1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <linux/hwmon.h> 56 #include <linux/hwmon-sysfs.h> 57 #include <net/page_pool.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_ulp.h" 62 #include "bnxt_sriov.h" 63 #include "bnxt_ethtool.h" 64 #include "bnxt_dcb.h" 65 #include "bnxt_xdp.h" 66 #include "bnxt_vfr.h" 67 #include "bnxt_tc.h" 68 #include "bnxt_devlink.h" 69 #include "bnxt_debugfs.h" 70 71 #define BNXT_TX_TIMEOUT (5 * HZ) 72 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW) 73 74 MODULE_LICENSE("GPL"); 75 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 76 77 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 78 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 79 #define BNXT_RX_COPY_THRESH 256 80 81 #define BNXT_TX_PUSH_THRESH 164 82 83 enum board_idx { 84 BCM57301, 85 BCM57302, 86 BCM57304, 87 BCM57417_NPAR, 88 BCM58700, 89 BCM57311, 90 BCM57312, 91 BCM57402, 92 BCM57404, 93 BCM57406, 94 BCM57402_NPAR, 95 BCM57407, 96 BCM57412, 97 BCM57414, 98 BCM57416, 99 BCM57417, 100 BCM57412_NPAR, 101 BCM57314, 102 BCM57417_SFP, 103 BCM57416_SFP, 104 BCM57404_NPAR, 105 BCM57406_NPAR, 106 BCM57407_SFP, 107 BCM57407_NPAR, 108 BCM57414_NPAR, 109 BCM57416_NPAR, 110 BCM57452, 111 BCM57454, 112 BCM5745x_NPAR, 113 BCM57508, 114 BCM57504, 115 BCM57502, 116 BCM57508_NPAR, 117 BCM57504_NPAR, 118 BCM57502_NPAR, 119 BCM58802, 120 BCM58804, 121 BCM58808, 122 NETXTREME_E_VF, 123 NETXTREME_C_VF, 124 NETXTREME_S_VF, 125 NETXTREME_C_VF_HV, 126 NETXTREME_E_VF_HV, 127 NETXTREME_E_P5_VF, 128 NETXTREME_E_P5_VF_HV, 129 }; 130 131 /* indexed by enum above */ 132 static const struct { 133 char *name; 134 } board_info[] = { 135 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 136 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 137 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 138 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 139 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 140 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 141 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 142 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 143 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 144 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 145 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 146 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 147 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 148 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 149 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 150 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 151 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 152 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 153 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 154 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 155 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 156 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 157 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 158 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 159 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 160 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 161 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 162 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 163 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 164 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 165 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 166 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 167 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 168 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 169 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 170 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 171 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 172 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 173 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 174 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 175 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 176 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 177 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 178 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 179 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 180 }; 181 182 static const struct pci_device_id bnxt_pci_tbl[] = { 183 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 184 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 185 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 186 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 188 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 189 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 190 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 192 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 193 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 194 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 195 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 196 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 197 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 198 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 199 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 200 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 201 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 202 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 203 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 204 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 205 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 206 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 207 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 208 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 209 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 210 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 211 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 212 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 213 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 214 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 215 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 216 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 217 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 218 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 219 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 220 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 221 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 222 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 223 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 224 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 225 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 226 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 227 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 228 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 229 #ifdef CONFIG_BNXT_SRIOV 230 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 231 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 232 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 233 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 234 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 235 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 236 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 237 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 238 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 239 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 240 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 241 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 242 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 243 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 244 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 245 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 246 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 247 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 248 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 249 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 250 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 251 #endif 252 { 0 } 253 }; 254 255 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 256 257 static const u16 bnxt_vf_req_snif[] = { 258 HWRM_FUNC_CFG, 259 HWRM_FUNC_VF_CFG, 260 HWRM_PORT_PHY_QCFG, 261 HWRM_CFA_L2_FILTER_ALLOC, 262 }; 263 264 static const u16 bnxt_async_events_arr[] = { 265 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 266 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 267 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 268 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 269 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 270 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 271 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 272 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 273 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 274 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 275 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 276 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 277 }; 278 279 static struct workqueue_struct *bnxt_pf_wq; 280 281 static bool bnxt_vf_pciid(enum board_idx idx) 282 { 283 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 284 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 285 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF); 286 } 287 288 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 289 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 290 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 291 292 #define BNXT_CP_DB_IRQ_DIS(db) \ 293 writel(DB_CP_IRQ_DIS_FLAGS, db) 294 295 #define BNXT_DB_CQ(db, idx) \ 296 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 297 298 #define BNXT_DB_NQ_P5(db, idx) \ 299 writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell) 300 301 #define BNXT_DB_CQ_ARM(db, idx) \ 302 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 303 304 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 305 writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell) 306 307 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 308 { 309 if (bp->flags & BNXT_FLAG_CHIP_P5) 310 BNXT_DB_NQ_P5(db, idx); 311 else 312 BNXT_DB_CQ(db, idx); 313 } 314 315 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 316 { 317 if (bp->flags & BNXT_FLAG_CHIP_P5) 318 BNXT_DB_NQ_ARM_P5(db, idx); 319 else 320 BNXT_DB_CQ_ARM(db, idx); 321 } 322 323 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 324 { 325 if (bp->flags & BNXT_FLAG_CHIP_P5) 326 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx), 327 db->doorbell); 328 else 329 BNXT_DB_CQ(db, idx); 330 } 331 332 const u16 bnxt_lhint_arr[] = { 333 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 334 TX_BD_FLAGS_LHINT_512_TO_1023, 335 TX_BD_FLAGS_LHINT_1024_TO_2047, 336 TX_BD_FLAGS_LHINT_1024_TO_2047, 337 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 338 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 339 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 340 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 341 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 342 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 343 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 344 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 345 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 346 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 347 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 348 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 349 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 350 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 351 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 352 }; 353 354 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 355 { 356 struct metadata_dst *md_dst = skb_metadata_dst(skb); 357 358 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 359 return 0; 360 361 return md_dst->u.port_info.port_id; 362 } 363 364 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 365 { 366 struct bnxt *bp = netdev_priv(dev); 367 struct tx_bd *txbd; 368 struct tx_bd_ext *txbd1; 369 struct netdev_queue *txq; 370 int i; 371 dma_addr_t mapping; 372 unsigned int length, pad = 0; 373 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 374 u16 prod, last_frag; 375 struct pci_dev *pdev = bp->pdev; 376 struct bnxt_tx_ring_info *txr; 377 struct bnxt_sw_tx_bd *tx_buf; 378 __le32 lflags = 0; 379 380 i = skb_get_queue_mapping(skb); 381 if (unlikely(i >= bp->tx_nr_rings)) { 382 dev_kfree_skb_any(skb); 383 return NETDEV_TX_OK; 384 } 385 386 txq = netdev_get_tx_queue(dev, i); 387 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 388 prod = txr->tx_prod; 389 390 free_size = bnxt_tx_avail(bp, txr); 391 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 392 netif_tx_stop_queue(txq); 393 return NETDEV_TX_BUSY; 394 } 395 396 length = skb->len; 397 len = skb_headlen(skb); 398 last_frag = skb_shinfo(skb)->nr_frags; 399 400 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 401 402 txbd->tx_bd_opaque = prod; 403 404 tx_buf = &txr->tx_buf_ring[prod]; 405 tx_buf->skb = skb; 406 tx_buf->nr_frags = last_frag; 407 408 vlan_tag_flags = 0; 409 cfa_action = bnxt_xmit_get_cfa_action(skb); 410 if (skb_vlan_tag_present(skb)) { 411 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 412 skb_vlan_tag_get(skb); 413 /* Currently supports 8021Q, 8021AD vlan offloads 414 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 415 */ 416 if (skb->vlan_proto == htons(ETH_P_8021Q)) 417 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 418 } 419 420 if (unlikely(skb->no_fcs)) { 421 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 422 goto normal_tx; 423 } 424 425 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) { 426 struct tx_push_buffer *tx_push_buf = txr->tx_push; 427 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 428 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 429 void __iomem *db = txr->tx_db.doorbell; 430 void *pdata = tx_push_buf->data; 431 u64 *end; 432 int j, push_len; 433 434 /* Set COAL_NOW to be ready quickly for the next push */ 435 tx_push->tx_bd_len_flags_type = 436 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 437 TX_BD_TYPE_LONG_TX_BD | 438 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 439 TX_BD_FLAGS_COAL_NOW | 440 TX_BD_FLAGS_PACKET_END | 441 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 442 443 if (skb->ip_summed == CHECKSUM_PARTIAL) 444 tx_push1->tx_bd_hsize_lflags = 445 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 446 else 447 tx_push1->tx_bd_hsize_lflags = 0; 448 449 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 450 tx_push1->tx_bd_cfa_action = 451 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 452 453 end = pdata + length; 454 end = PTR_ALIGN(end, 8) - 1; 455 *end = 0; 456 457 skb_copy_from_linear_data(skb, pdata, len); 458 pdata += len; 459 for (j = 0; j < last_frag; j++) { 460 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 461 void *fptr; 462 463 fptr = skb_frag_address_safe(frag); 464 if (!fptr) 465 goto normal_tx; 466 467 memcpy(pdata, fptr, skb_frag_size(frag)); 468 pdata += skb_frag_size(frag); 469 } 470 471 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 472 txbd->tx_bd_haddr = txr->data_mapping; 473 prod = NEXT_TX(prod); 474 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 475 memcpy(txbd, tx_push1, sizeof(*txbd)); 476 prod = NEXT_TX(prod); 477 tx_push->doorbell = 478 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 479 txr->tx_prod = prod; 480 481 tx_buf->is_push = 1; 482 netdev_tx_sent_queue(txq, skb->len); 483 wmb(); /* Sync is_push and byte queue before pushing data */ 484 485 push_len = (length + sizeof(*tx_push) + 7) / 8; 486 if (push_len > 16) { 487 __iowrite64_copy(db, tx_push_buf, 16); 488 __iowrite32_copy(db + 4, tx_push_buf + 1, 489 (push_len - 16) << 1); 490 } else { 491 __iowrite64_copy(db, tx_push_buf, push_len); 492 } 493 494 goto tx_done; 495 } 496 497 normal_tx: 498 if (length < BNXT_MIN_PKT_SIZE) { 499 pad = BNXT_MIN_PKT_SIZE - length; 500 if (skb_pad(skb, pad)) { 501 /* SKB already freed. */ 502 tx_buf->skb = NULL; 503 return NETDEV_TX_OK; 504 } 505 length = BNXT_MIN_PKT_SIZE; 506 } 507 508 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 509 510 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { 511 dev_kfree_skb_any(skb); 512 tx_buf->skb = NULL; 513 return NETDEV_TX_OK; 514 } 515 516 dma_unmap_addr_set(tx_buf, mapping, mapping); 517 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 518 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 519 520 txbd->tx_bd_haddr = cpu_to_le64(mapping); 521 522 prod = NEXT_TX(prod); 523 txbd1 = (struct tx_bd_ext *) 524 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 525 526 txbd1->tx_bd_hsize_lflags = lflags; 527 if (skb_is_gso(skb)) { 528 u32 hdr_len; 529 530 if (skb->encapsulation) 531 hdr_len = skb_inner_network_offset(skb) + 532 skb_inner_network_header_len(skb) + 533 inner_tcp_hdrlen(skb); 534 else 535 hdr_len = skb_transport_offset(skb) + 536 tcp_hdrlen(skb); 537 538 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 539 TX_BD_FLAGS_T_IPID | 540 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 541 length = skb_shinfo(skb)->gso_size; 542 txbd1->tx_bd_mss = cpu_to_le32(length); 543 length += hdr_len; 544 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 545 txbd1->tx_bd_hsize_lflags |= 546 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 547 txbd1->tx_bd_mss = 0; 548 } 549 550 length >>= 9; 551 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 552 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 553 skb->len); 554 i = 0; 555 goto tx_dma_error; 556 } 557 flags |= bnxt_lhint_arr[length]; 558 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 559 560 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 561 txbd1->tx_bd_cfa_action = 562 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 563 for (i = 0; i < last_frag; i++) { 564 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 565 566 prod = NEXT_TX(prod); 567 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 568 569 len = skb_frag_size(frag); 570 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 571 DMA_TO_DEVICE); 572 573 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 574 goto tx_dma_error; 575 576 tx_buf = &txr->tx_buf_ring[prod]; 577 dma_unmap_addr_set(tx_buf, mapping, mapping); 578 579 txbd->tx_bd_haddr = cpu_to_le64(mapping); 580 581 flags = len << TX_BD_LEN_SHIFT; 582 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 583 } 584 585 flags &= ~TX_BD_LEN; 586 txbd->tx_bd_len_flags_type = 587 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 588 TX_BD_FLAGS_PACKET_END); 589 590 netdev_tx_sent_queue(txq, skb->len); 591 592 /* Sync BD data before updating doorbell */ 593 wmb(); 594 595 prod = NEXT_TX(prod); 596 txr->tx_prod = prod; 597 598 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 599 bnxt_db_write(bp, &txr->tx_db, prod); 600 601 tx_done: 602 603 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 604 if (netdev_xmit_more() && !tx_buf->is_push) 605 bnxt_db_write(bp, &txr->tx_db, prod); 606 607 netif_tx_stop_queue(txq); 608 609 /* netif_tx_stop_queue() must be done before checking 610 * tx index in bnxt_tx_avail() below, because in 611 * bnxt_tx_int(), we update tx index before checking for 612 * netif_tx_queue_stopped(). 613 */ 614 smp_mb(); 615 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) 616 netif_tx_wake_queue(txq); 617 } 618 return NETDEV_TX_OK; 619 620 tx_dma_error: 621 last_frag = i; 622 623 /* start back at beginning and unmap skb */ 624 prod = txr->tx_prod; 625 tx_buf = &txr->tx_buf_ring[prod]; 626 tx_buf->skb = NULL; 627 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 628 skb_headlen(skb), PCI_DMA_TODEVICE); 629 prod = NEXT_TX(prod); 630 631 /* unmap remaining mapped pages */ 632 for (i = 0; i < last_frag; i++) { 633 prod = NEXT_TX(prod); 634 tx_buf = &txr->tx_buf_ring[prod]; 635 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 636 skb_frag_size(&skb_shinfo(skb)->frags[i]), 637 PCI_DMA_TODEVICE); 638 } 639 640 dev_kfree_skb_any(skb); 641 return NETDEV_TX_OK; 642 } 643 644 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 645 { 646 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 647 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 648 u16 cons = txr->tx_cons; 649 struct pci_dev *pdev = bp->pdev; 650 int i; 651 unsigned int tx_bytes = 0; 652 653 for (i = 0; i < nr_pkts; i++) { 654 struct bnxt_sw_tx_bd *tx_buf; 655 struct sk_buff *skb; 656 int j, last; 657 658 tx_buf = &txr->tx_buf_ring[cons]; 659 cons = NEXT_TX(cons); 660 skb = tx_buf->skb; 661 tx_buf->skb = NULL; 662 663 if (tx_buf->is_push) { 664 tx_buf->is_push = 0; 665 goto next_tx_int; 666 } 667 668 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 669 skb_headlen(skb), PCI_DMA_TODEVICE); 670 last = tx_buf->nr_frags; 671 672 for (j = 0; j < last; j++) { 673 cons = NEXT_TX(cons); 674 tx_buf = &txr->tx_buf_ring[cons]; 675 dma_unmap_page( 676 &pdev->dev, 677 dma_unmap_addr(tx_buf, mapping), 678 skb_frag_size(&skb_shinfo(skb)->frags[j]), 679 PCI_DMA_TODEVICE); 680 } 681 682 next_tx_int: 683 cons = NEXT_TX(cons); 684 685 tx_bytes += skb->len; 686 dev_kfree_skb_any(skb); 687 } 688 689 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 690 txr->tx_cons = cons; 691 692 /* Need to make the tx_cons update visible to bnxt_start_xmit() 693 * before checking for netif_tx_queue_stopped(). Without the 694 * memory barrier, there is a small possibility that bnxt_start_xmit() 695 * will miss it and cause the queue to be stopped forever. 696 */ 697 smp_mb(); 698 699 if (unlikely(netif_tx_queue_stopped(txq)) && 700 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { 701 __netif_tx_lock(txq, smp_processor_id()); 702 if (netif_tx_queue_stopped(txq) && 703 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 704 txr->dev_state != BNXT_DEV_STATE_CLOSING) 705 netif_tx_wake_queue(txq); 706 __netif_tx_unlock(txq); 707 } 708 } 709 710 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 711 struct bnxt_rx_ring_info *rxr, 712 gfp_t gfp) 713 { 714 struct device *dev = &bp->pdev->dev; 715 struct page *page; 716 717 page = page_pool_dev_alloc_pages(rxr->page_pool); 718 if (!page) 719 return NULL; 720 721 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 722 DMA_ATTR_WEAK_ORDERING); 723 if (dma_mapping_error(dev, *mapping)) { 724 page_pool_recycle_direct(rxr->page_pool, page); 725 return NULL; 726 } 727 *mapping += bp->rx_dma_offset; 728 return page; 729 } 730 731 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 732 gfp_t gfp) 733 { 734 u8 *data; 735 struct pci_dev *pdev = bp->pdev; 736 737 data = kmalloc(bp->rx_buf_size, gfp); 738 if (!data) 739 return NULL; 740 741 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 742 bp->rx_buf_use_size, bp->rx_dir, 743 DMA_ATTR_WEAK_ORDERING); 744 745 if (dma_mapping_error(&pdev->dev, *mapping)) { 746 kfree(data); 747 data = NULL; 748 } 749 return data; 750 } 751 752 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 753 u16 prod, gfp_t gfp) 754 { 755 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 756 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 757 dma_addr_t mapping; 758 759 if (BNXT_RX_PAGE_MODE(bp)) { 760 struct page *page = 761 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 762 763 if (!page) 764 return -ENOMEM; 765 766 rx_buf->data = page; 767 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 768 } else { 769 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 770 771 if (!data) 772 return -ENOMEM; 773 774 rx_buf->data = data; 775 rx_buf->data_ptr = data + bp->rx_offset; 776 } 777 rx_buf->mapping = mapping; 778 779 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 780 return 0; 781 } 782 783 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 784 { 785 u16 prod = rxr->rx_prod; 786 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 787 struct rx_bd *cons_bd, *prod_bd; 788 789 prod_rx_buf = &rxr->rx_buf_ring[prod]; 790 cons_rx_buf = &rxr->rx_buf_ring[cons]; 791 792 prod_rx_buf->data = data; 793 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 794 795 prod_rx_buf->mapping = cons_rx_buf->mapping; 796 797 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 798 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 799 800 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 801 } 802 803 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 804 { 805 u16 next, max = rxr->rx_agg_bmap_size; 806 807 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 808 if (next >= max) 809 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 810 return next; 811 } 812 813 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 814 struct bnxt_rx_ring_info *rxr, 815 u16 prod, gfp_t gfp) 816 { 817 struct rx_bd *rxbd = 818 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 819 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 820 struct pci_dev *pdev = bp->pdev; 821 struct page *page; 822 dma_addr_t mapping; 823 u16 sw_prod = rxr->rx_sw_agg_prod; 824 unsigned int offset = 0; 825 826 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 827 page = rxr->rx_page; 828 if (!page) { 829 page = alloc_page(gfp); 830 if (!page) 831 return -ENOMEM; 832 rxr->rx_page = page; 833 rxr->rx_page_offset = 0; 834 } 835 offset = rxr->rx_page_offset; 836 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 837 if (rxr->rx_page_offset == PAGE_SIZE) 838 rxr->rx_page = NULL; 839 else 840 get_page(page); 841 } else { 842 page = alloc_page(gfp); 843 if (!page) 844 return -ENOMEM; 845 } 846 847 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 848 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 849 DMA_ATTR_WEAK_ORDERING); 850 if (dma_mapping_error(&pdev->dev, mapping)) { 851 __free_page(page); 852 return -EIO; 853 } 854 855 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 856 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 857 858 __set_bit(sw_prod, rxr->rx_agg_bmap); 859 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 860 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 861 862 rx_agg_buf->page = page; 863 rx_agg_buf->offset = offset; 864 rx_agg_buf->mapping = mapping; 865 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 866 rxbd->rx_bd_opaque = sw_prod; 867 return 0; 868 } 869 870 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 871 struct bnxt_cp_ring_info *cpr, 872 u16 cp_cons, u16 curr) 873 { 874 struct rx_agg_cmp *agg; 875 876 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 877 agg = (struct rx_agg_cmp *) 878 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 879 return agg; 880 } 881 882 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 883 struct bnxt_rx_ring_info *rxr, 884 u16 agg_id, u16 curr) 885 { 886 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 887 888 return &tpa_info->agg_arr[curr]; 889 } 890 891 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 892 u16 start, u32 agg_bufs, bool tpa) 893 { 894 struct bnxt_napi *bnapi = cpr->bnapi; 895 struct bnxt *bp = bnapi->bp; 896 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 897 u16 prod = rxr->rx_agg_prod; 898 u16 sw_prod = rxr->rx_sw_agg_prod; 899 bool p5_tpa = false; 900 u32 i; 901 902 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 903 p5_tpa = true; 904 905 for (i = 0; i < agg_bufs; i++) { 906 u16 cons; 907 struct rx_agg_cmp *agg; 908 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 909 struct rx_bd *prod_bd; 910 struct page *page; 911 912 if (p5_tpa) 913 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 914 else 915 agg = bnxt_get_agg(bp, cpr, idx, start + i); 916 cons = agg->rx_agg_cmp_opaque; 917 __clear_bit(cons, rxr->rx_agg_bmap); 918 919 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 920 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 921 922 __set_bit(sw_prod, rxr->rx_agg_bmap); 923 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 924 cons_rx_buf = &rxr->rx_agg_ring[cons]; 925 926 /* It is possible for sw_prod to be equal to cons, so 927 * set cons_rx_buf->page to NULL first. 928 */ 929 page = cons_rx_buf->page; 930 cons_rx_buf->page = NULL; 931 prod_rx_buf->page = page; 932 prod_rx_buf->offset = cons_rx_buf->offset; 933 934 prod_rx_buf->mapping = cons_rx_buf->mapping; 935 936 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 937 938 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 939 prod_bd->rx_bd_opaque = sw_prod; 940 941 prod = NEXT_RX_AGG(prod); 942 sw_prod = NEXT_RX_AGG(sw_prod); 943 } 944 rxr->rx_agg_prod = prod; 945 rxr->rx_sw_agg_prod = sw_prod; 946 } 947 948 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 949 struct bnxt_rx_ring_info *rxr, 950 u16 cons, void *data, u8 *data_ptr, 951 dma_addr_t dma_addr, 952 unsigned int offset_and_len) 953 { 954 unsigned int payload = offset_and_len >> 16; 955 unsigned int len = offset_and_len & 0xffff; 956 skb_frag_t *frag; 957 struct page *page = data; 958 u16 prod = rxr->rx_prod; 959 struct sk_buff *skb; 960 int off, err; 961 962 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 963 if (unlikely(err)) { 964 bnxt_reuse_rx_data(rxr, cons, data); 965 return NULL; 966 } 967 dma_addr -= bp->rx_dma_offset; 968 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 969 DMA_ATTR_WEAK_ORDERING); 970 page_pool_release_page(rxr->page_pool, page); 971 972 if (unlikely(!payload)) 973 payload = eth_get_headlen(bp->dev, data_ptr, len); 974 975 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 976 if (!skb) { 977 __free_page(page); 978 return NULL; 979 } 980 981 off = (void *)data_ptr - page_address(page); 982 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 983 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 984 payload + NET_IP_ALIGN); 985 986 frag = &skb_shinfo(skb)->frags[0]; 987 skb_frag_size_sub(frag, payload); 988 skb_frag_off_add(frag, payload); 989 skb->data_len -= payload; 990 skb->tail += payload; 991 992 return skb; 993 } 994 995 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 996 struct bnxt_rx_ring_info *rxr, u16 cons, 997 void *data, u8 *data_ptr, 998 dma_addr_t dma_addr, 999 unsigned int offset_and_len) 1000 { 1001 u16 prod = rxr->rx_prod; 1002 struct sk_buff *skb; 1003 int err; 1004 1005 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1006 if (unlikely(err)) { 1007 bnxt_reuse_rx_data(rxr, cons, data); 1008 return NULL; 1009 } 1010 1011 skb = build_skb(data, 0); 1012 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1013 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1014 if (!skb) { 1015 kfree(data); 1016 return NULL; 1017 } 1018 1019 skb_reserve(skb, bp->rx_offset); 1020 skb_put(skb, offset_and_len & 0xffff); 1021 return skb; 1022 } 1023 1024 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1025 struct bnxt_cp_ring_info *cpr, 1026 struct sk_buff *skb, u16 idx, 1027 u32 agg_bufs, bool tpa) 1028 { 1029 struct bnxt_napi *bnapi = cpr->bnapi; 1030 struct pci_dev *pdev = bp->pdev; 1031 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1032 u16 prod = rxr->rx_agg_prod; 1033 bool p5_tpa = false; 1034 u32 i; 1035 1036 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1037 p5_tpa = true; 1038 1039 for (i = 0; i < agg_bufs; i++) { 1040 u16 cons, frag_len; 1041 struct rx_agg_cmp *agg; 1042 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1043 struct page *page; 1044 dma_addr_t mapping; 1045 1046 if (p5_tpa) 1047 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1048 else 1049 agg = bnxt_get_agg(bp, cpr, idx, i); 1050 cons = agg->rx_agg_cmp_opaque; 1051 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1052 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1053 1054 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1055 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1056 cons_rx_buf->offset, frag_len); 1057 __clear_bit(cons, rxr->rx_agg_bmap); 1058 1059 /* It is possible for bnxt_alloc_rx_page() to allocate 1060 * a sw_prod index that equals the cons index, so we 1061 * need to clear the cons entry now. 1062 */ 1063 mapping = cons_rx_buf->mapping; 1064 page = cons_rx_buf->page; 1065 cons_rx_buf->page = NULL; 1066 1067 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1068 struct skb_shared_info *shinfo; 1069 unsigned int nr_frags; 1070 1071 shinfo = skb_shinfo(skb); 1072 nr_frags = --shinfo->nr_frags; 1073 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1074 1075 dev_kfree_skb(skb); 1076 1077 cons_rx_buf->page = page; 1078 1079 /* Update prod since possibly some pages have been 1080 * allocated already. 1081 */ 1082 rxr->rx_agg_prod = prod; 1083 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1084 return NULL; 1085 } 1086 1087 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1088 PCI_DMA_FROMDEVICE, 1089 DMA_ATTR_WEAK_ORDERING); 1090 1091 skb->data_len += frag_len; 1092 skb->len += frag_len; 1093 skb->truesize += PAGE_SIZE; 1094 1095 prod = NEXT_RX_AGG(prod); 1096 } 1097 rxr->rx_agg_prod = prod; 1098 return skb; 1099 } 1100 1101 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1102 u8 agg_bufs, u32 *raw_cons) 1103 { 1104 u16 last; 1105 struct rx_agg_cmp *agg; 1106 1107 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1108 last = RING_CMP(*raw_cons); 1109 agg = (struct rx_agg_cmp *) 1110 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1111 return RX_AGG_CMP_VALID(agg, *raw_cons); 1112 } 1113 1114 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1115 unsigned int len, 1116 dma_addr_t mapping) 1117 { 1118 struct bnxt *bp = bnapi->bp; 1119 struct pci_dev *pdev = bp->pdev; 1120 struct sk_buff *skb; 1121 1122 skb = napi_alloc_skb(&bnapi->napi, len); 1123 if (!skb) 1124 return NULL; 1125 1126 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1127 bp->rx_dir); 1128 1129 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1130 len + NET_IP_ALIGN); 1131 1132 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1133 bp->rx_dir); 1134 1135 skb_put(skb, len); 1136 return skb; 1137 } 1138 1139 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1140 u32 *raw_cons, void *cmp) 1141 { 1142 struct rx_cmp *rxcmp = cmp; 1143 u32 tmp_raw_cons = *raw_cons; 1144 u8 cmp_type, agg_bufs = 0; 1145 1146 cmp_type = RX_CMP_TYPE(rxcmp); 1147 1148 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1149 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1150 RX_CMP_AGG_BUFS) >> 1151 RX_CMP_AGG_BUFS_SHIFT; 1152 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1153 struct rx_tpa_end_cmp *tpa_end = cmp; 1154 1155 if (bp->flags & BNXT_FLAG_CHIP_P5) 1156 return 0; 1157 1158 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1159 } 1160 1161 if (agg_bufs) { 1162 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1163 return -EBUSY; 1164 } 1165 *raw_cons = tmp_raw_cons; 1166 return 0; 1167 } 1168 1169 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1170 { 1171 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1172 return; 1173 1174 if (BNXT_PF(bp)) 1175 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1176 else 1177 schedule_delayed_work(&bp->fw_reset_task, delay); 1178 } 1179 1180 static void bnxt_queue_sp_work(struct bnxt *bp) 1181 { 1182 if (BNXT_PF(bp)) 1183 queue_work(bnxt_pf_wq, &bp->sp_task); 1184 else 1185 schedule_work(&bp->sp_task); 1186 } 1187 1188 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1189 { 1190 if (!rxr->bnapi->in_reset) { 1191 rxr->bnapi->in_reset = true; 1192 if (bp->flags & BNXT_FLAG_CHIP_P5) 1193 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1194 else 1195 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1196 bnxt_queue_sp_work(bp); 1197 } 1198 rxr->rx_next_cons = 0xffff; 1199 } 1200 1201 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1202 { 1203 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1204 u16 idx = agg_id & MAX_TPA_P5_MASK; 1205 1206 if (test_bit(idx, map->agg_idx_bmap)) 1207 idx = find_first_zero_bit(map->agg_idx_bmap, 1208 BNXT_AGG_IDX_BMAP_SIZE); 1209 __set_bit(idx, map->agg_idx_bmap); 1210 map->agg_id_tbl[agg_id] = idx; 1211 return idx; 1212 } 1213 1214 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1215 { 1216 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1217 1218 __clear_bit(idx, map->agg_idx_bmap); 1219 } 1220 1221 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1222 { 1223 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1224 1225 return map->agg_id_tbl[agg_id]; 1226 } 1227 1228 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1229 struct rx_tpa_start_cmp *tpa_start, 1230 struct rx_tpa_start_cmp_ext *tpa_start1) 1231 { 1232 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1233 struct bnxt_tpa_info *tpa_info; 1234 u16 cons, prod, agg_id; 1235 struct rx_bd *prod_bd; 1236 dma_addr_t mapping; 1237 1238 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1239 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1240 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1241 } else { 1242 agg_id = TPA_START_AGG_ID(tpa_start); 1243 } 1244 cons = tpa_start->rx_tpa_start_cmp_opaque; 1245 prod = rxr->rx_prod; 1246 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1247 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1248 tpa_info = &rxr->rx_tpa[agg_id]; 1249 1250 if (unlikely(cons != rxr->rx_next_cons || 1251 TPA_START_ERROR(tpa_start))) { 1252 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1253 cons, rxr->rx_next_cons, 1254 TPA_START_ERROR_CODE(tpa_start1)); 1255 bnxt_sched_reset(bp, rxr); 1256 return; 1257 } 1258 /* Store cfa_code in tpa_info to use in tpa_end 1259 * completion processing. 1260 */ 1261 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1262 prod_rx_buf->data = tpa_info->data; 1263 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1264 1265 mapping = tpa_info->mapping; 1266 prod_rx_buf->mapping = mapping; 1267 1268 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1269 1270 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1271 1272 tpa_info->data = cons_rx_buf->data; 1273 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1274 cons_rx_buf->data = NULL; 1275 tpa_info->mapping = cons_rx_buf->mapping; 1276 1277 tpa_info->len = 1278 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1279 RX_TPA_START_CMP_LEN_SHIFT; 1280 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1281 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1282 1283 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1284 tpa_info->gso_type = SKB_GSO_TCPV4; 1285 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1286 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1287 tpa_info->gso_type = SKB_GSO_TCPV6; 1288 tpa_info->rss_hash = 1289 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1290 } else { 1291 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1292 tpa_info->gso_type = 0; 1293 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1294 } 1295 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1296 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1297 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1298 tpa_info->agg_count = 0; 1299 1300 rxr->rx_prod = NEXT_RX(prod); 1301 cons = NEXT_RX(cons); 1302 rxr->rx_next_cons = NEXT_RX(cons); 1303 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1304 1305 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1306 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1307 cons_rx_buf->data = NULL; 1308 } 1309 1310 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1311 { 1312 if (agg_bufs) 1313 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1314 } 1315 1316 #ifdef CONFIG_INET 1317 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1318 { 1319 struct udphdr *uh = NULL; 1320 1321 if (ip_proto == htons(ETH_P_IP)) { 1322 struct iphdr *iph = (struct iphdr *)skb->data; 1323 1324 if (iph->protocol == IPPROTO_UDP) 1325 uh = (struct udphdr *)(iph + 1); 1326 } else { 1327 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1328 1329 if (iph->nexthdr == IPPROTO_UDP) 1330 uh = (struct udphdr *)(iph + 1); 1331 } 1332 if (uh) { 1333 if (uh->check) 1334 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1335 else 1336 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1337 } 1338 } 1339 #endif 1340 1341 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1342 int payload_off, int tcp_ts, 1343 struct sk_buff *skb) 1344 { 1345 #ifdef CONFIG_INET 1346 struct tcphdr *th; 1347 int len, nw_off; 1348 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1349 u32 hdr_info = tpa_info->hdr_info; 1350 bool loopback = false; 1351 1352 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1353 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1354 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1355 1356 /* If the packet is an internal loopback packet, the offsets will 1357 * have an extra 4 bytes. 1358 */ 1359 if (inner_mac_off == 4) { 1360 loopback = true; 1361 } else if (inner_mac_off > 4) { 1362 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1363 ETH_HLEN - 2)); 1364 1365 /* We only support inner iPv4/ipv6. If we don't see the 1366 * correct protocol ID, it must be a loopback packet where 1367 * the offsets are off by 4. 1368 */ 1369 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1370 loopback = true; 1371 } 1372 if (loopback) { 1373 /* internal loopback packet, subtract all offsets by 4 */ 1374 inner_ip_off -= 4; 1375 inner_mac_off -= 4; 1376 outer_ip_off -= 4; 1377 } 1378 1379 nw_off = inner_ip_off - ETH_HLEN; 1380 skb_set_network_header(skb, nw_off); 1381 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1382 struct ipv6hdr *iph = ipv6_hdr(skb); 1383 1384 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1385 len = skb->len - skb_transport_offset(skb); 1386 th = tcp_hdr(skb); 1387 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1388 } else { 1389 struct iphdr *iph = ip_hdr(skb); 1390 1391 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1392 len = skb->len - skb_transport_offset(skb); 1393 th = tcp_hdr(skb); 1394 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1395 } 1396 1397 if (inner_mac_off) { /* tunnel */ 1398 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1399 ETH_HLEN - 2)); 1400 1401 bnxt_gro_tunnel(skb, proto); 1402 } 1403 #endif 1404 return skb; 1405 } 1406 1407 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1408 int payload_off, int tcp_ts, 1409 struct sk_buff *skb) 1410 { 1411 #ifdef CONFIG_INET 1412 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1413 u32 hdr_info = tpa_info->hdr_info; 1414 int iphdr_len, nw_off; 1415 1416 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1417 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1418 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1419 1420 nw_off = inner_ip_off - ETH_HLEN; 1421 skb_set_network_header(skb, nw_off); 1422 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1423 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1424 skb_set_transport_header(skb, nw_off + iphdr_len); 1425 1426 if (inner_mac_off) { /* tunnel */ 1427 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1428 ETH_HLEN - 2)); 1429 1430 bnxt_gro_tunnel(skb, proto); 1431 } 1432 #endif 1433 return skb; 1434 } 1435 1436 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1437 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1438 1439 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1440 int payload_off, int tcp_ts, 1441 struct sk_buff *skb) 1442 { 1443 #ifdef CONFIG_INET 1444 struct tcphdr *th; 1445 int len, nw_off, tcp_opt_len = 0; 1446 1447 if (tcp_ts) 1448 tcp_opt_len = 12; 1449 1450 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1451 struct iphdr *iph; 1452 1453 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1454 ETH_HLEN; 1455 skb_set_network_header(skb, nw_off); 1456 iph = ip_hdr(skb); 1457 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1458 len = skb->len - skb_transport_offset(skb); 1459 th = tcp_hdr(skb); 1460 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1461 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1462 struct ipv6hdr *iph; 1463 1464 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1465 ETH_HLEN; 1466 skb_set_network_header(skb, nw_off); 1467 iph = ipv6_hdr(skb); 1468 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1469 len = skb->len - skb_transport_offset(skb); 1470 th = tcp_hdr(skb); 1471 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1472 } else { 1473 dev_kfree_skb_any(skb); 1474 return NULL; 1475 } 1476 1477 if (nw_off) /* tunnel */ 1478 bnxt_gro_tunnel(skb, skb->protocol); 1479 #endif 1480 return skb; 1481 } 1482 1483 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1484 struct bnxt_tpa_info *tpa_info, 1485 struct rx_tpa_end_cmp *tpa_end, 1486 struct rx_tpa_end_cmp_ext *tpa_end1, 1487 struct sk_buff *skb) 1488 { 1489 #ifdef CONFIG_INET 1490 int payload_off; 1491 u16 segs; 1492 1493 segs = TPA_END_TPA_SEGS(tpa_end); 1494 if (segs == 1) 1495 return skb; 1496 1497 NAPI_GRO_CB(skb)->count = segs; 1498 skb_shinfo(skb)->gso_size = 1499 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1500 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1501 if (bp->flags & BNXT_FLAG_CHIP_P5) 1502 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1503 else 1504 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1505 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1506 if (likely(skb)) 1507 tcp_gro_complete(skb); 1508 #endif 1509 return skb; 1510 } 1511 1512 /* Given the cfa_code of a received packet determine which 1513 * netdev (vf-rep or PF) the packet is destined to. 1514 */ 1515 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1516 { 1517 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1518 1519 /* if vf-rep dev is NULL, the must belongs to the PF */ 1520 return dev ? dev : bp->dev; 1521 } 1522 1523 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1524 struct bnxt_cp_ring_info *cpr, 1525 u32 *raw_cons, 1526 struct rx_tpa_end_cmp *tpa_end, 1527 struct rx_tpa_end_cmp_ext *tpa_end1, 1528 u8 *event) 1529 { 1530 struct bnxt_napi *bnapi = cpr->bnapi; 1531 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1532 u8 *data_ptr, agg_bufs; 1533 unsigned int len; 1534 struct bnxt_tpa_info *tpa_info; 1535 dma_addr_t mapping; 1536 struct sk_buff *skb; 1537 u16 idx = 0, agg_id; 1538 void *data; 1539 bool gro; 1540 1541 if (unlikely(bnapi->in_reset)) { 1542 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1543 1544 if (rc < 0) 1545 return ERR_PTR(-EBUSY); 1546 return NULL; 1547 } 1548 1549 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1550 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1551 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1552 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1553 tpa_info = &rxr->rx_tpa[agg_id]; 1554 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1555 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1556 agg_bufs, tpa_info->agg_count); 1557 agg_bufs = tpa_info->agg_count; 1558 } 1559 tpa_info->agg_count = 0; 1560 *event |= BNXT_AGG_EVENT; 1561 bnxt_free_agg_idx(rxr, agg_id); 1562 idx = agg_id; 1563 gro = !!(bp->flags & BNXT_FLAG_GRO); 1564 } else { 1565 agg_id = TPA_END_AGG_ID(tpa_end); 1566 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1567 tpa_info = &rxr->rx_tpa[agg_id]; 1568 idx = RING_CMP(*raw_cons); 1569 if (agg_bufs) { 1570 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1571 return ERR_PTR(-EBUSY); 1572 1573 *event |= BNXT_AGG_EVENT; 1574 idx = NEXT_CMP(idx); 1575 } 1576 gro = !!TPA_END_GRO(tpa_end); 1577 } 1578 data = tpa_info->data; 1579 data_ptr = tpa_info->data_ptr; 1580 prefetch(data_ptr); 1581 len = tpa_info->len; 1582 mapping = tpa_info->mapping; 1583 1584 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1585 bnxt_abort_tpa(cpr, idx, agg_bufs); 1586 if (agg_bufs > MAX_SKB_FRAGS) 1587 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1588 agg_bufs, (int)MAX_SKB_FRAGS); 1589 return NULL; 1590 } 1591 1592 if (len <= bp->rx_copy_thresh) { 1593 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1594 if (!skb) { 1595 bnxt_abort_tpa(cpr, idx, agg_bufs); 1596 return NULL; 1597 } 1598 } else { 1599 u8 *new_data; 1600 dma_addr_t new_mapping; 1601 1602 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1603 if (!new_data) { 1604 bnxt_abort_tpa(cpr, idx, agg_bufs); 1605 return NULL; 1606 } 1607 1608 tpa_info->data = new_data; 1609 tpa_info->data_ptr = new_data + bp->rx_offset; 1610 tpa_info->mapping = new_mapping; 1611 1612 skb = build_skb(data, 0); 1613 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1614 bp->rx_buf_use_size, bp->rx_dir, 1615 DMA_ATTR_WEAK_ORDERING); 1616 1617 if (!skb) { 1618 kfree(data); 1619 bnxt_abort_tpa(cpr, idx, agg_bufs); 1620 return NULL; 1621 } 1622 skb_reserve(skb, bp->rx_offset); 1623 skb_put(skb, len); 1624 } 1625 1626 if (agg_bufs) { 1627 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1628 if (!skb) { 1629 /* Page reuse already handled by bnxt_rx_pages(). */ 1630 return NULL; 1631 } 1632 } 1633 1634 skb->protocol = 1635 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1636 1637 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1638 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1639 1640 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1641 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1642 u16 vlan_proto = tpa_info->metadata >> 1643 RX_CMP_FLAGS2_METADATA_TPID_SFT; 1644 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1645 1646 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); 1647 } 1648 1649 skb_checksum_none_assert(skb); 1650 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1651 skb->ip_summed = CHECKSUM_UNNECESSARY; 1652 skb->csum_level = 1653 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1654 } 1655 1656 if (gro) 1657 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1658 1659 return skb; 1660 } 1661 1662 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1663 struct rx_agg_cmp *rx_agg) 1664 { 1665 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1666 struct bnxt_tpa_info *tpa_info; 1667 1668 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1669 tpa_info = &rxr->rx_tpa[agg_id]; 1670 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1671 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1672 } 1673 1674 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1675 struct sk_buff *skb) 1676 { 1677 if (skb->dev != bp->dev) { 1678 /* this packet belongs to a vf-rep */ 1679 bnxt_vf_rep_rx(bp, skb); 1680 return; 1681 } 1682 skb_record_rx_queue(skb, bnapi->index); 1683 napi_gro_receive(&bnapi->napi, skb); 1684 } 1685 1686 /* returns the following: 1687 * 1 - 1 packet successfully received 1688 * 0 - successful TPA_START, packet not completed yet 1689 * -EBUSY - completion ring does not have all the agg buffers yet 1690 * -ENOMEM - packet aborted due to out of memory 1691 * -EIO - packet aborted due to hw error indicated in BD 1692 */ 1693 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1694 u32 *raw_cons, u8 *event) 1695 { 1696 struct bnxt_napi *bnapi = cpr->bnapi; 1697 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1698 struct net_device *dev = bp->dev; 1699 struct rx_cmp *rxcmp; 1700 struct rx_cmp_ext *rxcmp1; 1701 u32 tmp_raw_cons = *raw_cons; 1702 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1703 struct bnxt_sw_rx_bd *rx_buf; 1704 unsigned int len; 1705 u8 *data_ptr, agg_bufs, cmp_type; 1706 dma_addr_t dma_addr; 1707 struct sk_buff *skb; 1708 void *data; 1709 int rc = 0; 1710 u32 misc; 1711 1712 rxcmp = (struct rx_cmp *) 1713 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1714 1715 cmp_type = RX_CMP_TYPE(rxcmp); 1716 1717 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1718 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1719 goto next_rx_no_prod_no_len; 1720 } 1721 1722 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1723 cp_cons = RING_CMP(tmp_raw_cons); 1724 rxcmp1 = (struct rx_cmp_ext *) 1725 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1726 1727 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1728 return -EBUSY; 1729 1730 prod = rxr->rx_prod; 1731 1732 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1733 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1734 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1735 1736 *event |= BNXT_RX_EVENT; 1737 goto next_rx_no_prod_no_len; 1738 1739 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1740 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1741 (struct rx_tpa_end_cmp *)rxcmp, 1742 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1743 1744 if (IS_ERR(skb)) 1745 return -EBUSY; 1746 1747 rc = -ENOMEM; 1748 if (likely(skb)) { 1749 bnxt_deliver_skb(bp, bnapi, skb); 1750 rc = 1; 1751 } 1752 *event |= BNXT_RX_EVENT; 1753 goto next_rx_no_prod_no_len; 1754 } 1755 1756 cons = rxcmp->rx_cmp_opaque; 1757 if (unlikely(cons != rxr->rx_next_cons)) { 1758 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1759 1760 /* 0xffff is forced error, don't print it */ 1761 if (rxr->rx_next_cons != 0xffff) 1762 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1763 cons, rxr->rx_next_cons); 1764 bnxt_sched_reset(bp, rxr); 1765 if (rc1) 1766 return rc1; 1767 goto next_rx_no_prod_no_len; 1768 } 1769 rx_buf = &rxr->rx_buf_ring[cons]; 1770 data = rx_buf->data; 1771 data_ptr = rx_buf->data_ptr; 1772 prefetch(data_ptr); 1773 1774 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1775 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1776 1777 if (agg_bufs) { 1778 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1779 return -EBUSY; 1780 1781 cp_cons = NEXT_CMP(cp_cons); 1782 *event |= BNXT_AGG_EVENT; 1783 } 1784 *event |= BNXT_RX_EVENT; 1785 1786 rx_buf->data = NULL; 1787 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1788 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1789 1790 bnxt_reuse_rx_data(rxr, cons, data); 1791 if (agg_bufs) 1792 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1793 false); 1794 1795 rc = -EIO; 1796 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1797 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1798 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1799 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1800 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1801 rx_err); 1802 bnxt_sched_reset(bp, rxr); 1803 } 1804 } 1805 goto next_rx_no_len; 1806 } 1807 1808 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT; 1809 dma_addr = rx_buf->mapping; 1810 1811 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1812 rc = 1; 1813 goto next_rx; 1814 } 1815 1816 if (len <= bp->rx_copy_thresh) { 1817 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1818 bnxt_reuse_rx_data(rxr, cons, data); 1819 if (!skb) { 1820 if (agg_bufs) 1821 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1822 agg_bufs, false); 1823 rc = -ENOMEM; 1824 goto next_rx; 1825 } 1826 } else { 1827 u32 payload; 1828 1829 if (rx_buf->data_ptr == data_ptr) 1830 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1831 else 1832 payload = 0; 1833 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1834 payload | len); 1835 if (!skb) { 1836 rc = -ENOMEM; 1837 goto next_rx; 1838 } 1839 } 1840 1841 if (agg_bufs) { 1842 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1843 if (!skb) { 1844 rc = -ENOMEM; 1845 goto next_rx; 1846 } 1847 } 1848 1849 if (RX_CMP_HASH_VALID(rxcmp)) { 1850 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1851 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1852 1853 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1854 if (hash_type != 1 && hash_type != 3) 1855 type = PKT_HASH_TYPE_L3; 1856 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1857 } 1858 1859 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1860 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1861 1862 if ((rxcmp1->rx_cmp_flags2 & 1863 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1864 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1865 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1866 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1867 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT; 1868 1869 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); 1870 } 1871 1872 skb_checksum_none_assert(skb); 1873 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1874 if (dev->features & NETIF_F_RXCSUM) { 1875 skb->ip_summed = CHECKSUM_UNNECESSARY; 1876 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1877 } 1878 } else { 1879 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1880 if (dev->features & NETIF_F_RXCSUM) 1881 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1882 } 1883 } 1884 1885 bnxt_deliver_skb(bp, bnapi, skb); 1886 rc = 1; 1887 1888 next_rx: 1889 cpr->rx_packets += 1; 1890 cpr->rx_bytes += len; 1891 1892 next_rx_no_len: 1893 rxr->rx_prod = NEXT_RX(prod); 1894 rxr->rx_next_cons = NEXT_RX(cons); 1895 1896 next_rx_no_prod_no_len: 1897 *raw_cons = tmp_raw_cons; 1898 1899 return rc; 1900 } 1901 1902 /* In netpoll mode, if we are using a combined completion ring, we need to 1903 * discard the rx packets and recycle the buffers. 1904 */ 1905 static int bnxt_force_rx_discard(struct bnxt *bp, 1906 struct bnxt_cp_ring_info *cpr, 1907 u32 *raw_cons, u8 *event) 1908 { 1909 u32 tmp_raw_cons = *raw_cons; 1910 struct rx_cmp_ext *rxcmp1; 1911 struct rx_cmp *rxcmp; 1912 u16 cp_cons; 1913 u8 cmp_type; 1914 1915 cp_cons = RING_CMP(tmp_raw_cons); 1916 rxcmp = (struct rx_cmp *) 1917 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1918 1919 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1920 cp_cons = RING_CMP(tmp_raw_cons); 1921 rxcmp1 = (struct rx_cmp_ext *) 1922 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1923 1924 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1925 return -EBUSY; 1926 1927 cmp_type = RX_CMP_TYPE(rxcmp); 1928 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1929 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 1930 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 1931 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1932 struct rx_tpa_end_cmp_ext *tpa_end1; 1933 1934 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 1935 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 1936 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 1937 } 1938 return bnxt_rx_pkt(bp, cpr, raw_cons, event); 1939 } 1940 1941 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 1942 { 1943 struct bnxt_fw_health *fw_health = bp->fw_health; 1944 u32 reg = fw_health->regs[reg_idx]; 1945 u32 reg_type, reg_off, val = 0; 1946 1947 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 1948 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 1949 switch (reg_type) { 1950 case BNXT_FW_HEALTH_REG_TYPE_CFG: 1951 pci_read_config_dword(bp->pdev, reg_off, &val); 1952 break; 1953 case BNXT_FW_HEALTH_REG_TYPE_GRC: 1954 reg_off = fw_health->mapped_regs[reg_idx]; 1955 fallthrough; 1956 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 1957 val = readl(bp->bar0 + reg_off); 1958 break; 1959 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 1960 val = readl(bp->bar1 + reg_off); 1961 break; 1962 } 1963 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 1964 val &= fw_health->fw_reset_inprog_reg_mask; 1965 return val; 1966 } 1967 1968 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 1969 { 1970 int i; 1971 1972 for (i = 0; i < bp->rx_nr_rings; i++) { 1973 u16 grp_idx = bp->rx_ring[i].bnapi->index; 1974 struct bnxt_ring_grp_info *grp_info; 1975 1976 grp_info = &bp->grp_info[grp_idx]; 1977 if (grp_info->agg_fw_ring_id == ring_id) 1978 return grp_idx; 1979 } 1980 return INVALID_HW_RING_ID; 1981 } 1982 1983 #define BNXT_GET_EVENT_PORT(data) \ 1984 ((data) & \ 1985 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 1986 1987 #define BNXT_EVENT_RING_TYPE(data2) \ 1988 ((data2) & \ 1989 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 1990 1991 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 1992 (BNXT_EVENT_RING_TYPE(data2) == \ 1993 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 1994 1995 static int bnxt_async_event_process(struct bnxt *bp, 1996 struct hwrm_async_event_cmpl *cmpl) 1997 { 1998 u16 event_id = le16_to_cpu(cmpl->event_id); 1999 u32 data1 = le32_to_cpu(cmpl->event_data1); 2000 u32 data2 = le32_to_cpu(cmpl->event_data2); 2001 2002 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2003 switch (event_id) { 2004 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2005 struct bnxt_link_info *link_info = &bp->link_info; 2006 2007 if (BNXT_VF(bp)) 2008 goto async_event_process_exit; 2009 2010 /* print unsupported speed warning in forced speed mode only */ 2011 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2012 (data1 & 0x20000)) { 2013 u16 fw_speed = link_info->force_link_speed; 2014 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2015 2016 if (speed != SPEED_UNKNOWN) 2017 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2018 speed); 2019 } 2020 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2021 } 2022 fallthrough; 2023 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2024 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2025 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2026 fallthrough; 2027 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2028 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2029 break; 2030 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2031 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2032 break; 2033 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2034 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2035 2036 if (BNXT_VF(bp)) 2037 break; 2038 2039 if (bp->pf.port_id != port_id) 2040 break; 2041 2042 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2043 break; 2044 } 2045 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2046 if (BNXT_PF(bp)) 2047 goto async_event_process_exit; 2048 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2049 break; 2050 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2051 char *fatal_str = "non-fatal"; 2052 2053 if (!bp->fw_health) 2054 goto async_event_process_exit; 2055 2056 bp->fw_reset_timestamp = jiffies; 2057 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2058 if (!bp->fw_reset_min_dsecs) 2059 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2060 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2061 if (!bp->fw_reset_max_dsecs) 2062 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2063 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2064 fatal_str = "fatal"; 2065 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2066 } 2067 netif_warn(bp, hw, bp->dev, 2068 "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2069 fatal_str, data1, data2, 2070 bp->fw_reset_min_dsecs * 100, 2071 bp->fw_reset_max_dsecs * 100); 2072 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2073 break; 2074 } 2075 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2076 struct bnxt_fw_health *fw_health = bp->fw_health; 2077 2078 if (!fw_health) 2079 goto async_event_process_exit; 2080 2081 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1); 2082 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2083 if (!fw_health->enabled) { 2084 netif_info(bp, drv, bp->dev, 2085 "Error recovery info: error recovery[0]\n"); 2086 break; 2087 } 2088 fw_health->tmr_multiplier = 2089 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2090 bp->current_interval * 10); 2091 fw_health->tmr_counter = fw_health->tmr_multiplier; 2092 fw_health->last_fw_heartbeat = 2093 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2094 fw_health->last_fw_reset_cnt = 2095 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2096 netif_info(bp, drv, bp->dev, 2097 "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n", 2098 fw_health->master, fw_health->last_fw_reset_cnt, 2099 bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG)); 2100 goto async_event_process_exit; 2101 } 2102 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2103 netif_notice(bp, hw, bp->dev, 2104 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2105 data1, data2); 2106 goto async_event_process_exit; 2107 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2108 struct bnxt_rx_ring_info *rxr; 2109 u16 grp_idx; 2110 2111 if (bp->flags & BNXT_FLAG_CHIP_P5) 2112 goto async_event_process_exit; 2113 2114 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2115 BNXT_EVENT_RING_TYPE(data2), data1); 2116 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2117 goto async_event_process_exit; 2118 2119 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2120 if (grp_idx == INVALID_HW_RING_ID) { 2121 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2122 data1); 2123 goto async_event_process_exit; 2124 } 2125 rxr = bp->bnapi[grp_idx]->rx_ring; 2126 bnxt_sched_reset(bp, rxr); 2127 goto async_event_process_exit; 2128 } 2129 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2130 struct bnxt_fw_health *fw_health = bp->fw_health; 2131 2132 netif_notice(bp, hw, bp->dev, 2133 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2134 data1, data2); 2135 if (fw_health) { 2136 fw_health->echo_req_data1 = data1; 2137 fw_health->echo_req_data2 = data2; 2138 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2139 break; 2140 } 2141 goto async_event_process_exit; 2142 } 2143 default: 2144 goto async_event_process_exit; 2145 } 2146 bnxt_queue_sp_work(bp); 2147 async_event_process_exit: 2148 bnxt_ulp_async_events(bp, cmpl); 2149 return 0; 2150 } 2151 2152 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2153 { 2154 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2155 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2156 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2157 (struct hwrm_fwd_req_cmpl *)txcmp; 2158 2159 switch (cmpl_type) { 2160 case CMPL_BASE_TYPE_HWRM_DONE: 2161 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2162 if (seq_id == bp->hwrm_intr_seq_id) 2163 bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id; 2164 else 2165 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 2166 break; 2167 2168 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2169 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2170 2171 if ((vf_id < bp->pf.first_vf_id) || 2172 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2173 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2174 vf_id); 2175 return -EINVAL; 2176 } 2177 2178 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2179 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2180 bnxt_queue_sp_work(bp); 2181 break; 2182 2183 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2184 bnxt_async_event_process(bp, 2185 (struct hwrm_async_event_cmpl *)txcmp); 2186 2187 default: 2188 break; 2189 } 2190 2191 return 0; 2192 } 2193 2194 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2195 { 2196 struct bnxt_napi *bnapi = dev_instance; 2197 struct bnxt *bp = bnapi->bp; 2198 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2199 u32 cons = RING_CMP(cpr->cp_raw_cons); 2200 2201 cpr->event_ctr++; 2202 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2203 napi_schedule(&bnapi->napi); 2204 return IRQ_HANDLED; 2205 } 2206 2207 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2208 { 2209 u32 raw_cons = cpr->cp_raw_cons; 2210 u16 cons = RING_CMP(raw_cons); 2211 struct tx_cmp *txcmp; 2212 2213 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2214 2215 return TX_CMP_VALID(txcmp, raw_cons); 2216 } 2217 2218 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2219 { 2220 struct bnxt_napi *bnapi = dev_instance; 2221 struct bnxt *bp = bnapi->bp; 2222 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2223 u32 cons = RING_CMP(cpr->cp_raw_cons); 2224 u32 int_status; 2225 2226 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2227 2228 if (!bnxt_has_work(bp, cpr)) { 2229 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2230 /* return if erroneous interrupt */ 2231 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2232 return IRQ_NONE; 2233 } 2234 2235 /* disable ring IRQ */ 2236 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2237 2238 /* Return here if interrupt is shared and is disabled. */ 2239 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2240 return IRQ_HANDLED; 2241 2242 napi_schedule(&bnapi->napi); 2243 return IRQ_HANDLED; 2244 } 2245 2246 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2247 int budget) 2248 { 2249 struct bnxt_napi *bnapi = cpr->bnapi; 2250 u32 raw_cons = cpr->cp_raw_cons; 2251 u32 cons; 2252 int tx_pkts = 0; 2253 int rx_pkts = 0; 2254 u8 event = 0; 2255 struct tx_cmp *txcmp; 2256 2257 cpr->has_more_work = 0; 2258 cpr->had_work_done = 1; 2259 while (1) { 2260 int rc; 2261 2262 cons = RING_CMP(raw_cons); 2263 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2264 2265 if (!TX_CMP_VALID(txcmp, raw_cons)) 2266 break; 2267 2268 /* The valid test of the entry must be done first before 2269 * reading any further. 2270 */ 2271 dma_rmb(); 2272 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2273 tx_pkts++; 2274 /* return full budget so NAPI will complete. */ 2275 if (unlikely(tx_pkts > bp->tx_wake_thresh)) { 2276 rx_pkts = budget; 2277 raw_cons = NEXT_RAW_CMP(raw_cons); 2278 if (budget) 2279 cpr->has_more_work = 1; 2280 break; 2281 } 2282 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2283 if (likely(budget)) 2284 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2285 else 2286 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2287 &event); 2288 if (likely(rc >= 0)) 2289 rx_pkts += rc; 2290 /* Increment rx_pkts when rc is -ENOMEM to count towards 2291 * the NAPI budget. Otherwise, we may potentially loop 2292 * here forever if we consistently cannot allocate 2293 * buffers. 2294 */ 2295 else if (rc == -ENOMEM && budget) 2296 rx_pkts++; 2297 else if (rc == -EBUSY) /* partial completion */ 2298 break; 2299 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2300 CMPL_BASE_TYPE_HWRM_DONE) || 2301 (TX_CMP_TYPE(txcmp) == 2302 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2303 (TX_CMP_TYPE(txcmp) == 2304 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2305 bnxt_hwrm_handler(bp, txcmp); 2306 } 2307 raw_cons = NEXT_RAW_CMP(raw_cons); 2308 2309 if (rx_pkts && rx_pkts == budget) { 2310 cpr->has_more_work = 1; 2311 break; 2312 } 2313 } 2314 2315 if (event & BNXT_REDIRECT_EVENT) 2316 xdp_do_flush_map(); 2317 2318 if (event & BNXT_TX_EVENT) { 2319 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2320 u16 prod = txr->tx_prod; 2321 2322 /* Sync BD data before updating doorbell */ 2323 wmb(); 2324 2325 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2326 } 2327 2328 cpr->cp_raw_cons = raw_cons; 2329 bnapi->tx_pkts += tx_pkts; 2330 bnapi->events |= event; 2331 return rx_pkts; 2332 } 2333 2334 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2335 { 2336 if (bnapi->tx_pkts) { 2337 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2338 bnapi->tx_pkts = 0; 2339 } 2340 2341 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2342 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2343 2344 if (bnapi->events & BNXT_AGG_EVENT) 2345 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2346 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2347 } 2348 bnapi->events = 0; 2349 } 2350 2351 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2352 int budget) 2353 { 2354 struct bnxt_napi *bnapi = cpr->bnapi; 2355 int rx_pkts; 2356 2357 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2358 2359 /* ACK completion ring before freeing tx ring and producing new 2360 * buffers in rx/agg rings to prevent overflowing the completion 2361 * ring. 2362 */ 2363 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2364 2365 __bnxt_poll_work_done(bp, bnapi); 2366 return rx_pkts; 2367 } 2368 2369 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2370 { 2371 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2372 struct bnxt *bp = bnapi->bp; 2373 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2374 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2375 struct tx_cmp *txcmp; 2376 struct rx_cmp_ext *rxcmp1; 2377 u32 cp_cons, tmp_raw_cons; 2378 u32 raw_cons = cpr->cp_raw_cons; 2379 u32 rx_pkts = 0; 2380 u8 event = 0; 2381 2382 while (1) { 2383 int rc; 2384 2385 cp_cons = RING_CMP(raw_cons); 2386 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2387 2388 if (!TX_CMP_VALID(txcmp, raw_cons)) 2389 break; 2390 2391 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2392 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2393 cp_cons = RING_CMP(tmp_raw_cons); 2394 rxcmp1 = (struct rx_cmp_ext *) 2395 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2396 2397 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2398 break; 2399 2400 /* force an error to recycle the buffer */ 2401 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2402 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2403 2404 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2405 if (likely(rc == -EIO) && budget) 2406 rx_pkts++; 2407 else if (rc == -EBUSY) /* partial completion */ 2408 break; 2409 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2410 CMPL_BASE_TYPE_HWRM_DONE)) { 2411 bnxt_hwrm_handler(bp, txcmp); 2412 } else { 2413 netdev_err(bp->dev, 2414 "Invalid completion received on special ring\n"); 2415 } 2416 raw_cons = NEXT_RAW_CMP(raw_cons); 2417 2418 if (rx_pkts == budget) 2419 break; 2420 } 2421 2422 cpr->cp_raw_cons = raw_cons; 2423 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2424 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2425 2426 if (event & BNXT_AGG_EVENT) 2427 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2428 2429 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2430 napi_complete_done(napi, rx_pkts); 2431 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2432 } 2433 return rx_pkts; 2434 } 2435 2436 static int bnxt_poll(struct napi_struct *napi, int budget) 2437 { 2438 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2439 struct bnxt *bp = bnapi->bp; 2440 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2441 int work_done = 0; 2442 2443 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2444 napi_complete(napi); 2445 return 0; 2446 } 2447 while (1) { 2448 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2449 2450 if (work_done >= budget) { 2451 if (!budget) 2452 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2453 break; 2454 } 2455 2456 if (!bnxt_has_work(bp, cpr)) { 2457 if (napi_complete_done(napi, work_done)) 2458 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2459 break; 2460 } 2461 } 2462 if (bp->flags & BNXT_FLAG_DIM) { 2463 struct dim_sample dim_sample = {}; 2464 2465 dim_update_sample(cpr->event_ctr, 2466 cpr->rx_packets, 2467 cpr->rx_bytes, 2468 &dim_sample); 2469 net_dim(&cpr->dim, dim_sample); 2470 } 2471 return work_done; 2472 } 2473 2474 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2475 { 2476 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2477 int i, work_done = 0; 2478 2479 for (i = 0; i < 2; i++) { 2480 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2481 2482 if (cpr2) { 2483 work_done += __bnxt_poll_work(bp, cpr2, 2484 budget - work_done); 2485 cpr->has_more_work |= cpr2->has_more_work; 2486 } 2487 } 2488 return work_done; 2489 } 2490 2491 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2492 u64 dbr_type) 2493 { 2494 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2495 int i; 2496 2497 for (i = 0; i < 2; i++) { 2498 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2499 struct bnxt_db_info *db; 2500 2501 if (cpr2 && cpr2->had_work_done) { 2502 db = &cpr2->cp_db; 2503 writeq(db->db_key64 | dbr_type | 2504 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2505 cpr2->had_work_done = 0; 2506 } 2507 } 2508 __bnxt_poll_work_done(bp, bnapi); 2509 } 2510 2511 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2512 { 2513 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2514 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2515 u32 raw_cons = cpr->cp_raw_cons; 2516 struct bnxt *bp = bnapi->bp; 2517 struct nqe_cn *nqcmp; 2518 int work_done = 0; 2519 u32 cons; 2520 2521 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2522 napi_complete(napi); 2523 return 0; 2524 } 2525 if (cpr->has_more_work) { 2526 cpr->has_more_work = 0; 2527 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2528 } 2529 while (1) { 2530 cons = RING_CMP(raw_cons); 2531 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2532 2533 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2534 if (cpr->has_more_work) 2535 break; 2536 2537 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2538 cpr->cp_raw_cons = raw_cons; 2539 if (napi_complete_done(napi, work_done)) 2540 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2541 cpr->cp_raw_cons); 2542 return work_done; 2543 } 2544 2545 /* The valid test of the entry must be done first before 2546 * reading any further. 2547 */ 2548 dma_rmb(); 2549 2550 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2551 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2552 struct bnxt_cp_ring_info *cpr2; 2553 2554 cpr2 = cpr->cp_ring_arr[idx]; 2555 work_done += __bnxt_poll_work(bp, cpr2, 2556 budget - work_done); 2557 cpr->has_more_work |= cpr2->has_more_work; 2558 } else { 2559 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2560 } 2561 raw_cons = NEXT_RAW_CMP(raw_cons); 2562 } 2563 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2564 if (raw_cons != cpr->cp_raw_cons) { 2565 cpr->cp_raw_cons = raw_cons; 2566 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2567 } 2568 return work_done; 2569 } 2570 2571 static void bnxt_free_tx_skbs(struct bnxt *bp) 2572 { 2573 int i, max_idx; 2574 struct pci_dev *pdev = bp->pdev; 2575 2576 if (!bp->tx_ring) 2577 return; 2578 2579 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2580 for (i = 0; i < bp->tx_nr_rings; i++) { 2581 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2582 int j; 2583 2584 for (j = 0; j < max_idx;) { 2585 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2586 struct sk_buff *skb; 2587 int k, last; 2588 2589 if (i < bp->tx_nr_rings_xdp && 2590 tx_buf->action == XDP_REDIRECT) { 2591 dma_unmap_single(&pdev->dev, 2592 dma_unmap_addr(tx_buf, mapping), 2593 dma_unmap_len(tx_buf, len), 2594 PCI_DMA_TODEVICE); 2595 xdp_return_frame(tx_buf->xdpf); 2596 tx_buf->action = 0; 2597 tx_buf->xdpf = NULL; 2598 j++; 2599 continue; 2600 } 2601 2602 skb = tx_buf->skb; 2603 if (!skb) { 2604 j++; 2605 continue; 2606 } 2607 2608 tx_buf->skb = NULL; 2609 2610 if (tx_buf->is_push) { 2611 dev_kfree_skb(skb); 2612 j += 2; 2613 continue; 2614 } 2615 2616 dma_unmap_single(&pdev->dev, 2617 dma_unmap_addr(tx_buf, mapping), 2618 skb_headlen(skb), 2619 PCI_DMA_TODEVICE); 2620 2621 last = tx_buf->nr_frags; 2622 j += 2; 2623 for (k = 0; k < last; k++, j++) { 2624 int ring_idx = j & bp->tx_ring_mask; 2625 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2626 2627 tx_buf = &txr->tx_buf_ring[ring_idx]; 2628 dma_unmap_page( 2629 &pdev->dev, 2630 dma_unmap_addr(tx_buf, mapping), 2631 skb_frag_size(frag), PCI_DMA_TODEVICE); 2632 } 2633 dev_kfree_skb(skb); 2634 } 2635 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2636 } 2637 } 2638 2639 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2640 { 2641 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2642 struct pci_dev *pdev = bp->pdev; 2643 struct bnxt_tpa_idx_map *map; 2644 int i, max_idx, max_agg_idx; 2645 2646 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2647 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2648 if (!rxr->rx_tpa) 2649 goto skip_rx_tpa_free; 2650 2651 for (i = 0; i < bp->max_tpa; i++) { 2652 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2653 u8 *data = tpa_info->data; 2654 2655 if (!data) 2656 continue; 2657 2658 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2659 bp->rx_buf_use_size, bp->rx_dir, 2660 DMA_ATTR_WEAK_ORDERING); 2661 2662 tpa_info->data = NULL; 2663 2664 kfree(data); 2665 } 2666 2667 skip_rx_tpa_free: 2668 for (i = 0; i < max_idx; i++) { 2669 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2670 dma_addr_t mapping = rx_buf->mapping; 2671 void *data = rx_buf->data; 2672 2673 if (!data) 2674 continue; 2675 2676 rx_buf->data = NULL; 2677 if (BNXT_RX_PAGE_MODE(bp)) { 2678 mapping -= bp->rx_dma_offset; 2679 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2680 bp->rx_dir, 2681 DMA_ATTR_WEAK_ORDERING); 2682 page_pool_recycle_direct(rxr->page_pool, data); 2683 } else { 2684 dma_unmap_single_attrs(&pdev->dev, mapping, 2685 bp->rx_buf_use_size, bp->rx_dir, 2686 DMA_ATTR_WEAK_ORDERING); 2687 kfree(data); 2688 } 2689 } 2690 for (i = 0; i < max_agg_idx; i++) { 2691 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2692 struct page *page = rx_agg_buf->page; 2693 2694 if (!page) 2695 continue; 2696 2697 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2698 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 2699 DMA_ATTR_WEAK_ORDERING); 2700 2701 rx_agg_buf->page = NULL; 2702 __clear_bit(i, rxr->rx_agg_bmap); 2703 2704 __free_page(page); 2705 } 2706 if (rxr->rx_page) { 2707 __free_page(rxr->rx_page); 2708 rxr->rx_page = NULL; 2709 } 2710 map = rxr->rx_tpa_idx_map; 2711 if (map) 2712 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2713 } 2714 2715 static void bnxt_free_rx_skbs(struct bnxt *bp) 2716 { 2717 int i; 2718 2719 if (!bp->rx_ring) 2720 return; 2721 2722 for (i = 0; i < bp->rx_nr_rings; i++) 2723 bnxt_free_one_rx_ring_skbs(bp, i); 2724 } 2725 2726 static void bnxt_free_skbs(struct bnxt *bp) 2727 { 2728 bnxt_free_tx_skbs(bp); 2729 bnxt_free_rx_skbs(bp); 2730 } 2731 2732 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2733 { 2734 u8 init_val = mem_init->init_val; 2735 u16 offset = mem_init->offset; 2736 u8 *p2 = p; 2737 int i; 2738 2739 if (!init_val) 2740 return; 2741 if (offset == BNXT_MEM_INVALID_OFFSET) { 2742 memset(p, init_val, len); 2743 return; 2744 } 2745 for (i = 0; i < len; i += mem_init->size) 2746 *(p2 + i + offset) = init_val; 2747 } 2748 2749 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2750 { 2751 struct pci_dev *pdev = bp->pdev; 2752 int i; 2753 2754 for (i = 0; i < rmem->nr_pages; i++) { 2755 if (!rmem->pg_arr[i]) 2756 continue; 2757 2758 dma_free_coherent(&pdev->dev, rmem->page_size, 2759 rmem->pg_arr[i], rmem->dma_arr[i]); 2760 2761 rmem->pg_arr[i] = NULL; 2762 } 2763 if (rmem->pg_tbl) { 2764 size_t pg_tbl_size = rmem->nr_pages * 8; 2765 2766 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2767 pg_tbl_size = rmem->page_size; 2768 dma_free_coherent(&pdev->dev, pg_tbl_size, 2769 rmem->pg_tbl, rmem->pg_tbl_map); 2770 rmem->pg_tbl = NULL; 2771 } 2772 if (rmem->vmem_size && *rmem->vmem) { 2773 vfree(*rmem->vmem); 2774 *rmem->vmem = NULL; 2775 } 2776 } 2777 2778 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2779 { 2780 struct pci_dev *pdev = bp->pdev; 2781 u64 valid_bit = 0; 2782 int i; 2783 2784 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2785 valid_bit = PTU_PTE_VALID; 2786 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2787 size_t pg_tbl_size = rmem->nr_pages * 8; 2788 2789 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2790 pg_tbl_size = rmem->page_size; 2791 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2792 &rmem->pg_tbl_map, 2793 GFP_KERNEL); 2794 if (!rmem->pg_tbl) 2795 return -ENOMEM; 2796 } 2797 2798 for (i = 0; i < rmem->nr_pages; i++) { 2799 u64 extra_bits = valid_bit; 2800 2801 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2802 rmem->page_size, 2803 &rmem->dma_arr[i], 2804 GFP_KERNEL); 2805 if (!rmem->pg_arr[i]) 2806 return -ENOMEM; 2807 2808 if (rmem->mem_init) 2809 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2810 rmem->page_size); 2811 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2812 if (i == rmem->nr_pages - 2 && 2813 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2814 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2815 else if (i == rmem->nr_pages - 1 && 2816 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2817 extra_bits |= PTU_PTE_LAST; 2818 rmem->pg_tbl[i] = 2819 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2820 } 2821 } 2822 2823 if (rmem->vmem_size) { 2824 *rmem->vmem = vzalloc(rmem->vmem_size); 2825 if (!(*rmem->vmem)) 2826 return -ENOMEM; 2827 } 2828 return 0; 2829 } 2830 2831 static void bnxt_free_tpa_info(struct bnxt *bp) 2832 { 2833 int i; 2834 2835 for (i = 0; i < bp->rx_nr_rings; i++) { 2836 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2837 2838 kfree(rxr->rx_tpa_idx_map); 2839 rxr->rx_tpa_idx_map = NULL; 2840 if (rxr->rx_tpa) { 2841 kfree(rxr->rx_tpa[0].agg_arr); 2842 rxr->rx_tpa[0].agg_arr = NULL; 2843 } 2844 kfree(rxr->rx_tpa); 2845 rxr->rx_tpa = NULL; 2846 } 2847 } 2848 2849 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2850 { 2851 int i, j, total_aggs = 0; 2852 2853 bp->max_tpa = MAX_TPA; 2854 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2855 if (!bp->max_tpa_v2) 2856 return 0; 2857 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 2858 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 2859 } 2860 2861 for (i = 0; i < bp->rx_nr_rings; i++) { 2862 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2863 struct rx_agg_cmp *agg; 2864 2865 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 2866 GFP_KERNEL); 2867 if (!rxr->rx_tpa) 2868 return -ENOMEM; 2869 2870 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 2871 continue; 2872 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 2873 rxr->rx_tpa[0].agg_arr = agg; 2874 if (!agg) 2875 return -ENOMEM; 2876 for (j = 1; j < bp->max_tpa; j++) 2877 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 2878 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 2879 GFP_KERNEL); 2880 if (!rxr->rx_tpa_idx_map) 2881 return -ENOMEM; 2882 } 2883 return 0; 2884 } 2885 2886 static void bnxt_free_rx_rings(struct bnxt *bp) 2887 { 2888 int i; 2889 2890 if (!bp->rx_ring) 2891 return; 2892 2893 bnxt_free_tpa_info(bp); 2894 for (i = 0; i < bp->rx_nr_rings; i++) { 2895 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2896 struct bnxt_ring_struct *ring; 2897 2898 if (rxr->xdp_prog) 2899 bpf_prog_put(rxr->xdp_prog); 2900 2901 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 2902 xdp_rxq_info_unreg(&rxr->xdp_rxq); 2903 2904 page_pool_destroy(rxr->page_pool); 2905 rxr->page_pool = NULL; 2906 2907 kfree(rxr->rx_agg_bmap); 2908 rxr->rx_agg_bmap = NULL; 2909 2910 ring = &rxr->rx_ring_struct; 2911 bnxt_free_ring(bp, &ring->ring_mem); 2912 2913 ring = &rxr->rx_agg_ring_struct; 2914 bnxt_free_ring(bp, &ring->ring_mem); 2915 } 2916 } 2917 2918 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 2919 struct bnxt_rx_ring_info *rxr) 2920 { 2921 struct page_pool_params pp = { 0 }; 2922 2923 pp.pool_size = bp->rx_ring_size; 2924 pp.nid = dev_to_node(&bp->pdev->dev); 2925 pp.dev = &bp->pdev->dev; 2926 pp.dma_dir = DMA_BIDIRECTIONAL; 2927 2928 rxr->page_pool = page_pool_create(&pp); 2929 if (IS_ERR(rxr->page_pool)) { 2930 int err = PTR_ERR(rxr->page_pool); 2931 2932 rxr->page_pool = NULL; 2933 return err; 2934 } 2935 return 0; 2936 } 2937 2938 static int bnxt_alloc_rx_rings(struct bnxt *bp) 2939 { 2940 int i, rc = 0, agg_rings = 0; 2941 2942 if (!bp->rx_ring) 2943 return -ENOMEM; 2944 2945 if (bp->flags & BNXT_FLAG_AGG_RINGS) 2946 agg_rings = 1; 2947 2948 for (i = 0; i < bp->rx_nr_rings; i++) { 2949 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2950 struct bnxt_ring_struct *ring; 2951 2952 ring = &rxr->rx_ring_struct; 2953 2954 rc = bnxt_alloc_rx_page_pool(bp, rxr); 2955 if (rc) 2956 return rc; 2957 2958 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 2959 if (rc < 0) 2960 return rc; 2961 2962 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 2963 MEM_TYPE_PAGE_POOL, 2964 rxr->page_pool); 2965 if (rc) { 2966 xdp_rxq_info_unreg(&rxr->xdp_rxq); 2967 return rc; 2968 } 2969 2970 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 2971 if (rc) 2972 return rc; 2973 2974 ring->grp_idx = i; 2975 if (agg_rings) { 2976 u16 mem_size; 2977 2978 ring = &rxr->rx_agg_ring_struct; 2979 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 2980 if (rc) 2981 return rc; 2982 2983 ring->grp_idx = i; 2984 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 2985 mem_size = rxr->rx_agg_bmap_size / 8; 2986 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 2987 if (!rxr->rx_agg_bmap) 2988 return -ENOMEM; 2989 } 2990 } 2991 if (bp->flags & BNXT_FLAG_TPA) 2992 rc = bnxt_alloc_tpa_info(bp); 2993 return rc; 2994 } 2995 2996 static void bnxt_free_tx_rings(struct bnxt *bp) 2997 { 2998 int i; 2999 struct pci_dev *pdev = bp->pdev; 3000 3001 if (!bp->tx_ring) 3002 return; 3003 3004 for (i = 0; i < bp->tx_nr_rings; i++) { 3005 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3006 struct bnxt_ring_struct *ring; 3007 3008 if (txr->tx_push) { 3009 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3010 txr->tx_push, txr->tx_push_mapping); 3011 txr->tx_push = NULL; 3012 } 3013 3014 ring = &txr->tx_ring_struct; 3015 3016 bnxt_free_ring(bp, &ring->ring_mem); 3017 } 3018 } 3019 3020 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3021 { 3022 int i, j, rc; 3023 struct pci_dev *pdev = bp->pdev; 3024 3025 bp->tx_push_size = 0; 3026 if (bp->tx_push_thresh) { 3027 int push_size; 3028 3029 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3030 bp->tx_push_thresh); 3031 3032 if (push_size > 256) { 3033 push_size = 0; 3034 bp->tx_push_thresh = 0; 3035 } 3036 3037 bp->tx_push_size = push_size; 3038 } 3039 3040 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3041 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3042 struct bnxt_ring_struct *ring; 3043 u8 qidx; 3044 3045 ring = &txr->tx_ring_struct; 3046 3047 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3048 if (rc) 3049 return rc; 3050 3051 ring->grp_idx = txr->bnapi->index; 3052 if (bp->tx_push_size) { 3053 dma_addr_t mapping; 3054 3055 /* One pre-allocated DMA buffer to backup 3056 * TX push operation 3057 */ 3058 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3059 bp->tx_push_size, 3060 &txr->tx_push_mapping, 3061 GFP_KERNEL); 3062 3063 if (!txr->tx_push) 3064 return -ENOMEM; 3065 3066 mapping = txr->tx_push_mapping + 3067 sizeof(struct tx_push_bd); 3068 txr->data_mapping = cpu_to_le64(mapping); 3069 } 3070 qidx = bp->tc_to_qidx[j]; 3071 ring->queue_id = bp->q_info[qidx].queue_id; 3072 if (i < bp->tx_nr_rings_xdp) 3073 continue; 3074 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3075 j++; 3076 } 3077 return 0; 3078 } 3079 3080 static void bnxt_free_cp_rings(struct bnxt *bp) 3081 { 3082 int i; 3083 3084 if (!bp->bnapi) 3085 return; 3086 3087 for (i = 0; i < bp->cp_nr_rings; i++) { 3088 struct bnxt_napi *bnapi = bp->bnapi[i]; 3089 struct bnxt_cp_ring_info *cpr; 3090 struct bnxt_ring_struct *ring; 3091 int j; 3092 3093 if (!bnapi) 3094 continue; 3095 3096 cpr = &bnapi->cp_ring; 3097 ring = &cpr->cp_ring_struct; 3098 3099 bnxt_free_ring(bp, &ring->ring_mem); 3100 3101 for (j = 0; j < 2; j++) { 3102 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3103 3104 if (cpr2) { 3105 ring = &cpr2->cp_ring_struct; 3106 bnxt_free_ring(bp, &ring->ring_mem); 3107 kfree(cpr2); 3108 cpr->cp_ring_arr[j] = NULL; 3109 } 3110 } 3111 } 3112 } 3113 3114 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3115 { 3116 struct bnxt_ring_mem_info *rmem; 3117 struct bnxt_ring_struct *ring; 3118 struct bnxt_cp_ring_info *cpr; 3119 int rc; 3120 3121 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3122 if (!cpr) 3123 return NULL; 3124 3125 ring = &cpr->cp_ring_struct; 3126 rmem = &ring->ring_mem; 3127 rmem->nr_pages = bp->cp_nr_pages; 3128 rmem->page_size = HW_CMPD_RING_SIZE; 3129 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3130 rmem->dma_arr = cpr->cp_desc_mapping; 3131 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3132 rc = bnxt_alloc_ring(bp, rmem); 3133 if (rc) { 3134 bnxt_free_ring(bp, rmem); 3135 kfree(cpr); 3136 cpr = NULL; 3137 } 3138 return cpr; 3139 } 3140 3141 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3142 { 3143 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3144 int i, rc, ulp_base_vec, ulp_msix; 3145 3146 ulp_msix = bnxt_get_ulp_msix_num(bp); 3147 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3148 for (i = 0; i < bp->cp_nr_rings; i++) { 3149 struct bnxt_napi *bnapi = bp->bnapi[i]; 3150 struct bnxt_cp_ring_info *cpr; 3151 struct bnxt_ring_struct *ring; 3152 3153 if (!bnapi) 3154 continue; 3155 3156 cpr = &bnapi->cp_ring; 3157 cpr->bnapi = bnapi; 3158 ring = &cpr->cp_ring_struct; 3159 3160 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3161 if (rc) 3162 return rc; 3163 3164 if (ulp_msix && i >= ulp_base_vec) 3165 ring->map_idx = i + ulp_msix; 3166 else 3167 ring->map_idx = i; 3168 3169 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3170 continue; 3171 3172 if (i < bp->rx_nr_rings) { 3173 struct bnxt_cp_ring_info *cpr2 = 3174 bnxt_alloc_cp_sub_ring(bp); 3175 3176 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3177 if (!cpr2) 3178 return -ENOMEM; 3179 cpr2->bnapi = bnapi; 3180 } 3181 if ((sh && i < bp->tx_nr_rings) || 3182 (!sh && i >= bp->rx_nr_rings)) { 3183 struct bnxt_cp_ring_info *cpr2 = 3184 bnxt_alloc_cp_sub_ring(bp); 3185 3186 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3187 if (!cpr2) 3188 return -ENOMEM; 3189 cpr2->bnapi = bnapi; 3190 } 3191 } 3192 return 0; 3193 } 3194 3195 static void bnxt_init_ring_struct(struct bnxt *bp) 3196 { 3197 int i; 3198 3199 for (i = 0; i < bp->cp_nr_rings; i++) { 3200 struct bnxt_napi *bnapi = bp->bnapi[i]; 3201 struct bnxt_ring_mem_info *rmem; 3202 struct bnxt_cp_ring_info *cpr; 3203 struct bnxt_rx_ring_info *rxr; 3204 struct bnxt_tx_ring_info *txr; 3205 struct bnxt_ring_struct *ring; 3206 3207 if (!bnapi) 3208 continue; 3209 3210 cpr = &bnapi->cp_ring; 3211 ring = &cpr->cp_ring_struct; 3212 rmem = &ring->ring_mem; 3213 rmem->nr_pages = bp->cp_nr_pages; 3214 rmem->page_size = HW_CMPD_RING_SIZE; 3215 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3216 rmem->dma_arr = cpr->cp_desc_mapping; 3217 rmem->vmem_size = 0; 3218 3219 rxr = bnapi->rx_ring; 3220 if (!rxr) 3221 goto skip_rx; 3222 3223 ring = &rxr->rx_ring_struct; 3224 rmem = &ring->ring_mem; 3225 rmem->nr_pages = bp->rx_nr_pages; 3226 rmem->page_size = HW_RXBD_RING_SIZE; 3227 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3228 rmem->dma_arr = rxr->rx_desc_mapping; 3229 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3230 rmem->vmem = (void **)&rxr->rx_buf_ring; 3231 3232 ring = &rxr->rx_agg_ring_struct; 3233 rmem = &ring->ring_mem; 3234 rmem->nr_pages = bp->rx_agg_nr_pages; 3235 rmem->page_size = HW_RXBD_RING_SIZE; 3236 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3237 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3238 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3239 rmem->vmem = (void **)&rxr->rx_agg_ring; 3240 3241 skip_rx: 3242 txr = bnapi->tx_ring; 3243 if (!txr) 3244 continue; 3245 3246 ring = &txr->tx_ring_struct; 3247 rmem = &ring->ring_mem; 3248 rmem->nr_pages = bp->tx_nr_pages; 3249 rmem->page_size = HW_RXBD_RING_SIZE; 3250 rmem->pg_arr = (void **)txr->tx_desc_ring; 3251 rmem->dma_arr = txr->tx_desc_mapping; 3252 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3253 rmem->vmem = (void **)&txr->tx_buf_ring; 3254 } 3255 } 3256 3257 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3258 { 3259 int i; 3260 u32 prod; 3261 struct rx_bd **rx_buf_ring; 3262 3263 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3264 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3265 int j; 3266 struct rx_bd *rxbd; 3267 3268 rxbd = rx_buf_ring[i]; 3269 if (!rxbd) 3270 continue; 3271 3272 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3273 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3274 rxbd->rx_bd_opaque = prod; 3275 } 3276 } 3277 } 3278 3279 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3280 { 3281 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3282 struct net_device *dev = bp->dev; 3283 u32 prod; 3284 int i; 3285 3286 prod = rxr->rx_prod; 3287 for (i = 0; i < bp->rx_ring_size; i++) { 3288 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3289 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3290 ring_nr, i, bp->rx_ring_size); 3291 break; 3292 } 3293 prod = NEXT_RX(prod); 3294 } 3295 rxr->rx_prod = prod; 3296 3297 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3298 return 0; 3299 3300 prod = rxr->rx_agg_prod; 3301 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3302 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3303 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3304 ring_nr, i, bp->rx_ring_size); 3305 break; 3306 } 3307 prod = NEXT_RX_AGG(prod); 3308 } 3309 rxr->rx_agg_prod = prod; 3310 3311 if (rxr->rx_tpa) { 3312 dma_addr_t mapping; 3313 u8 *data; 3314 3315 for (i = 0; i < bp->max_tpa; i++) { 3316 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3317 if (!data) 3318 return -ENOMEM; 3319 3320 rxr->rx_tpa[i].data = data; 3321 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3322 rxr->rx_tpa[i].mapping = mapping; 3323 } 3324 } 3325 return 0; 3326 } 3327 3328 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3329 { 3330 struct bnxt_rx_ring_info *rxr; 3331 struct bnxt_ring_struct *ring; 3332 u32 type; 3333 3334 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3335 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3336 3337 if (NET_IP_ALIGN == 2) 3338 type |= RX_BD_FLAGS_SOP; 3339 3340 rxr = &bp->rx_ring[ring_nr]; 3341 ring = &rxr->rx_ring_struct; 3342 bnxt_init_rxbd_pages(ring, type); 3343 3344 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3345 bpf_prog_add(bp->xdp_prog, 1); 3346 rxr->xdp_prog = bp->xdp_prog; 3347 } 3348 ring->fw_ring_id = INVALID_HW_RING_ID; 3349 3350 ring = &rxr->rx_agg_ring_struct; 3351 ring->fw_ring_id = INVALID_HW_RING_ID; 3352 3353 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3354 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3355 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3356 3357 bnxt_init_rxbd_pages(ring, type); 3358 } 3359 3360 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3361 } 3362 3363 static void bnxt_init_cp_rings(struct bnxt *bp) 3364 { 3365 int i, j; 3366 3367 for (i = 0; i < bp->cp_nr_rings; i++) { 3368 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3369 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3370 3371 ring->fw_ring_id = INVALID_HW_RING_ID; 3372 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3373 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3374 for (j = 0; j < 2; j++) { 3375 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3376 3377 if (!cpr2) 3378 continue; 3379 3380 ring = &cpr2->cp_ring_struct; 3381 ring->fw_ring_id = INVALID_HW_RING_ID; 3382 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3383 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3384 } 3385 } 3386 } 3387 3388 static int bnxt_init_rx_rings(struct bnxt *bp) 3389 { 3390 int i, rc = 0; 3391 3392 if (BNXT_RX_PAGE_MODE(bp)) { 3393 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3394 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3395 } else { 3396 bp->rx_offset = BNXT_RX_OFFSET; 3397 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3398 } 3399 3400 for (i = 0; i < bp->rx_nr_rings; i++) { 3401 rc = bnxt_init_one_rx_ring(bp, i); 3402 if (rc) 3403 break; 3404 } 3405 3406 return rc; 3407 } 3408 3409 static int bnxt_init_tx_rings(struct bnxt *bp) 3410 { 3411 u16 i; 3412 3413 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3414 MAX_SKB_FRAGS + 1); 3415 3416 for (i = 0; i < bp->tx_nr_rings; i++) { 3417 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3418 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3419 3420 ring->fw_ring_id = INVALID_HW_RING_ID; 3421 } 3422 3423 return 0; 3424 } 3425 3426 static void bnxt_free_ring_grps(struct bnxt *bp) 3427 { 3428 kfree(bp->grp_info); 3429 bp->grp_info = NULL; 3430 } 3431 3432 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3433 { 3434 int i; 3435 3436 if (irq_re_init) { 3437 bp->grp_info = kcalloc(bp->cp_nr_rings, 3438 sizeof(struct bnxt_ring_grp_info), 3439 GFP_KERNEL); 3440 if (!bp->grp_info) 3441 return -ENOMEM; 3442 } 3443 for (i = 0; i < bp->cp_nr_rings; i++) { 3444 if (irq_re_init) 3445 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3446 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3447 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3448 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3449 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3450 } 3451 return 0; 3452 } 3453 3454 static void bnxt_free_vnics(struct bnxt *bp) 3455 { 3456 kfree(bp->vnic_info); 3457 bp->vnic_info = NULL; 3458 bp->nr_vnics = 0; 3459 } 3460 3461 static int bnxt_alloc_vnics(struct bnxt *bp) 3462 { 3463 int num_vnics = 1; 3464 3465 #ifdef CONFIG_RFS_ACCEL 3466 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3467 num_vnics += bp->rx_nr_rings; 3468 #endif 3469 3470 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3471 num_vnics++; 3472 3473 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3474 GFP_KERNEL); 3475 if (!bp->vnic_info) 3476 return -ENOMEM; 3477 3478 bp->nr_vnics = num_vnics; 3479 return 0; 3480 } 3481 3482 static void bnxt_init_vnics(struct bnxt *bp) 3483 { 3484 int i; 3485 3486 for (i = 0; i < bp->nr_vnics; i++) { 3487 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3488 int j; 3489 3490 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3491 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3492 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3493 3494 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3495 3496 if (bp->vnic_info[i].rss_hash_key) { 3497 if (i == 0) 3498 prandom_bytes(vnic->rss_hash_key, 3499 HW_HASH_KEY_SIZE); 3500 else 3501 memcpy(vnic->rss_hash_key, 3502 bp->vnic_info[0].rss_hash_key, 3503 HW_HASH_KEY_SIZE); 3504 } 3505 } 3506 } 3507 3508 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3509 { 3510 int pages; 3511 3512 pages = ring_size / desc_per_pg; 3513 3514 if (!pages) 3515 return 1; 3516 3517 pages++; 3518 3519 while (pages & (pages - 1)) 3520 pages++; 3521 3522 return pages; 3523 } 3524 3525 void bnxt_set_tpa_flags(struct bnxt *bp) 3526 { 3527 bp->flags &= ~BNXT_FLAG_TPA; 3528 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3529 return; 3530 if (bp->dev->features & NETIF_F_LRO) 3531 bp->flags |= BNXT_FLAG_LRO; 3532 else if (bp->dev->features & NETIF_F_GRO_HW) 3533 bp->flags |= BNXT_FLAG_GRO; 3534 } 3535 3536 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3537 * be set on entry. 3538 */ 3539 void bnxt_set_ring_params(struct bnxt *bp) 3540 { 3541 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3542 u32 agg_factor = 0, agg_ring_size = 0; 3543 3544 /* 8 for CRC and VLAN */ 3545 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3546 3547 rx_space = rx_size + NET_SKB_PAD + 3548 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3549 3550 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3551 ring_size = bp->rx_ring_size; 3552 bp->rx_agg_ring_size = 0; 3553 bp->rx_agg_nr_pages = 0; 3554 3555 if (bp->flags & BNXT_FLAG_TPA) 3556 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3557 3558 bp->flags &= ~BNXT_FLAG_JUMBO; 3559 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3560 u32 jumbo_factor; 3561 3562 bp->flags |= BNXT_FLAG_JUMBO; 3563 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3564 if (jumbo_factor > agg_factor) 3565 agg_factor = jumbo_factor; 3566 } 3567 agg_ring_size = ring_size * agg_factor; 3568 3569 if (agg_ring_size) { 3570 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3571 RX_DESC_CNT); 3572 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3573 u32 tmp = agg_ring_size; 3574 3575 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3576 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3577 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3578 tmp, agg_ring_size); 3579 } 3580 bp->rx_agg_ring_size = agg_ring_size; 3581 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3582 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3583 rx_space = rx_size + NET_SKB_PAD + 3584 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3585 } 3586 3587 bp->rx_buf_use_size = rx_size; 3588 bp->rx_buf_size = rx_space; 3589 3590 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3591 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3592 3593 ring_size = bp->tx_ring_size; 3594 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3595 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3596 3597 max_rx_cmpl = bp->rx_ring_size; 3598 /* MAX TPA needs to be added because TPA_START completions are 3599 * immediately recycled, so the TPA completions are not bound by 3600 * the RX ring size. 3601 */ 3602 if (bp->flags & BNXT_FLAG_TPA) 3603 max_rx_cmpl += bp->max_tpa; 3604 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3605 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3606 bp->cp_ring_size = ring_size; 3607 3608 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3609 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3610 bp->cp_nr_pages = MAX_CP_PAGES; 3611 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3612 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3613 ring_size, bp->cp_ring_size); 3614 } 3615 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3616 bp->cp_ring_mask = bp->cp_bit - 1; 3617 } 3618 3619 /* Changing allocation mode of RX rings. 3620 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3621 */ 3622 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3623 { 3624 if (page_mode) { 3625 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3626 return -EOPNOTSUPP; 3627 bp->dev->max_mtu = 3628 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3629 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3630 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3631 bp->rx_dir = DMA_BIDIRECTIONAL; 3632 bp->rx_skb_func = bnxt_rx_page_skb; 3633 /* Disable LRO or GRO_HW */ 3634 netdev_update_features(bp->dev); 3635 } else { 3636 bp->dev->max_mtu = bp->max_mtu; 3637 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3638 bp->rx_dir = DMA_FROM_DEVICE; 3639 bp->rx_skb_func = bnxt_rx_skb; 3640 } 3641 return 0; 3642 } 3643 3644 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3645 { 3646 int i; 3647 struct bnxt_vnic_info *vnic; 3648 struct pci_dev *pdev = bp->pdev; 3649 3650 if (!bp->vnic_info) 3651 return; 3652 3653 for (i = 0; i < bp->nr_vnics; i++) { 3654 vnic = &bp->vnic_info[i]; 3655 3656 kfree(vnic->fw_grp_ids); 3657 vnic->fw_grp_ids = NULL; 3658 3659 kfree(vnic->uc_list); 3660 vnic->uc_list = NULL; 3661 3662 if (vnic->mc_list) { 3663 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3664 vnic->mc_list, vnic->mc_list_mapping); 3665 vnic->mc_list = NULL; 3666 } 3667 3668 if (vnic->rss_table) { 3669 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3670 vnic->rss_table, 3671 vnic->rss_table_dma_addr); 3672 vnic->rss_table = NULL; 3673 } 3674 3675 vnic->rss_hash_key = NULL; 3676 vnic->flags = 0; 3677 } 3678 } 3679 3680 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3681 { 3682 int i, rc = 0, size; 3683 struct bnxt_vnic_info *vnic; 3684 struct pci_dev *pdev = bp->pdev; 3685 int max_rings; 3686 3687 for (i = 0; i < bp->nr_vnics; i++) { 3688 vnic = &bp->vnic_info[i]; 3689 3690 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3691 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3692 3693 if (mem_size > 0) { 3694 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3695 if (!vnic->uc_list) { 3696 rc = -ENOMEM; 3697 goto out; 3698 } 3699 } 3700 } 3701 3702 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3703 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3704 vnic->mc_list = 3705 dma_alloc_coherent(&pdev->dev, 3706 vnic->mc_list_size, 3707 &vnic->mc_list_mapping, 3708 GFP_KERNEL); 3709 if (!vnic->mc_list) { 3710 rc = -ENOMEM; 3711 goto out; 3712 } 3713 } 3714 3715 if (bp->flags & BNXT_FLAG_CHIP_P5) 3716 goto vnic_skip_grps; 3717 3718 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3719 max_rings = bp->rx_nr_rings; 3720 else 3721 max_rings = 1; 3722 3723 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3724 if (!vnic->fw_grp_ids) { 3725 rc = -ENOMEM; 3726 goto out; 3727 } 3728 vnic_skip_grps: 3729 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3730 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3731 continue; 3732 3733 /* Allocate rss table and hash key */ 3734 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3735 if (bp->flags & BNXT_FLAG_CHIP_P5) 3736 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3737 3738 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3739 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3740 vnic->rss_table_size, 3741 &vnic->rss_table_dma_addr, 3742 GFP_KERNEL); 3743 if (!vnic->rss_table) { 3744 rc = -ENOMEM; 3745 goto out; 3746 } 3747 3748 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3749 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3750 } 3751 return 0; 3752 3753 out: 3754 return rc; 3755 } 3756 3757 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3758 { 3759 struct pci_dev *pdev = bp->pdev; 3760 3761 if (bp->hwrm_cmd_resp_addr) { 3762 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 3763 bp->hwrm_cmd_resp_dma_addr); 3764 bp->hwrm_cmd_resp_addr = NULL; 3765 } 3766 3767 if (bp->hwrm_cmd_kong_resp_addr) { 3768 dma_free_coherent(&pdev->dev, PAGE_SIZE, 3769 bp->hwrm_cmd_kong_resp_addr, 3770 bp->hwrm_cmd_kong_resp_dma_addr); 3771 bp->hwrm_cmd_kong_resp_addr = NULL; 3772 } 3773 } 3774 3775 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp) 3776 { 3777 struct pci_dev *pdev = bp->pdev; 3778 3779 if (bp->hwrm_cmd_kong_resp_addr) 3780 return 0; 3781 3782 bp->hwrm_cmd_kong_resp_addr = 3783 dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3784 &bp->hwrm_cmd_kong_resp_dma_addr, 3785 GFP_KERNEL); 3786 if (!bp->hwrm_cmd_kong_resp_addr) 3787 return -ENOMEM; 3788 3789 return 0; 3790 } 3791 3792 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3793 { 3794 struct pci_dev *pdev = bp->pdev; 3795 3796 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3797 &bp->hwrm_cmd_resp_dma_addr, 3798 GFP_KERNEL); 3799 if (!bp->hwrm_cmd_resp_addr) 3800 return -ENOMEM; 3801 3802 return 0; 3803 } 3804 3805 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp) 3806 { 3807 if (bp->hwrm_short_cmd_req_addr) { 3808 struct pci_dev *pdev = bp->pdev; 3809 3810 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3811 bp->hwrm_short_cmd_req_addr, 3812 bp->hwrm_short_cmd_req_dma_addr); 3813 bp->hwrm_short_cmd_req_addr = NULL; 3814 } 3815 } 3816 3817 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp) 3818 { 3819 struct pci_dev *pdev = bp->pdev; 3820 3821 if (bp->hwrm_short_cmd_req_addr) 3822 return 0; 3823 3824 bp->hwrm_short_cmd_req_addr = 3825 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3826 &bp->hwrm_short_cmd_req_dma_addr, 3827 GFP_KERNEL); 3828 if (!bp->hwrm_short_cmd_req_addr) 3829 return -ENOMEM; 3830 3831 return 0; 3832 } 3833 3834 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 3835 { 3836 kfree(stats->hw_masks); 3837 stats->hw_masks = NULL; 3838 kfree(stats->sw_stats); 3839 stats->sw_stats = NULL; 3840 if (stats->hw_stats) { 3841 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 3842 stats->hw_stats_map); 3843 stats->hw_stats = NULL; 3844 } 3845 } 3846 3847 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 3848 bool alloc_masks) 3849 { 3850 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 3851 &stats->hw_stats_map, GFP_KERNEL); 3852 if (!stats->hw_stats) 3853 return -ENOMEM; 3854 3855 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 3856 if (!stats->sw_stats) 3857 goto stats_mem_err; 3858 3859 if (alloc_masks) { 3860 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 3861 if (!stats->hw_masks) 3862 goto stats_mem_err; 3863 } 3864 return 0; 3865 3866 stats_mem_err: 3867 bnxt_free_stats_mem(bp, stats); 3868 return -ENOMEM; 3869 } 3870 3871 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 3872 { 3873 int i; 3874 3875 for (i = 0; i < count; i++) 3876 mask_arr[i] = mask; 3877 } 3878 3879 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 3880 { 3881 int i; 3882 3883 for (i = 0; i < count; i++) 3884 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 3885 } 3886 3887 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 3888 struct bnxt_stats_mem *stats) 3889 { 3890 struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 3891 struct hwrm_func_qstats_ext_input req = {0}; 3892 __le64 *hw_masks; 3893 int rc; 3894 3895 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 3896 !(bp->flags & BNXT_FLAG_CHIP_P5)) 3897 return -EOPNOTSUPP; 3898 3899 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1); 3900 req.fid = cpu_to_le16(0xffff); 3901 req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 3902 mutex_lock(&bp->hwrm_cmd_lock); 3903 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3904 if (rc) 3905 goto qstat_exit; 3906 3907 hw_masks = &resp->rx_ucast_pkts; 3908 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 3909 3910 qstat_exit: 3911 mutex_unlock(&bp->hwrm_cmd_lock); 3912 return rc; 3913 } 3914 3915 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 3916 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 3917 3918 static void bnxt_init_stats(struct bnxt *bp) 3919 { 3920 struct bnxt_napi *bnapi = bp->bnapi[0]; 3921 struct bnxt_cp_ring_info *cpr; 3922 struct bnxt_stats_mem *stats; 3923 __le64 *rx_stats, *tx_stats; 3924 int rc, rx_count, tx_count; 3925 u64 *rx_masks, *tx_masks; 3926 u64 mask; 3927 u8 flags; 3928 3929 cpr = &bnapi->cp_ring; 3930 stats = &cpr->stats; 3931 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 3932 if (rc) { 3933 if (bp->flags & BNXT_FLAG_CHIP_P5) 3934 mask = (1ULL << 48) - 1; 3935 else 3936 mask = -1ULL; 3937 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 3938 } 3939 if (bp->flags & BNXT_FLAG_PORT_STATS) { 3940 stats = &bp->port_stats; 3941 rx_stats = stats->hw_stats; 3942 rx_masks = stats->hw_masks; 3943 rx_count = sizeof(struct rx_port_stats) / 8; 3944 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 3945 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 3946 tx_count = sizeof(struct tx_port_stats) / 8; 3947 3948 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 3949 rc = bnxt_hwrm_port_qstats(bp, flags); 3950 if (rc) { 3951 mask = (1ULL << 40) - 1; 3952 3953 bnxt_fill_masks(rx_masks, mask, rx_count); 3954 bnxt_fill_masks(tx_masks, mask, tx_count); 3955 } else { 3956 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 3957 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 3958 bnxt_hwrm_port_qstats(bp, 0); 3959 } 3960 } 3961 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 3962 stats = &bp->rx_port_stats_ext; 3963 rx_stats = stats->hw_stats; 3964 rx_masks = stats->hw_masks; 3965 rx_count = sizeof(struct rx_port_stats_ext) / 8; 3966 stats = &bp->tx_port_stats_ext; 3967 tx_stats = stats->hw_stats; 3968 tx_masks = stats->hw_masks; 3969 tx_count = sizeof(struct tx_port_stats_ext) / 8; 3970 3971 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 3972 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 3973 if (rc) { 3974 mask = (1ULL << 40) - 1; 3975 3976 bnxt_fill_masks(rx_masks, mask, rx_count); 3977 if (tx_stats) 3978 bnxt_fill_masks(tx_masks, mask, tx_count); 3979 } else { 3980 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 3981 if (tx_stats) 3982 bnxt_copy_hw_masks(tx_masks, tx_stats, 3983 tx_count); 3984 bnxt_hwrm_port_qstats_ext(bp, 0); 3985 } 3986 } 3987 } 3988 3989 static void bnxt_free_port_stats(struct bnxt *bp) 3990 { 3991 bp->flags &= ~BNXT_FLAG_PORT_STATS; 3992 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 3993 3994 bnxt_free_stats_mem(bp, &bp->port_stats); 3995 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 3996 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 3997 } 3998 3999 static void bnxt_free_ring_stats(struct bnxt *bp) 4000 { 4001 int i; 4002 4003 if (!bp->bnapi) 4004 return; 4005 4006 for (i = 0; i < bp->cp_nr_rings; i++) { 4007 struct bnxt_napi *bnapi = bp->bnapi[i]; 4008 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4009 4010 bnxt_free_stats_mem(bp, &cpr->stats); 4011 } 4012 } 4013 4014 static int bnxt_alloc_stats(struct bnxt *bp) 4015 { 4016 u32 size, i; 4017 int rc; 4018 4019 size = bp->hw_ring_stats_size; 4020 4021 for (i = 0; i < bp->cp_nr_rings; i++) { 4022 struct bnxt_napi *bnapi = bp->bnapi[i]; 4023 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4024 4025 cpr->stats.len = size; 4026 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4027 if (rc) 4028 return rc; 4029 4030 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4031 } 4032 4033 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4034 return 0; 4035 4036 if (bp->port_stats.hw_stats) 4037 goto alloc_ext_stats; 4038 4039 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4040 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4041 if (rc) 4042 return rc; 4043 4044 bp->flags |= BNXT_FLAG_PORT_STATS; 4045 4046 alloc_ext_stats: 4047 /* Display extended statistics only if FW supports it */ 4048 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4049 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4050 return 0; 4051 4052 if (bp->rx_port_stats_ext.hw_stats) 4053 goto alloc_tx_ext_stats; 4054 4055 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4056 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4057 /* Extended stats are optional */ 4058 if (rc) 4059 return 0; 4060 4061 alloc_tx_ext_stats: 4062 if (bp->tx_port_stats_ext.hw_stats) 4063 return 0; 4064 4065 if (bp->hwrm_spec_code >= 0x10902 || 4066 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4067 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4068 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4069 /* Extended stats are optional */ 4070 if (rc) 4071 return 0; 4072 } 4073 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4074 return 0; 4075 } 4076 4077 static void bnxt_clear_ring_indices(struct bnxt *bp) 4078 { 4079 int i; 4080 4081 if (!bp->bnapi) 4082 return; 4083 4084 for (i = 0; i < bp->cp_nr_rings; i++) { 4085 struct bnxt_napi *bnapi = bp->bnapi[i]; 4086 struct bnxt_cp_ring_info *cpr; 4087 struct bnxt_rx_ring_info *rxr; 4088 struct bnxt_tx_ring_info *txr; 4089 4090 if (!bnapi) 4091 continue; 4092 4093 cpr = &bnapi->cp_ring; 4094 cpr->cp_raw_cons = 0; 4095 4096 txr = bnapi->tx_ring; 4097 if (txr) { 4098 txr->tx_prod = 0; 4099 txr->tx_cons = 0; 4100 } 4101 4102 rxr = bnapi->rx_ring; 4103 if (rxr) { 4104 rxr->rx_prod = 0; 4105 rxr->rx_agg_prod = 0; 4106 rxr->rx_sw_agg_prod = 0; 4107 rxr->rx_next_cons = 0; 4108 } 4109 } 4110 } 4111 4112 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4113 { 4114 #ifdef CONFIG_RFS_ACCEL 4115 int i; 4116 4117 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4118 * safe to delete the hash table. 4119 */ 4120 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4121 struct hlist_head *head; 4122 struct hlist_node *tmp; 4123 struct bnxt_ntuple_filter *fltr; 4124 4125 head = &bp->ntp_fltr_hash_tbl[i]; 4126 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4127 hlist_del(&fltr->hash); 4128 kfree(fltr); 4129 } 4130 } 4131 if (irq_reinit) { 4132 kfree(bp->ntp_fltr_bmap); 4133 bp->ntp_fltr_bmap = NULL; 4134 } 4135 bp->ntp_fltr_count = 0; 4136 #endif 4137 } 4138 4139 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4140 { 4141 #ifdef CONFIG_RFS_ACCEL 4142 int i, rc = 0; 4143 4144 if (!(bp->flags & BNXT_FLAG_RFS)) 4145 return 0; 4146 4147 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4148 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4149 4150 bp->ntp_fltr_count = 0; 4151 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4152 sizeof(long), 4153 GFP_KERNEL); 4154 4155 if (!bp->ntp_fltr_bmap) 4156 rc = -ENOMEM; 4157 4158 return rc; 4159 #else 4160 return 0; 4161 #endif 4162 } 4163 4164 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4165 { 4166 bnxt_free_vnic_attributes(bp); 4167 bnxt_free_tx_rings(bp); 4168 bnxt_free_rx_rings(bp); 4169 bnxt_free_cp_rings(bp); 4170 bnxt_free_ntp_fltrs(bp, irq_re_init); 4171 if (irq_re_init) { 4172 bnxt_free_ring_stats(bp); 4173 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4174 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4175 bnxt_free_port_stats(bp); 4176 bnxt_free_ring_grps(bp); 4177 bnxt_free_vnics(bp); 4178 kfree(bp->tx_ring_map); 4179 bp->tx_ring_map = NULL; 4180 kfree(bp->tx_ring); 4181 bp->tx_ring = NULL; 4182 kfree(bp->rx_ring); 4183 bp->rx_ring = NULL; 4184 kfree(bp->bnapi); 4185 bp->bnapi = NULL; 4186 } else { 4187 bnxt_clear_ring_indices(bp); 4188 } 4189 } 4190 4191 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4192 { 4193 int i, j, rc, size, arr_size; 4194 void *bnapi; 4195 4196 if (irq_re_init) { 4197 /* Allocate bnapi mem pointer array and mem block for 4198 * all queues 4199 */ 4200 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4201 bp->cp_nr_rings); 4202 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4203 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4204 if (!bnapi) 4205 return -ENOMEM; 4206 4207 bp->bnapi = bnapi; 4208 bnapi += arr_size; 4209 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4210 bp->bnapi[i] = bnapi; 4211 bp->bnapi[i]->index = i; 4212 bp->bnapi[i]->bp = bp; 4213 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4214 struct bnxt_cp_ring_info *cpr = 4215 &bp->bnapi[i]->cp_ring; 4216 4217 cpr->cp_ring_struct.ring_mem.flags = 4218 BNXT_RMEM_RING_PTE_FLAG; 4219 } 4220 } 4221 4222 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4223 sizeof(struct bnxt_rx_ring_info), 4224 GFP_KERNEL); 4225 if (!bp->rx_ring) 4226 return -ENOMEM; 4227 4228 for (i = 0; i < bp->rx_nr_rings; i++) { 4229 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4230 4231 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4232 rxr->rx_ring_struct.ring_mem.flags = 4233 BNXT_RMEM_RING_PTE_FLAG; 4234 rxr->rx_agg_ring_struct.ring_mem.flags = 4235 BNXT_RMEM_RING_PTE_FLAG; 4236 } 4237 rxr->bnapi = bp->bnapi[i]; 4238 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4239 } 4240 4241 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4242 sizeof(struct bnxt_tx_ring_info), 4243 GFP_KERNEL); 4244 if (!bp->tx_ring) 4245 return -ENOMEM; 4246 4247 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4248 GFP_KERNEL); 4249 4250 if (!bp->tx_ring_map) 4251 return -ENOMEM; 4252 4253 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4254 j = 0; 4255 else 4256 j = bp->rx_nr_rings; 4257 4258 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4259 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4260 4261 if (bp->flags & BNXT_FLAG_CHIP_P5) 4262 txr->tx_ring_struct.ring_mem.flags = 4263 BNXT_RMEM_RING_PTE_FLAG; 4264 txr->bnapi = bp->bnapi[j]; 4265 bp->bnapi[j]->tx_ring = txr; 4266 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4267 if (i >= bp->tx_nr_rings_xdp) { 4268 txr->txq_index = i - bp->tx_nr_rings_xdp; 4269 bp->bnapi[j]->tx_int = bnxt_tx_int; 4270 } else { 4271 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4272 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4273 } 4274 } 4275 4276 rc = bnxt_alloc_stats(bp); 4277 if (rc) 4278 goto alloc_mem_err; 4279 bnxt_init_stats(bp); 4280 4281 rc = bnxt_alloc_ntp_fltrs(bp); 4282 if (rc) 4283 goto alloc_mem_err; 4284 4285 rc = bnxt_alloc_vnics(bp); 4286 if (rc) 4287 goto alloc_mem_err; 4288 } 4289 4290 bnxt_init_ring_struct(bp); 4291 4292 rc = bnxt_alloc_rx_rings(bp); 4293 if (rc) 4294 goto alloc_mem_err; 4295 4296 rc = bnxt_alloc_tx_rings(bp); 4297 if (rc) 4298 goto alloc_mem_err; 4299 4300 rc = bnxt_alloc_cp_rings(bp); 4301 if (rc) 4302 goto alloc_mem_err; 4303 4304 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4305 BNXT_VNIC_UCAST_FLAG; 4306 rc = bnxt_alloc_vnic_attributes(bp); 4307 if (rc) 4308 goto alloc_mem_err; 4309 return 0; 4310 4311 alloc_mem_err: 4312 bnxt_free_mem(bp, true); 4313 return rc; 4314 } 4315 4316 static void bnxt_disable_int(struct bnxt *bp) 4317 { 4318 int i; 4319 4320 if (!bp->bnapi) 4321 return; 4322 4323 for (i = 0; i < bp->cp_nr_rings; i++) { 4324 struct bnxt_napi *bnapi = bp->bnapi[i]; 4325 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4326 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4327 4328 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4329 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4330 } 4331 } 4332 4333 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4334 { 4335 struct bnxt_napi *bnapi = bp->bnapi[n]; 4336 struct bnxt_cp_ring_info *cpr; 4337 4338 cpr = &bnapi->cp_ring; 4339 return cpr->cp_ring_struct.map_idx; 4340 } 4341 4342 static void bnxt_disable_int_sync(struct bnxt *bp) 4343 { 4344 int i; 4345 4346 if (!bp->irq_tbl) 4347 return; 4348 4349 atomic_inc(&bp->intr_sem); 4350 4351 bnxt_disable_int(bp); 4352 for (i = 0; i < bp->cp_nr_rings; i++) { 4353 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4354 4355 synchronize_irq(bp->irq_tbl[map_idx].vector); 4356 } 4357 } 4358 4359 static void bnxt_enable_int(struct bnxt *bp) 4360 { 4361 int i; 4362 4363 atomic_set(&bp->intr_sem, 0); 4364 for (i = 0; i < bp->cp_nr_rings; i++) { 4365 struct bnxt_napi *bnapi = bp->bnapi[i]; 4366 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4367 4368 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4369 } 4370 } 4371 4372 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 4373 u16 cmpl_ring, u16 target_id) 4374 { 4375 struct input *req = request; 4376 4377 req->req_type = cpu_to_le16(req_type); 4378 req->cmpl_ring = cpu_to_le16(cmpl_ring); 4379 req->target_id = cpu_to_le16(target_id); 4380 if (bnxt_kong_hwrm_message(bp, req)) 4381 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 4382 else 4383 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 4384 } 4385 4386 static int bnxt_hwrm_to_stderr(u32 hwrm_err) 4387 { 4388 switch (hwrm_err) { 4389 case HWRM_ERR_CODE_SUCCESS: 4390 return 0; 4391 case HWRM_ERR_CODE_RESOURCE_LOCKED: 4392 return -EROFS; 4393 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: 4394 return -EACCES; 4395 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: 4396 return -ENOSPC; 4397 case HWRM_ERR_CODE_INVALID_PARAMS: 4398 case HWRM_ERR_CODE_INVALID_FLAGS: 4399 case HWRM_ERR_CODE_INVALID_ENABLES: 4400 case HWRM_ERR_CODE_UNSUPPORTED_TLV: 4401 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: 4402 return -EINVAL; 4403 case HWRM_ERR_CODE_NO_BUFFER: 4404 return -ENOMEM; 4405 case HWRM_ERR_CODE_HOT_RESET_PROGRESS: 4406 case HWRM_ERR_CODE_BUSY: 4407 return -EAGAIN; 4408 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: 4409 return -EOPNOTSUPP; 4410 default: 4411 return -EIO; 4412 } 4413 } 4414 4415 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, 4416 int timeout, bool silent) 4417 { 4418 int i, intr_process, rc, tmo_count; 4419 struct input *req = msg; 4420 u32 *data = msg; 4421 u8 *valid; 4422 u16 cp_ring_id, len = 0; 4423 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 4424 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; 4425 struct hwrm_short_input short_input = {0}; 4426 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; 4427 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; 4428 u16 dst = BNXT_HWRM_CHNL_CHIMP; 4429 4430 if (BNXT_NO_FW_ACCESS(bp) && 4431 le16_to_cpu(req->req_type) != HWRM_FUNC_RESET) 4432 return -EBUSY; 4433 4434 if (msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4435 if (msg_len > bp->hwrm_max_ext_req_len || 4436 !bp->hwrm_short_cmd_req_addr) 4437 return -EINVAL; 4438 } 4439 4440 if (bnxt_hwrm_kong_chnl(bp, req)) { 4441 dst = BNXT_HWRM_CHNL_KONG; 4442 bar_offset = BNXT_GRCPF_REG_KONG_COMM; 4443 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; 4444 resp = bp->hwrm_cmd_kong_resp_addr; 4445 } 4446 4447 memset(resp, 0, PAGE_SIZE); 4448 cp_ring_id = le16_to_cpu(req->cmpl_ring); 4449 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 4450 4451 req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst)); 4452 /* currently supports only one outstanding message */ 4453 if (intr_process) 4454 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); 4455 4456 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 4457 msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4458 void *short_cmd_req = bp->hwrm_short_cmd_req_addr; 4459 u16 max_msg_len; 4460 4461 /* Set boundary for maximum extended request length for short 4462 * cmd format. If passed up from device use the max supported 4463 * internal req length. 4464 */ 4465 max_msg_len = bp->hwrm_max_ext_req_len; 4466 4467 memcpy(short_cmd_req, req, msg_len); 4468 if (msg_len < max_msg_len) 4469 memset(short_cmd_req + msg_len, 0, 4470 max_msg_len - msg_len); 4471 4472 short_input.req_type = req->req_type; 4473 short_input.signature = 4474 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); 4475 short_input.size = cpu_to_le16(msg_len); 4476 short_input.req_addr = 4477 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr); 4478 4479 data = (u32 *)&short_input; 4480 msg_len = sizeof(short_input); 4481 4482 /* Sync memory write before updating doorbell */ 4483 wmb(); 4484 4485 max_req_len = BNXT_HWRM_SHORT_REQ_LEN; 4486 } 4487 4488 /* Write request msg to hwrm channel */ 4489 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); 4490 4491 for (i = msg_len; i < max_req_len; i += 4) 4492 writel(0, bp->bar0 + bar_offset + i); 4493 4494 /* Ring channel doorbell */ 4495 writel(1, bp->bar0 + doorbell_offset); 4496 4497 if (!pci_is_enabled(bp->pdev)) 4498 return -ENODEV; 4499 4500 if (!timeout) 4501 timeout = DFLT_HWRM_CMD_TIMEOUT; 4502 /* Limit timeout to an upper limit */ 4503 timeout = min(timeout, HWRM_CMD_MAX_TIMEOUT); 4504 /* convert timeout to usec */ 4505 timeout *= 1000; 4506 4507 i = 0; 4508 /* Short timeout for the first few iterations: 4509 * number of loops = number of loops for short timeout + 4510 * number of loops for standard timeout. 4511 */ 4512 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; 4513 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; 4514 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); 4515 4516 if (intr_process) { 4517 u16 seq_id = bp->hwrm_intr_seq_id; 4518 4519 /* Wait until hwrm response cmpl interrupt is processed */ 4520 while (bp->hwrm_intr_seq_id != (u16)~seq_id && 4521 i++ < tmo_count) { 4522 /* Abort the wait for completion if the FW health 4523 * check has failed. 4524 */ 4525 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4526 return -EBUSY; 4527 /* on first few passes, just barely sleep */ 4528 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 4529 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4530 HWRM_SHORT_MAX_TIMEOUT); 4531 } else { 4532 if (HWRM_WAIT_MUST_ABORT(bp, req)) 4533 break; 4534 usleep_range(HWRM_MIN_TIMEOUT, 4535 HWRM_MAX_TIMEOUT); 4536 } 4537 } 4538 4539 if (bp->hwrm_intr_seq_id != (u16)~seq_id) { 4540 if (!silent) 4541 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 4542 le16_to_cpu(req->req_type)); 4543 return -EBUSY; 4544 } 4545 len = le16_to_cpu(resp->resp_len); 4546 valid = ((u8 *)resp) + len - 1; 4547 } else { 4548 int j; 4549 4550 /* Check if response len is updated */ 4551 for (i = 0; i < tmo_count; i++) { 4552 /* Abort the wait for completion if the FW health 4553 * check has failed. 4554 */ 4555 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4556 return -EBUSY; 4557 len = le16_to_cpu(resp->resp_len); 4558 if (len) 4559 break; 4560 /* on first few passes, just barely sleep */ 4561 if (i < HWRM_SHORT_TIMEOUT_COUNTER) { 4562 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4563 HWRM_SHORT_MAX_TIMEOUT); 4564 } else { 4565 if (HWRM_WAIT_MUST_ABORT(bp, req)) 4566 goto timeout_abort; 4567 usleep_range(HWRM_MIN_TIMEOUT, 4568 HWRM_MAX_TIMEOUT); 4569 } 4570 } 4571 4572 if (i >= tmo_count) { 4573 timeout_abort: 4574 if (!silent) 4575 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 4576 HWRM_TOTAL_TIMEOUT(i), 4577 le16_to_cpu(req->req_type), 4578 le16_to_cpu(req->seq_id), len); 4579 return -EBUSY; 4580 } 4581 4582 /* Last byte of resp contains valid bit */ 4583 valid = ((u8 *)resp) + len - 1; 4584 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) { 4585 /* make sure we read from updated DMA memory */ 4586 dma_rmb(); 4587 if (*valid) 4588 break; 4589 usleep_range(1, 5); 4590 } 4591 4592 if (j >= HWRM_VALID_BIT_DELAY_USEC) { 4593 if (!silent) 4594 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 4595 HWRM_TOTAL_TIMEOUT(i), 4596 le16_to_cpu(req->req_type), 4597 le16_to_cpu(req->seq_id), len, 4598 *valid); 4599 return -EBUSY; 4600 } 4601 } 4602 4603 /* Zero valid bit for compatibility. Valid bit in an older spec 4604 * may become a new field in a newer spec. We must make sure that 4605 * a new field not implemented by old spec will read zero. 4606 */ 4607 *valid = 0; 4608 rc = le16_to_cpu(resp->error_code); 4609 if (rc && !silent) 4610 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 4611 le16_to_cpu(resp->req_type), 4612 le16_to_cpu(resp->seq_id), rc); 4613 return bnxt_hwrm_to_stderr(rc); 4614 } 4615 4616 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4617 { 4618 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); 4619 } 4620 4621 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4622 int timeout) 4623 { 4624 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4625 } 4626 4627 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4628 { 4629 int rc; 4630 4631 mutex_lock(&bp->hwrm_cmd_lock); 4632 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 4633 mutex_unlock(&bp->hwrm_cmd_lock); 4634 return rc; 4635 } 4636 4637 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4638 int timeout) 4639 { 4640 int rc; 4641 4642 mutex_lock(&bp->hwrm_cmd_lock); 4643 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4644 mutex_unlock(&bp->hwrm_cmd_lock); 4645 return rc; 4646 } 4647 4648 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4649 bool async_only) 4650 { 4651 struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr; 4652 struct hwrm_func_drv_rgtr_input req = {0}; 4653 DECLARE_BITMAP(async_events_bmap, 256); 4654 u32 *events = (u32 *)async_events_bmap; 4655 u32 flags; 4656 int rc, i; 4657 4658 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 4659 4660 req.enables = 4661 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4662 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4663 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4664 4665 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4666 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4667 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4668 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4669 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4670 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4671 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4672 req.flags = cpu_to_le32(flags); 4673 req.ver_maj_8b = DRV_VER_MAJ; 4674 req.ver_min_8b = DRV_VER_MIN; 4675 req.ver_upd_8b = DRV_VER_UPD; 4676 req.ver_maj = cpu_to_le16(DRV_VER_MAJ); 4677 req.ver_min = cpu_to_le16(DRV_VER_MIN); 4678 req.ver_upd = cpu_to_le16(DRV_VER_UPD); 4679 4680 if (BNXT_PF(bp)) { 4681 u32 data[8]; 4682 int i; 4683 4684 memset(data, 0, sizeof(data)); 4685 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4686 u16 cmd = bnxt_vf_req_snif[i]; 4687 unsigned int bit, idx; 4688 4689 idx = cmd / 32; 4690 bit = cmd % 32; 4691 data[idx] |= 1 << bit; 4692 } 4693 4694 for (i = 0; i < 8; i++) 4695 req.vf_req_fwd[i] = cpu_to_le32(data[i]); 4696 4697 req.enables |= 4698 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4699 } 4700 4701 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4702 req.flags |= cpu_to_le32( 4703 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4704 4705 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4706 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4707 u16 event_id = bnxt_async_events_arr[i]; 4708 4709 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4710 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4711 continue; 4712 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4713 } 4714 if (bmap && bmap_size) { 4715 for (i = 0; i < bmap_size; i++) { 4716 if (test_bit(i, bmap)) 4717 __set_bit(i, async_events_bmap); 4718 } 4719 } 4720 for (i = 0; i < 8; i++) 4721 req.async_event_fwd[i] |= cpu_to_le32(events[i]); 4722 4723 if (async_only) 4724 req.enables = 4725 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4726 4727 mutex_lock(&bp->hwrm_cmd_lock); 4728 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4729 if (!rc) { 4730 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4731 if (resp->flags & 4732 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4733 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4734 } 4735 mutex_unlock(&bp->hwrm_cmd_lock); 4736 return rc; 4737 } 4738 4739 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4740 { 4741 struct hwrm_func_drv_unrgtr_input req = {0}; 4742 4743 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4744 return 0; 4745 4746 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); 4747 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4748 } 4749 4750 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4751 { 4752 u32 rc = 0; 4753 struct hwrm_tunnel_dst_port_free_input req = {0}; 4754 4755 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 4756 req.tunnel_type = tunnel_type; 4757 4758 switch (tunnel_type) { 4759 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4760 req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4761 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4762 break; 4763 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4764 req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4765 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4766 break; 4767 default: 4768 break; 4769 } 4770 4771 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4772 if (rc) 4773 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4774 rc); 4775 return rc; 4776 } 4777 4778 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4779 u8 tunnel_type) 4780 { 4781 u32 rc = 0; 4782 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 4783 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4784 4785 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 4786 4787 req.tunnel_type = tunnel_type; 4788 req.tunnel_dst_port_val = port; 4789 4790 mutex_lock(&bp->hwrm_cmd_lock); 4791 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4792 if (rc) { 4793 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4794 rc); 4795 goto err_out; 4796 } 4797 4798 switch (tunnel_type) { 4799 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4800 bp->vxlan_fw_dst_port_id = 4801 le16_to_cpu(resp->tunnel_dst_port_id); 4802 break; 4803 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4804 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4805 break; 4806 default: 4807 break; 4808 } 4809 4810 err_out: 4811 mutex_unlock(&bp->hwrm_cmd_lock); 4812 return rc; 4813 } 4814 4815 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4816 { 4817 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 4818 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4819 4820 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 4821 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4822 4823 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4824 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4825 req.mask = cpu_to_le32(vnic->rx_mask); 4826 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4827 } 4828 4829 #ifdef CONFIG_RFS_ACCEL 4830 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4831 struct bnxt_ntuple_filter *fltr) 4832 { 4833 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 4834 4835 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 4836 req.ntuple_filter_id = fltr->filter_id; 4837 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4838 } 4839 4840 #define BNXT_NTP_FLTR_FLAGS \ 4841 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4842 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4843 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4844 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4845 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4846 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4847 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4848 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4849 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4850 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4851 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4852 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4853 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4854 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4855 4856 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4857 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4858 4859 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4860 struct bnxt_ntuple_filter *fltr) 4861 { 4862 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 4863 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4864 struct flow_keys *keys = &fltr->fkeys; 4865 struct bnxt_vnic_info *vnic; 4866 u32 flags = 0; 4867 int rc = 0; 4868 4869 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 4870 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4871 4872 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4873 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4874 req.dst_id = cpu_to_le16(fltr->rxq); 4875 } else { 4876 vnic = &bp->vnic_info[fltr->rxq + 1]; 4877 req.dst_id = cpu_to_le16(vnic->fw_vnic_id); 4878 } 4879 req.flags = cpu_to_le32(flags); 4880 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4881 4882 req.ethertype = htons(ETH_P_IP); 4883 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4884 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4885 req.ip_protocol = keys->basic.ip_proto; 4886 4887 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4888 int i; 4889 4890 req.ethertype = htons(ETH_P_IPV6); 4891 req.ip_addr_type = 4892 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4893 *(struct in6_addr *)&req.src_ipaddr[0] = 4894 keys->addrs.v6addrs.src; 4895 *(struct in6_addr *)&req.dst_ipaddr[0] = 4896 keys->addrs.v6addrs.dst; 4897 for (i = 0; i < 4; i++) { 4898 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4899 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4900 } 4901 } else { 4902 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 4903 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4904 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 4905 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4906 } 4907 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 4908 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 4909 req.tunnel_type = 4910 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 4911 } 4912 4913 req.src_port = keys->ports.src; 4914 req.src_port_mask = cpu_to_be16(0xffff); 4915 req.dst_port = keys->ports.dst; 4916 req.dst_port_mask = cpu_to_be16(0xffff); 4917 4918 mutex_lock(&bp->hwrm_cmd_lock); 4919 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4920 if (!rc) { 4921 resp = bnxt_get_hwrm_resp_addr(bp, &req); 4922 fltr->filter_id = resp->ntuple_filter_id; 4923 } 4924 mutex_unlock(&bp->hwrm_cmd_lock); 4925 return rc; 4926 } 4927 #endif 4928 4929 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 4930 u8 *mac_addr) 4931 { 4932 u32 rc = 0; 4933 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 4934 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4935 4936 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 4937 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 4938 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 4939 req.flags |= 4940 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 4941 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 4942 req.enables = 4943 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 4944 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 4945 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 4946 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 4947 req.l2_addr_mask[0] = 0xff; 4948 req.l2_addr_mask[1] = 0xff; 4949 req.l2_addr_mask[2] = 0xff; 4950 req.l2_addr_mask[3] = 0xff; 4951 req.l2_addr_mask[4] = 0xff; 4952 req.l2_addr_mask[5] = 0xff; 4953 4954 mutex_lock(&bp->hwrm_cmd_lock); 4955 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4956 if (!rc) 4957 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 4958 resp->l2_filter_id; 4959 mutex_unlock(&bp->hwrm_cmd_lock); 4960 return rc; 4961 } 4962 4963 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 4964 { 4965 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 4966 int rc = 0; 4967 4968 /* Any associated ntuple filters will also be cleared by firmware. */ 4969 mutex_lock(&bp->hwrm_cmd_lock); 4970 for (i = 0; i < num_of_vnics; i++) { 4971 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4972 4973 for (j = 0; j < vnic->uc_filter_count; j++) { 4974 struct hwrm_cfa_l2_filter_free_input req = {0}; 4975 4976 bnxt_hwrm_cmd_hdr_init(bp, &req, 4977 HWRM_CFA_L2_FILTER_FREE, -1, -1); 4978 4979 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 4980 4981 rc = _hwrm_send_message(bp, &req, sizeof(req), 4982 HWRM_CMD_TIMEOUT); 4983 } 4984 vnic->uc_filter_count = 0; 4985 } 4986 mutex_unlock(&bp->hwrm_cmd_lock); 4987 4988 return rc; 4989 } 4990 4991 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 4992 { 4993 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4994 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 4995 struct hwrm_vnic_tpa_cfg_input req = {0}; 4996 4997 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 4998 return 0; 4999 5000 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 5001 5002 if (tpa_flags) { 5003 u16 mss = bp->dev->mtu - 40; 5004 u32 nsegs, n, segs = 0, flags; 5005 5006 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5007 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5008 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5009 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5010 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5011 if (tpa_flags & BNXT_FLAG_GRO) 5012 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5013 5014 req.flags = cpu_to_le32(flags); 5015 5016 req.enables = 5017 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5018 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5019 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5020 5021 /* Number of segs are log2 units, and first packet is not 5022 * included as part of this units. 5023 */ 5024 if (mss <= BNXT_RX_PAGE_SIZE) { 5025 n = BNXT_RX_PAGE_SIZE / mss; 5026 nsegs = (MAX_SKB_FRAGS - 1) * n; 5027 } else { 5028 n = mss / BNXT_RX_PAGE_SIZE; 5029 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5030 n++; 5031 nsegs = (MAX_SKB_FRAGS - n) / n; 5032 } 5033 5034 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5035 segs = MAX_TPA_SEGS_P5; 5036 max_aggs = bp->max_tpa; 5037 } else { 5038 segs = ilog2(nsegs); 5039 } 5040 req.max_agg_segs = cpu_to_le16(segs); 5041 req.max_aggs = cpu_to_le16(max_aggs); 5042 5043 req.min_agg_len = cpu_to_le32(512); 5044 } 5045 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5046 5047 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5048 } 5049 5050 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5051 { 5052 struct bnxt_ring_grp_info *grp_info; 5053 5054 grp_info = &bp->grp_info[ring->grp_idx]; 5055 return grp_info->cp_fw_ring_id; 5056 } 5057 5058 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5059 { 5060 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5061 struct bnxt_napi *bnapi = rxr->bnapi; 5062 struct bnxt_cp_ring_info *cpr; 5063 5064 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5065 return cpr->cp_ring_struct.fw_ring_id; 5066 } else { 5067 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5068 } 5069 } 5070 5071 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5072 { 5073 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5074 struct bnxt_napi *bnapi = txr->bnapi; 5075 struct bnxt_cp_ring_info *cpr; 5076 5077 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5078 return cpr->cp_ring_struct.fw_ring_id; 5079 } else { 5080 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5081 } 5082 } 5083 5084 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5085 { 5086 int entries; 5087 5088 if (bp->flags & BNXT_FLAG_CHIP_P5) 5089 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5090 else 5091 entries = HW_HASH_INDEX_SIZE; 5092 5093 bp->rss_indir_tbl_entries = entries; 5094 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5095 GFP_KERNEL); 5096 if (!bp->rss_indir_tbl) 5097 return -ENOMEM; 5098 return 0; 5099 } 5100 5101 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5102 { 5103 u16 max_rings, max_entries, pad, i; 5104 5105 if (!bp->rx_nr_rings) 5106 return; 5107 5108 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5109 max_rings = bp->rx_nr_rings - 1; 5110 else 5111 max_rings = bp->rx_nr_rings; 5112 5113 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5114 5115 for (i = 0; i < max_entries; i++) 5116 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5117 5118 pad = bp->rss_indir_tbl_entries - max_entries; 5119 if (pad) 5120 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5121 } 5122 5123 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5124 { 5125 u16 i, tbl_size, max_ring = 0; 5126 5127 if (!bp->rss_indir_tbl) 5128 return 0; 5129 5130 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5131 for (i = 0; i < tbl_size; i++) 5132 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5133 return max_ring; 5134 } 5135 5136 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5137 { 5138 if (bp->flags & BNXT_FLAG_CHIP_P5) 5139 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5140 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5141 return 2; 5142 return 1; 5143 } 5144 5145 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5146 { 5147 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5148 u16 i, j; 5149 5150 /* Fill the RSS indirection table with ring group ids */ 5151 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5152 if (!no_rss) 5153 j = bp->rss_indir_tbl[i]; 5154 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5155 } 5156 } 5157 5158 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5159 struct bnxt_vnic_info *vnic) 5160 { 5161 __le16 *ring_tbl = vnic->rss_table; 5162 struct bnxt_rx_ring_info *rxr; 5163 u16 tbl_size, i; 5164 5165 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5166 5167 for (i = 0; i < tbl_size; i++) { 5168 u16 ring_id, j; 5169 5170 j = bp->rss_indir_tbl[i]; 5171 rxr = &bp->rx_ring[j]; 5172 5173 ring_id = rxr->rx_ring_struct.fw_ring_id; 5174 *ring_tbl++ = cpu_to_le16(ring_id); 5175 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5176 *ring_tbl++ = cpu_to_le16(ring_id); 5177 } 5178 } 5179 5180 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5181 { 5182 if (bp->flags & BNXT_FLAG_CHIP_P5) 5183 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5184 else 5185 __bnxt_fill_hw_rss_tbl(bp, vnic); 5186 } 5187 5188 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5189 { 5190 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5191 struct hwrm_vnic_rss_cfg_input req = {0}; 5192 5193 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5194 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5195 return 0; 5196 5197 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5198 if (set_rss) { 5199 bnxt_fill_hw_rss_tbl(bp, vnic); 5200 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5201 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5202 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5203 req.hash_key_tbl_addr = 5204 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5205 } 5206 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5207 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5208 } 5209 5210 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5211 { 5212 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5213 struct hwrm_vnic_rss_cfg_input req = {0}; 5214 dma_addr_t ring_tbl_map; 5215 u32 i, nr_ctxs; 5216 5217 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5218 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5219 if (!set_rss) { 5220 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5221 return 0; 5222 } 5223 bnxt_fill_hw_rss_tbl(bp, vnic); 5224 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5225 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5226 req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5227 ring_tbl_map = vnic->rss_table_dma_addr; 5228 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5229 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5230 int rc; 5231 5232 req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5233 req.ring_table_pair_index = i; 5234 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5235 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5236 if (rc) 5237 return rc; 5238 } 5239 return 0; 5240 } 5241 5242 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5243 { 5244 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5245 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 5246 5247 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 5248 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5249 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5250 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5251 req.enables = 5252 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5253 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5254 /* thresholds not implemented in firmware yet */ 5255 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5256 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5257 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5258 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5259 } 5260 5261 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5262 u16 ctx_idx) 5263 { 5264 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 5265 5266 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 5267 req.rss_cos_lb_ctx_id = 5268 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5269 5270 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5271 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5272 } 5273 5274 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5275 { 5276 int i, j; 5277 5278 for (i = 0; i < bp->nr_vnics; i++) { 5279 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5280 5281 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5282 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5283 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5284 } 5285 } 5286 bp->rsscos_nr_ctxs = 0; 5287 } 5288 5289 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5290 { 5291 int rc; 5292 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 5293 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 5294 bp->hwrm_cmd_resp_addr; 5295 5296 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 5297 -1); 5298 5299 mutex_lock(&bp->hwrm_cmd_lock); 5300 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5301 if (!rc) 5302 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5303 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5304 mutex_unlock(&bp->hwrm_cmd_lock); 5305 5306 return rc; 5307 } 5308 5309 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5310 { 5311 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5312 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5313 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5314 } 5315 5316 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5317 { 5318 unsigned int ring = 0, grp_idx; 5319 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5320 struct hwrm_vnic_cfg_input req = {0}; 5321 u16 def_vlan = 0; 5322 5323 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 5324 5325 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5326 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5327 5328 req.default_rx_ring_id = 5329 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5330 req.default_cmpl_ring_id = 5331 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5332 req.enables = 5333 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5334 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5335 goto vnic_mru; 5336 } 5337 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5338 /* Only RSS support for now TBD: COS & LB */ 5339 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5340 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5341 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5342 VNIC_CFG_REQ_ENABLES_MRU); 5343 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5344 req.rss_rule = 5345 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5346 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5347 VNIC_CFG_REQ_ENABLES_MRU); 5348 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5349 } else { 5350 req.rss_rule = cpu_to_le16(0xffff); 5351 } 5352 5353 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5354 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5355 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5356 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5357 } else { 5358 req.cos_rule = cpu_to_le16(0xffff); 5359 } 5360 5361 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5362 ring = 0; 5363 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5364 ring = vnic_id - 1; 5365 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5366 ring = bp->rx_nr_rings - 1; 5367 5368 grp_idx = bp->rx_ring[ring].bnapi->index; 5369 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5370 req.lb_rule = cpu_to_le16(0xffff); 5371 vnic_mru: 5372 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5373 5374 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5375 #ifdef CONFIG_BNXT_SRIOV 5376 if (BNXT_VF(bp)) 5377 def_vlan = bp->vf.vlan; 5378 #endif 5379 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5380 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5381 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5382 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5383 5384 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5385 } 5386 5387 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5388 { 5389 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5390 struct hwrm_vnic_free_input req = {0}; 5391 5392 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 5393 req.vnic_id = 5394 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5395 5396 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5397 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5398 } 5399 } 5400 5401 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5402 { 5403 u16 i; 5404 5405 for (i = 0; i < bp->nr_vnics; i++) 5406 bnxt_hwrm_vnic_free_one(bp, i); 5407 } 5408 5409 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5410 unsigned int start_rx_ring_idx, 5411 unsigned int nr_rings) 5412 { 5413 int rc = 0; 5414 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5415 struct hwrm_vnic_alloc_input req = {0}; 5416 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5417 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5418 5419 if (bp->flags & BNXT_FLAG_CHIP_P5) 5420 goto vnic_no_ring_grps; 5421 5422 /* map ring groups to this vnic */ 5423 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5424 grp_idx = bp->rx_ring[i].bnapi->index; 5425 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5426 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5427 j, nr_rings); 5428 break; 5429 } 5430 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5431 } 5432 5433 vnic_no_ring_grps: 5434 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5435 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5436 if (vnic_id == 0) 5437 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5438 5439 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 5440 5441 mutex_lock(&bp->hwrm_cmd_lock); 5442 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5443 if (!rc) 5444 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5445 mutex_unlock(&bp->hwrm_cmd_lock); 5446 return rc; 5447 } 5448 5449 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5450 { 5451 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 5452 struct hwrm_vnic_qcaps_input req = {0}; 5453 int rc; 5454 5455 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5456 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5457 if (bp->hwrm_spec_code < 0x10600) 5458 return 0; 5459 5460 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1); 5461 mutex_lock(&bp->hwrm_cmd_lock); 5462 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5463 if (!rc) { 5464 u32 flags = le32_to_cpu(resp->flags); 5465 5466 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5467 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5468 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5469 if (flags & 5470 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5471 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5472 5473 /* Older P5 fw before EXT_HW_STATS support did not set 5474 * VLAN_STRIP_CAP properly. 5475 */ 5476 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5477 (BNXT_CHIP_P5_THOR(bp) && 5478 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5479 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5480 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5481 if (bp->max_tpa_v2) { 5482 if (BNXT_CHIP_P5_THOR(bp)) 5483 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5484 else 5485 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5486 } 5487 } 5488 mutex_unlock(&bp->hwrm_cmd_lock); 5489 return rc; 5490 } 5491 5492 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5493 { 5494 u16 i; 5495 u32 rc = 0; 5496 5497 if (bp->flags & BNXT_FLAG_CHIP_P5) 5498 return 0; 5499 5500 mutex_lock(&bp->hwrm_cmd_lock); 5501 for (i = 0; i < bp->rx_nr_rings; i++) { 5502 struct hwrm_ring_grp_alloc_input req = {0}; 5503 struct hwrm_ring_grp_alloc_output *resp = 5504 bp->hwrm_cmd_resp_addr; 5505 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5506 5507 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 5508 5509 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5510 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5511 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5512 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5513 5514 rc = _hwrm_send_message(bp, &req, sizeof(req), 5515 HWRM_CMD_TIMEOUT); 5516 if (rc) 5517 break; 5518 5519 bp->grp_info[grp_idx].fw_grp_id = 5520 le32_to_cpu(resp->ring_group_id); 5521 } 5522 mutex_unlock(&bp->hwrm_cmd_lock); 5523 return rc; 5524 } 5525 5526 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5527 { 5528 u16 i; 5529 struct hwrm_ring_grp_free_input req = {0}; 5530 5531 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5532 return; 5533 5534 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 5535 5536 mutex_lock(&bp->hwrm_cmd_lock); 5537 for (i = 0; i < bp->cp_nr_rings; i++) { 5538 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5539 continue; 5540 req.ring_group_id = 5541 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5542 5543 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5544 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5545 } 5546 mutex_unlock(&bp->hwrm_cmd_lock); 5547 } 5548 5549 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5550 struct bnxt_ring_struct *ring, 5551 u32 ring_type, u32 map_index) 5552 { 5553 int rc = 0, err = 0; 5554 struct hwrm_ring_alloc_input req = {0}; 5555 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5556 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5557 struct bnxt_ring_grp_info *grp_info; 5558 u16 ring_id; 5559 5560 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 5561 5562 req.enables = 0; 5563 if (rmem->nr_pages > 1) { 5564 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5565 /* Page size is in log2 units */ 5566 req.page_size = BNXT_PAGE_SHIFT; 5567 req.page_tbl_depth = 1; 5568 } else { 5569 req.page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5570 } 5571 req.fbo = 0; 5572 /* Association of ring index with doorbell index and MSIX number */ 5573 req.logical_id = cpu_to_le16(map_index); 5574 5575 switch (ring_type) { 5576 case HWRM_RING_ALLOC_TX: { 5577 struct bnxt_tx_ring_info *txr; 5578 5579 txr = container_of(ring, struct bnxt_tx_ring_info, 5580 tx_ring_struct); 5581 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5582 /* Association of transmit ring with completion ring */ 5583 grp_info = &bp->grp_info[ring->grp_idx]; 5584 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5585 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 5586 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5587 req.queue_id = cpu_to_le16(ring->queue_id); 5588 break; 5589 } 5590 case HWRM_RING_ALLOC_RX: 5591 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5592 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 5593 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5594 u16 flags = 0; 5595 5596 /* Association of rx ring with stats context */ 5597 grp_info = &bp->grp_info[ring->grp_idx]; 5598 req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5599 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5600 req.enables |= cpu_to_le32( 5601 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5602 if (NET_IP_ALIGN == 2) 5603 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5604 req.flags = cpu_to_le16(flags); 5605 } 5606 break; 5607 case HWRM_RING_ALLOC_AGG: 5608 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5609 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5610 /* Association of agg ring with rx ring */ 5611 grp_info = &bp->grp_info[ring->grp_idx]; 5612 req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5613 req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5614 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5615 req.enables |= cpu_to_le32( 5616 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5617 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5618 } else { 5619 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5620 } 5621 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5622 break; 5623 case HWRM_RING_ALLOC_CMPL: 5624 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5625 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5626 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5627 /* Association of cp ring with nq */ 5628 grp_info = &bp->grp_info[map_index]; 5629 req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5630 req.cq_handle = cpu_to_le64(ring->handle); 5631 req.enables |= cpu_to_le32( 5632 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5633 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5634 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5635 } 5636 break; 5637 case HWRM_RING_ALLOC_NQ: 5638 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5639 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5640 if (bp->flags & BNXT_FLAG_USING_MSIX) 5641 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5642 break; 5643 default: 5644 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5645 ring_type); 5646 return -1; 5647 } 5648 5649 mutex_lock(&bp->hwrm_cmd_lock); 5650 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5651 err = le16_to_cpu(resp->error_code); 5652 ring_id = le16_to_cpu(resp->ring_id); 5653 mutex_unlock(&bp->hwrm_cmd_lock); 5654 5655 if (rc || err) { 5656 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5657 ring_type, rc, err); 5658 return -EIO; 5659 } 5660 ring->fw_ring_id = ring_id; 5661 return rc; 5662 } 5663 5664 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5665 { 5666 int rc; 5667 5668 if (BNXT_PF(bp)) { 5669 struct hwrm_func_cfg_input req = {0}; 5670 5671 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 5672 req.fid = cpu_to_le16(0xffff); 5673 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5674 req.async_event_cr = cpu_to_le16(idx); 5675 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5676 } else { 5677 struct hwrm_func_vf_cfg_input req = {0}; 5678 5679 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 5680 req.enables = 5681 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5682 req.async_event_cr = cpu_to_le16(idx); 5683 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5684 } 5685 return rc; 5686 } 5687 5688 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5689 u32 map_idx, u32 xid) 5690 { 5691 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5692 if (BNXT_PF(bp)) 5693 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5694 else 5695 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5696 switch (ring_type) { 5697 case HWRM_RING_ALLOC_TX: 5698 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5699 break; 5700 case HWRM_RING_ALLOC_RX: 5701 case HWRM_RING_ALLOC_AGG: 5702 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5703 break; 5704 case HWRM_RING_ALLOC_CMPL: 5705 db->db_key64 = DBR_PATH_L2; 5706 break; 5707 case HWRM_RING_ALLOC_NQ: 5708 db->db_key64 = DBR_PATH_L2; 5709 break; 5710 } 5711 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5712 } else { 5713 db->doorbell = bp->bar1 + map_idx * 0x80; 5714 switch (ring_type) { 5715 case HWRM_RING_ALLOC_TX: 5716 db->db_key32 = DB_KEY_TX; 5717 break; 5718 case HWRM_RING_ALLOC_RX: 5719 case HWRM_RING_ALLOC_AGG: 5720 db->db_key32 = DB_KEY_RX; 5721 break; 5722 case HWRM_RING_ALLOC_CMPL: 5723 db->db_key32 = DB_KEY_CP; 5724 break; 5725 } 5726 } 5727 } 5728 5729 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5730 { 5731 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5732 int i, rc = 0; 5733 u32 type; 5734 5735 if (bp->flags & BNXT_FLAG_CHIP_P5) 5736 type = HWRM_RING_ALLOC_NQ; 5737 else 5738 type = HWRM_RING_ALLOC_CMPL; 5739 for (i = 0; i < bp->cp_nr_rings; i++) { 5740 struct bnxt_napi *bnapi = bp->bnapi[i]; 5741 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5742 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5743 u32 map_idx = ring->map_idx; 5744 unsigned int vector; 5745 5746 vector = bp->irq_tbl[map_idx].vector; 5747 disable_irq_nosync(vector); 5748 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5749 if (rc) { 5750 enable_irq(vector); 5751 goto err_out; 5752 } 5753 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5754 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5755 enable_irq(vector); 5756 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5757 5758 if (!i) { 5759 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5760 if (rc) 5761 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5762 } 5763 } 5764 5765 type = HWRM_RING_ALLOC_TX; 5766 for (i = 0; i < bp->tx_nr_rings; i++) { 5767 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5768 struct bnxt_ring_struct *ring; 5769 u32 map_idx; 5770 5771 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5772 struct bnxt_napi *bnapi = txr->bnapi; 5773 struct bnxt_cp_ring_info *cpr, *cpr2; 5774 u32 type2 = HWRM_RING_ALLOC_CMPL; 5775 5776 cpr = &bnapi->cp_ring; 5777 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5778 ring = &cpr2->cp_ring_struct; 5779 ring->handle = BNXT_TX_HDL; 5780 map_idx = bnapi->index; 5781 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5782 if (rc) 5783 goto err_out; 5784 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5785 ring->fw_ring_id); 5786 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5787 } 5788 ring = &txr->tx_ring_struct; 5789 map_idx = i; 5790 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5791 if (rc) 5792 goto err_out; 5793 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5794 } 5795 5796 type = HWRM_RING_ALLOC_RX; 5797 for (i = 0; i < bp->rx_nr_rings; i++) { 5798 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5799 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5800 struct bnxt_napi *bnapi = rxr->bnapi; 5801 u32 map_idx = bnapi->index; 5802 5803 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5804 if (rc) 5805 goto err_out; 5806 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5807 /* If we have agg rings, post agg buffers first. */ 5808 if (!agg_rings) 5809 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5810 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5811 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5812 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5813 u32 type2 = HWRM_RING_ALLOC_CMPL; 5814 struct bnxt_cp_ring_info *cpr2; 5815 5816 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5817 ring = &cpr2->cp_ring_struct; 5818 ring->handle = BNXT_RX_HDL; 5819 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5820 if (rc) 5821 goto err_out; 5822 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5823 ring->fw_ring_id); 5824 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5825 } 5826 } 5827 5828 if (agg_rings) { 5829 type = HWRM_RING_ALLOC_AGG; 5830 for (i = 0; i < bp->rx_nr_rings; i++) { 5831 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5832 struct bnxt_ring_struct *ring = 5833 &rxr->rx_agg_ring_struct; 5834 u32 grp_idx = ring->grp_idx; 5835 u32 map_idx = grp_idx + bp->rx_nr_rings; 5836 5837 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5838 if (rc) 5839 goto err_out; 5840 5841 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5842 ring->fw_ring_id); 5843 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5844 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5845 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5846 } 5847 } 5848 err_out: 5849 return rc; 5850 } 5851 5852 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5853 struct bnxt_ring_struct *ring, 5854 u32 ring_type, int cmpl_ring_id) 5855 { 5856 int rc; 5857 struct hwrm_ring_free_input req = {0}; 5858 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 5859 u16 error_code; 5860 5861 if (BNXT_NO_FW_ACCESS(bp)) 5862 return 0; 5863 5864 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); 5865 req.ring_type = ring_type; 5866 req.ring_id = cpu_to_le16(ring->fw_ring_id); 5867 5868 mutex_lock(&bp->hwrm_cmd_lock); 5869 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5870 error_code = le16_to_cpu(resp->error_code); 5871 mutex_unlock(&bp->hwrm_cmd_lock); 5872 5873 if (rc || error_code) { 5874 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5875 ring_type, rc, error_code); 5876 return -EIO; 5877 } 5878 return 0; 5879 } 5880 5881 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5882 { 5883 u32 type; 5884 int i; 5885 5886 if (!bp->bnapi) 5887 return; 5888 5889 for (i = 0; i < bp->tx_nr_rings; i++) { 5890 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5891 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5892 5893 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5894 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5895 5896 hwrm_ring_free_send_msg(bp, ring, 5897 RING_FREE_REQ_RING_TYPE_TX, 5898 close_path ? cmpl_ring_id : 5899 INVALID_HW_RING_ID); 5900 ring->fw_ring_id = INVALID_HW_RING_ID; 5901 } 5902 } 5903 5904 for (i = 0; i < bp->rx_nr_rings; i++) { 5905 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5906 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5907 u32 grp_idx = rxr->bnapi->index; 5908 5909 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5910 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5911 5912 hwrm_ring_free_send_msg(bp, ring, 5913 RING_FREE_REQ_RING_TYPE_RX, 5914 close_path ? cmpl_ring_id : 5915 INVALID_HW_RING_ID); 5916 ring->fw_ring_id = INVALID_HW_RING_ID; 5917 bp->grp_info[grp_idx].rx_fw_ring_id = 5918 INVALID_HW_RING_ID; 5919 } 5920 } 5921 5922 if (bp->flags & BNXT_FLAG_CHIP_P5) 5923 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 5924 else 5925 type = RING_FREE_REQ_RING_TYPE_RX; 5926 for (i = 0; i < bp->rx_nr_rings; i++) { 5927 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5928 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 5929 u32 grp_idx = rxr->bnapi->index; 5930 5931 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5932 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5933 5934 hwrm_ring_free_send_msg(bp, ring, type, 5935 close_path ? cmpl_ring_id : 5936 INVALID_HW_RING_ID); 5937 ring->fw_ring_id = INVALID_HW_RING_ID; 5938 bp->grp_info[grp_idx].agg_fw_ring_id = 5939 INVALID_HW_RING_ID; 5940 } 5941 } 5942 5943 /* The completion rings are about to be freed. After that the 5944 * IRQ doorbell will not work anymore. So we need to disable 5945 * IRQ here. 5946 */ 5947 bnxt_disable_int_sync(bp); 5948 5949 if (bp->flags & BNXT_FLAG_CHIP_P5) 5950 type = RING_FREE_REQ_RING_TYPE_NQ; 5951 else 5952 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 5953 for (i = 0; i < bp->cp_nr_rings; i++) { 5954 struct bnxt_napi *bnapi = bp->bnapi[i]; 5955 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5956 struct bnxt_ring_struct *ring; 5957 int j; 5958 5959 for (j = 0; j < 2; j++) { 5960 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 5961 5962 if (cpr2) { 5963 ring = &cpr2->cp_ring_struct; 5964 if (ring->fw_ring_id == INVALID_HW_RING_ID) 5965 continue; 5966 hwrm_ring_free_send_msg(bp, ring, 5967 RING_FREE_REQ_RING_TYPE_L2_CMPL, 5968 INVALID_HW_RING_ID); 5969 ring->fw_ring_id = INVALID_HW_RING_ID; 5970 } 5971 } 5972 ring = &cpr->cp_ring_struct; 5973 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5974 hwrm_ring_free_send_msg(bp, ring, type, 5975 INVALID_HW_RING_ID); 5976 ring->fw_ring_id = INVALID_HW_RING_ID; 5977 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 5978 } 5979 } 5980 } 5981 5982 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5983 bool shared); 5984 5985 static int bnxt_hwrm_get_rings(struct bnxt *bp) 5986 { 5987 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 5988 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5989 struct hwrm_func_qcfg_input req = {0}; 5990 int rc; 5991 5992 if (bp->hwrm_spec_code < 0x10601) 5993 return 0; 5994 5995 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 5996 req.fid = cpu_to_le16(0xffff); 5997 mutex_lock(&bp->hwrm_cmd_lock); 5998 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5999 if (rc) { 6000 mutex_unlock(&bp->hwrm_cmd_lock); 6001 return rc; 6002 } 6003 6004 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6005 if (BNXT_NEW_RM(bp)) { 6006 u16 cp, stats; 6007 6008 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6009 hw_resc->resv_hw_ring_grps = 6010 le32_to_cpu(resp->alloc_hw_ring_grps); 6011 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6012 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6013 stats = le16_to_cpu(resp->alloc_stat_ctx); 6014 hw_resc->resv_irqs = cp; 6015 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6016 int rx = hw_resc->resv_rx_rings; 6017 int tx = hw_resc->resv_tx_rings; 6018 6019 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6020 rx >>= 1; 6021 if (cp < (rx + tx)) { 6022 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6023 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6024 rx <<= 1; 6025 hw_resc->resv_rx_rings = rx; 6026 hw_resc->resv_tx_rings = tx; 6027 } 6028 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6029 hw_resc->resv_hw_ring_grps = rx; 6030 } 6031 hw_resc->resv_cp_rings = cp; 6032 hw_resc->resv_stat_ctxs = stats; 6033 } 6034 mutex_unlock(&bp->hwrm_cmd_lock); 6035 return 0; 6036 } 6037 6038 /* Caller must hold bp->hwrm_cmd_lock */ 6039 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6040 { 6041 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6042 struct hwrm_func_qcfg_input req = {0}; 6043 int rc; 6044 6045 if (bp->hwrm_spec_code < 0x10601) 6046 return 0; 6047 6048 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6049 req.fid = cpu_to_le16(fid); 6050 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6051 if (!rc) 6052 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6053 6054 return rc; 6055 } 6056 6057 static bool bnxt_rfs_supported(struct bnxt *bp); 6058 6059 static void 6060 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req, 6061 int tx_rings, int rx_rings, int ring_grps, 6062 int cp_rings, int stats, int vnics) 6063 { 6064 u32 enables = 0; 6065 6066 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1); 6067 req->fid = cpu_to_le16(0xffff); 6068 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6069 req->num_tx_rings = cpu_to_le16(tx_rings); 6070 if (BNXT_NEW_RM(bp)) { 6071 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6072 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6073 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6074 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6075 enables |= tx_rings + ring_grps ? 6076 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6077 enables |= rx_rings ? 6078 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6079 } else { 6080 enables |= cp_rings ? 6081 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6082 enables |= ring_grps ? 6083 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6084 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6085 } 6086 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6087 6088 req->num_rx_rings = cpu_to_le16(rx_rings); 6089 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6090 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6091 req->num_msix = cpu_to_le16(cp_rings); 6092 req->num_rsscos_ctxs = 6093 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6094 } else { 6095 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6096 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6097 req->num_rsscos_ctxs = cpu_to_le16(1); 6098 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6099 bnxt_rfs_supported(bp)) 6100 req->num_rsscos_ctxs = 6101 cpu_to_le16(ring_grps + 1); 6102 } 6103 req->num_stat_ctxs = cpu_to_le16(stats); 6104 req->num_vnics = cpu_to_le16(vnics); 6105 } 6106 req->enables = cpu_to_le32(enables); 6107 } 6108 6109 static void 6110 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, 6111 struct hwrm_func_vf_cfg_input *req, int tx_rings, 6112 int rx_rings, int ring_grps, int cp_rings, 6113 int stats, int vnics) 6114 { 6115 u32 enables = 0; 6116 6117 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1); 6118 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6119 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6120 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6121 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6122 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6123 enables |= tx_rings + ring_grps ? 6124 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6125 } else { 6126 enables |= cp_rings ? 6127 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6128 enables |= ring_grps ? 6129 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6130 } 6131 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6132 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6133 6134 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6135 req->num_tx_rings = cpu_to_le16(tx_rings); 6136 req->num_rx_rings = cpu_to_le16(rx_rings); 6137 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6138 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6139 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6140 } else { 6141 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6142 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6143 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6144 } 6145 req->num_stat_ctxs = cpu_to_le16(stats); 6146 req->num_vnics = cpu_to_le16(vnics); 6147 6148 req->enables = cpu_to_le32(enables); 6149 } 6150 6151 static int 6152 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6153 int ring_grps, int cp_rings, int stats, int vnics) 6154 { 6155 struct hwrm_func_cfg_input req = {0}; 6156 int rc; 6157 6158 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6159 cp_rings, stats, vnics); 6160 if (!req.enables) 6161 return 0; 6162 6163 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6164 if (rc) 6165 return rc; 6166 6167 if (bp->hwrm_spec_code < 0x10601) 6168 bp->hw_resc.resv_tx_rings = tx_rings; 6169 6170 return bnxt_hwrm_get_rings(bp); 6171 } 6172 6173 static int 6174 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6175 int ring_grps, int cp_rings, int stats, int vnics) 6176 { 6177 struct hwrm_func_vf_cfg_input req = {0}; 6178 int rc; 6179 6180 if (!BNXT_NEW_RM(bp)) { 6181 bp->hw_resc.resv_tx_rings = tx_rings; 6182 return 0; 6183 } 6184 6185 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6186 cp_rings, stats, vnics); 6187 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6188 if (rc) 6189 return rc; 6190 6191 return bnxt_hwrm_get_rings(bp); 6192 } 6193 6194 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6195 int cp, int stat, int vnic) 6196 { 6197 if (BNXT_PF(bp)) 6198 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6199 vnic); 6200 else 6201 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6202 vnic); 6203 } 6204 6205 int bnxt_nq_rings_in_use(struct bnxt *bp) 6206 { 6207 int cp = bp->cp_nr_rings; 6208 int ulp_msix, ulp_base; 6209 6210 ulp_msix = bnxt_get_ulp_msix_num(bp); 6211 if (ulp_msix) { 6212 ulp_base = bnxt_get_ulp_msix_base(bp); 6213 cp += ulp_msix; 6214 if ((ulp_base + ulp_msix) > cp) 6215 cp = ulp_base + ulp_msix; 6216 } 6217 return cp; 6218 } 6219 6220 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6221 { 6222 int cp; 6223 6224 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6225 return bnxt_nq_rings_in_use(bp); 6226 6227 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6228 return cp; 6229 } 6230 6231 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6232 { 6233 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6234 int cp = bp->cp_nr_rings; 6235 6236 if (!ulp_stat) 6237 return cp; 6238 6239 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6240 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6241 6242 return cp + ulp_stat; 6243 } 6244 6245 /* Check if a default RSS map needs to be setup. This function is only 6246 * used on older firmware that does not require reserving RX rings. 6247 */ 6248 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6249 { 6250 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6251 6252 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6253 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6254 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6255 if (!netif_is_rxfh_configured(bp->dev)) 6256 bnxt_set_dflt_rss_indir_tbl(bp); 6257 } 6258 } 6259 6260 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6261 { 6262 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6263 int cp = bnxt_cp_rings_in_use(bp); 6264 int nq = bnxt_nq_rings_in_use(bp); 6265 int rx = bp->rx_nr_rings, stat; 6266 int vnic = 1, grp = rx; 6267 6268 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6269 bp->hwrm_spec_code >= 0x10601) 6270 return true; 6271 6272 /* Old firmware does not need RX ring reservations but we still 6273 * need to setup a default RSS map when needed. With new firmware 6274 * we go through RX ring reservations first and then set up the 6275 * RSS map for the successfully reserved RX rings when needed. 6276 */ 6277 if (!BNXT_NEW_RM(bp)) { 6278 bnxt_check_rss_tbl_no_rmgr(bp); 6279 return false; 6280 } 6281 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6282 vnic = rx + 1; 6283 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6284 rx <<= 1; 6285 stat = bnxt_get_func_stat_ctxs(bp); 6286 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6287 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6288 (hw_resc->resv_hw_ring_grps != grp && 6289 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6290 return true; 6291 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6292 hw_resc->resv_irqs != nq) 6293 return true; 6294 return false; 6295 } 6296 6297 static int __bnxt_reserve_rings(struct bnxt *bp) 6298 { 6299 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6300 int cp = bnxt_nq_rings_in_use(bp); 6301 int tx = bp->tx_nr_rings; 6302 int rx = bp->rx_nr_rings; 6303 int grp, rx_rings, rc; 6304 int vnic = 1, stat; 6305 bool sh = false; 6306 6307 if (!bnxt_need_reserve_rings(bp)) 6308 return 0; 6309 6310 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6311 sh = true; 6312 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6313 vnic = rx + 1; 6314 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6315 rx <<= 1; 6316 grp = bp->rx_nr_rings; 6317 stat = bnxt_get_func_stat_ctxs(bp); 6318 6319 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6320 if (rc) 6321 return rc; 6322 6323 tx = hw_resc->resv_tx_rings; 6324 if (BNXT_NEW_RM(bp)) { 6325 rx = hw_resc->resv_rx_rings; 6326 cp = hw_resc->resv_irqs; 6327 grp = hw_resc->resv_hw_ring_grps; 6328 vnic = hw_resc->resv_vnics; 6329 stat = hw_resc->resv_stat_ctxs; 6330 } 6331 6332 rx_rings = rx; 6333 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6334 if (rx >= 2) { 6335 rx_rings = rx >> 1; 6336 } else { 6337 if (netif_running(bp->dev)) 6338 return -ENOMEM; 6339 6340 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6341 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6342 bp->dev->hw_features &= ~NETIF_F_LRO; 6343 bp->dev->features &= ~NETIF_F_LRO; 6344 bnxt_set_ring_params(bp); 6345 } 6346 } 6347 rx_rings = min_t(int, rx_rings, grp); 6348 cp = min_t(int, cp, bp->cp_nr_rings); 6349 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6350 stat -= bnxt_get_ulp_stat_ctxs(bp); 6351 cp = min_t(int, cp, stat); 6352 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6353 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6354 rx = rx_rings << 1; 6355 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6356 bp->tx_nr_rings = tx; 6357 6358 /* If we cannot reserve all the RX rings, reset the RSS map only 6359 * if absolutely necessary 6360 */ 6361 if (rx_rings != bp->rx_nr_rings) { 6362 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6363 rx_rings, bp->rx_nr_rings); 6364 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) && 6365 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6366 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6367 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6368 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6369 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6370 } 6371 } 6372 bp->rx_nr_rings = rx_rings; 6373 bp->cp_nr_rings = cp; 6374 6375 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6376 return -ENOMEM; 6377 6378 if (!netif_is_rxfh_configured(bp->dev)) 6379 bnxt_set_dflt_rss_indir_tbl(bp); 6380 6381 return rc; 6382 } 6383 6384 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6385 int ring_grps, int cp_rings, int stats, 6386 int vnics) 6387 { 6388 struct hwrm_func_vf_cfg_input req = {0}; 6389 u32 flags; 6390 6391 if (!BNXT_NEW_RM(bp)) 6392 return 0; 6393 6394 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6395 cp_rings, stats, vnics); 6396 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6397 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6398 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6399 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6400 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6401 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6402 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6403 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6404 6405 req.flags = cpu_to_le32(flags); 6406 return hwrm_send_message_silent(bp, &req, sizeof(req), 6407 HWRM_CMD_TIMEOUT); 6408 } 6409 6410 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6411 int ring_grps, int cp_rings, int stats, 6412 int vnics) 6413 { 6414 struct hwrm_func_cfg_input req = {0}; 6415 u32 flags; 6416 6417 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6418 cp_rings, stats, vnics); 6419 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6420 if (BNXT_NEW_RM(bp)) { 6421 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6422 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6423 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6424 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6425 if (bp->flags & BNXT_FLAG_CHIP_P5) 6426 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6427 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6428 else 6429 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6430 } 6431 6432 req.flags = cpu_to_le32(flags); 6433 return hwrm_send_message_silent(bp, &req, sizeof(req), 6434 HWRM_CMD_TIMEOUT); 6435 } 6436 6437 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6438 int ring_grps, int cp_rings, int stats, 6439 int vnics) 6440 { 6441 if (bp->hwrm_spec_code < 0x10801) 6442 return 0; 6443 6444 if (BNXT_PF(bp)) 6445 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6446 ring_grps, cp_rings, stats, 6447 vnics); 6448 6449 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6450 cp_rings, stats, vnics); 6451 } 6452 6453 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6454 { 6455 struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 6456 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6457 struct hwrm_ring_aggint_qcaps_input req = {0}; 6458 int rc; 6459 6460 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6461 coal_cap->num_cmpl_dma_aggr_max = 63; 6462 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6463 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6464 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6465 coal_cap->int_lat_tmr_min_max = 65535; 6466 coal_cap->int_lat_tmr_max_max = 65535; 6467 coal_cap->num_cmpl_aggr_int_max = 65535; 6468 coal_cap->timer_units = 80; 6469 6470 if (bp->hwrm_spec_code < 0x10902) 6471 return; 6472 6473 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1); 6474 mutex_lock(&bp->hwrm_cmd_lock); 6475 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6476 if (!rc) { 6477 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6478 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6479 coal_cap->num_cmpl_dma_aggr_max = 6480 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6481 coal_cap->num_cmpl_dma_aggr_during_int_max = 6482 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6483 coal_cap->cmpl_aggr_dma_tmr_max = 6484 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6485 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6486 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6487 coal_cap->int_lat_tmr_min_max = 6488 le16_to_cpu(resp->int_lat_tmr_min_max); 6489 coal_cap->int_lat_tmr_max_max = 6490 le16_to_cpu(resp->int_lat_tmr_max_max); 6491 coal_cap->num_cmpl_aggr_int_max = 6492 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6493 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6494 } 6495 mutex_unlock(&bp->hwrm_cmd_lock); 6496 } 6497 6498 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6499 { 6500 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6501 6502 return usec * 1000 / coal_cap->timer_units; 6503 } 6504 6505 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6506 struct bnxt_coal *hw_coal, 6507 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6508 { 6509 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6510 u32 cmpl_params = coal_cap->cmpl_params; 6511 u16 val, tmr, max, flags = 0; 6512 6513 max = hw_coal->bufs_per_record * 128; 6514 if (hw_coal->budget) 6515 max = hw_coal->bufs_per_record * hw_coal->budget; 6516 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6517 6518 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6519 req->num_cmpl_aggr_int = cpu_to_le16(val); 6520 6521 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6522 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6523 6524 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6525 coal_cap->num_cmpl_dma_aggr_during_int_max); 6526 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6527 6528 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6529 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6530 req->int_lat_tmr_max = cpu_to_le16(tmr); 6531 6532 /* min timer set to 1/2 of interrupt timer */ 6533 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6534 val = tmr / 2; 6535 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6536 req->int_lat_tmr_min = cpu_to_le16(val); 6537 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6538 } 6539 6540 /* buf timer set to 1/4 of interrupt timer */ 6541 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6542 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6543 6544 if (cmpl_params & 6545 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6546 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6547 val = clamp_t(u16, tmr, 1, 6548 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6549 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6550 req->enables |= 6551 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6552 } 6553 6554 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6555 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6556 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6557 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6558 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6559 req->flags = cpu_to_le16(flags); 6560 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6561 } 6562 6563 /* Caller holds bp->hwrm_cmd_lock */ 6564 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6565 struct bnxt_coal *hw_coal) 6566 { 6567 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0}; 6568 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6569 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6570 u32 nq_params = coal_cap->nq_params; 6571 u16 tmr; 6572 6573 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6574 return 0; 6575 6576 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, 6577 -1, -1); 6578 req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6579 req.flags = 6580 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6581 6582 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6583 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6584 req.int_lat_tmr_min = cpu_to_le16(tmr); 6585 req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6586 return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6587 } 6588 6589 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6590 { 6591 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}; 6592 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6593 struct bnxt_coal coal; 6594 6595 /* Tick values in micro seconds. 6596 * 1 coal_buf x bufs_per_record = 1 completion record. 6597 */ 6598 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6599 6600 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6601 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6602 6603 if (!bnapi->rx_ring) 6604 return -ENODEV; 6605 6606 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6607 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6608 6609 bnxt_hwrm_set_coal_params(bp, &coal, &req_rx); 6610 6611 req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6612 6613 return hwrm_send_message(bp, &req_rx, sizeof(req_rx), 6614 HWRM_CMD_TIMEOUT); 6615 } 6616 6617 int bnxt_hwrm_set_coal(struct bnxt *bp) 6618 { 6619 int i, rc = 0; 6620 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, 6621 req_tx = {0}, *req; 6622 6623 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6624 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6625 bnxt_hwrm_cmd_hdr_init(bp, &req_tx, 6626 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6627 6628 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx); 6629 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx); 6630 6631 mutex_lock(&bp->hwrm_cmd_lock); 6632 for (i = 0; i < bp->cp_nr_rings; i++) { 6633 struct bnxt_napi *bnapi = bp->bnapi[i]; 6634 struct bnxt_coal *hw_coal; 6635 u16 ring_id; 6636 6637 req = &req_rx; 6638 if (!bnapi->rx_ring) { 6639 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6640 req = &req_tx; 6641 } else { 6642 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6643 } 6644 req->ring_id = cpu_to_le16(ring_id); 6645 6646 rc = _hwrm_send_message(bp, req, sizeof(*req), 6647 HWRM_CMD_TIMEOUT); 6648 if (rc) 6649 break; 6650 6651 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6652 continue; 6653 6654 if (bnapi->rx_ring && bnapi->tx_ring) { 6655 req = &req_tx; 6656 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6657 req->ring_id = cpu_to_le16(ring_id); 6658 rc = _hwrm_send_message(bp, req, sizeof(*req), 6659 HWRM_CMD_TIMEOUT); 6660 if (rc) 6661 break; 6662 } 6663 if (bnapi->rx_ring) 6664 hw_coal = &bp->rx_coal; 6665 else 6666 hw_coal = &bp->tx_coal; 6667 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6668 } 6669 mutex_unlock(&bp->hwrm_cmd_lock); 6670 return rc; 6671 } 6672 6673 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6674 { 6675 struct hwrm_stat_ctx_clr_stats_input req0 = {0}; 6676 struct hwrm_stat_ctx_free_input req = {0}; 6677 int i; 6678 6679 if (!bp->bnapi) 6680 return; 6681 6682 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6683 return; 6684 6685 bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1); 6686 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 6687 6688 mutex_lock(&bp->hwrm_cmd_lock); 6689 for (i = 0; i < bp->cp_nr_rings; i++) { 6690 struct bnxt_napi *bnapi = bp->bnapi[i]; 6691 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6692 6693 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6694 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6695 if (BNXT_FW_MAJ(bp) <= 20) { 6696 req0.stat_ctx_id = req.stat_ctx_id; 6697 _hwrm_send_message(bp, &req0, sizeof(req0), 6698 HWRM_CMD_TIMEOUT); 6699 } 6700 _hwrm_send_message(bp, &req, sizeof(req), 6701 HWRM_CMD_TIMEOUT); 6702 6703 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6704 } 6705 } 6706 mutex_unlock(&bp->hwrm_cmd_lock); 6707 } 6708 6709 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6710 { 6711 int rc = 0, i; 6712 struct hwrm_stat_ctx_alloc_input req = {0}; 6713 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 6714 6715 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6716 return 0; 6717 6718 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 6719 6720 req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6721 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6722 6723 mutex_lock(&bp->hwrm_cmd_lock); 6724 for (i = 0; i < bp->cp_nr_rings; i++) { 6725 struct bnxt_napi *bnapi = bp->bnapi[i]; 6726 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6727 6728 req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6729 6730 rc = _hwrm_send_message(bp, &req, sizeof(req), 6731 HWRM_CMD_TIMEOUT); 6732 if (rc) 6733 break; 6734 6735 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6736 6737 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6738 } 6739 mutex_unlock(&bp->hwrm_cmd_lock); 6740 return rc; 6741 } 6742 6743 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6744 { 6745 struct hwrm_func_qcfg_input req = {0}; 6746 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6747 u32 min_db_offset = 0; 6748 u16 flags; 6749 int rc; 6750 6751 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6752 req.fid = cpu_to_le16(0xffff); 6753 mutex_lock(&bp->hwrm_cmd_lock); 6754 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6755 if (rc) 6756 goto func_qcfg_exit; 6757 6758 #ifdef CONFIG_BNXT_SRIOV 6759 if (BNXT_VF(bp)) { 6760 struct bnxt_vf_info *vf = &bp->vf; 6761 6762 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6763 } else { 6764 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6765 } 6766 #endif 6767 flags = le16_to_cpu(resp->flags); 6768 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6769 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6770 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6771 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6772 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6773 } 6774 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6775 bp->flags |= BNXT_FLAG_MULTI_HOST; 6776 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6777 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6778 6779 switch (resp->port_partition_type) { 6780 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6781 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6782 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6783 bp->port_partition_type = resp->port_partition_type; 6784 break; 6785 } 6786 if (bp->hwrm_spec_code < 0x10707 || 6787 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6788 bp->br_mode = BRIDGE_MODE_VEB; 6789 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6790 bp->br_mode = BRIDGE_MODE_VEPA; 6791 else 6792 bp->br_mode = BRIDGE_MODE_UNDEF; 6793 6794 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6795 if (!bp->max_mtu) 6796 bp->max_mtu = BNXT_MAX_MTU; 6797 6798 if (bp->db_size) 6799 goto func_qcfg_exit; 6800 6801 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6802 if (BNXT_PF(bp)) 6803 min_db_offset = DB_PF_OFFSET_P5; 6804 else 6805 min_db_offset = DB_VF_OFFSET_P5; 6806 } 6807 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6808 1024); 6809 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6810 bp->db_size <= min_db_offset) 6811 bp->db_size = pci_resource_len(bp->pdev, 2); 6812 6813 func_qcfg_exit: 6814 mutex_unlock(&bp->hwrm_cmd_lock); 6815 return rc; 6816 } 6817 6818 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 6819 struct hwrm_func_backing_store_qcaps_output *resp) 6820 { 6821 struct bnxt_mem_init *mem_init; 6822 u16 init_mask; 6823 u8 init_val; 6824 u8 *offset; 6825 int i; 6826 6827 init_val = resp->ctx_kind_initializer; 6828 init_mask = le16_to_cpu(resp->ctx_init_mask); 6829 offset = &resp->qp_init_offset; 6830 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 6831 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 6832 mem_init->init_val = init_val; 6833 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 6834 if (!init_mask) 6835 continue; 6836 if (i == BNXT_CTX_MEM_INIT_STAT) 6837 offset = &resp->stat_init_offset; 6838 if (init_mask & (1 << i)) 6839 mem_init->offset = *offset * 4; 6840 else 6841 mem_init->init_val = 0; 6842 } 6843 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 6844 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 6845 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 6846 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 6847 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 6848 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 6849 } 6850 6851 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6852 { 6853 struct hwrm_func_backing_store_qcaps_input req = {0}; 6854 struct hwrm_func_backing_store_qcaps_output *resp = 6855 bp->hwrm_cmd_resp_addr; 6856 int rc; 6857 6858 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6859 return 0; 6860 6861 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1); 6862 mutex_lock(&bp->hwrm_cmd_lock); 6863 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6864 if (!rc) { 6865 struct bnxt_ctx_pg_info *ctx_pg; 6866 struct bnxt_ctx_mem_info *ctx; 6867 int i, tqm_rings; 6868 6869 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6870 if (!ctx) { 6871 rc = -ENOMEM; 6872 goto ctx_err; 6873 } 6874 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6875 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6876 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6877 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6878 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6879 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6880 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6881 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6882 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6883 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6884 ctx->vnic_max_vnic_entries = 6885 le16_to_cpu(resp->vnic_max_vnic_entries); 6886 ctx->vnic_max_ring_table_entries = 6887 le16_to_cpu(resp->vnic_max_ring_table_entries); 6888 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6889 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6890 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6891 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6892 ctx->tqm_min_entries_per_ring = 6893 le32_to_cpu(resp->tqm_min_entries_per_ring); 6894 ctx->tqm_max_entries_per_ring = 6895 le32_to_cpu(resp->tqm_max_entries_per_ring); 6896 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6897 if (!ctx->tqm_entries_multiple) 6898 ctx->tqm_entries_multiple = 1; 6899 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6900 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 6901 ctx->mrav_num_entries_units = 6902 le16_to_cpu(resp->mrav_num_entries_units); 6903 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 6904 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 6905 6906 bnxt_init_ctx_initializer(ctx, resp); 6907 6908 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 6909 if (!ctx->tqm_fp_rings_count) 6910 ctx->tqm_fp_rings_count = bp->max_q; 6911 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 6912 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 6913 6914 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 6915 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 6916 if (!ctx_pg) { 6917 kfree(ctx); 6918 rc = -ENOMEM; 6919 goto ctx_err; 6920 } 6921 for (i = 0; i < tqm_rings; i++, ctx_pg++) 6922 ctx->tqm_mem[i] = ctx_pg; 6923 bp->ctx = ctx; 6924 } else { 6925 rc = 0; 6926 } 6927 ctx_err: 6928 mutex_unlock(&bp->hwrm_cmd_lock); 6929 return rc; 6930 } 6931 6932 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 6933 __le64 *pg_dir) 6934 { 6935 u8 pg_size = 0; 6936 6937 if (!rmem->nr_pages) 6938 return; 6939 6940 if (BNXT_PAGE_SHIFT == 13) 6941 pg_size = 1 << 4; 6942 else if (BNXT_PAGE_SIZE == 16) 6943 pg_size = 2 << 4; 6944 6945 *pg_attr = pg_size; 6946 if (rmem->depth >= 1) { 6947 if (rmem->depth == 2) 6948 *pg_attr |= 2; 6949 else 6950 *pg_attr |= 1; 6951 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 6952 } else { 6953 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 6954 } 6955 } 6956 6957 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 6958 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 6959 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 6960 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 6961 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 6962 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 6963 6964 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 6965 { 6966 struct hwrm_func_backing_store_cfg_input req = {0}; 6967 struct bnxt_ctx_mem_info *ctx = bp->ctx; 6968 struct bnxt_ctx_pg_info *ctx_pg; 6969 u32 req_len = sizeof(req); 6970 __le32 *num_entries; 6971 __le64 *pg_dir; 6972 u32 flags = 0; 6973 u8 *pg_attr; 6974 u32 ena; 6975 int i; 6976 6977 if (!ctx) 6978 return 0; 6979 6980 if (req_len > bp->hwrm_max_ext_req_len) 6981 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 6982 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1); 6983 req.enables = cpu_to_le32(enables); 6984 6985 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 6986 ctx_pg = &ctx->qp_mem; 6987 req.qp_num_entries = cpu_to_le32(ctx_pg->entries); 6988 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 6989 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 6990 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 6991 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6992 &req.qpc_pg_size_qpc_lvl, 6993 &req.qpc_page_dir); 6994 } 6995 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 6996 ctx_pg = &ctx->srq_mem; 6997 req.srq_num_entries = cpu_to_le32(ctx_pg->entries); 6998 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 6999 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7000 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7001 &req.srq_pg_size_srq_lvl, 7002 &req.srq_page_dir); 7003 } 7004 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7005 ctx_pg = &ctx->cq_mem; 7006 req.cq_num_entries = cpu_to_le32(ctx_pg->entries); 7007 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7008 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7009 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl, 7010 &req.cq_page_dir); 7011 } 7012 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7013 ctx_pg = &ctx->vnic_mem; 7014 req.vnic_num_vnic_entries = 7015 cpu_to_le16(ctx->vnic_max_vnic_entries); 7016 req.vnic_num_ring_table_entries = 7017 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7018 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7019 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7020 &req.vnic_pg_size_vnic_lvl, 7021 &req.vnic_page_dir); 7022 } 7023 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7024 ctx_pg = &ctx->stat_mem; 7025 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7026 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7027 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7028 &req.stat_pg_size_stat_lvl, 7029 &req.stat_page_dir); 7030 } 7031 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7032 ctx_pg = &ctx->mrav_mem; 7033 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7034 if (ctx->mrav_num_entries_units) 7035 flags |= 7036 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7037 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7038 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7039 &req.mrav_pg_size_mrav_lvl, 7040 &req.mrav_page_dir); 7041 } 7042 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7043 ctx_pg = &ctx->tim_mem; 7044 req.tim_num_entries = cpu_to_le32(ctx_pg->entries); 7045 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7046 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7047 &req.tim_pg_size_tim_lvl, 7048 &req.tim_page_dir); 7049 } 7050 for (i = 0, num_entries = &req.tqm_sp_num_entries, 7051 pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl, 7052 pg_dir = &req.tqm_sp_page_dir, 7053 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7054 i < BNXT_MAX_TQM_RINGS; 7055 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7056 if (!(enables & ena)) 7057 continue; 7058 7059 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7060 ctx_pg = ctx->tqm_mem[i]; 7061 *num_entries = cpu_to_le32(ctx_pg->entries); 7062 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7063 } 7064 req.flags = cpu_to_le32(flags); 7065 return hwrm_send_message(bp, &req, req_len, HWRM_CMD_TIMEOUT); 7066 } 7067 7068 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7069 struct bnxt_ctx_pg_info *ctx_pg) 7070 { 7071 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7072 7073 rmem->page_size = BNXT_PAGE_SIZE; 7074 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7075 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7076 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7077 if (rmem->depth >= 1) 7078 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7079 return bnxt_alloc_ring(bp, rmem); 7080 } 7081 7082 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7083 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7084 u8 depth, struct bnxt_mem_init *mem_init) 7085 { 7086 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7087 int rc; 7088 7089 if (!mem_size) 7090 return -EINVAL; 7091 7092 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7093 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7094 ctx_pg->nr_pages = 0; 7095 return -EINVAL; 7096 } 7097 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7098 int nr_tbls, i; 7099 7100 rmem->depth = 2; 7101 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7102 GFP_KERNEL); 7103 if (!ctx_pg->ctx_pg_tbl) 7104 return -ENOMEM; 7105 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7106 rmem->nr_pages = nr_tbls; 7107 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7108 if (rc) 7109 return rc; 7110 for (i = 0; i < nr_tbls; i++) { 7111 struct bnxt_ctx_pg_info *pg_tbl; 7112 7113 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7114 if (!pg_tbl) 7115 return -ENOMEM; 7116 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7117 rmem = &pg_tbl->ring_mem; 7118 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7119 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7120 rmem->depth = 1; 7121 rmem->nr_pages = MAX_CTX_PAGES; 7122 rmem->mem_init = mem_init; 7123 if (i == (nr_tbls - 1)) { 7124 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7125 7126 if (rem) 7127 rmem->nr_pages = rem; 7128 } 7129 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7130 if (rc) 7131 break; 7132 } 7133 } else { 7134 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7135 if (rmem->nr_pages > 1 || depth) 7136 rmem->depth = 1; 7137 rmem->mem_init = mem_init; 7138 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7139 } 7140 return rc; 7141 } 7142 7143 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7144 struct bnxt_ctx_pg_info *ctx_pg) 7145 { 7146 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7147 7148 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7149 ctx_pg->ctx_pg_tbl) { 7150 int i, nr_tbls = rmem->nr_pages; 7151 7152 for (i = 0; i < nr_tbls; i++) { 7153 struct bnxt_ctx_pg_info *pg_tbl; 7154 struct bnxt_ring_mem_info *rmem2; 7155 7156 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7157 if (!pg_tbl) 7158 continue; 7159 rmem2 = &pg_tbl->ring_mem; 7160 bnxt_free_ring(bp, rmem2); 7161 ctx_pg->ctx_pg_arr[i] = NULL; 7162 kfree(pg_tbl); 7163 ctx_pg->ctx_pg_tbl[i] = NULL; 7164 } 7165 kfree(ctx_pg->ctx_pg_tbl); 7166 ctx_pg->ctx_pg_tbl = NULL; 7167 } 7168 bnxt_free_ring(bp, rmem); 7169 ctx_pg->nr_pages = 0; 7170 } 7171 7172 static void bnxt_free_ctx_mem(struct bnxt *bp) 7173 { 7174 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7175 int i; 7176 7177 if (!ctx) 7178 return; 7179 7180 if (ctx->tqm_mem[0]) { 7181 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7182 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7183 kfree(ctx->tqm_mem[0]); 7184 ctx->tqm_mem[0] = NULL; 7185 } 7186 7187 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7188 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7189 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7190 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7191 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7192 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7193 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7194 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7195 } 7196 7197 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7198 { 7199 struct bnxt_ctx_pg_info *ctx_pg; 7200 struct bnxt_ctx_mem_info *ctx; 7201 struct bnxt_mem_init *init; 7202 u32 mem_size, ena, entries; 7203 u32 entries_sp, min; 7204 u32 num_mr, num_ah; 7205 u32 extra_srqs = 0; 7206 u32 extra_qps = 0; 7207 u8 pg_lvl = 1; 7208 int i, rc; 7209 7210 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7211 if (rc) { 7212 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7213 rc); 7214 return rc; 7215 } 7216 ctx = bp->ctx; 7217 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7218 return 0; 7219 7220 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7221 pg_lvl = 2; 7222 extra_qps = 65536; 7223 extra_srqs = 8192; 7224 } 7225 7226 ctx_pg = &ctx->qp_mem; 7227 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7228 extra_qps; 7229 if (ctx->qp_entry_size) { 7230 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7231 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7232 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7233 if (rc) 7234 return rc; 7235 } 7236 7237 ctx_pg = &ctx->srq_mem; 7238 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7239 if (ctx->srq_entry_size) { 7240 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7241 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7242 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7243 if (rc) 7244 return rc; 7245 } 7246 7247 ctx_pg = &ctx->cq_mem; 7248 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7249 if (ctx->cq_entry_size) { 7250 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7251 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7252 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7253 if (rc) 7254 return rc; 7255 } 7256 7257 ctx_pg = &ctx->vnic_mem; 7258 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7259 ctx->vnic_max_ring_table_entries; 7260 if (ctx->vnic_entry_size) { 7261 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7262 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7263 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7264 if (rc) 7265 return rc; 7266 } 7267 7268 ctx_pg = &ctx->stat_mem; 7269 ctx_pg->entries = ctx->stat_max_entries; 7270 if (ctx->stat_entry_size) { 7271 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7272 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7273 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7274 if (rc) 7275 return rc; 7276 } 7277 7278 ena = 0; 7279 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7280 goto skip_rdma; 7281 7282 ctx_pg = &ctx->mrav_mem; 7283 /* 128K extra is needed to accommodate static AH context 7284 * allocation by f/w. 7285 */ 7286 num_mr = 1024 * 256; 7287 num_ah = 1024 * 128; 7288 ctx_pg->entries = num_mr + num_ah; 7289 if (ctx->mrav_entry_size) { 7290 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7291 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7292 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7293 if (rc) 7294 return rc; 7295 } 7296 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7297 if (ctx->mrav_num_entries_units) 7298 ctx_pg->entries = 7299 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7300 (num_ah / ctx->mrav_num_entries_units); 7301 7302 ctx_pg = &ctx->tim_mem; 7303 ctx_pg->entries = ctx->qp_mem.entries; 7304 if (ctx->tim_entry_size) { 7305 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7306 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7307 if (rc) 7308 return rc; 7309 } 7310 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7311 7312 skip_rdma: 7313 min = ctx->tqm_min_entries_per_ring; 7314 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7315 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7316 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7317 entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries; 7318 entries = roundup(entries, ctx->tqm_entries_multiple); 7319 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7320 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7321 ctx_pg = ctx->tqm_mem[i]; 7322 ctx_pg->entries = i ? entries : entries_sp; 7323 if (ctx->tqm_entry_size) { 7324 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7325 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7326 NULL); 7327 if (rc) 7328 return rc; 7329 } 7330 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7331 } 7332 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7333 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7334 if (rc) { 7335 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7336 rc); 7337 return rc; 7338 } 7339 ctx->flags |= BNXT_CTX_FLAG_INITED; 7340 return 0; 7341 } 7342 7343 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7344 { 7345 struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7346 struct hwrm_func_resource_qcaps_input req = {0}; 7347 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7348 int rc; 7349 7350 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1); 7351 req.fid = cpu_to_le16(0xffff); 7352 7353 mutex_lock(&bp->hwrm_cmd_lock); 7354 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), 7355 HWRM_CMD_TIMEOUT); 7356 if (rc) 7357 goto hwrm_func_resc_qcaps_exit; 7358 7359 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7360 if (!all) 7361 goto hwrm_func_resc_qcaps_exit; 7362 7363 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7364 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7365 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7366 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7367 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7368 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7369 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7370 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7371 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7372 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7373 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7374 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7375 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7376 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7377 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7378 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7379 7380 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7381 u16 max_msix = le16_to_cpu(resp->max_msix); 7382 7383 hw_resc->max_nqs = max_msix; 7384 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7385 } 7386 7387 if (BNXT_PF(bp)) { 7388 struct bnxt_pf_info *pf = &bp->pf; 7389 7390 pf->vf_resv_strategy = 7391 le16_to_cpu(resp->vf_reservation_strategy); 7392 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7393 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7394 } 7395 hwrm_func_resc_qcaps_exit: 7396 mutex_unlock(&bp->hwrm_cmd_lock); 7397 return rc; 7398 } 7399 7400 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7401 { 7402 int rc = 0; 7403 struct hwrm_func_qcaps_input req = {0}; 7404 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7405 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7406 u32 flags, flags_ext; 7407 7408 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 7409 req.fid = cpu_to_le16(0xffff); 7410 7411 mutex_lock(&bp->hwrm_cmd_lock); 7412 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7413 if (rc) 7414 goto hwrm_func_qcaps_exit; 7415 7416 flags = le32_to_cpu(resp->flags); 7417 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7418 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7419 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7420 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7421 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7422 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7423 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7424 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7425 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7426 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7427 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7428 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7429 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7430 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7431 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7432 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7433 7434 flags_ext = le32_to_cpu(resp->flags_ext); 7435 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7436 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7437 7438 bp->tx_push_thresh = 0; 7439 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7440 BNXT_FW_MAJ(bp) > 217) 7441 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7442 7443 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7444 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7445 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7446 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7447 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7448 if (!hw_resc->max_hw_ring_grps) 7449 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7450 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7451 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7452 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7453 7454 if (BNXT_PF(bp)) { 7455 struct bnxt_pf_info *pf = &bp->pf; 7456 7457 pf->fw_fid = le16_to_cpu(resp->fid); 7458 pf->port_id = le16_to_cpu(resp->port_id); 7459 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7460 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7461 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7462 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7463 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7464 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7465 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7466 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7467 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7468 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7469 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7470 bp->flags |= BNXT_FLAG_WOL_CAP; 7471 } else { 7472 #ifdef CONFIG_BNXT_SRIOV 7473 struct bnxt_vf_info *vf = &bp->vf; 7474 7475 vf->fw_fid = le16_to_cpu(resp->fid); 7476 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7477 #endif 7478 } 7479 7480 hwrm_func_qcaps_exit: 7481 mutex_unlock(&bp->hwrm_cmd_lock); 7482 return rc; 7483 } 7484 7485 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7486 7487 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7488 { 7489 int rc; 7490 7491 rc = __bnxt_hwrm_func_qcaps(bp); 7492 if (rc) 7493 return rc; 7494 rc = bnxt_hwrm_queue_qportcfg(bp); 7495 if (rc) { 7496 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7497 return rc; 7498 } 7499 if (bp->hwrm_spec_code >= 0x10803) { 7500 rc = bnxt_alloc_ctx_mem(bp); 7501 if (rc) 7502 return rc; 7503 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7504 if (!rc) 7505 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7506 } 7507 return 0; 7508 } 7509 7510 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7511 { 7512 struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0}; 7513 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7514 int rc = 0; 7515 u32 flags; 7516 7517 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7518 return 0; 7519 7520 resp = bp->hwrm_cmd_resp_addr; 7521 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1); 7522 7523 mutex_lock(&bp->hwrm_cmd_lock); 7524 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7525 if (rc) 7526 goto hwrm_cfa_adv_qcaps_exit; 7527 7528 flags = le32_to_cpu(resp->flags); 7529 if (flags & 7530 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7531 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7532 7533 hwrm_cfa_adv_qcaps_exit: 7534 mutex_unlock(&bp->hwrm_cmd_lock); 7535 return rc; 7536 } 7537 7538 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7539 { 7540 if (bp->fw_health) 7541 return 0; 7542 7543 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7544 if (!bp->fw_health) 7545 return -ENOMEM; 7546 7547 return 0; 7548 } 7549 7550 static int bnxt_alloc_fw_health(struct bnxt *bp) 7551 { 7552 int rc; 7553 7554 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7555 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7556 return 0; 7557 7558 rc = __bnxt_alloc_fw_health(bp); 7559 if (rc) { 7560 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7561 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7562 return rc; 7563 } 7564 7565 return 0; 7566 } 7567 7568 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7569 { 7570 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7571 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7572 BNXT_FW_HEALTH_WIN_MAP_OFF); 7573 } 7574 7575 bool bnxt_is_fw_healthy(struct bnxt *bp) 7576 { 7577 if (bp->fw_health && bp->fw_health->status_reliable) { 7578 u32 fw_status; 7579 7580 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 7581 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status)) 7582 return false; 7583 } 7584 7585 return true; 7586 } 7587 7588 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7589 { 7590 struct bnxt_fw_health *fw_health = bp->fw_health; 7591 u32 reg_type; 7592 7593 if (!fw_health || !fw_health->status_reliable) 7594 return; 7595 7596 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7597 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7598 fw_health->status_reliable = false; 7599 } 7600 7601 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7602 { 7603 void __iomem *hs; 7604 u32 status_loc; 7605 u32 reg_type; 7606 u32 sig; 7607 7608 if (bp->fw_health) 7609 bp->fw_health->status_reliable = false; 7610 7611 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7612 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7613 7614 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7615 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7616 if (!bp->chip_num) { 7617 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7618 bp->chip_num = readl(bp->bar0 + 7619 BNXT_FW_HEALTH_WIN_BASE + 7620 BNXT_GRC_REG_CHIP_NUM); 7621 } 7622 if (!BNXT_CHIP_P5(bp)) 7623 return; 7624 7625 status_loc = BNXT_GRC_REG_STATUS_P5 | 7626 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7627 } else { 7628 status_loc = readl(hs + offsetof(struct hcomm_status, 7629 fw_status_loc)); 7630 } 7631 7632 if (__bnxt_alloc_fw_health(bp)) { 7633 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7634 return; 7635 } 7636 7637 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7638 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7639 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7640 __bnxt_map_fw_health_reg(bp, status_loc); 7641 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7642 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7643 } 7644 7645 bp->fw_health->status_reliable = true; 7646 } 7647 7648 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7649 { 7650 struct bnxt_fw_health *fw_health = bp->fw_health; 7651 u32 reg_base = 0xffffffff; 7652 int i; 7653 7654 bp->fw_health->status_reliable = false; 7655 /* Only pre-map the monitoring GRC registers using window 3 */ 7656 for (i = 0; i < 4; i++) { 7657 u32 reg = fw_health->regs[i]; 7658 7659 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7660 continue; 7661 if (reg_base == 0xffffffff) 7662 reg_base = reg & BNXT_GRC_BASE_MASK; 7663 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7664 return -ERANGE; 7665 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7666 } 7667 bp->fw_health->status_reliable = true; 7668 if (reg_base == 0xffffffff) 7669 return 0; 7670 7671 __bnxt_map_fw_health_reg(bp, reg_base); 7672 return 0; 7673 } 7674 7675 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7676 { 7677 struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 7678 struct bnxt_fw_health *fw_health = bp->fw_health; 7679 struct hwrm_error_recovery_qcfg_input req = {0}; 7680 int rc, i; 7681 7682 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7683 return 0; 7684 7685 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1); 7686 mutex_lock(&bp->hwrm_cmd_lock); 7687 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7688 if (rc) 7689 goto err_recovery_out; 7690 fw_health->flags = le32_to_cpu(resp->flags); 7691 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7692 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7693 rc = -EINVAL; 7694 goto err_recovery_out; 7695 } 7696 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7697 fw_health->master_func_wait_dsecs = 7698 le32_to_cpu(resp->master_func_wait_period); 7699 fw_health->normal_func_wait_dsecs = 7700 le32_to_cpu(resp->normal_func_wait_period); 7701 fw_health->post_reset_wait_dsecs = 7702 le32_to_cpu(resp->master_func_wait_period_after_reset); 7703 fw_health->post_reset_max_wait_dsecs = 7704 le32_to_cpu(resp->max_bailout_time_after_reset); 7705 fw_health->regs[BNXT_FW_HEALTH_REG] = 7706 le32_to_cpu(resp->fw_health_status_reg); 7707 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7708 le32_to_cpu(resp->fw_heartbeat_reg); 7709 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7710 le32_to_cpu(resp->fw_reset_cnt_reg); 7711 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7712 le32_to_cpu(resp->reset_inprogress_reg); 7713 fw_health->fw_reset_inprog_reg_mask = 7714 le32_to_cpu(resp->reset_inprogress_reg_mask); 7715 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7716 if (fw_health->fw_reset_seq_cnt >= 16) { 7717 rc = -EINVAL; 7718 goto err_recovery_out; 7719 } 7720 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7721 fw_health->fw_reset_seq_regs[i] = 7722 le32_to_cpu(resp->reset_reg[i]); 7723 fw_health->fw_reset_seq_vals[i] = 7724 le32_to_cpu(resp->reset_reg_val[i]); 7725 fw_health->fw_reset_seq_delay_msec[i] = 7726 resp->delay_after_reset[i]; 7727 } 7728 err_recovery_out: 7729 mutex_unlock(&bp->hwrm_cmd_lock); 7730 if (!rc) 7731 rc = bnxt_map_fw_health_regs(bp); 7732 if (rc) 7733 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7734 return rc; 7735 } 7736 7737 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7738 { 7739 struct hwrm_func_reset_input req = {0}; 7740 7741 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 7742 req.enables = 0; 7743 7744 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 7745 } 7746 7747 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7748 { 7749 struct hwrm_nvm_get_dev_info_output nvm_info; 7750 7751 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7752 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7753 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7754 nvm_info.nvm_cfg_ver_upd); 7755 } 7756 7757 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7758 { 7759 int rc = 0; 7760 struct hwrm_queue_qportcfg_input req = {0}; 7761 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 7762 u8 i, j, *qptr; 7763 bool no_rdma; 7764 7765 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 7766 7767 mutex_lock(&bp->hwrm_cmd_lock); 7768 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7769 if (rc) 7770 goto qportcfg_exit; 7771 7772 if (!resp->max_configurable_queues) { 7773 rc = -EINVAL; 7774 goto qportcfg_exit; 7775 } 7776 bp->max_tc = resp->max_configurable_queues; 7777 bp->max_lltc = resp->max_configurable_lossless_queues; 7778 if (bp->max_tc > BNXT_MAX_QUEUE) 7779 bp->max_tc = BNXT_MAX_QUEUE; 7780 7781 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7782 qptr = &resp->queue_id0; 7783 for (i = 0, j = 0; i < bp->max_tc; i++) { 7784 bp->q_info[j].queue_id = *qptr; 7785 bp->q_ids[i] = *qptr++; 7786 bp->q_info[j].queue_profile = *qptr++; 7787 bp->tc_to_qidx[j] = j; 7788 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7789 (no_rdma && BNXT_PF(bp))) 7790 j++; 7791 } 7792 bp->max_q = bp->max_tc; 7793 bp->max_tc = max_t(u8, j, 1); 7794 7795 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7796 bp->max_tc = 1; 7797 7798 if (bp->max_lltc > bp->max_tc) 7799 bp->max_lltc = bp->max_tc; 7800 7801 qportcfg_exit: 7802 mutex_unlock(&bp->hwrm_cmd_lock); 7803 return rc; 7804 } 7805 7806 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent) 7807 { 7808 struct hwrm_ver_get_input req = {0}; 7809 int rc; 7810 7811 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 7812 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 7813 req.hwrm_intf_min = HWRM_VERSION_MINOR; 7814 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 7815 7816 rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT, 7817 silent); 7818 return rc; 7819 } 7820 7821 static int bnxt_hwrm_ver_get(struct bnxt *bp) 7822 { 7823 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 7824 u16 fw_maj, fw_min, fw_bld, fw_rsv; 7825 u32 dev_caps_cfg, hwrm_ver; 7826 int rc, len; 7827 7828 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 7829 mutex_lock(&bp->hwrm_cmd_lock); 7830 rc = __bnxt_hwrm_ver_get(bp, false); 7831 if (rc) 7832 goto hwrm_ver_get_exit; 7833 7834 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 7835 7836 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 7837 resp->hwrm_intf_min_8b << 8 | 7838 resp->hwrm_intf_upd_8b; 7839 if (resp->hwrm_intf_maj_8b < 1) { 7840 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 7841 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7842 resp->hwrm_intf_upd_8b); 7843 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 7844 } 7845 7846 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 7847 HWRM_VERSION_UPDATE; 7848 7849 if (bp->hwrm_spec_code > hwrm_ver) 7850 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7851 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 7852 HWRM_VERSION_UPDATE); 7853 else 7854 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7855 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7856 resp->hwrm_intf_upd_8b); 7857 7858 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 7859 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 7860 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 7861 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 7862 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 7863 len = FW_VER_STR_LEN; 7864 } else { 7865 fw_maj = resp->hwrm_fw_maj_8b; 7866 fw_min = resp->hwrm_fw_min_8b; 7867 fw_bld = resp->hwrm_fw_bld_8b; 7868 fw_rsv = resp->hwrm_fw_rsvd_8b; 7869 len = BC_HWRM_STR_LEN; 7870 } 7871 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 7872 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 7873 fw_rsv); 7874 7875 if (strlen(resp->active_pkg_name)) { 7876 int fw_ver_len = strlen(bp->fw_ver_str); 7877 7878 snprintf(bp->fw_ver_str + fw_ver_len, 7879 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 7880 resp->active_pkg_name); 7881 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 7882 } 7883 7884 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 7885 if (!bp->hwrm_cmd_timeout) 7886 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 7887 7888 if (resp->hwrm_intf_maj_8b >= 1) { 7889 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 7890 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 7891 } 7892 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 7893 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 7894 7895 bp->chip_num = le16_to_cpu(resp->chip_num); 7896 bp->chip_rev = resp->chip_rev; 7897 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 7898 !resp->chip_metal) 7899 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 7900 7901 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 7902 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 7903 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 7904 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 7905 7906 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 7907 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 7908 7909 if (dev_caps_cfg & 7910 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 7911 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 7912 7913 if (dev_caps_cfg & 7914 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 7915 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 7916 7917 if (dev_caps_cfg & 7918 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 7919 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 7920 7921 hwrm_ver_get_exit: 7922 mutex_unlock(&bp->hwrm_cmd_lock); 7923 return rc; 7924 } 7925 7926 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 7927 { 7928 struct hwrm_fw_set_time_input req = {0}; 7929 struct tm tm; 7930 time64_t now = ktime_get_real_seconds(); 7931 7932 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 7933 bp->hwrm_spec_code < 0x10400) 7934 return -EOPNOTSUPP; 7935 7936 time64_to_tm(now, 0, &tm); 7937 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1); 7938 req.year = cpu_to_le16(1900 + tm.tm_year); 7939 req.month = 1 + tm.tm_mon; 7940 req.day = tm.tm_mday; 7941 req.hour = tm.tm_hour; 7942 req.minute = tm.tm_min; 7943 req.second = tm.tm_sec; 7944 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7945 } 7946 7947 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 7948 { 7949 u64 sw_tmp; 7950 7951 hw &= mask; 7952 sw_tmp = (*sw & ~mask) | hw; 7953 if (hw < (*sw & mask)) 7954 sw_tmp += mask + 1; 7955 WRITE_ONCE(*sw, sw_tmp); 7956 } 7957 7958 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 7959 int count, bool ignore_zero) 7960 { 7961 int i; 7962 7963 for (i = 0; i < count; i++) { 7964 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 7965 7966 if (ignore_zero && !hw) 7967 continue; 7968 7969 if (masks[i] == -1ULL) 7970 sw_stats[i] = hw; 7971 else 7972 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 7973 } 7974 } 7975 7976 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 7977 { 7978 if (!stats->hw_stats) 7979 return; 7980 7981 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 7982 stats->hw_masks, stats->len / 8, false); 7983 } 7984 7985 static void bnxt_accumulate_all_stats(struct bnxt *bp) 7986 { 7987 struct bnxt_stats_mem *ring0_stats; 7988 bool ignore_zero = false; 7989 int i; 7990 7991 /* Chip bug. Counter intermittently becomes 0. */ 7992 if (bp->flags & BNXT_FLAG_CHIP_P5) 7993 ignore_zero = true; 7994 7995 for (i = 0; i < bp->cp_nr_rings; i++) { 7996 struct bnxt_napi *bnapi = bp->bnapi[i]; 7997 struct bnxt_cp_ring_info *cpr; 7998 struct bnxt_stats_mem *stats; 7999 8000 cpr = &bnapi->cp_ring; 8001 stats = &cpr->stats; 8002 if (!i) 8003 ring0_stats = stats; 8004 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8005 ring0_stats->hw_masks, 8006 ring0_stats->len / 8, ignore_zero); 8007 } 8008 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8009 struct bnxt_stats_mem *stats = &bp->port_stats; 8010 __le64 *hw_stats = stats->hw_stats; 8011 u64 *sw_stats = stats->sw_stats; 8012 u64 *masks = stats->hw_masks; 8013 int cnt; 8014 8015 cnt = sizeof(struct rx_port_stats) / 8; 8016 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8017 8018 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8019 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8020 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8021 cnt = sizeof(struct tx_port_stats) / 8; 8022 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8023 } 8024 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8025 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8026 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8027 } 8028 } 8029 8030 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8031 { 8032 struct bnxt_pf_info *pf = &bp->pf; 8033 struct hwrm_port_qstats_input req = {0}; 8034 8035 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8036 return 0; 8037 8038 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8039 return -EOPNOTSUPP; 8040 8041 req.flags = flags; 8042 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); 8043 req.port_id = cpu_to_le16(pf->port_id); 8044 req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8045 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8046 req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8047 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8048 } 8049 8050 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8051 { 8052 struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 8053 struct hwrm_queue_pri2cos_qcfg_input req2 = {0}; 8054 struct hwrm_port_qstats_ext_input req = {0}; 8055 struct bnxt_pf_info *pf = &bp->pf; 8056 u32 tx_stat_size; 8057 int rc; 8058 8059 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8060 return 0; 8061 8062 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8063 return -EOPNOTSUPP; 8064 8065 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1); 8066 req.flags = flags; 8067 req.port_id = cpu_to_le16(pf->port_id); 8068 req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8069 req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8070 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8071 sizeof(struct tx_port_stats_ext) : 0; 8072 req.tx_stat_size = cpu_to_le16(tx_stat_size); 8073 req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8074 mutex_lock(&bp->hwrm_cmd_lock); 8075 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8076 if (!rc) { 8077 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8; 8078 bp->fw_tx_stats_ext_size = tx_stat_size ? 8079 le16_to_cpu(resp->tx_stat_size) / 8 : 0; 8080 } else { 8081 bp->fw_rx_stats_ext_size = 0; 8082 bp->fw_tx_stats_ext_size = 0; 8083 } 8084 if (flags) 8085 goto qstats_done; 8086 8087 if (bp->fw_tx_stats_ext_size <= 8088 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8089 mutex_unlock(&bp->hwrm_cmd_lock); 8090 bp->pri2cos_valid = 0; 8091 return rc; 8092 } 8093 8094 bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1); 8095 req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8096 8097 rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT); 8098 if (!rc) { 8099 struct hwrm_queue_pri2cos_qcfg_output *resp2; 8100 u8 *pri2cos; 8101 int i, j; 8102 8103 resp2 = bp->hwrm_cmd_resp_addr; 8104 pri2cos = &resp2->pri0_cos_queue_id; 8105 for (i = 0; i < 8; i++) { 8106 u8 queue_id = pri2cos[i]; 8107 u8 queue_idx; 8108 8109 /* Per port queue IDs start from 0, 10, 20, etc */ 8110 queue_idx = queue_id % 10; 8111 if (queue_idx > BNXT_MAX_QUEUE) { 8112 bp->pri2cos_valid = false; 8113 goto qstats_done; 8114 } 8115 for (j = 0; j < bp->max_q; j++) { 8116 if (bp->q_ids[j] == queue_id) 8117 bp->pri2cos_idx[i] = queue_idx; 8118 } 8119 } 8120 bp->pri2cos_valid = 1; 8121 } 8122 qstats_done: 8123 mutex_unlock(&bp->hwrm_cmd_lock); 8124 return rc; 8125 } 8126 8127 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8128 { 8129 if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID) 8130 bnxt_hwrm_tunnel_dst_port_free( 8131 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8132 if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID) 8133 bnxt_hwrm_tunnel_dst_port_free( 8134 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8135 } 8136 8137 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8138 { 8139 int rc, i; 8140 u32 tpa_flags = 0; 8141 8142 if (set_tpa) 8143 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8144 else if (BNXT_NO_FW_ACCESS(bp)) 8145 return 0; 8146 for (i = 0; i < bp->nr_vnics; i++) { 8147 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8148 if (rc) { 8149 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8150 i, rc); 8151 return rc; 8152 } 8153 } 8154 return 0; 8155 } 8156 8157 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8158 { 8159 int i; 8160 8161 for (i = 0; i < bp->nr_vnics; i++) 8162 bnxt_hwrm_vnic_set_rss(bp, i, false); 8163 } 8164 8165 static void bnxt_clear_vnic(struct bnxt *bp) 8166 { 8167 if (!bp->vnic_info) 8168 return; 8169 8170 bnxt_hwrm_clear_vnic_filter(bp); 8171 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8172 /* clear all RSS setting before free vnic ctx */ 8173 bnxt_hwrm_clear_vnic_rss(bp); 8174 bnxt_hwrm_vnic_ctx_free(bp); 8175 } 8176 /* before free the vnic, undo the vnic tpa settings */ 8177 if (bp->flags & BNXT_FLAG_TPA) 8178 bnxt_set_tpa(bp, false); 8179 bnxt_hwrm_vnic_free(bp); 8180 if (bp->flags & BNXT_FLAG_CHIP_P5) 8181 bnxt_hwrm_vnic_ctx_free(bp); 8182 } 8183 8184 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8185 bool irq_re_init) 8186 { 8187 bnxt_clear_vnic(bp); 8188 bnxt_hwrm_ring_free(bp, close_path); 8189 bnxt_hwrm_ring_grp_free(bp); 8190 if (irq_re_init) { 8191 bnxt_hwrm_stat_ctx_free(bp); 8192 bnxt_hwrm_free_tunnel_ports(bp); 8193 } 8194 } 8195 8196 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8197 { 8198 struct hwrm_func_cfg_input req = {0}; 8199 8200 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8201 req.fid = cpu_to_le16(0xffff); 8202 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8203 if (br_mode == BRIDGE_MODE_VEB) 8204 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8205 else if (br_mode == BRIDGE_MODE_VEPA) 8206 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8207 else 8208 return -EINVAL; 8209 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8210 } 8211 8212 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8213 { 8214 struct hwrm_func_cfg_input req = {0}; 8215 8216 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8217 return 0; 8218 8219 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8220 req.fid = cpu_to_le16(0xffff); 8221 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8222 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8223 if (size == 128) 8224 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8225 8226 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8227 } 8228 8229 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8230 { 8231 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8232 int rc; 8233 8234 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8235 goto skip_rss_ctx; 8236 8237 /* allocate context for vnic */ 8238 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8239 if (rc) { 8240 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8241 vnic_id, rc); 8242 goto vnic_setup_err; 8243 } 8244 bp->rsscos_nr_ctxs++; 8245 8246 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8247 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8248 if (rc) { 8249 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8250 vnic_id, rc); 8251 goto vnic_setup_err; 8252 } 8253 bp->rsscos_nr_ctxs++; 8254 } 8255 8256 skip_rss_ctx: 8257 /* configure default vnic, ring grp */ 8258 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8259 if (rc) { 8260 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8261 vnic_id, rc); 8262 goto vnic_setup_err; 8263 } 8264 8265 /* Enable RSS hashing on vnic */ 8266 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8267 if (rc) { 8268 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8269 vnic_id, rc); 8270 goto vnic_setup_err; 8271 } 8272 8273 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8274 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8275 if (rc) { 8276 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8277 vnic_id, rc); 8278 } 8279 } 8280 8281 vnic_setup_err: 8282 return rc; 8283 } 8284 8285 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8286 { 8287 int rc, i, nr_ctxs; 8288 8289 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8290 for (i = 0; i < nr_ctxs; i++) { 8291 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8292 if (rc) { 8293 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8294 vnic_id, i, rc); 8295 break; 8296 } 8297 bp->rsscos_nr_ctxs++; 8298 } 8299 if (i < nr_ctxs) 8300 return -ENOMEM; 8301 8302 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8303 if (rc) { 8304 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8305 vnic_id, rc); 8306 return rc; 8307 } 8308 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8309 if (rc) { 8310 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8311 vnic_id, rc); 8312 return rc; 8313 } 8314 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8315 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8316 if (rc) { 8317 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8318 vnic_id, rc); 8319 } 8320 } 8321 return rc; 8322 } 8323 8324 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8325 { 8326 if (bp->flags & BNXT_FLAG_CHIP_P5) 8327 return __bnxt_setup_vnic_p5(bp, vnic_id); 8328 else 8329 return __bnxt_setup_vnic(bp, vnic_id); 8330 } 8331 8332 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8333 { 8334 #ifdef CONFIG_RFS_ACCEL 8335 int i, rc = 0; 8336 8337 if (bp->flags & BNXT_FLAG_CHIP_P5) 8338 return 0; 8339 8340 for (i = 0; i < bp->rx_nr_rings; i++) { 8341 struct bnxt_vnic_info *vnic; 8342 u16 vnic_id = i + 1; 8343 u16 ring_id = i; 8344 8345 if (vnic_id >= bp->nr_vnics) 8346 break; 8347 8348 vnic = &bp->vnic_info[vnic_id]; 8349 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8350 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8351 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8352 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8353 if (rc) { 8354 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8355 vnic_id, rc); 8356 break; 8357 } 8358 rc = bnxt_setup_vnic(bp, vnic_id); 8359 if (rc) 8360 break; 8361 } 8362 return rc; 8363 #else 8364 return 0; 8365 #endif 8366 } 8367 8368 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8369 static bool bnxt_promisc_ok(struct bnxt *bp) 8370 { 8371 #ifdef CONFIG_BNXT_SRIOV 8372 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8373 return false; 8374 #endif 8375 return true; 8376 } 8377 8378 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8379 { 8380 unsigned int rc = 0; 8381 8382 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8383 if (rc) { 8384 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8385 rc); 8386 return rc; 8387 } 8388 8389 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8390 if (rc) { 8391 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8392 rc); 8393 return rc; 8394 } 8395 return rc; 8396 } 8397 8398 static int bnxt_cfg_rx_mode(struct bnxt *); 8399 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8400 8401 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8402 { 8403 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8404 int rc = 0; 8405 unsigned int rx_nr_rings = bp->rx_nr_rings; 8406 8407 if (irq_re_init) { 8408 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8409 if (rc) { 8410 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8411 rc); 8412 goto err_out; 8413 } 8414 } 8415 8416 rc = bnxt_hwrm_ring_alloc(bp); 8417 if (rc) { 8418 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8419 goto err_out; 8420 } 8421 8422 rc = bnxt_hwrm_ring_grp_alloc(bp); 8423 if (rc) { 8424 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8425 goto err_out; 8426 } 8427 8428 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8429 rx_nr_rings--; 8430 8431 /* default vnic 0 */ 8432 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8433 if (rc) { 8434 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8435 goto err_out; 8436 } 8437 8438 rc = bnxt_setup_vnic(bp, 0); 8439 if (rc) 8440 goto err_out; 8441 8442 if (bp->flags & BNXT_FLAG_RFS) { 8443 rc = bnxt_alloc_rfs_vnics(bp); 8444 if (rc) 8445 goto err_out; 8446 } 8447 8448 if (bp->flags & BNXT_FLAG_TPA) { 8449 rc = bnxt_set_tpa(bp, true); 8450 if (rc) 8451 goto err_out; 8452 } 8453 8454 if (BNXT_VF(bp)) 8455 bnxt_update_vf_mac(bp); 8456 8457 /* Filter for default vnic 0 */ 8458 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8459 if (rc) { 8460 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8461 goto err_out; 8462 } 8463 vnic->uc_filter_count = 1; 8464 8465 vnic->rx_mask = 0; 8466 if (bp->dev->flags & IFF_BROADCAST) 8467 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8468 8469 if (bp->dev->flags & IFF_PROMISC) 8470 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8471 8472 if (bp->dev->flags & IFF_ALLMULTI) { 8473 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8474 vnic->mc_list_count = 0; 8475 } else { 8476 u32 mask = 0; 8477 8478 bnxt_mc_list_updated(bp, &mask); 8479 vnic->rx_mask |= mask; 8480 } 8481 8482 rc = bnxt_cfg_rx_mode(bp); 8483 if (rc) 8484 goto err_out; 8485 8486 rc = bnxt_hwrm_set_coal(bp); 8487 if (rc) 8488 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8489 rc); 8490 8491 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8492 rc = bnxt_setup_nitroa0_vnic(bp); 8493 if (rc) 8494 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8495 rc); 8496 } 8497 8498 if (BNXT_VF(bp)) { 8499 bnxt_hwrm_func_qcfg(bp); 8500 netdev_update_features(bp->dev); 8501 } 8502 8503 return 0; 8504 8505 err_out: 8506 bnxt_hwrm_resource_free(bp, 0, true); 8507 8508 return rc; 8509 } 8510 8511 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8512 { 8513 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8514 return 0; 8515 } 8516 8517 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8518 { 8519 bnxt_init_cp_rings(bp); 8520 bnxt_init_rx_rings(bp); 8521 bnxt_init_tx_rings(bp); 8522 bnxt_init_ring_grps(bp, irq_re_init); 8523 bnxt_init_vnics(bp); 8524 8525 return bnxt_init_chip(bp, irq_re_init); 8526 } 8527 8528 static int bnxt_set_real_num_queues(struct bnxt *bp) 8529 { 8530 int rc; 8531 struct net_device *dev = bp->dev; 8532 8533 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8534 bp->tx_nr_rings_xdp); 8535 if (rc) 8536 return rc; 8537 8538 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8539 if (rc) 8540 return rc; 8541 8542 #ifdef CONFIG_RFS_ACCEL 8543 if (bp->flags & BNXT_FLAG_RFS) 8544 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8545 #endif 8546 8547 return rc; 8548 } 8549 8550 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8551 bool shared) 8552 { 8553 int _rx = *rx, _tx = *tx; 8554 8555 if (shared) { 8556 *rx = min_t(int, _rx, max); 8557 *tx = min_t(int, _tx, max); 8558 } else { 8559 if (max < 2) 8560 return -ENOMEM; 8561 8562 while (_rx + _tx > max) { 8563 if (_rx > _tx && _rx > 1) 8564 _rx--; 8565 else if (_tx > 1) 8566 _tx--; 8567 } 8568 *rx = _rx; 8569 *tx = _tx; 8570 } 8571 return 0; 8572 } 8573 8574 static void bnxt_setup_msix(struct bnxt *bp) 8575 { 8576 const int len = sizeof(bp->irq_tbl[0].name); 8577 struct net_device *dev = bp->dev; 8578 int tcs, i; 8579 8580 tcs = netdev_get_num_tc(dev); 8581 if (tcs) { 8582 int i, off, count; 8583 8584 for (i = 0; i < tcs; i++) { 8585 count = bp->tx_nr_rings_per_tc; 8586 off = i * count; 8587 netdev_set_tc_queue(dev, i, count, off); 8588 } 8589 } 8590 8591 for (i = 0; i < bp->cp_nr_rings; i++) { 8592 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8593 char *attr; 8594 8595 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8596 attr = "TxRx"; 8597 else if (i < bp->rx_nr_rings) 8598 attr = "rx"; 8599 else 8600 attr = "tx"; 8601 8602 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8603 attr, i); 8604 bp->irq_tbl[map_idx].handler = bnxt_msix; 8605 } 8606 } 8607 8608 static void bnxt_setup_inta(struct bnxt *bp) 8609 { 8610 const int len = sizeof(bp->irq_tbl[0].name); 8611 8612 if (netdev_get_num_tc(bp->dev)) 8613 netdev_reset_tc(bp->dev); 8614 8615 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8616 0); 8617 bp->irq_tbl[0].handler = bnxt_inta; 8618 } 8619 8620 static int bnxt_init_int_mode(struct bnxt *bp); 8621 8622 static int bnxt_setup_int_mode(struct bnxt *bp) 8623 { 8624 int rc; 8625 8626 if (!bp->irq_tbl) { 8627 rc = bnxt_init_int_mode(bp); 8628 if (rc || !bp->irq_tbl) 8629 return rc ?: -ENODEV; 8630 } 8631 8632 if (bp->flags & BNXT_FLAG_USING_MSIX) 8633 bnxt_setup_msix(bp); 8634 else 8635 bnxt_setup_inta(bp); 8636 8637 rc = bnxt_set_real_num_queues(bp); 8638 return rc; 8639 } 8640 8641 #ifdef CONFIG_RFS_ACCEL 8642 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8643 { 8644 return bp->hw_resc.max_rsscos_ctxs; 8645 } 8646 8647 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8648 { 8649 return bp->hw_resc.max_vnics; 8650 } 8651 #endif 8652 8653 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8654 { 8655 return bp->hw_resc.max_stat_ctxs; 8656 } 8657 8658 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8659 { 8660 return bp->hw_resc.max_cp_rings; 8661 } 8662 8663 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8664 { 8665 unsigned int cp = bp->hw_resc.max_cp_rings; 8666 8667 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8668 cp -= bnxt_get_ulp_msix_num(bp); 8669 8670 return cp; 8671 } 8672 8673 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8674 { 8675 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8676 8677 if (bp->flags & BNXT_FLAG_CHIP_P5) 8678 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8679 8680 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8681 } 8682 8683 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8684 { 8685 bp->hw_resc.max_irqs = max_irqs; 8686 } 8687 8688 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8689 { 8690 unsigned int cp; 8691 8692 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8693 if (bp->flags & BNXT_FLAG_CHIP_P5) 8694 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8695 else 8696 return cp - bp->cp_nr_rings; 8697 } 8698 8699 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8700 { 8701 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8702 } 8703 8704 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8705 { 8706 int max_cp = bnxt_get_max_func_cp_rings(bp); 8707 int max_irq = bnxt_get_max_func_irqs(bp); 8708 int total_req = bp->cp_nr_rings + num; 8709 int max_idx, avail_msix; 8710 8711 max_idx = bp->total_irqs; 8712 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8713 max_idx = min_t(int, bp->total_irqs, max_cp); 8714 avail_msix = max_idx - bp->cp_nr_rings; 8715 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8716 return avail_msix; 8717 8718 if (max_irq < total_req) { 8719 num = max_irq - bp->cp_nr_rings; 8720 if (num <= 0) 8721 return 0; 8722 } 8723 return num; 8724 } 8725 8726 static int bnxt_get_num_msix(struct bnxt *bp) 8727 { 8728 if (!BNXT_NEW_RM(bp)) 8729 return bnxt_get_max_func_irqs(bp); 8730 8731 return bnxt_nq_rings_in_use(bp); 8732 } 8733 8734 static int bnxt_init_msix(struct bnxt *bp) 8735 { 8736 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8737 struct msix_entry *msix_ent; 8738 8739 total_vecs = bnxt_get_num_msix(bp); 8740 max = bnxt_get_max_func_irqs(bp); 8741 if (total_vecs > max) 8742 total_vecs = max; 8743 8744 if (!total_vecs) 8745 return 0; 8746 8747 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8748 if (!msix_ent) 8749 return -ENOMEM; 8750 8751 for (i = 0; i < total_vecs; i++) { 8752 msix_ent[i].entry = i; 8753 msix_ent[i].vector = 0; 8754 } 8755 8756 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8757 min = 2; 8758 8759 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8760 ulp_msix = bnxt_get_ulp_msix_num(bp); 8761 if (total_vecs < 0 || total_vecs < ulp_msix) { 8762 rc = -ENODEV; 8763 goto msix_setup_exit; 8764 } 8765 8766 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8767 if (bp->irq_tbl) { 8768 for (i = 0; i < total_vecs; i++) 8769 bp->irq_tbl[i].vector = msix_ent[i].vector; 8770 8771 bp->total_irqs = total_vecs; 8772 /* Trim rings based upon num of vectors allocated */ 8773 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8774 total_vecs - ulp_msix, min == 1); 8775 if (rc) 8776 goto msix_setup_exit; 8777 8778 bp->cp_nr_rings = (min == 1) ? 8779 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8780 bp->tx_nr_rings + bp->rx_nr_rings; 8781 8782 } else { 8783 rc = -ENOMEM; 8784 goto msix_setup_exit; 8785 } 8786 bp->flags |= BNXT_FLAG_USING_MSIX; 8787 kfree(msix_ent); 8788 return 0; 8789 8790 msix_setup_exit: 8791 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 8792 kfree(bp->irq_tbl); 8793 bp->irq_tbl = NULL; 8794 pci_disable_msix(bp->pdev); 8795 kfree(msix_ent); 8796 return rc; 8797 } 8798 8799 static int bnxt_init_inta(struct bnxt *bp) 8800 { 8801 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 8802 if (!bp->irq_tbl) 8803 return -ENOMEM; 8804 8805 bp->total_irqs = 1; 8806 bp->rx_nr_rings = 1; 8807 bp->tx_nr_rings = 1; 8808 bp->cp_nr_rings = 1; 8809 bp->flags |= BNXT_FLAG_SHARED_RINGS; 8810 bp->irq_tbl[0].vector = bp->pdev->irq; 8811 return 0; 8812 } 8813 8814 static int bnxt_init_int_mode(struct bnxt *bp) 8815 { 8816 int rc = -ENODEV; 8817 8818 if (bp->flags & BNXT_FLAG_MSIX_CAP) 8819 rc = bnxt_init_msix(bp); 8820 8821 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 8822 /* fallback to INTA */ 8823 rc = bnxt_init_inta(bp); 8824 } 8825 return rc; 8826 } 8827 8828 static void bnxt_clear_int_mode(struct bnxt *bp) 8829 { 8830 if (bp->flags & BNXT_FLAG_USING_MSIX) 8831 pci_disable_msix(bp->pdev); 8832 8833 kfree(bp->irq_tbl); 8834 bp->irq_tbl = NULL; 8835 bp->flags &= ~BNXT_FLAG_USING_MSIX; 8836 } 8837 8838 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 8839 { 8840 int tcs = netdev_get_num_tc(bp->dev); 8841 bool irq_cleared = false; 8842 int rc; 8843 8844 if (!bnxt_need_reserve_rings(bp)) 8845 return 0; 8846 8847 if (irq_re_init && BNXT_NEW_RM(bp) && 8848 bnxt_get_num_msix(bp) != bp->total_irqs) { 8849 bnxt_ulp_irq_stop(bp); 8850 bnxt_clear_int_mode(bp); 8851 irq_cleared = true; 8852 } 8853 rc = __bnxt_reserve_rings(bp); 8854 if (irq_cleared) { 8855 if (!rc) 8856 rc = bnxt_init_int_mode(bp); 8857 bnxt_ulp_irq_restart(bp, rc); 8858 } 8859 if (rc) { 8860 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 8861 return rc; 8862 } 8863 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 8864 netdev_err(bp->dev, "tx ring reservation failure\n"); 8865 netdev_reset_tc(bp->dev); 8866 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 8867 return -ENOMEM; 8868 } 8869 return 0; 8870 } 8871 8872 static void bnxt_free_irq(struct bnxt *bp) 8873 { 8874 struct bnxt_irq *irq; 8875 int i; 8876 8877 #ifdef CONFIG_RFS_ACCEL 8878 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 8879 bp->dev->rx_cpu_rmap = NULL; 8880 #endif 8881 if (!bp->irq_tbl || !bp->bnapi) 8882 return; 8883 8884 for (i = 0; i < bp->cp_nr_rings; i++) { 8885 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8886 8887 irq = &bp->irq_tbl[map_idx]; 8888 if (irq->requested) { 8889 if (irq->have_cpumask) { 8890 irq_set_affinity_hint(irq->vector, NULL); 8891 free_cpumask_var(irq->cpu_mask); 8892 irq->have_cpumask = 0; 8893 } 8894 free_irq(irq->vector, bp->bnapi[i]); 8895 } 8896 8897 irq->requested = 0; 8898 } 8899 } 8900 8901 static int bnxt_request_irq(struct bnxt *bp) 8902 { 8903 int i, j, rc = 0; 8904 unsigned long flags = 0; 8905 #ifdef CONFIG_RFS_ACCEL 8906 struct cpu_rmap *rmap; 8907 #endif 8908 8909 rc = bnxt_setup_int_mode(bp); 8910 if (rc) { 8911 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 8912 rc); 8913 return rc; 8914 } 8915 #ifdef CONFIG_RFS_ACCEL 8916 rmap = bp->dev->rx_cpu_rmap; 8917 #endif 8918 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 8919 flags = IRQF_SHARED; 8920 8921 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 8922 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8923 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 8924 8925 #ifdef CONFIG_RFS_ACCEL 8926 if (rmap && bp->bnapi[i]->rx_ring) { 8927 rc = irq_cpu_rmap_add(rmap, irq->vector); 8928 if (rc) 8929 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 8930 j); 8931 j++; 8932 } 8933 #endif 8934 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 8935 bp->bnapi[i]); 8936 if (rc) 8937 break; 8938 8939 irq->requested = 1; 8940 8941 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 8942 int numa_node = dev_to_node(&bp->pdev->dev); 8943 8944 irq->have_cpumask = 1; 8945 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 8946 irq->cpu_mask); 8947 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 8948 if (rc) { 8949 netdev_warn(bp->dev, 8950 "Set affinity failed, IRQ = %d\n", 8951 irq->vector); 8952 break; 8953 } 8954 } 8955 } 8956 return rc; 8957 } 8958 8959 static void bnxt_del_napi(struct bnxt *bp) 8960 { 8961 int i; 8962 8963 if (!bp->bnapi) 8964 return; 8965 8966 for (i = 0; i < bp->cp_nr_rings; i++) { 8967 struct bnxt_napi *bnapi = bp->bnapi[i]; 8968 8969 __netif_napi_del(&bnapi->napi); 8970 } 8971 /* We called __netif_napi_del(), we need 8972 * to respect an RCU grace period before freeing napi structures. 8973 */ 8974 synchronize_net(); 8975 } 8976 8977 static void bnxt_init_napi(struct bnxt *bp) 8978 { 8979 int i; 8980 unsigned int cp_nr_rings = bp->cp_nr_rings; 8981 struct bnxt_napi *bnapi; 8982 8983 if (bp->flags & BNXT_FLAG_USING_MSIX) { 8984 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 8985 8986 if (bp->flags & BNXT_FLAG_CHIP_P5) 8987 poll_fn = bnxt_poll_p5; 8988 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8989 cp_nr_rings--; 8990 for (i = 0; i < cp_nr_rings; i++) { 8991 bnapi = bp->bnapi[i]; 8992 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 8993 } 8994 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8995 bnapi = bp->bnapi[cp_nr_rings]; 8996 netif_napi_add(bp->dev, &bnapi->napi, 8997 bnxt_poll_nitroa0, 64); 8998 } 8999 } else { 9000 bnapi = bp->bnapi[0]; 9001 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9002 } 9003 } 9004 9005 static void bnxt_disable_napi(struct bnxt *bp) 9006 { 9007 int i; 9008 9009 if (!bp->bnapi || 9010 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9011 return; 9012 9013 for (i = 0; i < bp->cp_nr_rings; i++) { 9014 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9015 9016 if (bp->bnapi[i]->rx_ring) 9017 cancel_work_sync(&cpr->dim.work); 9018 9019 napi_disable(&bp->bnapi[i]->napi); 9020 } 9021 } 9022 9023 static void bnxt_enable_napi(struct bnxt *bp) 9024 { 9025 int i; 9026 9027 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9028 for (i = 0; i < bp->cp_nr_rings; i++) { 9029 struct bnxt_napi *bnapi = bp->bnapi[i]; 9030 struct bnxt_cp_ring_info *cpr; 9031 9032 cpr = &bnapi->cp_ring; 9033 if (bnapi->in_reset) 9034 cpr->sw_stats.rx.rx_resets++; 9035 bnapi->in_reset = false; 9036 9037 if (bnapi->rx_ring) { 9038 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9039 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9040 } 9041 napi_enable(&bnapi->napi); 9042 } 9043 } 9044 9045 void bnxt_tx_disable(struct bnxt *bp) 9046 { 9047 int i; 9048 struct bnxt_tx_ring_info *txr; 9049 9050 if (bp->tx_ring) { 9051 for (i = 0; i < bp->tx_nr_rings; i++) { 9052 txr = &bp->tx_ring[i]; 9053 txr->dev_state = BNXT_DEV_STATE_CLOSING; 9054 } 9055 } 9056 /* Drop carrier first to prevent TX timeout */ 9057 netif_carrier_off(bp->dev); 9058 /* Stop all TX queues */ 9059 netif_tx_disable(bp->dev); 9060 } 9061 9062 void bnxt_tx_enable(struct bnxt *bp) 9063 { 9064 int i; 9065 struct bnxt_tx_ring_info *txr; 9066 9067 for (i = 0; i < bp->tx_nr_rings; i++) { 9068 txr = &bp->tx_ring[i]; 9069 txr->dev_state = 0; 9070 } 9071 netif_tx_wake_all_queues(bp->dev); 9072 if (bp->link_info.link_up) 9073 netif_carrier_on(bp->dev); 9074 } 9075 9076 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9077 { 9078 u8 active_fec = link_info->active_fec_sig_mode & 9079 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9080 9081 switch (active_fec) { 9082 default: 9083 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9084 return "None"; 9085 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9086 return "Clause 74 BaseR"; 9087 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9088 return "Clause 91 RS(528,514)"; 9089 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9090 return "Clause 91 RS544_1XN"; 9091 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9092 return "Clause 91 RS(544,514)"; 9093 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9094 return "Clause 91 RS272_1XN"; 9095 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9096 return "Clause 91 RS(272,257)"; 9097 } 9098 } 9099 9100 static void bnxt_report_link(struct bnxt *bp) 9101 { 9102 if (bp->link_info.link_up) { 9103 const char *signal = ""; 9104 const char *flow_ctrl; 9105 const char *duplex; 9106 u32 speed; 9107 u16 fec; 9108 9109 netif_carrier_on(bp->dev); 9110 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9111 if (speed == SPEED_UNKNOWN) { 9112 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9113 return; 9114 } 9115 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9116 duplex = "full"; 9117 else 9118 duplex = "half"; 9119 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9120 flow_ctrl = "ON - receive & transmit"; 9121 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9122 flow_ctrl = "ON - transmit"; 9123 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9124 flow_ctrl = "ON - receive"; 9125 else 9126 flow_ctrl = "none"; 9127 if (bp->link_info.phy_qcfg_resp.option_flags & 9128 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9129 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9130 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9131 switch (sig_mode) { 9132 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9133 signal = "(NRZ) "; 9134 break; 9135 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9136 signal = "(PAM4) "; 9137 break; 9138 default: 9139 break; 9140 } 9141 } 9142 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9143 speed, signal, duplex, flow_ctrl); 9144 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9145 netdev_info(bp->dev, "EEE is %s\n", 9146 bp->eee.eee_active ? "active" : 9147 "not active"); 9148 fec = bp->link_info.fec_cfg; 9149 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9150 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9151 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9152 bnxt_report_fec(&bp->link_info)); 9153 } else { 9154 netif_carrier_off(bp->dev); 9155 netdev_err(bp->dev, "NIC Link is Down\n"); 9156 } 9157 } 9158 9159 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9160 { 9161 if (!resp->supported_speeds_auto_mode && 9162 !resp->supported_speeds_force_mode && 9163 !resp->supported_pam4_speeds_auto_mode && 9164 !resp->supported_pam4_speeds_force_mode) 9165 return true; 9166 return false; 9167 } 9168 9169 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9170 { 9171 int rc = 0; 9172 struct hwrm_port_phy_qcaps_input req = {0}; 9173 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 9174 struct bnxt_link_info *link_info = &bp->link_info; 9175 9176 if (bp->hwrm_spec_code < 0x10201) 9177 return 0; 9178 9179 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1); 9180 9181 mutex_lock(&bp->hwrm_cmd_lock); 9182 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9183 if (rc) 9184 goto hwrm_phy_qcaps_exit; 9185 9186 bp->phy_flags = resp->flags; 9187 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9188 struct ethtool_eee *eee = &bp->eee; 9189 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9190 9191 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9192 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9193 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9194 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9195 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9196 } 9197 9198 if (bp->hwrm_spec_code >= 0x10a01) { 9199 if (bnxt_phy_qcaps_no_speed(resp)) { 9200 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9201 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9202 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9203 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9204 netdev_info(bp->dev, "Ethernet link enabled\n"); 9205 /* Phy re-enabled, reprobe the speeds */ 9206 link_info->support_auto_speeds = 0; 9207 link_info->support_pam4_auto_speeds = 0; 9208 } 9209 } 9210 if (resp->supported_speeds_auto_mode) 9211 link_info->support_auto_speeds = 9212 le16_to_cpu(resp->supported_speeds_auto_mode); 9213 if (resp->supported_pam4_speeds_auto_mode) 9214 link_info->support_pam4_auto_speeds = 9215 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9216 9217 bp->port_count = resp->port_cnt; 9218 9219 hwrm_phy_qcaps_exit: 9220 mutex_unlock(&bp->hwrm_cmd_lock); 9221 return rc; 9222 } 9223 9224 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9225 { 9226 u16 diff = advertising ^ supported; 9227 9228 return ((supported | diff) != supported); 9229 } 9230 9231 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9232 { 9233 int rc = 0; 9234 struct bnxt_link_info *link_info = &bp->link_info; 9235 struct hwrm_port_phy_qcfg_input req = {0}; 9236 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 9237 u8 link_up = link_info->link_up; 9238 bool support_changed = false; 9239 9240 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 9241 9242 mutex_lock(&bp->hwrm_cmd_lock); 9243 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9244 if (rc) { 9245 mutex_unlock(&bp->hwrm_cmd_lock); 9246 return rc; 9247 } 9248 9249 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9250 link_info->phy_link_status = resp->link; 9251 link_info->duplex = resp->duplex_cfg; 9252 if (bp->hwrm_spec_code >= 0x10800) 9253 link_info->duplex = resp->duplex_state; 9254 link_info->pause = resp->pause; 9255 link_info->auto_mode = resp->auto_mode; 9256 link_info->auto_pause_setting = resp->auto_pause; 9257 link_info->lp_pause = resp->link_partner_adv_pause; 9258 link_info->force_pause_setting = resp->force_pause; 9259 link_info->duplex_setting = resp->duplex_cfg; 9260 if (link_info->phy_link_status == BNXT_LINK_LINK) 9261 link_info->link_speed = le16_to_cpu(resp->link_speed); 9262 else 9263 link_info->link_speed = 0; 9264 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9265 link_info->force_pam4_link_speed = 9266 le16_to_cpu(resp->force_pam4_link_speed); 9267 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9268 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9269 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9270 link_info->auto_pam4_link_speeds = 9271 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9272 link_info->lp_auto_link_speeds = 9273 le16_to_cpu(resp->link_partner_adv_speeds); 9274 link_info->lp_auto_pam4_link_speeds = 9275 resp->link_partner_pam4_adv_speeds; 9276 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9277 link_info->phy_ver[0] = resp->phy_maj; 9278 link_info->phy_ver[1] = resp->phy_min; 9279 link_info->phy_ver[2] = resp->phy_bld; 9280 link_info->media_type = resp->media_type; 9281 link_info->phy_type = resp->phy_type; 9282 link_info->transceiver = resp->xcvr_pkg_type; 9283 link_info->phy_addr = resp->eee_config_phy_addr & 9284 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9285 link_info->module_status = resp->module_status; 9286 9287 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9288 struct ethtool_eee *eee = &bp->eee; 9289 u16 fw_speeds; 9290 9291 eee->eee_active = 0; 9292 if (resp->eee_config_phy_addr & 9293 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9294 eee->eee_active = 1; 9295 fw_speeds = le16_to_cpu( 9296 resp->link_partner_adv_eee_link_speed_mask); 9297 eee->lp_advertised = 9298 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9299 } 9300 9301 /* Pull initial EEE config */ 9302 if (!chng_link_state) { 9303 if (resp->eee_config_phy_addr & 9304 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9305 eee->eee_enabled = 1; 9306 9307 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9308 eee->advertised = 9309 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9310 9311 if (resp->eee_config_phy_addr & 9312 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9313 __le32 tmr; 9314 9315 eee->tx_lpi_enabled = 1; 9316 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9317 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9318 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9319 } 9320 } 9321 } 9322 9323 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9324 if (bp->hwrm_spec_code >= 0x10504) { 9325 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9326 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9327 } 9328 /* TODO: need to add more logic to report VF link */ 9329 if (chng_link_state) { 9330 if (link_info->phy_link_status == BNXT_LINK_LINK) 9331 link_info->link_up = 1; 9332 else 9333 link_info->link_up = 0; 9334 if (link_up != link_info->link_up) 9335 bnxt_report_link(bp); 9336 } else { 9337 /* alwasy link down if not require to update link state */ 9338 link_info->link_up = 0; 9339 } 9340 mutex_unlock(&bp->hwrm_cmd_lock); 9341 9342 if (!BNXT_PHY_CFG_ABLE(bp)) 9343 return 0; 9344 9345 /* Check if any advertised speeds are no longer supported. The caller 9346 * holds the link_lock mutex, so we can modify link_info settings. 9347 */ 9348 if (bnxt_support_dropped(link_info->advertising, 9349 link_info->support_auto_speeds)) { 9350 link_info->advertising = link_info->support_auto_speeds; 9351 support_changed = true; 9352 } 9353 if (bnxt_support_dropped(link_info->advertising_pam4, 9354 link_info->support_pam4_auto_speeds)) { 9355 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9356 support_changed = true; 9357 } 9358 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9359 bnxt_hwrm_set_link_setting(bp, true, false); 9360 return 0; 9361 } 9362 9363 static void bnxt_get_port_module_status(struct bnxt *bp) 9364 { 9365 struct bnxt_link_info *link_info = &bp->link_info; 9366 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9367 u8 module_status; 9368 9369 if (bnxt_update_link(bp, true)) 9370 return; 9371 9372 module_status = link_info->module_status; 9373 switch (module_status) { 9374 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9375 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9376 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9377 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9378 bp->pf.port_id); 9379 if (bp->hwrm_spec_code >= 0x10201) { 9380 netdev_warn(bp->dev, "Module part number %s\n", 9381 resp->phy_vendor_partnumber); 9382 } 9383 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9384 netdev_warn(bp->dev, "TX is disabled\n"); 9385 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9386 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9387 } 9388 } 9389 9390 static void 9391 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9392 { 9393 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9394 if (bp->hwrm_spec_code >= 0x10201) 9395 req->auto_pause = 9396 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9397 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9398 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9399 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9400 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9401 req->enables |= 9402 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9403 } else { 9404 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9405 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9406 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9407 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9408 req->enables |= 9409 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9410 if (bp->hwrm_spec_code >= 0x10201) { 9411 req->auto_pause = req->force_pause; 9412 req->enables |= cpu_to_le32( 9413 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9414 } 9415 } 9416 } 9417 9418 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9419 { 9420 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9421 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9422 if (bp->link_info.advertising) { 9423 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9424 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9425 } 9426 if (bp->link_info.advertising_pam4) { 9427 req->enables |= 9428 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9429 req->auto_link_pam4_speed_mask = 9430 cpu_to_le16(bp->link_info.advertising_pam4); 9431 } 9432 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9433 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9434 } else { 9435 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9436 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9437 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9438 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9439 } else { 9440 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9441 } 9442 } 9443 9444 /* tell chimp that the setting takes effect immediately */ 9445 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9446 } 9447 9448 int bnxt_hwrm_set_pause(struct bnxt *bp) 9449 { 9450 struct hwrm_port_phy_cfg_input req = {0}; 9451 int rc; 9452 9453 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9454 bnxt_hwrm_set_pause_common(bp, &req); 9455 9456 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9457 bp->link_info.force_link_chng) 9458 bnxt_hwrm_set_link_common(bp, &req); 9459 9460 mutex_lock(&bp->hwrm_cmd_lock); 9461 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9462 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9463 /* since changing of pause setting doesn't trigger any link 9464 * change event, the driver needs to update the current pause 9465 * result upon successfully return of the phy_cfg command 9466 */ 9467 bp->link_info.pause = 9468 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9469 bp->link_info.auto_pause_setting = 0; 9470 if (!bp->link_info.force_link_chng) 9471 bnxt_report_link(bp); 9472 } 9473 bp->link_info.force_link_chng = false; 9474 mutex_unlock(&bp->hwrm_cmd_lock); 9475 return rc; 9476 } 9477 9478 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9479 struct hwrm_port_phy_cfg_input *req) 9480 { 9481 struct ethtool_eee *eee = &bp->eee; 9482 9483 if (eee->eee_enabled) { 9484 u16 eee_speeds; 9485 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9486 9487 if (eee->tx_lpi_enabled) 9488 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9489 else 9490 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9491 9492 req->flags |= cpu_to_le32(flags); 9493 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9494 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9495 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9496 } else { 9497 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9498 } 9499 } 9500 9501 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9502 { 9503 struct hwrm_port_phy_cfg_input req = {0}; 9504 9505 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9506 if (set_pause) 9507 bnxt_hwrm_set_pause_common(bp, &req); 9508 9509 bnxt_hwrm_set_link_common(bp, &req); 9510 9511 if (set_eee) 9512 bnxt_hwrm_set_eee(bp, &req); 9513 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9514 } 9515 9516 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9517 { 9518 struct hwrm_port_phy_cfg_input req = {0}; 9519 9520 if (!BNXT_SINGLE_PF(bp)) 9521 return 0; 9522 9523 if (pci_num_vf(bp->pdev) && 9524 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9525 return 0; 9526 9527 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9528 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9529 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9530 } 9531 9532 static int bnxt_fw_init_one(struct bnxt *bp); 9533 9534 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9535 { 9536 #ifdef CONFIG_TEE_BNXT_FW 9537 int rc = tee_bnxt_fw_load(); 9538 9539 if (rc) 9540 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9541 9542 return rc; 9543 #else 9544 netdev_err(bp->dev, "OP-TEE not supported\n"); 9545 return -ENODEV; 9546 #endif 9547 } 9548 9549 static int bnxt_try_recover_fw(struct bnxt *bp) 9550 { 9551 if (bp->fw_health && bp->fw_health->status_reliable) { 9552 int retry = 0, rc; 9553 u32 sts; 9554 9555 mutex_lock(&bp->hwrm_cmd_lock); 9556 do { 9557 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9558 rc = __bnxt_hwrm_ver_get(bp, true); 9559 if (!BNXT_FW_IS_BOOTING(sts) && 9560 !BNXT_FW_IS_RECOVERING(sts)) 9561 break; 9562 retry++; 9563 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9564 mutex_unlock(&bp->hwrm_cmd_lock); 9565 9566 if (!BNXT_FW_IS_HEALTHY(sts)) { 9567 netdev_err(bp->dev, 9568 "Firmware not responding, status: 0x%x\n", 9569 sts); 9570 rc = -ENODEV; 9571 } 9572 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9573 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9574 return bnxt_fw_reset_via_optee(bp); 9575 } 9576 return rc; 9577 } 9578 9579 return -ENODEV; 9580 } 9581 9582 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9583 { 9584 struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr; 9585 struct hwrm_func_drv_if_change_input req = {0}; 9586 bool fw_reset = !bp->irq_tbl; 9587 bool resc_reinit = false; 9588 int rc, retry = 0; 9589 u32 flags = 0; 9590 9591 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9592 return 0; 9593 9594 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1); 9595 if (up) 9596 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9597 mutex_lock(&bp->hwrm_cmd_lock); 9598 while (retry < BNXT_FW_IF_RETRY) { 9599 rc = _hwrm_send_message(bp, &req, sizeof(req), 9600 HWRM_CMD_TIMEOUT); 9601 if (rc != -EAGAIN) 9602 break; 9603 9604 msleep(50); 9605 retry++; 9606 } 9607 if (!rc) 9608 flags = le32_to_cpu(resp->flags); 9609 mutex_unlock(&bp->hwrm_cmd_lock); 9610 9611 if (rc == -EAGAIN) 9612 return rc; 9613 if (rc && up) { 9614 rc = bnxt_try_recover_fw(bp); 9615 fw_reset = true; 9616 } 9617 if (rc) 9618 return rc; 9619 9620 if (!up) { 9621 bnxt_inv_fw_health_reg(bp); 9622 return 0; 9623 } 9624 9625 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9626 resc_reinit = true; 9627 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9628 fw_reset = true; 9629 else if (bp->fw_health && !bp->fw_health->status_reliable) 9630 bnxt_try_map_fw_health_reg(bp); 9631 9632 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9633 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9634 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9635 return -ENODEV; 9636 } 9637 if (resc_reinit || fw_reset) { 9638 if (fw_reset) { 9639 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9640 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9641 bnxt_ulp_stop(bp); 9642 bnxt_free_ctx_mem(bp); 9643 kfree(bp->ctx); 9644 bp->ctx = NULL; 9645 bnxt_dcb_free(bp); 9646 rc = bnxt_fw_init_one(bp); 9647 if (rc) { 9648 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9649 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9650 return rc; 9651 } 9652 bnxt_clear_int_mode(bp); 9653 rc = bnxt_init_int_mode(bp); 9654 if (rc) { 9655 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9656 netdev_err(bp->dev, "init int mode failed\n"); 9657 return rc; 9658 } 9659 } 9660 if (BNXT_NEW_RM(bp)) { 9661 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9662 9663 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9664 if (rc) 9665 netdev_err(bp->dev, "resc_qcaps failed\n"); 9666 9667 hw_resc->resv_cp_rings = 0; 9668 hw_resc->resv_stat_ctxs = 0; 9669 hw_resc->resv_irqs = 0; 9670 hw_resc->resv_tx_rings = 0; 9671 hw_resc->resv_rx_rings = 0; 9672 hw_resc->resv_hw_ring_grps = 0; 9673 hw_resc->resv_vnics = 0; 9674 if (!fw_reset) { 9675 bp->tx_nr_rings = 0; 9676 bp->rx_nr_rings = 0; 9677 } 9678 } 9679 } 9680 return rc; 9681 } 9682 9683 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9684 { 9685 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 9686 struct hwrm_port_led_qcaps_input req = {0}; 9687 struct bnxt_pf_info *pf = &bp->pf; 9688 int rc; 9689 9690 bp->num_leds = 0; 9691 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9692 return 0; 9693 9694 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1); 9695 req.port_id = cpu_to_le16(pf->port_id); 9696 mutex_lock(&bp->hwrm_cmd_lock); 9697 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9698 if (rc) { 9699 mutex_unlock(&bp->hwrm_cmd_lock); 9700 return rc; 9701 } 9702 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9703 int i; 9704 9705 bp->num_leds = resp->num_leds; 9706 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9707 bp->num_leds); 9708 for (i = 0; i < bp->num_leds; i++) { 9709 struct bnxt_led_info *led = &bp->leds[i]; 9710 __le16 caps = led->led_state_caps; 9711 9712 if (!led->led_group_id || 9713 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9714 bp->num_leds = 0; 9715 break; 9716 } 9717 } 9718 } 9719 mutex_unlock(&bp->hwrm_cmd_lock); 9720 return 0; 9721 } 9722 9723 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9724 { 9725 struct hwrm_wol_filter_alloc_input req = {0}; 9726 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 9727 int rc; 9728 9729 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1); 9730 req.port_id = cpu_to_le16(bp->pf.port_id); 9731 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9732 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9733 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN); 9734 mutex_lock(&bp->hwrm_cmd_lock); 9735 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9736 if (!rc) 9737 bp->wol_filter_id = resp->wol_filter_id; 9738 mutex_unlock(&bp->hwrm_cmd_lock); 9739 return rc; 9740 } 9741 9742 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9743 { 9744 struct hwrm_wol_filter_free_input req = {0}; 9745 9746 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1); 9747 req.port_id = cpu_to_le16(bp->pf.port_id); 9748 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 9749 req.wol_filter_id = bp->wol_filter_id; 9750 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9751 } 9752 9753 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 9754 { 9755 struct hwrm_wol_filter_qcfg_input req = {0}; 9756 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 9757 u16 next_handle = 0; 9758 int rc; 9759 9760 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1); 9761 req.port_id = cpu_to_le16(bp->pf.port_id); 9762 req.handle = cpu_to_le16(handle); 9763 mutex_lock(&bp->hwrm_cmd_lock); 9764 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9765 if (!rc) { 9766 next_handle = le16_to_cpu(resp->next_handle); 9767 if (next_handle != 0) { 9768 if (resp->wol_type == 9769 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 9770 bp->wol = 1; 9771 bp->wol_filter_id = resp->wol_filter_id; 9772 } 9773 } 9774 } 9775 mutex_unlock(&bp->hwrm_cmd_lock); 9776 return next_handle; 9777 } 9778 9779 static void bnxt_get_wol_settings(struct bnxt *bp) 9780 { 9781 u16 handle = 0; 9782 9783 bp->wol = 0; 9784 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 9785 return; 9786 9787 do { 9788 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 9789 } while (handle && handle != 0xffff); 9790 } 9791 9792 #ifdef CONFIG_BNXT_HWMON 9793 static ssize_t bnxt_show_temp(struct device *dev, 9794 struct device_attribute *devattr, char *buf) 9795 { 9796 struct hwrm_temp_monitor_query_input req = {0}; 9797 struct hwrm_temp_monitor_query_output *resp; 9798 struct bnxt *bp = dev_get_drvdata(dev); 9799 u32 len = 0; 9800 int rc; 9801 9802 resp = bp->hwrm_cmd_resp_addr; 9803 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 9804 mutex_lock(&bp->hwrm_cmd_lock); 9805 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9806 if (!rc) 9807 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 9808 mutex_unlock(&bp->hwrm_cmd_lock); 9809 if (rc) 9810 return rc; 9811 return len; 9812 } 9813 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 9814 9815 static struct attribute *bnxt_attrs[] = { 9816 &sensor_dev_attr_temp1_input.dev_attr.attr, 9817 NULL 9818 }; 9819 ATTRIBUTE_GROUPS(bnxt); 9820 9821 static void bnxt_hwmon_close(struct bnxt *bp) 9822 { 9823 if (bp->hwmon_dev) { 9824 hwmon_device_unregister(bp->hwmon_dev); 9825 bp->hwmon_dev = NULL; 9826 } 9827 } 9828 9829 static void bnxt_hwmon_open(struct bnxt *bp) 9830 { 9831 struct hwrm_temp_monitor_query_input req = {0}; 9832 struct pci_dev *pdev = bp->pdev; 9833 int rc; 9834 9835 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 9836 rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9837 if (rc == -EACCES || rc == -EOPNOTSUPP) { 9838 bnxt_hwmon_close(bp); 9839 return; 9840 } 9841 9842 if (bp->hwmon_dev) 9843 return; 9844 9845 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 9846 DRV_MODULE_NAME, bp, 9847 bnxt_groups); 9848 if (IS_ERR(bp->hwmon_dev)) { 9849 bp->hwmon_dev = NULL; 9850 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 9851 } 9852 } 9853 #else 9854 static void bnxt_hwmon_close(struct bnxt *bp) 9855 { 9856 } 9857 9858 static void bnxt_hwmon_open(struct bnxt *bp) 9859 { 9860 } 9861 #endif 9862 9863 static bool bnxt_eee_config_ok(struct bnxt *bp) 9864 { 9865 struct ethtool_eee *eee = &bp->eee; 9866 struct bnxt_link_info *link_info = &bp->link_info; 9867 9868 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 9869 return true; 9870 9871 if (eee->eee_enabled) { 9872 u32 advertising = 9873 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 9874 9875 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 9876 eee->eee_enabled = 0; 9877 return false; 9878 } 9879 if (eee->advertised & ~advertising) { 9880 eee->advertised = advertising & eee->supported; 9881 return false; 9882 } 9883 } 9884 return true; 9885 } 9886 9887 static int bnxt_update_phy_setting(struct bnxt *bp) 9888 { 9889 int rc; 9890 bool update_link = false; 9891 bool update_pause = false; 9892 bool update_eee = false; 9893 struct bnxt_link_info *link_info = &bp->link_info; 9894 9895 rc = bnxt_update_link(bp, true); 9896 if (rc) { 9897 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 9898 rc); 9899 return rc; 9900 } 9901 if (!BNXT_SINGLE_PF(bp)) 9902 return 0; 9903 9904 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 9905 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 9906 link_info->req_flow_ctrl) 9907 update_pause = true; 9908 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 9909 link_info->force_pause_setting != link_info->req_flow_ctrl) 9910 update_pause = true; 9911 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 9912 if (BNXT_AUTO_MODE(link_info->auto_mode)) 9913 update_link = true; 9914 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 9915 link_info->req_link_speed != link_info->force_link_speed) 9916 update_link = true; 9917 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 9918 link_info->req_link_speed != link_info->force_pam4_link_speed) 9919 update_link = true; 9920 if (link_info->req_duplex != link_info->duplex_setting) 9921 update_link = true; 9922 } else { 9923 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 9924 update_link = true; 9925 if (link_info->advertising != link_info->auto_link_speeds || 9926 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 9927 update_link = true; 9928 } 9929 9930 /* The last close may have shutdown the link, so need to call 9931 * PHY_CFG to bring it back up. 9932 */ 9933 if (!bp->link_info.link_up) 9934 update_link = true; 9935 9936 if (!bnxt_eee_config_ok(bp)) 9937 update_eee = true; 9938 9939 if (update_link) 9940 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 9941 else if (update_pause) 9942 rc = bnxt_hwrm_set_pause(bp); 9943 if (rc) { 9944 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 9945 rc); 9946 return rc; 9947 } 9948 9949 return rc; 9950 } 9951 9952 /* Common routine to pre-map certain register block to different GRC window. 9953 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 9954 * in PF and 3 windows in VF that can be customized to map in different 9955 * register blocks. 9956 */ 9957 static void bnxt_preset_reg_win(struct bnxt *bp) 9958 { 9959 if (BNXT_PF(bp)) { 9960 /* CAG registers map to GRC window #4 */ 9961 writel(BNXT_CAG_REG_BASE, 9962 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 9963 } 9964 } 9965 9966 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 9967 9968 static int bnxt_reinit_after_abort(struct bnxt *bp) 9969 { 9970 int rc; 9971 9972 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9973 return -EBUSY; 9974 9975 if (bp->dev->reg_state == NETREG_UNREGISTERED) 9976 return -ENODEV; 9977 9978 rc = bnxt_fw_init_one(bp); 9979 if (!rc) { 9980 bnxt_clear_int_mode(bp); 9981 rc = bnxt_init_int_mode(bp); 9982 if (!rc) { 9983 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9984 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9985 } 9986 } 9987 return rc; 9988 } 9989 9990 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 9991 { 9992 int rc = 0; 9993 9994 bnxt_preset_reg_win(bp); 9995 netif_carrier_off(bp->dev); 9996 if (irq_re_init) { 9997 /* Reserve rings now if none were reserved at driver probe. */ 9998 rc = bnxt_init_dflt_ring_mode(bp); 9999 if (rc) { 10000 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10001 return rc; 10002 } 10003 } 10004 rc = bnxt_reserve_rings(bp, irq_re_init); 10005 if (rc) 10006 return rc; 10007 if ((bp->flags & BNXT_FLAG_RFS) && 10008 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10009 /* disable RFS if falling back to INTA */ 10010 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10011 bp->flags &= ~BNXT_FLAG_RFS; 10012 } 10013 10014 rc = bnxt_alloc_mem(bp, irq_re_init); 10015 if (rc) { 10016 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10017 goto open_err_free_mem; 10018 } 10019 10020 if (irq_re_init) { 10021 bnxt_init_napi(bp); 10022 rc = bnxt_request_irq(bp); 10023 if (rc) { 10024 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10025 goto open_err_irq; 10026 } 10027 } 10028 10029 rc = bnxt_init_nic(bp, irq_re_init); 10030 if (rc) { 10031 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10032 goto open_err_irq; 10033 } 10034 10035 bnxt_enable_napi(bp); 10036 bnxt_debug_dev_init(bp); 10037 10038 if (link_re_init) { 10039 mutex_lock(&bp->link_lock); 10040 rc = bnxt_update_phy_setting(bp); 10041 mutex_unlock(&bp->link_lock); 10042 if (rc) { 10043 netdev_warn(bp->dev, "failed to update phy settings\n"); 10044 if (BNXT_SINGLE_PF(bp)) { 10045 bp->link_info.phy_retry = true; 10046 bp->link_info.phy_retry_expires = 10047 jiffies + 5 * HZ; 10048 } 10049 } 10050 } 10051 10052 if (irq_re_init) 10053 udp_tunnel_nic_reset_ntf(bp->dev); 10054 10055 set_bit(BNXT_STATE_OPEN, &bp->state); 10056 bnxt_enable_int(bp); 10057 /* Enable TX queues */ 10058 bnxt_tx_enable(bp); 10059 mod_timer(&bp->timer, jiffies + bp->current_interval); 10060 /* Poll link status and check for SFP+ module status */ 10061 bnxt_get_port_module_status(bp); 10062 10063 /* VF-reps may need to be re-opened after the PF is re-opened */ 10064 if (BNXT_PF(bp)) 10065 bnxt_vf_reps_open(bp); 10066 return 0; 10067 10068 open_err_irq: 10069 bnxt_del_napi(bp); 10070 10071 open_err_free_mem: 10072 bnxt_free_skbs(bp); 10073 bnxt_free_irq(bp); 10074 bnxt_free_mem(bp, true); 10075 return rc; 10076 } 10077 10078 /* rtnl_lock held */ 10079 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10080 { 10081 int rc = 0; 10082 10083 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10084 rc = -EIO; 10085 if (!rc) 10086 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10087 if (rc) { 10088 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10089 dev_close(bp->dev); 10090 } 10091 return rc; 10092 } 10093 10094 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10095 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10096 * self tests. 10097 */ 10098 int bnxt_half_open_nic(struct bnxt *bp) 10099 { 10100 int rc = 0; 10101 10102 rc = bnxt_alloc_mem(bp, false); 10103 if (rc) { 10104 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10105 goto half_open_err; 10106 } 10107 rc = bnxt_init_nic(bp, false); 10108 if (rc) { 10109 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10110 goto half_open_err; 10111 } 10112 return 0; 10113 10114 half_open_err: 10115 bnxt_free_skbs(bp); 10116 bnxt_free_mem(bp, false); 10117 dev_close(bp->dev); 10118 return rc; 10119 } 10120 10121 /* rtnl_lock held, this call can only be made after a previous successful 10122 * call to bnxt_half_open_nic(). 10123 */ 10124 void bnxt_half_close_nic(struct bnxt *bp) 10125 { 10126 bnxt_hwrm_resource_free(bp, false, false); 10127 bnxt_free_skbs(bp); 10128 bnxt_free_mem(bp, false); 10129 } 10130 10131 static void bnxt_reenable_sriov(struct bnxt *bp) 10132 { 10133 if (BNXT_PF(bp)) { 10134 struct bnxt_pf_info *pf = &bp->pf; 10135 int n = pf->active_vfs; 10136 10137 if (n) 10138 bnxt_cfg_hw_sriov(bp, &n, true); 10139 } 10140 } 10141 10142 static int bnxt_open(struct net_device *dev) 10143 { 10144 struct bnxt *bp = netdev_priv(dev); 10145 int rc; 10146 10147 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10148 rc = bnxt_reinit_after_abort(bp); 10149 if (rc) { 10150 if (rc == -EBUSY) 10151 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10152 else 10153 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10154 return -ENODEV; 10155 } 10156 } 10157 10158 rc = bnxt_hwrm_if_change(bp, true); 10159 if (rc) 10160 return rc; 10161 rc = __bnxt_open_nic(bp, true, true); 10162 if (rc) { 10163 bnxt_hwrm_if_change(bp, false); 10164 } else { 10165 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10166 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10167 bnxt_ulp_start(bp, 0); 10168 bnxt_reenable_sriov(bp); 10169 } 10170 } 10171 bnxt_hwmon_open(bp); 10172 } 10173 10174 return rc; 10175 } 10176 10177 static bool bnxt_drv_busy(struct bnxt *bp) 10178 { 10179 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10180 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10181 } 10182 10183 static void bnxt_get_ring_stats(struct bnxt *bp, 10184 struct rtnl_link_stats64 *stats); 10185 10186 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10187 bool link_re_init) 10188 { 10189 /* Close the VF-reps before closing PF */ 10190 if (BNXT_PF(bp)) 10191 bnxt_vf_reps_close(bp); 10192 10193 /* Change device state to avoid TX queue wake up's */ 10194 bnxt_tx_disable(bp); 10195 10196 clear_bit(BNXT_STATE_OPEN, &bp->state); 10197 smp_mb__after_atomic(); 10198 while (bnxt_drv_busy(bp)) 10199 msleep(20); 10200 10201 /* Flush rings and and disable interrupts */ 10202 bnxt_shutdown_nic(bp, irq_re_init); 10203 10204 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10205 10206 bnxt_debug_dev_exit(bp); 10207 bnxt_disable_napi(bp); 10208 del_timer_sync(&bp->timer); 10209 bnxt_free_skbs(bp); 10210 10211 /* Save ring stats before shutdown */ 10212 if (bp->bnapi && irq_re_init) 10213 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10214 if (irq_re_init) { 10215 bnxt_free_irq(bp); 10216 bnxt_del_napi(bp); 10217 } 10218 bnxt_free_mem(bp, irq_re_init); 10219 } 10220 10221 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10222 { 10223 int rc = 0; 10224 10225 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10226 /* If we get here, it means firmware reset is in progress 10227 * while we are trying to close. We can safely proceed with 10228 * the close because we are holding rtnl_lock(). Some firmware 10229 * messages may fail as we proceed to close. We set the 10230 * ABORT_ERR flag here so that the FW reset thread will later 10231 * abort when it gets the rtnl_lock() and sees the flag. 10232 */ 10233 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10234 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10235 } 10236 10237 #ifdef CONFIG_BNXT_SRIOV 10238 if (bp->sriov_cfg) { 10239 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10240 !bp->sriov_cfg, 10241 BNXT_SRIOV_CFG_WAIT_TMO); 10242 if (rc) 10243 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10244 } 10245 #endif 10246 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10247 return rc; 10248 } 10249 10250 static int bnxt_close(struct net_device *dev) 10251 { 10252 struct bnxt *bp = netdev_priv(dev); 10253 10254 bnxt_hwmon_close(bp); 10255 bnxt_close_nic(bp, true, true); 10256 bnxt_hwrm_shutdown_link(bp); 10257 bnxt_hwrm_if_change(bp, false); 10258 return 0; 10259 } 10260 10261 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10262 u16 *val) 10263 { 10264 struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr; 10265 struct hwrm_port_phy_mdio_read_input req = {0}; 10266 int rc; 10267 10268 if (bp->hwrm_spec_code < 0x10a00) 10269 return -EOPNOTSUPP; 10270 10271 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1); 10272 req.port_id = cpu_to_le16(bp->pf.port_id); 10273 req.phy_addr = phy_addr; 10274 req.reg_addr = cpu_to_le16(reg & 0x1f); 10275 if (mdio_phy_id_is_c45(phy_addr)) { 10276 req.cl45_mdio = 1; 10277 req.phy_addr = mdio_phy_id_prtad(phy_addr); 10278 req.dev_addr = mdio_phy_id_devad(phy_addr); 10279 req.reg_addr = cpu_to_le16(reg); 10280 } 10281 10282 mutex_lock(&bp->hwrm_cmd_lock); 10283 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10284 if (!rc) 10285 *val = le16_to_cpu(resp->reg_data); 10286 mutex_unlock(&bp->hwrm_cmd_lock); 10287 return rc; 10288 } 10289 10290 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10291 u16 val) 10292 { 10293 struct hwrm_port_phy_mdio_write_input req = {0}; 10294 10295 if (bp->hwrm_spec_code < 0x10a00) 10296 return -EOPNOTSUPP; 10297 10298 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1); 10299 req.port_id = cpu_to_le16(bp->pf.port_id); 10300 req.phy_addr = phy_addr; 10301 req.reg_addr = cpu_to_le16(reg & 0x1f); 10302 if (mdio_phy_id_is_c45(phy_addr)) { 10303 req.cl45_mdio = 1; 10304 req.phy_addr = mdio_phy_id_prtad(phy_addr); 10305 req.dev_addr = mdio_phy_id_devad(phy_addr); 10306 req.reg_addr = cpu_to_le16(reg); 10307 } 10308 req.reg_data = cpu_to_le16(val); 10309 10310 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10311 } 10312 10313 /* rtnl_lock held */ 10314 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10315 { 10316 struct mii_ioctl_data *mdio = if_mii(ifr); 10317 struct bnxt *bp = netdev_priv(dev); 10318 int rc; 10319 10320 switch (cmd) { 10321 case SIOCGMIIPHY: 10322 mdio->phy_id = bp->link_info.phy_addr; 10323 10324 fallthrough; 10325 case SIOCGMIIREG: { 10326 u16 mii_regval = 0; 10327 10328 if (!netif_running(dev)) 10329 return -EAGAIN; 10330 10331 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10332 &mii_regval); 10333 mdio->val_out = mii_regval; 10334 return rc; 10335 } 10336 10337 case SIOCSMIIREG: 10338 if (!netif_running(dev)) 10339 return -EAGAIN; 10340 10341 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10342 mdio->val_in); 10343 10344 default: 10345 /* do nothing */ 10346 break; 10347 } 10348 return -EOPNOTSUPP; 10349 } 10350 10351 static void bnxt_get_ring_stats(struct bnxt *bp, 10352 struct rtnl_link_stats64 *stats) 10353 { 10354 int i; 10355 10356 for (i = 0; i < bp->cp_nr_rings; i++) { 10357 struct bnxt_napi *bnapi = bp->bnapi[i]; 10358 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10359 u64 *sw = cpr->stats.sw_stats; 10360 10361 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10362 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10363 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10364 10365 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10366 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10367 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10368 10369 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10370 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10371 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10372 10373 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10374 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10375 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10376 10377 stats->rx_missed_errors += 10378 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10379 10380 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10381 10382 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10383 } 10384 } 10385 10386 static void bnxt_add_prev_stats(struct bnxt *bp, 10387 struct rtnl_link_stats64 *stats) 10388 { 10389 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10390 10391 stats->rx_packets += prev_stats->rx_packets; 10392 stats->tx_packets += prev_stats->tx_packets; 10393 stats->rx_bytes += prev_stats->rx_bytes; 10394 stats->tx_bytes += prev_stats->tx_bytes; 10395 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10396 stats->multicast += prev_stats->multicast; 10397 stats->tx_dropped += prev_stats->tx_dropped; 10398 } 10399 10400 static void 10401 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10402 { 10403 struct bnxt *bp = netdev_priv(dev); 10404 10405 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10406 /* Make sure bnxt_close_nic() sees that we are reading stats before 10407 * we check the BNXT_STATE_OPEN flag. 10408 */ 10409 smp_mb__after_atomic(); 10410 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10411 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10412 *stats = bp->net_stats_prev; 10413 return; 10414 } 10415 10416 bnxt_get_ring_stats(bp, stats); 10417 bnxt_add_prev_stats(bp, stats); 10418 10419 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10420 u64 *rx = bp->port_stats.sw_stats; 10421 u64 *tx = bp->port_stats.sw_stats + 10422 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10423 10424 stats->rx_crc_errors = 10425 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10426 stats->rx_frame_errors = 10427 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10428 stats->rx_length_errors = 10429 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10430 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10431 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10432 stats->rx_errors = 10433 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10434 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10435 stats->collisions = 10436 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10437 stats->tx_fifo_errors = 10438 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10439 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10440 } 10441 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10442 } 10443 10444 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10445 { 10446 struct net_device *dev = bp->dev; 10447 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10448 struct netdev_hw_addr *ha; 10449 u8 *haddr; 10450 int mc_count = 0; 10451 bool update = false; 10452 int off = 0; 10453 10454 netdev_for_each_mc_addr(ha, dev) { 10455 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10456 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10457 vnic->mc_list_count = 0; 10458 return false; 10459 } 10460 haddr = ha->addr; 10461 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10462 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10463 update = true; 10464 } 10465 off += ETH_ALEN; 10466 mc_count++; 10467 } 10468 if (mc_count) 10469 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10470 10471 if (mc_count != vnic->mc_list_count) { 10472 vnic->mc_list_count = mc_count; 10473 update = true; 10474 } 10475 return update; 10476 } 10477 10478 static bool bnxt_uc_list_updated(struct bnxt *bp) 10479 { 10480 struct net_device *dev = bp->dev; 10481 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10482 struct netdev_hw_addr *ha; 10483 int off = 0; 10484 10485 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10486 return true; 10487 10488 netdev_for_each_uc_addr(ha, dev) { 10489 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10490 return true; 10491 10492 off += ETH_ALEN; 10493 } 10494 return false; 10495 } 10496 10497 static void bnxt_set_rx_mode(struct net_device *dev) 10498 { 10499 struct bnxt *bp = netdev_priv(dev); 10500 struct bnxt_vnic_info *vnic; 10501 bool mc_update = false; 10502 bool uc_update; 10503 u32 mask; 10504 10505 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10506 return; 10507 10508 vnic = &bp->vnic_info[0]; 10509 mask = vnic->rx_mask; 10510 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10511 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10512 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10513 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10514 10515 if (dev->flags & IFF_PROMISC) 10516 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10517 10518 uc_update = bnxt_uc_list_updated(bp); 10519 10520 if (dev->flags & IFF_BROADCAST) 10521 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10522 if (dev->flags & IFF_ALLMULTI) { 10523 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10524 vnic->mc_list_count = 0; 10525 } else { 10526 mc_update = bnxt_mc_list_updated(bp, &mask); 10527 } 10528 10529 if (mask != vnic->rx_mask || uc_update || mc_update) { 10530 vnic->rx_mask = mask; 10531 10532 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10533 bnxt_queue_sp_work(bp); 10534 } 10535 } 10536 10537 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10538 { 10539 struct net_device *dev = bp->dev; 10540 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10541 struct netdev_hw_addr *ha; 10542 int i, off = 0, rc; 10543 bool uc_update; 10544 10545 netif_addr_lock_bh(dev); 10546 uc_update = bnxt_uc_list_updated(bp); 10547 netif_addr_unlock_bh(dev); 10548 10549 if (!uc_update) 10550 goto skip_uc; 10551 10552 mutex_lock(&bp->hwrm_cmd_lock); 10553 for (i = 1; i < vnic->uc_filter_count; i++) { 10554 struct hwrm_cfa_l2_filter_free_input req = {0}; 10555 10556 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 10557 -1); 10558 10559 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 10560 10561 rc = _hwrm_send_message(bp, &req, sizeof(req), 10562 HWRM_CMD_TIMEOUT); 10563 } 10564 mutex_unlock(&bp->hwrm_cmd_lock); 10565 10566 vnic->uc_filter_count = 1; 10567 10568 netif_addr_lock_bh(dev); 10569 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10570 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10571 } else { 10572 netdev_for_each_uc_addr(ha, dev) { 10573 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10574 off += ETH_ALEN; 10575 vnic->uc_filter_count++; 10576 } 10577 } 10578 netif_addr_unlock_bh(dev); 10579 10580 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10581 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10582 if (rc) { 10583 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10584 rc); 10585 vnic->uc_filter_count = i; 10586 return rc; 10587 } 10588 } 10589 10590 skip_uc: 10591 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10592 !bnxt_promisc_ok(bp)) 10593 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10594 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10595 if (rc && vnic->mc_list_count) { 10596 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10597 rc); 10598 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10599 vnic->mc_list_count = 0; 10600 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10601 } 10602 if (rc) 10603 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10604 rc); 10605 10606 return rc; 10607 } 10608 10609 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10610 { 10611 #ifdef CONFIG_BNXT_SRIOV 10612 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10613 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10614 10615 /* No minimum rings were provisioned by the PF. Don't 10616 * reserve rings by default when device is down. 10617 */ 10618 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10619 return true; 10620 10621 if (!netif_running(bp->dev)) 10622 return false; 10623 } 10624 #endif 10625 return true; 10626 } 10627 10628 /* If the chip and firmware supports RFS */ 10629 static bool bnxt_rfs_supported(struct bnxt *bp) 10630 { 10631 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10632 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10633 return true; 10634 return false; 10635 } 10636 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10637 return true; 10638 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10639 return true; 10640 return false; 10641 } 10642 10643 /* If runtime conditions support RFS */ 10644 static bool bnxt_rfs_capable(struct bnxt *bp) 10645 { 10646 #ifdef CONFIG_RFS_ACCEL 10647 int vnics, max_vnics, max_rss_ctxs; 10648 10649 if (bp->flags & BNXT_FLAG_CHIP_P5) 10650 return bnxt_rfs_supported(bp); 10651 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10652 return false; 10653 10654 vnics = 1 + bp->rx_nr_rings; 10655 max_vnics = bnxt_get_max_func_vnics(bp); 10656 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10657 10658 /* RSS contexts not a limiting factor */ 10659 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10660 max_rss_ctxs = max_vnics; 10661 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10662 if (bp->rx_nr_rings > 1) 10663 netdev_warn(bp->dev, 10664 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10665 min(max_rss_ctxs - 1, max_vnics - 1)); 10666 return false; 10667 } 10668 10669 if (!BNXT_NEW_RM(bp)) 10670 return true; 10671 10672 if (vnics == bp->hw_resc.resv_vnics) 10673 return true; 10674 10675 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10676 if (vnics <= bp->hw_resc.resv_vnics) 10677 return true; 10678 10679 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10680 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10681 return false; 10682 #else 10683 return false; 10684 #endif 10685 } 10686 10687 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10688 netdev_features_t features) 10689 { 10690 struct bnxt *bp = netdev_priv(dev); 10691 netdev_features_t vlan_features; 10692 10693 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10694 features &= ~NETIF_F_NTUPLE; 10695 10696 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10697 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10698 10699 if (!(features & NETIF_F_GRO)) 10700 features &= ~NETIF_F_GRO_HW; 10701 10702 if (features & NETIF_F_GRO_HW) 10703 features &= ~NETIF_F_LRO; 10704 10705 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10706 * turned on or off together. 10707 */ 10708 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10709 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10710 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10711 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10712 else if (vlan_features) 10713 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10714 } 10715 #ifdef CONFIG_BNXT_SRIOV 10716 if (BNXT_VF(bp) && bp->vf.vlan) 10717 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10718 #endif 10719 return features; 10720 } 10721 10722 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10723 { 10724 struct bnxt *bp = netdev_priv(dev); 10725 u32 flags = bp->flags; 10726 u32 changes; 10727 int rc = 0; 10728 bool re_init = false; 10729 bool update_tpa = false; 10730 10731 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 10732 if (features & NETIF_F_GRO_HW) 10733 flags |= BNXT_FLAG_GRO; 10734 else if (features & NETIF_F_LRO) 10735 flags |= BNXT_FLAG_LRO; 10736 10737 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10738 flags &= ~BNXT_FLAG_TPA; 10739 10740 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10741 flags |= BNXT_FLAG_STRIP_VLAN; 10742 10743 if (features & NETIF_F_NTUPLE) 10744 flags |= BNXT_FLAG_RFS; 10745 10746 changes = flags ^ bp->flags; 10747 if (changes & BNXT_FLAG_TPA) { 10748 update_tpa = true; 10749 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 10750 (flags & BNXT_FLAG_TPA) == 0 || 10751 (bp->flags & BNXT_FLAG_CHIP_P5)) 10752 re_init = true; 10753 } 10754 10755 if (changes & ~BNXT_FLAG_TPA) 10756 re_init = true; 10757 10758 if (flags != bp->flags) { 10759 u32 old_flags = bp->flags; 10760 10761 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10762 bp->flags = flags; 10763 if (update_tpa) 10764 bnxt_set_ring_params(bp); 10765 return rc; 10766 } 10767 10768 if (re_init) { 10769 bnxt_close_nic(bp, false, false); 10770 bp->flags = flags; 10771 if (update_tpa) 10772 bnxt_set_ring_params(bp); 10773 10774 return bnxt_open_nic(bp, false, false); 10775 } 10776 if (update_tpa) { 10777 bp->flags = flags; 10778 rc = bnxt_set_tpa(bp, 10779 (flags & BNXT_FLAG_TPA) ? 10780 true : false); 10781 if (rc) 10782 bp->flags = old_flags; 10783 } 10784 } 10785 return rc; 10786 } 10787 10788 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 10789 struct net_device *dev, 10790 netdev_features_t features) 10791 { 10792 struct bnxt *bp; 10793 __be16 udp_port; 10794 u8 l4_proto = 0; 10795 10796 features = vlan_features_check(skb, features); 10797 if (!skb->encapsulation) 10798 return features; 10799 10800 switch (vlan_get_protocol(skb)) { 10801 case htons(ETH_P_IP): 10802 l4_proto = ip_hdr(skb)->protocol; 10803 break; 10804 case htons(ETH_P_IPV6): 10805 l4_proto = ipv6_hdr(skb)->nexthdr; 10806 break; 10807 default: 10808 return features; 10809 } 10810 10811 if (l4_proto != IPPROTO_UDP) 10812 return features; 10813 10814 bp = netdev_priv(dev); 10815 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 10816 udp_port = udp_hdr(skb)->dest; 10817 if (udp_port == bp->vxlan_port || udp_port == bp->nge_port) 10818 return features; 10819 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 10820 } 10821 10822 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 10823 u32 *reg_buf) 10824 { 10825 struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr; 10826 struct hwrm_dbg_read_direct_input req = {0}; 10827 __le32 *dbg_reg_buf; 10828 dma_addr_t mapping; 10829 int rc, i; 10830 10831 dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4, 10832 &mapping, GFP_KERNEL); 10833 if (!dbg_reg_buf) 10834 return -ENOMEM; 10835 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1); 10836 req.host_dest_addr = cpu_to_le64(mapping); 10837 req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 10838 req.read_len32 = cpu_to_le32(num_words); 10839 mutex_lock(&bp->hwrm_cmd_lock); 10840 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10841 if (rc || resp->error_code) { 10842 rc = -EIO; 10843 goto dbg_rd_reg_exit; 10844 } 10845 for (i = 0; i < num_words; i++) 10846 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 10847 10848 dbg_rd_reg_exit: 10849 mutex_unlock(&bp->hwrm_cmd_lock); 10850 dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping); 10851 return rc; 10852 } 10853 10854 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 10855 u32 ring_id, u32 *prod, u32 *cons) 10856 { 10857 struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr; 10858 struct hwrm_dbg_ring_info_get_input req = {0}; 10859 int rc; 10860 10861 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1); 10862 req.ring_type = ring_type; 10863 req.fw_ring_id = cpu_to_le32(ring_id); 10864 mutex_lock(&bp->hwrm_cmd_lock); 10865 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10866 if (!rc) { 10867 *prod = le32_to_cpu(resp->producer_index); 10868 *cons = le32_to_cpu(resp->consumer_index); 10869 } 10870 mutex_unlock(&bp->hwrm_cmd_lock); 10871 return rc; 10872 } 10873 10874 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 10875 { 10876 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 10877 int i = bnapi->index; 10878 10879 if (!txr) 10880 return; 10881 10882 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 10883 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 10884 txr->tx_cons); 10885 } 10886 10887 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 10888 { 10889 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 10890 int i = bnapi->index; 10891 10892 if (!rxr) 10893 return; 10894 10895 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 10896 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 10897 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 10898 rxr->rx_sw_agg_prod); 10899 } 10900 10901 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 10902 { 10903 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10904 int i = bnapi->index; 10905 10906 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 10907 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 10908 } 10909 10910 static void bnxt_dbg_dump_states(struct bnxt *bp) 10911 { 10912 int i; 10913 struct bnxt_napi *bnapi; 10914 10915 for (i = 0; i < bp->cp_nr_rings; i++) { 10916 bnapi = bp->bnapi[i]; 10917 if (netif_msg_drv(bp)) { 10918 bnxt_dump_tx_sw_state(bnapi); 10919 bnxt_dump_rx_sw_state(bnapi); 10920 bnxt_dump_cp_sw_state(bnapi); 10921 } 10922 } 10923 } 10924 10925 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 10926 { 10927 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 10928 struct hwrm_ring_reset_input req = {0}; 10929 struct bnxt_napi *bnapi = rxr->bnapi; 10930 struct bnxt_cp_ring_info *cpr; 10931 u16 cp_ring_id; 10932 10933 cpr = &bnapi->cp_ring; 10934 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 10935 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1); 10936 req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 10937 req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 10938 return hwrm_send_message_silent(bp, &req, sizeof(req), 10939 HWRM_CMD_TIMEOUT); 10940 } 10941 10942 static void bnxt_reset_task(struct bnxt *bp, bool silent) 10943 { 10944 if (!silent) 10945 bnxt_dbg_dump_states(bp); 10946 if (netif_running(bp->dev)) { 10947 int rc; 10948 10949 if (silent) { 10950 bnxt_close_nic(bp, false, false); 10951 bnxt_open_nic(bp, false, false); 10952 } else { 10953 bnxt_ulp_stop(bp); 10954 bnxt_close_nic(bp, true, false); 10955 rc = bnxt_open_nic(bp, true, false); 10956 bnxt_ulp_start(bp, rc); 10957 } 10958 } 10959 } 10960 10961 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 10962 { 10963 struct bnxt *bp = netdev_priv(dev); 10964 10965 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 10966 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 10967 bnxt_queue_sp_work(bp); 10968 } 10969 10970 static void bnxt_fw_health_check(struct bnxt *bp) 10971 { 10972 struct bnxt_fw_health *fw_health = bp->fw_health; 10973 u32 val; 10974 10975 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10976 return; 10977 10978 if (fw_health->tmr_counter) { 10979 fw_health->tmr_counter--; 10980 return; 10981 } 10982 10983 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 10984 if (val == fw_health->last_fw_heartbeat) 10985 goto fw_reset; 10986 10987 fw_health->last_fw_heartbeat = val; 10988 10989 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 10990 if (val != fw_health->last_fw_reset_cnt) 10991 goto fw_reset; 10992 10993 fw_health->tmr_counter = fw_health->tmr_multiplier; 10994 return; 10995 10996 fw_reset: 10997 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 10998 bnxt_queue_sp_work(bp); 10999 } 11000 11001 static void bnxt_timer(struct timer_list *t) 11002 { 11003 struct bnxt *bp = from_timer(bp, t, timer); 11004 struct net_device *dev = bp->dev; 11005 11006 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11007 return; 11008 11009 if (atomic_read(&bp->intr_sem) != 0) 11010 goto bnxt_restart_timer; 11011 11012 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11013 bnxt_fw_health_check(bp); 11014 11015 if (bp->link_info.link_up && bp->stats_coal_ticks) { 11016 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11017 bnxt_queue_sp_work(bp); 11018 } 11019 11020 if (bnxt_tc_flower_enabled(bp)) { 11021 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11022 bnxt_queue_sp_work(bp); 11023 } 11024 11025 #ifdef CONFIG_RFS_ACCEL 11026 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11027 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11028 bnxt_queue_sp_work(bp); 11029 } 11030 #endif /*CONFIG_RFS_ACCEL*/ 11031 11032 if (bp->link_info.phy_retry) { 11033 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11034 bp->link_info.phy_retry = false; 11035 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11036 } else { 11037 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11038 bnxt_queue_sp_work(bp); 11039 } 11040 } 11041 11042 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11043 netif_carrier_ok(dev)) { 11044 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11045 bnxt_queue_sp_work(bp); 11046 } 11047 bnxt_restart_timer: 11048 mod_timer(&bp->timer, jiffies + bp->current_interval); 11049 } 11050 11051 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11052 { 11053 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11054 * set. If the device is being closed, bnxt_close() may be holding 11055 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11056 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11057 */ 11058 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11059 rtnl_lock(); 11060 } 11061 11062 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11063 { 11064 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11065 rtnl_unlock(); 11066 } 11067 11068 /* Only called from bnxt_sp_task() */ 11069 static void bnxt_reset(struct bnxt *bp, bool silent) 11070 { 11071 bnxt_rtnl_lock_sp(bp); 11072 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11073 bnxt_reset_task(bp, silent); 11074 bnxt_rtnl_unlock_sp(bp); 11075 } 11076 11077 /* Only called from bnxt_sp_task() */ 11078 static void bnxt_rx_ring_reset(struct bnxt *bp) 11079 { 11080 int i; 11081 11082 bnxt_rtnl_lock_sp(bp); 11083 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11084 bnxt_rtnl_unlock_sp(bp); 11085 return; 11086 } 11087 /* Disable and flush TPA before resetting the RX ring */ 11088 if (bp->flags & BNXT_FLAG_TPA) 11089 bnxt_set_tpa(bp, false); 11090 for (i = 0; i < bp->rx_nr_rings; i++) { 11091 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11092 struct bnxt_cp_ring_info *cpr; 11093 int rc; 11094 11095 if (!rxr->bnapi->in_reset) 11096 continue; 11097 11098 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11099 if (rc) { 11100 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11101 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11102 else 11103 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11104 rc); 11105 bnxt_reset_task(bp, true); 11106 break; 11107 } 11108 bnxt_free_one_rx_ring_skbs(bp, i); 11109 rxr->rx_prod = 0; 11110 rxr->rx_agg_prod = 0; 11111 rxr->rx_sw_agg_prod = 0; 11112 rxr->rx_next_cons = 0; 11113 rxr->bnapi->in_reset = false; 11114 bnxt_alloc_one_rx_ring(bp, i); 11115 cpr = &rxr->bnapi->cp_ring; 11116 cpr->sw_stats.rx.rx_resets++; 11117 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11118 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11119 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11120 } 11121 if (bp->flags & BNXT_FLAG_TPA) 11122 bnxt_set_tpa(bp, true); 11123 bnxt_rtnl_unlock_sp(bp); 11124 } 11125 11126 static void bnxt_fw_reset_close(struct bnxt *bp) 11127 { 11128 bnxt_ulp_stop(bp); 11129 /* When firmware is in fatal state, quiesce device and disable 11130 * bus master to prevent any potential bad DMAs before freeing 11131 * kernel memory. 11132 */ 11133 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11134 u16 val = 0; 11135 11136 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11137 if (val == 0xffff) 11138 bp->fw_reset_min_dsecs = 0; 11139 bnxt_tx_disable(bp); 11140 bnxt_disable_napi(bp); 11141 bnxt_disable_int_sync(bp); 11142 bnxt_free_irq(bp); 11143 bnxt_clear_int_mode(bp); 11144 pci_disable_device(bp->pdev); 11145 } 11146 __bnxt_close_nic(bp, true, false); 11147 bnxt_vf_reps_free(bp); 11148 bnxt_clear_int_mode(bp); 11149 bnxt_hwrm_func_drv_unrgtr(bp); 11150 if (pci_is_enabled(bp->pdev)) 11151 pci_disable_device(bp->pdev); 11152 bnxt_free_ctx_mem(bp); 11153 kfree(bp->ctx); 11154 bp->ctx = NULL; 11155 } 11156 11157 static bool is_bnxt_fw_ok(struct bnxt *bp) 11158 { 11159 struct bnxt_fw_health *fw_health = bp->fw_health; 11160 bool no_heartbeat = false, has_reset = false; 11161 u32 val; 11162 11163 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11164 if (val == fw_health->last_fw_heartbeat) 11165 no_heartbeat = true; 11166 11167 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11168 if (val != fw_health->last_fw_reset_cnt) 11169 has_reset = true; 11170 11171 if (!no_heartbeat && has_reset) 11172 return true; 11173 11174 return false; 11175 } 11176 11177 /* rtnl_lock is acquired before calling this function */ 11178 static void bnxt_force_fw_reset(struct bnxt *bp) 11179 { 11180 struct bnxt_fw_health *fw_health = bp->fw_health; 11181 u32 wait_dsecs; 11182 11183 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11184 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11185 return; 11186 11187 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11188 bnxt_fw_reset_close(bp); 11189 wait_dsecs = fw_health->master_func_wait_dsecs; 11190 if (fw_health->master) { 11191 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11192 wait_dsecs = 0; 11193 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11194 } else { 11195 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11196 wait_dsecs = fw_health->normal_func_wait_dsecs; 11197 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11198 } 11199 11200 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11201 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11202 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11203 } 11204 11205 void bnxt_fw_exception(struct bnxt *bp) 11206 { 11207 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11208 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11209 bnxt_rtnl_lock_sp(bp); 11210 bnxt_force_fw_reset(bp); 11211 bnxt_rtnl_unlock_sp(bp); 11212 } 11213 11214 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11215 * < 0 on error. 11216 */ 11217 static int bnxt_get_registered_vfs(struct bnxt *bp) 11218 { 11219 #ifdef CONFIG_BNXT_SRIOV 11220 int rc; 11221 11222 if (!BNXT_PF(bp)) 11223 return 0; 11224 11225 rc = bnxt_hwrm_func_qcfg(bp); 11226 if (rc) { 11227 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11228 return rc; 11229 } 11230 if (bp->pf.registered_vfs) 11231 return bp->pf.registered_vfs; 11232 if (bp->sriov_cfg) 11233 return 1; 11234 #endif 11235 return 0; 11236 } 11237 11238 void bnxt_fw_reset(struct bnxt *bp) 11239 { 11240 bnxt_rtnl_lock_sp(bp); 11241 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11242 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11243 int n = 0, tmo; 11244 11245 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11246 if (bp->pf.active_vfs && 11247 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11248 n = bnxt_get_registered_vfs(bp); 11249 if (n < 0) { 11250 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11251 n); 11252 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11253 dev_close(bp->dev); 11254 goto fw_reset_exit; 11255 } else if (n > 0) { 11256 u16 vf_tmo_dsecs = n * 10; 11257 11258 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11259 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11260 bp->fw_reset_state = 11261 BNXT_FW_RESET_STATE_POLL_VF; 11262 bnxt_queue_fw_reset_work(bp, HZ / 10); 11263 goto fw_reset_exit; 11264 } 11265 bnxt_fw_reset_close(bp); 11266 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11267 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11268 tmo = HZ / 10; 11269 } else { 11270 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11271 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11272 } 11273 bnxt_queue_fw_reset_work(bp, tmo); 11274 } 11275 fw_reset_exit: 11276 bnxt_rtnl_unlock_sp(bp); 11277 } 11278 11279 static void bnxt_chk_missed_irq(struct bnxt *bp) 11280 { 11281 int i; 11282 11283 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11284 return; 11285 11286 for (i = 0; i < bp->cp_nr_rings; i++) { 11287 struct bnxt_napi *bnapi = bp->bnapi[i]; 11288 struct bnxt_cp_ring_info *cpr; 11289 u32 fw_ring_id; 11290 int j; 11291 11292 if (!bnapi) 11293 continue; 11294 11295 cpr = &bnapi->cp_ring; 11296 for (j = 0; j < 2; j++) { 11297 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11298 u32 val[2]; 11299 11300 if (!cpr2 || cpr2->has_more_work || 11301 !bnxt_has_work(bp, cpr2)) 11302 continue; 11303 11304 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11305 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11306 continue; 11307 } 11308 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11309 bnxt_dbg_hwrm_ring_info_get(bp, 11310 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11311 fw_ring_id, &val[0], &val[1]); 11312 cpr->sw_stats.cmn.missed_irqs++; 11313 } 11314 } 11315 } 11316 11317 static void bnxt_cfg_ntp_filters(struct bnxt *); 11318 11319 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11320 { 11321 struct bnxt_link_info *link_info = &bp->link_info; 11322 11323 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11324 link_info->autoneg = BNXT_AUTONEG_SPEED; 11325 if (bp->hwrm_spec_code >= 0x10201) { 11326 if (link_info->auto_pause_setting & 11327 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11328 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11329 } else { 11330 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11331 } 11332 link_info->advertising = link_info->auto_link_speeds; 11333 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11334 } else { 11335 link_info->req_link_speed = link_info->force_link_speed; 11336 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11337 if (link_info->force_pam4_link_speed) { 11338 link_info->req_link_speed = 11339 link_info->force_pam4_link_speed; 11340 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11341 } 11342 link_info->req_duplex = link_info->duplex_setting; 11343 } 11344 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11345 link_info->req_flow_ctrl = 11346 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11347 else 11348 link_info->req_flow_ctrl = link_info->force_pause_setting; 11349 } 11350 11351 static void bnxt_fw_echo_reply(struct bnxt *bp) 11352 { 11353 struct bnxt_fw_health *fw_health = bp->fw_health; 11354 struct hwrm_func_echo_response_input req = {0}; 11355 11356 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_ECHO_RESPONSE, -1, -1); 11357 req.event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11358 req.event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11359 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11360 } 11361 11362 static void bnxt_sp_task(struct work_struct *work) 11363 { 11364 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11365 11366 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11367 smp_mb__after_atomic(); 11368 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11369 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11370 return; 11371 } 11372 11373 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11374 bnxt_cfg_rx_mode(bp); 11375 11376 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11377 bnxt_cfg_ntp_filters(bp); 11378 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11379 bnxt_hwrm_exec_fwd_req(bp); 11380 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11381 bnxt_hwrm_port_qstats(bp, 0); 11382 bnxt_hwrm_port_qstats_ext(bp, 0); 11383 bnxt_accumulate_all_stats(bp); 11384 } 11385 11386 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11387 int rc; 11388 11389 mutex_lock(&bp->link_lock); 11390 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11391 &bp->sp_event)) 11392 bnxt_hwrm_phy_qcaps(bp); 11393 11394 rc = bnxt_update_link(bp, true); 11395 if (rc) 11396 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11397 rc); 11398 11399 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11400 &bp->sp_event)) 11401 bnxt_init_ethtool_link_settings(bp); 11402 mutex_unlock(&bp->link_lock); 11403 } 11404 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11405 int rc; 11406 11407 mutex_lock(&bp->link_lock); 11408 rc = bnxt_update_phy_setting(bp); 11409 mutex_unlock(&bp->link_lock); 11410 if (rc) { 11411 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11412 } else { 11413 bp->link_info.phy_retry = false; 11414 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11415 } 11416 } 11417 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11418 mutex_lock(&bp->link_lock); 11419 bnxt_get_port_module_status(bp); 11420 mutex_unlock(&bp->link_lock); 11421 } 11422 11423 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11424 bnxt_tc_flow_stats_work(bp); 11425 11426 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11427 bnxt_chk_missed_irq(bp); 11428 11429 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11430 bnxt_fw_echo_reply(bp); 11431 11432 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11433 * must be the last functions to be called before exiting. 11434 */ 11435 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11436 bnxt_reset(bp, false); 11437 11438 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11439 bnxt_reset(bp, true); 11440 11441 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11442 bnxt_rx_ring_reset(bp); 11443 11444 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) 11445 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT); 11446 11447 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11448 if (!is_bnxt_fw_ok(bp)) 11449 bnxt_devlink_health_report(bp, 11450 BNXT_FW_EXCEPTION_SP_EVENT); 11451 } 11452 11453 smp_mb__before_atomic(); 11454 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11455 } 11456 11457 /* Under rtnl_lock */ 11458 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11459 int tx_xdp) 11460 { 11461 int max_rx, max_tx, tx_sets = 1; 11462 int tx_rings_needed, stats; 11463 int rx_rings = rx; 11464 int cp, vnics, rc; 11465 11466 if (tcs) 11467 tx_sets = tcs; 11468 11469 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11470 if (rc) 11471 return rc; 11472 11473 if (max_rx < rx) 11474 return -ENOMEM; 11475 11476 tx_rings_needed = tx * tx_sets + tx_xdp; 11477 if (max_tx < tx_rings_needed) 11478 return -ENOMEM; 11479 11480 vnics = 1; 11481 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11482 vnics += rx_rings; 11483 11484 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11485 rx_rings <<= 1; 11486 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11487 stats = cp; 11488 if (BNXT_NEW_RM(bp)) { 11489 cp += bnxt_get_ulp_msix_num(bp); 11490 stats += bnxt_get_ulp_stat_ctxs(bp); 11491 } 11492 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11493 stats, vnics); 11494 } 11495 11496 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11497 { 11498 if (bp->bar2) { 11499 pci_iounmap(pdev, bp->bar2); 11500 bp->bar2 = NULL; 11501 } 11502 11503 if (bp->bar1) { 11504 pci_iounmap(pdev, bp->bar1); 11505 bp->bar1 = NULL; 11506 } 11507 11508 if (bp->bar0) { 11509 pci_iounmap(pdev, bp->bar0); 11510 bp->bar0 = NULL; 11511 } 11512 } 11513 11514 static void bnxt_cleanup_pci(struct bnxt *bp) 11515 { 11516 bnxt_unmap_bars(bp, bp->pdev); 11517 pci_release_regions(bp->pdev); 11518 if (pci_is_enabled(bp->pdev)) 11519 pci_disable_device(bp->pdev); 11520 } 11521 11522 static void bnxt_init_dflt_coal(struct bnxt *bp) 11523 { 11524 struct bnxt_coal *coal; 11525 11526 /* Tick values in micro seconds. 11527 * 1 coal_buf x bufs_per_record = 1 completion record. 11528 */ 11529 coal = &bp->rx_coal; 11530 coal->coal_ticks = 10; 11531 coal->coal_bufs = 30; 11532 coal->coal_ticks_irq = 1; 11533 coal->coal_bufs_irq = 2; 11534 coal->idle_thresh = 50; 11535 coal->bufs_per_record = 2; 11536 coal->budget = 64; /* NAPI budget */ 11537 11538 coal = &bp->tx_coal; 11539 coal->coal_ticks = 28; 11540 coal->coal_bufs = 30; 11541 coal->coal_ticks_irq = 2; 11542 coal->coal_bufs_irq = 2; 11543 coal->bufs_per_record = 1; 11544 11545 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11546 } 11547 11548 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11549 { 11550 int rc; 11551 11552 bp->fw_cap = 0; 11553 rc = bnxt_hwrm_ver_get(bp); 11554 bnxt_try_map_fw_health_reg(bp); 11555 if (rc) { 11556 rc = bnxt_try_recover_fw(bp); 11557 if (rc) 11558 return rc; 11559 rc = bnxt_hwrm_ver_get(bp); 11560 if (rc) 11561 return rc; 11562 } 11563 11564 if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) { 11565 rc = bnxt_alloc_kong_hwrm_resources(bp); 11566 if (rc) 11567 bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL; 11568 } 11569 11570 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 11571 bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) { 11572 rc = bnxt_alloc_hwrm_short_cmd_req(bp); 11573 if (rc) 11574 return rc; 11575 } 11576 bnxt_nvm_cfg_ver_get(bp); 11577 11578 rc = bnxt_hwrm_func_reset(bp); 11579 if (rc) 11580 return -ENODEV; 11581 11582 bnxt_hwrm_fw_set_time(bp); 11583 return 0; 11584 } 11585 11586 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11587 { 11588 int rc; 11589 11590 /* Get the MAX capabilities for this function */ 11591 rc = bnxt_hwrm_func_qcaps(bp); 11592 if (rc) { 11593 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11594 rc); 11595 return -ENODEV; 11596 } 11597 11598 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11599 if (rc) 11600 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11601 rc); 11602 11603 if (bnxt_alloc_fw_health(bp)) { 11604 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11605 } else { 11606 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11607 if (rc) 11608 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11609 rc); 11610 } 11611 11612 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11613 if (rc) 11614 return -ENODEV; 11615 11616 bnxt_hwrm_func_qcfg(bp); 11617 bnxt_hwrm_vnic_qcaps(bp); 11618 bnxt_hwrm_port_led_qcaps(bp); 11619 bnxt_ethtool_init(bp); 11620 bnxt_dcb_init(bp); 11621 return 0; 11622 } 11623 11624 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11625 { 11626 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11627 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11628 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 11629 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 11630 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 11631 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 11632 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 11633 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 11634 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 11635 } 11636 } 11637 11638 static void bnxt_set_dflt_rfs(struct bnxt *bp) 11639 { 11640 struct net_device *dev = bp->dev; 11641 11642 dev->hw_features &= ~NETIF_F_NTUPLE; 11643 dev->features &= ~NETIF_F_NTUPLE; 11644 bp->flags &= ~BNXT_FLAG_RFS; 11645 if (bnxt_rfs_supported(bp)) { 11646 dev->hw_features |= NETIF_F_NTUPLE; 11647 if (bnxt_rfs_capable(bp)) { 11648 bp->flags |= BNXT_FLAG_RFS; 11649 dev->features |= NETIF_F_NTUPLE; 11650 } 11651 } 11652 } 11653 11654 static void bnxt_fw_init_one_p3(struct bnxt *bp) 11655 { 11656 struct pci_dev *pdev = bp->pdev; 11657 11658 bnxt_set_dflt_rss_hash_type(bp); 11659 bnxt_set_dflt_rfs(bp); 11660 11661 bnxt_get_wol_settings(bp); 11662 if (bp->flags & BNXT_FLAG_WOL_CAP) 11663 device_set_wakeup_enable(&pdev->dev, bp->wol); 11664 else 11665 device_set_wakeup_capable(&pdev->dev, false); 11666 11667 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 11668 bnxt_hwrm_coal_params_qcaps(bp); 11669 } 11670 11671 static int bnxt_fw_init_one(struct bnxt *bp) 11672 { 11673 int rc; 11674 11675 rc = bnxt_fw_init_one_p1(bp); 11676 if (rc) { 11677 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 11678 return rc; 11679 } 11680 rc = bnxt_fw_init_one_p2(bp); 11681 if (rc) { 11682 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 11683 return rc; 11684 } 11685 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 11686 if (rc) 11687 return rc; 11688 11689 /* In case fw capabilities have changed, destroy the unneeded 11690 * reporters and create newly capable ones. 11691 */ 11692 bnxt_dl_fw_reporters_destroy(bp, false); 11693 bnxt_dl_fw_reporters_create(bp); 11694 bnxt_fw_init_one_p3(bp); 11695 return 0; 11696 } 11697 11698 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 11699 { 11700 struct bnxt_fw_health *fw_health = bp->fw_health; 11701 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 11702 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 11703 u32 reg_type, reg_off, delay_msecs; 11704 11705 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 11706 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 11707 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 11708 switch (reg_type) { 11709 case BNXT_FW_HEALTH_REG_TYPE_CFG: 11710 pci_write_config_dword(bp->pdev, reg_off, val); 11711 break; 11712 case BNXT_FW_HEALTH_REG_TYPE_GRC: 11713 writel(reg_off & BNXT_GRC_BASE_MASK, 11714 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 11715 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 11716 fallthrough; 11717 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 11718 writel(val, bp->bar0 + reg_off); 11719 break; 11720 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 11721 writel(val, bp->bar1 + reg_off); 11722 break; 11723 } 11724 if (delay_msecs) { 11725 pci_read_config_dword(bp->pdev, 0, &val); 11726 msleep(delay_msecs); 11727 } 11728 } 11729 11730 static void bnxt_reset_all(struct bnxt *bp) 11731 { 11732 struct bnxt_fw_health *fw_health = bp->fw_health; 11733 int i, rc; 11734 11735 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11736 bnxt_fw_reset_via_optee(bp); 11737 bp->fw_reset_timestamp = jiffies; 11738 return; 11739 } 11740 11741 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 11742 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 11743 bnxt_fw_reset_writel(bp, i); 11744 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 11745 struct hwrm_fw_reset_input req = {0}; 11746 11747 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1); 11748 req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 11749 req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 11750 req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 11751 req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 11752 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11753 if (rc != -ENODEV) 11754 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 11755 } 11756 bp->fw_reset_timestamp = jiffies; 11757 } 11758 11759 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 11760 { 11761 return time_after(jiffies, bp->fw_reset_timestamp + 11762 (bp->fw_reset_max_dsecs * HZ / 10)); 11763 } 11764 11765 static void bnxt_fw_reset_task(struct work_struct *work) 11766 { 11767 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 11768 int rc; 11769 11770 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11771 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 11772 return; 11773 } 11774 11775 switch (bp->fw_reset_state) { 11776 case BNXT_FW_RESET_STATE_POLL_VF: { 11777 int n = bnxt_get_registered_vfs(bp); 11778 int tmo; 11779 11780 if (n < 0) { 11781 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 11782 n, jiffies_to_msecs(jiffies - 11783 bp->fw_reset_timestamp)); 11784 goto fw_reset_abort; 11785 } else if (n > 0) { 11786 if (bnxt_fw_reset_timeout(bp)) { 11787 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11788 bp->fw_reset_state = 0; 11789 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 11790 n); 11791 return; 11792 } 11793 bnxt_queue_fw_reset_work(bp, HZ / 10); 11794 return; 11795 } 11796 bp->fw_reset_timestamp = jiffies; 11797 rtnl_lock(); 11798 bnxt_fw_reset_close(bp); 11799 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11800 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11801 tmo = HZ / 10; 11802 } else { 11803 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11804 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11805 } 11806 rtnl_unlock(); 11807 bnxt_queue_fw_reset_work(bp, tmo); 11808 return; 11809 } 11810 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 11811 u32 val; 11812 11813 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11814 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 11815 !bnxt_fw_reset_timeout(bp)) { 11816 bnxt_queue_fw_reset_work(bp, HZ / 5); 11817 return; 11818 } 11819 11820 if (!bp->fw_health->master) { 11821 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 11822 11823 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11824 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11825 return; 11826 } 11827 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11828 } 11829 fallthrough; 11830 case BNXT_FW_RESET_STATE_RESET_FW: 11831 bnxt_reset_all(bp); 11832 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11833 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 11834 return; 11835 case BNXT_FW_RESET_STATE_ENABLE_DEV: 11836 bnxt_inv_fw_health_reg(bp); 11837 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 11838 !bp->fw_reset_min_dsecs) { 11839 u16 val; 11840 11841 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11842 if (val == 0xffff) { 11843 if (bnxt_fw_reset_timeout(bp)) { 11844 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 11845 goto fw_reset_abort; 11846 } 11847 bnxt_queue_fw_reset_work(bp, HZ / 1000); 11848 return; 11849 } 11850 } 11851 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11852 if (pci_enable_device(bp->pdev)) { 11853 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 11854 goto fw_reset_abort; 11855 } 11856 pci_set_master(bp->pdev); 11857 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 11858 fallthrough; 11859 case BNXT_FW_RESET_STATE_POLL_FW: 11860 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 11861 rc = __bnxt_hwrm_ver_get(bp, true); 11862 if (rc) { 11863 if (bnxt_fw_reset_timeout(bp)) { 11864 netdev_err(bp->dev, "Firmware reset aborted\n"); 11865 goto fw_reset_abort_status; 11866 } 11867 bnxt_queue_fw_reset_work(bp, HZ / 5); 11868 return; 11869 } 11870 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 11871 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 11872 fallthrough; 11873 case BNXT_FW_RESET_STATE_OPENING: 11874 while (!rtnl_trylock()) { 11875 bnxt_queue_fw_reset_work(bp, HZ / 10); 11876 return; 11877 } 11878 rc = bnxt_open(bp->dev); 11879 if (rc) { 11880 netdev_err(bp->dev, "bnxt_open_nic() failed\n"); 11881 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11882 dev_close(bp->dev); 11883 } 11884 11885 bp->fw_reset_state = 0; 11886 /* Make sure fw_reset_state is 0 before clearing the flag */ 11887 smp_mb__before_atomic(); 11888 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11889 bnxt_ulp_start(bp, rc); 11890 if (!rc) 11891 bnxt_reenable_sriov(bp); 11892 bnxt_vf_reps_alloc(bp); 11893 bnxt_vf_reps_open(bp); 11894 bnxt_dl_health_recovery_done(bp); 11895 bnxt_dl_health_status_update(bp, true); 11896 rtnl_unlock(); 11897 break; 11898 } 11899 return; 11900 11901 fw_reset_abort_status: 11902 if (bp->fw_health->status_reliable || 11903 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 11904 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11905 11906 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 11907 } 11908 fw_reset_abort: 11909 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11910 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 11911 bnxt_dl_health_status_update(bp, false); 11912 bp->fw_reset_state = 0; 11913 rtnl_lock(); 11914 dev_close(bp->dev); 11915 rtnl_unlock(); 11916 } 11917 11918 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 11919 { 11920 int rc; 11921 struct bnxt *bp = netdev_priv(dev); 11922 11923 SET_NETDEV_DEV(dev, &pdev->dev); 11924 11925 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 11926 rc = pci_enable_device(pdev); 11927 if (rc) { 11928 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 11929 goto init_err; 11930 } 11931 11932 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 11933 dev_err(&pdev->dev, 11934 "Cannot find PCI device base address, aborting\n"); 11935 rc = -ENODEV; 11936 goto init_err_disable; 11937 } 11938 11939 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 11940 if (rc) { 11941 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 11942 goto init_err_disable; 11943 } 11944 11945 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 11946 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 11947 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 11948 rc = -EIO; 11949 goto init_err_release; 11950 } 11951 11952 pci_set_master(pdev); 11953 11954 bp->dev = dev; 11955 bp->pdev = pdev; 11956 11957 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 11958 * determines the BAR size. 11959 */ 11960 bp->bar0 = pci_ioremap_bar(pdev, 0); 11961 if (!bp->bar0) { 11962 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 11963 rc = -ENOMEM; 11964 goto init_err_release; 11965 } 11966 11967 bp->bar2 = pci_ioremap_bar(pdev, 4); 11968 if (!bp->bar2) { 11969 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 11970 rc = -ENOMEM; 11971 goto init_err_release; 11972 } 11973 11974 pci_enable_pcie_error_reporting(pdev); 11975 11976 INIT_WORK(&bp->sp_task, bnxt_sp_task); 11977 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 11978 11979 spin_lock_init(&bp->ntp_fltr_lock); 11980 #if BITS_PER_LONG == 32 11981 spin_lock_init(&bp->db_lock); 11982 #endif 11983 11984 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 11985 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 11986 11987 bnxt_init_dflt_coal(bp); 11988 11989 timer_setup(&bp->timer, bnxt_timer, 0); 11990 bp->current_interval = BNXT_TIMER_INTERVAL; 11991 11992 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 11993 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 11994 11995 clear_bit(BNXT_STATE_OPEN, &bp->state); 11996 return 0; 11997 11998 init_err_release: 11999 bnxt_unmap_bars(bp, pdev); 12000 pci_release_regions(pdev); 12001 12002 init_err_disable: 12003 pci_disable_device(pdev); 12004 12005 init_err: 12006 return rc; 12007 } 12008 12009 /* rtnl_lock held */ 12010 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12011 { 12012 struct sockaddr *addr = p; 12013 struct bnxt *bp = netdev_priv(dev); 12014 int rc = 0; 12015 12016 if (!is_valid_ether_addr(addr->sa_data)) 12017 return -EADDRNOTAVAIL; 12018 12019 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12020 return 0; 12021 12022 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12023 if (rc) 12024 return rc; 12025 12026 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 12027 if (netif_running(dev)) { 12028 bnxt_close_nic(bp, false, false); 12029 rc = bnxt_open_nic(bp, false, false); 12030 } 12031 12032 return rc; 12033 } 12034 12035 /* rtnl_lock held */ 12036 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12037 { 12038 struct bnxt *bp = netdev_priv(dev); 12039 12040 if (netif_running(dev)) 12041 bnxt_close_nic(bp, true, false); 12042 12043 dev->mtu = new_mtu; 12044 bnxt_set_ring_params(bp); 12045 12046 if (netif_running(dev)) 12047 return bnxt_open_nic(bp, true, false); 12048 12049 return 0; 12050 } 12051 12052 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12053 { 12054 struct bnxt *bp = netdev_priv(dev); 12055 bool sh = false; 12056 int rc; 12057 12058 if (tc > bp->max_tc) { 12059 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12060 tc, bp->max_tc); 12061 return -EINVAL; 12062 } 12063 12064 if (netdev_get_num_tc(dev) == tc) 12065 return 0; 12066 12067 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12068 sh = true; 12069 12070 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12071 sh, tc, bp->tx_nr_rings_xdp); 12072 if (rc) 12073 return rc; 12074 12075 /* Needs to close the device and do hw resource re-allocations */ 12076 if (netif_running(bp->dev)) 12077 bnxt_close_nic(bp, true, false); 12078 12079 if (tc) { 12080 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12081 netdev_set_num_tc(dev, tc); 12082 } else { 12083 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12084 netdev_reset_tc(dev); 12085 } 12086 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12087 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12088 bp->tx_nr_rings + bp->rx_nr_rings; 12089 12090 if (netif_running(bp->dev)) 12091 return bnxt_open_nic(bp, true, false); 12092 12093 return 0; 12094 } 12095 12096 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12097 void *cb_priv) 12098 { 12099 struct bnxt *bp = cb_priv; 12100 12101 if (!bnxt_tc_flower_enabled(bp) || 12102 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12103 return -EOPNOTSUPP; 12104 12105 switch (type) { 12106 case TC_SETUP_CLSFLOWER: 12107 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12108 default: 12109 return -EOPNOTSUPP; 12110 } 12111 } 12112 12113 LIST_HEAD(bnxt_block_cb_list); 12114 12115 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12116 void *type_data) 12117 { 12118 struct bnxt *bp = netdev_priv(dev); 12119 12120 switch (type) { 12121 case TC_SETUP_BLOCK: 12122 return flow_block_cb_setup_simple(type_data, 12123 &bnxt_block_cb_list, 12124 bnxt_setup_tc_block_cb, 12125 bp, bp, true); 12126 case TC_SETUP_QDISC_MQPRIO: { 12127 struct tc_mqprio_qopt *mqprio = type_data; 12128 12129 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12130 12131 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12132 } 12133 default: 12134 return -EOPNOTSUPP; 12135 } 12136 } 12137 12138 #ifdef CONFIG_RFS_ACCEL 12139 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12140 struct bnxt_ntuple_filter *f2) 12141 { 12142 struct flow_keys *keys1 = &f1->fkeys; 12143 struct flow_keys *keys2 = &f2->fkeys; 12144 12145 if (keys1->basic.n_proto != keys2->basic.n_proto || 12146 keys1->basic.ip_proto != keys2->basic.ip_proto) 12147 return false; 12148 12149 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12150 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12151 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12152 return false; 12153 } else { 12154 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12155 sizeof(keys1->addrs.v6addrs.src)) || 12156 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12157 sizeof(keys1->addrs.v6addrs.dst))) 12158 return false; 12159 } 12160 12161 if (keys1->ports.ports == keys2->ports.ports && 12162 keys1->control.flags == keys2->control.flags && 12163 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12164 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12165 return true; 12166 12167 return false; 12168 } 12169 12170 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12171 u16 rxq_index, u32 flow_id) 12172 { 12173 struct bnxt *bp = netdev_priv(dev); 12174 struct bnxt_ntuple_filter *fltr, *new_fltr; 12175 struct flow_keys *fkeys; 12176 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12177 int rc = 0, idx, bit_id, l2_idx = 0; 12178 struct hlist_head *head; 12179 u32 flags; 12180 12181 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12182 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12183 int off = 0, j; 12184 12185 netif_addr_lock_bh(dev); 12186 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12187 if (ether_addr_equal(eth->h_dest, 12188 vnic->uc_list + off)) { 12189 l2_idx = j + 1; 12190 break; 12191 } 12192 } 12193 netif_addr_unlock_bh(dev); 12194 if (!l2_idx) 12195 return -EINVAL; 12196 } 12197 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12198 if (!new_fltr) 12199 return -ENOMEM; 12200 12201 fkeys = &new_fltr->fkeys; 12202 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12203 rc = -EPROTONOSUPPORT; 12204 goto err_free; 12205 } 12206 12207 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12208 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12209 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12210 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12211 rc = -EPROTONOSUPPORT; 12212 goto err_free; 12213 } 12214 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12215 bp->hwrm_spec_code < 0x10601) { 12216 rc = -EPROTONOSUPPORT; 12217 goto err_free; 12218 } 12219 flags = fkeys->control.flags; 12220 if (((flags & FLOW_DIS_ENCAPSULATION) && 12221 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12222 rc = -EPROTONOSUPPORT; 12223 goto err_free; 12224 } 12225 12226 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12227 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12228 12229 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12230 head = &bp->ntp_fltr_hash_tbl[idx]; 12231 rcu_read_lock(); 12232 hlist_for_each_entry_rcu(fltr, head, hash) { 12233 if (bnxt_fltr_match(fltr, new_fltr)) { 12234 rcu_read_unlock(); 12235 rc = 0; 12236 goto err_free; 12237 } 12238 } 12239 rcu_read_unlock(); 12240 12241 spin_lock_bh(&bp->ntp_fltr_lock); 12242 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12243 BNXT_NTP_FLTR_MAX_FLTR, 0); 12244 if (bit_id < 0) { 12245 spin_unlock_bh(&bp->ntp_fltr_lock); 12246 rc = -ENOMEM; 12247 goto err_free; 12248 } 12249 12250 new_fltr->sw_id = (u16)bit_id; 12251 new_fltr->flow_id = flow_id; 12252 new_fltr->l2_fltr_idx = l2_idx; 12253 new_fltr->rxq = rxq_index; 12254 hlist_add_head_rcu(&new_fltr->hash, head); 12255 bp->ntp_fltr_count++; 12256 spin_unlock_bh(&bp->ntp_fltr_lock); 12257 12258 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12259 bnxt_queue_sp_work(bp); 12260 12261 return new_fltr->sw_id; 12262 12263 err_free: 12264 kfree(new_fltr); 12265 return rc; 12266 } 12267 12268 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12269 { 12270 int i; 12271 12272 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12273 struct hlist_head *head; 12274 struct hlist_node *tmp; 12275 struct bnxt_ntuple_filter *fltr; 12276 int rc; 12277 12278 head = &bp->ntp_fltr_hash_tbl[i]; 12279 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12280 bool del = false; 12281 12282 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12283 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12284 fltr->flow_id, 12285 fltr->sw_id)) { 12286 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12287 fltr); 12288 del = true; 12289 } 12290 } else { 12291 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12292 fltr); 12293 if (rc) 12294 del = true; 12295 else 12296 set_bit(BNXT_FLTR_VALID, &fltr->state); 12297 } 12298 12299 if (del) { 12300 spin_lock_bh(&bp->ntp_fltr_lock); 12301 hlist_del_rcu(&fltr->hash); 12302 bp->ntp_fltr_count--; 12303 spin_unlock_bh(&bp->ntp_fltr_lock); 12304 synchronize_rcu(); 12305 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12306 kfree(fltr); 12307 } 12308 } 12309 } 12310 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12311 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12312 } 12313 12314 #else 12315 12316 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12317 { 12318 } 12319 12320 #endif /* CONFIG_RFS_ACCEL */ 12321 12322 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12323 { 12324 struct bnxt *bp = netdev_priv(netdev); 12325 struct udp_tunnel_info ti; 12326 unsigned int cmd; 12327 12328 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12329 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) { 12330 bp->vxlan_port = ti.port; 12331 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12332 } else { 12333 bp->nge_port = ti.port; 12334 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12335 } 12336 12337 if (ti.port) 12338 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12339 12340 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12341 } 12342 12343 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12344 .sync_table = bnxt_udp_tunnel_sync, 12345 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12346 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12347 .tables = { 12348 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12349 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12350 }, 12351 }; 12352 12353 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12354 struct net_device *dev, u32 filter_mask, 12355 int nlflags) 12356 { 12357 struct bnxt *bp = netdev_priv(dev); 12358 12359 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12360 nlflags, filter_mask, NULL); 12361 } 12362 12363 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12364 u16 flags, struct netlink_ext_ack *extack) 12365 { 12366 struct bnxt *bp = netdev_priv(dev); 12367 struct nlattr *attr, *br_spec; 12368 int rem, rc = 0; 12369 12370 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12371 return -EOPNOTSUPP; 12372 12373 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12374 if (!br_spec) 12375 return -EINVAL; 12376 12377 nla_for_each_nested(attr, br_spec, rem) { 12378 u16 mode; 12379 12380 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12381 continue; 12382 12383 if (nla_len(attr) < sizeof(mode)) 12384 return -EINVAL; 12385 12386 mode = nla_get_u16(attr); 12387 if (mode == bp->br_mode) 12388 break; 12389 12390 rc = bnxt_hwrm_set_br_mode(bp, mode); 12391 if (!rc) 12392 bp->br_mode = mode; 12393 break; 12394 } 12395 return rc; 12396 } 12397 12398 int bnxt_get_port_parent_id(struct net_device *dev, 12399 struct netdev_phys_item_id *ppid) 12400 { 12401 struct bnxt *bp = netdev_priv(dev); 12402 12403 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12404 return -EOPNOTSUPP; 12405 12406 /* The PF and it's VF-reps only support the switchdev framework */ 12407 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12408 return -EOPNOTSUPP; 12409 12410 ppid->id_len = sizeof(bp->dsn); 12411 memcpy(ppid->id, bp->dsn, ppid->id_len); 12412 12413 return 0; 12414 } 12415 12416 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12417 { 12418 struct bnxt *bp = netdev_priv(dev); 12419 12420 return &bp->dl_port; 12421 } 12422 12423 static const struct net_device_ops bnxt_netdev_ops = { 12424 .ndo_open = bnxt_open, 12425 .ndo_start_xmit = bnxt_start_xmit, 12426 .ndo_stop = bnxt_close, 12427 .ndo_get_stats64 = bnxt_get_stats64, 12428 .ndo_set_rx_mode = bnxt_set_rx_mode, 12429 .ndo_do_ioctl = bnxt_ioctl, 12430 .ndo_validate_addr = eth_validate_addr, 12431 .ndo_set_mac_address = bnxt_change_mac_addr, 12432 .ndo_change_mtu = bnxt_change_mtu, 12433 .ndo_fix_features = bnxt_fix_features, 12434 .ndo_set_features = bnxt_set_features, 12435 .ndo_features_check = bnxt_features_check, 12436 .ndo_tx_timeout = bnxt_tx_timeout, 12437 #ifdef CONFIG_BNXT_SRIOV 12438 .ndo_get_vf_config = bnxt_get_vf_config, 12439 .ndo_set_vf_mac = bnxt_set_vf_mac, 12440 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12441 .ndo_set_vf_rate = bnxt_set_vf_bw, 12442 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12443 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12444 .ndo_set_vf_trust = bnxt_set_vf_trust, 12445 #endif 12446 .ndo_setup_tc = bnxt_setup_tc, 12447 #ifdef CONFIG_RFS_ACCEL 12448 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12449 #endif 12450 .ndo_bpf = bnxt_xdp, 12451 .ndo_xdp_xmit = bnxt_xdp_xmit, 12452 .ndo_bridge_getlink = bnxt_bridge_getlink, 12453 .ndo_bridge_setlink = bnxt_bridge_setlink, 12454 .ndo_get_devlink_port = bnxt_get_devlink_port, 12455 }; 12456 12457 static void bnxt_remove_one(struct pci_dev *pdev) 12458 { 12459 struct net_device *dev = pci_get_drvdata(pdev); 12460 struct bnxt *bp = netdev_priv(dev); 12461 12462 if (BNXT_PF(bp)) 12463 bnxt_sriov_disable(bp); 12464 12465 if (BNXT_PF(bp)) 12466 devlink_port_type_clear(&bp->dl_port); 12467 pci_disable_pcie_error_reporting(pdev); 12468 unregister_netdev(dev); 12469 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12470 /* Flush any pending tasks */ 12471 cancel_work_sync(&bp->sp_task); 12472 cancel_delayed_work_sync(&bp->fw_reset_task); 12473 bp->sp_event = 0; 12474 12475 bnxt_dl_fw_reporters_destroy(bp, true); 12476 bnxt_dl_unregister(bp); 12477 bnxt_shutdown_tc(bp); 12478 12479 bnxt_clear_int_mode(bp); 12480 bnxt_hwrm_func_drv_unrgtr(bp); 12481 bnxt_free_hwrm_resources(bp); 12482 bnxt_free_hwrm_short_cmd_req(bp); 12483 bnxt_ethtool_free(bp); 12484 bnxt_dcb_free(bp); 12485 kfree(bp->edev); 12486 bp->edev = NULL; 12487 kfree(bp->fw_health); 12488 bp->fw_health = NULL; 12489 bnxt_cleanup_pci(bp); 12490 bnxt_free_ctx_mem(bp); 12491 kfree(bp->ctx); 12492 bp->ctx = NULL; 12493 kfree(bp->rss_indir_tbl); 12494 bp->rss_indir_tbl = NULL; 12495 bnxt_free_port_stats(bp); 12496 free_netdev(dev); 12497 } 12498 12499 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12500 { 12501 int rc = 0; 12502 struct bnxt_link_info *link_info = &bp->link_info; 12503 12504 bp->phy_flags = 0; 12505 rc = bnxt_hwrm_phy_qcaps(bp); 12506 if (rc) { 12507 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12508 rc); 12509 return rc; 12510 } 12511 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 12512 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 12513 else 12514 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 12515 if (!fw_dflt) 12516 return 0; 12517 12518 rc = bnxt_update_link(bp, false); 12519 if (rc) { 12520 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12521 rc); 12522 return rc; 12523 } 12524 12525 /* Older firmware does not have supported_auto_speeds, so assume 12526 * that all supported speeds can be autonegotiated. 12527 */ 12528 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12529 link_info->support_auto_speeds = link_info->support_speeds; 12530 12531 bnxt_init_ethtool_link_settings(bp); 12532 return 0; 12533 } 12534 12535 static int bnxt_get_max_irq(struct pci_dev *pdev) 12536 { 12537 u16 ctrl; 12538 12539 if (!pdev->msix_cap) 12540 return 1; 12541 12542 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12543 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12544 } 12545 12546 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12547 int *max_cp) 12548 { 12549 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12550 int max_ring_grps = 0, max_irq; 12551 12552 *max_tx = hw_resc->max_tx_rings; 12553 *max_rx = hw_resc->max_rx_rings; 12554 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12555 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12556 bnxt_get_ulp_msix_num(bp), 12557 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12558 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12559 *max_cp = min_t(int, *max_cp, max_irq); 12560 max_ring_grps = hw_resc->max_hw_ring_grps; 12561 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12562 *max_cp -= 1; 12563 *max_rx -= 2; 12564 } 12565 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12566 *max_rx >>= 1; 12567 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12568 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12569 /* On P5 chips, max_cp output param should be available NQs */ 12570 *max_cp = max_irq; 12571 } 12572 *max_rx = min_t(int, *max_rx, max_ring_grps); 12573 } 12574 12575 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12576 { 12577 int rx, tx, cp; 12578 12579 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12580 *max_rx = rx; 12581 *max_tx = tx; 12582 if (!rx || !tx || !cp) 12583 return -ENOMEM; 12584 12585 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12586 } 12587 12588 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12589 bool shared) 12590 { 12591 int rc; 12592 12593 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12594 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12595 /* Not enough rings, try disabling agg rings. */ 12596 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12597 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12598 if (rc) { 12599 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 12600 bp->flags |= BNXT_FLAG_AGG_RINGS; 12601 return rc; 12602 } 12603 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 12604 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12605 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12606 bnxt_set_ring_params(bp); 12607 } 12608 12609 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 12610 int max_cp, max_stat, max_irq; 12611 12612 /* Reserve minimum resources for RoCE */ 12613 max_cp = bnxt_get_max_func_cp_rings(bp); 12614 max_stat = bnxt_get_max_func_stat_ctxs(bp); 12615 max_irq = bnxt_get_max_func_irqs(bp); 12616 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 12617 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 12618 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 12619 return 0; 12620 12621 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 12622 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 12623 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 12624 max_cp = min_t(int, max_cp, max_irq); 12625 max_cp = min_t(int, max_cp, max_stat); 12626 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 12627 if (rc) 12628 rc = 0; 12629 } 12630 return rc; 12631 } 12632 12633 /* In initial default shared ring setting, each shared ring must have a 12634 * RX/TX ring pair. 12635 */ 12636 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 12637 { 12638 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 12639 bp->rx_nr_rings = bp->cp_nr_rings; 12640 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 12641 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12642 } 12643 12644 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 12645 { 12646 int dflt_rings, max_rx_rings, max_tx_rings, rc; 12647 12648 if (!bnxt_can_reserve_rings(bp)) 12649 return 0; 12650 12651 if (sh) 12652 bp->flags |= BNXT_FLAG_SHARED_RINGS; 12653 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 12654 /* Reduce default rings on multi-port cards so that total default 12655 * rings do not exceed CPU count. 12656 */ 12657 if (bp->port_count > 1) { 12658 int max_rings = 12659 max_t(int, num_online_cpus() / bp->port_count, 1); 12660 12661 dflt_rings = min_t(int, dflt_rings, max_rings); 12662 } 12663 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 12664 if (rc) 12665 return rc; 12666 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 12667 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 12668 if (sh) 12669 bnxt_trim_dflt_sh_rings(bp); 12670 else 12671 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 12672 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12673 12674 rc = __bnxt_reserve_rings(bp); 12675 if (rc) 12676 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 12677 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12678 if (sh) 12679 bnxt_trim_dflt_sh_rings(bp); 12680 12681 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 12682 if (bnxt_need_reserve_rings(bp)) { 12683 rc = __bnxt_reserve_rings(bp); 12684 if (rc) 12685 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 12686 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12687 } 12688 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 12689 bp->rx_nr_rings++; 12690 bp->cp_nr_rings++; 12691 } 12692 if (rc) { 12693 bp->tx_nr_rings = 0; 12694 bp->rx_nr_rings = 0; 12695 } 12696 return rc; 12697 } 12698 12699 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 12700 { 12701 int rc; 12702 12703 if (bp->tx_nr_rings) 12704 return 0; 12705 12706 bnxt_ulp_irq_stop(bp); 12707 bnxt_clear_int_mode(bp); 12708 rc = bnxt_set_dflt_rings(bp, true); 12709 if (rc) { 12710 netdev_err(bp->dev, "Not enough rings available.\n"); 12711 goto init_dflt_ring_err; 12712 } 12713 rc = bnxt_init_int_mode(bp); 12714 if (rc) 12715 goto init_dflt_ring_err; 12716 12717 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12718 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 12719 bp->flags |= BNXT_FLAG_RFS; 12720 bp->dev->features |= NETIF_F_NTUPLE; 12721 } 12722 init_dflt_ring_err: 12723 bnxt_ulp_irq_restart(bp, rc); 12724 return rc; 12725 } 12726 12727 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 12728 { 12729 int rc; 12730 12731 ASSERT_RTNL(); 12732 bnxt_hwrm_func_qcaps(bp); 12733 12734 if (netif_running(bp->dev)) 12735 __bnxt_close_nic(bp, true, false); 12736 12737 bnxt_ulp_irq_stop(bp); 12738 bnxt_clear_int_mode(bp); 12739 rc = bnxt_init_int_mode(bp); 12740 bnxt_ulp_irq_restart(bp, rc); 12741 12742 if (netif_running(bp->dev)) { 12743 if (rc) 12744 dev_close(bp->dev); 12745 else 12746 rc = bnxt_open_nic(bp, true, false); 12747 } 12748 12749 return rc; 12750 } 12751 12752 static int bnxt_init_mac_addr(struct bnxt *bp) 12753 { 12754 int rc = 0; 12755 12756 if (BNXT_PF(bp)) { 12757 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 12758 } else { 12759 #ifdef CONFIG_BNXT_SRIOV 12760 struct bnxt_vf_info *vf = &bp->vf; 12761 bool strict_approval = true; 12762 12763 if (is_valid_ether_addr(vf->mac_addr)) { 12764 /* overwrite netdev dev_addr with admin VF MAC */ 12765 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 12766 /* Older PF driver or firmware may not approve this 12767 * correctly. 12768 */ 12769 strict_approval = false; 12770 } else { 12771 eth_hw_addr_random(bp->dev); 12772 } 12773 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 12774 #endif 12775 } 12776 return rc; 12777 } 12778 12779 #define BNXT_VPD_LEN 512 12780 static void bnxt_vpd_read_info(struct bnxt *bp) 12781 { 12782 struct pci_dev *pdev = bp->pdev; 12783 int i, len, pos, ro_size, size; 12784 ssize_t vpd_size; 12785 u8 *vpd_data; 12786 12787 vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL); 12788 if (!vpd_data) 12789 return; 12790 12791 vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data); 12792 if (vpd_size <= 0) { 12793 netdev_err(bp->dev, "Unable to read VPD\n"); 12794 goto exit; 12795 } 12796 12797 i = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA); 12798 if (i < 0) { 12799 netdev_err(bp->dev, "VPD READ-Only not found\n"); 12800 goto exit; 12801 } 12802 12803 ro_size = pci_vpd_lrdt_size(&vpd_data[i]); 12804 i += PCI_VPD_LRDT_TAG_SIZE; 12805 if (i + ro_size > vpd_size) 12806 goto exit; 12807 12808 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 12809 PCI_VPD_RO_KEYWORD_PARTNO); 12810 if (pos < 0) 12811 goto read_sn; 12812 12813 len = pci_vpd_info_field_size(&vpd_data[pos]); 12814 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 12815 if (len + pos > vpd_size) 12816 goto read_sn; 12817 12818 size = min(len, BNXT_VPD_FLD_LEN - 1); 12819 memcpy(bp->board_partno, &vpd_data[pos], size); 12820 12821 read_sn: 12822 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 12823 PCI_VPD_RO_KEYWORD_SERIALNO); 12824 if (pos < 0) 12825 goto exit; 12826 12827 len = pci_vpd_info_field_size(&vpd_data[pos]); 12828 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 12829 if (len + pos > vpd_size) 12830 goto exit; 12831 12832 size = min(len, BNXT_VPD_FLD_LEN - 1); 12833 memcpy(bp->board_serialno, &vpd_data[pos], size); 12834 exit: 12835 kfree(vpd_data); 12836 } 12837 12838 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 12839 { 12840 struct pci_dev *pdev = bp->pdev; 12841 u64 qword; 12842 12843 qword = pci_get_dsn(pdev); 12844 if (!qword) { 12845 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 12846 return -EOPNOTSUPP; 12847 } 12848 12849 put_unaligned_le64(qword, dsn); 12850 12851 bp->flags |= BNXT_FLAG_DSN_VALID; 12852 return 0; 12853 } 12854 12855 static int bnxt_map_db_bar(struct bnxt *bp) 12856 { 12857 if (!bp->db_size) 12858 return -ENODEV; 12859 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 12860 if (!bp->bar1) 12861 return -ENOMEM; 12862 return 0; 12863 } 12864 12865 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 12866 { 12867 struct net_device *dev; 12868 struct bnxt *bp; 12869 int rc, max_irqs; 12870 12871 if (pci_is_bridge(pdev)) 12872 return -ENODEV; 12873 12874 /* Clear any pending DMA transactions from crash kernel 12875 * while loading driver in capture kernel. 12876 */ 12877 if (is_kdump_kernel()) { 12878 pci_clear_master(pdev); 12879 pcie_flr(pdev); 12880 } 12881 12882 max_irqs = bnxt_get_max_irq(pdev); 12883 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 12884 if (!dev) 12885 return -ENOMEM; 12886 12887 bp = netdev_priv(dev); 12888 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 12889 bnxt_set_max_func_irqs(bp, max_irqs); 12890 12891 if (bnxt_vf_pciid(ent->driver_data)) 12892 bp->flags |= BNXT_FLAG_VF; 12893 12894 if (pdev->msix_cap) 12895 bp->flags |= BNXT_FLAG_MSIX_CAP; 12896 12897 rc = bnxt_init_board(pdev, dev); 12898 if (rc < 0) 12899 goto init_err_free; 12900 12901 dev->netdev_ops = &bnxt_netdev_ops; 12902 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 12903 dev->ethtool_ops = &bnxt_ethtool_ops; 12904 pci_set_drvdata(pdev, dev); 12905 12906 rc = bnxt_alloc_hwrm_resources(bp); 12907 if (rc) 12908 goto init_err_pci_clean; 12909 12910 mutex_init(&bp->hwrm_cmd_lock); 12911 mutex_init(&bp->link_lock); 12912 12913 rc = bnxt_fw_init_one_p1(bp); 12914 if (rc) 12915 goto init_err_pci_clean; 12916 12917 if (BNXT_PF(bp)) 12918 bnxt_vpd_read_info(bp); 12919 12920 if (BNXT_CHIP_P5(bp)) { 12921 bp->flags |= BNXT_FLAG_CHIP_P5; 12922 if (BNXT_CHIP_SR2(bp)) 12923 bp->flags |= BNXT_FLAG_CHIP_SR2; 12924 } 12925 12926 rc = bnxt_alloc_rss_indir_tbl(bp); 12927 if (rc) 12928 goto init_err_pci_clean; 12929 12930 rc = bnxt_fw_init_one_p2(bp); 12931 if (rc) 12932 goto init_err_pci_clean; 12933 12934 rc = bnxt_map_db_bar(bp); 12935 if (rc) { 12936 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 12937 rc); 12938 goto init_err_pci_clean; 12939 } 12940 12941 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 12942 NETIF_F_TSO | NETIF_F_TSO6 | 12943 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 12944 NETIF_F_GSO_IPXIP4 | 12945 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 12946 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 12947 NETIF_F_RXCSUM | NETIF_F_GRO; 12948 12949 if (BNXT_SUPPORTS_TPA(bp)) 12950 dev->hw_features |= NETIF_F_LRO; 12951 12952 dev->hw_enc_features = 12953 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 12954 NETIF_F_TSO | NETIF_F_TSO6 | 12955 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 12956 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 12957 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 12958 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 12959 12960 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 12961 NETIF_F_GSO_GRE_CSUM; 12962 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 12963 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 12964 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 12965 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 12966 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 12967 if (BNXT_SUPPORTS_TPA(bp)) 12968 dev->hw_features |= NETIF_F_GRO_HW; 12969 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 12970 if (dev->features & NETIF_F_GRO_HW) 12971 dev->features &= ~NETIF_F_LRO; 12972 dev->priv_flags |= IFF_UNICAST_FLT; 12973 12974 #ifdef CONFIG_BNXT_SRIOV 12975 init_waitqueue_head(&bp->sriov_cfg_wait); 12976 mutex_init(&bp->sriov_lock); 12977 #endif 12978 if (BNXT_SUPPORTS_TPA(bp)) { 12979 bp->gro_func = bnxt_gro_func_5730x; 12980 if (BNXT_CHIP_P4(bp)) 12981 bp->gro_func = bnxt_gro_func_5731x; 12982 else if (BNXT_CHIP_P5(bp)) 12983 bp->gro_func = bnxt_gro_func_5750x; 12984 } 12985 if (!BNXT_CHIP_P4_PLUS(bp)) 12986 bp->flags |= BNXT_FLAG_DOUBLE_DB; 12987 12988 rc = bnxt_init_mac_addr(bp); 12989 if (rc) { 12990 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 12991 rc = -EADDRNOTAVAIL; 12992 goto init_err_pci_clean; 12993 } 12994 12995 if (BNXT_PF(bp)) { 12996 /* Read the adapter's DSN to use as the eswitch switch_id */ 12997 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 12998 } 12999 13000 /* MTU range: 60 - FW defined max */ 13001 dev->min_mtu = ETH_ZLEN; 13002 dev->max_mtu = bp->max_mtu; 13003 13004 rc = bnxt_probe_phy(bp, true); 13005 if (rc) 13006 goto init_err_pci_clean; 13007 13008 bnxt_set_rx_skb_mode(bp, false); 13009 bnxt_set_tpa_flags(bp); 13010 bnxt_set_ring_params(bp); 13011 rc = bnxt_set_dflt_rings(bp, true); 13012 if (rc) { 13013 netdev_err(bp->dev, "Not enough rings available.\n"); 13014 rc = -ENOMEM; 13015 goto init_err_pci_clean; 13016 } 13017 13018 bnxt_fw_init_one_p3(bp); 13019 13020 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13021 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13022 13023 rc = bnxt_init_int_mode(bp); 13024 if (rc) 13025 goto init_err_pci_clean; 13026 13027 /* No TC has been set yet and rings may have been trimmed due to 13028 * limited MSIX, so we re-initialize the TX rings per TC. 13029 */ 13030 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13031 13032 if (BNXT_PF(bp)) { 13033 if (!bnxt_pf_wq) { 13034 bnxt_pf_wq = 13035 create_singlethread_workqueue("bnxt_pf_wq"); 13036 if (!bnxt_pf_wq) { 13037 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13038 rc = -ENOMEM; 13039 goto init_err_pci_clean; 13040 } 13041 } 13042 rc = bnxt_init_tc(bp); 13043 if (rc) 13044 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13045 rc); 13046 } 13047 13048 bnxt_inv_fw_health_reg(bp); 13049 bnxt_dl_register(bp); 13050 13051 rc = register_netdev(dev); 13052 if (rc) 13053 goto init_err_cleanup; 13054 13055 if (BNXT_PF(bp)) 13056 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13057 bnxt_dl_fw_reporters_create(bp); 13058 13059 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 13060 board_info[ent->driver_data].name, 13061 (long)pci_resource_start(pdev, 0), dev->dev_addr); 13062 pcie_print_link_status(pdev); 13063 13064 pci_save_state(pdev); 13065 return 0; 13066 13067 init_err_cleanup: 13068 bnxt_dl_unregister(bp); 13069 bnxt_shutdown_tc(bp); 13070 bnxt_clear_int_mode(bp); 13071 13072 init_err_pci_clean: 13073 bnxt_hwrm_func_drv_unrgtr(bp); 13074 bnxt_free_hwrm_short_cmd_req(bp); 13075 bnxt_free_hwrm_resources(bp); 13076 kfree(bp->fw_health); 13077 bp->fw_health = NULL; 13078 bnxt_cleanup_pci(bp); 13079 bnxt_free_ctx_mem(bp); 13080 kfree(bp->ctx); 13081 bp->ctx = NULL; 13082 kfree(bp->rss_indir_tbl); 13083 bp->rss_indir_tbl = NULL; 13084 13085 init_err_free: 13086 free_netdev(dev); 13087 return rc; 13088 } 13089 13090 static void bnxt_shutdown(struct pci_dev *pdev) 13091 { 13092 struct net_device *dev = pci_get_drvdata(pdev); 13093 struct bnxt *bp; 13094 13095 if (!dev) 13096 return; 13097 13098 rtnl_lock(); 13099 bp = netdev_priv(dev); 13100 if (!bp) 13101 goto shutdown_exit; 13102 13103 if (netif_running(dev)) 13104 dev_close(dev); 13105 13106 bnxt_ulp_shutdown(bp); 13107 bnxt_clear_int_mode(bp); 13108 pci_disable_device(pdev); 13109 13110 if (system_state == SYSTEM_POWER_OFF) { 13111 pci_wake_from_d3(pdev, bp->wol); 13112 pci_set_power_state(pdev, PCI_D3hot); 13113 } 13114 13115 shutdown_exit: 13116 rtnl_unlock(); 13117 } 13118 13119 #ifdef CONFIG_PM_SLEEP 13120 static int bnxt_suspend(struct device *device) 13121 { 13122 struct net_device *dev = dev_get_drvdata(device); 13123 struct bnxt *bp = netdev_priv(dev); 13124 int rc = 0; 13125 13126 rtnl_lock(); 13127 bnxt_ulp_stop(bp); 13128 if (netif_running(dev)) { 13129 netif_device_detach(dev); 13130 rc = bnxt_close(dev); 13131 } 13132 bnxt_hwrm_func_drv_unrgtr(bp); 13133 pci_disable_device(bp->pdev); 13134 bnxt_free_ctx_mem(bp); 13135 kfree(bp->ctx); 13136 bp->ctx = NULL; 13137 rtnl_unlock(); 13138 return rc; 13139 } 13140 13141 static int bnxt_resume(struct device *device) 13142 { 13143 struct net_device *dev = dev_get_drvdata(device); 13144 struct bnxt *bp = netdev_priv(dev); 13145 int rc = 0; 13146 13147 rtnl_lock(); 13148 rc = pci_enable_device(bp->pdev); 13149 if (rc) { 13150 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13151 rc); 13152 goto resume_exit; 13153 } 13154 pci_set_master(bp->pdev); 13155 if (bnxt_hwrm_ver_get(bp)) { 13156 rc = -ENODEV; 13157 goto resume_exit; 13158 } 13159 rc = bnxt_hwrm_func_reset(bp); 13160 if (rc) { 13161 rc = -EBUSY; 13162 goto resume_exit; 13163 } 13164 13165 rc = bnxt_hwrm_func_qcaps(bp); 13166 if (rc) 13167 goto resume_exit; 13168 13169 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13170 rc = -ENODEV; 13171 goto resume_exit; 13172 } 13173 13174 bnxt_get_wol_settings(bp); 13175 if (netif_running(dev)) { 13176 rc = bnxt_open(dev); 13177 if (!rc) 13178 netif_device_attach(dev); 13179 } 13180 13181 resume_exit: 13182 bnxt_ulp_start(bp, rc); 13183 if (!rc) 13184 bnxt_reenable_sriov(bp); 13185 rtnl_unlock(); 13186 return rc; 13187 } 13188 13189 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13190 #define BNXT_PM_OPS (&bnxt_pm_ops) 13191 13192 #else 13193 13194 #define BNXT_PM_OPS NULL 13195 13196 #endif /* CONFIG_PM_SLEEP */ 13197 13198 /** 13199 * bnxt_io_error_detected - called when PCI error is detected 13200 * @pdev: Pointer to PCI device 13201 * @state: The current pci connection state 13202 * 13203 * This function is called after a PCI bus error affecting 13204 * this device has been detected. 13205 */ 13206 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13207 pci_channel_state_t state) 13208 { 13209 struct net_device *netdev = pci_get_drvdata(pdev); 13210 struct bnxt *bp = netdev_priv(netdev); 13211 13212 netdev_info(netdev, "PCI I/O error detected\n"); 13213 13214 rtnl_lock(); 13215 netif_device_detach(netdev); 13216 13217 bnxt_ulp_stop(bp); 13218 13219 if (state == pci_channel_io_perm_failure) { 13220 rtnl_unlock(); 13221 return PCI_ERS_RESULT_DISCONNECT; 13222 } 13223 13224 if (state == pci_channel_io_frozen) 13225 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13226 13227 if (netif_running(netdev)) 13228 bnxt_close(netdev); 13229 13230 pci_disable_device(pdev); 13231 bnxt_free_ctx_mem(bp); 13232 kfree(bp->ctx); 13233 bp->ctx = NULL; 13234 rtnl_unlock(); 13235 13236 /* Request a slot slot reset. */ 13237 return PCI_ERS_RESULT_NEED_RESET; 13238 } 13239 13240 /** 13241 * bnxt_io_slot_reset - called after the pci bus has been reset. 13242 * @pdev: Pointer to PCI device 13243 * 13244 * Restart the card from scratch, as if from a cold-boot. 13245 * At this point, the card has exprienced a hard reset, 13246 * followed by fixups by BIOS, and has its config space 13247 * set up identically to what it was at cold boot. 13248 */ 13249 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13250 { 13251 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13252 struct net_device *netdev = pci_get_drvdata(pdev); 13253 struct bnxt *bp = netdev_priv(netdev); 13254 int err = 0, off; 13255 13256 netdev_info(bp->dev, "PCI Slot Reset\n"); 13257 13258 rtnl_lock(); 13259 13260 if (pci_enable_device(pdev)) { 13261 dev_err(&pdev->dev, 13262 "Cannot re-enable PCI device after reset.\n"); 13263 } else { 13264 pci_set_master(pdev); 13265 /* Upon fatal error, our device internal logic that latches to 13266 * BAR value is getting reset and will restore only upon 13267 * rewritting the BARs. 13268 * 13269 * As pci_restore_state() does not re-write the BARs if the 13270 * value is same as saved value earlier, driver needs to 13271 * write the BARs to 0 to force restore, in case of fatal error. 13272 */ 13273 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13274 &bp->state)) { 13275 for (off = PCI_BASE_ADDRESS_0; 13276 off <= PCI_BASE_ADDRESS_5; off += 4) 13277 pci_write_config_dword(bp->pdev, off, 0); 13278 } 13279 pci_restore_state(pdev); 13280 pci_save_state(pdev); 13281 13282 err = bnxt_hwrm_func_reset(bp); 13283 if (!err) 13284 result = PCI_ERS_RESULT_RECOVERED; 13285 } 13286 13287 rtnl_unlock(); 13288 13289 return result; 13290 } 13291 13292 /** 13293 * bnxt_io_resume - called when traffic can start flowing again. 13294 * @pdev: Pointer to PCI device 13295 * 13296 * This callback is called when the error recovery driver tells 13297 * us that its OK to resume normal operation. 13298 */ 13299 static void bnxt_io_resume(struct pci_dev *pdev) 13300 { 13301 struct net_device *netdev = pci_get_drvdata(pdev); 13302 struct bnxt *bp = netdev_priv(netdev); 13303 int err; 13304 13305 netdev_info(bp->dev, "PCI Slot Resume\n"); 13306 rtnl_lock(); 13307 13308 err = bnxt_hwrm_func_qcaps(bp); 13309 if (!err && netif_running(netdev)) 13310 err = bnxt_open(netdev); 13311 13312 bnxt_ulp_start(bp, err); 13313 if (!err) { 13314 bnxt_reenable_sriov(bp); 13315 netif_device_attach(netdev); 13316 } 13317 13318 rtnl_unlock(); 13319 } 13320 13321 static const struct pci_error_handlers bnxt_err_handler = { 13322 .error_detected = bnxt_io_error_detected, 13323 .slot_reset = bnxt_io_slot_reset, 13324 .resume = bnxt_io_resume 13325 }; 13326 13327 static struct pci_driver bnxt_pci_driver = { 13328 .name = DRV_MODULE_NAME, 13329 .id_table = bnxt_pci_tbl, 13330 .probe = bnxt_init_one, 13331 .remove = bnxt_remove_one, 13332 .shutdown = bnxt_shutdown, 13333 .driver.pm = BNXT_PM_OPS, 13334 .err_handler = &bnxt_err_handler, 13335 #if defined(CONFIG_BNXT_SRIOV) 13336 .sriov_configure = bnxt_sriov_configure, 13337 #endif 13338 }; 13339 13340 static int __init bnxt_init(void) 13341 { 13342 bnxt_debug_init(); 13343 return pci_register_driver(&bnxt_pci_driver); 13344 } 13345 13346 static void __exit bnxt_exit(void) 13347 { 13348 pci_unregister_driver(&bnxt_pci_driver); 13349 if (bnxt_pf_wq) 13350 destroy_workqueue(bnxt_pf_wq); 13351 bnxt_debug_exit(); 13352 } 13353 13354 module_init(bnxt_init); 13355 module_exit(bnxt_exit); 13356