1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58 
59 #define BNXT_TX_TIMEOUT		(5 * HZ)
60 
61 static const char version[] =
62 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63 
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67 
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71 
72 #define BNXT_TX_PUSH_THRESH 164
73 
74 enum board_idx {
75 	BCM57301,
76 	BCM57302,
77 	BCM57304,
78 	BCM57402,
79 	BCM57404,
80 	BCM57406,
81 	BCM57304_VF,
82 	BCM57404_VF,
83 };
84 
85 /* indexed by enum above */
86 static const struct {
87 	char *name;
88 } board_info[] = {
89 	{ "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 	{ "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 	{ "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 	{ "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 	{ "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 	{ "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 	{ "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98 
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 	{ 0 }
111 };
112 
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114 
115 static const u16 bnxt_vf_req_snif[] = {
116 	HWRM_FUNC_CFG,
117 	HWRM_PORT_PHY_QCFG,
118 	HWRM_CFA_L2_FILTER_ALLOC,
119 };
120 
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 	return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125 
126 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
129 
130 #define BNXT_CP_DB_REARM(db, raw_cons)					\
131 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132 
133 #define BNXT_CP_DB(db, raw_cons)					\
134 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135 
136 #define BNXT_CP_DB_IRQ_DIS(db)						\
137 		writel(DB_CP_IRQ_DIS_FLAGS, db)
138 
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 	/* Tell compiler to fetch tx indices from memory. */
142 	barrier();
143 
144 	return bp->tx_ring_size -
145 		((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147 
148 static const u16 bnxt_lhint_arr[] = {
149 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 	TX_BD_FLAGS_LHINT_512_TO_1023,
151 	TX_BD_FLAGS_LHINT_1024_TO_2047,
152 	TX_BD_FLAGS_LHINT_1024_TO_2047,
153 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169 
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 	struct bnxt *bp = netdev_priv(dev);
173 	struct tx_bd *txbd;
174 	struct tx_bd_ext *txbd1;
175 	struct netdev_queue *txq;
176 	int i;
177 	dma_addr_t mapping;
178 	unsigned int length, pad = 0;
179 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 	u16 prod, last_frag;
181 	struct pci_dev *pdev = bp->pdev;
182 	struct bnxt_tx_ring_info *txr;
183 	struct bnxt_sw_tx_bd *tx_buf;
184 
185 	i = skb_get_queue_mapping(skb);
186 	if (unlikely(i >= bp->tx_nr_rings)) {
187 		dev_kfree_skb_any(skb);
188 		return NETDEV_TX_OK;
189 	}
190 
191 	txr = &bp->tx_ring[i];
192 	txq = netdev_get_tx_queue(dev, i);
193 	prod = txr->tx_prod;
194 
195 	free_size = bnxt_tx_avail(bp, txr);
196 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 		netif_tx_stop_queue(txq);
198 		return NETDEV_TX_BUSY;
199 	}
200 
201 	length = skb->len;
202 	len = skb_headlen(skb);
203 	last_frag = skb_shinfo(skb)->nr_frags;
204 
205 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206 
207 	txbd->tx_bd_opaque = prod;
208 
209 	tx_buf = &txr->tx_buf_ring[prod];
210 	tx_buf->skb = skb;
211 	tx_buf->nr_frags = last_frag;
212 
213 	vlan_tag_flags = 0;
214 	cfa_action = 0;
215 	if (skb_vlan_tag_present(skb)) {
216 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 				 skb_vlan_tag_get(skb);
218 		/* Currently supports 8021Q, 8021AD vlan offloads
219 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 		 */
221 		if (skb->vlan_proto == htons(ETH_P_8021Q))
222 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 	}
224 
225 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
227 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
228 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
229 		void *pdata = tx_push_buf->data;
230 		u64 *end;
231 		int j, push_len;
232 
233 		/* Set COAL_NOW to be ready quickly for the next push */
234 		tx_push->tx_bd_len_flags_type =
235 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
236 					TX_BD_TYPE_LONG_TX_BD |
237 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
238 					TX_BD_FLAGS_COAL_NOW |
239 					TX_BD_FLAGS_PACKET_END |
240 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
241 
242 		if (skb->ip_summed == CHECKSUM_PARTIAL)
243 			tx_push1->tx_bd_hsize_lflags =
244 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
245 		else
246 			tx_push1->tx_bd_hsize_lflags = 0;
247 
248 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
249 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
250 
251 		end = PTR_ALIGN(pdata + length + 1, 8) - 1;
252 		*end = 0;
253 
254 		skb_copy_from_linear_data(skb, pdata, len);
255 		pdata += len;
256 		for (j = 0; j < last_frag; j++) {
257 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
258 			void *fptr;
259 
260 			fptr = skb_frag_address_safe(frag);
261 			if (!fptr)
262 				goto normal_tx;
263 
264 			memcpy(pdata, fptr, skb_frag_size(frag));
265 			pdata += skb_frag_size(frag);
266 		}
267 
268 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
269 		txbd->tx_bd_haddr = txr->data_mapping;
270 		prod = NEXT_TX(prod);
271 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
272 		memcpy(txbd, tx_push1, sizeof(*txbd));
273 		prod = NEXT_TX(prod);
274 		tx_push->doorbell =
275 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
276 		txr->tx_prod = prod;
277 
278 		netdev_tx_sent_queue(txq, skb->len);
279 
280 		push_len = (length + sizeof(*tx_push) + 7) / 8;
281 		if (push_len > 16) {
282 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
283 			__iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
284 					 push_len - 16);
285 		} else {
286 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
287 					 push_len);
288 		}
289 
290 		tx_buf->is_push = 1;
291 		goto tx_done;
292 	}
293 
294 normal_tx:
295 	if (length < BNXT_MIN_PKT_SIZE) {
296 		pad = BNXT_MIN_PKT_SIZE - length;
297 		if (skb_pad(skb, pad)) {
298 			/* SKB already freed. */
299 			tx_buf->skb = NULL;
300 			return NETDEV_TX_OK;
301 		}
302 		length = BNXT_MIN_PKT_SIZE;
303 	}
304 
305 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
306 
307 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
308 		dev_kfree_skb_any(skb);
309 		tx_buf->skb = NULL;
310 		return NETDEV_TX_OK;
311 	}
312 
313 	dma_unmap_addr_set(tx_buf, mapping, mapping);
314 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
315 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
316 
317 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
318 
319 	prod = NEXT_TX(prod);
320 	txbd1 = (struct tx_bd_ext *)
321 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
322 
323 	txbd1->tx_bd_hsize_lflags = 0;
324 	if (skb_is_gso(skb)) {
325 		u32 hdr_len;
326 
327 		if (skb->encapsulation)
328 			hdr_len = skb_inner_network_offset(skb) +
329 				skb_inner_network_header_len(skb) +
330 				inner_tcp_hdrlen(skb);
331 		else
332 			hdr_len = skb_transport_offset(skb) +
333 				tcp_hdrlen(skb);
334 
335 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
336 					TX_BD_FLAGS_T_IPID |
337 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
338 		length = skb_shinfo(skb)->gso_size;
339 		txbd1->tx_bd_mss = cpu_to_le32(length);
340 		length += hdr_len;
341 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
342 		txbd1->tx_bd_hsize_lflags =
343 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
344 		txbd1->tx_bd_mss = 0;
345 	}
346 
347 	length >>= 9;
348 	flags |= bnxt_lhint_arr[length];
349 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
350 
351 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
352 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
353 	for (i = 0; i < last_frag; i++) {
354 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
355 
356 		prod = NEXT_TX(prod);
357 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
358 
359 		len = skb_frag_size(frag);
360 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
361 					   DMA_TO_DEVICE);
362 
363 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
364 			goto tx_dma_error;
365 
366 		tx_buf = &txr->tx_buf_ring[prod];
367 		dma_unmap_addr_set(tx_buf, mapping, mapping);
368 
369 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
370 
371 		flags = len << TX_BD_LEN_SHIFT;
372 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
373 	}
374 
375 	flags &= ~TX_BD_LEN;
376 	txbd->tx_bd_len_flags_type =
377 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
378 			    TX_BD_FLAGS_PACKET_END);
379 
380 	netdev_tx_sent_queue(txq, skb->len);
381 
382 	/* Sync BD data before updating doorbell */
383 	wmb();
384 
385 	prod = NEXT_TX(prod);
386 	txr->tx_prod = prod;
387 
388 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
389 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
390 
391 tx_done:
392 
393 	mmiowb();
394 
395 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
396 		netif_tx_stop_queue(txq);
397 
398 		/* netif_tx_stop_queue() must be done before checking
399 		 * tx index in bnxt_tx_avail() below, because in
400 		 * bnxt_tx_int(), we update tx index before checking for
401 		 * netif_tx_queue_stopped().
402 		 */
403 		smp_mb();
404 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
405 			netif_tx_wake_queue(txq);
406 	}
407 	return NETDEV_TX_OK;
408 
409 tx_dma_error:
410 	last_frag = i;
411 
412 	/* start back at beginning and unmap skb */
413 	prod = txr->tx_prod;
414 	tx_buf = &txr->tx_buf_ring[prod];
415 	tx_buf->skb = NULL;
416 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
417 			 skb_headlen(skb), PCI_DMA_TODEVICE);
418 	prod = NEXT_TX(prod);
419 
420 	/* unmap remaining mapped pages */
421 	for (i = 0; i < last_frag; i++) {
422 		prod = NEXT_TX(prod);
423 		tx_buf = &txr->tx_buf_ring[prod];
424 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
425 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
426 			       PCI_DMA_TODEVICE);
427 	}
428 
429 	dev_kfree_skb_any(skb);
430 	return NETDEV_TX_OK;
431 }
432 
433 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
434 {
435 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
436 	int index = txr - &bp->tx_ring[0];
437 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
438 	u16 cons = txr->tx_cons;
439 	struct pci_dev *pdev = bp->pdev;
440 	int i;
441 	unsigned int tx_bytes = 0;
442 
443 	for (i = 0; i < nr_pkts; i++) {
444 		struct bnxt_sw_tx_bd *tx_buf;
445 		struct sk_buff *skb;
446 		int j, last;
447 
448 		tx_buf = &txr->tx_buf_ring[cons];
449 		cons = NEXT_TX(cons);
450 		skb = tx_buf->skb;
451 		tx_buf->skb = NULL;
452 
453 		if (tx_buf->is_push) {
454 			tx_buf->is_push = 0;
455 			goto next_tx_int;
456 		}
457 
458 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
459 				 skb_headlen(skb), PCI_DMA_TODEVICE);
460 		last = tx_buf->nr_frags;
461 
462 		for (j = 0; j < last; j++) {
463 			cons = NEXT_TX(cons);
464 			tx_buf = &txr->tx_buf_ring[cons];
465 			dma_unmap_page(
466 				&pdev->dev,
467 				dma_unmap_addr(tx_buf, mapping),
468 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
469 				PCI_DMA_TODEVICE);
470 		}
471 
472 next_tx_int:
473 		cons = NEXT_TX(cons);
474 
475 		tx_bytes += skb->len;
476 		dev_kfree_skb_any(skb);
477 	}
478 
479 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
480 	txr->tx_cons = cons;
481 
482 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
483 	 * before checking for netif_tx_queue_stopped().  Without the
484 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
485 	 * will miss it and cause the queue to be stopped forever.
486 	 */
487 	smp_mb();
488 
489 	if (unlikely(netif_tx_queue_stopped(txq)) &&
490 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
491 		__netif_tx_lock(txq, smp_processor_id());
492 		if (netif_tx_queue_stopped(txq) &&
493 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
494 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
495 			netif_tx_wake_queue(txq);
496 		__netif_tx_unlock(txq);
497 	}
498 }
499 
500 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
501 				       gfp_t gfp)
502 {
503 	u8 *data;
504 	struct pci_dev *pdev = bp->pdev;
505 
506 	data = kmalloc(bp->rx_buf_size, gfp);
507 	if (!data)
508 		return NULL;
509 
510 	*mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
511 				  bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
512 
513 	if (dma_mapping_error(&pdev->dev, *mapping)) {
514 		kfree(data);
515 		data = NULL;
516 	}
517 	return data;
518 }
519 
520 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
521 				     struct bnxt_rx_ring_info *rxr,
522 				     u16 prod, gfp_t gfp)
523 {
524 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
525 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
526 	u8 *data;
527 	dma_addr_t mapping;
528 
529 	data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
530 	if (!data)
531 		return -ENOMEM;
532 
533 	rx_buf->data = data;
534 	dma_unmap_addr_set(rx_buf, mapping, mapping);
535 
536 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
537 
538 	return 0;
539 }
540 
541 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
542 			       u8 *data)
543 {
544 	u16 prod = rxr->rx_prod;
545 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
546 	struct rx_bd *cons_bd, *prod_bd;
547 
548 	prod_rx_buf = &rxr->rx_buf_ring[prod];
549 	cons_rx_buf = &rxr->rx_buf_ring[cons];
550 
551 	prod_rx_buf->data = data;
552 
553 	dma_unmap_addr_set(prod_rx_buf, mapping,
554 			   dma_unmap_addr(cons_rx_buf, mapping));
555 
556 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
557 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
558 
559 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
560 }
561 
562 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
563 {
564 	u16 next, max = rxr->rx_agg_bmap_size;
565 
566 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
567 	if (next >= max)
568 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
569 	return next;
570 }
571 
572 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
573 				     struct bnxt_rx_ring_info *rxr,
574 				     u16 prod, gfp_t gfp)
575 {
576 	struct rx_bd *rxbd =
577 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
578 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
579 	struct pci_dev *pdev = bp->pdev;
580 	struct page *page;
581 	dma_addr_t mapping;
582 	u16 sw_prod = rxr->rx_sw_agg_prod;
583 
584 	page = alloc_page(gfp);
585 	if (!page)
586 		return -ENOMEM;
587 
588 	mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
589 			       PCI_DMA_FROMDEVICE);
590 	if (dma_mapping_error(&pdev->dev, mapping)) {
591 		__free_page(page);
592 		return -EIO;
593 	}
594 
595 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
596 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
597 
598 	__set_bit(sw_prod, rxr->rx_agg_bmap);
599 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
600 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
601 
602 	rx_agg_buf->page = page;
603 	rx_agg_buf->mapping = mapping;
604 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
605 	rxbd->rx_bd_opaque = sw_prod;
606 	return 0;
607 }
608 
609 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
610 				   u32 agg_bufs)
611 {
612 	struct bnxt *bp = bnapi->bp;
613 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
614 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
615 	u16 prod = rxr->rx_agg_prod;
616 	u16 sw_prod = rxr->rx_sw_agg_prod;
617 	u32 i;
618 
619 	for (i = 0; i < agg_bufs; i++) {
620 		u16 cons;
621 		struct rx_agg_cmp *agg;
622 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
623 		struct rx_bd *prod_bd;
624 		struct page *page;
625 
626 		agg = (struct rx_agg_cmp *)
627 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
628 		cons = agg->rx_agg_cmp_opaque;
629 		__clear_bit(cons, rxr->rx_agg_bmap);
630 
631 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
632 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
633 
634 		__set_bit(sw_prod, rxr->rx_agg_bmap);
635 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
636 		cons_rx_buf = &rxr->rx_agg_ring[cons];
637 
638 		/* It is possible for sw_prod to be equal to cons, so
639 		 * set cons_rx_buf->page to NULL first.
640 		 */
641 		page = cons_rx_buf->page;
642 		cons_rx_buf->page = NULL;
643 		prod_rx_buf->page = page;
644 
645 		prod_rx_buf->mapping = cons_rx_buf->mapping;
646 
647 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
648 
649 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
650 		prod_bd->rx_bd_opaque = sw_prod;
651 
652 		prod = NEXT_RX_AGG(prod);
653 		sw_prod = NEXT_RX_AGG(sw_prod);
654 		cp_cons = NEXT_CMP(cp_cons);
655 	}
656 	rxr->rx_agg_prod = prod;
657 	rxr->rx_sw_agg_prod = sw_prod;
658 }
659 
660 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
661 				   struct bnxt_rx_ring_info *rxr, u16 cons,
662 				   u16 prod, u8 *data, dma_addr_t dma_addr,
663 				   unsigned int len)
664 {
665 	int err;
666 	struct sk_buff *skb;
667 
668 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
669 	if (unlikely(err)) {
670 		bnxt_reuse_rx_data(rxr, cons, data);
671 		return NULL;
672 	}
673 
674 	skb = build_skb(data, 0);
675 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
676 			 PCI_DMA_FROMDEVICE);
677 	if (!skb) {
678 		kfree(data);
679 		return NULL;
680 	}
681 
682 	skb_reserve(skb, BNXT_RX_OFFSET);
683 	skb_put(skb, len);
684 	return skb;
685 }
686 
687 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
688 				     struct sk_buff *skb, u16 cp_cons,
689 				     u32 agg_bufs)
690 {
691 	struct pci_dev *pdev = bp->pdev;
692 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
693 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
694 	u16 prod = rxr->rx_agg_prod;
695 	u32 i;
696 
697 	for (i = 0; i < agg_bufs; i++) {
698 		u16 cons, frag_len;
699 		struct rx_agg_cmp *agg;
700 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
701 		struct page *page;
702 		dma_addr_t mapping;
703 
704 		agg = (struct rx_agg_cmp *)
705 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
706 		cons = agg->rx_agg_cmp_opaque;
707 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
708 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
709 
710 		cons_rx_buf = &rxr->rx_agg_ring[cons];
711 		skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
712 		__clear_bit(cons, rxr->rx_agg_bmap);
713 
714 		/* It is possible for bnxt_alloc_rx_page() to allocate
715 		 * a sw_prod index that equals the cons index, so we
716 		 * need to clear the cons entry now.
717 		 */
718 		mapping = dma_unmap_addr(cons_rx_buf, mapping);
719 		page = cons_rx_buf->page;
720 		cons_rx_buf->page = NULL;
721 
722 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
723 			struct skb_shared_info *shinfo;
724 			unsigned int nr_frags;
725 
726 			shinfo = skb_shinfo(skb);
727 			nr_frags = --shinfo->nr_frags;
728 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
729 
730 			dev_kfree_skb(skb);
731 
732 			cons_rx_buf->page = page;
733 
734 			/* Update prod since possibly some pages have been
735 			 * allocated already.
736 			 */
737 			rxr->rx_agg_prod = prod;
738 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
739 			return NULL;
740 		}
741 
742 		dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
743 			       PCI_DMA_FROMDEVICE);
744 
745 		skb->data_len += frag_len;
746 		skb->len += frag_len;
747 		skb->truesize += PAGE_SIZE;
748 
749 		prod = NEXT_RX_AGG(prod);
750 		cp_cons = NEXT_CMP(cp_cons);
751 	}
752 	rxr->rx_agg_prod = prod;
753 	return skb;
754 }
755 
756 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
757 			       u8 agg_bufs, u32 *raw_cons)
758 {
759 	u16 last;
760 	struct rx_agg_cmp *agg;
761 
762 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
763 	last = RING_CMP(*raw_cons);
764 	agg = (struct rx_agg_cmp *)
765 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
766 	return RX_AGG_CMP_VALID(agg, *raw_cons);
767 }
768 
769 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
770 					    unsigned int len,
771 					    dma_addr_t mapping)
772 {
773 	struct bnxt *bp = bnapi->bp;
774 	struct pci_dev *pdev = bp->pdev;
775 	struct sk_buff *skb;
776 
777 	skb = napi_alloc_skb(&bnapi->napi, len);
778 	if (!skb)
779 		return NULL;
780 
781 	dma_sync_single_for_cpu(&pdev->dev, mapping,
782 				bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
783 
784 	memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
785 
786 	dma_sync_single_for_device(&pdev->dev, mapping,
787 				   bp->rx_copy_thresh,
788 				   PCI_DMA_FROMDEVICE);
789 
790 	skb_put(skb, len);
791 	return skb;
792 }
793 
794 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
795 			   struct rx_tpa_start_cmp *tpa_start,
796 			   struct rx_tpa_start_cmp_ext *tpa_start1)
797 {
798 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
799 	u16 cons, prod;
800 	struct bnxt_tpa_info *tpa_info;
801 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
802 	struct rx_bd *prod_bd;
803 	dma_addr_t mapping;
804 
805 	cons = tpa_start->rx_tpa_start_cmp_opaque;
806 	prod = rxr->rx_prod;
807 	cons_rx_buf = &rxr->rx_buf_ring[cons];
808 	prod_rx_buf = &rxr->rx_buf_ring[prod];
809 	tpa_info = &rxr->rx_tpa[agg_id];
810 
811 	prod_rx_buf->data = tpa_info->data;
812 
813 	mapping = tpa_info->mapping;
814 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
815 
816 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
817 
818 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
819 
820 	tpa_info->data = cons_rx_buf->data;
821 	cons_rx_buf->data = NULL;
822 	tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
823 
824 	tpa_info->len =
825 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
826 				RX_TPA_START_CMP_LEN_SHIFT;
827 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
828 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
829 
830 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
831 		tpa_info->gso_type = SKB_GSO_TCPV4;
832 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
833 		if (hash_type == 3)
834 			tpa_info->gso_type = SKB_GSO_TCPV6;
835 		tpa_info->rss_hash =
836 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
837 	} else {
838 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
839 		tpa_info->gso_type = 0;
840 		if (netif_msg_rx_err(bp))
841 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
842 	}
843 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
844 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
845 
846 	rxr->rx_prod = NEXT_RX(prod);
847 	cons = NEXT_RX(cons);
848 	cons_rx_buf = &rxr->rx_buf_ring[cons];
849 
850 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
851 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
852 	cons_rx_buf->data = NULL;
853 }
854 
855 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
856 			   u16 cp_cons, u32 agg_bufs)
857 {
858 	if (agg_bufs)
859 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
860 }
861 
862 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
863 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
864 
865 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
866 					   struct rx_tpa_end_cmp *tpa_end,
867 					   struct rx_tpa_end_cmp_ext *tpa_end1,
868 					   struct sk_buff *skb)
869 {
870 #ifdef CONFIG_INET
871 	struct tcphdr *th;
872 	int payload_off, tcp_opt_len = 0;
873 	int len, nw_off;
874 	u16 segs;
875 
876 	segs = TPA_END_TPA_SEGS(tpa_end);
877 	if (segs == 1)
878 		return skb;
879 
880 	NAPI_GRO_CB(skb)->count = segs;
881 	skb_shinfo(skb)->gso_size =
882 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
883 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
884 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
885 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
886 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
887 	if (TPA_END_GRO_TS(tpa_end))
888 		tcp_opt_len = 12;
889 
890 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
891 		struct iphdr *iph;
892 
893 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
894 			 ETH_HLEN;
895 		skb_set_network_header(skb, nw_off);
896 		iph = ip_hdr(skb);
897 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
898 		len = skb->len - skb_transport_offset(skb);
899 		th = tcp_hdr(skb);
900 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
901 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
902 		struct ipv6hdr *iph;
903 
904 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
905 			 ETH_HLEN;
906 		skb_set_network_header(skb, nw_off);
907 		iph = ipv6_hdr(skb);
908 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
909 		len = skb->len - skb_transport_offset(skb);
910 		th = tcp_hdr(skb);
911 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
912 	} else {
913 		dev_kfree_skb_any(skb);
914 		return NULL;
915 	}
916 	tcp_gro_complete(skb);
917 
918 	if (nw_off) { /* tunnel */
919 		struct udphdr *uh = NULL;
920 
921 		if (skb->protocol == htons(ETH_P_IP)) {
922 			struct iphdr *iph = (struct iphdr *)skb->data;
923 
924 			if (iph->protocol == IPPROTO_UDP)
925 				uh = (struct udphdr *)(iph + 1);
926 		} else {
927 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
928 
929 			if (iph->nexthdr == IPPROTO_UDP)
930 				uh = (struct udphdr *)(iph + 1);
931 		}
932 		if (uh) {
933 			if (uh->check)
934 				skb_shinfo(skb)->gso_type |=
935 					SKB_GSO_UDP_TUNNEL_CSUM;
936 			else
937 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
938 		}
939 	}
940 #endif
941 	return skb;
942 }
943 
944 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
945 					   struct bnxt_napi *bnapi,
946 					   u32 *raw_cons,
947 					   struct rx_tpa_end_cmp *tpa_end,
948 					   struct rx_tpa_end_cmp_ext *tpa_end1,
949 					   bool *agg_event)
950 {
951 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
952 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
953 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
954 	u8 *data, agg_bufs;
955 	u16 cp_cons = RING_CMP(*raw_cons);
956 	unsigned int len;
957 	struct bnxt_tpa_info *tpa_info;
958 	dma_addr_t mapping;
959 	struct sk_buff *skb;
960 
961 	tpa_info = &rxr->rx_tpa[agg_id];
962 	data = tpa_info->data;
963 	prefetch(data);
964 	len = tpa_info->len;
965 	mapping = tpa_info->mapping;
966 
967 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
968 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
969 
970 	if (agg_bufs) {
971 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
972 			return ERR_PTR(-EBUSY);
973 
974 		*agg_event = true;
975 		cp_cons = NEXT_CMP(cp_cons);
976 	}
977 
978 	if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
979 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
980 		netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
981 			    agg_bufs, (int)MAX_SKB_FRAGS);
982 		return NULL;
983 	}
984 
985 	if (len <= bp->rx_copy_thresh) {
986 		skb = bnxt_copy_skb(bnapi, data, len, mapping);
987 		if (!skb) {
988 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
989 			return NULL;
990 		}
991 	} else {
992 		u8 *new_data;
993 		dma_addr_t new_mapping;
994 
995 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
996 		if (!new_data) {
997 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
998 			return NULL;
999 		}
1000 
1001 		tpa_info->data = new_data;
1002 		tpa_info->mapping = new_mapping;
1003 
1004 		skb = build_skb(data, 0);
1005 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1006 				 PCI_DMA_FROMDEVICE);
1007 
1008 		if (!skb) {
1009 			kfree(data);
1010 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1011 			return NULL;
1012 		}
1013 		skb_reserve(skb, BNXT_RX_OFFSET);
1014 		skb_put(skb, len);
1015 	}
1016 
1017 	if (agg_bufs) {
1018 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1019 		if (!skb) {
1020 			/* Page reuse already handled by bnxt_rx_pages(). */
1021 			return NULL;
1022 		}
1023 	}
1024 	skb->protocol = eth_type_trans(skb, bp->dev);
1025 
1026 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1027 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1028 
1029 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1030 		netdev_features_t features = skb->dev->features;
1031 		u16 vlan_proto = tpa_info->metadata >>
1032 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1033 
1034 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1035 		     vlan_proto == ETH_P_8021Q) ||
1036 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1037 		     vlan_proto == ETH_P_8021AD)) {
1038 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1039 					       tpa_info->metadata &
1040 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1041 		}
1042 	}
1043 
1044 	skb_checksum_none_assert(skb);
1045 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1046 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1047 		skb->csum_level =
1048 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1049 	}
1050 
1051 	if (TPA_END_GRO(tpa_end))
1052 		skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1053 
1054 	return skb;
1055 }
1056 
1057 /* returns the following:
1058  * 1       - 1 packet successfully received
1059  * 0       - successful TPA_START, packet not completed yet
1060  * -EBUSY  - completion ring does not have all the agg buffers yet
1061  * -ENOMEM - packet aborted due to out of memory
1062  * -EIO    - packet aborted due to hw error indicated in BD
1063  */
1064 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1065 		       bool *agg_event)
1066 {
1067 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1068 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1069 	struct net_device *dev = bp->dev;
1070 	struct rx_cmp *rxcmp;
1071 	struct rx_cmp_ext *rxcmp1;
1072 	u32 tmp_raw_cons = *raw_cons;
1073 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1074 	struct bnxt_sw_rx_bd *rx_buf;
1075 	unsigned int len;
1076 	u8 *data, agg_bufs, cmp_type;
1077 	dma_addr_t dma_addr;
1078 	struct sk_buff *skb;
1079 	int rc = 0;
1080 
1081 	rxcmp = (struct rx_cmp *)
1082 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1083 
1084 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1085 	cp_cons = RING_CMP(tmp_raw_cons);
1086 	rxcmp1 = (struct rx_cmp_ext *)
1087 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1088 
1089 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1090 		return -EBUSY;
1091 
1092 	cmp_type = RX_CMP_TYPE(rxcmp);
1093 
1094 	prod = rxr->rx_prod;
1095 
1096 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1097 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1098 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1099 
1100 		goto next_rx_no_prod;
1101 
1102 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1103 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1104 				   (struct rx_tpa_end_cmp *)rxcmp,
1105 				   (struct rx_tpa_end_cmp_ext *)rxcmp1,
1106 				   agg_event);
1107 
1108 		if (unlikely(IS_ERR(skb)))
1109 			return -EBUSY;
1110 
1111 		rc = -ENOMEM;
1112 		if (likely(skb)) {
1113 			skb_record_rx_queue(skb, bnapi->index);
1114 			skb_mark_napi_id(skb, &bnapi->napi);
1115 			if (bnxt_busy_polling(bnapi))
1116 				netif_receive_skb(skb);
1117 			else
1118 				napi_gro_receive(&bnapi->napi, skb);
1119 			rc = 1;
1120 		}
1121 		goto next_rx_no_prod;
1122 	}
1123 
1124 	cons = rxcmp->rx_cmp_opaque;
1125 	rx_buf = &rxr->rx_buf_ring[cons];
1126 	data = rx_buf->data;
1127 	prefetch(data);
1128 
1129 	agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1130 				RX_CMP_AGG_BUFS_SHIFT;
1131 
1132 	if (agg_bufs) {
1133 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1134 			return -EBUSY;
1135 
1136 		cp_cons = NEXT_CMP(cp_cons);
1137 		*agg_event = true;
1138 	}
1139 
1140 	rx_buf->data = NULL;
1141 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1142 		bnxt_reuse_rx_data(rxr, cons, data);
1143 		if (agg_bufs)
1144 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1145 
1146 		rc = -EIO;
1147 		goto next_rx;
1148 	}
1149 
1150 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1151 	dma_addr = dma_unmap_addr(rx_buf, mapping);
1152 
1153 	if (len <= bp->rx_copy_thresh) {
1154 		skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1155 		bnxt_reuse_rx_data(rxr, cons, data);
1156 		if (!skb) {
1157 			rc = -ENOMEM;
1158 			goto next_rx;
1159 		}
1160 	} else {
1161 		skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1162 		if (!skb) {
1163 			rc = -ENOMEM;
1164 			goto next_rx;
1165 		}
1166 	}
1167 
1168 	if (agg_bufs) {
1169 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1170 		if (!skb) {
1171 			rc = -ENOMEM;
1172 			goto next_rx;
1173 		}
1174 	}
1175 
1176 	if (RX_CMP_HASH_VALID(rxcmp)) {
1177 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1178 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1179 
1180 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1181 		if (hash_type != 1 && hash_type != 3)
1182 			type = PKT_HASH_TYPE_L3;
1183 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1184 	}
1185 
1186 	skb->protocol = eth_type_trans(skb, dev);
1187 
1188 	if (rxcmp1->rx_cmp_flags2 &
1189 	    cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1190 		netdev_features_t features = skb->dev->features;
1191 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1192 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1193 
1194 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1195 		     vlan_proto == ETH_P_8021Q) ||
1196 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1197 		     vlan_proto == ETH_P_8021AD))
1198 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1199 					       meta_data &
1200 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1201 	}
1202 
1203 	skb_checksum_none_assert(skb);
1204 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1205 		if (dev->features & NETIF_F_RXCSUM) {
1206 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1207 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1208 		}
1209 	} else {
1210 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1211 			if (dev->features & NETIF_F_RXCSUM)
1212 				cpr->rx_l4_csum_errors++;
1213 		}
1214 	}
1215 
1216 	skb_record_rx_queue(skb, bnapi->index);
1217 	skb_mark_napi_id(skb, &bnapi->napi);
1218 	if (bnxt_busy_polling(bnapi))
1219 		netif_receive_skb(skb);
1220 	else
1221 		napi_gro_receive(&bnapi->napi, skb);
1222 	rc = 1;
1223 
1224 next_rx:
1225 	rxr->rx_prod = NEXT_RX(prod);
1226 
1227 next_rx_no_prod:
1228 	*raw_cons = tmp_raw_cons;
1229 
1230 	return rc;
1231 }
1232 
1233 static int bnxt_async_event_process(struct bnxt *bp,
1234 				    struct hwrm_async_event_cmpl *cmpl)
1235 {
1236 	u16 event_id = le16_to_cpu(cmpl->event_id);
1237 
1238 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1239 	switch (event_id) {
1240 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1241 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1242 		schedule_work(&bp->sp_task);
1243 		break;
1244 	default:
1245 		netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1246 			   event_id);
1247 		break;
1248 	}
1249 	return 0;
1250 }
1251 
1252 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1253 {
1254 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1255 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1256 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1257 				(struct hwrm_fwd_req_cmpl *)txcmp;
1258 
1259 	switch (cmpl_type) {
1260 	case CMPL_BASE_TYPE_HWRM_DONE:
1261 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1262 		if (seq_id == bp->hwrm_intr_seq_id)
1263 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1264 		else
1265 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1266 		break;
1267 
1268 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1269 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1270 
1271 		if ((vf_id < bp->pf.first_vf_id) ||
1272 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1273 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1274 				   vf_id);
1275 			return -EINVAL;
1276 		}
1277 
1278 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1279 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1280 		schedule_work(&bp->sp_task);
1281 		break;
1282 
1283 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1284 		bnxt_async_event_process(bp,
1285 					 (struct hwrm_async_event_cmpl *)txcmp);
1286 
1287 	default:
1288 		break;
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1295 {
1296 	struct bnxt_napi *bnapi = dev_instance;
1297 	struct bnxt *bp = bnapi->bp;
1298 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1299 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1300 
1301 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1302 	napi_schedule(&bnapi->napi);
1303 	return IRQ_HANDLED;
1304 }
1305 
1306 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1307 {
1308 	u32 raw_cons = cpr->cp_raw_cons;
1309 	u16 cons = RING_CMP(raw_cons);
1310 	struct tx_cmp *txcmp;
1311 
1312 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1313 
1314 	return TX_CMP_VALID(txcmp, raw_cons);
1315 }
1316 
1317 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1318 {
1319 	struct bnxt_napi *bnapi = dev_instance;
1320 	struct bnxt *bp = bnapi->bp;
1321 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1322 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1323 	u32 int_status;
1324 
1325 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1326 
1327 	if (!bnxt_has_work(bp, cpr)) {
1328 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1329 		/* return if erroneous interrupt */
1330 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1331 			return IRQ_NONE;
1332 	}
1333 
1334 	/* disable ring IRQ */
1335 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1336 
1337 	/* Return here if interrupt is shared and is disabled. */
1338 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1339 		return IRQ_HANDLED;
1340 
1341 	napi_schedule(&bnapi->napi);
1342 	return IRQ_HANDLED;
1343 }
1344 
1345 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1346 {
1347 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1348 	u32 raw_cons = cpr->cp_raw_cons;
1349 	u32 cons;
1350 	int tx_pkts = 0;
1351 	int rx_pkts = 0;
1352 	bool rx_event = false;
1353 	bool agg_event = false;
1354 	struct tx_cmp *txcmp;
1355 
1356 	while (1) {
1357 		int rc;
1358 
1359 		cons = RING_CMP(raw_cons);
1360 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1361 
1362 		if (!TX_CMP_VALID(txcmp, raw_cons))
1363 			break;
1364 
1365 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1366 			tx_pkts++;
1367 			/* return full budget so NAPI will complete. */
1368 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1369 				rx_pkts = budget;
1370 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1371 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1372 			if (likely(rc >= 0))
1373 				rx_pkts += rc;
1374 			else if (rc == -EBUSY)	/* partial completion */
1375 				break;
1376 			rx_event = true;
1377 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1378 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1379 				    (TX_CMP_TYPE(txcmp) ==
1380 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1381 				    (TX_CMP_TYPE(txcmp) ==
1382 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1383 			bnxt_hwrm_handler(bp, txcmp);
1384 		}
1385 		raw_cons = NEXT_RAW_CMP(raw_cons);
1386 
1387 		if (rx_pkts == budget)
1388 			break;
1389 	}
1390 
1391 	cpr->cp_raw_cons = raw_cons;
1392 	/* ACK completion ring before freeing tx ring and producing new
1393 	 * buffers in rx/agg rings to prevent overflowing the completion
1394 	 * ring.
1395 	 */
1396 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1397 
1398 	if (tx_pkts)
1399 		bnxt_tx_int(bp, bnapi, tx_pkts);
1400 
1401 	if (rx_event) {
1402 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1403 
1404 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1405 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1406 		if (agg_event) {
1407 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1408 			       rxr->rx_agg_doorbell);
1409 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1410 			       rxr->rx_agg_doorbell);
1411 		}
1412 	}
1413 	return rx_pkts;
1414 }
1415 
1416 static int bnxt_poll(struct napi_struct *napi, int budget)
1417 {
1418 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1419 	struct bnxt *bp = bnapi->bp;
1420 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1421 	int work_done = 0;
1422 
1423 	if (!bnxt_lock_napi(bnapi))
1424 		return budget;
1425 
1426 	while (1) {
1427 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1428 
1429 		if (work_done >= budget)
1430 			break;
1431 
1432 		if (!bnxt_has_work(bp, cpr)) {
1433 			napi_complete(napi);
1434 			BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1435 			break;
1436 		}
1437 	}
1438 	mmiowb();
1439 	bnxt_unlock_napi(bnapi);
1440 	return work_done;
1441 }
1442 
1443 #ifdef CONFIG_NET_RX_BUSY_POLL
1444 static int bnxt_busy_poll(struct napi_struct *napi)
1445 {
1446 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1447 	struct bnxt *bp = bnapi->bp;
1448 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1449 	int rx_work, budget = 4;
1450 
1451 	if (atomic_read(&bp->intr_sem) != 0)
1452 		return LL_FLUSH_FAILED;
1453 
1454 	if (!bnxt_lock_poll(bnapi))
1455 		return LL_FLUSH_BUSY;
1456 
1457 	rx_work = bnxt_poll_work(bp, bnapi, budget);
1458 
1459 	BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1460 
1461 	bnxt_unlock_poll(bnapi);
1462 	return rx_work;
1463 }
1464 #endif
1465 
1466 static void bnxt_free_tx_skbs(struct bnxt *bp)
1467 {
1468 	int i, max_idx;
1469 	struct pci_dev *pdev = bp->pdev;
1470 
1471 	if (!bp->tx_ring)
1472 		return;
1473 
1474 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1475 	for (i = 0; i < bp->tx_nr_rings; i++) {
1476 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1477 		int j;
1478 
1479 		for (j = 0; j < max_idx;) {
1480 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1481 			struct sk_buff *skb = tx_buf->skb;
1482 			int k, last;
1483 
1484 			if (!skb) {
1485 				j++;
1486 				continue;
1487 			}
1488 
1489 			tx_buf->skb = NULL;
1490 
1491 			if (tx_buf->is_push) {
1492 				dev_kfree_skb(skb);
1493 				j += 2;
1494 				continue;
1495 			}
1496 
1497 			dma_unmap_single(&pdev->dev,
1498 					 dma_unmap_addr(tx_buf, mapping),
1499 					 skb_headlen(skb),
1500 					 PCI_DMA_TODEVICE);
1501 
1502 			last = tx_buf->nr_frags;
1503 			j += 2;
1504 			for (k = 0; k < last; k++, j++) {
1505 				int ring_idx = j & bp->tx_ring_mask;
1506 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1507 
1508 				tx_buf = &txr->tx_buf_ring[ring_idx];
1509 				dma_unmap_page(
1510 					&pdev->dev,
1511 					dma_unmap_addr(tx_buf, mapping),
1512 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1513 			}
1514 			dev_kfree_skb(skb);
1515 		}
1516 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1517 	}
1518 }
1519 
1520 static void bnxt_free_rx_skbs(struct bnxt *bp)
1521 {
1522 	int i, max_idx, max_agg_idx;
1523 	struct pci_dev *pdev = bp->pdev;
1524 
1525 	if (!bp->rx_ring)
1526 		return;
1527 
1528 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1529 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1530 	for (i = 0; i < bp->rx_nr_rings; i++) {
1531 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1532 		int j;
1533 
1534 		if (rxr->rx_tpa) {
1535 			for (j = 0; j < MAX_TPA; j++) {
1536 				struct bnxt_tpa_info *tpa_info =
1537 							&rxr->rx_tpa[j];
1538 				u8 *data = tpa_info->data;
1539 
1540 				if (!data)
1541 					continue;
1542 
1543 				dma_unmap_single(
1544 					&pdev->dev,
1545 					dma_unmap_addr(tpa_info, mapping),
1546 					bp->rx_buf_use_size,
1547 					PCI_DMA_FROMDEVICE);
1548 
1549 				tpa_info->data = NULL;
1550 
1551 				kfree(data);
1552 			}
1553 		}
1554 
1555 		for (j = 0; j < max_idx; j++) {
1556 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1557 			u8 *data = rx_buf->data;
1558 
1559 			if (!data)
1560 				continue;
1561 
1562 			dma_unmap_single(&pdev->dev,
1563 					 dma_unmap_addr(rx_buf, mapping),
1564 					 bp->rx_buf_use_size,
1565 					 PCI_DMA_FROMDEVICE);
1566 
1567 			rx_buf->data = NULL;
1568 
1569 			kfree(data);
1570 		}
1571 
1572 		for (j = 0; j < max_agg_idx; j++) {
1573 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1574 				&rxr->rx_agg_ring[j];
1575 			struct page *page = rx_agg_buf->page;
1576 
1577 			if (!page)
1578 				continue;
1579 
1580 			dma_unmap_page(&pdev->dev,
1581 				       dma_unmap_addr(rx_agg_buf, mapping),
1582 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
1583 
1584 			rx_agg_buf->page = NULL;
1585 			__clear_bit(j, rxr->rx_agg_bmap);
1586 
1587 			__free_page(page);
1588 		}
1589 	}
1590 }
1591 
1592 static void bnxt_free_skbs(struct bnxt *bp)
1593 {
1594 	bnxt_free_tx_skbs(bp);
1595 	bnxt_free_rx_skbs(bp);
1596 }
1597 
1598 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1599 {
1600 	struct pci_dev *pdev = bp->pdev;
1601 	int i;
1602 
1603 	for (i = 0; i < ring->nr_pages; i++) {
1604 		if (!ring->pg_arr[i])
1605 			continue;
1606 
1607 		dma_free_coherent(&pdev->dev, ring->page_size,
1608 				  ring->pg_arr[i], ring->dma_arr[i]);
1609 
1610 		ring->pg_arr[i] = NULL;
1611 	}
1612 	if (ring->pg_tbl) {
1613 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1614 				  ring->pg_tbl, ring->pg_tbl_map);
1615 		ring->pg_tbl = NULL;
1616 	}
1617 	if (ring->vmem_size && *ring->vmem) {
1618 		vfree(*ring->vmem);
1619 		*ring->vmem = NULL;
1620 	}
1621 }
1622 
1623 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1624 {
1625 	int i;
1626 	struct pci_dev *pdev = bp->pdev;
1627 
1628 	if (ring->nr_pages > 1) {
1629 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1630 						  ring->nr_pages * 8,
1631 						  &ring->pg_tbl_map,
1632 						  GFP_KERNEL);
1633 		if (!ring->pg_tbl)
1634 			return -ENOMEM;
1635 	}
1636 
1637 	for (i = 0; i < ring->nr_pages; i++) {
1638 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1639 						     ring->page_size,
1640 						     &ring->dma_arr[i],
1641 						     GFP_KERNEL);
1642 		if (!ring->pg_arr[i])
1643 			return -ENOMEM;
1644 
1645 		if (ring->nr_pages > 1)
1646 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1647 	}
1648 
1649 	if (ring->vmem_size) {
1650 		*ring->vmem = vzalloc(ring->vmem_size);
1651 		if (!(*ring->vmem))
1652 			return -ENOMEM;
1653 	}
1654 	return 0;
1655 }
1656 
1657 static void bnxt_free_rx_rings(struct bnxt *bp)
1658 {
1659 	int i;
1660 
1661 	if (!bp->rx_ring)
1662 		return;
1663 
1664 	for (i = 0; i < bp->rx_nr_rings; i++) {
1665 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1666 		struct bnxt_ring_struct *ring;
1667 
1668 		kfree(rxr->rx_tpa);
1669 		rxr->rx_tpa = NULL;
1670 
1671 		kfree(rxr->rx_agg_bmap);
1672 		rxr->rx_agg_bmap = NULL;
1673 
1674 		ring = &rxr->rx_ring_struct;
1675 		bnxt_free_ring(bp, ring);
1676 
1677 		ring = &rxr->rx_agg_ring_struct;
1678 		bnxt_free_ring(bp, ring);
1679 	}
1680 }
1681 
1682 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1683 {
1684 	int i, rc, agg_rings = 0, tpa_rings = 0;
1685 
1686 	if (!bp->rx_ring)
1687 		return -ENOMEM;
1688 
1689 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
1690 		agg_rings = 1;
1691 
1692 	if (bp->flags & BNXT_FLAG_TPA)
1693 		tpa_rings = 1;
1694 
1695 	for (i = 0; i < bp->rx_nr_rings; i++) {
1696 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1697 		struct bnxt_ring_struct *ring;
1698 
1699 		ring = &rxr->rx_ring_struct;
1700 
1701 		rc = bnxt_alloc_ring(bp, ring);
1702 		if (rc)
1703 			return rc;
1704 
1705 		if (agg_rings) {
1706 			u16 mem_size;
1707 
1708 			ring = &rxr->rx_agg_ring_struct;
1709 			rc = bnxt_alloc_ring(bp, ring);
1710 			if (rc)
1711 				return rc;
1712 
1713 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1714 			mem_size = rxr->rx_agg_bmap_size / 8;
1715 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1716 			if (!rxr->rx_agg_bmap)
1717 				return -ENOMEM;
1718 
1719 			if (tpa_rings) {
1720 				rxr->rx_tpa = kcalloc(MAX_TPA,
1721 						sizeof(struct bnxt_tpa_info),
1722 						GFP_KERNEL);
1723 				if (!rxr->rx_tpa)
1724 					return -ENOMEM;
1725 			}
1726 		}
1727 	}
1728 	return 0;
1729 }
1730 
1731 static void bnxt_free_tx_rings(struct bnxt *bp)
1732 {
1733 	int i;
1734 	struct pci_dev *pdev = bp->pdev;
1735 
1736 	if (!bp->tx_ring)
1737 		return;
1738 
1739 	for (i = 0; i < bp->tx_nr_rings; i++) {
1740 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1741 		struct bnxt_ring_struct *ring;
1742 
1743 		if (txr->tx_push) {
1744 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
1745 					  txr->tx_push, txr->tx_push_mapping);
1746 			txr->tx_push = NULL;
1747 		}
1748 
1749 		ring = &txr->tx_ring_struct;
1750 
1751 		bnxt_free_ring(bp, ring);
1752 	}
1753 }
1754 
1755 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1756 {
1757 	int i, j, rc;
1758 	struct pci_dev *pdev = bp->pdev;
1759 
1760 	bp->tx_push_size = 0;
1761 	if (bp->tx_push_thresh) {
1762 		int push_size;
1763 
1764 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1765 					bp->tx_push_thresh);
1766 
1767 		if (push_size > 256) {
1768 			push_size = 0;
1769 			bp->tx_push_thresh = 0;
1770 		}
1771 
1772 		bp->tx_push_size = push_size;
1773 	}
1774 
1775 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1776 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1777 		struct bnxt_ring_struct *ring;
1778 
1779 		ring = &txr->tx_ring_struct;
1780 
1781 		rc = bnxt_alloc_ring(bp, ring);
1782 		if (rc)
1783 			return rc;
1784 
1785 		if (bp->tx_push_size) {
1786 			dma_addr_t mapping;
1787 
1788 			/* One pre-allocated DMA buffer to backup
1789 			 * TX push operation
1790 			 */
1791 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
1792 						bp->tx_push_size,
1793 						&txr->tx_push_mapping,
1794 						GFP_KERNEL);
1795 
1796 			if (!txr->tx_push)
1797 				return -ENOMEM;
1798 
1799 			mapping = txr->tx_push_mapping +
1800 				sizeof(struct tx_push_bd);
1801 			txr->data_mapping = cpu_to_le64(mapping);
1802 
1803 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1804 		}
1805 		ring->queue_id = bp->q_info[j].queue_id;
1806 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1807 			j++;
1808 	}
1809 	return 0;
1810 }
1811 
1812 static void bnxt_free_cp_rings(struct bnxt *bp)
1813 {
1814 	int i;
1815 
1816 	if (!bp->bnapi)
1817 		return;
1818 
1819 	for (i = 0; i < bp->cp_nr_rings; i++) {
1820 		struct bnxt_napi *bnapi = bp->bnapi[i];
1821 		struct bnxt_cp_ring_info *cpr;
1822 		struct bnxt_ring_struct *ring;
1823 
1824 		if (!bnapi)
1825 			continue;
1826 
1827 		cpr = &bnapi->cp_ring;
1828 		ring = &cpr->cp_ring_struct;
1829 
1830 		bnxt_free_ring(bp, ring);
1831 	}
1832 }
1833 
1834 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1835 {
1836 	int i, rc;
1837 
1838 	for (i = 0; i < bp->cp_nr_rings; i++) {
1839 		struct bnxt_napi *bnapi = bp->bnapi[i];
1840 		struct bnxt_cp_ring_info *cpr;
1841 		struct bnxt_ring_struct *ring;
1842 
1843 		if (!bnapi)
1844 			continue;
1845 
1846 		cpr = &bnapi->cp_ring;
1847 		ring = &cpr->cp_ring_struct;
1848 
1849 		rc = bnxt_alloc_ring(bp, ring);
1850 		if (rc)
1851 			return rc;
1852 	}
1853 	return 0;
1854 }
1855 
1856 static void bnxt_init_ring_struct(struct bnxt *bp)
1857 {
1858 	int i;
1859 
1860 	for (i = 0; i < bp->cp_nr_rings; i++) {
1861 		struct bnxt_napi *bnapi = bp->bnapi[i];
1862 		struct bnxt_cp_ring_info *cpr;
1863 		struct bnxt_rx_ring_info *rxr;
1864 		struct bnxt_tx_ring_info *txr;
1865 		struct bnxt_ring_struct *ring;
1866 
1867 		if (!bnapi)
1868 			continue;
1869 
1870 		cpr = &bnapi->cp_ring;
1871 		ring = &cpr->cp_ring_struct;
1872 		ring->nr_pages = bp->cp_nr_pages;
1873 		ring->page_size = HW_CMPD_RING_SIZE;
1874 		ring->pg_arr = (void **)cpr->cp_desc_ring;
1875 		ring->dma_arr = cpr->cp_desc_mapping;
1876 		ring->vmem_size = 0;
1877 
1878 		rxr = bnapi->rx_ring;
1879 		if (!rxr)
1880 			goto skip_rx;
1881 
1882 		ring = &rxr->rx_ring_struct;
1883 		ring->nr_pages = bp->rx_nr_pages;
1884 		ring->page_size = HW_RXBD_RING_SIZE;
1885 		ring->pg_arr = (void **)rxr->rx_desc_ring;
1886 		ring->dma_arr = rxr->rx_desc_mapping;
1887 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1888 		ring->vmem = (void **)&rxr->rx_buf_ring;
1889 
1890 		ring = &rxr->rx_agg_ring_struct;
1891 		ring->nr_pages = bp->rx_agg_nr_pages;
1892 		ring->page_size = HW_RXBD_RING_SIZE;
1893 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1894 		ring->dma_arr = rxr->rx_agg_desc_mapping;
1895 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1896 		ring->vmem = (void **)&rxr->rx_agg_ring;
1897 
1898 skip_rx:
1899 		txr = bnapi->tx_ring;
1900 		if (!txr)
1901 			continue;
1902 
1903 		ring = &txr->tx_ring_struct;
1904 		ring->nr_pages = bp->tx_nr_pages;
1905 		ring->page_size = HW_RXBD_RING_SIZE;
1906 		ring->pg_arr = (void **)txr->tx_desc_ring;
1907 		ring->dma_arr = txr->tx_desc_mapping;
1908 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1909 		ring->vmem = (void **)&txr->tx_buf_ring;
1910 	}
1911 }
1912 
1913 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1914 {
1915 	int i;
1916 	u32 prod;
1917 	struct rx_bd **rx_buf_ring;
1918 
1919 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1920 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1921 		int j;
1922 		struct rx_bd *rxbd;
1923 
1924 		rxbd = rx_buf_ring[i];
1925 		if (!rxbd)
1926 			continue;
1927 
1928 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1929 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1930 			rxbd->rx_bd_opaque = prod;
1931 		}
1932 	}
1933 }
1934 
1935 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1936 {
1937 	struct net_device *dev = bp->dev;
1938 	struct bnxt_rx_ring_info *rxr;
1939 	struct bnxt_ring_struct *ring;
1940 	u32 prod, type;
1941 	int i;
1942 
1943 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1944 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1945 
1946 	if (NET_IP_ALIGN == 2)
1947 		type |= RX_BD_FLAGS_SOP;
1948 
1949 	rxr = &bp->rx_ring[ring_nr];
1950 	ring = &rxr->rx_ring_struct;
1951 	bnxt_init_rxbd_pages(ring, type);
1952 
1953 	prod = rxr->rx_prod;
1954 	for (i = 0; i < bp->rx_ring_size; i++) {
1955 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1956 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1957 				    ring_nr, i, bp->rx_ring_size);
1958 			break;
1959 		}
1960 		prod = NEXT_RX(prod);
1961 	}
1962 	rxr->rx_prod = prod;
1963 	ring->fw_ring_id = INVALID_HW_RING_ID;
1964 
1965 	ring = &rxr->rx_agg_ring_struct;
1966 	ring->fw_ring_id = INVALID_HW_RING_ID;
1967 
1968 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1969 		return 0;
1970 
1971 	type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1972 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1973 
1974 	bnxt_init_rxbd_pages(ring, type);
1975 
1976 	prod = rxr->rx_agg_prod;
1977 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
1978 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1979 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1980 				    ring_nr, i, bp->rx_ring_size);
1981 			break;
1982 		}
1983 		prod = NEXT_RX_AGG(prod);
1984 	}
1985 	rxr->rx_agg_prod = prod;
1986 
1987 	if (bp->flags & BNXT_FLAG_TPA) {
1988 		if (rxr->rx_tpa) {
1989 			u8 *data;
1990 			dma_addr_t mapping;
1991 
1992 			for (i = 0; i < MAX_TPA; i++) {
1993 				data = __bnxt_alloc_rx_data(bp, &mapping,
1994 							    GFP_KERNEL);
1995 				if (!data)
1996 					return -ENOMEM;
1997 
1998 				rxr->rx_tpa[i].data = data;
1999 				rxr->rx_tpa[i].mapping = mapping;
2000 			}
2001 		} else {
2002 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2003 			return -ENOMEM;
2004 		}
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 static int bnxt_init_rx_rings(struct bnxt *bp)
2011 {
2012 	int i, rc = 0;
2013 
2014 	for (i = 0; i < bp->rx_nr_rings; i++) {
2015 		rc = bnxt_init_one_rx_ring(bp, i);
2016 		if (rc)
2017 			break;
2018 	}
2019 
2020 	return rc;
2021 }
2022 
2023 static int bnxt_init_tx_rings(struct bnxt *bp)
2024 {
2025 	u16 i;
2026 
2027 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2028 				   MAX_SKB_FRAGS + 1);
2029 
2030 	for (i = 0; i < bp->tx_nr_rings; i++) {
2031 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2032 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2033 
2034 		ring->fw_ring_id = INVALID_HW_RING_ID;
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 static void bnxt_free_ring_grps(struct bnxt *bp)
2041 {
2042 	kfree(bp->grp_info);
2043 	bp->grp_info = NULL;
2044 }
2045 
2046 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2047 {
2048 	int i;
2049 
2050 	if (irq_re_init) {
2051 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2052 				       sizeof(struct bnxt_ring_grp_info),
2053 				       GFP_KERNEL);
2054 		if (!bp->grp_info)
2055 			return -ENOMEM;
2056 	}
2057 	for (i = 0; i < bp->cp_nr_rings; i++) {
2058 		if (irq_re_init)
2059 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2060 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2061 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2062 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2063 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2064 	}
2065 	return 0;
2066 }
2067 
2068 static void bnxt_free_vnics(struct bnxt *bp)
2069 {
2070 	kfree(bp->vnic_info);
2071 	bp->vnic_info = NULL;
2072 	bp->nr_vnics = 0;
2073 }
2074 
2075 static int bnxt_alloc_vnics(struct bnxt *bp)
2076 {
2077 	int num_vnics = 1;
2078 
2079 #ifdef CONFIG_RFS_ACCEL
2080 	if (bp->flags & BNXT_FLAG_RFS)
2081 		num_vnics += bp->rx_nr_rings;
2082 #endif
2083 
2084 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2085 				GFP_KERNEL);
2086 	if (!bp->vnic_info)
2087 		return -ENOMEM;
2088 
2089 	bp->nr_vnics = num_vnics;
2090 	return 0;
2091 }
2092 
2093 static void bnxt_init_vnics(struct bnxt *bp)
2094 {
2095 	int i;
2096 
2097 	for (i = 0; i < bp->nr_vnics; i++) {
2098 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2099 
2100 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2101 		vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2102 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2103 
2104 		if (bp->vnic_info[i].rss_hash_key) {
2105 			if (i == 0)
2106 				prandom_bytes(vnic->rss_hash_key,
2107 					      HW_HASH_KEY_SIZE);
2108 			else
2109 				memcpy(vnic->rss_hash_key,
2110 				       bp->vnic_info[0].rss_hash_key,
2111 				       HW_HASH_KEY_SIZE);
2112 		}
2113 	}
2114 }
2115 
2116 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2117 {
2118 	int pages;
2119 
2120 	pages = ring_size / desc_per_pg;
2121 
2122 	if (!pages)
2123 		return 1;
2124 
2125 	pages++;
2126 
2127 	while (pages & (pages - 1))
2128 		pages++;
2129 
2130 	return pages;
2131 }
2132 
2133 static void bnxt_set_tpa_flags(struct bnxt *bp)
2134 {
2135 	bp->flags &= ~BNXT_FLAG_TPA;
2136 	if (bp->dev->features & NETIF_F_LRO)
2137 		bp->flags |= BNXT_FLAG_LRO;
2138 	if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2139 		bp->flags |= BNXT_FLAG_GRO;
2140 }
2141 
2142 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2143  * be set on entry.
2144  */
2145 void bnxt_set_ring_params(struct bnxt *bp)
2146 {
2147 	u32 ring_size, rx_size, rx_space;
2148 	u32 agg_factor = 0, agg_ring_size = 0;
2149 
2150 	/* 8 for CRC and VLAN */
2151 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2152 
2153 	rx_space = rx_size + NET_SKB_PAD +
2154 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2155 
2156 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2157 	ring_size = bp->rx_ring_size;
2158 	bp->rx_agg_ring_size = 0;
2159 	bp->rx_agg_nr_pages = 0;
2160 
2161 	if (bp->flags & BNXT_FLAG_TPA)
2162 		agg_factor = 4;
2163 
2164 	bp->flags &= ~BNXT_FLAG_JUMBO;
2165 	if (rx_space > PAGE_SIZE) {
2166 		u32 jumbo_factor;
2167 
2168 		bp->flags |= BNXT_FLAG_JUMBO;
2169 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2170 		if (jumbo_factor > agg_factor)
2171 			agg_factor = jumbo_factor;
2172 	}
2173 	agg_ring_size = ring_size * agg_factor;
2174 
2175 	if (agg_ring_size) {
2176 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2177 							RX_DESC_CNT);
2178 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2179 			u32 tmp = agg_ring_size;
2180 
2181 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2182 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2183 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2184 				    tmp, agg_ring_size);
2185 		}
2186 		bp->rx_agg_ring_size = agg_ring_size;
2187 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2188 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2189 		rx_space = rx_size + NET_SKB_PAD +
2190 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2191 	}
2192 
2193 	bp->rx_buf_use_size = rx_size;
2194 	bp->rx_buf_size = rx_space;
2195 
2196 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2197 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2198 
2199 	ring_size = bp->tx_ring_size;
2200 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2201 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2202 
2203 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2204 	bp->cp_ring_size = ring_size;
2205 
2206 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2207 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2208 		bp->cp_nr_pages = MAX_CP_PAGES;
2209 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2210 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2211 			    ring_size, bp->cp_ring_size);
2212 	}
2213 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2214 	bp->cp_ring_mask = bp->cp_bit - 1;
2215 }
2216 
2217 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2218 {
2219 	int i;
2220 	struct bnxt_vnic_info *vnic;
2221 	struct pci_dev *pdev = bp->pdev;
2222 
2223 	if (!bp->vnic_info)
2224 		return;
2225 
2226 	for (i = 0; i < bp->nr_vnics; i++) {
2227 		vnic = &bp->vnic_info[i];
2228 
2229 		kfree(vnic->fw_grp_ids);
2230 		vnic->fw_grp_ids = NULL;
2231 
2232 		kfree(vnic->uc_list);
2233 		vnic->uc_list = NULL;
2234 
2235 		if (vnic->mc_list) {
2236 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2237 					  vnic->mc_list, vnic->mc_list_mapping);
2238 			vnic->mc_list = NULL;
2239 		}
2240 
2241 		if (vnic->rss_table) {
2242 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2243 					  vnic->rss_table,
2244 					  vnic->rss_table_dma_addr);
2245 			vnic->rss_table = NULL;
2246 		}
2247 
2248 		vnic->rss_hash_key = NULL;
2249 		vnic->flags = 0;
2250 	}
2251 }
2252 
2253 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2254 {
2255 	int i, rc = 0, size;
2256 	struct bnxt_vnic_info *vnic;
2257 	struct pci_dev *pdev = bp->pdev;
2258 	int max_rings;
2259 
2260 	for (i = 0; i < bp->nr_vnics; i++) {
2261 		vnic = &bp->vnic_info[i];
2262 
2263 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2264 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2265 
2266 			if (mem_size > 0) {
2267 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2268 				if (!vnic->uc_list) {
2269 					rc = -ENOMEM;
2270 					goto out;
2271 				}
2272 			}
2273 		}
2274 
2275 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2276 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2277 			vnic->mc_list =
2278 				dma_alloc_coherent(&pdev->dev,
2279 						   vnic->mc_list_size,
2280 						   &vnic->mc_list_mapping,
2281 						   GFP_KERNEL);
2282 			if (!vnic->mc_list) {
2283 				rc = -ENOMEM;
2284 				goto out;
2285 			}
2286 		}
2287 
2288 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2289 			max_rings = bp->rx_nr_rings;
2290 		else
2291 			max_rings = 1;
2292 
2293 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2294 		if (!vnic->fw_grp_ids) {
2295 			rc = -ENOMEM;
2296 			goto out;
2297 		}
2298 
2299 		/* Allocate rss table and hash key */
2300 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2301 						     &vnic->rss_table_dma_addr,
2302 						     GFP_KERNEL);
2303 		if (!vnic->rss_table) {
2304 			rc = -ENOMEM;
2305 			goto out;
2306 		}
2307 
2308 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2309 
2310 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2311 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2312 	}
2313 	return 0;
2314 
2315 out:
2316 	return rc;
2317 }
2318 
2319 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2320 {
2321 	struct pci_dev *pdev = bp->pdev;
2322 
2323 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2324 			  bp->hwrm_cmd_resp_dma_addr);
2325 
2326 	bp->hwrm_cmd_resp_addr = NULL;
2327 	if (bp->hwrm_dbg_resp_addr) {
2328 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2329 				  bp->hwrm_dbg_resp_addr,
2330 				  bp->hwrm_dbg_resp_dma_addr);
2331 
2332 		bp->hwrm_dbg_resp_addr = NULL;
2333 	}
2334 }
2335 
2336 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2337 {
2338 	struct pci_dev *pdev = bp->pdev;
2339 
2340 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2341 						   &bp->hwrm_cmd_resp_dma_addr,
2342 						   GFP_KERNEL);
2343 	if (!bp->hwrm_cmd_resp_addr)
2344 		return -ENOMEM;
2345 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2346 						    HWRM_DBG_REG_BUF_SIZE,
2347 						    &bp->hwrm_dbg_resp_dma_addr,
2348 						    GFP_KERNEL);
2349 	if (!bp->hwrm_dbg_resp_addr)
2350 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2351 
2352 	return 0;
2353 }
2354 
2355 static void bnxt_free_stats(struct bnxt *bp)
2356 {
2357 	u32 size, i;
2358 	struct pci_dev *pdev = bp->pdev;
2359 
2360 	if (!bp->bnapi)
2361 		return;
2362 
2363 	size = sizeof(struct ctx_hw_stats);
2364 
2365 	for (i = 0; i < bp->cp_nr_rings; i++) {
2366 		struct bnxt_napi *bnapi = bp->bnapi[i];
2367 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2368 
2369 		if (cpr->hw_stats) {
2370 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2371 					  cpr->hw_stats_map);
2372 			cpr->hw_stats = NULL;
2373 		}
2374 	}
2375 }
2376 
2377 static int bnxt_alloc_stats(struct bnxt *bp)
2378 {
2379 	u32 size, i;
2380 	struct pci_dev *pdev = bp->pdev;
2381 
2382 	size = sizeof(struct ctx_hw_stats);
2383 
2384 	for (i = 0; i < bp->cp_nr_rings; i++) {
2385 		struct bnxt_napi *bnapi = bp->bnapi[i];
2386 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2387 
2388 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2389 						   &cpr->hw_stats_map,
2390 						   GFP_KERNEL);
2391 		if (!cpr->hw_stats)
2392 			return -ENOMEM;
2393 
2394 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2395 	}
2396 	return 0;
2397 }
2398 
2399 static void bnxt_clear_ring_indices(struct bnxt *bp)
2400 {
2401 	int i;
2402 
2403 	if (!bp->bnapi)
2404 		return;
2405 
2406 	for (i = 0; i < bp->cp_nr_rings; i++) {
2407 		struct bnxt_napi *bnapi = bp->bnapi[i];
2408 		struct bnxt_cp_ring_info *cpr;
2409 		struct bnxt_rx_ring_info *rxr;
2410 		struct bnxt_tx_ring_info *txr;
2411 
2412 		if (!bnapi)
2413 			continue;
2414 
2415 		cpr = &bnapi->cp_ring;
2416 		cpr->cp_raw_cons = 0;
2417 
2418 		txr = bnapi->tx_ring;
2419 		if (txr) {
2420 			txr->tx_prod = 0;
2421 			txr->tx_cons = 0;
2422 		}
2423 
2424 		rxr = bnapi->rx_ring;
2425 		if (rxr) {
2426 			rxr->rx_prod = 0;
2427 			rxr->rx_agg_prod = 0;
2428 			rxr->rx_sw_agg_prod = 0;
2429 		}
2430 	}
2431 }
2432 
2433 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2434 {
2435 #ifdef CONFIG_RFS_ACCEL
2436 	int i;
2437 
2438 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
2439 	 * safe to delete the hash table.
2440 	 */
2441 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2442 		struct hlist_head *head;
2443 		struct hlist_node *tmp;
2444 		struct bnxt_ntuple_filter *fltr;
2445 
2446 		head = &bp->ntp_fltr_hash_tbl[i];
2447 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2448 			hlist_del(&fltr->hash);
2449 			kfree(fltr);
2450 		}
2451 	}
2452 	if (irq_reinit) {
2453 		kfree(bp->ntp_fltr_bmap);
2454 		bp->ntp_fltr_bmap = NULL;
2455 	}
2456 	bp->ntp_fltr_count = 0;
2457 #endif
2458 }
2459 
2460 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2461 {
2462 #ifdef CONFIG_RFS_ACCEL
2463 	int i, rc = 0;
2464 
2465 	if (!(bp->flags & BNXT_FLAG_RFS))
2466 		return 0;
2467 
2468 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2469 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2470 
2471 	bp->ntp_fltr_count = 0;
2472 	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2473 				    GFP_KERNEL);
2474 
2475 	if (!bp->ntp_fltr_bmap)
2476 		rc = -ENOMEM;
2477 
2478 	return rc;
2479 #else
2480 	return 0;
2481 #endif
2482 }
2483 
2484 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2485 {
2486 	bnxt_free_vnic_attributes(bp);
2487 	bnxt_free_tx_rings(bp);
2488 	bnxt_free_rx_rings(bp);
2489 	bnxt_free_cp_rings(bp);
2490 	bnxt_free_ntp_fltrs(bp, irq_re_init);
2491 	if (irq_re_init) {
2492 		bnxt_free_stats(bp);
2493 		bnxt_free_ring_grps(bp);
2494 		bnxt_free_vnics(bp);
2495 		kfree(bp->tx_ring);
2496 		bp->tx_ring = NULL;
2497 		kfree(bp->rx_ring);
2498 		bp->rx_ring = NULL;
2499 		kfree(bp->bnapi);
2500 		bp->bnapi = NULL;
2501 	} else {
2502 		bnxt_clear_ring_indices(bp);
2503 	}
2504 }
2505 
2506 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2507 {
2508 	int i, j, rc, size, arr_size;
2509 	void *bnapi;
2510 
2511 	if (irq_re_init) {
2512 		/* Allocate bnapi mem pointer array and mem block for
2513 		 * all queues
2514 		 */
2515 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2516 				bp->cp_nr_rings);
2517 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2518 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2519 		if (!bnapi)
2520 			return -ENOMEM;
2521 
2522 		bp->bnapi = bnapi;
2523 		bnapi += arr_size;
2524 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2525 			bp->bnapi[i] = bnapi;
2526 			bp->bnapi[i]->index = i;
2527 			bp->bnapi[i]->bp = bp;
2528 		}
2529 
2530 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
2531 				      sizeof(struct bnxt_rx_ring_info),
2532 				      GFP_KERNEL);
2533 		if (!bp->rx_ring)
2534 			return -ENOMEM;
2535 
2536 		for (i = 0; i < bp->rx_nr_rings; i++) {
2537 			bp->rx_ring[i].bnapi = bp->bnapi[i];
2538 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2539 		}
2540 
2541 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
2542 				      sizeof(struct bnxt_tx_ring_info),
2543 				      GFP_KERNEL);
2544 		if (!bp->tx_ring)
2545 			return -ENOMEM;
2546 
2547 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2548 			j = 0;
2549 		else
2550 			j = bp->rx_nr_rings;
2551 
2552 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2553 			bp->tx_ring[i].bnapi = bp->bnapi[j];
2554 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2555 		}
2556 
2557 		rc = bnxt_alloc_stats(bp);
2558 		if (rc)
2559 			goto alloc_mem_err;
2560 
2561 		rc = bnxt_alloc_ntp_fltrs(bp);
2562 		if (rc)
2563 			goto alloc_mem_err;
2564 
2565 		rc = bnxt_alloc_vnics(bp);
2566 		if (rc)
2567 			goto alloc_mem_err;
2568 	}
2569 
2570 	bnxt_init_ring_struct(bp);
2571 
2572 	rc = bnxt_alloc_rx_rings(bp);
2573 	if (rc)
2574 		goto alloc_mem_err;
2575 
2576 	rc = bnxt_alloc_tx_rings(bp);
2577 	if (rc)
2578 		goto alloc_mem_err;
2579 
2580 	rc = bnxt_alloc_cp_rings(bp);
2581 	if (rc)
2582 		goto alloc_mem_err;
2583 
2584 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2585 				  BNXT_VNIC_UCAST_FLAG;
2586 	rc = bnxt_alloc_vnic_attributes(bp);
2587 	if (rc)
2588 		goto alloc_mem_err;
2589 	return 0;
2590 
2591 alloc_mem_err:
2592 	bnxt_free_mem(bp, true);
2593 	return rc;
2594 }
2595 
2596 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2597 			    u16 cmpl_ring, u16 target_id)
2598 {
2599 	struct hwrm_cmd_req_hdr *req = request;
2600 
2601 	req->cmpl_ring_req_type =
2602 		cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2603 	req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2604 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2605 }
2606 
2607 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2608 {
2609 	int i, intr_process, rc;
2610 	struct hwrm_cmd_req_hdr *req = msg;
2611 	u32 *data = msg;
2612 	__le32 *resp_len, *valid;
2613 	u16 cp_ring_id, len = 0;
2614 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2615 
2616 	req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2617 	memset(resp, 0, PAGE_SIZE);
2618 	cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2619 		      HWRM_CMPL_RING_MASK) >>
2620 		     HWRM_CMPL_RING_SFT;
2621 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2622 
2623 	/* Write request msg to hwrm channel */
2624 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
2625 
2626 	for (i = msg_len; i < HWRM_MAX_REQ_LEN; i += 4)
2627 		writel(0, bp->bar0 + i);
2628 
2629 	/* currently supports only one outstanding message */
2630 	if (intr_process)
2631 		bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2632 				       HWRM_SEQ_ID_MASK;
2633 
2634 	/* Ring channel doorbell */
2635 	writel(1, bp->bar0 + 0x100);
2636 
2637 	i = 0;
2638 	if (intr_process) {
2639 		/* Wait until hwrm response cmpl interrupt is processed */
2640 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2641 		       i++ < timeout) {
2642 			usleep_range(600, 800);
2643 		}
2644 
2645 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2646 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2647 				   req->cmpl_ring_req_type);
2648 			return -1;
2649 		}
2650 	} else {
2651 		/* Check if response len is updated */
2652 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2653 		for (i = 0; i < timeout; i++) {
2654 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2655 			      HWRM_RESP_LEN_SFT;
2656 			if (len)
2657 				break;
2658 			usleep_range(600, 800);
2659 		}
2660 
2661 		if (i >= timeout) {
2662 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2663 				   timeout, req->cmpl_ring_req_type,
2664 				   req->target_id_seq_id, *resp_len);
2665 			return -1;
2666 		}
2667 
2668 		/* Last word of resp contains valid bit */
2669 		valid = bp->hwrm_cmd_resp_addr + len - 4;
2670 		for (i = 0; i < timeout; i++) {
2671 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2672 				break;
2673 			usleep_range(600, 800);
2674 		}
2675 
2676 		if (i >= timeout) {
2677 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2678 				   timeout, req->cmpl_ring_req_type,
2679 				   req->target_id_seq_id, len, *valid);
2680 			return -1;
2681 		}
2682 	}
2683 
2684 	rc = le16_to_cpu(resp->error_code);
2685 	if (rc) {
2686 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2687 			   le16_to_cpu(resp->req_type),
2688 			   le16_to_cpu(resp->seq_id), rc);
2689 		return rc;
2690 	}
2691 	return 0;
2692 }
2693 
2694 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2695 {
2696 	int rc;
2697 
2698 	mutex_lock(&bp->hwrm_cmd_lock);
2699 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2700 	mutex_unlock(&bp->hwrm_cmd_lock);
2701 	return rc;
2702 }
2703 
2704 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2705 {
2706 	struct hwrm_func_drv_rgtr_input req = {0};
2707 	int i;
2708 
2709 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2710 
2711 	req.enables =
2712 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2713 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
2714 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2715 
2716 	/* TODO: current async event fwd bits are not defined and the firmware
2717 	 * only checks if it is non-zero to enable async event forwarding
2718 	 */
2719 	req.async_event_fwd[0] |= cpu_to_le32(1);
2720 	req.os_type = cpu_to_le16(1);
2721 	req.ver_maj = DRV_VER_MAJ;
2722 	req.ver_min = DRV_VER_MIN;
2723 	req.ver_upd = DRV_VER_UPD;
2724 
2725 	if (BNXT_PF(bp)) {
2726 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
2727 		u32 *data = (u32 *)vf_req_snif_bmap;
2728 
2729 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2730 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2731 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2732 
2733 		for (i = 0; i < 8; i++)
2734 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2735 
2736 		req.enables |=
2737 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2738 	}
2739 
2740 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2741 }
2742 
2743 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2744 {
2745 	struct hwrm_func_drv_unrgtr_input req = {0};
2746 
2747 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2748 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2749 }
2750 
2751 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2752 {
2753 	u32 rc = 0;
2754 	struct hwrm_tunnel_dst_port_free_input req = {0};
2755 
2756 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2757 	req.tunnel_type = tunnel_type;
2758 
2759 	switch (tunnel_type) {
2760 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2761 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2762 		break;
2763 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2764 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2765 		break;
2766 	default:
2767 		break;
2768 	}
2769 
2770 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2771 	if (rc)
2772 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2773 			   rc);
2774 	return rc;
2775 }
2776 
2777 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2778 					   u8 tunnel_type)
2779 {
2780 	u32 rc = 0;
2781 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
2782 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2783 
2784 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2785 
2786 	req.tunnel_type = tunnel_type;
2787 	req.tunnel_dst_port_val = port;
2788 
2789 	mutex_lock(&bp->hwrm_cmd_lock);
2790 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2791 	if (rc) {
2792 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2793 			   rc);
2794 		goto err_out;
2795 	}
2796 
2797 	if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2798 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2799 
2800 	else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2801 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2802 err_out:
2803 	mutex_unlock(&bp->hwrm_cmd_lock);
2804 	return rc;
2805 }
2806 
2807 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2808 {
2809 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2810 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2811 
2812 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2813 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2814 
2815 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2816 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2817 	req.mask = cpu_to_le32(vnic->rx_mask);
2818 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2819 }
2820 
2821 #ifdef CONFIG_RFS_ACCEL
2822 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2823 					    struct bnxt_ntuple_filter *fltr)
2824 {
2825 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
2826 
2827 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2828 	req.ntuple_filter_id = fltr->filter_id;
2829 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2830 }
2831 
2832 #define BNXT_NTP_FLTR_FLAGS					\
2833 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
2834 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
2835 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
2836 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
2837 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
2838 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
2839 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
2840 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
2841 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
2842 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
2843 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
2844 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
2845 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
2846 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2847 
2848 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2849 					     struct bnxt_ntuple_filter *fltr)
2850 {
2851 	int rc = 0;
2852 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2853 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2854 		bp->hwrm_cmd_resp_addr;
2855 	struct flow_keys *keys = &fltr->fkeys;
2856 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2857 
2858 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2859 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2860 
2861 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2862 
2863 	req.ethertype = htons(ETH_P_IP);
2864 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2865 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2866 	req.ip_protocol = keys->basic.ip_proto;
2867 
2868 	req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2869 	req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2870 	req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2871 	req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2872 
2873 	req.src_port = keys->ports.src;
2874 	req.src_port_mask = cpu_to_be16(0xffff);
2875 	req.dst_port = keys->ports.dst;
2876 	req.dst_port_mask = cpu_to_be16(0xffff);
2877 
2878 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2879 	mutex_lock(&bp->hwrm_cmd_lock);
2880 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2881 	if (!rc)
2882 		fltr->filter_id = resp->ntuple_filter_id;
2883 	mutex_unlock(&bp->hwrm_cmd_lock);
2884 	return rc;
2885 }
2886 #endif
2887 
2888 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2889 				     u8 *mac_addr)
2890 {
2891 	u32 rc = 0;
2892 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
2893 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2894 
2895 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2896 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2897 				CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2898 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2899 	req.enables =
2900 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2901 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2902 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2903 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2904 	req.l2_addr_mask[0] = 0xff;
2905 	req.l2_addr_mask[1] = 0xff;
2906 	req.l2_addr_mask[2] = 0xff;
2907 	req.l2_addr_mask[3] = 0xff;
2908 	req.l2_addr_mask[4] = 0xff;
2909 	req.l2_addr_mask[5] = 0xff;
2910 
2911 	mutex_lock(&bp->hwrm_cmd_lock);
2912 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2913 	if (!rc)
2914 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2915 							resp->l2_filter_id;
2916 	mutex_unlock(&bp->hwrm_cmd_lock);
2917 	return rc;
2918 }
2919 
2920 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2921 {
2922 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2923 	int rc = 0;
2924 
2925 	/* Any associated ntuple filters will also be cleared by firmware. */
2926 	mutex_lock(&bp->hwrm_cmd_lock);
2927 	for (i = 0; i < num_of_vnics; i++) {
2928 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2929 
2930 		for (j = 0; j < vnic->uc_filter_count; j++) {
2931 			struct hwrm_cfa_l2_filter_free_input req = {0};
2932 
2933 			bnxt_hwrm_cmd_hdr_init(bp, &req,
2934 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
2935 
2936 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
2937 
2938 			rc = _hwrm_send_message(bp, &req, sizeof(req),
2939 						HWRM_CMD_TIMEOUT);
2940 		}
2941 		vnic->uc_filter_count = 0;
2942 	}
2943 	mutex_unlock(&bp->hwrm_cmd_lock);
2944 
2945 	return rc;
2946 }
2947 
2948 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2949 {
2950 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2951 	struct hwrm_vnic_tpa_cfg_input req = {0};
2952 
2953 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2954 
2955 	if (tpa_flags) {
2956 		u16 mss = bp->dev->mtu - 40;
2957 		u32 nsegs, n, segs = 0, flags;
2958 
2959 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2960 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2961 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2962 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2963 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2964 		if (tpa_flags & BNXT_FLAG_GRO)
2965 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2966 
2967 		req.flags = cpu_to_le32(flags);
2968 
2969 		req.enables =
2970 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2971 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
2972 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
2973 
2974 		/* Number of segs are log2 units, and first packet is not
2975 		 * included as part of this units.
2976 		 */
2977 		if (mss <= PAGE_SIZE) {
2978 			n = PAGE_SIZE / mss;
2979 			nsegs = (MAX_SKB_FRAGS - 1) * n;
2980 		} else {
2981 			n = mss / PAGE_SIZE;
2982 			if (mss & (PAGE_SIZE - 1))
2983 				n++;
2984 			nsegs = (MAX_SKB_FRAGS - n) / n;
2985 		}
2986 
2987 		segs = ilog2(nsegs);
2988 		req.max_agg_segs = cpu_to_le16(segs);
2989 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2990 
2991 		req.min_agg_len = cpu_to_le32(512);
2992 	}
2993 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2994 
2995 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2996 }
2997 
2998 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
2999 {
3000 	u32 i, j, max_rings;
3001 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3002 	struct hwrm_vnic_rss_cfg_input req = {0};
3003 
3004 	if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3005 		return 0;
3006 
3007 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3008 	if (set_rss) {
3009 		vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3010 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3011 				 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3012 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3013 
3014 		req.hash_type = cpu_to_le32(vnic->hash_type);
3015 
3016 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3017 			max_rings = bp->rx_nr_rings;
3018 		else
3019 			max_rings = 1;
3020 
3021 		/* Fill the RSS indirection table with ring group ids */
3022 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3023 			if (j == max_rings)
3024 				j = 0;
3025 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3026 		}
3027 
3028 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3029 		req.hash_key_tbl_addr =
3030 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3031 	}
3032 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3033 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3034 }
3035 
3036 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3037 {
3038 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3039 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3040 
3041 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3042 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3043 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3044 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3045 	req.enables =
3046 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3047 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3048 	/* thresholds not implemented in firmware yet */
3049 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3050 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3051 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3052 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3053 }
3054 
3055 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3056 {
3057 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3058 
3059 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3060 	req.rss_cos_lb_ctx_id =
3061 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3062 
3063 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3064 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3065 }
3066 
3067 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3068 {
3069 	int i;
3070 
3071 	for (i = 0; i < bp->nr_vnics; i++) {
3072 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3073 
3074 		if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3075 			bnxt_hwrm_vnic_ctx_free_one(bp, i);
3076 	}
3077 	bp->rsscos_nr_ctxs = 0;
3078 }
3079 
3080 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3081 {
3082 	int rc;
3083 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3084 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3085 						bp->hwrm_cmd_resp_addr;
3086 
3087 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3088 			       -1);
3089 
3090 	mutex_lock(&bp->hwrm_cmd_lock);
3091 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3092 	if (!rc)
3093 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3094 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3095 	mutex_unlock(&bp->hwrm_cmd_lock);
3096 
3097 	return rc;
3098 }
3099 
3100 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3101 {
3102 	unsigned int ring = 0, grp_idx;
3103 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3104 	struct hwrm_vnic_cfg_input req = {0};
3105 
3106 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3107 	/* Only RSS support for now TBD: COS & LB */
3108 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3109 				  VNIC_CFG_REQ_ENABLES_RSS_RULE);
3110 	req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3111 	req.cos_rule = cpu_to_le16(0xffff);
3112 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3113 		ring = 0;
3114 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3115 		ring = vnic_id - 1;
3116 
3117 	grp_idx = bp->rx_ring[ring].bnapi->index;
3118 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3119 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3120 
3121 	req.lb_rule = cpu_to_le16(0xffff);
3122 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3123 			      VLAN_HLEN);
3124 
3125 	if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3126 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3127 
3128 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3129 }
3130 
3131 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3132 {
3133 	u32 rc = 0;
3134 
3135 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3136 		struct hwrm_vnic_free_input req = {0};
3137 
3138 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3139 		req.vnic_id =
3140 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3141 
3142 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3143 		if (rc)
3144 			return rc;
3145 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3146 	}
3147 	return rc;
3148 }
3149 
3150 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3151 {
3152 	u16 i;
3153 
3154 	for (i = 0; i < bp->nr_vnics; i++)
3155 		bnxt_hwrm_vnic_free_one(bp, i);
3156 }
3157 
3158 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3159 				unsigned int start_rx_ring_idx,
3160 				unsigned int nr_rings)
3161 {
3162 	int rc = 0;
3163 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3164 	struct hwrm_vnic_alloc_input req = {0};
3165 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3166 
3167 	/* map ring groups to this vnic */
3168 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3169 		grp_idx = bp->rx_ring[i].bnapi->index;
3170 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3171 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3172 				   j, nr_rings);
3173 			break;
3174 		}
3175 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3176 					bp->grp_info[grp_idx].fw_grp_id;
3177 	}
3178 
3179 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3180 	if (vnic_id == 0)
3181 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3182 
3183 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3184 
3185 	mutex_lock(&bp->hwrm_cmd_lock);
3186 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3187 	if (!rc)
3188 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3189 	mutex_unlock(&bp->hwrm_cmd_lock);
3190 	return rc;
3191 }
3192 
3193 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3194 {
3195 	u16 i;
3196 	u32 rc = 0;
3197 
3198 	mutex_lock(&bp->hwrm_cmd_lock);
3199 	for (i = 0; i < bp->rx_nr_rings; i++) {
3200 		struct hwrm_ring_grp_alloc_input req = {0};
3201 		struct hwrm_ring_grp_alloc_output *resp =
3202 					bp->hwrm_cmd_resp_addr;
3203 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3204 
3205 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3206 
3207 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3208 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3209 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3210 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3211 
3212 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3213 					HWRM_CMD_TIMEOUT);
3214 		if (rc)
3215 			break;
3216 
3217 		bp->grp_info[grp_idx].fw_grp_id =
3218 			le32_to_cpu(resp->ring_group_id);
3219 	}
3220 	mutex_unlock(&bp->hwrm_cmd_lock);
3221 	return rc;
3222 }
3223 
3224 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3225 {
3226 	u16 i;
3227 	u32 rc = 0;
3228 	struct hwrm_ring_grp_free_input req = {0};
3229 
3230 	if (!bp->grp_info)
3231 		return 0;
3232 
3233 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3234 
3235 	mutex_lock(&bp->hwrm_cmd_lock);
3236 	for (i = 0; i < bp->cp_nr_rings; i++) {
3237 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3238 			continue;
3239 		req.ring_group_id =
3240 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
3241 
3242 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3243 					HWRM_CMD_TIMEOUT);
3244 		if (rc)
3245 			break;
3246 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3247 	}
3248 	mutex_unlock(&bp->hwrm_cmd_lock);
3249 	return rc;
3250 }
3251 
3252 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3253 				    struct bnxt_ring_struct *ring,
3254 				    u32 ring_type, u32 map_index,
3255 				    u32 stats_ctx_id)
3256 {
3257 	int rc = 0, err = 0;
3258 	struct hwrm_ring_alloc_input req = {0};
3259 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3260 	u16 ring_id;
3261 
3262 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3263 
3264 	req.enables = 0;
3265 	if (ring->nr_pages > 1) {
3266 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3267 		/* Page size is in log2 units */
3268 		req.page_size = BNXT_PAGE_SHIFT;
3269 		req.page_tbl_depth = 1;
3270 	} else {
3271 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3272 	}
3273 	req.fbo = 0;
3274 	/* Association of ring index with doorbell index and MSIX number */
3275 	req.logical_id = cpu_to_le16(map_index);
3276 
3277 	switch (ring_type) {
3278 	case HWRM_RING_ALLOC_TX:
3279 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3280 		/* Association of transmit ring with completion ring */
3281 		req.cmpl_ring_id =
3282 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3283 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3284 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3285 		req.queue_id = cpu_to_le16(ring->queue_id);
3286 		break;
3287 	case HWRM_RING_ALLOC_RX:
3288 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3289 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3290 		break;
3291 	case HWRM_RING_ALLOC_AGG:
3292 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3293 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3294 		break;
3295 	case HWRM_RING_ALLOC_CMPL:
3296 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3297 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3298 		if (bp->flags & BNXT_FLAG_USING_MSIX)
3299 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3300 		break;
3301 	default:
3302 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3303 			   ring_type);
3304 		return -1;
3305 	}
3306 
3307 	mutex_lock(&bp->hwrm_cmd_lock);
3308 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3309 	err = le16_to_cpu(resp->error_code);
3310 	ring_id = le16_to_cpu(resp->ring_id);
3311 	mutex_unlock(&bp->hwrm_cmd_lock);
3312 
3313 	if (rc || err) {
3314 		switch (ring_type) {
3315 		case RING_FREE_REQ_RING_TYPE_CMPL:
3316 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3317 				   rc, err);
3318 			return -1;
3319 
3320 		case RING_FREE_REQ_RING_TYPE_RX:
3321 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3322 				   rc, err);
3323 			return -1;
3324 
3325 		case RING_FREE_REQ_RING_TYPE_TX:
3326 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3327 				   rc, err);
3328 			return -1;
3329 
3330 		default:
3331 			netdev_err(bp->dev, "Invalid ring\n");
3332 			return -1;
3333 		}
3334 	}
3335 	ring->fw_ring_id = ring_id;
3336 	return rc;
3337 }
3338 
3339 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3340 {
3341 	int i, rc = 0;
3342 
3343 	for (i = 0; i < bp->cp_nr_rings; i++) {
3344 		struct bnxt_napi *bnapi = bp->bnapi[i];
3345 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3346 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3347 
3348 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3349 					      INVALID_STATS_CTX_ID);
3350 		if (rc)
3351 			goto err_out;
3352 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
3353 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3354 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3355 	}
3356 
3357 	for (i = 0; i < bp->tx_nr_rings; i++) {
3358 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3359 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3360 		u32 map_idx = txr->bnapi->index;
3361 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3362 
3363 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3364 					      map_idx, fw_stats_ctx);
3365 		if (rc)
3366 			goto err_out;
3367 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3368 	}
3369 
3370 	for (i = 0; i < bp->rx_nr_rings; i++) {
3371 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3372 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3373 		u32 map_idx = rxr->bnapi->index;
3374 
3375 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3376 					      map_idx, INVALID_STATS_CTX_ID);
3377 		if (rc)
3378 			goto err_out;
3379 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3380 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3381 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3382 	}
3383 
3384 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3385 		for (i = 0; i < bp->rx_nr_rings; i++) {
3386 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3387 			struct bnxt_ring_struct *ring =
3388 						&rxr->rx_agg_ring_struct;
3389 			u32 grp_idx = rxr->bnapi->index;
3390 			u32 map_idx = grp_idx + bp->rx_nr_rings;
3391 
3392 			rc = hwrm_ring_alloc_send_msg(bp, ring,
3393 						      HWRM_RING_ALLOC_AGG,
3394 						      map_idx,
3395 						      INVALID_STATS_CTX_ID);
3396 			if (rc)
3397 				goto err_out;
3398 
3399 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3400 			writel(DB_KEY_RX | rxr->rx_agg_prod,
3401 			       rxr->rx_agg_doorbell);
3402 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3403 		}
3404 	}
3405 err_out:
3406 	return rc;
3407 }
3408 
3409 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3410 				   struct bnxt_ring_struct *ring,
3411 				   u32 ring_type, int cmpl_ring_id)
3412 {
3413 	int rc;
3414 	struct hwrm_ring_free_input req = {0};
3415 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3416 	u16 error_code;
3417 
3418 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3419 	req.ring_type = ring_type;
3420 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
3421 
3422 	mutex_lock(&bp->hwrm_cmd_lock);
3423 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3424 	error_code = le16_to_cpu(resp->error_code);
3425 	mutex_unlock(&bp->hwrm_cmd_lock);
3426 
3427 	if (rc || error_code) {
3428 		switch (ring_type) {
3429 		case RING_FREE_REQ_RING_TYPE_CMPL:
3430 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3431 				   rc);
3432 			return rc;
3433 		case RING_FREE_REQ_RING_TYPE_RX:
3434 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3435 				   rc);
3436 			return rc;
3437 		case RING_FREE_REQ_RING_TYPE_TX:
3438 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3439 				   rc);
3440 			return rc;
3441 		default:
3442 			netdev_err(bp->dev, "Invalid ring\n");
3443 			return -1;
3444 		}
3445 	}
3446 	return 0;
3447 }
3448 
3449 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3450 {
3451 	int i;
3452 
3453 	if (!bp->bnapi)
3454 		return;
3455 
3456 	for (i = 0; i < bp->tx_nr_rings; i++) {
3457 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3458 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3459 		u32 grp_idx = txr->bnapi->index;
3460 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3461 
3462 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3463 			hwrm_ring_free_send_msg(bp, ring,
3464 						RING_FREE_REQ_RING_TYPE_TX,
3465 						close_path ? cmpl_ring_id :
3466 						INVALID_HW_RING_ID);
3467 			ring->fw_ring_id = INVALID_HW_RING_ID;
3468 		}
3469 	}
3470 
3471 	for (i = 0; i < bp->rx_nr_rings; i++) {
3472 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3473 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3474 		u32 grp_idx = rxr->bnapi->index;
3475 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3476 
3477 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3478 			hwrm_ring_free_send_msg(bp, ring,
3479 						RING_FREE_REQ_RING_TYPE_RX,
3480 						close_path ? cmpl_ring_id :
3481 						INVALID_HW_RING_ID);
3482 			ring->fw_ring_id = INVALID_HW_RING_ID;
3483 			bp->grp_info[grp_idx].rx_fw_ring_id =
3484 				INVALID_HW_RING_ID;
3485 		}
3486 	}
3487 
3488 	for (i = 0; i < bp->rx_nr_rings; i++) {
3489 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3490 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3491 		u32 grp_idx = rxr->bnapi->index;
3492 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3493 
3494 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3495 			hwrm_ring_free_send_msg(bp, ring,
3496 						RING_FREE_REQ_RING_TYPE_RX,
3497 						close_path ? cmpl_ring_id :
3498 						INVALID_HW_RING_ID);
3499 			ring->fw_ring_id = INVALID_HW_RING_ID;
3500 			bp->grp_info[grp_idx].agg_fw_ring_id =
3501 				INVALID_HW_RING_ID;
3502 		}
3503 	}
3504 
3505 	for (i = 0; i < bp->cp_nr_rings; i++) {
3506 		struct bnxt_napi *bnapi = bp->bnapi[i];
3507 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3508 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3509 
3510 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3511 			hwrm_ring_free_send_msg(bp, ring,
3512 						RING_FREE_REQ_RING_TYPE_CMPL,
3513 						INVALID_HW_RING_ID);
3514 			ring->fw_ring_id = INVALID_HW_RING_ID;
3515 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3516 		}
3517 	}
3518 }
3519 
3520 int bnxt_hwrm_set_coal(struct bnxt *bp)
3521 {
3522 	int i, rc = 0;
3523 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3524 	u16 max_buf, max_buf_irq;
3525 	u16 buf_tmr, buf_tmr_irq;
3526 	u32 flags;
3527 
3528 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3529 			       -1, -1);
3530 
3531 	/* Each rx completion (2 records) should be DMAed immediately */
3532 	max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3533 	/* max_buf must not be zero */
3534 	max_buf = clamp_t(u16, max_buf, 1, 63);
3535 	max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3536 	buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3537 	buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3538 
3539 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3540 
3541 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
3542 	 * if coal_ticks is less than 25 us.
3543 	 */
3544 	if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3545 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3546 
3547 	req.flags = cpu_to_le16(flags);
3548 	req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3549 	req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3550 	req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3551 	req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3552 	req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3553 	req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3554 	req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3555 
3556 	mutex_lock(&bp->hwrm_cmd_lock);
3557 	for (i = 0; i < bp->cp_nr_rings; i++) {
3558 		req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3559 
3560 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3561 					HWRM_CMD_TIMEOUT);
3562 		if (rc)
3563 			break;
3564 	}
3565 	mutex_unlock(&bp->hwrm_cmd_lock);
3566 	return rc;
3567 }
3568 
3569 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3570 {
3571 	int rc = 0, i;
3572 	struct hwrm_stat_ctx_free_input req = {0};
3573 
3574 	if (!bp->bnapi)
3575 		return 0;
3576 
3577 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3578 
3579 	mutex_lock(&bp->hwrm_cmd_lock);
3580 	for (i = 0; i < bp->cp_nr_rings; i++) {
3581 		struct bnxt_napi *bnapi = bp->bnapi[i];
3582 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3583 
3584 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3585 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3586 
3587 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3588 						HWRM_CMD_TIMEOUT);
3589 			if (rc)
3590 				break;
3591 
3592 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3593 		}
3594 	}
3595 	mutex_unlock(&bp->hwrm_cmd_lock);
3596 	return rc;
3597 }
3598 
3599 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3600 {
3601 	int rc = 0, i;
3602 	struct hwrm_stat_ctx_alloc_input req = {0};
3603 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3604 
3605 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3606 
3607 	req.update_period_ms = cpu_to_le32(1000);
3608 
3609 	mutex_lock(&bp->hwrm_cmd_lock);
3610 	for (i = 0; i < bp->cp_nr_rings; i++) {
3611 		struct bnxt_napi *bnapi = bp->bnapi[i];
3612 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3613 
3614 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3615 
3616 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3617 					HWRM_CMD_TIMEOUT);
3618 		if (rc)
3619 			break;
3620 
3621 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3622 
3623 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3624 	}
3625 	mutex_unlock(&bp->hwrm_cmd_lock);
3626 	return 0;
3627 }
3628 
3629 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3630 {
3631 	int rc = 0;
3632 	struct hwrm_func_qcaps_input req = {0};
3633 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3634 
3635 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3636 	req.fid = cpu_to_le16(0xffff);
3637 
3638 	mutex_lock(&bp->hwrm_cmd_lock);
3639 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3640 	if (rc)
3641 		goto hwrm_func_qcaps_exit;
3642 
3643 	if (BNXT_PF(bp)) {
3644 		struct bnxt_pf_info *pf = &bp->pf;
3645 
3646 		pf->fw_fid = le16_to_cpu(resp->fid);
3647 		pf->port_id = le16_to_cpu(resp->port_id);
3648 		memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3649 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3650 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3651 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3652 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3653 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3654 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3655 		if (!pf->max_hw_ring_grps)
3656 			pf->max_hw_ring_grps = pf->max_tx_rings;
3657 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3658 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
3659 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3660 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3661 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
3662 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3663 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3664 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3665 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3666 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3667 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3668 	} else {
3669 #ifdef CONFIG_BNXT_SRIOV
3670 		struct bnxt_vf_info *vf = &bp->vf;
3671 
3672 		vf->fw_fid = le16_to_cpu(resp->fid);
3673 		memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3674 		if (is_valid_ether_addr(vf->mac_addr))
3675 			/* overwrite netdev dev_adr with admin VF MAC */
3676 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3677 		else
3678 			random_ether_addr(bp->dev->dev_addr);
3679 
3680 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3681 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3682 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3683 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3684 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3685 		if (!vf->max_hw_ring_grps)
3686 			vf->max_hw_ring_grps = vf->max_tx_rings;
3687 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3688 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
3689 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3690 #endif
3691 	}
3692 
3693 	bp->tx_push_thresh = 0;
3694 	if (resp->flags &
3695 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3696 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3697 
3698 hwrm_func_qcaps_exit:
3699 	mutex_unlock(&bp->hwrm_cmd_lock);
3700 	return rc;
3701 }
3702 
3703 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3704 {
3705 	struct hwrm_func_reset_input req = {0};
3706 
3707 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3708 	req.enables = 0;
3709 
3710 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3711 }
3712 
3713 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3714 {
3715 	int rc = 0;
3716 	struct hwrm_queue_qportcfg_input req = {0};
3717 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3718 	u8 i, *qptr;
3719 
3720 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3721 
3722 	mutex_lock(&bp->hwrm_cmd_lock);
3723 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3724 	if (rc)
3725 		goto qportcfg_exit;
3726 
3727 	if (!resp->max_configurable_queues) {
3728 		rc = -EINVAL;
3729 		goto qportcfg_exit;
3730 	}
3731 	bp->max_tc = resp->max_configurable_queues;
3732 	if (bp->max_tc > BNXT_MAX_QUEUE)
3733 		bp->max_tc = BNXT_MAX_QUEUE;
3734 
3735 	qptr = &resp->queue_id0;
3736 	for (i = 0; i < bp->max_tc; i++) {
3737 		bp->q_info[i].queue_id = *qptr++;
3738 		bp->q_info[i].queue_profile = *qptr++;
3739 	}
3740 
3741 qportcfg_exit:
3742 	mutex_unlock(&bp->hwrm_cmd_lock);
3743 	return rc;
3744 }
3745 
3746 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3747 {
3748 	int rc;
3749 	struct hwrm_ver_get_input req = {0};
3750 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3751 
3752 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3753 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3754 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
3755 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3756 	mutex_lock(&bp->hwrm_cmd_lock);
3757 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3758 	if (rc)
3759 		goto hwrm_ver_get_exit;
3760 
3761 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3762 
3763 	if (resp->hwrm_intf_maj < 1) {
3764 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3765 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
3766 			    resp->hwrm_intf_upd);
3767 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3768 	}
3769 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3770 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3771 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3772 
3773 hwrm_ver_get_exit:
3774 	mutex_unlock(&bp->hwrm_cmd_lock);
3775 	return rc;
3776 }
3777 
3778 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3779 {
3780 	if (bp->vxlan_port_cnt) {
3781 		bnxt_hwrm_tunnel_dst_port_free(
3782 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3783 	}
3784 	bp->vxlan_port_cnt = 0;
3785 	if (bp->nge_port_cnt) {
3786 		bnxt_hwrm_tunnel_dst_port_free(
3787 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3788 	}
3789 	bp->nge_port_cnt = 0;
3790 }
3791 
3792 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3793 {
3794 	int rc, i;
3795 	u32 tpa_flags = 0;
3796 
3797 	if (set_tpa)
3798 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
3799 	for (i = 0; i < bp->nr_vnics; i++) {
3800 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3801 		if (rc) {
3802 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3803 				   rc, i);
3804 			return rc;
3805 		}
3806 	}
3807 	return 0;
3808 }
3809 
3810 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3811 {
3812 	int i;
3813 
3814 	for (i = 0; i < bp->nr_vnics; i++)
3815 		bnxt_hwrm_vnic_set_rss(bp, i, false);
3816 }
3817 
3818 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3819 				    bool irq_re_init)
3820 {
3821 	if (bp->vnic_info) {
3822 		bnxt_hwrm_clear_vnic_filter(bp);
3823 		/* clear all RSS setting before free vnic ctx */
3824 		bnxt_hwrm_clear_vnic_rss(bp);
3825 		bnxt_hwrm_vnic_ctx_free(bp);
3826 		/* before free the vnic, undo the vnic tpa settings */
3827 		if (bp->flags & BNXT_FLAG_TPA)
3828 			bnxt_set_tpa(bp, false);
3829 		bnxt_hwrm_vnic_free(bp);
3830 	}
3831 	bnxt_hwrm_ring_free(bp, close_path);
3832 	bnxt_hwrm_ring_grp_free(bp);
3833 	if (irq_re_init) {
3834 		bnxt_hwrm_stat_ctx_free(bp);
3835 		bnxt_hwrm_free_tunnel_ports(bp);
3836 	}
3837 }
3838 
3839 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3840 {
3841 	int rc;
3842 
3843 	/* allocate context for vnic */
3844 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3845 	if (rc) {
3846 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3847 			   vnic_id, rc);
3848 		goto vnic_setup_err;
3849 	}
3850 	bp->rsscos_nr_ctxs++;
3851 
3852 	/* configure default vnic, ring grp */
3853 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3854 	if (rc) {
3855 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3856 			   vnic_id, rc);
3857 		goto vnic_setup_err;
3858 	}
3859 
3860 	/* Enable RSS hashing on vnic */
3861 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3862 	if (rc) {
3863 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3864 			   vnic_id, rc);
3865 		goto vnic_setup_err;
3866 	}
3867 
3868 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3869 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3870 		if (rc) {
3871 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3872 				   vnic_id, rc);
3873 		}
3874 	}
3875 
3876 vnic_setup_err:
3877 	return rc;
3878 }
3879 
3880 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3881 {
3882 #ifdef CONFIG_RFS_ACCEL
3883 	int i, rc = 0;
3884 
3885 	for (i = 0; i < bp->rx_nr_rings; i++) {
3886 		u16 vnic_id = i + 1;
3887 		u16 ring_id = i;
3888 
3889 		if (vnic_id >= bp->nr_vnics)
3890 			break;
3891 
3892 		bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3893 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
3894 		if (rc) {
3895 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3896 				   vnic_id, rc);
3897 			break;
3898 		}
3899 		rc = bnxt_setup_vnic(bp, vnic_id);
3900 		if (rc)
3901 			break;
3902 	}
3903 	return rc;
3904 #else
3905 	return 0;
3906 #endif
3907 }
3908 
3909 static int bnxt_cfg_rx_mode(struct bnxt *);
3910 
3911 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3912 {
3913 	int rc = 0;
3914 
3915 	if (irq_re_init) {
3916 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
3917 		if (rc) {
3918 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3919 				   rc);
3920 			goto err_out;
3921 		}
3922 	}
3923 
3924 	rc = bnxt_hwrm_ring_alloc(bp);
3925 	if (rc) {
3926 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3927 		goto err_out;
3928 	}
3929 
3930 	rc = bnxt_hwrm_ring_grp_alloc(bp);
3931 	if (rc) {
3932 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3933 		goto err_out;
3934 	}
3935 
3936 	/* default vnic 0 */
3937 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3938 	if (rc) {
3939 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3940 		goto err_out;
3941 	}
3942 
3943 	rc = bnxt_setup_vnic(bp, 0);
3944 	if (rc)
3945 		goto err_out;
3946 
3947 	if (bp->flags & BNXT_FLAG_RFS) {
3948 		rc = bnxt_alloc_rfs_vnics(bp);
3949 		if (rc)
3950 			goto err_out;
3951 	}
3952 
3953 	if (bp->flags & BNXT_FLAG_TPA) {
3954 		rc = bnxt_set_tpa(bp, true);
3955 		if (rc)
3956 			goto err_out;
3957 	}
3958 
3959 	if (BNXT_VF(bp))
3960 		bnxt_update_vf_mac(bp);
3961 
3962 	/* Filter for default vnic 0 */
3963 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3964 	if (rc) {
3965 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3966 		goto err_out;
3967 	}
3968 	bp->vnic_info[0].uc_filter_count = 1;
3969 
3970 	bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3971 
3972 	if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3973 		bp->vnic_info[0].rx_mask |=
3974 				CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3975 
3976 	rc = bnxt_cfg_rx_mode(bp);
3977 	if (rc)
3978 		goto err_out;
3979 
3980 	rc = bnxt_hwrm_set_coal(bp);
3981 	if (rc)
3982 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3983 			    rc);
3984 
3985 	return 0;
3986 
3987 err_out:
3988 	bnxt_hwrm_resource_free(bp, 0, true);
3989 
3990 	return rc;
3991 }
3992 
3993 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3994 {
3995 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3996 	return 0;
3997 }
3998 
3999 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4000 {
4001 	bnxt_init_rx_rings(bp);
4002 	bnxt_init_tx_rings(bp);
4003 	bnxt_init_ring_grps(bp, irq_re_init);
4004 	bnxt_init_vnics(bp);
4005 
4006 	return bnxt_init_chip(bp, irq_re_init);
4007 }
4008 
4009 static void bnxt_disable_int(struct bnxt *bp)
4010 {
4011 	int i;
4012 
4013 	if (!bp->bnapi)
4014 		return;
4015 
4016 	for (i = 0; i < bp->cp_nr_rings; i++) {
4017 		struct bnxt_napi *bnapi = bp->bnapi[i];
4018 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4019 
4020 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4021 	}
4022 }
4023 
4024 static void bnxt_enable_int(struct bnxt *bp)
4025 {
4026 	int i;
4027 
4028 	atomic_set(&bp->intr_sem, 0);
4029 	for (i = 0; i < bp->cp_nr_rings; i++) {
4030 		struct bnxt_napi *bnapi = bp->bnapi[i];
4031 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4032 
4033 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4034 	}
4035 }
4036 
4037 static int bnxt_set_real_num_queues(struct bnxt *bp)
4038 {
4039 	int rc;
4040 	struct net_device *dev = bp->dev;
4041 
4042 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4043 	if (rc)
4044 		return rc;
4045 
4046 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4047 	if (rc)
4048 		return rc;
4049 
4050 #ifdef CONFIG_RFS_ACCEL
4051 	if (bp->flags & BNXT_FLAG_RFS)
4052 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4053 #endif
4054 
4055 	return rc;
4056 }
4057 
4058 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4059 			   bool shared)
4060 {
4061 	int _rx = *rx, _tx = *tx;
4062 
4063 	if (shared) {
4064 		*rx = min_t(int, _rx, max);
4065 		*tx = min_t(int, _tx, max);
4066 	} else {
4067 		if (max < 2)
4068 			return -ENOMEM;
4069 
4070 		while (_rx + _tx > max) {
4071 			if (_rx > _tx && _rx > 1)
4072 				_rx--;
4073 			else if (_tx > 1)
4074 				_tx--;
4075 		}
4076 		*rx = _rx;
4077 		*tx = _tx;
4078 	}
4079 	return 0;
4080 }
4081 
4082 static int bnxt_setup_msix(struct bnxt *bp)
4083 {
4084 	struct msix_entry *msix_ent;
4085 	struct net_device *dev = bp->dev;
4086 	int i, total_vecs, rc = 0, min = 1;
4087 	const int len = sizeof(bp->irq_tbl[0].name);
4088 
4089 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
4090 	total_vecs = bp->cp_nr_rings;
4091 
4092 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4093 	if (!msix_ent)
4094 		return -ENOMEM;
4095 
4096 	for (i = 0; i < total_vecs; i++) {
4097 		msix_ent[i].entry = i;
4098 		msix_ent[i].vector = 0;
4099 	}
4100 
4101 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4102 		min = 2;
4103 
4104 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4105 	if (total_vecs < 0) {
4106 		rc = -ENODEV;
4107 		goto msix_setup_exit;
4108 	}
4109 
4110 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4111 	if (bp->irq_tbl) {
4112 		int tcs;
4113 
4114 		/* Trim rings based upon num of vectors allocated */
4115 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4116 				     total_vecs, min == 1);
4117 		if (rc)
4118 			goto msix_setup_exit;
4119 
4120 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4121 		tcs = netdev_get_num_tc(dev);
4122 		if (tcs > 1) {
4123 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4124 			if (bp->tx_nr_rings_per_tc == 0) {
4125 				netdev_reset_tc(dev);
4126 				bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4127 			} else {
4128 				int i, off, count;
4129 
4130 				bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4131 				for (i = 0; i < tcs; i++) {
4132 					count = bp->tx_nr_rings_per_tc;
4133 					off = i * count;
4134 					netdev_set_tc_queue(dev, i, count, off);
4135 				}
4136 			}
4137 		}
4138 		bp->cp_nr_rings = total_vecs;
4139 
4140 		for (i = 0; i < bp->cp_nr_rings; i++) {
4141 			char *attr;
4142 
4143 			bp->irq_tbl[i].vector = msix_ent[i].vector;
4144 			if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4145 				attr = "TxRx";
4146 			else if (i < bp->rx_nr_rings)
4147 				attr = "rx";
4148 			else
4149 				attr = "tx";
4150 
4151 			snprintf(bp->irq_tbl[i].name, len,
4152 				 "%s-%s-%d", dev->name, attr, i);
4153 			bp->irq_tbl[i].handler = bnxt_msix;
4154 		}
4155 		rc = bnxt_set_real_num_queues(bp);
4156 		if (rc)
4157 			goto msix_setup_exit;
4158 	} else {
4159 		rc = -ENOMEM;
4160 		goto msix_setup_exit;
4161 	}
4162 	bp->flags |= BNXT_FLAG_USING_MSIX;
4163 	kfree(msix_ent);
4164 	return 0;
4165 
4166 msix_setup_exit:
4167 	netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4168 	pci_disable_msix(bp->pdev);
4169 	kfree(msix_ent);
4170 	return rc;
4171 }
4172 
4173 static int bnxt_setup_inta(struct bnxt *bp)
4174 {
4175 	int rc;
4176 	const int len = sizeof(bp->irq_tbl[0].name);
4177 
4178 	if (netdev_get_num_tc(bp->dev))
4179 		netdev_reset_tc(bp->dev);
4180 
4181 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4182 	if (!bp->irq_tbl) {
4183 		rc = -ENOMEM;
4184 		return rc;
4185 	}
4186 	bp->rx_nr_rings = 1;
4187 	bp->tx_nr_rings = 1;
4188 	bp->cp_nr_rings = 1;
4189 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4190 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
4191 	bp->irq_tbl[0].vector = bp->pdev->irq;
4192 	snprintf(bp->irq_tbl[0].name, len,
4193 		 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4194 	bp->irq_tbl[0].handler = bnxt_inta;
4195 	rc = bnxt_set_real_num_queues(bp);
4196 	return rc;
4197 }
4198 
4199 static int bnxt_setup_int_mode(struct bnxt *bp)
4200 {
4201 	int rc = 0;
4202 
4203 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
4204 		rc = bnxt_setup_msix(bp);
4205 
4206 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4207 		/* fallback to INTA */
4208 		rc = bnxt_setup_inta(bp);
4209 	}
4210 	return rc;
4211 }
4212 
4213 static void bnxt_free_irq(struct bnxt *bp)
4214 {
4215 	struct bnxt_irq *irq;
4216 	int i;
4217 
4218 #ifdef CONFIG_RFS_ACCEL
4219 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4220 	bp->dev->rx_cpu_rmap = NULL;
4221 #endif
4222 	if (!bp->irq_tbl)
4223 		return;
4224 
4225 	for (i = 0; i < bp->cp_nr_rings; i++) {
4226 		irq = &bp->irq_tbl[i];
4227 		if (irq->requested)
4228 			free_irq(irq->vector, bp->bnapi[i]);
4229 		irq->requested = 0;
4230 	}
4231 	if (bp->flags & BNXT_FLAG_USING_MSIX)
4232 		pci_disable_msix(bp->pdev);
4233 	kfree(bp->irq_tbl);
4234 	bp->irq_tbl = NULL;
4235 }
4236 
4237 static int bnxt_request_irq(struct bnxt *bp)
4238 {
4239 	int i, j, rc = 0;
4240 	unsigned long flags = 0;
4241 #ifdef CONFIG_RFS_ACCEL
4242 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4243 #endif
4244 
4245 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4246 		flags = IRQF_SHARED;
4247 
4248 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4249 		struct bnxt_irq *irq = &bp->irq_tbl[i];
4250 #ifdef CONFIG_RFS_ACCEL
4251 		if (rmap && bp->bnapi[i]->rx_ring) {
4252 			rc = irq_cpu_rmap_add(rmap, irq->vector);
4253 			if (rc)
4254 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4255 					    j);
4256 			j++;
4257 		}
4258 #endif
4259 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4260 				 bp->bnapi[i]);
4261 		if (rc)
4262 			break;
4263 
4264 		irq->requested = 1;
4265 	}
4266 	return rc;
4267 }
4268 
4269 static void bnxt_del_napi(struct bnxt *bp)
4270 {
4271 	int i;
4272 
4273 	if (!bp->bnapi)
4274 		return;
4275 
4276 	for (i = 0; i < bp->cp_nr_rings; i++) {
4277 		struct bnxt_napi *bnapi = bp->bnapi[i];
4278 
4279 		napi_hash_del(&bnapi->napi);
4280 		netif_napi_del(&bnapi->napi);
4281 	}
4282 }
4283 
4284 static void bnxt_init_napi(struct bnxt *bp)
4285 {
4286 	int i;
4287 	struct bnxt_napi *bnapi;
4288 
4289 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
4290 		for (i = 0; i < bp->cp_nr_rings; i++) {
4291 			bnapi = bp->bnapi[i];
4292 			netif_napi_add(bp->dev, &bnapi->napi,
4293 				       bnxt_poll, 64);
4294 		}
4295 	} else {
4296 		bnapi = bp->bnapi[0];
4297 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4298 	}
4299 }
4300 
4301 static void bnxt_disable_napi(struct bnxt *bp)
4302 {
4303 	int i;
4304 
4305 	if (!bp->bnapi)
4306 		return;
4307 
4308 	for (i = 0; i < bp->cp_nr_rings; i++) {
4309 		napi_disable(&bp->bnapi[i]->napi);
4310 		bnxt_disable_poll(bp->bnapi[i]);
4311 	}
4312 }
4313 
4314 static void bnxt_enable_napi(struct bnxt *bp)
4315 {
4316 	int i;
4317 
4318 	for (i = 0; i < bp->cp_nr_rings; i++) {
4319 		bnxt_enable_poll(bp->bnapi[i]);
4320 		napi_enable(&bp->bnapi[i]->napi);
4321 	}
4322 }
4323 
4324 static void bnxt_tx_disable(struct bnxt *bp)
4325 {
4326 	int i;
4327 	struct bnxt_tx_ring_info *txr;
4328 	struct netdev_queue *txq;
4329 
4330 	if (bp->tx_ring) {
4331 		for (i = 0; i < bp->tx_nr_rings; i++) {
4332 			txr = &bp->tx_ring[i];
4333 			txq = netdev_get_tx_queue(bp->dev, i);
4334 			__netif_tx_lock(txq, smp_processor_id());
4335 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
4336 			__netif_tx_unlock(txq);
4337 		}
4338 	}
4339 	/* Stop all TX queues */
4340 	netif_tx_disable(bp->dev);
4341 	netif_carrier_off(bp->dev);
4342 }
4343 
4344 static void bnxt_tx_enable(struct bnxt *bp)
4345 {
4346 	int i;
4347 	struct bnxt_tx_ring_info *txr;
4348 	struct netdev_queue *txq;
4349 
4350 	for (i = 0; i < bp->tx_nr_rings; i++) {
4351 		txr = &bp->tx_ring[i];
4352 		txq = netdev_get_tx_queue(bp->dev, i);
4353 		txr->dev_state = 0;
4354 	}
4355 	netif_tx_wake_all_queues(bp->dev);
4356 	if (bp->link_info.link_up)
4357 		netif_carrier_on(bp->dev);
4358 }
4359 
4360 static void bnxt_report_link(struct bnxt *bp)
4361 {
4362 	if (bp->link_info.link_up) {
4363 		const char *duplex;
4364 		const char *flow_ctrl;
4365 		u16 speed;
4366 
4367 		netif_carrier_on(bp->dev);
4368 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4369 			duplex = "full";
4370 		else
4371 			duplex = "half";
4372 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4373 			flow_ctrl = "ON - receive & transmit";
4374 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4375 			flow_ctrl = "ON - transmit";
4376 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4377 			flow_ctrl = "ON - receive";
4378 		else
4379 			flow_ctrl = "none";
4380 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4381 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4382 			    speed, duplex, flow_ctrl);
4383 	} else {
4384 		netif_carrier_off(bp->dev);
4385 		netdev_err(bp->dev, "NIC Link is Down\n");
4386 	}
4387 }
4388 
4389 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4390 {
4391 	int rc = 0;
4392 	struct bnxt_link_info *link_info = &bp->link_info;
4393 	struct hwrm_port_phy_qcfg_input req = {0};
4394 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4395 	u8 link_up = link_info->link_up;
4396 
4397 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4398 
4399 	mutex_lock(&bp->hwrm_cmd_lock);
4400 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4401 	if (rc) {
4402 		mutex_unlock(&bp->hwrm_cmd_lock);
4403 		return rc;
4404 	}
4405 
4406 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4407 	link_info->phy_link_status = resp->link;
4408 	link_info->duplex =  resp->duplex;
4409 	link_info->pause = resp->pause;
4410 	link_info->auto_mode = resp->auto_mode;
4411 	link_info->auto_pause_setting = resp->auto_pause;
4412 	link_info->force_pause_setting = resp->force_pause;
4413 	link_info->duplex_setting = resp->duplex;
4414 	if (link_info->phy_link_status == BNXT_LINK_LINK)
4415 		link_info->link_speed = le16_to_cpu(resp->link_speed);
4416 	else
4417 		link_info->link_speed = 0;
4418 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4419 	link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4420 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4421 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4422 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4423 	link_info->phy_ver[0] = resp->phy_maj;
4424 	link_info->phy_ver[1] = resp->phy_min;
4425 	link_info->phy_ver[2] = resp->phy_bld;
4426 	link_info->media_type = resp->media_type;
4427 	link_info->transceiver = resp->transceiver_type;
4428 	link_info->phy_addr = resp->phy_addr;
4429 
4430 	/* TODO: need to add more logic to report VF link */
4431 	if (chng_link_state) {
4432 		if (link_info->phy_link_status == BNXT_LINK_LINK)
4433 			link_info->link_up = 1;
4434 		else
4435 			link_info->link_up = 0;
4436 		if (link_up != link_info->link_up)
4437 			bnxt_report_link(bp);
4438 	} else {
4439 		/* alwasy link down if not require to update link state */
4440 		link_info->link_up = 0;
4441 	}
4442 	mutex_unlock(&bp->hwrm_cmd_lock);
4443 	return 0;
4444 }
4445 
4446 static void
4447 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4448 {
4449 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4450 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4451 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4452 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4453 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4454 		req->enables |=
4455 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4456 	} else {
4457 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4458 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4459 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4460 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4461 		req->enables |=
4462 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4463 	}
4464 }
4465 
4466 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4467 				      struct hwrm_port_phy_cfg_input *req)
4468 {
4469 	u8 autoneg = bp->link_info.autoneg;
4470 	u16 fw_link_speed = bp->link_info.req_link_speed;
4471 	u32 advertising = bp->link_info.advertising;
4472 
4473 	if (autoneg & BNXT_AUTONEG_SPEED) {
4474 		req->auto_mode |=
4475 			PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4476 
4477 		req->enables |= cpu_to_le32(
4478 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4479 		req->auto_link_speed_mask = cpu_to_le16(advertising);
4480 
4481 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4482 		req->flags |=
4483 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4484 	} else {
4485 		req->force_link_speed = cpu_to_le16(fw_link_speed);
4486 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4487 	}
4488 
4489 	/* currently don't support half duplex */
4490 	req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4491 	req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4492 	/* tell chimp that the setting takes effect immediately */
4493 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4494 }
4495 
4496 int bnxt_hwrm_set_pause(struct bnxt *bp)
4497 {
4498 	struct hwrm_port_phy_cfg_input req = {0};
4499 	int rc;
4500 
4501 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4502 	bnxt_hwrm_set_pause_common(bp, &req);
4503 
4504 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4505 	    bp->link_info.force_link_chng)
4506 		bnxt_hwrm_set_link_common(bp, &req);
4507 
4508 	mutex_lock(&bp->hwrm_cmd_lock);
4509 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4510 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4511 		/* since changing of pause setting doesn't trigger any link
4512 		 * change event, the driver needs to update the current pause
4513 		 * result upon successfully return of the phy_cfg command
4514 		 */
4515 		bp->link_info.pause =
4516 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4517 		bp->link_info.auto_pause_setting = 0;
4518 		if (!bp->link_info.force_link_chng)
4519 			bnxt_report_link(bp);
4520 	}
4521 	bp->link_info.force_link_chng = false;
4522 	mutex_unlock(&bp->hwrm_cmd_lock);
4523 	return rc;
4524 }
4525 
4526 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4527 {
4528 	struct hwrm_port_phy_cfg_input req = {0};
4529 
4530 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4531 	if (set_pause)
4532 		bnxt_hwrm_set_pause_common(bp, &req);
4533 
4534 	bnxt_hwrm_set_link_common(bp, &req);
4535 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4536 }
4537 
4538 static int bnxt_update_phy_setting(struct bnxt *bp)
4539 {
4540 	int rc;
4541 	bool update_link = false;
4542 	bool update_pause = false;
4543 	struct bnxt_link_info *link_info = &bp->link_info;
4544 
4545 	rc = bnxt_update_link(bp, true);
4546 	if (rc) {
4547 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4548 			   rc);
4549 		return rc;
4550 	}
4551 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4552 	    link_info->auto_pause_setting != link_info->req_flow_ctrl)
4553 		update_pause = true;
4554 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4555 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
4556 		update_pause = true;
4557 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4558 		if (BNXT_AUTO_MODE(link_info->auto_mode))
4559 			update_link = true;
4560 		if (link_info->req_link_speed != link_info->force_link_speed)
4561 			update_link = true;
4562 		if (link_info->req_duplex != link_info->duplex_setting)
4563 			update_link = true;
4564 	} else {
4565 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4566 			update_link = true;
4567 		if (link_info->advertising != link_info->auto_link_speeds)
4568 			update_link = true;
4569 	}
4570 
4571 	if (update_link)
4572 		rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4573 	else if (update_pause)
4574 		rc = bnxt_hwrm_set_pause(bp);
4575 	if (rc) {
4576 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4577 			   rc);
4578 		return rc;
4579 	}
4580 
4581 	return rc;
4582 }
4583 
4584 /* Common routine to pre-map certain register block to different GRC window.
4585  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4586  * in PF and 3 windows in VF that can be customized to map in different
4587  * register blocks.
4588  */
4589 static void bnxt_preset_reg_win(struct bnxt *bp)
4590 {
4591 	if (BNXT_PF(bp)) {
4592 		/* CAG registers map to GRC window #4 */
4593 		writel(BNXT_CAG_REG_BASE,
4594 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4595 	}
4596 }
4597 
4598 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4599 {
4600 	int rc = 0;
4601 
4602 	bnxt_preset_reg_win(bp);
4603 	netif_carrier_off(bp->dev);
4604 	if (irq_re_init) {
4605 		rc = bnxt_setup_int_mode(bp);
4606 		if (rc) {
4607 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4608 				   rc);
4609 			return rc;
4610 		}
4611 	}
4612 	if ((bp->flags & BNXT_FLAG_RFS) &&
4613 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4614 		/* disable RFS if falling back to INTA */
4615 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4616 		bp->flags &= ~BNXT_FLAG_RFS;
4617 	}
4618 
4619 	rc = bnxt_alloc_mem(bp, irq_re_init);
4620 	if (rc) {
4621 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4622 		goto open_err_free_mem;
4623 	}
4624 
4625 	if (irq_re_init) {
4626 		bnxt_init_napi(bp);
4627 		rc = bnxt_request_irq(bp);
4628 		if (rc) {
4629 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4630 			goto open_err;
4631 		}
4632 	}
4633 
4634 	bnxt_enable_napi(bp);
4635 
4636 	rc = bnxt_init_nic(bp, irq_re_init);
4637 	if (rc) {
4638 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4639 		goto open_err;
4640 	}
4641 
4642 	if (link_re_init) {
4643 		rc = bnxt_update_phy_setting(bp);
4644 		if (rc)
4645 			netdev_warn(bp->dev, "failed to update phy settings\n");
4646 	}
4647 
4648 	if (irq_re_init) {
4649 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4650 		vxlan_get_rx_port(bp->dev);
4651 #endif
4652 		if (!bnxt_hwrm_tunnel_dst_port_alloc(
4653 				bp, htons(0x17c1),
4654 				TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4655 			bp->nge_port_cnt = 1;
4656 	}
4657 
4658 	set_bit(BNXT_STATE_OPEN, &bp->state);
4659 	bnxt_enable_int(bp);
4660 	/* Enable TX queues */
4661 	bnxt_tx_enable(bp);
4662 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4663 	bnxt_update_link(bp, true);
4664 
4665 	return 0;
4666 
4667 open_err:
4668 	bnxt_disable_napi(bp);
4669 	bnxt_del_napi(bp);
4670 
4671 open_err_free_mem:
4672 	bnxt_free_skbs(bp);
4673 	bnxt_free_irq(bp);
4674 	bnxt_free_mem(bp, true);
4675 	return rc;
4676 }
4677 
4678 /* rtnl_lock held */
4679 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4680 {
4681 	int rc = 0;
4682 
4683 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4684 	if (rc) {
4685 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4686 		dev_close(bp->dev);
4687 	}
4688 	return rc;
4689 }
4690 
4691 static int bnxt_open(struct net_device *dev)
4692 {
4693 	struct bnxt *bp = netdev_priv(dev);
4694 	int rc = 0;
4695 
4696 	rc = bnxt_hwrm_func_reset(bp);
4697 	if (rc) {
4698 		netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4699 			   rc);
4700 		rc = -1;
4701 		return rc;
4702 	}
4703 	return __bnxt_open_nic(bp, true, true);
4704 }
4705 
4706 static void bnxt_disable_int_sync(struct bnxt *bp)
4707 {
4708 	int i;
4709 
4710 	atomic_inc(&bp->intr_sem);
4711 	if (!netif_running(bp->dev))
4712 		return;
4713 
4714 	bnxt_disable_int(bp);
4715 	for (i = 0; i < bp->cp_nr_rings; i++)
4716 		synchronize_irq(bp->irq_tbl[i].vector);
4717 }
4718 
4719 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4720 {
4721 	int rc = 0;
4722 
4723 #ifdef CONFIG_BNXT_SRIOV
4724 	if (bp->sriov_cfg) {
4725 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4726 						      !bp->sriov_cfg,
4727 						      BNXT_SRIOV_CFG_WAIT_TMO);
4728 		if (rc)
4729 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4730 	}
4731 #endif
4732 	/* Change device state to avoid TX queue wake up's */
4733 	bnxt_tx_disable(bp);
4734 
4735 	clear_bit(BNXT_STATE_OPEN, &bp->state);
4736 	smp_mb__after_atomic();
4737 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4738 		msleep(20);
4739 
4740 	/* Flush rings before disabling interrupts */
4741 	bnxt_shutdown_nic(bp, irq_re_init);
4742 
4743 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4744 
4745 	bnxt_disable_napi(bp);
4746 	bnxt_disable_int_sync(bp);
4747 	del_timer_sync(&bp->timer);
4748 	bnxt_free_skbs(bp);
4749 
4750 	if (irq_re_init) {
4751 		bnxt_free_irq(bp);
4752 		bnxt_del_napi(bp);
4753 	}
4754 	bnxt_free_mem(bp, irq_re_init);
4755 	return rc;
4756 }
4757 
4758 static int bnxt_close(struct net_device *dev)
4759 {
4760 	struct bnxt *bp = netdev_priv(dev);
4761 
4762 	bnxt_close_nic(bp, true, true);
4763 	return 0;
4764 }
4765 
4766 /* rtnl_lock held */
4767 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4768 {
4769 	switch (cmd) {
4770 	case SIOCGMIIPHY:
4771 		/* fallthru */
4772 	case SIOCGMIIREG: {
4773 		if (!netif_running(dev))
4774 			return -EAGAIN;
4775 
4776 		return 0;
4777 	}
4778 
4779 	case SIOCSMIIREG:
4780 		if (!netif_running(dev))
4781 			return -EAGAIN;
4782 
4783 		return 0;
4784 
4785 	default:
4786 		/* do nothing */
4787 		break;
4788 	}
4789 	return -EOPNOTSUPP;
4790 }
4791 
4792 static struct rtnl_link_stats64 *
4793 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4794 {
4795 	u32 i;
4796 	struct bnxt *bp = netdev_priv(dev);
4797 
4798 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
4799 
4800 	if (!bp->bnapi)
4801 		return stats;
4802 
4803 	/* TODO check if we need to synchronize with bnxt_close path */
4804 	for (i = 0; i < bp->cp_nr_rings; i++) {
4805 		struct bnxt_napi *bnapi = bp->bnapi[i];
4806 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4807 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4808 
4809 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4810 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4811 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4812 
4813 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4814 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4815 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4816 
4817 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4818 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4819 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4820 
4821 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4822 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4823 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4824 
4825 		stats->rx_missed_errors +=
4826 			le64_to_cpu(hw_stats->rx_discard_pkts);
4827 
4828 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4829 
4830 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4831 	}
4832 
4833 	return stats;
4834 }
4835 
4836 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4837 {
4838 	struct net_device *dev = bp->dev;
4839 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4840 	struct netdev_hw_addr *ha;
4841 	u8 *haddr;
4842 	int mc_count = 0;
4843 	bool update = false;
4844 	int off = 0;
4845 
4846 	netdev_for_each_mc_addr(ha, dev) {
4847 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
4848 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4849 			vnic->mc_list_count = 0;
4850 			return false;
4851 		}
4852 		haddr = ha->addr;
4853 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4854 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4855 			update = true;
4856 		}
4857 		off += ETH_ALEN;
4858 		mc_count++;
4859 	}
4860 	if (mc_count)
4861 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4862 
4863 	if (mc_count != vnic->mc_list_count) {
4864 		vnic->mc_list_count = mc_count;
4865 		update = true;
4866 	}
4867 	return update;
4868 }
4869 
4870 static bool bnxt_uc_list_updated(struct bnxt *bp)
4871 {
4872 	struct net_device *dev = bp->dev;
4873 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4874 	struct netdev_hw_addr *ha;
4875 	int off = 0;
4876 
4877 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4878 		return true;
4879 
4880 	netdev_for_each_uc_addr(ha, dev) {
4881 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4882 			return true;
4883 
4884 		off += ETH_ALEN;
4885 	}
4886 	return false;
4887 }
4888 
4889 static void bnxt_set_rx_mode(struct net_device *dev)
4890 {
4891 	struct bnxt *bp = netdev_priv(dev);
4892 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4893 	u32 mask = vnic->rx_mask;
4894 	bool mc_update = false;
4895 	bool uc_update;
4896 
4897 	if (!netif_running(dev))
4898 		return;
4899 
4900 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4901 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4902 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4903 
4904 	/* Only allow PF to be in promiscuous mode */
4905 	if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4906 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4907 
4908 	uc_update = bnxt_uc_list_updated(bp);
4909 
4910 	if (dev->flags & IFF_ALLMULTI) {
4911 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4912 		vnic->mc_list_count = 0;
4913 	} else {
4914 		mc_update = bnxt_mc_list_updated(bp, &mask);
4915 	}
4916 
4917 	if (mask != vnic->rx_mask || uc_update || mc_update) {
4918 		vnic->rx_mask = mask;
4919 
4920 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4921 		schedule_work(&bp->sp_task);
4922 	}
4923 }
4924 
4925 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4926 {
4927 	struct net_device *dev = bp->dev;
4928 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4929 	struct netdev_hw_addr *ha;
4930 	int i, off = 0, rc;
4931 	bool uc_update;
4932 
4933 	netif_addr_lock_bh(dev);
4934 	uc_update = bnxt_uc_list_updated(bp);
4935 	netif_addr_unlock_bh(dev);
4936 
4937 	if (!uc_update)
4938 		goto skip_uc;
4939 
4940 	mutex_lock(&bp->hwrm_cmd_lock);
4941 	for (i = 1; i < vnic->uc_filter_count; i++) {
4942 		struct hwrm_cfa_l2_filter_free_input req = {0};
4943 
4944 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4945 				       -1);
4946 
4947 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
4948 
4949 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4950 					HWRM_CMD_TIMEOUT);
4951 	}
4952 	mutex_unlock(&bp->hwrm_cmd_lock);
4953 
4954 	vnic->uc_filter_count = 1;
4955 
4956 	netif_addr_lock_bh(dev);
4957 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4958 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4959 	} else {
4960 		netdev_for_each_uc_addr(ha, dev) {
4961 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4962 			off += ETH_ALEN;
4963 			vnic->uc_filter_count++;
4964 		}
4965 	}
4966 	netif_addr_unlock_bh(dev);
4967 
4968 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4969 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4970 		if (rc) {
4971 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4972 				   rc);
4973 			vnic->uc_filter_count = i;
4974 			return rc;
4975 		}
4976 	}
4977 
4978 skip_uc:
4979 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4980 	if (rc)
4981 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4982 			   rc);
4983 
4984 	return rc;
4985 }
4986 
4987 static bool bnxt_rfs_capable(struct bnxt *bp)
4988 {
4989 #ifdef CONFIG_RFS_ACCEL
4990 	struct bnxt_pf_info *pf = &bp->pf;
4991 	int vnics;
4992 
4993 	if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
4994 		return false;
4995 
4996 	vnics = 1 + bp->rx_nr_rings;
4997 	if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
4998 		return false;
4999 
5000 	return true;
5001 #else
5002 	return false;
5003 #endif
5004 }
5005 
5006 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5007 					   netdev_features_t features)
5008 {
5009 	struct bnxt *bp = netdev_priv(dev);
5010 
5011 	if (!bnxt_rfs_capable(bp))
5012 		features &= ~NETIF_F_NTUPLE;
5013 	return features;
5014 }
5015 
5016 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5017 {
5018 	struct bnxt *bp = netdev_priv(dev);
5019 	u32 flags = bp->flags;
5020 	u32 changes;
5021 	int rc = 0;
5022 	bool re_init = false;
5023 	bool update_tpa = false;
5024 
5025 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5026 	if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5027 		flags |= BNXT_FLAG_GRO;
5028 	if (features & NETIF_F_LRO)
5029 		flags |= BNXT_FLAG_LRO;
5030 
5031 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5032 		flags |= BNXT_FLAG_STRIP_VLAN;
5033 
5034 	if (features & NETIF_F_NTUPLE)
5035 		flags |= BNXT_FLAG_RFS;
5036 
5037 	changes = flags ^ bp->flags;
5038 	if (changes & BNXT_FLAG_TPA) {
5039 		update_tpa = true;
5040 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5041 		    (flags & BNXT_FLAG_TPA) == 0)
5042 			re_init = true;
5043 	}
5044 
5045 	if (changes & ~BNXT_FLAG_TPA)
5046 		re_init = true;
5047 
5048 	if (flags != bp->flags) {
5049 		u32 old_flags = bp->flags;
5050 
5051 		bp->flags = flags;
5052 
5053 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5054 			if (update_tpa)
5055 				bnxt_set_ring_params(bp);
5056 			return rc;
5057 		}
5058 
5059 		if (re_init) {
5060 			bnxt_close_nic(bp, false, false);
5061 			if (update_tpa)
5062 				bnxt_set_ring_params(bp);
5063 
5064 			return bnxt_open_nic(bp, false, false);
5065 		}
5066 		if (update_tpa) {
5067 			rc = bnxt_set_tpa(bp,
5068 					  (flags & BNXT_FLAG_TPA) ?
5069 					  true : false);
5070 			if (rc)
5071 				bp->flags = old_flags;
5072 		}
5073 	}
5074 	return rc;
5075 }
5076 
5077 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5078 {
5079 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5080 	int i = bnapi->index;
5081 
5082 	if (!txr)
5083 		return;
5084 
5085 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5086 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5087 		    txr->tx_cons);
5088 }
5089 
5090 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5091 {
5092 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5093 	int i = bnapi->index;
5094 
5095 	if (!rxr)
5096 		return;
5097 
5098 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5099 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5100 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5101 		    rxr->rx_sw_agg_prod);
5102 }
5103 
5104 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5105 {
5106 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5107 	int i = bnapi->index;
5108 
5109 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5110 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5111 }
5112 
5113 static void bnxt_dbg_dump_states(struct bnxt *bp)
5114 {
5115 	int i;
5116 	struct bnxt_napi *bnapi;
5117 
5118 	for (i = 0; i < bp->cp_nr_rings; i++) {
5119 		bnapi = bp->bnapi[i];
5120 		if (netif_msg_drv(bp)) {
5121 			bnxt_dump_tx_sw_state(bnapi);
5122 			bnxt_dump_rx_sw_state(bnapi);
5123 			bnxt_dump_cp_sw_state(bnapi);
5124 		}
5125 	}
5126 }
5127 
5128 static void bnxt_reset_task(struct bnxt *bp)
5129 {
5130 	bnxt_dbg_dump_states(bp);
5131 	if (netif_running(bp->dev)) {
5132 		bnxt_close_nic(bp, false, false);
5133 		bnxt_open_nic(bp, false, false);
5134 	}
5135 }
5136 
5137 static void bnxt_tx_timeout(struct net_device *dev)
5138 {
5139 	struct bnxt *bp = netdev_priv(dev);
5140 
5141 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5142 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5143 	schedule_work(&bp->sp_task);
5144 }
5145 
5146 #ifdef CONFIG_NET_POLL_CONTROLLER
5147 static void bnxt_poll_controller(struct net_device *dev)
5148 {
5149 	struct bnxt *bp = netdev_priv(dev);
5150 	int i;
5151 
5152 	for (i = 0; i < bp->cp_nr_rings; i++) {
5153 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5154 
5155 		disable_irq(irq->vector);
5156 		irq->handler(irq->vector, bp->bnapi[i]);
5157 		enable_irq(irq->vector);
5158 	}
5159 }
5160 #endif
5161 
5162 static void bnxt_timer(unsigned long data)
5163 {
5164 	struct bnxt *bp = (struct bnxt *)data;
5165 	struct net_device *dev = bp->dev;
5166 
5167 	if (!netif_running(dev))
5168 		return;
5169 
5170 	if (atomic_read(&bp->intr_sem) != 0)
5171 		goto bnxt_restart_timer;
5172 
5173 bnxt_restart_timer:
5174 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5175 }
5176 
5177 static void bnxt_cfg_ntp_filters(struct bnxt *);
5178 
5179 static void bnxt_sp_task(struct work_struct *work)
5180 {
5181 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5182 	int rc;
5183 
5184 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5185 	smp_mb__after_atomic();
5186 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5187 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5188 		return;
5189 	}
5190 
5191 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5192 		bnxt_cfg_rx_mode(bp);
5193 
5194 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5195 		bnxt_cfg_ntp_filters(bp);
5196 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5197 		rc = bnxt_update_link(bp, true);
5198 		if (rc)
5199 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5200 				   rc);
5201 	}
5202 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5203 		bnxt_hwrm_exec_fwd_req(bp);
5204 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5205 		bnxt_hwrm_tunnel_dst_port_alloc(
5206 			bp, bp->vxlan_port,
5207 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5208 	}
5209 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5210 		bnxt_hwrm_tunnel_dst_port_free(
5211 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5212 	}
5213 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5214 		/* bnxt_reset_task() calls bnxt_close_nic() which waits
5215 		 * for BNXT_STATE_IN_SP_TASK to clear.
5216 		 */
5217 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5218 		rtnl_lock();
5219 		bnxt_reset_task(bp);
5220 		set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5221 		rtnl_unlock();
5222 	}
5223 
5224 	smp_mb__before_atomic();
5225 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5226 }
5227 
5228 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5229 {
5230 	int rc;
5231 	struct bnxt *bp = netdev_priv(dev);
5232 
5233 	SET_NETDEV_DEV(dev, &pdev->dev);
5234 
5235 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
5236 	rc = pci_enable_device(pdev);
5237 	if (rc) {
5238 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5239 		goto init_err;
5240 	}
5241 
5242 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5243 		dev_err(&pdev->dev,
5244 			"Cannot find PCI device base address, aborting\n");
5245 		rc = -ENODEV;
5246 		goto init_err_disable;
5247 	}
5248 
5249 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5250 	if (rc) {
5251 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5252 		goto init_err_disable;
5253 	}
5254 
5255 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5256 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5257 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5258 		goto init_err_disable;
5259 	}
5260 
5261 	pci_set_master(pdev);
5262 
5263 	bp->dev = dev;
5264 	bp->pdev = pdev;
5265 
5266 	bp->bar0 = pci_ioremap_bar(pdev, 0);
5267 	if (!bp->bar0) {
5268 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5269 		rc = -ENOMEM;
5270 		goto init_err_release;
5271 	}
5272 
5273 	bp->bar1 = pci_ioremap_bar(pdev, 2);
5274 	if (!bp->bar1) {
5275 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5276 		rc = -ENOMEM;
5277 		goto init_err_release;
5278 	}
5279 
5280 	bp->bar2 = pci_ioremap_bar(pdev, 4);
5281 	if (!bp->bar2) {
5282 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5283 		rc = -ENOMEM;
5284 		goto init_err_release;
5285 	}
5286 
5287 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
5288 
5289 	spin_lock_init(&bp->ntp_fltr_lock);
5290 
5291 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5292 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5293 
5294 	bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5295 	bp->coal_bufs = 20;
5296 	bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5297 	bp->coal_bufs_irq = 2;
5298 
5299 	init_timer(&bp->timer);
5300 	bp->timer.data = (unsigned long)bp;
5301 	bp->timer.function = bnxt_timer;
5302 	bp->current_interval = BNXT_TIMER_INTERVAL;
5303 
5304 	clear_bit(BNXT_STATE_OPEN, &bp->state);
5305 
5306 	return 0;
5307 
5308 init_err_release:
5309 	if (bp->bar2) {
5310 		pci_iounmap(pdev, bp->bar2);
5311 		bp->bar2 = NULL;
5312 	}
5313 
5314 	if (bp->bar1) {
5315 		pci_iounmap(pdev, bp->bar1);
5316 		bp->bar1 = NULL;
5317 	}
5318 
5319 	if (bp->bar0) {
5320 		pci_iounmap(pdev, bp->bar0);
5321 		bp->bar0 = NULL;
5322 	}
5323 
5324 	pci_release_regions(pdev);
5325 
5326 init_err_disable:
5327 	pci_disable_device(pdev);
5328 
5329 init_err:
5330 	return rc;
5331 }
5332 
5333 /* rtnl_lock held */
5334 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5335 {
5336 	struct sockaddr *addr = p;
5337 	struct bnxt *bp = netdev_priv(dev);
5338 	int rc = 0;
5339 
5340 	if (!is_valid_ether_addr(addr->sa_data))
5341 		return -EADDRNOTAVAIL;
5342 
5343 #ifdef CONFIG_BNXT_SRIOV
5344 	if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5345 		return -EADDRNOTAVAIL;
5346 #endif
5347 
5348 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5349 		return 0;
5350 
5351 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5352 	if (netif_running(dev)) {
5353 		bnxt_close_nic(bp, false, false);
5354 		rc = bnxt_open_nic(bp, false, false);
5355 	}
5356 
5357 	return rc;
5358 }
5359 
5360 /* rtnl_lock held */
5361 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5362 {
5363 	struct bnxt *bp = netdev_priv(dev);
5364 
5365 	if (new_mtu < 60 || new_mtu > 9000)
5366 		return -EINVAL;
5367 
5368 	if (netif_running(dev))
5369 		bnxt_close_nic(bp, false, false);
5370 
5371 	dev->mtu = new_mtu;
5372 	bnxt_set_ring_params(bp);
5373 
5374 	if (netif_running(dev))
5375 		return bnxt_open_nic(bp, false, false);
5376 
5377 	return 0;
5378 }
5379 
5380 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5381 {
5382 	struct bnxt *bp = netdev_priv(dev);
5383 
5384 	if (tc > bp->max_tc) {
5385 		netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5386 			   tc, bp->max_tc);
5387 		return -EINVAL;
5388 	}
5389 
5390 	if (netdev_get_num_tc(dev) == tc)
5391 		return 0;
5392 
5393 	if (tc) {
5394 		int max_rx_rings, max_tx_rings, rc;
5395 		bool sh = false;
5396 
5397 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5398 			sh = true;
5399 
5400 		rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5401 		if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5402 			return -ENOMEM;
5403 	}
5404 
5405 	/* Needs to close the device and do hw resource re-allocations */
5406 	if (netif_running(bp->dev))
5407 		bnxt_close_nic(bp, true, false);
5408 
5409 	if (tc) {
5410 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5411 		netdev_set_num_tc(dev, tc);
5412 	} else {
5413 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5414 		netdev_reset_tc(dev);
5415 	}
5416 	bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5417 	bp->num_stat_ctxs = bp->cp_nr_rings;
5418 
5419 	if (netif_running(bp->dev))
5420 		return bnxt_open_nic(bp, true, false);
5421 
5422 	return 0;
5423 }
5424 
5425 #ifdef CONFIG_RFS_ACCEL
5426 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5427 			    struct bnxt_ntuple_filter *f2)
5428 {
5429 	struct flow_keys *keys1 = &f1->fkeys;
5430 	struct flow_keys *keys2 = &f2->fkeys;
5431 
5432 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5433 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5434 	    keys1->ports.ports == keys2->ports.ports &&
5435 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
5436 	    keys1->basic.n_proto == keys2->basic.n_proto &&
5437 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5438 		return true;
5439 
5440 	return false;
5441 }
5442 
5443 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5444 			      u16 rxq_index, u32 flow_id)
5445 {
5446 	struct bnxt *bp = netdev_priv(dev);
5447 	struct bnxt_ntuple_filter *fltr, *new_fltr;
5448 	struct flow_keys *fkeys;
5449 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5450 	int rc = 0, idx, bit_id;
5451 	struct hlist_head *head;
5452 
5453 	if (skb->encapsulation)
5454 		return -EPROTONOSUPPORT;
5455 
5456 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5457 	if (!new_fltr)
5458 		return -ENOMEM;
5459 
5460 	fkeys = &new_fltr->fkeys;
5461 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5462 		rc = -EPROTONOSUPPORT;
5463 		goto err_free;
5464 	}
5465 
5466 	if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5467 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5468 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5469 		rc = -EPROTONOSUPPORT;
5470 		goto err_free;
5471 	}
5472 
5473 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5474 
5475 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5476 	head = &bp->ntp_fltr_hash_tbl[idx];
5477 	rcu_read_lock();
5478 	hlist_for_each_entry_rcu(fltr, head, hash) {
5479 		if (bnxt_fltr_match(fltr, new_fltr)) {
5480 			rcu_read_unlock();
5481 			rc = 0;
5482 			goto err_free;
5483 		}
5484 	}
5485 	rcu_read_unlock();
5486 
5487 	spin_lock_bh(&bp->ntp_fltr_lock);
5488 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5489 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
5490 	if (bit_id < 0) {
5491 		spin_unlock_bh(&bp->ntp_fltr_lock);
5492 		rc = -ENOMEM;
5493 		goto err_free;
5494 	}
5495 
5496 	new_fltr->sw_id = (u16)bit_id;
5497 	new_fltr->flow_id = flow_id;
5498 	new_fltr->rxq = rxq_index;
5499 	hlist_add_head_rcu(&new_fltr->hash, head);
5500 	bp->ntp_fltr_count++;
5501 	spin_unlock_bh(&bp->ntp_fltr_lock);
5502 
5503 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5504 	schedule_work(&bp->sp_task);
5505 
5506 	return new_fltr->sw_id;
5507 
5508 err_free:
5509 	kfree(new_fltr);
5510 	return rc;
5511 }
5512 
5513 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5514 {
5515 	int i;
5516 
5517 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5518 		struct hlist_head *head;
5519 		struct hlist_node *tmp;
5520 		struct bnxt_ntuple_filter *fltr;
5521 		int rc;
5522 
5523 		head = &bp->ntp_fltr_hash_tbl[i];
5524 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5525 			bool del = false;
5526 
5527 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5528 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
5529 							fltr->flow_id,
5530 							fltr->sw_id)) {
5531 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
5532 									 fltr);
5533 					del = true;
5534 				}
5535 			} else {
5536 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5537 								       fltr);
5538 				if (rc)
5539 					del = true;
5540 				else
5541 					set_bit(BNXT_FLTR_VALID, &fltr->state);
5542 			}
5543 
5544 			if (del) {
5545 				spin_lock_bh(&bp->ntp_fltr_lock);
5546 				hlist_del_rcu(&fltr->hash);
5547 				bp->ntp_fltr_count--;
5548 				spin_unlock_bh(&bp->ntp_fltr_lock);
5549 				synchronize_rcu();
5550 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5551 				kfree(fltr);
5552 			}
5553 		}
5554 	}
5555 }
5556 
5557 #else
5558 
5559 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5560 {
5561 }
5562 
5563 #endif /* CONFIG_RFS_ACCEL */
5564 
5565 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5566 				__be16 port)
5567 {
5568 	struct bnxt *bp = netdev_priv(dev);
5569 
5570 	if (!netif_running(dev))
5571 		return;
5572 
5573 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5574 		return;
5575 
5576 	if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5577 		return;
5578 
5579 	bp->vxlan_port_cnt++;
5580 	if (bp->vxlan_port_cnt == 1) {
5581 		bp->vxlan_port = port;
5582 		set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5583 		schedule_work(&bp->sp_task);
5584 	}
5585 }
5586 
5587 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5588 				__be16 port)
5589 {
5590 	struct bnxt *bp = netdev_priv(dev);
5591 
5592 	if (!netif_running(dev))
5593 		return;
5594 
5595 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5596 		return;
5597 
5598 	if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5599 		bp->vxlan_port_cnt--;
5600 
5601 		if (bp->vxlan_port_cnt == 0) {
5602 			set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5603 			schedule_work(&bp->sp_task);
5604 		}
5605 	}
5606 }
5607 
5608 static const struct net_device_ops bnxt_netdev_ops = {
5609 	.ndo_open		= bnxt_open,
5610 	.ndo_start_xmit		= bnxt_start_xmit,
5611 	.ndo_stop		= bnxt_close,
5612 	.ndo_get_stats64	= bnxt_get_stats64,
5613 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
5614 	.ndo_do_ioctl		= bnxt_ioctl,
5615 	.ndo_validate_addr	= eth_validate_addr,
5616 	.ndo_set_mac_address	= bnxt_change_mac_addr,
5617 	.ndo_change_mtu		= bnxt_change_mtu,
5618 	.ndo_fix_features	= bnxt_fix_features,
5619 	.ndo_set_features	= bnxt_set_features,
5620 	.ndo_tx_timeout		= bnxt_tx_timeout,
5621 #ifdef CONFIG_BNXT_SRIOV
5622 	.ndo_get_vf_config	= bnxt_get_vf_config,
5623 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
5624 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
5625 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
5626 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
5627 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
5628 #endif
5629 #ifdef CONFIG_NET_POLL_CONTROLLER
5630 	.ndo_poll_controller	= bnxt_poll_controller,
5631 #endif
5632 	.ndo_setup_tc           = bnxt_setup_tc,
5633 #ifdef CONFIG_RFS_ACCEL
5634 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
5635 #endif
5636 	.ndo_add_vxlan_port	= bnxt_add_vxlan_port,
5637 	.ndo_del_vxlan_port	= bnxt_del_vxlan_port,
5638 #ifdef CONFIG_NET_RX_BUSY_POLL
5639 	.ndo_busy_poll		= bnxt_busy_poll,
5640 #endif
5641 };
5642 
5643 static void bnxt_remove_one(struct pci_dev *pdev)
5644 {
5645 	struct net_device *dev = pci_get_drvdata(pdev);
5646 	struct bnxt *bp = netdev_priv(dev);
5647 
5648 	if (BNXT_PF(bp))
5649 		bnxt_sriov_disable(bp);
5650 
5651 	unregister_netdev(dev);
5652 	cancel_work_sync(&bp->sp_task);
5653 	bp->sp_event = 0;
5654 
5655 	bnxt_hwrm_func_drv_unrgtr(bp);
5656 	bnxt_free_hwrm_resources(bp);
5657 	pci_iounmap(pdev, bp->bar2);
5658 	pci_iounmap(pdev, bp->bar1);
5659 	pci_iounmap(pdev, bp->bar0);
5660 	free_netdev(dev);
5661 
5662 	pci_release_regions(pdev);
5663 	pci_disable_device(pdev);
5664 }
5665 
5666 static int bnxt_probe_phy(struct bnxt *bp)
5667 {
5668 	int rc = 0;
5669 	struct bnxt_link_info *link_info = &bp->link_info;
5670 	char phy_ver[PHY_VER_STR_LEN];
5671 
5672 	rc = bnxt_update_link(bp, false);
5673 	if (rc) {
5674 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5675 			   rc);
5676 		return rc;
5677 	}
5678 
5679 	/*initialize the ethool setting copy with NVM settings */
5680 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
5681 		link_info->autoneg = BNXT_AUTONEG_SPEED |
5682 				     BNXT_AUTONEG_FLOW_CTRL;
5683 		link_info->advertising = link_info->auto_link_speeds;
5684 		link_info->req_flow_ctrl = link_info->auto_pause_setting;
5685 	} else {
5686 		link_info->req_link_speed = link_info->force_link_speed;
5687 		link_info->req_duplex = link_info->duplex_setting;
5688 		link_info->req_flow_ctrl = link_info->force_pause_setting;
5689 	}
5690 	snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5691 		 link_info->phy_ver[0],
5692 		 link_info->phy_ver[1],
5693 		 link_info->phy_ver[2]);
5694 	strcat(bp->fw_ver_str, phy_ver);
5695 	return rc;
5696 }
5697 
5698 static int bnxt_get_max_irq(struct pci_dev *pdev)
5699 {
5700 	u16 ctrl;
5701 
5702 	if (!pdev->msix_cap)
5703 		return 1;
5704 
5705 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5706 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5707 }
5708 
5709 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5710 				int *max_cp)
5711 {
5712 	int max_ring_grps = 0;
5713 
5714 #ifdef CONFIG_BNXT_SRIOV
5715 	if (!BNXT_PF(bp)) {
5716 		*max_tx = bp->vf.max_tx_rings;
5717 		*max_rx = bp->vf.max_rx_rings;
5718 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5719 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5720 		max_ring_grps = bp->vf.max_hw_ring_grps;
5721 	} else
5722 #endif
5723 	{
5724 		*max_tx = bp->pf.max_tx_rings;
5725 		*max_rx = bp->pf.max_rx_rings;
5726 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5727 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5728 		max_ring_grps = bp->pf.max_hw_ring_grps;
5729 	}
5730 
5731 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5732 		*max_rx >>= 1;
5733 	*max_rx = min_t(int, *max_rx, max_ring_grps);
5734 }
5735 
5736 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5737 {
5738 	int rx, tx, cp;
5739 
5740 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
5741 	if (!rx || !tx || !cp)
5742 		return -ENOMEM;
5743 
5744 	*max_rx = rx;
5745 	*max_tx = tx;
5746 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5747 }
5748 
5749 static int bnxt_set_dflt_rings(struct bnxt *bp)
5750 {
5751 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
5752 	bool sh = true;
5753 
5754 	if (sh)
5755 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
5756 	dflt_rings = netif_get_num_default_rss_queues();
5757 	rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5758 	if (rc)
5759 		return rc;
5760 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5761 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5762 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5763 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5764 			       bp->tx_nr_rings + bp->rx_nr_rings;
5765 	bp->num_stat_ctxs = bp->cp_nr_rings;
5766 	return rc;
5767 }
5768 
5769 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5770 {
5771 	static int version_printed;
5772 	struct net_device *dev;
5773 	struct bnxt *bp;
5774 	int rc, max_irqs;
5775 
5776 	if (version_printed++ == 0)
5777 		pr_info("%s", version);
5778 
5779 	max_irqs = bnxt_get_max_irq(pdev);
5780 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5781 	if (!dev)
5782 		return -ENOMEM;
5783 
5784 	bp = netdev_priv(dev);
5785 
5786 	if (bnxt_vf_pciid(ent->driver_data))
5787 		bp->flags |= BNXT_FLAG_VF;
5788 
5789 	if (pdev->msix_cap)
5790 		bp->flags |= BNXT_FLAG_MSIX_CAP;
5791 
5792 	rc = bnxt_init_board(pdev, dev);
5793 	if (rc < 0)
5794 		goto init_err_free;
5795 
5796 	dev->netdev_ops = &bnxt_netdev_ops;
5797 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5798 	dev->ethtool_ops = &bnxt_ethtool_ops;
5799 
5800 	pci_set_drvdata(pdev, dev);
5801 
5802 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5803 			   NETIF_F_TSO | NETIF_F_TSO6 |
5804 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5805 			   NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5806 			   NETIF_F_RXHASH |
5807 			   NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5808 
5809 	dev->hw_enc_features =
5810 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5811 			NETIF_F_TSO | NETIF_F_TSO6 |
5812 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5813 			NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5814 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5815 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5816 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5817 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5818 	dev->priv_flags |= IFF_UNICAST_FLT;
5819 
5820 #ifdef CONFIG_BNXT_SRIOV
5821 	init_waitqueue_head(&bp->sriov_cfg_wait);
5822 #endif
5823 	rc = bnxt_alloc_hwrm_resources(bp);
5824 	if (rc)
5825 		goto init_err;
5826 
5827 	mutex_init(&bp->hwrm_cmd_lock);
5828 	bnxt_hwrm_ver_get(bp);
5829 
5830 	rc = bnxt_hwrm_func_drv_rgtr(bp);
5831 	if (rc)
5832 		goto init_err;
5833 
5834 	/* Get the MAX capabilities for this function */
5835 	rc = bnxt_hwrm_func_qcaps(bp);
5836 	if (rc) {
5837 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5838 			   rc);
5839 		rc = -1;
5840 		goto init_err;
5841 	}
5842 
5843 	rc = bnxt_hwrm_queue_qportcfg(bp);
5844 	if (rc) {
5845 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5846 			   rc);
5847 		rc = -1;
5848 		goto init_err;
5849 	}
5850 
5851 	bnxt_set_tpa_flags(bp);
5852 	bnxt_set_ring_params(bp);
5853 	if (BNXT_PF(bp))
5854 		bp->pf.max_irqs = max_irqs;
5855 #if defined(CONFIG_BNXT_SRIOV)
5856 	else
5857 		bp->vf.max_irqs = max_irqs;
5858 #endif
5859 	bnxt_set_dflt_rings(bp);
5860 
5861 	if (BNXT_PF(bp)) {
5862 		dev->hw_features |= NETIF_F_NTUPLE;
5863 		if (bnxt_rfs_capable(bp)) {
5864 			bp->flags |= BNXT_FLAG_RFS;
5865 			dev->features |= NETIF_F_NTUPLE;
5866 		}
5867 	}
5868 
5869 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5870 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
5871 
5872 	rc = bnxt_probe_phy(bp);
5873 	if (rc)
5874 		goto init_err;
5875 
5876 	rc = register_netdev(dev);
5877 	if (rc)
5878 		goto init_err;
5879 
5880 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5881 		    board_info[ent->driver_data].name,
5882 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
5883 
5884 	return 0;
5885 
5886 init_err:
5887 	pci_iounmap(pdev, bp->bar0);
5888 	pci_release_regions(pdev);
5889 	pci_disable_device(pdev);
5890 
5891 init_err_free:
5892 	free_netdev(dev);
5893 	return rc;
5894 }
5895 
5896 static struct pci_driver bnxt_pci_driver = {
5897 	.name		= DRV_MODULE_NAME,
5898 	.id_table	= bnxt_pci_tbl,
5899 	.probe		= bnxt_init_one,
5900 	.remove		= bnxt_remove_one,
5901 #if defined(CONFIG_BNXT_SRIOV)
5902 	.sriov_configure = bnxt_sriov_configure,
5903 #endif
5904 };
5905 
5906 module_pci_driver(bnxt_pci_driver);
5907