1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 
73 MODULE_LICENSE("GPL");
74 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
75 
76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
78 #define BNXT_RX_COPY_THRESH 256
79 
80 #define BNXT_TX_PUSH_THRESH 164
81 
82 enum board_idx {
83 	BCM57301,
84 	BCM57302,
85 	BCM57304,
86 	BCM57417_NPAR,
87 	BCM58700,
88 	BCM57311,
89 	BCM57312,
90 	BCM57402,
91 	BCM57404,
92 	BCM57406,
93 	BCM57402_NPAR,
94 	BCM57407,
95 	BCM57412,
96 	BCM57414,
97 	BCM57416,
98 	BCM57417,
99 	BCM57412_NPAR,
100 	BCM57314,
101 	BCM57417_SFP,
102 	BCM57416_SFP,
103 	BCM57404_NPAR,
104 	BCM57406_NPAR,
105 	BCM57407_SFP,
106 	BCM57407_NPAR,
107 	BCM57414_NPAR,
108 	BCM57416_NPAR,
109 	BCM57452,
110 	BCM57454,
111 	BCM5745x_NPAR,
112 	BCM57508,
113 	BCM57504,
114 	BCM57502,
115 	BCM57508_NPAR,
116 	BCM57504_NPAR,
117 	BCM57502_NPAR,
118 	BCM58802,
119 	BCM58804,
120 	BCM58808,
121 	NETXTREME_E_VF,
122 	NETXTREME_C_VF,
123 	NETXTREME_S_VF,
124 	NETXTREME_E_P5_VF,
125 };
126 
127 /* indexed by enum above */
128 static const struct {
129 	char *name;
130 } board_info[] = {
131 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
132 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
133 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
134 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
135 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
136 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
137 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
138 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
139 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
140 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
141 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
142 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
143 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
144 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
145 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
146 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
148 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
149 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
150 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
151 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
152 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
153 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
154 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
155 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
156 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
157 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
158 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
159 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
160 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
161 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
163 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
164 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
165 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
166 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
167 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
168 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
169 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
170 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
171 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
172 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
173 };
174 
175 static const struct pci_device_id bnxt_pci_tbl[] = {
176 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
177 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
185 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
195 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
197 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
198 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
203 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
207 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
208 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
209 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
210 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
211 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
212 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
213 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
214 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
215 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
216 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
217 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
218 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
219 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
220 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
221 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
222 #ifdef CONFIG_BNXT_SRIOV
223 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
224 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
225 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
226 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
227 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
228 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
229 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
230 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
231 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
232 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
233 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
234 #endif
235 	{ 0 }
236 };
237 
238 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
239 
240 static const u16 bnxt_vf_req_snif[] = {
241 	HWRM_FUNC_CFG,
242 	HWRM_FUNC_VF_CFG,
243 	HWRM_PORT_PHY_QCFG,
244 	HWRM_CFA_L2_FILTER_ALLOC,
245 };
246 
247 static const u16 bnxt_async_events_arr[] = {
248 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
249 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
250 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
251 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
252 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
253 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
254 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
255 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
256 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
257 };
258 
259 static struct workqueue_struct *bnxt_pf_wq;
260 
261 static bool bnxt_vf_pciid(enum board_idx idx)
262 {
263 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
264 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
265 }
266 
267 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
268 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
269 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
270 
271 #define BNXT_CP_DB_IRQ_DIS(db)						\
272 		writel(DB_CP_IRQ_DIS_FLAGS, db)
273 
274 #define BNXT_DB_CQ(db, idx)						\
275 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
276 
277 #define BNXT_DB_NQ_P5(db, idx)						\
278 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
279 
280 #define BNXT_DB_CQ_ARM(db, idx)						\
281 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
282 
283 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
284 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
285 
286 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
287 {
288 	if (bp->flags & BNXT_FLAG_CHIP_P5)
289 		BNXT_DB_NQ_P5(db, idx);
290 	else
291 		BNXT_DB_CQ(db, idx);
292 }
293 
294 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
295 {
296 	if (bp->flags & BNXT_FLAG_CHIP_P5)
297 		BNXT_DB_NQ_ARM_P5(db, idx);
298 	else
299 		BNXT_DB_CQ_ARM(db, idx);
300 }
301 
302 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
303 {
304 	if (bp->flags & BNXT_FLAG_CHIP_P5)
305 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
306 		       db->doorbell);
307 	else
308 		BNXT_DB_CQ(db, idx);
309 }
310 
311 const u16 bnxt_lhint_arr[] = {
312 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
313 	TX_BD_FLAGS_LHINT_512_TO_1023,
314 	TX_BD_FLAGS_LHINT_1024_TO_2047,
315 	TX_BD_FLAGS_LHINT_1024_TO_2047,
316 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
317 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
318 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
320 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
321 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
322 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
323 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
324 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
325 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
326 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
327 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
328 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
329 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
330 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
331 };
332 
333 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
334 {
335 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
336 
337 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
338 		return 0;
339 
340 	return md_dst->u.port_info.port_id;
341 }
342 
343 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
344 {
345 	struct bnxt *bp = netdev_priv(dev);
346 	struct tx_bd *txbd;
347 	struct tx_bd_ext *txbd1;
348 	struct netdev_queue *txq;
349 	int i;
350 	dma_addr_t mapping;
351 	unsigned int length, pad = 0;
352 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
353 	u16 prod, last_frag;
354 	struct pci_dev *pdev = bp->pdev;
355 	struct bnxt_tx_ring_info *txr;
356 	struct bnxt_sw_tx_bd *tx_buf;
357 
358 	i = skb_get_queue_mapping(skb);
359 	if (unlikely(i >= bp->tx_nr_rings)) {
360 		dev_kfree_skb_any(skb);
361 		return NETDEV_TX_OK;
362 	}
363 
364 	txq = netdev_get_tx_queue(dev, i);
365 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
366 	prod = txr->tx_prod;
367 
368 	free_size = bnxt_tx_avail(bp, txr);
369 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
370 		netif_tx_stop_queue(txq);
371 		return NETDEV_TX_BUSY;
372 	}
373 
374 	length = skb->len;
375 	len = skb_headlen(skb);
376 	last_frag = skb_shinfo(skb)->nr_frags;
377 
378 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
379 
380 	txbd->tx_bd_opaque = prod;
381 
382 	tx_buf = &txr->tx_buf_ring[prod];
383 	tx_buf->skb = skb;
384 	tx_buf->nr_frags = last_frag;
385 
386 	vlan_tag_flags = 0;
387 	cfa_action = bnxt_xmit_get_cfa_action(skb);
388 	if (skb_vlan_tag_present(skb)) {
389 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
390 				 skb_vlan_tag_get(skb);
391 		/* Currently supports 8021Q, 8021AD vlan offloads
392 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
393 		 */
394 		if (skb->vlan_proto == htons(ETH_P_8021Q))
395 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
396 	}
397 
398 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
399 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
400 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
401 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
402 		void __iomem *db = txr->tx_db.doorbell;
403 		void *pdata = tx_push_buf->data;
404 		u64 *end;
405 		int j, push_len;
406 
407 		/* Set COAL_NOW to be ready quickly for the next push */
408 		tx_push->tx_bd_len_flags_type =
409 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
410 					TX_BD_TYPE_LONG_TX_BD |
411 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
412 					TX_BD_FLAGS_COAL_NOW |
413 					TX_BD_FLAGS_PACKET_END |
414 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
415 
416 		if (skb->ip_summed == CHECKSUM_PARTIAL)
417 			tx_push1->tx_bd_hsize_lflags =
418 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
419 		else
420 			tx_push1->tx_bd_hsize_lflags = 0;
421 
422 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
423 		tx_push1->tx_bd_cfa_action =
424 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
425 
426 		end = pdata + length;
427 		end = PTR_ALIGN(end, 8) - 1;
428 		*end = 0;
429 
430 		skb_copy_from_linear_data(skb, pdata, len);
431 		pdata += len;
432 		for (j = 0; j < last_frag; j++) {
433 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
434 			void *fptr;
435 
436 			fptr = skb_frag_address_safe(frag);
437 			if (!fptr)
438 				goto normal_tx;
439 
440 			memcpy(pdata, fptr, skb_frag_size(frag));
441 			pdata += skb_frag_size(frag);
442 		}
443 
444 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
445 		txbd->tx_bd_haddr = txr->data_mapping;
446 		prod = NEXT_TX(prod);
447 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
448 		memcpy(txbd, tx_push1, sizeof(*txbd));
449 		prod = NEXT_TX(prod);
450 		tx_push->doorbell =
451 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
452 		txr->tx_prod = prod;
453 
454 		tx_buf->is_push = 1;
455 		netdev_tx_sent_queue(txq, skb->len);
456 		wmb();	/* Sync is_push and byte queue before pushing data */
457 
458 		push_len = (length + sizeof(*tx_push) + 7) / 8;
459 		if (push_len > 16) {
460 			__iowrite64_copy(db, tx_push_buf, 16);
461 			__iowrite32_copy(db + 4, tx_push_buf + 1,
462 					 (push_len - 16) << 1);
463 		} else {
464 			__iowrite64_copy(db, tx_push_buf, push_len);
465 		}
466 
467 		goto tx_done;
468 	}
469 
470 normal_tx:
471 	if (length < BNXT_MIN_PKT_SIZE) {
472 		pad = BNXT_MIN_PKT_SIZE - length;
473 		if (skb_pad(skb, pad)) {
474 			/* SKB already freed. */
475 			tx_buf->skb = NULL;
476 			return NETDEV_TX_OK;
477 		}
478 		length = BNXT_MIN_PKT_SIZE;
479 	}
480 
481 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
482 
483 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
484 		dev_kfree_skb_any(skb);
485 		tx_buf->skb = NULL;
486 		return NETDEV_TX_OK;
487 	}
488 
489 	dma_unmap_addr_set(tx_buf, mapping, mapping);
490 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
491 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
492 
493 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
494 
495 	prod = NEXT_TX(prod);
496 	txbd1 = (struct tx_bd_ext *)
497 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
498 
499 	txbd1->tx_bd_hsize_lflags = 0;
500 	if (skb_is_gso(skb)) {
501 		u32 hdr_len;
502 
503 		if (skb->encapsulation)
504 			hdr_len = skb_inner_network_offset(skb) +
505 				skb_inner_network_header_len(skb) +
506 				inner_tcp_hdrlen(skb);
507 		else
508 			hdr_len = skb_transport_offset(skb) +
509 				tcp_hdrlen(skb);
510 
511 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
512 					TX_BD_FLAGS_T_IPID |
513 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
514 		length = skb_shinfo(skb)->gso_size;
515 		txbd1->tx_bd_mss = cpu_to_le32(length);
516 		length += hdr_len;
517 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
518 		txbd1->tx_bd_hsize_lflags =
519 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
520 		txbd1->tx_bd_mss = 0;
521 	}
522 
523 	length >>= 9;
524 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
525 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
526 				     skb->len);
527 		i = 0;
528 		goto tx_dma_error;
529 	}
530 	flags |= bnxt_lhint_arr[length];
531 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
532 
533 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
534 	txbd1->tx_bd_cfa_action =
535 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
536 	for (i = 0; i < last_frag; i++) {
537 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
538 
539 		prod = NEXT_TX(prod);
540 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
541 
542 		len = skb_frag_size(frag);
543 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
544 					   DMA_TO_DEVICE);
545 
546 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
547 			goto tx_dma_error;
548 
549 		tx_buf = &txr->tx_buf_ring[prod];
550 		dma_unmap_addr_set(tx_buf, mapping, mapping);
551 
552 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
553 
554 		flags = len << TX_BD_LEN_SHIFT;
555 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
556 	}
557 
558 	flags &= ~TX_BD_LEN;
559 	txbd->tx_bd_len_flags_type =
560 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
561 			    TX_BD_FLAGS_PACKET_END);
562 
563 	netdev_tx_sent_queue(txq, skb->len);
564 
565 	/* Sync BD data before updating doorbell */
566 	wmb();
567 
568 	prod = NEXT_TX(prod);
569 	txr->tx_prod = prod;
570 
571 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
572 		bnxt_db_write(bp, &txr->tx_db, prod);
573 
574 tx_done:
575 
576 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
577 		if (netdev_xmit_more() && !tx_buf->is_push)
578 			bnxt_db_write(bp, &txr->tx_db, prod);
579 
580 		netif_tx_stop_queue(txq);
581 
582 		/* netif_tx_stop_queue() must be done before checking
583 		 * tx index in bnxt_tx_avail() below, because in
584 		 * bnxt_tx_int(), we update tx index before checking for
585 		 * netif_tx_queue_stopped().
586 		 */
587 		smp_mb();
588 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
589 			netif_tx_wake_queue(txq);
590 	}
591 	return NETDEV_TX_OK;
592 
593 tx_dma_error:
594 	last_frag = i;
595 
596 	/* start back at beginning and unmap skb */
597 	prod = txr->tx_prod;
598 	tx_buf = &txr->tx_buf_ring[prod];
599 	tx_buf->skb = NULL;
600 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
601 			 skb_headlen(skb), PCI_DMA_TODEVICE);
602 	prod = NEXT_TX(prod);
603 
604 	/* unmap remaining mapped pages */
605 	for (i = 0; i < last_frag; i++) {
606 		prod = NEXT_TX(prod);
607 		tx_buf = &txr->tx_buf_ring[prod];
608 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
609 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
610 			       PCI_DMA_TODEVICE);
611 	}
612 
613 	dev_kfree_skb_any(skb);
614 	return NETDEV_TX_OK;
615 }
616 
617 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
618 {
619 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
620 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
621 	u16 cons = txr->tx_cons;
622 	struct pci_dev *pdev = bp->pdev;
623 	int i;
624 	unsigned int tx_bytes = 0;
625 
626 	for (i = 0; i < nr_pkts; i++) {
627 		struct bnxt_sw_tx_bd *tx_buf;
628 		struct sk_buff *skb;
629 		int j, last;
630 
631 		tx_buf = &txr->tx_buf_ring[cons];
632 		cons = NEXT_TX(cons);
633 		skb = tx_buf->skb;
634 		tx_buf->skb = NULL;
635 
636 		if (tx_buf->is_push) {
637 			tx_buf->is_push = 0;
638 			goto next_tx_int;
639 		}
640 
641 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
642 				 skb_headlen(skb), PCI_DMA_TODEVICE);
643 		last = tx_buf->nr_frags;
644 
645 		for (j = 0; j < last; j++) {
646 			cons = NEXT_TX(cons);
647 			tx_buf = &txr->tx_buf_ring[cons];
648 			dma_unmap_page(
649 				&pdev->dev,
650 				dma_unmap_addr(tx_buf, mapping),
651 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
652 				PCI_DMA_TODEVICE);
653 		}
654 
655 next_tx_int:
656 		cons = NEXT_TX(cons);
657 
658 		tx_bytes += skb->len;
659 		dev_kfree_skb_any(skb);
660 	}
661 
662 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
663 	txr->tx_cons = cons;
664 
665 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
666 	 * before checking for netif_tx_queue_stopped().  Without the
667 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
668 	 * will miss it and cause the queue to be stopped forever.
669 	 */
670 	smp_mb();
671 
672 	if (unlikely(netif_tx_queue_stopped(txq)) &&
673 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
674 		__netif_tx_lock(txq, smp_processor_id());
675 		if (netif_tx_queue_stopped(txq) &&
676 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
677 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
678 			netif_tx_wake_queue(txq);
679 		__netif_tx_unlock(txq);
680 	}
681 }
682 
683 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
684 					 struct bnxt_rx_ring_info *rxr,
685 					 gfp_t gfp)
686 {
687 	struct device *dev = &bp->pdev->dev;
688 	struct page *page;
689 
690 	page = page_pool_dev_alloc_pages(rxr->page_pool);
691 	if (!page)
692 		return NULL;
693 
694 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
695 				      DMA_ATTR_WEAK_ORDERING);
696 	if (dma_mapping_error(dev, *mapping)) {
697 		page_pool_recycle_direct(rxr->page_pool, page);
698 		return NULL;
699 	}
700 	*mapping += bp->rx_dma_offset;
701 	return page;
702 }
703 
704 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
705 				       gfp_t gfp)
706 {
707 	u8 *data;
708 	struct pci_dev *pdev = bp->pdev;
709 
710 	data = kmalloc(bp->rx_buf_size, gfp);
711 	if (!data)
712 		return NULL;
713 
714 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
715 					bp->rx_buf_use_size, bp->rx_dir,
716 					DMA_ATTR_WEAK_ORDERING);
717 
718 	if (dma_mapping_error(&pdev->dev, *mapping)) {
719 		kfree(data);
720 		data = NULL;
721 	}
722 	return data;
723 }
724 
725 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
726 		       u16 prod, gfp_t gfp)
727 {
728 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
729 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
730 	dma_addr_t mapping;
731 
732 	if (BNXT_RX_PAGE_MODE(bp)) {
733 		struct page *page =
734 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
735 
736 		if (!page)
737 			return -ENOMEM;
738 
739 		rx_buf->data = page;
740 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
741 	} else {
742 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
743 
744 		if (!data)
745 			return -ENOMEM;
746 
747 		rx_buf->data = data;
748 		rx_buf->data_ptr = data + bp->rx_offset;
749 	}
750 	rx_buf->mapping = mapping;
751 
752 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
753 	return 0;
754 }
755 
756 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
757 {
758 	u16 prod = rxr->rx_prod;
759 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
760 	struct rx_bd *cons_bd, *prod_bd;
761 
762 	prod_rx_buf = &rxr->rx_buf_ring[prod];
763 	cons_rx_buf = &rxr->rx_buf_ring[cons];
764 
765 	prod_rx_buf->data = data;
766 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
767 
768 	prod_rx_buf->mapping = cons_rx_buf->mapping;
769 
770 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
771 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
772 
773 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
774 }
775 
776 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
777 {
778 	u16 next, max = rxr->rx_agg_bmap_size;
779 
780 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
781 	if (next >= max)
782 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
783 	return next;
784 }
785 
786 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
787 				     struct bnxt_rx_ring_info *rxr,
788 				     u16 prod, gfp_t gfp)
789 {
790 	struct rx_bd *rxbd =
791 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
792 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
793 	struct pci_dev *pdev = bp->pdev;
794 	struct page *page;
795 	dma_addr_t mapping;
796 	u16 sw_prod = rxr->rx_sw_agg_prod;
797 	unsigned int offset = 0;
798 
799 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
800 		page = rxr->rx_page;
801 		if (!page) {
802 			page = alloc_page(gfp);
803 			if (!page)
804 				return -ENOMEM;
805 			rxr->rx_page = page;
806 			rxr->rx_page_offset = 0;
807 		}
808 		offset = rxr->rx_page_offset;
809 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
810 		if (rxr->rx_page_offset == PAGE_SIZE)
811 			rxr->rx_page = NULL;
812 		else
813 			get_page(page);
814 	} else {
815 		page = alloc_page(gfp);
816 		if (!page)
817 			return -ENOMEM;
818 	}
819 
820 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
821 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
822 				     DMA_ATTR_WEAK_ORDERING);
823 	if (dma_mapping_error(&pdev->dev, mapping)) {
824 		__free_page(page);
825 		return -EIO;
826 	}
827 
828 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
829 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
830 
831 	__set_bit(sw_prod, rxr->rx_agg_bmap);
832 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
833 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
834 
835 	rx_agg_buf->page = page;
836 	rx_agg_buf->offset = offset;
837 	rx_agg_buf->mapping = mapping;
838 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
839 	rxbd->rx_bd_opaque = sw_prod;
840 	return 0;
841 }
842 
843 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
844 				       struct bnxt_cp_ring_info *cpr,
845 				       u16 cp_cons, u16 curr)
846 {
847 	struct rx_agg_cmp *agg;
848 
849 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
850 	agg = (struct rx_agg_cmp *)
851 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
852 	return agg;
853 }
854 
855 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
856 					      struct bnxt_rx_ring_info *rxr,
857 					      u16 agg_id, u16 curr)
858 {
859 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
860 
861 	return &tpa_info->agg_arr[curr];
862 }
863 
864 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
865 				   u16 start, u32 agg_bufs, bool tpa)
866 {
867 	struct bnxt_napi *bnapi = cpr->bnapi;
868 	struct bnxt *bp = bnapi->bp;
869 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
870 	u16 prod = rxr->rx_agg_prod;
871 	u16 sw_prod = rxr->rx_sw_agg_prod;
872 	bool p5_tpa = false;
873 	u32 i;
874 
875 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
876 		p5_tpa = true;
877 
878 	for (i = 0; i < agg_bufs; i++) {
879 		u16 cons;
880 		struct rx_agg_cmp *agg;
881 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
882 		struct rx_bd *prod_bd;
883 		struct page *page;
884 
885 		if (p5_tpa)
886 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
887 		else
888 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
889 		cons = agg->rx_agg_cmp_opaque;
890 		__clear_bit(cons, rxr->rx_agg_bmap);
891 
892 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
893 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
894 
895 		__set_bit(sw_prod, rxr->rx_agg_bmap);
896 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
897 		cons_rx_buf = &rxr->rx_agg_ring[cons];
898 
899 		/* It is possible for sw_prod to be equal to cons, so
900 		 * set cons_rx_buf->page to NULL first.
901 		 */
902 		page = cons_rx_buf->page;
903 		cons_rx_buf->page = NULL;
904 		prod_rx_buf->page = page;
905 		prod_rx_buf->offset = cons_rx_buf->offset;
906 
907 		prod_rx_buf->mapping = cons_rx_buf->mapping;
908 
909 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
910 
911 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
912 		prod_bd->rx_bd_opaque = sw_prod;
913 
914 		prod = NEXT_RX_AGG(prod);
915 		sw_prod = NEXT_RX_AGG(sw_prod);
916 	}
917 	rxr->rx_agg_prod = prod;
918 	rxr->rx_sw_agg_prod = sw_prod;
919 }
920 
921 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
922 					struct bnxt_rx_ring_info *rxr,
923 					u16 cons, void *data, u8 *data_ptr,
924 					dma_addr_t dma_addr,
925 					unsigned int offset_and_len)
926 {
927 	unsigned int payload = offset_and_len >> 16;
928 	unsigned int len = offset_and_len & 0xffff;
929 	skb_frag_t *frag;
930 	struct page *page = data;
931 	u16 prod = rxr->rx_prod;
932 	struct sk_buff *skb;
933 	int off, err;
934 
935 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
936 	if (unlikely(err)) {
937 		bnxt_reuse_rx_data(rxr, cons, data);
938 		return NULL;
939 	}
940 	dma_addr -= bp->rx_dma_offset;
941 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
942 			     DMA_ATTR_WEAK_ORDERING);
943 	page_pool_release_page(rxr->page_pool, page);
944 
945 	if (unlikely(!payload))
946 		payload = eth_get_headlen(bp->dev, data_ptr, len);
947 
948 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
949 	if (!skb) {
950 		__free_page(page);
951 		return NULL;
952 	}
953 
954 	off = (void *)data_ptr - page_address(page);
955 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
956 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
957 	       payload + NET_IP_ALIGN);
958 
959 	frag = &skb_shinfo(skb)->frags[0];
960 	skb_frag_size_sub(frag, payload);
961 	skb_frag_off_add(frag, payload);
962 	skb->data_len -= payload;
963 	skb->tail += payload;
964 
965 	return skb;
966 }
967 
968 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
969 				   struct bnxt_rx_ring_info *rxr, u16 cons,
970 				   void *data, u8 *data_ptr,
971 				   dma_addr_t dma_addr,
972 				   unsigned int offset_and_len)
973 {
974 	u16 prod = rxr->rx_prod;
975 	struct sk_buff *skb;
976 	int err;
977 
978 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
979 	if (unlikely(err)) {
980 		bnxt_reuse_rx_data(rxr, cons, data);
981 		return NULL;
982 	}
983 
984 	skb = build_skb(data, 0);
985 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
986 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
987 	if (!skb) {
988 		kfree(data);
989 		return NULL;
990 	}
991 
992 	skb_reserve(skb, bp->rx_offset);
993 	skb_put(skb, offset_and_len & 0xffff);
994 	return skb;
995 }
996 
997 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
998 				     struct bnxt_cp_ring_info *cpr,
999 				     struct sk_buff *skb, u16 idx,
1000 				     u32 agg_bufs, bool tpa)
1001 {
1002 	struct bnxt_napi *bnapi = cpr->bnapi;
1003 	struct pci_dev *pdev = bp->pdev;
1004 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1005 	u16 prod = rxr->rx_agg_prod;
1006 	bool p5_tpa = false;
1007 	u32 i;
1008 
1009 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1010 		p5_tpa = true;
1011 
1012 	for (i = 0; i < agg_bufs; i++) {
1013 		u16 cons, frag_len;
1014 		struct rx_agg_cmp *agg;
1015 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1016 		struct page *page;
1017 		dma_addr_t mapping;
1018 
1019 		if (p5_tpa)
1020 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1021 		else
1022 			agg = bnxt_get_agg(bp, cpr, idx, i);
1023 		cons = agg->rx_agg_cmp_opaque;
1024 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1025 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1026 
1027 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1028 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1029 				   cons_rx_buf->offset, frag_len);
1030 		__clear_bit(cons, rxr->rx_agg_bmap);
1031 
1032 		/* It is possible for bnxt_alloc_rx_page() to allocate
1033 		 * a sw_prod index that equals the cons index, so we
1034 		 * need to clear the cons entry now.
1035 		 */
1036 		mapping = cons_rx_buf->mapping;
1037 		page = cons_rx_buf->page;
1038 		cons_rx_buf->page = NULL;
1039 
1040 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1041 			struct skb_shared_info *shinfo;
1042 			unsigned int nr_frags;
1043 
1044 			shinfo = skb_shinfo(skb);
1045 			nr_frags = --shinfo->nr_frags;
1046 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1047 
1048 			dev_kfree_skb(skb);
1049 
1050 			cons_rx_buf->page = page;
1051 
1052 			/* Update prod since possibly some pages have been
1053 			 * allocated already.
1054 			 */
1055 			rxr->rx_agg_prod = prod;
1056 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1057 			return NULL;
1058 		}
1059 
1060 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1061 				     PCI_DMA_FROMDEVICE,
1062 				     DMA_ATTR_WEAK_ORDERING);
1063 
1064 		skb->data_len += frag_len;
1065 		skb->len += frag_len;
1066 		skb->truesize += PAGE_SIZE;
1067 
1068 		prod = NEXT_RX_AGG(prod);
1069 	}
1070 	rxr->rx_agg_prod = prod;
1071 	return skb;
1072 }
1073 
1074 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1075 			       u8 agg_bufs, u32 *raw_cons)
1076 {
1077 	u16 last;
1078 	struct rx_agg_cmp *agg;
1079 
1080 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1081 	last = RING_CMP(*raw_cons);
1082 	agg = (struct rx_agg_cmp *)
1083 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1084 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1085 }
1086 
1087 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1088 					    unsigned int len,
1089 					    dma_addr_t mapping)
1090 {
1091 	struct bnxt *bp = bnapi->bp;
1092 	struct pci_dev *pdev = bp->pdev;
1093 	struct sk_buff *skb;
1094 
1095 	skb = napi_alloc_skb(&bnapi->napi, len);
1096 	if (!skb)
1097 		return NULL;
1098 
1099 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1100 				bp->rx_dir);
1101 
1102 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1103 	       len + NET_IP_ALIGN);
1104 
1105 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1106 				   bp->rx_dir);
1107 
1108 	skb_put(skb, len);
1109 	return skb;
1110 }
1111 
1112 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1113 			   u32 *raw_cons, void *cmp)
1114 {
1115 	struct rx_cmp *rxcmp = cmp;
1116 	u32 tmp_raw_cons = *raw_cons;
1117 	u8 cmp_type, agg_bufs = 0;
1118 
1119 	cmp_type = RX_CMP_TYPE(rxcmp);
1120 
1121 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1122 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1123 			    RX_CMP_AGG_BUFS) >>
1124 			   RX_CMP_AGG_BUFS_SHIFT;
1125 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1126 		struct rx_tpa_end_cmp *tpa_end = cmp;
1127 
1128 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1129 			return 0;
1130 
1131 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1132 	}
1133 
1134 	if (agg_bufs) {
1135 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1136 			return -EBUSY;
1137 	}
1138 	*raw_cons = tmp_raw_cons;
1139 	return 0;
1140 }
1141 
1142 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1143 {
1144 	if (BNXT_PF(bp))
1145 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1146 	else
1147 		schedule_delayed_work(&bp->fw_reset_task, delay);
1148 }
1149 
1150 static void bnxt_queue_sp_work(struct bnxt *bp)
1151 {
1152 	if (BNXT_PF(bp))
1153 		queue_work(bnxt_pf_wq, &bp->sp_task);
1154 	else
1155 		schedule_work(&bp->sp_task);
1156 }
1157 
1158 static void bnxt_cancel_sp_work(struct bnxt *bp)
1159 {
1160 	if (BNXT_PF(bp))
1161 		flush_workqueue(bnxt_pf_wq);
1162 	else
1163 		cancel_work_sync(&bp->sp_task);
1164 }
1165 
1166 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1167 {
1168 	if (!rxr->bnapi->in_reset) {
1169 		rxr->bnapi->in_reset = true;
1170 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1171 		bnxt_queue_sp_work(bp);
1172 	}
1173 	rxr->rx_next_cons = 0xffff;
1174 }
1175 
1176 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1177 {
1178 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1179 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1180 
1181 	if (test_bit(idx, map->agg_idx_bmap))
1182 		idx = find_first_zero_bit(map->agg_idx_bmap,
1183 					  BNXT_AGG_IDX_BMAP_SIZE);
1184 	__set_bit(idx, map->agg_idx_bmap);
1185 	map->agg_id_tbl[agg_id] = idx;
1186 	return idx;
1187 }
1188 
1189 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1190 {
1191 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1192 
1193 	__clear_bit(idx, map->agg_idx_bmap);
1194 }
1195 
1196 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1197 {
1198 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1199 
1200 	return map->agg_id_tbl[agg_id];
1201 }
1202 
1203 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1204 			   struct rx_tpa_start_cmp *tpa_start,
1205 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1206 {
1207 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1208 	struct bnxt_tpa_info *tpa_info;
1209 	u16 cons, prod, agg_id;
1210 	struct rx_bd *prod_bd;
1211 	dma_addr_t mapping;
1212 
1213 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1214 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1215 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1216 	} else {
1217 		agg_id = TPA_START_AGG_ID(tpa_start);
1218 	}
1219 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1220 	prod = rxr->rx_prod;
1221 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1222 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1223 	tpa_info = &rxr->rx_tpa[agg_id];
1224 
1225 	if (unlikely(cons != rxr->rx_next_cons ||
1226 		     TPA_START_ERROR(tpa_start))) {
1227 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1228 			    cons, rxr->rx_next_cons,
1229 			    TPA_START_ERROR_CODE(tpa_start1));
1230 		bnxt_sched_reset(bp, rxr);
1231 		return;
1232 	}
1233 	/* Store cfa_code in tpa_info to use in tpa_end
1234 	 * completion processing.
1235 	 */
1236 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1237 	prod_rx_buf->data = tpa_info->data;
1238 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1239 
1240 	mapping = tpa_info->mapping;
1241 	prod_rx_buf->mapping = mapping;
1242 
1243 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1244 
1245 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1246 
1247 	tpa_info->data = cons_rx_buf->data;
1248 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1249 	cons_rx_buf->data = NULL;
1250 	tpa_info->mapping = cons_rx_buf->mapping;
1251 
1252 	tpa_info->len =
1253 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1254 				RX_TPA_START_CMP_LEN_SHIFT;
1255 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1256 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1257 
1258 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1259 		tpa_info->gso_type = SKB_GSO_TCPV4;
1260 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1261 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1262 			tpa_info->gso_type = SKB_GSO_TCPV6;
1263 		tpa_info->rss_hash =
1264 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1265 	} else {
1266 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1267 		tpa_info->gso_type = 0;
1268 		if (netif_msg_rx_err(bp))
1269 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1270 	}
1271 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1272 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1273 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1274 	tpa_info->agg_count = 0;
1275 
1276 	rxr->rx_prod = NEXT_RX(prod);
1277 	cons = NEXT_RX(cons);
1278 	rxr->rx_next_cons = NEXT_RX(cons);
1279 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1280 
1281 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1282 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1283 	cons_rx_buf->data = NULL;
1284 }
1285 
1286 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1287 {
1288 	if (agg_bufs)
1289 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1290 }
1291 
1292 #ifdef CONFIG_INET
1293 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1294 {
1295 	struct udphdr *uh = NULL;
1296 
1297 	if (ip_proto == htons(ETH_P_IP)) {
1298 		struct iphdr *iph = (struct iphdr *)skb->data;
1299 
1300 		if (iph->protocol == IPPROTO_UDP)
1301 			uh = (struct udphdr *)(iph + 1);
1302 	} else {
1303 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1304 
1305 		if (iph->nexthdr == IPPROTO_UDP)
1306 			uh = (struct udphdr *)(iph + 1);
1307 	}
1308 	if (uh) {
1309 		if (uh->check)
1310 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1311 		else
1312 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1313 	}
1314 }
1315 #endif
1316 
1317 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1318 					   int payload_off, int tcp_ts,
1319 					   struct sk_buff *skb)
1320 {
1321 #ifdef CONFIG_INET
1322 	struct tcphdr *th;
1323 	int len, nw_off;
1324 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1325 	u32 hdr_info = tpa_info->hdr_info;
1326 	bool loopback = false;
1327 
1328 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1329 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1330 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1331 
1332 	/* If the packet is an internal loopback packet, the offsets will
1333 	 * have an extra 4 bytes.
1334 	 */
1335 	if (inner_mac_off == 4) {
1336 		loopback = true;
1337 	} else if (inner_mac_off > 4) {
1338 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1339 					    ETH_HLEN - 2));
1340 
1341 		/* We only support inner iPv4/ipv6.  If we don't see the
1342 		 * correct protocol ID, it must be a loopback packet where
1343 		 * the offsets are off by 4.
1344 		 */
1345 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1346 			loopback = true;
1347 	}
1348 	if (loopback) {
1349 		/* internal loopback packet, subtract all offsets by 4 */
1350 		inner_ip_off -= 4;
1351 		inner_mac_off -= 4;
1352 		outer_ip_off -= 4;
1353 	}
1354 
1355 	nw_off = inner_ip_off - ETH_HLEN;
1356 	skb_set_network_header(skb, nw_off);
1357 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1358 		struct ipv6hdr *iph = ipv6_hdr(skb);
1359 
1360 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1361 		len = skb->len - skb_transport_offset(skb);
1362 		th = tcp_hdr(skb);
1363 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1364 	} else {
1365 		struct iphdr *iph = ip_hdr(skb);
1366 
1367 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1368 		len = skb->len - skb_transport_offset(skb);
1369 		th = tcp_hdr(skb);
1370 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1371 	}
1372 
1373 	if (inner_mac_off) { /* tunnel */
1374 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1375 					    ETH_HLEN - 2));
1376 
1377 		bnxt_gro_tunnel(skb, proto);
1378 	}
1379 #endif
1380 	return skb;
1381 }
1382 
1383 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1384 					   int payload_off, int tcp_ts,
1385 					   struct sk_buff *skb)
1386 {
1387 #ifdef CONFIG_INET
1388 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1389 	u32 hdr_info = tpa_info->hdr_info;
1390 	int iphdr_len, nw_off;
1391 
1392 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1393 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1394 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1395 
1396 	nw_off = inner_ip_off - ETH_HLEN;
1397 	skb_set_network_header(skb, nw_off);
1398 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1399 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1400 	skb_set_transport_header(skb, nw_off + iphdr_len);
1401 
1402 	if (inner_mac_off) { /* tunnel */
1403 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1404 					    ETH_HLEN - 2));
1405 
1406 		bnxt_gro_tunnel(skb, proto);
1407 	}
1408 #endif
1409 	return skb;
1410 }
1411 
1412 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1413 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1414 
1415 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1416 					   int payload_off, int tcp_ts,
1417 					   struct sk_buff *skb)
1418 {
1419 #ifdef CONFIG_INET
1420 	struct tcphdr *th;
1421 	int len, nw_off, tcp_opt_len = 0;
1422 
1423 	if (tcp_ts)
1424 		tcp_opt_len = 12;
1425 
1426 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1427 		struct iphdr *iph;
1428 
1429 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1430 			 ETH_HLEN;
1431 		skb_set_network_header(skb, nw_off);
1432 		iph = ip_hdr(skb);
1433 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1434 		len = skb->len - skb_transport_offset(skb);
1435 		th = tcp_hdr(skb);
1436 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1437 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1438 		struct ipv6hdr *iph;
1439 
1440 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1441 			 ETH_HLEN;
1442 		skb_set_network_header(skb, nw_off);
1443 		iph = ipv6_hdr(skb);
1444 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1445 		len = skb->len - skb_transport_offset(skb);
1446 		th = tcp_hdr(skb);
1447 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1448 	} else {
1449 		dev_kfree_skb_any(skb);
1450 		return NULL;
1451 	}
1452 
1453 	if (nw_off) /* tunnel */
1454 		bnxt_gro_tunnel(skb, skb->protocol);
1455 #endif
1456 	return skb;
1457 }
1458 
1459 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1460 					   struct bnxt_tpa_info *tpa_info,
1461 					   struct rx_tpa_end_cmp *tpa_end,
1462 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1463 					   struct sk_buff *skb)
1464 {
1465 #ifdef CONFIG_INET
1466 	int payload_off;
1467 	u16 segs;
1468 
1469 	segs = TPA_END_TPA_SEGS(tpa_end);
1470 	if (segs == 1)
1471 		return skb;
1472 
1473 	NAPI_GRO_CB(skb)->count = segs;
1474 	skb_shinfo(skb)->gso_size =
1475 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1476 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1477 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1478 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1479 	else
1480 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1481 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1482 	if (likely(skb))
1483 		tcp_gro_complete(skb);
1484 #endif
1485 	return skb;
1486 }
1487 
1488 /* Given the cfa_code of a received packet determine which
1489  * netdev (vf-rep or PF) the packet is destined to.
1490  */
1491 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1492 {
1493 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1494 
1495 	/* if vf-rep dev is NULL, the must belongs to the PF */
1496 	return dev ? dev : bp->dev;
1497 }
1498 
1499 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1500 					   struct bnxt_cp_ring_info *cpr,
1501 					   u32 *raw_cons,
1502 					   struct rx_tpa_end_cmp *tpa_end,
1503 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1504 					   u8 *event)
1505 {
1506 	struct bnxt_napi *bnapi = cpr->bnapi;
1507 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1508 	u8 *data_ptr, agg_bufs;
1509 	unsigned int len;
1510 	struct bnxt_tpa_info *tpa_info;
1511 	dma_addr_t mapping;
1512 	struct sk_buff *skb;
1513 	u16 idx = 0, agg_id;
1514 	void *data;
1515 	bool gro;
1516 
1517 	if (unlikely(bnapi->in_reset)) {
1518 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1519 
1520 		if (rc < 0)
1521 			return ERR_PTR(-EBUSY);
1522 		return NULL;
1523 	}
1524 
1525 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1526 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1527 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1528 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1529 		tpa_info = &rxr->rx_tpa[agg_id];
1530 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1531 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1532 				    agg_bufs, tpa_info->agg_count);
1533 			agg_bufs = tpa_info->agg_count;
1534 		}
1535 		tpa_info->agg_count = 0;
1536 		*event |= BNXT_AGG_EVENT;
1537 		bnxt_free_agg_idx(rxr, agg_id);
1538 		idx = agg_id;
1539 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1540 	} else {
1541 		agg_id = TPA_END_AGG_ID(tpa_end);
1542 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1543 		tpa_info = &rxr->rx_tpa[agg_id];
1544 		idx = RING_CMP(*raw_cons);
1545 		if (agg_bufs) {
1546 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1547 				return ERR_PTR(-EBUSY);
1548 
1549 			*event |= BNXT_AGG_EVENT;
1550 			idx = NEXT_CMP(idx);
1551 		}
1552 		gro = !!TPA_END_GRO(tpa_end);
1553 	}
1554 	data = tpa_info->data;
1555 	data_ptr = tpa_info->data_ptr;
1556 	prefetch(data_ptr);
1557 	len = tpa_info->len;
1558 	mapping = tpa_info->mapping;
1559 
1560 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1561 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1562 		if (agg_bufs > MAX_SKB_FRAGS)
1563 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1564 				    agg_bufs, (int)MAX_SKB_FRAGS);
1565 		return NULL;
1566 	}
1567 
1568 	if (len <= bp->rx_copy_thresh) {
1569 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1570 		if (!skb) {
1571 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1572 			return NULL;
1573 		}
1574 	} else {
1575 		u8 *new_data;
1576 		dma_addr_t new_mapping;
1577 
1578 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1579 		if (!new_data) {
1580 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1581 			return NULL;
1582 		}
1583 
1584 		tpa_info->data = new_data;
1585 		tpa_info->data_ptr = new_data + bp->rx_offset;
1586 		tpa_info->mapping = new_mapping;
1587 
1588 		skb = build_skb(data, 0);
1589 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1590 				       bp->rx_buf_use_size, bp->rx_dir,
1591 				       DMA_ATTR_WEAK_ORDERING);
1592 
1593 		if (!skb) {
1594 			kfree(data);
1595 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1596 			return NULL;
1597 		}
1598 		skb_reserve(skb, bp->rx_offset);
1599 		skb_put(skb, len);
1600 	}
1601 
1602 	if (agg_bufs) {
1603 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1604 		if (!skb) {
1605 			/* Page reuse already handled by bnxt_rx_pages(). */
1606 			return NULL;
1607 		}
1608 	}
1609 
1610 	skb->protocol =
1611 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1612 
1613 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1614 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1615 
1616 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1617 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1618 		u16 vlan_proto = tpa_info->metadata >>
1619 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1620 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1621 
1622 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1623 	}
1624 
1625 	skb_checksum_none_assert(skb);
1626 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1627 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1628 		skb->csum_level =
1629 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1630 	}
1631 
1632 	if (gro)
1633 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1634 
1635 	return skb;
1636 }
1637 
1638 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1639 			 struct rx_agg_cmp *rx_agg)
1640 {
1641 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1642 	struct bnxt_tpa_info *tpa_info;
1643 
1644 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1645 	tpa_info = &rxr->rx_tpa[agg_id];
1646 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1647 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1648 }
1649 
1650 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1651 			     struct sk_buff *skb)
1652 {
1653 	if (skb->dev != bp->dev) {
1654 		/* this packet belongs to a vf-rep */
1655 		bnxt_vf_rep_rx(bp, skb);
1656 		return;
1657 	}
1658 	skb_record_rx_queue(skb, bnapi->index);
1659 	napi_gro_receive(&bnapi->napi, skb);
1660 }
1661 
1662 /* returns the following:
1663  * 1       - 1 packet successfully received
1664  * 0       - successful TPA_START, packet not completed yet
1665  * -EBUSY  - completion ring does not have all the agg buffers yet
1666  * -ENOMEM - packet aborted due to out of memory
1667  * -EIO    - packet aborted due to hw error indicated in BD
1668  */
1669 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1670 		       u32 *raw_cons, u8 *event)
1671 {
1672 	struct bnxt_napi *bnapi = cpr->bnapi;
1673 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1674 	struct net_device *dev = bp->dev;
1675 	struct rx_cmp *rxcmp;
1676 	struct rx_cmp_ext *rxcmp1;
1677 	u32 tmp_raw_cons = *raw_cons;
1678 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1679 	struct bnxt_sw_rx_bd *rx_buf;
1680 	unsigned int len;
1681 	u8 *data_ptr, agg_bufs, cmp_type;
1682 	dma_addr_t dma_addr;
1683 	struct sk_buff *skb;
1684 	void *data;
1685 	int rc = 0;
1686 	u32 misc;
1687 
1688 	rxcmp = (struct rx_cmp *)
1689 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1690 
1691 	cmp_type = RX_CMP_TYPE(rxcmp);
1692 
1693 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1694 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1695 		goto next_rx_no_prod_no_len;
1696 	}
1697 
1698 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1699 	cp_cons = RING_CMP(tmp_raw_cons);
1700 	rxcmp1 = (struct rx_cmp_ext *)
1701 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1702 
1703 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1704 		return -EBUSY;
1705 
1706 	prod = rxr->rx_prod;
1707 
1708 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1709 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1710 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1711 
1712 		*event |= BNXT_RX_EVENT;
1713 		goto next_rx_no_prod_no_len;
1714 
1715 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1716 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1717 				   (struct rx_tpa_end_cmp *)rxcmp,
1718 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1719 
1720 		if (IS_ERR(skb))
1721 			return -EBUSY;
1722 
1723 		rc = -ENOMEM;
1724 		if (likely(skb)) {
1725 			bnxt_deliver_skb(bp, bnapi, skb);
1726 			rc = 1;
1727 		}
1728 		*event |= BNXT_RX_EVENT;
1729 		goto next_rx_no_prod_no_len;
1730 	}
1731 
1732 	cons = rxcmp->rx_cmp_opaque;
1733 	if (unlikely(cons != rxr->rx_next_cons)) {
1734 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1735 
1736 		netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1737 			    cons, rxr->rx_next_cons);
1738 		bnxt_sched_reset(bp, rxr);
1739 		return rc1;
1740 	}
1741 	rx_buf = &rxr->rx_buf_ring[cons];
1742 	data = rx_buf->data;
1743 	data_ptr = rx_buf->data_ptr;
1744 	prefetch(data_ptr);
1745 
1746 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1747 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1748 
1749 	if (agg_bufs) {
1750 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1751 			return -EBUSY;
1752 
1753 		cp_cons = NEXT_CMP(cp_cons);
1754 		*event |= BNXT_AGG_EVENT;
1755 	}
1756 	*event |= BNXT_RX_EVENT;
1757 
1758 	rx_buf->data = NULL;
1759 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1760 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1761 
1762 		bnxt_reuse_rx_data(rxr, cons, data);
1763 		if (agg_bufs)
1764 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1765 					       false);
1766 
1767 		rc = -EIO;
1768 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1769 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1770 			if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
1771 				netdev_warn(bp->dev, "RX buffer error %x\n",
1772 					    rx_err);
1773 				bnxt_sched_reset(bp, rxr);
1774 			}
1775 		}
1776 		goto next_rx_no_len;
1777 	}
1778 
1779 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1780 	dma_addr = rx_buf->mapping;
1781 
1782 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1783 		rc = 1;
1784 		goto next_rx;
1785 	}
1786 
1787 	if (len <= bp->rx_copy_thresh) {
1788 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1789 		bnxt_reuse_rx_data(rxr, cons, data);
1790 		if (!skb) {
1791 			if (agg_bufs)
1792 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1793 						       agg_bufs, false);
1794 			rc = -ENOMEM;
1795 			goto next_rx;
1796 		}
1797 	} else {
1798 		u32 payload;
1799 
1800 		if (rx_buf->data_ptr == data_ptr)
1801 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1802 		else
1803 			payload = 0;
1804 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1805 				      payload | len);
1806 		if (!skb) {
1807 			rc = -ENOMEM;
1808 			goto next_rx;
1809 		}
1810 	}
1811 
1812 	if (agg_bufs) {
1813 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1814 		if (!skb) {
1815 			rc = -ENOMEM;
1816 			goto next_rx;
1817 		}
1818 	}
1819 
1820 	if (RX_CMP_HASH_VALID(rxcmp)) {
1821 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1822 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1823 
1824 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1825 		if (hash_type != 1 && hash_type != 3)
1826 			type = PKT_HASH_TYPE_L3;
1827 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1828 	}
1829 
1830 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1831 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1832 
1833 	if ((rxcmp1->rx_cmp_flags2 &
1834 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1835 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1836 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1837 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1838 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1839 
1840 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1841 	}
1842 
1843 	skb_checksum_none_assert(skb);
1844 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1845 		if (dev->features & NETIF_F_RXCSUM) {
1846 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1847 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1848 		}
1849 	} else {
1850 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1851 			if (dev->features & NETIF_F_RXCSUM)
1852 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1853 		}
1854 	}
1855 
1856 	bnxt_deliver_skb(bp, bnapi, skb);
1857 	rc = 1;
1858 
1859 next_rx:
1860 	cpr->rx_packets += 1;
1861 	cpr->rx_bytes += len;
1862 
1863 next_rx_no_len:
1864 	rxr->rx_prod = NEXT_RX(prod);
1865 	rxr->rx_next_cons = NEXT_RX(cons);
1866 
1867 next_rx_no_prod_no_len:
1868 	*raw_cons = tmp_raw_cons;
1869 
1870 	return rc;
1871 }
1872 
1873 /* In netpoll mode, if we are using a combined completion ring, we need to
1874  * discard the rx packets and recycle the buffers.
1875  */
1876 static int bnxt_force_rx_discard(struct bnxt *bp,
1877 				 struct bnxt_cp_ring_info *cpr,
1878 				 u32 *raw_cons, u8 *event)
1879 {
1880 	u32 tmp_raw_cons = *raw_cons;
1881 	struct rx_cmp_ext *rxcmp1;
1882 	struct rx_cmp *rxcmp;
1883 	u16 cp_cons;
1884 	u8 cmp_type;
1885 
1886 	cp_cons = RING_CMP(tmp_raw_cons);
1887 	rxcmp = (struct rx_cmp *)
1888 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1889 
1890 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1891 	cp_cons = RING_CMP(tmp_raw_cons);
1892 	rxcmp1 = (struct rx_cmp_ext *)
1893 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1894 
1895 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1896 		return -EBUSY;
1897 
1898 	cmp_type = RX_CMP_TYPE(rxcmp);
1899 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1900 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1901 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1902 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1903 		struct rx_tpa_end_cmp_ext *tpa_end1;
1904 
1905 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1906 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1907 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1908 	}
1909 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1910 }
1911 
1912 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1913 {
1914 	struct bnxt_fw_health *fw_health = bp->fw_health;
1915 	u32 reg = fw_health->regs[reg_idx];
1916 	u32 reg_type, reg_off, val = 0;
1917 
1918 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1919 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1920 	switch (reg_type) {
1921 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
1922 		pci_read_config_dword(bp->pdev, reg_off, &val);
1923 		break;
1924 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
1925 		reg_off = fw_health->mapped_regs[reg_idx];
1926 		/* fall through */
1927 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1928 		val = readl(bp->bar0 + reg_off);
1929 		break;
1930 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1931 		val = readl(bp->bar1 + reg_off);
1932 		break;
1933 	}
1934 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1935 		val &= fw_health->fw_reset_inprog_reg_mask;
1936 	return val;
1937 }
1938 
1939 #define BNXT_GET_EVENT_PORT(data)	\
1940 	((data) &			\
1941 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1942 
1943 static int bnxt_async_event_process(struct bnxt *bp,
1944 				    struct hwrm_async_event_cmpl *cmpl)
1945 {
1946 	u16 event_id = le16_to_cpu(cmpl->event_id);
1947 
1948 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1949 	switch (event_id) {
1950 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1951 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1952 		struct bnxt_link_info *link_info = &bp->link_info;
1953 
1954 		if (BNXT_VF(bp))
1955 			goto async_event_process_exit;
1956 
1957 		/* print unsupported speed warning in forced speed mode only */
1958 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1959 		    (data1 & 0x20000)) {
1960 			u16 fw_speed = link_info->force_link_speed;
1961 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1962 
1963 			if (speed != SPEED_UNKNOWN)
1964 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1965 					    speed);
1966 		}
1967 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1968 	}
1969 	/* fall through */
1970 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
1971 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
1972 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
1973 		/* fall through */
1974 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1975 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1976 		break;
1977 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1978 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1979 		break;
1980 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1981 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1982 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1983 
1984 		if (BNXT_VF(bp))
1985 			break;
1986 
1987 		if (bp->pf.port_id != port_id)
1988 			break;
1989 
1990 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1991 		break;
1992 	}
1993 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1994 		if (BNXT_PF(bp))
1995 			goto async_event_process_exit;
1996 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1997 		break;
1998 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
1999 		u32 data1 = le32_to_cpu(cmpl->event_data1);
2000 
2001 		if (!bp->fw_health)
2002 			goto async_event_process_exit;
2003 
2004 		bp->fw_reset_timestamp = jiffies;
2005 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2006 		if (!bp->fw_reset_min_dsecs)
2007 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2008 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2009 		if (!bp->fw_reset_max_dsecs)
2010 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2011 		if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2012 			netdev_warn(bp->dev, "Firmware fatal reset event received\n");
2013 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2014 		} else {
2015 			netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n",
2016 				    bp->fw_reset_max_dsecs * 100);
2017 		}
2018 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2019 		break;
2020 	}
2021 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2022 		struct bnxt_fw_health *fw_health = bp->fw_health;
2023 		u32 data1 = le32_to_cpu(cmpl->event_data1);
2024 
2025 		if (!fw_health)
2026 			goto async_event_process_exit;
2027 
2028 		fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2029 		fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2030 		if (!fw_health->enabled)
2031 			break;
2032 
2033 		if (netif_msg_drv(bp))
2034 			netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n",
2035 				    fw_health->enabled, fw_health->master,
2036 				    bnxt_fw_health_readl(bp,
2037 							 BNXT_FW_RESET_CNT_REG),
2038 				    bnxt_fw_health_readl(bp,
2039 							 BNXT_FW_HEALTH_REG));
2040 		fw_health->tmr_multiplier =
2041 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2042 				     bp->current_interval * 10);
2043 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2044 		fw_health->last_fw_heartbeat =
2045 			bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2046 		fw_health->last_fw_reset_cnt =
2047 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2048 		goto async_event_process_exit;
2049 	}
2050 	default:
2051 		goto async_event_process_exit;
2052 	}
2053 	bnxt_queue_sp_work(bp);
2054 async_event_process_exit:
2055 	bnxt_ulp_async_events(bp, cmpl);
2056 	return 0;
2057 }
2058 
2059 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2060 {
2061 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2062 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2063 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2064 				(struct hwrm_fwd_req_cmpl *)txcmp;
2065 
2066 	switch (cmpl_type) {
2067 	case CMPL_BASE_TYPE_HWRM_DONE:
2068 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2069 		if (seq_id == bp->hwrm_intr_seq_id)
2070 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2071 		else
2072 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2073 		break;
2074 
2075 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2076 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2077 
2078 		if ((vf_id < bp->pf.first_vf_id) ||
2079 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2080 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2081 				   vf_id);
2082 			return -EINVAL;
2083 		}
2084 
2085 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2086 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2087 		bnxt_queue_sp_work(bp);
2088 		break;
2089 
2090 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2091 		bnxt_async_event_process(bp,
2092 					 (struct hwrm_async_event_cmpl *)txcmp);
2093 
2094 	default:
2095 		break;
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2102 {
2103 	struct bnxt_napi *bnapi = dev_instance;
2104 	struct bnxt *bp = bnapi->bp;
2105 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2106 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2107 
2108 	cpr->event_ctr++;
2109 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2110 	napi_schedule(&bnapi->napi);
2111 	return IRQ_HANDLED;
2112 }
2113 
2114 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2115 {
2116 	u32 raw_cons = cpr->cp_raw_cons;
2117 	u16 cons = RING_CMP(raw_cons);
2118 	struct tx_cmp *txcmp;
2119 
2120 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2121 
2122 	return TX_CMP_VALID(txcmp, raw_cons);
2123 }
2124 
2125 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2126 {
2127 	struct bnxt_napi *bnapi = dev_instance;
2128 	struct bnxt *bp = bnapi->bp;
2129 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2130 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2131 	u32 int_status;
2132 
2133 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2134 
2135 	if (!bnxt_has_work(bp, cpr)) {
2136 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2137 		/* return if erroneous interrupt */
2138 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2139 			return IRQ_NONE;
2140 	}
2141 
2142 	/* disable ring IRQ */
2143 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2144 
2145 	/* Return here if interrupt is shared and is disabled. */
2146 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2147 		return IRQ_HANDLED;
2148 
2149 	napi_schedule(&bnapi->napi);
2150 	return IRQ_HANDLED;
2151 }
2152 
2153 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2154 			    int budget)
2155 {
2156 	struct bnxt_napi *bnapi = cpr->bnapi;
2157 	u32 raw_cons = cpr->cp_raw_cons;
2158 	u32 cons;
2159 	int tx_pkts = 0;
2160 	int rx_pkts = 0;
2161 	u8 event = 0;
2162 	struct tx_cmp *txcmp;
2163 
2164 	cpr->has_more_work = 0;
2165 	cpr->had_work_done = 1;
2166 	while (1) {
2167 		int rc;
2168 
2169 		cons = RING_CMP(raw_cons);
2170 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2171 
2172 		if (!TX_CMP_VALID(txcmp, raw_cons))
2173 			break;
2174 
2175 		/* The valid test of the entry must be done first before
2176 		 * reading any further.
2177 		 */
2178 		dma_rmb();
2179 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2180 			tx_pkts++;
2181 			/* return full budget so NAPI will complete. */
2182 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2183 				rx_pkts = budget;
2184 				raw_cons = NEXT_RAW_CMP(raw_cons);
2185 				if (budget)
2186 					cpr->has_more_work = 1;
2187 				break;
2188 			}
2189 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2190 			if (likely(budget))
2191 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2192 			else
2193 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2194 							   &event);
2195 			if (likely(rc >= 0))
2196 				rx_pkts += rc;
2197 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2198 			 * the NAPI budget.  Otherwise, we may potentially loop
2199 			 * here forever if we consistently cannot allocate
2200 			 * buffers.
2201 			 */
2202 			else if (rc == -ENOMEM && budget)
2203 				rx_pkts++;
2204 			else if (rc == -EBUSY)	/* partial completion */
2205 				break;
2206 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2207 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2208 				    (TX_CMP_TYPE(txcmp) ==
2209 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2210 				    (TX_CMP_TYPE(txcmp) ==
2211 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2212 			bnxt_hwrm_handler(bp, txcmp);
2213 		}
2214 		raw_cons = NEXT_RAW_CMP(raw_cons);
2215 
2216 		if (rx_pkts && rx_pkts == budget) {
2217 			cpr->has_more_work = 1;
2218 			break;
2219 		}
2220 	}
2221 
2222 	if (event & BNXT_REDIRECT_EVENT)
2223 		xdp_do_flush_map();
2224 
2225 	if (event & BNXT_TX_EVENT) {
2226 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2227 		u16 prod = txr->tx_prod;
2228 
2229 		/* Sync BD data before updating doorbell */
2230 		wmb();
2231 
2232 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2233 	}
2234 
2235 	cpr->cp_raw_cons = raw_cons;
2236 	bnapi->tx_pkts += tx_pkts;
2237 	bnapi->events |= event;
2238 	return rx_pkts;
2239 }
2240 
2241 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2242 {
2243 	if (bnapi->tx_pkts) {
2244 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2245 		bnapi->tx_pkts = 0;
2246 	}
2247 
2248 	if (bnapi->events & BNXT_RX_EVENT) {
2249 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2250 
2251 		if (bnapi->events & BNXT_AGG_EVENT)
2252 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2253 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2254 	}
2255 	bnapi->events = 0;
2256 }
2257 
2258 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2259 			  int budget)
2260 {
2261 	struct bnxt_napi *bnapi = cpr->bnapi;
2262 	int rx_pkts;
2263 
2264 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2265 
2266 	/* ACK completion ring before freeing tx ring and producing new
2267 	 * buffers in rx/agg rings to prevent overflowing the completion
2268 	 * ring.
2269 	 */
2270 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2271 
2272 	__bnxt_poll_work_done(bp, bnapi);
2273 	return rx_pkts;
2274 }
2275 
2276 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2277 {
2278 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2279 	struct bnxt *bp = bnapi->bp;
2280 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2281 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2282 	struct tx_cmp *txcmp;
2283 	struct rx_cmp_ext *rxcmp1;
2284 	u32 cp_cons, tmp_raw_cons;
2285 	u32 raw_cons = cpr->cp_raw_cons;
2286 	u32 rx_pkts = 0;
2287 	u8 event = 0;
2288 
2289 	while (1) {
2290 		int rc;
2291 
2292 		cp_cons = RING_CMP(raw_cons);
2293 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2294 
2295 		if (!TX_CMP_VALID(txcmp, raw_cons))
2296 			break;
2297 
2298 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2299 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2300 			cp_cons = RING_CMP(tmp_raw_cons);
2301 			rxcmp1 = (struct rx_cmp_ext *)
2302 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2303 
2304 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2305 				break;
2306 
2307 			/* force an error to recycle the buffer */
2308 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2309 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2310 
2311 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2312 			if (likely(rc == -EIO) && budget)
2313 				rx_pkts++;
2314 			else if (rc == -EBUSY)	/* partial completion */
2315 				break;
2316 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2317 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2318 			bnxt_hwrm_handler(bp, txcmp);
2319 		} else {
2320 			netdev_err(bp->dev,
2321 				   "Invalid completion received on special ring\n");
2322 		}
2323 		raw_cons = NEXT_RAW_CMP(raw_cons);
2324 
2325 		if (rx_pkts == budget)
2326 			break;
2327 	}
2328 
2329 	cpr->cp_raw_cons = raw_cons;
2330 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2331 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2332 
2333 	if (event & BNXT_AGG_EVENT)
2334 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2335 
2336 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2337 		napi_complete_done(napi, rx_pkts);
2338 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2339 	}
2340 	return rx_pkts;
2341 }
2342 
2343 static int bnxt_poll(struct napi_struct *napi, int budget)
2344 {
2345 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2346 	struct bnxt *bp = bnapi->bp;
2347 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2348 	int work_done = 0;
2349 
2350 	while (1) {
2351 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2352 
2353 		if (work_done >= budget) {
2354 			if (!budget)
2355 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2356 			break;
2357 		}
2358 
2359 		if (!bnxt_has_work(bp, cpr)) {
2360 			if (napi_complete_done(napi, work_done))
2361 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2362 			break;
2363 		}
2364 	}
2365 	if (bp->flags & BNXT_FLAG_DIM) {
2366 		struct dim_sample dim_sample = {};
2367 
2368 		dim_update_sample(cpr->event_ctr,
2369 				  cpr->rx_packets,
2370 				  cpr->rx_bytes,
2371 				  &dim_sample);
2372 		net_dim(&cpr->dim, dim_sample);
2373 	}
2374 	return work_done;
2375 }
2376 
2377 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2378 {
2379 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2380 	int i, work_done = 0;
2381 
2382 	for (i = 0; i < 2; i++) {
2383 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2384 
2385 		if (cpr2) {
2386 			work_done += __bnxt_poll_work(bp, cpr2,
2387 						      budget - work_done);
2388 			cpr->has_more_work |= cpr2->has_more_work;
2389 		}
2390 	}
2391 	return work_done;
2392 }
2393 
2394 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2395 				 u64 dbr_type)
2396 {
2397 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2398 	int i;
2399 
2400 	for (i = 0; i < 2; i++) {
2401 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2402 		struct bnxt_db_info *db;
2403 
2404 		if (cpr2 && cpr2->had_work_done) {
2405 			db = &cpr2->cp_db;
2406 			writeq(db->db_key64 | dbr_type |
2407 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2408 			cpr2->had_work_done = 0;
2409 		}
2410 	}
2411 	__bnxt_poll_work_done(bp, bnapi);
2412 }
2413 
2414 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2415 {
2416 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2417 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2418 	u32 raw_cons = cpr->cp_raw_cons;
2419 	struct bnxt *bp = bnapi->bp;
2420 	struct nqe_cn *nqcmp;
2421 	int work_done = 0;
2422 	u32 cons;
2423 
2424 	if (cpr->has_more_work) {
2425 		cpr->has_more_work = 0;
2426 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2427 	}
2428 	while (1) {
2429 		cons = RING_CMP(raw_cons);
2430 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2431 
2432 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2433 			if (cpr->has_more_work)
2434 				break;
2435 
2436 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2437 			cpr->cp_raw_cons = raw_cons;
2438 			if (napi_complete_done(napi, work_done))
2439 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2440 						  cpr->cp_raw_cons);
2441 			return work_done;
2442 		}
2443 
2444 		/* The valid test of the entry must be done first before
2445 		 * reading any further.
2446 		 */
2447 		dma_rmb();
2448 
2449 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2450 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2451 			struct bnxt_cp_ring_info *cpr2;
2452 
2453 			cpr2 = cpr->cp_ring_arr[idx];
2454 			work_done += __bnxt_poll_work(bp, cpr2,
2455 						      budget - work_done);
2456 			cpr->has_more_work |= cpr2->has_more_work;
2457 		} else {
2458 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2459 		}
2460 		raw_cons = NEXT_RAW_CMP(raw_cons);
2461 	}
2462 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2463 	if (raw_cons != cpr->cp_raw_cons) {
2464 		cpr->cp_raw_cons = raw_cons;
2465 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2466 	}
2467 	return work_done;
2468 }
2469 
2470 static void bnxt_free_tx_skbs(struct bnxt *bp)
2471 {
2472 	int i, max_idx;
2473 	struct pci_dev *pdev = bp->pdev;
2474 
2475 	if (!bp->tx_ring)
2476 		return;
2477 
2478 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2479 	for (i = 0; i < bp->tx_nr_rings; i++) {
2480 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2481 		int j;
2482 
2483 		for (j = 0; j < max_idx;) {
2484 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2485 			struct sk_buff *skb;
2486 			int k, last;
2487 
2488 			if (i < bp->tx_nr_rings_xdp &&
2489 			    tx_buf->action == XDP_REDIRECT) {
2490 				dma_unmap_single(&pdev->dev,
2491 					dma_unmap_addr(tx_buf, mapping),
2492 					dma_unmap_len(tx_buf, len),
2493 					PCI_DMA_TODEVICE);
2494 				xdp_return_frame(tx_buf->xdpf);
2495 				tx_buf->action = 0;
2496 				tx_buf->xdpf = NULL;
2497 				j++;
2498 				continue;
2499 			}
2500 
2501 			skb = tx_buf->skb;
2502 			if (!skb) {
2503 				j++;
2504 				continue;
2505 			}
2506 
2507 			tx_buf->skb = NULL;
2508 
2509 			if (tx_buf->is_push) {
2510 				dev_kfree_skb(skb);
2511 				j += 2;
2512 				continue;
2513 			}
2514 
2515 			dma_unmap_single(&pdev->dev,
2516 					 dma_unmap_addr(tx_buf, mapping),
2517 					 skb_headlen(skb),
2518 					 PCI_DMA_TODEVICE);
2519 
2520 			last = tx_buf->nr_frags;
2521 			j += 2;
2522 			for (k = 0; k < last; k++, j++) {
2523 				int ring_idx = j & bp->tx_ring_mask;
2524 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2525 
2526 				tx_buf = &txr->tx_buf_ring[ring_idx];
2527 				dma_unmap_page(
2528 					&pdev->dev,
2529 					dma_unmap_addr(tx_buf, mapping),
2530 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2531 			}
2532 			dev_kfree_skb(skb);
2533 		}
2534 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2535 	}
2536 }
2537 
2538 static void bnxt_free_rx_skbs(struct bnxt *bp)
2539 {
2540 	int i, max_idx, max_agg_idx;
2541 	struct pci_dev *pdev = bp->pdev;
2542 
2543 	if (!bp->rx_ring)
2544 		return;
2545 
2546 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2547 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2548 	for (i = 0; i < bp->rx_nr_rings; i++) {
2549 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2550 		struct bnxt_tpa_idx_map *map;
2551 		int j;
2552 
2553 		if (rxr->rx_tpa) {
2554 			for (j = 0; j < bp->max_tpa; j++) {
2555 				struct bnxt_tpa_info *tpa_info =
2556 							&rxr->rx_tpa[j];
2557 				u8 *data = tpa_info->data;
2558 
2559 				if (!data)
2560 					continue;
2561 
2562 				dma_unmap_single_attrs(&pdev->dev,
2563 						       tpa_info->mapping,
2564 						       bp->rx_buf_use_size,
2565 						       bp->rx_dir,
2566 						       DMA_ATTR_WEAK_ORDERING);
2567 
2568 				tpa_info->data = NULL;
2569 
2570 				kfree(data);
2571 			}
2572 		}
2573 
2574 		for (j = 0; j < max_idx; j++) {
2575 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2576 			dma_addr_t mapping = rx_buf->mapping;
2577 			void *data = rx_buf->data;
2578 
2579 			if (!data)
2580 				continue;
2581 
2582 			rx_buf->data = NULL;
2583 
2584 			if (BNXT_RX_PAGE_MODE(bp)) {
2585 				mapping -= bp->rx_dma_offset;
2586 				dma_unmap_page_attrs(&pdev->dev, mapping,
2587 						     PAGE_SIZE, bp->rx_dir,
2588 						     DMA_ATTR_WEAK_ORDERING);
2589 				page_pool_recycle_direct(rxr->page_pool, data);
2590 			} else {
2591 				dma_unmap_single_attrs(&pdev->dev, mapping,
2592 						       bp->rx_buf_use_size,
2593 						       bp->rx_dir,
2594 						       DMA_ATTR_WEAK_ORDERING);
2595 				kfree(data);
2596 			}
2597 		}
2598 
2599 		for (j = 0; j < max_agg_idx; j++) {
2600 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2601 				&rxr->rx_agg_ring[j];
2602 			struct page *page = rx_agg_buf->page;
2603 
2604 			if (!page)
2605 				continue;
2606 
2607 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2608 					     BNXT_RX_PAGE_SIZE,
2609 					     PCI_DMA_FROMDEVICE,
2610 					     DMA_ATTR_WEAK_ORDERING);
2611 
2612 			rx_agg_buf->page = NULL;
2613 			__clear_bit(j, rxr->rx_agg_bmap);
2614 
2615 			__free_page(page);
2616 		}
2617 		if (rxr->rx_page) {
2618 			__free_page(rxr->rx_page);
2619 			rxr->rx_page = NULL;
2620 		}
2621 		map = rxr->rx_tpa_idx_map;
2622 		if (map)
2623 			memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2624 	}
2625 }
2626 
2627 static void bnxt_free_skbs(struct bnxt *bp)
2628 {
2629 	bnxt_free_tx_skbs(bp);
2630 	bnxt_free_rx_skbs(bp);
2631 }
2632 
2633 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2634 {
2635 	struct pci_dev *pdev = bp->pdev;
2636 	int i;
2637 
2638 	for (i = 0; i < rmem->nr_pages; i++) {
2639 		if (!rmem->pg_arr[i])
2640 			continue;
2641 
2642 		dma_free_coherent(&pdev->dev, rmem->page_size,
2643 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2644 
2645 		rmem->pg_arr[i] = NULL;
2646 	}
2647 	if (rmem->pg_tbl) {
2648 		size_t pg_tbl_size = rmem->nr_pages * 8;
2649 
2650 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2651 			pg_tbl_size = rmem->page_size;
2652 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2653 				  rmem->pg_tbl, rmem->pg_tbl_map);
2654 		rmem->pg_tbl = NULL;
2655 	}
2656 	if (rmem->vmem_size && *rmem->vmem) {
2657 		vfree(*rmem->vmem);
2658 		*rmem->vmem = NULL;
2659 	}
2660 }
2661 
2662 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2663 {
2664 	struct pci_dev *pdev = bp->pdev;
2665 	u64 valid_bit = 0;
2666 	int i;
2667 
2668 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2669 		valid_bit = PTU_PTE_VALID;
2670 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2671 		size_t pg_tbl_size = rmem->nr_pages * 8;
2672 
2673 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2674 			pg_tbl_size = rmem->page_size;
2675 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2676 						  &rmem->pg_tbl_map,
2677 						  GFP_KERNEL);
2678 		if (!rmem->pg_tbl)
2679 			return -ENOMEM;
2680 	}
2681 
2682 	for (i = 0; i < rmem->nr_pages; i++) {
2683 		u64 extra_bits = valid_bit;
2684 
2685 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2686 						     rmem->page_size,
2687 						     &rmem->dma_arr[i],
2688 						     GFP_KERNEL);
2689 		if (!rmem->pg_arr[i])
2690 			return -ENOMEM;
2691 
2692 		if (rmem->init_val)
2693 			memset(rmem->pg_arr[i], rmem->init_val,
2694 			       rmem->page_size);
2695 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2696 			if (i == rmem->nr_pages - 2 &&
2697 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2698 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2699 			else if (i == rmem->nr_pages - 1 &&
2700 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2701 				extra_bits |= PTU_PTE_LAST;
2702 			rmem->pg_tbl[i] =
2703 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2704 		}
2705 	}
2706 
2707 	if (rmem->vmem_size) {
2708 		*rmem->vmem = vzalloc(rmem->vmem_size);
2709 		if (!(*rmem->vmem))
2710 			return -ENOMEM;
2711 	}
2712 	return 0;
2713 }
2714 
2715 static void bnxt_free_tpa_info(struct bnxt *bp)
2716 {
2717 	int i;
2718 
2719 	for (i = 0; i < bp->rx_nr_rings; i++) {
2720 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2721 
2722 		kfree(rxr->rx_tpa_idx_map);
2723 		rxr->rx_tpa_idx_map = NULL;
2724 		if (rxr->rx_tpa) {
2725 			kfree(rxr->rx_tpa[0].agg_arr);
2726 			rxr->rx_tpa[0].agg_arr = NULL;
2727 		}
2728 		kfree(rxr->rx_tpa);
2729 		rxr->rx_tpa = NULL;
2730 	}
2731 }
2732 
2733 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2734 {
2735 	int i, j, total_aggs = 0;
2736 
2737 	bp->max_tpa = MAX_TPA;
2738 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
2739 		if (!bp->max_tpa_v2)
2740 			return 0;
2741 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2742 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2743 	}
2744 
2745 	for (i = 0; i < bp->rx_nr_rings; i++) {
2746 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2747 		struct rx_agg_cmp *agg;
2748 
2749 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2750 				      GFP_KERNEL);
2751 		if (!rxr->rx_tpa)
2752 			return -ENOMEM;
2753 
2754 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2755 			continue;
2756 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2757 		rxr->rx_tpa[0].agg_arr = agg;
2758 		if (!agg)
2759 			return -ENOMEM;
2760 		for (j = 1; j < bp->max_tpa; j++)
2761 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2762 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2763 					      GFP_KERNEL);
2764 		if (!rxr->rx_tpa_idx_map)
2765 			return -ENOMEM;
2766 	}
2767 	return 0;
2768 }
2769 
2770 static void bnxt_free_rx_rings(struct bnxt *bp)
2771 {
2772 	int i;
2773 
2774 	if (!bp->rx_ring)
2775 		return;
2776 
2777 	bnxt_free_tpa_info(bp);
2778 	for (i = 0; i < bp->rx_nr_rings; i++) {
2779 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2780 		struct bnxt_ring_struct *ring;
2781 
2782 		if (rxr->xdp_prog)
2783 			bpf_prog_put(rxr->xdp_prog);
2784 
2785 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2786 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2787 
2788 		page_pool_destroy(rxr->page_pool);
2789 		rxr->page_pool = NULL;
2790 
2791 		kfree(rxr->rx_agg_bmap);
2792 		rxr->rx_agg_bmap = NULL;
2793 
2794 		ring = &rxr->rx_ring_struct;
2795 		bnxt_free_ring(bp, &ring->ring_mem);
2796 
2797 		ring = &rxr->rx_agg_ring_struct;
2798 		bnxt_free_ring(bp, &ring->ring_mem);
2799 	}
2800 }
2801 
2802 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2803 				   struct bnxt_rx_ring_info *rxr)
2804 {
2805 	struct page_pool_params pp = { 0 };
2806 
2807 	pp.pool_size = bp->rx_ring_size;
2808 	pp.nid = dev_to_node(&bp->pdev->dev);
2809 	pp.dev = &bp->pdev->dev;
2810 	pp.dma_dir = DMA_BIDIRECTIONAL;
2811 
2812 	rxr->page_pool = page_pool_create(&pp);
2813 	if (IS_ERR(rxr->page_pool)) {
2814 		int err = PTR_ERR(rxr->page_pool);
2815 
2816 		rxr->page_pool = NULL;
2817 		return err;
2818 	}
2819 	return 0;
2820 }
2821 
2822 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2823 {
2824 	int i, rc = 0, agg_rings = 0;
2825 
2826 	if (!bp->rx_ring)
2827 		return -ENOMEM;
2828 
2829 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2830 		agg_rings = 1;
2831 
2832 	for (i = 0; i < bp->rx_nr_rings; i++) {
2833 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2834 		struct bnxt_ring_struct *ring;
2835 
2836 		ring = &rxr->rx_ring_struct;
2837 
2838 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2839 		if (rc)
2840 			return rc;
2841 
2842 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2843 		if (rc < 0)
2844 			return rc;
2845 
2846 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2847 						MEM_TYPE_PAGE_POOL,
2848 						rxr->page_pool);
2849 		if (rc) {
2850 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2851 			return rc;
2852 		}
2853 
2854 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2855 		if (rc)
2856 			return rc;
2857 
2858 		ring->grp_idx = i;
2859 		if (agg_rings) {
2860 			u16 mem_size;
2861 
2862 			ring = &rxr->rx_agg_ring_struct;
2863 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2864 			if (rc)
2865 				return rc;
2866 
2867 			ring->grp_idx = i;
2868 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2869 			mem_size = rxr->rx_agg_bmap_size / 8;
2870 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2871 			if (!rxr->rx_agg_bmap)
2872 				return -ENOMEM;
2873 		}
2874 	}
2875 	if (bp->flags & BNXT_FLAG_TPA)
2876 		rc = bnxt_alloc_tpa_info(bp);
2877 	return rc;
2878 }
2879 
2880 static void bnxt_free_tx_rings(struct bnxt *bp)
2881 {
2882 	int i;
2883 	struct pci_dev *pdev = bp->pdev;
2884 
2885 	if (!bp->tx_ring)
2886 		return;
2887 
2888 	for (i = 0; i < bp->tx_nr_rings; i++) {
2889 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2890 		struct bnxt_ring_struct *ring;
2891 
2892 		if (txr->tx_push) {
2893 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2894 					  txr->tx_push, txr->tx_push_mapping);
2895 			txr->tx_push = NULL;
2896 		}
2897 
2898 		ring = &txr->tx_ring_struct;
2899 
2900 		bnxt_free_ring(bp, &ring->ring_mem);
2901 	}
2902 }
2903 
2904 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2905 {
2906 	int i, j, rc;
2907 	struct pci_dev *pdev = bp->pdev;
2908 
2909 	bp->tx_push_size = 0;
2910 	if (bp->tx_push_thresh) {
2911 		int push_size;
2912 
2913 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2914 					bp->tx_push_thresh);
2915 
2916 		if (push_size > 256) {
2917 			push_size = 0;
2918 			bp->tx_push_thresh = 0;
2919 		}
2920 
2921 		bp->tx_push_size = push_size;
2922 	}
2923 
2924 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2925 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2926 		struct bnxt_ring_struct *ring;
2927 		u8 qidx;
2928 
2929 		ring = &txr->tx_ring_struct;
2930 
2931 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2932 		if (rc)
2933 			return rc;
2934 
2935 		ring->grp_idx = txr->bnapi->index;
2936 		if (bp->tx_push_size) {
2937 			dma_addr_t mapping;
2938 
2939 			/* One pre-allocated DMA buffer to backup
2940 			 * TX push operation
2941 			 */
2942 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2943 						bp->tx_push_size,
2944 						&txr->tx_push_mapping,
2945 						GFP_KERNEL);
2946 
2947 			if (!txr->tx_push)
2948 				return -ENOMEM;
2949 
2950 			mapping = txr->tx_push_mapping +
2951 				sizeof(struct tx_push_bd);
2952 			txr->data_mapping = cpu_to_le64(mapping);
2953 		}
2954 		qidx = bp->tc_to_qidx[j];
2955 		ring->queue_id = bp->q_info[qidx].queue_id;
2956 		if (i < bp->tx_nr_rings_xdp)
2957 			continue;
2958 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2959 			j++;
2960 	}
2961 	return 0;
2962 }
2963 
2964 static void bnxt_free_cp_rings(struct bnxt *bp)
2965 {
2966 	int i;
2967 
2968 	if (!bp->bnapi)
2969 		return;
2970 
2971 	for (i = 0; i < bp->cp_nr_rings; i++) {
2972 		struct bnxt_napi *bnapi = bp->bnapi[i];
2973 		struct bnxt_cp_ring_info *cpr;
2974 		struct bnxt_ring_struct *ring;
2975 		int j;
2976 
2977 		if (!bnapi)
2978 			continue;
2979 
2980 		cpr = &bnapi->cp_ring;
2981 		ring = &cpr->cp_ring_struct;
2982 
2983 		bnxt_free_ring(bp, &ring->ring_mem);
2984 
2985 		for (j = 0; j < 2; j++) {
2986 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2987 
2988 			if (cpr2) {
2989 				ring = &cpr2->cp_ring_struct;
2990 				bnxt_free_ring(bp, &ring->ring_mem);
2991 				kfree(cpr2);
2992 				cpr->cp_ring_arr[j] = NULL;
2993 			}
2994 		}
2995 	}
2996 }
2997 
2998 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2999 {
3000 	struct bnxt_ring_mem_info *rmem;
3001 	struct bnxt_ring_struct *ring;
3002 	struct bnxt_cp_ring_info *cpr;
3003 	int rc;
3004 
3005 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3006 	if (!cpr)
3007 		return NULL;
3008 
3009 	ring = &cpr->cp_ring_struct;
3010 	rmem = &ring->ring_mem;
3011 	rmem->nr_pages = bp->cp_nr_pages;
3012 	rmem->page_size = HW_CMPD_RING_SIZE;
3013 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3014 	rmem->dma_arr = cpr->cp_desc_mapping;
3015 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3016 	rc = bnxt_alloc_ring(bp, rmem);
3017 	if (rc) {
3018 		bnxt_free_ring(bp, rmem);
3019 		kfree(cpr);
3020 		cpr = NULL;
3021 	}
3022 	return cpr;
3023 }
3024 
3025 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3026 {
3027 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3028 	int i, rc, ulp_base_vec, ulp_msix;
3029 
3030 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3031 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3032 	for (i = 0; i < bp->cp_nr_rings; i++) {
3033 		struct bnxt_napi *bnapi = bp->bnapi[i];
3034 		struct bnxt_cp_ring_info *cpr;
3035 		struct bnxt_ring_struct *ring;
3036 
3037 		if (!bnapi)
3038 			continue;
3039 
3040 		cpr = &bnapi->cp_ring;
3041 		cpr->bnapi = bnapi;
3042 		ring = &cpr->cp_ring_struct;
3043 
3044 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3045 		if (rc)
3046 			return rc;
3047 
3048 		if (ulp_msix && i >= ulp_base_vec)
3049 			ring->map_idx = i + ulp_msix;
3050 		else
3051 			ring->map_idx = i;
3052 
3053 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3054 			continue;
3055 
3056 		if (i < bp->rx_nr_rings) {
3057 			struct bnxt_cp_ring_info *cpr2 =
3058 				bnxt_alloc_cp_sub_ring(bp);
3059 
3060 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3061 			if (!cpr2)
3062 				return -ENOMEM;
3063 			cpr2->bnapi = bnapi;
3064 		}
3065 		if ((sh && i < bp->tx_nr_rings) ||
3066 		    (!sh && i >= bp->rx_nr_rings)) {
3067 			struct bnxt_cp_ring_info *cpr2 =
3068 				bnxt_alloc_cp_sub_ring(bp);
3069 
3070 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3071 			if (!cpr2)
3072 				return -ENOMEM;
3073 			cpr2->bnapi = bnapi;
3074 		}
3075 	}
3076 	return 0;
3077 }
3078 
3079 static void bnxt_init_ring_struct(struct bnxt *bp)
3080 {
3081 	int i;
3082 
3083 	for (i = 0; i < bp->cp_nr_rings; i++) {
3084 		struct bnxt_napi *bnapi = bp->bnapi[i];
3085 		struct bnxt_ring_mem_info *rmem;
3086 		struct bnxt_cp_ring_info *cpr;
3087 		struct bnxt_rx_ring_info *rxr;
3088 		struct bnxt_tx_ring_info *txr;
3089 		struct bnxt_ring_struct *ring;
3090 
3091 		if (!bnapi)
3092 			continue;
3093 
3094 		cpr = &bnapi->cp_ring;
3095 		ring = &cpr->cp_ring_struct;
3096 		rmem = &ring->ring_mem;
3097 		rmem->nr_pages = bp->cp_nr_pages;
3098 		rmem->page_size = HW_CMPD_RING_SIZE;
3099 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3100 		rmem->dma_arr = cpr->cp_desc_mapping;
3101 		rmem->vmem_size = 0;
3102 
3103 		rxr = bnapi->rx_ring;
3104 		if (!rxr)
3105 			goto skip_rx;
3106 
3107 		ring = &rxr->rx_ring_struct;
3108 		rmem = &ring->ring_mem;
3109 		rmem->nr_pages = bp->rx_nr_pages;
3110 		rmem->page_size = HW_RXBD_RING_SIZE;
3111 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3112 		rmem->dma_arr = rxr->rx_desc_mapping;
3113 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3114 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3115 
3116 		ring = &rxr->rx_agg_ring_struct;
3117 		rmem = &ring->ring_mem;
3118 		rmem->nr_pages = bp->rx_agg_nr_pages;
3119 		rmem->page_size = HW_RXBD_RING_SIZE;
3120 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3121 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3122 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3123 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3124 
3125 skip_rx:
3126 		txr = bnapi->tx_ring;
3127 		if (!txr)
3128 			continue;
3129 
3130 		ring = &txr->tx_ring_struct;
3131 		rmem = &ring->ring_mem;
3132 		rmem->nr_pages = bp->tx_nr_pages;
3133 		rmem->page_size = HW_RXBD_RING_SIZE;
3134 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3135 		rmem->dma_arr = txr->tx_desc_mapping;
3136 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3137 		rmem->vmem = (void **)&txr->tx_buf_ring;
3138 	}
3139 }
3140 
3141 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3142 {
3143 	int i;
3144 	u32 prod;
3145 	struct rx_bd **rx_buf_ring;
3146 
3147 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3148 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3149 		int j;
3150 		struct rx_bd *rxbd;
3151 
3152 		rxbd = rx_buf_ring[i];
3153 		if (!rxbd)
3154 			continue;
3155 
3156 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3157 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3158 			rxbd->rx_bd_opaque = prod;
3159 		}
3160 	}
3161 }
3162 
3163 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3164 {
3165 	struct net_device *dev = bp->dev;
3166 	struct bnxt_rx_ring_info *rxr;
3167 	struct bnxt_ring_struct *ring;
3168 	u32 prod, type;
3169 	int i;
3170 
3171 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3172 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3173 
3174 	if (NET_IP_ALIGN == 2)
3175 		type |= RX_BD_FLAGS_SOP;
3176 
3177 	rxr = &bp->rx_ring[ring_nr];
3178 	ring = &rxr->rx_ring_struct;
3179 	bnxt_init_rxbd_pages(ring, type);
3180 
3181 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3182 		bpf_prog_add(bp->xdp_prog, 1);
3183 		rxr->xdp_prog = bp->xdp_prog;
3184 	}
3185 	prod = rxr->rx_prod;
3186 	for (i = 0; i < bp->rx_ring_size; i++) {
3187 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
3188 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3189 				    ring_nr, i, bp->rx_ring_size);
3190 			break;
3191 		}
3192 		prod = NEXT_RX(prod);
3193 	}
3194 	rxr->rx_prod = prod;
3195 	ring->fw_ring_id = INVALID_HW_RING_ID;
3196 
3197 	ring = &rxr->rx_agg_ring_struct;
3198 	ring->fw_ring_id = INVALID_HW_RING_ID;
3199 
3200 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3201 		return 0;
3202 
3203 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3204 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3205 
3206 	bnxt_init_rxbd_pages(ring, type);
3207 
3208 	prod = rxr->rx_agg_prod;
3209 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3210 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
3211 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3212 				    ring_nr, i, bp->rx_ring_size);
3213 			break;
3214 		}
3215 		prod = NEXT_RX_AGG(prod);
3216 	}
3217 	rxr->rx_agg_prod = prod;
3218 
3219 	if (bp->flags & BNXT_FLAG_TPA) {
3220 		if (rxr->rx_tpa) {
3221 			u8 *data;
3222 			dma_addr_t mapping;
3223 
3224 			for (i = 0; i < bp->max_tpa; i++) {
3225 				data = __bnxt_alloc_rx_data(bp, &mapping,
3226 							    GFP_KERNEL);
3227 				if (!data)
3228 					return -ENOMEM;
3229 
3230 				rxr->rx_tpa[i].data = data;
3231 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3232 				rxr->rx_tpa[i].mapping = mapping;
3233 			}
3234 		} else {
3235 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
3236 			return -ENOMEM;
3237 		}
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 static void bnxt_init_cp_rings(struct bnxt *bp)
3244 {
3245 	int i, j;
3246 
3247 	for (i = 0; i < bp->cp_nr_rings; i++) {
3248 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3249 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3250 
3251 		ring->fw_ring_id = INVALID_HW_RING_ID;
3252 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3253 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3254 		for (j = 0; j < 2; j++) {
3255 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3256 
3257 			if (!cpr2)
3258 				continue;
3259 
3260 			ring = &cpr2->cp_ring_struct;
3261 			ring->fw_ring_id = INVALID_HW_RING_ID;
3262 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3263 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3264 		}
3265 	}
3266 }
3267 
3268 static int bnxt_init_rx_rings(struct bnxt *bp)
3269 {
3270 	int i, rc = 0;
3271 
3272 	if (BNXT_RX_PAGE_MODE(bp)) {
3273 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3274 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3275 	} else {
3276 		bp->rx_offset = BNXT_RX_OFFSET;
3277 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3278 	}
3279 
3280 	for (i = 0; i < bp->rx_nr_rings; i++) {
3281 		rc = bnxt_init_one_rx_ring(bp, i);
3282 		if (rc)
3283 			break;
3284 	}
3285 
3286 	return rc;
3287 }
3288 
3289 static int bnxt_init_tx_rings(struct bnxt *bp)
3290 {
3291 	u16 i;
3292 
3293 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3294 				   MAX_SKB_FRAGS + 1);
3295 
3296 	for (i = 0; i < bp->tx_nr_rings; i++) {
3297 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3298 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3299 
3300 		ring->fw_ring_id = INVALID_HW_RING_ID;
3301 	}
3302 
3303 	return 0;
3304 }
3305 
3306 static void bnxt_free_ring_grps(struct bnxt *bp)
3307 {
3308 	kfree(bp->grp_info);
3309 	bp->grp_info = NULL;
3310 }
3311 
3312 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3313 {
3314 	int i;
3315 
3316 	if (irq_re_init) {
3317 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3318 				       sizeof(struct bnxt_ring_grp_info),
3319 				       GFP_KERNEL);
3320 		if (!bp->grp_info)
3321 			return -ENOMEM;
3322 	}
3323 	for (i = 0; i < bp->cp_nr_rings; i++) {
3324 		if (irq_re_init)
3325 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3326 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3327 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3328 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3329 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3330 	}
3331 	return 0;
3332 }
3333 
3334 static void bnxt_free_vnics(struct bnxt *bp)
3335 {
3336 	kfree(bp->vnic_info);
3337 	bp->vnic_info = NULL;
3338 	bp->nr_vnics = 0;
3339 }
3340 
3341 static int bnxt_alloc_vnics(struct bnxt *bp)
3342 {
3343 	int num_vnics = 1;
3344 
3345 #ifdef CONFIG_RFS_ACCEL
3346 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3347 		num_vnics += bp->rx_nr_rings;
3348 #endif
3349 
3350 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3351 		num_vnics++;
3352 
3353 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3354 				GFP_KERNEL);
3355 	if (!bp->vnic_info)
3356 		return -ENOMEM;
3357 
3358 	bp->nr_vnics = num_vnics;
3359 	return 0;
3360 }
3361 
3362 static void bnxt_init_vnics(struct bnxt *bp)
3363 {
3364 	int i;
3365 
3366 	for (i = 0; i < bp->nr_vnics; i++) {
3367 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3368 		int j;
3369 
3370 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3371 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3372 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3373 
3374 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3375 
3376 		if (bp->vnic_info[i].rss_hash_key) {
3377 			if (i == 0)
3378 				prandom_bytes(vnic->rss_hash_key,
3379 					      HW_HASH_KEY_SIZE);
3380 			else
3381 				memcpy(vnic->rss_hash_key,
3382 				       bp->vnic_info[0].rss_hash_key,
3383 				       HW_HASH_KEY_SIZE);
3384 		}
3385 	}
3386 }
3387 
3388 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3389 {
3390 	int pages;
3391 
3392 	pages = ring_size / desc_per_pg;
3393 
3394 	if (!pages)
3395 		return 1;
3396 
3397 	pages++;
3398 
3399 	while (pages & (pages - 1))
3400 		pages++;
3401 
3402 	return pages;
3403 }
3404 
3405 void bnxt_set_tpa_flags(struct bnxt *bp)
3406 {
3407 	bp->flags &= ~BNXT_FLAG_TPA;
3408 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3409 		return;
3410 	if (bp->dev->features & NETIF_F_LRO)
3411 		bp->flags |= BNXT_FLAG_LRO;
3412 	else if (bp->dev->features & NETIF_F_GRO_HW)
3413 		bp->flags |= BNXT_FLAG_GRO;
3414 }
3415 
3416 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3417  * be set on entry.
3418  */
3419 void bnxt_set_ring_params(struct bnxt *bp)
3420 {
3421 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3422 	u32 agg_factor = 0, agg_ring_size = 0;
3423 
3424 	/* 8 for CRC and VLAN */
3425 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3426 
3427 	rx_space = rx_size + NET_SKB_PAD +
3428 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3429 
3430 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3431 	ring_size = bp->rx_ring_size;
3432 	bp->rx_agg_ring_size = 0;
3433 	bp->rx_agg_nr_pages = 0;
3434 
3435 	if (bp->flags & BNXT_FLAG_TPA)
3436 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3437 
3438 	bp->flags &= ~BNXT_FLAG_JUMBO;
3439 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3440 		u32 jumbo_factor;
3441 
3442 		bp->flags |= BNXT_FLAG_JUMBO;
3443 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3444 		if (jumbo_factor > agg_factor)
3445 			agg_factor = jumbo_factor;
3446 	}
3447 	agg_ring_size = ring_size * agg_factor;
3448 
3449 	if (agg_ring_size) {
3450 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3451 							RX_DESC_CNT);
3452 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3453 			u32 tmp = agg_ring_size;
3454 
3455 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3456 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3457 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3458 				    tmp, agg_ring_size);
3459 		}
3460 		bp->rx_agg_ring_size = agg_ring_size;
3461 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3462 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3463 		rx_space = rx_size + NET_SKB_PAD +
3464 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3465 	}
3466 
3467 	bp->rx_buf_use_size = rx_size;
3468 	bp->rx_buf_size = rx_space;
3469 
3470 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3471 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3472 
3473 	ring_size = bp->tx_ring_size;
3474 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3475 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3476 
3477 	max_rx_cmpl = bp->rx_ring_size;
3478 	/* MAX TPA needs to be added because TPA_START completions are
3479 	 * immediately recycled, so the TPA completions are not bound by
3480 	 * the RX ring size.
3481 	 */
3482 	if (bp->flags & BNXT_FLAG_TPA)
3483 		max_rx_cmpl += bp->max_tpa;
3484 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3485 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3486 	bp->cp_ring_size = ring_size;
3487 
3488 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3489 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3490 		bp->cp_nr_pages = MAX_CP_PAGES;
3491 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3492 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3493 			    ring_size, bp->cp_ring_size);
3494 	}
3495 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3496 	bp->cp_ring_mask = bp->cp_bit - 1;
3497 }
3498 
3499 /* Changing allocation mode of RX rings.
3500  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3501  */
3502 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3503 {
3504 	if (page_mode) {
3505 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3506 			return -EOPNOTSUPP;
3507 		bp->dev->max_mtu =
3508 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3509 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3510 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3511 		bp->rx_dir = DMA_BIDIRECTIONAL;
3512 		bp->rx_skb_func = bnxt_rx_page_skb;
3513 		/* Disable LRO or GRO_HW */
3514 		netdev_update_features(bp->dev);
3515 	} else {
3516 		bp->dev->max_mtu = bp->max_mtu;
3517 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3518 		bp->rx_dir = DMA_FROM_DEVICE;
3519 		bp->rx_skb_func = bnxt_rx_skb;
3520 	}
3521 	return 0;
3522 }
3523 
3524 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3525 {
3526 	int i;
3527 	struct bnxt_vnic_info *vnic;
3528 	struct pci_dev *pdev = bp->pdev;
3529 
3530 	if (!bp->vnic_info)
3531 		return;
3532 
3533 	for (i = 0; i < bp->nr_vnics; i++) {
3534 		vnic = &bp->vnic_info[i];
3535 
3536 		kfree(vnic->fw_grp_ids);
3537 		vnic->fw_grp_ids = NULL;
3538 
3539 		kfree(vnic->uc_list);
3540 		vnic->uc_list = NULL;
3541 
3542 		if (vnic->mc_list) {
3543 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3544 					  vnic->mc_list, vnic->mc_list_mapping);
3545 			vnic->mc_list = NULL;
3546 		}
3547 
3548 		if (vnic->rss_table) {
3549 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3550 					  vnic->rss_table,
3551 					  vnic->rss_table_dma_addr);
3552 			vnic->rss_table = NULL;
3553 		}
3554 
3555 		vnic->rss_hash_key = NULL;
3556 		vnic->flags = 0;
3557 	}
3558 }
3559 
3560 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3561 {
3562 	int i, rc = 0, size;
3563 	struct bnxt_vnic_info *vnic;
3564 	struct pci_dev *pdev = bp->pdev;
3565 	int max_rings;
3566 
3567 	for (i = 0; i < bp->nr_vnics; i++) {
3568 		vnic = &bp->vnic_info[i];
3569 
3570 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3571 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3572 
3573 			if (mem_size > 0) {
3574 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3575 				if (!vnic->uc_list) {
3576 					rc = -ENOMEM;
3577 					goto out;
3578 				}
3579 			}
3580 		}
3581 
3582 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3583 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3584 			vnic->mc_list =
3585 				dma_alloc_coherent(&pdev->dev,
3586 						   vnic->mc_list_size,
3587 						   &vnic->mc_list_mapping,
3588 						   GFP_KERNEL);
3589 			if (!vnic->mc_list) {
3590 				rc = -ENOMEM;
3591 				goto out;
3592 			}
3593 		}
3594 
3595 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3596 			goto vnic_skip_grps;
3597 
3598 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3599 			max_rings = bp->rx_nr_rings;
3600 		else
3601 			max_rings = 1;
3602 
3603 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3604 		if (!vnic->fw_grp_ids) {
3605 			rc = -ENOMEM;
3606 			goto out;
3607 		}
3608 vnic_skip_grps:
3609 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3610 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3611 			continue;
3612 
3613 		/* Allocate rss table and hash key */
3614 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3615 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3616 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3617 
3618 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3619 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3620 						     vnic->rss_table_size,
3621 						     &vnic->rss_table_dma_addr,
3622 						     GFP_KERNEL);
3623 		if (!vnic->rss_table) {
3624 			rc = -ENOMEM;
3625 			goto out;
3626 		}
3627 
3628 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3629 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3630 	}
3631 	return 0;
3632 
3633 out:
3634 	return rc;
3635 }
3636 
3637 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3638 {
3639 	struct pci_dev *pdev = bp->pdev;
3640 
3641 	if (bp->hwrm_cmd_resp_addr) {
3642 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3643 				  bp->hwrm_cmd_resp_dma_addr);
3644 		bp->hwrm_cmd_resp_addr = NULL;
3645 	}
3646 
3647 	if (bp->hwrm_cmd_kong_resp_addr) {
3648 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3649 				  bp->hwrm_cmd_kong_resp_addr,
3650 				  bp->hwrm_cmd_kong_resp_dma_addr);
3651 		bp->hwrm_cmd_kong_resp_addr = NULL;
3652 	}
3653 }
3654 
3655 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3656 {
3657 	struct pci_dev *pdev = bp->pdev;
3658 
3659 	if (bp->hwrm_cmd_kong_resp_addr)
3660 		return 0;
3661 
3662 	bp->hwrm_cmd_kong_resp_addr =
3663 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3664 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3665 				   GFP_KERNEL);
3666 	if (!bp->hwrm_cmd_kong_resp_addr)
3667 		return -ENOMEM;
3668 
3669 	return 0;
3670 }
3671 
3672 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3673 {
3674 	struct pci_dev *pdev = bp->pdev;
3675 
3676 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3677 						   &bp->hwrm_cmd_resp_dma_addr,
3678 						   GFP_KERNEL);
3679 	if (!bp->hwrm_cmd_resp_addr)
3680 		return -ENOMEM;
3681 
3682 	return 0;
3683 }
3684 
3685 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3686 {
3687 	if (bp->hwrm_short_cmd_req_addr) {
3688 		struct pci_dev *pdev = bp->pdev;
3689 
3690 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3691 				  bp->hwrm_short_cmd_req_addr,
3692 				  bp->hwrm_short_cmd_req_dma_addr);
3693 		bp->hwrm_short_cmd_req_addr = NULL;
3694 	}
3695 }
3696 
3697 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3698 {
3699 	struct pci_dev *pdev = bp->pdev;
3700 
3701 	if (bp->hwrm_short_cmd_req_addr)
3702 		return 0;
3703 
3704 	bp->hwrm_short_cmd_req_addr =
3705 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3706 				   &bp->hwrm_short_cmd_req_dma_addr,
3707 				   GFP_KERNEL);
3708 	if (!bp->hwrm_short_cmd_req_addr)
3709 		return -ENOMEM;
3710 
3711 	return 0;
3712 }
3713 
3714 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
3715 {
3716 	kfree(stats->hw_masks);
3717 	stats->hw_masks = NULL;
3718 	kfree(stats->sw_stats);
3719 	stats->sw_stats = NULL;
3720 	if (stats->hw_stats) {
3721 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
3722 				  stats->hw_stats_map);
3723 		stats->hw_stats = NULL;
3724 	}
3725 }
3726 
3727 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
3728 				bool alloc_masks)
3729 {
3730 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
3731 					     &stats->hw_stats_map, GFP_KERNEL);
3732 	if (!stats->hw_stats)
3733 		return -ENOMEM;
3734 
3735 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
3736 	if (!stats->sw_stats)
3737 		goto stats_mem_err;
3738 
3739 	if (alloc_masks) {
3740 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
3741 		if (!stats->hw_masks)
3742 			goto stats_mem_err;
3743 	}
3744 	return 0;
3745 
3746 stats_mem_err:
3747 	bnxt_free_stats_mem(bp, stats);
3748 	return -ENOMEM;
3749 }
3750 
3751 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
3752 {
3753 	int i;
3754 
3755 	for (i = 0; i < count; i++)
3756 		mask_arr[i] = mask;
3757 }
3758 
3759 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
3760 {
3761 	int i;
3762 
3763 	for (i = 0; i < count; i++)
3764 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
3765 }
3766 
3767 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
3768 				    struct bnxt_stats_mem *stats)
3769 {
3770 	struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
3771 	struct hwrm_func_qstats_ext_input req = {0};
3772 	__le64 *hw_masks;
3773 	int rc;
3774 
3775 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
3776 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
3777 		return -EOPNOTSUPP;
3778 
3779 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1);
3780 	req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3781 	mutex_lock(&bp->hwrm_cmd_lock);
3782 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3783 	if (rc)
3784 		goto qstat_exit;
3785 
3786 	hw_masks = &resp->rx_ucast_pkts;
3787 	bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
3788 
3789 qstat_exit:
3790 	mutex_unlock(&bp->hwrm_cmd_lock);
3791 	return rc;
3792 }
3793 
3794 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
3795 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
3796 
3797 static void bnxt_init_stats(struct bnxt *bp)
3798 {
3799 	struct bnxt_napi *bnapi = bp->bnapi[0];
3800 	struct bnxt_cp_ring_info *cpr;
3801 	struct bnxt_stats_mem *stats;
3802 	__le64 *rx_stats, *tx_stats;
3803 	int rc, rx_count, tx_count;
3804 	u64 *rx_masks, *tx_masks;
3805 	u64 mask;
3806 	u8 flags;
3807 
3808 	cpr = &bnapi->cp_ring;
3809 	stats = &cpr->stats;
3810 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
3811 	if (rc) {
3812 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3813 			mask = (1ULL << 48) - 1;
3814 		else
3815 			mask = -1ULL;
3816 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
3817 	}
3818 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
3819 		stats = &bp->port_stats;
3820 		rx_stats = stats->hw_stats;
3821 		rx_masks = stats->hw_masks;
3822 		rx_count = sizeof(struct rx_port_stats) / 8;
3823 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3824 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
3825 		tx_count = sizeof(struct tx_port_stats) / 8;
3826 
3827 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
3828 		rc = bnxt_hwrm_port_qstats(bp, flags);
3829 		if (rc) {
3830 			mask = (1ULL << 40) - 1;
3831 
3832 			bnxt_fill_masks(rx_masks, mask, rx_count);
3833 			bnxt_fill_masks(tx_masks, mask, tx_count);
3834 		} else {
3835 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3836 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
3837 			bnxt_hwrm_port_qstats(bp, 0);
3838 		}
3839 	}
3840 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
3841 		stats = &bp->rx_port_stats_ext;
3842 		rx_stats = stats->hw_stats;
3843 		rx_masks = stats->hw_masks;
3844 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
3845 		stats = &bp->tx_port_stats_ext;
3846 		tx_stats = stats->hw_stats;
3847 		tx_masks = stats->hw_masks;
3848 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
3849 
3850 		flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
3851 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
3852 		if (rc) {
3853 			mask = (1ULL << 40) - 1;
3854 
3855 			bnxt_fill_masks(rx_masks, mask, rx_count);
3856 			if (tx_stats)
3857 				bnxt_fill_masks(tx_masks, mask, tx_count);
3858 		} else {
3859 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
3860 			if (tx_stats)
3861 				bnxt_copy_hw_masks(tx_masks, tx_stats,
3862 						   tx_count);
3863 			bnxt_hwrm_port_qstats_ext(bp, 0);
3864 		}
3865 	}
3866 }
3867 
3868 static void bnxt_free_port_stats(struct bnxt *bp)
3869 {
3870 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3871 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3872 
3873 	bnxt_free_stats_mem(bp, &bp->port_stats);
3874 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
3875 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
3876 }
3877 
3878 static void bnxt_free_ring_stats(struct bnxt *bp)
3879 {
3880 	int i;
3881 
3882 	if (!bp->bnapi)
3883 		return;
3884 
3885 	for (i = 0; i < bp->cp_nr_rings; i++) {
3886 		struct bnxt_napi *bnapi = bp->bnapi[i];
3887 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3888 
3889 		bnxt_free_stats_mem(bp, &cpr->stats);
3890 	}
3891 }
3892 
3893 static int bnxt_alloc_stats(struct bnxt *bp)
3894 {
3895 	u32 size, i;
3896 	int rc;
3897 
3898 	size = bp->hw_ring_stats_size;
3899 
3900 	for (i = 0; i < bp->cp_nr_rings; i++) {
3901 		struct bnxt_napi *bnapi = bp->bnapi[i];
3902 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3903 
3904 		cpr->stats.len = size;
3905 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
3906 		if (rc)
3907 			return rc;
3908 
3909 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3910 	}
3911 
3912 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3913 		return 0;
3914 
3915 	if (bp->port_stats.hw_stats)
3916 		goto alloc_ext_stats;
3917 
3918 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
3919 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
3920 	if (rc)
3921 		return rc;
3922 
3923 	bp->flags |= BNXT_FLAG_PORT_STATS;
3924 
3925 alloc_ext_stats:
3926 	/* Display extended statistics only if FW supports it */
3927 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3928 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3929 			return 0;
3930 
3931 	if (bp->rx_port_stats_ext.hw_stats)
3932 		goto alloc_tx_ext_stats;
3933 
3934 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
3935 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
3936 	/* Extended stats are optional */
3937 	if (rc)
3938 		return 0;
3939 
3940 alloc_tx_ext_stats:
3941 	if (bp->tx_port_stats_ext.hw_stats)
3942 		return 0;
3943 
3944 	if (bp->hwrm_spec_code >= 0x10902 ||
3945 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3946 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
3947 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
3948 		/* Extended stats are optional */
3949 		if (rc)
3950 			return 0;
3951 	}
3952 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3953 	return 0;
3954 }
3955 
3956 static void bnxt_clear_ring_indices(struct bnxt *bp)
3957 {
3958 	int i;
3959 
3960 	if (!bp->bnapi)
3961 		return;
3962 
3963 	for (i = 0; i < bp->cp_nr_rings; i++) {
3964 		struct bnxt_napi *bnapi = bp->bnapi[i];
3965 		struct bnxt_cp_ring_info *cpr;
3966 		struct bnxt_rx_ring_info *rxr;
3967 		struct bnxt_tx_ring_info *txr;
3968 
3969 		if (!bnapi)
3970 			continue;
3971 
3972 		cpr = &bnapi->cp_ring;
3973 		cpr->cp_raw_cons = 0;
3974 
3975 		txr = bnapi->tx_ring;
3976 		if (txr) {
3977 			txr->tx_prod = 0;
3978 			txr->tx_cons = 0;
3979 		}
3980 
3981 		rxr = bnapi->rx_ring;
3982 		if (rxr) {
3983 			rxr->rx_prod = 0;
3984 			rxr->rx_agg_prod = 0;
3985 			rxr->rx_sw_agg_prod = 0;
3986 			rxr->rx_next_cons = 0;
3987 		}
3988 	}
3989 }
3990 
3991 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3992 {
3993 #ifdef CONFIG_RFS_ACCEL
3994 	int i;
3995 
3996 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3997 	 * safe to delete the hash table.
3998 	 */
3999 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4000 		struct hlist_head *head;
4001 		struct hlist_node *tmp;
4002 		struct bnxt_ntuple_filter *fltr;
4003 
4004 		head = &bp->ntp_fltr_hash_tbl[i];
4005 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4006 			hlist_del(&fltr->hash);
4007 			kfree(fltr);
4008 		}
4009 	}
4010 	if (irq_reinit) {
4011 		kfree(bp->ntp_fltr_bmap);
4012 		bp->ntp_fltr_bmap = NULL;
4013 	}
4014 	bp->ntp_fltr_count = 0;
4015 #endif
4016 }
4017 
4018 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4019 {
4020 #ifdef CONFIG_RFS_ACCEL
4021 	int i, rc = 0;
4022 
4023 	if (!(bp->flags & BNXT_FLAG_RFS))
4024 		return 0;
4025 
4026 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4027 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4028 
4029 	bp->ntp_fltr_count = 0;
4030 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4031 				    sizeof(long),
4032 				    GFP_KERNEL);
4033 
4034 	if (!bp->ntp_fltr_bmap)
4035 		rc = -ENOMEM;
4036 
4037 	return rc;
4038 #else
4039 	return 0;
4040 #endif
4041 }
4042 
4043 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4044 {
4045 	bnxt_free_vnic_attributes(bp);
4046 	bnxt_free_tx_rings(bp);
4047 	bnxt_free_rx_rings(bp);
4048 	bnxt_free_cp_rings(bp);
4049 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4050 	if (irq_re_init) {
4051 		bnxt_free_ring_stats(bp);
4052 		if (!(bp->fw_cap & BNXT_FW_CAP_PORT_STATS_NO_RESET))
4053 			bnxt_free_port_stats(bp);
4054 		bnxt_free_ring_grps(bp);
4055 		bnxt_free_vnics(bp);
4056 		kfree(bp->tx_ring_map);
4057 		bp->tx_ring_map = NULL;
4058 		kfree(bp->tx_ring);
4059 		bp->tx_ring = NULL;
4060 		kfree(bp->rx_ring);
4061 		bp->rx_ring = NULL;
4062 		kfree(bp->bnapi);
4063 		bp->bnapi = NULL;
4064 	} else {
4065 		bnxt_clear_ring_indices(bp);
4066 	}
4067 }
4068 
4069 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4070 {
4071 	int i, j, rc, size, arr_size;
4072 	void *bnapi;
4073 
4074 	if (irq_re_init) {
4075 		/* Allocate bnapi mem pointer array and mem block for
4076 		 * all queues
4077 		 */
4078 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4079 				bp->cp_nr_rings);
4080 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4081 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4082 		if (!bnapi)
4083 			return -ENOMEM;
4084 
4085 		bp->bnapi = bnapi;
4086 		bnapi += arr_size;
4087 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4088 			bp->bnapi[i] = bnapi;
4089 			bp->bnapi[i]->index = i;
4090 			bp->bnapi[i]->bp = bp;
4091 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4092 				struct bnxt_cp_ring_info *cpr =
4093 					&bp->bnapi[i]->cp_ring;
4094 
4095 				cpr->cp_ring_struct.ring_mem.flags =
4096 					BNXT_RMEM_RING_PTE_FLAG;
4097 			}
4098 		}
4099 
4100 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4101 				      sizeof(struct bnxt_rx_ring_info),
4102 				      GFP_KERNEL);
4103 		if (!bp->rx_ring)
4104 			return -ENOMEM;
4105 
4106 		for (i = 0; i < bp->rx_nr_rings; i++) {
4107 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4108 
4109 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4110 				rxr->rx_ring_struct.ring_mem.flags =
4111 					BNXT_RMEM_RING_PTE_FLAG;
4112 				rxr->rx_agg_ring_struct.ring_mem.flags =
4113 					BNXT_RMEM_RING_PTE_FLAG;
4114 			}
4115 			rxr->bnapi = bp->bnapi[i];
4116 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4117 		}
4118 
4119 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4120 				      sizeof(struct bnxt_tx_ring_info),
4121 				      GFP_KERNEL);
4122 		if (!bp->tx_ring)
4123 			return -ENOMEM;
4124 
4125 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4126 					  GFP_KERNEL);
4127 
4128 		if (!bp->tx_ring_map)
4129 			return -ENOMEM;
4130 
4131 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4132 			j = 0;
4133 		else
4134 			j = bp->rx_nr_rings;
4135 
4136 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4137 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4138 
4139 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4140 				txr->tx_ring_struct.ring_mem.flags =
4141 					BNXT_RMEM_RING_PTE_FLAG;
4142 			txr->bnapi = bp->bnapi[j];
4143 			bp->bnapi[j]->tx_ring = txr;
4144 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4145 			if (i >= bp->tx_nr_rings_xdp) {
4146 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4147 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4148 			} else {
4149 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4150 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4151 			}
4152 		}
4153 
4154 		rc = bnxt_alloc_stats(bp);
4155 		if (rc)
4156 			goto alloc_mem_err;
4157 		bnxt_init_stats(bp);
4158 
4159 		rc = bnxt_alloc_ntp_fltrs(bp);
4160 		if (rc)
4161 			goto alloc_mem_err;
4162 
4163 		rc = bnxt_alloc_vnics(bp);
4164 		if (rc)
4165 			goto alloc_mem_err;
4166 	}
4167 
4168 	bnxt_init_ring_struct(bp);
4169 
4170 	rc = bnxt_alloc_rx_rings(bp);
4171 	if (rc)
4172 		goto alloc_mem_err;
4173 
4174 	rc = bnxt_alloc_tx_rings(bp);
4175 	if (rc)
4176 		goto alloc_mem_err;
4177 
4178 	rc = bnxt_alloc_cp_rings(bp);
4179 	if (rc)
4180 		goto alloc_mem_err;
4181 
4182 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4183 				  BNXT_VNIC_UCAST_FLAG;
4184 	rc = bnxt_alloc_vnic_attributes(bp);
4185 	if (rc)
4186 		goto alloc_mem_err;
4187 	return 0;
4188 
4189 alloc_mem_err:
4190 	bnxt_free_mem(bp, true);
4191 	return rc;
4192 }
4193 
4194 static void bnxt_disable_int(struct bnxt *bp)
4195 {
4196 	int i;
4197 
4198 	if (!bp->bnapi)
4199 		return;
4200 
4201 	for (i = 0; i < bp->cp_nr_rings; i++) {
4202 		struct bnxt_napi *bnapi = bp->bnapi[i];
4203 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4204 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4205 
4206 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4207 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4208 	}
4209 }
4210 
4211 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4212 {
4213 	struct bnxt_napi *bnapi = bp->bnapi[n];
4214 	struct bnxt_cp_ring_info *cpr;
4215 
4216 	cpr = &bnapi->cp_ring;
4217 	return cpr->cp_ring_struct.map_idx;
4218 }
4219 
4220 static void bnxt_disable_int_sync(struct bnxt *bp)
4221 {
4222 	int i;
4223 
4224 	atomic_inc(&bp->intr_sem);
4225 
4226 	bnxt_disable_int(bp);
4227 	for (i = 0; i < bp->cp_nr_rings; i++) {
4228 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4229 
4230 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4231 	}
4232 }
4233 
4234 static void bnxt_enable_int(struct bnxt *bp)
4235 {
4236 	int i;
4237 
4238 	atomic_set(&bp->intr_sem, 0);
4239 	for (i = 0; i < bp->cp_nr_rings; i++) {
4240 		struct bnxt_napi *bnapi = bp->bnapi[i];
4241 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4242 
4243 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4244 	}
4245 }
4246 
4247 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4248 			    u16 cmpl_ring, u16 target_id)
4249 {
4250 	struct input *req = request;
4251 
4252 	req->req_type = cpu_to_le16(req_type);
4253 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
4254 	req->target_id = cpu_to_le16(target_id);
4255 	if (bnxt_kong_hwrm_message(bp, req))
4256 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4257 	else
4258 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4259 }
4260 
4261 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4262 {
4263 	switch (hwrm_err) {
4264 	case HWRM_ERR_CODE_SUCCESS:
4265 		return 0;
4266 	case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4267 		return -EACCES;
4268 	case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4269 		return -ENOSPC;
4270 	case HWRM_ERR_CODE_INVALID_PARAMS:
4271 	case HWRM_ERR_CODE_INVALID_FLAGS:
4272 	case HWRM_ERR_CODE_INVALID_ENABLES:
4273 	case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4274 	case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4275 		return -EINVAL;
4276 	case HWRM_ERR_CODE_NO_BUFFER:
4277 		return -ENOMEM;
4278 	case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4279 	case HWRM_ERR_CODE_BUSY:
4280 		return -EAGAIN;
4281 	case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4282 		return -EOPNOTSUPP;
4283 	default:
4284 		return -EIO;
4285 	}
4286 }
4287 
4288 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4289 				 int timeout, bool silent)
4290 {
4291 	int i, intr_process, rc, tmo_count;
4292 	struct input *req = msg;
4293 	u32 *data = msg;
4294 	u8 *valid;
4295 	u16 cp_ring_id, len = 0;
4296 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4297 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4298 	struct hwrm_short_input short_input = {0};
4299 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4300 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4301 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
4302 
4303 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4304 		return -EBUSY;
4305 
4306 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4307 		if (msg_len > bp->hwrm_max_ext_req_len ||
4308 		    !bp->hwrm_short_cmd_req_addr)
4309 			return -EINVAL;
4310 	}
4311 
4312 	if (bnxt_hwrm_kong_chnl(bp, req)) {
4313 		dst = BNXT_HWRM_CHNL_KONG;
4314 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4315 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4316 		resp = bp->hwrm_cmd_kong_resp_addr;
4317 	}
4318 
4319 	memset(resp, 0, PAGE_SIZE);
4320 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
4321 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4322 
4323 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4324 	/* currently supports only one outstanding message */
4325 	if (intr_process)
4326 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4327 
4328 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4329 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4330 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4331 		u16 max_msg_len;
4332 
4333 		/* Set boundary for maximum extended request length for short
4334 		 * cmd format. If passed up from device use the max supported
4335 		 * internal req length.
4336 		 */
4337 		max_msg_len = bp->hwrm_max_ext_req_len;
4338 
4339 		memcpy(short_cmd_req, req, msg_len);
4340 		if (msg_len < max_msg_len)
4341 			memset(short_cmd_req + msg_len, 0,
4342 			       max_msg_len - msg_len);
4343 
4344 		short_input.req_type = req->req_type;
4345 		short_input.signature =
4346 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4347 		short_input.size = cpu_to_le16(msg_len);
4348 		short_input.req_addr =
4349 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4350 
4351 		data = (u32 *)&short_input;
4352 		msg_len = sizeof(short_input);
4353 
4354 		/* Sync memory write before updating doorbell */
4355 		wmb();
4356 
4357 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4358 	}
4359 
4360 	/* Write request msg to hwrm channel */
4361 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4362 
4363 	for (i = msg_len; i < max_req_len; i += 4)
4364 		writel(0, bp->bar0 + bar_offset + i);
4365 
4366 	/* Ring channel doorbell */
4367 	writel(1, bp->bar0 + doorbell_offset);
4368 
4369 	if (!pci_is_enabled(bp->pdev))
4370 		return 0;
4371 
4372 	if (!timeout)
4373 		timeout = DFLT_HWRM_CMD_TIMEOUT;
4374 	/* convert timeout to usec */
4375 	timeout *= 1000;
4376 
4377 	i = 0;
4378 	/* Short timeout for the first few iterations:
4379 	 * number of loops = number of loops for short timeout +
4380 	 * number of loops for standard timeout.
4381 	 */
4382 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4383 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4384 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4385 
4386 	if (intr_process) {
4387 		u16 seq_id = bp->hwrm_intr_seq_id;
4388 
4389 		/* Wait until hwrm response cmpl interrupt is processed */
4390 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4391 		       i++ < tmo_count) {
4392 			/* Abort the wait for completion if the FW health
4393 			 * check has failed.
4394 			 */
4395 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4396 				return -EBUSY;
4397 			/* on first few passes, just barely sleep */
4398 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4399 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4400 					     HWRM_SHORT_MAX_TIMEOUT);
4401 			else
4402 				usleep_range(HWRM_MIN_TIMEOUT,
4403 					     HWRM_MAX_TIMEOUT);
4404 		}
4405 
4406 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4407 			if (!silent)
4408 				netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4409 					   le16_to_cpu(req->req_type));
4410 			return -EBUSY;
4411 		}
4412 		len = le16_to_cpu(resp->resp_len);
4413 		valid = ((u8 *)resp) + len - 1;
4414 	} else {
4415 		int j;
4416 
4417 		/* Check if response len is updated */
4418 		for (i = 0; i < tmo_count; i++) {
4419 			/* Abort the wait for completion if the FW health
4420 			 * check has failed.
4421 			 */
4422 			if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4423 				return -EBUSY;
4424 			len = le16_to_cpu(resp->resp_len);
4425 			if (len)
4426 				break;
4427 			/* on first few passes, just barely sleep */
4428 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4429 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4430 					     HWRM_SHORT_MAX_TIMEOUT);
4431 			else
4432 				usleep_range(HWRM_MIN_TIMEOUT,
4433 					     HWRM_MAX_TIMEOUT);
4434 		}
4435 
4436 		if (i >= tmo_count) {
4437 			if (!silent)
4438 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4439 					   HWRM_TOTAL_TIMEOUT(i),
4440 					   le16_to_cpu(req->req_type),
4441 					   le16_to_cpu(req->seq_id), len);
4442 			return -EBUSY;
4443 		}
4444 
4445 		/* Last byte of resp contains valid bit */
4446 		valid = ((u8 *)resp) + len - 1;
4447 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4448 			/* make sure we read from updated DMA memory */
4449 			dma_rmb();
4450 			if (*valid)
4451 				break;
4452 			usleep_range(1, 5);
4453 		}
4454 
4455 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4456 			if (!silent)
4457 				netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4458 					   HWRM_TOTAL_TIMEOUT(i),
4459 					   le16_to_cpu(req->req_type),
4460 					   le16_to_cpu(req->seq_id), len,
4461 					   *valid);
4462 			return -EBUSY;
4463 		}
4464 	}
4465 
4466 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4467 	 * may become a new field in a newer spec.  We must make sure that
4468 	 * a new field not implemented by old spec will read zero.
4469 	 */
4470 	*valid = 0;
4471 	rc = le16_to_cpu(resp->error_code);
4472 	if (rc && !silent)
4473 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4474 			   le16_to_cpu(resp->req_type),
4475 			   le16_to_cpu(resp->seq_id), rc);
4476 	return bnxt_hwrm_to_stderr(rc);
4477 }
4478 
4479 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4480 {
4481 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4482 }
4483 
4484 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4485 			      int timeout)
4486 {
4487 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4488 }
4489 
4490 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4491 {
4492 	int rc;
4493 
4494 	mutex_lock(&bp->hwrm_cmd_lock);
4495 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4496 	mutex_unlock(&bp->hwrm_cmd_lock);
4497 	return rc;
4498 }
4499 
4500 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4501 			     int timeout)
4502 {
4503 	int rc;
4504 
4505 	mutex_lock(&bp->hwrm_cmd_lock);
4506 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4507 	mutex_unlock(&bp->hwrm_cmd_lock);
4508 	return rc;
4509 }
4510 
4511 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4512 			    bool async_only)
4513 {
4514 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4515 	struct hwrm_func_drv_rgtr_input req = {0};
4516 	DECLARE_BITMAP(async_events_bmap, 256);
4517 	u32 *events = (u32 *)async_events_bmap;
4518 	u32 flags;
4519 	int rc, i;
4520 
4521 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4522 
4523 	req.enables =
4524 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4525 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
4526 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4527 
4528 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4529 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4530 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4531 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4532 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4533 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4534 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4535 	req.flags = cpu_to_le32(flags);
4536 	req.ver_maj_8b = DRV_VER_MAJ;
4537 	req.ver_min_8b = DRV_VER_MIN;
4538 	req.ver_upd_8b = DRV_VER_UPD;
4539 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4540 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4541 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4542 
4543 	if (BNXT_PF(bp)) {
4544 		u32 data[8];
4545 		int i;
4546 
4547 		memset(data, 0, sizeof(data));
4548 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4549 			u16 cmd = bnxt_vf_req_snif[i];
4550 			unsigned int bit, idx;
4551 
4552 			idx = cmd / 32;
4553 			bit = cmd % 32;
4554 			data[idx] |= 1 << bit;
4555 		}
4556 
4557 		for (i = 0; i < 8; i++)
4558 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4559 
4560 		req.enables |=
4561 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4562 	}
4563 
4564 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4565 		req.flags |= cpu_to_le32(
4566 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4567 
4568 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4569 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4570 		u16 event_id = bnxt_async_events_arr[i];
4571 
4572 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4573 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4574 			continue;
4575 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4576 	}
4577 	if (bmap && bmap_size) {
4578 		for (i = 0; i < bmap_size; i++) {
4579 			if (test_bit(i, bmap))
4580 				__set_bit(i, async_events_bmap);
4581 		}
4582 	}
4583 	for (i = 0; i < 8; i++)
4584 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4585 
4586 	if (async_only)
4587 		req.enables =
4588 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4589 
4590 	mutex_lock(&bp->hwrm_cmd_lock);
4591 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4592 	if (!rc) {
4593 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4594 		if (resp->flags &
4595 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4596 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4597 	}
4598 	mutex_unlock(&bp->hwrm_cmd_lock);
4599 	return rc;
4600 }
4601 
4602 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4603 {
4604 	struct hwrm_func_drv_unrgtr_input req = {0};
4605 
4606 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4607 		return 0;
4608 
4609 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4610 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4611 }
4612 
4613 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4614 {
4615 	u32 rc = 0;
4616 	struct hwrm_tunnel_dst_port_free_input req = {0};
4617 
4618 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4619 	req.tunnel_type = tunnel_type;
4620 
4621 	switch (tunnel_type) {
4622 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4623 		req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4624 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4625 		break;
4626 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4627 		req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4628 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4629 		break;
4630 	default:
4631 		break;
4632 	}
4633 
4634 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4635 	if (rc)
4636 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4637 			   rc);
4638 	return rc;
4639 }
4640 
4641 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4642 					   u8 tunnel_type)
4643 {
4644 	u32 rc = 0;
4645 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4646 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4647 
4648 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4649 
4650 	req.tunnel_type = tunnel_type;
4651 	req.tunnel_dst_port_val = port;
4652 
4653 	mutex_lock(&bp->hwrm_cmd_lock);
4654 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4655 	if (rc) {
4656 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4657 			   rc);
4658 		goto err_out;
4659 	}
4660 
4661 	switch (tunnel_type) {
4662 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4663 		bp->vxlan_fw_dst_port_id =
4664 			le16_to_cpu(resp->tunnel_dst_port_id);
4665 		break;
4666 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4667 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4668 		break;
4669 	default:
4670 		break;
4671 	}
4672 
4673 err_out:
4674 	mutex_unlock(&bp->hwrm_cmd_lock);
4675 	return rc;
4676 }
4677 
4678 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4679 {
4680 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4681 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4682 
4683 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4684 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4685 
4686 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4687 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4688 	req.mask = cpu_to_le32(vnic->rx_mask);
4689 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4690 }
4691 
4692 #ifdef CONFIG_RFS_ACCEL
4693 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4694 					    struct bnxt_ntuple_filter *fltr)
4695 {
4696 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4697 
4698 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4699 	req.ntuple_filter_id = fltr->filter_id;
4700 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4701 }
4702 
4703 #define BNXT_NTP_FLTR_FLAGS					\
4704 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4705 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4706 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4707 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4708 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4709 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4710 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4711 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4712 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4713 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4714 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4715 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4716 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4717 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4718 
4719 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4720 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4721 
4722 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4723 					     struct bnxt_ntuple_filter *fltr)
4724 {
4725 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4726 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4727 	struct flow_keys *keys = &fltr->fkeys;
4728 	struct bnxt_vnic_info *vnic;
4729 	u32 flags = 0;
4730 	int rc = 0;
4731 
4732 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4733 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4734 
4735 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4736 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4737 		req.dst_id = cpu_to_le16(fltr->rxq);
4738 	} else {
4739 		vnic = &bp->vnic_info[fltr->rxq + 1];
4740 		req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4741 	}
4742 	req.flags = cpu_to_le32(flags);
4743 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4744 
4745 	req.ethertype = htons(ETH_P_IP);
4746 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4747 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4748 	req.ip_protocol = keys->basic.ip_proto;
4749 
4750 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4751 		int i;
4752 
4753 		req.ethertype = htons(ETH_P_IPV6);
4754 		req.ip_addr_type =
4755 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4756 		*(struct in6_addr *)&req.src_ipaddr[0] =
4757 			keys->addrs.v6addrs.src;
4758 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4759 			keys->addrs.v6addrs.dst;
4760 		for (i = 0; i < 4; i++) {
4761 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4762 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4763 		}
4764 	} else {
4765 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4766 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4767 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4768 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4769 	}
4770 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4771 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4772 		req.tunnel_type =
4773 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4774 	}
4775 
4776 	req.src_port = keys->ports.src;
4777 	req.src_port_mask = cpu_to_be16(0xffff);
4778 	req.dst_port = keys->ports.dst;
4779 	req.dst_port_mask = cpu_to_be16(0xffff);
4780 
4781 	mutex_lock(&bp->hwrm_cmd_lock);
4782 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4783 	if (!rc) {
4784 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4785 		fltr->filter_id = resp->ntuple_filter_id;
4786 	}
4787 	mutex_unlock(&bp->hwrm_cmd_lock);
4788 	return rc;
4789 }
4790 #endif
4791 
4792 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4793 				     u8 *mac_addr)
4794 {
4795 	u32 rc = 0;
4796 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4797 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4798 
4799 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4800 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4801 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4802 		req.flags |=
4803 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4804 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4805 	req.enables =
4806 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4807 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4808 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4809 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4810 	req.l2_addr_mask[0] = 0xff;
4811 	req.l2_addr_mask[1] = 0xff;
4812 	req.l2_addr_mask[2] = 0xff;
4813 	req.l2_addr_mask[3] = 0xff;
4814 	req.l2_addr_mask[4] = 0xff;
4815 	req.l2_addr_mask[5] = 0xff;
4816 
4817 	mutex_lock(&bp->hwrm_cmd_lock);
4818 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4819 	if (!rc)
4820 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4821 							resp->l2_filter_id;
4822 	mutex_unlock(&bp->hwrm_cmd_lock);
4823 	return rc;
4824 }
4825 
4826 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4827 {
4828 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4829 	int rc = 0;
4830 
4831 	/* Any associated ntuple filters will also be cleared by firmware. */
4832 	mutex_lock(&bp->hwrm_cmd_lock);
4833 	for (i = 0; i < num_of_vnics; i++) {
4834 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4835 
4836 		for (j = 0; j < vnic->uc_filter_count; j++) {
4837 			struct hwrm_cfa_l2_filter_free_input req = {0};
4838 
4839 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4840 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4841 
4842 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4843 
4844 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4845 						HWRM_CMD_TIMEOUT);
4846 		}
4847 		vnic->uc_filter_count = 0;
4848 	}
4849 	mutex_unlock(&bp->hwrm_cmd_lock);
4850 
4851 	return rc;
4852 }
4853 
4854 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4855 {
4856 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4857 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4858 	struct hwrm_vnic_tpa_cfg_input req = {0};
4859 
4860 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4861 		return 0;
4862 
4863 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4864 
4865 	if (tpa_flags) {
4866 		u16 mss = bp->dev->mtu - 40;
4867 		u32 nsegs, n, segs = 0, flags;
4868 
4869 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4870 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4871 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4872 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4873 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4874 		if (tpa_flags & BNXT_FLAG_GRO)
4875 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4876 
4877 		req.flags = cpu_to_le32(flags);
4878 
4879 		req.enables =
4880 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4881 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4882 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4883 
4884 		/* Number of segs are log2 units, and first packet is not
4885 		 * included as part of this units.
4886 		 */
4887 		if (mss <= BNXT_RX_PAGE_SIZE) {
4888 			n = BNXT_RX_PAGE_SIZE / mss;
4889 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4890 		} else {
4891 			n = mss / BNXT_RX_PAGE_SIZE;
4892 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4893 				n++;
4894 			nsegs = (MAX_SKB_FRAGS - n) / n;
4895 		}
4896 
4897 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4898 			segs = MAX_TPA_SEGS_P5;
4899 			max_aggs = bp->max_tpa;
4900 		} else {
4901 			segs = ilog2(nsegs);
4902 		}
4903 		req.max_agg_segs = cpu_to_le16(segs);
4904 		req.max_aggs = cpu_to_le16(max_aggs);
4905 
4906 		req.min_agg_len = cpu_to_le32(512);
4907 	}
4908 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4909 
4910 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4911 }
4912 
4913 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4914 {
4915 	struct bnxt_ring_grp_info *grp_info;
4916 
4917 	grp_info = &bp->grp_info[ring->grp_idx];
4918 	return grp_info->cp_fw_ring_id;
4919 }
4920 
4921 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4922 {
4923 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4924 		struct bnxt_napi *bnapi = rxr->bnapi;
4925 		struct bnxt_cp_ring_info *cpr;
4926 
4927 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4928 		return cpr->cp_ring_struct.fw_ring_id;
4929 	} else {
4930 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4931 	}
4932 }
4933 
4934 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4935 {
4936 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4937 		struct bnxt_napi *bnapi = txr->bnapi;
4938 		struct bnxt_cp_ring_info *cpr;
4939 
4940 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4941 		return cpr->cp_ring_struct.fw_ring_id;
4942 	} else {
4943 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4944 	}
4945 }
4946 
4947 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
4948 {
4949 	int entries;
4950 
4951 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4952 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
4953 	else
4954 		entries = HW_HASH_INDEX_SIZE;
4955 
4956 	bp->rss_indir_tbl_entries = entries;
4957 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
4958 					  GFP_KERNEL);
4959 	if (!bp->rss_indir_tbl)
4960 		return -ENOMEM;
4961 	return 0;
4962 }
4963 
4964 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
4965 {
4966 	u16 max_rings, max_entries, pad, i;
4967 
4968 	if (!bp->rx_nr_rings)
4969 		return;
4970 
4971 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4972 		max_rings = bp->rx_nr_rings - 1;
4973 	else
4974 		max_rings = bp->rx_nr_rings;
4975 
4976 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
4977 
4978 	for (i = 0; i < max_entries; i++)
4979 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
4980 
4981 	pad = bp->rss_indir_tbl_entries - max_entries;
4982 	if (pad)
4983 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
4984 }
4985 
4986 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
4987 {
4988 	u16 i, tbl_size, max_ring = 0;
4989 
4990 	if (!bp->rss_indir_tbl)
4991 		return 0;
4992 
4993 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
4994 	for (i = 0; i < tbl_size; i++)
4995 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
4996 	return max_ring;
4997 }
4998 
4999 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5000 {
5001 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5002 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5003 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5004 		return 2;
5005 	return 1;
5006 }
5007 
5008 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5009 {
5010 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5011 	u16 i, j;
5012 
5013 	/* Fill the RSS indirection table with ring group ids */
5014 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5015 		if (!no_rss)
5016 			j = bp->rss_indir_tbl[i];
5017 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5018 	}
5019 }
5020 
5021 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5022 				      struct bnxt_vnic_info *vnic)
5023 {
5024 	__le16 *ring_tbl = vnic->rss_table;
5025 	struct bnxt_rx_ring_info *rxr;
5026 	u16 tbl_size, i;
5027 
5028 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5029 
5030 	for (i = 0; i < tbl_size; i++) {
5031 		u16 ring_id, j;
5032 
5033 		j = bp->rss_indir_tbl[i];
5034 		rxr = &bp->rx_ring[j];
5035 
5036 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5037 		*ring_tbl++ = cpu_to_le16(ring_id);
5038 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5039 		*ring_tbl++ = cpu_to_le16(ring_id);
5040 	}
5041 }
5042 
5043 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5044 {
5045 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5046 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5047 	else
5048 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5049 }
5050 
5051 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5052 {
5053 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5054 	struct hwrm_vnic_rss_cfg_input req = {0};
5055 
5056 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5057 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5058 		return 0;
5059 
5060 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5061 	if (set_rss) {
5062 		bnxt_fill_hw_rss_tbl(bp, vnic);
5063 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5064 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5065 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5066 		req.hash_key_tbl_addr =
5067 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5068 	}
5069 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5070 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5071 }
5072 
5073 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5074 {
5075 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5076 	struct hwrm_vnic_rss_cfg_input req = {0};
5077 	dma_addr_t ring_tbl_map;
5078 	u32 i, nr_ctxs;
5079 
5080 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
5081 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5082 	if (!set_rss) {
5083 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5084 		return 0;
5085 	}
5086 	bnxt_fill_hw_rss_tbl(bp, vnic);
5087 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
5088 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5089 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5090 	ring_tbl_map = vnic->rss_table_dma_addr;
5091 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5092 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5093 		int rc;
5094 
5095 		req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5096 		req.ring_table_pair_index = i;
5097 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5098 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5099 		if (rc)
5100 			return rc;
5101 	}
5102 	return 0;
5103 }
5104 
5105 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5106 {
5107 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5108 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
5109 
5110 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
5111 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5112 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5113 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5114 	req.enables =
5115 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5116 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5117 	/* thresholds not implemented in firmware yet */
5118 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5119 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5120 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5121 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5122 }
5123 
5124 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5125 					u16 ctx_idx)
5126 {
5127 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
5128 
5129 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
5130 	req.rss_cos_lb_ctx_id =
5131 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5132 
5133 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5134 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5135 }
5136 
5137 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5138 {
5139 	int i, j;
5140 
5141 	for (i = 0; i < bp->nr_vnics; i++) {
5142 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5143 
5144 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5145 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5146 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5147 		}
5148 	}
5149 	bp->rsscos_nr_ctxs = 0;
5150 }
5151 
5152 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5153 {
5154 	int rc;
5155 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
5156 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
5157 						bp->hwrm_cmd_resp_addr;
5158 
5159 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
5160 			       -1);
5161 
5162 	mutex_lock(&bp->hwrm_cmd_lock);
5163 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5164 	if (!rc)
5165 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5166 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5167 	mutex_unlock(&bp->hwrm_cmd_lock);
5168 
5169 	return rc;
5170 }
5171 
5172 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5173 {
5174 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5175 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5176 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5177 }
5178 
5179 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5180 {
5181 	unsigned int ring = 0, grp_idx;
5182 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5183 	struct hwrm_vnic_cfg_input req = {0};
5184 	u16 def_vlan = 0;
5185 
5186 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
5187 
5188 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5189 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5190 
5191 		req.default_rx_ring_id =
5192 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5193 		req.default_cmpl_ring_id =
5194 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5195 		req.enables =
5196 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5197 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5198 		goto vnic_mru;
5199 	}
5200 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5201 	/* Only RSS support for now TBD: COS & LB */
5202 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5203 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5204 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5205 					   VNIC_CFG_REQ_ENABLES_MRU);
5206 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5207 		req.rss_rule =
5208 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5209 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5210 					   VNIC_CFG_REQ_ENABLES_MRU);
5211 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5212 	} else {
5213 		req.rss_rule = cpu_to_le16(0xffff);
5214 	}
5215 
5216 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5217 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5218 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5219 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5220 	} else {
5221 		req.cos_rule = cpu_to_le16(0xffff);
5222 	}
5223 
5224 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5225 		ring = 0;
5226 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5227 		ring = vnic_id - 1;
5228 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5229 		ring = bp->rx_nr_rings - 1;
5230 
5231 	grp_idx = bp->rx_ring[ring].bnapi->index;
5232 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5233 	req.lb_rule = cpu_to_le16(0xffff);
5234 vnic_mru:
5235 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5236 
5237 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5238 #ifdef CONFIG_BNXT_SRIOV
5239 	if (BNXT_VF(bp))
5240 		def_vlan = bp->vf.vlan;
5241 #endif
5242 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5243 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5244 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5245 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5246 
5247 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5248 }
5249 
5250 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5251 {
5252 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5253 		struct hwrm_vnic_free_input req = {0};
5254 
5255 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5256 		req.vnic_id =
5257 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5258 
5259 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5260 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5261 	}
5262 }
5263 
5264 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5265 {
5266 	u16 i;
5267 
5268 	for (i = 0; i < bp->nr_vnics; i++)
5269 		bnxt_hwrm_vnic_free_one(bp, i);
5270 }
5271 
5272 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5273 				unsigned int start_rx_ring_idx,
5274 				unsigned int nr_rings)
5275 {
5276 	int rc = 0;
5277 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5278 	struct hwrm_vnic_alloc_input req = {0};
5279 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5280 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5281 
5282 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5283 		goto vnic_no_ring_grps;
5284 
5285 	/* map ring groups to this vnic */
5286 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5287 		grp_idx = bp->rx_ring[i].bnapi->index;
5288 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5289 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5290 				   j, nr_rings);
5291 			break;
5292 		}
5293 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5294 	}
5295 
5296 vnic_no_ring_grps:
5297 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5298 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5299 	if (vnic_id == 0)
5300 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5301 
5302 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5303 
5304 	mutex_lock(&bp->hwrm_cmd_lock);
5305 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5306 	if (!rc)
5307 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5308 	mutex_unlock(&bp->hwrm_cmd_lock);
5309 	return rc;
5310 }
5311 
5312 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5313 {
5314 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5315 	struct hwrm_vnic_qcaps_input req = {0};
5316 	int rc;
5317 
5318 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5319 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5320 	if (bp->hwrm_spec_code < 0x10600)
5321 		return 0;
5322 
5323 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5324 	mutex_lock(&bp->hwrm_cmd_lock);
5325 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5326 	if (!rc) {
5327 		u32 flags = le32_to_cpu(resp->flags);
5328 
5329 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5330 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5331 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5332 		if (flags &
5333 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5334 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5335 
5336 		/* Older P5 fw before EXT_HW_STATS support did not set
5337 		 * VLAN_STRIP_CAP properly.
5338 		 */
5339 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5340 		    ((bp->flags & BNXT_FLAG_CHIP_P5) &&
5341 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5342 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5343 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5344 		if (bp->max_tpa_v2)
5345 			bp->hw_ring_stats_size =
5346 				sizeof(struct ctx_hw_stats_ext);
5347 	}
5348 	mutex_unlock(&bp->hwrm_cmd_lock);
5349 	return rc;
5350 }
5351 
5352 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5353 {
5354 	u16 i;
5355 	u32 rc = 0;
5356 
5357 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5358 		return 0;
5359 
5360 	mutex_lock(&bp->hwrm_cmd_lock);
5361 	for (i = 0; i < bp->rx_nr_rings; i++) {
5362 		struct hwrm_ring_grp_alloc_input req = {0};
5363 		struct hwrm_ring_grp_alloc_output *resp =
5364 					bp->hwrm_cmd_resp_addr;
5365 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5366 
5367 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5368 
5369 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5370 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5371 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5372 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5373 
5374 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5375 					HWRM_CMD_TIMEOUT);
5376 		if (rc)
5377 			break;
5378 
5379 		bp->grp_info[grp_idx].fw_grp_id =
5380 			le32_to_cpu(resp->ring_group_id);
5381 	}
5382 	mutex_unlock(&bp->hwrm_cmd_lock);
5383 	return rc;
5384 }
5385 
5386 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5387 {
5388 	u16 i;
5389 	struct hwrm_ring_grp_free_input req = {0};
5390 
5391 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5392 		return;
5393 
5394 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5395 
5396 	mutex_lock(&bp->hwrm_cmd_lock);
5397 	for (i = 0; i < bp->cp_nr_rings; i++) {
5398 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5399 			continue;
5400 		req.ring_group_id =
5401 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5402 
5403 		_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5404 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5405 	}
5406 	mutex_unlock(&bp->hwrm_cmd_lock);
5407 }
5408 
5409 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5410 				    struct bnxt_ring_struct *ring,
5411 				    u32 ring_type, u32 map_index)
5412 {
5413 	int rc = 0, err = 0;
5414 	struct hwrm_ring_alloc_input req = {0};
5415 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5416 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5417 	struct bnxt_ring_grp_info *grp_info;
5418 	u16 ring_id;
5419 
5420 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5421 
5422 	req.enables = 0;
5423 	if (rmem->nr_pages > 1) {
5424 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5425 		/* Page size is in log2 units */
5426 		req.page_size = BNXT_PAGE_SHIFT;
5427 		req.page_tbl_depth = 1;
5428 	} else {
5429 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5430 	}
5431 	req.fbo = 0;
5432 	/* Association of ring index with doorbell index and MSIX number */
5433 	req.logical_id = cpu_to_le16(map_index);
5434 
5435 	switch (ring_type) {
5436 	case HWRM_RING_ALLOC_TX: {
5437 		struct bnxt_tx_ring_info *txr;
5438 
5439 		txr = container_of(ring, struct bnxt_tx_ring_info,
5440 				   tx_ring_struct);
5441 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5442 		/* Association of transmit ring with completion ring */
5443 		grp_info = &bp->grp_info[ring->grp_idx];
5444 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5445 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5446 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5447 		req.queue_id = cpu_to_le16(ring->queue_id);
5448 		break;
5449 	}
5450 	case HWRM_RING_ALLOC_RX:
5451 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5452 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5453 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5454 			u16 flags = 0;
5455 
5456 			/* Association of rx ring with stats context */
5457 			grp_info = &bp->grp_info[ring->grp_idx];
5458 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5459 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5460 			req.enables |= cpu_to_le32(
5461 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5462 			if (NET_IP_ALIGN == 2)
5463 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5464 			req.flags = cpu_to_le16(flags);
5465 		}
5466 		break;
5467 	case HWRM_RING_ALLOC_AGG:
5468 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5469 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5470 			/* Association of agg ring with rx ring */
5471 			grp_info = &bp->grp_info[ring->grp_idx];
5472 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5473 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5474 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5475 			req.enables |= cpu_to_le32(
5476 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5477 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5478 		} else {
5479 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5480 		}
5481 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5482 		break;
5483 	case HWRM_RING_ALLOC_CMPL:
5484 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5485 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5486 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5487 			/* Association of cp ring with nq */
5488 			grp_info = &bp->grp_info[map_index];
5489 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5490 			req.cq_handle = cpu_to_le64(ring->handle);
5491 			req.enables |= cpu_to_le32(
5492 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5493 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5494 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5495 		}
5496 		break;
5497 	case HWRM_RING_ALLOC_NQ:
5498 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5499 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5500 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5501 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5502 		break;
5503 	default:
5504 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5505 			   ring_type);
5506 		return -1;
5507 	}
5508 
5509 	mutex_lock(&bp->hwrm_cmd_lock);
5510 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5511 	err = le16_to_cpu(resp->error_code);
5512 	ring_id = le16_to_cpu(resp->ring_id);
5513 	mutex_unlock(&bp->hwrm_cmd_lock);
5514 
5515 	if (rc || err) {
5516 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5517 			   ring_type, rc, err);
5518 		return -EIO;
5519 	}
5520 	ring->fw_ring_id = ring_id;
5521 	return rc;
5522 }
5523 
5524 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5525 {
5526 	int rc;
5527 
5528 	if (BNXT_PF(bp)) {
5529 		struct hwrm_func_cfg_input req = {0};
5530 
5531 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5532 		req.fid = cpu_to_le16(0xffff);
5533 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5534 		req.async_event_cr = cpu_to_le16(idx);
5535 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5536 	} else {
5537 		struct hwrm_func_vf_cfg_input req = {0};
5538 
5539 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5540 		req.enables =
5541 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5542 		req.async_event_cr = cpu_to_le16(idx);
5543 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5544 	}
5545 	return rc;
5546 }
5547 
5548 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5549 			u32 map_idx, u32 xid)
5550 {
5551 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5552 		if (BNXT_PF(bp))
5553 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5554 		else
5555 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5556 		switch (ring_type) {
5557 		case HWRM_RING_ALLOC_TX:
5558 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5559 			break;
5560 		case HWRM_RING_ALLOC_RX:
5561 		case HWRM_RING_ALLOC_AGG:
5562 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5563 			break;
5564 		case HWRM_RING_ALLOC_CMPL:
5565 			db->db_key64 = DBR_PATH_L2;
5566 			break;
5567 		case HWRM_RING_ALLOC_NQ:
5568 			db->db_key64 = DBR_PATH_L2;
5569 			break;
5570 		}
5571 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5572 	} else {
5573 		db->doorbell = bp->bar1 + map_idx * 0x80;
5574 		switch (ring_type) {
5575 		case HWRM_RING_ALLOC_TX:
5576 			db->db_key32 = DB_KEY_TX;
5577 			break;
5578 		case HWRM_RING_ALLOC_RX:
5579 		case HWRM_RING_ALLOC_AGG:
5580 			db->db_key32 = DB_KEY_RX;
5581 			break;
5582 		case HWRM_RING_ALLOC_CMPL:
5583 			db->db_key32 = DB_KEY_CP;
5584 			break;
5585 		}
5586 	}
5587 }
5588 
5589 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5590 {
5591 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5592 	int i, rc = 0;
5593 	u32 type;
5594 
5595 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5596 		type = HWRM_RING_ALLOC_NQ;
5597 	else
5598 		type = HWRM_RING_ALLOC_CMPL;
5599 	for (i = 0; i < bp->cp_nr_rings; i++) {
5600 		struct bnxt_napi *bnapi = bp->bnapi[i];
5601 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5602 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5603 		u32 map_idx = ring->map_idx;
5604 		unsigned int vector;
5605 
5606 		vector = bp->irq_tbl[map_idx].vector;
5607 		disable_irq_nosync(vector);
5608 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5609 		if (rc) {
5610 			enable_irq(vector);
5611 			goto err_out;
5612 		}
5613 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5614 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5615 		enable_irq(vector);
5616 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5617 
5618 		if (!i) {
5619 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5620 			if (rc)
5621 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5622 		}
5623 	}
5624 
5625 	type = HWRM_RING_ALLOC_TX;
5626 	for (i = 0; i < bp->tx_nr_rings; i++) {
5627 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5628 		struct bnxt_ring_struct *ring;
5629 		u32 map_idx;
5630 
5631 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5632 			struct bnxt_napi *bnapi = txr->bnapi;
5633 			struct bnxt_cp_ring_info *cpr, *cpr2;
5634 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5635 
5636 			cpr = &bnapi->cp_ring;
5637 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5638 			ring = &cpr2->cp_ring_struct;
5639 			ring->handle = BNXT_TX_HDL;
5640 			map_idx = bnapi->index;
5641 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5642 			if (rc)
5643 				goto err_out;
5644 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5645 				    ring->fw_ring_id);
5646 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5647 		}
5648 		ring = &txr->tx_ring_struct;
5649 		map_idx = i;
5650 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5651 		if (rc)
5652 			goto err_out;
5653 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5654 	}
5655 
5656 	type = HWRM_RING_ALLOC_RX;
5657 	for (i = 0; i < bp->rx_nr_rings; i++) {
5658 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5659 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5660 		struct bnxt_napi *bnapi = rxr->bnapi;
5661 		u32 map_idx = bnapi->index;
5662 
5663 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5664 		if (rc)
5665 			goto err_out;
5666 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5667 		/* If we have agg rings, post agg buffers first. */
5668 		if (!agg_rings)
5669 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5670 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5671 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5672 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5673 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5674 			struct bnxt_cp_ring_info *cpr2;
5675 
5676 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5677 			ring = &cpr2->cp_ring_struct;
5678 			ring->handle = BNXT_RX_HDL;
5679 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5680 			if (rc)
5681 				goto err_out;
5682 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5683 				    ring->fw_ring_id);
5684 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5685 		}
5686 	}
5687 
5688 	if (agg_rings) {
5689 		type = HWRM_RING_ALLOC_AGG;
5690 		for (i = 0; i < bp->rx_nr_rings; i++) {
5691 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5692 			struct bnxt_ring_struct *ring =
5693 						&rxr->rx_agg_ring_struct;
5694 			u32 grp_idx = ring->grp_idx;
5695 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5696 
5697 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5698 			if (rc)
5699 				goto err_out;
5700 
5701 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5702 				    ring->fw_ring_id);
5703 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5704 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5705 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5706 		}
5707 	}
5708 err_out:
5709 	return rc;
5710 }
5711 
5712 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5713 				   struct bnxt_ring_struct *ring,
5714 				   u32 ring_type, int cmpl_ring_id)
5715 {
5716 	int rc;
5717 	struct hwrm_ring_free_input req = {0};
5718 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5719 	u16 error_code;
5720 
5721 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
5722 		return 0;
5723 
5724 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5725 	req.ring_type = ring_type;
5726 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5727 
5728 	mutex_lock(&bp->hwrm_cmd_lock);
5729 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5730 	error_code = le16_to_cpu(resp->error_code);
5731 	mutex_unlock(&bp->hwrm_cmd_lock);
5732 
5733 	if (rc || error_code) {
5734 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5735 			   ring_type, rc, error_code);
5736 		return -EIO;
5737 	}
5738 	return 0;
5739 }
5740 
5741 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5742 {
5743 	u32 type;
5744 	int i;
5745 
5746 	if (!bp->bnapi)
5747 		return;
5748 
5749 	for (i = 0; i < bp->tx_nr_rings; i++) {
5750 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5751 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5752 
5753 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5754 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5755 
5756 			hwrm_ring_free_send_msg(bp, ring,
5757 						RING_FREE_REQ_RING_TYPE_TX,
5758 						close_path ? cmpl_ring_id :
5759 						INVALID_HW_RING_ID);
5760 			ring->fw_ring_id = INVALID_HW_RING_ID;
5761 		}
5762 	}
5763 
5764 	for (i = 0; i < bp->rx_nr_rings; i++) {
5765 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5766 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5767 		u32 grp_idx = rxr->bnapi->index;
5768 
5769 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5770 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5771 
5772 			hwrm_ring_free_send_msg(bp, ring,
5773 						RING_FREE_REQ_RING_TYPE_RX,
5774 						close_path ? cmpl_ring_id :
5775 						INVALID_HW_RING_ID);
5776 			ring->fw_ring_id = INVALID_HW_RING_ID;
5777 			bp->grp_info[grp_idx].rx_fw_ring_id =
5778 				INVALID_HW_RING_ID;
5779 		}
5780 	}
5781 
5782 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5783 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5784 	else
5785 		type = RING_FREE_REQ_RING_TYPE_RX;
5786 	for (i = 0; i < bp->rx_nr_rings; i++) {
5787 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5788 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5789 		u32 grp_idx = rxr->bnapi->index;
5790 
5791 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5792 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5793 
5794 			hwrm_ring_free_send_msg(bp, ring, type,
5795 						close_path ? cmpl_ring_id :
5796 						INVALID_HW_RING_ID);
5797 			ring->fw_ring_id = INVALID_HW_RING_ID;
5798 			bp->grp_info[grp_idx].agg_fw_ring_id =
5799 				INVALID_HW_RING_ID;
5800 		}
5801 	}
5802 
5803 	/* The completion rings are about to be freed.  After that the
5804 	 * IRQ doorbell will not work anymore.  So we need to disable
5805 	 * IRQ here.
5806 	 */
5807 	bnxt_disable_int_sync(bp);
5808 
5809 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5810 		type = RING_FREE_REQ_RING_TYPE_NQ;
5811 	else
5812 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5813 	for (i = 0; i < bp->cp_nr_rings; i++) {
5814 		struct bnxt_napi *bnapi = bp->bnapi[i];
5815 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5816 		struct bnxt_ring_struct *ring;
5817 		int j;
5818 
5819 		for (j = 0; j < 2; j++) {
5820 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5821 
5822 			if (cpr2) {
5823 				ring = &cpr2->cp_ring_struct;
5824 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5825 					continue;
5826 				hwrm_ring_free_send_msg(bp, ring,
5827 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5828 					INVALID_HW_RING_ID);
5829 				ring->fw_ring_id = INVALID_HW_RING_ID;
5830 			}
5831 		}
5832 		ring = &cpr->cp_ring_struct;
5833 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5834 			hwrm_ring_free_send_msg(bp, ring, type,
5835 						INVALID_HW_RING_ID);
5836 			ring->fw_ring_id = INVALID_HW_RING_ID;
5837 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5838 		}
5839 	}
5840 }
5841 
5842 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5843 			   bool shared);
5844 
5845 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5846 {
5847 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5848 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5849 	struct hwrm_func_qcfg_input req = {0};
5850 	int rc;
5851 
5852 	if (bp->hwrm_spec_code < 0x10601)
5853 		return 0;
5854 
5855 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5856 	req.fid = cpu_to_le16(0xffff);
5857 	mutex_lock(&bp->hwrm_cmd_lock);
5858 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5859 	if (rc) {
5860 		mutex_unlock(&bp->hwrm_cmd_lock);
5861 		return rc;
5862 	}
5863 
5864 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5865 	if (BNXT_NEW_RM(bp)) {
5866 		u16 cp, stats;
5867 
5868 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5869 		hw_resc->resv_hw_ring_grps =
5870 			le32_to_cpu(resp->alloc_hw_ring_grps);
5871 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5872 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5873 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5874 		hw_resc->resv_irqs = cp;
5875 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5876 			int rx = hw_resc->resv_rx_rings;
5877 			int tx = hw_resc->resv_tx_rings;
5878 
5879 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5880 				rx >>= 1;
5881 			if (cp < (rx + tx)) {
5882 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5883 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5884 					rx <<= 1;
5885 				hw_resc->resv_rx_rings = rx;
5886 				hw_resc->resv_tx_rings = tx;
5887 			}
5888 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5889 			hw_resc->resv_hw_ring_grps = rx;
5890 		}
5891 		hw_resc->resv_cp_rings = cp;
5892 		hw_resc->resv_stat_ctxs = stats;
5893 	}
5894 	mutex_unlock(&bp->hwrm_cmd_lock);
5895 	return 0;
5896 }
5897 
5898 /* Caller must hold bp->hwrm_cmd_lock */
5899 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5900 {
5901 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5902 	struct hwrm_func_qcfg_input req = {0};
5903 	int rc;
5904 
5905 	if (bp->hwrm_spec_code < 0x10601)
5906 		return 0;
5907 
5908 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5909 	req.fid = cpu_to_le16(fid);
5910 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5911 	if (!rc)
5912 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5913 
5914 	return rc;
5915 }
5916 
5917 static bool bnxt_rfs_supported(struct bnxt *bp);
5918 
5919 static void
5920 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5921 			     int tx_rings, int rx_rings, int ring_grps,
5922 			     int cp_rings, int stats, int vnics)
5923 {
5924 	u32 enables = 0;
5925 
5926 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5927 	req->fid = cpu_to_le16(0xffff);
5928 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5929 	req->num_tx_rings = cpu_to_le16(tx_rings);
5930 	if (BNXT_NEW_RM(bp)) {
5931 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5932 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5933 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5934 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5935 			enables |= tx_rings + ring_grps ?
5936 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5937 			enables |= rx_rings ?
5938 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5939 		} else {
5940 			enables |= cp_rings ?
5941 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5942 			enables |= ring_grps ?
5943 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5944 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5945 		}
5946 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5947 
5948 		req->num_rx_rings = cpu_to_le16(rx_rings);
5949 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5950 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5951 			req->num_msix = cpu_to_le16(cp_rings);
5952 			req->num_rsscos_ctxs =
5953 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5954 		} else {
5955 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
5956 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5957 			req->num_rsscos_ctxs = cpu_to_le16(1);
5958 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5959 			    bnxt_rfs_supported(bp))
5960 				req->num_rsscos_ctxs =
5961 					cpu_to_le16(ring_grps + 1);
5962 		}
5963 		req->num_stat_ctxs = cpu_to_le16(stats);
5964 		req->num_vnics = cpu_to_le16(vnics);
5965 	}
5966 	req->enables = cpu_to_le32(enables);
5967 }
5968 
5969 static void
5970 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5971 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
5972 			     int rx_rings, int ring_grps, int cp_rings,
5973 			     int stats, int vnics)
5974 {
5975 	u32 enables = 0;
5976 
5977 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5978 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5979 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5980 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5981 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5982 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5983 		enables |= tx_rings + ring_grps ?
5984 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5985 	} else {
5986 		enables |= cp_rings ?
5987 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5988 		enables |= ring_grps ?
5989 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5990 	}
5991 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5992 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5993 
5994 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5995 	req->num_tx_rings = cpu_to_le16(tx_rings);
5996 	req->num_rx_rings = cpu_to_le16(rx_rings);
5997 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5998 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5999 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6000 	} else {
6001 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6002 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6003 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6004 	}
6005 	req->num_stat_ctxs = cpu_to_le16(stats);
6006 	req->num_vnics = cpu_to_le16(vnics);
6007 
6008 	req->enables = cpu_to_le32(enables);
6009 }
6010 
6011 static int
6012 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6013 			   int ring_grps, int cp_rings, int stats, int vnics)
6014 {
6015 	struct hwrm_func_cfg_input req = {0};
6016 	int rc;
6017 
6018 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6019 				     cp_rings, stats, vnics);
6020 	if (!req.enables)
6021 		return 0;
6022 
6023 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6024 	if (rc)
6025 		return rc;
6026 
6027 	if (bp->hwrm_spec_code < 0x10601)
6028 		bp->hw_resc.resv_tx_rings = tx_rings;
6029 
6030 	return bnxt_hwrm_get_rings(bp);
6031 }
6032 
6033 static int
6034 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6035 			   int ring_grps, int cp_rings, int stats, int vnics)
6036 {
6037 	struct hwrm_func_vf_cfg_input req = {0};
6038 	int rc;
6039 
6040 	if (!BNXT_NEW_RM(bp)) {
6041 		bp->hw_resc.resv_tx_rings = tx_rings;
6042 		return 0;
6043 	}
6044 
6045 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6046 				     cp_rings, stats, vnics);
6047 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6048 	if (rc)
6049 		return rc;
6050 
6051 	return bnxt_hwrm_get_rings(bp);
6052 }
6053 
6054 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6055 				   int cp, int stat, int vnic)
6056 {
6057 	if (BNXT_PF(bp))
6058 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6059 						  vnic);
6060 	else
6061 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6062 						  vnic);
6063 }
6064 
6065 int bnxt_nq_rings_in_use(struct bnxt *bp)
6066 {
6067 	int cp = bp->cp_nr_rings;
6068 	int ulp_msix, ulp_base;
6069 
6070 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6071 	if (ulp_msix) {
6072 		ulp_base = bnxt_get_ulp_msix_base(bp);
6073 		cp += ulp_msix;
6074 		if ((ulp_base + ulp_msix) > cp)
6075 			cp = ulp_base + ulp_msix;
6076 	}
6077 	return cp;
6078 }
6079 
6080 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6081 {
6082 	int cp;
6083 
6084 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6085 		return bnxt_nq_rings_in_use(bp);
6086 
6087 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6088 	return cp;
6089 }
6090 
6091 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6092 {
6093 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6094 	int cp = bp->cp_nr_rings;
6095 
6096 	if (!ulp_stat)
6097 		return cp;
6098 
6099 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6100 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6101 
6102 	return cp + ulp_stat;
6103 }
6104 
6105 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6106 {
6107 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6108 	int cp = bnxt_cp_rings_in_use(bp);
6109 	int nq = bnxt_nq_rings_in_use(bp);
6110 	int rx = bp->rx_nr_rings, stat;
6111 	int vnic = 1, grp = rx;
6112 
6113 	if (bp->hwrm_spec_code < 0x10601)
6114 		return false;
6115 
6116 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
6117 		return true;
6118 
6119 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6120 		vnic = rx + 1;
6121 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6122 		rx <<= 1;
6123 	stat = bnxt_get_func_stat_ctxs(bp);
6124 	if (BNXT_NEW_RM(bp) &&
6125 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6126 	     hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6127 	     (hw_resc->resv_hw_ring_grps != grp &&
6128 	      !(bp->flags & BNXT_FLAG_CHIP_P5))))
6129 		return true;
6130 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6131 	    hw_resc->resv_irqs != nq)
6132 		return true;
6133 	return false;
6134 }
6135 
6136 static int __bnxt_reserve_rings(struct bnxt *bp)
6137 {
6138 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6139 	int cp = bnxt_nq_rings_in_use(bp);
6140 	int tx = bp->tx_nr_rings;
6141 	int rx = bp->rx_nr_rings;
6142 	int grp, rx_rings, rc;
6143 	int vnic = 1, stat;
6144 	bool sh = false;
6145 
6146 	if (!bnxt_need_reserve_rings(bp))
6147 		return 0;
6148 
6149 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6150 		sh = true;
6151 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6152 		vnic = rx + 1;
6153 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6154 		rx <<= 1;
6155 	grp = bp->rx_nr_rings;
6156 	stat = bnxt_get_func_stat_ctxs(bp);
6157 
6158 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6159 	if (rc)
6160 		return rc;
6161 
6162 	tx = hw_resc->resv_tx_rings;
6163 	if (BNXT_NEW_RM(bp)) {
6164 		rx = hw_resc->resv_rx_rings;
6165 		cp = hw_resc->resv_irqs;
6166 		grp = hw_resc->resv_hw_ring_grps;
6167 		vnic = hw_resc->resv_vnics;
6168 		stat = hw_resc->resv_stat_ctxs;
6169 	}
6170 
6171 	rx_rings = rx;
6172 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6173 		if (rx >= 2) {
6174 			rx_rings = rx >> 1;
6175 		} else {
6176 			if (netif_running(bp->dev))
6177 				return -ENOMEM;
6178 
6179 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6180 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6181 			bp->dev->hw_features &= ~NETIF_F_LRO;
6182 			bp->dev->features &= ~NETIF_F_LRO;
6183 			bnxt_set_ring_params(bp);
6184 		}
6185 	}
6186 	rx_rings = min_t(int, rx_rings, grp);
6187 	cp = min_t(int, cp, bp->cp_nr_rings);
6188 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6189 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6190 	cp = min_t(int, cp, stat);
6191 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6192 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6193 		rx = rx_rings << 1;
6194 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6195 	bp->tx_nr_rings = tx;
6196 
6197 	/* If we cannot reserve all the RX rings, reset the RSS map only
6198 	 * if absolutely necessary
6199 	 */
6200 	if (rx_rings != bp->rx_nr_rings) {
6201 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6202 			    rx_rings, bp->rx_nr_rings);
6203 		if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6204 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6205 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6206 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6207 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6208 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6209 		}
6210 	}
6211 	bp->rx_nr_rings = rx_rings;
6212 	bp->cp_nr_rings = cp;
6213 
6214 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6215 		return -ENOMEM;
6216 
6217 	return rc;
6218 }
6219 
6220 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6221 				    int ring_grps, int cp_rings, int stats,
6222 				    int vnics)
6223 {
6224 	struct hwrm_func_vf_cfg_input req = {0};
6225 	u32 flags;
6226 
6227 	if (!BNXT_NEW_RM(bp))
6228 		return 0;
6229 
6230 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6231 				     cp_rings, stats, vnics);
6232 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6233 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6234 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6235 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6236 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6237 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6238 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6239 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6240 
6241 	req.flags = cpu_to_le32(flags);
6242 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6243 					HWRM_CMD_TIMEOUT);
6244 }
6245 
6246 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6247 				    int ring_grps, int cp_rings, int stats,
6248 				    int vnics)
6249 {
6250 	struct hwrm_func_cfg_input req = {0};
6251 	u32 flags;
6252 
6253 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6254 				     cp_rings, stats, vnics);
6255 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6256 	if (BNXT_NEW_RM(bp)) {
6257 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6258 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6259 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6260 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6261 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6262 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6263 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6264 		else
6265 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6266 	}
6267 
6268 	req.flags = cpu_to_le32(flags);
6269 	return hwrm_send_message_silent(bp, &req, sizeof(req),
6270 					HWRM_CMD_TIMEOUT);
6271 }
6272 
6273 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6274 				 int ring_grps, int cp_rings, int stats,
6275 				 int vnics)
6276 {
6277 	if (bp->hwrm_spec_code < 0x10801)
6278 		return 0;
6279 
6280 	if (BNXT_PF(bp))
6281 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6282 						ring_grps, cp_rings, stats,
6283 						vnics);
6284 
6285 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6286 					cp_rings, stats, vnics);
6287 }
6288 
6289 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6290 {
6291 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6292 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6293 	struct hwrm_ring_aggint_qcaps_input req = {0};
6294 	int rc;
6295 
6296 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6297 	coal_cap->num_cmpl_dma_aggr_max = 63;
6298 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6299 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6300 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6301 	coal_cap->int_lat_tmr_min_max = 65535;
6302 	coal_cap->int_lat_tmr_max_max = 65535;
6303 	coal_cap->num_cmpl_aggr_int_max = 65535;
6304 	coal_cap->timer_units = 80;
6305 
6306 	if (bp->hwrm_spec_code < 0x10902)
6307 		return;
6308 
6309 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6310 	mutex_lock(&bp->hwrm_cmd_lock);
6311 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6312 	if (!rc) {
6313 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6314 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6315 		coal_cap->num_cmpl_dma_aggr_max =
6316 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6317 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6318 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6319 		coal_cap->cmpl_aggr_dma_tmr_max =
6320 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6321 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6322 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6323 		coal_cap->int_lat_tmr_min_max =
6324 			le16_to_cpu(resp->int_lat_tmr_min_max);
6325 		coal_cap->int_lat_tmr_max_max =
6326 			le16_to_cpu(resp->int_lat_tmr_max_max);
6327 		coal_cap->num_cmpl_aggr_int_max =
6328 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6329 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6330 	}
6331 	mutex_unlock(&bp->hwrm_cmd_lock);
6332 }
6333 
6334 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6335 {
6336 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6337 
6338 	return usec * 1000 / coal_cap->timer_units;
6339 }
6340 
6341 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6342 	struct bnxt_coal *hw_coal,
6343 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6344 {
6345 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6346 	u32 cmpl_params = coal_cap->cmpl_params;
6347 	u16 val, tmr, max, flags = 0;
6348 
6349 	max = hw_coal->bufs_per_record * 128;
6350 	if (hw_coal->budget)
6351 		max = hw_coal->bufs_per_record * hw_coal->budget;
6352 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6353 
6354 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6355 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6356 
6357 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6358 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6359 
6360 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6361 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6362 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6363 
6364 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6365 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6366 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6367 
6368 	/* min timer set to 1/2 of interrupt timer */
6369 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6370 		val = tmr / 2;
6371 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6372 		req->int_lat_tmr_min = cpu_to_le16(val);
6373 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6374 	}
6375 
6376 	/* buf timer set to 1/4 of interrupt timer */
6377 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6378 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6379 
6380 	if (cmpl_params &
6381 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6382 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6383 		val = clamp_t(u16, tmr, 1,
6384 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6385 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6386 		req->enables |=
6387 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6388 	}
6389 
6390 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6391 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6392 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6393 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6394 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6395 	req->flags = cpu_to_le16(flags);
6396 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6397 }
6398 
6399 /* Caller holds bp->hwrm_cmd_lock */
6400 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6401 				   struct bnxt_coal *hw_coal)
6402 {
6403 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6404 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6405 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6406 	u32 nq_params = coal_cap->nq_params;
6407 	u16 tmr;
6408 
6409 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6410 		return 0;
6411 
6412 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6413 			       -1, -1);
6414 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6415 	req.flags =
6416 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6417 
6418 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6419 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6420 	req.int_lat_tmr_min = cpu_to_le16(tmr);
6421 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6422 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6423 }
6424 
6425 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6426 {
6427 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6428 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6429 	struct bnxt_coal coal;
6430 
6431 	/* Tick values in micro seconds.
6432 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6433 	 */
6434 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6435 
6436 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6437 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6438 
6439 	if (!bnapi->rx_ring)
6440 		return -ENODEV;
6441 
6442 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6443 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6444 
6445 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6446 
6447 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6448 
6449 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6450 				 HWRM_CMD_TIMEOUT);
6451 }
6452 
6453 int bnxt_hwrm_set_coal(struct bnxt *bp)
6454 {
6455 	int i, rc = 0;
6456 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6457 							   req_tx = {0}, *req;
6458 
6459 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6460 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6461 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6462 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6463 
6464 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6465 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6466 
6467 	mutex_lock(&bp->hwrm_cmd_lock);
6468 	for (i = 0; i < bp->cp_nr_rings; i++) {
6469 		struct bnxt_napi *bnapi = bp->bnapi[i];
6470 		struct bnxt_coal *hw_coal;
6471 		u16 ring_id;
6472 
6473 		req = &req_rx;
6474 		if (!bnapi->rx_ring) {
6475 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6476 			req = &req_tx;
6477 		} else {
6478 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6479 		}
6480 		req->ring_id = cpu_to_le16(ring_id);
6481 
6482 		rc = _hwrm_send_message(bp, req, sizeof(*req),
6483 					HWRM_CMD_TIMEOUT);
6484 		if (rc)
6485 			break;
6486 
6487 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6488 			continue;
6489 
6490 		if (bnapi->rx_ring && bnapi->tx_ring) {
6491 			req = &req_tx;
6492 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6493 			req->ring_id = cpu_to_le16(ring_id);
6494 			rc = _hwrm_send_message(bp, req, sizeof(*req),
6495 						HWRM_CMD_TIMEOUT);
6496 			if (rc)
6497 				break;
6498 		}
6499 		if (bnapi->rx_ring)
6500 			hw_coal = &bp->rx_coal;
6501 		else
6502 			hw_coal = &bp->tx_coal;
6503 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6504 	}
6505 	mutex_unlock(&bp->hwrm_cmd_lock);
6506 	return rc;
6507 }
6508 
6509 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6510 {
6511 	struct hwrm_stat_ctx_clr_stats_input req0 = {0};
6512 	struct hwrm_stat_ctx_free_input req = {0};
6513 	int i;
6514 
6515 	if (!bp->bnapi)
6516 		return;
6517 
6518 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6519 		return;
6520 
6521 	bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1);
6522 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6523 
6524 	mutex_lock(&bp->hwrm_cmd_lock);
6525 	for (i = 0; i < bp->cp_nr_rings; i++) {
6526 		struct bnxt_napi *bnapi = bp->bnapi[i];
6527 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6528 
6529 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6530 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6531 			if (BNXT_FW_MAJ(bp) <= 20) {
6532 				req0.stat_ctx_id = req.stat_ctx_id;
6533 				_hwrm_send_message(bp, &req0, sizeof(req0),
6534 						   HWRM_CMD_TIMEOUT);
6535 			}
6536 			_hwrm_send_message(bp, &req, sizeof(req),
6537 					   HWRM_CMD_TIMEOUT);
6538 
6539 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6540 		}
6541 	}
6542 	mutex_unlock(&bp->hwrm_cmd_lock);
6543 }
6544 
6545 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6546 {
6547 	int rc = 0, i;
6548 	struct hwrm_stat_ctx_alloc_input req = {0};
6549 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6550 
6551 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6552 		return 0;
6553 
6554 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6555 
6556 	req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6557 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6558 
6559 	mutex_lock(&bp->hwrm_cmd_lock);
6560 	for (i = 0; i < bp->cp_nr_rings; i++) {
6561 		struct bnxt_napi *bnapi = bp->bnapi[i];
6562 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6563 
6564 		req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6565 
6566 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6567 					HWRM_CMD_TIMEOUT);
6568 		if (rc)
6569 			break;
6570 
6571 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6572 
6573 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6574 	}
6575 	mutex_unlock(&bp->hwrm_cmd_lock);
6576 	return rc;
6577 }
6578 
6579 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6580 {
6581 	struct hwrm_func_qcfg_input req = {0};
6582 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6583 	u32 min_db_offset = 0;
6584 	u16 flags;
6585 	int rc;
6586 
6587 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6588 	req.fid = cpu_to_le16(0xffff);
6589 	mutex_lock(&bp->hwrm_cmd_lock);
6590 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6591 	if (rc)
6592 		goto func_qcfg_exit;
6593 
6594 #ifdef CONFIG_BNXT_SRIOV
6595 	if (BNXT_VF(bp)) {
6596 		struct bnxt_vf_info *vf = &bp->vf;
6597 
6598 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6599 	} else {
6600 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6601 	}
6602 #endif
6603 	flags = le16_to_cpu(resp->flags);
6604 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6605 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6606 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6607 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6608 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6609 	}
6610 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6611 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6612 
6613 	switch (resp->port_partition_type) {
6614 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6615 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6616 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6617 		bp->port_partition_type = resp->port_partition_type;
6618 		break;
6619 	}
6620 	if (bp->hwrm_spec_code < 0x10707 ||
6621 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6622 		bp->br_mode = BRIDGE_MODE_VEB;
6623 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6624 		bp->br_mode = BRIDGE_MODE_VEPA;
6625 	else
6626 		bp->br_mode = BRIDGE_MODE_UNDEF;
6627 
6628 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6629 	if (!bp->max_mtu)
6630 		bp->max_mtu = BNXT_MAX_MTU;
6631 
6632 	if (bp->db_size)
6633 		goto func_qcfg_exit;
6634 
6635 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6636 		if (BNXT_PF(bp))
6637 			min_db_offset = DB_PF_OFFSET_P5;
6638 		else
6639 			min_db_offset = DB_VF_OFFSET_P5;
6640 	}
6641 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6642 				 1024);
6643 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6644 	    bp->db_size <= min_db_offset)
6645 		bp->db_size = pci_resource_len(bp->pdev, 2);
6646 
6647 func_qcfg_exit:
6648 	mutex_unlock(&bp->hwrm_cmd_lock);
6649 	return rc;
6650 }
6651 
6652 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6653 {
6654 	struct hwrm_func_backing_store_qcaps_input req = {0};
6655 	struct hwrm_func_backing_store_qcaps_output *resp =
6656 		bp->hwrm_cmd_resp_addr;
6657 	int rc;
6658 
6659 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6660 		return 0;
6661 
6662 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6663 	mutex_lock(&bp->hwrm_cmd_lock);
6664 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6665 	if (!rc) {
6666 		struct bnxt_ctx_pg_info *ctx_pg;
6667 		struct bnxt_ctx_mem_info *ctx;
6668 		int i, tqm_rings;
6669 
6670 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6671 		if (!ctx) {
6672 			rc = -ENOMEM;
6673 			goto ctx_err;
6674 		}
6675 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6676 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6677 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6678 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6679 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6680 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6681 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6682 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6683 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6684 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6685 		ctx->vnic_max_vnic_entries =
6686 			le16_to_cpu(resp->vnic_max_vnic_entries);
6687 		ctx->vnic_max_ring_table_entries =
6688 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6689 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6690 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6691 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6692 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6693 		ctx->tqm_min_entries_per_ring =
6694 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6695 		ctx->tqm_max_entries_per_ring =
6696 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6697 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6698 		if (!ctx->tqm_entries_multiple)
6699 			ctx->tqm_entries_multiple = 1;
6700 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6701 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6702 		ctx->mrav_num_entries_units =
6703 			le16_to_cpu(resp->mrav_num_entries_units);
6704 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6705 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6706 		ctx->ctx_kind_initializer = resp->ctx_kind_initializer;
6707 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6708 		if (!ctx->tqm_fp_rings_count)
6709 			ctx->tqm_fp_rings_count = bp->max_q;
6710 
6711 		tqm_rings = ctx->tqm_fp_rings_count + 1;
6712 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6713 		if (!ctx_pg) {
6714 			kfree(ctx);
6715 			rc = -ENOMEM;
6716 			goto ctx_err;
6717 		}
6718 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6719 			ctx->tqm_mem[i] = ctx_pg;
6720 		bp->ctx = ctx;
6721 	} else {
6722 		rc = 0;
6723 	}
6724 ctx_err:
6725 	mutex_unlock(&bp->hwrm_cmd_lock);
6726 	return rc;
6727 }
6728 
6729 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6730 				  __le64 *pg_dir)
6731 {
6732 	u8 pg_size = 0;
6733 
6734 	if (BNXT_PAGE_SHIFT == 13)
6735 		pg_size = 1 << 4;
6736 	else if (BNXT_PAGE_SIZE == 16)
6737 		pg_size = 2 << 4;
6738 
6739 	*pg_attr = pg_size;
6740 	if (rmem->depth >= 1) {
6741 		if (rmem->depth == 2)
6742 			*pg_attr |= 2;
6743 		else
6744 			*pg_attr |= 1;
6745 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6746 	} else {
6747 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6748 	}
6749 }
6750 
6751 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6752 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6753 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6754 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6755 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6756 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6757 
6758 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6759 {
6760 	struct hwrm_func_backing_store_cfg_input req = {0};
6761 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6762 	struct bnxt_ctx_pg_info *ctx_pg;
6763 	__le32 *num_entries;
6764 	__le64 *pg_dir;
6765 	u32 flags = 0;
6766 	u8 *pg_attr;
6767 	u32 ena;
6768 	int i;
6769 
6770 	if (!ctx)
6771 		return 0;
6772 
6773 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6774 	req.enables = cpu_to_le32(enables);
6775 
6776 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6777 		ctx_pg = &ctx->qp_mem;
6778 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6779 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6780 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6781 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6782 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6783 				      &req.qpc_pg_size_qpc_lvl,
6784 				      &req.qpc_page_dir);
6785 	}
6786 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6787 		ctx_pg = &ctx->srq_mem;
6788 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6789 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6790 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6791 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6792 				      &req.srq_pg_size_srq_lvl,
6793 				      &req.srq_page_dir);
6794 	}
6795 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6796 		ctx_pg = &ctx->cq_mem;
6797 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6798 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6799 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6800 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6801 				      &req.cq_page_dir);
6802 	}
6803 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6804 		ctx_pg = &ctx->vnic_mem;
6805 		req.vnic_num_vnic_entries =
6806 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6807 		req.vnic_num_ring_table_entries =
6808 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6809 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6810 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6811 				      &req.vnic_pg_size_vnic_lvl,
6812 				      &req.vnic_page_dir);
6813 	}
6814 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6815 		ctx_pg = &ctx->stat_mem;
6816 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6817 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6818 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6819 				      &req.stat_pg_size_stat_lvl,
6820 				      &req.stat_page_dir);
6821 	}
6822 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6823 		ctx_pg = &ctx->mrav_mem;
6824 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6825 		if (ctx->mrav_num_entries_units)
6826 			flags |=
6827 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6828 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6829 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6830 				      &req.mrav_pg_size_mrav_lvl,
6831 				      &req.mrav_page_dir);
6832 	}
6833 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6834 		ctx_pg = &ctx->tim_mem;
6835 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6836 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6837 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6838 				      &req.tim_pg_size_tim_lvl,
6839 				      &req.tim_page_dir);
6840 	}
6841 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6842 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6843 	     pg_dir = &req.tqm_sp_page_dir,
6844 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6845 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6846 		if (!(enables & ena))
6847 			continue;
6848 
6849 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6850 		ctx_pg = ctx->tqm_mem[i];
6851 		*num_entries = cpu_to_le32(ctx_pg->entries);
6852 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6853 	}
6854 	req.flags = cpu_to_le32(flags);
6855 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6856 }
6857 
6858 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6859 				  struct bnxt_ctx_pg_info *ctx_pg)
6860 {
6861 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6862 
6863 	rmem->page_size = BNXT_PAGE_SIZE;
6864 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6865 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6866 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6867 	if (rmem->depth >= 1)
6868 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6869 	return bnxt_alloc_ring(bp, rmem);
6870 }
6871 
6872 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6873 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6874 				  u8 depth, bool use_init_val)
6875 {
6876 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6877 	int rc;
6878 
6879 	if (!mem_size)
6880 		return -EINVAL;
6881 
6882 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6883 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6884 		ctx_pg->nr_pages = 0;
6885 		return -EINVAL;
6886 	}
6887 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6888 		int nr_tbls, i;
6889 
6890 		rmem->depth = 2;
6891 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6892 					     GFP_KERNEL);
6893 		if (!ctx_pg->ctx_pg_tbl)
6894 			return -ENOMEM;
6895 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6896 		rmem->nr_pages = nr_tbls;
6897 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6898 		if (rc)
6899 			return rc;
6900 		for (i = 0; i < nr_tbls; i++) {
6901 			struct bnxt_ctx_pg_info *pg_tbl;
6902 
6903 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6904 			if (!pg_tbl)
6905 				return -ENOMEM;
6906 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6907 			rmem = &pg_tbl->ring_mem;
6908 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6909 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6910 			rmem->depth = 1;
6911 			rmem->nr_pages = MAX_CTX_PAGES;
6912 			if (use_init_val)
6913 				rmem->init_val = bp->ctx->ctx_kind_initializer;
6914 			if (i == (nr_tbls - 1)) {
6915 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6916 
6917 				if (rem)
6918 					rmem->nr_pages = rem;
6919 			}
6920 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6921 			if (rc)
6922 				break;
6923 		}
6924 	} else {
6925 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6926 		if (rmem->nr_pages > 1 || depth)
6927 			rmem->depth = 1;
6928 		if (use_init_val)
6929 			rmem->init_val = bp->ctx->ctx_kind_initializer;
6930 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6931 	}
6932 	return rc;
6933 }
6934 
6935 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6936 				  struct bnxt_ctx_pg_info *ctx_pg)
6937 {
6938 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6939 
6940 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6941 	    ctx_pg->ctx_pg_tbl) {
6942 		int i, nr_tbls = rmem->nr_pages;
6943 
6944 		for (i = 0; i < nr_tbls; i++) {
6945 			struct bnxt_ctx_pg_info *pg_tbl;
6946 			struct bnxt_ring_mem_info *rmem2;
6947 
6948 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
6949 			if (!pg_tbl)
6950 				continue;
6951 			rmem2 = &pg_tbl->ring_mem;
6952 			bnxt_free_ring(bp, rmem2);
6953 			ctx_pg->ctx_pg_arr[i] = NULL;
6954 			kfree(pg_tbl);
6955 			ctx_pg->ctx_pg_tbl[i] = NULL;
6956 		}
6957 		kfree(ctx_pg->ctx_pg_tbl);
6958 		ctx_pg->ctx_pg_tbl = NULL;
6959 	}
6960 	bnxt_free_ring(bp, rmem);
6961 	ctx_pg->nr_pages = 0;
6962 }
6963 
6964 static void bnxt_free_ctx_mem(struct bnxt *bp)
6965 {
6966 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6967 	int i;
6968 
6969 	if (!ctx)
6970 		return;
6971 
6972 	if (ctx->tqm_mem[0]) {
6973 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
6974 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6975 		kfree(ctx->tqm_mem[0]);
6976 		ctx->tqm_mem[0] = NULL;
6977 	}
6978 
6979 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6980 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6981 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6982 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6983 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6984 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6985 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6986 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6987 }
6988 
6989 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6990 {
6991 	struct bnxt_ctx_pg_info *ctx_pg;
6992 	struct bnxt_ctx_mem_info *ctx;
6993 	u32 mem_size, ena, entries;
6994 	u32 entries_sp, min;
6995 	u32 num_mr, num_ah;
6996 	u32 extra_srqs = 0;
6997 	u32 extra_qps = 0;
6998 	u8 pg_lvl = 1;
6999 	int i, rc;
7000 
7001 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7002 	if (rc) {
7003 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7004 			   rc);
7005 		return rc;
7006 	}
7007 	ctx = bp->ctx;
7008 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7009 		return 0;
7010 
7011 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7012 		pg_lvl = 2;
7013 		extra_qps = 65536;
7014 		extra_srqs = 8192;
7015 	}
7016 
7017 	ctx_pg = &ctx->qp_mem;
7018 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7019 			  extra_qps;
7020 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
7021 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7022 	if (rc)
7023 		return rc;
7024 
7025 	ctx_pg = &ctx->srq_mem;
7026 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7027 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
7028 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7029 	if (rc)
7030 		return rc;
7031 
7032 	ctx_pg = &ctx->cq_mem;
7033 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7034 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
7035 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true);
7036 	if (rc)
7037 		return rc;
7038 
7039 	ctx_pg = &ctx->vnic_mem;
7040 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7041 			  ctx->vnic_max_ring_table_entries;
7042 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7043 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
7044 	if (rc)
7045 		return rc;
7046 
7047 	ctx_pg = &ctx->stat_mem;
7048 	ctx_pg->entries = ctx->stat_max_entries;
7049 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
7050 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true);
7051 	if (rc)
7052 		return rc;
7053 
7054 	ena = 0;
7055 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7056 		goto skip_rdma;
7057 
7058 	ctx_pg = &ctx->mrav_mem;
7059 	/* 128K extra is needed to accommodate static AH context
7060 	 * allocation by f/w.
7061 	 */
7062 	num_mr = 1024 * 256;
7063 	num_ah = 1024 * 128;
7064 	ctx_pg->entries = num_mr + num_ah;
7065 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7066 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, true);
7067 	if (rc)
7068 		return rc;
7069 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7070 	if (ctx->mrav_num_entries_units)
7071 		ctx_pg->entries =
7072 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7073 			 (num_ah / ctx->mrav_num_entries_units);
7074 
7075 	ctx_pg = &ctx->tim_mem;
7076 	ctx_pg->entries = ctx->qp_mem.entries;
7077 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
7078 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
7079 	if (rc)
7080 		return rc;
7081 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7082 
7083 skip_rdma:
7084 	min = ctx->tqm_min_entries_per_ring;
7085 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7086 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7087 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7088 	entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries;
7089 	entries = roundup(entries, ctx->tqm_entries_multiple);
7090 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7091 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7092 		ctx_pg = ctx->tqm_mem[i];
7093 		ctx_pg->entries = i ? entries : entries_sp;
7094 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7095 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false);
7096 		if (rc)
7097 			return rc;
7098 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7099 	}
7100 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7101 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7102 	if (rc) {
7103 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7104 			   rc);
7105 		return rc;
7106 	}
7107 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7108 	return 0;
7109 }
7110 
7111 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7112 {
7113 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7114 	struct hwrm_func_resource_qcaps_input req = {0};
7115 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7116 	int rc;
7117 
7118 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
7119 	req.fid = cpu_to_le16(0xffff);
7120 
7121 	mutex_lock(&bp->hwrm_cmd_lock);
7122 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
7123 				       HWRM_CMD_TIMEOUT);
7124 	if (rc)
7125 		goto hwrm_func_resc_qcaps_exit;
7126 
7127 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7128 	if (!all)
7129 		goto hwrm_func_resc_qcaps_exit;
7130 
7131 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7132 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7133 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7134 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7135 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7136 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7137 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7138 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7139 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7140 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7141 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7142 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7143 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7144 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7145 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7146 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7147 
7148 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7149 		u16 max_msix = le16_to_cpu(resp->max_msix);
7150 
7151 		hw_resc->max_nqs = max_msix;
7152 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7153 	}
7154 
7155 	if (BNXT_PF(bp)) {
7156 		struct bnxt_pf_info *pf = &bp->pf;
7157 
7158 		pf->vf_resv_strategy =
7159 			le16_to_cpu(resp->vf_reservation_strategy);
7160 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7161 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7162 	}
7163 hwrm_func_resc_qcaps_exit:
7164 	mutex_unlock(&bp->hwrm_cmd_lock);
7165 	return rc;
7166 }
7167 
7168 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7169 {
7170 	int rc = 0;
7171 	struct hwrm_func_qcaps_input req = {0};
7172 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7173 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7174 	u32 flags, flags_ext;
7175 
7176 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
7177 	req.fid = cpu_to_le16(0xffff);
7178 
7179 	mutex_lock(&bp->hwrm_cmd_lock);
7180 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7181 	if (rc)
7182 		goto hwrm_func_qcaps_exit;
7183 
7184 	flags = le32_to_cpu(resp->flags);
7185 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7186 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7187 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7188 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7189 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7190 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7191 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7192 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7193 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7194 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7195 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7196 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7197 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7198 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7199 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7200 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7201 
7202 	flags_ext = le32_to_cpu(resp->flags_ext);
7203 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7204 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7205 
7206 	bp->tx_push_thresh = 0;
7207 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7208 	    BNXT_FW_MAJ(bp) > 217)
7209 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7210 
7211 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7212 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7213 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7214 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7215 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7216 	if (!hw_resc->max_hw_ring_grps)
7217 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7218 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7219 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7220 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7221 
7222 	if (BNXT_PF(bp)) {
7223 		struct bnxt_pf_info *pf = &bp->pf;
7224 
7225 		pf->fw_fid = le16_to_cpu(resp->fid);
7226 		pf->port_id = le16_to_cpu(resp->port_id);
7227 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7228 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7229 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7230 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7231 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7232 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7233 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7234 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7235 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7236 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7237 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7238 			bp->flags |= BNXT_FLAG_WOL_CAP;
7239 	} else {
7240 #ifdef CONFIG_BNXT_SRIOV
7241 		struct bnxt_vf_info *vf = &bp->vf;
7242 
7243 		vf->fw_fid = le16_to_cpu(resp->fid);
7244 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7245 #endif
7246 	}
7247 
7248 hwrm_func_qcaps_exit:
7249 	mutex_unlock(&bp->hwrm_cmd_lock);
7250 	return rc;
7251 }
7252 
7253 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7254 
7255 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7256 {
7257 	int rc;
7258 
7259 	rc = __bnxt_hwrm_func_qcaps(bp);
7260 	if (rc)
7261 		return rc;
7262 	rc = bnxt_hwrm_queue_qportcfg(bp);
7263 	if (rc) {
7264 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7265 		return rc;
7266 	}
7267 	if (bp->hwrm_spec_code >= 0x10803) {
7268 		rc = bnxt_alloc_ctx_mem(bp);
7269 		if (rc)
7270 			return rc;
7271 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7272 		if (!rc)
7273 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7274 	}
7275 	return 0;
7276 }
7277 
7278 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7279 {
7280 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7281 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7282 	int rc = 0;
7283 	u32 flags;
7284 
7285 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7286 		return 0;
7287 
7288 	resp = bp->hwrm_cmd_resp_addr;
7289 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7290 
7291 	mutex_lock(&bp->hwrm_cmd_lock);
7292 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7293 	if (rc)
7294 		goto hwrm_cfa_adv_qcaps_exit;
7295 
7296 	flags = le32_to_cpu(resp->flags);
7297 	if (flags &
7298 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7299 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7300 
7301 hwrm_cfa_adv_qcaps_exit:
7302 	mutex_unlock(&bp->hwrm_cmd_lock);
7303 	return rc;
7304 }
7305 
7306 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7307 {
7308 	struct bnxt_fw_health *fw_health = bp->fw_health;
7309 	u32 reg_base = 0xffffffff;
7310 	int i;
7311 
7312 	/* Only pre-map the monitoring GRC registers using window 3 */
7313 	for (i = 0; i < 4; i++) {
7314 		u32 reg = fw_health->regs[i];
7315 
7316 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7317 			continue;
7318 		if (reg_base == 0xffffffff)
7319 			reg_base = reg & BNXT_GRC_BASE_MASK;
7320 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7321 			return -ERANGE;
7322 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_BASE +
7323 					    (reg & BNXT_GRC_OFFSET_MASK);
7324 	}
7325 	if (reg_base == 0xffffffff)
7326 		return 0;
7327 
7328 	writel(reg_base, bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7329 			 BNXT_FW_HEALTH_WIN_MAP_OFF);
7330 	return 0;
7331 }
7332 
7333 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7334 {
7335 	struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7336 	struct bnxt_fw_health *fw_health = bp->fw_health;
7337 	struct hwrm_error_recovery_qcfg_input req = {0};
7338 	int rc, i;
7339 
7340 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7341 		return 0;
7342 
7343 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7344 	mutex_lock(&bp->hwrm_cmd_lock);
7345 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7346 	if (rc)
7347 		goto err_recovery_out;
7348 	fw_health->flags = le32_to_cpu(resp->flags);
7349 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7350 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7351 		rc = -EINVAL;
7352 		goto err_recovery_out;
7353 	}
7354 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7355 	fw_health->master_func_wait_dsecs =
7356 		le32_to_cpu(resp->master_func_wait_period);
7357 	fw_health->normal_func_wait_dsecs =
7358 		le32_to_cpu(resp->normal_func_wait_period);
7359 	fw_health->post_reset_wait_dsecs =
7360 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7361 	fw_health->post_reset_max_wait_dsecs =
7362 		le32_to_cpu(resp->max_bailout_time_after_reset);
7363 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7364 		le32_to_cpu(resp->fw_health_status_reg);
7365 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7366 		le32_to_cpu(resp->fw_heartbeat_reg);
7367 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7368 		le32_to_cpu(resp->fw_reset_cnt_reg);
7369 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7370 		le32_to_cpu(resp->reset_inprogress_reg);
7371 	fw_health->fw_reset_inprog_reg_mask =
7372 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7373 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7374 	if (fw_health->fw_reset_seq_cnt >= 16) {
7375 		rc = -EINVAL;
7376 		goto err_recovery_out;
7377 	}
7378 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7379 		fw_health->fw_reset_seq_regs[i] =
7380 			le32_to_cpu(resp->reset_reg[i]);
7381 		fw_health->fw_reset_seq_vals[i] =
7382 			le32_to_cpu(resp->reset_reg_val[i]);
7383 		fw_health->fw_reset_seq_delay_msec[i] =
7384 			resp->delay_after_reset[i];
7385 	}
7386 err_recovery_out:
7387 	mutex_unlock(&bp->hwrm_cmd_lock);
7388 	if (!rc)
7389 		rc = bnxt_map_fw_health_regs(bp);
7390 	if (rc)
7391 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7392 	return rc;
7393 }
7394 
7395 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7396 {
7397 	struct hwrm_func_reset_input req = {0};
7398 
7399 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7400 	req.enables = 0;
7401 
7402 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7403 }
7404 
7405 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7406 {
7407 	int rc = 0;
7408 	struct hwrm_queue_qportcfg_input req = {0};
7409 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7410 	u8 i, j, *qptr;
7411 	bool no_rdma;
7412 
7413 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7414 
7415 	mutex_lock(&bp->hwrm_cmd_lock);
7416 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7417 	if (rc)
7418 		goto qportcfg_exit;
7419 
7420 	if (!resp->max_configurable_queues) {
7421 		rc = -EINVAL;
7422 		goto qportcfg_exit;
7423 	}
7424 	bp->max_tc = resp->max_configurable_queues;
7425 	bp->max_lltc = resp->max_configurable_lossless_queues;
7426 	if (bp->max_tc > BNXT_MAX_QUEUE)
7427 		bp->max_tc = BNXT_MAX_QUEUE;
7428 
7429 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7430 	qptr = &resp->queue_id0;
7431 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7432 		bp->q_info[j].queue_id = *qptr;
7433 		bp->q_ids[i] = *qptr++;
7434 		bp->q_info[j].queue_profile = *qptr++;
7435 		bp->tc_to_qidx[j] = j;
7436 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7437 		    (no_rdma && BNXT_PF(bp)))
7438 			j++;
7439 	}
7440 	bp->max_q = bp->max_tc;
7441 	bp->max_tc = max_t(u8, j, 1);
7442 
7443 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7444 		bp->max_tc = 1;
7445 
7446 	if (bp->max_lltc > bp->max_tc)
7447 		bp->max_lltc = bp->max_tc;
7448 
7449 qportcfg_exit:
7450 	mutex_unlock(&bp->hwrm_cmd_lock);
7451 	return rc;
7452 }
7453 
7454 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7455 {
7456 	struct hwrm_ver_get_input req = {0};
7457 	int rc;
7458 
7459 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7460 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7461 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
7462 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7463 
7464 	rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7465 				   silent);
7466 	return rc;
7467 }
7468 
7469 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7470 {
7471 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7472 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7473 	u32 dev_caps_cfg, hwrm_ver;
7474 	int rc, len;
7475 
7476 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7477 	mutex_lock(&bp->hwrm_cmd_lock);
7478 	rc = __bnxt_hwrm_ver_get(bp, false);
7479 	if (rc)
7480 		goto hwrm_ver_get_exit;
7481 
7482 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7483 
7484 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7485 			     resp->hwrm_intf_min_8b << 8 |
7486 			     resp->hwrm_intf_upd_8b;
7487 	if (resp->hwrm_intf_maj_8b < 1) {
7488 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7489 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7490 			    resp->hwrm_intf_upd_8b);
7491 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7492 	}
7493 
7494 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7495 			HWRM_VERSION_UPDATE;
7496 
7497 	if (bp->hwrm_spec_code > hwrm_ver)
7498 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7499 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7500 			 HWRM_VERSION_UPDATE);
7501 	else
7502 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7503 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7504 			 resp->hwrm_intf_upd_8b);
7505 
7506 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7507 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7508 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7509 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7510 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7511 		len = FW_VER_STR_LEN;
7512 	} else {
7513 		fw_maj = resp->hwrm_fw_maj_8b;
7514 		fw_min = resp->hwrm_fw_min_8b;
7515 		fw_bld = resp->hwrm_fw_bld_8b;
7516 		fw_rsv = resp->hwrm_fw_rsvd_8b;
7517 		len = BC_HWRM_STR_LEN;
7518 	}
7519 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7520 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7521 		 fw_rsv);
7522 
7523 	if (strlen(resp->active_pkg_name)) {
7524 		int fw_ver_len = strlen(bp->fw_ver_str);
7525 
7526 		snprintf(bp->fw_ver_str + fw_ver_len,
7527 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7528 			 resp->active_pkg_name);
7529 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7530 	}
7531 
7532 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7533 	if (!bp->hwrm_cmd_timeout)
7534 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7535 
7536 	if (resp->hwrm_intf_maj_8b >= 1) {
7537 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7538 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7539 	}
7540 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7541 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7542 
7543 	bp->chip_num = le16_to_cpu(resp->chip_num);
7544 	bp->chip_rev = resp->chip_rev;
7545 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7546 	    !resp->chip_metal)
7547 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7548 
7549 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7550 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7551 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7552 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7553 
7554 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7555 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7556 
7557 	if (dev_caps_cfg &
7558 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7559 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7560 
7561 	if (dev_caps_cfg &
7562 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7563 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7564 
7565 	if (dev_caps_cfg &
7566 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7567 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7568 
7569 hwrm_ver_get_exit:
7570 	mutex_unlock(&bp->hwrm_cmd_lock);
7571 	return rc;
7572 }
7573 
7574 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7575 {
7576 	struct hwrm_fw_set_time_input req = {0};
7577 	struct tm tm;
7578 	time64_t now = ktime_get_real_seconds();
7579 
7580 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7581 	    bp->hwrm_spec_code < 0x10400)
7582 		return -EOPNOTSUPP;
7583 
7584 	time64_to_tm(now, 0, &tm);
7585 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7586 	req.year = cpu_to_le16(1900 + tm.tm_year);
7587 	req.month = 1 + tm.tm_mon;
7588 	req.day = tm.tm_mday;
7589 	req.hour = tm.tm_hour;
7590 	req.minute = tm.tm_min;
7591 	req.second = tm.tm_sec;
7592 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7593 }
7594 
7595 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
7596 {
7597 	u64 sw_tmp;
7598 
7599 	sw_tmp = (*sw & ~mask) | hw;
7600 	if (hw < (*sw & mask))
7601 		sw_tmp += mask + 1;
7602 	WRITE_ONCE(*sw, sw_tmp);
7603 }
7604 
7605 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
7606 				    int count, bool ignore_zero)
7607 {
7608 	int i;
7609 
7610 	for (i = 0; i < count; i++) {
7611 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
7612 
7613 		if (ignore_zero && !hw)
7614 			continue;
7615 
7616 		if (masks[i] == -1ULL)
7617 			sw_stats[i] = hw;
7618 		else
7619 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
7620 	}
7621 }
7622 
7623 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
7624 {
7625 	if (!stats->hw_stats)
7626 		return;
7627 
7628 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7629 				stats->hw_masks, stats->len / 8, false);
7630 }
7631 
7632 static void bnxt_accumulate_all_stats(struct bnxt *bp)
7633 {
7634 	struct bnxt_stats_mem *ring0_stats;
7635 	bool ignore_zero = false;
7636 	int i;
7637 
7638 	/* Chip bug.  Counter intermittently becomes 0. */
7639 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7640 		ignore_zero = true;
7641 
7642 	for (i = 0; i < bp->cp_nr_rings; i++) {
7643 		struct bnxt_napi *bnapi = bp->bnapi[i];
7644 		struct bnxt_cp_ring_info *cpr;
7645 		struct bnxt_stats_mem *stats;
7646 
7647 		cpr = &bnapi->cp_ring;
7648 		stats = &cpr->stats;
7649 		if (!i)
7650 			ring0_stats = stats;
7651 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
7652 					ring0_stats->hw_masks,
7653 					ring0_stats->len / 8, ignore_zero);
7654 	}
7655 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
7656 		struct bnxt_stats_mem *stats = &bp->port_stats;
7657 		__le64 *hw_stats = stats->hw_stats;
7658 		u64 *sw_stats = stats->sw_stats;
7659 		u64 *masks = stats->hw_masks;
7660 		int cnt;
7661 
7662 		cnt = sizeof(struct rx_port_stats) / 8;
7663 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7664 
7665 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7666 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7667 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
7668 		cnt = sizeof(struct tx_port_stats) / 8;
7669 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
7670 	}
7671 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
7672 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
7673 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
7674 	}
7675 }
7676 
7677 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
7678 {
7679 	struct bnxt_pf_info *pf = &bp->pf;
7680 	struct hwrm_port_qstats_input req = {0};
7681 
7682 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
7683 		return 0;
7684 
7685 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
7686 		return -EOPNOTSUPP;
7687 
7688 	req.flags = flags;
7689 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
7690 	req.port_id = cpu_to_le16(pf->port_id);
7691 	req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
7692 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
7693 	req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
7694 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7695 }
7696 
7697 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
7698 {
7699 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
7700 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
7701 	struct hwrm_port_qstats_ext_input req = {0};
7702 	struct bnxt_pf_info *pf = &bp->pf;
7703 	u32 tx_stat_size;
7704 	int rc;
7705 
7706 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
7707 		return 0;
7708 
7709 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
7710 		return -EOPNOTSUPP;
7711 
7712 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
7713 	req.flags = flags;
7714 	req.port_id = cpu_to_le16(pf->port_id);
7715 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
7716 	req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
7717 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
7718 		       sizeof(struct tx_port_stats_ext) : 0;
7719 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
7720 	req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
7721 	mutex_lock(&bp->hwrm_cmd_lock);
7722 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7723 	if (!rc) {
7724 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
7725 		bp->fw_tx_stats_ext_size = tx_stat_size ?
7726 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
7727 	} else {
7728 		bp->fw_rx_stats_ext_size = 0;
7729 		bp->fw_tx_stats_ext_size = 0;
7730 	}
7731 	if (flags)
7732 		goto qstats_done;
7733 
7734 	if (bp->fw_tx_stats_ext_size <=
7735 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
7736 		mutex_unlock(&bp->hwrm_cmd_lock);
7737 		bp->pri2cos_valid = 0;
7738 		return rc;
7739 	}
7740 
7741 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
7742 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
7743 
7744 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
7745 	if (!rc) {
7746 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
7747 		u8 *pri2cos;
7748 		int i, j;
7749 
7750 		resp2 = bp->hwrm_cmd_resp_addr;
7751 		pri2cos = &resp2->pri0_cos_queue_id;
7752 		for (i = 0; i < 8; i++) {
7753 			u8 queue_id = pri2cos[i];
7754 			u8 queue_idx;
7755 
7756 			/* Per port queue IDs start from 0, 10, 20, etc */
7757 			queue_idx = queue_id % 10;
7758 			if (queue_idx > BNXT_MAX_QUEUE) {
7759 				bp->pri2cos_valid = false;
7760 				goto qstats_done;
7761 			}
7762 			for (j = 0; j < bp->max_q; j++) {
7763 				if (bp->q_ids[j] == queue_id)
7764 					bp->pri2cos_idx[i] = queue_idx;
7765 			}
7766 		}
7767 		bp->pri2cos_valid = 1;
7768 	}
7769 qstats_done:
7770 	mutex_unlock(&bp->hwrm_cmd_lock);
7771 	return rc;
7772 }
7773 
7774 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
7775 {
7776 	if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID)
7777 		bnxt_hwrm_tunnel_dst_port_free(
7778 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7779 	if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID)
7780 		bnxt_hwrm_tunnel_dst_port_free(
7781 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7782 }
7783 
7784 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
7785 {
7786 	int rc, i;
7787 	u32 tpa_flags = 0;
7788 
7789 	if (set_tpa)
7790 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
7791 	else if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
7792 		return 0;
7793 	for (i = 0; i < bp->nr_vnics; i++) {
7794 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7795 		if (rc) {
7796 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7797 				   i, rc);
7798 			return rc;
7799 		}
7800 	}
7801 	return 0;
7802 }
7803 
7804 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7805 {
7806 	int i;
7807 
7808 	for (i = 0; i < bp->nr_vnics; i++)
7809 		bnxt_hwrm_vnic_set_rss(bp, i, false);
7810 }
7811 
7812 static void bnxt_clear_vnic(struct bnxt *bp)
7813 {
7814 	if (!bp->vnic_info)
7815 		return;
7816 
7817 	bnxt_hwrm_clear_vnic_filter(bp);
7818 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
7819 		/* clear all RSS setting before free vnic ctx */
7820 		bnxt_hwrm_clear_vnic_rss(bp);
7821 		bnxt_hwrm_vnic_ctx_free(bp);
7822 	}
7823 	/* before free the vnic, undo the vnic tpa settings */
7824 	if (bp->flags & BNXT_FLAG_TPA)
7825 		bnxt_set_tpa(bp, false);
7826 	bnxt_hwrm_vnic_free(bp);
7827 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7828 		bnxt_hwrm_vnic_ctx_free(bp);
7829 }
7830 
7831 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7832 				    bool irq_re_init)
7833 {
7834 	bnxt_clear_vnic(bp);
7835 	bnxt_hwrm_ring_free(bp, close_path);
7836 	bnxt_hwrm_ring_grp_free(bp);
7837 	if (irq_re_init) {
7838 		bnxt_hwrm_stat_ctx_free(bp);
7839 		bnxt_hwrm_free_tunnel_ports(bp);
7840 	}
7841 }
7842 
7843 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
7844 {
7845 	struct hwrm_func_cfg_input req = {0};
7846 
7847 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7848 	req.fid = cpu_to_le16(0xffff);
7849 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
7850 	if (br_mode == BRIDGE_MODE_VEB)
7851 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
7852 	else if (br_mode == BRIDGE_MODE_VEPA)
7853 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
7854 	else
7855 		return -EINVAL;
7856 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7857 }
7858 
7859 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
7860 {
7861 	struct hwrm_func_cfg_input req = {0};
7862 
7863 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7864 		return 0;
7865 
7866 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7867 	req.fid = cpu_to_le16(0xffff);
7868 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7869 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7870 	if (size == 128)
7871 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7872 
7873 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7874 }
7875 
7876 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7877 {
7878 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7879 	int rc;
7880 
7881 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7882 		goto skip_rss_ctx;
7883 
7884 	/* allocate context for vnic */
7885 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7886 	if (rc) {
7887 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7888 			   vnic_id, rc);
7889 		goto vnic_setup_err;
7890 	}
7891 	bp->rsscos_nr_ctxs++;
7892 
7893 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7894 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7895 		if (rc) {
7896 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7897 				   vnic_id, rc);
7898 			goto vnic_setup_err;
7899 		}
7900 		bp->rsscos_nr_ctxs++;
7901 	}
7902 
7903 skip_rss_ctx:
7904 	/* configure default vnic, ring grp */
7905 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7906 	if (rc) {
7907 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7908 			   vnic_id, rc);
7909 		goto vnic_setup_err;
7910 	}
7911 
7912 	/* Enable RSS hashing on vnic */
7913 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7914 	if (rc) {
7915 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7916 			   vnic_id, rc);
7917 		goto vnic_setup_err;
7918 	}
7919 
7920 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7921 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7922 		if (rc) {
7923 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7924 				   vnic_id, rc);
7925 		}
7926 	}
7927 
7928 vnic_setup_err:
7929 	return rc;
7930 }
7931 
7932 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7933 {
7934 	int rc, i, nr_ctxs;
7935 
7936 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
7937 	for (i = 0; i < nr_ctxs; i++) {
7938 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7939 		if (rc) {
7940 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7941 				   vnic_id, i, rc);
7942 			break;
7943 		}
7944 		bp->rsscos_nr_ctxs++;
7945 	}
7946 	if (i < nr_ctxs)
7947 		return -ENOMEM;
7948 
7949 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7950 	if (rc) {
7951 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7952 			   vnic_id, rc);
7953 		return rc;
7954 	}
7955 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7956 	if (rc) {
7957 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7958 			   vnic_id, rc);
7959 		return rc;
7960 	}
7961 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7962 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7963 		if (rc) {
7964 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7965 				   vnic_id, rc);
7966 		}
7967 	}
7968 	return rc;
7969 }
7970 
7971 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7972 {
7973 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7974 		return __bnxt_setup_vnic_p5(bp, vnic_id);
7975 	else
7976 		return __bnxt_setup_vnic(bp, vnic_id);
7977 }
7978 
7979 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7980 {
7981 #ifdef CONFIG_RFS_ACCEL
7982 	int i, rc = 0;
7983 
7984 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7985 		return 0;
7986 
7987 	for (i = 0; i < bp->rx_nr_rings; i++) {
7988 		struct bnxt_vnic_info *vnic;
7989 		u16 vnic_id = i + 1;
7990 		u16 ring_id = i;
7991 
7992 		if (vnic_id >= bp->nr_vnics)
7993 			break;
7994 
7995 		vnic = &bp->vnic_info[vnic_id];
7996 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
7997 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7998 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7999 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8000 		if (rc) {
8001 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8002 				   vnic_id, rc);
8003 			break;
8004 		}
8005 		rc = bnxt_setup_vnic(bp, vnic_id);
8006 		if (rc)
8007 			break;
8008 	}
8009 	return rc;
8010 #else
8011 	return 0;
8012 #endif
8013 }
8014 
8015 /* Allow PF and VF with default VLAN to be in promiscuous mode */
8016 static bool bnxt_promisc_ok(struct bnxt *bp)
8017 {
8018 #ifdef CONFIG_BNXT_SRIOV
8019 	if (BNXT_VF(bp) && !bp->vf.vlan)
8020 		return false;
8021 #endif
8022 	return true;
8023 }
8024 
8025 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8026 {
8027 	unsigned int rc = 0;
8028 
8029 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8030 	if (rc) {
8031 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8032 			   rc);
8033 		return rc;
8034 	}
8035 
8036 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8037 	if (rc) {
8038 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8039 			   rc);
8040 		return rc;
8041 	}
8042 	return rc;
8043 }
8044 
8045 static int bnxt_cfg_rx_mode(struct bnxt *);
8046 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8047 
8048 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8049 {
8050 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8051 	int rc = 0;
8052 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8053 
8054 	if (irq_re_init) {
8055 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8056 		if (rc) {
8057 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8058 				   rc);
8059 			goto err_out;
8060 		}
8061 	}
8062 
8063 	rc = bnxt_hwrm_ring_alloc(bp);
8064 	if (rc) {
8065 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8066 		goto err_out;
8067 	}
8068 
8069 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8070 	if (rc) {
8071 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8072 		goto err_out;
8073 	}
8074 
8075 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8076 		rx_nr_rings--;
8077 
8078 	/* default vnic 0 */
8079 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8080 	if (rc) {
8081 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8082 		goto err_out;
8083 	}
8084 
8085 	rc = bnxt_setup_vnic(bp, 0);
8086 	if (rc)
8087 		goto err_out;
8088 
8089 	if (bp->flags & BNXT_FLAG_RFS) {
8090 		rc = bnxt_alloc_rfs_vnics(bp);
8091 		if (rc)
8092 			goto err_out;
8093 	}
8094 
8095 	if (bp->flags & BNXT_FLAG_TPA) {
8096 		rc = bnxt_set_tpa(bp, true);
8097 		if (rc)
8098 			goto err_out;
8099 	}
8100 
8101 	if (BNXT_VF(bp))
8102 		bnxt_update_vf_mac(bp);
8103 
8104 	/* Filter for default vnic 0 */
8105 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8106 	if (rc) {
8107 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8108 		goto err_out;
8109 	}
8110 	vnic->uc_filter_count = 1;
8111 
8112 	vnic->rx_mask = 0;
8113 	if (bp->dev->flags & IFF_BROADCAST)
8114 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8115 
8116 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
8117 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8118 
8119 	if (bp->dev->flags & IFF_ALLMULTI) {
8120 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8121 		vnic->mc_list_count = 0;
8122 	} else {
8123 		u32 mask = 0;
8124 
8125 		bnxt_mc_list_updated(bp, &mask);
8126 		vnic->rx_mask |= mask;
8127 	}
8128 
8129 	rc = bnxt_cfg_rx_mode(bp);
8130 	if (rc)
8131 		goto err_out;
8132 
8133 	rc = bnxt_hwrm_set_coal(bp);
8134 	if (rc)
8135 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8136 				rc);
8137 
8138 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8139 		rc = bnxt_setup_nitroa0_vnic(bp);
8140 		if (rc)
8141 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8142 				   rc);
8143 	}
8144 
8145 	if (BNXT_VF(bp)) {
8146 		bnxt_hwrm_func_qcfg(bp);
8147 		netdev_update_features(bp->dev);
8148 	}
8149 
8150 	return 0;
8151 
8152 err_out:
8153 	bnxt_hwrm_resource_free(bp, 0, true);
8154 
8155 	return rc;
8156 }
8157 
8158 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8159 {
8160 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8161 	return 0;
8162 }
8163 
8164 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8165 {
8166 	bnxt_init_cp_rings(bp);
8167 	bnxt_init_rx_rings(bp);
8168 	bnxt_init_tx_rings(bp);
8169 	bnxt_init_ring_grps(bp, irq_re_init);
8170 	bnxt_init_vnics(bp);
8171 
8172 	return bnxt_init_chip(bp, irq_re_init);
8173 }
8174 
8175 static int bnxt_set_real_num_queues(struct bnxt *bp)
8176 {
8177 	int rc;
8178 	struct net_device *dev = bp->dev;
8179 
8180 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8181 					  bp->tx_nr_rings_xdp);
8182 	if (rc)
8183 		return rc;
8184 
8185 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8186 	if (rc)
8187 		return rc;
8188 
8189 #ifdef CONFIG_RFS_ACCEL
8190 	if (bp->flags & BNXT_FLAG_RFS)
8191 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8192 #endif
8193 
8194 	return rc;
8195 }
8196 
8197 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8198 			   bool shared)
8199 {
8200 	int _rx = *rx, _tx = *tx;
8201 
8202 	if (shared) {
8203 		*rx = min_t(int, _rx, max);
8204 		*tx = min_t(int, _tx, max);
8205 	} else {
8206 		if (max < 2)
8207 			return -ENOMEM;
8208 
8209 		while (_rx + _tx > max) {
8210 			if (_rx > _tx && _rx > 1)
8211 				_rx--;
8212 			else if (_tx > 1)
8213 				_tx--;
8214 		}
8215 		*rx = _rx;
8216 		*tx = _tx;
8217 	}
8218 	return 0;
8219 }
8220 
8221 static void bnxt_setup_msix(struct bnxt *bp)
8222 {
8223 	const int len = sizeof(bp->irq_tbl[0].name);
8224 	struct net_device *dev = bp->dev;
8225 	int tcs, i;
8226 
8227 	tcs = netdev_get_num_tc(dev);
8228 	if (tcs) {
8229 		int i, off, count;
8230 
8231 		for (i = 0; i < tcs; i++) {
8232 			count = bp->tx_nr_rings_per_tc;
8233 			off = i * count;
8234 			netdev_set_tc_queue(dev, i, count, off);
8235 		}
8236 	}
8237 
8238 	for (i = 0; i < bp->cp_nr_rings; i++) {
8239 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8240 		char *attr;
8241 
8242 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8243 			attr = "TxRx";
8244 		else if (i < bp->rx_nr_rings)
8245 			attr = "rx";
8246 		else
8247 			attr = "tx";
8248 
8249 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8250 			 attr, i);
8251 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8252 	}
8253 }
8254 
8255 static void bnxt_setup_inta(struct bnxt *bp)
8256 {
8257 	const int len = sizeof(bp->irq_tbl[0].name);
8258 
8259 	if (netdev_get_num_tc(bp->dev))
8260 		netdev_reset_tc(bp->dev);
8261 
8262 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8263 		 0);
8264 	bp->irq_tbl[0].handler = bnxt_inta;
8265 }
8266 
8267 static int bnxt_setup_int_mode(struct bnxt *bp)
8268 {
8269 	int rc;
8270 
8271 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8272 		bnxt_setup_msix(bp);
8273 	else
8274 		bnxt_setup_inta(bp);
8275 
8276 	rc = bnxt_set_real_num_queues(bp);
8277 	return rc;
8278 }
8279 
8280 #ifdef CONFIG_RFS_ACCEL
8281 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8282 {
8283 	return bp->hw_resc.max_rsscos_ctxs;
8284 }
8285 
8286 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8287 {
8288 	return bp->hw_resc.max_vnics;
8289 }
8290 #endif
8291 
8292 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8293 {
8294 	return bp->hw_resc.max_stat_ctxs;
8295 }
8296 
8297 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8298 {
8299 	return bp->hw_resc.max_cp_rings;
8300 }
8301 
8302 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8303 {
8304 	unsigned int cp = bp->hw_resc.max_cp_rings;
8305 
8306 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8307 		cp -= bnxt_get_ulp_msix_num(bp);
8308 
8309 	return cp;
8310 }
8311 
8312 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8313 {
8314 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8315 
8316 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8317 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8318 
8319 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8320 }
8321 
8322 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8323 {
8324 	bp->hw_resc.max_irqs = max_irqs;
8325 }
8326 
8327 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8328 {
8329 	unsigned int cp;
8330 
8331 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8332 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8333 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8334 	else
8335 		return cp - bp->cp_nr_rings;
8336 }
8337 
8338 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8339 {
8340 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8341 }
8342 
8343 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8344 {
8345 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8346 	int max_irq = bnxt_get_max_func_irqs(bp);
8347 	int total_req = bp->cp_nr_rings + num;
8348 	int max_idx, avail_msix;
8349 
8350 	max_idx = bp->total_irqs;
8351 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8352 		max_idx = min_t(int, bp->total_irqs, max_cp);
8353 	avail_msix = max_idx - bp->cp_nr_rings;
8354 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8355 		return avail_msix;
8356 
8357 	if (max_irq < total_req) {
8358 		num = max_irq - bp->cp_nr_rings;
8359 		if (num <= 0)
8360 			return 0;
8361 	}
8362 	return num;
8363 }
8364 
8365 static int bnxt_get_num_msix(struct bnxt *bp)
8366 {
8367 	if (!BNXT_NEW_RM(bp))
8368 		return bnxt_get_max_func_irqs(bp);
8369 
8370 	return bnxt_nq_rings_in_use(bp);
8371 }
8372 
8373 static int bnxt_init_msix(struct bnxt *bp)
8374 {
8375 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8376 	struct msix_entry *msix_ent;
8377 
8378 	total_vecs = bnxt_get_num_msix(bp);
8379 	max = bnxt_get_max_func_irqs(bp);
8380 	if (total_vecs > max)
8381 		total_vecs = max;
8382 
8383 	if (!total_vecs)
8384 		return 0;
8385 
8386 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8387 	if (!msix_ent)
8388 		return -ENOMEM;
8389 
8390 	for (i = 0; i < total_vecs; i++) {
8391 		msix_ent[i].entry = i;
8392 		msix_ent[i].vector = 0;
8393 	}
8394 
8395 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8396 		min = 2;
8397 
8398 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8399 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8400 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8401 		rc = -ENODEV;
8402 		goto msix_setup_exit;
8403 	}
8404 
8405 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8406 	if (bp->irq_tbl) {
8407 		for (i = 0; i < total_vecs; i++)
8408 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8409 
8410 		bp->total_irqs = total_vecs;
8411 		/* Trim rings based upon num of vectors allocated */
8412 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8413 				     total_vecs - ulp_msix, min == 1);
8414 		if (rc)
8415 			goto msix_setup_exit;
8416 
8417 		bp->cp_nr_rings = (min == 1) ?
8418 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8419 				  bp->tx_nr_rings + bp->rx_nr_rings;
8420 
8421 	} else {
8422 		rc = -ENOMEM;
8423 		goto msix_setup_exit;
8424 	}
8425 	bp->flags |= BNXT_FLAG_USING_MSIX;
8426 	kfree(msix_ent);
8427 	return 0;
8428 
8429 msix_setup_exit:
8430 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8431 	kfree(bp->irq_tbl);
8432 	bp->irq_tbl = NULL;
8433 	pci_disable_msix(bp->pdev);
8434 	kfree(msix_ent);
8435 	return rc;
8436 }
8437 
8438 static int bnxt_init_inta(struct bnxt *bp)
8439 {
8440 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
8441 	if (!bp->irq_tbl)
8442 		return -ENOMEM;
8443 
8444 	bp->total_irqs = 1;
8445 	bp->rx_nr_rings = 1;
8446 	bp->tx_nr_rings = 1;
8447 	bp->cp_nr_rings = 1;
8448 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8449 	bp->irq_tbl[0].vector = bp->pdev->irq;
8450 	return 0;
8451 }
8452 
8453 static int bnxt_init_int_mode(struct bnxt *bp)
8454 {
8455 	int rc = 0;
8456 
8457 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8458 		rc = bnxt_init_msix(bp);
8459 
8460 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8461 		/* fallback to INTA */
8462 		rc = bnxt_init_inta(bp);
8463 	}
8464 	return rc;
8465 }
8466 
8467 static void bnxt_clear_int_mode(struct bnxt *bp)
8468 {
8469 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8470 		pci_disable_msix(bp->pdev);
8471 
8472 	kfree(bp->irq_tbl);
8473 	bp->irq_tbl = NULL;
8474 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
8475 }
8476 
8477 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8478 {
8479 	int tcs = netdev_get_num_tc(bp->dev);
8480 	bool irq_cleared = false;
8481 	int rc;
8482 
8483 	if (!bnxt_need_reserve_rings(bp))
8484 		return 0;
8485 
8486 	if (irq_re_init && BNXT_NEW_RM(bp) &&
8487 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
8488 		bnxt_ulp_irq_stop(bp);
8489 		bnxt_clear_int_mode(bp);
8490 		irq_cleared = true;
8491 	}
8492 	rc = __bnxt_reserve_rings(bp);
8493 	if (irq_cleared) {
8494 		if (!rc)
8495 			rc = bnxt_init_int_mode(bp);
8496 		bnxt_ulp_irq_restart(bp, rc);
8497 	}
8498 	if (!netif_is_rxfh_configured(bp->dev))
8499 		bnxt_set_dflt_rss_indir_tbl(bp);
8500 
8501 	if (rc) {
8502 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8503 		return rc;
8504 	}
8505 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8506 		netdev_err(bp->dev, "tx ring reservation failure\n");
8507 		netdev_reset_tc(bp->dev);
8508 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8509 		return -ENOMEM;
8510 	}
8511 	return 0;
8512 }
8513 
8514 static void bnxt_free_irq(struct bnxt *bp)
8515 {
8516 	struct bnxt_irq *irq;
8517 	int i;
8518 
8519 #ifdef CONFIG_RFS_ACCEL
8520 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8521 	bp->dev->rx_cpu_rmap = NULL;
8522 #endif
8523 	if (!bp->irq_tbl || !bp->bnapi)
8524 		return;
8525 
8526 	for (i = 0; i < bp->cp_nr_rings; i++) {
8527 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8528 
8529 		irq = &bp->irq_tbl[map_idx];
8530 		if (irq->requested) {
8531 			if (irq->have_cpumask) {
8532 				irq_set_affinity_hint(irq->vector, NULL);
8533 				free_cpumask_var(irq->cpu_mask);
8534 				irq->have_cpumask = 0;
8535 			}
8536 			free_irq(irq->vector, bp->bnapi[i]);
8537 		}
8538 
8539 		irq->requested = 0;
8540 	}
8541 }
8542 
8543 static int bnxt_request_irq(struct bnxt *bp)
8544 {
8545 	int i, j, rc = 0;
8546 	unsigned long flags = 0;
8547 #ifdef CONFIG_RFS_ACCEL
8548 	struct cpu_rmap *rmap;
8549 #endif
8550 
8551 	rc = bnxt_setup_int_mode(bp);
8552 	if (rc) {
8553 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8554 			   rc);
8555 		return rc;
8556 	}
8557 #ifdef CONFIG_RFS_ACCEL
8558 	rmap = bp->dev->rx_cpu_rmap;
8559 #endif
8560 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8561 		flags = IRQF_SHARED;
8562 
8563 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8564 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8565 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8566 
8567 #ifdef CONFIG_RFS_ACCEL
8568 		if (rmap && bp->bnapi[i]->rx_ring) {
8569 			rc = irq_cpu_rmap_add(rmap, irq->vector);
8570 			if (rc)
8571 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8572 					    j);
8573 			j++;
8574 		}
8575 #endif
8576 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8577 				 bp->bnapi[i]);
8578 		if (rc)
8579 			break;
8580 
8581 		irq->requested = 1;
8582 
8583 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8584 			int numa_node = dev_to_node(&bp->pdev->dev);
8585 
8586 			irq->have_cpumask = 1;
8587 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8588 					irq->cpu_mask);
8589 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8590 			if (rc) {
8591 				netdev_warn(bp->dev,
8592 					    "Set affinity failed, IRQ = %d\n",
8593 					    irq->vector);
8594 				break;
8595 			}
8596 		}
8597 	}
8598 	return rc;
8599 }
8600 
8601 static void bnxt_del_napi(struct bnxt *bp)
8602 {
8603 	int i;
8604 
8605 	if (!bp->bnapi)
8606 		return;
8607 
8608 	for (i = 0; i < bp->cp_nr_rings; i++) {
8609 		struct bnxt_napi *bnapi = bp->bnapi[i];
8610 
8611 		napi_hash_del(&bnapi->napi);
8612 		netif_napi_del(&bnapi->napi);
8613 	}
8614 	/* We called napi_hash_del() before netif_napi_del(), we need
8615 	 * to respect an RCU grace period before freeing napi structures.
8616 	 */
8617 	synchronize_net();
8618 }
8619 
8620 static void bnxt_init_napi(struct bnxt *bp)
8621 {
8622 	int i;
8623 	unsigned int cp_nr_rings = bp->cp_nr_rings;
8624 	struct bnxt_napi *bnapi;
8625 
8626 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
8627 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8628 
8629 		if (bp->flags & BNXT_FLAG_CHIP_P5)
8630 			poll_fn = bnxt_poll_p5;
8631 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8632 			cp_nr_rings--;
8633 		for (i = 0; i < cp_nr_rings; i++) {
8634 			bnapi = bp->bnapi[i];
8635 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8636 		}
8637 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8638 			bnapi = bp->bnapi[cp_nr_rings];
8639 			netif_napi_add(bp->dev, &bnapi->napi,
8640 				       bnxt_poll_nitroa0, 64);
8641 		}
8642 	} else {
8643 		bnapi = bp->bnapi[0];
8644 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8645 	}
8646 }
8647 
8648 static void bnxt_disable_napi(struct bnxt *bp)
8649 {
8650 	int i;
8651 
8652 	if (!bp->bnapi)
8653 		return;
8654 
8655 	for (i = 0; i < bp->cp_nr_rings; i++) {
8656 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8657 
8658 		if (bp->bnapi[i]->rx_ring)
8659 			cancel_work_sync(&cpr->dim.work);
8660 
8661 		napi_disable(&bp->bnapi[i]->napi);
8662 	}
8663 }
8664 
8665 static void bnxt_enable_napi(struct bnxt *bp)
8666 {
8667 	int i;
8668 
8669 	for (i = 0; i < bp->cp_nr_rings; i++) {
8670 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8671 		bp->bnapi[i]->in_reset = false;
8672 
8673 		if (bp->bnapi[i]->rx_ring) {
8674 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
8675 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
8676 		}
8677 		napi_enable(&bp->bnapi[i]->napi);
8678 	}
8679 }
8680 
8681 void bnxt_tx_disable(struct bnxt *bp)
8682 {
8683 	int i;
8684 	struct bnxt_tx_ring_info *txr;
8685 
8686 	if (bp->tx_ring) {
8687 		for (i = 0; i < bp->tx_nr_rings; i++) {
8688 			txr = &bp->tx_ring[i];
8689 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
8690 		}
8691 	}
8692 	/* Stop all TX queues */
8693 	netif_tx_disable(bp->dev);
8694 	netif_carrier_off(bp->dev);
8695 }
8696 
8697 void bnxt_tx_enable(struct bnxt *bp)
8698 {
8699 	int i;
8700 	struct bnxt_tx_ring_info *txr;
8701 
8702 	for (i = 0; i < bp->tx_nr_rings; i++) {
8703 		txr = &bp->tx_ring[i];
8704 		txr->dev_state = 0;
8705 	}
8706 	netif_tx_wake_all_queues(bp->dev);
8707 	if (bp->link_info.link_up)
8708 		netif_carrier_on(bp->dev);
8709 }
8710 
8711 static void bnxt_report_link(struct bnxt *bp)
8712 {
8713 	if (bp->link_info.link_up) {
8714 		const char *duplex;
8715 		const char *flow_ctrl;
8716 		u32 speed;
8717 		u16 fec;
8718 
8719 		netif_carrier_on(bp->dev);
8720 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
8721 			duplex = "full";
8722 		else
8723 			duplex = "half";
8724 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
8725 			flow_ctrl = "ON - receive & transmit";
8726 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
8727 			flow_ctrl = "ON - transmit";
8728 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
8729 			flow_ctrl = "ON - receive";
8730 		else
8731 			flow_ctrl = "none";
8732 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
8733 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
8734 			    speed, duplex, flow_ctrl);
8735 		if (bp->flags & BNXT_FLAG_EEE_CAP)
8736 			netdev_info(bp->dev, "EEE is %s\n",
8737 				    bp->eee.eee_active ? "active" :
8738 							 "not active");
8739 		fec = bp->link_info.fec_cfg;
8740 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
8741 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
8742 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
8743 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
8744 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
8745 	} else {
8746 		netif_carrier_off(bp->dev);
8747 		netdev_err(bp->dev, "NIC Link is Down\n");
8748 	}
8749 }
8750 
8751 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
8752 {
8753 	int rc = 0;
8754 	struct hwrm_port_phy_qcaps_input req = {0};
8755 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8756 	struct bnxt_link_info *link_info = &bp->link_info;
8757 
8758 	bp->flags &= ~BNXT_FLAG_EEE_CAP;
8759 	if (bp->test_info)
8760 		bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK |
8761 					  BNXT_TEST_FL_AN_PHY_LPBK);
8762 	if (bp->hwrm_spec_code < 0x10201)
8763 		return 0;
8764 
8765 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
8766 
8767 	mutex_lock(&bp->hwrm_cmd_lock);
8768 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8769 	if (rc)
8770 		goto hwrm_phy_qcaps_exit;
8771 
8772 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
8773 		struct ethtool_eee *eee = &bp->eee;
8774 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
8775 
8776 		bp->flags |= BNXT_FLAG_EEE_CAP;
8777 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8778 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
8779 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
8780 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
8781 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
8782 	}
8783 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
8784 		if (bp->test_info)
8785 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
8786 	}
8787 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) {
8788 		if (bp->test_info)
8789 			bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK;
8790 	}
8791 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) {
8792 		if (BNXT_PF(bp))
8793 			bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG;
8794 	}
8795 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_CUMULATIVE_COUNTERS_ON_RESET)
8796 		bp->fw_cap |= BNXT_FW_CAP_PORT_STATS_NO_RESET;
8797 
8798 	if (resp->supported_speeds_auto_mode)
8799 		link_info->support_auto_speeds =
8800 			le16_to_cpu(resp->supported_speeds_auto_mode);
8801 
8802 	bp->port_count = resp->port_cnt;
8803 
8804 hwrm_phy_qcaps_exit:
8805 	mutex_unlock(&bp->hwrm_cmd_lock);
8806 	return rc;
8807 }
8808 
8809 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
8810 {
8811 	int rc = 0;
8812 	struct bnxt_link_info *link_info = &bp->link_info;
8813 	struct hwrm_port_phy_qcfg_input req = {0};
8814 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8815 	u8 link_up = link_info->link_up;
8816 	u16 diff;
8817 
8818 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
8819 
8820 	mutex_lock(&bp->hwrm_cmd_lock);
8821 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8822 	if (rc) {
8823 		mutex_unlock(&bp->hwrm_cmd_lock);
8824 		return rc;
8825 	}
8826 
8827 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
8828 	link_info->phy_link_status = resp->link;
8829 	link_info->duplex = resp->duplex_cfg;
8830 	if (bp->hwrm_spec_code >= 0x10800)
8831 		link_info->duplex = resp->duplex_state;
8832 	link_info->pause = resp->pause;
8833 	link_info->auto_mode = resp->auto_mode;
8834 	link_info->auto_pause_setting = resp->auto_pause;
8835 	link_info->lp_pause = resp->link_partner_adv_pause;
8836 	link_info->force_pause_setting = resp->force_pause;
8837 	link_info->duplex_setting = resp->duplex_cfg;
8838 	if (link_info->phy_link_status == BNXT_LINK_LINK)
8839 		link_info->link_speed = le16_to_cpu(resp->link_speed);
8840 	else
8841 		link_info->link_speed = 0;
8842 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
8843 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
8844 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
8845 	link_info->lp_auto_link_speeds =
8846 		le16_to_cpu(resp->link_partner_adv_speeds);
8847 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
8848 	link_info->phy_ver[0] = resp->phy_maj;
8849 	link_info->phy_ver[1] = resp->phy_min;
8850 	link_info->phy_ver[2] = resp->phy_bld;
8851 	link_info->media_type = resp->media_type;
8852 	link_info->phy_type = resp->phy_type;
8853 	link_info->transceiver = resp->xcvr_pkg_type;
8854 	link_info->phy_addr = resp->eee_config_phy_addr &
8855 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
8856 	link_info->module_status = resp->module_status;
8857 
8858 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
8859 		struct ethtool_eee *eee = &bp->eee;
8860 		u16 fw_speeds;
8861 
8862 		eee->eee_active = 0;
8863 		if (resp->eee_config_phy_addr &
8864 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
8865 			eee->eee_active = 1;
8866 			fw_speeds = le16_to_cpu(
8867 				resp->link_partner_adv_eee_link_speed_mask);
8868 			eee->lp_advertised =
8869 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8870 		}
8871 
8872 		/* Pull initial EEE config */
8873 		if (!chng_link_state) {
8874 			if (resp->eee_config_phy_addr &
8875 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
8876 				eee->eee_enabled = 1;
8877 
8878 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8879 			eee->advertised =
8880 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8881 
8882 			if (resp->eee_config_phy_addr &
8883 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8884 				__le32 tmr;
8885 
8886 				eee->tx_lpi_enabled = 1;
8887 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8888 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
8889 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8890 			}
8891 		}
8892 	}
8893 
8894 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8895 	if (bp->hwrm_spec_code >= 0x10504)
8896 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8897 
8898 	/* TODO: need to add more logic to report VF link */
8899 	if (chng_link_state) {
8900 		if (link_info->phy_link_status == BNXT_LINK_LINK)
8901 			link_info->link_up = 1;
8902 		else
8903 			link_info->link_up = 0;
8904 		if (link_up != link_info->link_up)
8905 			bnxt_report_link(bp);
8906 	} else {
8907 		/* alwasy link down if not require to update link state */
8908 		link_info->link_up = 0;
8909 	}
8910 	mutex_unlock(&bp->hwrm_cmd_lock);
8911 
8912 	if (!BNXT_PHY_CFG_ABLE(bp))
8913 		return 0;
8914 
8915 	diff = link_info->support_auto_speeds ^ link_info->advertising;
8916 	if ((link_info->support_auto_speeds | diff) !=
8917 	    link_info->support_auto_speeds) {
8918 		/* An advertised speed is no longer supported, so we need to
8919 		 * update the advertisement settings.  Caller holds RTNL
8920 		 * so we can modify link settings.
8921 		 */
8922 		link_info->advertising = link_info->support_auto_speeds;
8923 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8924 			bnxt_hwrm_set_link_setting(bp, true, false);
8925 	}
8926 	return 0;
8927 }
8928 
8929 static void bnxt_get_port_module_status(struct bnxt *bp)
8930 {
8931 	struct bnxt_link_info *link_info = &bp->link_info;
8932 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8933 	u8 module_status;
8934 
8935 	if (bnxt_update_link(bp, true))
8936 		return;
8937 
8938 	module_status = link_info->module_status;
8939 	switch (module_status) {
8940 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8941 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8942 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8943 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8944 			    bp->pf.port_id);
8945 		if (bp->hwrm_spec_code >= 0x10201) {
8946 			netdev_warn(bp->dev, "Module part number %s\n",
8947 				    resp->phy_vendor_partnumber);
8948 		}
8949 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8950 			netdev_warn(bp->dev, "TX is disabled\n");
8951 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8952 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8953 	}
8954 }
8955 
8956 static void
8957 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8958 {
8959 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8960 		if (bp->hwrm_spec_code >= 0x10201)
8961 			req->auto_pause =
8962 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8963 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8964 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8965 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8966 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8967 		req->enables |=
8968 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8969 	} else {
8970 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8971 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8972 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8973 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
8974 		req->enables |=
8975 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
8976 		if (bp->hwrm_spec_code >= 0x10201) {
8977 			req->auto_pause = req->force_pause;
8978 			req->enables |= cpu_to_le32(
8979 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8980 		}
8981 	}
8982 }
8983 
8984 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8985 				      struct hwrm_port_phy_cfg_input *req)
8986 {
8987 	u8 autoneg = bp->link_info.autoneg;
8988 	u16 fw_link_speed = bp->link_info.req_link_speed;
8989 	u16 advertising = bp->link_info.advertising;
8990 
8991 	if (autoneg & BNXT_AUTONEG_SPEED) {
8992 		req->auto_mode |=
8993 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8994 
8995 		req->enables |= cpu_to_le32(
8996 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8997 		req->auto_link_speed_mask = cpu_to_le16(advertising);
8998 
8999 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9000 		req->flags |=
9001 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9002 	} else {
9003 		req->force_link_speed = cpu_to_le16(fw_link_speed);
9004 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9005 	}
9006 
9007 	/* tell chimp that the setting takes effect immediately */
9008 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9009 }
9010 
9011 int bnxt_hwrm_set_pause(struct bnxt *bp)
9012 {
9013 	struct hwrm_port_phy_cfg_input req = {0};
9014 	int rc;
9015 
9016 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9017 	bnxt_hwrm_set_pause_common(bp, &req);
9018 
9019 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9020 	    bp->link_info.force_link_chng)
9021 		bnxt_hwrm_set_link_common(bp, &req);
9022 
9023 	mutex_lock(&bp->hwrm_cmd_lock);
9024 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9025 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9026 		/* since changing of pause setting doesn't trigger any link
9027 		 * change event, the driver needs to update the current pause
9028 		 * result upon successfully return of the phy_cfg command
9029 		 */
9030 		bp->link_info.pause =
9031 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9032 		bp->link_info.auto_pause_setting = 0;
9033 		if (!bp->link_info.force_link_chng)
9034 			bnxt_report_link(bp);
9035 	}
9036 	bp->link_info.force_link_chng = false;
9037 	mutex_unlock(&bp->hwrm_cmd_lock);
9038 	return rc;
9039 }
9040 
9041 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9042 			      struct hwrm_port_phy_cfg_input *req)
9043 {
9044 	struct ethtool_eee *eee = &bp->eee;
9045 
9046 	if (eee->eee_enabled) {
9047 		u16 eee_speeds;
9048 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9049 
9050 		if (eee->tx_lpi_enabled)
9051 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9052 		else
9053 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9054 
9055 		req->flags |= cpu_to_le32(flags);
9056 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9057 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9058 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9059 	} else {
9060 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9061 	}
9062 }
9063 
9064 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9065 {
9066 	struct hwrm_port_phy_cfg_input req = {0};
9067 
9068 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9069 	if (set_pause)
9070 		bnxt_hwrm_set_pause_common(bp, &req);
9071 
9072 	bnxt_hwrm_set_link_common(bp, &req);
9073 
9074 	if (set_eee)
9075 		bnxt_hwrm_set_eee(bp, &req);
9076 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9077 }
9078 
9079 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9080 {
9081 	struct hwrm_port_phy_cfg_input req = {0};
9082 
9083 	if (!BNXT_SINGLE_PF(bp))
9084 		return 0;
9085 
9086 	if (pci_num_vf(bp->pdev))
9087 		return 0;
9088 
9089 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
9090 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9091 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9092 }
9093 
9094 static int bnxt_fw_init_one(struct bnxt *bp);
9095 
9096 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9097 {
9098 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
9099 	struct hwrm_func_drv_if_change_input req = {0};
9100 	bool resc_reinit = false, fw_reset = false;
9101 	u32 flags = 0;
9102 	int rc;
9103 
9104 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9105 		return 0;
9106 
9107 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
9108 	if (up)
9109 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9110 	mutex_lock(&bp->hwrm_cmd_lock);
9111 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9112 	if (!rc)
9113 		flags = le32_to_cpu(resp->flags);
9114 	mutex_unlock(&bp->hwrm_cmd_lock);
9115 	if (rc)
9116 		return rc;
9117 
9118 	if (!up)
9119 		return 0;
9120 
9121 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9122 		resc_reinit = true;
9123 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9124 		fw_reset = true;
9125 
9126 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9127 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9128 		return -ENODEV;
9129 	}
9130 	if (resc_reinit || fw_reset) {
9131 		if (fw_reset) {
9132 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9133 				bnxt_ulp_stop(bp);
9134 			bnxt_free_ctx_mem(bp);
9135 			kfree(bp->ctx);
9136 			bp->ctx = NULL;
9137 			bnxt_dcb_free(bp);
9138 			rc = bnxt_fw_init_one(bp);
9139 			if (rc) {
9140 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9141 				return rc;
9142 			}
9143 			bnxt_clear_int_mode(bp);
9144 			rc = bnxt_init_int_mode(bp);
9145 			if (rc) {
9146 				netdev_err(bp->dev, "init int mode failed\n");
9147 				return rc;
9148 			}
9149 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9150 		}
9151 		if (BNXT_NEW_RM(bp)) {
9152 			struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9153 
9154 			rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9155 			hw_resc->resv_cp_rings = 0;
9156 			hw_resc->resv_stat_ctxs = 0;
9157 			hw_resc->resv_irqs = 0;
9158 			hw_resc->resv_tx_rings = 0;
9159 			hw_resc->resv_rx_rings = 0;
9160 			hw_resc->resv_hw_ring_grps = 0;
9161 			hw_resc->resv_vnics = 0;
9162 			if (!fw_reset) {
9163 				bp->tx_nr_rings = 0;
9164 				bp->rx_nr_rings = 0;
9165 			}
9166 		}
9167 	}
9168 	return 0;
9169 }
9170 
9171 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9172 {
9173 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
9174 	struct hwrm_port_led_qcaps_input req = {0};
9175 	struct bnxt_pf_info *pf = &bp->pf;
9176 	int rc;
9177 
9178 	bp->num_leds = 0;
9179 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9180 		return 0;
9181 
9182 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
9183 	req.port_id = cpu_to_le16(pf->port_id);
9184 	mutex_lock(&bp->hwrm_cmd_lock);
9185 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9186 	if (rc) {
9187 		mutex_unlock(&bp->hwrm_cmd_lock);
9188 		return rc;
9189 	}
9190 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9191 		int i;
9192 
9193 		bp->num_leds = resp->num_leds;
9194 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9195 						 bp->num_leds);
9196 		for (i = 0; i < bp->num_leds; i++) {
9197 			struct bnxt_led_info *led = &bp->leds[i];
9198 			__le16 caps = led->led_state_caps;
9199 
9200 			if (!led->led_group_id ||
9201 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9202 				bp->num_leds = 0;
9203 				break;
9204 			}
9205 		}
9206 	}
9207 	mutex_unlock(&bp->hwrm_cmd_lock);
9208 	return 0;
9209 }
9210 
9211 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9212 {
9213 	struct hwrm_wol_filter_alloc_input req = {0};
9214 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
9215 	int rc;
9216 
9217 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
9218 	req.port_id = cpu_to_le16(bp->pf.port_id);
9219 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9220 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9221 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
9222 	mutex_lock(&bp->hwrm_cmd_lock);
9223 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9224 	if (!rc)
9225 		bp->wol_filter_id = resp->wol_filter_id;
9226 	mutex_unlock(&bp->hwrm_cmd_lock);
9227 	return rc;
9228 }
9229 
9230 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9231 {
9232 	struct hwrm_wol_filter_free_input req = {0};
9233 
9234 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
9235 	req.port_id = cpu_to_le16(bp->pf.port_id);
9236 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9237 	req.wol_filter_id = bp->wol_filter_id;
9238 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9239 }
9240 
9241 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9242 {
9243 	struct hwrm_wol_filter_qcfg_input req = {0};
9244 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
9245 	u16 next_handle = 0;
9246 	int rc;
9247 
9248 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
9249 	req.port_id = cpu_to_le16(bp->pf.port_id);
9250 	req.handle = cpu_to_le16(handle);
9251 	mutex_lock(&bp->hwrm_cmd_lock);
9252 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9253 	if (!rc) {
9254 		next_handle = le16_to_cpu(resp->next_handle);
9255 		if (next_handle != 0) {
9256 			if (resp->wol_type ==
9257 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9258 				bp->wol = 1;
9259 				bp->wol_filter_id = resp->wol_filter_id;
9260 			}
9261 		}
9262 	}
9263 	mutex_unlock(&bp->hwrm_cmd_lock);
9264 	return next_handle;
9265 }
9266 
9267 static void bnxt_get_wol_settings(struct bnxt *bp)
9268 {
9269 	u16 handle = 0;
9270 
9271 	bp->wol = 0;
9272 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9273 		return;
9274 
9275 	do {
9276 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
9277 	} while (handle && handle != 0xffff);
9278 }
9279 
9280 #ifdef CONFIG_BNXT_HWMON
9281 static ssize_t bnxt_show_temp(struct device *dev,
9282 			      struct device_attribute *devattr, char *buf)
9283 {
9284 	struct hwrm_temp_monitor_query_input req = {0};
9285 	struct hwrm_temp_monitor_query_output *resp;
9286 	struct bnxt *bp = dev_get_drvdata(dev);
9287 	u32 temp = 0;
9288 
9289 	resp = bp->hwrm_cmd_resp_addr;
9290 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
9291 	mutex_lock(&bp->hwrm_cmd_lock);
9292 	if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
9293 		temp = resp->temp * 1000; /* display millidegree */
9294 	mutex_unlock(&bp->hwrm_cmd_lock);
9295 
9296 	return sprintf(buf, "%u\n", temp);
9297 }
9298 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9299 
9300 static struct attribute *bnxt_attrs[] = {
9301 	&sensor_dev_attr_temp1_input.dev_attr.attr,
9302 	NULL
9303 };
9304 ATTRIBUTE_GROUPS(bnxt);
9305 
9306 static void bnxt_hwmon_close(struct bnxt *bp)
9307 {
9308 	if (bp->hwmon_dev) {
9309 		hwmon_device_unregister(bp->hwmon_dev);
9310 		bp->hwmon_dev = NULL;
9311 	}
9312 }
9313 
9314 static void bnxt_hwmon_open(struct bnxt *bp)
9315 {
9316 	struct pci_dev *pdev = bp->pdev;
9317 
9318 	if (bp->hwmon_dev)
9319 		return;
9320 
9321 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
9322 							  DRV_MODULE_NAME, bp,
9323 							  bnxt_groups);
9324 	if (IS_ERR(bp->hwmon_dev)) {
9325 		bp->hwmon_dev = NULL;
9326 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
9327 	}
9328 }
9329 #else
9330 static void bnxt_hwmon_close(struct bnxt *bp)
9331 {
9332 }
9333 
9334 static void bnxt_hwmon_open(struct bnxt *bp)
9335 {
9336 }
9337 #endif
9338 
9339 static bool bnxt_eee_config_ok(struct bnxt *bp)
9340 {
9341 	struct ethtool_eee *eee = &bp->eee;
9342 	struct bnxt_link_info *link_info = &bp->link_info;
9343 
9344 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
9345 		return true;
9346 
9347 	if (eee->eee_enabled) {
9348 		u32 advertising =
9349 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
9350 
9351 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9352 			eee->eee_enabled = 0;
9353 			return false;
9354 		}
9355 		if (eee->advertised & ~advertising) {
9356 			eee->advertised = advertising & eee->supported;
9357 			return false;
9358 		}
9359 	}
9360 	return true;
9361 }
9362 
9363 static int bnxt_update_phy_setting(struct bnxt *bp)
9364 {
9365 	int rc;
9366 	bool update_link = false;
9367 	bool update_pause = false;
9368 	bool update_eee = false;
9369 	struct bnxt_link_info *link_info = &bp->link_info;
9370 
9371 	rc = bnxt_update_link(bp, true);
9372 	if (rc) {
9373 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9374 			   rc);
9375 		return rc;
9376 	}
9377 	if (!BNXT_SINGLE_PF(bp))
9378 		return 0;
9379 
9380 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9381 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9382 	    link_info->req_flow_ctrl)
9383 		update_pause = true;
9384 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9385 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
9386 		update_pause = true;
9387 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9388 		if (BNXT_AUTO_MODE(link_info->auto_mode))
9389 			update_link = true;
9390 		if (link_info->req_link_speed != link_info->force_link_speed)
9391 			update_link = true;
9392 		if (link_info->req_duplex != link_info->duplex_setting)
9393 			update_link = true;
9394 	} else {
9395 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9396 			update_link = true;
9397 		if (link_info->advertising != link_info->auto_link_speeds)
9398 			update_link = true;
9399 	}
9400 
9401 	/* The last close may have shutdown the link, so need to call
9402 	 * PHY_CFG to bring it back up.
9403 	 */
9404 	if (!bp->link_info.link_up)
9405 		update_link = true;
9406 
9407 	if (!bnxt_eee_config_ok(bp))
9408 		update_eee = true;
9409 
9410 	if (update_link)
9411 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9412 	else if (update_pause)
9413 		rc = bnxt_hwrm_set_pause(bp);
9414 	if (rc) {
9415 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9416 			   rc);
9417 		return rc;
9418 	}
9419 
9420 	return rc;
9421 }
9422 
9423 /* Common routine to pre-map certain register block to different GRC window.
9424  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9425  * in PF and 3 windows in VF that can be customized to map in different
9426  * register blocks.
9427  */
9428 static void bnxt_preset_reg_win(struct bnxt *bp)
9429 {
9430 	if (BNXT_PF(bp)) {
9431 		/* CAG registers map to GRC window #4 */
9432 		writel(BNXT_CAG_REG_BASE,
9433 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9434 	}
9435 }
9436 
9437 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9438 
9439 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9440 {
9441 	int rc = 0;
9442 
9443 	bnxt_preset_reg_win(bp);
9444 	netif_carrier_off(bp->dev);
9445 	if (irq_re_init) {
9446 		/* Reserve rings now if none were reserved at driver probe. */
9447 		rc = bnxt_init_dflt_ring_mode(bp);
9448 		if (rc) {
9449 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9450 			return rc;
9451 		}
9452 	}
9453 	rc = bnxt_reserve_rings(bp, irq_re_init);
9454 	if (rc)
9455 		return rc;
9456 	if ((bp->flags & BNXT_FLAG_RFS) &&
9457 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
9458 		/* disable RFS if falling back to INTA */
9459 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
9460 		bp->flags &= ~BNXT_FLAG_RFS;
9461 	}
9462 
9463 	rc = bnxt_alloc_mem(bp, irq_re_init);
9464 	if (rc) {
9465 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9466 		goto open_err_free_mem;
9467 	}
9468 
9469 	if (irq_re_init) {
9470 		bnxt_init_napi(bp);
9471 		rc = bnxt_request_irq(bp);
9472 		if (rc) {
9473 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
9474 			goto open_err_irq;
9475 		}
9476 	}
9477 
9478 	bnxt_enable_napi(bp);
9479 	bnxt_debug_dev_init(bp);
9480 
9481 	rc = bnxt_init_nic(bp, irq_re_init);
9482 	if (rc) {
9483 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9484 		goto open_err;
9485 	}
9486 
9487 	if (link_re_init) {
9488 		mutex_lock(&bp->link_lock);
9489 		rc = bnxt_update_phy_setting(bp);
9490 		mutex_unlock(&bp->link_lock);
9491 		if (rc) {
9492 			netdev_warn(bp->dev, "failed to update phy settings\n");
9493 			if (BNXT_SINGLE_PF(bp)) {
9494 				bp->link_info.phy_retry = true;
9495 				bp->link_info.phy_retry_expires =
9496 					jiffies + 5 * HZ;
9497 			}
9498 		}
9499 	}
9500 
9501 	if (irq_re_init)
9502 		udp_tunnel_nic_reset_ntf(bp->dev);
9503 
9504 	set_bit(BNXT_STATE_OPEN, &bp->state);
9505 	bnxt_enable_int(bp);
9506 	/* Enable TX queues */
9507 	bnxt_tx_enable(bp);
9508 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9509 	/* Poll link status and check for SFP+ module status */
9510 	bnxt_get_port_module_status(bp);
9511 
9512 	/* VF-reps may need to be re-opened after the PF is re-opened */
9513 	if (BNXT_PF(bp))
9514 		bnxt_vf_reps_open(bp);
9515 	return 0;
9516 
9517 open_err:
9518 	bnxt_debug_dev_exit(bp);
9519 	bnxt_disable_napi(bp);
9520 
9521 open_err_irq:
9522 	bnxt_del_napi(bp);
9523 
9524 open_err_free_mem:
9525 	bnxt_free_skbs(bp);
9526 	bnxt_free_irq(bp);
9527 	bnxt_free_mem(bp, true);
9528 	return rc;
9529 }
9530 
9531 /* rtnl_lock held */
9532 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9533 {
9534 	int rc = 0;
9535 
9536 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
9537 	if (rc) {
9538 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
9539 		dev_close(bp->dev);
9540 	}
9541 	return rc;
9542 }
9543 
9544 /* rtnl_lock held, open the NIC half way by allocating all resources, but
9545  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
9546  * self tests.
9547  */
9548 int bnxt_half_open_nic(struct bnxt *bp)
9549 {
9550 	int rc = 0;
9551 
9552 	rc = bnxt_alloc_mem(bp, false);
9553 	if (rc) {
9554 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9555 		goto half_open_err;
9556 	}
9557 	rc = bnxt_init_nic(bp, false);
9558 	if (rc) {
9559 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9560 		goto half_open_err;
9561 	}
9562 	return 0;
9563 
9564 half_open_err:
9565 	bnxt_free_skbs(bp);
9566 	bnxt_free_mem(bp, false);
9567 	dev_close(bp->dev);
9568 	return rc;
9569 }
9570 
9571 /* rtnl_lock held, this call can only be made after a previous successful
9572  * call to bnxt_half_open_nic().
9573  */
9574 void bnxt_half_close_nic(struct bnxt *bp)
9575 {
9576 	bnxt_hwrm_resource_free(bp, false, false);
9577 	bnxt_free_skbs(bp);
9578 	bnxt_free_mem(bp, false);
9579 }
9580 
9581 static void bnxt_reenable_sriov(struct bnxt *bp)
9582 {
9583 	if (BNXT_PF(bp)) {
9584 		struct bnxt_pf_info *pf = &bp->pf;
9585 		int n = pf->active_vfs;
9586 
9587 		if (n)
9588 			bnxt_cfg_hw_sriov(bp, &n, true);
9589 	}
9590 }
9591 
9592 static int bnxt_open(struct net_device *dev)
9593 {
9594 	struct bnxt *bp = netdev_priv(dev);
9595 	int rc;
9596 
9597 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
9598 		netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n");
9599 		return -ENODEV;
9600 	}
9601 
9602 	rc = bnxt_hwrm_if_change(bp, true);
9603 	if (rc)
9604 		return rc;
9605 	rc = __bnxt_open_nic(bp, true, true);
9606 	if (rc) {
9607 		bnxt_hwrm_if_change(bp, false);
9608 	} else {
9609 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
9610 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9611 				bnxt_ulp_start(bp, 0);
9612 				bnxt_reenable_sriov(bp);
9613 			}
9614 		}
9615 		bnxt_hwmon_open(bp);
9616 	}
9617 
9618 	return rc;
9619 }
9620 
9621 static bool bnxt_drv_busy(struct bnxt *bp)
9622 {
9623 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
9624 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
9625 }
9626 
9627 static void bnxt_get_ring_stats(struct bnxt *bp,
9628 				struct rtnl_link_stats64 *stats);
9629 
9630 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
9631 			     bool link_re_init)
9632 {
9633 	/* Close the VF-reps before closing PF */
9634 	if (BNXT_PF(bp))
9635 		bnxt_vf_reps_close(bp);
9636 
9637 	/* Change device state to avoid TX queue wake up's */
9638 	bnxt_tx_disable(bp);
9639 
9640 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9641 	smp_mb__after_atomic();
9642 	while (bnxt_drv_busy(bp))
9643 		msleep(20);
9644 
9645 	/* Flush rings and and disable interrupts */
9646 	bnxt_shutdown_nic(bp, irq_re_init);
9647 
9648 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
9649 
9650 	bnxt_debug_dev_exit(bp);
9651 	bnxt_disable_napi(bp);
9652 	del_timer_sync(&bp->timer);
9653 	bnxt_free_skbs(bp);
9654 
9655 	/* Save ring stats before shutdown */
9656 	if (bp->bnapi && irq_re_init)
9657 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
9658 	if (irq_re_init) {
9659 		bnxt_free_irq(bp);
9660 		bnxt_del_napi(bp);
9661 	}
9662 	bnxt_free_mem(bp, irq_re_init);
9663 }
9664 
9665 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9666 {
9667 	int rc = 0;
9668 
9669 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9670 		/* If we get here, it means firmware reset is in progress
9671 		 * while we are trying to close.  We can safely proceed with
9672 		 * the close because we are holding rtnl_lock().  Some firmware
9673 		 * messages may fail as we proceed to close.  We set the
9674 		 * ABORT_ERR flag here so that the FW reset thread will later
9675 		 * abort when it gets the rtnl_lock() and sees the flag.
9676 		 */
9677 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
9678 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9679 	}
9680 
9681 #ifdef CONFIG_BNXT_SRIOV
9682 	if (bp->sriov_cfg) {
9683 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
9684 						      !bp->sriov_cfg,
9685 						      BNXT_SRIOV_CFG_WAIT_TMO);
9686 		if (rc)
9687 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
9688 	}
9689 #endif
9690 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
9691 	return rc;
9692 }
9693 
9694 static int bnxt_close(struct net_device *dev)
9695 {
9696 	struct bnxt *bp = netdev_priv(dev);
9697 
9698 	bnxt_hwmon_close(bp);
9699 	bnxt_close_nic(bp, true, true);
9700 	bnxt_hwrm_shutdown_link(bp);
9701 	bnxt_hwrm_if_change(bp, false);
9702 	return 0;
9703 }
9704 
9705 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
9706 				   u16 *val)
9707 {
9708 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
9709 	struct hwrm_port_phy_mdio_read_input req = {0};
9710 	int rc;
9711 
9712 	if (bp->hwrm_spec_code < 0x10a00)
9713 		return -EOPNOTSUPP;
9714 
9715 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
9716 	req.port_id = cpu_to_le16(bp->pf.port_id);
9717 	req.phy_addr = phy_addr;
9718 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9719 	if (mdio_phy_id_is_c45(phy_addr)) {
9720 		req.cl45_mdio = 1;
9721 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9722 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9723 		req.reg_addr = cpu_to_le16(reg);
9724 	}
9725 
9726 	mutex_lock(&bp->hwrm_cmd_lock);
9727 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9728 	if (!rc)
9729 		*val = le16_to_cpu(resp->reg_data);
9730 	mutex_unlock(&bp->hwrm_cmd_lock);
9731 	return rc;
9732 }
9733 
9734 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
9735 				    u16 val)
9736 {
9737 	struct hwrm_port_phy_mdio_write_input req = {0};
9738 
9739 	if (bp->hwrm_spec_code < 0x10a00)
9740 		return -EOPNOTSUPP;
9741 
9742 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
9743 	req.port_id = cpu_to_le16(bp->pf.port_id);
9744 	req.phy_addr = phy_addr;
9745 	req.reg_addr = cpu_to_le16(reg & 0x1f);
9746 	if (mdio_phy_id_is_c45(phy_addr)) {
9747 		req.cl45_mdio = 1;
9748 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
9749 		req.dev_addr = mdio_phy_id_devad(phy_addr);
9750 		req.reg_addr = cpu_to_le16(reg);
9751 	}
9752 	req.reg_data = cpu_to_le16(val);
9753 
9754 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9755 }
9756 
9757 /* rtnl_lock held */
9758 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
9759 {
9760 	struct mii_ioctl_data *mdio = if_mii(ifr);
9761 	struct bnxt *bp = netdev_priv(dev);
9762 	int rc;
9763 
9764 	switch (cmd) {
9765 	case SIOCGMIIPHY:
9766 		mdio->phy_id = bp->link_info.phy_addr;
9767 
9768 		/* fallthru */
9769 	case SIOCGMIIREG: {
9770 		u16 mii_regval = 0;
9771 
9772 		if (!netif_running(dev))
9773 			return -EAGAIN;
9774 
9775 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
9776 					     &mii_regval);
9777 		mdio->val_out = mii_regval;
9778 		return rc;
9779 	}
9780 
9781 	case SIOCSMIIREG:
9782 		if (!netif_running(dev))
9783 			return -EAGAIN;
9784 
9785 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
9786 						mdio->val_in);
9787 
9788 	default:
9789 		/* do nothing */
9790 		break;
9791 	}
9792 	return -EOPNOTSUPP;
9793 }
9794 
9795 static void bnxt_get_ring_stats(struct bnxt *bp,
9796 				struct rtnl_link_stats64 *stats)
9797 {
9798 	int i;
9799 
9800 	for (i = 0; i < bp->cp_nr_rings; i++) {
9801 		struct bnxt_napi *bnapi = bp->bnapi[i];
9802 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9803 		u64 *sw = cpr->stats.sw_stats;
9804 
9805 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
9806 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
9807 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
9808 
9809 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
9810 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
9811 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
9812 
9813 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
9814 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
9815 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
9816 
9817 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
9818 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
9819 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
9820 
9821 		stats->rx_missed_errors +=
9822 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
9823 
9824 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
9825 
9826 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
9827 	}
9828 }
9829 
9830 static void bnxt_add_prev_stats(struct bnxt *bp,
9831 				struct rtnl_link_stats64 *stats)
9832 {
9833 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
9834 
9835 	stats->rx_packets += prev_stats->rx_packets;
9836 	stats->tx_packets += prev_stats->tx_packets;
9837 	stats->rx_bytes += prev_stats->rx_bytes;
9838 	stats->tx_bytes += prev_stats->tx_bytes;
9839 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
9840 	stats->multicast += prev_stats->multicast;
9841 	stats->tx_dropped += prev_stats->tx_dropped;
9842 }
9843 
9844 static void
9845 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
9846 {
9847 	struct bnxt *bp = netdev_priv(dev);
9848 
9849 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
9850 	/* Make sure bnxt_close_nic() sees that we are reading stats before
9851 	 * we check the BNXT_STATE_OPEN flag.
9852 	 */
9853 	smp_mb__after_atomic();
9854 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9855 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9856 		*stats = bp->net_stats_prev;
9857 		return;
9858 	}
9859 
9860 	bnxt_get_ring_stats(bp, stats);
9861 	bnxt_add_prev_stats(bp, stats);
9862 
9863 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
9864 		u64 *rx = bp->port_stats.sw_stats;
9865 		u64 *tx = bp->port_stats.sw_stats +
9866 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
9867 
9868 		stats->rx_crc_errors =
9869 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
9870 		stats->rx_frame_errors =
9871 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
9872 		stats->rx_length_errors =
9873 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
9874 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
9875 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
9876 		stats->rx_errors =
9877 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
9878 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
9879 		stats->collisions =
9880 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
9881 		stats->tx_fifo_errors =
9882 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
9883 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
9884 	}
9885 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9886 }
9887 
9888 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
9889 {
9890 	struct net_device *dev = bp->dev;
9891 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9892 	struct netdev_hw_addr *ha;
9893 	u8 *haddr;
9894 	int mc_count = 0;
9895 	bool update = false;
9896 	int off = 0;
9897 
9898 	netdev_for_each_mc_addr(ha, dev) {
9899 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
9900 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9901 			vnic->mc_list_count = 0;
9902 			return false;
9903 		}
9904 		haddr = ha->addr;
9905 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
9906 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
9907 			update = true;
9908 		}
9909 		off += ETH_ALEN;
9910 		mc_count++;
9911 	}
9912 	if (mc_count)
9913 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
9914 
9915 	if (mc_count != vnic->mc_list_count) {
9916 		vnic->mc_list_count = mc_count;
9917 		update = true;
9918 	}
9919 	return update;
9920 }
9921 
9922 static bool bnxt_uc_list_updated(struct bnxt *bp)
9923 {
9924 	struct net_device *dev = bp->dev;
9925 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9926 	struct netdev_hw_addr *ha;
9927 	int off = 0;
9928 
9929 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
9930 		return true;
9931 
9932 	netdev_for_each_uc_addr(ha, dev) {
9933 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
9934 			return true;
9935 
9936 		off += ETH_ALEN;
9937 	}
9938 	return false;
9939 }
9940 
9941 static void bnxt_set_rx_mode(struct net_device *dev)
9942 {
9943 	struct bnxt *bp = netdev_priv(dev);
9944 	struct bnxt_vnic_info *vnic;
9945 	bool mc_update = false;
9946 	bool uc_update;
9947 	u32 mask;
9948 
9949 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
9950 		return;
9951 
9952 	vnic = &bp->vnic_info[0];
9953 	mask = vnic->rx_mask;
9954 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
9955 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
9956 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
9957 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
9958 
9959 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
9960 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9961 
9962 	uc_update = bnxt_uc_list_updated(bp);
9963 
9964 	if (dev->flags & IFF_BROADCAST)
9965 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9966 	if (dev->flags & IFF_ALLMULTI) {
9967 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9968 		vnic->mc_list_count = 0;
9969 	} else {
9970 		mc_update = bnxt_mc_list_updated(bp, &mask);
9971 	}
9972 
9973 	if (mask != vnic->rx_mask || uc_update || mc_update) {
9974 		vnic->rx_mask = mask;
9975 
9976 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
9977 		bnxt_queue_sp_work(bp);
9978 	}
9979 }
9980 
9981 static int bnxt_cfg_rx_mode(struct bnxt *bp)
9982 {
9983 	struct net_device *dev = bp->dev;
9984 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9985 	struct netdev_hw_addr *ha;
9986 	int i, off = 0, rc;
9987 	bool uc_update;
9988 
9989 	netif_addr_lock_bh(dev);
9990 	uc_update = bnxt_uc_list_updated(bp);
9991 	netif_addr_unlock_bh(dev);
9992 
9993 	if (!uc_update)
9994 		goto skip_uc;
9995 
9996 	mutex_lock(&bp->hwrm_cmd_lock);
9997 	for (i = 1; i < vnic->uc_filter_count; i++) {
9998 		struct hwrm_cfa_l2_filter_free_input req = {0};
9999 
10000 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
10001 				       -1);
10002 
10003 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
10004 
10005 		rc = _hwrm_send_message(bp, &req, sizeof(req),
10006 					HWRM_CMD_TIMEOUT);
10007 	}
10008 	mutex_unlock(&bp->hwrm_cmd_lock);
10009 
10010 	vnic->uc_filter_count = 1;
10011 
10012 	netif_addr_lock_bh(dev);
10013 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10014 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10015 	} else {
10016 		netdev_for_each_uc_addr(ha, dev) {
10017 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10018 			off += ETH_ALEN;
10019 			vnic->uc_filter_count++;
10020 		}
10021 	}
10022 	netif_addr_unlock_bh(dev);
10023 
10024 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10025 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10026 		if (rc) {
10027 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10028 				   rc);
10029 			vnic->uc_filter_count = i;
10030 			return rc;
10031 		}
10032 	}
10033 
10034 skip_uc:
10035 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10036 	if (rc && vnic->mc_list_count) {
10037 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10038 			    rc);
10039 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10040 		vnic->mc_list_count = 0;
10041 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10042 	}
10043 	if (rc)
10044 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10045 			   rc);
10046 
10047 	return rc;
10048 }
10049 
10050 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10051 {
10052 #ifdef CONFIG_BNXT_SRIOV
10053 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10054 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10055 
10056 		/* No minimum rings were provisioned by the PF.  Don't
10057 		 * reserve rings by default when device is down.
10058 		 */
10059 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10060 			return true;
10061 
10062 		if (!netif_running(bp->dev))
10063 			return false;
10064 	}
10065 #endif
10066 	return true;
10067 }
10068 
10069 /* If the chip and firmware supports RFS */
10070 static bool bnxt_rfs_supported(struct bnxt *bp)
10071 {
10072 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10073 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10074 			return true;
10075 		return false;
10076 	}
10077 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10078 		return true;
10079 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10080 		return true;
10081 	return false;
10082 }
10083 
10084 /* If runtime conditions support RFS */
10085 static bool bnxt_rfs_capable(struct bnxt *bp)
10086 {
10087 #ifdef CONFIG_RFS_ACCEL
10088 	int vnics, max_vnics, max_rss_ctxs;
10089 
10090 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10091 		return bnxt_rfs_supported(bp);
10092 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10093 		return false;
10094 
10095 	vnics = 1 + bp->rx_nr_rings;
10096 	max_vnics = bnxt_get_max_func_vnics(bp);
10097 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10098 
10099 	/* RSS contexts not a limiting factor */
10100 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10101 		max_rss_ctxs = max_vnics;
10102 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10103 		if (bp->rx_nr_rings > 1)
10104 			netdev_warn(bp->dev,
10105 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10106 				    min(max_rss_ctxs - 1, max_vnics - 1));
10107 		return false;
10108 	}
10109 
10110 	if (!BNXT_NEW_RM(bp))
10111 		return true;
10112 
10113 	if (vnics == bp->hw_resc.resv_vnics)
10114 		return true;
10115 
10116 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10117 	if (vnics <= bp->hw_resc.resv_vnics)
10118 		return true;
10119 
10120 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10121 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10122 	return false;
10123 #else
10124 	return false;
10125 #endif
10126 }
10127 
10128 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10129 					   netdev_features_t features)
10130 {
10131 	struct bnxt *bp = netdev_priv(dev);
10132 	netdev_features_t vlan_features;
10133 
10134 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10135 		features &= ~NETIF_F_NTUPLE;
10136 
10137 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10138 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10139 
10140 	if (!(features & NETIF_F_GRO))
10141 		features &= ~NETIF_F_GRO_HW;
10142 
10143 	if (features & NETIF_F_GRO_HW)
10144 		features &= ~NETIF_F_LRO;
10145 
10146 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
10147 	 * turned on or off together.
10148 	 */
10149 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10150 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10151 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10152 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10153 		else if (vlan_features)
10154 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10155 	}
10156 #ifdef CONFIG_BNXT_SRIOV
10157 	if (BNXT_VF(bp) && bp->vf.vlan)
10158 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10159 #endif
10160 	return features;
10161 }
10162 
10163 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10164 {
10165 	struct bnxt *bp = netdev_priv(dev);
10166 	u32 flags = bp->flags;
10167 	u32 changes;
10168 	int rc = 0;
10169 	bool re_init = false;
10170 	bool update_tpa = false;
10171 
10172 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10173 	if (features & NETIF_F_GRO_HW)
10174 		flags |= BNXT_FLAG_GRO;
10175 	else if (features & NETIF_F_LRO)
10176 		flags |= BNXT_FLAG_LRO;
10177 
10178 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10179 		flags &= ~BNXT_FLAG_TPA;
10180 
10181 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10182 		flags |= BNXT_FLAG_STRIP_VLAN;
10183 
10184 	if (features & NETIF_F_NTUPLE)
10185 		flags |= BNXT_FLAG_RFS;
10186 
10187 	changes = flags ^ bp->flags;
10188 	if (changes & BNXT_FLAG_TPA) {
10189 		update_tpa = true;
10190 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
10191 		    (flags & BNXT_FLAG_TPA) == 0 ||
10192 		    (bp->flags & BNXT_FLAG_CHIP_P5))
10193 			re_init = true;
10194 	}
10195 
10196 	if (changes & ~BNXT_FLAG_TPA)
10197 		re_init = true;
10198 
10199 	if (flags != bp->flags) {
10200 		u32 old_flags = bp->flags;
10201 
10202 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10203 			bp->flags = flags;
10204 			if (update_tpa)
10205 				bnxt_set_ring_params(bp);
10206 			return rc;
10207 		}
10208 
10209 		if (re_init) {
10210 			bnxt_close_nic(bp, false, false);
10211 			bp->flags = flags;
10212 			if (update_tpa)
10213 				bnxt_set_ring_params(bp);
10214 
10215 			return bnxt_open_nic(bp, false, false);
10216 		}
10217 		if (update_tpa) {
10218 			bp->flags = flags;
10219 			rc = bnxt_set_tpa(bp,
10220 					  (flags & BNXT_FLAG_TPA) ?
10221 					  true : false);
10222 			if (rc)
10223 				bp->flags = old_flags;
10224 		}
10225 	}
10226 	return rc;
10227 }
10228 
10229 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
10230 			 u32 *reg_buf)
10231 {
10232 	struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr;
10233 	struct hwrm_dbg_read_direct_input req = {0};
10234 	__le32 *dbg_reg_buf;
10235 	dma_addr_t mapping;
10236 	int rc, i;
10237 
10238 	dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4,
10239 					 &mapping, GFP_KERNEL);
10240 	if (!dbg_reg_buf)
10241 		return -ENOMEM;
10242 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1);
10243 	req.host_dest_addr = cpu_to_le64(mapping);
10244 	req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
10245 	req.read_len32 = cpu_to_le32(num_words);
10246 	mutex_lock(&bp->hwrm_cmd_lock);
10247 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10248 	if (rc || resp->error_code) {
10249 		rc = -EIO;
10250 		goto dbg_rd_reg_exit;
10251 	}
10252 	for (i = 0; i < num_words; i++)
10253 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
10254 
10255 dbg_rd_reg_exit:
10256 	mutex_unlock(&bp->hwrm_cmd_lock);
10257 	dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping);
10258 	return rc;
10259 }
10260 
10261 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
10262 				       u32 ring_id, u32 *prod, u32 *cons)
10263 {
10264 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
10265 	struct hwrm_dbg_ring_info_get_input req = {0};
10266 	int rc;
10267 
10268 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
10269 	req.ring_type = ring_type;
10270 	req.fw_ring_id = cpu_to_le32(ring_id);
10271 	mutex_lock(&bp->hwrm_cmd_lock);
10272 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10273 	if (!rc) {
10274 		*prod = le32_to_cpu(resp->producer_index);
10275 		*cons = le32_to_cpu(resp->consumer_index);
10276 	}
10277 	mutex_unlock(&bp->hwrm_cmd_lock);
10278 	return rc;
10279 }
10280 
10281 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
10282 {
10283 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
10284 	int i = bnapi->index;
10285 
10286 	if (!txr)
10287 		return;
10288 
10289 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
10290 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
10291 		    txr->tx_cons);
10292 }
10293 
10294 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
10295 {
10296 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
10297 	int i = bnapi->index;
10298 
10299 	if (!rxr)
10300 		return;
10301 
10302 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
10303 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
10304 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
10305 		    rxr->rx_sw_agg_prod);
10306 }
10307 
10308 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
10309 {
10310 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10311 	int i = bnapi->index;
10312 
10313 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
10314 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
10315 }
10316 
10317 static void bnxt_dbg_dump_states(struct bnxt *bp)
10318 {
10319 	int i;
10320 	struct bnxt_napi *bnapi;
10321 
10322 	for (i = 0; i < bp->cp_nr_rings; i++) {
10323 		bnapi = bp->bnapi[i];
10324 		if (netif_msg_drv(bp)) {
10325 			bnxt_dump_tx_sw_state(bnapi);
10326 			bnxt_dump_rx_sw_state(bnapi);
10327 			bnxt_dump_cp_sw_state(bnapi);
10328 		}
10329 	}
10330 }
10331 
10332 static void bnxt_reset_task(struct bnxt *bp, bool silent)
10333 {
10334 	if (!silent)
10335 		bnxt_dbg_dump_states(bp);
10336 	if (netif_running(bp->dev)) {
10337 		int rc;
10338 
10339 		if (silent) {
10340 			bnxt_close_nic(bp, false, false);
10341 			bnxt_open_nic(bp, false, false);
10342 		} else {
10343 			bnxt_ulp_stop(bp);
10344 			bnxt_close_nic(bp, true, false);
10345 			rc = bnxt_open_nic(bp, true, false);
10346 			bnxt_ulp_start(bp, rc);
10347 		}
10348 	}
10349 }
10350 
10351 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
10352 {
10353 	struct bnxt *bp = netdev_priv(dev);
10354 
10355 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
10356 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
10357 	bnxt_queue_sp_work(bp);
10358 }
10359 
10360 static void bnxt_fw_health_check(struct bnxt *bp)
10361 {
10362 	struct bnxt_fw_health *fw_health = bp->fw_health;
10363 	u32 val;
10364 
10365 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10366 		return;
10367 
10368 	if (fw_health->tmr_counter) {
10369 		fw_health->tmr_counter--;
10370 		return;
10371 	}
10372 
10373 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10374 	if (val == fw_health->last_fw_heartbeat)
10375 		goto fw_reset;
10376 
10377 	fw_health->last_fw_heartbeat = val;
10378 
10379 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10380 	if (val != fw_health->last_fw_reset_cnt)
10381 		goto fw_reset;
10382 
10383 	fw_health->tmr_counter = fw_health->tmr_multiplier;
10384 	return;
10385 
10386 fw_reset:
10387 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
10388 	bnxt_queue_sp_work(bp);
10389 }
10390 
10391 static void bnxt_timer(struct timer_list *t)
10392 {
10393 	struct bnxt *bp = from_timer(bp, t, timer);
10394 	struct net_device *dev = bp->dev;
10395 
10396 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
10397 		return;
10398 
10399 	if (atomic_read(&bp->intr_sem) != 0)
10400 		goto bnxt_restart_timer;
10401 
10402 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
10403 		bnxt_fw_health_check(bp);
10404 
10405 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
10406 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
10407 		bnxt_queue_sp_work(bp);
10408 	}
10409 
10410 	if (bnxt_tc_flower_enabled(bp)) {
10411 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
10412 		bnxt_queue_sp_work(bp);
10413 	}
10414 
10415 #ifdef CONFIG_RFS_ACCEL
10416 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
10417 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10418 		bnxt_queue_sp_work(bp);
10419 	}
10420 #endif /*CONFIG_RFS_ACCEL*/
10421 
10422 	if (bp->link_info.phy_retry) {
10423 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
10424 			bp->link_info.phy_retry = false;
10425 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
10426 		} else {
10427 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
10428 			bnxt_queue_sp_work(bp);
10429 		}
10430 	}
10431 
10432 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
10433 	    netif_carrier_ok(dev)) {
10434 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
10435 		bnxt_queue_sp_work(bp);
10436 	}
10437 bnxt_restart_timer:
10438 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10439 }
10440 
10441 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
10442 {
10443 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
10444 	 * set.  If the device is being closed, bnxt_close() may be holding
10445 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
10446 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
10447 	 */
10448 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10449 	rtnl_lock();
10450 }
10451 
10452 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
10453 {
10454 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10455 	rtnl_unlock();
10456 }
10457 
10458 /* Only called from bnxt_sp_task() */
10459 static void bnxt_reset(struct bnxt *bp, bool silent)
10460 {
10461 	bnxt_rtnl_lock_sp(bp);
10462 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
10463 		bnxt_reset_task(bp, silent);
10464 	bnxt_rtnl_unlock_sp(bp);
10465 }
10466 
10467 static void bnxt_fw_reset_close(struct bnxt *bp)
10468 {
10469 	bnxt_ulp_stop(bp);
10470 	/* When firmware is fatal state, disable PCI device to prevent
10471 	 * any potential bad DMAs before freeing kernel memory.
10472 	 */
10473 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10474 		pci_disable_device(bp->pdev);
10475 	__bnxt_close_nic(bp, true, false);
10476 	bnxt_clear_int_mode(bp);
10477 	bnxt_hwrm_func_drv_unrgtr(bp);
10478 	if (pci_is_enabled(bp->pdev))
10479 		pci_disable_device(bp->pdev);
10480 	bnxt_free_ctx_mem(bp);
10481 	kfree(bp->ctx);
10482 	bp->ctx = NULL;
10483 }
10484 
10485 static bool is_bnxt_fw_ok(struct bnxt *bp)
10486 {
10487 	struct bnxt_fw_health *fw_health = bp->fw_health;
10488 	bool no_heartbeat = false, has_reset = false;
10489 	u32 val;
10490 
10491 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10492 	if (val == fw_health->last_fw_heartbeat)
10493 		no_heartbeat = true;
10494 
10495 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10496 	if (val != fw_health->last_fw_reset_cnt)
10497 		has_reset = true;
10498 
10499 	if (!no_heartbeat && has_reset)
10500 		return true;
10501 
10502 	return false;
10503 }
10504 
10505 /* rtnl_lock is acquired before calling this function */
10506 static void bnxt_force_fw_reset(struct bnxt *bp)
10507 {
10508 	struct bnxt_fw_health *fw_health = bp->fw_health;
10509 	u32 wait_dsecs;
10510 
10511 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
10512 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10513 		return;
10514 
10515 	set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10516 	bnxt_fw_reset_close(bp);
10517 	wait_dsecs = fw_health->master_func_wait_dsecs;
10518 	if (fw_health->master) {
10519 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
10520 			wait_dsecs = 0;
10521 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10522 	} else {
10523 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
10524 		wait_dsecs = fw_health->normal_func_wait_dsecs;
10525 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10526 	}
10527 
10528 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
10529 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
10530 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10531 }
10532 
10533 void bnxt_fw_exception(struct bnxt *bp)
10534 {
10535 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
10536 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10537 	bnxt_rtnl_lock_sp(bp);
10538 	bnxt_force_fw_reset(bp);
10539 	bnxt_rtnl_unlock_sp(bp);
10540 }
10541 
10542 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
10543  * < 0 on error.
10544  */
10545 static int bnxt_get_registered_vfs(struct bnxt *bp)
10546 {
10547 #ifdef CONFIG_BNXT_SRIOV
10548 	int rc;
10549 
10550 	if (!BNXT_PF(bp))
10551 		return 0;
10552 
10553 	rc = bnxt_hwrm_func_qcfg(bp);
10554 	if (rc) {
10555 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
10556 		return rc;
10557 	}
10558 	if (bp->pf.registered_vfs)
10559 		return bp->pf.registered_vfs;
10560 	if (bp->sriov_cfg)
10561 		return 1;
10562 #endif
10563 	return 0;
10564 }
10565 
10566 void bnxt_fw_reset(struct bnxt *bp)
10567 {
10568 	bnxt_rtnl_lock_sp(bp);
10569 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
10570 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10571 		int n = 0, tmo;
10572 
10573 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10574 		if (bp->pf.active_vfs &&
10575 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10576 			n = bnxt_get_registered_vfs(bp);
10577 		if (n < 0) {
10578 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
10579 				   n);
10580 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10581 			dev_close(bp->dev);
10582 			goto fw_reset_exit;
10583 		} else if (n > 0) {
10584 			u16 vf_tmo_dsecs = n * 10;
10585 
10586 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
10587 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
10588 			bp->fw_reset_state =
10589 				BNXT_FW_RESET_STATE_POLL_VF;
10590 			bnxt_queue_fw_reset_work(bp, HZ / 10);
10591 			goto fw_reset_exit;
10592 		}
10593 		bnxt_fw_reset_close(bp);
10594 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10595 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10596 			tmo = HZ / 10;
10597 		} else {
10598 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10599 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
10600 		}
10601 		bnxt_queue_fw_reset_work(bp, tmo);
10602 	}
10603 fw_reset_exit:
10604 	bnxt_rtnl_unlock_sp(bp);
10605 }
10606 
10607 static void bnxt_chk_missed_irq(struct bnxt *bp)
10608 {
10609 	int i;
10610 
10611 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10612 		return;
10613 
10614 	for (i = 0; i < bp->cp_nr_rings; i++) {
10615 		struct bnxt_napi *bnapi = bp->bnapi[i];
10616 		struct bnxt_cp_ring_info *cpr;
10617 		u32 fw_ring_id;
10618 		int j;
10619 
10620 		if (!bnapi)
10621 			continue;
10622 
10623 		cpr = &bnapi->cp_ring;
10624 		for (j = 0; j < 2; j++) {
10625 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
10626 			u32 val[2];
10627 
10628 			if (!cpr2 || cpr2->has_more_work ||
10629 			    !bnxt_has_work(bp, cpr2))
10630 				continue;
10631 
10632 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
10633 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
10634 				continue;
10635 			}
10636 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
10637 			bnxt_dbg_hwrm_ring_info_get(bp,
10638 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
10639 				fw_ring_id, &val[0], &val[1]);
10640 			cpr->sw_stats.cmn.missed_irqs++;
10641 		}
10642 	}
10643 }
10644 
10645 static void bnxt_cfg_ntp_filters(struct bnxt *);
10646 
10647 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
10648 {
10649 	struct bnxt_link_info *link_info = &bp->link_info;
10650 
10651 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10652 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10653 		if (bp->hwrm_spec_code >= 0x10201) {
10654 			if (link_info->auto_pause_setting &
10655 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10656 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10657 		} else {
10658 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10659 		}
10660 		link_info->advertising = link_info->auto_link_speeds;
10661 	} else {
10662 		link_info->req_link_speed = link_info->force_link_speed;
10663 		link_info->req_duplex = link_info->duplex_setting;
10664 	}
10665 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10666 		link_info->req_flow_ctrl =
10667 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10668 	else
10669 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10670 }
10671 
10672 static void bnxt_sp_task(struct work_struct *work)
10673 {
10674 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
10675 
10676 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10677 	smp_mb__after_atomic();
10678 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10679 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10680 		return;
10681 	}
10682 
10683 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
10684 		bnxt_cfg_rx_mode(bp);
10685 
10686 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
10687 		bnxt_cfg_ntp_filters(bp);
10688 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
10689 		bnxt_hwrm_exec_fwd_req(bp);
10690 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
10691 		bnxt_hwrm_port_qstats(bp, 0);
10692 		bnxt_hwrm_port_qstats_ext(bp, 0);
10693 		bnxt_accumulate_all_stats(bp);
10694 	}
10695 
10696 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
10697 		int rc;
10698 
10699 		mutex_lock(&bp->link_lock);
10700 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
10701 				       &bp->sp_event))
10702 			bnxt_hwrm_phy_qcaps(bp);
10703 
10704 		rc = bnxt_update_link(bp, true);
10705 		if (rc)
10706 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
10707 				   rc);
10708 
10709 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
10710 				       &bp->sp_event))
10711 			bnxt_init_ethtool_link_settings(bp);
10712 		mutex_unlock(&bp->link_lock);
10713 	}
10714 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
10715 		int rc;
10716 
10717 		mutex_lock(&bp->link_lock);
10718 		rc = bnxt_update_phy_setting(bp);
10719 		mutex_unlock(&bp->link_lock);
10720 		if (rc) {
10721 			netdev_warn(bp->dev, "update phy settings retry failed\n");
10722 		} else {
10723 			bp->link_info.phy_retry = false;
10724 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
10725 		}
10726 	}
10727 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
10728 		mutex_lock(&bp->link_lock);
10729 		bnxt_get_port_module_status(bp);
10730 		mutex_unlock(&bp->link_lock);
10731 	}
10732 
10733 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
10734 		bnxt_tc_flow_stats_work(bp);
10735 
10736 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
10737 		bnxt_chk_missed_irq(bp);
10738 
10739 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
10740 	 * must be the last functions to be called before exiting.
10741 	 */
10742 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
10743 		bnxt_reset(bp, false);
10744 
10745 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
10746 		bnxt_reset(bp, true);
10747 
10748 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
10749 		bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
10750 
10751 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
10752 		if (!is_bnxt_fw_ok(bp))
10753 			bnxt_devlink_health_report(bp,
10754 						   BNXT_FW_EXCEPTION_SP_EVENT);
10755 	}
10756 
10757 	smp_mb__before_atomic();
10758 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10759 }
10760 
10761 /* Under rtnl_lock */
10762 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
10763 		     int tx_xdp)
10764 {
10765 	int max_rx, max_tx, tx_sets = 1;
10766 	int tx_rings_needed, stats;
10767 	int rx_rings = rx;
10768 	int cp, vnics, rc;
10769 
10770 	if (tcs)
10771 		tx_sets = tcs;
10772 
10773 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
10774 	if (rc)
10775 		return rc;
10776 
10777 	if (max_rx < rx)
10778 		return -ENOMEM;
10779 
10780 	tx_rings_needed = tx * tx_sets + tx_xdp;
10781 	if (max_tx < tx_rings_needed)
10782 		return -ENOMEM;
10783 
10784 	vnics = 1;
10785 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
10786 		vnics += rx_rings;
10787 
10788 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
10789 		rx_rings <<= 1;
10790 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
10791 	stats = cp;
10792 	if (BNXT_NEW_RM(bp)) {
10793 		cp += bnxt_get_ulp_msix_num(bp);
10794 		stats += bnxt_get_ulp_stat_ctxs(bp);
10795 	}
10796 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
10797 				     stats, vnics);
10798 }
10799 
10800 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
10801 {
10802 	if (bp->bar2) {
10803 		pci_iounmap(pdev, bp->bar2);
10804 		bp->bar2 = NULL;
10805 	}
10806 
10807 	if (bp->bar1) {
10808 		pci_iounmap(pdev, bp->bar1);
10809 		bp->bar1 = NULL;
10810 	}
10811 
10812 	if (bp->bar0) {
10813 		pci_iounmap(pdev, bp->bar0);
10814 		bp->bar0 = NULL;
10815 	}
10816 }
10817 
10818 static void bnxt_cleanup_pci(struct bnxt *bp)
10819 {
10820 	bnxt_unmap_bars(bp, bp->pdev);
10821 	pci_release_regions(bp->pdev);
10822 	if (pci_is_enabled(bp->pdev))
10823 		pci_disable_device(bp->pdev);
10824 }
10825 
10826 static void bnxt_init_dflt_coal(struct bnxt *bp)
10827 {
10828 	struct bnxt_coal *coal;
10829 
10830 	/* Tick values in micro seconds.
10831 	 * 1 coal_buf x bufs_per_record = 1 completion record.
10832 	 */
10833 	coal = &bp->rx_coal;
10834 	coal->coal_ticks = 10;
10835 	coal->coal_bufs = 30;
10836 	coal->coal_ticks_irq = 1;
10837 	coal->coal_bufs_irq = 2;
10838 	coal->idle_thresh = 50;
10839 	coal->bufs_per_record = 2;
10840 	coal->budget = 64;		/* NAPI budget */
10841 
10842 	coal = &bp->tx_coal;
10843 	coal->coal_ticks = 28;
10844 	coal->coal_bufs = 30;
10845 	coal->coal_ticks_irq = 2;
10846 	coal->coal_bufs_irq = 2;
10847 	coal->bufs_per_record = 1;
10848 
10849 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
10850 }
10851 
10852 static void bnxt_alloc_fw_health(struct bnxt *bp)
10853 {
10854 	if (bp->fw_health)
10855 		return;
10856 
10857 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
10858 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
10859 		return;
10860 
10861 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
10862 	if (!bp->fw_health) {
10863 		netdev_warn(bp->dev, "Failed to allocate fw_health\n");
10864 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
10865 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
10866 	}
10867 }
10868 
10869 static int bnxt_fw_init_one_p1(struct bnxt *bp)
10870 {
10871 	int rc;
10872 
10873 	bp->fw_cap = 0;
10874 	rc = bnxt_hwrm_ver_get(bp);
10875 	if (rc)
10876 		return rc;
10877 
10878 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10879 		rc = bnxt_alloc_kong_hwrm_resources(bp);
10880 		if (rc)
10881 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10882 	}
10883 
10884 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10885 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10886 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10887 		if (rc)
10888 			return rc;
10889 	}
10890 	rc = bnxt_hwrm_func_reset(bp);
10891 	if (rc)
10892 		return -ENODEV;
10893 
10894 	bnxt_hwrm_fw_set_time(bp);
10895 	return 0;
10896 }
10897 
10898 static int bnxt_fw_init_one_p2(struct bnxt *bp)
10899 {
10900 	int rc;
10901 
10902 	/* Get the MAX capabilities for this function */
10903 	rc = bnxt_hwrm_func_qcaps(bp);
10904 	if (rc) {
10905 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10906 			   rc);
10907 		return -ENODEV;
10908 	}
10909 
10910 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10911 	if (rc)
10912 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10913 			    rc);
10914 
10915 	bnxt_alloc_fw_health(bp);
10916 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
10917 	if (rc)
10918 		netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
10919 			    rc);
10920 
10921 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
10922 	if (rc)
10923 		return -ENODEV;
10924 
10925 	bnxt_hwrm_func_qcfg(bp);
10926 	bnxt_hwrm_vnic_qcaps(bp);
10927 	bnxt_hwrm_port_led_qcaps(bp);
10928 	bnxt_ethtool_init(bp);
10929 	bnxt_dcb_init(bp);
10930 	return 0;
10931 }
10932 
10933 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
10934 {
10935 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
10936 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10937 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10938 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10939 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10940 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
10941 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10942 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10943 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10944 	}
10945 }
10946 
10947 static void bnxt_set_dflt_rfs(struct bnxt *bp)
10948 {
10949 	struct net_device *dev = bp->dev;
10950 
10951 	dev->hw_features &= ~NETIF_F_NTUPLE;
10952 	dev->features &= ~NETIF_F_NTUPLE;
10953 	bp->flags &= ~BNXT_FLAG_RFS;
10954 	if (bnxt_rfs_supported(bp)) {
10955 		dev->hw_features |= NETIF_F_NTUPLE;
10956 		if (bnxt_rfs_capable(bp)) {
10957 			bp->flags |= BNXT_FLAG_RFS;
10958 			dev->features |= NETIF_F_NTUPLE;
10959 		}
10960 	}
10961 }
10962 
10963 static void bnxt_fw_init_one_p3(struct bnxt *bp)
10964 {
10965 	struct pci_dev *pdev = bp->pdev;
10966 
10967 	bnxt_set_dflt_rss_hash_type(bp);
10968 	bnxt_set_dflt_rfs(bp);
10969 
10970 	bnxt_get_wol_settings(bp);
10971 	if (bp->flags & BNXT_FLAG_WOL_CAP)
10972 		device_set_wakeup_enable(&pdev->dev, bp->wol);
10973 	else
10974 		device_set_wakeup_capable(&pdev->dev, false);
10975 
10976 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10977 	bnxt_hwrm_coal_params_qcaps(bp);
10978 }
10979 
10980 static int bnxt_fw_init_one(struct bnxt *bp)
10981 {
10982 	int rc;
10983 
10984 	rc = bnxt_fw_init_one_p1(bp);
10985 	if (rc) {
10986 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
10987 		return rc;
10988 	}
10989 	rc = bnxt_fw_init_one_p2(bp);
10990 	if (rc) {
10991 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
10992 		return rc;
10993 	}
10994 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
10995 	if (rc)
10996 		return rc;
10997 
10998 	/* In case fw capabilities have changed, destroy the unneeded
10999 	 * reporters and create newly capable ones.
11000 	 */
11001 	bnxt_dl_fw_reporters_destroy(bp, false);
11002 	bnxt_dl_fw_reporters_create(bp);
11003 	bnxt_fw_init_one_p3(bp);
11004 	return 0;
11005 }
11006 
11007 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
11008 {
11009 	struct bnxt_fw_health *fw_health = bp->fw_health;
11010 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
11011 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
11012 	u32 reg_type, reg_off, delay_msecs;
11013 
11014 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
11015 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
11016 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
11017 	switch (reg_type) {
11018 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
11019 		pci_write_config_dword(bp->pdev, reg_off, val);
11020 		break;
11021 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
11022 		writel(reg_off & BNXT_GRC_BASE_MASK,
11023 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
11024 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
11025 		/* fall through */
11026 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
11027 		writel(val, bp->bar0 + reg_off);
11028 		break;
11029 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
11030 		writel(val, bp->bar1 + reg_off);
11031 		break;
11032 	}
11033 	if (delay_msecs) {
11034 		pci_read_config_dword(bp->pdev, 0, &val);
11035 		msleep(delay_msecs);
11036 	}
11037 }
11038 
11039 static void bnxt_reset_all(struct bnxt *bp)
11040 {
11041 	struct bnxt_fw_health *fw_health = bp->fw_health;
11042 	int i, rc;
11043 
11044 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11045 #ifdef CONFIG_TEE_BNXT_FW
11046 		rc = tee_bnxt_fw_load();
11047 		if (rc)
11048 			netdev_err(bp->dev, "Unable to reset FW rc=%d\n", rc);
11049 		bp->fw_reset_timestamp = jiffies;
11050 #endif
11051 		return;
11052 	}
11053 
11054 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
11055 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
11056 			bnxt_fw_reset_writel(bp, i);
11057 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
11058 		struct hwrm_fw_reset_input req = {0};
11059 
11060 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
11061 		req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
11062 		req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
11063 		req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
11064 		req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
11065 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
11066 		if (rc)
11067 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
11068 	}
11069 	bp->fw_reset_timestamp = jiffies;
11070 }
11071 
11072 static void bnxt_fw_reset_task(struct work_struct *work)
11073 {
11074 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
11075 	int rc;
11076 
11077 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11078 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
11079 		return;
11080 	}
11081 
11082 	switch (bp->fw_reset_state) {
11083 	case BNXT_FW_RESET_STATE_POLL_VF: {
11084 		int n = bnxt_get_registered_vfs(bp);
11085 		int tmo;
11086 
11087 		if (n < 0) {
11088 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
11089 				   n, jiffies_to_msecs(jiffies -
11090 				   bp->fw_reset_timestamp));
11091 			goto fw_reset_abort;
11092 		} else if (n > 0) {
11093 			if (time_after(jiffies, bp->fw_reset_timestamp +
11094 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
11095 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11096 				bp->fw_reset_state = 0;
11097 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
11098 					   n);
11099 				return;
11100 			}
11101 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11102 			return;
11103 		}
11104 		bp->fw_reset_timestamp = jiffies;
11105 		rtnl_lock();
11106 		bnxt_fw_reset_close(bp);
11107 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11108 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11109 			tmo = HZ / 10;
11110 		} else {
11111 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11112 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11113 		}
11114 		rtnl_unlock();
11115 		bnxt_queue_fw_reset_work(bp, tmo);
11116 		return;
11117 	}
11118 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
11119 		u32 val;
11120 
11121 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
11122 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
11123 		    !time_after(jiffies, bp->fw_reset_timestamp +
11124 		    (bp->fw_reset_max_dsecs * HZ / 10))) {
11125 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11126 			return;
11127 		}
11128 
11129 		if (!bp->fw_health->master) {
11130 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
11131 
11132 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11133 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11134 			return;
11135 		}
11136 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11137 	}
11138 	/* fall through */
11139 	case BNXT_FW_RESET_STATE_RESET_FW:
11140 		bnxt_reset_all(bp);
11141 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11142 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
11143 		return;
11144 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
11145 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11146 			u32 val;
11147 
11148 			val = bnxt_fw_health_readl(bp,
11149 						   BNXT_FW_RESET_INPROG_REG);
11150 			if (val)
11151 				netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n",
11152 					    val);
11153 		}
11154 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11155 		if (pci_enable_device(bp->pdev)) {
11156 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
11157 			goto fw_reset_abort;
11158 		}
11159 		pci_set_master(bp->pdev);
11160 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
11161 		/* fall through */
11162 	case BNXT_FW_RESET_STATE_POLL_FW:
11163 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
11164 		rc = __bnxt_hwrm_ver_get(bp, true);
11165 		if (rc) {
11166 			if (time_after(jiffies, bp->fw_reset_timestamp +
11167 				       (bp->fw_reset_max_dsecs * HZ / 10))) {
11168 				netdev_err(bp->dev, "Firmware reset aborted\n");
11169 				goto fw_reset_abort;
11170 			}
11171 			bnxt_queue_fw_reset_work(bp, HZ / 5);
11172 			return;
11173 		}
11174 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
11175 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
11176 		/* fall through */
11177 	case BNXT_FW_RESET_STATE_OPENING:
11178 		while (!rtnl_trylock()) {
11179 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11180 			return;
11181 		}
11182 		rc = bnxt_open(bp->dev);
11183 		if (rc) {
11184 			netdev_err(bp->dev, "bnxt_open_nic() failed\n");
11185 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11186 			dev_close(bp->dev);
11187 		}
11188 
11189 		bp->fw_reset_state = 0;
11190 		/* Make sure fw_reset_state is 0 before clearing the flag */
11191 		smp_mb__before_atomic();
11192 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11193 		bnxt_ulp_start(bp, rc);
11194 		if (!rc)
11195 			bnxt_reenable_sriov(bp);
11196 		bnxt_dl_health_recovery_done(bp);
11197 		bnxt_dl_health_status_update(bp, true);
11198 		rtnl_unlock();
11199 		break;
11200 	}
11201 	return;
11202 
11203 fw_reset_abort:
11204 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11205 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF)
11206 		bnxt_dl_health_status_update(bp, false);
11207 	bp->fw_reset_state = 0;
11208 	rtnl_lock();
11209 	dev_close(bp->dev);
11210 	rtnl_unlock();
11211 }
11212 
11213 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
11214 {
11215 	int rc;
11216 	struct bnxt *bp = netdev_priv(dev);
11217 
11218 	SET_NETDEV_DEV(dev, &pdev->dev);
11219 
11220 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
11221 	rc = pci_enable_device(pdev);
11222 	if (rc) {
11223 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
11224 		goto init_err;
11225 	}
11226 
11227 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11228 		dev_err(&pdev->dev,
11229 			"Cannot find PCI device base address, aborting\n");
11230 		rc = -ENODEV;
11231 		goto init_err_disable;
11232 	}
11233 
11234 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11235 	if (rc) {
11236 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
11237 		goto init_err_disable;
11238 	}
11239 
11240 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
11241 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
11242 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
11243 		goto init_err_disable;
11244 	}
11245 
11246 	pci_set_master(pdev);
11247 
11248 	bp->dev = dev;
11249 	bp->pdev = pdev;
11250 
11251 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
11252 	 * determines the BAR size.
11253 	 */
11254 	bp->bar0 = pci_ioremap_bar(pdev, 0);
11255 	if (!bp->bar0) {
11256 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
11257 		rc = -ENOMEM;
11258 		goto init_err_release;
11259 	}
11260 
11261 	bp->bar2 = pci_ioremap_bar(pdev, 4);
11262 	if (!bp->bar2) {
11263 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
11264 		rc = -ENOMEM;
11265 		goto init_err_release;
11266 	}
11267 
11268 	pci_enable_pcie_error_reporting(pdev);
11269 
11270 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
11271 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
11272 
11273 	spin_lock_init(&bp->ntp_fltr_lock);
11274 #if BITS_PER_LONG == 32
11275 	spin_lock_init(&bp->db_lock);
11276 #endif
11277 
11278 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
11279 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
11280 
11281 	bnxt_init_dflt_coal(bp);
11282 
11283 	timer_setup(&bp->timer, bnxt_timer, 0);
11284 	bp->current_interval = BNXT_TIMER_INTERVAL;
11285 
11286 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
11287 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
11288 
11289 	clear_bit(BNXT_STATE_OPEN, &bp->state);
11290 	return 0;
11291 
11292 init_err_release:
11293 	bnxt_unmap_bars(bp, pdev);
11294 	pci_release_regions(pdev);
11295 
11296 init_err_disable:
11297 	pci_disable_device(pdev);
11298 
11299 init_err:
11300 	return rc;
11301 }
11302 
11303 /* rtnl_lock held */
11304 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
11305 {
11306 	struct sockaddr *addr = p;
11307 	struct bnxt *bp = netdev_priv(dev);
11308 	int rc = 0;
11309 
11310 	if (!is_valid_ether_addr(addr->sa_data))
11311 		return -EADDRNOTAVAIL;
11312 
11313 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
11314 		return 0;
11315 
11316 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
11317 	if (rc)
11318 		return rc;
11319 
11320 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
11321 	if (netif_running(dev)) {
11322 		bnxt_close_nic(bp, false, false);
11323 		rc = bnxt_open_nic(bp, false, false);
11324 	}
11325 
11326 	return rc;
11327 }
11328 
11329 /* rtnl_lock held */
11330 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
11331 {
11332 	struct bnxt *bp = netdev_priv(dev);
11333 
11334 	if (netif_running(dev))
11335 		bnxt_close_nic(bp, true, false);
11336 
11337 	dev->mtu = new_mtu;
11338 	bnxt_set_ring_params(bp);
11339 
11340 	if (netif_running(dev))
11341 		return bnxt_open_nic(bp, true, false);
11342 
11343 	return 0;
11344 }
11345 
11346 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
11347 {
11348 	struct bnxt *bp = netdev_priv(dev);
11349 	bool sh = false;
11350 	int rc;
11351 
11352 	if (tc > bp->max_tc) {
11353 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
11354 			   tc, bp->max_tc);
11355 		return -EINVAL;
11356 	}
11357 
11358 	if (netdev_get_num_tc(dev) == tc)
11359 		return 0;
11360 
11361 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
11362 		sh = true;
11363 
11364 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
11365 			      sh, tc, bp->tx_nr_rings_xdp);
11366 	if (rc)
11367 		return rc;
11368 
11369 	/* Needs to close the device and do hw resource re-allocations */
11370 	if (netif_running(bp->dev))
11371 		bnxt_close_nic(bp, true, false);
11372 
11373 	if (tc) {
11374 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
11375 		netdev_set_num_tc(dev, tc);
11376 	} else {
11377 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11378 		netdev_reset_tc(dev);
11379 	}
11380 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
11381 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
11382 			       bp->tx_nr_rings + bp->rx_nr_rings;
11383 
11384 	if (netif_running(bp->dev))
11385 		return bnxt_open_nic(bp, true, false);
11386 
11387 	return 0;
11388 }
11389 
11390 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
11391 				  void *cb_priv)
11392 {
11393 	struct bnxt *bp = cb_priv;
11394 
11395 	if (!bnxt_tc_flower_enabled(bp) ||
11396 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
11397 		return -EOPNOTSUPP;
11398 
11399 	switch (type) {
11400 	case TC_SETUP_CLSFLOWER:
11401 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
11402 	default:
11403 		return -EOPNOTSUPP;
11404 	}
11405 }
11406 
11407 LIST_HEAD(bnxt_block_cb_list);
11408 
11409 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
11410 			 void *type_data)
11411 {
11412 	struct bnxt *bp = netdev_priv(dev);
11413 
11414 	switch (type) {
11415 	case TC_SETUP_BLOCK:
11416 		return flow_block_cb_setup_simple(type_data,
11417 						  &bnxt_block_cb_list,
11418 						  bnxt_setup_tc_block_cb,
11419 						  bp, bp, true);
11420 	case TC_SETUP_QDISC_MQPRIO: {
11421 		struct tc_mqprio_qopt *mqprio = type_data;
11422 
11423 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
11424 
11425 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
11426 	}
11427 	default:
11428 		return -EOPNOTSUPP;
11429 	}
11430 }
11431 
11432 #ifdef CONFIG_RFS_ACCEL
11433 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
11434 			    struct bnxt_ntuple_filter *f2)
11435 {
11436 	struct flow_keys *keys1 = &f1->fkeys;
11437 	struct flow_keys *keys2 = &f2->fkeys;
11438 
11439 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
11440 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
11441 		return false;
11442 
11443 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
11444 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
11445 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
11446 			return false;
11447 	} else {
11448 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
11449 			   sizeof(keys1->addrs.v6addrs.src)) ||
11450 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
11451 			   sizeof(keys1->addrs.v6addrs.dst)))
11452 			return false;
11453 	}
11454 
11455 	if (keys1->ports.ports == keys2->ports.ports &&
11456 	    keys1->control.flags == keys2->control.flags &&
11457 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
11458 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
11459 		return true;
11460 
11461 	return false;
11462 }
11463 
11464 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
11465 			      u16 rxq_index, u32 flow_id)
11466 {
11467 	struct bnxt *bp = netdev_priv(dev);
11468 	struct bnxt_ntuple_filter *fltr, *new_fltr;
11469 	struct flow_keys *fkeys;
11470 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
11471 	int rc = 0, idx, bit_id, l2_idx = 0;
11472 	struct hlist_head *head;
11473 	u32 flags;
11474 
11475 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
11476 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11477 		int off = 0, j;
11478 
11479 		netif_addr_lock_bh(dev);
11480 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
11481 			if (ether_addr_equal(eth->h_dest,
11482 					     vnic->uc_list + off)) {
11483 				l2_idx = j + 1;
11484 				break;
11485 			}
11486 		}
11487 		netif_addr_unlock_bh(dev);
11488 		if (!l2_idx)
11489 			return -EINVAL;
11490 	}
11491 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
11492 	if (!new_fltr)
11493 		return -ENOMEM;
11494 
11495 	fkeys = &new_fltr->fkeys;
11496 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
11497 		rc = -EPROTONOSUPPORT;
11498 		goto err_free;
11499 	}
11500 
11501 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
11502 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
11503 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
11504 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
11505 		rc = -EPROTONOSUPPORT;
11506 		goto err_free;
11507 	}
11508 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
11509 	    bp->hwrm_spec_code < 0x10601) {
11510 		rc = -EPROTONOSUPPORT;
11511 		goto err_free;
11512 	}
11513 	flags = fkeys->control.flags;
11514 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
11515 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
11516 		rc = -EPROTONOSUPPORT;
11517 		goto err_free;
11518 	}
11519 
11520 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
11521 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
11522 
11523 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
11524 	head = &bp->ntp_fltr_hash_tbl[idx];
11525 	rcu_read_lock();
11526 	hlist_for_each_entry_rcu(fltr, head, hash) {
11527 		if (bnxt_fltr_match(fltr, new_fltr)) {
11528 			rcu_read_unlock();
11529 			rc = 0;
11530 			goto err_free;
11531 		}
11532 	}
11533 	rcu_read_unlock();
11534 
11535 	spin_lock_bh(&bp->ntp_fltr_lock);
11536 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
11537 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
11538 	if (bit_id < 0) {
11539 		spin_unlock_bh(&bp->ntp_fltr_lock);
11540 		rc = -ENOMEM;
11541 		goto err_free;
11542 	}
11543 
11544 	new_fltr->sw_id = (u16)bit_id;
11545 	new_fltr->flow_id = flow_id;
11546 	new_fltr->l2_fltr_idx = l2_idx;
11547 	new_fltr->rxq = rxq_index;
11548 	hlist_add_head_rcu(&new_fltr->hash, head);
11549 	bp->ntp_fltr_count++;
11550 	spin_unlock_bh(&bp->ntp_fltr_lock);
11551 
11552 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11553 	bnxt_queue_sp_work(bp);
11554 
11555 	return new_fltr->sw_id;
11556 
11557 err_free:
11558 	kfree(new_fltr);
11559 	return rc;
11560 }
11561 
11562 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11563 {
11564 	int i;
11565 
11566 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
11567 		struct hlist_head *head;
11568 		struct hlist_node *tmp;
11569 		struct bnxt_ntuple_filter *fltr;
11570 		int rc;
11571 
11572 		head = &bp->ntp_fltr_hash_tbl[i];
11573 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
11574 			bool del = false;
11575 
11576 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
11577 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
11578 							fltr->flow_id,
11579 							fltr->sw_id)) {
11580 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
11581 									 fltr);
11582 					del = true;
11583 				}
11584 			} else {
11585 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
11586 								       fltr);
11587 				if (rc)
11588 					del = true;
11589 				else
11590 					set_bit(BNXT_FLTR_VALID, &fltr->state);
11591 			}
11592 
11593 			if (del) {
11594 				spin_lock_bh(&bp->ntp_fltr_lock);
11595 				hlist_del_rcu(&fltr->hash);
11596 				bp->ntp_fltr_count--;
11597 				spin_unlock_bh(&bp->ntp_fltr_lock);
11598 				synchronize_rcu();
11599 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
11600 				kfree(fltr);
11601 			}
11602 		}
11603 	}
11604 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
11605 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
11606 }
11607 
11608 #else
11609 
11610 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11611 {
11612 }
11613 
11614 #endif /* CONFIG_RFS_ACCEL */
11615 
11616 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
11617 {
11618 	struct bnxt *bp = netdev_priv(netdev);
11619 	struct udp_tunnel_info ti;
11620 	unsigned int cmd;
11621 
11622 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
11623 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
11624 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
11625 	else
11626 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
11627 
11628 	if (ti.port)
11629 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
11630 
11631 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
11632 }
11633 
11634 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
11635 	.sync_table	= bnxt_udp_tunnel_sync,
11636 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
11637 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
11638 	.tables		= {
11639 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
11640 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
11641 	},
11642 };
11643 
11644 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11645 			       struct net_device *dev, u32 filter_mask,
11646 			       int nlflags)
11647 {
11648 	struct bnxt *bp = netdev_priv(dev);
11649 
11650 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
11651 				       nlflags, filter_mask, NULL);
11652 }
11653 
11654 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
11655 			       u16 flags, struct netlink_ext_ack *extack)
11656 {
11657 	struct bnxt *bp = netdev_priv(dev);
11658 	struct nlattr *attr, *br_spec;
11659 	int rem, rc = 0;
11660 
11661 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
11662 		return -EOPNOTSUPP;
11663 
11664 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
11665 	if (!br_spec)
11666 		return -EINVAL;
11667 
11668 	nla_for_each_nested(attr, br_spec, rem) {
11669 		u16 mode;
11670 
11671 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
11672 			continue;
11673 
11674 		if (nla_len(attr) < sizeof(mode))
11675 			return -EINVAL;
11676 
11677 		mode = nla_get_u16(attr);
11678 		if (mode == bp->br_mode)
11679 			break;
11680 
11681 		rc = bnxt_hwrm_set_br_mode(bp, mode);
11682 		if (!rc)
11683 			bp->br_mode = mode;
11684 		break;
11685 	}
11686 	return rc;
11687 }
11688 
11689 int bnxt_get_port_parent_id(struct net_device *dev,
11690 			    struct netdev_phys_item_id *ppid)
11691 {
11692 	struct bnxt *bp = netdev_priv(dev);
11693 
11694 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
11695 		return -EOPNOTSUPP;
11696 
11697 	/* The PF and it's VF-reps only support the switchdev framework */
11698 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
11699 		return -EOPNOTSUPP;
11700 
11701 	ppid->id_len = sizeof(bp->dsn);
11702 	memcpy(ppid->id, bp->dsn, ppid->id_len);
11703 
11704 	return 0;
11705 }
11706 
11707 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
11708 {
11709 	struct bnxt *bp = netdev_priv(dev);
11710 
11711 	return &bp->dl_port;
11712 }
11713 
11714 static const struct net_device_ops bnxt_netdev_ops = {
11715 	.ndo_open		= bnxt_open,
11716 	.ndo_start_xmit		= bnxt_start_xmit,
11717 	.ndo_stop		= bnxt_close,
11718 	.ndo_get_stats64	= bnxt_get_stats64,
11719 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
11720 	.ndo_do_ioctl		= bnxt_ioctl,
11721 	.ndo_validate_addr	= eth_validate_addr,
11722 	.ndo_set_mac_address	= bnxt_change_mac_addr,
11723 	.ndo_change_mtu		= bnxt_change_mtu,
11724 	.ndo_fix_features	= bnxt_fix_features,
11725 	.ndo_set_features	= bnxt_set_features,
11726 	.ndo_tx_timeout		= bnxt_tx_timeout,
11727 #ifdef CONFIG_BNXT_SRIOV
11728 	.ndo_get_vf_config	= bnxt_get_vf_config,
11729 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
11730 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
11731 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
11732 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
11733 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
11734 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
11735 #endif
11736 	.ndo_setup_tc           = bnxt_setup_tc,
11737 #ifdef CONFIG_RFS_ACCEL
11738 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
11739 #endif
11740 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
11741 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
11742 	.ndo_bpf		= bnxt_xdp,
11743 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
11744 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
11745 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
11746 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
11747 };
11748 
11749 static void bnxt_remove_one(struct pci_dev *pdev)
11750 {
11751 	struct net_device *dev = pci_get_drvdata(pdev);
11752 	struct bnxt *bp = netdev_priv(dev);
11753 
11754 	if (BNXT_PF(bp))
11755 		bnxt_sriov_disable(bp);
11756 
11757 	bnxt_dl_fw_reporters_destroy(bp, true);
11758 	if (BNXT_PF(bp))
11759 		devlink_port_type_clear(&bp->dl_port);
11760 	pci_disable_pcie_error_reporting(pdev);
11761 	unregister_netdev(dev);
11762 	bnxt_dl_unregister(bp);
11763 	bnxt_shutdown_tc(bp);
11764 	bnxt_cancel_sp_work(bp);
11765 	bp->sp_event = 0;
11766 
11767 	bnxt_clear_int_mode(bp);
11768 	bnxt_hwrm_func_drv_unrgtr(bp);
11769 	bnxt_free_hwrm_resources(bp);
11770 	bnxt_free_hwrm_short_cmd_req(bp);
11771 	bnxt_ethtool_free(bp);
11772 	bnxt_dcb_free(bp);
11773 	kfree(bp->edev);
11774 	bp->edev = NULL;
11775 	kfree(bp->fw_health);
11776 	bp->fw_health = NULL;
11777 	bnxt_cleanup_pci(bp);
11778 	bnxt_free_ctx_mem(bp);
11779 	kfree(bp->ctx);
11780 	bp->ctx = NULL;
11781 	kfree(bp->rss_indir_tbl);
11782 	bp->rss_indir_tbl = NULL;
11783 	bnxt_free_port_stats(bp);
11784 	free_netdev(dev);
11785 }
11786 
11787 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
11788 {
11789 	int rc = 0;
11790 	struct bnxt_link_info *link_info = &bp->link_info;
11791 
11792 	rc = bnxt_hwrm_phy_qcaps(bp);
11793 	if (rc) {
11794 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
11795 			   rc);
11796 		return rc;
11797 	}
11798 	if (!fw_dflt)
11799 		return 0;
11800 
11801 	rc = bnxt_update_link(bp, false);
11802 	if (rc) {
11803 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
11804 			   rc);
11805 		return rc;
11806 	}
11807 
11808 	/* Older firmware does not have supported_auto_speeds, so assume
11809 	 * that all supported speeds can be autonegotiated.
11810 	 */
11811 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
11812 		link_info->support_auto_speeds = link_info->support_speeds;
11813 
11814 	bnxt_init_ethtool_link_settings(bp);
11815 	return 0;
11816 }
11817 
11818 static int bnxt_get_max_irq(struct pci_dev *pdev)
11819 {
11820 	u16 ctrl;
11821 
11822 	if (!pdev->msix_cap)
11823 		return 1;
11824 
11825 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
11826 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
11827 }
11828 
11829 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11830 				int *max_cp)
11831 {
11832 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11833 	int max_ring_grps = 0, max_irq;
11834 
11835 	*max_tx = hw_resc->max_tx_rings;
11836 	*max_rx = hw_resc->max_rx_rings;
11837 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
11838 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
11839 			bnxt_get_ulp_msix_num(bp),
11840 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
11841 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11842 		*max_cp = min_t(int, *max_cp, max_irq);
11843 	max_ring_grps = hw_resc->max_hw_ring_grps;
11844 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
11845 		*max_cp -= 1;
11846 		*max_rx -= 2;
11847 	}
11848 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11849 		*max_rx >>= 1;
11850 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11851 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
11852 		/* On P5 chips, max_cp output param should be available NQs */
11853 		*max_cp = max_irq;
11854 	}
11855 	*max_rx = min_t(int, *max_rx, max_ring_grps);
11856 }
11857 
11858 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
11859 {
11860 	int rx, tx, cp;
11861 
11862 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
11863 	*max_rx = rx;
11864 	*max_tx = tx;
11865 	if (!rx || !tx || !cp)
11866 		return -ENOMEM;
11867 
11868 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
11869 }
11870 
11871 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11872 			       bool shared)
11873 {
11874 	int rc;
11875 
11876 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11877 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
11878 		/* Not enough rings, try disabling agg rings. */
11879 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
11880 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11881 		if (rc) {
11882 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
11883 			bp->flags |= BNXT_FLAG_AGG_RINGS;
11884 			return rc;
11885 		}
11886 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
11887 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11888 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11889 		bnxt_set_ring_params(bp);
11890 	}
11891 
11892 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
11893 		int max_cp, max_stat, max_irq;
11894 
11895 		/* Reserve minimum resources for RoCE */
11896 		max_cp = bnxt_get_max_func_cp_rings(bp);
11897 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
11898 		max_irq = bnxt_get_max_func_irqs(bp);
11899 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
11900 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
11901 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
11902 			return 0;
11903 
11904 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
11905 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
11906 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
11907 		max_cp = min_t(int, max_cp, max_irq);
11908 		max_cp = min_t(int, max_cp, max_stat);
11909 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
11910 		if (rc)
11911 			rc = 0;
11912 	}
11913 	return rc;
11914 }
11915 
11916 /* In initial default shared ring setting, each shared ring must have a
11917  * RX/TX ring pair.
11918  */
11919 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
11920 {
11921 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
11922 	bp->rx_nr_rings = bp->cp_nr_rings;
11923 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
11924 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11925 }
11926 
11927 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
11928 {
11929 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
11930 
11931 	if (!bnxt_can_reserve_rings(bp))
11932 		return 0;
11933 
11934 	if (sh)
11935 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
11936 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
11937 	/* Reduce default rings on multi-port cards so that total default
11938 	 * rings do not exceed CPU count.
11939 	 */
11940 	if (bp->port_count > 1) {
11941 		int max_rings =
11942 			max_t(int, num_online_cpus() / bp->port_count, 1);
11943 
11944 		dflt_rings = min_t(int, dflt_rings, max_rings);
11945 	}
11946 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
11947 	if (rc)
11948 		return rc;
11949 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
11950 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
11951 	if (sh)
11952 		bnxt_trim_dflt_sh_rings(bp);
11953 	else
11954 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
11955 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11956 
11957 	rc = __bnxt_reserve_rings(bp);
11958 	if (rc)
11959 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
11960 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11961 	if (sh)
11962 		bnxt_trim_dflt_sh_rings(bp);
11963 
11964 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
11965 	if (bnxt_need_reserve_rings(bp)) {
11966 		rc = __bnxt_reserve_rings(bp);
11967 		if (rc)
11968 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
11969 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11970 	}
11971 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
11972 		bp->rx_nr_rings++;
11973 		bp->cp_nr_rings++;
11974 	}
11975 	if (rc) {
11976 		bp->tx_nr_rings = 0;
11977 		bp->rx_nr_rings = 0;
11978 	}
11979 	return rc;
11980 }
11981 
11982 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
11983 {
11984 	int rc;
11985 
11986 	if (bp->tx_nr_rings)
11987 		return 0;
11988 
11989 	bnxt_ulp_irq_stop(bp);
11990 	bnxt_clear_int_mode(bp);
11991 	rc = bnxt_set_dflt_rings(bp, true);
11992 	if (rc) {
11993 		netdev_err(bp->dev, "Not enough rings available.\n");
11994 		goto init_dflt_ring_err;
11995 	}
11996 	rc = bnxt_init_int_mode(bp);
11997 	if (rc)
11998 		goto init_dflt_ring_err;
11999 
12000 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12001 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
12002 		bp->flags |= BNXT_FLAG_RFS;
12003 		bp->dev->features |= NETIF_F_NTUPLE;
12004 	}
12005 init_dflt_ring_err:
12006 	bnxt_ulp_irq_restart(bp, rc);
12007 	return rc;
12008 }
12009 
12010 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
12011 {
12012 	int rc;
12013 
12014 	ASSERT_RTNL();
12015 	bnxt_hwrm_func_qcaps(bp);
12016 
12017 	if (netif_running(bp->dev))
12018 		__bnxt_close_nic(bp, true, false);
12019 
12020 	bnxt_ulp_irq_stop(bp);
12021 	bnxt_clear_int_mode(bp);
12022 	rc = bnxt_init_int_mode(bp);
12023 	bnxt_ulp_irq_restart(bp, rc);
12024 
12025 	if (netif_running(bp->dev)) {
12026 		if (rc)
12027 			dev_close(bp->dev);
12028 		else
12029 			rc = bnxt_open_nic(bp, true, false);
12030 	}
12031 
12032 	return rc;
12033 }
12034 
12035 static int bnxt_init_mac_addr(struct bnxt *bp)
12036 {
12037 	int rc = 0;
12038 
12039 	if (BNXT_PF(bp)) {
12040 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
12041 	} else {
12042 #ifdef CONFIG_BNXT_SRIOV
12043 		struct bnxt_vf_info *vf = &bp->vf;
12044 		bool strict_approval = true;
12045 
12046 		if (is_valid_ether_addr(vf->mac_addr)) {
12047 			/* overwrite netdev dev_addr with admin VF MAC */
12048 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
12049 			/* Older PF driver or firmware may not approve this
12050 			 * correctly.
12051 			 */
12052 			strict_approval = false;
12053 		} else {
12054 			eth_hw_addr_random(bp->dev);
12055 		}
12056 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
12057 #endif
12058 	}
12059 	return rc;
12060 }
12061 
12062 #define BNXT_VPD_LEN	512
12063 static void bnxt_vpd_read_info(struct bnxt *bp)
12064 {
12065 	struct pci_dev *pdev = bp->pdev;
12066 	int i, len, pos, ro_size;
12067 	ssize_t vpd_size;
12068 	u8 *vpd_data;
12069 
12070 	vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL);
12071 	if (!vpd_data)
12072 		return;
12073 
12074 	vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data);
12075 	if (vpd_size <= 0) {
12076 		netdev_err(bp->dev, "Unable to read VPD\n");
12077 		goto exit;
12078 	}
12079 
12080 	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
12081 	if (i < 0) {
12082 		netdev_err(bp->dev, "VPD READ-Only not found\n");
12083 		goto exit;
12084 	}
12085 
12086 	ro_size = pci_vpd_lrdt_size(&vpd_data[i]);
12087 	i += PCI_VPD_LRDT_TAG_SIZE;
12088 	if (i + ro_size > vpd_size)
12089 		goto exit;
12090 
12091 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12092 					PCI_VPD_RO_KEYWORD_PARTNO);
12093 	if (pos < 0)
12094 		goto read_sn;
12095 
12096 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12097 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12098 	if (len + pos > vpd_size)
12099 		goto read_sn;
12100 
12101 	strlcpy(bp->board_partno, &vpd_data[pos], min(len, BNXT_VPD_FLD_LEN));
12102 
12103 read_sn:
12104 	pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size,
12105 					PCI_VPD_RO_KEYWORD_SERIALNO);
12106 	if (pos < 0)
12107 		goto exit;
12108 
12109 	len = pci_vpd_info_field_size(&vpd_data[pos]);
12110 	pos += PCI_VPD_INFO_FLD_HDR_SIZE;
12111 	if (len + pos > vpd_size)
12112 		goto exit;
12113 
12114 	strlcpy(bp->board_serialno, &vpd_data[pos], min(len, BNXT_VPD_FLD_LEN));
12115 exit:
12116 	kfree(vpd_data);
12117 }
12118 
12119 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
12120 {
12121 	struct pci_dev *pdev = bp->pdev;
12122 	u64 qword;
12123 
12124 	qword = pci_get_dsn(pdev);
12125 	if (!qword) {
12126 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
12127 		return -EOPNOTSUPP;
12128 	}
12129 
12130 	put_unaligned_le64(qword, dsn);
12131 
12132 	bp->flags |= BNXT_FLAG_DSN_VALID;
12133 	return 0;
12134 }
12135 
12136 static int bnxt_map_db_bar(struct bnxt *bp)
12137 {
12138 	if (!bp->db_size)
12139 		return -ENODEV;
12140 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
12141 	if (!bp->bar1)
12142 		return -ENOMEM;
12143 	return 0;
12144 }
12145 
12146 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12147 {
12148 	struct net_device *dev;
12149 	struct bnxt *bp;
12150 	int rc, max_irqs;
12151 
12152 	if (pci_is_bridge(pdev))
12153 		return -ENODEV;
12154 
12155 	/* Clear any pending DMA transactions from crash kernel
12156 	 * while loading driver in capture kernel.
12157 	 */
12158 	if (is_kdump_kernel()) {
12159 		pci_clear_master(pdev);
12160 		pcie_flr(pdev);
12161 	}
12162 
12163 	max_irqs = bnxt_get_max_irq(pdev);
12164 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
12165 	if (!dev)
12166 		return -ENOMEM;
12167 
12168 	bp = netdev_priv(dev);
12169 	bnxt_set_max_func_irqs(bp, max_irqs);
12170 
12171 	if (bnxt_vf_pciid(ent->driver_data))
12172 		bp->flags |= BNXT_FLAG_VF;
12173 
12174 	if (pdev->msix_cap)
12175 		bp->flags |= BNXT_FLAG_MSIX_CAP;
12176 
12177 	rc = bnxt_init_board(pdev, dev);
12178 	if (rc < 0)
12179 		goto init_err_free;
12180 
12181 	dev->netdev_ops = &bnxt_netdev_ops;
12182 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
12183 	dev->ethtool_ops = &bnxt_ethtool_ops;
12184 	pci_set_drvdata(pdev, dev);
12185 
12186 	if (BNXT_PF(bp))
12187 		bnxt_vpd_read_info(bp);
12188 
12189 	rc = bnxt_alloc_hwrm_resources(bp);
12190 	if (rc)
12191 		goto init_err_pci_clean;
12192 
12193 	mutex_init(&bp->hwrm_cmd_lock);
12194 	mutex_init(&bp->link_lock);
12195 
12196 	rc = bnxt_fw_init_one_p1(bp);
12197 	if (rc)
12198 		goto init_err_pci_clean;
12199 
12200 	if (BNXT_CHIP_P5(bp))
12201 		bp->flags |= BNXT_FLAG_CHIP_P5;
12202 
12203 	rc = bnxt_fw_init_one_p2(bp);
12204 	if (rc)
12205 		goto init_err_pci_clean;
12206 
12207 	rc = bnxt_map_db_bar(bp);
12208 	if (rc) {
12209 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
12210 			rc);
12211 		goto init_err_pci_clean;
12212 	}
12213 
12214 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12215 			   NETIF_F_TSO | NETIF_F_TSO6 |
12216 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12217 			   NETIF_F_GSO_IPXIP4 |
12218 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12219 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
12220 			   NETIF_F_RXCSUM | NETIF_F_GRO;
12221 
12222 	if (BNXT_SUPPORTS_TPA(bp))
12223 		dev->hw_features |= NETIF_F_LRO;
12224 
12225 	dev->hw_enc_features =
12226 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12227 			NETIF_F_TSO | NETIF_F_TSO6 |
12228 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
12229 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
12230 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
12231 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
12232 
12233 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
12234 				    NETIF_F_GSO_GRE_CSUM;
12235 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
12236 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
12237 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
12238 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
12239 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
12240 	if (BNXT_SUPPORTS_TPA(bp))
12241 		dev->hw_features |= NETIF_F_GRO_HW;
12242 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
12243 	if (dev->features & NETIF_F_GRO_HW)
12244 		dev->features &= ~NETIF_F_LRO;
12245 	dev->priv_flags |= IFF_UNICAST_FLT;
12246 
12247 #ifdef CONFIG_BNXT_SRIOV
12248 	init_waitqueue_head(&bp->sriov_cfg_wait);
12249 	mutex_init(&bp->sriov_lock);
12250 #endif
12251 	if (BNXT_SUPPORTS_TPA(bp)) {
12252 		bp->gro_func = bnxt_gro_func_5730x;
12253 		if (BNXT_CHIP_P4(bp))
12254 			bp->gro_func = bnxt_gro_func_5731x;
12255 		else if (BNXT_CHIP_P5(bp))
12256 			bp->gro_func = bnxt_gro_func_5750x;
12257 	}
12258 	if (!BNXT_CHIP_P4_PLUS(bp))
12259 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
12260 
12261 	bp->ulp_probe = bnxt_ulp_probe;
12262 
12263 	rc = bnxt_init_mac_addr(bp);
12264 	if (rc) {
12265 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
12266 		rc = -EADDRNOTAVAIL;
12267 		goto init_err_pci_clean;
12268 	}
12269 
12270 	if (BNXT_PF(bp)) {
12271 		/* Read the adapter's DSN to use as the eswitch switch_id */
12272 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
12273 	}
12274 
12275 	/* MTU range: 60 - FW defined max */
12276 	dev->min_mtu = ETH_ZLEN;
12277 	dev->max_mtu = bp->max_mtu;
12278 
12279 	rc = bnxt_probe_phy(bp, true);
12280 	if (rc)
12281 		goto init_err_pci_clean;
12282 
12283 	bnxt_set_rx_skb_mode(bp, false);
12284 	bnxt_set_tpa_flags(bp);
12285 	bnxt_set_ring_params(bp);
12286 	rc = bnxt_set_dflt_rings(bp, true);
12287 	if (rc) {
12288 		netdev_err(bp->dev, "Not enough rings available.\n");
12289 		rc = -ENOMEM;
12290 		goto init_err_pci_clean;
12291 	}
12292 
12293 	bnxt_fw_init_one_p3(bp);
12294 
12295 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
12296 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
12297 
12298 	rc = bnxt_init_int_mode(bp);
12299 	if (rc)
12300 		goto init_err_pci_clean;
12301 
12302 	/* No TC has been set yet and rings may have been trimmed due to
12303 	 * limited MSIX, so we re-initialize the TX rings per TC.
12304 	 */
12305 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
12306 
12307 	rc = bnxt_alloc_rss_indir_tbl(bp);
12308 	if (rc)
12309 		goto init_err_pci_clean;
12310 	bnxt_set_dflt_rss_indir_tbl(bp);
12311 
12312 	if (BNXT_PF(bp)) {
12313 		if (!bnxt_pf_wq) {
12314 			bnxt_pf_wq =
12315 				create_singlethread_workqueue("bnxt_pf_wq");
12316 			if (!bnxt_pf_wq) {
12317 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
12318 				goto init_err_pci_clean;
12319 			}
12320 		}
12321 		rc = bnxt_init_tc(bp);
12322 		if (rc)
12323 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
12324 				   rc);
12325 	}
12326 
12327 	bnxt_dl_register(bp);
12328 
12329 	rc = register_netdev(dev);
12330 	if (rc)
12331 		goto init_err_cleanup;
12332 
12333 	if (BNXT_PF(bp))
12334 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
12335 	bnxt_dl_fw_reporters_create(bp);
12336 
12337 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
12338 		    board_info[ent->driver_data].name,
12339 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
12340 	pcie_print_link_status(pdev);
12341 
12342 	return 0;
12343 
12344 init_err_cleanup:
12345 	bnxt_dl_unregister(bp);
12346 	bnxt_shutdown_tc(bp);
12347 	bnxt_clear_int_mode(bp);
12348 
12349 init_err_pci_clean:
12350 	bnxt_hwrm_func_drv_unrgtr(bp);
12351 	bnxt_free_hwrm_short_cmd_req(bp);
12352 	bnxt_free_hwrm_resources(bp);
12353 	kfree(bp->fw_health);
12354 	bp->fw_health = NULL;
12355 	bnxt_cleanup_pci(bp);
12356 	bnxt_free_ctx_mem(bp);
12357 	kfree(bp->ctx);
12358 	bp->ctx = NULL;
12359 	kfree(bp->rss_indir_tbl);
12360 	bp->rss_indir_tbl = NULL;
12361 
12362 init_err_free:
12363 	free_netdev(dev);
12364 	return rc;
12365 }
12366 
12367 static void bnxt_shutdown(struct pci_dev *pdev)
12368 {
12369 	struct net_device *dev = pci_get_drvdata(pdev);
12370 	struct bnxt *bp;
12371 
12372 	if (!dev)
12373 		return;
12374 
12375 	rtnl_lock();
12376 	bp = netdev_priv(dev);
12377 	if (!bp)
12378 		goto shutdown_exit;
12379 
12380 	if (netif_running(dev))
12381 		dev_close(dev);
12382 
12383 	bnxt_ulp_shutdown(bp);
12384 	bnxt_clear_int_mode(bp);
12385 	pci_disable_device(pdev);
12386 
12387 	if (system_state == SYSTEM_POWER_OFF) {
12388 		pci_wake_from_d3(pdev, bp->wol);
12389 		pci_set_power_state(pdev, PCI_D3hot);
12390 	}
12391 
12392 shutdown_exit:
12393 	rtnl_unlock();
12394 }
12395 
12396 #ifdef CONFIG_PM_SLEEP
12397 static int bnxt_suspend(struct device *device)
12398 {
12399 	struct net_device *dev = dev_get_drvdata(device);
12400 	struct bnxt *bp = netdev_priv(dev);
12401 	int rc = 0;
12402 
12403 	rtnl_lock();
12404 	bnxt_ulp_stop(bp);
12405 	if (netif_running(dev)) {
12406 		netif_device_detach(dev);
12407 		rc = bnxt_close(dev);
12408 	}
12409 	bnxt_hwrm_func_drv_unrgtr(bp);
12410 	pci_disable_device(bp->pdev);
12411 	bnxt_free_ctx_mem(bp);
12412 	kfree(bp->ctx);
12413 	bp->ctx = NULL;
12414 	rtnl_unlock();
12415 	return rc;
12416 }
12417 
12418 static int bnxt_resume(struct device *device)
12419 {
12420 	struct net_device *dev = dev_get_drvdata(device);
12421 	struct bnxt *bp = netdev_priv(dev);
12422 	int rc = 0;
12423 
12424 	rtnl_lock();
12425 	rc = pci_enable_device(bp->pdev);
12426 	if (rc) {
12427 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
12428 			   rc);
12429 		goto resume_exit;
12430 	}
12431 	pci_set_master(bp->pdev);
12432 	if (bnxt_hwrm_ver_get(bp)) {
12433 		rc = -ENODEV;
12434 		goto resume_exit;
12435 	}
12436 	rc = bnxt_hwrm_func_reset(bp);
12437 	if (rc) {
12438 		rc = -EBUSY;
12439 		goto resume_exit;
12440 	}
12441 
12442 	rc = bnxt_hwrm_func_qcaps(bp);
12443 	if (rc)
12444 		goto resume_exit;
12445 
12446 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
12447 		rc = -ENODEV;
12448 		goto resume_exit;
12449 	}
12450 
12451 	bnxt_get_wol_settings(bp);
12452 	if (netif_running(dev)) {
12453 		rc = bnxt_open(dev);
12454 		if (!rc)
12455 			netif_device_attach(dev);
12456 	}
12457 
12458 resume_exit:
12459 	bnxt_ulp_start(bp, rc);
12460 	if (!rc)
12461 		bnxt_reenable_sriov(bp);
12462 	rtnl_unlock();
12463 	return rc;
12464 }
12465 
12466 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
12467 #define BNXT_PM_OPS (&bnxt_pm_ops)
12468 
12469 #else
12470 
12471 #define BNXT_PM_OPS NULL
12472 
12473 #endif /* CONFIG_PM_SLEEP */
12474 
12475 /**
12476  * bnxt_io_error_detected - called when PCI error is detected
12477  * @pdev: Pointer to PCI device
12478  * @state: The current pci connection state
12479  *
12480  * This function is called after a PCI bus error affecting
12481  * this device has been detected.
12482  */
12483 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
12484 					       pci_channel_state_t state)
12485 {
12486 	struct net_device *netdev = pci_get_drvdata(pdev);
12487 	struct bnxt *bp = netdev_priv(netdev);
12488 
12489 	netdev_info(netdev, "PCI I/O error detected\n");
12490 
12491 	rtnl_lock();
12492 	netif_device_detach(netdev);
12493 
12494 	bnxt_ulp_stop(bp);
12495 
12496 	if (state == pci_channel_io_perm_failure) {
12497 		rtnl_unlock();
12498 		return PCI_ERS_RESULT_DISCONNECT;
12499 	}
12500 
12501 	if (netif_running(netdev))
12502 		bnxt_close(netdev);
12503 
12504 	pci_disable_device(pdev);
12505 	bnxt_free_ctx_mem(bp);
12506 	kfree(bp->ctx);
12507 	bp->ctx = NULL;
12508 	rtnl_unlock();
12509 
12510 	/* Request a slot slot reset. */
12511 	return PCI_ERS_RESULT_NEED_RESET;
12512 }
12513 
12514 /**
12515  * bnxt_io_slot_reset - called after the pci bus has been reset.
12516  * @pdev: Pointer to PCI device
12517  *
12518  * Restart the card from scratch, as if from a cold-boot.
12519  * At this point, the card has exprienced a hard reset,
12520  * followed by fixups by BIOS, and has its config space
12521  * set up identically to what it was at cold boot.
12522  */
12523 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
12524 {
12525 	struct net_device *netdev = pci_get_drvdata(pdev);
12526 	struct bnxt *bp = netdev_priv(netdev);
12527 	int err = 0;
12528 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
12529 
12530 	netdev_info(bp->dev, "PCI Slot Reset\n");
12531 
12532 	rtnl_lock();
12533 
12534 	if (pci_enable_device(pdev)) {
12535 		dev_err(&pdev->dev,
12536 			"Cannot re-enable PCI device after reset.\n");
12537 	} else {
12538 		pci_set_master(pdev);
12539 
12540 		err = bnxt_hwrm_func_reset(bp);
12541 		if (!err) {
12542 			err = bnxt_hwrm_func_qcaps(bp);
12543 			if (!err && netif_running(netdev))
12544 				err = bnxt_open(netdev);
12545 		}
12546 		bnxt_ulp_start(bp, err);
12547 		if (!err) {
12548 			bnxt_reenable_sriov(bp);
12549 			result = PCI_ERS_RESULT_RECOVERED;
12550 		}
12551 	}
12552 
12553 	if (result != PCI_ERS_RESULT_RECOVERED) {
12554 		if (netif_running(netdev))
12555 			dev_close(netdev);
12556 		pci_disable_device(pdev);
12557 	}
12558 
12559 	rtnl_unlock();
12560 
12561 	return result;
12562 }
12563 
12564 /**
12565  * bnxt_io_resume - called when traffic can start flowing again.
12566  * @pdev: Pointer to PCI device
12567  *
12568  * This callback is called when the error recovery driver tells
12569  * us that its OK to resume normal operation.
12570  */
12571 static void bnxt_io_resume(struct pci_dev *pdev)
12572 {
12573 	struct net_device *netdev = pci_get_drvdata(pdev);
12574 
12575 	rtnl_lock();
12576 
12577 	netif_device_attach(netdev);
12578 
12579 	rtnl_unlock();
12580 }
12581 
12582 static const struct pci_error_handlers bnxt_err_handler = {
12583 	.error_detected	= bnxt_io_error_detected,
12584 	.slot_reset	= bnxt_io_slot_reset,
12585 	.resume		= bnxt_io_resume
12586 };
12587 
12588 static struct pci_driver bnxt_pci_driver = {
12589 	.name		= DRV_MODULE_NAME,
12590 	.id_table	= bnxt_pci_tbl,
12591 	.probe		= bnxt_init_one,
12592 	.remove		= bnxt_remove_one,
12593 	.shutdown	= bnxt_shutdown,
12594 	.driver.pm	= BNXT_PM_OPS,
12595 	.err_handler	= &bnxt_err_handler,
12596 #if defined(CONFIG_BNXT_SRIOV)
12597 	.sriov_configure = bnxt_sriov_configure,
12598 #endif
12599 };
12600 
12601 static int __init bnxt_init(void)
12602 {
12603 	bnxt_debug_init();
12604 	return pci_register_driver(&bnxt_pci_driver);
12605 }
12606 
12607 static void __exit bnxt_exit(void)
12608 {
12609 	pci_unregister_driver(&bnxt_pci_driver);
12610 	if (bnxt_pf_wq)
12611 		destroy_workqueue(bnxt_pf_wq);
12612 	bnxt_debug_exit();
12613 }
12614 
12615 module_init(bnxt_init);
12616 module_exit(bnxt_exit);
12617