 }
2859 
2860 static void bnxt_free_tx_skbs(struct bnxt *bp)
2861 {
2862 	int i, max_idx;
2863 	struct pci_dev *pdev = bp->pdev;
2864 
2865 	if (!bp->tx_ring)
2866 		return;
2867 
2868 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2869 	for (i = 0; i < bp->tx_nr_rings; i++) {
2870 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2871 		int j;
2872 
2873 		if (!txr->tx_buf_ring)
2874 			continue;
2875 
2876 		for (j = 0; j < max_idx;) {
2877 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2878 			struct sk_buff *skb;
2879 			int k, last;
2880 
2881 			if (i < bp->tx_nr_rings_xdp &&
2882 			    tx_buf->action == XDP_REDIRECT) {
2883 				dma_unmap_single(&pdev->dev,
2884 					dma_unmap_addr(tx_buf, mapping),
2885 					dma_unmap_len(tx_buf, len),
2886 					DMA_TO_DEVICE);
2887 				xdp_return_frame(tx_buf->xdpf);
2888 				tx_buf->action = 0;
2889 				tx_buf->xdpf = NULL;
2890 				j++;
2891 				continue;
2892 			}
2893 
2894 			skb = tx_buf->skb;
2895 			if (!skb) {
2896 				j++;
2897 				continue;
2898 			}
2899 
2900 			tx_buf->skb = NULL;
2901 
2902 			if (tx_buf->is_push) {
2903 				dev_kfree_skb(skb);
2904 				j += 2;
2905 				continue;
2906 			}
2907 
2908 			dma_unmap_single(&pdev->dev,
2909 					 dma_unmap_addr(tx_buf, mapping),
2910 					 skb_headlen(skb),
2911 					 DMA_TO_DEVICE);
2912 
2913 			last = tx_buf->nr_frags;
2914 			j += 2;
2915 			for (k = 0; k < last; k++, j++) {
2916 				int ring_idx = j & bp->tx_ring_mask;
2917 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2918 
2919 				tx_buf = &txr->tx_buf_ring[ring_idx];
2920 				dma_unmap_page(
2921 					&pdev->dev,
2922 					dma_unmap_addr(tx_buf, mapping),
2923 					skb_frag_size(frag), DMA_TO_DEVICE);
2924 			}
2925 			dev_kfree_skb(skb);
2926 		}
2927 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2928 	}
2929 }
2930 
2931 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2932 {
2933 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2934 	struct pci_dev *pdev = bp->pdev;
2935 	struct bnxt_tpa_idx_map *map;
2936 	int i, max_idx, max_agg_idx;
2937 
2938 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2939 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2940 	if (!rxr->rx_tpa)
2941 		goto skip_rx_tpa_free;
2942 
2943 	for (i = 0; i < bp->max_tpa; i++) {
2944 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2945 		u8 *data = tpa_info->data;
2946 
2947 		if (!data)
2948 			continue;
2949 
2950 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2951 				       bp->rx_buf_use_size, bp->rx_dir,
2952 				       DMA_ATTR_WEAK_ORDERING);
2953 
2954 		tpa_info->data = NULL;
2955 
2956 		skb_free_frag(data);
2957 	}
2958 
2959 skip_rx_tpa_free:
2960 	if (!rxr->rx_buf_ring)
2961 		goto skip_rx_buf_free;
2962 
2963 	for (i = 0; i < max_idx; i++) {
2964 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2965 		dma_addr_t mapping = rx_buf->mapping;
2966 		void *data = rx_buf->data;
2967 
2968 		if (!data)
2969 			continue;
2970 
2971 		rx_buf->data = NULL;
2972 		if (BNXT_RX_PAGE_MODE(bp)) {
2973 			mapping -= bp->rx_dma_offset;
2974 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2975 					     bp->rx_dir,
2976 					     DMA_ATTR_WEAK_ORDERING);
2977 			page_pool_recycle_direct(rxr->page_pool, data);
2978 		} else {
2979 			dma_unmap_single_attrs(&pdev->dev, mapping,
2980 					       bp->rx_buf_use_size, bp->rx_dir,
2981 					       DMA_ATTR_WEAK_ORDERING);
2982 			skb_free_frag(data);
2983 		}
2984 	}
2985 
2986 skip_rx_buf_free:
2987 	if (!rxr->rx_agg_ring)
2988 		goto skip_rx_agg_free;
2989 
2990 	for (i = 0; i < max_agg_idx; i++) {
2991 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2992 		struct page *page = rx_agg_buf->page;
2993 
2994 		if (!page)
2995 			continue;
2996 
2997 		if (BNXT_RX_PAGE_MODE(bp)) {
2998 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2999 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
3000 					     DMA_ATTR_WEAK_ORDERING);
3001 			rx_agg_buf->page = NULL;
3002 			__clear_bit(i, rxr->rx_agg_bmap);
3003 
3004 			page_pool_recycle_direct(rxr->page_pool, page);
3005 		} else {
3006 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3007 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
3008 					     DMA_ATTR_WEAK_ORDERING);
3009 			rx_agg_buf->page = NULL;
3010 			__clear_bit(i, rxr->rx_agg_bmap);
3011 
3012 			__free_page(page);
3013 		}
3014 	}
3015 
3016 skip_rx_agg_free:
3017 	if (rxr->rx_page) {
3018 		__free_page(rxr->rx_page);
3019 		rxr->rx_page = NULL;
3020 	}
3021 	map = rxr->rx_tpa_idx_map;
3022 	if (map)
3023 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3024 }
3025 
3026 static void bnxt_free_rx_skbs(struct bnxt *bp)
3027 {
3028 	int i;
3029 
3030 	if (!bp->rx_ring)
3031 		return;
3032 
3033 	for (i = 0; i < bp->rx_nr_rings; i++)
3034 		bnxt_free_one_rx_ring_skbs(bp, i);
3035 }
3036 
3037 static void bnxt_free_skbs(struct bnxt *bp)
3038 {
3039 	bnxt_free_tx_skbs(bp);
3040 	bnxt_free_rx_skbs(bp);
3041 }
3042 
3043 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3044 {
3045 	u8 init_val = mem_init->init_val;
3046 	u16 offset = mem_init->offset;
3047 	u8 *p2 = p;
3048 	int i;
3049 
3050 	if (!init_val)
3051 		return;
3052 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3053 		memset(p, init_val, len);
3054 		return;
3055 	}
3056 	for (i = 0; i < len; i += mem_init->size)
3057 		*(p2 + i + offset) = init_val;
3058 }
3059 
3060 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3061 {
3062 	struct pci_dev *pdev = bp->pdev;
3063 	int i;
3064 
3065 	if (!rmem->pg_arr)
3066 		goto skip_pages;
3067 
3068 	for (i = 0; i < rmem->nr_pages; i++) {
3069 		if (!rmem->pg_arr[i])
3070 			continue;
3071 
3072 		dma_free_coherent(&pdev->dev, rmem->page_size,
3073 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3074 
3075 		rmem->pg_arr[i] = NULL;
3076 	}
3077 skip_pages:
3078 	if (rmem->pg_tbl) {
3079 		size_t pg_tbl_size = rmem->nr_pages * 8;
3080 
3081 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3082 			pg_tbl_size = rmem->page_size;
3083 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3084 				  rmem->pg_tbl, rmem->pg_tbl_map);
3085 		rmem->pg_tbl = NULL;
3086 	}
3087 	if (rmem->vmem_size && *rmem->vmem) {
3088 		vfree(*rmem->vmem);
3089 		*rmem->vmem = NULL;
3090 	}
3091 }
3092 
3093 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3094 {
3095 	struct pci_dev *pdev = bp->pdev;
3096 	u64 valid_bit = 0;
3097 	int i;
3098 
3099 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3100 		valid_bit = PTU_PTE_VALID;
3101 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3102 		size_t pg_tbl_size = rmem->nr_pages * 8;
3103 
3104 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3105 			pg_tbl_size = rmem->page_size;
3106 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3107 						  &rmem->pg_tbl_map,
3108 						  GFP_KERNEL);
3109 		if (!rmem->pg_tbl)
3110 			return -ENOMEM;
3111 	}
3112 
3113 	for (i = 0; i < rmem->nr_pages; i++) {
3114 		u64 extra_bits = valid_bit;
3115 
3116 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3117 						     rmem->page_size,
3118 						     &rmem->dma_arr[i],
3119 						     GFP_KERNEL);
3120 		if (!rmem->pg_arr[i])
3121 			return -ENOMEM;
3122 
3123 		if (rmem->mem_init)
3124 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3125 					  rmem->page_size);
3126 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3127 			if (i == rmem->nr_pages - 2 &&
3128 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3129 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3130 			else if (i == rmem->nr_pages - 1 &&
3131 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3132 				extra_bits |= PTU_PTE_LAST;
3133 			rmem->pg_tbl[i] =
3134 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3135 		}
3136 	}
3137 
3138 	if (rmem->vmem_size) {
3139 		*rmem->vmem = vzalloc(rmem->vmem_size);
3140 		if (!(*rmem->vmem))
3141 			return -ENOMEM;
3142 	}
3143 	return 0;
3144 }
3145 
3146 static void bnxt_free_tpa_info(struct bnxt *bp)
3147 {
3148 	int i, j;
3149 
3150 	for (i = 0; i < bp->rx_nr_rings; i++) {
3151 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3152 
3153 		kfree(rxr->rx_tpa_idx_map);
3154 		rxr->rx_tpa_idx_map = NULL;
3155 		if (rxr->rx_tpa) {
3156 			for (j = 0; j < bp->max_tpa; j++) {
3157 				kfree(rxr->rx_tpa[j].agg_arr);
3158 				rxr->rx_tpa[j].agg_arr = NULL;
3159 			}
3160 		}
3161 		kfree(rxr->rx_tpa);
3162 		rxr->rx_tpa = NULL;
3163 	}
3164 }
3165 
3166 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3167 {
3168 	int i, j;
3169 
3170 	bp->max_tpa = MAX_TPA;
3171 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3172 		if (!bp->max_tpa_v2)
3173 			return 0;
3174 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3175 	}
3176 
3177 	for (i = 0; i < bp->rx_nr_rings; i++) {
3178 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3179 		struct rx_agg_cmp *agg;
3180 
3181 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3182 				      GFP_KERNEL);
3183 		if (!rxr->rx_tpa)
3184 			return -ENOMEM;
3185 
3186 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3187 			continue;
3188 		for (j = 0; j < bp->max_tpa; j++) {
3189 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3190 			if (!agg)
3191 				return -ENOMEM;
3192 			rxr->rx_tpa[j].agg_arr = agg;
3193 		}
3194 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3195 					      GFP_KERNEL);
3196 		if (!rxr->rx_tpa_idx_map)
3197 			return -ENOMEM;
3198 	}
3199 	return 0;
3200 }
3201 
3202 static void bnxt_free_rx_rings(struct bnxt *bp)
3203 {
3204 	int i;
3205 
3206 	if (!bp->rx_ring)
3207 		return;
3208 
3209 	bnxt_free_tpa_info(bp);
3210 	for (i = 0; i < bp->rx_nr_rings; i++) {
3211 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3212 		struct bnxt_ring_struct *ring;
3213 
3214 		if (rxr->xdp_prog)
3215 			bpf_prog_put(rxr->xdp_prog);
3216 
3217 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3218 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3219 
3220 		page_pool_destroy(rxr->page_pool);
3221 		rxr->page_pool = NULL;
3222 
3223 		kfree(rxr->rx_agg_bmap);
3224 		rxr->rx_agg_bmap = NULL;
3225 
3226 		ring = &rxr->rx_ring_struct;
3227 		bnxt_free_ring(bp, &ring->ring_mem);
3228 
3229 		ring = &rxr->rx_agg_ring_struct;
3230 		bnxt_free_ring(bp, &ring->ring_mem);
3231 	}
3232 }
3233 
3234 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3235 				   struct bnxt_rx_ring_info *rxr)
3236 {
3237 	struct page_pool_params pp = { 0 };
3238 
3239 	pp.pool_size = bp->rx_ring_size;
3240 	pp.nid = dev_to_node(&bp->pdev->dev);
3241 	pp.dev = &bp->pdev->dev;
3242 	pp.dma_dir = DMA_BIDIRECTIONAL;
3243 
3244 	rxr->page_pool = page_pool_create(&pp);
3245 	if (IS_ERR(rxr->page_pool)) {
3246 		int err = PTR_ERR(rxr->page_pool);
3247 
3248 		rxr->page_pool = NULL;
3249 		return err;
3250 	}
3251 	return 0;
3252 }
3253 
3254 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3255 {
3256 	int i, rc = 0, agg_rings = 0;
3257 
3258 	if (!bp->rx_ring)
3259 		return -ENOMEM;
3260 
3261 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3262 		agg_rings = 1;
3263 
3264 	for (i = 0; i < bp->rx_nr_rings; i++) {
3265 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3266 		struct bnxt_ring_struct *ring;
3267 
3268 		ring = &rxr->rx_ring_struct;
3269 
3270 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3271 		if (rc)
3272 			return rc;
3273 
3274 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3275 		if (rc < 0)
3276 			return rc;
3277 
3278 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3279 						MEM_TYPE_PAGE_POOL,
3280 						rxr->page_pool);
3281 		if (rc) {
3282 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3283 			return rc;
3284 		}
3285 
3286 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3287 		if (rc)
3288 			return rc;
3289 
3290 		ring->grp_idx = i;
3291 		if (agg_rings) {
3292 			u16 mem_size;
3293 
3294 			ring = &rxr->rx_agg_ring_struct;
3295 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3296 			if (rc)
3297 				return rc;
3298 
3299 			ring->grp_idx = i;
3300 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3301 			mem_size = rxr->rx_agg_bmap_size / 8;
3302 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3303 			if (!rxr->rx_agg_bmap)
3304 				return -ENOMEM;
3305 		}
3306 	}
3307 	if (bp->flags & BNXT_FLAG_TPA)
3308 		rc = bnxt_alloc_tpa_info(bp);
3309 	return rc;
3310 }
3311 
3312 static void bnxt_free_tx_rings(struct bnxt *bp)
3313 {
3314 	int i;
3315 	struct pci_dev *pdev = bp->pdev;
3316 
3317 	if (!bp->tx_ring)
3318 		return;
3319 
3320 	for (i = 0; i < bp->tx_nr_rings; i++) {
3321 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3322 		struct bnxt_ring_struct *ring;
3323 
3324 		if (txr->tx_push) {
3325 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3326 					  txr->tx_push, txr->tx_push_mapping);
3327 			txr->tx_push = NULL;
3328 		}
3329 
3330 		ring = &txr->tx_ring_struct;
3331 
3332 		bnxt_free_ring(bp, &ring->ring_mem);
3333 	}
3334 }
3335 
3336 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3337 {
3338 	int i, j, rc;
3339 	struct pci_dev *pdev = bp->pdev;
3340 
3341 	bp->tx_push_size = 0;
3342 	if (bp->tx_push_thresh) {
3343 		int push_size;
3344 
3345 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3346 					bp->tx_push_thresh);
3347 
3348 		if (push_size > 256) {
3349 			push_size = 0;
3350 			bp->tx_push_thresh = 0;
3351 		}
3352 
3353 		bp->tx_push_size = push_size;
3354 	}
3355 
3356 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3357 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3358 		struct bnxt_ring_struct *ring;
3359 		u8 qidx;
3360 
3361 		ring = &txr->tx_ring_struct;
3362 
3363 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3364 		if (rc)
3365 			return rc;
3366 
3367 		ring->grp_idx = txr->bnapi->index;
3368 		if (bp->tx_push_size) {
3369 			dma_addr_t mapping;
3370 
3371 			/* One pre-allocated DMA buffer to backup
3372 			 * TX push operation
3373 			 */
3374 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3375 						bp->tx_push_size,
3376 						&txr->tx_push_mapping,
3377 						GFP_KERNEL);
3378 
3379 			if (!txr->tx_push)
3380 				return -ENOMEM;
3381 
3382 			mapping = txr->tx_push_mapping +
3383 				sizeof(struct tx_push_bd);
3384 			txr->data_mapping = cpu_to_le64(mapping);
3385 		}
3386 		qidx = bp->tc_to_qidx[j];
3387 		ring->queue_id = bp->q_info[qidx].queue_id;
3388 		spin_lock_init(&txr->xdp_tx_lock);
3389 		if (i < bp->tx_nr_rings_xdp)
3390 			continue;
3391 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3392 			j++;
3393 	}
3394 	return 0;
3395 }
3396 
3397 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3398 {
3399 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3400 
3401 	kfree(cpr->cp_desc_ring);
3402 	cpr->cp_desc_ring = NULL;
3403 	ring->ring_mem.pg_arr = NULL;
3404 	kfree(cpr->cp_desc_mapping);
3405 	cpr->cp_desc_mapping = NULL;
3406 	ring->ring_mem.dma_arr = NULL;
3407 }
3408 
3409 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3410 {
3411 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3412 	if (!cpr->cp_desc_ring)
3413 		return -ENOMEM;
3414 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3415 				       GFP_KERNEL);
3416 	if (!cpr->cp_desc_mapping)
3417 		return -ENOMEM;
3418 	return 0;
3419 }
3420 
3421 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3422 {
3423 	int i;
3424 
3425 	if (!bp->bnapi)
3426 		return;
3427 	for (i = 0; i < bp->cp_nr_rings; i++) {
3428 		struct bnxt_napi *bnapi = bp->bnapi[i];
3429 
3430 		if (!bnapi)
3431 			continue;
3432 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3433 	}
3434 }
3435 
3436 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3437 {
3438 	int i, n = bp->cp_nr_pages;
3439 
3440 	for (i = 0; i < bp->cp_nr_rings; i++) {
3441 		struct bnxt_napi *bnapi = bp->bnapi[i];
3442 		int rc;
3443 
3444 		if (!bnapi)
3445 			continue;
3446 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3447 		if (rc)
3448 			return rc;
3449 	}
3450 	return 0;
3451 }
3452 
3453 static void bnxt_free_cp_rings(struct bnxt *bp)
3454 {
3455 	int i;
3456 
3457 	if (!bp->bnapi)
3458 		return;
3459 
3460 	for (i = 0; i < bp->cp_nr_rings; i++) {
3461 		struct bnxt_napi *bnapi = bp->bnapi[i];
3462 		struct bnxt_cp_ring_info *cpr;
3463 		struct bnxt_ring_struct *ring;
3464 		int j;
3465 
3466 		if (!bnapi)
3467 			continue;
3468 
3469 		cpr = &bnapi->cp_ring;
3470 		ring = &cpr->cp_ring_struct;
3471 
3472 		bnxt_free_ring(bp, &ring->ring_mem);
3473 
3474 		for (j = 0; j < 2; j++) {
3475 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3476 
3477 			if (cpr2) {
3478 				ring = &cpr2->cp_ring_struct;
3479 				bnxt_free_ring(bp, &ring->ring_mem);
3480 				bnxt_free_cp_arrays(cpr2);
3481 				kfree(cpr2);
3482 				cpr->cp_ring_arr[j] = NULL;
3483 			}
3484 		}
3485 	}
3486 }
3487 
3488 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3489 {
3490 	struct bnxt_ring_mem_info *rmem;
3491 	struct bnxt_ring_struct *ring;
3492 	struct bnxt_cp_ring_info *cpr;
3493 	int rc;
3494 
3495 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3496 	if (!cpr)
3497 		return NULL;
3498 
3499 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3500 	if (rc) {
3501 		bnxt_free_cp_arrays(cpr);
3502 		kfree(cpr);
3503 		return NULL;
3504 	}
3505 	ring = &cpr->cp_ring_struct;
3506 	rmem = &ring->ring_mem;
3507 	rmem->nr_pages = bp->cp_nr_pages;
3508 	rmem->page_size = HW_CMPD_RING_SIZE;
3509 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3510 	rmem->dma_arr = cpr->cp_desc_mapping;
3511 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3512 	rc = bnxt_alloc_ring(bp, rmem);
3513 	if (rc) {
3514 		bnxt_free_ring(bp, rmem);
3515 		bnxt_free_cp_arrays(cpr);
3516 		kfree(cpr);
3517 		cpr = NULL;
3518 	}
3519 	return cpr;
3520 }
3521 
3522 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3523 {
3524 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3525 	int i, rc, ulp_base_vec, ulp_msix;
3526 
3527 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3528 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3529 	for (i = 0; i < bp->cp_nr_rings; i++) {
3530 		struct bnxt_napi *bnapi = bp->bnapi[i];
3531 		struct bnxt_cp_ring_info *cpr;
3532 		struct bnxt_ring_struct *ring;
3533 
3534 		if (!bnapi)
3535 			continue;
3536 
3537 		cpr = &bnapi->cp_ring;
3538 		cpr->bnapi = bnapi;
3539 		ring = &cpr->cp_ring_struct;
3540 
3541 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3542 		if (rc)
3543 			return rc;
3544 
3545 		if (ulp_msix && i >= ulp_base_vec)
3546 			ring->map_idx = i + ulp_msix;
3547 		else
3548 			ring->map_idx = i;
3549 
3550 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3551 			continue;
3552 
3553 		if (i < bp->rx_nr_rings) {
3554 			struct bnxt_cp_ring_info *cpr2 =
3555 				bnxt_alloc_cp_sub_ring(bp);
3556 
3557 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3558 			if (!cpr2)
3559 				return -ENOMEM;
3560 			cpr2->bnapi = bnapi;
3561 		}
3562 		if ((sh && i < bp->tx_nr_rings) ||
3563 		    (!sh && i >= bp->rx_nr_rings)) {
3564 			struct bnxt_cp_ring_info *cpr2 =
3565 				bnxt_alloc_cp_sub_ring(bp);
3566 
3567 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3568 			if (!cpr2)
3569 				return -ENOMEM;
3570 			cpr2->bnapi = bnapi;
3571 		}
3572 	}
3573 	return 0;
3574 }
3575 
3576 static void bnxt_init_ring_struct(struct bnxt *bp)
3577 {
3578 	int i;
3579 
3580 	for (i = 0; i < bp->cp_nr_rings; i++) {
3581 		struct bnxt_napi *bnapi = bp->bnapi[i];
3582 		struct bnxt_ring_mem_info *rmem;
3583 		struct bnxt_cp_ring_info *cpr;
3584 		struct bnxt_rx_ring_info *rxr;
3585 		struct bnxt_tx_ring_info *txr;
3586 		struct bnxt_ring_struct *ring;
3587 
3588 		if (!bnapi)
3589 			continue;
3590 
3591 		cpr = &bnapi->cp_ring;
3592 		ring = &cpr->cp_ring_struct;
3593 		rmem = &ring->ring_mem;
3594 		rmem->nr_pages = bp->cp_nr_pages;
3595 		rmem->page_size = HW_CMPD_RING_SIZE;
3596 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3597 		rmem->dma_arr = cpr->cp_desc_mapping;
3598 		rmem->vmem_size = 0;
3599 
3600 		rxr = bnapi->rx_ring;
3601 		if (!rxr)
3602 			goto skip_rx;
3603 
3604 		ring = &rxr->rx_ring_struct;
3605 		rmem = &ring->ring_mem;
3606 		rmem->nr_pages = bp->rx_nr_pages;
3607 		rmem->page_size = HW_RXBD_RING_SIZE;
3608 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3609 		rmem->dma_arr = rxr->rx_desc_mapping;
3610 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3611 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3612 
3613 		ring = &rxr->rx_agg_ring_struct;
3614 		rmem = &ring->ring_mem;
3615 		rmem->nr_pages = bp->rx_agg_nr_pages;
3616 		rmem->page_size = HW_RXBD_RING_SIZE;
3617 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3618 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3619 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3620 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3621 
3622 skip_rx:
3623 		txr = bnapi->tx_ring;
3624 		if (!txr)
3625 			continue;
3626 
3627 		ring = &txr->tx_ring_struct;
3628 		rmem = &ring->ring_mem;
3629 		rmem->nr_pages = bp->tx_nr_pages;
3630 		rmem->page_size = HW_RXBD_RING_SIZE;
3631 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3632 		rmem->dma_arr = txr->tx_desc_mapping;
3633 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3634 		rmem->vmem = (void **)&txr->tx_buf_ring;
3635 	}
3636 }
3637 
3638 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3639 {
3640 	int i;
3641 	u32 prod;
3642 	struct rx_bd **rx_buf_ring;
3643 
3644 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3645 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3646 		int j;
3647 		struct rx_bd *rxbd;
3648 
3649 		rxbd = rx_buf_ring[i];
3650 		if (!rxbd)
3651 			continue;
3652 
3653 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3654 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3655 			rxbd->rx_bd_opaque = prod;
3656 		}
3657 	}
3658 }
3659 
3660 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3661 {
3662 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3663 	struct net_device *dev = bp->dev;
3664 	u32 prod;
3665 	int i;
3666 
3667 	prod = rxr->rx_prod;
3668 	for (i = 0; i < bp->rx_ring_size; i++) {
3669 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3670 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3671 				    ring_nr, i, bp->rx_ring_size);
3672 			break;
3673 		}
3674 		prod = NEXT_RX(prod);
3675 	}
3676 	rxr->rx_prod = prod;
3677 
3678 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3679 		return 0;
3680 
3681 	prod = rxr->rx_agg_prod;
3682 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3683 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3684 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3685 				    ring_nr, i, bp->rx_ring_size);
3686 			break;
3687 		}
3688 		prod = NEXT_RX_AGG(prod);
3689 	}
3690 	rxr->rx_agg_prod = prod;
3691 
3692 	if (rxr->rx_tpa) {
3693 		dma_addr_t mapping;
3694 		u8 *data;
3695 
3696 		for (i = 0; i < bp->max_tpa; i++) {
3697 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3698 			if (!data)
3699 				return -ENOMEM;
3700 
3701 			rxr->rx_tpa[i].data = data;
3702 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3703 			rxr->rx_tpa[i].mapping = mapping;
3704 		}
3705 	}
3706 	return 0;
3707 }
3708 
3709 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3710 {
3711 	struct bnxt_rx_ring_info *rxr;
3712 	struct bnxt_ring_struct *ring;
3713 	u32 type;
3714 
3715 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3716 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3717 
3718 	if (NET_IP_ALIGN == 2)
3719 		type |= RX_BD_FLAGS_SOP;
3720 
3721 	rxr = &bp->rx_ring[ring_nr];
3722 	ring = &rxr->rx_ring_struct;
3723 	bnxt_init_rxbd_pages(ring, type);
3724 
3725 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3726 		bpf_prog_add(bp->xdp_prog, 1);
3727 		rxr->xdp_prog = bp->xdp_prog;
3728 	}
3729 	ring->fw_ring_id = INVALID_HW_RING_ID;
3730 
3731 	ring = &rxr->rx_agg_ring_struct;
3732 	ring->fw_ring_id = INVALID_HW_RING_ID;
3733 
3734 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3735 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3736 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3737 
3738 		bnxt_init_rxbd_pages(ring, type);
3739 	}
3740 
3741 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3742 }
3743 
3744 static void bnxt_init_cp_rings(struct bnxt *bp)
3745 {
3746 	int i, j;
3747 
3748 	for (i = 0; i < bp->cp_nr_rings; i++) {
3749 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3750 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3751 
3752 		ring->fw_ring_id = INVALID_HW_RING_ID;
3753 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3754 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3755 		for (j = 0; j < 2; j++) {
3756 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3757 
3758 			if (!cpr2)
3759 				continue;
3760 
3761 			ring = &cpr2->cp_ring_struct;
3762 			ring->fw_ring_id = INVALID_HW_RING_ID;
3763 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3764 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3765 		}
3766 	}
3767 }
3768 
3769 static int bnxt_init_rx_rings(struct bnxt *bp)
3770 {
3771 	int i, rc = 0;
3772 
3773 	if (BNXT_RX_PAGE_MODE(bp)) {
3774 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3775 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3776 	} else {
3777 		bp->rx_offset = BNXT_RX_OFFSET;
3778 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3779 	}
3780 
3781 	for (i = 0; i < bp->rx_nr_rings; i++) {
3782 		rc = bnxt_init_one_rx_ring(bp, i);
3783 		if (rc)
3784 			break;
3785 	}
3786 
3787 	return rc;
3788 }
3789 
3790 static int bnxt_init_tx_rings(struct bnxt *bp)
3791 {
3792 	u16 i;
3793 
3794 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3795 				   BNXT_MIN_TX_DESC_CNT);
3796 
3797 	for (i = 0; i < bp->tx_nr_rings; i++) {
3798 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3799 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3800 
3801 		ring->fw_ring_id = INVALID_HW_RING_ID;
3802 	}
3803 
3804 	return 0;
3805 }
3806 
3807 static void bnxt_free_ring_grps(struct bnxt *bp)
3808 {
3809 	kfree(bp->grp_info);
3810 	bp->grp_info = NULL;
3811 }
3812 
3813 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3814 {
3815 	int i;
3816 
3817 	if (irq_re_init) {
3818 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3819 				       sizeof(struct bnxt_ring_grp_info),
3820 				       GFP_KERNEL);
3821 		if (!bp->grp_info)
3822 			return -ENOMEM;
3823 	}
3824 	for (i = 0; i < bp->cp_nr_rings; i++) {
3825 		if (irq_re_init)
3826 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3827 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3828 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3829 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3830 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3831 	}
3832 	return 0;
3833 }
3834 
3835 static void bnxt_free_vnics(struct bnxt *bp)
3836 {
3837 	kfree(bp->vnic_info);
3838 	bp->vnic_info = NULL;
3839 	bp->nr_vnics = 0;
3840 }
3841 
3842 static int bnxt_alloc_vnics(struct bnxt *bp)
3843 {
3844 	int num_vnics = 1;
3845 
3846 #ifdef CONFIG_RFS_ACCEL
3847 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3848 		num_vnics += bp->rx_nr_rings;
3849 #endif
3850 
3851 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3852 		num_vnics++;
3853 
3854 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3855 				GFP_KERNEL);
3856 	if (!bp->vnic_info)
3857 		return -ENOMEM;
3858 
3859 	bp->nr_vnics = num_vnics;
3860 	return 0;
3861 }
3862 
3863 static void bnxt_init_vnics(struct bnxt *bp)
3864 {
3865 	int i;
3866 
3867 	for (i = 0; i < bp->nr_vnics; i++) {
3868 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3869 		int j;
3870 
3871 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3872 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3873 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3874 
3875 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3876 
3877 		if (bp->vnic_info[i].rss_hash_key) {
3878 			if (i == 0)
3879 				get_random_bytes(vnic->rss_hash_key,
3880 					      HW_HASH_KEY_SIZE);
3881 			else
3882 				memcpy(vnic->rss_hash_key,
3883 				       bp->vnic_info[0].rss_hash_key,
3884 				       HW_HASH_KEY_SIZE);
3885 		}
3886 	}
3887 }
3888 
3889 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3890 {
3891 	int pages;
3892 
3893 	pages = ring_size / desc_per_pg;
3894 
3895 	if (!pages)
3896 		return 1;
3897 
3898 	pages++;
3899 
3900 	while (pages & (pages - 1))
3901 		pages++;
3902 
3903 	return pages;
3904 }
3905 
3906 void bnxt_set_tpa_flags(struct bnxt *bp)
3907 {
3908 	bp->flags &= ~BNXT_FLAG_TPA;
3909 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3910 		return;
3911 	if (bp->dev->features & NETIF_F_LRO)
3912 		bp->flags |= BNXT_FLAG_LRO;
3913 	else if (bp->dev->features & NETIF_F_GRO_HW)
3914 		bp->flags |= BNXT_FLAG_GRO;
3915 }
3916 
3917 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3918  * be set on entry.
3919  */
3920 void bnxt_set_ring_params(struct bnxt *bp)
3921 {
3922 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3923 	u32 agg_factor = 0, agg_ring_size = 0;
3924 
3925 	/* 8 for CRC and VLAN */
3926 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3927 
3928 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3929 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3930 
3931 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3932 	ring_size = bp->rx_ring_size;
3933 	bp->rx_agg_ring_size = 0;
3934 	bp->rx_agg_nr_pages = 0;
3935 
3936 	if (bp->flags & BNXT_FLAG_TPA)
3937 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3938 
3939 	bp->flags &= ~BNXT_FLAG_JUMBO;
3940 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3941 		u32 jumbo_factor;
3942 
3943 		bp->flags |= BNXT_FLAG_JUMBO;
3944 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3945 		if (jumbo_factor > agg_factor)
3946 			agg_factor = jumbo_factor;
3947 	}
3948 	if (agg_factor) {
3949 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3950 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3951 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3952 				    bp->rx_ring_size, ring_size);
3953 			bp->rx_ring_size = ring_size;
3954 		}
3955 		agg_ring_size = ring_size * agg_factor;
3956 
3957 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3958 							RX_DESC_CNT);
3959 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3960 			u32 tmp = agg_ring_size;
3961 
3962 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3963 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3964 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3965 				    tmp, agg_ring_size);
3966 		}
3967 		bp->rx_agg_ring_size = agg_ring_size;
3968 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3969 
3970 		if (BNXT_RX_PAGE_MODE(bp)) {
3971 			rx_space = PAGE_SIZE;
3972 			rx_size = PAGE_SIZE -
3973 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
3974 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3975 		} else {
3976 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3977 			rx_space = rx_size + NET_SKB_PAD +
3978 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3979 		}
3980 	}
3981 
3982 	bp->rx_buf_use_size = rx_size;
3983 	bp->rx_buf_size = rx_space;
3984 
3985 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3986 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3987 
3988 	ring_size = bp->tx_ring_size;
3989 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3990 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3991 
3992 	max_rx_cmpl = bp->rx_ring_size;
3993 	/* MAX TPA needs to be added because TPA_START completions are
3994 	 * immediately recycled, so the TPA completions are not bound by
3995 	 * the RX ring size.
3996 	 */
3997 	if (bp->flags & BNXT_FLAG_TPA)
3998 		max_rx_cmpl += bp->max_tpa;
3999 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4000 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4001 	bp->cp_ring_size = ring_size;
4002 
4003 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4004 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4005 		bp->cp_nr_pages = MAX_CP_PAGES;
4006 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4007 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4008 			    ring_size, bp->cp_ring_size);
4009 	}
4010 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4011 	bp->cp_ring_mask = bp->cp_bit - 1;
4012 }
4013 
4014 /* Changing allocation mode of RX rings.
4015  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4016  */
4017 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4018 {
4019 	if (page_mode) {
4020 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4021 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4022 
4023 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4024 			bp->flags |= BNXT_FLAG_JUMBO;
4025 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4026 			bp->dev->max_mtu =
4027 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4028 		} else {
4029 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4030 			bp->rx_skb_func = bnxt_rx_page_skb;
4031 			bp->dev->max_mtu =
4032 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4033 		}
4034 		bp->rx_dir = DMA_BIDIRECTIONAL;
4035 		/* Disable LRO or GRO_HW */
4036 		netdev_update_features(bp->dev);
4037 	} else {
4038 		bp->dev->max_mtu = bp->max_mtu;
4039 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4040 		bp->rx_dir = DMA_FROM_DEVICE;
4041 		bp->rx_skb_func = bnxt_rx_skb;
4042 	}
4043 	return 0;
4044 }
4045 
4046 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4047 {
4048 	int i;
4049 	struct bnxt_vnic_info *vnic;
4050 	struct pci_dev *pdev = bp->pdev;
4051 
4052 	if (!bp->vnic_info)
4053 		return;
4054 
4055 	for (i = 0; i < bp->nr_vnics; i++) {
4056 		vnic = &bp->vnic_info[i];
4057 
4058 		kfree(vnic->fw_grp_ids);
4059 		vnic->fw_grp_ids = NULL;
4060 
4061 		kfree(vnic->uc_list);
4062 		vnic->uc_list = NULL;
4063 
4064 		if (vnic->mc_list) {
4065 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4066 					  vnic->mc_list, vnic->mc_list_mapping);
4067 			vnic->mc_list = NULL;
4068 		}
4069 
4070 		if (vnic->rss_table) {
4071 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4072 					  vnic->rss_table,
4073 					  vnic->rss_table_dma_addr);
4074 			vnic->rss_table = NULL;
4075 		}
4076 
4077 		vnic->rss_hash_key = NULL;
4078 		vnic->flags = 0;
4079 	}
4080 }
4081 
4082 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4083 {
4084 	int i, rc = 0, size;
4085 	struct bnxt_vnic_info *vnic;
4086 	struct pci_dev *pdev = bp->pdev;
4087 	int max_rings;
4088 
4089 	for (i = 0; i < bp->nr_vnics; i++) {
4090 		vnic = &bp->vnic_info[i];
4091 
4092 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4093 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4094 
4095 			if (mem_size > 0) {
4096 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4097 				if (!vnic->uc_list) {
4098 					rc = -ENOMEM;
4099 					goto out;
4100 				}
4101 			}
4102 		}
4103 
4104 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4105 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4106 			vnic->mc_list =
4107 				dma_alloc_coherent(&pdev->dev,
4108 						   vnic->mc_list_size,
4109 						   &vnic->mc_list_mapping,
4110 						   GFP_KERNEL);
4111 			if (!vnic->mc_list) {
4112 				rc = -ENOMEM;
4113 				goto out;
4114 			}
4115 		}
4116 
4117 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4118 			goto vnic_skip_grps;
4119 
4120 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4121 			max_rings = bp->rx_nr_rings;
4122 		else
4123 			max_rings = 1;
4124 
4125 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4126 		if (!vnic->fw_grp_ids) {
4127 			rc = -ENOMEM;
4128 			goto out;
4129 		}
4130 vnic_skip_grps:
4131 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4132 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4133 			continue;
4134 
4135 		/* Allocate rss table and hash key */
4136 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4137 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4138 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4139 
4140 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4141 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4142 						     vnic->rss_table_size,
4143 						     &vnic->rss_table_dma_addr,
4144 						     GFP_KERNEL);
4145 		if (!vnic->rss_table) {
4146 			rc = -ENOMEM;
4147 			goto out;
4148 		}
4149 
4150 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4151 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4152 	}
4153 	return 0;
4154 
4155 out:
4156 	return rc;
4157 }
4158 
4159 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4160 {
4161 	struct bnxt_hwrm_wait_token *token;
4162 
4163 	dma_pool_destroy(bp->hwrm_dma_pool);
4164 	bp->hwrm_dma_pool = NULL;
4165 
4166 	rcu_read_lock();
4167 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4168 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4169 	rcu_read_unlock();
4170 }
4171 
4172 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4173 {
4174 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4175 					    BNXT_HWRM_DMA_SIZE,
4176 					    BNXT_HWRM_DMA_ALIGN, 0);
4177 	if (!bp->hwrm_dma_pool)
4178 		return -ENOMEM;
4179 
4180 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4181 
4182 	return 0;
4183 }
4184 
4185 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4186 {
4187 	kfree(stats->hw_masks);
4188 	stats->hw_masks = NULL;
4189 	kfree(stats->sw_stats);
4190 	stats->sw_stats = NULL;
4191 	if (stats->hw_stats) {
4192 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4193 				  stats->hw_stats_map);
4194 		stats->hw_stats = NULL;
4195 	}
4196 }
4197 
4198 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4199 				bool alloc_masks)
4200 {
4201 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4202 					     &stats->hw_stats_map, GFP_KERNEL);
4203 	if (!stats->hw_stats)
4204 		return -ENOMEM;
4205 
4206 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4207 	if (!stats->sw_stats)
4208 		goto stats_mem_err;
4209 
4210 	if (alloc_masks) {
4211 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4212 		if (!stats->hw_masks)
4213 			goto stats_mem_err;
4214 	}
4215 	return 0;
4216 
4217 stats_mem_err:
4218 	bnxt_free_stats_mem(bp, stats);
4219 	return -ENOMEM;
4220 }
4221 
4222 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4223 {
4224 	int i;
4225 
4226 	for (i = 0; i < count; i++)
4227 		mask_arr[i] = mask;
4228 }
4229 
4230 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4231 {
4232 	int i;
4233 
4234 	for (i = 0; i < count; i++)
4235 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4236 }
4237 
4238 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4239 				    struct bnxt_stats_mem *stats)
4240 {
4241 	struct hwrm_func_qstats_ext_output *resp;
4242 	struct hwrm_func_qstats_ext_input *req;
4243 	__le64 *hw_masks;
4244 	int rc;
4245 
4246 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4247 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4248 		return -EOPNOTSUPP;
4249 
4250 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4251 	if (rc)
4252 		return rc;
4253 
4254 	req->fid = cpu_to_le16(0xffff);
4255 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4256 
4257 	resp = hwrm_req_hold(bp, req);
4258 	rc = hwrm_req_send(bp, req);
4259 	if (!rc) {
4260 		hw_masks = &resp->rx_ucast_pkts;
4261 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4262 	}
4263 	hwrm_req_drop(bp, req);
4264 	return rc;
4265 }
4266 
4267 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4268 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4269 
4270 static void bnxt_init_stats(struct bnxt *bp)
4271 {
4272 	struct bnxt_napi *bnapi = bp->bnapi[0];
4273 	struct bnxt_cp_ring_info *cpr;
4274 	struct bnxt_stats_mem *stats;
4275 	__le64 *rx_stats, *tx_stats;
4276 	int rc, rx_count, tx_count;
4277 	u64 *rx_masks, *tx_masks;
4278 	u64 mask;
4279 	u8 flags;
4280 
4281 	cpr = &bnapi->cp_ring;
4282 	stats = &cpr->stats;
4283 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4284 	if (rc) {
4285 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4286 			mask = (1ULL << 48) - 1;
4287 		else
4288 			mask = -1ULL;
4289 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4290 	}
4291 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4292 		stats = &bp->port_stats;
4293 		rx_stats = stats->hw_stats;
4294 		rx_masks = stats->hw_masks;
4295 		rx_count = sizeof(struct rx_port_stats) / 8;
4296 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4297 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4298 		tx_count = sizeof(struct tx_port_stats) / 8;
4299 
4300 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4301 		rc = bnxt_hwrm_port_qstats(bp, flags);
4302 		if (rc) {
4303 			mask = (1ULL << 40) - 1;
4304 
4305 			bnxt_fill_masks(rx_masks, mask, rx_count);
4306 			bnxt_fill_masks(tx_masks, mask, tx_count);
4307 		} else {
4308 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4309 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4310 			bnxt_hwrm_port_qstats(bp, 0);
4311 		}
4312 	}
4313 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4314 		stats = &bp->rx_port_stats_ext;
4315 		rx_stats = stats->hw_stats;
4316 		rx_masks = stats->hw_masks;
4317 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4318 		stats = &bp->tx_port_stats_ext;
4319 		tx_stats = stats->hw_stats;
4320 		tx_masks = stats->hw_masks;
4321 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4322 
4323 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4324 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4325 		if (rc) {
4326 			mask = (1ULL << 40) - 1;
4327 
4328 			bnxt_fill_masks(rx_masks, mask, rx_count);
4329 			if (tx_stats)
4330 				bnxt_fill_masks(tx_masks, mask, tx_count);
4331 		} else {
4332 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4333 			if (tx_stats)
4334 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4335 						   tx_count);
4336 			bnxt_hwrm_port_qstats_ext(bp, 0);
4337 		}
4338 	}
4339 }
4340 
4341 static void bnxt_free_port_stats(struct bnxt *bp)
4342 {
4343 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4344 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4345 
4346 	bnxt_free_stats_mem(bp, &bp->port_stats);
4347 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4348 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4349 }
4350 
4351 static void bnxt_free_ring_stats(struct bnxt *bp)
4352 {
4353 	int i;
4354 
4355 	if (!bp->bnapi)
4356 		return;
4357 
4358 	for (i = 0; i < bp->cp_nr_rings; i++) {
4359 		struct bnxt_napi *bnapi = bp->bnapi[i];
4360 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4361 
4362 		bnxt_free_stats_mem(bp, &cpr->stats);
4363 	}
4364 }
4365 
4366 static int bnxt_alloc_stats(struct bnxt *bp)
4367 {
4368 	u32 size, i;
4369 	int rc;
4370 
4371 	size = bp->hw_ring_stats_size;
4372 
4373 	for (i = 0; i < bp->cp_nr_rings; i++) {
4374 		struct bnxt_napi *bnapi = bp->bnapi[i];
4375 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4376 
4377 		cpr->stats.len = size;
4378 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4379 		if (rc)
4380 			return rc;
4381 
4382 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4383 	}
4384 
4385 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4386 		return 0;
4387 
4388 	if (bp->port_stats.hw_stats)
4389 		goto alloc_ext_stats;
4390 
4391 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4392 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4393 	if (rc)
4394 		return rc;
4395 
4396 	bp->flags |= BNXT_FLAG_PORT_STATS;
4397 
4398 alloc_ext_stats:
4399 	/* Display extended statistics only if FW supports it */
4400 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4401 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4402 			return 0;
4403 
4404 	if (bp->rx_port_stats_ext.hw_stats)
4405 		goto alloc_tx_ext_stats;
4406 
4407 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4408 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4409 	/* Extended stats are optional */
4410 	if (rc)
4411 		return 0;
4412 
4413 alloc_tx_ext_stats:
4414 	if (bp->tx_port_stats_ext.hw_stats)
4415 		return 0;
4416 
4417 	if (bp->hwrm_spec_code >= 0x10902 ||
4418 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4419 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4420 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4421 		/* Extended stats are optional */
4422 		if (rc)
4423 			return 0;
4424 	}
4425 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4426 	return 0;
4427 }
4428 
4429 static void bnxt_clear_ring_indices(struct bnxt *bp)
4430 {
4431 	int i;
4432 
4433 	if (!bp->bnapi)
4434 		return;
4435 
4436 	for (i = 0; i < bp->cp_nr_rings; i++) {
4437 		struct bnxt_napi *bnapi = bp->bnapi[i];
4438 		struct bnxt_cp_ring_info *cpr;
4439 		struct bnxt_rx_ring_info *rxr;
4440 		struct bnxt_tx_ring_info *txr;
4441 
4442 		if (!bnapi)
4443 			continue;
4444 
4445 		cpr = &bnapi->cp_ring;
4446 		cpr->cp_raw_cons = 0;
4447 
4448 		txr = bnapi->tx_ring;
4449 		if (txr) {
4450 			txr->tx_prod = 0;
4451 			txr->tx_cons = 0;
4452 		}
4453 
4454 		rxr = bnapi->rx_ring;
4455 		if (rxr) {
4456 			rxr->rx_prod = 0;
4457 			rxr->rx_agg_prod = 0;
4458 			rxr->rx_sw_agg_prod = 0;
4459 			rxr->rx_next_cons = 0;
4460 		}
4461 	}
4462 }
4463 
4464 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4465 {
4466 #ifdef CONFIG_RFS_ACCEL
4467 	int i;
4468 
4469 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4470 	 * safe to delete the hash table.
4471 	 */
4472 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4473 		struct hlist_head *head;
4474 		struct hlist_node *tmp;
4475 		struct bnxt_ntuple_filter *fltr;
4476 
4477 		head = &bp->ntp_fltr_hash_tbl[i];
4478 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4479 			hlist_del(&fltr->hash);
4480 			kfree(fltr);
4481 		}
4482 	}
4483 	if (irq_reinit) {
4484 		bitmap_free(bp->ntp_fltr_bmap);
4485 		bp->ntp_fltr_bmap = NULL;
4486 	}
4487 	bp->ntp_fltr_count = 0;
4488 #endif
4489 }
4490 
4491 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4492 {
4493 #ifdef CONFIG_RFS_ACCEL
4494 	int i, rc = 0;
4495 
4496 	if (!(bp->flags & BNXT_FLAG_RFS))
4497 		return 0;
4498 
4499 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4500 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4501 
4502 	bp->ntp_fltr_count = 0;
4503 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4504 
4505 	if (!bp->ntp_fltr_bmap)
4506 		rc = -ENOMEM;
4507 
4508 	return rc;
4509 #else
4510 	return 0;
4511 #endif
4512 }
4513 
4514 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4515 {
4516 	bnxt_free_vnic_attributes(bp);
4517 	bnxt_free_tx_rings(bp);
4518 	bnxt_free_rx_rings(bp);
4519 	bnxt_free_cp_rings(bp);
4520 	bnxt_free_all_cp_arrays(bp);
4521 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4522 	if (irq_re_init) {
4523 		bnxt_free_ring_stats(bp);
4524 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4525 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4526 			bnxt_free_port_stats(bp);
4527 		bnxt_free_ring_grps(bp);
4528 		bnxt_free_vnics(bp);
4529 		kfree(bp->tx_ring_map);
4530 		bp->tx_ring_map = NULL;
4531 		kfree(bp->tx_ring);
4532 		bp->tx_ring = NULL;
4533 		kfree(bp->rx_ring);
4534 		bp->rx_ring = NULL;
4535 		kfree(bp->bnapi);
4536 		bp->bnapi = NULL;
4537 	} else {
4538 		bnxt_clear_ring_indices(bp);
4539 	}
4540 }
4541 
4542 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4543 {
4544 	int i, j, rc, size, arr_size;
4545 	void *bnapi;
4546 
4547 	if (irq_re_init) {
4548 		/* Allocate bnapi mem pointer array and mem block for
4549 		 * all queues
4550 		 */
4551 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4552 				bp->cp_nr_rings);
4553 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4554 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4555 		if (!bnapi)
4556 			return -ENOMEM;
4557 
4558 		bp->bnapi = bnapi;
4559 		bnapi += arr_size;
4560 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4561 			bp->bnapi[i] = bnapi;
4562 			bp->bnapi[i]->index = i;
4563 			bp->bnapi[i]->bp = bp;
4564 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4565 				struct bnxt_cp_ring_info *cpr =
4566 					&bp->bnapi[i]->cp_ring;
4567 
4568 				cpr->cp_ring_struct.ring_mem.flags =
4569 					BNXT_RMEM_RING_PTE_FLAG;
4570 			}
4571 		}
4572 
4573 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4574 				      sizeof(struct bnxt_rx_ring_info),
4575 				      GFP_KERNEL);
4576 		if (!bp->rx_ring)
4577 			return -ENOMEM;
4578 
4579 		for (i = 0; i < bp->rx_nr_rings; i++) {
4580 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4581 
4582 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4583 				rxr->rx_ring_struct.ring_mem.flags =
4584 					BNXT_RMEM_RING_PTE_FLAG;
4585 				rxr->rx_agg_ring_struct.ring_mem.flags =
4586 					BNXT_RMEM_RING_PTE_FLAG;
4587 			}
4588 			rxr->bnapi = bp->bnapi[i];
4589 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4590 		}
4591 
4592 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4593 				      sizeof(struct bnxt_tx_ring_info),
4594 				      GFP_KERNEL);
4595 		if (!bp->tx_ring)
4596 			return -ENOMEM;
4597 
4598 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4599 					  GFP_KERNEL);
4600 
4601 		if (!bp->tx_ring_map)
4602 			return -ENOMEM;
4603 
4604 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4605 			j = 0;
4606 		else
4607 			j = bp->rx_nr_rings;
4608 
4609 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4610 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4611 
4612 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4613 				txr->tx_ring_struct.ring_mem.flags =
4614 					BNXT_RMEM_RING_PTE_FLAG;
4615 			txr->bnapi = bp->bnapi[j];
4616 			bp->bnapi[j]->tx_ring = txr;
4617 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4618 			if (i >= bp->tx_nr_rings_xdp) {
4619 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4620 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4621 			} else {
4622 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4623 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4624 			}
4625 		}
4626 
4627 		rc = bnxt_alloc_stats(bp);
4628 		if (rc)
4629 			goto alloc_mem_err;
4630 		bnxt_init_stats(bp);
4631 
4632 		rc = bnxt_alloc_ntp_fltrs(bp);
4633 		if (rc)
4634 			goto alloc_mem_err;
4635 
4636 		rc = bnxt_alloc_vnics(bp);
4637 		if (rc)
4638 			goto alloc_mem_err;
4639 	}
4640 
4641 	rc = bnxt_alloc_all_cp_arrays(bp);
4642 	if (rc)
4643 		goto alloc_mem_err;
4644 
4645 	bnxt_init_ring_struct(bp);
4646 
4647 	rc = bnxt_alloc_rx_rings(bp);
4648 	if (rc)
4649 		goto alloc_mem_err;
4650 
4651 	rc = bnxt_alloc_tx_rings(bp);
4652 	if (rc)
4653 		goto alloc_mem_err;
4654 
4655 	rc = bnxt_alloc_cp_rings(bp);
4656 	if (rc)
4657 		goto alloc_mem_err;
4658 
4659 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4660 				  BNXT_VNIC_UCAST_FLAG;
4661 	rc = bnxt_alloc_vnic_attributes(bp);
4662 	if (rc)
4663 		goto alloc_mem_err;
4664 	return 0;
4665 
4666 alloc_mem_err:
4667 	bnxt_free_mem(bp, true);
4668 	return rc;
4669 }
4670 
4671 static void bnxt_disable_int(struct bnxt *bp)
4672 {
4673 	int i;
4674 
4675 	if (!bp->bnapi)
4676 		return;
4677 
4678 	for (i = 0; i < bp->cp_nr_rings; i++) {
4679 		struct bnxt_napi *bnapi = bp->bnapi[i];
4680 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4681 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4682 
4683 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4684 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4685 	}
4686 }
4687 
4688 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4689 {
4690 	struct bnxt_napi *bnapi = bp->bnapi[n];
4691 	struct bnxt_cp_ring_info *cpr;
4692 
4693 	cpr = &bnapi->cp_ring;
4694 	return cpr->cp_ring_struct.map_idx;
4695 }
4696 
4697 static void bnxt_disable_int_sync(struct bnxt *bp)
4698 {
4699 	int i;
4700 
4701 	if (!bp->irq_tbl)
4702 		return;
4703 
4704 	atomic_inc(&bp->intr_sem);
4705 
4706 	bnxt_disable_int(bp);
4707 	for (i = 0; i < bp->cp_nr_rings; i++) {
4708 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4709 
4710 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4711 	}
4712 }
4713 
4714 static void bnxt_enable_int(struct bnxt *bp)
4715 {
4716 	int i;
4717 
4718 	atomic_set(&bp->intr_sem, 0);
4719 	for (i = 0; i < bp->cp_nr_rings; i++) {
4720 		struct bnxt_napi *bnapi = bp->bnapi[i];
4721 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4722 
4723 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4724 	}
4725 }
4726 
4727 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4728 			    bool async_only)
4729 {
4730 	DECLARE_BITMAP(async_events_bmap, 256);
4731 	u32 *events = (u32 *)async_events_bmap;
4732 	struct hwrm_func_drv_rgtr_output *resp;
4733 	struct hwrm_func_drv_rgtr_input *req;
4734 	u32 flags;
4735 	int rc, i;
4736 
4737 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4738 	if (rc)
4739 		return rc;
4740 
4741 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4742 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4743 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4744 
4745 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4746 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4747 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4748 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4749 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4750 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4751 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4752 	req->flags = cpu_to_le32(flags);
4753 	req->ver_maj_8b = DRV_VER_MAJ;
4754 	req->ver_min_8b = DRV_VER_MIN;
4755 	req->ver_upd_8b = DRV_VER_UPD;
4756 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4757 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4758 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4759 
4760 	if (BNXT_PF(bp)) {
4761 		u32 data[8];
4762 		int i;
4763 
4764 		memset(data, 0, sizeof(data));
4765 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4766 			u16 cmd = bnxt_vf_req_snif[i];
4767 			unsigned int bit, idx;
4768 
4769 			idx = cmd / 32;
4770 			bit = cmd % 32;
4771 			data[idx] |= 1 << bit;
4772 		}
4773 
4774 		for (i = 0; i < 8; i++)
4775 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4776 
4777 		req->enables |=
4778 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4779 	}
4780 
4781 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4782 		req->flags |= cpu_to_le32(
4783 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4784 
4785 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4786 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4787 		u16 event_id = bnxt_async_events_arr[i];
4788 
4789 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4790 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4791 			continue;
4792 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4793 	}
4794 	if (bmap && bmap_size) {
4795 		for (i = 0; i < bmap_size; i++) {
4796 			if (test_bit(i, bmap))
4797 				__set_bit(i, async_events_bmap);
4798 		}
4799 	}
4800 	for (i = 0; i < 8; i++)
4801 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4802 
4803 	if (async_only)
4804 		req->enables =
4805 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4806 
4807 	resp = hwrm_req_hold(bp, req);
4808 	rc = hwrm_req_send(bp, req);
4809 	if (!rc) {
4810 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4811 		if (resp->flags &
4812 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4813 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4814 	}
4815 	hwrm_req_drop(bp, req);
4816 	return rc;
4817 }
4818 
4819 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4820 {
4821 	struct hwrm_func_drv_unrgtr_input *req;
4822 	int rc;
4823 
4824 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4825 		return 0;
4826 
4827 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4828 	if (rc)
4829 		return rc;
4830 	return hwrm_req_send(bp, req);
4831 }
4832 
4833 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4834 {
4835 	struct hwrm_tunnel_dst_port_free_input *req;
4836 	int rc;
4837 
4838 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4839 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4840 		return 0;
4841 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4842 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4843 		return 0;
4844 
4845 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4846 	if (rc)
4847 		return rc;
4848 
4849 	req->tunnel_type = tunnel_type;
4850 
4851 	switch (tunnel_type) {
4852 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4853 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4854 		bp->vxlan_port = 0;
4855 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4856 		break;
4857 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4858 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4859 		bp->nge_port = 0;
4860 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4861 		break;
4862 	default:
4863 		break;
4864 	}
4865 
4866 	rc = hwrm_req_send(bp, req);
4867 	if (rc)
4868 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4869 			   rc);
4870 	return rc;
4871 }
4872 
4873 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4874 					   u8 tunnel_type)
4875 {
4876 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4877 	struct hwrm_tunnel_dst_port_alloc_input *req;
4878 	int rc;
4879 
4880 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4881 	if (rc)
4882 		return rc;
4883 
4884 	req->tunnel_type = tunnel_type;
4885 	req->tunnel_dst_port_val = port;
4886 
4887 	resp = hwrm_req_hold(bp, req);
4888 	rc = hwrm_req_send(bp, req);
4889 	if (rc) {
4890 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4891 			   rc);
4892 		goto err_out;
4893 	}
4894 
4895 	switch (tunnel_type) {
4896 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4897 		bp->vxlan_port = port;
4898 		bp->vxlan_fw_dst_port_id =
4899 			le16_to_cpu(resp->tunnel_dst_port_id);
4900 		break;
4901 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4902 		bp->nge_port = port;
4903 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4904 		break;
4905 	default:
4906 		break;
4907 	}
4908 
4909 err_out:
4910 	hwrm_req_drop(bp, req);
4911 	return rc;
4912 }
4913 
4914 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4915 {
4916 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4917 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4918 	int rc;
4919 
4920 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4921 	if (rc)
4922 		return rc;
4923 
4924 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4925 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4926 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4927 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4928 	}
4929 	req->mask = cpu_to_le32(vnic->rx_mask);
4930 	return hwrm_req_send_silent(bp, req);
4931 }
4932 
4933 #ifdef CONFIG_RFS_ACCEL
4934 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4935 					    struct bnxt_ntuple_filter *fltr)
4936 {
4937 	struct hwrm_cfa_ntuple_filter_free_input *req;
4938 	int rc;
4939 
4940 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4941 	if (rc)
4942 		return rc;
4943 
4944 	req->ntuple_filter_id = fltr->filter_id;
4945 	return hwrm_req_send(bp, req);
4946 }
4947 
4948 #define BNXT_NTP_FLTR_FLAGS					\
4949 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4956 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4957 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4958 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4959 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4960 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4961 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4962 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4963 
4964 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4965 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4966 
4967 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4968 					     struct bnxt_ntuple_filter *fltr)
4969 {
4970 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4971 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4972 	struct flow_keys *keys = &fltr->fkeys;
4973 	struct bnxt_vnic_info *vnic;
4974 	u32 flags = 0;
4975 	int rc;
4976 
4977 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4978 	if (rc)
4979 		return rc;
4980 
4981 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4982 
4983 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4984 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4985 		req->dst_id = cpu_to_le16(fltr->rxq);
4986 	} else {
4987 		vnic = &bp->vnic_info[fltr->rxq + 1];
4988 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4989 	}
4990 	req->flags = cpu_to_le32(flags);
4991 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4992 
4993 	req->ethertype = htons(ETH_P_IP);
4994 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4995 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4996 	req->ip_protocol = keys->basic.ip_proto;
4997 
4998 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4999 		int i;
5000 
5001 		req->ethertype = htons(ETH_P_IPV6);
5002 		req->ip_addr_type =
5003 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5004 		*(struct in6_addr *)&req->src_ipaddr[0] =
5005 			keys->addrs.v6addrs.src;
5006 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5007 			keys->addrs.v6addrs.dst;
5008 		for (i = 0; i < 4; i++) {
5009 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5010 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5011 		}
5012 	} else {
5013 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5014 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5015 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5016 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5017 	}
5018 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5019 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5020 		req->tunnel_type =
5021 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5022 	}
5023 
5024 	req->src_port = keys->ports.src;
5025 	req->src_port_mask = cpu_to_be16(0xffff);
5026 	req->dst_port = keys->ports.dst;
5027 	req->dst_port_mask = cpu_to_be16(0xffff);
5028 
5029 	resp = hwrm_req_hold(bp, req);
5030 	rc = hwrm_req_send(bp, req);
5031 	if (!rc)
5032 		fltr->filter_id = resp->ntuple_filter_id;
5033 	hwrm_req_drop(bp, req);
5034 	return rc;
5035 }
5036 #endif
5037 
5038 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5039 				     const u8 *mac_addr)
5040 {
5041 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5042 	struct hwrm_cfa_l2_filter_alloc_input *req;
5043 	int rc;
5044 
5045 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5046 	if (rc)
5047 		return rc;
5048 
5049 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5050 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5051 		req->flags |=
5052 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5053 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5054 	req->enables =
5055 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5056 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5057 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5058 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5059 	req->l2_addr_mask[0] = 0xff;
5060 	req->l2_addr_mask[1] = 0xff;
5061 	req->l2_addr_mask[2] = 0xff;
5062 	req->l2_addr_mask[3] = 0xff;
5063 	req->l2_addr_mask[4] = 0xff;
5064 	req->l2_addr_mask[5] = 0xff;
5065 
5066 	resp = hwrm_req_hold(bp, req);
5067 	rc = hwrm_req_send(bp, req);
5068 	if (!rc)
5069 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5070 							resp->l2_filter_id;
5071 	hwrm_req_drop(bp, req);
5072 	return rc;
5073 }
5074 
5075 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5076 {
5077 	struct hwrm_cfa_l2_filter_free_input *req;
5078 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5079 	int rc;
5080 
5081 	/* Any associated ntuple filters will also be cleared by firmware. */
5082 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5083 	if (rc)
5084 		return rc;
5085 	hwrm_req_hold(bp, req);
5086 	for (i = 0; i < num_of_vnics; i++) {
5087 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5088 
5089 		for (j = 0; j < vnic->uc_filter_count; j++) {
5090 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5091 
5092 			rc = hwrm_req_send(bp, req);
5093 		}
5094 		vnic->uc_filter_count = 0;
5095 	}
5096 	hwrm_req_drop(bp, req);
5097 	return rc;
5098 }
5099 
5100 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5101 {
5102 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5103 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5104 	struct hwrm_vnic_tpa_cfg_input *req;
5105 	int rc;
5106 
5107 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5108 		return 0;
5109 
5110 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5111 	if (rc)
5112 		return rc;
5113 
5114 	if (tpa_flags) {
5115 		u16 mss = bp->dev->mtu - 40;
5116 		u32 nsegs, n, segs = 0, flags;
5117 
5118 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5119 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5120 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5121 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5122 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5123 		if (tpa_flags & BNXT_FLAG_GRO)
5124 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5125 
5126 		req->flags = cpu_to_le32(flags);
5127 
5128 		req->enables =
5129 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5130 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5131 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5132 
5133 		/* Number of segs are log2 units, and first packet is not
5134 		 * included as part of this units.
5135 		 */
5136 		if (mss <= BNXT_RX_PAGE_SIZE) {
5137 			n = BNXT_RX_PAGE_SIZE / mss;
5138 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5139 		} else {
5140 			n = mss / BNXT_RX_PAGE_SIZE;
5141 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5142 				n++;
5143 			nsegs = (MAX_SKB_FRAGS - n) / n;
5144 		}
5145 
5146 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5147 			segs = MAX_TPA_SEGS_P5;
5148 			max_aggs = bp->max_tpa;
5149 		} else {
5150 			segs = ilog2(nsegs);
5151 		}
5152 		req->max_agg_segs = cpu_to_le16(segs);
5153 		req->max_aggs = cpu_to_le16(max_aggs);
5154 
5155 		req->min_agg_len = cpu_to_le32(512);
5156 	}
5157 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5158 
5159 	return hwrm_req_send(bp, req);
5160 }
5161 
5162 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5163 {
5164 	struct bnxt_ring_grp_info *grp_info;
5165 
5166 	grp_info = &bp->grp_info[ring->grp_idx];
5167 	return grp_info->cp_fw_ring_id;
5168 }
5169 
5170 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5171 {
5172 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5173 		struct bnxt_napi *bnapi = rxr->bnapi;
5174 		struct bnxt_cp_ring_info *cpr;
5175 
5176 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5177 		return cpr->cp_ring_struct.fw_ring_id;
5178 	} else {
5179 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5180 	}
5181 }
5182 
5183 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5184 {
5185 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5186 		struct bnxt_napi *bnapi = txr->bnapi;
5187 		struct bnxt_cp_ring_info *cpr;
5188 
5189 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5190 		return cpr->cp_ring_struct.fw_ring_id;
5191 	} else {
5192 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5193 	}
5194 }
5195 
5196 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5197 {
5198 	int entries;
5199 
5200 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5201 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5202 	else
5203 		entries = HW_HASH_INDEX_SIZE;
5204 
5205 	bp->rss_indir_tbl_entries = entries;
5206 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5207 					  GFP_KERNEL);
5208 	if (!bp->rss_indir_tbl)
5209 		return -ENOMEM;
5210 	return 0;
5211 }
5212 
5213 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5214 {
5215 	u16 max_rings, max_entries, pad, i;
5216 
5217 	if (!bp->rx_nr_rings)
5218 		return;
5219 
5220 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5221 		max_rings = bp->rx_nr_rings - 1;
5222 	else
5223 		max_rings = bp->rx_nr_rings;
5224 
5225 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5226 
5227 	for (i = 0; i < max_entries; i++)
5228 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5229 
5230 	pad = bp->rss_indir_tbl_entries - max_entries;
5231 	if (pad)
5232 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5233 }
5234 
5235 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5236 {
5237 	u16 i, tbl_size, max_ring = 0;
5238 
5239 	if (!bp->rss_indir_tbl)
5240 		return 0;
5241 
5242 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5243 	for (i = 0; i < tbl_size; i++)
5244 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5245 	return max_ring;
5246 }
5247 
5248 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5249 {
5250 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5251 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5252 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5253 		return 2;
5254 	return 1;
5255 }
5256 
5257 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5258 {
5259 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5260 	u16 i, j;
5261 
5262 	/* Fill the RSS indirection table with ring group ids */
5263 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5264 		if (!no_rss)
5265 			j = bp->rss_indir_tbl[i];
5266 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5267 	}
5268 }
5269 
5270 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5271 				    struct bnxt_vnic_info *vnic)
5272 {
5273 	__le16 *ring_tbl = vnic->rss_table;
5274 	struct bnxt_rx_ring_info *rxr;
5275 	u16 tbl_size, i;
5276 
5277 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5278 
5279 	for (i = 0; i < tbl_size; i++) {
5280 		u16 ring_id, j;
5281 
5282 		j = bp->rss_indir_tbl[i];
5283 		rxr = &bp->rx_ring[j];
5284 
5285 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5286 		*ring_tbl++ = cpu_to_le16(ring_id);
5287 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5288 		*ring_tbl++ = cpu_to_le16(ring_id);
5289 	}
5290 }
5291 
5292 static void
5293 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5294 			 struct bnxt_vnic_info *vnic)
5295 {
5296 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5297 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5298 	else
5299 		bnxt_fill_hw_rss_tbl(bp, vnic);
5300 
5301 	if (bp->rss_hash_delta) {
5302 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5303 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5304 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5305 		else
5306 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5307 	} else {
5308 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5309 	}
5310 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5311 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5312 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5313 }
5314 
5315 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5316 {
5317 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5318 	struct hwrm_vnic_rss_cfg_input *req;
5319 	int rc;
5320 
5321 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5322 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5323 		return 0;
5324 
5325 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5326 	if (rc)
5327 		return rc;
5328 
5329 	if (set_rss)
5330 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5331 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5332 	return hwrm_req_send(bp, req);
5333 }
5334 
5335 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5336 {
5337 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5338 	struct hwrm_vnic_rss_cfg_input *req;
5339 	dma_addr_t ring_tbl_map;
5340 	u32 i, nr_ctxs;
5341 	int rc;
5342 
5343 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5344 	if (rc)
5345 		return rc;
5346 
5347 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5348 	if (!set_rss)
5349 		return hwrm_req_send(bp, req);
5350 
5351 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5352 	ring_tbl_map = vnic->rss_table_dma_addr;
5353 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5354 
5355 	hwrm_req_hold(bp, req);
5356 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5357 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5358 		req->ring_table_pair_index = i;
5359 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5360 		rc = hwrm_req_send(bp, req);
5361 		if (rc)
5362 			goto exit;
5363 	}
5364 
5365 exit:
5366 	hwrm_req_drop(bp, req);
5367 	return rc;
5368 }
5369 
5370 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5371 {
5372 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5373 	struct hwrm_vnic_rss_qcfg_output *resp;
5374 	struct hwrm_vnic_rss_qcfg_input *req;
5375 
5376 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5377 		return;
5378 
5379 	/* all contexts configured to same hash_type, zero always exists */
5380 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5381 	resp = hwrm_req_hold(bp, req);
5382 	if (!hwrm_req_send(bp, req)) {
5383 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5384 		bp->rss_hash_delta = 0;
5385 	}
5386 	hwrm_req_drop(bp, req);
5387 }
5388 
5389 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5390 {
5391 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5392 	struct hwrm_vnic_plcmodes_cfg_input *req;
5393 	int rc;
5394 
5395 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5396 	if (rc)
5397 		return rc;
5398 
5399 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5400 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5401 
5402 	if (BNXT_RX_PAGE_MODE(bp)) {
5403 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
5404 	} else {
5405 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5406 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5407 		req->enables |=
5408 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5409 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5410 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5411 	}
5412 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5413 	return hwrm_req_send(bp, req);
5414 }
5415 
5416 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5417 					u16 ctx_idx)
5418 {
5419 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5420 
5421 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5422 		return;
5423 
5424 	req->rss_cos_lb_ctx_id =
5425 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5426 
5427 	hwrm_req_send(bp, req);
5428 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5429 }
5430 
5431 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5432 {
5433 	int i, j;
5434 
5435 	for (i = 0; i < bp->nr_vnics; i++) {
5436 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5437 
5438 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5439 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5440 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5441 		}
5442 	}
5443 	bp->rsscos_nr_ctxs = 0;
5444 }
5445 
5446 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5447 {
5448 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5449 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5450 	int rc;
5451 
5452 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5453 	if (rc)
5454 		return rc;
5455 
5456 	resp = hwrm_req_hold(bp, req);
5457 	rc = hwrm_req_send(bp, req);
5458 	if (!rc)
5459 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5460 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5461 	hwrm_req_drop(bp, req);
5462 
5463 	return rc;
5464 }
5465 
5466 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5467 {
5468 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5469 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5470 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5471 }
5472 
5473 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5474 {
5475 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5476 	struct hwrm_vnic_cfg_input *req;
5477 	unsigned int ring = 0, grp_idx;
5478 	u16 def_vlan = 0;
5479 	int rc;
5480 
5481 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5482 	if (rc)
5483 		return rc;
5484 
5485 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5486 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5487 
5488 		req->default_rx_ring_id =
5489 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5490 		req->default_cmpl_ring_id =
5491 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5492 		req->enables =
5493 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5494 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5495 		goto vnic_mru;
5496 	}
5497 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5498 	/* Only RSS support for now TBD: COS & LB */
5499 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5500 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5501 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5502 					   VNIC_CFG_REQ_ENABLES_MRU);
5503 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5504 		req->rss_rule =
5505 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5506 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5507 					   VNIC_CFG_REQ_ENABLES_MRU);
5508 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5509 	} else {
5510 		req->rss_rule = cpu_to_le16(0xffff);
5511 	}
5512 
5513 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5514 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5515 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5516 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5517 	} else {
5518 		req->cos_rule = cpu_to_le16(0xffff);
5519 	}
5520 
5521 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5522 		ring = 0;
5523 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5524 		ring = vnic_id - 1;
5525 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5526 		ring = bp->rx_nr_rings - 1;
5527 
5528 	grp_idx = bp->rx_ring[ring].bnapi->index;
5529 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5530 	req->lb_rule = cpu_to_le16(0xffff);
5531 vnic_mru:
5532 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5533 
5534 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5535 #ifdef CONFIG_BNXT_SRIOV
5536 	if (BNXT_VF(bp))
5537 		def_vlan = bp->vf.vlan;
5538 #endif
5539 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5540 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5541 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
5542 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5543 
5544 	return hwrm_req_send(bp, req);
5545 }
5546 
5547 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5548 {
5549 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5550 		struct hwrm_vnic_free_input *req;
5551 
5552 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5553 			return;
5554 
5555 		req->vnic_id =
5556 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5557 
5558 		hwrm_req_send(bp, req);
5559 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5560 	}
5561 }
5562 
5563 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5564 {
5565 	u16 i;
5566 
5567 	for (i = 0; i < bp->nr_vnics; i++)
5568 		bnxt_hwrm_vnic_free_one(bp, i);
5569 }
5570 
5571 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5572 				unsigned int start_rx_ring_idx,
5573 				unsigned int nr_rings)
5574 {
5575 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5576 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5577 	struct hwrm_vnic_alloc_output *resp;
5578 	struct hwrm_vnic_alloc_input *req;
5579 	int rc;
5580 
5581 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5582 	if (rc)
5583 		return rc;
5584 
5585 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5586 		goto vnic_no_ring_grps;
5587 
5588 	/* map ring groups to this vnic */
5589 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5590 		grp_idx = bp->rx_ring[i].bnapi->index;
5591 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5592 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5593 				   j, nr_rings);
5594 			break;
5595 		}
5596 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5597 	}
5598 
5599 vnic_no_ring_grps:
5600 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5601 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5602 	if (vnic_id == 0)
5603 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5604 
5605 	resp = hwrm_req_hold(bp, req);
5606 	rc = hwrm_req_send(bp, req);
5607 	if (!rc)
5608 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5609 	hwrm_req_drop(bp, req);
5610 	return rc;
5611 }
5612 
5613 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5614 {
5615 	struct hwrm_vnic_qcaps_output *resp;
5616 	struct hwrm_vnic_qcaps_input *req;
5617 	int rc;
5618 
5619 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5620 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5621 	if (bp->hwrm_spec_code < 0x10600)
5622 		return 0;
5623 
5624 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5625 	if (rc)
5626 		return rc;
5627 
5628 	resp = hwrm_req_hold(bp, req);
5629 	rc = hwrm_req_send(bp, req);
5630 	if (!rc) {
5631 		u32 flags = le32_to_cpu(resp->flags);
5632 
5633 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5634 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5635 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5636 		if (flags &
5637 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5638 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5639 
5640 		/* Older P5 fw before EXT_HW_STATS support did not set
5641 		 * VLAN_STRIP_CAP properly.
5642 		 */
5643 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5644 		    (BNXT_CHIP_P5_THOR(bp) &&
5645 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5646 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5647 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
5648 			bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA;
5649 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5650 		if (bp->max_tpa_v2) {
5651 			if (BNXT_CHIP_P5_THOR(bp))
5652 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5653 			else
5654 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5655 		}
5656 	}
5657 	hwrm_req_drop(bp, req);
5658 	return rc;
5659 }
5660 
5661 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5662 {
5663 	struct hwrm_ring_grp_alloc_output *resp;
5664 	struct hwrm_ring_grp_alloc_input *req;
5665 	int rc;
5666 	u16 i;
5667 
5668 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5669 		return 0;
5670 
5671 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5672 	if (rc)
5673 		return rc;
5674 
5675 	resp = hwrm_req_hold(bp, req);
5676 	for (i = 0; i < bp->rx_nr_rings; i++) {
5677 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5678 
5679 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5680 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5681 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5682 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5683 
5684 		rc = hwrm_req_send(bp, req);
5685 
5686 		if (rc)
5687 			break;
5688 
5689 		bp->grp_info[grp_idx].fw_grp_id =
5690 			le32_to_cpu(resp->ring_group_id);
5691 	}
5692 	hwrm_req_drop(bp, req);
5693 	return rc;
5694 }
5695 
5696 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5697 {
5698 	struct hwrm_ring_grp_free_input *req;
5699 	u16 i;
5700 
5701 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5702 		return;
5703 
5704 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5705 		return;
5706 
5707 	hwrm_req_hold(bp, req);
5708 	for (i = 0; i < bp->cp_nr_rings; i++) {
5709 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5710 			continue;
5711 		req->ring_group_id =
5712 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5713 
5714 		hwrm_req_send(bp, req);
5715 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5716 	}
5717 	hwrm_req_drop(bp, req);
5718 }
5719 
5720 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5721 				    struct bnxt_ring_struct *ring,
5722 				    u32 ring_type, u32 map_index)
5723 {
5724 	struct hwrm_ring_alloc_output *resp;
5725 	struct hwrm_ring_alloc_input *req;
5726 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5727 	struct bnxt_ring_grp_info *grp_info;
5728 	int rc, err = 0;
5729 	u16 ring_id;
5730 
5731 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5732 	if (rc)
5733 		goto exit;
5734 
5735 	req->enables = 0;
5736 	if (rmem->nr_pages > 1) {
5737 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5738 		/* Page size is in log2 units */
5739 		req->page_size = BNXT_PAGE_SHIFT;
5740 		req->page_tbl_depth = 1;
5741 	} else {
5742 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5743 	}
5744 	req->fbo = 0;
5745 	/* Association of ring index with doorbell index and MSIX number */
5746 	req->logical_id = cpu_to_le16(map_index);
5747 
5748 	switch (ring_type) {
5749 	case HWRM_RING_ALLOC_TX: {
5750 		struct bnxt_tx_ring_info *txr;
5751 
5752 		txr = container_of(ring, struct bnxt_tx_ring_info,
5753 				   tx_ring_struct);
5754 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5755 		/* Association of transmit ring with completion ring */
5756 		grp_info = &bp->grp_info[ring->grp_idx];
5757 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5758 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5759 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5760 		req->queue_id = cpu_to_le16(ring->queue_id);
5761 		break;
5762 	}
5763 	case HWRM_RING_ALLOC_RX:
5764 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5765 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5766 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5767 			u16 flags = 0;
5768 
5769 			/* Association of rx ring with stats context */
5770 			grp_info = &bp->grp_info[ring->grp_idx];
5771 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5772 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5773 			req->enables |= cpu_to_le32(
5774 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5775 			if (NET_IP_ALIGN == 2)
5776 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5777 			req->flags = cpu_to_le16(flags);
5778 		}
5779 		break;
5780 	case HWRM_RING_ALLOC_AGG:
5781 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5782 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5783 			/* Association of agg ring with rx ring */
5784 			grp_info = &bp->grp_info[ring->grp_idx];
5785 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5786 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5787 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5788 			req->enables |= cpu_to_le32(
5789 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5790 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5791 		} else {
5792 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5793 		}
5794 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5795 		break;
5796 	case HWRM_RING_ALLOC_CMPL:
5797 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5798 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5799 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5800 			/* Association of cp ring with nq */
5801 			grp_info = &bp->grp_info[map_index];
5802 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5803 			req->cq_handle = cpu_to_le64(ring->handle);
5804 			req->enables |= cpu_to_le32(
5805 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5806 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5807 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5808 		}
5809 		break;
5810 	case HWRM_RING_ALLOC_NQ:
5811 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5812 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5813 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5814 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5815 		break;
5816 	default:
5817 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5818 			   ring_type);
5819 		return -1;
5820 	}
5821 
5822 	resp = hwrm_req_hold(bp, req);
5823 	rc = hwrm_req_send(bp, req);
5824 	err = le16_to_cpu(resp->error_code);
5825 	ring_id = le16_to_cpu(resp->ring_id);
5826 	hwrm_req_drop(bp, req);
5827 
5828 exit:
5829 	if (rc || err) {
5830 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5831 			   ring_type, rc, err);
5832 		return -EIO;
5833 	}
5834 	ring->fw_ring_id = ring_id;
5835 	return rc;
5836 }
5837 
5838 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5839 {
5840 	int rc;
5841 
5842 	if (BNXT_PF(bp)) {
5843 		struct hwrm_func_cfg_input *req;
5844 
5845 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5846 		if (rc)
5847 			return rc;
5848 
5849 		req->fid = cpu_to_le16(0xffff);
5850 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5851 		req->async_event_cr = cpu_to_le16(idx);
5852 		return hwrm_req_send(bp, req);
5853 	} else {
5854 		struct hwrm_func_vf_cfg_input *req;
5855 
5856 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5857 		if (rc)
5858 			return rc;
5859 
5860 		req->enables =
5861 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5862 		req->async_event_cr = cpu_to_le16(idx);
5863 		return hwrm_req_send(bp, req);
5864 	}
5865 }
5866 
5867 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5868 			u32 map_idx, u32 xid)
5869 {
5870 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5871 		if (BNXT_PF(bp))
5872 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5873 		else
5874 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5875 		switch (ring_type) {
5876 		case HWRM_RING_ALLOC_TX:
5877 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5878 			break;
5879 		case HWRM_RING_ALLOC_RX:
5880 		case HWRM_RING_ALLOC_AGG:
5881 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5882 			break;
5883 		case HWRM_RING_ALLOC_CMPL:
5884 			db->db_key64 = DBR_PATH_L2;
5885 			break;
5886 		case HWRM_RING_ALLOC_NQ:
5887 			db->db_key64 = DBR_PATH_L2;
5888 			break;
5889 		}
5890 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5891 	} else {
5892 		db->doorbell = bp->bar1 + map_idx * 0x80;
5893 		switch (ring_type) {
5894 		case HWRM_RING_ALLOC_TX:
5895 			db->db_key32 = DB_KEY_TX;
5896 			break;
5897 		case HWRM_RING_ALLOC_RX:
5898 		case HWRM_RING_ALLOC_AGG:
5899 			db->db_key32 = DB_KEY_RX;
5900 			break;
5901 		case HWRM_RING_ALLOC_CMPL:
5902 			db->db_key32 = DB_KEY_CP;
5903 			break;
5904 		}
5905 	}
5906 }
5907 
5908 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5909 {
5910 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5911 	int i, rc = 0;
5912 	u32 type;
5913 
5914 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5915 		type = HWRM_RING_ALLOC_NQ;
5916 	else
5917 		type = HWRM_RING_ALLOC_CMPL;
5918 	for (i = 0; i < bp->cp_nr_rings; i++) {
5919 		struct bnxt_napi *bnapi = bp->bnapi[i];
5920 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5921 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5922 		u32 map_idx = ring->map_idx;
5923 		unsigned int vector;
5924 
5925 		vector = bp->irq_tbl[map_idx].vector;
5926 		disable_irq_nosync(vector);
5927 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5928 		if (rc) {
5929 			enable_irq(vector);
5930 			goto err_out;
5931 		}
5932 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5933 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5934 		enable_irq(vector);
5935 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5936 
5937 		if (!i) {
5938 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5939 			if (rc)
5940 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5941 		}
5942 	}
5943 
5944 	type = HWRM_RING_ALLOC_TX;
5945 	for (i = 0; i < bp->tx_nr_rings; i++) {
5946 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5947 		struct bnxt_ring_struct *ring;
5948 		u32 map_idx;
5949 
5950 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5951 			struct bnxt_napi *bnapi = txr->bnapi;
5952 			struct bnxt_cp_ring_info *cpr, *cpr2;
5953 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5954 
5955 			cpr = &bnapi->cp_ring;
5956 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5957 			ring = &cpr2->cp_ring_struct;
5958 			ring->handle = BNXT_TX_HDL;
5959 			map_idx = bnapi->index;
5960 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5961 			if (rc)
5962 				goto err_out;
5963 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5964 				    ring->fw_ring_id);
5965 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5966 		}
5967 		ring = &txr->tx_ring_struct;
5968 		map_idx = i;
5969 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5970 		if (rc)
5971 			goto err_out;
5972 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5973 	}
5974 
5975 	type = HWRM_RING_ALLOC_RX;
5976 	for (i = 0; i < bp->rx_nr_rings; i++) {
5977 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5978 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5979 		struct bnxt_napi *bnapi = rxr->bnapi;
5980 		u32 map_idx = bnapi->index;
5981 
5982 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5983 		if (rc)
5984 			goto err_out;
5985 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5986 		/* If we have agg rings, post agg buffers first. */
5987 		if (!agg_rings)
5988 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5989 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5990 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5991 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5992 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5993 			struct bnxt_cp_ring_info *cpr2;
5994 
5995 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5996 			ring = &cpr2->cp_ring_struct;
5997 			ring->handle = BNXT_RX_HDL;
5998 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5999 			if (rc)
6000 				goto err_out;
6001 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6002 				    ring->fw_ring_id);
6003 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6004 		}
6005 	}
6006 
6007 	if (agg_rings) {
6008 		type = HWRM_RING_ALLOC_AGG;
6009 		for (i = 0; i < bp->rx_nr_rings; i++) {
6010 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6011 			struct bnxt_ring_struct *ring =
6012 						&rxr->rx_agg_ring_struct;
6013 			u32 grp_idx = ring->grp_idx;
6014 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6015 
6016 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6017 			if (rc)
6018 				goto err_out;
6019 
6020 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6021 				    ring->fw_ring_id);
6022 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6023 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6024 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6025 		}
6026 	}
6027 err_out:
6028 	return rc;
6029 }
6030 
6031 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6032 				   struct bnxt_ring_struct *ring,
6033 				   u32 ring_type, int cmpl_ring_id)
6034 {
6035 	struct hwrm_ring_free_output *resp;
6036 	struct hwrm_ring_free_input *req;
6037 	u16 error_code = 0;
6038 	int rc;
6039 
6040 	if (BNXT_NO_FW_ACCESS(bp))
6041 		return 0;
6042 
6043 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6044 	if (rc)
6045 		goto exit;
6046 
6047 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6048 	req->ring_type = ring_type;
6049 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6050 
6051 	resp = hwrm_req_hold(bp, req);
6052 	rc = hwrm_req_send(bp, req);
6053 	error_code = le16_to_cpu(resp->error_code);
6054 	hwrm_req_drop(bp, req);
6055 exit:
6056 	if (rc || error_code) {
6057 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6058 			   ring_type, rc, error_code);
6059 		return -EIO;
6060 	}
6061 	return 0;
6062 }
6063 
6064 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6065 {
6066 	u32 type;
6067 	int i;
6068 
6069 	if (!bp->bnapi)
6070 		return;
6071 
6072 	for (i = 0; i < bp->tx_nr_rings; i++) {
6073 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6074 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6075 
6076 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6077 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6078 
6079 			hwrm_ring_free_send_msg(bp, ring,
6080 						RING_FREE_REQ_RING_TYPE_TX,
6081 						close_path ? cmpl_ring_id :
6082 						INVALID_HW_RING_ID);
6083 			ring->fw_ring_id = INVALID_HW_RING_ID;
6084 		}
6085 	}
6086 
6087 	for (i = 0; i < bp->rx_nr_rings; i++) {
6088 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6089 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6090 		u32 grp_idx = rxr->bnapi->index;
6091 
6092 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6093 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6094 
6095 			hwrm_ring_free_send_msg(bp, ring,
6096 						RING_FREE_REQ_RING_TYPE_RX,
6097 						close_path ? cmpl_ring_id :
6098 						INVALID_HW_RING_ID);
6099 			ring->fw_ring_id = INVALID_HW_RING_ID;
6100 			bp->grp_info[grp_idx].rx_fw_ring_id =
6101 				INVALID_HW_RING_ID;
6102 		}
6103 	}
6104 
6105 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6106 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6107 	else
6108 		type = RING_FREE_REQ_RING_TYPE_RX;
6109 	for (i = 0; i < bp->rx_nr_rings; i++) {
6110 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6111 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6112 		u32 grp_idx = rxr->bnapi->index;
6113 
6114 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6115 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6116 
6117 			hwrm_ring_free_send_msg(bp, ring, type,
6118 						close_path ? cmpl_ring_id :
6119 						INVALID_HW_RING_ID);
6120 			ring->fw_ring_id = INVALID_HW_RING_ID;
6121 			bp->grp_info[grp_idx].agg_fw_ring_id =
6122 				INVALID_HW_RING_ID;
6123 		}
6124 	}
6125 
6126 	/* The completion rings are about to be freed.  After that the
6127 	 * IRQ doorbell will not work anymore.  So we need to disable
6128 	 * IRQ here.
6129 	 */
6130 	bnxt_disable_int_sync(bp);
6131 
6132 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6133 		type = RING_FREE_REQ_RING_TYPE_NQ;
6134 	else
6135 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6136 	for (i = 0; i < bp->cp_nr_rings; i++) {
6137 		struct bnxt_napi *bnapi = bp->bnapi[i];
6138 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6139 		struct bnxt_ring_struct *ring;
6140 		int j;
6141 
6142 		for (j = 0; j < 2; j++) {
6143 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6144 
6145 			if (cpr2) {
6146 				ring = &cpr2->cp_ring_struct;
6147 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6148 					continue;
6149 				hwrm_ring_free_send_msg(bp, ring,
6150 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6151 					INVALID_HW_RING_ID);
6152 				ring->fw_ring_id = INVALID_HW_RING_ID;
6153 			}
6154 		}
6155 		ring = &cpr->cp_ring_struct;
6156 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6157 			hwrm_ring_free_send_msg(bp, ring, type,
6158 						INVALID_HW_RING_ID);
6159 			ring->fw_ring_id = INVALID_HW_RING_ID;
6160 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6161 		}
6162 	}
6163 }
6164 
6165 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6166 			   bool shared);
6167 
6168 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6169 {
6170 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6171 	struct hwrm_func_qcfg_output *resp;
6172 	struct hwrm_func_qcfg_input *req;
6173 	int rc;
6174 
6175 	if (bp->hwrm_spec_code < 0x10601)
6176 		return 0;
6177 
6178 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6179 	if (rc)
6180 		return rc;
6181 
6182 	req->fid = cpu_to_le16(0xffff);
6183 	resp = hwrm_req_hold(bp, req);
6184 	rc = hwrm_req_send(bp, req);
6185 	if (rc) {
6186 		hwrm_req_drop(bp, req);
6187 		return rc;
6188 	}
6189 
6190 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6191 	if (BNXT_NEW_RM(bp)) {
6192 		u16 cp, stats;
6193 
6194 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6195 		hw_resc->resv_hw_ring_grps =
6196 			le32_to_cpu(resp->alloc_hw_ring_grps);
6197 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6198 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6199 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6200 		hw_resc->resv_irqs = cp;
6201 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6202 			int rx = hw_resc->resv_rx_rings;
6203 			int tx = hw_resc->resv_tx_rings;
6204 
6205 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6206 				rx >>= 1;
6207 			if (cp < (rx + tx)) {
6208 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6209 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6210 					rx <<= 1;
6211 				hw_resc->resv_rx_rings = rx;
6212 				hw_resc->resv_tx_rings = tx;
6213 			}
6214 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6215 			hw_resc->resv_hw_ring_grps = rx;
6216 		}
6217 		hw_resc->resv_cp_rings = cp;
6218 		hw_resc->resv_stat_ctxs = stats;
6219 	}
6220 	hwrm_req_drop(bp, req);
6221 	return 0;
6222 }
6223 
6224 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6225 {
6226 	struct hwrm_func_qcfg_output *resp;
6227 	struct hwrm_func_qcfg_input *req;
6228 	int rc;
6229 
6230 	if (bp->hwrm_spec_code < 0x10601)
6231 		return 0;
6232 
6233 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6234 	if (rc)
6235 		return rc;
6236 
6237 	req->fid = cpu_to_le16(fid);
6238 	resp = hwrm_req_hold(bp, req);
6239 	rc = hwrm_req_send(bp, req);
6240 	if (!rc)
6241 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6242 
6243 	hwrm_req_drop(bp, req);
6244 	return rc;
6245 }
6246 
6247 static bool bnxt_rfs_supported(struct bnxt *bp);
6248 
6249 static struct hwrm_func_cfg_input *
6250 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6251 			     int ring_grps, int cp_rings, int stats, int vnics)
6252 {
6253 	struct hwrm_func_cfg_input *req;
6254 	u32 enables = 0;
6255 
6256 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6257 		return NULL;
6258 
6259 	req->fid = cpu_to_le16(0xffff);
6260 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6261 	req->num_tx_rings = cpu_to_le16(tx_rings);
6262 	if (BNXT_NEW_RM(bp)) {
6263 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6264 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6265 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6266 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6267 			enables |= tx_rings + ring_grps ?
6268 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6269 			enables |= rx_rings ?
6270 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6271 		} else {
6272 			enables |= cp_rings ?
6273 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6274 			enables |= ring_grps ?
6275 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6276 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6277 		}
6278 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6279 
6280 		req->num_rx_rings = cpu_to_le16(rx_rings);
6281 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6282 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6283 			req->num_msix = cpu_to_le16(cp_rings);
6284 			req->num_rsscos_ctxs =
6285 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6286 		} else {
6287 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6288 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6289 			req->num_rsscos_ctxs = cpu_to_le16(1);
6290 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6291 			    bnxt_rfs_supported(bp))
6292 				req->num_rsscos_ctxs =
6293 					cpu_to_le16(ring_grps + 1);
6294 		}
6295 		req->num_stat_ctxs = cpu_to_le16(stats);
6296 		req->num_vnics = cpu_to_le16(vnics);
6297 	}
6298 	req->enables = cpu_to_le32(enables);
6299 	return req;
6300 }
6301 
6302 static struct hwrm_func_vf_cfg_input *
6303 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6304 			     int ring_grps, int cp_rings, int stats, int vnics)
6305 {
6306 	struct hwrm_func_vf_cfg_input *req;
6307 	u32 enables = 0;
6308 
6309 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6310 		return NULL;
6311 
6312 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6313 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6314 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6315 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6316 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6317 		enables |= tx_rings + ring_grps ?
6318 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6319 	} else {
6320 		enables |= cp_rings ?
6321 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6322 		enables |= ring_grps ?
6323 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6324 	}
6325 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6326 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6327 
6328 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6329 	req->num_tx_rings = cpu_to_le16(tx_rings);
6330 	req->num_rx_rings = cpu_to_le16(rx_rings);
6331 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6332 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6333 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6334 	} else {
6335 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6336 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6337 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6338 	}
6339 	req->num_stat_ctxs = cpu_to_le16(stats);
6340 	req->num_vnics = cpu_to_le16(vnics);
6341 
6342 	req->enables = cpu_to_le32(enables);
6343 	return req;
6344 }
6345 
6346 static int
6347 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6348 			   int ring_grps, int cp_rings, int stats, int vnics)
6349 {
6350 	struct hwrm_func_cfg_input *req;
6351 	int rc;
6352 
6353 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6354 					   cp_rings, stats, vnics);
6355 	if (!req)
6356 		return -ENOMEM;
6357 
6358 	if (!req->enables) {
6359 		hwrm_req_drop(bp, req);
6360 		return 0;
6361 	}
6362 
6363 	rc = hwrm_req_send(bp, req);
6364 	if (rc)
6365 		return rc;
6366 
6367 	if (bp->hwrm_spec_code < 0x10601)
6368 		bp->hw_resc.resv_tx_rings = tx_rings;
6369 
6370 	return bnxt_hwrm_get_rings(bp);
6371 }
6372 
6373 static int
6374 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6375 			   int ring_grps, int cp_rings, int stats, int vnics)
6376 {
6377 	struct hwrm_func_vf_cfg_input *req;
6378 	int rc;
6379 
6380 	if (!BNXT_NEW_RM(bp)) {
6381 		bp->hw_resc.resv_tx_rings = tx_rings;
6382 		return 0;
6383 	}
6384 
6385 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6386 					   cp_rings, stats, vnics);
6387 	if (!req)
6388 		return -ENOMEM;
6389 
6390 	rc = hwrm_req_send(bp, req);
6391 	if (rc)
6392 		return rc;
6393 
6394 	return bnxt_hwrm_get_rings(bp);
6395 }
6396 
6397 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6398 				   int cp, int stat, int vnic)
6399 {
6400 	if (BNXT_PF(bp))
6401 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6402 						  vnic);
6403 	else
6404 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6405 						  vnic);
6406 }
6407 
6408 int bnxt_nq_rings_in_use(struct bnxt *bp)
6409 {
6410 	int cp = bp->cp_nr_rings;
6411 	int ulp_msix, ulp_base;
6412 
6413 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6414 	if (ulp_msix) {
6415 		ulp_base = bnxt_get_ulp_msix_base(bp);
6416 		cp += ulp_msix;
6417 		if ((ulp_base + ulp_msix) > cp)
6418 			cp = ulp_base + ulp_msix;
6419 	}
6420 	return cp;
6421 }
6422 
6423 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6424 {
6425 	int cp;
6426 
6427 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6428 		return bnxt_nq_rings_in_use(bp);
6429 
6430 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6431 	return cp;
6432 }
6433 
6434 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6435 {
6436 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6437 	int cp = bp->cp_nr_rings;
6438 
6439 	if (!ulp_stat)
6440 		return cp;
6441 
6442 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6443 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6444 
6445 	return cp + ulp_stat;
6446 }
6447 
6448 /* Check if a default RSS map needs to be setup.  This function is only
6449  * used on older firmware that does not require reserving RX rings.
6450  */
6451 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6452 {
6453 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6454 
6455 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6456 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6457 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6458 		if (!netif_is_rxfh_configured(bp->dev))
6459 			bnxt_set_dflt_rss_indir_tbl(bp);
6460 	}
6461 }
6462 
6463 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6464 {
6465 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6466 	int cp = bnxt_cp_rings_in_use(bp);
6467 	int nq = bnxt_nq_rings_in_use(bp);
6468 	int rx = bp->rx_nr_rings, stat;
6469 	int vnic = 1, grp = rx;
6470 
6471 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6472 	    bp->hwrm_spec_code >= 0x10601)
6473 		return true;
6474 
6475 	/* Old firmware does not need RX ring reservations but we still
6476 	 * need to setup a default RSS map when needed.  With new firmware
6477 	 * we go through RX ring reservations first and then set up the
6478 	 * RSS map for the successfully reserved RX rings when needed.
6479 	 */
6480 	if (!BNXT_NEW_RM(bp)) {
6481 		bnxt_check_rss_tbl_no_rmgr(bp);
6482 		return false;
6483 	}
6484 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6485 		vnic = rx + 1;
6486 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6487 		rx <<= 1;
6488 	stat = bnxt_get_func_stat_ctxs(bp);
6489 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6490 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6491 	    (hw_resc->resv_hw_ring_grps != grp &&
6492 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6493 		return true;
6494 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6495 	    hw_resc->resv_irqs != nq)
6496 		return true;
6497 	return false;
6498 }
6499 
6500 static int __bnxt_reserve_rings(struct bnxt *bp)
6501 {
6502 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6503 	int cp = bnxt_nq_rings_in_use(bp);
6504 	int tx = bp->tx_nr_rings;
6505 	int rx = bp->rx_nr_rings;
6506 	int grp, rx_rings, rc;
6507 	int vnic = 1, stat;
6508 	bool sh = false;
6509 
6510 	if (!bnxt_need_reserve_rings(bp))
6511 		return 0;
6512 
6513 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6514 		sh = true;
6515 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6516 		vnic = rx + 1;
6517 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6518 		rx <<= 1;
6519 	grp = bp->rx_nr_rings;
6520 	stat = bnxt_get_func_stat_ctxs(bp);
6521 
6522 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6523 	if (rc)
6524 		return rc;
6525 
6526 	tx = hw_resc->resv_tx_rings;
6527 	if (BNXT_NEW_RM(bp)) {
6528 		rx = hw_resc->resv_rx_rings;
6529 		cp = hw_resc->resv_irqs;
6530 		grp = hw_resc->resv_hw_ring_grps;
6531 		vnic = hw_resc->resv_vnics;
6532 		stat = hw_resc->resv_stat_ctxs;
6533 	}
6534 
6535 	rx_rings = rx;
6536 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6537 		if (rx >= 2) {
6538 			rx_rings = rx >> 1;
6539 		} else {
6540 			if (netif_running(bp->dev))
6541 				return -ENOMEM;
6542 
6543 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6544 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6545 			bp->dev->hw_features &= ~NETIF_F_LRO;
6546 			bp->dev->features &= ~NETIF_F_LRO;
6547 			bnxt_set_ring_params(bp);
6548 		}
6549 	}
6550 	rx_rings = min_t(int, rx_rings, grp);
6551 	cp = min_t(int, cp, bp->cp_nr_rings);
6552 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6553 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6554 	cp = min_t(int, cp, stat);
6555 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6556 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6557 		rx = rx_rings << 1;
6558 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6559 	bp->tx_nr_rings = tx;
6560 
6561 	/* If we cannot reserve all the RX rings, reset the RSS map only
6562 	 * if absolutely necessary
6563 	 */
6564 	if (rx_rings != bp->rx_nr_rings) {
6565 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6566 			    rx_rings, bp->rx_nr_rings);
6567 		if (netif_is_rxfh_configured(bp->dev) &&
6568 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6569 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6570 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6571 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6572 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6573 		}
6574 	}
6575 	bp->rx_nr_rings = rx_rings;
6576 	bp->cp_nr_rings = cp;
6577 
6578 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6579 		return -ENOMEM;
6580 
6581 	if (!netif_is_rxfh_configured(bp->dev))
6582 		bnxt_set_dflt_rss_indir_tbl(bp);
6583 
6584 	return rc;
6585 }
6586 
6587 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6588 				    int ring_grps, int cp_rings, int stats,
6589 				    int vnics)
6590 {
6591 	struct hwrm_func_vf_cfg_input *req;
6592 	u32 flags;
6593 
6594 	if (!BNXT_NEW_RM(bp))
6595 		return 0;
6596 
6597 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6598 					   cp_rings, stats, vnics);
6599 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6600 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6601 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6602 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6603 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6604 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6605 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6606 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6607 
6608 	req->flags = cpu_to_le32(flags);
6609 	return hwrm_req_send_silent(bp, req);
6610 }
6611 
6612 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6613 				    int ring_grps, int cp_rings, int stats,
6614 				    int vnics)
6615 {
6616 	struct hwrm_func_cfg_input *req;
6617 	u32 flags;
6618 
6619 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6620 					   cp_rings, stats, vnics);
6621 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6622 	if (BNXT_NEW_RM(bp)) {
6623 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6624 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6625 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6626 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6627 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6628 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6629 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6630 		else
6631 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6632 	}
6633 
6634 	req->flags = cpu_to_le32(flags);
6635 	return hwrm_req_send_silent(bp, req);
6636 }
6637 
6638 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6639 				 int ring_grps, int cp_rings, int stats,
6640 				 int vnics)
6641 {
6642 	if (bp->hwrm_spec_code < 0x10801)
6643 		return 0;
6644 
6645 	if (BNXT_PF(bp))
6646 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6647 						ring_grps, cp_rings, stats,
6648 						vnics);
6649 
6650 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6651 					cp_rings, stats, vnics);
6652 }
6653 
6654 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6655 {
6656 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6657 	struct hwrm_ring_aggint_qcaps_output *resp;
6658 	struct hwrm_ring_aggint_qcaps_input *req;
6659 	int rc;
6660 
6661 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6662 	coal_cap->num_cmpl_dma_aggr_max = 63;
6663 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6664 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6665 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6666 	coal_cap->int_lat_tmr_min_max = 65535;
6667 	coal_cap->int_lat_tmr_max_max = 65535;
6668 	coal_cap->num_cmpl_aggr_int_max = 65535;
6669 	coal_cap->timer_units = 80;
6670 
6671 	if (bp->hwrm_spec_code < 0x10902)
6672 		return;
6673 
6674 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6675 		return;
6676 
6677 	resp = hwrm_req_hold(bp, req);
6678 	rc = hwrm_req_send_silent(bp, req);
6679 	if (!rc) {
6680 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6681 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6682 		coal_cap->num_cmpl_dma_aggr_max =
6683 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6684 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6685 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6686 		coal_cap->cmpl_aggr_dma_tmr_max =
6687 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6688 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6689 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6690 		coal_cap->int_lat_tmr_min_max =
6691 			le16_to_cpu(resp->int_lat_tmr_min_max);
6692 		coal_cap->int_lat_tmr_max_max =
6693 			le16_to_cpu(resp->int_lat_tmr_max_max);
6694 		coal_cap->num_cmpl_aggr_int_max =
6695 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6696 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6697 	}
6698 	hwrm_req_drop(bp, req);
6699 }
6700 
6701 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6702 {
6703 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6704 
6705 	return usec * 1000 / coal_cap->timer_units;
6706 }
6707 
6708 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6709 	struct bnxt_coal *hw_coal,
6710 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6711 {
6712 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6713 	u16 val, tmr, max, flags = hw_coal->flags;
6714 	u32 cmpl_params = coal_cap->cmpl_params;
6715 
6716 	max = hw_coal->bufs_per_record * 128;
6717 	if (hw_coal->budget)
6718 		max = hw_coal->bufs_per_record * hw_coal->budget;
6719 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6720 
6721 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6722 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6723 
6724 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6725 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6726 
6727 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6728 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6729 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6730 
6731 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6732 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6733 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6734 
6735 	/* min timer set to 1/2 of interrupt timer */
6736 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6737 		val = tmr / 2;
6738 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6739 		req->int_lat_tmr_min = cpu_to_le16(val);
6740 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6741 	}
6742 
6743 	/* buf timer set to 1/4 of interrupt timer */
6744 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6745 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6746 
6747 	if (cmpl_params &
6748 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6749 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6750 		val = clamp_t(u16, tmr, 1,
6751 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6752 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6753 		req->enables |=
6754 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6755 	}
6756 
6757 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6758 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6759 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6760 	req->flags = cpu_to_le16(flags);
6761 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6762 }
6763 
6764 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6765 				   struct bnxt_coal *hw_coal)
6766 {
6767 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6768 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6769 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6770 	u32 nq_params = coal_cap->nq_params;
6771 	u16 tmr;
6772 	int rc;
6773 
6774 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6775 		return 0;
6776 
6777 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6778 	if (rc)
6779 		return rc;
6780 
6781 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6782 	req->flags =
6783 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6784 
6785 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6786 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6787 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6788 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6789 	return hwrm_req_send(bp, req);
6790 }
6791 
6792 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6793 {
6794 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6795 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6796 	struct bnxt_coal coal;
6797 	int rc;
6798 
6799 	/* Tick values in micro seconds.
6800 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6801 	 */
6802 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6803 
6804 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6805 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6806 
6807 	if (!bnapi->rx_ring)
6808 		return -ENODEV;
6809 
6810 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6811 	if (rc)
6812 		return rc;
6813 
6814 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6815 
6816 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6817 
6818 	return hwrm_req_send(bp, req_rx);
6819 }
6820 
6821 int bnxt_hwrm_set_coal(struct bnxt *bp)
6822 {
6823 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6824 							   *req;
6825 	int i, rc;
6826 
6827 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6828 	if (rc)
6829 		return rc;
6830 
6831 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6832 	if (rc) {
6833 		hwrm_req_drop(bp, req_rx);
6834 		return rc;
6835 	}
6836 
6837 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6838 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6839 
6840 	hwrm_req_hold(bp, req_rx);
6841 	hwrm_req_hold(bp, req_tx);
6842 	for (i = 0; i < bp->cp_nr_rings; i++) {
6843 		struct bnxt_napi *bnapi = bp->bnapi[i];
6844 		struct bnxt_coal *hw_coal;
6845 		u16 ring_id;
6846 
6847 		req = req_rx;
6848 		if (!bnapi->rx_ring) {
6849 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6850 			req = req_tx;
6851 		} else {
6852 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6853 		}
6854 		req->ring_id = cpu_to_le16(ring_id);
6855 
6856 		rc = hwrm_req_send(bp, req);
6857 		if (rc)
6858 			break;
6859 
6860 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6861 			continue;
6862 
6863 		if (bnapi->rx_ring && bnapi->tx_ring) {
6864 			req = req_tx;
6865 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6866 			req->ring_id = cpu_to_le16(ring_id);
6867 			rc = hwrm_req_send(bp, req);
6868 			if (rc)
6869 				break;
6870 		}
6871 		if (bnapi->rx_ring)
6872 			hw_coal = &bp->rx_coal;
6873 		else
6874 			hw_coal = &bp->tx_coal;
6875 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6876 	}
6877 	hwrm_req_drop(bp, req_rx);
6878 	hwrm_req_drop(bp, req_tx);
6879 	return rc;
6880 }
6881 
6882 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6883 {
6884 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6885 	struct hwrm_stat_ctx_free_input *req;
6886 	int i;
6887 
6888 	if (!bp->bnapi)
6889 		return;
6890 
6891 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6892 		return;
6893 
6894 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6895 		return;
6896 	if (BNXT_FW_MAJ(bp) <= 20) {
6897 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6898 			hwrm_req_drop(bp, req);
6899 			return;
6900 		}
6901 		hwrm_req_hold(bp, req0);
6902 	}
6903 	hwrm_req_hold(bp, req);
6904 	for (i = 0; i < bp->cp_nr_rings; i++) {
6905 		struct bnxt_napi *bnapi = bp->bnapi[i];
6906 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6907 
6908 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6909 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6910 			if (req0) {
6911 				req0->stat_ctx_id = req->stat_ctx_id;
6912 				hwrm_req_send(bp, req0);
6913 			}
6914 			hwrm_req_send(bp, req);
6915 
6916 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6917 		}
6918 	}
6919 	hwrm_req_drop(bp, req);
6920 	if (req0)
6921 		hwrm_req_drop(bp, req0);
6922 }
6923 
6924 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6925 {
6926 	struct hwrm_stat_ctx_alloc_output *resp;
6927 	struct hwrm_stat_ctx_alloc_input *req;
6928 	int rc, i;
6929 
6930 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6931 		return 0;
6932 
6933 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6934 	if (rc)
6935 		return rc;
6936 
6937 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6938 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6939 
6940 	resp = hwrm_req_hold(bp, req);
6941 	for (i = 0; i < bp->cp_nr_rings; i++) {
6942 		struct bnxt_napi *bnapi = bp->bnapi[i];
6943 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6944 
6945 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6946 
6947 		rc = hwrm_req_send(bp, req);
6948 		if (rc)
6949 			break;
6950 
6951 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6952 
6953 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6954 	}
6955 	hwrm_req_drop(bp, req);
6956 	return rc;
6957 }
6958 
6959 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6960 {
6961 	struct hwrm_func_qcfg_output *resp;
6962 	struct hwrm_func_qcfg_input *req;
6963 	u32 min_db_offset = 0;
6964 	u16 flags;
6965 	int rc;
6966 
6967 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6968 	if (rc)
6969 		return rc;
6970 
6971 	req->fid = cpu_to_le16(0xffff);
6972 	resp = hwrm_req_hold(bp, req);
6973 	rc = hwrm_req_send(bp, req);
6974 	if (rc)
6975 		goto func_qcfg_exit;
6976 
6977 #ifdef CONFIG_BNXT_SRIOV
6978 	if (BNXT_VF(bp)) {
6979 		struct bnxt_vf_info *vf = &bp->vf;
6980 
6981 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6982 	} else {
6983 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6984 	}
6985 #endif
6986 	flags = le16_to_cpu(resp->flags);
6987 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6988 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6989 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6990 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6991 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6992 	}
6993 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6994 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6995 
6996 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6997 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6998 
6999 	switch (resp->port_partition_type) {
7000 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
7001 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
7002 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
7003 		bp->port_partition_type = resp->port_partition_type;
7004 		break;
7005 	}
7006 	if (bp->hwrm_spec_code < 0x10707 ||
7007 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7008 		bp->br_mode = BRIDGE_MODE_VEB;
7009 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7010 		bp->br_mode = BRIDGE_MODE_VEPA;
7011 	else
7012 		bp->br_mode = BRIDGE_MODE_UNDEF;
7013 
7014 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7015 	if (!bp->max_mtu)
7016 		bp->max_mtu = BNXT_MAX_MTU;
7017 
7018 	if (bp->db_size)
7019 		goto func_qcfg_exit;
7020 
7021 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7022 		if (BNXT_PF(bp))
7023 			min_db_offset = DB_PF_OFFSET_P5;
7024 		else
7025 			min_db_offset = DB_VF_OFFSET_P5;
7026 	}
7027 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7028 				 1024);
7029 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7030 	    bp->db_size <= min_db_offset)
7031 		bp->db_size = pci_resource_len(bp->pdev, 2);
7032 
7033 func_qcfg_exit:
7034 	hwrm_req_drop(bp, req);
7035 	return rc;
7036 }
7037 
7038 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7039 			struct hwrm_func_backing_store_qcaps_output *resp)
7040 {
7041 	struct bnxt_mem_init *mem_init;
7042 	u16 init_mask;
7043 	u8 init_val;
7044 	u8 *offset;
7045 	int i;
7046 
7047 	init_val = resp->ctx_kind_initializer;
7048 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7049 	offset = &resp->qp_init_offset;
7050 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7051 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7052 		mem_init->init_val = init_val;
7053 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7054 		if (!init_mask)
7055 			continue;
7056 		if (i == BNXT_CTX_MEM_INIT_STAT)
7057 			offset = &resp->stat_init_offset;
7058 		if (init_mask & (1 << i))
7059 			mem_init->offset = *offset * 4;
7060 		else
7061 			mem_init->init_val = 0;
7062 	}
7063 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7064 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7065 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7066 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7067 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7068 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7069 }
7070 
7071 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7072 {
7073 	struct hwrm_func_backing_store_qcaps_output *resp;
7074 	struct hwrm_func_backing_store_qcaps_input *req;
7075 	int rc;
7076 
7077 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7078 		return 0;
7079 
7080 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7081 	if (rc)
7082 		return rc;
7083 
7084 	resp = hwrm_req_hold(bp, req);
7085 	rc = hwrm_req_send_silent(bp, req);
7086 	if (!rc) {
7087 		struct bnxt_ctx_pg_info *ctx_pg;
7088 		struct bnxt_ctx_mem_info *ctx;
7089 		int i, tqm_rings;
7090 
7091 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7092 		if (!ctx) {
7093 			rc = -ENOMEM;
7094 			goto ctx_err;
7095 		}
7096 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7097 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7098 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7099 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7100 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7101 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7102 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7103 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7104 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7105 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7106 		ctx->vnic_max_vnic_entries =
7107 			le16_to_cpu(resp->vnic_max_vnic_entries);
7108 		ctx->vnic_max_ring_table_entries =
7109 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7110 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7111 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7112 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7113 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7114 		ctx->tqm_min_entries_per_ring =
7115 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7116 		ctx->tqm_max_entries_per_ring =
7117 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7118 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7119 		if (!ctx->tqm_entries_multiple)
7120 			ctx->tqm_entries_multiple = 1;
7121 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7122 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7123 		ctx->mrav_num_entries_units =
7124 			le16_to_cpu(resp->mrav_num_entries_units);
7125 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7126 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7127 
7128 		bnxt_init_ctx_initializer(ctx, resp);
7129 
7130 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7131 		if (!ctx->tqm_fp_rings_count)
7132 			ctx->tqm_fp_rings_count = bp->max_q;
7133 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7134 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7135 
7136 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7137 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7138 		if (!ctx_pg) {
7139 			kfree(ctx);
7140 			rc = -ENOMEM;
7141 			goto ctx_err;
7142 		}
7143 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7144 			ctx->tqm_mem[i] = ctx_pg;
7145 		bp->ctx = ctx;
7146 	} else {
7147 		rc = 0;
7148 	}
7149 ctx_err:
7150 	hwrm_req_drop(bp, req);
7151 	return rc;
7152 }
7153 
7154 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7155 				  __le64 *pg_dir)
7156 {
7157 	if (!rmem->nr_pages)
7158 		return;
7159 
7160 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7161 	if (rmem->depth >= 1) {
7162 		if (rmem->depth == 2)
7163 			*pg_attr |= 2;
7164 		else
7165 			*pg_attr |= 1;
7166 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7167 	} else {
7168 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7169 	}
7170 }
7171 
7172 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7173 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7174 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7175 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7176 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7177 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7178 
7179 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7180 {
7181 	struct hwrm_func_backing_store_cfg_input *req;
7182 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7183 	struct bnxt_ctx_pg_info *ctx_pg;
7184 	void **__req = (void **)&req;
7185 	u32 req_len = sizeof(*req);
7186 	__le32 *num_entries;
7187 	__le64 *pg_dir;
7188 	u32 flags = 0;
7189 	u8 *pg_attr;
7190 	u32 ena;
7191 	int rc;
7192 	int i;
7193 
7194 	if (!ctx)
7195 		return 0;
7196 
7197 	if (req_len > bp->hwrm_max_ext_req_len)
7198 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7199 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7200 	if (rc)
7201 		return rc;
7202 
7203 	req->enables = cpu_to_le32(enables);
7204 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7205 		ctx_pg = &ctx->qp_mem;
7206 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7207 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7208 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7209 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7210 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7211 				      &req->qpc_pg_size_qpc_lvl,
7212 				      &req->qpc_page_dir);
7213 	}
7214 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7215 		ctx_pg = &ctx->srq_mem;
7216 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7217 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7218 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7219 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7220 				      &req->srq_pg_size_srq_lvl,
7221 				      &req->srq_page_dir);
7222 	}
7223 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7224 		ctx_pg = &ctx->cq_mem;
7225 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7226 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7227 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7228 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7229 				      &req->cq_pg_size_cq_lvl,
7230 				      &req->cq_page_dir);
7231 	}
7232 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7233 		ctx_pg = &ctx->vnic_mem;
7234 		req->vnic_num_vnic_entries =
7235 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7236 		req->vnic_num_ring_table_entries =
7237 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7238 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7239 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7240 				      &req->vnic_pg_size_vnic_lvl,
7241 				      &req->vnic_page_dir);
7242 	}
7243 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7244 		ctx_pg = &ctx->stat_mem;
7245 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7246 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7247 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7248 				      &req->stat_pg_size_stat_lvl,
7249 				      &req->stat_page_dir);
7250 	}
7251 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7252 		ctx_pg = &ctx->mrav_mem;
7253 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7254 		if (ctx->mrav_num_entries_units)
7255 			flags |=
7256 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7257 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7258 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7259 				      &req->mrav_pg_size_mrav_lvl,
7260 				      &req->mrav_page_dir);
7261 	}
7262 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7263 		ctx_pg = &ctx->tim_mem;
7264 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7265 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7266 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7267 				      &req->tim_pg_size_tim_lvl,
7268 				      &req->tim_page_dir);
7269 	}
7270 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7271 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7272 	     pg_dir = &req->tqm_sp_page_dir,
7273 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7274 	     i < BNXT_MAX_TQM_RINGS;
7275 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7276 		if (!(enables & ena))
7277 			continue;
7278 
7279 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7280 		ctx_pg = ctx->tqm_mem[i];
7281 		*num_entries = cpu_to_le32(ctx_pg->entries);
7282 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7283 	}
7284 	req->flags = cpu_to_le32(flags);
7285 	return hwrm_req_send(bp, req);
7286 }
7287 
7288 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7289 				  struct bnxt_ctx_pg_info *ctx_pg)
7290 {
7291 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7292 
7293 	rmem->page_size = BNXT_PAGE_SIZE;
7294 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7295 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7296 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7297 	if (rmem->depth >= 1)
7298 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7299 	return bnxt_alloc_ring(bp, rmem);
7300 }
7301 
7302 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7303 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7304 				  u8 depth, struct bnxt_mem_init *mem_init)
7305 {
7306 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7307 	int rc;
7308 
7309 	if (!mem_size)
7310 		return -EINVAL;
7311 
7312 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7313 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7314 		ctx_pg->nr_pages = 0;
7315 		return -EINVAL;
7316 	}
7317 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7318 		int nr_tbls, i;
7319 
7320 		rmem->depth = 2;
7321 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7322 					     GFP_KERNEL);
7323 		if (!ctx_pg->ctx_pg_tbl)
7324 			return -ENOMEM;
7325 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7326 		rmem->nr_pages = nr_tbls;
7327 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7328 		if (rc)
7329 			return rc;
7330 		for (i = 0; i < nr_tbls; i++) {
7331 			struct bnxt_ctx_pg_info *pg_tbl;
7332 
7333 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7334 			if (!pg_tbl)
7335 				return -ENOMEM;
7336 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7337 			rmem = &pg_tbl->ring_mem;
7338 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7339 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7340 			rmem->depth = 1;
7341 			rmem->nr_pages = MAX_CTX_PAGES;
7342 			rmem->mem_init = mem_init;
7343 			if (i == (nr_tbls - 1)) {
7344 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7345 
7346 				if (rem)
7347 					rmem->nr_pages = rem;
7348 			}
7349 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7350 			if (rc)
7351 				break;
7352 		}
7353 	} else {
7354 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7355 		if (rmem->nr_pages > 1 || depth)
7356 			rmem->depth = 1;
7357 		rmem->mem_init = mem_init;
7358 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7359 	}
7360 	return rc;
7361 }
7362 
7363 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7364 				  struct bnxt_ctx_pg_info *ctx_pg)
7365 {
7366 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7367 
7368 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7369 	    ctx_pg->ctx_pg_tbl) {
7370 		int i, nr_tbls = rmem->nr_pages;
7371 
7372 		for (i = 0; i < nr_tbls; i++) {
7373 			struct bnxt_ctx_pg_info *pg_tbl;
7374 			struct bnxt_ring_mem_info *rmem2;
7375 
7376 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7377 			if (!pg_tbl)
7378 				continue;
7379 			rmem2 = &pg_tbl->ring_mem;
7380 			bnxt_free_ring(bp, rmem2);
7381 			ctx_pg->ctx_pg_arr[i] = NULL;
7382 			kfree(pg_tbl);
7383 			ctx_pg->ctx_pg_tbl[i] = NULL;
7384 		}
7385 		kfree(ctx_pg->ctx_pg_tbl);
7386 		ctx_pg->ctx_pg_tbl = NULL;
7387 	}
7388 	bnxt_free_ring(bp, rmem);
7389 	ctx_pg->nr_pages = 0;
7390 }
7391 
7392 void bnxt_free_ctx_mem(struct bnxt *bp)
7393 {
7394 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7395 	int i;
7396 
7397 	if (!ctx)
7398 		return;
7399 
7400 	if (ctx->tqm_mem[0]) {
7401 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7402 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7403 		kfree(ctx->tqm_mem[0]);
7404 		ctx->tqm_mem[0] = NULL;
7405 	}
7406 
7407 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7408 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7409 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7410 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7411 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7412 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7413 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7414 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7415 }
7416 
7417 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7418 {
7419 	struct bnxt_ctx_pg_info *ctx_pg;
7420 	struct bnxt_ctx_mem_info *ctx;
7421 	struct bnxt_mem_init *init;
7422 	u32 mem_size, ena, entries;
7423 	u32 entries_sp, min;
7424 	u32 num_mr, num_ah;
7425 	u32 extra_srqs = 0;
7426 	u32 extra_qps = 0;
7427 	u8 pg_lvl = 1;
7428 	int i, rc;
7429 
7430 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7431 	if (rc) {
7432 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7433 			   rc);
7434 		return rc;
7435 	}
7436 	ctx = bp->ctx;
7437 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7438 		return 0;
7439 
7440 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7441 		pg_lvl = 2;
7442 		extra_qps = 65536;
7443 		extra_srqs = 8192;
7444 	}
7445 
7446 	ctx_pg = &ctx->qp_mem;
7447 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7448 			  extra_qps;
7449 	if (ctx->qp_entry_size) {
7450 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7451 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7452 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7453 		if (rc)
7454 			return rc;
7455 	}
7456 
7457 	ctx_pg = &ctx->srq_mem;
7458 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7459 	if (ctx->srq_entry_size) {
7460 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7461 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7462 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7463 		if (rc)
7464 			return rc;
7465 	}
7466 
7467 	ctx_pg = &ctx->cq_mem;
7468 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7469 	if (ctx->cq_entry_size) {
7470 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7471 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7472 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7473 		if (rc)
7474 			return rc;
7475 	}
7476 
7477 	ctx_pg = &ctx->vnic_mem;
7478 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7479 			  ctx->vnic_max_ring_table_entries;
7480 	if (ctx->vnic_entry_size) {
7481 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7482 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7483 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7484 		if (rc)
7485 			return rc;
7486 	}
7487 
7488 	ctx_pg = &ctx->stat_mem;
7489 	ctx_pg->entries = ctx->stat_max_entries;
7490 	if (ctx->stat_entry_size) {
7491 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7492 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7493 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7494 		if (rc)
7495 			return rc;
7496 	}
7497 
7498 	ena = 0;
7499 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7500 		goto skip_rdma;
7501 
7502 	ctx_pg = &ctx->mrav_mem;
7503 	/* 128K extra is needed to accommodate static AH context
7504 	 * allocation by f/w.
7505 	 */
7506 	num_mr = 1024 * 256;
7507 	num_ah = 1024 * 128;
7508 	ctx_pg->entries = num_mr + num_ah;
7509 	if (ctx->mrav_entry_size) {
7510 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7511 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7512 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7513 		if (rc)
7514 			return rc;
7515 	}
7516 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7517 	if (ctx->mrav_num_entries_units)
7518 		ctx_pg->entries =
7519 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7520 			 (num_ah / ctx->mrav_num_entries_units);
7521 
7522 	ctx_pg = &ctx->tim_mem;
7523 	ctx_pg->entries = ctx->qp_mem.entries;
7524 	if (ctx->tim_entry_size) {
7525 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7526 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7527 		if (rc)
7528 			return rc;
7529 	}
7530 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7531 
7532 skip_rdma:
7533 	min = ctx->tqm_min_entries_per_ring;
7534 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7535 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7536 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7537 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7538 	entries = roundup(entries, ctx->tqm_entries_multiple);
7539 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7540 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7541 		ctx_pg = ctx->tqm_mem[i];
7542 		ctx_pg->entries = i ? entries : entries_sp;
7543 		if (ctx->tqm_entry_size) {
7544 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7545 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7546 						    NULL);
7547 			if (rc)
7548 				return rc;
7549 		}
7550 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7551 	}
7552 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7553 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7554 	if (rc) {
7555 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7556 			   rc);
7557 		return rc;
7558 	}
7559 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7560 	return 0;
7561 }
7562 
7563 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7564 {
7565 	struct hwrm_func_resource_qcaps_output *resp;
7566 	struct hwrm_func_resource_qcaps_input *req;
7567 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7568 	int rc;
7569 
7570 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7571 	if (rc)
7572 		return rc;
7573 
7574 	req->fid = cpu_to_le16(0xffff);
7575 	resp = hwrm_req_hold(bp, req);
7576 	rc = hwrm_req_send_silent(bp, req);
7577 	if (rc)
7578 		goto hwrm_func_resc_qcaps_exit;
7579 
7580 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7581 	if (!all)
7582 		goto hwrm_func_resc_qcaps_exit;
7583 
7584 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7585 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7586 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7587 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7588 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7589 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7590 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7591 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7592 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7593 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7594 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7595 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7596 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7597 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7598 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7599 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7600 
7601 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7602 		u16 max_msix = le16_to_cpu(resp->max_msix);
7603 
7604 		hw_resc->max_nqs = max_msix;
7605 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7606 	}
7607 
7608 	if (BNXT_PF(bp)) {
7609 		struct bnxt_pf_info *pf = &bp->pf;
7610 
7611 		pf->vf_resv_strategy =
7612 			le16_to_cpu(resp->vf_reservation_strategy);
7613 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7614 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7615 	}
7616 hwrm_func_resc_qcaps_exit:
7617 	hwrm_req_drop(bp, req);
7618 	return rc;
7619 }
7620 
7621 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7622 {
7623 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7624 	struct hwrm_port_mac_ptp_qcfg_input *req;
7625 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7626 	bool phc_cfg;
7627 	u8 flags;
7628 	int rc;
7629 
7630 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_THOR(bp)) {
7631 		rc = -ENODEV;
7632 		goto no_ptp;
7633 	}
7634 
7635 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7636 	if (rc)
7637 		goto no_ptp;
7638 
7639 	req->port_id = cpu_to_le16(bp->pf.port_id);
7640 	resp = hwrm_req_hold(bp, req);
7641 	rc = hwrm_req_send(bp, req);
7642 	if (rc)
7643 		goto exit;
7644 
7645 	flags = resp->flags;
7646 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7647 		rc = -ENODEV;
7648 		goto exit;
7649 	}
7650 	if (!ptp) {
7651 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7652 		if (!ptp) {
7653 			rc = -ENOMEM;
7654 			goto exit;
7655 		}
7656 		ptp->bp = bp;
7657 		bp->ptp_cfg = ptp;
7658 	}
7659 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7660 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7661 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7662 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7663 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7664 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7665 	} else {
7666 		rc = -ENODEV;
7667 		goto exit;
7668 	}
7669 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7670 	rc = bnxt_ptp_init(bp, phc_cfg);
7671 	if (rc)
7672 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7673 exit:
7674 	hwrm_req_drop(bp, req);
7675 	if (!rc)
7676 		return 0;
7677 
7678 no_ptp:
7679 	bnxt_ptp_clear(bp);
7680 	kfree(ptp);
7681 	bp->ptp_cfg = NULL;
7682 	return rc;
7683 }
7684 
7685 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7686 {
7687 	struct hwrm_func_qcaps_output *resp;
7688 	struct hwrm_func_qcaps_input *req;
7689 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7690 	u32 flags, flags_ext, flags_ext2;
7691 	int rc;
7692 
7693 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7694 	if (rc)
7695 		return rc;
7696 
7697 	req->fid = cpu_to_le16(0xffff);
7698 	resp = hwrm_req_hold(bp, req);
7699 	rc = hwrm_req_send(bp, req);
7700 	if (rc)
7701 		goto hwrm_func_qcaps_exit;
7702 
7703 	flags = le32_to_cpu(resp->flags);
7704 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7705 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7706 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7707 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7708 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7709 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7710 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7711 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7712 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7713 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7714 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7715 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7716 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7717 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7718 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7719 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7720 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7721 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7722 
7723 	flags_ext = le32_to_cpu(resp->flags_ext);
7724 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7725 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7726 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7727 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7728 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7729 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7730 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7731 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7732 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7733 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7734 
7735 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7736 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7737 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7738 
7739 	bp->tx_push_thresh = 0;
7740 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7741 	    BNXT_FW_MAJ(bp) > 217)
7742 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7743 
7744 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7745 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7746 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7747 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7748 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7749 	if (!hw_resc->max_hw_ring_grps)
7750 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7751 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7752 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7753 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7754 
7755 	if (BNXT_PF(bp)) {
7756 		struct bnxt_pf_info *pf = &bp->pf;
7757 
7758 		pf->fw_fid = le16_to_cpu(resp->fid);
7759 		pf->port_id = le16_to_cpu(resp->port_id);
7760 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7761 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7762 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7763 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7764 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7765 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7766 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7767 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7768 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7769 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7770 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7771 			bp->flags |= BNXT_FLAG_WOL_CAP;
7772 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7773 			__bnxt_hwrm_ptp_qcfg(bp);
7774 		} else {
7775 			bnxt_ptp_clear(bp);
7776 			kfree(bp->ptp_cfg);
7777 			bp->ptp_cfg = NULL;
7778 		}
7779 	} else {
7780 #ifdef CONFIG_BNXT_SRIOV
7781 		struct bnxt_vf_info *vf = &bp->vf;
7782 
7783 		vf->fw_fid = le16_to_cpu(resp->fid);
7784 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7785 #endif
7786 	}
7787 
7788 hwrm_func_qcaps_exit:
7789 	hwrm_req_drop(bp, req);
7790 	return rc;
7791 }
7792 
7793 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7794 {
7795 	struct hwrm_dbg_qcaps_output *resp;
7796 	struct hwrm_dbg_qcaps_input *req;
7797 	int rc;
7798 
7799 	bp->fw_dbg_cap = 0;
7800 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7801 		return;
7802 
7803 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7804 	if (rc)
7805 		return;
7806 
7807 	req->fid = cpu_to_le16(0xffff);
7808 	resp = hwrm_req_hold(bp, req);
7809 	rc = hwrm_req_send(bp, req);
7810 	if (rc)
7811 		goto hwrm_dbg_qcaps_exit;
7812 
7813 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7814 
7815 hwrm_dbg_qcaps_exit:
7816 	hwrm_req_drop(bp, req);
7817 }
7818 
7819 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7820 
7821 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7822 {
7823 	int rc;
7824 
7825 	rc = __bnxt_hwrm_func_qcaps(bp);
7826 	if (rc)
7827 		return rc;
7828 
7829 	bnxt_hwrm_dbg_qcaps(bp);
7830 
7831 	rc = bnxt_hwrm_queue_qportcfg(bp);
7832 	if (rc) {
7833 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7834 		return rc;
7835 	}
7836 	if (bp->hwrm_spec_code >= 0x10803) {
7837 		rc = bnxt_alloc_ctx_mem(bp);
7838 		if (rc)
7839 			return rc;
7840 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7841 		if (!rc)
7842 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7843 	}
7844 	return 0;
7845 }
7846 
7847 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7848 {
7849 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7850 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7851 	u32 flags;
7852 	int rc;
7853 
7854 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7855 		return 0;
7856 
7857 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7858 	if (rc)
7859 		return rc;
7860 
7861 	resp = hwrm_req_hold(bp, req);
7862 	rc = hwrm_req_send(bp, req);
7863 	if (rc)
7864 		goto hwrm_cfa_adv_qcaps_exit;
7865 
7866 	flags = le32_to_cpu(resp->flags);
7867 	if (flags &
7868 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7869 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7870 
7871 hwrm_cfa_adv_qcaps_exit:
7872 	hwrm_req_drop(bp, req);
7873 	return rc;
7874 }
7875 
7876 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7877 {
7878 	if (bp->fw_health)
7879 		return 0;
7880 
7881 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7882 	if (!bp->fw_health)
7883 		return -ENOMEM;
7884 
7885 	mutex_init(&bp->fw_health->lock);
7886 	return 0;
7887 }
7888 
7889 static int bnxt_alloc_fw_health(struct bnxt *bp)
7890 {
7891 	int rc;
7892 
7893 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7894 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7895 		return 0;
7896 
7897 	rc = __bnxt_alloc_fw_health(bp);
7898 	if (rc) {
7899 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7900 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7901 		return rc;
7902 	}
7903 
7904 	return 0;
7905 }
7906 
7907 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7908 {
7909 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7910 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7911 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7912 }
7913 
7914 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7915 {
7916 	struct bnxt_fw_health *fw_health = bp->fw_health;
7917 	u32 reg_type;
7918 
7919 	if (!fw_health)
7920 		return;
7921 
7922 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7923 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7924 		fw_health->status_reliable = false;
7925 
7926 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7927 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7928 		fw_health->resets_reliable = false;
7929 }
7930 
7931 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7932 {
7933 	void __iomem *hs;
7934 	u32 status_loc;
7935 	u32 reg_type;
7936 	u32 sig;
7937 
7938 	if (bp->fw_health)
7939 		bp->fw_health->status_reliable = false;
7940 
7941 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7942 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7943 
7944 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7945 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7946 		if (!bp->chip_num) {
7947 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7948 			bp->chip_num = readl(bp->bar0 +
7949 					     BNXT_FW_HEALTH_WIN_BASE +
7950 					     BNXT_GRC_REG_CHIP_NUM);
7951 		}
7952 		if (!BNXT_CHIP_P5(bp))
7953 			return;
7954 
7955 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7956 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7957 	} else {
7958 		status_loc = readl(hs + offsetof(struct hcomm_status,
7959 						 fw_status_loc));
7960 	}
7961 
7962 	if (__bnxt_alloc_fw_health(bp)) {
7963 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7964 		return;
7965 	}
7966 
7967 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7968 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7969 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7970 		__bnxt_map_fw_health_reg(bp, status_loc);
7971 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7972 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7973 	}
7974 
7975 	bp->fw_health->status_reliable = true;
7976 }
7977 
7978 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7979 {
7980 	struct bnxt_fw_health *fw_health = bp->fw_health;
7981 	u32 reg_base = 0xffffffff;
7982 	int i;
7983 
7984 	bp->fw_health->status_reliable = false;
7985 	bp->fw_health->resets_reliable = false;
7986 	/* Only pre-map the monitoring GRC registers using window 3 */
7987 	for (i = 0; i < 4; i++) {
7988 		u32 reg = fw_health->regs[i];
7989 
7990 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7991 			continue;
7992 		if (reg_base == 0xffffffff)
7993 			reg_base = reg & BNXT_GRC_BASE_MASK;
7994 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7995 			return -ERANGE;
7996 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7997 	}
7998 	bp->fw_health->status_reliable = true;
7999 	bp->fw_health->resets_reliable = true;
8000 	if (reg_base == 0xffffffff)
8001 		return 0;
8002 
8003 	__bnxt_map_fw_health_reg(bp, reg_base);
8004 	return 0;
8005 }
8006 
8007 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
8008 {
8009 	if (!bp->fw_health)
8010 		return;
8011 
8012 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
8013 		bp->fw_health->status_reliable = true;
8014 		bp->fw_health->resets_reliable = true;
8015 	} else {
8016 		bnxt_try_map_fw_health_reg(bp);
8017 	}
8018 }
8019 
8020 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8021 {
8022 	struct bnxt_fw_health *fw_health = bp->fw_health;
8023 	struct hwrm_error_recovery_qcfg_output *resp;
8024 	struct hwrm_error_recovery_qcfg_input *req;
8025 	int rc, i;
8026 
8027 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8028 		return 0;
8029 
8030 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8031 	if (rc)
8032 		return rc;
8033 
8034 	resp = hwrm_req_hold(bp, req);
8035 	rc = hwrm_req_send(bp, req);
8036 	if (rc)
8037 		goto err_recovery_out;
8038 	fw_health->flags = le32_to_cpu(resp->flags);
8039 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8040 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8041 		rc = -EINVAL;
8042 		goto err_recovery_out;
8043 	}
8044 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8045 	fw_health->master_func_wait_dsecs =
8046 		le32_to_cpu(resp->master_func_wait_period);
8047 	fw_health->normal_func_wait_dsecs =
8048 		le32_to_cpu(resp->normal_func_wait_period);
8049 	fw_health->post_reset_wait_dsecs =
8050 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8051 	fw_health->post_reset_max_wait_dsecs =
8052 		le32_to_cpu(resp->max_bailout_time_after_reset);
8053 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8054 		le32_to_cpu(resp->fw_health_status_reg);
8055 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8056 		le32_to_cpu(resp->fw_heartbeat_reg);
8057 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8058 		le32_to_cpu(resp->fw_reset_cnt_reg);
8059 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8060 		le32_to_cpu(resp->reset_inprogress_reg);
8061 	fw_health->fw_reset_inprog_reg_mask =
8062 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8063 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8064 	if (fw_health->fw_reset_seq_cnt >= 16) {
8065 		rc = -EINVAL;
8066 		goto err_recovery_out;
8067 	}
8068 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8069 		fw_health->fw_reset_seq_regs[i] =
8070 			le32_to_cpu(resp->reset_reg[i]);
8071 		fw_health->fw_reset_seq_vals[i] =
8072 			le32_to_cpu(resp->reset_reg_val[i]);
8073 		fw_health->fw_reset_seq_delay_msec[i] =
8074 			resp->delay_after_reset[i];
8075 	}
8076 err_recovery_out:
8077 	hwrm_req_drop(bp, req);
8078 	if (!rc)
8079 		rc = bnxt_map_fw_health_regs(bp);
8080 	if (rc)
8081 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8082 	return rc;
8083 }
8084 
8085 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8086 {
8087 	struct hwrm_func_reset_input *req;
8088 	int rc;
8089 
8090 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8091 	if (rc)
8092 		return rc;
8093 
8094 	req->enables = 0;
8095 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8096 	return hwrm_req_send(bp, req);
8097 }
8098 
8099 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8100 {
8101 	struct hwrm_nvm_get_dev_info_output nvm_info;
8102 
8103 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8104 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8105 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8106 			 nvm_info.nvm_cfg_ver_upd);
8107 }
8108 
8109 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8110 {
8111 	struct hwrm_queue_qportcfg_output *resp;
8112 	struct hwrm_queue_qportcfg_input *req;
8113 	u8 i, j, *qptr;
8114 	bool no_rdma;
8115 	int rc = 0;
8116 
8117 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8118 	if (rc)
8119 		return rc;
8120 
8121 	resp = hwrm_req_hold(bp, req);
8122 	rc = hwrm_req_send(bp, req);
8123 	if (rc)
8124 		goto qportcfg_exit;
8125 
8126 	if (!resp->max_configurable_queues) {
8127 		rc = -EINVAL;
8128 		goto qportcfg_exit;
8129 	}
8130 	bp->max_tc = resp->max_configurable_queues;
8131 	bp->max_lltc = resp->max_configurable_lossless_queues;
8132 	if (bp->max_tc > BNXT_MAX_QUEUE)
8133 		bp->max_tc = BNXT_MAX_QUEUE;
8134 
8135 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8136 	qptr = &resp->queue_id0;
8137 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8138 		bp->q_info[j].queue_id = *qptr;
8139 		bp->q_ids[i] = *qptr++;
8140 		bp->q_info[j].queue_profile = *qptr++;
8141 		bp->tc_to_qidx[j] = j;
8142 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8143 		    (no_rdma && BNXT_PF(bp)))
8144 			j++;
8145 	}
8146 	bp->max_q = bp->max_tc;
8147 	bp->max_tc = max_t(u8, j, 1);
8148 
8149 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8150 		bp->max_tc = 1;
8151 
8152 	if (bp->max_lltc > bp->max_tc)
8153 		bp->max_lltc = bp->max_tc;
8154 
8155 qportcfg_exit:
8156 	hwrm_req_drop(bp, req);
8157 	return rc;
8158 }
8159 
8160 static int bnxt_hwrm_poll(struct bnxt *bp)
8161 {
8162 	struct hwrm_ver_get_input *req;
8163 	int rc;
8164 
8165 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8166 	if (rc)
8167 		return rc;
8168 
8169 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8170 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8171 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8172 
8173 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8174 	rc = hwrm_req_send(bp, req);
8175 	return rc;
8176 }
8177 
8178 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8179 {
8180 	struct hwrm_ver_get_output *resp;
8181 	struct hwrm_ver_get_input *req;
8182 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8183 	u32 dev_caps_cfg, hwrm_ver;
8184 	int rc, len;
8185 
8186 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8187 	if (rc)
8188 		return rc;
8189 
8190 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8191 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8192 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8193 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8194 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8195 
8196 	resp = hwrm_req_hold(bp, req);
8197 	rc = hwrm_req_send(bp, req);
8198 	if (rc)
8199 		goto hwrm_ver_get_exit;
8200 
8201 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8202 
8203 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8204 			     resp->hwrm_intf_min_8b << 8 |
8205 			     resp->hwrm_intf_upd_8b;
8206 	if (resp->hwrm_intf_maj_8b < 1) {
8207 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8208 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8209 			    resp->hwrm_intf_upd_8b);
8210 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8211 	}
8212 
8213 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8214 			HWRM_VERSION_UPDATE;
8215 
8216 	if (bp->hwrm_spec_code > hwrm_ver)
8217 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8218 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8219 			 HWRM_VERSION_UPDATE);
8220 	else
8221 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8222 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8223 			 resp->hwrm_intf_upd_8b);
8224 
8225 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8226 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8227 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8228 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8229 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8230 		len = FW_VER_STR_LEN;
8231 	} else {
8232 		fw_maj = resp->hwrm_fw_maj_8b;
8233 		fw_min = resp->hwrm_fw_min_8b;
8234 		fw_bld = resp->hwrm_fw_bld_8b;
8235 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8236 		len = BC_HWRM_STR_LEN;
8237 	}
8238 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8239 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8240 		 fw_rsv);
8241 
8242 	if (strlen(resp->active_pkg_name)) {
8243 		int fw_ver_len = strlen(bp->fw_ver_str);
8244 
8245 		snprintf(bp->fw_ver_str + fw_ver_len,
8246 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8247 			 resp->active_pkg_name);
8248 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8249 	}
8250 
8251 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8252 	if (!bp->hwrm_cmd_timeout)
8253 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8254 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8255 	if (!bp->hwrm_cmd_max_timeout)
8256 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8257 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8258 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8259 			    bp->hwrm_cmd_max_timeout / 1000);
8260 
8261 	if (resp->hwrm_intf_maj_8b >= 1) {
8262 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8263 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8264 	}
8265 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8266 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8267 
8268 	bp->chip_num = le16_to_cpu(resp->chip_num);
8269 	bp->chip_rev = resp->chip_rev;
8270 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8271 	    !resp->chip_metal)
8272 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8273 
8274 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8275 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8276 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8277 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8278 
8279 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8280 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8281 
8282 	if (dev_caps_cfg &
8283 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8284 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8285 
8286 	if (dev_caps_cfg &
8287 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8288 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8289 
8290 	if (dev_caps_cfg &
8291 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8292 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8293 
8294 hwrm_ver_get_exit:
8295 	hwrm_req_drop(bp, req);
8296 	return rc;
8297 }
8298 
8299 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8300 {
8301 	struct hwrm_fw_set_time_input *req;
8302 	struct tm tm;
8303 	time64_t now = ktime_get_real_seconds();
8304 	int rc;
8305 
8306 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8307 	    bp->hwrm_spec_code < 0x10400)
8308 		return -EOPNOTSUPP;
8309 
8310 	time64_to_tm(now, 0, &tm);
8311 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8312 	if (rc)
8313 		return rc;
8314 
8315 	req->year = cpu_to_le16(1900 + tm.tm_year);
8316 	req->month = 1 + tm.tm_mon;
8317 	req->day = tm.tm_mday;
8318 	req->hour = tm.tm_hour;
8319 	req->minute = tm.tm_min;
8320 	req->second = tm.tm_sec;
8321 	return hwrm_req_send(bp, req);
8322 }
8323 
8324 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8325 {
8326 	u64 sw_tmp;
8327 
8328 	hw &= mask;
8329 	sw_tmp = (*sw & ~mask) | hw;
8330 	if (hw < (*sw & mask))
8331 		sw_tmp += mask + 1;
8332 	WRITE_ONCE(*sw, sw_tmp);
8333 }
8334 
8335 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8336 				    int count, bool ignore_zero)
8337 {
8338 	int i;
8339 
8340 	for (i = 0; i < count; i++) {
8341 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8342 
8343 		if (ignore_zero && !hw)
8344 			continue;
8345 
8346 		if (masks[i] == -1ULL)
8347 			sw_stats[i] = hw;
8348 		else
8349 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8350 	}
8351 }
8352 
8353 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8354 {
8355 	if (!stats->hw_stats)
8356 		return;
8357 
8358 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8359 				stats->hw_masks, stats->len / 8, false);
8360 }
8361 
8362 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8363 {
8364 	struct bnxt_stats_mem *ring0_stats;
8365 	bool ignore_zero = false;
8366 	int i;
8367 
8368 	/* Chip bug.  Counter intermittently becomes 0. */
8369 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8370 		ignore_zero = true;
8371 
8372 	for (i = 0; i < bp->cp_nr_rings; i++) {
8373 		struct bnxt_napi *bnapi = bp->bnapi[i];
8374 		struct bnxt_cp_ring_info *cpr;
8375 		struct bnxt_stats_mem *stats;
8376 
8377 		cpr = &bnapi->cp_ring;
8378 		stats = &cpr->stats;
8379 		if (!i)
8380 			ring0_stats = stats;
8381 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8382 					ring0_stats->hw_masks,
8383 					ring0_stats->len / 8, ignore_zero);
8384 	}
8385 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8386 		struct bnxt_stats_mem *stats = &bp->port_stats;
8387 		__le64 *hw_stats = stats->hw_stats;
8388 		u64 *sw_stats = stats->sw_stats;
8389 		u64 *masks = stats->hw_masks;
8390 		int cnt;
8391 
8392 		cnt = sizeof(struct rx_port_stats) / 8;
8393 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8394 
8395 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8396 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8397 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8398 		cnt = sizeof(struct tx_port_stats) / 8;
8399 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8400 	}
8401 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8402 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8403 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8404 	}
8405 }
8406 
8407 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8408 {
8409 	struct hwrm_port_qstats_input *req;
8410 	struct bnxt_pf_info *pf = &bp->pf;
8411 	int rc;
8412 
8413 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8414 		return 0;
8415 
8416 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8417 		return -EOPNOTSUPP;
8418 
8419 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8420 	if (rc)
8421 		return rc;
8422 
8423 	req->flags = flags;
8424 	req->port_id = cpu_to_le16(pf->port_id);
8425 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8426 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8427 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8428 	return hwrm_req_send(bp, req);
8429 }
8430 
8431 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8432 {
8433 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8434 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8435 	struct hwrm_port_qstats_ext_output *resp_qs;
8436 	struct hwrm_port_qstats_ext_input *req_qs;
8437 	struct bnxt_pf_info *pf = &bp->pf;
8438 	u32 tx_stat_size;
8439 	int rc;
8440 
8441 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8442 		return 0;
8443 
8444 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8445 		return -EOPNOTSUPP;
8446 
8447 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8448 	if (rc)
8449 		return rc;
8450 
8451 	req_qs->flags = flags;
8452 	req_qs->port_id = cpu_to_le16(pf->port_id);
8453 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8454 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8455 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8456 		       sizeof(struct tx_port_stats_ext) : 0;
8457 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8458 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8459 	resp_qs = hwrm_req_hold(bp, req_qs);
8460 	rc = hwrm_req_send(bp, req_qs);
8461 	if (!rc) {
8462 		bp->fw_rx_stats_ext_size =
8463 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8464 		if (BNXT_FW_MAJ(bp) < 220 &&
8465 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8466 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8467 
8468 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8469 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8470 	} else {
8471 		bp->fw_rx_stats_ext_size = 0;
8472 		bp->fw_tx_stats_ext_size = 0;
8473 	}
8474 	hwrm_req_drop(bp, req_qs);
8475 
8476 	if (flags)
8477 		return rc;
8478 
8479 	if (bp->fw_tx_stats_ext_size <=
8480 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8481 		bp->pri2cos_valid = 0;
8482 		return rc;
8483 	}
8484 
8485 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8486 	if (rc)
8487 		return rc;
8488 
8489 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8490 
8491 	resp_qc = hwrm_req_hold(bp, req_qc);
8492 	rc = hwrm_req_send(bp, req_qc);
8493 	if (!rc) {
8494 		u8 *pri2cos;
8495 		int i, j;
8496 
8497 		pri2cos = &resp_qc->pri0_cos_queue_id;
8498 		for (i = 0; i < 8; i++) {
8499 			u8 queue_id = pri2cos[i];
8500 			u8 queue_idx;
8501 
8502 			/* Per port queue IDs start from 0, 10, 20, etc */
8503 			queue_idx = queue_id % 10;
8504 			if (queue_idx > BNXT_MAX_QUEUE) {
8505 				bp->pri2cos_valid = false;
8506 				hwrm_req_drop(bp, req_qc);
8507 				return rc;
8508 			}
8509 			for (j = 0; j < bp->max_q; j++) {
8510 				if (bp->q_ids[j] == queue_id)
8511 					bp->pri2cos_idx[i] = queue_idx;
8512 			}
8513 		}
8514 		bp->pri2cos_valid = true;
8515 	}
8516 	hwrm_req_drop(bp, req_qc);
8517 
8518 	return rc;
8519 }
8520 
8521 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8522 {
8523 	bnxt_hwrm_tunnel_dst_port_free(bp,
8524 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8525 	bnxt_hwrm_tunnel_dst_port_free(bp,
8526 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8527 }
8528 
8529 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8530 {
8531 	int rc, i;
8532 	u32 tpa_flags = 0;
8533 
8534 	if (set_tpa)
8535 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8536 	else if (BNXT_NO_FW_ACCESS(bp))
8537 		return 0;
8538 	for (i = 0; i < bp->nr_vnics; i++) {
8539 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8540 		if (rc) {
8541 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8542 				   i, rc);
8543 			return rc;
8544 		}
8545 	}
8546 	return 0;
8547 }
8548 
8549 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8550 {
8551 	int i;
8552 
8553 	for (i = 0; i < bp->nr_vnics; i++)
8554 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8555 }
8556 
8557 static void bnxt_clear_vnic(struct bnxt *bp)
8558 {
8559 	if (!bp->vnic_info)
8560 		return;
8561 
8562 	bnxt_hwrm_clear_vnic_filter(bp);
8563 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8564 		/* clear all RSS setting before free vnic ctx */
8565 		bnxt_hwrm_clear_vnic_rss(bp);
8566 		bnxt_hwrm_vnic_ctx_free(bp);
8567 	}
8568 	/* before free the vnic, undo the vnic tpa settings */
8569 	if (bp->flags & BNXT_FLAG_TPA)
8570 		bnxt_set_tpa(bp, false);
8571 	bnxt_hwrm_vnic_free(bp);
8572 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8573 		bnxt_hwrm_vnic_ctx_free(bp);
8574 }
8575 
8576 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8577 				    bool irq_re_init)
8578 {
8579 	bnxt_clear_vnic(bp);
8580 	bnxt_hwrm_ring_free(bp, close_path);
8581 	bnxt_hwrm_ring_grp_free(bp);
8582 	if (irq_re_init) {
8583 		bnxt_hwrm_stat_ctx_free(bp);
8584 		bnxt_hwrm_free_tunnel_ports(bp);
8585 	}
8586 }
8587 
8588 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8589 {
8590 	struct hwrm_func_cfg_input *req;
8591 	u8 evb_mode;
8592 	int rc;
8593 
8594 	if (br_mode == BRIDGE_MODE_VEB)
8595 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8596 	else if (br_mode == BRIDGE_MODE_VEPA)
8597 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8598 	else
8599 		return -EINVAL;
8600 
8601 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8602 	if (rc)
8603 		return rc;
8604 
8605 	req->fid = cpu_to_le16(0xffff);
8606 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8607 	req->evb_mode = evb_mode;
8608 	return hwrm_req_send(bp, req);
8609 }
8610 
8611 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8612 {
8613 	struct hwrm_func_cfg_input *req;
8614 	int rc;
8615 
8616 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8617 		return 0;
8618 
8619 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8620 	if (rc)
8621 		return rc;
8622 
8623 	req->fid = cpu_to_le16(0xffff);
8624 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8625 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8626 	if (size == 128)
8627 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8628 
8629 	return hwrm_req_send(bp, req);
8630 }
8631 
8632 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8633 {
8634 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8635 	int rc;
8636 
8637 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8638 		goto skip_rss_ctx;
8639 
8640 	/* allocate context for vnic */
8641 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8642 	if (rc) {
8643 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8644 			   vnic_id, rc);
8645 		goto vnic_setup_err;
8646 	}
8647 	bp->rsscos_nr_ctxs++;
8648 
8649 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8650 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8651 		if (rc) {
8652 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8653 				   vnic_id, rc);
8654 			goto vnic_setup_err;
8655 		}
8656 		bp->rsscos_nr_ctxs++;
8657 	}
8658 
8659 skip_rss_ctx:
8660 	/* configure default vnic, ring grp */
8661 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8662 	if (rc) {
8663 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8664 			   vnic_id, rc);
8665 		goto vnic_setup_err;
8666 	}
8667 
8668 	/* Enable RSS hashing on vnic */
8669 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8670 	if (rc) {
8671 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8672 			   vnic_id, rc);
8673 		goto vnic_setup_err;
8674 	}
8675 
8676 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8677 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8678 		if (rc) {
8679 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8680 				   vnic_id, rc);
8681 		}
8682 	}
8683 
8684 vnic_setup_err:
8685 	return rc;
8686 }
8687 
8688 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8689 {
8690 	int rc, i, nr_ctxs;
8691 
8692 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8693 	for (i = 0; i < nr_ctxs; i++) {
8694 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8695 		if (rc) {
8696 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8697 				   vnic_id, i, rc);
8698 			break;
8699 		}
8700 		bp->rsscos_nr_ctxs++;
8701 	}
8702 	if (i < nr_ctxs)
8703 		return -ENOMEM;
8704 
8705 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8706 	if (rc) {
8707 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8708 			   vnic_id, rc);
8709 		return rc;
8710 	}
8711 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8712 	if (rc) {
8713 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8714 			   vnic_id, rc);
8715 		return rc;
8716 	}
8717 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8718 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8719 		if (rc) {
8720 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8721 				   vnic_id, rc);
8722 		}
8723 	}
8724 	return rc;
8725 }
8726 
8727 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8728 {
8729 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8730 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8731 	else
8732 		return __bnxt_setup_vnic(bp, vnic_id);
8733 }
8734 
8735 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8736 {
8737 #ifdef CONFIG_RFS_ACCEL
8738 	int i, rc = 0;
8739 
8740 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8741 		return 0;
8742 
8743 	for (i = 0; i < bp->rx_nr_rings; i++) {
8744 		struct bnxt_vnic_info *vnic;
8745 		u16 vnic_id = i + 1;
8746 		u16 ring_id = i;
8747 
8748 		if (vnic_id >= bp->nr_vnics)
8749 			break;
8750 
8751 		vnic = &bp->vnic_info[vnic_id];
8752 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8753 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8754 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8755 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8756 		if (rc) {
8757 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8758 				   vnic_id, rc);
8759 			break;
8760 		}
8761 		rc = bnxt_setup_vnic(bp, vnic_id);
8762 		if (rc)
8763 			break;
8764 	}
8765 	return rc;
8766 #else
8767 	return 0;
8768 #endif
8769 }
8770 
8771 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8772 static bool bnxt_promisc_ok(struct bnxt *bp)
8773 {
8774 #ifdef CONFIG_BNXT_SRIOV
8775 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8776 		return false;
8777 #endif
8778 	return true;
8779 }
8780 
8781 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8782 {
8783 	unsigned int rc = 0;
8784 
8785 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8786 	if (rc) {
8787 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8788 			   rc);
8789 		return rc;
8790 	}
8791 
8792 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8793 	if (rc) {
8794 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8795 			   rc);
8796 		return rc;
8797 	}
8798 	return rc;
8799 }
8800 
8801 static int bnxt_cfg_rx_mode(struct bnxt *);
8802 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8803 
8804 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8805 {
8806 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8807 	int rc = 0;
8808 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8809 
8810 	if (irq_re_init) {
8811 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8812 		if (rc) {
8813 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8814 				   rc);
8815 			goto err_out;
8816 		}
8817 	}
8818 
8819 	rc = bnxt_hwrm_ring_alloc(bp);
8820 	if (rc) {
8821 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8822 		goto err_out;
8823 	}
8824 
8825 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8826 	if (rc) {
8827 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8828 		goto err_out;
8829 	}
8830 
8831 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8832 		rx_nr_rings--;
8833 
8834 	/* default vnic 0 */
8835 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8836 	if (rc) {
8837 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8838 		goto err_out;
8839 	}
8840 
8841 	rc = bnxt_setup_vnic(bp, 0);
8842 	if (rc)
8843 		goto err_out;
8844 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
8845 		bnxt_hwrm_update_rss_hash_cfg(bp);
8846 
8847 	if (bp->flags & BNXT_FLAG_RFS) {
8848 		rc = bnxt_alloc_rfs_vnics(bp);
8849 		if (rc)
8850 			goto err_out;
8851 	}
8852 
8853 	if (bp->flags & BNXT_FLAG_TPA) {
8854 		rc = bnxt_set_tpa(bp, true);
8855 		if (rc)
8856 			goto err_out;
8857 	}
8858 
8859 	if (BNXT_VF(bp))
8860 		bnxt_update_vf_mac(bp);
8861 
8862 	/* Filter for default vnic 0 */
8863 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8864 	if (rc) {
8865 		if (BNXT_VF(bp) && rc == -ENODEV)
8866 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8867 		else
8868 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8869 		goto err_out;
8870 	}
8871 	vnic->uc_filter_count = 1;
8872 
8873 	vnic->rx_mask = 0;
8874 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8875 		goto skip_rx_mask;
8876 
8877 	if (bp->dev->flags & IFF_BROADCAST)
8878 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8879 
8880 	if (bp->dev->flags & IFF_PROMISC)
8881 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8882 
8883 	if (bp->dev->flags & IFF_ALLMULTI) {
8884 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8885 		vnic->mc_list_count = 0;
8886 	} else if (bp->dev->flags & IFF_MULTICAST) {
8887 		u32 mask = 0;
8888 
8889 		bnxt_mc_list_updated(bp, &mask);
8890 		vnic->rx_mask |= mask;
8891 	}
8892 
8893 	rc = bnxt_cfg_rx_mode(bp);
8894 	if (rc)
8895 		goto err_out;
8896 
8897 skip_rx_mask:
8898 	rc = bnxt_hwrm_set_coal(bp);
8899 	if (rc)
8900 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8901 				rc);
8902 
8903 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8904 		rc = bnxt_setup_nitroa0_vnic(bp);
8905 		if (rc)
8906 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8907 				   rc);
8908 	}
8909 
8910 	if (BNXT_VF(bp)) {
8911 		bnxt_hwrm_func_qcfg(bp);
8912 		netdev_update_features(bp->dev);
8913 	}
8914 
8915 	return 0;
8916 
8917 err_out:
8918 	bnxt_hwrm_resource_free(bp, 0, true);
8919 
8920 	return rc;
8921 }
8922 
8923 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8924 {
8925 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8926 	return 0;
8927 }
8928 
8929 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8930 {
8931 	bnxt_init_cp_rings(bp);
8932 	bnxt_init_rx_rings(bp);
8933 	bnxt_init_tx_rings(bp);
8934 	bnxt_init_ring_grps(bp, irq_re_init);
8935 	bnxt_init_vnics(bp);
8936 
8937 	return bnxt_init_chip(bp, irq_re_init);
8938 }
8939 
8940 static int bnxt_set_real_num_queues(struct bnxt *bp)
8941 {
8942 	int rc;
8943 	struct net_device *dev = bp->dev;
8944 
8945 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8946 					  bp->tx_nr_rings_xdp);
8947 	if (rc)
8948 		return rc;
8949 
8950 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8951 	if (rc)
8952 		return rc;
8953 
8954 #ifdef CONFIG_RFS_ACCEL
8955 	if (bp->flags & BNXT_FLAG_RFS)
8956 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8957 #endif
8958 
8959 	return rc;
8960 }
8961 
8962 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8963 			   bool shared)
8964 {
8965 	int _rx = *rx, _tx = *tx;
8966 
8967 	if (shared) {
8968 		*rx = min_t(int, _rx, max);
8969 		*tx = min_t(int, _tx, max);
8970 	} else {
8971 		if (max < 2)
8972 			return -ENOMEM;
8973 
8974 		while (_rx + _tx > max) {
8975 			if (_rx > _tx && _rx > 1)
8976 				_rx--;
8977 			else if (_tx > 1)
8978 				_tx--;
8979 		}
8980 		*rx = _rx;
8981 		*tx = _tx;
8982 	}
8983 	return 0;
8984 }
8985 
8986 static void bnxt_setup_msix(struct bnxt *bp)
8987 {
8988 	const int len = sizeof(bp->irq_tbl[0].name);
8989 	struct net_device *dev = bp->dev;
8990 	int tcs, i;
8991 
8992 	tcs = netdev_get_num_tc(dev);
8993 	if (tcs) {
8994 		int i, off, count;
8995 
8996 		for (i = 0; i < tcs; i++) {
8997 			count = bp->tx_nr_rings_per_tc;
8998 			off = i * count;
8999 			netdev_set_tc_queue(dev, i, count, off);
9000 		}
9001 	}
9002 
9003 	for (i = 0; i < bp->cp_nr_rings; i++) {
9004 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9005 		char *attr;
9006 
9007 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9008 			attr = "TxRx";
9009 		else if (i < bp->rx_nr_rings)
9010 			attr = "rx";
9011 		else
9012 			attr = "tx";
9013 
9014 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
9015 			 attr, i);
9016 		bp->irq_tbl[map_idx].handler = bnxt_msix;
9017 	}
9018 }
9019 
9020 static void bnxt_setup_inta(struct bnxt *bp)
9021 {
9022 	const int len = sizeof(bp->irq_tbl[0].name);
9023 
9024 	if (netdev_get_num_tc(bp->dev))
9025 		netdev_reset_tc(bp->dev);
9026 
9027 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
9028 		 0);
9029 	bp->irq_tbl[0].handler = bnxt_inta;
9030 }
9031 
9032 static int bnxt_init_int_mode(struct bnxt *bp);
9033 
9034 static int bnxt_setup_int_mode(struct bnxt *bp)
9035 {
9036 	int rc;
9037 
9038 	if (!bp->irq_tbl) {
9039 		rc = bnxt_init_int_mode(bp);
9040 		if (rc || !bp->irq_tbl)
9041 			return rc ?: -ENODEV;
9042 	}
9043 
9044 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9045 		bnxt_setup_msix(bp);
9046 	else
9047 		bnxt_setup_inta(bp);
9048 
9049 	rc = bnxt_set_real_num_queues(bp);
9050 	return rc;
9051 }
9052 
9053 #ifdef CONFIG_RFS_ACCEL
9054 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9055 {
9056 	return bp->hw_resc.max_rsscos_ctxs;
9057 }
9058 
9059 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9060 {
9061 	return bp->hw_resc.max_vnics;
9062 }
9063 #endif
9064 
9065 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9066 {
9067 	return bp->hw_resc.max_stat_ctxs;
9068 }
9069 
9070 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9071 {
9072 	return bp->hw_resc.max_cp_rings;
9073 }
9074 
9075 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9076 {
9077 	unsigned int cp = bp->hw_resc.max_cp_rings;
9078 
9079 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9080 		cp -= bnxt_get_ulp_msix_num(bp);
9081 
9082 	return cp;
9083 }
9084 
9085 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9086 {
9087 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9088 
9089 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9090 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9091 
9092 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9093 }
9094 
9095 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9096 {
9097 	bp->hw_resc.max_irqs = max_irqs;
9098 }
9099 
9100 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9101 {
9102 	unsigned int cp;
9103 
9104 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9105 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9106 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9107 	else
9108 		return cp - bp->cp_nr_rings;
9109 }
9110 
9111 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9112 {
9113 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9114 }
9115 
9116 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9117 {
9118 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9119 	int max_irq = bnxt_get_max_func_irqs(bp);
9120 	int total_req = bp->cp_nr_rings + num;
9121 	int max_idx, avail_msix;
9122 
9123 	max_idx = bp->total_irqs;
9124 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9125 		max_idx = min_t(int, bp->total_irqs, max_cp);
9126 	avail_msix = max_idx - bp->cp_nr_rings;
9127 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9128 		return avail_msix;
9129 
9130 	if (max_irq < total_req) {
9131 		num = max_irq - bp->cp_nr_rings;
9132 		if (num <= 0)
9133 			return 0;
9134 	}
9135 	return num;
9136 }
9137 
9138 static int bnxt_get_num_msix(struct bnxt *bp)
9139 {
9140 	if (!BNXT_NEW_RM(bp))
9141 		return bnxt_get_max_func_irqs(bp);
9142 
9143 	return bnxt_nq_rings_in_use(bp);
9144 }
9145 
9146 static int bnxt_init_msix(struct bnxt *bp)
9147 {
9148 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9149 	struct msix_entry *msix_ent;
9150 
9151 	total_vecs = bnxt_get_num_msix(bp);
9152 	max = bnxt_get_max_func_irqs(bp);
9153 	if (total_vecs > max)
9154 		total_vecs = max;
9155 
9156 	if (!total_vecs)
9157 		return 0;
9158 
9159 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9160 	if (!msix_ent)
9161 		return -ENOMEM;
9162 
9163 	for (i = 0; i < total_vecs; i++) {
9164 		msix_ent[i].entry = i;
9165 		msix_ent[i].vector = 0;
9166 	}
9167 
9168 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9169 		min = 2;
9170 
9171 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9172 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9173 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9174 		rc = -ENODEV;
9175 		goto msix_setup_exit;
9176 	}
9177 
9178 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9179 	if (bp->irq_tbl) {
9180 		for (i = 0; i < total_vecs; i++)
9181 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9182 
9183 		bp->total_irqs = total_vecs;
9184 		/* Trim rings based upon num of vectors allocated */
9185 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9186 				     total_vecs - ulp_msix, min == 1);
9187 		if (rc)
9188 			goto msix_setup_exit;
9189 
9190 		bp->cp_nr_rings = (min == 1) ?
9191 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9192 				  bp->tx_nr_rings + bp->rx_nr_rings;
9193 
9194 	} else {
9195 		rc = -ENOMEM;
9196 		goto msix_setup_exit;
9197 	}
9198 	bp->flags |= BNXT_FLAG_USING_MSIX;
9199 	kfree(msix_ent);
9200 	return 0;
9201 
9202 msix_setup_exit:
9203 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9204 	kfree(bp->irq_tbl);
9205 	bp->irq_tbl = NULL;
9206 	pci_disable_msix(bp->pdev);
9207 	kfree(msix_ent);
9208 	return rc;
9209 }
9210 
9211 static int bnxt_init_inta(struct bnxt *bp)
9212 {
9213 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9214 	if (!bp->irq_tbl)
9215 		return -ENOMEM;
9216 
9217 	bp->total_irqs = 1;
9218 	bp->rx_nr_rings = 1;
9219 	bp->tx_nr_rings = 1;
9220 	bp->cp_nr_rings = 1;
9221 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9222 	bp->irq_tbl[0].vector = bp->pdev->irq;
9223 	return 0;
9224 }
9225 
9226 static int bnxt_init_int_mode(struct bnxt *bp)
9227 {
9228 	int rc = -ENODEV;
9229 
9230 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9231 		rc = bnxt_init_msix(bp);
9232 
9233 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9234 		/* fallback to INTA */
9235 		rc = bnxt_init_inta(bp);
9236 	}
9237 	return rc;
9238 }
9239 
9240 static void bnxt_clear_int_mode(struct bnxt *bp)
9241 {
9242 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9243 		pci_disable_msix(bp->pdev);
9244 
9245 	kfree(bp->irq_tbl);
9246 	bp->irq_tbl = NULL;
9247 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9248 }
9249 
9250 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9251 {
9252 	int tcs = netdev_get_num_tc(bp->dev);
9253 	bool irq_cleared = false;
9254 	int rc;
9255 
9256 	if (!bnxt_need_reserve_rings(bp))
9257 		return 0;
9258 
9259 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9260 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9261 		bnxt_ulp_irq_stop(bp);
9262 		bnxt_clear_int_mode(bp);
9263 		irq_cleared = true;
9264 	}
9265 	rc = __bnxt_reserve_rings(bp);
9266 	if (irq_cleared) {
9267 		if (!rc)
9268 			rc = bnxt_init_int_mode(bp);
9269 		bnxt_ulp_irq_restart(bp, rc);
9270 	}
9271 	if (rc) {
9272 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9273 		return rc;
9274 	}
9275 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
9276 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
9277 		netdev_err(bp->dev, "tx ring reservation failure\n");
9278 		netdev_reset_tc(bp->dev);
9279 		if (bp->tx_nr_rings_xdp)
9280 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
9281 		else
9282 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9283 		return -ENOMEM;
9284 	}
9285 	return 0;
9286 }
9287 
9288 static void bnxt_free_irq(struct bnxt *bp)
9289 {
9290 	struct bnxt_irq *irq;
9291 	int i;
9292 
9293 #ifdef CONFIG_RFS_ACCEL
9294 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9295 	bp->dev->rx_cpu_rmap = NULL;
9296 #endif
9297 	if (!bp->irq_tbl || !bp->bnapi)
9298 		return;
9299 
9300 	for (i = 0; i < bp->cp_nr_rings; i++) {
9301 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9302 
9303 		irq = &bp->irq_tbl[map_idx];
9304 		if (irq->requested) {
9305 			if (irq->have_cpumask) {
9306 				irq_set_affinity_hint(irq->vector, NULL);
9307 				free_cpumask_var(irq->cpu_mask);
9308 				irq->have_cpumask = 0;
9309 			}
9310 			free_irq(irq->vector, bp->bnapi[i]);
9311 		}
9312 
9313 		irq->requested = 0;
9314 	}
9315 }
9316 
9317 static int bnxt_request_irq(struct bnxt *bp)
9318 {
9319 	int i, j, rc = 0;
9320 	unsigned long flags = 0;
9321 #ifdef CONFIG_RFS_ACCEL
9322 	struct cpu_rmap *rmap;
9323 #endif
9324 
9325 	rc = bnxt_setup_int_mode(bp);
9326 	if (rc) {
9327 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9328 			   rc);
9329 		return rc;
9330 	}
9331 #ifdef CONFIG_RFS_ACCEL
9332 	rmap = bp->dev->rx_cpu_rmap;
9333 #endif
9334 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9335 		flags = IRQF_SHARED;
9336 
9337 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9338 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9339 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9340 
9341 #ifdef CONFIG_RFS_ACCEL
9342 		if (rmap && bp->bnapi[i]->rx_ring) {
9343 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9344 			if (rc)
9345 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9346 					    j);
9347 			j++;
9348 		}
9349 #endif
9350 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9351 				 bp->bnapi[i]);
9352 		if (rc)
9353 			break;
9354 
9355 		irq->requested = 1;
9356 
9357 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9358 			int numa_node = dev_to_node(&bp->pdev->dev);
9359 
9360 			irq->have_cpumask = 1;
9361 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9362 					irq->cpu_mask);
9363 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9364 			if (rc) {
9365 				netdev_warn(bp->dev,
9366 					    "Set affinity failed, IRQ = %d\n",
9367 					    irq->vector);
9368 				break;
9369 			}
9370 		}
9371 	}
9372 	return rc;
9373 }
9374 
9375 static void bnxt_del_napi(struct bnxt *bp)
9376 {
9377 	int i;
9378 
9379 	if (!bp->bnapi)
9380 		return;
9381 
9382 	for (i = 0; i < bp->cp_nr_rings; i++) {
9383 		struct bnxt_napi *bnapi = bp->bnapi[i];
9384 
9385 		__netif_napi_del(&bnapi->napi);
9386 	}
9387 	/* We called __netif_napi_del(), we need
9388 	 * to respect an RCU grace period before freeing napi structures.
9389 	 */
9390 	synchronize_net();
9391 }
9392 
9393 static void bnxt_init_napi(struct bnxt *bp)
9394 {
9395 	int i;
9396 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9397 	struct bnxt_napi *bnapi;
9398 
9399 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9400 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9401 
9402 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9403 			poll_fn = bnxt_poll_p5;
9404 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9405 			cp_nr_rings--;
9406 		for (i = 0; i < cp_nr_rings; i++) {
9407 			bnapi = bp->bnapi[i];
9408 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
9409 		}
9410 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9411 			bnapi = bp->bnapi[cp_nr_rings];
9412 			netif_napi_add(bp->dev, &bnapi->napi,
9413 				       bnxt_poll_nitroa0);
9414 		}
9415 	} else {
9416 		bnapi = bp->bnapi[0];
9417 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
9418 	}
9419 }
9420 
9421 static void bnxt_disable_napi(struct bnxt *bp)
9422 {
9423 	int i;
9424 
9425 	if (!bp->bnapi ||
9426 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9427 		return;
9428 
9429 	for (i = 0; i < bp->cp_nr_rings; i++) {
9430 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9431 
9432 		napi_disable(&bp->bnapi[i]->napi);
9433 		if (bp->bnapi[i]->rx_ring)
9434 			cancel_work_sync(&cpr->dim.work);
9435 	}
9436 }
9437 
9438 static void bnxt_enable_napi(struct bnxt *bp)
9439 {
9440 	int i;
9441 
9442 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9443 	for (i = 0; i < bp->cp_nr_rings; i++) {
9444 		struct bnxt_napi *bnapi = bp->bnapi[i];
9445 		struct bnxt_cp_ring_info *cpr;
9446 
9447 		cpr = &bnapi->cp_ring;
9448 		if (bnapi->in_reset)
9449 			cpr->sw_stats.rx.rx_resets++;
9450 		bnapi->in_reset = false;
9451 
9452 		if (bnapi->rx_ring) {
9453 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9454 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9455 		}
9456 		napi_enable(&bnapi->napi);
9457 	}
9458 }
9459 
9460 void bnxt_tx_disable(struct bnxt *bp)
9461 {
9462 	int i;
9463 	struct bnxt_tx_ring_info *txr;
9464 
9465 	if (bp->tx_ring) {
9466 		for (i = 0; i < bp->tx_nr_rings; i++) {
9467 			txr = &bp->tx_ring[i];
9468 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9469 		}
9470 	}
9471 	/* Make sure napi polls see @dev_state change */
9472 	synchronize_net();
9473 	/* Drop carrier first to prevent TX timeout */
9474 	netif_carrier_off(bp->dev);
9475 	/* Stop all TX queues */
9476 	netif_tx_disable(bp->dev);
9477 }
9478 
9479 void bnxt_tx_enable(struct bnxt *bp)
9480 {
9481 	int i;
9482 	struct bnxt_tx_ring_info *txr;
9483 
9484 	for (i = 0; i < bp->tx_nr_rings; i++) {
9485 		txr = &bp->tx_ring[i];
9486 		WRITE_ONCE(txr->dev_state, 0);
9487 	}
9488 	/* Make sure napi polls see @dev_state change */
9489 	synchronize_net();
9490 	netif_tx_wake_all_queues(bp->dev);
9491 	if (BNXT_LINK_IS_UP(bp))
9492 		netif_carrier_on(bp->dev);
9493 }
9494 
9495 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9496 {
9497 	u8 active_fec = link_info->active_fec_sig_mode &
9498 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9499 
9500 	switch (active_fec) {
9501 	default:
9502 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9503 		return "None";
9504 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9505 		return "Clause 74 BaseR";
9506 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9507 		return "Clause 91 RS(528,514)";
9508 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9509 		return "Clause 91 RS544_1XN";
9510 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9511 		return "Clause 91 RS(544,514)";
9512 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9513 		return "Clause 91 RS272_1XN";
9514 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9515 		return "Clause 91 RS(272,257)";
9516 	}
9517 }
9518 
9519 void bnxt_report_link(struct bnxt *bp)
9520 {
9521 	if (BNXT_LINK_IS_UP(bp)) {
9522 		const char *signal = "";
9523 		const char *flow_ctrl;
9524 		const char *duplex;
9525 		u32 speed;
9526 		u16 fec;
9527 
9528 		netif_carrier_on(bp->dev);
9529 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9530 		if (speed == SPEED_UNKNOWN) {
9531 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9532 			return;
9533 		}
9534 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9535 			duplex = "full";
9536 		else
9537 			duplex = "half";
9538 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9539 			flow_ctrl = "ON - receive & transmit";
9540 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9541 			flow_ctrl = "ON - transmit";
9542 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9543 			flow_ctrl = "ON - receive";
9544 		else
9545 			flow_ctrl = "none";
9546 		if (bp->link_info.phy_qcfg_resp.option_flags &
9547 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9548 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9549 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9550 			switch (sig_mode) {
9551 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9552 				signal = "(NRZ) ";
9553 				break;
9554 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9555 				signal = "(PAM4) ";
9556 				break;
9557 			default:
9558 				break;
9559 			}
9560 		}
9561 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9562 			    speed, signal, duplex, flow_ctrl);
9563 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9564 			netdev_info(bp->dev, "EEE is %s\n",
9565 				    bp->eee.eee_active ? "active" :
9566 							 "not active");
9567 		fec = bp->link_info.fec_cfg;
9568 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9569 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9570 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9571 				    bnxt_report_fec(&bp->link_info));
9572 	} else {
9573 		netif_carrier_off(bp->dev);
9574 		netdev_err(bp->dev, "NIC Link is Down\n");
9575 	}
9576 }
9577 
9578 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9579 {
9580 	if (!resp->supported_speeds_auto_mode &&
9581 	    !resp->supported_speeds_force_mode &&
9582 	    !resp->supported_pam4_speeds_auto_mode &&
9583 	    !resp->supported_pam4_speeds_force_mode)
9584 		return true;
9585 	return false;
9586 }
9587 
9588 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9589 {
9590 	struct bnxt_link_info *link_info = &bp->link_info;
9591 	struct hwrm_port_phy_qcaps_output *resp;
9592 	struct hwrm_port_phy_qcaps_input *req;
9593 	int rc = 0;
9594 
9595 	if (bp->hwrm_spec_code < 0x10201)
9596 		return 0;
9597 
9598 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9599 	if (rc)
9600 		return rc;
9601 
9602 	resp = hwrm_req_hold(bp, req);
9603 	rc = hwrm_req_send(bp, req);
9604 	if (rc)
9605 		goto hwrm_phy_qcaps_exit;
9606 
9607 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9608 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9609 		struct ethtool_eee *eee = &bp->eee;
9610 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9611 
9612 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9613 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9614 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9615 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9616 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9617 	}
9618 
9619 	if (bp->hwrm_spec_code >= 0x10a01) {
9620 		if (bnxt_phy_qcaps_no_speed(resp)) {
9621 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9622 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9623 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9624 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9625 			netdev_info(bp->dev, "Ethernet link enabled\n");
9626 			/* Phy re-enabled, reprobe the speeds */
9627 			link_info->support_auto_speeds = 0;
9628 			link_info->support_pam4_auto_speeds = 0;
9629 		}
9630 	}
9631 	if (resp->supported_speeds_auto_mode)
9632 		link_info->support_auto_speeds =
9633 			le16_to_cpu(resp->supported_speeds_auto_mode);
9634 	if (resp->supported_pam4_speeds_auto_mode)
9635 		link_info->support_pam4_auto_speeds =
9636 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9637 
9638 	bp->port_count = resp->port_cnt;
9639 
9640 hwrm_phy_qcaps_exit:
9641 	hwrm_req_drop(bp, req);
9642 	return rc;
9643 }
9644 
9645 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9646 {
9647 	u16 diff = advertising ^ supported;
9648 
9649 	return ((supported | diff) != supported);
9650 }
9651 
9652 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9653 {
9654 	struct bnxt_link_info *link_info = &bp->link_info;
9655 	struct hwrm_port_phy_qcfg_output *resp;
9656 	struct hwrm_port_phy_qcfg_input *req;
9657 	u8 link_state = link_info->link_state;
9658 	bool support_changed = false;
9659 	int rc;
9660 
9661 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9662 	if (rc)
9663 		return rc;
9664 
9665 	resp = hwrm_req_hold(bp, req);
9666 	rc = hwrm_req_send(bp, req);
9667 	if (rc) {
9668 		hwrm_req_drop(bp, req);
9669 		if (BNXT_VF(bp) && rc == -ENODEV) {
9670 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9671 			rc = 0;
9672 		}
9673 		return rc;
9674 	}
9675 
9676 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9677 	link_info->phy_link_status = resp->link;
9678 	link_info->duplex = resp->duplex_cfg;
9679 	if (bp->hwrm_spec_code >= 0x10800)
9680 		link_info->duplex = resp->duplex_state;
9681 	link_info->pause = resp->pause;
9682 	link_info->auto_mode = resp->auto_mode;
9683 	link_info->auto_pause_setting = resp->auto_pause;
9684 	link_info->lp_pause = resp->link_partner_adv_pause;
9685 	link_info->force_pause_setting = resp->force_pause;
9686 	link_info->duplex_setting = resp->duplex_cfg;
9687 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9688 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9689 	else
9690 		link_info->link_speed = 0;
9691 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9692 	link_info->force_pam4_link_speed =
9693 		le16_to_cpu(resp->force_pam4_link_speed);
9694 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9695 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9696 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9697 	link_info->auto_pam4_link_speeds =
9698 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9699 	link_info->lp_auto_link_speeds =
9700 		le16_to_cpu(resp->link_partner_adv_speeds);
9701 	link_info->lp_auto_pam4_link_speeds =
9702 		resp->link_partner_pam4_adv_speeds;
9703 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9704 	link_info->phy_ver[0] = resp->phy_maj;
9705 	link_info->phy_ver[1] = resp->phy_min;
9706 	link_info->phy_ver[2] = resp->phy_bld;
9707 	link_info->media_type = resp->media_type;
9708 	link_info->phy_type = resp->phy_type;
9709 	link_info->transceiver = resp->xcvr_pkg_type;
9710 	link_info->phy_addr = resp->eee_config_phy_addr &
9711 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9712 	link_info->module_status = resp->module_status;
9713 
9714 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9715 		struct ethtool_eee *eee = &bp->eee;
9716 		u16 fw_speeds;
9717 
9718 		eee->eee_active = 0;
9719 		if (resp->eee_config_phy_addr &
9720 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9721 			eee->eee_active = 1;
9722 			fw_speeds = le16_to_cpu(
9723 				resp->link_partner_adv_eee_link_speed_mask);
9724 			eee->lp_advertised =
9725 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9726 		}
9727 
9728 		/* Pull initial EEE config */
9729 		if (!chng_link_state) {
9730 			if (resp->eee_config_phy_addr &
9731 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9732 				eee->eee_enabled = 1;
9733 
9734 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9735 			eee->advertised =
9736 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9737 
9738 			if (resp->eee_config_phy_addr &
9739 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9740 				__le32 tmr;
9741 
9742 				eee->tx_lpi_enabled = 1;
9743 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9744 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9745 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9746 			}
9747 		}
9748 	}
9749 
9750 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9751 	if (bp->hwrm_spec_code >= 0x10504) {
9752 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9753 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9754 	}
9755 	/* TODO: need to add more logic to report VF link */
9756 	if (chng_link_state) {
9757 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9758 			link_info->link_state = BNXT_LINK_STATE_UP;
9759 		else
9760 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9761 		if (link_state != link_info->link_state)
9762 			bnxt_report_link(bp);
9763 	} else {
9764 		/* always link down if not require to update link state */
9765 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9766 	}
9767 	hwrm_req_drop(bp, req);
9768 
9769 	if (!BNXT_PHY_CFG_ABLE(bp))
9770 		return 0;
9771 
9772 	/* Check if any advertised speeds are no longer supported. The caller
9773 	 * holds the link_lock mutex, so we can modify link_info settings.
9774 	 */
9775 	if (bnxt_support_dropped(link_info->advertising,
9776 				 link_info->support_auto_speeds)) {
9777 		link_info->advertising = link_info->support_auto_speeds;
9778 		support_changed = true;
9779 	}
9780 	if (bnxt_support_dropped(link_info->advertising_pam4,
9781 				 link_info->support_pam4_auto_speeds)) {
9782 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9783 		support_changed = true;
9784 	}
9785 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9786 		bnxt_hwrm_set_link_setting(bp, true, false);
9787 	return 0;
9788 }
9789 
9790 static void bnxt_get_port_module_status(struct bnxt *bp)
9791 {
9792 	struct bnxt_link_info *link_info = &bp->link_info;
9793 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9794 	u8 module_status;
9795 
9796 	if (bnxt_update_link(bp, true))
9797 		return;
9798 
9799 	module_status = link_info->module_status;
9800 	switch (module_status) {
9801 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9802 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9803 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9804 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9805 			    bp->pf.port_id);
9806 		if (bp->hwrm_spec_code >= 0x10201) {
9807 			netdev_warn(bp->dev, "Module part number %s\n",
9808 				    resp->phy_vendor_partnumber);
9809 		}
9810 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9811 			netdev_warn(bp->dev, "TX is disabled\n");
9812 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9813 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9814 	}
9815 }
9816 
9817 static void
9818 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9819 {
9820 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9821 		if (bp->hwrm_spec_code >= 0x10201)
9822 			req->auto_pause =
9823 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9824 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9825 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9826 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9827 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9828 		req->enables |=
9829 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9830 	} else {
9831 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9832 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9833 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9834 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9835 		req->enables |=
9836 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9837 		if (bp->hwrm_spec_code >= 0x10201) {
9838 			req->auto_pause = req->force_pause;
9839 			req->enables |= cpu_to_le32(
9840 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9841 		}
9842 	}
9843 }
9844 
9845 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9846 {
9847 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9848 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9849 		if (bp->link_info.advertising) {
9850 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9851 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9852 		}
9853 		if (bp->link_info.advertising_pam4) {
9854 			req->enables |=
9855 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9856 			req->auto_link_pam4_speed_mask =
9857 				cpu_to_le16(bp->link_info.advertising_pam4);
9858 		}
9859 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9860 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9861 	} else {
9862 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9863 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9864 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9865 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9866 		} else {
9867 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9868 		}
9869 	}
9870 
9871 	/* tell chimp that the setting takes effect immediately */
9872 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9873 }
9874 
9875 int bnxt_hwrm_set_pause(struct bnxt *bp)
9876 {
9877 	struct hwrm_port_phy_cfg_input *req;
9878 	int rc;
9879 
9880 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9881 	if (rc)
9882 		return rc;
9883 
9884 	bnxt_hwrm_set_pause_common(bp, req);
9885 
9886 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9887 	    bp->link_info.force_link_chng)
9888 		bnxt_hwrm_set_link_common(bp, req);
9889 
9890 	rc = hwrm_req_send(bp, req);
9891 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9892 		/* since changing of pause setting doesn't trigger any link
9893 		 * change event, the driver needs to update the current pause
9894 		 * result upon successfully return of the phy_cfg command
9895 		 */
9896 		bp->link_info.pause =
9897 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9898 		bp->link_info.auto_pause_setting = 0;
9899 		if (!bp->link_info.force_link_chng)
9900 			bnxt_report_link(bp);
9901 	}
9902 	bp->link_info.force_link_chng = false;
9903 	return rc;
9904 }
9905 
9906 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9907 			      struct hwrm_port_phy_cfg_input *req)
9908 {
9909 	struct ethtool_eee *eee = &bp->eee;
9910 
9911 	if (eee->eee_enabled) {
9912 		u16 eee_speeds;
9913 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9914 
9915 		if (eee->tx_lpi_enabled)
9916 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9917 		else
9918 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9919 
9920 		req->flags |= cpu_to_le32(flags);
9921 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9922 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9923 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9924 	} else {
9925 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9926 	}
9927 }
9928 
9929 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9930 {
9931 	struct hwrm_port_phy_cfg_input *req;
9932 	int rc;
9933 
9934 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9935 	if (rc)
9936 		return rc;
9937 
9938 	if (set_pause)
9939 		bnxt_hwrm_set_pause_common(bp, req);
9940 
9941 	bnxt_hwrm_set_link_common(bp, req);
9942 
9943 	if (set_eee)
9944 		bnxt_hwrm_set_eee(bp, req);
9945 	return hwrm_req_send(bp, req);
9946 }
9947 
9948 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9949 {
9950 	struct hwrm_port_phy_cfg_input *req;
9951 	int rc;
9952 
9953 	if (!BNXT_SINGLE_PF(bp))
9954 		return 0;
9955 
9956 	if (pci_num_vf(bp->pdev) &&
9957 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9958 		return 0;
9959 
9960 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9961 	if (rc)
9962 		return rc;
9963 
9964 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9965 	rc = hwrm_req_send(bp, req);
9966 	if (!rc) {
9967 		mutex_lock(&bp->link_lock);
9968 		/* Device is not obliged link down in certain scenarios, even
9969 		 * when forced. Setting the state unknown is consistent with
9970 		 * driver startup and will force link state to be reported
9971 		 * during subsequent open based on PORT_PHY_QCFG.
9972 		 */
9973 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9974 		mutex_unlock(&bp->link_lock);
9975 	}
9976 	return rc;
9977 }
9978 
9979 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9980 {
9981 #ifdef CONFIG_TEE_BNXT_FW
9982 	int rc = tee_bnxt_fw_load();
9983 
9984 	if (rc)
9985 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9986 
9987 	return rc;
9988 #else
9989 	netdev_err(bp->dev, "OP-TEE not supported\n");
9990 	return -ENODEV;
9991 #endif
9992 }
9993 
9994 static int bnxt_try_recover_fw(struct bnxt *bp)
9995 {
9996 	if (bp->fw_health && bp->fw_health->status_reliable) {
9997 		int retry = 0, rc;
9998 		u32 sts;
9999 
10000 		do {
10001 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
10002 			rc = bnxt_hwrm_poll(bp);
10003 			if (!BNXT_FW_IS_BOOTING(sts) &&
10004 			    !BNXT_FW_IS_RECOVERING(sts))
10005 				break;
10006 			retry++;
10007 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
10008 
10009 		if (!BNXT_FW_IS_HEALTHY(sts)) {
10010 			netdev_err(bp->dev,
10011 				   "Firmware not responding, status: 0x%x\n",
10012 				   sts);
10013 			rc = -ENODEV;
10014 		}
10015 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
10016 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
10017 			return bnxt_fw_reset_via_optee(bp);
10018 		}
10019 		return rc;
10020 	}
10021 
10022 	return -ENODEV;
10023 }
10024 
10025 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10026 {
10027 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10028 
10029 	if (!BNXT_NEW_RM(bp))
10030 		return; /* no resource reservations required */
10031 
10032 	hw_resc->resv_cp_rings = 0;
10033 	hw_resc->resv_stat_ctxs = 0;
10034 	hw_resc->resv_irqs = 0;
10035 	hw_resc->resv_tx_rings = 0;
10036 	hw_resc->resv_rx_rings = 0;
10037 	hw_resc->resv_hw_ring_grps = 0;
10038 	hw_resc->resv_vnics = 0;
10039 	if (!fw_reset) {
10040 		bp->tx_nr_rings = 0;
10041 		bp->rx_nr_rings = 0;
10042 	}
10043 }
10044 
10045 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10046 {
10047 	int rc;
10048 
10049 	if (!BNXT_NEW_RM(bp))
10050 		return 0; /* no resource reservations required */
10051 
10052 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10053 	if (rc)
10054 		netdev_err(bp->dev, "resc_qcaps failed\n");
10055 
10056 	bnxt_clear_reservations(bp, fw_reset);
10057 
10058 	return rc;
10059 }
10060 
10061 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10062 {
10063 	struct hwrm_func_drv_if_change_output *resp;
10064 	struct hwrm_func_drv_if_change_input *req;
10065 	bool fw_reset = !bp->irq_tbl;
10066 	bool resc_reinit = false;
10067 	int rc, retry = 0;
10068 	u32 flags = 0;
10069 
10070 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10071 		return 0;
10072 
10073 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10074 	if (rc)
10075 		return rc;
10076 
10077 	if (up)
10078 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10079 	resp = hwrm_req_hold(bp, req);
10080 
10081 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10082 	while (retry < BNXT_FW_IF_RETRY) {
10083 		rc = hwrm_req_send(bp, req);
10084 		if (rc != -EAGAIN)
10085 			break;
10086 
10087 		msleep(50);
10088 		retry++;
10089 	}
10090 
10091 	if (rc == -EAGAIN) {
10092 		hwrm_req_drop(bp, req);
10093 		return rc;
10094 	} else if (!rc) {
10095 		flags = le32_to_cpu(resp->flags);
10096 	} else if (up) {
10097 		rc = bnxt_try_recover_fw(bp);
10098 		fw_reset = true;
10099 	}
10100 	hwrm_req_drop(bp, req);
10101 	if (rc)
10102 		return rc;
10103 
10104 	if (!up) {
10105 		bnxt_inv_fw_health_reg(bp);
10106 		return 0;
10107 	}
10108 
10109 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10110 		resc_reinit = true;
10111 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10112 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10113 		fw_reset = true;
10114 	else
10115 		bnxt_remap_fw_health_regs(bp);
10116 
10117 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10118 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10119 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10120 		return -ENODEV;
10121 	}
10122 	if (resc_reinit || fw_reset) {
10123 		if (fw_reset) {
10124 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10125 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10126 				bnxt_ulp_stop(bp);
10127 			bnxt_free_ctx_mem(bp);
10128 			kfree(bp->ctx);
10129 			bp->ctx = NULL;
10130 			bnxt_dcb_free(bp);
10131 			rc = bnxt_fw_init_one(bp);
10132 			if (rc) {
10133 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10134 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10135 				return rc;
10136 			}
10137 			bnxt_clear_int_mode(bp);
10138 			rc = bnxt_init_int_mode(bp);
10139 			if (rc) {
10140 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10141 				netdev_err(bp->dev, "init int mode failed\n");
10142 				return rc;
10143 			}
10144 		}
10145 		rc = bnxt_cancel_reservations(bp, fw_reset);
10146 	}
10147 	return rc;
10148 }
10149 
10150 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10151 {
10152 	struct hwrm_port_led_qcaps_output *resp;
10153 	struct hwrm_port_led_qcaps_input *req;
10154 	struct bnxt_pf_info *pf = &bp->pf;
10155 	int rc;
10156 
10157 	bp->num_leds = 0;
10158 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10159 		return 0;
10160 
10161 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10162 	if (rc)
10163 		return rc;
10164 
10165 	req->port_id = cpu_to_le16(pf->port_id);
10166 	resp = hwrm_req_hold(bp, req);
10167 	rc = hwrm_req_send(bp, req);
10168 	if (rc) {
10169 		hwrm_req_drop(bp, req);
10170 		return rc;
10171 	}
10172 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10173 		int i;
10174 
10175 		bp->num_leds = resp->num_leds;
10176 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10177 						 bp->num_leds);
10178 		for (i = 0; i < bp->num_leds; i++) {
10179 			struct bnxt_led_info *led = &bp->leds[i];
10180 			__le16 caps = led->led_state_caps;
10181 
10182 			if (!led->led_group_id ||
10183 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10184 				bp->num_leds = 0;
10185 				break;
10186 			}
10187 		}
10188 	}
10189 	hwrm_req_drop(bp, req);
10190 	return 0;
10191 }
10192 
10193 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10194 {
10195 	struct hwrm_wol_filter_alloc_output *resp;
10196 	struct hwrm_wol_filter_alloc_input *req;
10197 	int rc;
10198 
10199 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10200 	if (rc)
10201 		return rc;
10202 
10203 	req->port_id = cpu_to_le16(bp->pf.port_id);
10204 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10205 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10206 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10207 
10208 	resp = hwrm_req_hold(bp, req);
10209 	rc = hwrm_req_send(bp, req);
10210 	if (!rc)
10211 		bp->wol_filter_id = resp->wol_filter_id;
10212 	hwrm_req_drop(bp, req);
10213 	return rc;
10214 }
10215 
10216 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10217 {
10218 	struct hwrm_wol_filter_free_input *req;
10219 	int rc;
10220 
10221 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10222 	if (rc)
10223 		return rc;
10224 
10225 	req->port_id = cpu_to_le16(bp->pf.port_id);
10226 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10227 	req->wol_filter_id = bp->wol_filter_id;
10228 
10229 	return hwrm_req_send(bp, req);
10230 }
10231 
10232 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10233 {
10234 	struct hwrm_wol_filter_qcfg_output *resp;
10235 	struct hwrm_wol_filter_qcfg_input *req;
10236 	u16 next_handle = 0;
10237 	int rc;
10238 
10239 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10240 	if (rc)
10241 		return rc;
10242 
10243 	req->port_id = cpu_to_le16(bp->pf.port_id);
10244 	req->handle = cpu_to_le16(handle);
10245 	resp = hwrm_req_hold(bp, req);
10246 	rc = hwrm_req_send(bp, req);
10247 	if (!rc) {
10248 		next_handle = le16_to_cpu(resp->next_handle);
10249 		if (next_handle != 0) {
10250 			if (resp->wol_type ==
10251 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10252 				bp->wol = 1;
10253 				bp->wol_filter_id = resp->wol_filter_id;
10254 			}
10255 		}
10256 	}
10257 	hwrm_req_drop(bp, req);
10258 	return next_handle;
10259 }
10260 
10261 static void bnxt_get_wol_settings(struct bnxt *bp)
10262 {
10263 	u16 handle = 0;
10264 
10265 	bp->wol = 0;
10266 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10267 		return;
10268 
10269 	do {
10270 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10271 	} while (handle && handle != 0xffff);
10272 }
10273 
10274 #ifdef CONFIG_BNXT_HWMON
10275 static ssize_t bnxt_show_temp(struct device *dev,
10276 			      struct device_attribute *devattr, char *buf)
10277 {
10278 	struct hwrm_temp_monitor_query_output *resp;
10279 	struct hwrm_temp_monitor_query_input *req;
10280 	struct bnxt *bp = dev_get_drvdata(dev);
10281 	u32 len = 0;
10282 	int rc;
10283 
10284 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10285 	if (rc)
10286 		return rc;
10287 	resp = hwrm_req_hold(bp, req);
10288 	rc = hwrm_req_send(bp, req);
10289 	if (!rc)
10290 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10291 	hwrm_req_drop(bp, req);
10292 	if (rc)
10293 		return rc;
10294 	return len;
10295 }
10296 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10297 
10298 static struct attribute *bnxt_attrs[] = {
10299 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10300 	NULL
10301 };
10302 ATTRIBUTE_GROUPS(bnxt);
10303 
10304 static void bnxt_hwmon_close(struct bnxt *bp)
10305 {
10306 	if (bp->hwmon_dev) {
10307 		hwmon_device_unregister(bp->hwmon_dev);
10308 		bp->hwmon_dev = NULL;
10309 	}
10310 }
10311 
10312 static void bnxt_hwmon_open(struct bnxt *bp)
10313 {
10314 	struct hwrm_temp_monitor_query_input *req;
10315 	struct pci_dev *pdev = bp->pdev;
10316 	int rc;
10317 
10318 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10319 	if (!rc)
10320 		rc = hwrm_req_send_silent(bp, req);
10321 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10322 		bnxt_hwmon_close(bp);
10323 		return;
10324 	}
10325 
10326 	if (bp->hwmon_dev)
10327 		return;
10328 
10329 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10330 							  DRV_MODULE_NAME, bp,
10331 							  bnxt_groups);
10332 	if (IS_ERR(bp->hwmon_dev)) {
10333 		bp->hwmon_dev = NULL;
10334 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10335 	}
10336 }
10337 #else
10338 static void bnxt_hwmon_close(struct bnxt *bp)
10339 {
10340 }
10341 
10342 static void bnxt_hwmon_open(struct bnxt *bp)
10343 {
10344 }
10345 #endif
10346 
10347 static bool bnxt_eee_config_ok(struct bnxt *bp)
10348 {
10349 	struct ethtool_eee *eee = &bp->eee;
10350 	struct bnxt_link_info *link_info = &bp->link_info;
10351 
10352 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10353 		return true;
10354 
10355 	if (eee->eee_enabled) {
10356 		u32 advertising =
10357 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10358 
10359 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10360 			eee->eee_enabled = 0;
10361 			return false;
10362 		}
10363 		if (eee->advertised & ~advertising) {
10364 			eee->advertised = advertising & eee->supported;
10365 			return false;
10366 		}
10367 	}
10368 	return true;
10369 }
10370 
10371 static int bnxt_update_phy_setting(struct bnxt *bp)
10372 {
10373 	int rc;
10374 	bool update_link = false;
10375 	bool update_pause = false;
10376 	bool update_eee = false;
10377 	struct bnxt_link_info *link_info = &bp->link_info;
10378 
10379 	rc = bnxt_update_link(bp, true);
10380 	if (rc) {
10381 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10382 			   rc);
10383 		return rc;
10384 	}
10385 	if (!BNXT_SINGLE_PF(bp))
10386 		return 0;
10387 
10388 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10389 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10390 	    link_info->req_flow_ctrl)
10391 		update_pause = true;
10392 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10393 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10394 		update_pause = true;
10395 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10396 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10397 			update_link = true;
10398 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10399 		    link_info->req_link_speed != link_info->force_link_speed)
10400 			update_link = true;
10401 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10402 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10403 			update_link = true;
10404 		if (link_info->req_duplex != link_info->duplex_setting)
10405 			update_link = true;
10406 	} else {
10407 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10408 			update_link = true;
10409 		if (link_info->advertising != link_info->auto_link_speeds ||
10410 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10411 			update_link = true;
10412 	}
10413 
10414 	/* The last close may have shutdown the link, so need to call
10415 	 * PHY_CFG to bring it back up.
10416 	 */
10417 	if (!BNXT_LINK_IS_UP(bp))
10418 		update_link = true;
10419 
10420 	if (!bnxt_eee_config_ok(bp))
10421 		update_eee = true;
10422 
10423 	if (update_link)
10424 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10425 	else if (update_pause)
10426 		rc = bnxt_hwrm_set_pause(bp);
10427 	if (rc) {
10428 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10429 			   rc);
10430 		return rc;
10431 	}
10432 
10433 	return rc;
10434 }
10435 
10436 /* Common routine to pre-map certain register block to different GRC window.
10437  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10438  * in PF and 3 windows in VF that can be customized to map in different
10439  * register blocks.
10440  */
10441 static void bnxt_preset_reg_win(struct bnxt *bp)
10442 {
10443 	if (BNXT_PF(bp)) {
10444 		/* CAG registers map to GRC window #4 */
10445 		writel(BNXT_CAG_REG_BASE,
10446 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10447 	}
10448 }
10449 
10450 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10451 
10452 static int bnxt_reinit_after_abort(struct bnxt *bp)
10453 {
10454 	int rc;
10455 
10456 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10457 		return -EBUSY;
10458 
10459 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10460 		return -ENODEV;
10461 
10462 	rc = bnxt_fw_init_one(bp);
10463 	if (!rc) {
10464 		bnxt_clear_int_mode(bp);
10465 		rc = bnxt_init_int_mode(bp);
10466 		if (!rc) {
10467 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10468 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10469 		}
10470 	}
10471 	return rc;
10472 }
10473 
10474 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10475 {
10476 	int rc = 0;
10477 
10478 	bnxt_preset_reg_win(bp);
10479 	netif_carrier_off(bp->dev);
10480 	if (irq_re_init) {
10481 		/* Reserve rings now if none were reserved at driver probe. */
10482 		rc = bnxt_init_dflt_ring_mode(bp);
10483 		if (rc) {
10484 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10485 			return rc;
10486 		}
10487 	}
10488 	rc = bnxt_reserve_rings(bp, irq_re_init);
10489 	if (rc)
10490 		return rc;
10491 	if ((bp->flags & BNXT_FLAG_RFS) &&
10492 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10493 		/* disable RFS if falling back to INTA */
10494 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10495 		bp->flags &= ~BNXT_FLAG_RFS;
10496 	}
10497 
10498 	rc = bnxt_alloc_mem(bp, irq_re_init);
10499 	if (rc) {
10500 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10501 		goto open_err_free_mem;
10502 	}
10503 
10504 	if (irq_re_init) {
10505 		bnxt_init_napi(bp);
10506 		rc = bnxt_request_irq(bp);
10507 		if (rc) {
10508 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10509 			goto open_err_irq;
10510 		}
10511 	}
10512 
10513 	rc = bnxt_init_nic(bp, irq_re_init);
10514 	if (rc) {
10515 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10516 		goto open_err_irq;
10517 	}
10518 
10519 	bnxt_enable_napi(bp);
10520 	bnxt_debug_dev_init(bp);
10521 
10522 	if (link_re_init) {
10523 		mutex_lock(&bp->link_lock);
10524 		rc = bnxt_update_phy_setting(bp);
10525 		mutex_unlock(&bp->link_lock);
10526 		if (rc) {
10527 			netdev_warn(bp->dev, "failed to update phy settings\n");
10528 			if (BNXT_SINGLE_PF(bp)) {
10529 				bp->link_info.phy_retry = true;
10530 				bp->link_info.phy_retry_expires =
10531 					jiffies + 5 * HZ;
10532 			}
10533 		}
10534 	}
10535 
10536 	if (irq_re_init)
10537 		udp_tunnel_nic_reset_ntf(bp->dev);
10538 
10539 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10540 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10541 			static_branch_enable(&bnxt_xdp_locking_key);
10542 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10543 		static_branch_disable(&bnxt_xdp_locking_key);
10544 	}
10545 	set_bit(BNXT_STATE_OPEN, &bp->state);
10546 	bnxt_enable_int(bp);
10547 	/* Enable TX queues */
10548 	bnxt_tx_enable(bp);
10549 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10550 	/* Poll link status and check for SFP+ module status */
10551 	mutex_lock(&bp->link_lock);
10552 	bnxt_get_port_module_status(bp);
10553 	mutex_unlock(&bp->link_lock);
10554 
10555 	/* VF-reps may need to be re-opened after the PF is re-opened */
10556 	if (BNXT_PF(bp))
10557 		bnxt_vf_reps_open(bp);
10558 	bnxt_ptp_init_rtc(bp, true);
10559 	bnxt_ptp_cfg_tstamp_filters(bp);
10560 	return 0;
10561 
10562 open_err_irq:
10563 	bnxt_del_napi(bp);
10564 
10565 open_err_free_mem:
10566 	bnxt_free_skbs(bp);
10567 	bnxt_free_irq(bp);
10568 	bnxt_free_mem(bp, true);
10569 	return rc;
10570 }
10571 
10572 /* rtnl_lock held */
10573 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10574 {
10575 	int rc = 0;
10576 
10577 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10578 		rc = -EIO;
10579 	if (!rc)
10580 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10581 	if (rc) {
10582 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10583 		dev_close(bp->dev);
10584 	}
10585 	return rc;
10586 }
10587 
10588 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10589  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10590  * self tests.
10591  */
10592 int bnxt_half_open_nic(struct bnxt *bp)
10593 {
10594 	int rc = 0;
10595 
10596 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10597 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10598 		rc = -ENODEV;
10599 		goto half_open_err;
10600 	}
10601 
10602 	rc = bnxt_alloc_mem(bp, true);
10603 	if (rc) {
10604 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10605 		goto half_open_err;
10606 	}
10607 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10608 	rc = bnxt_init_nic(bp, true);
10609 	if (rc) {
10610 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10611 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10612 		goto half_open_err;
10613 	}
10614 	return 0;
10615 
10616 half_open_err:
10617 	bnxt_free_skbs(bp);
10618 	bnxt_free_mem(bp, true);
10619 	dev_close(bp->dev);
10620 	return rc;
10621 }
10622 
10623 /* rtnl_lock held, this call can only be made after a previous successful
10624  * call to bnxt_half_open_nic().
10625  */
10626 void bnxt_half_close_nic(struct bnxt *bp)
10627 {
10628 	bnxt_hwrm_resource_free(bp, false, true);
10629 	bnxt_free_skbs(bp);
10630 	bnxt_free_mem(bp, true);
10631 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10632 }
10633 
10634 void bnxt_reenable_sriov(struct bnxt *bp)
10635 {
10636 	if (BNXT_PF(bp)) {
10637 		struct bnxt_pf_info *pf = &bp->pf;
10638 		int n = pf->active_vfs;
10639 
10640 		if (n)
10641 			bnxt_cfg_hw_sriov(bp, &n, true);
10642 	}
10643 }
10644 
10645 static int bnxt_open(struct net_device *dev)
10646 {
10647 	struct bnxt *bp = netdev_priv(dev);
10648 	int rc;
10649 
10650 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10651 		rc = bnxt_reinit_after_abort(bp);
10652 		if (rc) {
10653 			if (rc == -EBUSY)
10654 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10655 			else
10656 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10657 			return -ENODEV;
10658 		}
10659 	}
10660 
10661 	rc = bnxt_hwrm_if_change(bp, true);
10662 	if (rc)
10663 		return rc;
10664 
10665 	rc = __bnxt_open_nic(bp, true, true);
10666 	if (rc) {
10667 		bnxt_hwrm_if_change(bp, false);
10668 	} else {
10669 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10670 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10671 				bnxt_ulp_start(bp, 0);
10672 				bnxt_reenable_sriov(bp);
10673 			}
10674 		}
10675 		bnxt_hwmon_open(bp);
10676 	}
10677 
10678 	return rc;
10679 }
10680 
10681 static bool bnxt_drv_busy(struct bnxt *bp)
10682 {
10683 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10684 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10685 }
10686 
10687 static void bnxt_get_ring_stats(struct bnxt *bp,
10688 				struct rtnl_link_stats64 *stats);
10689 
10690 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10691 			     bool link_re_init)
10692 {
10693 	/* Close the VF-reps before closing PF */
10694 	if (BNXT_PF(bp))
10695 		bnxt_vf_reps_close(bp);
10696 
10697 	/* Change device state to avoid TX queue wake up's */
10698 	bnxt_tx_disable(bp);
10699 
10700 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10701 	smp_mb__after_atomic();
10702 	while (bnxt_drv_busy(bp))
10703 		msleep(20);
10704 
10705 	/* Flush rings and disable interrupts */
10706 	bnxt_shutdown_nic(bp, irq_re_init);
10707 
10708 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10709 
10710 	bnxt_debug_dev_exit(bp);
10711 	bnxt_disable_napi(bp);
10712 	del_timer_sync(&bp->timer);
10713 	bnxt_free_skbs(bp);
10714 
10715 	/* Save ring stats before shutdown */
10716 	if (bp->bnapi && irq_re_init)
10717 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10718 	if (irq_re_init) {
10719 		bnxt_free_irq(bp);
10720 		bnxt_del_napi(bp);
10721 	}
10722 	bnxt_free_mem(bp, irq_re_init);
10723 }
10724 
10725 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10726 {
10727 	int rc = 0;
10728 
10729 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10730 		/* If we get here, it means firmware reset is in progress
10731 		 * while we are trying to close.  We can safely proceed with
10732 		 * the close because we are holding rtnl_lock().  Some firmware
10733 		 * messages may fail as we proceed to close.  We set the
10734 		 * ABORT_ERR flag here so that the FW reset thread will later
10735 		 * abort when it gets the rtnl_lock() and sees the flag.
10736 		 */
10737 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10738 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10739 	}
10740 
10741 #ifdef CONFIG_BNXT_SRIOV
10742 	if (bp->sriov_cfg) {
10743 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10744 						      !bp->sriov_cfg,
10745 						      BNXT_SRIOV_CFG_WAIT_TMO);
10746 		if (rc)
10747 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10748 	}
10749 #endif
10750 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10751 	return rc;
10752 }
10753 
10754 static int bnxt_close(struct net_device *dev)
10755 {
10756 	struct bnxt *bp = netdev_priv(dev);
10757 
10758 	bnxt_hwmon_close(bp);
10759 	bnxt_close_nic(bp, true, true);
10760 	bnxt_hwrm_shutdown_link(bp);
10761 	bnxt_hwrm_if_change(bp, false);
10762 	return 0;
10763 }
10764 
10765 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10766 				   u16 *val)
10767 {
10768 	struct hwrm_port_phy_mdio_read_output *resp;
10769 	struct hwrm_port_phy_mdio_read_input *req;
10770 	int rc;
10771 
10772 	if (bp->hwrm_spec_code < 0x10a00)
10773 		return -EOPNOTSUPP;
10774 
10775 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10776 	if (rc)
10777 		return rc;
10778 
10779 	req->port_id = cpu_to_le16(bp->pf.port_id);
10780 	req->phy_addr = phy_addr;
10781 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10782 	if (mdio_phy_id_is_c45(phy_addr)) {
10783 		req->cl45_mdio = 1;
10784 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10785 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10786 		req->reg_addr = cpu_to_le16(reg);
10787 	}
10788 
10789 	resp = hwrm_req_hold(bp, req);
10790 	rc = hwrm_req_send(bp, req);
10791 	if (!rc)
10792 		*val = le16_to_cpu(resp->reg_data);
10793 	hwrm_req_drop(bp, req);
10794 	return rc;
10795 }
10796 
10797 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10798 				    u16 val)
10799 {
10800 	struct hwrm_port_phy_mdio_write_input *req;
10801 	int rc;
10802 
10803 	if (bp->hwrm_spec_code < 0x10a00)
10804 		return -EOPNOTSUPP;
10805 
10806 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10807 	if (rc)
10808 		return rc;
10809 
10810 	req->port_id = cpu_to_le16(bp->pf.port_id);
10811 	req->phy_addr = phy_addr;
10812 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10813 	if (mdio_phy_id_is_c45(phy_addr)) {
10814 		req->cl45_mdio = 1;
10815 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10816 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10817 		req->reg_addr = cpu_to_le16(reg);
10818 	}
10819 	req->reg_data = cpu_to_le16(val);
10820 
10821 	return hwrm_req_send(bp, req);
10822 }
10823 
10824 /* rtnl_lock held */
10825 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10826 {
10827 	struct mii_ioctl_data *mdio = if_mii(ifr);
10828 	struct bnxt *bp = netdev_priv(dev);
10829 	int rc;
10830 
10831 	switch (cmd) {
10832 	case SIOCGMIIPHY:
10833 		mdio->phy_id = bp->link_info.phy_addr;
10834 
10835 		fallthrough;
10836 	case SIOCGMIIREG: {
10837 		u16 mii_regval = 0;
10838 
10839 		if (!netif_running(dev))
10840 			return -EAGAIN;
10841 
10842 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10843 					     &mii_regval);
10844 		mdio->val_out = mii_regval;
10845 		return rc;
10846 	}
10847 
10848 	case SIOCSMIIREG:
10849 		if (!netif_running(dev))
10850 			return -EAGAIN;
10851 
10852 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10853 						mdio->val_in);
10854 
10855 	case SIOCSHWTSTAMP:
10856 		return bnxt_hwtstamp_set(dev, ifr);
10857 
10858 	case SIOCGHWTSTAMP:
10859 		return bnxt_hwtstamp_get(dev, ifr);
10860 
10861 	default:
10862 		/* do nothing */
10863 		break;
10864 	}
10865 	return -EOPNOTSUPP;
10866 }
10867 
10868 static void bnxt_get_ring_stats(struct bnxt *bp,
10869 				struct rtnl_link_stats64 *stats)
10870 {
10871 	int i;
10872 
10873 	for (i = 0; i < bp->cp_nr_rings; i++) {
10874 		struct bnxt_napi *bnapi = bp->bnapi[i];
10875 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10876 		u64 *sw = cpr->stats.sw_stats;
10877 
10878 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10879 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10880 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10881 
10882 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10883 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10884 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10885 
10886 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10887 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10888 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10889 
10890 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10891 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10892 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10893 
10894 		stats->rx_missed_errors +=
10895 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10896 
10897 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10898 
10899 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10900 
10901 		stats->rx_dropped +=
10902 			cpr->sw_stats.rx.rx_netpoll_discards +
10903 			cpr->sw_stats.rx.rx_oom_discards;
10904 	}
10905 }
10906 
10907 static void bnxt_add_prev_stats(struct bnxt *bp,
10908 				struct rtnl_link_stats64 *stats)
10909 {
10910 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10911 
10912 	stats->rx_packets += prev_stats->rx_packets;
10913 	stats->tx_packets += prev_stats->tx_packets;
10914 	stats->rx_bytes += prev_stats->rx_bytes;
10915 	stats->tx_bytes += prev_stats->tx_bytes;
10916 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10917 	stats->multicast += prev_stats->multicast;
10918 	stats->rx_dropped += prev_stats->rx_dropped;
10919 	stats->tx_dropped += prev_stats->tx_dropped;
10920 }
10921 
10922 static void
10923 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10924 {
10925 	struct bnxt *bp = netdev_priv(dev);
10926 
10927 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10928 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10929 	 * we check the BNXT_STATE_OPEN flag.
10930 	 */
10931 	smp_mb__after_atomic();
10932 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10933 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10934 		*stats = bp->net_stats_prev;
10935 		return;
10936 	}
10937 
10938 	bnxt_get_ring_stats(bp, stats);
10939 	bnxt_add_prev_stats(bp, stats);
10940 
10941 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10942 		u64 *rx = bp->port_stats.sw_stats;
10943 		u64 *tx = bp->port_stats.sw_stats +
10944 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10945 
10946 		stats->rx_crc_errors =
10947 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10948 		stats->rx_frame_errors =
10949 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10950 		stats->rx_length_errors =
10951 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10952 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10953 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10954 		stats->rx_errors =
10955 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10956 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10957 		stats->collisions =
10958 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10959 		stats->tx_fifo_errors =
10960 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10961 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10962 	}
10963 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10964 }
10965 
10966 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10967 {
10968 	struct net_device *dev = bp->dev;
10969 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10970 	struct netdev_hw_addr *ha;
10971 	u8 *haddr;
10972 	int mc_count = 0;
10973 	bool update = false;
10974 	int off = 0;
10975 
10976 	netdev_for_each_mc_addr(ha, dev) {
10977 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10978 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10979 			vnic->mc_list_count = 0;
10980 			return false;
10981 		}
10982 		haddr = ha->addr;
10983 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10984 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10985 			update = true;
10986 		}
10987 		off += ETH_ALEN;
10988 		mc_count++;
10989 	}
10990 	if (mc_count)
10991 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10992 
10993 	if (mc_count != vnic->mc_list_count) {
10994 		vnic->mc_list_count = mc_count;
10995 		update = true;
10996 	}
10997 	return update;
10998 }
10999 
11000 static bool bnxt_uc_list_updated(struct bnxt *bp)
11001 {
11002 	struct net_device *dev = bp->dev;
11003 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11004 	struct netdev_hw_addr *ha;
11005 	int off = 0;
11006 
11007 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
11008 		return true;
11009 
11010 	netdev_for_each_uc_addr(ha, dev) {
11011 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
11012 			return true;
11013 
11014 		off += ETH_ALEN;
11015 	}
11016 	return false;
11017 }
11018 
11019 static void bnxt_set_rx_mode(struct net_device *dev)
11020 {
11021 	struct bnxt *bp = netdev_priv(dev);
11022 	struct bnxt_vnic_info *vnic;
11023 	bool mc_update = false;
11024 	bool uc_update;
11025 	u32 mask;
11026 
11027 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11028 		return;
11029 
11030 	vnic = &bp->vnic_info[0];
11031 	mask = vnic->rx_mask;
11032 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11033 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11034 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11035 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11036 
11037 	if (dev->flags & IFF_PROMISC)
11038 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11039 
11040 	uc_update = bnxt_uc_list_updated(bp);
11041 
11042 	if (dev->flags & IFF_BROADCAST)
11043 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11044 	if (dev->flags & IFF_ALLMULTI) {
11045 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11046 		vnic->mc_list_count = 0;
11047 	} else if (dev->flags & IFF_MULTICAST) {
11048 		mc_update = bnxt_mc_list_updated(bp, &mask);
11049 	}
11050 
11051 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11052 		vnic->rx_mask = mask;
11053 
11054 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11055 		bnxt_queue_sp_work(bp);
11056 	}
11057 }
11058 
11059 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11060 {
11061 	struct net_device *dev = bp->dev;
11062 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11063 	struct hwrm_cfa_l2_filter_free_input *req;
11064 	struct netdev_hw_addr *ha;
11065 	int i, off = 0, rc;
11066 	bool uc_update;
11067 
11068 	netif_addr_lock_bh(dev);
11069 	uc_update = bnxt_uc_list_updated(bp);
11070 	netif_addr_unlock_bh(dev);
11071 
11072 	if (!uc_update)
11073 		goto skip_uc;
11074 
11075 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11076 	if (rc)
11077 		return rc;
11078 	hwrm_req_hold(bp, req);
11079 	for (i = 1; i < vnic->uc_filter_count; i++) {
11080 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11081 
11082 		rc = hwrm_req_send(bp, req);
11083 	}
11084 	hwrm_req_drop(bp, req);
11085 
11086 	vnic->uc_filter_count = 1;
11087 
11088 	netif_addr_lock_bh(dev);
11089 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11090 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11091 	} else {
11092 		netdev_for_each_uc_addr(ha, dev) {
11093 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11094 			off += ETH_ALEN;
11095 			vnic->uc_filter_count++;
11096 		}
11097 	}
11098 	netif_addr_unlock_bh(dev);
11099 
11100 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11101 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11102 		if (rc) {
11103 			if (BNXT_VF(bp) && rc == -ENODEV) {
11104 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11105 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11106 				else
11107 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11108 				rc = 0;
11109 			} else {
11110 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11111 			}
11112 			vnic->uc_filter_count = i;
11113 			return rc;
11114 		}
11115 	}
11116 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11117 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11118 
11119 skip_uc:
11120 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11121 	    !bnxt_promisc_ok(bp))
11122 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11123 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11124 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11125 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11126 			    rc);
11127 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11128 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11129 		vnic->mc_list_count = 0;
11130 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11131 	}
11132 	if (rc)
11133 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11134 			   rc);
11135 
11136 	return rc;
11137 }
11138 
11139 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11140 {
11141 #ifdef CONFIG_BNXT_SRIOV
11142 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11143 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11144 
11145 		/* No minimum rings were provisioned by the PF.  Don't
11146 		 * reserve rings by default when device is down.
11147 		 */
11148 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11149 			return true;
11150 
11151 		if (!netif_running(bp->dev))
11152 			return false;
11153 	}
11154 #endif
11155 	return true;
11156 }
11157 
11158 /* If the chip and firmware supports RFS */
11159 static bool bnxt_rfs_supported(struct bnxt *bp)
11160 {
11161 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11162 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11163 			return true;
11164 		return false;
11165 	}
11166 	/* 212 firmware is broken for aRFS */
11167 	if (BNXT_FW_MAJ(bp) == 212)
11168 		return false;
11169 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11170 		return true;
11171 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11172 		return true;
11173 	return false;
11174 }
11175 
11176 /* If runtime conditions support RFS */
11177 static bool bnxt_rfs_capable(struct bnxt *bp)
11178 {
11179 #ifdef CONFIG_RFS_ACCEL
11180 	int vnics, max_vnics, max_rss_ctxs;
11181 
11182 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11183 		return bnxt_rfs_supported(bp);
11184 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11185 		return false;
11186 
11187 	vnics = 1 + bp->rx_nr_rings;
11188 	max_vnics = bnxt_get_max_func_vnics(bp);
11189 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11190 
11191 	/* RSS contexts not a limiting factor */
11192 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11193 		max_rss_ctxs = max_vnics;
11194 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11195 		if (bp->rx_nr_rings > 1)
11196 			netdev_warn(bp->dev,
11197 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11198 				    min(max_rss_ctxs - 1, max_vnics - 1));
11199 		return false;
11200 	}
11201 
11202 	if (!BNXT_NEW_RM(bp))
11203 		return true;
11204 
11205 	if (vnics == bp->hw_resc.resv_vnics)
11206 		return true;
11207 
11208 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11209 	if (vnics <= bp->hw_resc.resv_vnics)
11210 		return true;
11211 
11212 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11213 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11214 	return false;
11215 #else
11216 	return false;
11217 #endif
11218 }
11219 
11220 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11221 					   netdev_features_t features)
11222 {
11223 	struct bnxt *bp = netdev_priv(dev);
11224 	netdev_features_t vlan_features;
11225 
11226 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11227 		features &= ~NETIF_F_NTUPLE;
11228 
11229 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11230 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11231 
11232 	if (!(features & NETIF_F_GRO))
11233 		features &= ~NETIF_F_GRO_HW;
11234 
11235 	if (features & NETIF_F_GRO_HW)
11236 		features &= ~NETIF_F_LRO;
11237 
11238 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11239 	 * turned on or off together.
11240 	 */
11241 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11242 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11243 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11244 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11245 		else if (vlan_features)
11246 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11247 	}
11248 #ifdef CONFIG_BNXT_SRIOV
11249 	if (BNXT_VF(bp) && bp->vf.vlan)
11250 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11251 #endif
11252 	return features;
11253 }
11254 
11255 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11256 {
11257 	struct bnxt *bp = netdev_priv(dev);
11258 	u32 flags = bp->flags;
11259 	u32 changes;
11260 	int rc = 0;
11261 	bool re_init = false;
11262 	bool update_tpa = false;
11263 
11264 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11265 	if (features & NETIF_F_GRO_HW)
11266 		flags |= BNXT_FLAG_GRO;
11267 	else if (features & NETIF_F_LRO)
11268 		flags |= BNXT_FLAG_LRO;
11269 
11270 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11271 		flags &= ~BNXT_FLAG_TPA;
11272 
11273 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11274 		flags |= BNXT_FLAG_STRIP_VLAN;
11275 
11276 	if (features & NETIF_F_NTUPLE)
11277 		flags |= BNXT_FLAG_RFS;
11278 
11279 	changes = flags ^ bp->flags;
11280 	if (changes & BNXT_FLAG_TPA) {
11281 		update_tpa = true;
11282 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11283 		    (flags & BNXT_FLAG_TPA) == 0 ||
11284 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11285 			re_init = true;
11286 	}
11287 
11288 	if (changes & ~BNXT_FLAG_TPA)
11289 		re_init = true;
11290 
11291 	if (flags != bp->flags) {
11292 		u32 old_flags = bp->flags;
11293 
11294 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11295 			bp->flags = flags;
11296 			if (update_tpa)
11297 				bnxt_set_ring_params(bp);
11298 			return rc;
11299 		}
11300 
11301 		if (re_init) {
11302 			bnxt_close_nic(bp, false, false);
11303 			bp->flags = flags;
11304 			if (update_tpa)
11305 				bnxt_set_ring_params(bp);
11306 
11307 			return bnxt_open_nic(bp, false, false);
11308 		}
11309 		if (update_tpa) {
11310 			bp->flags = flags;
11311 			rc = bnxt_set_tpa(bp,
11312 					  (flags & BNXT_FLAG_TPA) ?
11313 					  true : false);
11314 			if (rc)
11315 				bp->flags = old_flags;
11316 		}
11317 	}
11318 	return rc;
11319 }
11320 
11321 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11322 			      u8 **nextp)
11323 {
11324 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11325 	struct hop_jumbo_hdr *jhdr;
11326 	int hdr_count = 0;
11327 	u8 *nexthdr;
11328 	int start;
11329 
11330 	/* Check that there are at most 2 IPv6 extension headers, no
11331 	 * fragment header, and each is <= 64 bytes.
11332 	 */
11333 	start = nw_off + sizeof(*ip6h);
11334 	nexthdr = &ip6h->nexthdr;
11335 	while (ipv6_ext_hdr(*nexthdr)) {
11336 		struct ipv6_opt_hdr *hp;
11337 		int hdrlen;
11338 
11339 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11340 		    *nexthdr == NEXTHDR_FRAGMENT)
11341 			return false;
11342 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11343 					  skb_headlen(skb), NULL);
11344 		if (!hp)
11345 			return false;
11346 		if (*nexthdr == NEXTHDR_AUTH)
11347 			hdrlen = ipv6_authlen(hp);
11348 		else
11349 			hdrlen = ipv6_optlen(hp);
11350 
11351 		if (hdrlen > 64)
11352 			return false;
11353 
11354 		/* The ext header may be a hop-by-hop header inserted for
11355 		 * big TCP purposes. This will be removed before sending
11356 		 * from NIC, so do not count it.
11357 		 */
11358 		if (*nexthdr == NEXTHDR_HOP) {
11359 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
11360 				goto increment_hdr;
11361 
11362 			jhdr = (struct hop_jumbo_hdr *)hp;
11363 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
11364 			    jhdr->nexthdr != IPPROTO_TCP)
11365 				goto increment_hdr;
11366 
11367 			goto next_hdr;
11368 		}
11369 increment_hdr:
11370 		hdr_count++;
11371 next_hdr:
11372 		nexthdr = &hp->nexthdr;
11373 		start += hdrlen;
11374 	}
11375 	if (nextp) {
11376 		/* Caller will check inner protocol */
11377 		if (skb->encapsulation) {
11378 			*nextp = nexthdr;
11379 			return true;
11380 		}
11381 		*nextp = NULL;
11382 	}
11383 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11384 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11385 }
11386 
11387 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11388 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11389 {
11390 	struct udphdr *uh = udp_hdr(skb);
11391 	__be16 udp_port = uh->dest;
11392 
11393 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11394 		return false;
11395 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11396 		struct ethhdr *eh = inner_eth_hdr(skb);
11397 
11398 		switch (eh->h_proto) {
11399 		case htons(ETH_P_IP):
11400 			return true;
11401 		case htons(ETH_P_IPV6):
11402 			return bnxt_exthdr_check(bp, skb,
11403 						 skb_inner_network_offset(skb),
11404 						 NULL);
11405 		}
11406 	}
11407 	return false;
11408 }
11409 
11410 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11411 {
11412 	switch (l4_proto) {
11413 	case IPPROTO_UDP:
11414 		return bnxt_udp_tunl_check(bp, skb);
11415 	case IPPROTO_IPIP:
11416 		return true;
11417 	case IPPROTO_GRE: {
11418 		switch (skb->inner_protocol) {
11419 		default:
11420 			return false;
11421 		case htons(ETH_P_IP):
11422 			return true;
11423 		case htons(ETH_P_IPV6):
11424 			fallthrough;
11425 		}
11426 	}
11427 	case IPPROTO_IPV6:
11428 		/* Check ext headers of inner ipv6 */
11429 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11430 					 NULL);
11431 	}
11432 	return false;
11433 }
11434 
11435 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11436 					     struct net_device *dev,
11437 					     netdev_features_t features)
11438 {
11439 	struct bnxt *bp = netdev_priv(dev);
11440 	u8 *l4_proto;
11441 
11442 	features = vlan_features_check(skb, features);
11443 	switch (vlan_get_protocol(skb)) {
11444 	case htons(ETH_P_IP):
11445 		if (!skb->encapsulation)
11446 			return features;
11447 		l4_proto = &ip_hdr(skb)->protocol;
11448 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11449 			return features;
11450 		break;
11451 	case htons(ETH_P_IPV6):
11452 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11453 				       &l4_proto))
11454 			break;
11455 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11456 			return features;
11457 		break;
11458 	}
11459 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11460 }
11461 
11462 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11463 			 u32 *reg_buf)
11464 {
11465 	struct hwrm_dbg_read_direct_output *resp;
11466 	struct hwrm_dbg_read_direct_input *req;
11467 	__le32 *dbg_reg_buf;
11468 	dma_addr_t mapping;
11469 	int rc, i;
11470 
11471 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11472 	if (rc)
11473 		return rc;
11474 
11475 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11476 					 &mapping);
11477 	if (!dbg_reg_buf) {
11478 		rc = -ENOMEM;
11479 		goto dbg_rd_reg_exit;
11480 	}
11481 
11482 	req->host_dest_addr = cpu_to_le64(mapping);
11483 
11484 	resp = hwrm_req_hold(bp, req);
11485 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11486 	req->read_len32 = cpu_to_le32(num_words);
11487 
11488 	rc = hwrm_req_send(bp, req);
11489 	if (rc || resp->error_code) {
11490 		rc = -EIO;
11491 		goto dbg_rd_reg_exit;
11492 	}
11493 	for (i = 0; i < num_words; i++)
11494 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11495 
11496 dbg_rd_reg_exit:
11497 	hwrm_req_drop(bp, req);
11498 	return rc;
11499 }
11500 
11501 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11502 				       u32 ring_id, u32 *prod, u32 *cons)
11503 {
11504 	struct hwrm_dbg_ring_info_get_output *resp;
11505 	struct hwrm_dbg_ring_info_get_input *req;
11506 	int rc;
11507 
11508 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11509 	if (rc)
11510 		return rc;
11511 
11512 	req->ring_type = ring_type;
11513 	req->fw_ring_id = cpu_to_le32(ring_id);
11514 	resp = hwrm_req_hold(bp, req);
11515 	rc = hwrm_req_send(bp, req);
11516 	if (!rc) {
11517 		*prod = le32_to_cpu(resp->producer_index);
11518 		*cons = le32_to_cpu(resp->consumer_index);
11519 	}
11520 	hwrm_req_drop(bp, req);
11521 	return rc;
11522 }
11523 
11524 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11525 {
11526 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11527 	int i = bnapi->index;
11528 
11529 	if (!txr)
11530 		return;
11531 
11532 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11533 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11534 		    txr->tx_cons);
11535 }
11536 
11537 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11538 {
11539 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11540 	int i = bnapi->index;
11541 
11542 	if (!rxr)
11543 		return;
11544 
11545 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11546 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11547 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11548 		    rxr->rx_sw_agg_prod);
11549 }
11550 
11551 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11552 {
11553 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11554 	int i = bnapi->index;
11555 
11556 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11557 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11558 }
11559 
11560 static void bnxt_dbg_dump_states(struct bnxt *bp)
11561 {
11562 	int i;
11563 	struct bnxt_napi *bnapi;
11564 
11565 	for (i = 0; i < bp->cp_nr_rings; i++) {
11566 		bnapi = bp->bnapi[i];
11567 		if (netif_msg_drv(bp)) {
11568 			bnxt_dump_tx_sw_state(bnapi);
11569 			bnxt_dump_rx_sw_state(bnapi);
11570 			bnxt_dump_cp_sw_state(bnapi);
11571 		}
11572 	}
11573 }
11574 
11575 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11576 {
11577 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11578 	struct hwrm_ring_reset_input *req;
11579 	struct bnxt_napi *bnapi = rxr->bnapi;
11580 	struct bnxt_cp_ring_info *cpr;
11581 	u16 cp_ring_id;
11582 	int rc;
11583 
11584 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11585 	if (rc)
11586 		return rc;
11587 
11588 	cpr = &bnapi->cp_ring;
11589 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11590 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11591 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11592 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11593 	return hwrm_req_send_silent(bp, req);
11594 }
11595 
11596 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11597 {
11598 	if (!silent)
11599 		bnxt_dbg_dump_states(bp);
11600 	if (netif_running(bp->dev)) {
11601 		int rc;
11602 
11603 		if (silent) {
11604 			bnxt_close_nic(bp, false, false);
11605 			bnxt_open_nic(bp, false, false);
11606 		} else {
11607 			bnxt_ulp_stop(bp);
11608 			bnxt_close_nic(bp, true, false);
11609 			rc = bnxt_open_nic(bp, true, false);
11610 			bnxt_ulp_start(bp, rc);
11611 		}
11612 	}
11613 }
11614 
11615 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11616 {
11617 	struct bnxt *bp = netdev_priv(dev);
11618 
11619 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11620 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11621 	bnxt_queue_sp_work(bp);
11622 }
11623 
11624 static void bnxt_fw_health_check(struct bnxt *bp)
11625 {
11626 	struct bnxt_fw_health *fw_health = bp->fw_health;
11627 	u32 val;
11628 
11629 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11630 		return;
11631 
11632 	/* Make sure it is enabled before checking the tmr_counter. */
11633 	smp_rmb();
11634 	if (fw_health->tmr_counter) {
11635 		fw_health->tmr_counter--;
11636 		return;
11637 	}
11638 
11639 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11640 	if (val == fw_health->last_fw_heartbeat) {
11641 		fw_health->arrests++;
11642 		goto fw_reset;
11643 	}
11644 
11645 	fw_health->last_fw_heartbeat = val;
11646 
11647 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11648 	if (val != fw_health->last_fw_reset_cnt) {
11649 		fw_health->discoveries++;
11650 		goto fw_reset;
11651 	}
11652 
11653 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11654 	return;
11655 
11656 fw_reset:
11657 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11658 	bnxt_queue_sp_work(bp);
11659 }
11660 
11661 static void bnxt_timer(struct timer_list *t)
11662 {
11663 	struct bnxt *bp = from_timer(bp, t, timer);
11664 	struct net_device *dev = bp->dev;
11665 
11666 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11667 		return;
11668 
11669 	if (atomic_read(&bp->intr_sem) != 0)
11670 		goto bnxt_restart_timer;
11671 
11672 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11673 		bnxt_fw_health_check(bp);
11674 
11675 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11676 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11677 		bnxt_queue_sp_work(bp);
11678 	}
11679 
11680 	if (bnxt_tc_flower_enabled(bp)) {
11681 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11682 		bnxt_queue_sp_work(bp);
11683 	}
11684 
11685 #ifdef CONFIG_RFS_ACCEL
11686 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11687 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11688 		bnxt_queue_sp_work(bp);
11689 	}
11690 #endif /*CONFIG_RFS_ACCEL*/
11691 
11692 	if (bp->link_info.phy_retry) {
11693 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11694 			bp->link_info.phy_retry = false;
11695 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11696 		} else {
11697 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11698 			bnxt_queue_sp_work(bp);
11699 		}
11700 	}
11701 
11702 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11703 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11704 		bnxt_queue_sp_work(bp);
11705 	}
11706 
11707 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11708 	    netif_carrier_ok(dev)) {
11709 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11710 		bnxt_queue_sp_work(bp);
11711 	}
11712 bnxt_restart_timer:
11713 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11714 }
11715 
11716 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11717 {
11718 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11719 	 * set.  If the device is being closed, bnxt_close() may be holding
11720 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11721 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11722 	 */
11723 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11724 	rtnl_lock();
11725 }
11726 
11727 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11728 {
11729 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11730 	rtnl_unlock();
11731 }
11732 
11733 /* Only called from bnxt_sp_task() */
11734 static void bnxt_reset(struct bnxt *bp, bool silent)
11735 {
11736 	bnxt_rtnl_lock_sp(bp);
11737 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11738 		bnxt_reset_task(bp, silent);
11739 	bnxt_rtnl_unlock_sp(bp);
11740 }
11741 
11742 /* Only called from bnxt_sp_task() */
11743 static void bnxt_rx_ring_reset(struct bnxt *bp)
11744 {
11745 	int i;
11746 
11747 	bnxt_rtnl_lock_sp(bp);
11748 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11749 		bnxt_rtnl_unlock_sp(bp);
11750 		return;
11751 	}
11752 	/* Disable and flush TPA before resetting the RX ring */
11753 	if (bp->flags & BNXT_FLAG_TPA)
11754 		bnxt_set_tpa(bp, false);
11755 	for (i = 0; i < bp->rx_nr_rings; i++) {
11756 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11757 		struct bnxt_cp_ring_info *cpr;
11758 		int rc;
11759 
11760 		if (!rxr->bnapi->in_reset)
11761 			continue;
11762 
11763 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11764 		if (rc) {
11765 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11766 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11767 			else
11768 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11769 					    rc);
11770 			bnxt_reset_task(bp, true);
11771 			break;
11772 		}
11773 		bnxt_free_one_rx_ring_skbs(bp, i);
11774 		rxr->rx_prod = 0;
11775 		rxr->rx_agg_prod = 0;
11776 		rxr->rx_sw_agg_prod = 0;
11777 		rxr->rx_next_cons = 0;
11778 		rxr->bnapi->in_reset = false;
11779 		bnxt_alloc_one_rx_ring(bp, i);
11780 		cpr = &rxr->bnapi->cp_ring;
11781 		cpr->sw_stats.rx.rx_resets++;
11782 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11783 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11784 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11785 	}
11786 	if (bp->flags & BNXT_FLAG_TPA)
11787 		bnxt_set_tpa(bp, true);
11788 	bnxt_rtnl_unlock_sp(bp);
11789 }
11790 
11791 static void bnxt_fw_reset_close(struct bnxt *bp)
11792 {
11793 	bnxt_ulp_stop(bp);
11794 	/* When firmware is in fatal state, quiesce device and disable
11795 	 * bus master to prevent any potential bad DMAs before freeing
11796 	 * kernel memory.
11797 	 */
11798 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11799 		u16 val = 0;
11800 
11801 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11802 		if (val == 0xffff)
11803 			bp->fw_reset_min_dsecs = 0;
11804 		bnxt_tx_disable(bp);
11805 		bnxt_disable_napi(bp);
11806 		bnxt_disable_int_sync(bp);
11807 		bnxt_free_irq(bp);
11808 		bnxt_clear_int_mode(bp);
11809 		pci_disable_device(bp->pdev);
11810 	}
11811 	__bnxt_close_nic(bp, true, false);
11812 	bnxt_vf_reps_free(bp);
11813 	bnxt_clear_int_mode(bp);
11814 	bnxt_hwrm_func_drv_unrgtr(bp);
11815 	if (pci_is_enabled(bp->pdev))
11816 		pci_disable_device(bp->pdev);
11817 	bnxt_free_ctx_mem(bp);
11818 	kfree(bp->ctx);
11819 	bp->ctx = NULL;
11820 }
11821 
11822 static bool is_bnxt_fw_ok(struct bnxt *bp)
11823 {
11824 	struct bnxt_fw_health *fw_health = bp->fw_health;
11825 	bool no_heartbeat = false, has_reset = false;
11826 	u32 val;
11827 
11828 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11829 	if (val == fw_health->last_fw_heartbeat)
11830 		no_heartbeat = true;
11831 
11832 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11833 	if (val != fw_health->last_fw_reset_cnt)
11834 		has_reset = true;
11835 
11836 	if (!no_heartbeat && has_reset)
11837 		return true;
11838 
11839 	return false;
11840 }
11841 
11842 /* rtnl_lock is acquired before calling this function */
11843 static void bnxt_force_fw_reset(struct bnxt *bp)
11844 {
11845 	struct bnxt_fw_health *fw_health = bp->fw_health;
11846 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11847 	u32 wait_dsecs;
11848 
11849 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11850 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11851 		return;
11852 
11853 	if (ptp) {
11854 		spin_lock_bh(&ptp->ptp_lock);
11855 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11856 		spin_unlock_bh(&ptp->ptp_lock);
11857 	} else {
11858 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11859 	}
11860 	bnxt_fw_reset_close(bp);
11861 	wait_dsecs = fw_health->master_func_wait_dsecs;
11862 	if (fw_health->primary) {
11863 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11864 			wait_dsecs = 0;
11865 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11866 	} else {
11867 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11868 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11869 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11870 	}
11871 
11872 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11873 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11874 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11875 }
11876 
11877 void bnxt_fw_exception(struct bnxt *bp)
11878 {
11879 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11880 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11881 	bnxt_rtnl_lock_sp(bp);
11882 	bnxt_force_fw_reset(bp);
11883 	bnxt_rtnl_unlock_sp(bp);
11884 }
11885 
11886 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11887  * < 0 on error.
11888  */
11889 static int bnxt_get_registered_vfs(struct bnxt *bp)
11890 {
11891 #ifdef CONFIG_BNXT_SRIOV
11892 	int rc;
11893 
11894 	if (!BNXT_PF(bp))
11895 		return 0;
11896 
11897 	rc = bnxt_hwrm_func_qcfg(bp);
11898 	if (rc) {
11899 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11900 		return rc;
11901 	}
11902 	if (bp->pf.registered_vfs)
11903 		return bp->pf.registered_vfs;
11904 	if (bp->sriov_cfg)
11905 		return 1;
11906 #endif
11907 	return 0;
11908 }
11909 
11910 void bnxt_fw_reset(struct bnxt *bp)
11911 {
11912 	bnxt_rtnl_lock_sp(bp);
11913 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11914 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11915 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11916 		int n = 0, tmo;
11917 
11918 		if (ptp) {
11919 			spin_lock_bh(&ptp->ptp_lock);
11920 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11921 			spin_unlock_bh(&ptp->ptp_lock);
11922 		} else {
11923 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11924 		}
11925 		if (bp->pf.active_vfs &&
11926 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11927 			n = bnxt_get_registered_vfs(bp);
11928 		if (n < 0) {
11929 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11930 				   n);
11931 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11932 			dev_close(bp->dev);
11933 			goto fw_reset_exit;
11934 		} else if (n > 0) {
11935 			u16 vf_tmo_dsecs = n * 10;
11936 
11937 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11938 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11939 			bp->fw_reset_state =
11940 				BNXT_FW_RESET_STATE_POLL_VF;
11941 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11942 			goto fw_reset_exit;
11943 		}
11944 		bnxt_fw_reset_close(bp);
11945 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11946 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11947 			tmo = HZ / 10;
11948 		} else {
11949 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11950 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11951 		}
11952 		bnxt_queue_fw_reset_work(bp, tmo);
11953 	}
11954 fw_reset_exit:
11955 	bnxt_rtnl_unlock_sp(bp);
11956 }
11957 
11958 static void bnxt_chk_missed_irq(struct bnxt *bp)
11959 {
11960 	int i;
11961 
11962 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11963 		return;
11964 
11965 	for (i = 0; i < bp->cp_nr_rings; i++) {
11966 		struct bnxt_napi *bnapi = bp->bnapi[i];
11967 		struct bnxt_cp_ring_info *cpr;
11968 		u32 fw_ring_id;
11969 		int j;
11970 
11971 		if (!bnapi)
11972 			continue;
11973 
11974 		cpr = &bnapi->cp_ring;
11975 		for (j = 0; j < 2; j++) {
11976 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11977 			u32 val[2];
11978 
11979 			if (!cpr2 || cpr2->has_more_work ||
11980 			    !bnxt_has_work(bp, cpr2))
11981 				continue;
11982 
11983 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11984 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11985 				continue;
11986 			}
11987 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11988 			bnxt_dbg_hwrm_ring_info_get(bp,
11989 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11990 				fw_ring_id, &val[0], &val[1]);
11991 			cpr->sw_stats.cmn.missed_irqs++;
11992 		}
11993 	}
11994 }
11995 
11996 static void bnxt_cfg_ntp_filters(struct bnxt *);
11997 
11998 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11999 {
12000 	struct bnxt_link_info *link_info = &bp->link_info;
12001 
12002 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
12003 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12004 		if (bp->hwrm_spec_code >= 0x10201) {
12005 			if (link_info->auto_pause_setting &
12006 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12007 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12008 		} else {
12009 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12010 		}
12011 		link_info->advertising = link_info->auto_link_speeds;
12012 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
12013 	} else {
12014 		link_info->req_link_speed = link_info->force_link_speed;
12015 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
12016 		if (link_info->force_pam4_link_speed) {
12017 			link_info->req_link_speed =
12018 				link_info->force_pam4_link_speed;
12019 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
12020 		}
12021 		link_info->req_duplex = link_info->duplex_setting;
12022 	}
12023 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12024 		link_info->req_flow_ctrl =
12025 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12026 	else
12027 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12028 }
12029 
12030 static void bnxt_fw_echo_reply(struct bnxt *bp)
12031 {
12032 	struct bnxt_fw_health *fw_health = bp->fw_health;
12033 	struct hwrm_func_echo_response_input *req;
12034 	int rc;
12035 
12036 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12037 	if (rc)
12038 		return;
12039 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12040 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12041 	hwrm_req_send(bp, req);
12042 }
12043 
12044 static void bnxt_sp_task(struct work_struct *work)
12045 {
12046 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12047 
12048 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12049 	smp_mb__after_atomic();
12050 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12051 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12052 		return;
12053 	}
12054 
12055 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12056 		bnxt_cfg_rx_mode(bp);
12057 
12058 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12059 		bnxt_cfg_ntp_filters(bp);
12060 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12061 		bnxt_hwrm_exec_fwd_req(bp);
12062 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12063 		bnxt_hwrm_port_qstats(bp, 0);
12064 		bnxt_hwrm_port_qstats_ext(bp, 0);
12065 		bnxt_accumulate_all_stats(bp);
12066 	}
12067 
12068 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12069 		int rc;
12070 
12071 		mutex_lock(&bp->link_lock);
12072 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12073 				       &bp->sp_event))
12074 			bnxt_hwrm_phy_qcaps(bp);
12075 
12076 		rc = bnxt_update_link(bp, true);
12077 		if (rc)
12078 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12079 				   rc);
12080 
12081 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12082 				       &bp->sp_event))
12083 			bnxt_init_ethtool_link_settings(bp);
12084 		mutex_unlock(&bp->link_lock);
12085 	}
12086 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12087 		int rc;
12088 
12089 		mutex_lock(&bp->link_lock);
12090 		rc = bnxt_update_phy_setting(bp);
12091 		mutex_unlock(&bp->link_lock);
12092 		if (rc) {
12093 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12094 		} else {
12095 			bp->link_info.phy_retry = false;
12096 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12097 		}
12098 	}
12099 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12100 		mutex_lock(&bp->link_lock);
12101 		bnxt_get_port_module_status(bp);
12102 		mutex_unlock(&bp->link_lock);
12103 	}
12104 
12105 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12106 		bnxt_tc_flow_stats_work(bp);
12107 
12108 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12109 		bnxt_chk_missed_irq(bp);
12110 
12111 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12112 		bnxt_fw_echo_reply(bp);
12113 
12114 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12115 	 * must be the last functions to be called before exiting.
12116 	 */
12117 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12118 		bnxt_reset(bp, false);
12119 
12120 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12121 		bnxt_reset(bp, true);
12122 
12123 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12124 		bnxt_rx_ring_reset(bp);
12125 
12126 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12127 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12128 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12129 			bnxt_devlink_health_fw_report(bp);
12130 		else
12131 			bnxt_fw_reset(bp);
12132 	}
12133 
12134 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12135 		if (!is_bnxt_fw_ok(bp))
12136 			bnxt_devlink_health_fw_report(bp);
12137 	}
12138 
12139 	smp_mb__before_atomic();
12140 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12141 }
12142 
12143 /* Under rtnl_lock */
12144 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12145 		     int tx_xdp)
12146 {
12147 	int max_rx, max_tx, tx_sets = 1;
12148 	int tx_rings_needed, stats;
12149 	int rx_rings = rx;
12150 	int cp, vnics, rc;
12151 
12152 	if (tcs)
12153 		tx_sets = tcs;
12154 
12155 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12156 	if (rc)
12157 		return rc;
12158 
12159 	if (max_rx < rx)
12160 		return -ENOMEM;
12161 
12162 	tx_rings_needed = tx * tx_sets + tx_xdp;
12163 	if (max_tx < tx_rings_needed)
12164 		return -ENOMEM;
12165 
12166 	vnics = 1;
12167 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12168 		vnics += rx_rings;
12169 
12170 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12171 		rx_rings <<= 1;
12172 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12173 	stats = cp;
12174 	if (BNXT_NEW_RM(bp)) {
12175 		cp += bnxt_get_ulp_msix_num(bp);
12176 		stats += bnxt_get_ulp_stat_ctxs(bp);
12177 	}
12178 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12179 				     stats, vnics);
12180 }
12181 
12182 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12183 {
12184 	if (bp->bar2) {
12185 		pci_iounmap(pdev, bp->bar2);
12186 		bp->bar2 = NULL;
12187 	}
12188 
12189 	if (bp->bar1) {
12190 		pci_iounmap(pdev, bp->bar1);
12191 		bp->bar1 = NULL;
12192 	}
12193 
12194 	if (bp->bar0) {
12195 		pci_iounmap(pdev, bp->bar0);
12196 		bp->bar0 = NULL;
12197 	}
12198 }
12199 
12200 static void bnxt_cleanup_pci(struct bnxt *bp)
12201 {
12202 	bnxt_unmap_bars(bp, bp->pdev);
12203 	pci_release_regions(bp->pdev);
12204 	if (pci_is_enabled(bp->pdev))
12205 		pci_disable_device(bp->pdev);
12206 }
12207 
12208 static void bnxt_init_dflt_coal(struct bnxt *bp)
12209 {
12210 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12211 	struct bnxt_coal *coal;
12212 	u16 flags = 0;
12213 
12214 	if (coal_cap->cmpl_params &
12215 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12216 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12217 
12218 	/* Tick values in micro seconds.
12219 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12220 	 */
12221 	coal = &bp->rx_coal;
12222 	coal->coal_ticks = 10;
12223 	coal->coal_bufs = 30;
12224 	coal->coal_ticks_irq = 1;
12225 	coal->coal_bufs_irq = 2;
12226 	coal->idle_thresh = 50;
12227 	coal->bufs_per_record = 2;
12228 	coal->budget = 64;		/* NAPI budget */
12229 	coal->flags = flags;
12230 
12231 	coal = &bp->tx_coal;
12232 	coal->coal_ticks = 28;
12233 	coal->coal_bufs = 30;
12234 	coal->coal_ticks_irq = 2;
12235 	coal->coal_bufs_irq = 2;
12236 	coal->bufs_per_record = 1;
12237 	coal->flags = flags;
12238 
12239 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12240 }
12241 
12242 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12243 {
12244 	int rc;
12245 
12246 	bp->fw_cap = 0;
12247 	rc = bnxt_hwrm_ver_get(bp);
12248 	bnxt_try_map_fw_health_reg(bp);
12249 	if (rc) {
12250 		rc = bnxt_try_recover_fw(bp);
12251 		if (rc)
12252 			return rc;
12253 		rc = bnxt_hwrm_ver_get(bp);
12254 		if (rc)
12255 			return rc;
12256 	}
12257 
12258 	bnxt_nvm_cfg_ver_get(bp);
12259 
12260 	rc = bnxt_hwrm_func_reset(bp);
12261 	if (rc)
12262 		return -ENODEV;
12263 
12264 	bnxt_hwrm_fw_set_time(bp);
12265 	return 0;
12266 }
12267 
12268 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12269 {
12270 	int rc;
12271 
12272 	/* Get the MAX capabilities for this function */
12273 	rc = bnxt_hwrm_func_qcaps(bp);
12274 	if (rc) {
12275 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12276 			   rc);
12277 		return -ENODEV;
12278 	}
12279 
12280 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12281 	if (rc)
12282 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12283 			    rc);
12284 
12285 	if (bnxt_alloc_fw_health(bp)) {
12286 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12287 	} else {
12288 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12289 		if (rc)
12290 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12291 				    rc);
12292 	}
12293 
12294 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12295 	if (rc)
12296 		return -ENODEV;
12297 
12298 	bnxt_hwrm_func_qcfg(bp);
12299 	bnxt_hwrm_vnic_qcaps(bp);
12300 	bnxt_hwrm_port_led_qcaps(bp);
12301 	bnxt_ethtool_init(bp);
12302 	bnxt_dcb_init(bp);
12303 	return 0;
12304 }
12305 
12306 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12307 {
12308 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12309 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12310 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12311 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12312 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12313 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
12314 		bp->rss_hash_delta = bp->rss_hash_cfg;
12315 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12316 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12317 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12318 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12319 	}
12320 }
12321 
12322 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12323 {
12324 	struct net_device *dev = bp->dev;
12325 
12326 	dev->hw_features &= ~NETIF_F_NTUPLE;
12327 	dev->features &= ~NETIF_F_NTUPLE;
12328 	bp->flags &= ~BNXT_FLAG_RFS;
12329 	if (bnxt_rfs_supported(bp)) {
12330 		dev->hw_features |= NETIF_F_NTUPLE;
12331 		if (bnxt_rfs_capable(bp)) {
12332 			bp->flags |= BNXT_FLAG_RFS;
12333 			dev->features |= NETIF_F_NTUPLE;
12334 		}
12335 	}
12336 }
12337 
12338 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12339 {
12340 	struct pci_dev *pdev = bp->pdev;
12341 
12342 	bnxt_set_dflt_rss_hash_type(bp);
12343 	bnxt_set_dflt_rfs(bp);
12344 
12345 	bnxt_get_wol_settings(bp);
12346 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12347 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12348 	else
12349 		device_set_wakeup_capable(&pdev->dev, false);
12350 
12351 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12352 	bnxt_hwrm_coal_params_qcaps(bp);
12353 }
12354 
12355 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12356 
12357 int bnxt_fw_init_one(struct bnxt *bp)
12358 {
12359 	int rc;
12360 
12361 	rc = bnxt_fw_init_one_p1(bp);
12362 	if (rc) {
12363 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12364 		return rc;
12365 	}
12366 	rc = bnxt_fw_init_one_p2(bp);
12367 	if (rc) {
12368 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12369 		return rc;
12370 	}
12371 	rc = bnxt_probe_phy(bp, false);
12372 	if (rc)
12373 		return rc;
12374 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12375 	if (rc)
12376 		return rc;
12377 
12378 	bnxt_fw_init_one_p3(bp);
12379 	return 0;
12380 }
12381 
12382 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12383 {
12384 	struct bnxt_fw_health *fw_health = bp->fw_health;
12385 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12386 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12387 	u32 reg_type, reg_off, delay_msecs;
12388 
12389 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12390 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12391 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12392 	switch (reg_type) {
12393 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12394 		pci_write_config_dword(bp->pdev, reg_off, val);
12395 		break;
12396 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12397 		writel(reg_off & BNXT_GRC_BASE_MASK,
12398 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12399 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12400 		fallthrough;
12401 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12402 		writel(val, bp->bar0 + reg_off);
12403 		break;
12404 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12405 		writel(val, bp->bar1 + reg_off);
12406 		break;
12407 	}
12408 	if (delay_msecs) {
12409 		pci_read_config_dword(bp->pdev, 0, &val);
12410 		msleep(delay_msecs);
12411 	}
12412 }
12413 
12414 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12415 {
12416 	struct hwrm_func_qcfg_output *resp;
12417 	struct hwrm_func_qcfg_input *req;
12418 	bool result = true; /* firmware will enforce if unknown */
12419 
12420 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12421 		return result;
12422 
12423 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12424 		return result;
12425 
12426 	req->fid = cpu_to_le16(0xffff);
12427 	resp = hwrm_req_hold(bp, req);
12428 	if (!hwrm_req_send(bp, req))
12429 		result = !!(le16_to_cpu(resp->flags) &
12430 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12431 	hwrm_req_drop(bp, req);
12432 	return result;
12433 }
12434 
12435 static void bnxt_reset_all(struct bnxt *bp)
12436 {
12437 	struct bnxt_fw_health *fw_health = bp->fw_health;
12438 	int i, rc;
12439 
12440 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12441 		bnxt_fw_reset_via_optee(bp);
12442 		bp->fw_reset_timestamp = jiffies;
12443 		return;
12444 	}
12445 
12446 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12447 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12448 			bnxt_fw_reset_writel(bp, i);
12449 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12450 		struct hwrm_fw_reset_input *req;
12451 
12452 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12453 		if (!rc) {
12454 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12455 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12456 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12457 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12458 			rc = hwrm_req_send(bp, req);
12459 		}
12460 		if (rc != -ENODEV)
12461 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12462 	}
12463 	bp->fw_reset_timestamp = jiffies;
12464 }
12465 
12466 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12467 {
12468 	return time_after(jiffies, bp->fw_reset_timestamp +
12469 			  (bp->fw_reset_max_dsecs * HZ / 10));
12470 }
12471 
12472 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12473 {
12474 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12475 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12476 		bnxt_ulp_start(bp, rc);
12477 		bnxt_dl_health_fw_status_update(bp, false);
12478 	}
12479 	bp->fw_reset_state = 0;
12480 	dev_close(bp->dev);
12481 }
12482 
12483 static void bnxt_fw_reset_task(struct work_struct *work)
12484 {
12485 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12486 	int rc = 0;
12487 
12488 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12489 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12490 		return;
12491 	}
12492 
12493 	switch (bp->fw_reset_state) {
12494 	case BNXT_FW_RESET_STATE_POLL_VF: {
12495 		int n = bnxt_get_registered_vfs(bp);
12496 		int tmo;
12497 
12498 		if (n < 0) {
12499 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12500 				   n, jiffies_to_msecs(jiffies -
12501 				   bp->fw_reset_timestamp));
12502 			goto fw_reset_abort;
12503 		} else if (n > 0) {
12504 			if (bnxt_fw_reset_timeout(bp)) {
12505 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12506 				bp->fw_reset_state = 0;
12507 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12508 					   n);
12509 				return;
12510 			}
12511 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12512 			return;
12513 		}
12514 		bp->fw_reset_timestamp = jiffies;
12515 		rtnl_lock();
12516 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12517 			bnxt_fw_reset_abort(bp, rc);
12518 			rtnl_unlock();
12519 			return;
12520 		}
12521 		bnxt_fw_reset_close(bp);
12522 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12523 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12524 			tmo = HZ / 10;
12525 		} else {
12526 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12527 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12528 		}
12529 		rtnl_unlock();
12530 		bnxt_queue_fw_reset_work(bp, tmo);
12531 		return;
12532 	}
12533 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12534 		u32 val;
12535 
12536 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12537 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12538 		    !bnxt_fw_reset_timeout(bp)) {
12539 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12540 			return;
12541 		}
12542 
12543 		if (!bp->fw_health->primary) {
12544 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12545 
12546 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12547 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12548 			return;
12549 		}
12550 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12551 	}
12552 		fallthrough;
12553 	case BNXT_FW_RESET_STATE_RESET_FW:
12554 		bnxt_reset_all(bp);
12555 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12556 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12557 		return;
12558 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12559 		bnxt_inv_fw_health_reg(bp);
12560 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12561 		    !bp->fw_reset_min_dsecs) {
12562 			u16 val;
12563 
12564 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12565 			if (val == 0xffff) {
12566 				if (bnxt_fw_reset_timeout(bp)) {
12567 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12568 					rc = -ETIMEDOUT;
12569 					goto fw_reset_abort;
12570 				}
12571 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12572 				return;
12573 			}
12574 		}
12575 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12576 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12577 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12578 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12579 			bnxt_dl_remote_reload(bp);
12580 		if (pci_enable_device(bp->pdev)) {
12581 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12582 			rc = -ENODEV;
12583 			goto fw_reset_abort;
12584 		}
12585 		pci_set_master(bp->pdev);
12586 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12587 		fallthrough;
12588 	case BNXT_FW_RESET_STATE_POLL_FW:
12589 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12590 		rc = bnxt_hwrm_poll(bp);
12591 		if (rc) {
12592 			if (bnxt_fw_reset_timeout(bp)) {
12593 				netdev_err(bp->dev, "Firmware reset aborted\n");
12594 				goto fw_reset_abort_status;
12595 			}
12596 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12597 			return;
12598 		}
12599 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12600 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12601 		fallthrough;
12602 	case BNXT_FW_RESET_STATE_OPENING:
12603 		while (!rtnl_trylock()) {
12604 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12605 			return;
12606 		}
12607 		rc = bnxt_open(bp->dev);
12608 		if (rc) {
12609 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12610 			bnxt_fw_reset_abort(bp, rc);
12611 			rtnl_unlock();
12612 			return;
12613 		}
12614 
12615 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12616 		    bp->fw_health->enabled) {
12617 			bp->fw_health->last_fw_reset_cnt =
12618 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12619 		}
12620 		bp->fw_reset_state = 0;
12621 		/* Make sure fw_reset_state is 0 before clearing the flag */
12622 		smp_mb__before_atomic();
12623 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12624 		bnxt_ulp_start(bp, 0);
12625 		bnxt_reenable_sriov(bp);
12626 		bnxt_vf_reps_alloc(bp);
12627 		bnxt_vf_reps_open(bp);
12628 		bnxt_ptp_reapply_pps(bp);
12629 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12630 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12631 			bnxt_dl_health_fw_recovery_done(bp);
12632 			bnxt_dl_health_fw_status_update(bp, true);
12633 		}
12634 		rtnl_unlock();
12635 		break;
12636 	}
12637 	return;
12638 
12639 fw_reset_abort_status:
12640 	if (bp->fw_health->status_reliable ||
12641 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12642 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12643 
12644 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12645 	}
12646 fw_reset_abort:
12647 	rtnl_lock();
12648 	bnxt_fw_reset_abort(bp, rc);
12649 	rtnl_unlock();
12650 }
12651 
12652 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12653 {
12654 	int rc;
12655 	struct bnxt *bp = netdev_priv(dev);
12656 
12657 	SET_NETDEV_DEV(dev, &pdev->dev);
12658 
12659 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12660 	rc = pci_enable_device(pdev);
12661 	if (rc) {
12662 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12663 		goto init_err;
12664 	}
12665 
12666 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12667 		dev_err(&pdev->dev,
12668 			"Cannot find PCI device base address, aborting\n");
12669 		rc = -ENODEV;
12670 		goto init_err_disable;
12671 	}
12672 
12673 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12674 	if (rc) {
12675 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12676 		goto init_err_disable;
12677 	}
12678 
12679 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12680 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12681 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12682 		rc = -EIO;
12683 		goto init_err_release;
12684 	}
12685 
12686 	pci_set_master(pdev);
12687 
12688 	bp->dev = dev;
12689 	bp->pdev = pdev;
12690 
12691 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12692 	 * determines the BAR size.
12693 	 */
12694 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12695 	if (!bp->bar0) {
12696 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12697 		rc = -ENOMEM;
12698 		goto init_err_release;
12699 	}
12700 
12701 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12702 	if (!bp->bar2) {
12703 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12704 		rc = -ENOMEM;
12705 		goto init_err_release;
12706 	}
12707 
12708 	pci_enable_pcie_error_reporting(pdev);
12709 
12710 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12711 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12712 
12713 	spin_lock_init(&bp->ntp_fltr_lock);
12714 #if BITS_PER_LONG == 32
12715 	spin_lock_init(&bp->db_lock);
12716 #endif
12717 
12718 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12719 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12720 
12721 	timer_setup(&bp->timer, bnxt_timer, 0);
12722 	bp->current_interval = BNXT_TIMER_INTERVAL;
12723 
12724 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12725 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12726 
12727 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12728 	return 0;
12729 
12730 init_err_release:
12731 	bnxt_unmap_bars(bp, pdev);
12732 	pci_release_regions(pdev);
12733 
12734 init_err_disable:
12735 	pci_disable_device(pdev);
12736 
12737 init_err:
12738 	return rc;
12739 }
12740 
12741 /* rtnl_lock held */
12742 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12743 {
12744 	struct sockaddr *addr = p;
12745 	struct bnxt *bp = netdev_priv(dev);
12746 	int rc = 0;
12747 
12748 	if (!is_valid_ether_addr(addr->sa_data))
12749 		return -EADDRNOTAVAIL;
12750 
12751 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12752 		return 0;
12753 
12754 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12755 	if (rc)
12756 		return rc;
12757 
12758 	eth_hw_addr_set(dev, addr->sa_data);
12759 	if (netif_running(dev)) {
12760 		bnxt_close_nic(bp, false, false);
12761 		rc = bnxt_open_nic(bp, false, false);
12762 	}
12763 
12764 	return rc;
12765 }
12766 
12767 /* rtnl_lock held */
12768 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12769 {
12770 	struct bnxt *bp = netdev_priv(dev);
12771 
12772 	if (netif_running(dev))
12773 		bnxt_close_nic(bp, true, false);
12774 
12775 	dev->mtu = new_mtu;
12776 	bnxt_set_ring_params(bp);
12777 
12778 	if (netif_running(dev))
12779 		return bnxt_open_nic(bp, true, false);
12780 
12781 	return 0;
12782 }
12783 
12784 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12785 {
12786 	struct bnxt *bp = netdev_priv(dev);
12787 	bool sh = false;
12788 	int rc;
12789 
12790 	if (tc > bp->max_tc) {
12791 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12792 			   tc, bp->max_tc);
12793 		return -EINVAL;
12794 	}
12795 
12796 	if (netdev_get_num_tc(dev) == tc)
12797 		return 0;
12798 
12799 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12800 		sh = true;
12801 
12802 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12803 			      sh, tc, bp->tx_nr_rings_xdp);
12804 	if (rc)
12805 		return rc;
12806 
12807 	/* Needs to close the device and do hw resource re-allocations */
12808 	if (netif_running(bp->dev))
12809 		bnxt_close_nic(bp, true, false);
12810 
12811 	if (tc) {
12812 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12813 		netdev_set_num_tc(dev, tc);
12814 	} else {
12815 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12816 		netdev_reset_tc(dev);
12817 	}
12818 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12819 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12820 			       bp->tx_nr_rings + bp->rx_nr_rings;
12821 
12822 	if (netif_running(bp->dev))
12823 		return bnxt_open_nic(bp, true, false);
12824 
12825 	return 0;
12826 }
12827 
12828 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12829 				  void *cb_priv)
12830 {
12831 	struct bnxt *bp = cb_priv;
12832 
12833 	if (!bnxt_tc_flower_enabled(bp) ||
12834 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12835 		return -EOPNOTSUPP;
12836 
12837 	switch (type) {
12838 	case TC_SETUP_CLSFLOWER:
12839 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12840 	default:
12841 		return -EOPNOTSUPP;
12842 	}
12843 }
12844 
12845 LIST_HEAD(bnxt_block_cb_list);
12846 
12847 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12848 			 void *type_data)
12849 {
12850 	struct bnxt *bp = netdev_priv(dev);
12851 
12852 	switch (type) {
12853 	case TC_SETUP_BLOCK:
12854 		return flow_block_cb_setup_simple(type_data,
12855 						  &bnxt_block_cb_list,
12856 						  bnxt_setup_tc_block_cb,
12857 						  bp, bp, true);
12858 	case TC_SETUP_QDISC_MQPRIO: {
12859 		struct tc_mqprio_qopt *mqprio = type_data;
12860 
12861 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12862 
12863 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12864 	}
12865 	default:
12866 		return -EOPNOTSUPP;
12867 	}
12868 }
12869 
12870 #ifdef CONFIG_RFS_ACCEL
12871 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12872 			    struct bnxt_ntuple_filter *f2)
12873 {
12874 	struct flow_keys *keys1 = &f1->fkeys;
12875 	struct flow_keys *keys2 = &f2->fkeys;
12876 
12877 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12878 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12879 		return false;
12880 
12881 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12882 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12883 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12884 			return false;
12885 	} else {
12886 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12887 			   sizeof(keys1->addrs.v6addrs.src)) ||
12888 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12889 			   sizeof(keys1->addrs.v6addrs.dst)))
12890 			return false;
12891 	}
12892 
12893 	if (keys1->ports.ports == keys2->ports.ports &&
12894 	    keys1->control.flags == keys2->control.flags &&
12895 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12896 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12897 		return true;
12898 
12899 	return false;
12900 }
12901 
12902 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12903 			      u16 rxq_index, u32 flow_id)
12904 {
12905 	struct bnxt *bp = netdev_priv(dev);
12906 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12907 	struct flow_keys *fkeys;
12908 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12909 	int rc = 0, idx, bit_id, l2_idx = 0;
12910 	struct hlist_head *head;
12911 	u32 flags;
12912 
12913 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12914 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12915 		int off = 0, j;
12916 
12917 		netif_addr_lock_bh(dev);
12918 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12919 			if (ether_addr_equal(eth->h_dest,
12920 					     vnic->uc_list + off)) {
12921 				l2_idx = j + 1;
12922 				break;
12923 			}
12924 		}
12925 		netif_addr_unlock_bh(dev);
12926 		if (!l2_idx)
12927 			return -EINVAL;
12928 	}
12929 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12930 	if (!new_fltr)
12931 		return -ENOMEM;
12932 
12933 	fkeys = &new_fltr->fkeys;
12934 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12935 		rc = -EPROTONOSUPPORT;
12936 		goto err_free;
12937 	}
12938 
12939 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12940 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12941 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12942 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12943 		rc = -EPROTONOSUPPORT;
12944 		goto err_free;
12945 	}
12946 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12947 	    bp->hwrm_spec_code < 0x10601) {
12948 		rc = -EPROTONOSUPPORT;
12949 		goto err_free;
12950 	}
12951 	flags = fkeys->control.flags;
12952 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12953 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12954 		rc = -EPROTONOSUPPORT;
12955 		goto err_free;
12956 	}
12957 
12958 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12959 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12960 
12961 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12962 	head = &bp->ntp_fltr_hash_tbl[idx];
12963 	rcu_read_lock();
12964 	hlist_for_each_entry_rcu(fltr, head, hash) {
12965 		if (bnxt_fltr_match(fltr, new_fltr)) {
12966 			rc = fltr->sw_id;
12967 			rcu_read_unlock();
12968 			goto err_free;
12969 		}
12970 	}
12971 	rcu_read_unlock();
12972 
12973 	spin_lock_bh(&bp->ntp_fltr_lock);
12974 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12975 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12976 	if (bit_id < 0) {
12977 		spin_unlock_bh(&bp->ntp_fltr_lock);
12978 		rc = -ENOMEM;
12979 		goto err_free;
12980 	}
12981 
12982 	new_fltr->sw_id = (u16)bit_id;
12983 	new_fltr->flow_id = flow_id;
12984 	new_fltr->l2_fltr_idx = l2_idx;
12985 	new_fltr->rxq = rxq_index;
12986 	hlist_add_head_rcu(&new_fltr->hash, head);
12987 	bp->ntp_fltr_count++;
12988 	spin_unlock_bh(&bp->ntp_fltr_lock);
12989 
12990 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12991 	bnxt_queue_sp_work(bp);
12992 
12993 	return new_fltr->sw_id;
12994 
12995 err_free:
12996 	kfree(new_fltr);
12997 	return rc;
12998 }
12999 
13000 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13001 {
13002 	int i;
13003 
13004 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
13005 		struct hlist_head *head;
13006 		struct hlist_node *tmp;
13007 		struct bnxt_ntuple_filter *fltr;
13008 		int rc;
13009 
13010 		head = &bp->ntp_fltr_hash_tbl[i];
13011 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
13012 			bool del = false;
13013 
13014 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
13015 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
13016 							fltr->flow_id,
13017 							fltr->sw_id)) {
13018 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13019 									 fltr);
13020 					del = true;
13021 				}
13022 			} else {
13023 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13024 								       fltr);
13025 				if (rc)
13026 					del = true;
13027 				else
13028 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13029 			}
13030 
13031 			if (del) {
13032 				spin_lock_bh(&bp->ntp_fltr_lock);
13033 				hlist_del_rcu(&fltr->hash);
13034 				bp->ntp_fltr_count--;
13035 				spin_unlock_bh(&bp->ntp_fltr_lock);
13036 				synchronize_rcu();
13037 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13038 				kfree(fltr);
13039 			}
13040 		}
13041 	}
13042 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13043 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13044 }
13045 
13046 #else
13047 
13048 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13049 {
13050 }
13051 
13052 #endif /* CONFIG_RFS_ACCEL */
13053 
13054 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
13055 {
13056 	struct bnxt *bp = netdev_priv(netdev);
13057 	struct udp_tunnel_info ti;
13058 	unsigned int cmd;
13059 
13060 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
13061 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
13062 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13063 	else
13064 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13065 
13066 	if (ti.port)
13067 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
13068 
13069 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13070 }
13071 
13072 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13073 	.sync_table	= bnxt_udp_tunnel_sync,
13074 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13075 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13076 	.tables		= {
13077 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13078 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13079 	},
13080 };
13081 
13082 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13083 			       struct net_device *dev, u32 filter_mask,
13084 			       int nlflags)
13085 {
13086 	struct bnxt *bp = netdev_priv(dev);
13087 
13088 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13089 				       nlflags, filter_mask, NULL);
13090 }
13091 
13092 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13093 			       u16 flags, struct netlink_ext_ack *extack)
13094 {
13095 	struct bnxt *bp = netdev_priv(dev);
13096 	struct nlattr *attr, *br_spec;
13097 	int rem, rc = 0;
13098 
13099 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13100 		return -EOPNOTSUPP;
13101 
13102 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13103 	if (!br_spec)
13104 		return -EINVAL;
13105 
13106 	nla_for_each_nested(attr, br_spec, rem) {
13107 		u16 mode;
13108 
13109 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13110 			continue;
13111 
13112 		if (nla_len(attr) < sizeof(mode))
13113 			return -EINVAL;
13114 
13115 		mode = nla_get_u16(attr);
13116 		if (mode == bp->br_mode)
13117 			break;
13118 
13119 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13120 		if (!rc)
13121 			bp->br_mode = mode;
13122 		break;
13123 	}
13124 	return rc;
13125 }
13126 
13127 int bnxt_get_port_parent_id(struct net_device *dev,
13128 			    struct netdev_phys_item_id *ppid)
13129 {
13130 	struct bnxt *bp = netdev_priv(dev);
13131 
13132 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13133 		return -EOPNOTSUPP;
13134 
13135 	/* The PF and it's VF-reps only support the switchdev framework */
13136 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13137 		return -EOPNOTSUPP;
13138 
13139 	ppid->id_len = sizeof(bp->dsn);
13140 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13141 
13142 	return 0;
13143 }
13144 
13145 static const struct net_device_ops bnxt_netdev_ops = {
13146 	.ndo_open		= bnxt_open,
13147 	.ndo_start_xmit		= bnxt_start_xmit,
13148 	.ndo_stop		= bnxt_close,
13149 	.ndo_get_stats64	= bnxt_get_stats64,
13150 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13151 	.ndo_eth_ioctl		= bnxt_ioctl,
13152 	.ndo_validate_addr	= eth_validate_addr,
13153 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13154 	.ndo_change_mtu		= bnxt_change_mtu,
13155 	.ndo_fix_features	= bnxt_fix_features,
13156 	.ndo_set_features	= bnxt_set_features,
13157 	.ndo_features_check	= bnxt_features_check,
13158 	.ndo_tx_timeout		= bnxt_tx_timeout,
13159 #ifdef CONFIG_BNXT_SRIOV
13160 	.ndo_get_vf_config	= bnxt_get_vf_config,
13161 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13162 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13163 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13164 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13165 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13166 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13167 #endif
13168 	.ndo_setup_tc           = bnxt_setup_tc,
13169 #ifdef CONFIG_RFS_ACCEL
13170 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13171 #endif
13172 	.ndo_bpf		= bnxt_xdp,
13173 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13174 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13175 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13176 };
13177 
13178 static void bnxt_remove_one(struct pci_dev *pdev)
13179 {
13180 	struct net_device *dev = pci_get_drvdata(pdev);
13181 	struct bnxt *bp = netdev_priv(dev);
13182 
13183 	if (BNXT_PF(bp))
13184 		bnxt_sriov_disable(bp);
13185 
13186 	bnxt_rdma_aux_device_uninit(bp);
13187 
13188 	bnxt_ptp_clear(bp);
13189 	pci_disable_pcie_error_reporting(pdev);
13190 	unregister_netdev(dev);
13191 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13192 	/* Flush any pending tasks */
13193 	cancel_work_sync(&bp->sp_task);
13194 	cancel_delayed_work_sync(&bp->fw_reset_task);
13195 	bp->sp_event = 0;
13196 
13197 	bnxt_dl_fw_reporters_destroy(bp);
13198 	bnxt_dl_unregister(bp);
13199 	bnxt_shutdown_tc(bp);
13200 
13201 	bnxt_clear_int_mode(bp);
13202 	bnxt_hwrm_func_drv_unrgtr(bp);
13203 	bnxt_free_hwrm_resources(bp);
13204 	bnxt_ethtool_free(bp);
13205 	bnxt_dcb_free(bp);
13206 	kfree(bp->ptp_cfg);
13207 	bp->ptp_cfg = NULL;
13208 	kfree(bp->fw_health);
13209 	bp->fw_health = NULL;
13210 	bnxt_cleanup_pci(bp);
13211 	bnxt_free_ctx_mem(bp);
13212 	kfree(bp->ctx);
13213 	bp->ctx = NULL;
13214 	kfree(bp->rss_indir_tbl);
13215 	bp->rss_indir_tbl = NULL;
13216 	bnxt_free_port_stats(bp);
13217 	free_netdev(dev);
13218 }
13219 
13220 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13221 {
13222 	int rc = 0;
13223 	struct bnxt_link_info *link_info = &bp->link_info;
13224 
13225 	bp->phy_flags = 0;
13226 	rc = bnxt_hwrm_phy_qcaps(bp);
13227 	if (rc) {
13228 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13229 			   rc);
13230 		return rc;
13231 	}
13232 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13233 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13234 	else
13235 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13236 	if (!fw_dflt)
13237 		return 0;
13238 
13239 	mutex_lock(&bp->link_lock);
13240 	rc = bnxt_update_link(bp, false);
13241 	if (rc) {
13242 		mutex_unlock(&bp->link_lock);
13243 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13244 			   rc);
13245 		return rc;
13246 	}
13247 
13248 	/* Older firmware does not have supported_auto_speeds, so assume
13249 	 * that all supported speeds can be autonegotiated.
13250 	 */
13251 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13252 		link_info->support_auto_speeds = link_info->support_speeds;
13253 
13254 	bnxt_init_ethtool_link_settings(bp);
13255 	mutex_unlock(&bp->link_lock);
13256 	return 0;
13257 }
13258 
13259 static int bnxt_get_max_irq(struct pci_dev *pdev)
13260 {
13261 	u16 ctrl;
13262 
13263 	if (!pdev->msix_cap)
13264 		return 1;
13265 
13266 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13267 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13268 }
13269 
13270 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13271 				int *max_cp)
13272 {
13273 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13274 	int max_ring_grps = 0, max_irq;
13275 
13276 	*max_tx = hw_resc->max_tx_rings;
13277 	*max_rx = hw_resc->max_rx_rings;
13278 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13279 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13280 			bnxt_get_ulp_msix_num(bp),
13281 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13282 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13283 		*max_cp = min_t(int, *max_cp, max_irq);
13284 	max_ring_grps = hw_resc->max_hw_ring_grps;
13285 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13286 		*max_cp -= 1;
13287 		*max_rx -= 2;
13288 	}
13289 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13290 		*max_rx >>= 1;
13291 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13292 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13293 		/* On P5 chips, max_cp output param should be available NQs */
13294 		*max_cp = max_irq;
13295 	}
13296 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13297 }
13298 
13299 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13300 {
13301 	int rx, tx, cp;
13302 
13303 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13304 	*max_rx = rx;
13305 	*max_tx = tx;
13306 	if (!rx || !tx || !cp)
13307 		return -ENOMEM;
13308 
13309 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13310 }
13311 
13312 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13313 			       bool shared)
13314 {
13315 	int rc;
13316 
13317 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13318 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13319 		/* Not enough rings, try disabling agg rings. */
13320 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13321 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13322 		if (rc) {
13323 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13324 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13325 			return rc;
13326 		}
13327 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13328 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13329 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13330 		bnxt_set_ring_params(bp);
13331 	}
13332 
13333 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13334 		int max_cp, max_stat, max_irq;
13335 
13336 		/* Reserve minimum resources for RoCE */
13337 		max_cp = bnxt_get_max_func_cp_rings(bp);
13338 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13339 		max_irq = bnxt_get_max_func_irqs(bp);
13340 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13341 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13342 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13343 			return 0;
13344 
13345 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13346 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13347 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13348 		max_cp = min_t(int, max_cp, max_irq);
13349 		max_cp = min_t(int, max_cp, max_stat);
13350 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13351 		if (rc)
13352 			rc = 0;
13353 	}
13354 	return rc;
13355 }
13356 
13357 /* In initial default shared ring setting, each shared ring must have a
13358  * RX/TX ring pair.
13359  */
13360 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13361 {
13362 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13363 	bp->rx_nr_rings = bp->cp_nr_rings;
13364 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13365 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13366 }
13367 
13368 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13369 {
13370 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13371 
13372 	if (!bnxt_can_reserve_rings(bp))
13373 		return 0;
13374 
13375 	if (sh)
13376 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13377 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13378 	/* Reduce default rings on multi-port cards so that total default
13379 	 * rings do not exceed CPU count.
13380 	 */
13381 	if (bp->port_count > 1) {
13382 		int max_rings =
13383 			max_t(int, num_online_cpus() / bp->port_count, 1);
13384 
13385 		dflt_rings = min_t(int, dflt_rings, max_rings);
13386 	}
13387 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13388 	if (rc)
13389 		return rc;
13390 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13391 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13392 	if (sh)
13393 		bnxt_trim_dflt_sh_rings(bp);
13394 	else
13395 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13396 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13397 
13398 	rc = __bnxt_reserve_rings(bp);
13399 	if (rc && rc != -ENODEV)
13400 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13401 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13402 	if (sh)
13403 		bnxt_trim_dflt_sh_rings(bp);
13404 
13405 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13406 	if (bnxt_need_reserve_rings(bp)) {
13407 		rc = __bnxt_reserve_rings(bp);
13408 		if (rc && rc != -ENODEV)
13409 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13410 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13411 	}
13412 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13413 		bp->rx_nr_rings++;
13414 		bp->cp_nr_rings++;
13415 	}
13416 	if (rc) {
13417 		bp->tx_nr_rings = 0;
13418 		bp->rx_nr_rings = 0;
13419 	}
13420 	return rc;
13421 }
13422 
13423 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13424 {
13425 	int rc;
13426 
13427 	if (bp->tx_nr_rings)
13428 		return 0;
13429 
13430 	bnxt_ulp_irq_stop(bp);
13431 	bnxt_clear_int_mode(bp);
13432 	rc = bnxt_set_dflt_rings(bp, true);
13433 	if (rc) {
13434 		if (BNXT_VF(bp) && rc == -ENODEV)
13435 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13436 		else
13437 			netdev_err(bp->dev, "Not enough rings available.\n");
13438 		goto init_dflt_ring_err;
13439 	}
13440 	rc = bnxt_init_int_mode(bp);
13441 	if (rc)
13442 		goto init_dflt_ring_err;
13443 
13444 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13445 
13446 	bnxt_set_dflt_rfs(bp);
13447 
13448 init_dflt_ring_err:
13449 	bnxt_ulp_irq_restart(bp, rc);
13450 	return rc;
13451 }
13452 
13453 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13454 {
13455 	int rc;
13456 
13457 	ASSERT_RTNL();
13458 	bnxt_hwrm_func_qcaps(bp);
13459 
13460 	if (netif_running(bp->dev))
13461 		__bnxt_close_nic(bp, true, false);
13462 
13463 	bnxt_ulp_irq_stop(bp);
13464 	bnxt_clear_int_mode(bp);
13465 	rc = bnxt_init_int_mode(bp);
13466 	bnxt_ulp_irq_restart(bp, rc);
13467 
13468 	if (netif_running(bp->dev)) {
13469 		if (rc)
13470 			dev_close(bp->dev);
13471 		else
13472 			rc = bnxt_open_nic(bp, true, false);
13473 	}
13474 
13475 	return rc;
13476 }
13477 
13478 static int bnxt_init_mac_addr(struct bnxt *bp)
13479 {
13480 	int rc = 0;
13481 
13482 	if (BNXT_PF(bp)) {
13483 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13484 	} else {
13485 #ifdef CONFIG_BNXT_SRIOV
13486 		struct bnxt_vf_info *vf = &bp->vf;
13487 		bool strict_approval = true;
13488 
13489 		if (is_valid_ether_addr(vf->mac_addr)) {
13490 			/* overwrite netdev dev_addr with admin VF MAC */
13491 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13492 			/* Older PF driver or firmware may not approve this
13493 			 * correctly.
13494 			 */
13495 			strict_approval = false;
13496 		} else {
13497 			eth_hw_addr_random(bp->dev);
13498 		}
13499 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13500 #endif
13501 	}
13502 	return rc;
13503 }
13504 
13505 static void bnxt_vpd_read_info(struct bnxt *bp)
13506 {
13507 	struct pci_dev *pdev = bp->pdev;
13508 	unsigned int vpd_size, kw_len;
13509 	int pos, size;
13510 	u8 *vpd_data;
13511 
13512 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13513 	if (IS_ERR(vpd_data)) {
13514 		pci_warn(pdev, "Unable to read VPD\n");
13515 		return;
13516 	}
13517 
13518 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13519 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13520 	if (pos < 0)
13521 		goto read_sn;
13522 
13523 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13524 	memcpy(bp->board_partno, &vpd_data[pos], size);
13525 
13526 read_sn:
13527 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13528 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13529 					   &kw_len);
13530 	if (pos < 0)
13531 		goto exit;
13532 
13533 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13534 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13535 exit:
13536 	kfree(vpd_data);
13537 }
13538 
13539 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13540 {
13541 	struct pci_dev *pdev = bp->pdev;
13542 	u64 qword;
13543 
13544 	qword = pci_get_dsn(pdev);
13545 	if (!qword) {
13546 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13547 		return -EOPNOTSUPP;
13548 	}
13549 
13550 	put_unaligned_le64(qword, dsn);
13551 
13552 	bp->flags |= BNXT_FLAG_DSN_VALID;
13553 	return 0;
13554 }
13555 
13556 static int bnxt_map_db_bar(struct bnxt *bp)
13557 {
13558 	if (!bp->db_size)
13559 		return -ENODEV;
13560 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13561 	if (!bp->bar1)
13562 		return -ENOMEM;
13563 	return 0;
13564 }
13565 
13566 void bnxt_print_device_info(struct bnxt *bp)
13567 {
13568 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13569 		    board_info[bp->board_idx].name,
13570 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13571 
13572 	pcie_print_link_status(bp->pdev);
13573 }
13574 
13575 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13576 {
13577 	struct net_device *dev;
13578 	struct bnxt *bp;
13579 	int rc, max_irqs;
13580 
13581 	if (pci_is_bridge(pdev))
13582 		return -ENODEV;
13583 
13584 	/* Clear any pending DMA transactions from crash kernel
13585 	 * while loading driver in capture kernel.
13586 	 */
13587 	if (is_kdump_kernel()) {
13588 		pci_clear_master(pdev);
13589 		pcie_flr(pdev);
13590 	}
13591 
13592 	max_irqs = bnxt_get_max_irq(pdev);
13593 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13594 	if (!dev)
13595 		return -ENOMEM;
13596 
13597 	bp = netdev_priv(dev);
13598 	bp->board_idx = ent->driver_data;
13599 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13600 	bnxt_set_max_func_irqs(bp, max_irqs);
13601 
13602 	if (bnxt_vf_pciid(bp->board_idx))
13603 		bp->flags |= BNXT_FLAG_VF;
13604 
13605 	/* No devlink port registration in case of a VF */
13606 	if (BNXT_PF(bp))
13607 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
13608 
13609 	if (pdev->msix_cap)
13610 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13611 
13612 	rc = bnxt_init_board(pdev, dev);
13613 	if (rc < 0)
13614 		goto init_err_free;
13615 
13616 	dev->netdev_ops = &bnxt_netdev_ops;
13617 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13618 	dev->ethtool_ops = &bnxt_ethtool_ops;
13619 	pci_set_drvdata(pdev, dev);
13620 
13621 	rc = bnxt_alloc_hwrm_resources(bp);
13622 	if (rc)
13623 		goto init_err_pci_clean;
13624 
13625 	mutex_init(&bp->hwrm_cmd_lock);
13626 	mutex_init(&bp->link_lock);
13627 
13628 	rc = bnxt_fw_init_one_p1(bp);
13629 	if (rc)
13630 		goto init_err_pci_clean;
13631 
13632 	if (BNXT_PF(bp))
13633 		bnxt_vpd_read_info(bp);
13634 
13635 	if (BNXT_CHIP_P5(bp)) {
13636 		bp->flags |= BNXT_FLAG_CHIP_P5;
13637 		if (BNXT_CHIP_SR2(bp))
13638 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13639 	}
13640 
13641 	rc = bnxt_alloc_rss_indir_tbl(bp);
13642 	if (rc)
13643 		goto init_err_pci_clean;
13644 
13645 	rc = bnxt_fw_init_one_p2(bp);
13646 	if (rc)
13647 		goto init_err_pci_clean;
13648 
13649 	rc = bnxt_map_db_bar(bp);
13650 	if (rc) {
13651 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13652 			rc);
13653 		goto init_err_pci_clean;
13654 	}
13655 
13656 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13657 			   NETIF_F_TSO | NETIF_F_TSO6 |
13658 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13659 			   NETIF_F_GSO_IPXIP4 |
13660 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13661 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13662 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13663 
13664 	if (BNXT_SUPPORTS_TPA(bp))
13665 		dev->hw_features |= NETIF_F_LRO;
13666 
13667 	dev->hw_enc_features =
13668 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13669 			NETIF_F_TSO | NETIF_F_TSO6 |
13670 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13671 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13672 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13673 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13674 
13675 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13676 				    NETIF_F_GSO_GRE_CSUM;
13677 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13678 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13679 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13680 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13681 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13682 	if (BNXT_SUPPORTS_TPA(bp))
13683 		dev->hw_features |= NETIF_F_GRO_HW;
13684 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13685 	if (dev->features & NETIF_F_GRO_HW)
13686 		dev->features &= ~NETIF_F_LRO;
13687 	dev->priv_flags |= IFF_UNICAST_FLT;
13688 
13689 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
13690 
13691 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
13692 			    NETDEV_XDP_ACT_RX_SG;
13693 
13694 #ifdef CONFIG_BNXT_SRIOV
13695 	init_waitqueue_head(&bp->sriov_cfg_wait);
13696 #endif
13697 	if (BNXT_SUPPORTS_TPA(bp)) {
13698 		bp->gro_func = bnxt_gro_func_5730x;
13699 		if (BNXT_CHIP_P4(bp))
13700 			bp->gro_func = bnxt_gro_func_5731x;
13701 		else if (BNXT_CHIP_P5(bp))
13702 			bp->gro_func = bnxt_gro_func_5750x;
13703 	}
13704 	if (!BNXT_CHIP_P4_PLUS(bp))
13705 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13706 
13707 	rc = bnxt_init_mac_addr(bp);
13708 	if (rc) {
13709 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13710 		rc = -EADDRNOTAVAIL;
13711 		goto init_err_pci_clean;
13712 	}
13713 
13714 	if (BNXT_PF(bp)) {
13715 		/* Read the adapter's DSN to use as the eswitch switch_id */
13716 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13717 	}
13718 
13719 	/* MTU range: 60 - FW defined max */
13720 	dev->min_mtu = ETH_ZLEN;
13721 	dev->max_mtu = bp->max_mtu;
13722 
13723 	rc = bnxt_probe_phy(bp, true);
13724 	if (rc)
13725 		goto init_err_pci_clean;
13726 
13727 	bnxt_set_rx_skb_mode(bp, false);
13728 	bnxt_set_tpa_flags(bp);
13729 	bnxt_set_ring_params(bp);
13730 	rc = bnxt_set_dflt_rings(bp, true);
13731 	if (rc) {
13732 		if (BNXT_VF(bp) && rc == -ENODEV) {
13733 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13734 		} else {
13735 			netdev_err(bp->dev, "Not enough rings available.\n");
13736 			rc = -ENOMEM;
13737 		}
13738 		goto init_err_pci_clean;
13739 	}
13740 
13741 	bnxt_fw_init_one_p3(bp);
13742 
13743 	bnxt_init_dflt_coal(bp);
13744 
13745 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13746 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13747 
13748 	rc = bnxt_init_int_mode(bp);
13749 	if (rc)
13750 		goto init_err_pci_clean;
13751 
13752 	/* No TC has been set yet and rings may have been trimmed due to
13753 	 * limited MSIX, so we re-initialize the TX rings per TC.
13754 	 */
13755 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13756 
13757 	if (BNXT_PF(bp)) {
13758 		if (!bnxt_pf_wq) {
13759 			bnxt_pf_wq =
13760 				create_singlethread_workqueue("bnxt_pf_wq");
13761 			if (!bnxt_pf_wq) {
13762 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13763 				rc = -ENOMEM;
13764 				goto init_err_pci_clean;
13765 			}
13766 		}
13767 		rc = bnxt_init_tc(bp);
13768 		if (rc)
13769 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13770 				   rc);
13771 	}
13772 
13773 	bnxt_inv_fw_health_reg(bp);
13774 	rc = bnxt_dl_register(bp);
13775 	if (rc)
13776 		goto init_err_dl;
13777 
13778 	rc = register_netdev(dev);
13779 	if (rc)
13780 		goto init_err_cleanup;
13781 
13782 	bnxt_dl_fw_reporters_create(bp);
13783 
13784 	bnxt_rdma_aux_device_init(bp);
13785 
13786 	bnxt_print_device_info(bp);
13787 
13788 	pci_save_state(pdev);
13789 
13790 	return 0;
13791 init_err_cleanup:
13792 	bnxt_dl_unregister(bp);
13793 init_err_dl:
13794 	bnxt_shutdown_tc(bp);
13795 	bnxt_clear_int_mode(bp);
13796 
13797 init_err_pci_clean:
13798 	bnxt_hwrm_func_drv_unrgtr(bp);
13799 	bnxt_free_hwrm_resources(bp);
13800 	bnxt_ethtool_free(bp);
13801 	bnxt_ptp_clear(bp);
13802 	kfree(bp->ptp_cfg);
13803 	bp->ptp_cfg = NULL;
13804 	kfree(bp->fw_health);
13805 	bp->fw_health = NULL;
13806 	bnxt_cleanup_pci(bp);
13807 	bnxt_free_ctx_mem(bp);
13808 	kfree(bp->ctx);
13809 	bp->ctx = NULL;
13810 	kfree(bp->rss_indir_tbl);
13811 	bp->rss_indir_tbl = NULL;
13812 
13813 init_err_free:
13814 	free_netdev(dev);
13815 	return rc;
13816 }
13817 
13818 static void bnxt_shutdown(struct pci_dev *pdev)
13819 {
13820 	struct net_device *dev = pci_get_drvdata(pdev);
13821 	struct bnxt *bp;
13822 
13823 	if (!dev)
13824 		return;
13825 
13826 	rtnl_lock();
13827 	bp = netdev_priv(dev);
13828 	if (!bp)
13829 		goto shutdown_exit;
13830 
13831 	if (netif_running(dev))
13832 		dev_close(dev);
13833 
13834 	bnxt_clear_int_mode(bp);
13835 	pci_disable_device(pdev);
13836 
13837 	if (system_state == SYSTEM_POWER_OFF) {
13838 		pci_wake_from_d3(pdev, bp->wol);
13839 		pci_set_power_state(pdev, PCI_D3hot);
13840 	}
13841 
13842 shutdown_exit:
13843 	rtnl_unlock();
13844 }
13845 
13846 #ifdef CONFIG_PM_SLEEP
13847 static int bnxt_suspend(struct device *device)
13848 {
13849 	struct net_device *dev = dev_get_drvdata(device);
13850 	struct bnxt *bp = netdev_priv(dev);
13851 	int rc = 0;
13852 
13853 	rtnl_lock();
13854 	bnxt_ulp_stop(bp);
13855 	if (netif_running(dev)) {
13856 		netif_device_detach(dev);
13857 		rc = bnxt_close(dev);
13858 	}
13859 	bnxt_hwrm_func_drv_unrgtr(bp);
13860 	pci_disable_device(bp->pdev);
13861 	bnxt_free_ctx_mem(bp);
13862 	kfree(bp->ctx);
13863 	bp->ctx = NULL;
13864 	rtnl_unlock();
13865 	return rc;
13866 }
13867 
13868 static int bnxt_resume(struct device *device)
13869 {
13870 	struct net_device *dev = dev_get_drvdata(device);
13871 	struct bnxt *bp = netdev_priv(dev);
13872 	int rc = 0;
13873 
13874 	rtnl_lock();
13875 	rc = pci_enable_device(bp->pdev);
13876 	if (rc) {
13877 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13878 			   rc);
13879 		goto resume_exit;
13880 	}
13881 	pci_set_master(bp->pdev);
13882 	if (bnxt_hwrm_ver_get(bp)) {
13883 		rc = -ENODEV;
13884 		goto resume_exit;
13885 	}
13886 	rc = bnxt_hwrm_func_reset(bp);
13887 	if (rc) {
13888 		rc = -EBUSY;
13889 		goto resume_exit;
13890 	}
13891 
13892 	rc = bnxt_hwrm_func_qcaps(bp);
13893 	if (rc)
13894 		goto resume_exit;
13895 
13896 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13897 		rc = -ENODEV;
13898 		goto resume_exit;
13899 	}
13900 
13901 	bnxt_get_wol_settings(bp);
13902 	if (netif_running(dev)) {
13903 		rc = bnxt_open(dev);
13904 		if (!rc)
13905 			netif_device_attach(dev);
13906 	}
13907 
13908 resume_exit:
13909 	bnxt_ulp_start(bp, rc);
13910 	if (!rc)
13911 		bnxt_reenable_sriov(bp);
13912 	rtnl_unlock();
13913 	return rc;
13914 }
13915 
13916 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13917 #define BNXT_PM_OPS (&bnxt_pm_ops)
13918 
13919 #else
13920 
13921 #define BNXT_PM_OPS NULL
13922 
13923 #endif /* CONFIG_PM_SLEEP */
13924 
13925 /**
13926  * bnxt_io_error_detected - called when PCI error is detected
13927  * @pdev: Pointer to PCI device
13928  * @state: The current pci connection state
13929  *
13930  * This function is called after a PCI bus error affecting
13931  * this device has been detected.
13932  */
13933 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13934 					       pci_channel_state_t state)
13935 {
13936 	struct net_device *netdev = pci_get_drvdata(pdev);
13937 	struct bnxt *bp = netdev_priv(netdev);
13938 
13939 	netdev_info(netdev, "PCI I/O error detected\n");
13940 
13941 	rtnl_lock();
13942 	netif_device_detach(netdev);
13943 
13944 	bnxt_ulp_stop(bp);
13945 
13946 	if (state == pci_channel_io_perm_failure) {
13947 		rtnl_unlock();
13948 		return PCI_ERS_RESULT_DISCONNECT;
13949 	}
13950 
13951 	if (state == pci_channel_io_frozen)
13952 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13953 
13954 	if (netif_running(netdev))
13955 		bnxt_close(netdev);
13956 
13957 	if (pci_is_enabled(pdev))
13958 		pci_disable_device(pdev);
13959 	bnxt_free_ctx_mem(bp);
13960 	kfree(bp->ctx);
13961 	bp->ctx = NULL;
13962 	rtnl_unlock();
13963 
13964 	/* Request a slot slot reset. */
13965 	return PCI_ERS_RESULT_NEED_RESET;
13966 }
13967 
13968 /**
13969  * bnxt_io_slot_reset - called after the pci bus has been reset.
13970  * @pdev: Pointer to PCI device
13971  *
13972  * Restart the card from scratch, as if from a cold-boot.
13973  * At this point, the card has exprienced a hard reset,
13974  * followed by fixups by BIOS, and has its config space
13975  * set up identically to what it was at cold boot.
13976  */
13977 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13978 {
13979 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13980 	struct net_device *netdev = pci_get_drvdata(pdev);
13981 	struct bnxt *bp = netdev_priv(netdev);
13982 	int retry = 0;
13983 	int err = 0;
13984 	int off;
13985 
13986 	netdev_info(bp->dev, "PCI Slot Reset\n");
13987 
13988 	rtnl_lock();
13989 
13990 	if (pci_enable_device(pdev)) {
13991 		dev_err(&pdev->dev,
13992 			"Cannot re-enable PCI device after reset.\n");
13993 	} else {
13994 		pci_set_master(pdev);
13995 		/* Upon fatal error, our device internal logic that latches to
13996 		 * BAR value is getting reset and will restore only upon
13997 		 * rewritting the BARs.
13998 		 *
13999 		 * As pci_restore_state() does not re-write the BARs if the
14000 		 * value is same as saved value earlier, driver needs to
14001 		 * write the BARs to 0 to force restore, in case of fatal error.
14002 		 */
14003 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
14004 				       &bp->state)) {
14005 			for (off = PCI_BASE_ADDRESS_0;
14006 			     off <= PCI_BASE_ADDRESS_5; off += 4)
14007 				pci_write_config_dword(bp->pdev, off, 0);
14008 		}
14009 		pci_restore_state(pdev);
14010 		pci_save_state(pdev);
14011 
14012 		bnxt_inv_fw_health_reg(bp);
14013 		bnxt_try_map_fw_health_reg(bp);
14014 
14015 		/* In some PCIe AER scenarios, firmware may take up to
14016 		 * 10 seconds to become ready in the worst case.
14017 		 */
14018 		do {
14019 			err = bnxt_try_recover_fw(bp);
14020 			if (!err)
14021 				break;
14022 			retry++;
14023 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14024 
14025 		if (err) {
14026 			dev_err(&pdev->dev, "Firmware not ready\n");
14027 			goto reset_exit;
14028 		}
14029 
14030 		err = bnxt_hwrm_func_reset(bp);
14031 		if (!err)
14032 			result = PCI_ERS_RESULT_RECOVERED;
14033 
14034 		bnxt_ulp_irq_stop(bp);
14035 		bnxt_clear_int_mode(bp);
14036 		err = bnxt_init_int_mode(bp);
14037 		bnxt_ulp_irq_restart(bp, err);
14038 	}
14039 
14040 reset_exit:
14041 	bnxt_clear_reservations(bp, true);
14042 	rtnl_unlock();
14043 
14044 	return result;
14045 }
14046 
14047 /**
14048  * bnxt_io_resume - called when traffic can start flowing again.
14049  * @pdev: Pointer to PCI device
14050  *
14051  * This callback is called when the error recovery driver tells
14052  * us that its OK to resume normal operation.
14053  */
14054 static void bnxt_io_resume(struct pci_dev *pdev)
14055 {
14056 	struct net_device *netdev = pci_get_drvdata(pdev);
14057 	struct bnxt *bp = netdev_priv(netdev);
14058 	int err;
14059 
14060 	netdev_info(bp->dev, "PCI Slot Resume\n");
14061 	rtnl_lock();
14062 
14063 	err = bnxt_hwrm_func_qcaps(bp);
14064 	if (!err && netif_running(netdev))
14065 		err = bnxt_open(netdev);
14066 
14067 	bnxt_ulp_start(bp, err);
14068 	if (!err) {
14069 		bnxt_reenable_sriov(bp);
14070 		netif_device_attach(netdev);
14071 	}
14072 
14073 	rtnl_unlock();
14074 }
14075 
14076 static const struct pci_error_handlers bnxt_err_handler = {
14077 	.error_detected	= bnxt_io_error_detected,
14078 	.slot_reset	= bnxt_io_slot_reset,
14079 	.resume		= bnxt_io_resume
14080 };
14081 
14082 static struct pci_driver bnxt_pci_driver = {
14083 	.name		= DRV_MODULE_NAME,
14084 	.id_table	= bnxt_pci_tbl,
14085 	.probe		= bnxt_init_one,
14086 	.remove		= bnxt_remove_one,
14087 	.shutdown	= bnxt_shutdown,
14088 	.driver.pm	= BNXT_PM_OPS,
14089 	.err_handler	= &bnxt_err_handler,
14090 #if defined(CONFIG_BNXT_SRIOV)
14091 	.sriov_configure = bnxt_sriov_configure,
14092 #endif
14093 };
14094 
14095 static int __init bnxt_init(void)
14096 {
14097 	int err;
14098 
14099 	bnxt_debug_init();
14100 	err = pci_register_driver(&bnxt_pci_driver);
14101 	if (err) {
14102 		bnxt_debug_exit();
14103 		return err;
14104 	}
14105 
14106 	return 0;
14107 }
14108 
14109 static void __exit bnxt_exit(void)
14110 {
14111 	pci_unregister_driver(&bnxt_pci_driver);
14112 	if (bnxt_pf_wq)
14113 		destroy_workqueue(bnxt_pf_wq);
14114 	bnxt_debug_exit();
14115 }
14116 
14117 module_init(bnxt_init);
14118 module_exit(bnxt_exit);
14119