xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 2584e54502e1c77ce143d5874520f36240395e6f)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool/helpers.h>
58 #include <linux/align.h>
59 #include <net/netdev_queues.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
297 {
298 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
299 		return;
300 
301 	if (BNXT_PF(bp))
302 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
303 	else
304 		schedule_delayed_work(&bp->fw_reset_task, delay);
305 }
306 
307 static void __bnxt_queue_sp_work(struct bnxt *bp)
308 {
309 	if (BNXT_PF(bp))
310 		queue_work(bnxt_pf_wq, &bp->sp_task);
311 	else
312 		schedule_work(&bp->sp_task);
313 }
314 
315 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event)
316 {
317 	set_bit(event, &bp->sp_event);
318 	__bnxt_queue_sp_work(bp);
319 }
320 
321 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
322 {
323 	if (!rxr->bnapi->in_reset) {
324 		rxr->bnapi->in_reset = true;
325 		if (bp->flags & BNXT_FLAG_CHIP_P5)
326 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
327 		else
328 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
329 		__bnxt_queue_sp_work(bp);
330 	}
331 	rxr->rx_next_cons = 0xffff;
332 }
333 
334 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
335 			  int idx)
336 {
337 	struct bnxt_napi *bnapi = txr->bnapi;
338 
339 	if (bnapi->tx_fault)
340 		return;
341 
342 	netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_pkts:%d cons:%u prod:%u i:%d)",
343 		   txr->txq_index, bnapi->tx_pkts,
344 		   txr->tx_cons, txr->tx_prod, idx);
345 	WARN_ON_ONCE(1);
346 	bnapi->tx_fault = 1;
347 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
348 }
349 
350 const u16 bnxt_lhint_arr[] = {
351 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
352 	TX_BD_FLAGS_LHINT_512_TO_1023,
353 	TX_BD_FLAGS_LHINT_1024_TO_2047,
354 	TX_BD_FLAGS_LHINT_1024_TO_2047,
355 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
356 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
357 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
358 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
359 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
360 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
361 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
362 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
363 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
364 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
365 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
366 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
367 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
368 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
369 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
370 };
371 
372 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
373 {
374 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
375 
376 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
377 		return 0;
378 
379 	return md_dst->u.port_info.port_id;
380 }
381 
382 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
383 			     u16 prod)
384 {
385 	bnxt_db_write(bp, &txr->tx_db, prod);
386 	txr->kick_pending = 0;
387 }
388 
389 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
390 {
391 	struct bnxt *bp = netdev_priv(dev);
392 	struct tx_bd *txbd;
393 	struct tx_bd_ext *txbd1;
394 	struct netdev_queue *txq;
395 	int i;
396 	dma_addr_t mapping;
397 	unsigned int length, pad = 0;
398 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
399 	u16 prod, last_frag;
400 	struct pci_dev *pdev = bp->pdev;
401 	struct bnxt_tx_ring_info *txr;
402 	struct bnxt_sw_tx_bd *tx_buf;
403 	__le32 lflags = 0;
404 
405 	i = skb_get_queue_mapping(skb);
406 	if (unlikely(i >= bp->tx_nr_rings)) {
407 		dev_kfree_skb_any(skb);
408 		dev_core_stats_tx_dropped_inc(dev);
409 		return NETDEV_TX_OK;
410 	}
411 
412 	txq = netdev_get_tx_queue(dev, i);
413 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
414 	prod = txr->tx_prod;
415 
416 	free_size = bnxt_tx_avail(bp, txr);
417 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
418 		/* We must have raced with NAPI cleanup */
419 		if (net_ratelimit() && txr->kick_pending)
420 			netif_warn(bp, tx_err, dev,
421 				   "bnxt: ring busy w/ flush pending!\n");
422 		if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
423 					bp->tx_wake_thresh))
424 			return NETDEV_TX_BUSY;
425 	}
426 
427 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
428 		goto tx_free;
429 
430 	length = skb->len;
431 	len = skb_headlen(skb);
432 	last_frag = skb_shinfo(skb)->nr_frags;
433 
434 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
435 
436 	txbd->tx_bd_opaque = prod;
437 
438 	tx_buf = &txr->tx_buf_ring[prod];
439 	tx_buf->skb = skb;
440 	tx_buf->nr_frags = last_frag;
441 
442 	vlan_tag_flags = 0;
443 	cfa_action = bnxt_xmit_get_cfa_action(skb);
444 	if (skb_vlan_tag_present(skb)) {
445 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
446 				 skb_vlan_tag_get(skb);
447 		/* Currently supports 8021Q, 8021AD vlan offloads
448 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
449 		 */
450 		if (skb->vlan_proto == htons(ETH_P_8021Q))
451 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
452 	}
453 
454 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
455 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
456 
457 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
458 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
459 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
460 					    &ptp->tx_hdr_off)) {
461 				if (vlan_tag_flags)
462 					ptp->tx_hdr_off += VLAN_HLEN;
463 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
464 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
465 			} else {
466 				atomic_inc(&bp->ptp_cfg->tx_avail);
467 			}
468 		}
469 	}
470 
471 	if (unlikely(skb->no_fcs))
472 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
473 
474 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
475 	    !lflags) {
476 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
477 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
478 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
479 		void __iomem *db = txr->tx_db.doorbell;
480 		void *pdata = tx_push_buf->data;
481 		u64 *end;
482 		int j, push_len;
483 
484 		/* Set COAL_NOW to be ready quickly for the next push */
485 		tx_push->tx_bd_len_flags_type =
486 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
487 					TX_BD_TYPE_LONG_TX_BD |
488 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
489 					TX_BD_FLAGS_COAL_NOW |
490 					TX_BD_FLAGS_PACKET_END |
491 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
492 
493 		if (skb->ip_summed == CHECKSUM_PARTIAL)
494 			tx_push1->tx_bd_hsize_lflags =
495 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
496 		else
497 			tx_push1->tx_bd_hsize_lflags = 0;
498 
499 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
500 		tx_push1->tx_bd_cfa_action =
501 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
502 
503 		end = pdata + length;
504 		end = PTR_ALIGN(end, 8) - 1;
505 		*end = 0;
506 
507 		skb_copy_from_linear_data(skb, pdata, len);
508 		pdata += len;
509 		for (j = 0; j < last_frag; j++) {
510 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
511 			void *fptr;
512 
513 			fptr = skb_frag_address_safe(frag);
514 			if (!fptr)
515 				goto normal_tx;
516 
517 			memcpy(pdata, fptr, skb_frag_size(frag));
518 			pdata += skb_frag_size(frag);
519 		}
520 
521 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
522 		txbd->tx_bd_haddr = txr->data_mapping;
523 		prod = NEXT_TX(prod);
524 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
525 		memcpy(txbd, tx_push1, sizeof(*txbd));
526 		prod = NEXT_TX(prod);
527 		tx_push->doorbell =
528 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
529 		WRITE_ONCE(txr->tx_prod, prod);
530 
531 		tx_buf->is_push = 1;
532 		netdev_tx_sent_queue(txq, skb->len);
533 		wmb();	/* Sync is_push and byte queue before pushing data */
534 
535 		push_len = (length + sizeof(*tx_push) + 7) / 8;
536 		if (push_len > 16) {
537 			__iowrite64_copy(db, tx_push_buf, 16);
538 			__iowrite32_copy(db + 4, tx_push_buf + 1,
539 					 (push_len - 16) << 1);
540 		} else {
541 			__iowrite64_copy(db, tx_push_buf, push_len);
542 		}
543 
544 		goto tx_done;
545 	}
546 
547 normal_tx:
548 	if (length < BNXT_MIN_PKT_SIZE) {
549 		pad = BNXT_MIN_PKT_SIZE - length;
550 		if (skb_pad(skb, pad))
551 			/* SKB already freed. */
552 			goto tx_kick_pending;
553 		length = BNXT_MIN_PKT_SIZE;
554 	}
555 
556 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
557 
558 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
559 		goto tx_free;
560 
561 	dma_unmap_addr_set(tx_buf, mapping, mapping);
562 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
563 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
564 
565 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
566 
567 	prod = NEXT_TX(prod);
568 	txbd1 = (struct tx_bd_ext *)
569 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
570 
571 	txbd1->tx_bd_hsize_lflags = lflags;
572 	if (skb_is_gso(skb)) {
573 		u32 hdr_len;
574 
575 		if (skb->encapsulation)
576 			hdr_len = skb_inner_tcp_all_headers(skb);
577 		else
578 			hdr_len = skb_tcp_all_headers(skb);
579 
580 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
581 					TX_BD_FLAGS_T_IPID |
582 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
583 		length = skb_shinfo(skb)->gso_size;
584 		txbd1->tx_bd_mss = cpu_to_le32(length);
585 		length += hdr_len;
586 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
587 		txbd1->tx_bd_hsize_lflags |=
588 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
589 		txbd1->tx_bd_mss = 0;
590 	}
591 
592 	length >>= 9;
593 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
594 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
595 				     skb->len);
596 		i = 0;
597 		goto tx_dma_error;
598 	}
599 	flags |= bnxt_lhint_arr[length];
600 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
601 
602 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
603 	txbd1->tx_bd_cfa_action =
604 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
605 	for (i = 0; i < last_frag; i++) {
606 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
607 
608 		prod = NEXT_TX(prod);
609 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
610 
611 		len = skb_frag_size(frag);
612 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
613 					   DMA_TO_DEVICE);
614 
615 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
616 			goto tx_dma_error;
617 
618 		tx_buf = &txr->tx_buf_ring[prod];
619 		dma_unmap_addr_set(tx_buf, mapping, mapping);
620 
621 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
622 
623 		flags = len << TX_BD_LEN_SHIFT;
624 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
625 	}
626 
627 	flags &= ~TX_BD_LEN;
628 	txbd->tx_bd_len_flags_type =
629 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
630 			    TX_BD_FLAGS_PACKET_END);
631 
632 	netdev_tx_sent_queue(txq, skb->len);
633 
634 	skb_tx_timestamp(skb);
635 
636 	/* Sync BD data before updating doorbell */
637 	wmb();
638 
639 	prod = NEXT_TX(prod);
640 	WRITE_ONCE(txr->tx_prod, prod);
641 
642 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
643 		bnxt_txr_db_kick(bp, txr, prod);
644 	else
645 		txr->kick_pending = 1;
646 
647 tx_done:
648 
649 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
650 		if (netdev_xmit_more() && !tx_buf->is_push)
651 			bnxt_txr_db_kick(bp, txr, prod);
652 
653 		netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr),
654 				   bp->tx_wake_thresh);
655 	}
656 	return NETDEV_TX_OK;
657 
658 tx_dma_error:
659 	if (BNXT_TX_PTP_IS_SET(lflags))
660 		atomic_inc(&bp->ptp_cfg->tx_avail);
661 
662 	last_frag = i;
663 
664 	/* start back at beginning and unmap skb */
665 	prod = txr->tx_prod;
666 	tx_buf = &txr->tx_buf_ring[prod];
667 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
668 			 skb_headlen(skb), DMA_TO_DEVICE);
669 	prod = NEXT_TX(prod);
670 
671 	/* unmap remaining mapped pages */
672 	for (i = 0; i < last_frag; i++) {
673 		prod = NEXT_TX(prod);
674 		tx_buf = &txr->tx_buf_ring[prod];
675 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
676 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
677 			       DMA_TO_DEVICE);
678 	}
679 
680 tx_free:
681 	dev_kfree_skb_any(skb);
682 tx_kick_pending:
683 	if (txr->kick_pending)
684 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
685 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
686 	dev_core_stats_tx_dropped_inc(dev);
687 	return NETDEV_TX_OK;
688 }
689 
690 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
691 {
692 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
693 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
694 	u16 cons = txr->tx_cons;
695 	struct pci_dev *pdev = bp->pdev;
696 	int nr_pkts = bnapi->tx_pkts;
697 	int i;
698 	unsigned int tx_bytes = 0;
699 
700 	for (i = 0; i < nr_pkts; i++) {
701 		struct bnxt_sw_tx_bd *tx_buf;
702 		struct sk_buff *skb;
703 		int j, last;
704 
705 		tx_buf = &txr->tx_buf_ring[cons];
706 		cons = NEXT_TX(cons);
707 		skb = tx_buf->skb;
708 		tx_buf->skb = NULL;
709 
710 		if (unlikely(!skb)) {
711 			bnxt_sched_reset_txr(bp, txr, i);
712 			return;
713 		}
714 
715 		tx_bytes += skb->len;
716 
717 		if (tx_buf->is_push) {
718 			tx_buf->is_push = 0;
719 			goto next_tx_int;
720 		}
721 
722 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
723 				 skb_headlen(skb), DMA_TO_DEVICE);
724 		last = tx_buf->nr_frags;
725 
726 		for (j = 0; j < last; j++) {
727 			cons = NEXT_TX(cons);
728 			tx_buf = &txr->tx_buf_ring[cons];
729 			dma_unmap_page(
730 				&pdev->dev,
731 				dma_unmap_addr(tx_buf, mapping),
732 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
733 				DMA_TO_DEVICE);
734 		}
735 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
736 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
737 				/* PTP worker takes ownership of the skb */
738 				if (!bnxt_get_tx_ts_p5(bp, skb))
739 					skb = NULL;
740 				else
741 					atomic_inc(&bp->ptp_cfg->tx_avail);
742 			}
743 		}
744 
745 next_tx_int:
746 		cons = NEXT_TX(cons);
747 
748 		dev_consume_skb_any(skb);
749 	}
750 
751 	bnapi->tx_pkts = 0;
752 	WRITE_ONCE(txr->tx_cons, cons);
753 
754 	__netif_txq_completed_wake(txq, nr_pkts, tx_bytes,
755 				   bnxt_tx_avail(bp, txr), bp->tx_wake_thresh,
756 				   READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING);
757 }
758 
759 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
760 					 struct bnxt_rx_ring_info *rxr,
761 					 unsigned int *offset,
762 					 gfp_t gfp)
763 {
764 	struct page *page;
765 
766 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
767 		page = page_pool_dev_alloc_frag(rxr->page_pool, offset,
768 						BNXT_RX_PAGE_SIZE);
769 	} else {
770 		page = page_pool_dev_alloc_pages(rxr->page_pool);
771 		*offset = 0;
772 	}
773 	if (!page)
774 		return NULL;
775 
776 	*mapping = page_pool_get_dma_addr(page) + *offset;
777 	return page;
778 }
779 
780 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
781 				       gfp_t gfp)
782 {
783 	u8 *data;
784 	struct pci_dev *pdev = bp->pdev;
785 
786 	if (gfp == GFP_ATOMIC)
787 		data = napi_alloc_frag(bp->rx_buf_size);
788 	else
789 		data = netdev_alloc_frag(bp->rx_buf_size);
790 	if (!data)
791 		return NULL;
792 
793 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
794 					bp->rx_buf_use_size, bp->rx_dir,
795 					DMA_ATTR_WEAK_ORDERING);
796 
797 	if (dma_mapping_error(&pdev->dev, *mapping)) {
798 		skb_free_frag(data);
799 		data = NULL;
800 	}
801 	return data;
802 }
803 
804 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
805 		       u16 prod, gfp_t gfp)
806 {
807 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
808 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
809 	dma_addr_t mapping;
810 
811 	if (BNXT_RX_PAGE_MODE(bp)) {
812 		unsigned int offset;
813 		struct page *page =
814 			__bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
815 
816 		if (!page)
817 			return -ENOMEM;
818 
819 		mapping += bp->rx_dma_offset;
820 		rx_buf->data = page;
821 		rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset;
822 	} else {
823 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
824 
825 		if (!data)
826 			return -ENOMEM;
827 
828 		rx_buf->data = data;
829 		rx_buf->data_ptr = data + bp->rx_offset;
830 	}
831 	rx_buf->mapping = mapping;
832 
833 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
834 	return 0;
835 }
836 
837 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
838 {
839 	u16 prod = rxr->rx_prod;
840 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
841 	struct rx_bd *cons_bd, *prod_bd;
842 
843 	prod_rx_buf = &rxr->rx_buf_ring[prod];
844 	cons_rx_buf = &rxr->rx_buf_ring[cons];
845 
846 	prod_rx_buf->data = data;
847 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
848 
849 	prod_rx_buf->mapping = cons_rx_buf->mapping;
850 
851 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
852 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
853 
854 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
855 }
856 
857 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
858 {
859 	u16 next, max = rxr->rx_agg_bmap_size;
860 
861 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
862 	if (next >= max)
863 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
864 	return next;
865 }
866 
867 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
868 				     struct bnxt_rx_ring_info *rxr,
869 				     u16 prod, gfp_t gfp)
870 {
871 	struct rx_bd *rxbd =
872 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
873 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
874 	struct page *page;
875 	dma_addr_t mapping;
876 	u16 sw_prod = rxr->rx_sw_agg_prod;
877 	unsigned int offset = 0;
878 
879 	page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp);
880 
881 	if (!page)
882 		return -ENOMEM;
883 
884 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
885 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
886 
887 	__set_bit(sw_prod, rxr->rx_agg_bmap);
888 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
889 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
890 
891 	rx_agg_buf->page = page;
892 	rx_agg_buf->offset = offset;
893 	rx_agg_buf->mapping = mapping;
894 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
895 	rxbd->rx_bd_opaque = sw_prod;
896 	return 0;
897 }
898 
899 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
900 				       struct bnxt_cp_ring_info *cpr,
901 				       u16 cp_cons, u16 curr)
902 {
903 	struct rx_agg_cmp *agg;
904 
905 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
906 	agg = (struct rx_agg_cmp *)
907 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
908 	return agg;
909 }
910 
911 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
912 					      struct bnxt_rx_ring_info *rxr,
913 					      u16 agg_id, u16 curr)
914 {
915 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
916 
917 	return &tpa_info->agg_arr[curr];
918 }
919 
920 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
921 				   u16 start, u32 agg_bufs, bool tpa)
922 {
923 	struct bnxt_napi *bnapi = cpr->bnapi;
924 	struct bnxt *bp = bnapi->bp;
925 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
926 	u16 prod = rxr->rx_agg_prod;
927 	u16 sw_prod = rxr->rx_sw_agg_prod;
928 	bool p5_tpa = false;
929 	u32 i;
930 
931 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
932 		p5_tpa = true;
933 
934 	for (i = 0; i < agg_bufs; i++) {
935 		u16 cons;
936 		struct rx_agg_cmp *agg;
937 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
938 		struct rx_bd *prod_bd;
939 		struct page *page;
940 
941 		if (p5_tpa)
942 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
943 		else
944 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
945 		cons = agg->rx_agg_cmp_opaque;
946 		__clear_bit(cons, rxr->rx_agg_bmap);
947 
948 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
949 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
950 
951 		__set_bit(sw_prod, rxr->rx_agg_bmap);
952 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
953 		cons_rx_buf = &rxr->rx_agg_ring[cons];
954 
955 		/* It is possible for sw_prod to be equal to cons, so
956 		 * set cons_rx_buf->page to NULL first.
957 		 */
958 		page = cons_rx_buf->page;
959 		cons_rx_buf->page = NULL;
960 		prod_rx_buf->page = page;
961 		prod_rx_buf->offset = cons_rx_buf->offset;
962 
963 		prod_rx_buf->mapping = cons_rx_buf->mapping;
964 
965 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
966 
967 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
968 		prod_bd->rx_bd_opaque = sw_prod;
969 
970 		prod = NEXT_RX_AGG(prod);
971 		sw_prod = NEXT_RX_AGG(sw_prod);
972 	}
973 	rxr->rx_agg_prod = prod;
974 	rxr->rx_sw_agg_prod = sw_prod;
975 }
976 
977 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
978 					      struct bnxt_rx_ring_info *rxr,
979 					      u16 cons, void *data, u8 *data_ptr,
980 					      dma_addr_t dma_addr,
981 					      unsigned int offset_and_len)
982 {
983 	unsigned int len = offset_and_len & 0xffff;
984 	struct page *page = data;
985 	u16 prod = rxr->rx_prod;
986 	struct sk_buff *skb;
987 	int err;
988 
989 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
990 	if (unlikely(err)) {
991 		bnxt_reuse_rx_data(rxr, cons, data);
992 		return NULL;
993 	}
994 	dma_addr -= bp->rx_dma_offset;
995 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
996 				bp->rx_dir);
997 	skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE);
998 	if (!skb) {
999 		page_pool_recycle_direct(rxr->page_pool, page);
1000 		return NULL;
1001 	}
1002 	skb_mark_for_recycle(skb);
1003 	skb_reserve(skb, bp->rx_offset);
1004 	__skb_put(skb, len);
1005 
1006 	return skb;
1007 }
1008 
1009 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1010 					struct bnxt_rx_ring_info *rxr,
1011 					u16 cons, void *data, u8 *data_ptr,
1012 					dma_addr_t dma_addr,
1013 					unsigned int offset_and_len)
1014 {
1015 	unsigned int payload = offset_and_len >> 16;
1016 	unsigned int len = offset_and_len & 0xffff;
1017 	skb_frag_t *frag;
1018 	struct page *page = data;
1019 	u16 prod = rxr->rx_prod;
1020 	struct sk_buff *skb;
1021 	int off, err;
1022 
1023 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1024 	if (unlikely(err)) {
1025 		bnxt_reuse_rx_data(rxr, cons, data);
1026 		return NULL;
1027 	}
1028 	dma_addr -= bp->rx_dma_offset;
1029 	dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE,
1030 				bp->rx_dir);
1031 
1032 	if (unlikely(!payload))
1033 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1034 
1035 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1036 	if (!skb) {
1037 		page_pool_recycle_direct(rxr->page_pool, page);
1038 		return NULL;
1039 	}
1040 
1041 	skb_mark_for_recycle(skb);
1042 	off = (void *)data_ptr - page_address(page);
1043 	skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE);
1044 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1045 	       payload + NET_IP_ALIGN);
1046 
1047 	frag = &skb_shinfo(skb)->frags[0];
1048 	skb_frag_size_sub(frag, payload);
1049 	skb_frag_off_add(frag, payload);
1050 	skb->data_len -= payload;
1051 	skb->tail += payload;
1052 
1053 	return skb;
1054 }
1055 
1056 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1057 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1058 				   void *data, u8 *data_ptr,
1059 				   dma_addr_t dma_addr,
1060 				   unsigned int offset_and_len)
1061 {
1062 	u16 prod = rxr->rx_prod;
1063 	struct sk_buff *skb;
1064 	int err;
1065 
1066 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1067 	if (unlikely(err)) {
1068 		bnxt_reuse_rx_data(rxr, cons, data);
1069 		return NULL;
1070 	}
1071 
1072 	skb = napi_build_skb(data, bp->rx_buf_size);
1073 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1074 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1075 	if (!skb) {
1076 		skb_free_frag(data);
1077 		return NULL;
1078 	}
1079 
1080 	skb_reserve(skb, bp->rx_offset);
1081 	skb_put(skb, offset_and_len & 0xffff);
1082 	return skb;
1083 }
1084 
1085 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1086 			       struct bnxt_cp_ring_info *cpr,
1087 			       struct skb_shared_info *shinfo,
1088 			       u16 idx, u32 agg_bufs, bool tpa,
1089 			       struct xdp_buff *xdp)
1090 {
1091 	struct bnxt_napi *bnapi = cpr->bnapi;
1092 	struct pci_dev *pdev = bp->pdev;
1093 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1094 	u16 prod = rxr->rx_agg_prod;
1095 	u32 i, total_frag_len = 0;
1096 	bool p5_tpa = false;
1097 
1098 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1099 		p5_tpa = true;
1100 
1101 	for (i = 0; i < agg_bufs; i++) {
1102 		skb_frag_t *frag = &shinfo->frags[i];
1103 		u16 cons, frag_len;
1104 		struct rx_agg_cmp *agg;
1105 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1106 		struct page *page;
1107 		dma_addr_t mapping;
1108 
1109 		if (p5_tpa)
1110 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1111 		else
1112 			agg = bnxt_get_agg(bp, cpr, idx, i);
1113 		cons = agg->rx_agg_cmp_opaque;
1114 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1115 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1116 
1117 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1118 		skb_frag_fill_page_desc(frag, cons_rx_buf->page,
1119 					cons_rx_buf->offset, frag_len);
1120 		shinfo->nr_frags = i + 1;
1121 		__clear_bit(cons, rxr->rx_agg_bmap);
1122 
1123 		/* It is possible for bnxt_alloc_rx_page() to allocate
1124 		 * a sw_prod index that equals the cons index, so we
1125 		 * need to clear the cons entry now.
1126 		 */
1127 		mapping = cons_rx_buf->mapping;
1128 		page = cons_rx_buf->page;
1129 		cons_rx_buf->page = NULL;
1130 
1131 		if (xdp && page_is_pfmemalloc(page))
1132 			xdp_buff_set_frag_pfmemalloc(xdp);
1133 
1134 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1135 			--shinfo->nr_frags;
1136 			cons_rx_buf->page = page;
1137 
1138 			/* Update prod since possibly some pages have been
1139 			 * allocated already.
1140 			 */
1141 			rxr->rx_agg_prod = prod;
1142 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1143 			return 0;
1144 		}
1145 
1146 		dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1147 					bp->rx_dir);
1148 
1149 		total_frag_len += frag_len;
1150 		prod = NEXT_RX_AGG(prod);
1151 	}
1152 	rxr->rx_agg_prod = prod;
1153 	return total_frag_len;
1154 }
1155 
1156 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1157 					     struct bnxt_cp_ring_info *cpr,
1158 					     struct sk_buff *skb, u16 idx,
1159 					     u32 agg_bufs, bool tpa)
1160 {
1161 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1162 	u32 total_frag_len = 0;
1163 
1164 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1165 					     agg_bufs, tpa, NULL);
1166 	if (!total_frag_len) {
1167 		skb_mark_for_recycle(skb);
1168 		dev_kfree_skb(skb);
1169 		return NULL;
1170 	}
1171 
1172 	skb->data_len += total_frag_len;
1173 	skb->len += total_frag_len;
1174 	skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs;
1175 	return skb;
1176 }
1177 
1178 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1179 				 struct bnxt_cp_ring_info *cpr,
1180 				 struct xdp_buff *xdp, u16 idx,
1181 				 u32 agg_bufs, bool tpa)
1182 {
1183 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1184 	u32 total_frag_len = 0;
1185 
1186 	if (!xdp_buff_has_frags(xdp))
1187 		shinfo->nr_frags = 0;
1188 
1189 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1190 					     idx, agg_bufs, tpa, xdp);
1191 	if (total_frag_len) {
1192 		xdp_buff_set_frags_flag(xdp);
1193 		shinfo->nr_frags = agg_bufs;
1194 		shinfo->xdp_frags_size = total_frag_len;
1195 	}
1196 	return total_frag_len;
1197 }
1198 
1199 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1200 			       u8 agg_bufs, u32 *raw_cons)
1201 {
1202 	u16 last;
1203 	struct rx_agg_cmp *agg;
1204 
1205 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1206 	last = RING_CMP(*raw_cons);
1207 	agg = (struct rx_agg_cmp *)
1208 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1209 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1210 }
1211 
1212 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1213 					    unsigned int len,
1214 					    dma_addr_t mapping)
1215 {
1216 	struct bnxt *bp = bnapi->bp;
1217 	struct pci_dev *pdev = bp->pdev;
1218 	struct sk_buff *skb;
1219 
1220 	skb = napi_alloc_skb(&bnapi->napi, len);
1221 	if (!skb)
1222 		return NULL;
1223 
1224 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1225 				bp->rx_dir);
1226 
1227 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1228 	       len + NET_IP_ALIGN);
1229 
1230 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1231 				   bp->rx_dir);
1232 
1233 	skb_put(skb, len);
1234 	return skb;
1235 }
1236 
1237 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1238 			   u32 *raw_cons, void *cmp)
1239 {
1240 	struct rx_cmp *rxcmp = cmp;
1241 	u32 tmp_raw_cons = *raw_cons;
1242 	u8 cmp_type, agg_bufs = 0;
1243 
1244 	cmp_type = RX_CMP_TYPE(rxcmp);
1245 
1246 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1247 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1248 			    RX_CMP_AGG_BUFS) >>
1249 			   RX_CMP_AGG_BUFS_SHIFT;
1250 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1251 		struct rx_tpa_end_cmp *tpa_end = cmp;
1252 
1253 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1254 			return 0;
1255 
1256 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1257 	}
1258 
1259 	if (agg_bufs) {
1260 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1261 			return -EBUSY;
1262 	}
1263 	*raw_cons = tmp_raw_cons;
1264 	return 0;
1265 }
1266 
1267 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1268 {
1269 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1270 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1271 
1272 	if (test_bit(idx, map->agg_idx_bmap))
1273 		idx = find_first_zero_bit(map->agg_idx_bmap,
1274 					  BNXT_AGG_IDX_BMAP_SIZE);
1275 	__set_bit(idx, map->agg_idx_bmap);
1276 	map->agg_id_tbl[agg_id] = idx;
1277 	return idx;
1278 }
1279 
1280 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1281 {
1282 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1283 
1284 	__clear_bit(idx, map->agg_idx_bmap);
1285 }
1286 
1287 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1288 {
1289 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1290 
1291 	return map->agg_id_tbl[agg_id];
1292 }
1293 
1294 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1295 			   struct rx_tpa_start_cmp *tpa_start,
1296 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1297 {
1298 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1299 	struct bnxt_tpa_info *tpa_info;
1300 	u16 cons, prod, agg_id;
1301 	struct rx_bd *prod_bd;
1302 	dma_addr_t mapping;
1303 
1304 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1305 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1306 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1307 	} else {
1308 		agg_id = TPA_START_AGG_ID(tpa_start);
1309 	}
1310 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1311 	prod = rxr->rx_prod;
1312 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1313 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1314 	tpa_info = &rxr->rx_tpa[agg_id];
1315 
1316 	if (unlikely(cons != rxr->rx_next_cons ||
1317 		     TPA_START_ERROR(tpa_start))) {
1318 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1319 			    cons, rxr->rx_next_cons,
1320 			    TPA_START_ERROR_CODE(tpa_start1));
1321 		bnxt_sched_reset_rxr(bp, rxr);
1322 		return;
1323 	}
1324 	/* Store cfa_code in tpa_info to use in tpa_end
1325 	 * completion processing.
1326 	 */
1327 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1328 	prod_rx_buf->data = tpa_info->data;
1329 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1330 
1331 	mapping = tpa_info->mapping;
1332 	prod_rx_buf->mapping = mapping;
1333 
1334 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1335 
1336 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1337 
1338 	tpa_info->data = cons_rx_buf->data;
1339 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1340 	cons_rx_buf->data = NULL;
1341 	tpa_info->mapping = cons_rx_buf->mapping;
1342 
1343 	tpa_info->len =
1344 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1345 				RX_TPA_START_CMP_LEN_SHIFT;
1346 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1347 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1348 
1349 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1350 		tpa_info->gso_type = SKB_GSO_TCPV4;
1351 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1352 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1353 			tpa_info->gso_type = SKB_GSO_TCPV6;
1354 		tpa_info->rss_hash =
1355 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1356 	} else {
1357 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1358 		tpa_info->gso_type = 0;
1359 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1360 	}
1361 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1362 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1363 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1364 	tpa_info->agg_count = 0;
1365 
1366 	rxr->rx_prod = NEXT_RX(prod);
1367 	cons = NEXT_RX(cons);
1368 	rxr->rx_next_cons = NEXT_RX(cons);
1369 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1370 
1371 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1372 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1373 	cons_rx_buf->data = NULL;
1374 }
1375 
1376 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1377 {
1378 	if (agg_bufs)
1379 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1380 }
1381 
1382 #ifdef CONFIG_INET
1383 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1384 {
1385 	struct udphdr *uh = NULL;
1386 
1387 	if (ip_proto == htons(ETH_P_IP)) {
1388 		struct iphdr *iph = (struct iphdr *)skb->data;
1389 
1390 		if (iph->protocol == IPPROTO_UDP)
1391 			uh = (struct udphdr *)(iph + 1);
1392 	} else {
1393 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1394 
1395 		if (iph->nexthdr == IPPROTO_UDP)
1396 			uh = (struct udphdr *)(iph + 1);
1397 	}
1398 	if (uh) {
1399 		if (uh->check)
1400 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1401 		else
1402 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1403 	}
1404 }
1405 #endif
1406 
1407 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1408 					   int payload_off, int tcp_ts,
1409 					   struct sk_buff *skb)
1410 {
1411 #ifdef CONFIG_INET
1412 	struct tcphdr *th;
1413 	int len, nw_off;
1414 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1415 	u32 hdr_info = tpa_info->hdr_info;
1416 	bool loopback = false;
1417 
1418 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1419 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1420 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1421 
1422 	/* If the packet is an internal loopback packet, the offsets will
1423 	 * have an extra 4 bytes.
1424 	 */
1425 	if (inner_mac_off == 4) {
1426 		loopback = true;
1427 	} else if (inner_mac_off > 4) {
1428 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1429 					    ETH_HLEN - 2));
1430 
1431 		/* We only support inner iPv4/ipv6.  If we don't see the
1432 		 * correct protocol ID, it must be a loopback packet where
1433 		 * the offsets are off by 4.
1434 		 */
1435 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1436 			loopback = true;
1437 	}
1438 	if (loopback) {
1439 		/* internal loopback packet, subtract all offsets by 4 */
1440 		inner_ip_off -= 4;
1441 		inner_mac_off -= 4;
1442 		outer_ip_off -= 4;
1443 	}
1444 
1445 	nw_off = inner_ip_off - ETH_HLEN;
1446 	skb_set_network_header(skb, nw_off);
1447 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1448 		struct ipv6hdr *iph = ipv6_hdr(skb);
1449 
1450 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1451 		len = skb->len - skb_transport_offset(skb);
1452 		th = tcp_hdr(skb);
1453 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1454 	} else {
1455 		struct iphdr *iph = ip_hdr(skb);
1456 
1457 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1458 		len = skb->len - skb_transport_offset(skb);
1459 		th = tcp_hdr(skb);
1460 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1461 	}
1462 
1463 	if (inner_mac_off) { /* tunnel */
1464 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1465 					    ETH_HLEN - 2));
1466 
1467 		bnxt_gro_tunnel(skb, proto);
1468 	}
1469 #endif
1470 	return skb;
1471 }
1472 
1473 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1474 					   int payload_off, int tcp_ts,
1475 					   struct sk_buff *skb)
1476 {
1477 #ifdef CONFIG_INET
1478 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1479 	u32 hdr_info = tpa_info->hdr_info;
1480 	int iphdr_len, nw_off;
1481 
1482 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1483 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1484 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1485 
1486 	nw_off = inner_ip_off - ETH_HLEN;
1487 	skb_set_network_header(skb, nw_off);
1488 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1489 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1490 	skb_set_transport_header(skb, nw_off + iphdr_len);
1491 
1492 	if (inner_mac_off) { /* tunnel */
1493 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1494 					    ETH_HLEN - 2));
1495 
1496 		bnxt_gro_tunnel(skb, proto);
1497 	}
1498 #endif
1499 	return skb;
1500 }
1501 
1502 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1503 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1504 
1505 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1506 					   int payload_off, int tcp_ts,
1507 					   struct sk_buff *skb)
1508 {
1509 #ifdef CONFIG_INET
1510 	struct tcphdr *th;
1511 	int len, nw_off, tcp_opt_len = 0;
1512 
1513 	if (tcp_ts)
1514 		tcp_opt_len = 12;
1515 
1516 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1517 		struct iphdr *iph;
1518 
1519 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1520 			 ETH_HLEN;
1521 		skb_set_network_header(skb, nw_off);
1522 		iph = ip_hdr(skb);
1523 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1524 		len = skb->len - skb_transport_offset(skb);
1525 		th = tcp_hdr(skb);
1526 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1527 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1528 		struct ipv6hdr *iph;
1529 
1530 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1531 			 ETH_HLEN;
1532 		skb_set_network_header(skb, nw_off);
1533 		iph = ipv6_hdr(skb);
1534 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1535 		len = skb->len - skb_transport_offset(skb);
1536 		th = tcp_hdr(skb);
1537 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1538 	} else {
1539 		dev_kfree_skb_any(skb);
1540 		return NULL;
1541 	}
1542 
1543 	if (nw_off) /* tunnel */
1544 		bnxt_gro_tunnel(skb, skb->protocol);
1545 #endif
1546 	return skb;
1547 }
1548 
1549 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1550 					   struct bnxt_tpa_info *tpa_info,
1551 					   struct rx_tpa_end_cmp *tpa_end,
1552 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1553 					   struct sk_buff *skb)
1554 {
1555 #ifdef CONFIG_INET
1556 	int payload_off;
1557 	u16 segs;
1558 
1559 	segs = TPA_END_TPA_SEGS(tpa_end);
1560 	if (segs == 1)
1561 		return skb;
1562 
1563 	NAPI_GRO_CB(skb)->count = segs;
1564 	skb_shinfo(skb)->gso_size =
1565 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1566 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1567 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1568 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1569 	else
1570 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1571 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1572 	if (likely(skb))
1573 		tcp_gro_complete(skb);
1574 #endif
1575 	return skb;
1576 }
1577 
1578 /* Given the cfa_code of a received packet determine which
1579  * netdev (vf-rep or PF) the packet is destined to.
1580  */
1581 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1582 {
1583 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1584 
1585 	/* if vf-rep dev is NULL, the must belongs to the PF */
1586 	return dev ? dev : bp->dev;
1587 }
1588 
1589 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1590 					   struct bnxt_cp_ring_info *cpr,
1591 					   u32 *raw_cons,
1592 					   struct rx_tpa_end_cmp *tpa_end,
1593 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1594 					   u8 *event)
1595 {
1596 	struct bnxt_napi *bnapi = cpr->bnapi;
1597 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1598 	u8 *data_ptr, agg_bufs;
1599 	unsigned int len;
1600 	struct bnxt_tpa_info *tpa_info;
1601 	dma_addr_t mapping;
1602 	struct sk_buff *skb;
1603 	u16 idx = 0, agg_id;
1604 	void *data;
1605 	bool gro;
1606 
1607 	if (unlikely(bnapi->in_reset)) {
1608 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1609 
1610 		if (rc < 0)
1611 			return ERR_PTR(-EBUSY);
1612 		return NULL;
1613 	}
1614 
1615 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1616 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1617 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1618 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1619 		tpa_info = &rxr->rx_tpa[agg_id];
1620 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1621 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1622 				    agg_bufs, tpa_info->agg_count);
1623 			agg_bufs = tpa_info->agg_count;
1624 		}
1625 		tpa_info->agg_count = 0;
1626 		*event |= BNXT_AGG_EVENT;
1627 		bnxt_free_agg_idx(rxr, agg_id);
1628 		idx = agg_id;
1629 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1630 	} else {
1631 		agg_id = TPA_END_AGG_ID(tpa_end);
1632 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1633 		tpa_info = &rxr->rx_tpa[agg_id];
1634 		idx = RING_CMP(*raw_cons);
1635 		if (agg_bufs) {
1636 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1637 				return ERR_PTR(-EBUSY);
1638 
1639 			*event |= BNXT_AGG_EVENT;
1640 			idx = NEXT_CMP(idx);
1641 		}
1642 		gro = !!TPA_END_GRO(tpa_end);
1643 	}
1644 	data = tpa_info->data;
1645 	data_ptr = tpa_info->data_ptr;
1646 	prefetch(data_ptr);
1647 	len = tpa_info->len;
1648 	mapping = tpa_info->mapping;
1649 
1650 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1651 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1652 		if (agg_bufs > MAX_SKB_FRAGS)
1653 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1654 				    agg_bufs, (int)MAX_SKB_FRAGS);
1655 		return NULL;
1656 	}
1657 
1658 	if (len <= bp->rx_copy_thresh) {
1659 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1660 		if (!skb) {
1661 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1662 			cpr->sw_stats.rx.rx_oom_discards += 1;
1663 			return NULL;
1664 		}
1665 	} else {
1666 		u8 *new_data;
1667 		dma_addr_t new_mapping;
1668 
1669 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1670 		if (!new_data) {
1671 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1672 			cpr->sw_stats.rx.rx_oom_discards += 1;
1673 			return NULL;
1674 		}
1675 
1676 		tpa_info->data = new_data;
1677 		tpa_info->data_ptr = new_data + bp->rx_offset;
1678 		tpa_info->mapping = new_mapping;
1679 
1680 		skb = napi_build_skb(data, bp->rx_buf_size);
1681 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1682 				       bp->rx_buf_use_size, bp->rx_dir,
1683 				       DMA_ATTR_WEAK_ORDERING);
1684 
1685 		if (!skb) {
1686 			skb_free_frag(data);
1687 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1688 			cpr->sw_stats.rx.rx_oom_discards += 1;
1689 			return NULL;
1690 		}
1691 		skb_reserve(skb, bp->rx_offset);
1692 		skb_put(skb, len);
1693 	}
1694 
1695 	if (agg_bufs) {
1696 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1697 		if (!skb) {
1698 			/* Page reuse already handled by bnxt_rx_pages(). */
1699 			cpr->sw_stats.rx.rx_oom_discards += 1;
1700 			return NULL;
1701 		}
1702 	}
1703 
1704 	skb->protocol =
1705 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1706 
1707 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1708 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1709 
1710 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1711 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1712 		__be16 vlan_proto = htons(tpa_info->metadata >>
1713 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1714 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1715 
1716 		if (eth_type_vlan(vlan_proto)) {
1717 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1718 		} else {
1719 			dev_kfree_skb(skb);
1720 			return NULL;
1721 		}
1722 	}
1723 
1724 	skb_checksum_none_assert(skb);
1725 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1726 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1727 		skb->csum_level =
1728 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1729 	}
1730 
1731 	if (gro)
1732 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1733 
1734 	return skb;
1735 }
1736 
1737 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1738 			 struct rx_agg_cmp *rx_agg)
1739 {
1740 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1741 	struct bnxt_tpa_info *tpa_info;
1742 
1743 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1744 	tpa_info = &rxr->rx_tpa[agg_id];
1745 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1746 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1747 }
1748 
1749 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1750 			     struct sk_buff *skb)
1751 {
1752 	if (skb->dev != bp->dev) {
1753 		/* this packet belongs to a vf-rep */
1754 		bnxt_vf_rep_rx(bp, skb);
1755 		return;
1756 	}
1757 	skb_record_rx_queue(skb, bnapi->index);
1758 	skb_mark_for_recycle(skb);
1759 	napi_gro_receive(&bnapi->napi, skb);
1760 }
1761 
1762 /* returns the following:
1763  * 1       - 1 packet successfully received
1764  * 0       - successful TPA_START, packet not completed yet
1765  * -EBUSY  - completion ring does not have all the agg buffers yet
1766  * -ENOMEM - packet aborted due to out of memory
1767  * -EIO    - packet aborted due to hw error indicated in BD
1768  */
1769 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1770 		       u32 *raw_cons, u8 *event)
1771 {
1772 	struct bnxt_napi *bnapi = cpr->bnapi;
1773 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1774 	struct net_device *dev = bp->dev;
1775 	struct rx_cmp *rxcmp;
1776 	struct rx_cmp_ext *rxcmp1;
1777 	u32 tmp_raw_cons = *raw_cons;
1778 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1779 	struct bnxt_sw_rx_bd *rx_buf;
1780 	unsigned int len;
1781 	u8 *data_ptr, agg_bufs, cmp_type;
1782 	bool xdp_active = false;
1783 	dma_addr_t dma_addr;
1784 	struct sk_buff *skb;
1785 	struct xdp_buff xdp;
1786 	u32 flags, misc;
1787 	void *data;
1788 	int rc = 0;
1789 
1790 	rxcmp = (struct rx_cmp *)
1791 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1792 
1793 	cmp_type = RX_CMP_TYPE(rxcmp);
1794 
1795 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1796 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1797 		goto next_rx_no_prod_no_len;
1798 	}
1799 
1800 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1801 	cp_cons = RING_CMP(tmp_raw_cons);
1802 	rxcmp1 = (struct rx_cmp_ext *)
1803 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1804 
1805 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1806 		return -EBUSY;
1807 
1808 	/* The valid test of the entry must be done first before
1809 	 * reading any further.
1810 	 */
1811 	dma_rmb();
1812 	prod = rxr->rx_prod;
1813 
1814 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1815 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1816 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1817 
1818 		*event |= BNXT_RX_EVENT;
1819 		goto next_rx_no_prod_no_len;
1820 
1821 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1822 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1823 				   (struct rx_tpa_end_cmp *)rxcmp,
1824 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1825 
1826 		if (IS_ERR(skb))
1827 			return -EBUSY;
1828 
1829 		rc = -ENOMEM;
1830 		if (likely(skb)) {
1831 			bnxt_deliver_skb(bp, bnapi, skb);
1832 			rc = 1;
1833 		}
1834 		*event |= BNXT_RX_EVENT;
1835 		goto next_rx_no_prod_no_len;
1836 	}
1837 
1838 	cons = rxcmp->rx_cmp_opaque;
1839 	if (unlikely(cons != rxr->rx_next_cons)) {
1840 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1841 
1842 		/* 0xffff is forced error, don't print it */
1843 		if (rxr->rx_next_cons != 0xffff)
1844 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1845 				    cons, rxr->rx_next_cons);
1846 		bnxt_sched_reset_rxr(bp, rxr);
1847 		if (rc1)
1848 			return rc1;
1849 		goto next_rx_no_prod_no_len;
1850 	}
1851 	rx_buf = &rxr->rx_buf_ring[cons];
1852 	data = rx_buf->data;
1853 	data_ptr = rx_buf->data_ptr;
1854 	prefetch(data_ptr);
1855 
1856 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1857 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1858 
1859 	if (agg_bufs) {
1860 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1861 			return -EBUSY;
1862 
1863 		cp_cons = NEXT_CMP(cp_cons);
1864 		*event |= BNXT_AGG_EVENT;
1865 	}
1866 	*event |= BNXT_RX_EVENT;
1867 
1868 	rx_buf->data = NULL;
1869 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1870 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1871 
1872 		bnxt_reuse_rx_data(rxr, cons, data);
1873 		if (agg_bufs)
1874 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1875 					       false);
1876 
1877 		rc = -EIO;
1878 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1879 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1880 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1881 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1882 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1883 						 rx_err);
1884 				bnxt_sched_reset_rxr(bp, rxr);
1885 			}
1886 		}
1887 		goto next_rx_no_len;
1888 	}
1889 
1890 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1891 	len = flags >> RX_CMP_LEN_SHIFT;
1892 	dma_addr = rx_buf->mapping;
1893 
1894 	if (bnxt_xdp_attached(bp, rxr)) {
1895 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
1896 		if (agg_bufs) {
1897 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1898 							     cp_cons, agg_bufs,
1899 							     false);
1900 			if (!frag_len) {
1901 				cpr->sw_stats.rx.rx_oom_discards += 1;
1902 				rc = -ENOMEM;
1903 				goto next_rx;
1904 			}
1905 		}
1906 		xdp_active = true;
1907 	}
1908 
1909 	if (xdp_active) {
1910 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
1911 			rc = 1;
1912 			goto next_rx;
1913 		}
1914 	}
1915 
1916 	if (len <= bp->rx_copy_thresh) {
1917 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1918 		bnxt_reuse_rx_data(rxr, cons, data);
1919 		if (!skb) {
1920 			if (agg_bufs) {
1921 				if (!xdp_active)
1922 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1923 							       agg_bufs, false);
1924 				else
1925 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1926 			}
1927 			cpr->sw_stats.rx.rx_oom_discards += 1;
1928 			rc = -ENOMEM;
1929 			goto next_rx;
1930 		}
1931 	} else {
1932 		u32 payload;
1933 
1934 		if (rx_buf->data_ptr == data_ptr)
1935 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1936 		else
1937 			payload = 0;
1938 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1939 				      payload | len);
1940 		if (!skb) {
1941 			cpr->sw_stats.rx.rx_oom_discards += 1;
1942 			rc = -ENOMEM;
1943 			goto next_rx;
1944 		}
1945 	}
1946 
1947 	if (agg_bufs) {
1948 		if (!xdp_active) {
1949 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1950 			if (!skb) {
1951 				cpr->sw_stats.rx.rx_oom_discards += 1;
1952 				rc = -ENOMEM;
1953 				goto next_rx;
1954 			}
1955 		} else {
1956 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1957 			if (!skb) {
1958 				/* we should be able to free the old skb here */
1959 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1960 				cpr->sw_stats.rx.rx_oom_discards += 1;
1961 				rc = -ENOMEM;
1962 				goto next_rx;
1963 			}
1964 		}
1965 	}
1966 
1967 	if (RX_CMP_HASH_VALID(rxcmp)) {
1968 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1969 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1970 
1971 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1972 		if (hash_type != 1 && hash_type != 3)
1973 			type = PKT_HASH_TYPE_L3;
1974 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1975 	}
1976 
1977 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1978 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1979 
1980 	if ((rxcmp1->rx_cmp_flags2 &
1981 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1982 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1983 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1984 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1985 		__be16 vlan_proto = htons(meta_data >>
1986 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1987 
1988 		if (eth_type_vlan(vlan_proto)) {
1989 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1990 		} else {
1991 			dev_kfree_skb(skb);
1992 			goto next_rx;
1993 		}
1994 	}
1995 
1996 	skb_checksum_none_assert(skb);
1997 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1998 		if (dev->features & NETIF_F_RXCSUM) {
1999 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2000 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2001 		}
2002 	} else {
2003 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2004 			if (dev->features & NETIF_F_RXCSUM)
2005 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2006 		}
2007 	}
2008 
2009 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2010 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2011 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2012 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2013 			u64 ns, ts;
2014 
2015 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2016 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2017 
2018 				spin_lock_bh(&ptp->ptp_lock);
2019 				ns = timecounter_cyc2time(&ptp->tc, ts);
2020 				spin_unlock_bh(&ptp->ptp_lock);
2021 				memset(skb_hwtstamps(skb), 0,
2022 				       sizeof(*skb_hwtstamps(skb)));
2023 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2024 			}
2025 		}
2026 	}
2027 	bnxt_deliver_skb(bp, bnapi, skb);
2028 	rc = 1;
2029 
2030 next_rx:
2031 	cpr->rx_packets += 1;
2032 	cpr->rx_bytes += len;
2033 
2034 next_rx_no_len:
2035 	rxr->rx_prod = NEXT_RX(prod);
2036 	rxr->rx_next_cons = NEXT_RX(cons);
2037 
2038 next_rx_no_prod_no_len:
2039 	*raw_cons = tmp_raw_cons;
2040 
2041 	return rc;
2042 }
2043 
2044 /* In netpoll mode, if we are using a combined completion ring, we need to
2045  * discard the rx packets and recycle the buffers.
2046  */
2047 static int bnxt_force_rx_discard(struct bnxt *bp,
2048 				 struct bnxt_cp_ring_info *cpr,
2049 				 u32 *raw_cons, u8 *event)
2050 {
2051 	u32 tmp_raw_cons = *raw_cons;
2052 	struct rx_cmp_ext *rxcmp1;
2053 	struct rx_cmp *rxcmp;
2054 	u16 cp_cons;
2055 	u8 cmp_type;
2056 	int rc;
2057 
2058 	cp_cons = RING_CMP(tmp_raw_cons);
2059 	rxcmp = (struct rx_cmp *)
2060 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2061 
2062 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2063 	cp_cons = RING_CMP(tmp_raw_cons);
2064 	rxcmp1 = (struct rx_cmp_ext *)
2065 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2066 
2067 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2068 		return -EBUSY;
2069 
2070 	/* The valid test of the entry must be done first before
2071 	 * reading any further.
2072 	 */
2073 	dma_rmb();
2074 	cmp_type = RX_CMP_TYPE(rxcmp);
2075 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2076 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2077 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2078 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2079 		struct rx_tpa_end_cmp_ext *tpa_end1;
2080 
2081 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2082 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2083 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2084 	}
2085 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2086 	if (rc && rc != -EBUSY)
2087 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2088 	return rc;
2089 }
2090 
2091 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2092 {
2093 	struct bnxt_fw_health *fw_health = bp->fw_health;
2094 	u32 reg = fw_health->regs[reg_idx];
2095 	u32 reg_type, reg_off, val = 0;
2096 
2097 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2098 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2099 	switch (reg_type) {
2100 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2101 		pci_read_config_dword(bp->pdev, reg_off, &val);
2102 		break;
2103 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2104 		reg_off = fw_health->mapped_regs[reg_idx];
2105 		fallthrough;
2106 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2107 		val = readl(bp->bar0 + reg_off);
2108 		break;
2109 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2110 		val = readl(bp->bar1 + reg_off);
2111 		break;
2112 	}
2113 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2114 		val &= fw_health->fw_reset_inprog_reg_mask;
2115 	return val;
2116 }
2117 
2118 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2119 {
2120 	int i;
2121 
2122 	for (i = 0; i < bp->rx_nr_rings; i++) {
2123 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2124 		struct bnxt_ring_grp_info *grp_info;
2125 
2126 		grp_info = &bp->grp_info[grp_idx];
2127 		if (grp_info->agg_fw_ring_id == ring_id)
2128 			return grp_idx;
2129 	}
2130 	return INVALID_HW_RING_ID;
2131 }
2132 
2133 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2134 {
2135 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2136 
2137 	switch (err_type) {
2138 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2139 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2140 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2141 		break;
2142 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2143 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2144 		break;
2145 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2146 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2147 		break;
2148 	default:
2149 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2150 			   err_type);
2151 		break;
2152 	}
2153 }
2154 
2155 #define BNXT_GET_EVENT_PORT(data)	\
2156 	((data) &			\
2157 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2158 
2159 #define BNXT_EVENT_RING_TYPE(data2)	\
2160 	((data2) &			\
2161 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2162 
2163 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2164 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2165 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2166 
2167 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2168 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2169 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2170 
2171 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2172 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2173 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2174 
2175 #define BNXT_PHC_BITS	48
2176 
2177 static int bnxt_async_event_process(struct bnxt *bp,
2178 				    struct hwrm_async_event_cmpl *cmpl)
2179 {
2180 	u16 event_id = le16_to_cpu(cmpl->event_id);
2181 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2182 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2183 
2184 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2185 		   event_id, data1, data2);
2186 
2187 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2188 	switch (event_id) {
2189 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2190 		struct bnxt_link_info *link_info = &bp->link_info;
2191 
2192 		if (BNXT_VF(bp))
2193 			goto async_event_process_exit;
2194 
2195 		/* print unsupported speed warning in forced speed mode only */
2196 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2197 		    (data1 & 0x20000)) {
2198 			u16 fw_speed = link_info->force_link_speed;
2199 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2200 
2201 			if (speed != SPEED_UNKNOWN)
2202 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2203 					    speed);
2204 		}
2205 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2206 	}
2207 		fallthrough;
2208 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2209 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2210 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2211 		fallthrough;
2212 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2213 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2214 		break;
2215 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2216 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2217 		break;
2218 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2219 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2220 
2221 		if (BNXT_VF(bp))
2222 			break;
2223 
2224 		if (bp->pf.port_id != port_id)
2225 			break;
2226 
2227 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2228 		break;
2229 	}
2230 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2231 		if (BNXT_PF(bp))
2232 			goto async_event_process_exit;
2233 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2234 		break;
2235 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2236 		char *type_str = "Solicited";
2237 
2238 		if (!bp->fw_health)
2239 			goto async_event_process_exit;
2240 
2241 		bp->fw_reset_timestamp = jiffies;
2242 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2243 		if (!bp->fw_reset_min_dsecs)
2244 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2245 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2246 		if (!bp->fw_reset_max_dsecs)
2247 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2248 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2249 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2250 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2251 			type_str = "Fatal";
2252 			bp->fw_health->fatalities++;
2253 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2254 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2255 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2256 			type_str = "Non-fatal";
2257 			bp->fw_health->survivals++;
2258 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2259 		}
2260 		netif_warn(bp, hw, bp->dev,
2261 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2262 			   type_str, data1, data2,
2263 			   bp->fw_reset_min_dsecs * 100,
2264 			   bp->fw_reset_max_dsecs * 100);
2265 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2266 		break;
2267 	}
2268 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2269 		struct bnxt_fw_health *fw_health = bp->fw_health;
2270 		char *status_desc = "healthy";
2271 		u32 status;
2272 
2273 		if (!fw_health)
2274 			goto async_event_process_exit;
2275 
2276 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2277 			fw_health->enabled = false;
2278 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2279 			break;
2280 		}
2281 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2282 		fw_health->tmr_multiplier =
2283 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2284 				     bp->current_interval * 10);
2285 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2286 		if (!fw_health->enabled)
2287 			fw_health->last_fw_heartbeat =
2288 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2289 		fw_health->last_fw_reset_cnt =
2290 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2291 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2292 		if (status != BNXT_FW_STATUS_HEALTHY)
2293 			status_desc = "unhealthy";
2294 		netif_info(bp, drv, bp->dev,
2295 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2296 			   fw_health->primary ? "primary" : "backup", status,
2297 			   status_desc, fw_health->last_fw_reset_cnt);
2298 		if (!fw_health->enabled) {
2299 			/* Make sure tmr_counter is set and visible to
2300 			 * bnxt_health_check() before setting enabled to true.
2301 			 */
2302 			smp_wmb();
2303 			fw_health->enabled = true;
2304 		}
2305 		goto async_event_process_exit;
2306 	}
2307 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2308 		netif_notice(bp, hw, bp->dev,
2309 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2310 			     data1, data2);
2311 		goto async_event_process_exit;
2312 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2313 		struct bnxt_rx_ring_info *rxr;
2314 		u16 grp_idx;
2315 
2316 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2317 			goto async_event_process_exit;
2318 
2319 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2320 			    BNXT_EVENT_RING_TYPE(data2), data1);
2321 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2322 			goto async_event_process_exit;
2323 
2324 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2325 		if (grp_idx == INVALID_HW_RING_ID) {
2326 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2327 				    data1);
2328 			goto async_event_process_exit;
2329 		}
2330 		rxr = bp->bnapi[grp_idx]->rx_ring;
2331 		bnxt_sched_reset_rxr(bp, rxr);
2332 		goto async_event_process_exit;
2333 	}
2334 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2335 		struct bnxt_fw_health *fw_health = bp->fw_health;
2336 
2337 		netif_notice(bp, hw, bp->dev,
2338 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2339 			     data1, data2);
2340 		if (fw_health) {
2341 			fw_health->echo_req_data1 = data1;
2342 			fw_health->echo_req_data2 = data2;
2343 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2344 			break;
2345 		}
2346 		goto async_event_process_exit;
2347 	}
2348 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2349 		bnxt_ptp_pps_event(bp, data1, data2);
2350 		goto async_event_process_exit;
2351 	}
2352 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2353 		bnxt_event_error_report(bp, data1, data2);
2354 		goto async_event_process_exit;
2355 	}
2356 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2357 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2358 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2359 			if (BNXT_PTP_USE_RTC(bp)) {
2360 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2361 				u64 ns;
2362 
2363 				if (!ptp)
2364 					goto async_event_process_exit;
2365 
2366 				spin_lock_bh(&ptp->ptp_lock);
2367 				bnxt_ptp_update_current_time(bp);
2368 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2369 				       BNXT_PHC_BITS) | ptp->current_time);
2370 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2371 				spin_unlock_bh(&ptp->ptp_lock);
2372 			}
2373 			break;
2374 		}
2375 		goto async_event_process_exit;
2376 	}
2377 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2378 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2379 
2380 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2381 		goto async_event_process_exit;
2382 	}
2383 	default:
2384 		goto async_event_process_exit;
2385 	}
2386 	__bnxt_queue_sp_work(bp);
2387 async_event_process_exit:
2388 	return 0;
2389 }
2390 
2391 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2392 {
2393 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2394 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2395 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2396 				(struct hwrm_fwd_req_cmpl *)txcmp;
2397 
2398 	switch (cmpl_type) {
2399 	case CMPL_BASE_TYPE_HWRM_DONE:
2400 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2401 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2402 		break;
2403 
2404 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2405 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2406 
2407 		if ((vf_id < bp->pf.first_vf_id) ||
2408 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2409 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2410 				   vf_id);
2411 			return -EINVAL;
2412 		}
2413 
2414 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2415 		bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT);
2416 		break;
2417 
2418 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2419 		bnxt_async_event_process(bp,
2420 					 (struct hwrm_async_event_cmpl *)txcmp);
2421 		break;
2422 
2423 	default:
2424 		break;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2431 {
2432 	struct bnxt_napi *bnapi = dev_instance;
2433 	struct bnxt *bp = bnapi->bp;
2434 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2435 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2436 
2437 	cpr->event_ctr++;
2438 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2439 	napi_schedule(&bnapi->napi);
2440 	return IRQ_HANDLED;
2441 }
2442 
2443 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2444 {
2445 	u32 raw_cons = cpr->cp_raw_cons;
2446 	u16 cons = RING_CMP(raw_cons);
2447 	struct tx_cmp *txcmp;
2448 
2449 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2450 
2451 	return TX_CMP_VALID(txcmp, raw_cons);
2452 }
2453 
2454 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2455 {
2456 	struct bnxt_napi *bnapi = dev_instance;
2457 	struct bnxt *bp = bnapi->bp;
2458 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2459 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2460 	u32 int_status;
2461 
2462 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2463 
2464 	if (!bnxt_has_work(bp, cpr)) {
2465 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2466 		/* return if erroneous interrupt */
2467 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2468 			return IRQ_NONE;
2469 	}
2470 
2471 	/* disable ring IRQ */
2472 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2473 
2474 	/* Return here if interrupt is shared and is disabled. */
2475 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2476 		return IRQ_HANDLED;
2477 
2478 	napi_schedule(&bnapi->napi);
2479 	return IRQ_HANDLED;
2480 }
2481 
2482 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2483 			    int budget)
2484 {
2485 	struct bnxt_napi *bnapi = cpr->bnapi;
2486 	u32 raw_cons = cpr->cp_raw_cons;
2487 	u32 cons;
2488 	int tx_pkts = 0;
2489 	int rx_pkts = 0;
2490 	u8 event = 0;
2491 	struct tx_cmp *txcmp;
2492 
2493 	cpr->has_more_work = 0;
2494 	cpr->had_work_done = 1;
2495 	while (1) {
2496 		int rc;
2497 
2498 		cons = RING_CMP(raw_cons);
2499 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2500 
2501 		if (!TX_CMP_VALID(txcmp, raw_cons))
2502 			break;
2503 
2504 		/* The valid test of the entry must be done first before
2505 		 * reading any further.
2506 		 */
2507 		dma_rmb();
2508 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2509 			tx_pkts++;
2510 			/* return full budget so NAPI will complete. */
2511 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2512 				rx_pkts = budget;
2513 				raw_cons = NEXT_RAW_CMP(raw_cons);
2514 				if (budget)
2515 					cpr->has_more_work = 1;
2516 				break;
2517 			}
2518 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2519 			if (likely(budget))
2520 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2521 			else
2522 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2523 							   &event);
2524 			if (likely(rc >= 0))
2525 				rx_pkts += rc;
2526 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2527 			 * the NAPI budget.  Otherwise, we may potentially loop
2528 			 * here forever if we consistently cannot allocate
2529 			 * buffers.
2530 			 */
2531 			else if (rc == -ENOMEM && budget)
2532 				rx_pkts++;
2533 			else if (rc == -EBUSY)	/* partial completion */
2534 				break;
2535 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2536 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2537 				    (TX_CMP_TYPE(txcmp) ==
2538 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2539 				    (TX_CMP_TYPE(txcmp) ==
2540 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2541 			bnxt_hwrm_handler(bp, txcmp);
2542 		}
2543 		raw_cons = NEXT_RAW_CMP(raw_cons);
2544 
2545 		if (rx_pkts && rx_pkts == budget) {
2546 			cpr->has_more_work = 1;
2547 			break;
2548 		}
2549 	}
2550 
2551 	if (event & BNXT_REDIRECT_EVENT)
2552 		xdp_do_flush();
2553 
2554 	if (event & BNXT_TX_EVENT) {
2555 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2556 		u16 prod = txr->tx_prod;
2557 
2558 		/* Sync BD data before updating doorbell */
2559 		wmb();
2560 
2561 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2562 	}
2563 
2564 	cpr->cp_raw_cons = raw_cons;
2565 	bnapi->tx_pkts += tx_pkts;
2566 	bnapi->events |= event;
2567 	return rx_pkts;
2568 }
2569 
2570 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2571 				  int budget)
2572 {
2573 	if (bnapi->tx_pkts && !bnapi->tx_fault)
2574 		bnapi->tx_int(bp, bnapi, budget);
2575 
2576 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2577 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2578 
2579 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2580 	}
2581 	if (bnapi->events & BNXT_AGG_EVENT) {
2582 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2583 
2584 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2585 	}
2586 	bnapi->events = 0;
2587 }
2588 
2589 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2590 			  int budget)
2591 {
2592 	struct bnxt_napi *bnapi = cpr->bnapi;
2593 	int rx_pkts;
2594 
2595 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2596 
2597 	/* ACK completion ring before freeing tx ring and producing new
2598 	 * buffers in rx/agg rings to prevent overflowing the completion
2599 	 * ring.
2600 	 */
2601 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2602 
2603 	__bnxt_poll_work_done(bp, bnapi, budget);
2604 	return rx_pkts;
2605 }
2606 
2607 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2608 {
2609 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2610 	struct bnxt *bp = bnapi->bp;
2611 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2612 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2613 	struct tx_cmp *txcmp;
2614 	struct rx_cmp_ext *rxcmp1;
2615 	u32 cp_cons, tmp_raw_cons;
2616 	u32 raw_cons = cpr->cp_raw_cons;
2617 	bool flush_xdp = false;
2618 	u32 rx_pkts = 0;
2619 	u8 event = 0;
2620 
2621 	while (1) {
2622 		int rc;
2623 
2624 		cp_cons = RING_CMP(raw_cons);
2625 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2626 
2627 		if (!TX_CMP_VALID(txcmp, raw_cons))
2628 			break;
2629 
2630 		/* The valid test of the entry must be done first before
2631 		 * reading any further.
2632 		 */
2633 		dma_rmb();
2634 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2635 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2636 			cp_cons = RING_CMP(tmp_raw_cons);
2637 			rxcmp1 = (struct rx_cmp_ext *)
2638 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2639 
2640 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2641 				break;
2642 
2643 			/* force an error to recycle the buffer */
2644 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2645 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2646 
2647 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2648 			if (likely(rc == -EIO) && budget)
2649 				rx_pkts++;
2650 			else if (rc == -EBUSY)	/* partial completion */
2651 				break;
2652 			if (event & BNXT_REDIRECT_EVENT)
2653 				flush_xdp = true;
2654 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2655 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2656 			bnxt_hwrm_handler(bp, txcmp);
2657 		} else {
2658 			netdev_err(bp->dev,
2659 				   "Invalid completion received on special ring\n");
2660 		}
2661 		raw_cons = NEXT_RAW_CMP(raw_cons);
2662 
2663 		if (rx_pkts == budget)
2664 			break;
2665 	}
2666 
2667 	cpr->cp_raw_cons = raw_cons;
2668 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2669 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2670 
2671 	if (event & BNXT_AGG_EVENT)
2672 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2673 	if (flush_xdp)
2674 		xdp_do_flush();
2675 
2676 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2677 		napi_complete_done(napi, rx_pkts);
2678 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2679 	}
2680 	return rx_pkts;
2681 }
2682 
2683 static int bnxt_poll(struct napi_struct *napi, int budget)
2684 {
2685 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2686 	struct bnxt *bp = bnapi->bp;
2687 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2688 	int work_done = 0;
2689 
2690 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2691 		napi_complete(napi);
2692 		return 0;
2693 	}
2694 	while (1) {
2695 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2696 
2697 		if (work_done >= budget) {
2698 			if (!budget)
2699 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2700 			break;
2701 		}
2702 
2703 		if (!bnxt_has_work(bp, cpr)) {
2704 			if (napi_complete_done(napi, work_done))
2705 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2706 			break;
2707 		}
2708 	}
2709 	if (bp->flags & BNXT_FLAG_DIM) {
2710 		struct dim_sample dim_sample = {};
2711 
2712 		dim_update_sample(cpr->event_ctr,
2713 				  cpr->rx_packets,
2714 				  cpr->rx_bytes,
2715 				  &dim_sample);
2716 		net_dim(&cpr->dim, dim_sample);
2717 	}
2718 	return work_done;
2719 }
2720 
2721 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2722 {
2723 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2724 	int i, work_done = 0;
2725 
2726 	for (i = 0; i < 2; i++) {
2727 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2728 
2729 		if (cpr2) {
2730 			work_done += __bnxt_poll_work(bp, cpr2,
2731 						      budget - work_done);
2732 			cpr->has_more_work |= cpr2->has_more_work;
2733 		}
2734 	}
2735 	return work_done;
2736 }
2737 
2738 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2739 				 u64 dbr_type, int budget)
2740 {
2741 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2742 	int i;
2743 
2744 	for (i = 0; i < 2; i++) {
2745 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2746 		struct bnxt_db_info *db;
2747 
2748 		if (cpr2 && cpr2->had_work_done) {
2749 			db = &cpr2->cp_db;
2750 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2751 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2752 			cpr2->had_work_done = 0;
2753 		}
2754 	}
2755 	__bnxt_poll_work_done(bp, bnapi, budget);
2756 }
2757 
2758 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2759 {
2760 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2761 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2762 	struct bnxt_cp_ring_info *cpr_rx;
2763 	u32 raw_cons = cpr->cp_raw_cons;
2764 	struct bnxt *bp = bnapi->bp;
2765 	struct nqe_cn *nqcmp;
2766 	int work_done = 0;
2767 	u32 cons;
2768 
2769 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2770 		napi_complete(napi);
2771 		return 0;
2772 	}
2773 	if (cpr->has_more_work) {
2774 		cpr->has_more_work = 0;
2775 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2776 	}
2777 	while (1) {
2778 		cons = RING_CMP(raw_cons);
2779 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2780 
2781 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2782 			if (cpr->has_more_work)
2783 				break;
2784 
2785 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
2786 					     budget);
2787 			cpr->cp_raw_cons = raw_cons;
2788 			if (napi_complete_done(napi, work_done))
2789 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2790 						  cpr->cp_raw_cons);
2791 			goto poll_done;
2792 		}
2793 
2794 		/* The valid test of the entry must be done first before
2795 		 * reading any further.
2796 		 */
2797 		dma_rmb();
2798 
2799 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2800 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2801 			struct bnxt_cp_ring_info *cpr2;
2802 
2803 			/* No more budget for RX work */
2804 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2805 				break;
2806 
2807 			cpr2 = cpr->cp_ring_arr[idx];
2808 			work_done += __bnxt_poll_work(bp, cpr2,
2809 						      budget - work_done);
2810 			cpr->has_more_work |= cpr2->has_more_work;
2811 		} else {
2812 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2813 		}
2814 		raw_cons = NEXT_RAW_CMP(raw_cons);
2815 	}
2816 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget);
2817 	if (raw_cons != cpr->cp_raw_cons) {
2818 		cpr->cp_raw_cons = raw_cons;
2819 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2820 	}
2821 poll_done:
2822 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2823 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2824 		struct dim_sample dim_sample = {};
2825 
2826 		dim_update_sample(cpr->event_ctr,
2827 				  cpr_rx->rx_packets,
2828 				  cpr_rx->rx_bytes,
2829 				  &dim_sample);
2830 		net_dim(&cpr->dim, dim_sample);
2831 	}
2832 	return work_done;
2833 }
2834 
2835 static void bnxt_free_tx_skbs(struct bnxt *bp)
2836 {
2837 	int i, max_idx;
2838 	struct pci_dev *pdev = bp->pdev;
2839 
2840 	if (!bp->tx_ring)
2841 		return;
2842 
2843 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2844 	for (i = 0; i < bp->tx_nr_rings; i++) {
2845 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2846 		int j;
2847 
2848 		if (!txr->tx_buf_ring)
2849 			continue;
2850 
2851 		for (j = 0; j < max_idx;) {
2852 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2853 			struct sk_buff *skb;
2854 			int k, last;
2855 
2856 			if (i < bp->tx_nr_rings_xdp &&
2857 			    tx_buf->action == XDP_REDIRECT) {
2858 				dma_unmap_single(&pdev->dev,
2859 					dma_unmap_addr(tx_buf, mapping),
2860 					dma_unmap_len(tx_buf, len),
2861 					DMA_TO_DEVICE);
2862 				xdp_return_frame(tx_buf->xdpf);
2863 				tx_buf->action = 0;
2864 				tx_buf->xdpf = NULL;
2865 				j++;
2866 				continue;
2867 			}
2868 
2869 			skb = tx_buf->skb;
2870 			if (!skb) {
2871 				j++;
2872 				continue;
2873 			}
2874 
2875 			tx_buf->skb = NULL;
2876 
2877 			if (tx_buf->is_push) {
2878 				dev_kfree_skb(skb);
2879 				j += 2;
2880 				continue;
2881 			}
2882 
2883 			dma_unmap_single(&pdev->dev,
2884 					 dma_unmap_addr(tx_buf, mapping),
2885 					 skb_headlen(skb),
2886 					 DMA_TO_DEVICE);
2887 
2888 			last = tx_buf->nr_frags;
2889 			j += 2;
2890 			for (k = 0; k < last; k++, j++) {
2891 				int ring_idx = j & bp->tx_ring_mask;
2892 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2893 
2894 				tx_buf = &txr->tx_buf_ring[ring_idx];
2895 				dma_unmap_page(
2896 					&pdev->dev,
2897 					dma_unmap_addr(tx_buf, mapping),
2898 					skb_frag_size(frag), DMA_TO_DEVICE);
2899 			}
2900 			dev_kfree_skb(skb);
2901 		}
2902 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2903 	}
2904 }
2905 
2906 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2907 {
2908 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2909 	struct pci_dev *pdev = bp->pdev;
2910 	struct bnxt_tpa_idx_map *map;
2911 	int i, max_idx, max_agg_idx;
2912 
2913 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2914 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2915 	if (!rxr->rx_tpa)
2916 		goto skip_rx_tpa_free;
2917 
2918 	for (i = 0; i < bp->max_tpa; i++) {
2919 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2920 		u8 *data = tpa_info->data;
2921 
2922 		if (!data)
2923 			continue;
2924 
2925 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2926 				       bp->rx_buf_use_size, bp->rx_dir,
2927 				       DMA_ATTR_WEAK_ORDERING);
2928 
2929 		tpa_info->data = NULL;
2930 
2931 		skb_free_frag(data);
2932 	}
2933 
2934 skip_rx_tpa_free:
2935 	if (!rxr->rx_buf_ring)
2936 		goto skip_rx_buf_free;
2937 
2938 	for (i = 0; i < max_idx; i++) {
2939 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2940 		dma_addr_t mapping = rx_buf->mapping;
2941 		void *data = rx_buf->data;
2942 
2943 		if (!data)
2944 			continue;
2945 
2946 		rx_buf->data = NULL;
2947 		if (BNXT_RX_PAGE_MODE(bp)) {
2948 			page_pool_recycle_direct(rxr->page_pool, data);
2949 		} else {
2950 			dma_unmap_single_attrs(&pdev->dev, mapping,
2951 					       bp->rx_buf_use_size, bp->rx_dir,
2952 					       DMA_ATTR_WEAK_ORDERING);
2953 			skb_free_frag(data);
2954 		}
2955 	}
2956 
2957 skip_rx_buf_free:
2958 	if (!rxr->rx_agg_ring)
2959 		goto skip_rx_agg_free;
2960 
2961 	for (i = 0; i < max_agg_idx; i++) {
2962 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2963 		struct page *page = rx_agg_buf->page;
2964 
2965 		if (!page)
2966 			continue;
2967 
2968 		rx_agg_buf->page = NULL;
2969 		__clear_bit(i, rxr->rx_agg_bmap);
2970 
2971 		page_pool_recycle_direct(rxr->page_pool, page);
2972 	}
2973 
2974 skip_rx_agg_free:
2975 	map = rxr->rx_tpa_idx_map;
2976 	if (map)
2977 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2978 }
2979 
2980 static void bnxt_free_rx_skbs(struct bnxt *bp)
2981 {
2982 	int i;
2983 
2984 	if (!bp->rx_ring)
2985 		return;
2986 
2987 	for (i = 0; i < bp->rx_nr_rings; i++)
2988 		bnxt_free_one_rx_ring_skbs(bp, i);
2989 }
2990 
2991 static void bnxt_free_skbs(struct bnxt *bp)
2992 {
2993 	bnxt_free_tx_skbs(bp);
2994 	bnxt_free_rx_skbs(bp);
2995 }
2996 
2997 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2998 {
2999 	u8 init_val = mem_init->init_val;
3000 	u16 offset = mem_init->offset;
3001 	u8 *p2 = p;
3002 	int i;
3003 
3004 	if (!init_val)
3005 		return;
3006 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3007 		memset(p, init_val, len);
3008 		return;
3009 	}
3010 	for (i = 0; i < len; i += mem_init->size)
3011 		*(p2 + i + offset) = init_val;
3012 }
3013 
3014 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3015 {
3016 	struct pci_dev *pdev = bp->pdev;
3017 	int i;
3018 
3019 	if (!rmem->pg_arr)
3020 		goto skip_pages;
3021 
3022 	for (i = 0; i < rmem->nr_pages; i++) {
3023 		if (!rmem->pg_arr[i])
3024 			continue;
3025 
3026 		dma_free_coherent(&pdev->dev, rmem->page_size,
3027 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3028 
3029 		rmem->pg_arr[i] = NULL;
3030 	}
3031 skip_pages:
3032 	if (rmem->pg_tbl) {
3033 		size_t pg_tbl_size = rmem->nr_pages * 8;
3034 
3035 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3036 			pg_tbl_size = rmem->page_size;
3037 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3038 				  rmem->pg_tbl, rmem->pg_tbl_map);
3039 		rmem->pg_tbl = NULL;
3040 	}
3041 	if (rmem->vmem_size && *rmem->vmem) {
3042 		vfree(*rmem->vmem);
3043 		*rmem->vmem = NULL;
3044 	}
3045 }
3046 
3047 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3048 {
3049 	struct pci_dev *pdev = bp->pdev;
3050 	u64 valid_bit = 0;
3051 	int i;
3052 
3053 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3054 		valid_bit = PTU_PTE_VALID;
3055 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3056 		size_t pg_tbl_size = rmem->nr_pages * 8;
3057 
3058 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3059 			pg_tbl_size = rmem->page_size;
3060 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3061 						  &rmem->pg_tbl_map,
3062 						  GFP_KERNEL);
3063 		if (!rmem->pg_tbl)
3064 			return -ENOMEM;
3065 	}
3066 
3067 	for (i = 0; i < rmem->nr_pages; i++) {
3068 		u64 extra_bits = valid_bit;
3069 
3070 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3071 						     rmem->page_size,
3072 						     &rmem->dma_arr[i],
3073 						     GFP_KERNEL);
3074 		if (!rmem->pg_arr[i])
3075 			return -ENOMEM;
3076 
3077 		if (rmem->mem_init)
3078 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3079 					  rmem->page_size);
3080 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3081 			if (i == rmem->nr_pages - 2 &&
3082 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3083 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3084 			else if (i == rmem->nr_pages - 1 &&
3085 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3086 				extra_bits |= PTU_PTE_LAST;
3087 			rmem->pg_tbl[i] =
3088 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3089 		}
3090 	}
3091 
3092 	if (rmem->vmem_size) {
3093 		*rmem->vmem = vzalloc(rmem->vmem_size);
3094 		if (!(*rmem->vmem))
3095 			return -ENOMEM;
3096 	}
3097 	return 0;
3098 }
3099 
3100 static void bnxt_free_tpa_info(struct bnxt *bp)
3101 {
3102 	int i, j;
3103 
3104 	for (i = 0; i < bp->rx_nr_rings; i++) {
3105 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3106 
3107 		kfree(rxr->rx_tpa_idx_map);
3108 		rxr->rx_tpa_idx_map = NULL;
3109 		if (rxr->rx_tpa) {
3110 			for (j = 0; j < bp->max_tpa; j++) {
3111 				kfree(rxr->rx_tpa[j].agg_arr);
3112 				rxr->rx_tpa[j].agg_arr = NULL;
3113 			}
3114 		}
3115 		kfree(rxr->rx_tpa);
3116 		rxr->rx_tpa = NULL;
3117 	}
3118 }
3119 
3120 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3121 {
3122 	int i, j;
3123 
3124 	bp->max_tpa = MAX_TPA;
3125 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3126 		if (!bp->max_tpa_v2)
3127 			return 0;
3128 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3129 	}
3130 
3131 	for (i = 0; i < bp->rx_nr_rings; i++) {
3132 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3133 		struct rx_agg_cmp *agg;
3134 
3135 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3136 				      GFP_KERNEL);
3137 		if (!rxr->rx_tpa)
3138 			return -ENOMEM;
3139 
3140 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3141 			continue;
3142 		for (j = 0; j < bp->max_tpa; j++) {
3143 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3144 			if (!agg)
3145 				return -ENOMEM;
3146 			rxr->rx_tpa[j].agg_arr = agg;
3147 		}
3148 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3149 					      GFP_KERNEL);
3150 		if (!rxr->rx_tpa_idx_map)
3151 			return -ENOMEM;
3152 	}
3153 	return 0;
3154 }
3155 
3156 static void bnxt_free_rx_rings(struct bnxt *bp)
3157 {
3158 	int i;
3159 
3160 	if (!bp->rx_ring)
3161 		return;
3162 
3163 	bnxt_free_tpa_info(bp);
3164 	for (i = 0; i < bp->rx_nr_rings; i++) {
3165 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3166 		struct bnxt_ring_struct *ring;
3167 
3168 		if (rxr->xdp_prog)
3169 			bpf_prog_put(rxr->xdp_prog);
3170 
3171 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3172 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3173 
3174 		page_pool_destroy(rxr->page_pool);
3175 		rxr->page_pool = NULL;
3176 
3177 		kfree(rxr->rx_agg_bmap);
3178 		rxr->rx_agg_bmap = NULL;
3179 
3180 		ring = &rxr->rx_ring_struct;
3181 		bnxt_free_ring(bp, &ring->ring_mem);
3182 
3183 		ring = &rxr->rx_agg_ring_struct;
3184 		bnxt_free_ring(bp, &ring->ring_mem);
3185 	}
3186 }
3187 
3188 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3189 				   struct bnxt_rx_ring_info *rxr)
3190 {
3191 	struct page_pool_params pp = { 0 };
3192 
3193 	pp.pool_size = bp->rx_agg_ring_size;
3194 	if (BNXT_RX_PAGE_MODE(bp))
3195 		pp.pool_size += bp->rx_ring_size;
3196 	pp.nid = dev_to_node(&bp->pdev->dev);
3197 	pp.napi = &rxr->bnapi->napi;
3198 	pp.dev = &bp->pdev->dev;
3199 	pp.dma_dir = bp->rx_dir;
3200 	pp.max_len = PAGE_SIZE;
3201 	pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
3202 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE)
3203 		pp.flags |= PP_FLAG_PAGE_FRAG;
3204 
3205 	rxr->page_pool = page_pool_create(&pp);
3206 	if (IS_ERR(rxr->page_pool)) {
3207 		int err = PTR_ERR(rxr->page_pool);
3208 
3209 		rxr->page_pool = NULL;
3210 		return err;
3211 	}
3212 	return 0;
3213 }
3214 
3215 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3216 {
3217 	int i, rc = 0, agg_rings = 0;
3218 
3219 	if (!bp->rx_ring)
3220 		return -ENOMEM;
3221 
3222 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3223 		agg_rings = 1;
3224 
3225 	for (i = 0; i < bp->rx_nr_rings; i++) {
3226 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3227 		struct bnxt_ring_struct *ring;
3228 
3229 		ring = &rxr->rx_ring_struct;
3230 
3231 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3232 		if (rc)
3233 			return rc;
3234 
3235 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3236 		if (rc < 0)
3237 			return rc;
3238 
3239 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3240 						MEM_TYPE_PAGE_POOL,
3241 						rxr->page_pool);
3242 		if (rc) {
3243 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3244 			return rc;
3245 		}
3246 
3247 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3248 		if (rc)
3249 			return rc;
3250 
3251 		ring->grp_idx = i;
3252 		if (agg_rings) {
3253 			u16 mem_size;
3254 
3255 			ring = &rxr->rx_agg_ring_struct;
3256 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3257 			if (rc)
3258 				return rc;
3259 
3260 			ring->grp_idx = i;
3261 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3262 			mem_size = rxr->rx_agg_bmap_size / 8;
3263 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3264 			if (!rxr->rx_agg_bmap)
3265 				return -ENOMEM;
3266 		}
3267 	}
3268 	if (bp->flags & BNXT_FLAG_TPA)
3269 		rc = bnxt_alloc_tpa_info(bp);
3270 	return rc;
3271 }
3272 
3273 static void bnxt_free_tx_rings(struct bnxt *bp)
3274 {
3275 	int i;
3276 	struct pci_dev *pdev = bp->pdev;
3277 
3278 	if (!bp->tx_ring)
3279 		return;
3280 
3281 	for (i = 0; i < bp->tx_nr_rings; i++) {
3282 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3283 		struct bnxt_ring_struct *ring;
3284 
3285 		if (txr->tx_push) {
3286 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3287 					  txr->tx_push, txr->tx_push_mapping);
3288 			txr->tx_push = NULL;
3289 		}
3290 
3291 		ring = &txr->tx_ring_struct;
3292 
3293 		bnxt_free_ring(bp, &ring->ring_mem);
3294 	}
3295 }
3296 
3297 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3298 {
3299 	int i, j, rc;
3300 	struct pci_dev *pdev = bp->pdev;
3301 
3302 	bp->tx_push_size = 0;
3303 	if (bp->tx_push_thresh) {
3304 		int push_size;
3305 
3306 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3307 					bp->tx_push_thresh);
3308 
3309 		if (push_size > 256) {
3310 			push_size = 0;
3311 			bp->tx_push_thresh = 0;
3312 		}
3313 
3314 		bp->tx_push_size = push_size;
3315 	}
3316 
3317 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3318 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3319 		struct bnxt_ring_struct *ring;
3320 		u8 qidx;
3321 
3322 		ring = &txr->tx_ring_struct;
3323 
3324 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3325 		if (rc)
3326 			return rc;
3327 
3328 		ring->grp_idx = txr->bnapi->index;
3329 		if (bp->tx_push_size) {
3330 			dma_addr_t mapping;
3331 
3332 			/* One pre-allocated DMA buffer to backup
3333 			 * TX push operation
3334 			 */
3335 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3336 						bp->tx_push_size,
3337 						&txr->tx_push_mapping,
3338 						GFP_KERNEL);
3339 
3340 			if (!txr->tx_push)
3341 				return -ENOMEM;
3342 
3343 			mapping = txr->tx_push_mapping +
3344 				sizeof(struct tx_push_bd);
3345 			txr->data_mapping = cpu_to_le64(mapping);
3346 		}
3347 		qidx = bp->tc_to_qidx[j];
3348 		ring->queue_id = bp->q_info[qidx].queue_id;
3349 		spin_lock_init(&txr->xdp_tx_lock);
3350 		if (i < bp->tx_nr_rings_xdp)
3351 			continue;
3352 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3353 			j++;
3354 	}
3355 	return 0;
3356 }
3357 
3358 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3359 {
3360 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3361 
3362 	kfree(cpr->cp_desc_ring);
3363 	cpr->cp_desc_ring = NULL;
3364 	ring->ring_mem.pg_arr = NULL;
3365 	kfree(cpr->cp_desc_mapping);
3366 	cpr->cp_desc_mapping = NULL;
3367 	ring->ring_mem.dma_arr = NULL;
3368 }
3369 
3370 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3371 {
3372 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3373 	if (!cpr->cp_desc_ring)
3374 		return -ENOMEM;
3375 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3376 				       GFP_KERNEL);
3377 	if (!cpr->cp_desc_mapping)
3378 		return -ENOMEM;
3379 	return 0;
3380 }
3381 
3382 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3383 {
3384 	int i;
3385 
3386 	if (!bp->bnapi)
3387 		return;
3388 	for (i = 0; i < bp->cp_nr_rings; i++) {
3389 		struct bnxt_napi *bnapi = bp->bnapi[i];
3390 
3391 		if (!bnapi)
3392 			continue;
3393 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3394 	}
3395 }
3396 
3397 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3398 {
3399 	int i, n = bp->cp_nr_pages;
3400 
3401 	for (i = 0; i < bp->cp_nr_rings; i++) {
3402 		struct bnxt_napi *bnapi = bp->bnapi[i];
3403 		int rc;
3404 
3405 		if (!bnapi)
3406 			continue;
3407 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3408 		if (rc)
3409 			return rc;
3410 	}
3411 	return 0;
3412 }
3413 
3414 static void bnxt_free_cp_rings(struct bnxt *bp)
3415 {
3416 	int i;
3417 
3418 	if (!bp->bnapi)
3419 		return;
3420 
3421 	for (i = 0; i < bp->cp_nr_rings; i++) {
3422 		struct bnxt_napi *bnapi = bp->bnapi[i];
3423 		struct bnxt_cp_ring_info *cpr;
3424 		struct bnxt_ring_struct *ring;
3425 		int j;
3426 
3427 		if (!bnapi)
3428 			continue;
3429 
3430 		cpr = &bnapi->cp_ring;
3431 		ring = &cpr->cp_ring_struct;
3432 
3433 		bnxt_free_ring(bp, &ring->ring_mem);
3434 
3435 		for (j = 0; j < 2; j++) {
3436 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3437 
3438 			if (cpr2) {
3439 				ring = &cpr2->cp_ring_struct;
3440 				bnxt_free_ring(bp, &ring->ring_mem);
3441 				bnxt_free_cp_arrays(cpr2);
3442 				kfree(cpr2);
3443 				cpr->cp_ring_arr[j] = NULL;
3444 			}
3445 		}
3446 	}
3447 }
3448 
3449 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3450 {
3451 	struct bnxt_ring_mem_info *rmem;
3452 	struct bnxt_ring_struct *ring;
3453 	struct bnxt_cp_ring_info *cpr;
3454 	int rc;
3455 
3456 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3457 	if (!cpr)
3458 		return NULL;
3459 
3460 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3461 	if (rc) {
3462 		bnxt_free_cp_arrays(cpr);
3463 		kfree(cpr);
3464 		return NULL;
3465 	}
3466 	ring = &cpr->cp_ring_struct;
3467 	rmem = &ring->ring_mem;
3468 	rmem->nr_pages = bp->cp_nr_pages;
3469 	rmem->page_size = HW_CMPD_RING_SIZE;
3470 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3471 	rmem->dma_arr = cpr->cp_desc_mapping;
3472 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3473 	rc = bnxt_alloc_ring(bp, rmem);
3474 	if (rc) {
3475 		bnxt_free_ring(bp, rmem);
3476 		bnxt_free_cp_arrays(cpr);
3477 		kfree(cpr);
3478 		cpr = NULL;
3479 	}
3480 	return cpr;
3481 }
3482 
3483 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3484 {
3485 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3486 	int i, rc, ulp_base_vec, ulp_msix;
3487 
3488 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3489 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3490 	for (i = 0; i < bp->cp_nr_rings; i++) {
3491 		struct bnxt_napi *bnapi = bp->bnapi[i];
3492 		struct bnxt_cp_ring_info *cpr;
3493 		struct bnxt_ring_struct *ring;
3494 
3495 		if (!bnapi)
3496 			continue;
3497 
3498 		cpr = &bnapi->cp_ring;
3499 		cpr->bnapi = bnapi;
3500 		ring = &cpr->cp_ring_struct;
3501 
3502 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3503 		if (rc)
3504 			return rc;
3505 
3506 		if (ulp_msix && i >= ulp_base_vec)
3507 			ring->map_idx = i + ulp_msix;
3508 		else
3509 			ring->map_idx = i;
3510 
3511 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3512 			continue;
3513 
3514 		if (i < bp->rx_nr_rings) {
3515 			struct bnxt_cp_ring_info *cpr2 =
3516 				bnxt_alloc_cp_sub_ring(bp);
3517 
3518 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3519 			if (!cpr2)
3520 				return -ENOMEM;
3521 			cpr2->bnapi = bnapi;
3522 		}
3523 		if ((sh && i < bp->tx_nr_rings) ||
3524 		    (!sh && i >= bp->rx_nr_rings)) {
3525 			struct bnxt_cp_ring_info *cpr2 =
3526 				bnxt_alloc_cp_sub_ring(bp);
3527 
3528 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3529 			if (!cpr2)
3530 				return -ENOMEM;
3531 			cpr2->bnapi = bnapi;
3532 		}
3533 	}
3534 	return 0;
3535 }
3536 
3537 static void bnxt_init_ring_struct(struct bnxt *bp)
3538 {
3539 	int i;
3540 
3541 	for (i = 0; i < bp->cp_nr_rings; i++) {
3542 		struct bnxt_napi *bnapi = bp->bnapi[i];
3543 		struct bnxt_ring_mem_info *rmem;
3544 		struct bnxt_cp_ring_info *cpr;
3545 		struct bnxt_rx_ring_info *rxr;
3546 		struct bnxt_tx_ring_info *txr;
3547 		struct bnxt_ring_struct *ring;
3548 
3549 		if (!bnapi)
3550 			continue;
3551 
3552 		cpr = &bnapi->cp_ring;
3553 		ring = &cpr->cp_ring_struct;
3554 		rmem = &ring->ring_mem;
3555 		rmem->nr_pages = bp->cp_nr_pages;
3556 		rmem->page_size = HW_CMPD_RING_SIZE;
3557 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3558 		rmem->dma_arr = cpr->cp_desc_mapping;
3559 		rmem->vmem_size = 0;
3560 
3561 		rxr = bnapi->rx_ring;
3562 		if (!rxr)
3563 			goto skip_rx;
3564 
3565 		ring = &rxr->rx_ring_struct;
3566 		rmem = &ring->ring_mem;
3567 		rmem->nr_pages = bp->rx_nr_pages;
3568 		rmem->page_size = HW_RXBD_RING_SIZE;
3569 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3570 		rmem->dma_arr = rxr->rx_desc_mapping;
3571 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3572 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3573 
3574 		ring = &rxr->rx_agg_ring_struct;
3575 		rmem = &ring->ring_mem;
3576 		rmem->nr_pages = bp->rx_agg_nr_pages;
3577 		rmem->page_size = HW_RXBD_RING_SIZE;
3578 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3579 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3580 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3581 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3582 
3583 skip_rx:
3584 		txr = bnapi->tx_ring;
3585 		if (!txr)
3586 			continue;
3587 
3588 		ring = &txr->tx_ring_struct;
3589 		rmem = &ring->ring_mem;
3590 		rmem->nr_pages = bp->tx_nr_pages;
3591 		rmem->page_size = HW_RXBD_RING_SIZE;
3592 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3593 		rmem->dma_arr = txr->tx_desc_mapping;
3594 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3595 		rmem->vmem = (void **)&txr->tx_buf_ring;
3596 	}
3597 }
3598 
3599 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3600 {
3601 	int i;
3602 	u32 prod;
3603 	struct rx_bd **rx_buf_ring;
3604 
3605 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3606 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3607 		int j;
3608 		struct rx_bd *rxbd;
3609 
3610 		rxbd = rx_buf_ring[i];
3611 		if (!rxbd)
3612 			continue;
3613 
3614 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3615 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3616 			rxbd->rx_bd_opaque = prod;
3617 		}
3618 	}
3619 }
3620 
3621 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3622 {
3623 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3624 	struct net_device *dev = bp->dev;
3625 	u32 prod;
3626 	int i;
3627 
3628 	prod = rxr->rx_prod;
3629 	for (i = 0; i < bp->rx_ring_size; i++) {
3630 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3631 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3632 				    ring_nr, i, bp->rx_ring_size);
3633 			break;
3634 		}
3635 		prod = NEXT_RX(prod);
3636 	}
3637 	rxr->rx_prod = prod;
3638 
3639 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3640 		return 0;
3641 
3642 	prod = rxr->rx_agg_prod;
3643 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3644 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3645 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3646 				    ring_nr, i, bp->rx_ring_size);
3647 			break;
3648 		}
3649 		prod = NEXT_RX_AGG(prod);
3650 	}
3651 	rxr->rx_agg_prod = prod;
3652 
3653 	if (rxr->rx_tpa) {
3654 		dma_addr_t mapping;
3655 		u8 *data;
3656 
3657 		for (i = 0; i < bp->max_tpa; i++) {
3658 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3659 			if (!data)
3660 				return -ENOMEM;
3661 
3662 			rxr->rx_tpa[i].data = data;
3663 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3664 			rxr->rx_tpa[i].mapping = mapping;
3665 		}
3666 	}
3667 	return 0;
3668 }
3669 
3670 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3671 {
3672 	struct bnxt_rx_ring_info *rxr;
3673 	struct bnxt_ring_struct *ring;
3674 	u32 type;
3675 
3676 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3677 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3678 
3679 	if (NET_IP_ALIGN == 2)
3680 		type |= RX_BD_FLAGS_SOP;
3681 
3682 	rxr = &bp->rx_ring[ring_nr];
3683 	ring = &rxr->rx_ring_struct;
3684 	bnxt_init_rxbd_pages(ring, type);
3685 
3686 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3687 		bpf_prog_add(bp->xdp_prog, 1);
3688 		rxr->xdp_prog = bp->xdp_prog;
3689 	}
3690 	ring->fw_ring_id = INVALID_HW_RING_ID;
3691 
3692 	ring = &rxr->rx_agg_ring_struct;
3693 	ring->fw_ring_id = INVALID_HW_RING_ID;
3694 
3695 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3696 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3697 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3698 
3699 		bnxt_init_rxbd_pages(ring, type);
3700 	}
3701 
3702 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3703 }
3704 
3705 static void bnxt_init_cp_rings(struct bnxt *bp)
3706 {
3707 	int i, j;
3708 
3709 	for (i = 0; i < bp->cp_nr_rings; i++) {
3710 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3711 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3712 
3713 		ring->fw_ring_id = INVALID_HW_RING_ID;
3714 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3715 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3716 		for (j = 0; j < 2; j++) {
3717 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3718 
3719 			if (!cpr2)
3720 				continue;
3721 
3722 			ring = &cpr2->cp_ring_struct;
3723 			ring->fw_ring_id = INVALID_HW_RING_ID;
3724 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3725 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3726 		}
3727 	}
3728 }
3729 
3730 static int bnxt_init_rx_rings(struct bnxt *bp)
3731 {
3732 	int i, rc = 0;
3733 
3734 	if (BNXT_RX_PAGE_MODE(bp)) {
3735 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3736 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3737 	} else {
3738 		bp->rx_offset = BNXT_RX_OFFSET;
3739 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3740 	}
3741 
3742 	for (i = 0; i < bp->rx_nr_rings; i++) {
3743 		rc = bnxt_init_one_rx_ring(bp, i);
3744 		if (rc)
3745 			break;
3746 	}
3747 
3748 	return rc;
3749 }
3750 
3751 static int bnxt_init_tx_rings(struct bnxt *bp)
3752 {
3753 	u16 i;
3754 
3755 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3756 				   BNXT_MIN_TX_DESC_CNT);
3757 
3758 	for (i = 0; i < bp->tx_nr_rings; i++) {
3759 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3760 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3761 
3762 		ring->fw_ring_id = INVALID_HW_RING_ID;
3763 	}
3764 
3765 	return 0;
3766 }
3767 
3768 static void bnxt_free_ring_grps(struct bnxt *bp)
3769 {
3770 	kfree(bp->grp_info);
3771 	bp->grp_info = NULL;
3772 }
3773 
3774 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3775 {
3776 	int i;
3777 
3778 	if (irq_re_init) {
3779 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3780 				       sizeof(struct bnxt_ring_grp_info),
3781 				       GFP_KERNEL);
3782 		if (!bp->grp_info)
3783 			return -ENOMEM;
3784 	}
3785 	for (i = 0; i < bp->cp_nr_rings; i++) {
3786 		if (irq_re_init)
3787 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3788 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3789 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3790 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3791 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3792 	}
3793 	return 0;
3794 }
3795 
3796 static void bnxt_free_vnics(struct bnxt *bp)
3797 {
3798 	kfree(bp->vnic_info);
3799 	bp->vnic_info = NULL;
3800 	bp->nr_vnics = 0;
3801 }
3802 
3803 static int bnxt_alloc_vnics(struct bnxt *bp)
3804 {
3805 	int num_vnics = 1;
3806 
3807 #ifdef CONFIG_RFS_ACCEL
3808 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3809 		num_vnics += bp->rx_nr_rings;
3810 #endif
3811 
3812 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3813 		num_vnics++;
3814 
3815 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3816 				GFP_KERNEL);
3817 	if (!bp->vnic_info)
3818 		return -ENOMEM;
3819 
3820 	bp->nr_vnics = num_vnics;
3821 	return 0;
3822 }
3823 
3824 static void bnxt_init_vnics(struct bnxt *bp)
3825 {
3826 	int i;
3827 
3828 	for (i = 0; i < bp->nr_vnics; i++) {
3829 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3830 		int j;
3831 
3832 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3833 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3834 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3835 
3836 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3837 
3838 		if (bp->vnic_info[i].rss_hash_key) {
3839 			if (i == 0)
3840 				get_random_bytes(vnic->rss_hash_key,
3841 					      HW_HASH_KEY_SIZE);
3842 			else
3843 				memcpy(vnic->rss_hash_key,
3844 				       bp->vnic_info[0].rss_hash_key,
3845 				       HW_HASH_KEY_SIZE);
3846 		}
3847 	}
3848 }
3849 
3850 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3851 {
3852 	int pages;
3853 
3854 	pages = ring_size / desc_per_pg;
3855 
3856 	if (!pages)
3857 		return 1;
3858 
3859 	pages++;
3860 
3861 	while (pages & (pages - 1))
3862 		pages++;
3863 
3864 	return pages;
3865 }
3866 
3867 void bnxt_set_tpa_flags(struct bnxt *bp)
3868 {
3869 	bp->flags &= ~BNXT_FLAG_TPA;
3870 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3871 		return;
3872 	if (bp->dev->features & NETIF_F_LRO)
3873 		bp->flags |= BNXT_FLAG_LRO;
3874 	else if (bp->dev->features & NETIF_F_GRO_HW)
3875 		bp->flags |= BNXT_FLAG_GRO;
3876 }
3877 
3878 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3879  * be set on entry.
3880  */
3881 void bnxt_set_ring_params(struct bnxt *bp)
3882 {
3883 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3884 	u32 agg_factor = 0, agg_ring_size = 0;
3885 
3886 	/* 8 for CRC and VLAN */
3887 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3888 
3889 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3890 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3891 
3892 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3893 	ring_size = bp->rx_ring_size;
3894 	bp->rx_agg_ring_size = 0;
3895 	bp->rx_agg_nr_pages = 0;
3896 
3897 	if (bp->flags & BNXT_FLAG_TPA)
3898 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3899 
3900 	bp->flags &= ~BNXT_FLAG_JUMBO;
3901 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3902 		u32 jumbo_factor;
3903 
3904 		bp->flags |= BNXT_FLAG_JUMBO;
3905 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3906 		if (jumbo_factor > agg_factor)
3907 			agg_factor = jumbo_factor;
3908 	}
3909 	if (agg_factor) {
3910 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3911 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3912 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3913 				    bp->rx_ring_size, ring_size);
3914 			bp->rx_ring_size = ring_size;
3915 		}
3916 		agg_ring_size = ring_size * agg_factor;
3917 
3918 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3919 							RX_DESC_CNT);
3920 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3921 			u32 tmp = agg_ring_size;
3922 
3923 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3924 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3925 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3926 				    tmp, agg_ring_size);
3927 		}
3928 		bp->rx_agg_ring_size = agg_ring_size;
3929 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3930 
3931 		if (BNXT_RX_PAGE_MODE(bp)) {
3932 			rx_space = PAGE_SIZE;
3933 			rx_size = PAGE_SIZE -
3934 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
3935 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3936 		} else {
3937 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3938 			rx_space = rx_size + NET_SKB_PAD +
3939 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3940 		}
3941 	}
3942 
3943 	bp->rx_buf_use_size = rx_size;
3944 	bp->rx_buf_size = rx_space;
3945 
3946 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3947 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3948 
3949 	ring_size = bp->tx_ring_size;
3950 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3951 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3952 
3953 	max_rx_cmpl = bp->rx_ring_size;
3954 	/* MAX TPA needs to be added because TPA_START completions are
3955 	 * immediately recycled, so the TPA completions are not bound by
3956 	 * the RX ring size.
3957 	 */
3958 	if (bp->flags & BNXT_FLAG_TPA)
3959 		max_rx_cmpl += bp->max_tpa;
3960 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3961 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3962 	bp->cp_ring_size = ring_size;
3963 
3964 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3965 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3966 		bp->cp_nr_pages = MAX_CP_PAGES;
3967 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3968 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3969 			    ring_size, bp->cp_ring_size);
3970 	}
3971 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3972 	bp->cp_ring_mask = bp->cp_bit - 1;
3973 }
3974 
3975 /* Changing allocation mode of RX rings.
3976  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3977  */
3978 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3979 {
3980 	struct net_device *dev = bp->dev;
3981 
3982 	if (page_mode) {
3983 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3984 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
3985 
3986 		if (bp->xdp_prog->aux->xdp_has_frags)
3987 			dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
3988 		else
3989 			dev->max_mtu =
3990 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3991 		if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
3992 			bp->flags |= BNXT_FLAG_JUMBO;
3993 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
3994 		} else {
3995 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
3996 			bp->rx_skb_func = bnxt_rx_page_skb;
3997 		}
3998 		bp->rx_dir = DMA_BIDIRECTIONAL;
3999 		/* Disable LRO or GRO_HW */
4000 		netdev_update_features(dev);
4001 	} else {
4002 		dev->max_mtu = bp->max_mtu;
4003 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4004 		bp->rx_dir = DMA_FROM_DEVICE;
4005 		bp->rx_skb_func = bnxt_rx_skb;
4006 	}
4007 	return 0;
4008 }
4009 
4010 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4011 {
4012 	int i;
4013 	struct bnxt_vnic_info *vnic;
4014 	struct pci_dev *pdev = bp->pdev;
4015 
4016 	if (!bp->vnic_info)
4017 		return;
4018 
4019 	for (i = 0; i < bp->nr_vnics; i++) {
4020 		vnic = &bp->vnic_info[i];
4021 
4022 		kfree(vnic->fw_grp_ids);
4023 		vnic->fw_grp_ids = NULL;
4024 
4025 		kfree(vnic->uc_list);
4026 		vnic->uc_list = NULL;
4027 
4028 		if (vnic->mc_list) {
4029 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4030 					  vnic->mc_list, vnic->mc_list_mapping);
4031 			vnic->mc_list = NULL;
4032 		}
4033 
4034 		if (vnic->rss_table) {
4035 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4036 					  vnic->rss_table,
4037 					  vnic->rss_table_dma_addr);
4038 			vnic->rss_table = NULL;
4039 		}
4040 
4041 		vnic->rss_hash_key = NULL;
4042 		vnic->flags = 0;
4043 	}
4044 }
4045 
4046 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4047 {
4048 	int i, rc = 0, size;
4049 	struct bnxt_vnic_info *vnic;
4050 	struct pci_dev *pdev = bp->pdev;
4051 	int max_rings;
4052 
4053 	for (i = 0; i < bp->nr_vnics; i++) {
4054 		vnic = &bp->vnic_info[i];
4055 
4056 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4057 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4058 
4059 			if (mem_size > 0) {
4060 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4061 				if (!vnic->uc_list) {
4062 					rc = -ENOMEM;
4063 					goto out;
4064 				}
4065 			}
4066 		}
4067 
4068 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4069 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4070 			vnic->mc_list =
4071 				dma_alloc_coherent(&pdev->dev,
4072 						   vnic->mc_list_size,
4073 						   &vnic->mc_list_mapping,
4074 						   GFP_KERNEL);
4075 			if (!vnic->mc_list) {
4076 				rc = -ENOMEM;
4077 				goto out;
4078 			}
4079 		}
4080 
4081 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4082 			goto vnic_skip_grps;
4083 
4084 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4085 			max_rings = bp->rx_nr_rings;
4086 		else
4087 			max_rings = 1;
4088 
4089 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4090 		if (!vnic->fw_grp_ids) {
4091 			rc = -ENOMEM;
4092 			goto out;
4093 		}
4094 vnic_skip_grps:
4095 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4096 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4097 			continue;
4098 
4099 		/* Allocate rss table and hash key */
4100 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4101 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4102 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4103 
4104 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4105 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4106 						     vnic->rss_table_size,
4107 						     &vnic->rss_table_dma_addr,
4108 						     GFP_KERNEL);
4109 		if (!vnic->rss_table) {
4110 			rc = -ENOMEM;
4111 			goto out;
4112 		}
4113 
4114 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4115 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4116 	}
4117 	return 0;
4118 
4119 out:
4120 	return rc;
4121 }
4122 
4123 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4124 {
4125 	struct bnxt_hwrm_wait_token *token;
4126 
4127 	dma_pool_destroy(bp->hwrm_dma_pool);
4128 	bp->hwrm_dma_pool = NULL;
4129 
4130 	rcu_read_lock();
4131 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4132 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4133 	rcu_read_unlock();
4134 }
4135 
4136 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4137 {
4138 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4139 					    BNXT_HWRM_DMA_SIZE,
4140 					    BNXT_HWRM_DMA_ALIGN, 0);
4141 	if (!bp->hwrm_dma_pool)
4142 		return -ENOMEM;
4143 
4144 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4145 
4146 	return 0;
4147 }
4148 
4149 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4150 {
4151 	kfree(stats->hw_masks);
4152 	stats->hw_masks = NULL;
4153 	kfree(stats->sw_stats);
4154 	stats->sw_stats = NULL;
4155 	if (stats->hw_stats) {
4156 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4157 				  stats->hw_stats_map);
4158 		stats->hw_stats = NULL;
4159 	}
4160 }
4161 
4162 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4163 				bool alloc_masks)
4164 {
4165 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4166 					     &stats->hw_stats_map, GFP_KERNEL);
4167 	if (!stats->hw_stats)
4168 		return -ENOMEM;
4169 
4170 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4171 	if (!stats->sw_stats)
4172 		goto stats_mem_err;
4173 
4174 	if (alloc_masks) {
4175 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4176 		if (!stats->hw_masks)
4177 			goto stats_mem_err;
4178 	}
4179 	return 0;
4180 
4181 stats_mem_err:
4182 	bnxt_free_stats_mem(bp, stats);
4183 	return -ENOMEM;
4184 }
4185 
4186 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4187 {
4188 	int i;
4189 
4190 	for (i = 0; i < count; i++)
4191 		mask_arr[i] = mask;
4192 }
4193 
4194 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4195 {
4196 	int i;
4197 
4198 	for (i = 0; i < count; i++)
4199 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4200 }
4201 
4202 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4203 				    struct bnxt_stats_mem *stats)
4204 {
4205 	struct hwrm_func_qstats_ext_output *resp;
4206 	struct hwrm_func_qstats_ext_input *req;
4207 	__le64 *hw_masks;
4208 	int rc;
4209 
4210 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4211 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4212 		return -EOPNOTSUPP;
4213 
4214 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4215 	if (rc)
4216 		return rc;
4217 
4218 	req->fid = cpu_to_le16(0xffff);
4219 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4220 
4221 	resp = hwrm_req_hold(bp, req);
4222 	rc = hwrm_req_send(bp, req);
4223 	if (!rc) {
4224 		hw_masks = &resp->rx_ucast_pkts;
4225 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4226 	}
4227 	hwrm_req_drop(bp, req);
4228 	return rc;
4229 }
4230 
4231 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4232 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4233 
4234 static void bnxt_init_stats(struct bnxt *bp)
4235 {
4236 	struct bnxt_napi *bnapi = bp->bnapi[0];
4237 	struct bnxt_cp_ring_info *cpr;
4238 	struct bnxt_stats_mem *stats;
4239 	__le64 *rx_stats, *tx_stats;
4240 	int rc, rx_count, tx_count;
4241 	u64 *rx_masks, *tx_masks;
4242 	u64 mask;
4243 	u8 flags;
4244 
4245 	cpr = &bnapi->cp_ring;
4246 	stats = &cpr->stats;
4247 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4248 	if (rc) {
4249 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4250 			mask = (1ULL << 48) - 1;
4251 		else
4252 			mask = -1ULL;
4253 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4254 	}
4255 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4256 		stats = &bp->port_stats;
4257 		rx_stats = stats->hw_stats;
4258 		rx_masks = stats->hw_masks;
4259 		rx_count = sizeof(struct rx_port_stats) / 8;
4260 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4261 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4262 		tx_count = sizeof(struct tx_port_stats) / 8;
4263 
4264 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4265 		rc = bnxt_hwrm_port_qstats(bp, flags);
4266 		if (rc) {
4267 			mask = (1ULL << 40) - 1;
4268 
4269 			bnxt_fill_masks(rx_masks, mask, rx_count);
4270 			bnxt_fill_masks(tx_masks, mask, tx_count);
4271 		} else {
4272 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4273 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4274 			bnxt_hwrm_port_qstats(bp, 0);
4275 		}
4276 	}
4277 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4278 		stats = &bp->rx_port_stats_ext;
4279 		rx_stats = stats->hw_stats;
4280 		rx_masks = stats->hw_masks;
4281 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4282 		stats = &bp->tx_port_stats_ext;
4283 		tx_stats = stats->hw_stats;
4284 		tx_masks = stats->hw_masks;
4285 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4286 
4287 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4288 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4289 		if (rc) {
4290 			mask = (1ULL << 40) - 1;
4291 
4292 			bnxt_fill_masks(rx_masks, mask, rx_count);
4293 			if (tx_stats)
4294 				bnxt_fill_masks(tx_masks, mask, tx_count);
4295 		} else {
4296 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4297 			if (tx_stats)
4298 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4299 						   tx_count);
4300 			bnxt_hwrm_port_qstats_ext(bp, 0);
4301 		}
4302 	}
4303 }
4304 
4305 static void bnxt_free_port_stats(struct bnxt *bp)
4306 {
4307 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4308 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4309 
4310 	bnxt_free_stats_mem(bp, &bp->port_stats);
4311 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4312 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4313 }
4314 
4315 static void bnxt_free_ring_stats(struct bnxt *bp)
4316 {
4317 	int i;
4318 
4319 	if (!bp->bnapi)
4320 		return;
4321 
4322 	for (i = 0; i < bp->cp_nr_rings; i++) {
4323 		struct bnxt_napi *bnapi = bp->bnapi[i];
4324 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4325 
4326 		bnxt_free_stats_mem(bp, &cpr->stats);
4327 	}
4328 }
4329 
4330 static int bnxt_alloc_stats(struct bnxt *bp)
4331 {
4332 	u32 size, i;
4333 	int rc;
4334 
4335 	size = bp->hw_ring_stats_size;
4336 
4337 	for (i = 0; i < bp->cp_nr_rings; i++) {
4338 		struct bnxt_napi *bnapi = bp->bnapi[i];
4339 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4340 
4341 		cpr->stats.len = size;
4342 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4343 		if (rc)
4344 			return rc;
4345 
4346 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4347 	}
4348 
4349 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4350 		return 0;
4351 
4352 	if (bp->port_stats.hw_stats)
4353 		goto alloc_ext_stats;
4354 
4355 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4356 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4357 	if (rc)
4358 		return rc;
4359 
4360 	bp->flags |= BNXT_FLAG_PORT_STATS;
4361 
4362 alloc_ext_stats:
4363 	/* Display extended statistics only if FW supports it */
4364 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4365 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4366 			return 0;
4367 
4368 	if (bp->rx_port_stats_ext.hw_stats)
4369 		goto alloc_tx_ext_stats;
4370 
4371 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4372 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4373 	/* Extended stats are optional */
4374 	if (rc)
4375 		return 0;
4376 
4377 alloc_tx_ext_stats:
4378 	if (bp->tx_port_stats_ext.hw_stats)
4379 		return 0;
4380 
4381 	if (bp->hwrm_spec_code >= 0x10902 ||
4382 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4383 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4384 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4385 		/* Extended stats are optional */
4386 		if (rc)
4387 			return 0;
4388 	}
4389 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4390 	return 0;
4391 }
4392 
4393 static void bnxt_clear_ring_indices(struct bnxt *bp)
4394 {
4395 	int i;
4396 
4397 	if (!bp->bnapi)
4398 		return;
4399 
4400 	for (i = 0; i < bp->cp_nr_rings; i++) {
4401 		struct bnxt_napi *bnapi = bp->bnapi[i];
4402 		struct bnxt_cp_ring_info *cpr;
4403 		struct bnxt_rx_ring_info *rxr;
4404 		struct bnxt_tx_ring_info *txr;
4405 
4406 		if (!bnapi)
4407 			continue;
4408 
4409 		cpr = &bnapi->cp_ring;
4410 		cpr->cp_raw_cons = 0;
4411 
4412 		txr = bnapi->tx_ring;
4413 		if (txr) {
4414 			txr->tx_prod = 0;
4415 			txr->tx_cons = 0;
4416 		}
4417 
4418 		rxr = bnapi->rx_ring;
4419 		if (rxr) {
4420 			rxr->rx_prod = 0;
4421 			rxr->rx_agg_prod = 0;
4422 			rxr->rx_sw_agg_prod = 0;
4423 			rxr->rx_next_cons = 0;
4424 		}
4425 	}
4426 }
4427 
4428 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4429 {
4430 #ifdef CONFIG_RFS_ACCEL
4431 	int i;
4432 
4433 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4434 	 * safe to delete the hash table.
4435 	 */
4436 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4437 		struct hlist_head *head;
4438 		struct hlist_node *tmp;
4439 		struct bnxt_ntuple_filter *fltr;
4440 
4441 		head = &bp->ntp_fltr_hash_tbl[i];
4442 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4443 			hlist_del(&fltr->hash);
4444 			kfree(fltr);
4445 		}
4446 	}
4447 	if (irq_reinit) {
4448 		bitmap_free(bp->ntp_fltr_bmap);
4449 		bp->ntp_fltr_bmap = NULL;
4450 	}
4451 	bp->ntp_fltr_count = 0;
4452 #endif
4453 }
4454 
4455 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4456 {
4457 #ifdef CONFIG_RFS_ACCEL
4458 	int i, rc = 0;
4459 
4460 	if (!(bp->flags & BNXT_FLAG_RFS))
4461 		return 0;
4462 
4463 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4464 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4465 
4466 	bp->ntp_fltr_count = 0;
4467 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4468 
4469 	if (!bp->ntp_fltr_bmap)
4470 		rc = -ENOMEM;
4471 
4472 	return rc;
4473 #else
4474 	return 0;
4475 #endif
4476 }
4477 
4478 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4479 {
4480 	bnxt_free_vnic_attributes(bp);
4481 	bnxt_free_tx_rings(bp);
4482 	bnxt_free_rx_rings(bp);
4483 	bnxt_free_cp_rings(bp);
4484 	bnxt_free_all_cp_arrays(bp);
4485 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4486 	if (irq_re_init) {
4487 		bnxt_free_ring_stats(bp);
4488 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4489 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4490 			bnxt_free_port_stats(bp);
4491 		bnxt_free_ring_grps(bp);
4492 		bnxt_free_vnics(bp);
4493 		kfree(bp->tx_ring_map);
4494 		bp->tx_ring_map = NULL;
4495 		kfree(bp->tx_ring);
4496 		bp->tx_ring = NULL;
4497 		kfree(bp->rx_ring);
4498 		bp->rx_ring = NULL;
4499 		kfree(bp->bnapi);
4500 		bp->bnapi = NULL;
4501 	} else {
4502 		bnxt_clear_ring_indices(bp);
4503 	}
4504 }
4505 
4506 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4507 {
4508 	int i, j, rc, size, arr_size;
4509 	void *bnapi;
4510 
4511 	if (irq_re_init) {
4512 		/* Allocate bnapi mem pointer array and mem block for
4513 		 * all queues
4514 		 */
4515 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4516 				bp->cp_nr_rings);
4517 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4518 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4519 		if (!bnapi)
4520 			return -ENOMEM;
4521 
4522 		bp->bnapi = bnapi;
4523 		bnapi += arr_size;
4524 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4525 			bp->bnapi[i] = bnapi;
4526 			bp->bnapi[i]->index = i;
4527 			bp->bnapi[i]->bp = bp;
4528 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4529 				struct bnxt_cp_ring_info *cpr =
4530 					&bp->bnapi[i]->cp_ring;
4531 
4532 				cpr->cp_ring_struct.ring_mem.flags =
4533 					BNXT_RMEM_RING_PTE_FLAG;
4534 			}
4535 		}
4536 
4537 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4538 				      sizeof(struct bnxt_rx_ring_info),
4539 				      GFP_KERNEL);
4540 		if (!bp->rx_ring)
4541 			return -ENOMEM;
4542 
4543 		for (i = 0; i < bp->rx_nr_rings; i++) {
4544 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4545 
4546 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4547 				rxr->rx_ring_struct.ring_mem.flags =
4548 					BNXT_RMEM_RING_PTE_FLAG;
4549 				rxr->rx_agg_ring_struct.ring_mem.flags =
4550 					BNXT_RMEM_RING_PTE_FLAG;
4551 			}
4552 			rxr->bnapi = bp->bnapi[i];
4553 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4554 		}
4555 
4556 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4557 				      sizeof(struct bnxt_tx_ring_info),
4558 				      GFP_KERNEL);
4559 		if (!bp->tx_ring)
4560 			return -ENOMEM;
4561 
4562 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4563 					  GFP_KERNEL);
4564 
4565 		if (!bp->tx_ring_map)
4566 			return -ENOMEM;
4567 
4568 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4569 			j = 0;
4570 		else
4571 			j = bp->rx_nr_rings;
4572 
4573 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4574 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4575 
4576 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4577 				txr->tx_ring_struct.ring_mem.flags =
4578 					BNXT_RMEM_RING_PTE_FLAG;
4579 			txr->bnapi = bp->bnapi[j];
4580 			bp->bnapi[j]->tx_ring = txr;
4581 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4582 			if (i >= bp->tx_nr_rings_xdp) {
4583 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4584 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4585 			} else {
4586 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4587 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4588 			}
4589 		}
4590 
4591 		rc = bnxt_alloc_stats(bp);
4592 		if (rc)
4593 			goto alloc_mem_err;
4594 		bnxt_init_stats(bp);
4595 
4596 		rc = bnxt_alloc_ntp_fltrs(bp);
4597 		if (rc)
4598 			goto alloc_mem_err;
4599 
4600 		rc = bnxt_alloc_vnics(bp);
4601 		if (rc)
4602 			goto alloc_mem_err;
4603 	}
4604 
4605 	rc = bnxt_alloc_all_cp_arrays(bp);
4606 	if (rc)
4607 		goto alloc_mem_err;
4608 
4609 	bnxt_init_ring_struct(bp);
4610 
4611 	rc = bnxt_alloc_rx_rings(bp);
4612 	if (rc)
4613 		goto alloc_mem_err;
4614 
4615 	rc = bnxt_alloc_tx_rings(bp);
4616 	if (rc)
4617 		goto alloc_mem_err;
4618 
4619 	rc = bnxt_alloc_cp_rings(bp);
4620 	if (rc)
4621 		goto alloc_mem_err;
4622 
4623 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4624 				  BNXT_VNIC_UCAST_FLAG;
4625 	rc = bnxt_alloc_vnic_attributes(bp);
4626 	if (rc)
4627 		goto alloc_mem_err;
4628 	return 0;
4629 
4630 alloc_mem_err:
4631 	bnxt_free_mem(bp, true);
4632 	return rc;
4633 }
4634 
4635 static void bnxt_disable_int(struct bnxt *bp)
4636 {
4637 	int i;
4638 
4639 	if (!bp->bnapi)
4640 		return;
4641 
4642 	for (i = 0; i < bp->cp_nr_rings; i++) {
4643 		struct bnxt_napi *bnapi = bp->bnapi[i];
4644 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4645 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4646 
4647 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4648 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4649 	}
4650 }
4651 
4652 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4653 {
4654 	struct bnxt_napi *bnapi = bp->bnapi[n];
4655 	struct bnxt_cp_ring_info *cpr;
4656 
4657 	cpr = &bnapi->cp_ring;
4658 	return cpr->cp_ring_struct.map_idx;
4659 }
4660 
4661 static void bnxt_disable_int_sync(struct bnxt *bp)
4662 {
4663 	int i;
4664 
4665 	if (!bp->irq_tbl)
4666 		return;
4667 
4668 	atomic_inc(&bp->intr_sem);
4669 
4670 	bnxt_disable_int(bp);
4671 	for (i = 0; i < bp->cp_nr_rings; i++) {
4672 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4673 
4674 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4675 	}
4676 }
4677 
4678 static void bnxt_enable_int(struct bnxt *bp)
4679 {
4680 	int i;
4681 
4682 	atomic_set(&bp->intr_sem, 0);
4683 	for (i = 0; i < bp->cp_nr_rings; i++) {
4684 		struct bnxt_napi *bnapi = bp->bnapi[i];
4685 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4686 
4687 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4688 	}
4689 }
4690 
4691 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4692 			    bool async_only)
4693 {
4694 	DECLARE_BITMAP(async_events_bmap, 256);
4695 	u32 *events = (u32 *)async_events_bmap;
4696 	struct hwrm_func_drv_rgtr_output *resp;
4697 	struct hwrm_func_drv_rgtr_input *req;
4698 	u32 flags;
4699 	int rc, i;
4700 
4701 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4702 	if (rc)
4703 		return rc;
4704 
4705 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4706 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4707 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4708 
4709 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4710 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4711 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4712 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4713 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4714 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4715 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4716 	req->flags = cpu_to_le32(flags);
4717 	req->ver_maj_8b = DRV_VER_MAJ;
4718 	req->ver_min_8b = DRV_VER_MIN;
4719 	req->ver_upd_8b = DRV_VER_UPD;
4720 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4721 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4722 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4723 
4724 	if (BNXT_PF(bp)) {
4725 		u32 data[8];
4726 		int i;
4727 
4728 		memset(data, 0, sizeof(data));
4729 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4730 			u16 cmd = bnxt_vf_req_snif[i];
4731 			unsigned int bit, idx;
4732 
4733 			idx = cmd / 32;
4734 			bit = cmd % 32;
4735 			data[idx] |= 1 << bit;
4736 		}
4737 
4738 		for (i = 0; i < 8; i++)
4739 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4740 
4741 		req->enables |=
4742 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4743 	}
4744 
4745 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4746 		req->flags |= cpu_to_le32(
4747 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4748 
4749 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4750 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4751 		u16 event_id = bnxt_async_events_arr[i];
4752 
4753 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4754 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4755 			continue;
4756 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE &&
4757 		    !bp->ptp_cfg)
4758 			continue;
4759 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4760 	}
4761 	if (bmap && bmap_size) {
4762 		for (i = 0; i < bmap_size; i++) {
4763 			if (test_bit(i, bmap))
4764 				__set_bit(i, async_events_bmap);
4765 		}
4766 	}
4767 	for (i = 0; i < 8; i++)
4768 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4769 
4770 	if (async_only)
4771 		req->enables =
4772 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4773 
4774 	resp = hwrm_req_hold(bp, req);
4775 	rc = hwrm_req_send(bp, req);
4776 	if (!rc) {
4777 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4778 		if (resp->flags &
4779 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4780 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4781 	}
4782 	hwrm_req_drop(bp, req);
4783 	return rc;
4784 }
4785 
4786 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4787 {
4788 	struct hwrm_func_drv_unrgtr_input *req;
4789 	int rc;
4790 
4791 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4792 		return 0;
4793 
4794 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4795 	if (rc)
4796 		return rc;
4797 	return hwrm_req_send(bp, req);
4798 }
4799 
4800 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4801 {
4802 	struct hwrm_tunnel_dst_port_free_input *req;
4803 	int rc;
4804 
4805 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4806 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4807 		return 0;
4808 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4809 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4810 		return 0;
4811 
4812 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4813 	if (rc)
4814 		return rc;
4815 
4816 	req->tunnel_type = tunnel_type;
4817 
4818 	switch (tunnel_type) {
4819 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4820 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4821 		bp->vxlan_port = 0;
4822 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4823 		break;
4824 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4825 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4826 		bp->nge_port = 0;
4827 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4828 		break;
4829 	default:
4830 		break;
4831 	}
4832 
4833 	rc = hwrm_req_send(bp, req);
4834 	if (rc)
4835 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4836 			   rc);
4837 	return rc;
4838 }
4839 
4840 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4841 					   u8 tunnel_type)
4842 {
4843 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4844 	struct hwrm_tunnel_dst_port_alloc_input *req;
4845 	int rc;
4846 
4847 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4848 	if (rc)
4849 		return rc;
4850 
4851 	req->tunnel_type = tunnel_type;
4852 	req->tunnel_dst_port_val = port;
4853 
4854 	resp = hwrm_req_hold(bp, req);
4855 	rc = hwrm_req_send(bp, req);
4856 	if (rc) {
4857 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4858 			   rc);
4859 		goto err_out;
4860 	}
4861 
4862 	switch (tunnel_type) {
4863 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4864 		bp->vxlan_port = port;
4865 		bp->vxlan_fw_dst_port_id =
4866 			le16_to_cpu(resp->tunnel_dst_port_id);
4867 		break;
4868 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4869 		bp->nge_port = port;
4870 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4871 		break;
4872 	default:
4873 		break;
4874 	}
4875 
4876 err_out:
4877 	hwrm_req_drop(bp, req);
4878 	return rc;
4879 }
4880 
4881 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4882 {
4883 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4884 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4885 	int rc;
4886 
4887 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4888 	if (rc)
4889 		return rc;
4890 
4891 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4892 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4893 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4894 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4895 	}
4896 	req->mask = cpu_to_le32(vnic->rx_mask);
4897 	return hwrm_req_send_silent(bp, req);
4898 }
4899 
4900 #ifdef CONFIG_RFS_ACCEL
4901 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4902 					    struct bnxt_ntuple_filter *fltr)
4903 {
4904 	struct hwrm_cfa_ntuple_filter_free_input *req;
4905 	int rc;
4906 
4907 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4908 	if (rc)
4909 		return rc;
4910 
4911 	req->ntuple_filter_id = fltr->filter_id;
4912 	return hwrm_req_send(bp, req);
4913 }
4914 
4915 #define BNXT_NTP_FLTR_FLAGS					\
4916 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4917 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4918 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4919 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4920 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4921 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4922 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4923 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4924 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4925 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4926 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4927 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4928 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4929 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4930 
4931 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4932 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4933 
4934 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4935 					     struct bnxt_ntuple_filter *fltr)
4936 {
4937 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4938 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4939 	struct flow_keys *keys = &fltr->fkeys;
4940 	struct bnxt_vnic_info *vnic;
4941 	u32 flags = 0;
4942 	int rc;
4943 
4944 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4945 	if (rc)
4946 		return rc;
4947 
4948 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4949 
4950 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4951 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4952 		req->dst_id = cpu_to_le16(fltr->rxq);
4953 	} else {
4954 		vnic = &bp->vnic_info[fltr->rxq + 1];
4955 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4956 	}
4957 	req->flags = cpu_to_le32(flags);
4958 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4959 
4960 	req->ethertype = htons(ETH_P_IP);
4961 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4962 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4963 	req->ip_protocol = keys->basic.ip_proto;
4964 
4965 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4966 		int i;
4967 
4968 		req->ethertype = htons(ETH_P_IPV6);
4969 		req->ip_addr_type =
4970 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4971 		*(struct in6_addr *)&req->src_ipaddr[0] =
4972 			keys->addrs.v6addrs.src;
4973 		*(struct in6_addr *)&req->dst_ipaddr[0] =
4974 			keys->addrs.v6addrs.dst;
4975 		for (i = 0; i < 4; i++) {
4976 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4977 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4978 		}
4979 	} else {
4980 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
4981 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4982 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4983 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4984 	}
4985 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4986 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4987 		req->tunnel_type =
4988 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4989 	}
4990 
4991 	req->src_port = keys->ports.src;
4992 	req->src_port_mask = cpu_to_be16(0xffff);
4993 	req->dst_port = keys->ports.dst;
4994 	req->dst_port_mask = cpu_to_be16(0xffff);
4995 
4996 	resp = hwrm_req_hold(bp, req);
4997 	rc = hwrm_req_send(bp, req);
4998 	if (!rc)
4999 		fltr->filter_id = resp->ntuple_filter_id;
5000 	hwrm_req_drop(bp, req);
5001 	return rc;
5002 }
5003 #endif
5004 
5005 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5006 				     const u8 *mac_addr)
5007 {
5008 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5009 	struct hwrm_cfa_l2_filter_alloc_input *req;
5010 	int rc;
5011 
5012 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5013 	if (rc)
5014 		return rc;
5015 
5016 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5017 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5018 		req->flags |=
5019 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5020 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5021 	req->enables =
5022 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5023 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5024 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5025 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5026 	req->l2_addr_mask[0] = 0xff;
5027 	req->l2_addr_mask[1] = 0xff;
5028 	req->l2_addr_mask[2] = 0xff;
5029 	req->l2_addr_mask[3] = 0xff;
5030 	req->l2_addr_mask[4] = 0xff;
5031 	req->l2_addr_mask[5] = 0xff;
5032 
5033 	resp = hwrm_req_hold(bp, req);
5034 	rc = hwrm_req_send(bp, req);
5035 	if (!rc)
5036 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5037 							resp->l2_filter_id;
5038 	hwrm_req_drop(bp, req);
5039 	return rc;
5040 }
5041 
5042 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5043 {
5044 	struct hwrm_cfa_l2_filter_free_input *req;
5045 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5046 	int rc;
5047 
5048 	/* Any associated ntuple filters will also be cleared by firmware. */
5049 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5050 	if (rc)
5051 		return rc;
5052 	hwrm_req_hold(bp, req);
5053 	for (i = 0; i < num_of_vnics; i++) {
5054 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5055 
5056 		for (j = 0; j < vnic->uc_filter_count; j++) {
5057 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5058 
5059 			rc = hwrm_req_send(bp, req);
5060 		}
5061 		vnic->uc_filter_count = 0;
5062 	}
5063 	hwrm_req_drop(bp, req);
5064 	return rc;
5065 }
5066 
5067 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5068 {
5069 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5070 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5071 	struct hwrm_vnic_tpa_cfg_input *req;
5072 	int rc;
5073 
5074 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5075 		return 0;
5076 
5077 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5078 	if (rc)
5079 		return rc;
5080 
5081 	if (tpa_flags) {
5082 		u16 mss = bp->dev->mtu - 40;
5083 		u32 nsegs, n, segs = 0, flags;
5084 
5085 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5086 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5087 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5088 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5089 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5090 		if (tpa_flags & BNXT_FLAG_GRO)
5091 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5092 
5093 		req->flags = cpu_to_le32(flags);
5094 
5095 		req->enables =
5096 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5097 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5098 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5099 
5100 		/* Number of segs are log2 units, and first packet is not
5101 		 * included as part of this units.
5102 		 */
5103 		if (mss <= BNXT_RX_PAGE_SIZE) {
5104 			n = BNXT_RX_PAGE_SIZE / mss;
5105 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5106 		} else {
5107 			n = mss / BNXT_RX_PAGE_SIZE;
5108 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5109 				n++;
5110 			nsegs = (MAX_SKB_FRAGS - n) / n;
5111 		}
5112 
5113 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5114 			segs = MAX_TPA_SEGS_P5;
5115 			max_aggs = bp->max_tpa;
5116 		} else {
5117 			segs = ilog2(nsegs);
5118 		}
5119 		req->max_agg_segs = cpu_to_le16(segs);
5120 		req->max_aggs = cpu_to_le16(max_aggs);
5121 
5122 		req->min_agg_len = cpu_to_le32(512);
5123 	}
5124 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5125 
5126 	return hwrm_req_send(bp, req);
5127 }
5128 
5129 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5130 {
5131 	struct bnxt_ring_grp_info *grp_info;
5132 
5133 	grp_info = &bp->grp_info[ring->grp_idx];
5134 	return grp_info->cp_fw_ring_id;
5135 }
5136 
5137 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5138 {
5139 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5140 		struct bnxt_napi *bnapi = rxr->bnapi;
5141 		struct bnxt_cp_ring_info *cpr;
5142 
5143 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5144 		return cpr->cp_ring_struct.fw_ring_id;
5145 	} else {
5146 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5147 	}
5148 }
5149 
5150 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5151 {
5152 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5153 		struct bnxt_napi *bnapi = txr->bnapi;
5154 		struct bnxt_cp_ring_info *cpr;
5155 
5156 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5157 		return cpr->cp_ring_struct.fw_ring_id;
5158 	} else {
5159 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5160 	}
5161 }
5162 
5163 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5164 {
5165 	int entries;
5166 
5167 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5168 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5169 	else
5170 		entries = HW_HASH_INDEX_SIZE;
5171 
5172 	bp->rss_indir_tbl_entries = entries;
5173 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5174 					  GFP_KERNEL);
5175 	if (!bp->rss_indir_tbl)
5176 		return -ENOMEM;
5177 	return 0;
5178 }
5179 
5180 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5181 {
5182 	u16 max_rings, max_entries, pad, i;
5183 
5184 	if (!bp->rx_nr_rings)
5185 		return;
5186 
5187 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5188 		max_rings = bp->rx_nr_rings - 1;
5189 	else
5190 		max_rings = bp->rx_nr_rings;
5191 
5192 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5193 
5194 	for (i = 0; i < max_entries; i++)
5195 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5196 
5197 	pad = bp->rss_indir_tbl_entries - max_entries;
5198 	if (pad)
5199 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5200 }
5201 
5202 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5203 {
5204 	u16 i, tbl_size, max_ring = 0;
5205 
5206 	if (!bp->rss_indir_tbl)
5207 		return 0;
5208 
5209 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5210 	for (i = 0; i < tbl_size; i++)
5211 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5212 	return max_ring;
5213 }
5214 
5215 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5216 {
5217 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5218 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5219 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5220 		return 2;
5221 	return 1;
5222 }
5223 
5224 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5225 {
5226 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5227 	u16 i, j;
5228 
5229 	/* Fill the RSS indirection table with ring group ids */
5230 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5231 		if (!no_rss)
5232 			j = bp->rss_indir_tbl[i];
5233 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5234 	}
5235 }
5236 
5237 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5238 				    struct bnxt_vnic_info *vnic)
5239 {
5240 	__le16 *ring_tbl = vnic->rss_table;
5241 	struct bnxt_rx_ring_info *rxr;
5242 	u16 tbl_size, i;
5243 
5244 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5245 
5246 	for (i = 0; i < tbl_size; i++) {
5247 		u16 ring_id, j;
5248 
5249 		j = bp->rss_indir_tbl[i];
5250 		rxr = &bp->rx_ring[j];
5251 
5252 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5253 		*ring_tbl++ = cpu_to_le16(ring_id);
5254 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5255 		*ring_tbl++ = cpu_to_le16(ring_id);
5256 	}
5257 }
5258 
5259 static void
5260 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5261 			 struct bnxt_vnic_info *vnic)
5262 {
5263 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5264 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5265 	else
5266 		bnxt_fill_hw_rss_tbl(bp, vnic);
5267 
5268 	if (bp->rss_hash_delta) {
5269 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5270 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5271 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5272 		else
5273 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5274 	} else {
5275 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5276 	}
5277 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5278 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5279 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5280 }
5281 
5282 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5283 {
5284 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5285 	struct hwrm_vnic_rss_cfg_input *req;
5286 	int rc;
5287 
5288 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5289 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5290 		return 0;
5291 
5292 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5293 	if (rc)
5294 		return rc;
5295 
5296 	if (set_rss)
5297 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5298 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5299 	return hwrm_req_send(bp, req);
5300 }
5301 
5302 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5303 {
5304 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5305 	struct hwrm_vnic_rss_cfg_input *req;
5306 	dma_addr_t ring_tbl_map;
5307 	u32 i, nr_ctxs;
5308 	int rc;
5309 
5310 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5311 	if (rc)
5312 		return rc;
5313 
5314 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5315 	if (!set_rss)
5316 		return hwrm_req_send(bp, req);
5317 
5318 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5319 	ring_tbl_map = vnic->rss_table_dma_addr;
5320 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5321 
5322 	hwrm_req_hold(bp, req);
5323 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5324 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5325 		req->ring_table_pair_index = i;
5326 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5327 		rc = hwrm_req_send(bp, req);
5328 		if (rc)
5329 			goto exit;
5330 	}
5331 
5332 exit:
5333 	hwrm_req_drop(bp, req);
5334 	return rc;
5335 }
5336 
5337 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5338 {
5339 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5340 	struct hwrm_vnic_rss_qcfg_output *resp;
5341 	struct hwrm_vnic_rss_qcfg_input *req;
5342 
5343 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5344 		return;
5345 
5346 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5347 	/* all contexts configured to same hash_type, zero always exists */
5348 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5349 	resp = hwrm_req_hold(bp, req);
5350 	if (!hwrm_req_send(bp, req)) {
5351 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5352 		bp->rss_hash_delta = 0;
5353 	}
5354 	hwrm_req_drop(bp, req);
5355 }
5356 
5357 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5358 {
5359 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5360 	struct hwrm_vnic_plcmodes_cfg_input *req;
5361 	int rc;
5362 
5363 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5364 	if (rc)
5365 		return rc;
5366 
5367 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5368 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5369 
5370 	if (BNXT_RX_PAGE_MODE(bp)) {
5371 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
5372 	} else {
5373 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5374 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5375 		req->enables |=
5376 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5377 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5378 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5379 	}
5380 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5381 	return hwrm_req_send(bp, req);
5382 }
5383 
5384 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5385 					u16 ctx_idx)
5386 {
5387 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5388 
5389 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5390 		return;
5391 
5392 	req->rss_cos_lb_ctx_id =
5393 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5394 
5395 	hwrm_req_send(bp, req);
5396 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5397 }
5398 
5399 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5400 {
5401 	int i, j;
5402 
5403 	for (i = 0; i < bp->nr_vnics; i++) {
5404 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5405 
5406 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5407 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5408 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5409 		}
5410 	}
5411 	bp->rsscos_nr_ctxs = 0;
5412 }
5413 
5414 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5415 {
5416 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5417 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5418 	int rc;
5419 
5420 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5421 	if (rc)
5422 		return rc;
5423 
5424 	resp = hwrm_req_hold(bp, req);
5425 	rc = hwrm_req_send(bp, req);
5426 	if (!rc)
5427 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5428 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5429 	hwrm_req_drop(bp, req);
5430 
5431 	return rc;
5432 }
5433 
5434 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5435 {
5436 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5437 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5438 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5439 }
5440 
5441 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5442 {
5443 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5444 	struct hwrm_vnic_cfg_input *req;
5445 	unsigned int ring = 0, grp_idx;
5446 	u16 def_vlan = 0;
5447 	int rc;
5448 
5449 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5450 	if (rc)
5451 		return rc;
5452 
5453 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5454 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5455 
5456 		req->default_rx_ring_id =
5457 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5458 		req->default_cmpl_ring_id =
5459 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5460 		req->enables =
5461 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5462 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5463 		goto vnic_mru;
5464 	}
5465 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5466 	/* Only RSS support for now TBD: COS & LB */
5467 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5468 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5469 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5470 					   VNIC_CFG_REQ_ENABLES_MRU);
5471 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5472 		req->rss_rule =
5473 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5474 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5475 					   VNIC_CFG_REQ_ENABLES_MRU);
5476 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5477 	} else {
5478 		req->rss_rule = cpu_to_le16(0xffff);
5479 	}
5480 
5481 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5482 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5483 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5484 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5485 	} else {
5486 		req->cos_rule = cpu_to_le16(0xffff);
5487 	}
5488 
5489 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5490 		ring = 0;
5491 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5492 		ring = vnic_id - 1;
5493 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5494 		ring = bp->rx_nr_rings - 1;
5495 
5496 	grp_idx = bp->rx_ring[ring].bnapi->index;
5497 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5498 	req->lb_rule = cpu_to_le16(0xffff);
5499 vnic_mru:
5500 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5501 
5502 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5503 #ifdef CONFIG_BNXT_SRIOV
5504 	if (BNXT_VF(bp))
5505 		def_vlan = bp->vf.vlan;
5506 #endif
5507 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5508 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5509 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
5510 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5511 
5512 	return hwrm_req_send(bp, req);
5513 }
5514 
5515 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5516 {
5517 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5518 		struct hwrm_vnic_free_input *req;
5519 
5520 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5521 			return;
5522 
5523 		req->vnic_id =
5524 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5525 
5526 		hwrm_req_send(bp, req);
5527 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5528 	}
5529 }
5530 
5531 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5532 {
5533 	u16 i;
5534 
5535 	for (i = 0; i < bp->nr_vnics; i++)
5536 		bnxt_hwrm_vnic_free_one(bp, i);
5537 }
5538 
5539 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5540 				unsigned int start_rx_ring_idx,
5541 				unsigned int nr_rings)
5542 {
5543 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5544 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5545 	struct hwrm_vnic_alloc_output *resp;
5546 	struct hwrm_vnic_alloc_input *req;
5547 	int rc;
5548 
5549 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5550 	if (rc)
5551 		return rc;
5552 
5553 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5554 		goto vnic_no_ring_grps;
5555 
5556 	/* map ring groups to this vnic */
5557 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5558 		grp_idx = bp->rx_ring[i].bnapi->index;
5559 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5560 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5561 				   j, nr_rings);
5562 			break;
5563 		}
5564 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5565 	}
5566 
5567 vnic_no_ring_grps:
5568 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5569 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5570 	if (vnic_id == 0)
5571 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5572 
5573 	resp = hwrm_req_hold(bp, req);
5574 	rc = hwrm_req_send(bp, req);
5575 	if (!rc)
5576 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5577 	hwrm_req_drop(bp, req);
5578 	return rc;
5579 }
5580 
5581 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5582 {
5583 	struct hwrm_vnic_qcaps_output *resp;
5584 	struct hwrm_vnic_qcaps_input *req;
5585 	int rc;
5586 
5587 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5588 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5589 	if (bp->hwrm_spec_code < 0x10600)
5590 		return 0;
5591 
5592 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5593 	if (rc)
5594 		return rc;
5595 
5596 	resp = hwrm_req_hold(bp, req);
5597 	rc = hwrm_req_send(bp, req);
5598 	if (!rc) {
5599 		u32 flags = le32_to_cpu(resp->flags);
5600 
5601 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5602 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5603 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5604 		if (flags &
5605 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5606 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5607 
5608 		/* Older P5 fw before EXT_HW_STATS support did not set
5609 		 * VLAN_STRIP_CAP properly.
5610 		 */
5611 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5612 		    (BNXT_CHIP_P5_THOR(bp) &&
5613 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5614 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5615 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
5616 			bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA;
5617 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5618 		if (bp->max_tpa_v2) {
5619 			if (BNXT_CHIP_P5_THOR(bp))
5620 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5621 			else
5622 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5623 		}
5624 	}
5625 	hwrm_req_drop(bp, req);
5626 	return rc;
5627 }
5628 
5629 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5630 {
5631 	struct hwrm_ring_grp_alloc_output *resp;
5632 	struct hwrm_ring_grp_alloc_input *req;
5633 	int rc;
5634 	u16 i;
5635 
5636 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5637 		return 0;
5638 
5639 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5640 	if (rc)
5641 		return rc;
5642 
5643 	resp = hwrm_req_hold(bp, req);
5644 	for (i = 0; i < bp->rx_nr_rings; i++) {
5645 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5646 
5647 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5648 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5649 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5650 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5651 
5652 		rc = hwrm_req_send(bp, req);
5653 
5654 		if (rc)
5655 			break;
5656 
5657 		bp->grp_info[grp_idx].fw_grp_id =
5658 			le32_to_cpu(resp->ring_group_id);
5659 	}
5660 	hwrm_req_drop(bp, req);
5661 	return rc;
5662 }
5663 
5664 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5665 {
5666 	struct hwrm_ring_grp_free_input *req;
5667 	u16 i;
5668 
5669 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5670 		return;
5671 
5672 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5673 		return;
5674 
5675 	hwrm_req_hold(bp, req);
5676 	for (i = 0; i < bp->cp_nr_rings; i++) {
5677 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5678 			continue;
5679 		req->ring_group_id =
5680 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5681 
5682 		hwrm_req_send(bp, req);
5683 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5684 	}
5685 	hwrm_req_drop(bp, req);
5686 }
5687 
5688 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5689 				    struct bnxt_ring_struct *ring,
5690 				    u32 ring_type, u32 map_index)
5691 {
5692 	struct hwrm_ring_alloc_output *resp;
5693 	struct hwrm_ring_alloc_input *req;
5694 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5695 	struct bnxt_ring_grp_info *grp_info;
5696 	int rc, err = 0;
5697 	u16 ring_id;
5698 
5699 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5700 	if (rc)
5701 		goto exit;
5702 
5703 	req->enables = 0;
5704 	if (rmem->nr_pages > 1) {
5705 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5706 		/* Page size is in log2 units */
5707 		req->page_size = BNXT_PAGE_SHIFT;
5708 		req->page_tbl_depth = 1;
5709 	} else {
5710 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5711 	}
5712 	req->fbo = 0;
5713 	/* Association of ring index with doorbell index and MSIX number */
5714 	req->logical_id = cpu_to_le16(map_index);
5715 
5716 	switch (ring_type) {
5717 	case HWRM_RING_ALLOC_TX: {
5718 		struct bnxt_tx_ring_info *txr;
5719 
5720 		txr = container_of(ring, struct bnxt_tx_ring_info,
5721 				   tx_ring_struct);
5722 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5723 		/* Association of transmit ring with completion ring */
5724 		grp_info = &bp->grp_info[ring->grp_idx];
5725 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5726 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5727 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5728 		req->queue_id = cpu_to_le16(ring->queue_id);
5729 		break;
5730 	}
5731 	case HWRM_RING_ALLOC_RX:
5732 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5733 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5734 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5735 			u16 flags = 0;
5736 
5737 			/* Association of rx ring with stats context */
5738 			grp_info = &bp->grp_info[ring->grp_idx];
5739 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5740 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5741 			req->enables |= cpu_to_le32(
5742 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5743 			if (NET_IP_ALIGN == 2)
5744 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5745 			req->flags = cpu_to_le16(flags);
5746 		}
5747 		break;
5748 	case HWRM_RING_ALLOC_AGG:
5749 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5750 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5751 			/* Association of agg ring with rx ring */
5752 			grp_info = &bp->grp_info[ring->grp_idx];
5753 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5754 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5755 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5756 			req->enables |= cpu_to_le32(
5757 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5758 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5759 		} else {
5760 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5761 		}
5762 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5763 		break;
5764 	case HWRM_RING_ALLOC_CMPL:
5765 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5766 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5767 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5768 			/* Association of cp ring with nq */
5769 			grp_info = &bp->grp_info[map_index];
5770 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5771 			req->cq_handle = cpu_to_le64(ring->handle);
5772 			req->enables |= cpu_to_le32(
5773 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5774 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5775 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5776 		}
5777 		break;
5778 	case HWRM_RING_ALLOC_NQ:
5779 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5780 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5781 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5782 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5783 		break;
5784 	default:
5785 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5786 			   ring_type);
5787 		return -1;
5788 	}
5789 
5790 	resp = hwrm_req_hold(bp, req);
5791 	rc = hwrm_req_send(bp, req);
5792 	err = le16_to_cpu(resp->error_code);
5793 	ring_id = le16_to_cpu(resp->ring_id);
5794 	hwrm_req_drop(bp, req);
5795 
5796 exit:
5797 	if (rc || err) {
5798 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5799 			   ring_type, rc, err);
5800 		return -EIO;
5801 	}
5802 	ring->fw_ring_id = ring_id;
5803 	return rc;
5804 }
5805 
5806 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5807 {
5808 	int rc;
5809 
5810 	if (BNXT_PF(bp)) {
5811 		struct hwrm_func_cfg_input *req;
5812 
5813 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5814 		if (rc)
5815 			return rc;
5816 
5817 		req->fid = cpu_to_le16(0xffff);
5818 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5819 		req->async_event_cr = cpu_to_le16(idx);
5820 		return hwrm_req_send(bp, req);
5821 	} else {
5822 		struct hwrm_func_vf_cfg_input *req;
5823 
5824 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5825 		if (rc)
5826 			return rc;
5827 
5828 		req->enables =
5829 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5830 		req->async_event_cr = cpu_to_le16(idx);
5831 		return hwrm_req_send(bp, req);
5832 	}
5833 }
5834 
5835 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5836 			u32 map_idx, u32 xid)
5837 {
5838 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5839 		if (BNXT_PF(bp))
5840 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5841 		else
5842 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5843 		switch (ring_type) {
5844 		case HWRM_RING_ALLOC_TX:
5845 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5846 			break;
5847 		case HWRM_RING_ALLOC_RX:
5848 		case HWRM_RING_ALLOC_AGG:
5849 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5850 			break;
5851 		case HWRM_RING_ALLOC_CMPL:
5852 			db->db_key64 = DBR_PATH_L2;
5853 			break;
5854 		case HWRM_RING_ALLOC_NQ:
5855 			db->db_key64 = DBR_PATH_L2;
5856 			break;
5857 		}
5858 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5859 	} else {
5860 		db->doorbell = bp->bar1 + map_idx * 0x80;
5861 		switch (ring_type) {
5862 		case HWRM_RING_ALLOC_TX:
5863 			db->db_key32 = DB_KEY_TX;
5864 			break;
5865 		case HWRM_RING_ALLOC_RX:
5866 		case HWRM_RING_ALLOC_AGG:
5867 			db->db_key32 = DB_KEY_RX;
5868 			break;
5869 		case HWRM_RING_ALLOC_CMPL:
5870 			db->db_key32 = DB_KEY_CP;
5871 			break;
5872 		}
5873 	}
5874 }
5875 
5876 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5877 {
5878 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5879 	int i, rc = 0;
5880 	u32 type;
5881 
5882 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5883 		type = HWRM_RING_ALLOC_NQ;
5884 	else
5885 		type = HWRM_RING_ALLOC_CMPL;
5886 	for (i = 0; i < bp->cp_nr_rings; i++) {
5887 		struct bnxt_napi *bnapi = bp->bnapi[i];
5888 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5889 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5890 		u32 map_idx = ring->map_idx;
5891 		unsigned int vector;
5892 
5893 		vector = bp->irq_tbl[map_idx].vector;
5894 		disable_irq_nosync(vector);
5895 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5896 		if (rc) {
5897 			enable_irq(vector);
5898 			goto err_out;
5899 		}
5900 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5901 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5902 		enable_irq(vector);
5903 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5904 
5905 		if (!i) {
5906 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5907 			if (rc)
5908 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5909 		}
5910 	}
5911 
5912 	type = HWRM_RING_ALLOC_TX;
5913 	for (i = 0; i < bp->tx_nr_rings; i++) {
5914 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5915 		struct bnxt_ring_struct *ring;
5916 		u32 map_idx;
5917 
5918 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5919 			struct bnxt_napi *bnapi = txr->bnapi;
5920 			struct bnxt_cp_ring_info *cpr, *cpr2;
5921 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5922 
5923 			cpr = &bnapi->cp_ring;
5924 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5925 			ring = &cpr2->cp_ring_struct;
5926 			ring->handle = BNXT_TX_HDL;
5927 			map_idx = bnapi->index;
5928 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5929 			if (rc)
5930 				goto err_out;
5931 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5932 				    ring->fw_ring_id);
5933 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5934 		}
5935 		ring = &txr->tx_ring_struct;
5936 		map_idx = i;
5937 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5938 		if (rc)
5939 			goto err_out;
5940 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5941 	}
5942 
5943 	type = HWRM_RING_ALLOC_RX;
5944 	for (i = 0; i < bp->rx_nr_rings; i++) {
5945 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5946 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5947 		struct bnxt_napi *bnapi = rxr->bnapi;
5948 		u32 map_idx = bnapi->index;
5949 
5950 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5951 		if (rc)
5952 			goto err_out;
5953 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5954 		/* If we have agg rings, post agg buffers first. */
5955 		if (!agg_rings)
5956 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5957 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5958 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5959 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5960 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5961 			struct bnxt_cp_ring_info *cpr2;
5962 
5963 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5964 			ring = &cpr2->cp_ring_struct;
5965 			ring->handle = BNXT_RX_HDL;
5966 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5967 			if (rc)
5968 				goto err_out;
5969 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5970 				    ring->fw_ring_id);
5971 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5972 		}
5973 	}
5974 
5975 	if (agg_rings) {
5976 		type = HWRM_RING_ALLOC_AGG;
5977 		for (i = 0; i < bp->rx_nr_rings; i++) {
5978 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5979 			struct bnxt_ring_struct *ring =
5980 						&rxr->rx_agg_ring_struct;
5981 			u32 grp_idx = ring->grp_idx;
5982 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5983 
5984 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5985 			if (rc)
5986 				goto err_out;
5987 
5988 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5989 				    ring->fw_ring_id);
5990 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5991 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5992 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5993 		}
5994 	}
5995 err_out:
5996 	return rc;
5997 }
5998 
5999 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6000 				   struct bnxt_ring_struct *ring,
6001 				   u32 ring_type, int cmpl_ring_id)
6002 {
6003 	struct hwrm_ring_free_output *resp;
6004 	struct hwrm_ring_free_input *req;
6005 	u16 error_code = 0;
6006 	int rc;
6007 
6008 	if (BNXT_NO_FW_ACCESS(bp))
6009 		return 0;
6010 
6011 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6012 	if (rc)
6013 		goto exit;
6014 
6015 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6016 	req->ring_type = ring_type;
6017 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6018 
6019 	resp = hwrm_req_hold(bp, req);
6020 	rc = hwrm_req_send(bp, req);
6021 	error_code = le16_to_cpu(resp->error_code);
6022 	hwrm_req_drop(bp, req);
6023 exit:
6024 	if (rc || error_code) {
6025 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6026 			   ring_type, rc, error_code);
6027 		return -EIO;
6028 	}
6029 	return 0;
6030 }
6031 
6032 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6033 {
6034 	u32 type;
6035 	int i;
6036 
6037 	if (!bp->bnapi)
6038 		return;
6039 
6040 	for (i = 0; i < bp->tx_nr_rings; i++) {
6041 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6042 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6043 
6044 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6045 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6046 
6047 			hwrm_ring_free_send_msg(bp, ring,
6048 						RING_FREE_REQ_RING_TYPE_TX,
6049 						close_path ? cmpl_ring_id :
6050 						INVALID_HW_RING_ID);
6051 			ring->fw_ring_id = INVALID_HW_RING_ID;
6052 		}
6053 	}
6054 
6055 	for (i = 0; i < bp->rx_nr_rings; i++) {
6056 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6057 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6058 		u32 grp_idx = rxr->bnapi->index;
6059 
6060 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6061 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6062 
6063 			hwrm_ring_free_send_msg(bp, ring,
6064 						RING_FREE_REQ_RING_TYPE_RX,
6065 						close_path ? cmpl_ring_id :
6066 						INVALID_HW_RING_ID);
6067 			ring->fw_ring_id = INVALID_HW_RING_ID;
6068 			bp->grp_info[grp_idx].rx_fw_ring_id =
6069 				INVALID_HW_RING_ID;
6070 		}
6071 	}
6072 
6073 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6074 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6075 	else
6076 		type = RING_FREE_REQ_RING_TYPE_RX;
6077 	for (i = 0; i < bp->rx_nr_rings; i++) {
6078 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6079 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6080 		u32 grp_idx = rxr->bnapi->index;
6081 
6082 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6083 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6084 
6085 			hwrm_ring_free_send_msg(bp, ring, type,
6086 						close_path ? cmpl_ring_id :
6087 						INVALID_HW_RING_ID);
6088 			ring->fw_ring_id = INVALID_HW_RING_ID;
6089 			bp->grp_info[grp_idx].agg_fw_ring_id =
6090 				INVALID_HW_RING_ID;
6091 		}
6092 	}
6093 
6094 	/* The completion rings are about to be freed.  After that the
6095 	 * IRQ doorbell will not work anymore.  So we need to disable
6096 	 * IRQ here.
6097 	 */
6098 	bnxt_disable_int_sync(bp);
6099 
6100 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6101 		type = RING_FREE_REQ_RING_TYPE_NQ;
6102 	else
6103 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6104 	for (i = 0; i < bp->cp_nr_rings; i++) {
6105 		struct bnxt_napi *bnapi = bp->bnapi[i];
6106 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6107 		struct bnxt_ring_struct *ring;
6108 		int j;
6109 
6110 		for (j = 0; j < 2; j++) {
6111 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6112 
6113 			if (cpr2) {
6114 				ring = &cpr2->cp_ring_struct;
6115 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6116 					continue;
6117 				hwrm_ring_free_send_msg(bp, ring,
6118 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6119 					INVALID_HW_RING_ID);
6120 				ring->fw_ring_id = INVALID_HW_RING_ID;
6121 			}
6122 		}
6123 		ring = &cpr->cp_ring_struct;
6124 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6125 			hwrm_ring_free_send_msg(bp, ring, type,
6126 						INVALID_HW_RING_ID);
6127 			ring->fw_ring_id = INVALID_HW_RING_ID;
6128 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6129 		}
6130 	}
6131 }
6132 
6133 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6134 			   bool shared);
6135 
6136 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6137 {
6138 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6139 	struct hwrm_func_qcfg_output *resp;
6140 	struct hwrm_func_qcfg_input *req;
6141 	int rc;
6142 
6143 	if (bp->hwrm_spec_code < 0x10601)
6144 		return 0;
6145 
6146 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6147 	if (rc)
6148 		return rc;
6149 
6150 	req->fid = cpu_to_le16(0xffff);
6151 	resp = hwrm_req_hold(bp, req);
6152 	rc = hwrm_req_send(bp, req);
6153 	if (rc) {
6154 		hwrm_req_drop(bp, req);
6155 		return rc;
6156 	}
6157 
6158 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6159 	if (BNXT_NEW_RM(bp)) {
6160 		u16 cp, stats;
6161 
6162 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6163 		hw_resc->resv_hw_ring_grps =
6164 			le32_to_cpu(resp->alloc_hw_ring_grps);
6165 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6166 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6167 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6168 		hw_resc->resv_irqs = cp;
6169 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6170 			int rx = hw_resc->resv_rx_rings;
6171 			int tx = hw_resc->resv_tx_rings;
6172 
6173 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6174 				rx >>= 1;
6175 			if (cp < (rx + tx)) {
6176 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6177 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6178 					rx <<= 1;
6179 				hw_resc->resv_rx_rings = rx;
6180 				hw_resc->resv_tx_rings = tx;
6181 			}
6182 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6183 			hw_resc->resv_hw_ring_grps = rx;
6184 		}
6185 		hw_resc->resv_cp_rings = cp;
6186 		hw_resc->resv_stat_ctxs = stats;
6187 	}
6188 	hwrm_req_drop(bp, req);
6189 	return 0;
6190 }
6191 
6192 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6193 {
6194 	struct hwrm_func_qcfg_output *resp;
6195 	struct hwrm_func_qcfg_input *req;
6196 	int rc;
6197 
6198 	if (bp->hwrm_spec_code < 0x10601)
6199 		return 0;
6200 
6201 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6202 	if (rc)
6203 		return rc;
6204 
6205 	req->fid = cpu_to_le16(fid);
6206 	resp = hwrm_req_hold(bp, req);
6207 	rc = hwrm_req_send(bp, req);
6208 	if (!rc)
6209 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6210 
6211 	hwrm_req_drop(bp, req);
6212 	return rc;
6213 }
6214 
6215 static bool bnxt_rfs_supported(struct bnxt *bp);
6216 
6217 static struct hwrm_func_cfg_input *
6218 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6219 			     int ring_grps, int cp_rings, int stats, int vnics)
6220 {
6221 	struct hwrm_func_cfg_input *req;
6222 	u32 enables = 0;
6223 
6224 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6225 		return NULL;
6226 
6227 	req->fid = cpu_to_le16(0xffff);
6228 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6229 	req->num_tx_rings = cpu_to_le16(tx_rings);
6230 	if (BNXT_NEW_RM(bp)) {
6231 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6232 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6233 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6234 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6235 			enables |= tx_rings + ring_grps ?
6236 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6237 			enables |= rx_rings ?
6238 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6239 		} else {
6240 			enables |= cp_rings ?
6241 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6242 			enables |= ring_grps ?
6243 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6244 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6245 		}
6246 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6247 
6248 		req->num_rx_rings = cpu_to_le16(rx_rings);
6249 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6250 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6251 			req->num_msix = cpu_to_le16(cp_rings);
6252 			req->num_rsscos_ctxs =
6253 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6254 		} else {
6255 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6256 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6257 			req->num_rsscos_ctxs = cpu_to_le16(1);
6258 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6259 			    bnxt_rfs_supported(bp))
6260 				req->num_rsscos_ctxs =
6261 					cpu_to_le16(ring_grps + 1);
6262 		}
6263 		req->num_stat_ctxs = cpu_to_le16(stats);
6264 		req->num_vnics = cpu_to_le16(vnics);
6265 	}
6266 	req->enables = cpu_to_le32(enables);
6267 	return req;
6268 }
6269 
6270 static struct hwrm_func_vf_cfg_input *
6271 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6272 			     int ring_grps, int cp_rings, int stats, int vnics)
6273 {
6274 	struct hwrm_func_vf_cfg_input *req;
6275 	u32 enables = 0;
6276 
6277 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6278 		return NULL;
6279 
6280 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6281 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6282 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6283 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6284 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6285 		enables |= tx_rings + ring_grps ?
6286 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6287 	} else {
6288 		enables |= cp_rings ?
6289 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6290 		enables |= ring_grps ?
6291 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6292 	}
6293 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6294 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6295 
6296 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6297 	req->num_tx_rings = cpu_to_le16(tx_rings);
6298 	req->num_rx_rings = cpu_to_le16(rx_rings);
6299 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6300 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6301 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6302 	} else {
6303 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6304 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6305 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6306 	}
6307 	req->num_stat_ctxs = cpu_to_le16(stats);
6308 	req->num_vnics = cpu_to_le16(vnics);
6309 
6310 	req->enables = cpu_to_le32(enables);
6311 	return req;
6312 }
6313 
6314 static int
6315 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6316 			   int ring_grps, int cp_rings, int stats, int vnics)
6317 {
6318 	struct hwrm_func_cfg_input *req;
6319 	int rc;
6320 
6321 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6322 					   cp_rings, stats, vnics);
6323 	if (!req)
6324 		return -ENOMEM;
6325 
6326 	if (!req->enables) {
6327 		hwrm_req_drop(bp, req);
6328 		return 0;
6329 	}
6330 
6331 	rc = hwrm_req_send(bp, req);
6332 	if (rc)
6333 		return rc;
6334 
6335 	if (bp->hwrm_spec_code < 0x10601)
6336 		bp->hw_resc.resv_tx_rings = tx_rings;
6337 
6338 	return bnxt_hwrm_get_rings(bp);
6339 }
6340 
6341 static int
6342 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6343 			   int ring_grps, int cp_rings, int stats, int vnics)
6344 {
6345 	struct hwrm_func_vf_cfg_input *req;
6346 	int rc;
6347 
6348 	if (!BNXT_NEW_RM(bp)) {
6349 		bp->hw_resc.resv_tx_rings = tx_rings;
6350 		return 0;
6351 	}
6352 
6353 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6354 					   cp_rings, stats, vnics);
6355 	if (!req)
6356 		return -ENOMEM;
6357 
6358 	rc = hwrm_req_send(bp, req);
6359 	if (rc)
6360 		return rc;
6361 
6362 	return bnxt_hwrm_get_rings(bp);
6363 }
6364 
6365 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6366 				   int cp, int stat, int vnic)
6367 {
6368 	if (BNXT_PF(bp))
6369 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6370 						  vnic);
6371 	else
6372 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6373 						  vnic);
6374 }
6375 
6376 int bnxt_nq_rings_in_use(struct bnxt *bp)
6377 {
6378 	int cp = bp->cp_nr_rings;
6379 	int ulp_msix, ulp_base;
6380 
6381 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6382 	if (ulp_msix) {
6383 		ulp_base = bnxt_get_ulp_msix_base(bp);
6384 		cp += ulp_msix;
6385 		if ((ulp_base + ulp_msix) > cp)
6386 			cp = ulp_base + ulp_msix;
6387 	}
6388 	return cp;
6389 }
6390 
6391 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6392 {
6393 	int cp;
6394 
6395 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6396 		return bnxt_nq_rings_in_use(bp);
6397 
6398 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6399 	return cp;
6400 }
6401 
6402 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6403 {
6404 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6405 	int cp = bp->cp_nr_rings;
6406 
6407 	if (!ulp_stat)
6408 		return cp;
6409 
6410 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6411 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6412 
6413 	return cp + ulp_stat;
6414 }
6415 
6416 /* Check if a default RSS map needs to be setup.  This function is only
6417  * used on older firmware that does not require reserving RX rings.
6418  */
6419 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6420 {
6421 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6422 
6423 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6424 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6425 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6426 		if (!netif_is_rxfh_configured(bp->dev))
6427 			bnxt_set_dflt_rss_indir_tbl(bp);
6428 	}
6429 }
6430 
6431 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6432 {
6433 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6434 	int cp = bnxt_cp_rings_in_use(bp);
6435 	int nq = bnxt_nq_rings_in_use(bp);
6436 	int rx = bp->rx_nr_rings, stat;
6437 	int vnic = 1, grp = rx;
6438 
6439 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6440 	    bp->hwrm_spec_code >= 0x10601)
6441 		return true;
6442 
6443 	/* Old firmware does not need RX ring reservations but we still
6444 	 * need to setup a default RSS map when needed.  With new firmware
6445 	 * we go through RX ring reservations first and then set up the
6446 	 * RSS map for the successfully reserved RX rings when needed.
6447 	 */
6448 	if (!BNXT_NEW_RM(bp)) {
6449 		bnxt_check_rss_tbl_no_rmgr(bp);
6450 		return false;
6451 	}
6452 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6453 		vnic = rx + 1;
6454 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6455 		rx <<= 1;
6456 	stat = bnxt_get_func_stat_ctxs(bp);
6457 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6458 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6459 	    (hw_resc->resv_hw_ring_grps != grp &&
6460 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6461 		return true;
6462 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6463 	    hw_resc->resv_irqs != nq)
6464 		return true;
6465 	return false;
6466 }
6467 
6468 static int __bnxt_reserve_rings(struct bnxt *bp)
6469 {
6470 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6471 	int cp = bnxt_nq_rings_in_use(bp);
6472 	int tx = bp->tx_nr_rings;
6473 	int rx = bp->rx_nr_rings;
6474 	int grp, rx_rings, rc;
6475 	int vnic = 1, stat;
6476 	bool sh = false;
6477 
6478 	if (!bnxt_need_reserve_rings(bp))
6479 		return 0;
6480 
6481 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6482 		sh = true;
6483 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6484 		vnic = rx + 1;
6485 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6486 		rx <<= 1;
6487 	grp = bp->rx_nr_rings;
6488 	stat = bnxt_get_func_stat_ctxs(bp);
6489 
6490 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6491 	if (rc)
6492 		return rc;
6493 
6494 	tx = hw_resc->resv_tx_rings;
6495 	if (BNXT_NEW_RM(bp)) {
6496 		rx = hw_resc->resv_rx_rings;
6497 		cp = hw_resc->resv_irqs;
6498 		grp = hw_resc->resv_hw_ring_grps;
6499 		vnic = hw_resc->resv_vnics;
6500 		stat = hw_resc->resv_stat_ctxs;
6501 	}
6502 
6503 	rx_rings = rx;
6504 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6505 		if (rx >= 2) {
6506 			rx_rings = rx >> 1;
6507 		} else {
6508 			if (netif_running(bp->dev))
6509 				return -ENOMEM;
6510 
6511 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6512 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6513 			bp->dev->hw_features &= ~NETIF_F_LRO;
6514 			bp->dev->features &= ~NETIF_F_LRO;
6515 			bnxt_set_ring_params(bp);
6516 		}
6517 	}
6518 	rx_rings = min_t(int, rx_rings, grp);
6519 	cp = min_t(int, cp, bp->cp_nr_rings);
6520 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6521 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6522 	cp = min_t(int, cp, stat);
6523 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6524 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6525 		rx = rx_rings << 1;
6526 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6527 	bp->tx_nr_rings = tx;
6528 
6529 	/* If we cannot reserve all the RX rings, reset the RSS map only
6530 	 * if absolutely necessary
6531 	 */
6532 	if (rx_rings != bp->rx_nr_rings) {
6533 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6534 			    rx_rings, bp->rx_nr_rings);
6535 		if (netif_is_rxfh_configured(bp->dev) &&
6536 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6537 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6538 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6539 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6540 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6541 		}
6542 	}
6543 	bp->rx_nr_rings = rx_rings;
6544 	bp->cp_nr_rings = cp;
6545 
6546 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6547 		return -ENOMEM;
6548 
6549 	if (!netif_is_rxfh_configured(bp->dev))
6550 		bnxt_set_dflt_rss_indir_tbl(bp);
6551 
6552 	return rc;
6553 }
6554 
6555 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6556 				    int ring_grps, int cp_rings, int stats,
6557 				    int vnics)
6558 {
6559 	struct hwrm_func_vf_cfg_input *req;
6560 	u32 flags;
6561 
6562 	if (!BNXT_NEW_RM(bp))
6563 		return 0;
6564 
6565 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6566 					   cp_rings, stats, vnics);
6567 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6568 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6569 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6570 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6571 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6572 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6573 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6574 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6575 
6576 	req->flags = cpu_to_le32(flags);
6577 	return hwrm_req_send_silent(bp, req);
6578 }
6579 
6580 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6581 				    int ring_grps, int cp_rings, int stats,
6582 				    int vnics)
6583 {
6584 	struct hwrm_func_cfg_input *req;
6585 	u32 flags;
6586 
6587 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6588 					   cp_rings, stats, vnics);
6589 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6590 	if (BNXT_NEW_RM(bp)) {
6591 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6592 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6593 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6594 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6595 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6596 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6597 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6598 		else
6599 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6600 	}
6601 
6602 	req->flags = cpu_to_le32(flags);
6603 	return hwrm_req_send_silent(bp, req);
6604 }
6605 
6606 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6607 				 int ring_grps, int cp_rings, int stats,
6608 				 int vnics)
6609 {
6610 	if (bp->hwrm_spec_code < 0x10801)
6611 		return 0;
6612 
6613 	if (BNXT_PF(bp))
6614 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6615 						ring_grps, cp_rings, stats,
6616 						vnics);
6617 
6618 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6619 					cp_rings, stats, vnics);
6620 }
6621 
6622 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6623 {
6624 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6625 	struct hwrm_ring_aggint_qcaps_output *resp;
6626 	struct hwrm_ring_aggint_qcaps_input *req;
6627 	int rc;
6628 
6629 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6630 	coal_cap->num_cmpl_dma_aggr_max = 63;
6631 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6632 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6633 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6634 	coal_cap->int_lat_tmr_min_max = 65535;
6635 	coal_cap->int_lat_tmr_max_max = 65535;
6636 	coal_cap->num_cmpl_aggr_int_max = 65535;
6637 	coal_cap->timer_units = 80;
6638 
6639 	if (bp->hwrm_spec_code < 0x10902)
6640 		return;
6641 
6642 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6643 		return;
6644 
6645 	resp = hwrm_req_hold(bp, req);
6646 	rc = hwrm_req_send_silent(bp, req);
6647 	if (!rc) {
6648 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6649 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6650 		coal_cap->num_cmpl_dma_aggr_max =
6651 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6652 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6653 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6654 		coal_cap->cmpl_aggr_dma_tmr_max =
6655 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6656 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6657 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6658 		coal_cap->int_lat_tmr_min_max =
6659 			le16_to_cpu(resp->int_lat_tmr_min_max);
6660 		coal_cap->int_lat_tmr_max_max =
6661 			le16_to_cpu(resp->int_lat_tmr_max_max);
6662 		coal_cap->num_cmpl_aggr_int_max =
6663 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6664 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6665 	}
6666 	hwrm_req_drop(bp, req);
6667 }
6668 
6669 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6670 {
6671 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6672 
6673 	return usec * 1000 / coal_cap->timer_units;
6674 }
6675 
6676 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6677 	struct bnxt_coal *hw_coal,
6678 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6679 {
6680 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6681 	u16 val, tmr, max, flags = hw_coal->flags;
6682 	u32 cmpl_params = coal_cap->cmpl_params;
6683 
6684 	max = hw_coal->bufs_per_record * 128;
6685 	if (hw_coal->budget)
6686 		max = hw_coal->bufs_per_record * hw_coal->budget;
6687 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6688 
6689 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6690 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6691 
6692 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6693 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6694 
6695 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6696 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6697 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6698 
6699 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6700 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6701 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6702 
6703 	/* min timer set to 1/2 of interrupt timer */
6704 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6705 		val = tmr / 2;
6706 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6707 		req->int_lat_tmr_min = cpu_to_le16(val);
6708 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6709 	}
6710 
6711 	/* buf timer set to 1/4 of interrupt timer */
6712 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6713 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6714 
6715 	if (cmpl_params &
6716 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6717 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6718 		val = clamp_t(u16, tmr, 1,
6719 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6720 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6721 		req->enables |=
6722 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6723 	}
6724 
6725 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6726 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6727 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6728 	req->flags = cpu_to_le16(flags);
6729 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6730 }
6731 
6732 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6733 				   struct bnxt_coal *hw_coal)
6734 {
6735 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6736 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6737 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6738 	u32 nq_params = coal_cap->nq_params;
6739 	u16 tmr;
6740 	int rc;
6741 
6742 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6743 		return 0;
6744 
6745 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6746 	if (rc)
6747 		return rc;
6748 
6749 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6750 	req->flags =
6751 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6752 
6753 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6754 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6755 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6756 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6757 	return hwrm_req_send(bp, req);
6758 }
6759 
6760 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6761 {
6762 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6763 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6764 	struct bnxt_coal coal;
6765 	int rc;
6766 
6767 	/* Tick values in micro seconds.
6768 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6769 	 */
6770 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6771 
6772 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6773 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6774 
6775 	if (!bnapi->rx_ring)
6776 		return -ENODEV;
6777 
6778 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6779 	if (rc)
6780 		return rc;
6781 
6782 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6783 
6784 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6785 
6786 	return hwrm_req_send(bp, req_rx);
6787 }
6788 
6789 int bnxt_hwrm_set_coal(struct bnxt *bp)
6790 {
6791 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6792 							   *req;
6793 	int i, rc;
6794 
6795 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6796 	if (rc)
6797 		return rc;
6798 
6799 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6800 	if (rc) {
6801 		hwrm_req_drop(bp, req_rx);
6802 		return rc;
6803 	}
6804 
6805 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6806 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6807 
6808 	hwrm_req_hold(bp, req_rx);
6809 	hwrm_req_hold(bp, req_tx);
6810 	for (i = 0; i < bp->cp_nr_rings; i++) {
6811 		struct bnxt_napi *bnapi = bp->bnapi[i];
6812 		struct bnxt_coal *hw_coal;
6813 		u16 ring_id;
6814 
6815 		req = req_rx;
6816 		if (!bnapi->rx_ring) {
6817 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6818 			req = req_tx;
6819 		} else {
6820 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6821 		}
6822 		req->ring_id = cpu_to_le16(ring_id);
6823 
6824 		rc = hwrm_req_send(bp, req);
6825 		if (rc)
6826 			break;
6827 
6828 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6829 			continue;
6830 
6831 		if (bnapi->rx_ring && bnapi->tx_ring) {
6832 			req = req_tx;
6833 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6834 			req->ring_id = cpu_to_le16(ring_id);
6835 			rc = hwrm_req_send(bp, req);
6836 			if (rc)
6837 				break;
6838 		}
6839 		if (bnapi->rx_ring)
6840 			hw_coal = &bp->rx_coal;
6841 		else
6842 			hw_coal = &bp->tx_coal;
6843 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6844 	}
6845 	hwrm_req_drop(bp, req_rx);
6846 	hwrm_req_drop(bp, req_tx);
6847 	return rc;
6848 }
6849 
6850 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6851 {
6852 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6853 	struct hwrm_stat_ctx_free_input *req;
6854 	int i;
6855 
6856 	if (!bp->bnapi)
6857 		return;
6858 
6859 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6860 		return;
6861 
6862 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6863 		return;
6864 	if (BNXT_FW_MAJ(bp) <= 20) {
6865 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6866 			hwrm_req_drop(bp, req);
6867 			return;
6868 		}
6869 		hwrm_req_hold(bp, req0);
6870 	}
6871 	hwrm_req_hold(bp, req);
6872 	for (i = 0; i < bp->cp_nr_rings; i++) {
6873 		struct bnxt_napi *bnapi = bp->bnapi[i];
6874 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6875 
6876 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6877 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6878 			if (req0) {
6879 				req0->stat_ctx_id = req->stat_ctx_id;
6880 				hwrm_req_send(bp, req0);
6881 			}
6882 			hwrm_req_send(bp, req);
6883 
6884 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6885 		}
6886 	}
6887 	hwrm_req_drop(bp, req);
6888 	if (req0)
6889 		hwrm_req_drop(bp, req0);
6890 }
6891 
6892 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6893 {
6894 	struct hwrm_stat_ctx_alloc_output *resp;
6895 	struct hwrm_stat_ctx_alloc_input *req;
6896 	int rc, i;
6897 
6898 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6899 		return 0;
6900 
6901 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6902 	if (rc)
6903 		return rc;
6904 
6905 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6906 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6907 
6908 	resp = hwrm_req_hold(bp, req);
6909 	for (i = 0; i < bp->cp_nr_rings; i++) {
6910 		struct bnxt_napi *bnapi = bp->bnapi[i];
6911 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6912 
6913 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6914 
6915 		rc = hwrm_req_send(bp, req);
6916 		if (rc)
6917 			break;
6918 
6919 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6920 
6921 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6922 	}
6923 	hwrm_req_drop(bp, req);
6924 	return rc;
6925 }
6926 
6927 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6928 {
6929 	struct hwrm_func_qcfg_output *resp;
6930 	struct hwrm_func_qcfg_input *req;
6931 	u32 min_db_offset = 0;
6932 	u16 flags;
6933 	int rc;
6934 
6935 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6936 	if (rc)
6937 		return rc;
6938 
6939 	req->fid = cpu_to_le16(0xffff);
6940 	resp = hwrm_req_hold(bp, req);
6941 	rc = hwrm_req_send(bp, req);
6942 	if (rc)
6943 		goto func_qcfg_exit;
6944 
6945 #ifdef CONFIG_BNXT_SRIOV
6946 	if (BNXT_VF(bp)) {
6947 		struct bnxt_vf_info *vf = &bp->vf;
6948 
6949 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6950 	} else {
6951 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6952 	}
6953 #endif
6954 	flags = le16_to_cpu(resp->flags);
6955 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6956 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6957 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6958 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6959 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6960 	}
6961 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6962 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6963 
6964 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6965 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6966 
6967 	switch (resp->port_partition_type) {
6968 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6969 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6970 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6971 		bp->port_partition_type = resp->port_partition_type;
6972 		break;
6973 	}
6974 	if (bp->hwrm_spec_code < 0x10707 ||
6975 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6976 		bp->br_mode = BRIDGE_MODE_VEB;
6977 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6978 		bp->br_mode = BRIDGE_MODE_VEPA;
6979 	else
6980 		bp->br_mode = BRIDGE_MODE_UNDEF;
6981 
6982 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6983 	if (!bp->max_mtu)
6984 		bp->max_mtu = BNXT_MAX_MTU;
6985 
6986 	if (bp->db_size)
6987 		goto func_qcfg_exit;
6988 
6989 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6990 		if (BNXT_PF(bp))
6991 			min_db_offset = DB_PF_OFFSET_P5;
6992 		else
6993 			min_db_offset = DB_VF_OFFSET_P5;
6994 	}
6995 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6996 				 1024);
6997 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6998 	    bp->db_size <= min_db_offset)
6999 		bp->db_size = pci_resource_len(bp->pdev, 2);
7000 
7001 func_qcfg_exit:
7002 	hwrm_req_drop(bp, req);
7003 	return rc;
7004 }
7005 
7006 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7007 			struct hwrm_func_backing_store_qcaps_output *resp)
7008 {
7009 	struct bnxt_mem_init *mem_init;
7010 	u16 init_mask;
7011 	u8 init_val;
7012 	u8 *offset;
7013 	int i;
7014 
7015 	init_val = resp->ctx_kind_initializer;
7016 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7017 	offset = &resp->qp_init_offset;
7018 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7019 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7020 		mem_init->init_val = init_val;
7021 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7022 		if (!init_mask)
7023 			continue;
7024 		if (i == BNXT_CTX_MEM_INIT_STAT)
7025 			offset = &resp->stat_init_offset;
7026 		if (init_mask & (1 << i))
7027 			mem_init->offset = *offset * 4;
7028 		else
7029 			mem_init->init_val = 0;
7030 	}
7031 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7032 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7033 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7034 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7035 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7036 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7037 }
7038 
7039 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7040 {
7041 	struct hwrm_func_backing_store_qcaps_output *resp;
7042 	struct hwrm_func_backing_store_qcaps_input *req;
7043 	int rc;
7044 
7045 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7046 		return 0;
7047 
7048 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7049 	if (rc)
7050 		return rc;
7051 
7052 	resp = hwrm_req_hold(bp, req);
7053 	rc = hwrm_req_send_silent(bp, req);
7054 	if (!rc) {
7055 		struct bnxt_ctx_pg_info *ctx_pg;
7056 		struct bnxt_ctx_mem_info *ctx;
7057 		int i, tqm_rings;
7058 
7059 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7060 		if (!ctx) {
7061 			rc = -ENOMEM;
7062 			goto ctx_err;
7063 		}
7064 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7065 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7066 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7067 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7068 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7069 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7070 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7071 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7072 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7073 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7074 		ctx->vnic_max_vnic_entries =
7075 			le16_to_cpu(resp->vnic_max_vnic_entries);
7076 		ctx->vnic_max_ring_table_entries =
7077 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7078 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7079 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7080 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7081 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7082 		ctx->tqm_min_entries_per_ring =
7083 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7084 		ctx->tqm_max_entries_per_ring =
7085 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7086 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7087 		if (!ctx->tqm_entries_multiple)
7088 			ctx->tqm_entries_multiple = 1;
7089 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7090 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7091 		ctx->mrav_num_entries_units =
7092 			le16_to_cpu(resp->mrav_num_entries_units);
7093 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7094 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7095 
7096 		bnxt_init_ctx_initializer(ctx, resp);
7097 
7098 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7099 		if (!ctx->tqm_fp_rings_count)
7100 			ctx->tqm_fp_rings_count = bp->max_q;
7101 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7102 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7103 
7104 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7105 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7106 		if (!ctx_pg) {
7107 			kfree(ctx);
7108 			rc = -ENOMEM;
7109 			goto ctx_err;
7110 		}
7111 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7112 			ctx->tqm_mem[i] = ctx_pg;
7113 		bp->ctx = ctx;
7114 	} else {
7115 		rc = 0;
7116 	}
7117 ctx_err:
7118 	hwrm_req_drop(bp, req);
7119 	return rc;
7120 }
7121 
7122 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7123 				  __le64 *pg_dir)
7124 {
7125 	if (!rmem->nr_pages)
7126 		return;
7127 
7128 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7129 	if (rmem->depth >= 1) {
7130 		if (rmem->depth == 2)
7131 			*pg_attr |= 2;
7132 		else
7133 			*pg_attr |= 1;
7134 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7135 	} else {
7136 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7137 	}
7138 }
7139 
7140 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7141 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7142 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7143 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7144 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7145 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7146 
7147 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7148 {
7149 	struct hwrm_func_backing_store_cfg_input *req;
7150 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7151 	struct bnxt_ctx_pg_info *ctx_pg;
7152 	void **__req = (void **)&req;
7153 	u32 req_len = sizeof(*req);
7154 	__le32 *num_entries;
7155 	__le64 *pg_dir;
7156 	u32 flags = 0;
7157 	u8 *pg_attr;
7158 	u32 ena;
7159 	int rc;
7160 	int i;
7161 
7162 	if (!ctx)
7163 		return 0;
7164 
7165 	if (req_len > bp->hwrm_max_ext_req_len)
7166 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7167 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7168 	if (rc)
7169 		return rc;
7170 
7171 	req->enables = cpu_to_le32(enables);
7172 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7173 		ctx_pg = &ctx->qp_mem;
7174 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7175 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7176 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7177 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7178 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7179 				      &req->qpc_pg_size_qpc_lvl,
7180 				      &req->qpc_page_dir);
7181 	}
7182 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7183 		ctx_pg = &ctx->srq_mem;
7184 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7185 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7186 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7187 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7188 				      &req->srq_pg_size_srq_lvl,
7189 				      &req->srq_page_dir);
7190 	}
7191 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7192 		ctx_pg = &ctx->cq_mem;
7193 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7194 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7195 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7196 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7197 				      &req->cq_pg_size_cq_lvl,
7198 				      &req->cq_page_dir);
7199 	}
7200 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7201 		ctx_pg = &ctx->vnic_mem;
7202 		req->vnic_num_vnic_entries =
7203 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7204 		req->vnic_num_ring_table_entries =
7205 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7206 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7207 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7208 				      &req->vnic_pg_size_vnic_lvl,
7209 				      &req->vnic_page_dir);
7210 	}
7211 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7212 		ctx_pg = &ctx->stat_mem;
7213 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7214 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7215 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7216 				      &req->stat_pg_size_stat_lvl,
7217 				      &req->stat_page_dir);
7218 	}
7219 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7220 		ctx_pg = &ctx->mrav_mem;
7221 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7222 		if (ctx->mrav_num_entries_units)
7223 			flags |=
7224 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7225 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7226 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7227 				      &req->mrav_pg_size_mrav_lvl,
7228 				      &req->mrav_page_dir);
7229 	}
7230 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7231 		ctx_pg = &ctx->tim_mem;
7232 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7233 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7234 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7235 				      &req->tim_pg_size_tim_lvl,
7236 				      &req->tim_page_dir);
7237 	}
7238 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7239 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7240 	     pg_dir = &req->tqm_sp_page_dir,
7241 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7242 	     i < BNXT_MAX_TQM_RINGS;
7243 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7244 		if (!(enables & ena))
7245 			continue;
7246 
7247 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7248 		ctx_pg = ctx->tqm_mem[i];
7249 		*num_entries = cpu_to_le32(ctx_pg->entries);
7250 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7251 	}
7252 	req->flags = cpu_to_le32(flags);
7253 	return hwrm_req_send(bp, req);
7254 }
7255 
7256 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7257 				  struct bnxt_ctx_pg_info *ctx_pg)
7258 {
7259 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7260 
7261 	rmem->page_size = BNXT_PAGE_SIZE;
7262 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7263 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7264 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7265 	if (rmem->depth >= 1)
7266 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7267 	return bnxt_alloc_ring(bp, rmem);
7268 }
7269 
7270 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7271 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7272 				  u8 depth, struct bnxt_mem_init *mem_init)
7273 {
7274 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7275 	int rc;
7276 
7277 	if (!mem_size)
7278 		return -EINVAL;
7279 
7280 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7281 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7282 		ctx_pg->nr_pages = 0;
7283 		return -EINVAL;
7284 	}
7285 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7286 		int nr_tbls, i;
7287 
7288 		rmem->depth = 2;
7289 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7290 					     GFP_KERNEL);
7291 		if (!ctx_pg->ctx_pg_tbl)
7292 			return -ENOMEM;
7293 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7294 		rmem->nr_pages = nr_tbls;
7295 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7296 		if (rc)
7297 			return rc;
7298 		for (i = 0; i < nr_tbls; i++) {
7299 			struct bnxt_ctx_pg_info *pg_tbl;
7300 
7301 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7302 			if (!pg_tbl)
7303 				return -ENOMEM;
7304 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7305 			rmem = &pg_tbl->ring_mem;
7306 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7307 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7308 			rmem->depth = 1;
7309 			rmem->nr_pages = MAX_CTX_PAGES;
7310 			rmem->mem_init = mem_init;
7311 			if (i == (nr_tbls - 1)) {
7312 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7313 
7314 				if (rem)
7315 					rmem->nr_pages = rem;
7316 			}
7317 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7318 			if (rc)
7319 				break;
7320 		}
7321 	} else {
7322 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7323 		if (rmem->nr_pages > 1 || depth)
7324 			rmem->depth = 1;
7325 		rmem->mem_init = mem_init;
7326 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7327 	}
7328 	return rc;
7329 }
7330 
7331 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7332 				  struct bnxt_ctx_pg_info *ctx_pg)
7333 {
7334 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7335 
7336 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7337 	    ctx_pg->ctx_pg_tbl) {
7338 		int i, nr_tbls = rmem->nr_pages;
7339 
7340 		for (i = 0; i < nr_tbls; i++) {
7341 			struct bnxt_ctx_pg_info *pg_tbl;
7342 			struct bnxt_ring_mem_info *rmem2;
7343 
7344 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7345 			if (!pg_tbl)
7346 				continue;
7347 			rmem2 = &pg_tbl->ring_mem;
7348 			bnxt_free_ring(bp, rmem2);
7349 			ctx_pg->ctx_pg_arr[i] = NULL;
7350 			kfree(pg_tbl);
7351 			ctx_pg->ctx_pg_tbl[i] = NULL;
7352 		}
7353 		kfree(ctx_pg->ctx_pg_tbl);
7354 		ctx_pg->ctx_pg_tbl = NULL;
7355 	}
7356 	bnxt_free_ring(bp, rmem);
7357 	ctx_pg->nr_pages = 0;
7358 }
7359 
7360 void bnxt_free_ctx_mem(struct bnxt *bp)
7361 {
7362 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7363 	int i;
7364 
7365 	if (!ctx)
7366 		return;
7367 
7368 	if (ctx->tqm_mem[0]) {
7369 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7370 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7371 		kfree(ctx->tqm_mem[0]);
7372 		ctx->tqm_mem[0] = NULL;
7373 	}
7374 
7375 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7376 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7377 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7378 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7379 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7380 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7381 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7382 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7383 }
7384 
7385 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7386 {
7387 	struct bnxt_ctx_pg_info *ctx_pg;
7388 	struct bnxt_ctx_mem_info *ctx;
7389 	struct bnxt_mem_init *init;
7390 	u32 mem_size, ena, entries;
7391 	u32 entries_sp, min;
7392 	u32 num_mr, num_ah;
7393 	u32 extra_srqs = 0;
7394 	u32 extra_qps = 0;
7395 	u8 pg_lvl = 1;
7396 	int i, rc;
7397 
7398 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7399 	if (rc) {
7400 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7401 			   rc);
7402 		return rc;
7403 	}
7404 	ctx = bp->ctx;
7405 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7406 		return 0;
7407 
7408 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7409 		pg_lvl = 2;
7410 		extra_qps = 65536;
7411 		extra_srqs = 8192;
7412 	}
7413 
7414 	ctx_pg = &ctx->qp_mem;
7415 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7416 			  extra_qps;
7417 	if (ctx->qp_entry_size) {
7418 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7419 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7420 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7421 		if (rc)
7422 			return rc;
7423 	}
7424 
7425 	ctx_pg = &ctx->srq_mem;
7426 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7427 	if (ctx->srq_entry_size) {
7428 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7429 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7430 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7431 		if (rc)
7432 			return rc;
7433 	}
7434 
7435 	ctx_pg = &ctx->cq_mem;
7436 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7437 	if (ctx->cq_entry_size) {
7438 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7439 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7440 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7441 		if (rc)
7442 			return rc;
7443 	}
7444 
7445 	ctx_pg = &ctx->vnic_mem;
7446 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7447 			  ctx->vnic_max_ring_table_entries;
7448 	if (ctx->vnic_entry_size) {
7449 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7450 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7451 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7452 		if (rc)
7453 			return rc;
7454 	}
7455 
7456 	ctx_pg = &ctx->stat_mem;
7457 	ctx_pg->entries = ctx->stat_max_entries;
7458 	if (ctx->stat_entry_size) {
7459 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7460 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7461 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7462 		if (rc)
7463 			return rc;
7464 	}
7465 
7466 	ena = 0;
7467 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7468 		goto skip_rdma;
7469 
7470 	ctx_pg = &ctx->mrav_mem;
7471 	/* 128K extra is needed to accommodate static AH context
7472 	 * allocation by f/w.
7473 	 */
7474 	num_mr = 1024 * 256;
7475 	num_ah = 1024 * 128;
7476 	ctx_pg->entries = num_mr + num_ah;
7477 	if (ctx->mrav_entry_size) {
7478 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7479 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7480 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7481 		if (rc)
7482 			return rc;
7483 	}
7484 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7485 	if (ctx->mrav_num_entries_units)
7486 		ctx_pg->entries =
7487 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7488 			 (num_ah / ctx->mrav_num_entries_units);
7489 
7490 	ctx_pg = &ctx->tim_mem;
7491 	ctx_pg->entries = ctx->qp_mem.entries;
7492 	if (ctx->tim_entry_size) {
7493 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7494 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7495 		if (rc)
7496 			return rc;
7497 	}
7498 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7499 
7500 skip_rdma:
7501 	min = ctx->tqm_min_entries_per_ring;
7502 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7503 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7504 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7505 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7506 	entries = roundup(entries, ctx->tqm_entries_multiple);
7507 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7508 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7509 		ctx_pg = ctx->tqm_mem[i];
7510 		ctx_pg->entries = i ? entries : entries_sp;
7511 		if (ctx->tqm_entry_size) {
7512 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7513 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7514 						    NULL);
7515 			if (rc)
7516 				return rc;
7517 		}
7518 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7519 	}
7520 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7521 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7522 	if (rc) {
7523 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7524 			   rc);
7525 		return rc;
7526 	}
7527 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7528 	return 0;
7529 }
7530 
7531 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7532 {
7533 	struct hwrm_func_resource_qcaps_output *resp;
7534 	struct hwrm_func_resource_qcaps_input *req;
7535 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7536 	int rc;
7537 
7538 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7539 	if (rc)
7540 		return rc;
7541 
7542 	req->fid = cpu_to_le16(0xffff);
7543 	resp = hwrm_req_hold(bp, req);
7544 	rc = hwrm_req_send_silent(bp, req);
7545 	if (rc)
7546 		goto hwrm_func_resc_qcaps_exit;
7547 
7548 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7549 	if (!all)
7550 		goto hwrm_func_resc_qcaps_exit;
7551 
7552 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7553 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7554 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7555 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7556 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7557 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7558 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7559 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7560 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7561 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7562 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7563 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7564 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7565 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7566 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7567 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7568 
7569 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7570 		u16 max_msix = le16_to_cpu(resp->max_msix);
7571 
7572 		hw_resc->max_nqs = max_msix;
7573 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7574 	}
7575 
7576 	if (BNXT_PF(bp)) {
7577 		struct bnxt_pf_info *pf = &bp->pf;
7578 
7579 		pf->vf_resv_strategy =
7580 			le16_to_cpu(resp->vf_reservation_strategy);
7581 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7582 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7583 	}
7584 hwrm_func_resc_qcaps_exit:
7585 	hwrm_req_drop(bp, req);
7586 	return rc;
7587 }
7588 
7589 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7590 {
7591 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7592 	struct hwrm_port_mac_ptp_qcfg_input *req;
7593 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7594 	bool phc_cfg;
7595 	u8 flags;
7596 	int rc;
7597 
7598 	if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_THOR(bp)) {
7599 		rc = -ENODEV;
7600 		goto no_ptp;
7601 	}
7602 
7603 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7604 	if (rc)
7605 		goto no_ptp;
7606 
7607 	req->port_id = cpu_to_le16(bp->pf.port_id);
7608 	resp = hwrm_req_hold(bp, req);
7609 	rc = hwrm_req_send(bp, req);
7610 	if (rc)
7611 		goto exit;
7612 
7613 	flags = resp->flags;
7614 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7615 		rc = -ENODEV;
7616 		goto exit;
7617 	}
7618 	if (!ptp) {
7619 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7620 		if (!ptp) {
7621 			rc = -ENOMEM;
7622 			goto exit;
7623 		}
7624 		ptp->bp = bp;
7625 		bp->ptp_cfg = ptp;
7626 	}
7627 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7628 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7629 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7630 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7631 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7632 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7633 	} else {
7634 		rc = -ENODEV;
7635 		goto exit;
7636 	}
7637 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7638 	rc = bnxt_ptp_init(bp, phc_cfg);
7639 	if (rc)
7640 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7641 exit:
7642 	hwrm_req_drop(bp, req);
7643 	if (!rc)
7644 		return 0;
7645 
7646 no_ptp:
7647 	bnxt_ptp_clear(bp);
7648 	kfree(ptp);
7649 	bp->ptp_cfg = NULL;
7650 	return rc;
7651 }
7652 
7653 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7654 {
7655 	struct hwrm_func_qcaps_output *resp;
7656 	struct hwrm_func_qcaps_input *req;
7657 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7658 	u32 flags, flags_ext, flags_ext2;
7659 	int rc;
7660 
7661 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7662 	if (rc)
7663 		return rc;
7664 
7665 	req->fid = cpu_to_le16(0xffff);
7666 	resp = hwrm_req_hold(bp, req);
7667 	rc = hwrm_req_send(bp, req);
7668 	if (rc)
7669 		goto hwrm_func_qcaps_exit;
7670 
7671 	flags = le32_to_cpu(resp->flags);
7672 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7673 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7674 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7675 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7676 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7677 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7678 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7679 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7680 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7681 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7682 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7683 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7684 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7685 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7686 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7687 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7688 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7689 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7690 
7691 	flags_ext = le32_to_cpu(resp->flags_ext);
7692 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7693 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7694 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7695 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7696 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7697 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7698 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7699 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7700 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7701 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7702 
7703 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7704 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7705 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7706 
7707 	bp->tx_push_thresh = 0;
7708 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7709 	    BNXT_FW_MAJ(bp) > 217)
7710 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7711 
7712 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7713 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7714 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7715 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7716 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7717 	if (!hw_resc->max_hw_ring_grps)
7718 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7719 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7720 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7721 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7722 
7723 	if (BNXT_PF(bp)) {
7724 		struct bnxt_pf_info *pf = &bp->pf;
7725 
7726 		pf->fw_fid = le16_to_cpu(resp->fid);
7727 		pf->port_id = le16_to_cpu(resp->port_id);
7728 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7729 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7730 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7731 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7732 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7733 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7734 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7735 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7736 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7737 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7738 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7739 			bp->flags |= BNXT_FLAG_WOL_CAP;
7740 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7741 			bp->fw_cap |= BNXT_FW_CAP_PTP;
7742 		} else {
7743 			bnxt_ptp_clear(bp);
7744 			kfree(bp->ptp_cfg);
7745 			bp->ptp_cfg = NULL;
7746 		}
7747 	} else {
7748 #ifdef CONFIG_BNXT_SRIOV
7749 		struct bnxt_vf_info *vf = &bp->vf;
7750 
7751 		vf->fw_fid = le16_to_cpu(resp->fid);
7752 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7753 #endif
7754 	}
7755 
7756 hwrm_func_qcaps_exit:
7757 	hwrm_req_drop(bp, req);
7758 	return rc;
7759 }
7760 
7761 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7762 {
7763 	struct hwrm_dbg_qcaps_output *resp;
7764 	struct hwrm_dbg_qcaps_input *req;
7765 	int rc;
7766 
7767 	bp->fw_dbg_cap = 0;
7768 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7769 		return;
7770 
7771 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7772 	if (rc)
7773 		return;
7774 
7775 	req->fid = cpu_to_le16(0xffff);
7776 	resp = hwrm_req_hold(bp, req);
7777 	rc = hwrm_req_send(bp, req);
7778 	if (rc)
7779 		goto hwrm_dbg_qcaps_exit;
7780 
7781 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7782 
7783 hwrm_dbg_qcaps_exit:
7784 	hwrm_req_drop(bp, req);
7785 }
7786 
7787 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7788 
7789 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7790 {
7791 	int rc;
7792 
7793 	rc = __bnxt_hwrm_func_qcaps(bp);
7794 	if (rc)
7795 		return rc;
7796 
7797 	bnxt_hwrm_dbg_qcaps(bp);
7798 
7799 	rc = bnxt_hwrm_queue_qportcfg(bp);
7800 	if (rc) {
7801 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7802 		return rc;
7803 	}
7804 	if (bp->hwrm_spec_code >= 0x10803) {
7805 		rc = bnxt_alloc_ctx_mem(bp);
7806 		if (rc)
7807 			return rc;
7808 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7809 		if (!rc)
7810 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7811 	}
7812 	return 0;
7813 }
7814 
7815 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7816 {
7817 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7818 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7819 	u32 flags;
7820 	int rc;
7821 
7822 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7823 		return 0;
7824 
7825 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7826 	if (rc)
7827 		return rc;
7828 
7829 	resp = hwrm_req_hold(bp, req);
7830 	rc = hwrm_req_send(bp, req);
7831 	if (rc)
7832 		goto hwrm_cfa_adv_qcaps_exit;
7833 
7834 	flags = le32_to_cpu(resp->flags);
7835 	if (flags &
7836 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7837 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7838 
7839 hwrm_cfa_adv_qcaps_exit:
7840 	hwrm_req_drop(bp, req);
7841 	return rc;
7842 }
7843 
7844 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7845 {
7846 	if (bp->fw_health)
7847 		return 0;
7848 
7849 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7850 	if (!bp->fw_health)
7851 		return -ENOMEM;
7852 
7853 	mutex_init(&bp->fw_health->lock);
7854 	return 0;
7855 }
7856 
7857 static int bnxt_alloc_fw_health(struct bnxt *bp)
7858 {
7859 	int rc;
7860 
7861 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7862 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7863 		return 0;
7864 
7865 	rc = __bnxt_alloc_fw_health(bp);
7866 	if (rc) {
7867 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7868 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7869 		return rc;
7870 	}
7871 
7872 	return 0;
7873 }
7874 
7875 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7876 {
7877 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7878 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7879 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7880 }
7881 
7882 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7883 {
7884 	struct bnxt_fw_health *fw_health = bp->fw_health;
7885 	u32 reg_type;
7886 
7887 	if (!fw_health)
7888 		return;
7889 
7890 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7891 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7892 		fw_health->status_reliable = false;
7893 
7894 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7895 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7896 		fw_health->resets_reliable = false;
7897 }
7898 
7899 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7900 {
7901 	void __iomem *hs;
7902 	u32 status_loc;
7903 	u32 reg_type;
7904 	u32 sig;
7905 
7906 	if (bp->fw_health)
7907 		bp->fw_health->status_reliable = false;
7908 
7909 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7910 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7911 
7912 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7913 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7914 		if (!bp->chip_num) {
7915 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7916 			bp->chip_num = readl(bp->bar0 +
7917 					     BNXT_FW_HEALTH_WIN_BASE +
7918 					     BNXT_GRC_REG_CHIP_NUM);
7919 		}
7920 		if (!BNXT_CHIP_P5(bp))
7921 			return;
7922 
7923 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7924 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7925 	} else {
7926 		status_loc = readl(hs + offsetof(struct hcomm_status,
7927 						 fw_status_loc));
7928 	}
7929 
7930 	if (__bnxt_alloc_fw_health(bp)) {
7931 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7932 		return;
7933 	}
7934 
7935 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7936 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7937 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7938 		__bnxt_map_fw_health_reg(bp, status_loc);
7939 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7940 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7941 	}
7942 
7943 	bp->fw_health->status_reliable = true;
7944 }
7945 
7946 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7947 {
7948 	struct bnxt_fw_health *fw_health = bp->fw_health;
7949 	u32 reg_base = 0xffffffff;
7950 	int i;
7951 
7952 	bp->fw_health->status_reliable = false;
7953 	bp->fw_health->resets_reliable = false;
7954 	/* Only pre-map the monitoring GRC registers using window 3 */
7955 	for (i = 0; i < 4; i++) {
7956 		u32 reg = fw_health->regs[i];
7957 
7958 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7959 			continue;
7960 		if (reg_base == 0xffffffff)
7961 			reg_base = reg & BNXT_GRC_BASE_MASK;
7962 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7963 			return -ERANGE;
7964 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7965 	}
7966 	bp->fw_health->status_reliable = true;
7967 	bp->fw_health->resets_reliable = true;
7968 	if (reg_base == 0xffffffff)
7969 		return 0;
7970 
7971 	__bnxt_map_fw_health_reg(bp, reg_base);
7972 	return 0;
7973 }
7974 
7975 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
7976 {
7977 	if (!bp->fw_health)
7978 		return;
7979 
7980 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
7981 		bp->fw_health->status_reliable = true;
7982 		bp->fw_health->resets_reliable = true;
7983 	} else {
7984 		bnxt_try_map_fw_health_reg(bp);
7985 	}
7986 }
7987 
7988 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7989 {
7990 	struct bnxt_fw_health *fw_health = bp->fw_health;
7991 	struct hwrm_error_recovery_qcfg_output *resp;
7992 	struct hwrm_error_recovery_qcfg_input *req;
7993 	int rc, i;
7994 
7995 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7996 		return 0;
7997 
7998 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
7999 	if (rc)
8000 		return rc;
8001 
8002 	resp = hwrm_req_hold(bp, req);
8003 	rc = hwrm_req_send(bp, req);
8004 	if (rc)
8005 		goto err_recovery_out;
8006 	fw_health->flags = le32_to_cpu(resp->flags);
8007 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8008 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8009 		rc = -EINVAL;
8010 		goto err_recovery_out;
8011 	}
8012 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8013 	fw_health->master_func_wait_dsecs =
8014 		le32_to_cpu(resp->master_func_wait_period);
8015 	fw_health->normal_func_wait_dsecs =
8016 		le32_to_cpu(resp->normal_func_wait_period);
8017 	fw_health->post_reset_wait_dsecs =
8018 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8019 	fw_health->post_reset_max_wait_dsecs =
8020 		le32_to_cpu(resp->max_bailout_time_after_reset);
8021 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8022 		le32_to_cpu(resp->fw_health_status_reg);
8023 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8024 		le32_to_cpu(resp->fw_heartbeat_reg);
8025 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8026 		le32_to_cpu(resp->fw_reset_cnt_reg);
8027 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8028 		le32_to_cpu(resp->reset_inprogress_reg);
8029 	fw_health->fw_reset_inprog_reg_mask =
8030 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8031 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8032 	if (fw_health->fw_reset_seq_cnt >= 16) {
8033 		rc = -EINVAL;
8034 		goto err_recovery_out;
8035 	}
8036 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8037 		fw_health->fw_reset_seq_regs[i] =
8038 			le32_to_cpu(resp->reset_reg[i]);
8039 		fw_health->fw_reset_seq_vals[i] =
8040 			le32_to_cpu(resp->reset_reg_val[i]);
8041 		fw_health->fw_reset_seq_delay_msec[i] =
8042 			resp->delay_after_reset[i];
8043 	}
8044 err_recovery_out:
8045 	hwrm_req_drop(bp, req);
8046 	if (!rc)
8047 		rc = bnxt_map_fw_health_regs(bp);
8048 	if (rc)
8049 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8050 	return rc;
8051 }
8052 
8053 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8054 {
8055 	struct hwrm_func_reset_input *req;
8056 	int rc;
8057 
8058 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8059 	if (rc)
8060 		return rc;
8061 
8062 	req->enables = 0;
8063 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8064 	return hwrm_req_send(bp, req);
8065 }
8066 
8067 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8068 {
8069 	struct hwrm_nvm_get_dev_info_output nvm_info;
8070 
8071 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8072 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8073 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8074 			 nvm_info.nvm_cfg_ver_upd);
8075 }
8076 
8077 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8078 {
8079 	struct hwrm_queue_qportcfg_output *resp;
8080 	struct hwrm_queue_qportcfg_input *req;
8081 	u8 i, j, *qptr;
8082 	bool no_rdma;
8083 	int rc = 0;
8084 
8085 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8086 	if (rc)
8087 		return rc;
8088 
8089 	resp = hwrm_req_hold(bp, req);
8090 	rc = hwrm_req_send(bp, req);
8091 	if (rc)
8092 		goto qportcfg_exit;
8093 
8094 	if (!resp->max_configurable_queues) {
8095 		rc = -EINVAL;
8096 		goto qportcfg_exit;
8097 	}
8098 	bp->max_tc = resp->max_configurable_queues;
8099 	bp->max_lltc = resp->max_configurable_lossless_queues;
8100 	if (bp->max_tc > BNXT_MAX_QUEUE)
8101 		bp->max_tc = BNXT_MAX_QUEUE;
8102 
8103 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8104 	qptr = &resp->queue_id0;
8105 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8106 		bp->q_info[j].queue_id = *qptr;
8107 		bp->q_ids[i] = *qptr++;
8108 		bp->q_info[j].queue_profile = *qptr++;
8109 		bp->tc_to_qidx[j] = j;
8110 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8111 		    (no_rdma && BNXT_PF(bp)))
8112 			j++;
8113 	}
8114 	bp->max_q = bp->max_tc;
8115 	bp->max_tc = max_t(u8, j, 1);
8116 
8117 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8118 		bp->max_tc = 1;
8119 
8120 	if (bp->max_lltc > bp->max_tc)
8121 		bp->max_lltc = bp->max_tc;
8122 
8123 qportcfg_exit:
8124 	hwrm_req_drop(bp, req);
8125 	return rc;
8126 }
8127 
8128 static int bnxt_hwrm_poll(struct bnxt *bp)
8129 {
8130 	struct hwrm_ver_get_input *req;
8131 	int rc;
8132 
8133 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8134 	if (rc)
8135 		return rc;
8136 
8137 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8138 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8139 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8140 
8141 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8142 	rc = hwrm_req_send(bp, req);
8143 	return rc;
8144 }
8145 
8146 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8147 {
8148 	struct hwrm_ver_get_output *resp;
8149 	struct hwrm_ver_get_input *req;
8150 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8151 	u32 dev_caps_cfg, hwrm_ver;
8152 	int rc, len;
8153 
8154 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8155 	if (rc)
8156 		return rc;
8157 
8158 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8159 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8160 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8161 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8162 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8163 
8164 	resp = hwrm_req_hold(bp, req);
8165 	rc = hwrm_req_send(bp, req);
8166 	if (rc)
8167 		goto hwrm_ver_get_exit;
8168 
8169 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8170 
8171 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8172 			     resp->hwrm_intf_min_8b << 8 |
8173 			     resp->hwrm_intf_upd_8b;
8174 	if (resp->hwrm_intf_maj_8b < 1) {
8175 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8176 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8177 			    resp->hwrm_intf_upd_8b);
8178 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8179 	}
8180 
8181 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8182 			HWRM_VERSION_UPDATE;
8183 
8184 	if (bp->hwrm_spec_code > hwrm_ver)
8185 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8186 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8187 			 HWRM_VERSION_UPDATE);
8188 	else
8189 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8190 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8191 			 resp->hwrm_intf_upd_8b);
8192 
8193 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8194 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8195 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8196 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8197 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8198 		len = FW_VER_STR_LEN;
8199 	} else {
8200 		fw_maj = resp->hwrm_fw_maj_8b;
8201 		fw_min = resp->hwrm_fw_min_8b;
8202 		fw_bld = resp->hwrm_fw_bld_8b;
8203 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8204 		len = BC_HWRM_STR_LEN;
8205 	}
8206 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8207 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8208 		 fw_rsv);
8209 
8210 	if (strlen(resp->active_pkg_name)) {
8211 		int fw_ver_len = strlen(bp->fw_ver_str);
8212 
8213 		snprintf(bp->fw_ver_str + fw_ver_len,
8214 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8215 			 resp->active_pkg_name);
8216 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8217 	}
8218 
8219 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8220 	if (!bp->hwrm_cmd_timeout)
8221 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8222 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8223 	if (!bp->hwrm_cmd_max_timeout)
8224 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8225 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8226 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8227 			    bp->hwrm_cmd_max_timeout / 1000);
8228 
8229 	if (resp->hwrm_intf_maj_8b >= 1) {
8230 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8231 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8232 	}
8233 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8234 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8235 
8236 	bp->chip_num = le16_to_cpu(resp->chip_num);
8237 	bp->chip_rev = resp->chip_rev;
8238 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8239 	    !resp->chip_metal)
8240 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8241 
8242 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8243 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8244 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8245 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8246 
8247 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8248 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8249 
8250 	if (dev_caps_cfg &
8251 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8252 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8253 
8254 	if (dev_caps_cfg &
8255 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8256 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8257 
8258 	if (dev_caps_cfg &
8259 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8260 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8261 
8262 hwrm_ver_get_exit:
8263 	hwrm_req_drop(bp, req);
8264 	return rc;
8265 }
8266 
8267 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8268 {
8269 	struct hwrm_fw_set_time_input *req;
8270 	struct tm tm;
8271 	time64_t now = ktime_get_real_seconds();
8272 	int rc;
8273 
8274 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8275 	    bp->hwrm_spec_code < 0x10400)
8276 		return -EOPNOTSUPP;
8277 
8278 	time64_to_tm(now, 0, &tm);
8279 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8280 	if (rc)
8281 		return rc;
8282 
8283 	req->year = cpu_to_le16(1900 + tm.tm_year);
8284 	req->month = 1 + tm.tm_mon;
8285 	req->day = tm.tm_mday;
8286 	req->hour = tm.tm_hour;
8287 	req->minute = tm.tm_min;
8288 	req->second = tm.tm_sec;
8289 	return hwrm_req_send(bp, req);
8290 }
8291 
8292 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8293 {
8294 	u64 sw_tmp;
8295 
8296 	hw &= mask;
8297 	sw_tmp = (*sw & ~mask) | hw;
8298 	if (hw < (*sw & mask))
8299 		sw_tmp += mask + 1;
8300 	WRITE_ONCE(*sw, sw_tmp);
8301 }
8302 
8303 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8304 				    int count, bool ignore_zero)
8305 {
8306 	int i;
8307 
8308 	for (i = 0; i < count; i++) {
8309 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8310 
8311 		if (ignore_zero && !hw)
8312 			continue;
8313 
8314 		if (masks[i] == -1ULL)
8315 			sw_stats[i] = hw;
8316 		else
8317 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8318 	}
8319 }
8320 
8321 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8322 {
8323 	if (!stats->hw_stats)
8324 		return;
8325 
8326 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8327 				stats->hw_masks, stats->len / 8, false);
8328 }
8329 
8330 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8331 {
8332 	struct bnxt_stats_mem *ring0_stats;
8333 	bool ignore_zero = false;
8334 	int i;
8335 
8336 	/* Chip bug.  Counter intermittently becomes 0. */
8337 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8338 		ignore_zero = true;
8339 
8340 	for (i = 0; i < bp->cp_nr_rings; i++) {
8341 		struct bnxt_napi *bnapi = bp->bnapi[i];
8342 		struct bnxt_cp_ring_info *cpr;
8343 		struct bnxt_stats_mem *stats;
8344 
8345 		cpr = &bnapi->cp_ring;
8346 		stats = &cpr->stats;
8347 		if (!i)
8348 			ring0_stats = stats;
8349 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8350 					ring0_stats->hw_masks,
8351 					ring0_stats->len / 8, ignore_zero);
8352 	}
8353 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8354 		struct bnxt_stats_mem *stats = &bp->port_stats;
8355 		__le64 *hw_stats = stats->hw_stats;
8356 		u64 *sw_stats = stats->sw_stats;
8357 		u64 *masks = stats->hw_masks;
8358 		int cnt;
8359 
8360 		cnt = sizeof(struct rx_port_stats) / 8;
8361 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8362 
8363 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8364 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8365 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8366 		cnt = sizeof(struct tx_port_stats) / 8;
8367 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8368 	}
8369 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8370 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8371 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8372 	}
8373 }
8374 
8375 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8376 {
8377 	struct hwrm_port_qstats_input *req;
8378 	struct bnxt_pf_info *pf = &bp->pf;
8379 	int rc;
8380 
8381 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8382 		return 0;
8383 
8384 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8385 		return -EOPNOTSUPP;
8386 
8387 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8388 	if (rc)
8389 		return rc;
8390 
8391 	req->flags = flags;
8392 	req->port_id = cpu_to_le16(pf->port_id);
8393 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8394 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8395 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8396 	return hwrm_req_send(bp, req);
8397 }
8398 
8399 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8400 {
8401 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8402 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8403 	struct hwrm_port_qstats_ext_output *resp_qs;
8404 	struct hwrm_port_qstats_ext_input *req_qs;
8405 	struct bnxt_pf_info *pf = &bp->pf;
8406 	u32 tx_stat_size;
8407 	int rc;
8408 
8409 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8410 		return 0;
8411 
8412 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8413 		return -EOPNOTSUPP;
8414 
8415 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8416 	if (rc)
8417 		return rc;
8418 
8419 	req_qs->flags = flags;
8420 	req_qs->port_id = cpu_to_le16(pf->port_id);
8421 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8422 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8423 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8424 		       sizeof(struct tx_port_stats_ext) : 0;
8425 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8426 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8427 	resp_qs = hwrm_req_hold(bp, req_qs);
8428 	rc = hwrm_req_send(bp, req_qs);
8429 	if (!rc) {
8430 		bp->fw_rx_stats_ext_size =
8431 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8432 		if (BNXT_FW_MAJ(bp) < 220 &&
8433 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8434 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8435 
8436 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8437 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8438 	} else {
8439 		bp->fw_rx_stats_ext_size = 0;
8440 		bp->fw_tx_stats_ext_size = 0;
8441 	}
8442 	hwrm_req_drop(bp, req_qs);
8443 
8444 	if (flags)
8445 		return rc;
8446 
8447 	if (bp->fw_tx_stats_ext_size <=
8448 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8449 		bp->pri2cos_valid = 0;
8450 		return rc;
8451 	}
8452 
8453 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8454 	if (rc)
8455 		return rc;
8456 
8457 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8458 
8459 	resp_qc = hwrm_req_hold(bp, req_qc);
8460 	rc = hwrm_req_send(bp, req_qc);
8461 	if (!rc) {
8462 		u8 *pri2cos;
8463 		int i, j;
8464 
8465 		pri2cos = &resp_qc->pri0_cos_queue_id;
8466 		for (i = 0; i < 8; i++) {
8467 			u8 queue_id = pri2cos[i];
8468 			u8 queue_idx;
8469 
8470 			/* Per port queue IDs start from 0, 10, 20, etc */
8471 			queue_idx = queue_id % 10;
8472 			if (queue_idx > BNXT_MAX_QUEUE) {
8473 				bp->pri2cos_valid = false;
8474 				hwrm_req_drop(bp, req_qc);
8475 				return rc;
8476 			}
8477 			for (j = 0; j < bp->max_q; j++) {
8478 				if (bp->q_ids[j] == queue_id)
8479 					bp->pri2cos_idx[i] = queue_idx;
8480 			}
8481 		}
8482 		bp->pri2cos_valid = true;
8483 	}
8484 	hwrm_req_drop(bp, req_qc);
8485 
8486 	return rc;
8487 }
8488 
8489 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8490 {
8491 	bnxt_hwrm_tunnel_dst_port_free(bp,
8492 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8493 	bnxt_hwrm_tunnel_dst_port_free(bp,
8494 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8495 }
8496 
8497 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8498 {
8499 	int rc, i;
8500 	u32 tpa_flags = 0;
8501 
8502 	if (set_tpa)
8503 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8504 	else if (BNXT_NO_FW_ACCESS(bp))
8505 		return 0;
8506 	for (i = 0; i < bp->nr_vnics; i++) {
8507 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8508 		if (rc) {
8509 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8510 				   i, rc);
8511 			return rc;
8512 		}
8513 	}
8514 	return 0;
8515 }
8516 
8517 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8518 {
8519 	int i;
8520 
8521 	for (i = 0; i < bp->nr_vnics; i++)
8522 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8523 }
8524 
8525 static void bnxt_clear_vnic(struct bnxt *bp)
8526 {
8527 	if (!bp->vnic_info)
8528 		return;
8529 
8530 	bnxt_hwrm_clear_vnic_filter(bp);
8531 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8532 		/* clear all RSS setting before free vnic ctx */
8533 		bnxt_hwrm_clear_vnic_rss(bp);
8534 		bnxt_hwrm_vnic_ctx_free(bp);
8535 	}
8536 	/* before free the vnic, undo the vnic tpa settings */
8537 	if (bp->flags & BNXT_FLAG_TPA)
8538 		bnxt_set_tpa(bp, false);
8539 	bnxt_hwrm_vnic_free(bp);
8540 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8541 		bnxt_hwrm_vnic_ctx_free(bp);
8542 }
8543 
8544 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8545 				    bool irq_re_init)
8546 {
8547 	bnxt_clear_vnic(bp);
8548 	bnxt_hwrm_ring_free(bp, close_path);
8549 	bnxt_hwrm_ring_grp_free(bp);
8550 	if (irq_re_init) {
8551 		bnxt_hwrm_stat_ctx_free(bp);
8552 		bnxt_hwrm_free_tunnel_ports(bp);
8553 	}
8554 }
8555 
8556 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8557 {
8558 	struct hwrm_func_cfg_input *req;
8559 	u8 evb_mode;
8560 	int rc;
8561 
8562 	if (br_mode == BRIDGE_MODE_VEB)
8563 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8564 	else if (br_mode == BRIDGE_MODE_VEPA)
8565 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8566 	else
8567 		return -EINVAL;
8568 
8569 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8570 	if (rc)
8571 		return rc;
8572 
8573 	req->fid = cpu_to_le16(0xffff);
8574 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8575 	req->evb_mode = evb_mode;
8576 	return hwrm_req_send(bp, req);
8577 }
8578 
8579 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8580 {
8581 	struct hwrm_func_cfg_input *req;
8582 	int rc;
8583 
8584 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8585 		return 0;
8586 
8587 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8588 	if (rc)
8589 		return rc;
8590 
8591 	req->fid = cpu_to_le16(0xffff);
8592 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8593 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8594 	if (size == 128)
8595 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8596 
8597 	return hwrm_req_send(bp, req);
8598 }
8599 
8600 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8601 {
8602 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8603 	int rc;
8604 
8605 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8606 		goto skip_rss_ctx;
8607 
8608 	/* allocate context for vnic */
8609 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8610 	if (rc) {
8611 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8612 			   vnic_id, rc);
8613 		goto vnic_setup_err;
8614 	}
8615 	bp->rsscos_nr_ctxs++;
8616 
8617 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8618 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8619 		if (rc) {
8620 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8621 				   vnic_id, rc);
8622 			goto vnic_setup_err;
8623 		}
8624 		bp->rsscos_nr_ctxs++;
8625 	}
8626 
8627 skip_rss_ctx:
8628 	/* configure default vnic, ring grp */
8629 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8630 	if (rc) {
8631 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8632 			   vnic_id, rc);
8633 		goto vnic_setup_err;
8634 	}
8635 
8636 	/* Enable RSS hashing on vnic */
8637 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8638 	if (rc) {
8639 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8640 			   vnic_id, rc);
8641 		goto vnic_setup_err;
8642 	}
8643 
8644 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8645 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8646 		if (rc) {
8647 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8648 				   vnic_id, rc);
8649 		}
8650 	}
8651 
8652 vnic_setup_err:
8653 	return rc;
8654 }
8655 
8656 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8657 {
8658 	int rc, i, nr_ctxs;
8659 
8660 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8661 	for (i = 0; i < nr_ctxs; i++) {
8662 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8663 		if (rc) {
8664 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8665 				   vnic_id, i, rc);
8666 			break;
8667 		}
8668 		bp->rsscos_nr_ctxs++;
8669 	}
8670 	if (i < nr_ctxs)
8671 		return -ENOMEM;
8672 
8673 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8674 	if (rc) {
8675 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8676 			   vnic_id, rc);
8677 		return rc;
8678 	}
8679 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8680 	if (rc) {
8681 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8682 			   vnic_id, rc);
8683 		return rc;
8684 	}
8685 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8686 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8687 		if (rc) {
8688 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8689 				   vnic_id, rc);
8690 		}
8691 	}
8692 	return rc;
8693 }
8694 
8695 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8696 {
8697 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8698 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8699 	else
8700 		return __bnxt_setup_vnic(bp, vnic_id);
8701 }
8702 
8703 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8704 {
8705 #ifdef CONFIG_RFS_ACCEL
8706 	int i, rc = 0;
8707 
8708 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8709 		return 0;
8710 
8711 	for (i = 0; i < bp->rx_nr_rings; i++) {
8712 		struct bnxt_vnic_info *vnic;
8713 		u16 vnic_id = i + 1;
8714 		u16 ring_id = i;
8715 
8716 		if (vnic_id >= bp->nr_vnics)
8717 			break;
8718 
8719 		vnic = &bp->vnic_info[vnic_id];
8720 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8721 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8722 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8723 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8724 		if (rc) {
8725 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8726 				   vnic_id, rc);
8727 			break;
8728 		}
8729 		rc = bnxt_setup_vnic(bp, vnic_id);
8730 		if (rc)
8731 			break;
8732 	}
8733 	return rc;
8734 #else
8735 	return 0;
8736 #endif
8737 }
8738 
8739 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8740 static bool bnxt_promisc_ok(struct bnxt *bp)
8741 {
8742 #ifdef CONFIG_BNXT_SRIOV
8743 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8744 		return false;
8745 #endif
8746 	return true;
8747 }
8748 
8749 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8750 {
8751 	unsigned int rc = 0;
8752 
8753 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8754 	if (rc) {
8755 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8756 			   rc);
8757 		return rc;
8758 	}
8759 
8760 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8761 	if (rc) {
8762 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8763 			   rc);
8764 		return rc;
8765 	}
8766 	return rc;
8767 }
8768 
8769 static int bnxt_cfg_rx_mode(struct bnxt *);
8770 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8771 
8772 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8773 {
8774 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8775 	int rc = 0;
8776 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8777 
8778 	if (irq_re_init) {
8779 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8780 		if (rc) {
8781 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8782 				   rc);
8783 			goto err_out;
8784 		}
8785 	}
8786 
8787 	rc = bnxt_hwrm_ring_alloc(bp);
8788 	if (rc) {
8789 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8790 		goto err_out;
8791 	}
8792 
8793 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8794 	if (rc) {
8795 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8796 		goto err_out;
8797 	}
8798 
8799 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8800 		rx_nr_rings--;
8801 
8802 	/* default vnic 0 */
8803 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8804 	if (rc) {
8805 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8806 		goto err_out;
8807 	}
8808 
8809 	if (BNXT_VF(bp))
8810 		bnxt_hwrm_func_qcfg(bp);
8811 
8812 	rc = bnxt_setup_vnic(bp, 0);
8813 	if (rc)
8814 		goto err_out;
8815 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
8816 		bnxt_hwrm_update_rss_hash_cfg(bp);
8817 
8818 	if (bp->flags & BNXT_FLAG_RFS) {
8819 		rc = bnxt_alloc_rfs_vnics(bp);
8820 		if (rc)
8821 			goto err_out;
8822 	}
8823 
8824 	if (bp->flags & BNXT_FLAG_TPA) {
8825 		rc = bnxt_set_tpa(bp, true);
8826 		if (rc)
8827 			goto err_out;
8828 	}
8829 
8830 	if (BNXT_VF(bp))
8831 		bnxt_update_vf_mac(bp);
8832 
8833 	/* Filter for default vnic 0 */
8834 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8835 	if (rc) {
8836 		if (BNXT_VF(bp) && rc == -ENODEV)
8837 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8838 		else
8839 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8840 		goto err_out;
8841 	}
8842 	vnic->uc_filter_count = 1;
8843 
8844 	vnic->rx_mask = 0;
8845 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8846 		goto skip_rx_mask;
8847 
8848 	if (bp->dev->flags & IFF_BROADCAST)
8849 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8850 
8851 	if (bp->dev->flags & IFF_PROMISC)
8852 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8853 
8854 	if (bp->dev->flags & IFF_ALLMULTI) {
8855 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8856 		vnic->mc_list_count = 0;
8857 	} else if (bp->dev->flags & IFF_MULTICAST) {
8858 		u32 mask = 0;
8859 
8860 		bnxt_mc_list_updated(bp, &mask);
8861 		vnic->rx_mask |= mask;
8862 	}
8863 
8864 	rc = bnxt_cfg_rx_mode(bp);
8865 	if (rc)
8866 		goto err_out;
8867 
8868 skip_rx_mask:
8869 	rc = bnxt_hwrm_set_coal(bp);
8870 	if (rc)
8871 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8872 				rc);
8873 
8874 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8875 		rc = bnxt_setup_nitroa0_vnic(bp);
8876 		if (rc)
8877 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8878 				   rc);
8879 	}
8880 
8881 	if (BNXT_VF(bp)) {
8882 		bnxt_hwrm_func_qcfg(bp);
8883 		netdev_update_features(bp->dev);
8884 	}
8885 
8886 	return 0;
8887 
8888 err_out:
8889 	bnxt_hwrm_resource_free(bp, 0, true);
8890 
8891 	return rc;
8892 }
8893 
8894 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8895 {
8896 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8897 	return 0;
8898 }
8899 
8900 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8901 {
8902 	bnxt_init_cp_rings(bp);
8903 	bnxt_init_rx_rings(bp);
8904 	bnxt_init_tx_rings(bp);
8905 	bnxt_init_ring_grps(bp, irq_re_init);
8906 	bnxt_init_vnics(bp);
8907 
8908 	return bnxt_init_chip(bp, irq_re_init);
8909 }
8910 
8911 static int bnxt_set_real_num_queues(struct bnxt *bp)
8912 {
8913 	int rc;
8914 	struct net_device *dev = bp->dev;
8915 
8916 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8917 					  bp->tx_nr_rings_xdp);
8918 	if (rc)
8919 		return rc;
8920 
8921 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8922 	if (rc)
8923 		return rc;
8924 
8925 #ifdef CONFIG_RFS_ACCEL
8926 	if (bp->flags & BNXT_FLAG_RFS)
8927 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8928 #endif
8929 
8930 	return rc;
8931 }
8932 
8933 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8934 			   bool shared)
8935 {
8936 	int _rx = *rx, _tx = *tx;
8937 
8938 	if (shared) {
8939 		*rx = min_t(int, _rx, max);
8940 		*tx = min_t(int, _tx, max);
8941 	} else {
8942 		if (max < 2)
8943 			return -ENOMEM;
8944 
8945 		while (_rx + _tx > max) {
8946 			if (_rx > _tx && _rx > 1)
8947 				_rx--;
8948 			else if (_tx > 1)
8949 				_tx--;
8950 		}
8951 		*rx = _rx;
8952 		*tx = _tx;
8953 	}
8954 	return 0;
8955 }
8956 
8957 static void bnxt_setup_msix(struct bnxt *bp)
8958 {
8959 	const int len = sizeof(bp->irq_tbl[0].name);
8960 	struct net_device *dev = bp->dev;
8961 	int tcs, i;
8962 
8963 	tcs = netdev_get_num_tc(dev);
8964 	if (tcs) {
8965 		int i, off, count;
8966 
8967 		for (i = 0; i < tcs; i++) {
8968 			count = bp->tx_nr_rings_per_tc;
8969 			off = i * count;
8970 			netdev_set_tc_queue(dev, i, count, off);
8971 		}
8972 	}
8973 
8974 	for (i = 0; i < bp->cp_nr_rings; i++) {
8975 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8976 		char *attr;
8977 
8978 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8979 			attr = "TxRx";
8980 		else if (i < bp->rx_nr_rings)
8981 			attr = "rx";
8982 		else
8983 			attr = "tx";
8984 
8985 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8986 			 attr, i);
8987 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8988 	}
8989 }
8990 
8991 static void bnxt_setup_inta(struct bnxt *bp)
8992 {
8993 	const int len = sizeof(bp->irq_tbl[0].name);
8994 
8995 	if (netdev_get_num_tc(bp->dev))
8996 		netdev_reset_tc(bp->dev);
8997 
8998 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8999 		 0);
9000 	bp->irq_tbl[0].handler = bnxt_inta;
9001 }
9002 
9003 static int bnxt_init_int_mode(struct bnxt *bp);
9004 
9005 static int bnxt_setup_int_mode(struct bnxt *bp)
9006 {
9007 	int rc;
9008 
9009 	if (!bp->irq_tbl) {
9010 		rc = bnxt_init_int_mode(bp);
9011 		if (rc || !bp->irq_tbl)
9012 			return rc ?: -ENODEV;
9013 	}
9014 
9015 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9016 		bnxt_setup_msix(bp);
9017 	else
9018 		bnxt_setup_inta(bp);
9019 
9020 	rc = bnxt_set_real_num_queues(bp);
9021 	return rc;
9022 }
9023 
9024 #ifdef CONFIG_RFS_ACCEL
9025 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9026 {
9027 	return bp->hw_resc.max_rsscos_ctxs;
9028 }
9029 
9030 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9031 {
9032 	return bp->hw_resc.max_vnics;
9033 }
9034 #endif
9035 
9036 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9037 {
9038 	return bp->hw_resc.max_stat_ctxs;
9039 }
9040 
9041 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9042 {
9043 	return bp->hw_resc.max_cp_rings;
9044 }
9045 
9046 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9047 {
9048 	unsigned int cp = bp->hw_resc.max_cp_rings;
9049 
9050 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9051 		cp -= bnxt_get_ulp_msix_num(bp);
9052 
9053 	return cp;
9054 }
9055 
9056 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9057 {
9058 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9059 
9060 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9061 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9062 
9063 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9064 }
9065 
9066 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9067 {
9068 	bp->hw_resc.max_irqs = max_irqs;
9069 }
9070 
9071 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9072 {
9073 	unsigned int cp;
9074 
9075 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9076 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9077 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9078 	else
9079 		return cp - bp->cp_nr_rings;
9080 }
9081 
9082 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9083 {
9084 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9085 }
9086 
9087 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9088 {
9089 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9090 	int max_irq = bnxt_get_max_func_irqs(bp);
9091 	int total_req = bp->cp_nr_rings + num;
9092 	int max_idx, avail_msix;
9093 
9094 	max_idx = bp->total_irqs;
9095 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9096 		max_idx = min_t(int, bp->total_irqs, max_cp);
9097 	avail_msix = max_idx - bp->cp_nr_rings;
9098 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9099 		return avail_msix;
9100 
9101 	if (max_irq < total_req) {
9102 		num = max_irq - bp->cp_nr_rings;
9103 		if (num <= 0)
9104 			return 0;
9105 	}
9106 	return num;
9107 }
9108 
9109 static int bnxt_get_num_msix(struct bnxt *bp)
9110 {
9111 	if (!BNXT_NEW_RM(bp))
9112 		return bnxt_get_max_func_irqs(bp);
9113 
9114 	return bnxt_nq_rings_in_use(bp);
9115 }
9116 
9117 static int bnxt_init_msix(struct bnxt *bp)
9118 {
9119 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9120 	struct msix_entry *msix_ent;
9121 
9122 	total_vecs = bnxt_get_num_msix(bp);
9123 	max = bnxt_get_max_func_irqs(bp);
9124 	if (total_vecs > max)
9125 		total_vecs = max;
9126 
9127 	if (!total_vecs)
9128 		return 0;
9129 
9130 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9131 	if (!msix_ent)
9132 		return -ENOMEM;
9133 
9134 	for (i = 0; i < total_vecs; i++) {
9135 		msix_ent[i].entry = i;
9136 		msix_ent[i].vector = 0;
9137 	}
9138 
9139 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9140 		min = 2;
9141 
9142 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9143 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9144 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9145 		rc = -ENODEV;
9146 		goto msix_setup_exit;
9147 	}
9148 
9149 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9150 	if (bp->irq_tbl) {
9151 		for (i = 0; i < total_vecs; i++)
9152 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9153 
9154 		bp->total_irqs = total_vecs;
9155 		/* Trim rings based upon num of vectors allocated */
9156 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9157 				     total_vecs - ulp_msix, min == 1);
9158 		if (rc)
9159 			goto msix_setup_exit;
9160 
9161 		bp->cp_nr_rings = (min == 1) ?
9162 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9163 				  bp->tx_nr_rings + bp->rx_nr_rings;
9164 
9165 	} else {
9166 		rc = -ENOMEM;
9167 		goto msix_setup_exit;
9168 	}
9169 	bp->flags |= BNXT_FLAG_USING_MSIX;
9170 	kfree(msix_ent);
9171 	return 0;
9172 
9173 msix_setup_exit:
9174 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9175 	kfree(bp->irq_tbl);
9176 	bp->irq_tbl = NULL;
9177 	pci_disable_msix(bp->pdev);
9178 	kfree(msix_ent);
9179 	return rc;
9180 }
9181 
9182 static int bnxt_init_inta(struct bnxt *bp)
9183 {
9184 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9185 	if (!bp->irq_tbl)
9186 		return -ENOMEM;
9187 
9188 	bp->total_irqs = 1;
9189 	bp->rx_nr_rings = 1;
9190 	bp->tx_nr_rings = 1;
9191 	bp->cp_nr_rings = 1;
9192 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9193 	bp->irq_tbl[0].vector = bp->pdev->irq;
9194 	return 0;
9195 }
9196 
9197 static int bnxt_init_int_mode(struct bnxt *bp)
9198 {
9199 	int rc = -ENODEV;
9200 
9201 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9202 		rc = bnxt_init_msix(bp);
9203 
9204 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9205 		/* fallback to INTA */
9206 		rc = bnxt_init_inta(bp);
9207 	}
9208 	return rc;
9209 }
9210 
9211 static void bnxt_clear_int_mode(struct bnxt *bp)
9212 {
9213 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9214 		pci_disable_msix(bp->pdev);
9215 
9216 	kfree(bp->irq_tbl);
9217 	bp->irq_tbl = NULL;
9218 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9219 }
9220 
9221 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9222 {
9223 	int tcs = netdev_get_num_tc(bp->dev);
9224 	bool irq_cleared = false;
9225 	int rc;
9226 
9227 	if (!bnxt_need_reserve_rings(bp))
9228 		return 0;
9229 
9230 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9231 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9232 		bnxt_ulp_irq_stop(bp);
9233 		bnxt_clear_int_mode(bp);
9234 		irq_cleared = true;
9235 	}
9236 	rc = __bnxt_reserve_rings(bp);
9237 	if (irq_cleared) {
9238 		if (!rc)
9239 			rc = bnxt_init_int_mode(bp);
9240 		bnxt_ulp_irq_restart(bp, rc);
9241 	}
9242 	if (rc) {
9243 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9244 		return rc;
9245 	}
9246 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
9247 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
9248 		netdev_err(bp->dev, "tx ring reservation failure\n");
9249 		netdev_reset_tc(bp->dev);
9250 		if (bp->tx_nr_rings_xdp)
9251 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
9252 		else
9253 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9254 		return -ENOMEM;
9255 	}
9256 	return 0;
9257 }
9258 
9259 static void bnxt_free_irq(struct bnxt *bp)
9260 {
9261 	struct bnxt_irq *irq;
9262 	int i;
9263 
9264 #ifdef CONFIG_RFS_ACCEL
9265 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9266 	bp->dev->rx_cpu_rmap = NULL;
9267 #endif
9268 	if (!bp->irq_tbl || !bp->bnapi)
9269 		return;
9270 
9271 	for (i = 0; i < bp->cp_nr_rings; i++) {
9272 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9273 
9274 		irq = &bp->irq_tbl[map_idx];
9275 		if (irq->requested) {
9276 			if (irq->have_cpumask) {
9277 				irq_set_affinity_hint(irq->vector, NULL);
9278 				free_cpumask_var(irq->cpu_mask);
9279 				irq->have_cpumask = 0;
9280 			}
9281 			free_irq(irq->vector, bp->bnapi[i]);
9282 		}
9283 
9284 		irq->requested = 0;
9285 	}
9286 }
9287 
9288 static int bnxt_request_irq(struct bnxt *bp)
9289 {
9290 	int i, j, rc = 0;
9291 	unsigned long flags = 0;
9292 #ifdef CONFIG_RFS_ACCEL
9293 	struct cpu_rmap *rmap;
9294 #endif
9295 
9296 	rc = bnxt_setup_int_mode(bp);
9297 	if (rc) {
9298 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9299 			   rc);
9300 		return rc;
9301 	}
9302 #ifdef CONFIG_RFS_ACCEL
9303 	rmap = bp->dev->rx_cpu_rmap;
9304 #endif
9305 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9306 		flags = IRQF_SHARED;
9307 
9308 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9309 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9310 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9311 
9312 #ifdef CONFIG_RFS_ACCEL
9313 		if (rmap && bp->bnapi[i]->rx_ring) {
9314 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9315 			if (rc)
9316 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9317 					    j);
9318 			j++;
9319 		}
9320 #endif
9321 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9322 				 bp->bnapi[i]);
9323 		if (rc)
9324 			break;
9325 
9326 		irq->requested = 1;
9327 
9328 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9329 			int numa_node = dev_to_node(&bp->pdev->dev);
9330 
9331 			irq->have_cpumask = 1;
9332 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9333 					irq->cpu_mask);
9334 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9335 			if (rc) {
9336 				netdev_warn(bp->dev,
9337 					    "Set affinity failed, IRQ = %d\n",
9338 					    irq->vector);
9339 				break;
9340 			}
9341 		}
9342 	}
9343 	return rc;
9344 }
9345 
9346 static void bnxt_del_napi(struct bnxt *bp)
9347 {
9348 	int i;
9349 
9350 	if (!bp->bnapi)
9351 		return;
9352 
9353 	for (i = 0; i < bp->cp_nr_rings; i++) {
9354 		struct bnxt_napi *bnapi = bp->bnapi[i];
9355 
9356 		__netif_napi_del(&bnapi->napi);
9357 	}
9358 	/* We called __netif_napi_del(), we need
9359 	 * to respect an RCU grace period before freeing napi structures.
9360 	 */
9361 	synchronize_net();
9362 }
9363 
9364 static void bnxt_init_napi(struct bnxt *bp)
9365 {
9366 	int i;
9367 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9368 	struct bnxt_napi *bnapi;
9369 
9370 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9371 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9372 
9373 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9374 			poll_fn = bnxt_poll_p5;
9375 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9376 			cp_nr_rings--;
9377 		for (i = 0; i < cp_nr_rings; i++) {
9378 			bnapi = bp->bnapi[i];
9379 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
9380 		}
9381 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9382 			bnapi = bp->bnapi[cp_nr_rings];
9383 			netif_napi_add(bp->dev, &bnapi->napi,
9384 				       bnxt_poll_nitroa0);
9385 		}
9386 	} else {
9387 		bnapi = bp->bnapi[0];
9388 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
9389 	}
9390 }
9391 
9392 static void bnxt_disable_napi(struct bnxt *bp)
9393 {
9394 	int i;
9395 
9396 	if (!bp->bnapi ||
9397 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9398 		return;
9399 
9400 	for (i = 0; i < bp->cp_nr_rings; i++) {
9401 		struct bnxt_napi *bnapi = bp->bnapi[i];
9402 		struct bnxt_cp_ring_info *cpr;
9403 
9404 		cpr = &bnapi->cp_ring;
9405 		if (bnapi->tx_fault)
9406 			cpr->sw_stats.tx.tx_resets++;
9407 		if (bnapi->in_reset)
9408 			cpr->sw_stats.rx.rx_resets++;
9409 		napi_disable(&bnapi->napi);
9410 		if (bnapi->rx_ring)
9411 			cancel_work_sync(&cpr->dim.work);
9412 	}
9413 }
9414 
9415 static void bnxt_enable_napi(struct bnxt *bp)
9416 {
9417 	int i;
9418 
9419 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9420 	for (i = 0; i < bp->cp_nr_rings; i++) {
9421 		struct bnxt_napi *bnapi = bp->bnapi[i];
9422 		struct bnxt_cp_ring_info *cpr;
9423 
9424 		bnapi->tx_fault = 0;
9425 
9426 		cpr = &bnapi->cp_ring;
9427 		bnapi->in_reset = false;
9428 
9429 		bnapi->tx_pkts = 0;
9430 
9431 		if (bnapi->rx_ring) {
9432 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9433 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9434 		}
9435 		napi_enable(&bnapi->napi);
9436 	}
9437 }
9438 
9439 void bnxt_tx_disable(struct bnxt *bp)
9440 {
9441 	int i;
9442 	struct bnxt_tx_ring_info *txr;
9443 
9444 	if (bp->tx_ring) {
9445 		for (i = 0; i < bp->tx_nr_rings; i++) {
9446 			txr = &bp->tx_ring[i];
9447 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9448 		}
9449 	}
9450 	/* Make sure napi polls see @dev_state change */
9451 	synchronize_net();
9452 	/* Drop carrier first to prevent TX timeout */
9453 	netif_carrier_off(bp->dev);
9454 	/* Stop all TX queues */
9455 	netif_tx_disable(bp->dev);
9456 }
9457 
9458 void bnxt_tx_enable(struct bnxt *bp)
9459 {
9460 	int i;
9461 	struct bnxt_tx_ring_info *txr;
9462 
9463 	for (i = 0; i < bp->tx_nr_rings; i++) {
9464 		txr = &bp->tx_ring[i];
9465 		WRITE_ONCE(txr->dev_state, 0);
9466 	}
9467 	/* Make sure napi polls see @dev_state change */
9468 	synchronize_net();
9469 	netif_tx_wake_all_queues(bp->dev);
9470 	if (BNXT_LINK_IS_UP(bp))
9471 		netif_carrier_on(bp->dev);
9472 }
9473 
9474 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9475 {
9476 	u8 active_fec = link_info->active_fec_sig_mode &
9477 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9478 
9479 	switch (active_fec) {
9480 	default:
9481 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9482 		return "None";
9483 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9484 		return "Clause 74 BaseR";
9485 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9486 		return "Clause 91 RS(528,514)";
9487 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9488 		return "Clause 91 RS544_1XN";
9489 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9490 		return "Clause 91 RS(544,514)";
9491 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9492 		return "Clause 91 RS272_1XN";
9493 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9494 		return "Clause 91 RS(272,257)";
9495 	}
9496 }
9497 
9498 void bnxt_report_link(struct bnxt *bp)
9499 {
9500 	if (BNXT_LINK_IS_UP(bp)) {
9501 		const char *signal = "";
9502 		const char *flow_ctrl;
9503 		const char *duplex;
9504 		u32 speed;
9505 		u16 fec;
9506 
9507 		netif_carrier_on(bp->dev);
9508 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9509 		if (speed == SPEED_UNKNOWN) {
9510 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9511 			return;
9512 		}
9513 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9514 			duplex = "full";
9515 		else
9516 			duplex = "half";
9517 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9518 			flow_ctrl = "ON - receive & transmit";
9519 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9520 			flow_ctrl = "ON - transmit";
9521 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9522 			flow_ctrl = "ON - receive";
9523 		else
9524 			flow_ctrl = "none";
9525 		if (bp->link_info.phy_qcfg_resp.option_flags &
9526 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9527 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9528 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9529 			switch (sig_mode) {
9530 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9531 				signal = "(NRZ) ";
9532 				break;
9533 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9534 				signal = "(PAM4) ";
9535 				break;
9536 			default:
9537 				break;
9538 			}
9539 		}
9540 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9541 			    speed, signal, duplex, flow_ctrl);
9542 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9543 			netdev_info(bp->dev, "EEE is %s\n",
9544 				    bp->eee.eee_active ? "active" :
9545 							 "not active");
9546 		fec = bp->link_info.fec_cfg;
9547 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9548 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9549 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9550 				    bnxt_report_fec(&bp->link_info));
9551 	} else {
9552 		netif_carrier_off(bp->dev);
9553 		netdev_err(bp->dev, "NIC Link is Down\n");
9554 	}
9555 }
9556 
9557 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9558 {
9559 	if (!resp->supported_speeds_auto_mode &&
9560 	    !resp->supported_speeds_force_mode &&
9561 	    !resp->supported_pam4_speeds_auto_mode &&
9562 	    !resp->supported_pam4_speeds_force_mode)
9563 		return true;
9564 	return false;
9565 }
9566 
9567 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9568 {
9569 	struct bnxt_link_info *link_info = &bp->link_info;
9570 	struct hwrm_port_phy_qcaps_output *resp;
9571 	struct hwrm_port_phy_qcaps_input *req;
9572 	int rc = 0;
9573 
9574 	if (bp->hwrm_spec_code < 0x10201)
9575 		return 0;
9576 
9577 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9578 	if (rc)
9579 		return rc;
9580 
9581 	resp = hwrm_req_hold(bp, req);
9582 	rc = hwrm_req_send(bp, req);
9583 	if (rc)
9584 		goto hwrm_phy_qcaps_exit;
9585 
9586 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9587 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9588 		struct ethtool_eee *eee = &bp->eee;
9589 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9590 
9591 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9592 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9593 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9594 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9595 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9596 	}
9597 
9598 	if (bp->hwrm_spec_code >= 0x10a01) {
9599 		if (bnxt_phy_qcaps_no_speed(resp)) {
9600 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9601 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9602 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9603 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9604 			netdev_info(bp->dev, "Ethernet link enabled\n");
9605 			/* Phy re-enabled, reprobe the speeds */
9606 			link_info->support_auto_speeds = 0;
9607 			link_info->support_pam4_auto_speeds = 0;
9608 		}
9609 	}
9610 	if (resp->supported_speeds_auto_mode)
9611 		link_info->support_auto_speeds =
9612 			le16_to_cpu(resp->supported_speeds_auto_mode);
9613 	if (resp->supported_pam4_speeds_auto_mode)
9614 		link_info->support_pam4_auto_speeds =
9615 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9616 
9617 	bp->port_count = resp->port_cnt;
9618 
9619 hwrm_phy_qcaps_exit:
9620 	hwrm_req_drop(bp, req);
9621 	return rc;
9622 }
9623 
9624 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9625 {
9626 	u16 diff = advertising ^ supported;
9627 
9628 	return ((supported | diff) != supported);
9629 }
9630 
9631 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9632 {
9633 	struct bnxt_link_info *link_info = &bp->link_info;
9634 	struct hwrm_port_phy_qcfg_output *resp;
9635 	struct hwrm_port_phy_qcfg_input *req;
9636 	u8 link_state = link_info->link_state;
9637 	bool support_changed = false;
9638 	int rc;
9639 
9640 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9641 	if (rc)
9642 		return rc;
9643 
9644 	resp = hwrm_req_hold(bp, req);
9645 	rc = hwrm_req_send(bp, req);
9646 	if (rc) {
9647 		hwrm_req_drop(bp, req);
9648 		if (BNXT_VF(bp) && rc == -ENODEV) {
9649 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9650 			rc = 0;
9651 		}
9652 		return rc;
9653 	}
9654 
9655 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9656 	link_info->phy_link_status = resp->link;
9657 	link_info->duplex = resp->duplex_cfg;
9658 	if (bp->hwrm_spec_code >= 0x10800)
9659 		link_info->duplex = resp->duplex_state;
9660 	link_info->pause = resp->pause;
9661 	link_info->auto_mode = resp->auto_mode;
9662 	link_info->auto_pause_setting = resp->auto_pause;
9663 	link_info->lp_pause = resp->link_partner_adv_pause;
9664 	link_info->force_pause_setting = resp->force_pause;
9665 	link_info->duplex_setting = resp->duplex_cfg;
9666 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9667 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9668 	else
9669 		link_info->link_speed = 0;
9670 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9671 	link_info->force_pam4_link_speed =
9672 		le16_to_cpu(resp->force_pam4_link_speed);
9673 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9674 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9675 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9676 	link_info->auto_pam4_link_speeds =
9677 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9678 	link_info->lp_auto_link_speeds =
9679 		le16_to_cpu(resp->link_partner_adv_speeds);
9680 	link_info->lp_auto_pam4_link_speeds =
9681 		resp->link_partner_pam4_adv_speeds;
9682 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9683 	link_info->phy_ver[0] = resp->phy_maj;
9684 	link_info->phy_ver[1] = resp->phy_min;
9685 	link_info->phy_ver[2] = resp->phy_bld;
9686 	link_info->media_type = resp->media_type;
9687 	link_info->phy_type = resp->phy_type;
9688 	link_info->transceiver = resp->xcvr_pkg_type;
9689 	link_info->phy_addr = resp->eee_config_phy_addr &
9690 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9691 	link_info->module_status = resp->module_status;
9692 
9693 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9694 		struct ethtool_eee *eee = &bp->eee;
9695 		u16 fw_speeds;
9696 
9697 		eee->eee_active = 0;
9698 		if (resp->eee_config_phy_addr &
9699 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9700 			eee->eee_active = 1;
9701 			fw_speeds = le16_to_cpu(
9702 				resp->link_partner_adv_eee_link_speed_mask);
9703 			eee->lp_advertised =
9704 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9705 		}
9706 
9707 		/* Pull initial EEE config */
9708 		if (!chng_link_state) {
9709 			if (resp->eee_config_phy_addr &
9710 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9711 				eee->eee_enabled = 1;
9712 
9713 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9714 			eee->advertised =
9715 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9716 
9717 			if (resp->eee_config_phy_addr &
9718 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9719 				__le32 tmr;
9720 
9721 				eee->tx_lpi_enabled = 1;
9722 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9723 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9724 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9725 			}
9726 		}
9727 	}
9728 
9729 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9730 	if (bp->hwrm_spec_code >= 0x10504) {
9731 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9732 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9733 	}
9734 	/* TODO: need to add more logic to report VF link */
9735 	if (chng_link_state) {
9736 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9737 			link_info->link_state = BNXT_LINK_STATE_UP;
9738 		else
9739 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9740 		if (link_state != link_info->link_state)
9741 			bnxt_report_link(bp);
9742 	} else {
9743 		/* always link down if not require to update link state */
9744 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9745 	}
9746 	hwrm_req_drop(bp, req);
9747 
9748 	if (!BNXT_PHY_CFG_ABLE(bp))
9749 		return 0;
9750 
9751 	/* Check if any advertised speeds are no longer supported. The caller
9752 	 * holds the link_lock mutex, so we can modify link_info settings.
9753 	 */
9754 	if (bnxt_support_dropped(link_info->advertising,
9755 				 link_info->support_auto_speeds)) {
9756 		link_info->advertising = link_info->support_auto_speeds;
9757 		support_changed = true;
9758 	}
9759 	if (bnxt_support_dropped(link_info->advertising_pam4,
9760 				 link_info->support_pam4_auto_speeds)) {
9761 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9762 		support_changed = true;
9763 	}
9764 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9765 		bnxt_hwrm_set_link_setting(bp, true, false);
9766 	return 0;
9767 }
9768 
9769 static void bnxt_get_port_module_status(struct bnxt *bp)
9770 {
9771 	struct bnxt_link_info *link_info = &bp->link_info;
9772 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9773 	u8 module_status;
9774 
9775 	if (bnxt_update_link(bp, true))
9776 		return;
9777 
9778 	module_status = link_info->module_status;
9779 	switch (module_status) {
9780 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9781 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9782 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9783 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9784 			    bp->pf.port_id);
9785 		if (bp->hwrm_spec_code >= 0x10201) {
9786 			netdev_warn(bp->dev, "Module part number %s\n",
9787 				    resp->phy_vendor_partnumber);
9788 		}
9789 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9790 			netdev_warn(bp->dev, "TX is disabled\n");
9791 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9792 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9793 	}
9794 }
9795 
9796 static void
9797 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9798 {
9799 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9800 		if (bp->hwrm_spec_code >= 0x10201)
9801 			req->auto_pause =
9802 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9803 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9804 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9805 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9806 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9807 		req->enables |=
9808 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9809 	} else {
9810 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9811 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9812 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9813 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9814 		req->enables |=
9815 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9816 		if (bp->hwrm_spec_code >= 0x10201) {
9817 			req->auto_pause = req->force_pause;
9818 			req->enables |= cpu_to_le32(
9819 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9820 		}
9821 	}
9822 }
9823 
9824 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9825 {
9826 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9827 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9828 		if (bp->link_info.advertising) {
9829 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9830 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9831 		}
9832 		if (bp->link_info.advertising_pam4) {
9833 			req->enables |=
9834 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9835 			req->auto_link_pam4_speed_mask =
9836 				cpu_to_le16(bp->link_info.advertising_pam4);
9837 		}
9838 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9839 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9840 	} else {
9841 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9842 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9843 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9844 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9845 		} else {
9846 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9847 		}
9848 	}
9849 
9850 	/* tell chimp that the setting takes effect immediately */
9851 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9852 }
9853 
9854 int bnxt_hwrm_set_pause(struct bnxt *bp)
9855 {
9856 	struct hwrm_port_phy_cfg_input *req;
9857 	int rc;
9858 
9859 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9860 	if (rc)
9861 		return rc;
9862 
9863 	bnxt_hwrm_set_pause_common(bp, req);
9864 
9865 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9866 	    bp->link_info.force_link_chng)
9867 		bnxt_hwrm_set_link_common(bp, req);
9868 
9869 	rc = hwrm_req_send(bp, req);
9870 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9871 		/* since changing of pause setting doesn't trigger any link
9872 		 * change event, the driver needs to update the current pause
9873 		 * result upon successfully return of the phy_cfg command
9874 		 */
9875 		bp->link_info.pause =
9876 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9877 		bp->link_info.auto_pause_setting = 0;
9878 		if (!bp->link_info.force_link_chng)
9879 			bnxt_report_link(bp);
9880 	}
9881 	bp->link_info.force_link_chng = false;
9882 	return rc;
9883 }
9884 
9885 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9886 			      struct hwrm_port_phy_cfg_input *req)
9887 {
9888 	struct ethtool_eee *eee = &bp->eee;
9889 
9890 	if (eee->eee_enabled) {
9891 		u16 eee_speeds;
9892 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9893 
9894 		if (eee->tx_lpi_enabled)
9895 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9896 		else
9897 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9898 
9899 		req->flags |= cpu_to_le32(flags);
9900 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9901 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9902 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9903 	} else {
9904 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9905 	}
9906 }
9907 
9908 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9909 {
9910 	struct hwrm_port_phy_cfg_input *req;
9911 	int rc;
9912 
9913 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9914 	if (rc)
9915 		return rc;
9916 
9917 	if (set_pause)
9918 		bnxt_hwrm_set_pause_common(bp, req);
9919 
9920 	bnxt_hwrm_set_link_common(bp, req);
9921 
9922 	if (set_eee)
9923 		bnxt_hwrm_set_eee(bp, req);
9924 	return hwrm_req_send(bp, req);
9925 }
9926 
9927 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9928 {
9929 	struct hwrm_port_phy_cfg_input *req;
9930 	int rc;
9931 
9932 	if (!BNXT_SINGLE_PF(bp))
9933 		return 0;
9934 
9935 	if (pci_num_vf(bp->pdev) &&
9936 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9937 		return 0;
9938 
9939 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9940 	if (rc)
9941 		return rc;
9942 
9943 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9944 	rc = hwrm_req_send(bp, req);
9945 	if (!rc) {
9946 		mutex_lock(&bp->link_lock);
9947 		/* Device is not obliged link down in certain scenarios, even
9948 		 * when forced. Setting the state unknown is consistent with
9949 		 * driver startup and will force link state to be reported
9950 		 * during subsequent open based on PORT_PHY_QCFG.
9951 		 */
9952 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9953 		mutex_unlock(&bp->link_lock);
9954 	}
9955 	return rc;
9956 }
9957 
9958 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9959 {
9960 #ifdef CONFIG_TEE_BNXT_FW
9961 	int rc = tee_bnxt_fw_load();
9962 
9963 	if (rc)
9964 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9965 
9966 	return rc;
9967 #else
9968 	netdev_err(bp->dev, "OP-TEE not supported\n");
9969 	return -ENODEV;
9970 #endif
9971 }
9972 
9973 static int bnxt_try_recover_fw(struct bnxt *bp)
9974 {
9975 	if (bp->fw_health && bp->fw_health->status_reliable) {
9976 		int retry = 0, rc;
9977 		u32 sts;
9978 
9979 		do {
9980 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9981 			rc = bnxt_hwrm_poll(bp);
9982 			if (!BNXT_FW_IS_BOOTING(sts) &&
9983 			    !BNXT_FW_IS_RECOVERING(sts))
9984 				break;
9985 			retry++;
9986 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9987 
9988 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9989 			netdev_err(bp->dev,
9990 				   "Firmware not responding, status: 0x%x\n",
9991 				   sts);
9992 			rc = -ENODEV;
9993 		}
9994 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9995 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9996 			return bnxt_fw_reset_via_optee(bp);
9997 		}
9998 		return rc;
9999 	}
10000 
10001 	return -ENODEV;
10002 }
10003 
10004 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10005 {
10006 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10007 
10008 	if (!BNXT_NEW_RM(bp))
10009 		return; /* no resource reservations required */
10010 
10011 	hw_resc->resv_cp_rings = 0;
10012 	hw_resc->resv_stat_ctxs = 0;
10013 	hw_resc->resv_irqs = 0;
10014 	hw_resc->resv_tx_rings = 0;
10015 	hw_resc->resv_rx_rings = 0;
10016 	hw_resc->resv_hw_ring_grps = 0;
10017 	hw_resc->resv_vnics = 0;
10018 	if (!fw_reset) {
10019 		bp->tx_nr_rings = 0;
10020 		bp->rx_nr_rings = 0;
10021 	}
10022 }
10023 
10024 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10025 {
10026 	int rc;
10027 
10028 	if (!BNXT_NEW_RM(bp))
10029 		return 0; /* no resource reservations required */
10030 
10031 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10032 	if (rc)
10033 		netdev_err(bp->dev, "resc_qcaps failed\n");
10034 
10035 	bnxt_clear_reservations(bp, fw_reset);
10036 
10037 	return rc;
10038 }
10039 
10040 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10041 {
10042 	struct hwrm_func_drv_if_change_output *resp;
10043 	struct hwrm_func_drv_if_change_input *req;
10044 	bool fw_reset = !bp->irq_tbl;
10045 	bool resc_reinit = false;
10046 	int rc, retry = 0;
10047 	u32 flags = 0;
10048 
10049 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10050 		return 0;
10051 
10052 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10053 	if (rc)
10054 		return rc;
10055 
10056 	if (up)
10057 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10058 	resp = hwrm_req_hold(bp, req);
10059 
10060 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10061 	while (retry < BNXT_FW_IF_RETRY) {
10062 		rc = hwrm_req_send(bp, req);
10063 		if (rc != -EAGAIN)
10064 			break;
10065 
10066 		msleep(50);
10067 		retry++;
10068 	}
10069 
10070 	if (rc == -EAGAIN) {
10071 		hwrm_req_drop(bp, req);
10072 		return rc;
10073 	} else if (!rc) {
10074 		flags = le32_to_cpu(resp->flags);
10075 	} else if (up) {
10076 		rc = bnxt_try_recover_fw(bp);
10077 		fw_reset = true;
10078 	}
10079 	hwrm_req_drop(bp, req);
10080 	if (rc)
10081 		return rc;
10082 
10083 	if (!up) {
10084 		bnxt_inv_fw_health_reg(bp);
10085 		return 0;
10086 	}
10087 
10088 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10089 		resc_reinit = true;
10090 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10091 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10092 		fw_reset = true;
10093 	else
10094 		bnxt_remap_fw_health_regs(bp);
10095 
10096 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10097 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10098 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10099 		return -ENODEV;
10100 	}
10101 	if (resc_reinit || fw_reset) {
10102 		if (fw_reset) {
10103 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10104 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10105 				bnxt_ulp_stop(bp);
10106 			bnxt_free_ctx_mem(bp);
10107 			kfree(bp->ctx);
10108 			bp->ctx = NULL;
10109 			bnxt_dcb_free(bp);
10110 			rc = bnxt_fw_init_one(bp);
10111 			if (rc) {
10112 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10113 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10114 				return rc;
10115 			}
10116 			bnxt_clear_int_mode(bp);
10117 			rc = bnxt_init_int_mode(bp);
10118 			if (rc) {
10119 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10120 				netdev_err(bp->dev, "init int mode failed\n");
10121 				return rc;
10122 			}
10123 		}
10124 		rc = bnxt_cancel_reservations(bp, fw_reset);
10125 	}
10126 	return rc;
10127 }
10128 
10129 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10130 {
10131 	struct hwrm_port_led_qcaps_output *resp;
10132 	struct hwrm_port_led_qcaps_input *req;
10133 	struct bnxt_pf_info *pf = &bp->pf;
10134 	int rc;
10135 
10136 	bp->num_leds = 0;
10137 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10138 		return 0;
10139 
10140 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10141 	if (rc)
10142 		return rc;
10143 
10144 	req->port_id = cpu_to_le16(pf->port_id);
10145 	resp = hwrm_req_hold(bp, req);
10146 	rc = hwrm_req_send(bp, req);
10147 	if (rc) {
10148 		hwrm_req_drop(bp, req);
10149 		return rc;
10150 	}
10151 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10152 		int i;
10153 
10154 		bp->num_leds = resp->num_leds;
10155 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10156 						 bp->num_leds);
10157 		for (i = 0; i < bp->num_leds; i++) {
10158 			struct bnxt_led_info *led = &bp->leds[i];
10159 			__le16 caps = led->led_state_caps;
10160 
10161 			if (!led->led_group_id ||
10162 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10163 				bp->num_leds = 0;
10164 				break;
10165 			}
10166 		}
10167 	}
10168 	hwrm_req_drop(bp, req);
10169 	return 0;
10170 }
10171 
10172 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10173 {
10174 	struct hwrm_wol_filter_alloc_output *resp;
10175 	struct hwrm_wol_filter_alloc_input *req;
10176 	int rc;
10177 
10178 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10179 	if (rc)
10180 		return rc;
10181 
10182 	req->port_id = cpu_to_le16(bp->pf.port_id);
10183 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10184 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10185 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10186 
10187 	resp = hwrm_req_hold(bp, req);
10188 	rc = hwrm_req_send(bp, req);
10189 	if (!rc)
10190 		bp->wol_filter_id = resp->wol_filter_id;
10191 	hwrm_req_drop(bp, req);
10192 	return rc;
10193 }
10194 
10195 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10196 {
10197 	struct hwrm_wol_filter_free_input *req;
10198 	int rc;
10199 
10200 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10201 	if (rc)
10202 		return rc;
10203 
10204 	req->port_id = cpu_to_le16(bp->pf.port_id);
10205 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10206 	req->wol_filter_id = bp->wol_filter_id;
10207 
10208 	return hwrm_req_send(bp, req);
10209 }
10210 
10211 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10212 {
10213 	struct hwrm_wol_filter_qcfg_output *resp;
10214 	struct hwrm_wol_filter_qcfg_input *req;
10215 	u16 next_handle = 0;
10216 	int rc;
10217 
10218 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10219 	if (rc)
10220 		return rc;
10221 
10222 	req->port_id = cpu_to_le16(bp->pf.port_id);
10223 	req->handle = cpu_to_le16(handle);
10224 	resp = hwrm_req_hold(bp, req);
10225 	rc = hwrm_req_send(bp, req);
10226 	if (!rc) {
10227 		next_handle = le16_to_cpu(resp->next_handle);
10228 		if (next_handle != 0) {
10229 			if (resp->wol_type ==
10230 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10231 				bp->wol = 1;
10232 				bp->wol_filter_id = resp->wol_filter_id;
10233 			}
10234 		}
10235 	}
10236 	hwrm_req_drop(bp, req);
10237 	return next_handle;
10238 }
10239 
10240 static void bnxt_get_wol_settings(struct bnxt *bp)
10241 {
10242 	u16 handle = 0;
10243 
10244 	bp->wol = 0;
10245 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10246 		return;
10247 
10248 	do {
10249 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10250 	} while (handle && handle != 0xffff);
10251 }
10252 
10253 #ifdef CONFIG_BNXT_HWMON
10254 static ssize_t bnxt_show_temp(struct device *dev,
10255 			      struct device_attribute *devattr, char *buf)
10256 {
10257 	struct hwrm_temp_monitor_query_output *resp;
10258 	struct hwrm_temp_monitor_query_input *req;
10259 	struct bnxt *bp = dev_get_drvdata(dev);
10260 	u32 len = 0;
10261 	int rc;
10262 
10263 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10264 	if (rc)
10265 		return rc;
10266 	resp = hwrm_req_hold(bp, req);
10267 	rc = hwrm_req_send(bp, req);
10268 	if (!rc)
10269 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10270 	hwrm_req_drop(bp, req);
10271 	if (rc)
10272 		return rc;
10273 	return len;
10274 }
10275 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10276 
10277 static struct attribute *bnxt_attrs[] = {
10278 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10279 	NULL
10280 };
10281 ATTRIBUTE_GROUPS(bnxt);
10282 
10283 static void bnxt_hwmon_close(struct bnxt *bp)
10284 {
10285 	if (bp->hwmon_dev) {
10286 		hwmon_device_unregister(bp->hwmon_dev);
10287 		bp->hwmon_dev = NULL;
10288 	}
10289 }
10290 
10291 static void bnxt_hwmon_open(struct bnxt *bp)
10292 {
10293 	struct hwrm_temp_monitor_query_input *req;
10294 	struct pci_dev *pdev = bp->pdev;
10295 	int rc;
10296 
10297 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10298 	if (!rc)
10299 		rc = hwrm_req_send_silent(bp, req);
10300 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10301 		bnxt_hwmon_close(bp);
10302 		return;
10303 	}
10304 
10305 	if (bp->hwmon_dev)
10306 		return;
10307 
10308 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10309 							  DRV_MODULE_NAME, bp,
10310 							  bnxt_groups);
10311 	if (IS_ERR(bp->hwmon_dev)) {
10312 		bp->hwmon_dev = NULL;
10313 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10314 	}
10315 }
10316 #else
10317 static void bnxt_hwmon_close(struct bnxt *bp)
10318 {
10319 }
10320 
10321 static void bnxt_hwmon_open(struct bnxt *bp)
10322 {
10323 }
10324 #endif
10325 
10326 static bool bnxt_eee_config_ok(struct bnxt *bp)
10327 {
10328 	struct ethtool_eee *eee = &bp->eee;
10329 	struct bnxt_link_info *link_info = &bp->link_info;
10330 
10331 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10332 		return true;
10333 
10334 	if (eee->eee_enabled) {
10335 		u32 advertising =
10336 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10337 
10338 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10339 			eee->eee_enabled = 0;
10340 			return false;
10341 		}
10342 		if (eee->advertised & ~advertising) {
10343 			eee->advertised = advertising & eee->supported;
10344 			return false;
10345 		}
10346 	}
10347 	return true;
10348 }
10349 
10350 static int bnxt_update_phy_setting(struct bnxt *bp)
10351 {
10352 	int rc;
10353 	bool update_link = false;
10354 	bool update_pause = false;
10355 	bool update_eee = false;
10356 	struct bnxt_link_info *link_info = &bp->link_info;
10357 
10358 	rc = bnxt_update_link(bp, true);
10359 	if (rc) {
10360 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10361 			   rc);
10362 		return rc;
10363 	}
10364 	if (!BNXT_SINGLE_PF(bp))
10365 		return 0;
10366 
10367 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10368 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10369 	    link_info->req_flow_ctrl)
10370 		update_pause = true;
10371 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10372 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10373 		update_pause = true;
10374 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10375 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10376 			update_link = true;
10377 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10378 		    link_info->req_link_speed != link_info->force_link_speed)
10379 			update_link = true;
10380 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10381 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10382 			update_link = true;
10383 		if (link_info->req_duplex != link_info->duplex_setting)
10384 			update_link = true;
10385 	} else {
10386 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10387 			update_link = true;
10388 		if (link_info->advertising != link_info->auto_link_speeds ||
10389 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10390 			update_link = true;
10391 	}
10392 
10393 	/* The last close may have shutdown the link, so need to call
10394 	 * PHY_CFG to bring it back up.
10395 	 */
10396 	if (!BNXT_LINK_IS_UP(bp))
10397 		update_link = true;
10398 
10399 	if (!bnxt_eee_config_ok(bp))
10400 		update_eee = true;
10401 
10402 	if (update_link)
10403 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10404 	else if (update_pause)
10405 		rc = bnxt_hwrm_set_pause(bp);
10406 	if (rc) {
10407 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10408 			   rc);
10409 		return rc;
10410 	}
10411 
10412 	return rc;
10413 }
10414 
10415 /* Common routine to pre-map certain register block to different GRC window.
10416  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10417  * in PF and 3 windows in VF that can be customized to map in different
10418  * register blocks.
10419  */
10420 static void bnxt_preset_reg_win(struct bnxt *bp)
10421 {
10422 	if (BNXT_PF(bp)) {
10423 		/* CAG registers map to GRC window #4 */
10424 		writel(BNXT_CAG_REG_BASE,
10425 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10426 	}
10427 }
10428 
10429 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10430 
10431 static int bnxt_reinit_after_abort(struct bnxt *bp)
10432 {
10433 	int rc;
10434 
10435 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10436 		return -EBUSY;
10437 
10438 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10439 		return -ENODEV;
10440 
10441 	rc = bnxt_fw_init_one(bp);
10442 	if (!rc) {
10443 		bnxt_clear_int_mode(bp);
10444 		rc = bnxt_init_int_mode(bp);
10445 		if (!rc) {
10446 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10447 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10448 		}
10449 	}
10450 	return rc;
10451 }
10452 
10453 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10454 {
10455 	int rc = 0;
10456 
10457 	bnxt_preset_reg_win(bp);
10458 	netif_carrier_off(bp->dev);
10459 	if (irq_re_init) {
10460 		/* Reserve rings now if none were reserved at driver probe. */
10461 		rc = bnxt_init_dflt_ring_mode(bp);
10462 		if (rc) {
10463 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10464 			return rc;
10465 		}
10466 	}
10467 	rc = bnxt_reserve_rings(bp, irq_re_init);
10468 	if (rc)
10469 		return rc;
10470 	if ((bp->flags & BNXT_FLAG_RFS) &&
10471 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10472 		/* disable RFS if falling back to INTA */
10473 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10474 		bp->flags &= ~BNXT_FLAG_RFS;
10475 	}
10476 
10477 	rc = bnxt_alloc_mem(bp, irq_re_init);
10478 	if (rc) {
10479 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10480 		goto open_err_free_mem;
10481 	}
10482 
10483 	if (irq_re_init) {
10484 		bnxt_init_napi(bp);
10485 		rc = bnxt_request_irq(bp);
10486 		if (rc) {
10487 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10488 			goto open_err_irq;
10489 		}
10490 	}
10491 
10492 	rc = bnxt_init_nic(bp, irq_re_init);
10493 	if (rc) {
10494 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10495 		goto open_err_irq;
10496 	}
10497 
10498 	bnxt_enable_napi(bp);
10499 	bnxt_debug_dev_init(bp);
10500 
10501 	if (link_re_init) {
10502 		mutex_lock(&bp->link_lock);
10503 		rc = bnxt_update_phy_setting(bp);
10504 		mutex_unlock(&bp->link_lock);
10505 		if (rc) {
10506 			netdev_warn(bp->dev, "failed to update phy settings\n");
10507 			if (BNXT_SINGLE_PF(bp)) {
10508 				bp->link_info.phy_retry = true;
10509 				bp->link_info.phy_retry_expires =
10510 					jiffies + 5 * HZ;
10511 			}
10512 		}
10513 	}
10514 
10515 	if (irq_re_init)
10516 		udp_tunnel_nic_reset_ntf(bp->dev);
10517 
10518 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10519 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10520 			static_branch_enable(&bnxt_xdp_locking_key);
10521 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10522 		static_branch_disable(&bnxt_xdp_locking_key);
10523 	}
10524 	set_bit(BNXT_STATE_OPEN, &bp->state);
10525 	bnxt_enable_int(bp);
10526 	/* Enable TX queues */
10527 	bnxt_tx_enable(bp);
10528 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10529 	/* Poll link status and check for SFP+ module status */
10530 	mutex_lock(&bp->link_lock);
10531 	bnxt_get_port_module_status(bp);
10532 	mutex_unlock(&bp->link_lock);
10533 
10534 	/* VF-reps may need to be re-opened after the PF is re-opened */
10535 	if (BNXT_PF(bp))
10536 		bnxt_vf_reps_open(bp);
10537 	bnxt_ptp_init_rtc(bp, true);
10538 	bnxt_ptp_cfg_tstamp_filters(bp);
10539 	return 0;
10540 
10541 open_err_irq:
10542 	bnxt_del_napi(bp);
10543 
10544 open_err_free_mem:
10545 	bnxt_free_skbs(bp);
10546 	bnxt_free_irq(bp);
10547 	bnxt_free_mem(bp, true);
10548 	return rc;
10549 }
10550 
10551 /* rtnl_lock held */
10552 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10553 {
10554 	int rc = 0;
10555 
10556 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10557 		rc = -EIO;
10558 	if (!rc)
10559 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10560 	if (rc) {
10561 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10562 		dev_close(bp->dev);
10563 	}
10564 	return rc;
10565 }
10566 
10567 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10568  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10569  * self tests.
10570  */
10571 int bnxt_half_open_nic(struct bnxt *bp)
10572 {
10573 	int rc = 0;
10574 
10575 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10576 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10577 		rc = -ENODEV;
10578 		goto half_open_err;
10579 	}
10580 
10581 	rc = bnxt_alloc_mem(bp, true);
10582 	if (rc) {
10583 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10584 		goto half_open_err;
10585 	}
10586 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10587 	rc = bnxt_init_nic(bp, true);
10588 	if (rc) {
10589 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10590 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10591 		goto half_open_err;
10592 	}
10593 	return 0;
10594 
10595 half_open_err:
10596 	bnxt_free_skbs(bp);
10597 	bnxt_free_mem(bp, true);
10598 	dev_close(bp->dev);
10599 	return rc;
10600 }
10601 
10602 /* rtnl_lock held, this call can only be made after a previous successful
10603  * call to bnxt_half_open_nic().
10604  */
10605 void bnxt_half_close_nic(struct bnxt *bp)
10606 {
10607 	bnxt_hwrm_resource_free(bp, false, true);
10608 	bnxt_free_skbs(bp);
10609 	bnxt_free_mem(bp, true);
10610 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10611 }
10612 
10613 void bnxt_reenable_sriov(struct bnxt *bp)
10614 {
10615 	if (BNXT_PF(bp)) {
10616 		struct bnxt_pf_info *pf = &bp->pf;
10617 		int n = pf->active_vfs;
10618 
10619 		if (n)
10620 			bnxt_cfg_hw_sriov(bp, &n, true);
10621 	}
10622 }
10623 
10624 static int bnxt_open(struct net_device *dev)
10625 {
10626 	struct bnxt *bp = netdev_priv(dev);
10627 	int rc;
10628 
10629 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10630 		rc = bnxt_reinit_after_abort(bp);
10631 		if (rc) {
10632 			if (rc == -EBUSY)
10633 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10634 			else
10635 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10636 			return -ENODEV;
10637 		}
10638 	}
10639 
10640 	rc = bnxt_hwrm_if_change(bp, true);
10641 	if (rc)
10642 		return rc;
10643 
10644 	rc = __bnxt_open_nic(bp, true, true);
10645 	if (rc) {
10646 		bnxt_hwrm_if_change(bp, false);
10647 	} else {
10648 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10649 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10650 				bnxt_ulp_start(bp, 0);
10651 				bnxt_reenable_sriov(bp);
10652 			}
10653 		}
10654 		bnxt_hwmon_open(bp);
10655 	}
10656 
10657 	return rc;
10658 }
10659 
10660 static bool bnxt_drv_busy(struct bnxt *bp)
10661 {
10662 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10663 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10664 }
10665 
10666 static void bnxt_get_ring_stats(struct bnxt *bp,
10667 				struct rtnl_link_stats64 *stats);
10668 
10669 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10670 			     bool link_re_init)
10671 {
10672 	/* Close the VF-reps before closing PF */
10673 	if (BNXT_PF(bp))
10674 		bnxt_vf_reps_close(bp);
10675 
10676 	/* Change device state to avoid TX queue wake up's */
10677 	bnxt_tx_disable(bp);
10678 
10679 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10680 	smp_mb__after_atomic();
10681 	while (bnxt_drv_busy(bp))
10682 		msleep(20);
10683 
10684 	/* Flush rings and disable interrupts */
10685 	bnxt_shutdown_nic(bp, irq_re_init);
10686 
10687 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10688 
10689 	bnxt_debug_dev_exit(bp);
10690 	bnxt_disable_napi(bp);
10691 	del_timer_sync(&bp->timer);
10692 	bnxt_free_skbs(bp);
10693 
10694 	/* Save ring stats before shutdown */
10695 	if (bp->bnapi && irq_re_init) {
10696 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10697 		bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev);
10698 	}
10699 	if (irq_re_init) {
10700 		bnxt_free_irq(bp);
10701 		bnxt_del_napi(bp);
10702 	}
10703 	bnxt_free_mem(bp, irq_re_init);
10704 }
10705 
10706 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10707 {
10708 	int rc = 0;
10709 
10710 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10711 		/* If we get here, it means firmware reset is in progress
10712 		 * while we are trying to close.  We can safely proceed with
10713 		 * the close because we are holding rtnl_lock().  Some firmware
10714 		 * messages may fail as we proceed to close.  We set the
10715 		 * ABORT_ERR flag here so that the FW reset thread will later
10716 		 * abort when it gets the rtnl_lock() and sees the flag.
10717 		 */
10718 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10719 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10720 	}
10721 
10722 #ifdef CONFIG_BNXT_SRIOV
10723 	if (bp->sriov_cfg) {
10724 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10725 						      !bp->sriov_cfg,
10726 						      BNXT_SRIOV_CFG_WAIT_TMO);
10727 		if (rc)
10728 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10729 	}
10730 #endif
10731 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10732 	return rc;
10733 }
10734 
10735 static int bnxt_close(struct net_device *dev)
10736 {
10737 	struct bnxt *bp = netdev_priv(dev);
10738 
10739 	bnxt_hwmon_close(bp);
10740 	bnxt_close_nic(bp, true, true);
10741 	bnxt_hwrm_shutdown_link(bp);
10742 	bnxt_hwrm_if_change(bp, false);
10743 	return 0;
10744 }
10745 
10746 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10747 				   u16 *val)
10748 {
10749 	struct hwrm_port_phy_mdio_read_output *resp;
10750 	struct hwrm_port_phy_mdio_read_input *req;
10751 	int rc;
10752 
10753 	if (bp->hwrm_spec_code < 0x10a00)
10754 		return -EOPNOTSUPP;
10755 
10756 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10757 	if (rc)
10758 		return rc;
10759 
10760 	req->port_id = cpu_to_le16(bp->pf.port_id);
10761 	req->phy_addr = phy_addr;
10762 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10763 	if (mdio_phy_id_is_c45(phy_addr)) {
10764 		req->cl45_mdio = 1;
10765 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10766 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10767 		req->reg_addr = cpu_to_le16(reg);
10768 	}
10769 
10770 	resp = hwrm_req_hold(bp, req);
10771 	rc = hwrm_req_send(bp, req);
10772 	if (!rc)
10773 		*val = le16_to_cpu(resp->reg_data);
10774 	hwrm_req_drop(bp, req);
10775 	return rc;
10776 }
10777 
10778 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10779 				    u16 val)
10780 {
10781 	struct hwrm_port_phy_mdio_write_input *req;
10782 	int rc;
10783 
10784 	if (bp->hwrm_spec_code < 0x10a00)
10785 		return -EOPNOTSUPP;
10786 
10787 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10788 	if (rc)
10789 		return rc;
10790 
10791 	req->port_id = cpu_to_le16(bp->pf.port_id);
10792 	req->phy_addr = phy_addr;
10793 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10794 	if (mdio_phy_id_is_c45(phy_addr)) {
10795 		req->cl45_mdio = 1;
10796 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10797 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10798 		req->reg_addr = cpu_to_le16(reg);
10799 	}
10800 	req->reg_data = cpu_to_le16(val);
10801 
10802 	return hwrm_req_send(bp, req);
10803 }
10804 
10805 /* rtnl_lock held */
10806 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10807 {
10808 	struct mii_ioctl_data *mdio = if_mii(ifr);
10809 	struct bnxt *bp = netdev_priv(dev);
10810 	int rc;
10811 
10812 	switch (cmd) {
10813 	case SIOCGMIIPHY:
10814 		mdio->phy_id = bp->link_info.phy_addr;
10815 
10816 		fallthrough;
10817 	case SIOCGMIIREG: {
10818 		u16 mii_regval = 0;
10819 
10820 		if (!netif_running(dev))
10821 			return -EAGAIN;
10822 
10823 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10824 					     &mii_regval);
10825 		mdio->val_out = mii_regval;
10826 		return rc;
10827 	}
10828 
10829 	case SIOCSMIIREG:
10830 		if (!netif_running(dev))
10831 			return -EAGAIN;
10832 
10833 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10834 						mdio->val_in);
10835 
10836 	case SIOCSHWTSTAMP:
10837 		return bnxt_hwtstamp_set(dev, ifr);
10838 
10839 	case SIOCGHWTSTAMP:
10840 		return bnxt_hwtstamp_get(dev, ifr);
10841 
10842 	default:
10843 		/* do nothing */
10844 		break;
10845 	}
10846 	return -EOPNOTSUPP;
10847 }
10848 
10849 static void bnxt_get_ring_stats(struct bnxt *bp,
10850 				struct rtnl_link_stats64 *stats)
10851 {
10852 	int i;
10853 
10854 	for (i = 0; i < bp->cp_nr_rings; i++) {
10855 		struct bnxt_napi *bnapi = bp->bnapi[i];
10856 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10857 		u64 *sw = cpr->stats.sw_stats;
10858 
10859 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10860 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10861 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10862 
10863 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10864 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10865 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10866 
10867 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10868 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10869 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10870 
10871 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10872 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10873 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10874 
10875 		stats->rx_missed_errors +=
10876 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10877 
10878 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10879 
10880 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10881 
10882 		stats->rx_dropped +=
10883 			cpr->sw_stats.rx.rx_netpoll_discards +
10884 			cpr->sw_stats.rx.rx_oom_discards;
10885 	}
10886 }
10887 
10888 static void bnxt_add_prev_stats(struct bnxt *bp,
10889 				struct rtnl_link_stats64 *stats)
10890 {
10891 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10892 
10893 	stats->rx_packets += prev_stats->rx_packets;
10894 	stats->tx_packets += prev_stats->tx_packets;
10895 	stats->rx_bytes += prev_stats->rx_bytes;
10896 	stats->tx_bytes += prev_stats->tx_bytes;
10897 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10898 	stats->multicast += prev_stats->multicast;
10899 	stats->rx_dropped += prev_stats->rx_dropped;
10900 	stats->tx_dropped += prev_stats->tx_dropped;
10901 }
10902 
10903 static void
10904 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10905 {
10906 	struct bnxt *bp = netdev_priv(dev);
10907 
10908 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10909 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10910 	 * we check the BNXT_STATE_OPEN flag.
10911 	 */
10912 	smp_mb__after_atomic();
10913 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10914 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10915 		*stats = bp->net_stats_prev;
10916 		return;
10917 	}
10918 
10919 	bnxt_get_ring_stats(bp, stats);
10920 	bnxt_add_prev_stats(bp, stats);
10921 
10922 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10923 		u64 *rx = bp->port_stats.sw_stats;
10924 		u64 *tx = bp->port_stats.sw_stats +
10925 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10926 
10927 		stats->rx_crc_errors =
10928 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10929 		stats->rx_frame_errors =
10930 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10931 		stats->rx_length_errors =
10932 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10933 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10934 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10935 		stats->rx_errors =
10936 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10937 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10938 		stats->collisions =
10939 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10940 		stats->tx_fifo_errors =
10941 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10942 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10943 	}
10944 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10945 }
10946 
10947 static void bnxt_get_one_ring_err_stats(struct bnxt *bp,
10948 					struct bnxt_total_ring_err_stats *stats,
10949 					struct bnxt_cp_ring_info *cpr)
10950 {
10951 	struct bnxt_sw_stats *sw_stats = &cpr->sw_stats;
10952 	u64 *hw_stats = cpr->stats.sw_stats;
10953 
10954 	stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors;
10955 	stats->rx_total_resets += sw_stats->rx.rx_resets;
10956 	stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors;
10957 	stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards;
10958 	stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards;
10959 	stats->rx_total_ring_discards +=
10960 		BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts);
10961 	stats->tx_total_resets += sw_stats->tx.tx_resets;
10962 	stats->tx_total_ring_discards +=
10963 		BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts);
10964 	stats->total_missed_irqs += sw_stats->cmn.missed_irqs;
10965 }
10966 
10967 void bnxt_get_ring_err_stats(struct bnxt *bp,
10968 			     struct bnxt_total_ring_err_stats *stats)
10969 {
10970 	int i;
10971 
10972 	for (i = 0; i < bp->cp_nr_rings; i++)
10973 		bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring);
10974 }
10975 
10976 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10977 {
10978 	struct net_device *dev = bp->dev;
10979 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10980 	struct netdev_hw_addr *ha;
10981 	u8 *haddr;
10982 	int mc_count = 0;
10983 	bool update = false;
10984 	int off = 0;
10985 
10986 	netdev_for_each_mc_addr(ha, dev) {
10987 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10988 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10989 			vnic->mc_list_count = 0;
10990 			return false;
10991 		}
10992 		haddr = ha->addr;
10993 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10994 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10995 			update = true;
10996 		}
10997 		off += ETH_ALEN;
10998 		mc_count++;
10999 	}
11000 	if (mc_count)
11001 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11002 
11003 	if (mc_count != vnic->mc_list_count) {
11004 		vnic->mc_list_count = mc_count;
11005 		update = true;
11006 	}
11007 	return update;
11008 }
11009 
11010 static bool bnxt_uc_list_updated(struct bnxt *bp)
11011 {
11012 	struct net_device *dev = bp->dev;
11013 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11014 	struct netdev_hw_addr *ha;
11015 	int off = 0;
11016 
11017 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
11018 		return true;
11019 
11020 	netdev_for_each_uc_addr(ha, dev) {
11021 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
11022 			return true;
11023 
11024 		off += ETH_ALEN;
11025 	}
11026 	return false;
11027 }
11028 
11029 static void bnxt_set_rx_mode(struct net_device *dev)
11030 {
11031 	struct bnxt *bp = netdev_priv(dev);
11032 	struct bnxt_vnic_info *vnic;
11033 	bool mc_update = false;
11034 	bool uc_update;
11035 	u32 mask;
11036 
11037 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11038 		return;
11039 
11040 	vnic = &bp->vnic_info[0];
11041 	mask = vnic->rx_mask;
11042 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11043 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11044 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11045 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11046 
11047 	if (dev->flags & IFF_PROMISC)
11048 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11049 
11050 	uc_update = bnxt_uc_list_updated(bp);
11051 
11052 	if (dev->flags & IFF_BROADCAST)
11053 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11054 	if (dev->flags & IFF_ALLMULTI) {
11055 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11056 		vnic->mc_list_count = 0;
11057 	} else if (dev->flags & IFF_MULTICAST) {
11058 		mc_update = bnxt_mc_list_updated(bp, &mask);
11059 	}
11060 
11061 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11062 		vnic->rx_mask = mask;
11063 
11064 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
11065 	}
11066 }
11067 
11068 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11069 {
11070 	struct net_device *dev = bp->dev;
11071 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11072 	struct hwrm_cfa_l2_filter_free_input *req;
11073 	struct netdev_hw_addr *ha;
11074 	int i, off = 0, rc;
11075 	bool uc_update;
11076 
11077 	netif_addr_lock_bh(dev);
11078 	uc_update = bnxt_uc_list_updated(bp);
11079 	netif_addr_unlock_bh(dev);
11080 
11081 	if (!uc_update)
11082 		goto skip_uc;
11083 
11084 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11085 	if (rc)
11086 		return rc;
11087 	hwrm_req_hold(bp, req);
11088 	for (i = 1; i < vnic->uc_filter_count; i++) {
11089 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11090 
11091 		rc = hwrm_req_send(bp, req);
11092 	}
11093 	hwrm_req_drop(bp, req);
11094 
11095 	vnic->uc_filter_count = 1;
11096 
11097 	netif_addr_lock_bh(dev);
11098 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11099 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11100 	} else {
11101 		netdev_for_each_uc_addr(ha, dev) {
11102 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11103 			off += ETH_ALEN;
11104 			vnic->uc_filter_count++;
11105 		}
11106 	}
11107 	netif_addr_unlock_bh(dev);
11108 
11109 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11110 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11111 		if (rc) {
11112 			if (BNXT_VF(bp) && rc == -ENODEV) {
11113 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11114 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11115 				else
11116 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11117 				rc = 0;
11118 			} else {
11119 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11120 			}
11121 			vnic->uc_filter_count = i;
11122 			return rc;
11123 		}
11124 	}
11125 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11126 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11127 
11128 skip_uc:
11129 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11130 	    !bnxt_promisc_ok(bp))
11131 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11132 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11133 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11134 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11135 			    rc);
11136 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11137 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11138 		vnic->mc_list_count = 0;
11139 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11140 	}
11141 	if (rc)
11142 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11143 			   rc);
11144 
11145 	return rc;
11146 }
11147 
11148 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11149 {
11150 #ifdef CONFIG_BNXT_SRIOV
11151 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11152 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11153 
11154 		/* No minimum rings were provisioned by the PF.  Don't
11155 		 * reserve rings by default when device is down.
11156 		 */
11157 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11158 			return true;
11159 
11160 		if (!netif_running(bp->dev))
11161 			return false;
11162 	}
11163 #endif
11164 	return true;
11165 }
11166 
11167 /* If the chip and firmware supports RFS */
11168 static bool bnxt_rfs_supported(struct bnxt *bp)
11169 {
11170 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11171 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11172 			return true;
11173 		return false;
11174 	}
11175 	/* 212 firmware is broken for aRFS */
11176 	if (BNXT_FW_MAJ(bp) == 212)
11177 		return false;
11178 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11179 		return true;
11180 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11181 		return true;
11182 	return false;
11183 }
11184 
11185 /* If runtime conditions support RFS */
11186 static bool bnxt_rfs_capable(struct bnxt *bp)
11187 {
11188 #ifdef CONFIG_RFS_ACCEL
11189 	int vnics, max_vnics, max_rss_ctxs;
11190 
11191 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11192 		return bnxt_rfs_supported(bp);
11193 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11194 		return false;
11195 
11196 	vnics = 1 + bp->rx_nr_rings;
11197 	max_vnics = bnxt_get_max_func_vnics(bp);
11198 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11199 
11200 	/* RSS contexts not a limiting factor */
11201 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11202 		max_rss_ctxs = max_vnics;
11203 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11204 		if (bp->rx_nr_rings > 1)
11205 			netdev_warn(bp->dev,
11206 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11207 				    min(max_rss_ctxs - 1, max_vnics - 1));
11208 		return false;
11209 	}
11210 
11211 	if (!BNXT_NEW_RM(bp))
11212 		return true;
11213 
11214 	if (vnics == bp->hw_resc.resv_vnics)
11215 		return true;
11216 
11217 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11218 	if (vnics <= bp->hw_resc.resv_vnics)
11219 		return true;
11220 
11221 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11222 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11223 	return false;
11224 #else
11225 	return false;
11226 #endif
11227 }
11228 
11229 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11230 					   netdev_features_t features)
11231 {
11232 	struct bnxt *bp = netdev_priv(dev);
11233 	netdev_features_t vlan_features;
11234 
11235 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11236 		features &= ~NETIF_F_NTUPLE;
11237 
11238 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11239 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11240 
11241 	if (!(features & NETIF_F_GRO))
11242 		features &= ~NETIF_F_GRO_HW;
11243 
11244 	if (features & NETIF_F_GRO_HW)
11245 		features &= ~NETIF_F_LRO;
11246 
11247 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11248 	 * turned on or off together.
11249 	 */
11250 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11251 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11252 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11253 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11254 		else if (vlan_features)
11255 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11256 	}
11257 #ifdef CONFIG_BNXT_SRIOV
11258 	if (BNXT_VF(bp) && bp->vf.vlan)
11259 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11260 #endif
11261 	return features;
11262 }
11263 
11264 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11265 {
11266 	struct bnxt *bp = netdev_priv(dev);
11267 	u32 flags = bp->flags;
11268 	u32 changes;
11269 	int rc = 0;
11270 	bool re_init = false;
11271 	bool update_tpa = false;
11272 
11273 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11274 	if (features & NETIF_F_GRO_HW)
11275 		flags |= BNXT_FLAG_GRO;
11276 	else if (features & NETIF_F_LRO)
11277 		flags |= BNXT_FLAG_LRO;
11278 
11279 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11280 		flags &= ~BNXT_FLAG_TPA;
11281 
11282 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11283 		flags |= BNXT_FLAG_STRIP_VLAN;
11284 
11285 	if (features & NETIF_F_NTUPLE)
11286 		flags |= BNXT_FLAG_RFS;
11287 
11288 	changes = flags ^ bp->flags;
11289 	if (changes & BNXT_FLAG_TPA) {
11290 		update_tpa = true;
11291 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11292 		    (flags & BNXT_FLAG_TPA) == 0 ||
11293 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11294 			re_init = true;
11295 	}
11296 
11297 	if (changes & ~BNXT_FLAG_TPA)
11298 		re_init = true;
11299 
11300 	if (flags != bp->flags) {
11301 		u32 old_flags = bp->flags;
11302 
11303 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11304 			bp->flags = flags;
11305 			if (update_tpa)
11306 				bnxt_set_ring_params(bp);
11307 			return rc;
11308 		}
11309 
11310 		if (re_init) {
11311 			bnxt_close_nic(bp, false, false);
11312 			bp->flags = flags;
11313 			if (update_tpa)
11314 				bnxt_set_ring_params(bp);
11315 
11316 			return bnxt_open_nic(bp, false, false);
11317 		}
11318 		if (update_tpa) {
11319 			bp->flags = flags;
11320 			rc = bnxt_set_tpa(bp,
11321 					  (flags & BNXT_FLAG_TPA) ?
11322 					  true : false);
11323 			if (rc)
11324 				bp->flags = old_flags;
11325 		}
11326 	}
11327 	return rc;
11328 }
11329 
11330 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11331 			      u8 **nextp)
11332 {
11333 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11334 	struct hop_jumbo_hdr *jhdr;
11335 	int hdr_count = 0;
11336 	u8 *nexthdr;
11337 	int start;
11338 
11339 	/* Check that there are at most 2 IPv6 extension headers, no
11340 	 * fragment header, and each is <= 64 bytes.
11341 	 */
11342 	start = nw_off + sizeof(*ip6h);
11343 	nexthdr = &ip6h->nexthdr;
11344 	while (ipv6_ext_hdr(*nexthdr)) {
11345 		struct ipv6_opt_hdr *hp;
11346 		int hdrlen;
11347 
11348 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11349 		    *nexthdr == NEXTHDR_FRAGMENT)
11350 			return false;
11351 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11352 					  skb_headlen(skb), NULL);
11353 		if (!hp)
11354 			return false;
11355 		if (*nexthdr == NEXTHDR_AUTH)
11356 			hdrlen = ipv6_authlen(hp);
11357 		else
11358 			hdrlen = ipv6_optlen(hp);
11359 
11360 		if (hdrlen > 64)
11361 			return false;
11362 
11363 		/* The ext header may be a hop-by-hop header inserted for
11364 		 * big TCP purposes. This will be removed before sending
11365 		 * from NIC, so do not count it.
11366 		 */
11367 		if (*nexthdr == NEXTHDR_HOP) {
11368 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
11369 				goto increment_hdr;
11370 
11371 			jhdr = (struct hop_jumbo_hdr *)hp;
11372 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
11373 			    jhdr->nexthdr != IPPROTO_TCP)
11374 				goto increment_hdr;
11375 
11376 			goto next_hdr;
11377 		}
11378 increment_hdr:
11379 		hdr_count++;
11380 next_hdr:
11381 		nexthdr = &hp->nexthdr;
11382 		start += hdrlen;
11383 	}
11384 	if (nextp) {
11385 		/* Caller will check inner protocol */
11386 		if (skb->encapsulation) {
11387 			*nextp = nexthdr;
11388 			return true;
11389 		}
11390 		*nextp = NULL;
11391 	}
11392 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11393 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11394 }
11395 
11396 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11397 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11398 {
11399 	struct udphdr *uh = udp_hdr(skb);
11400 	__be16 udp_port = uh->dest;
11401 
11402 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11403 		return false;
11404 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11405 		struct ethhdr *eh = inner_eth_hdr(skb);
11406 
11407 		switch (eh->h_proto) {
11408 		case htons(ETH_P_IP):
11409 			return true;
11410 		case htons(ETH_P_IPV6):
11411 			return bnxt_exthdr_check(bp, skb,
11412 						 skb_inner_network_offset(skb),
11413 						 NULL);
11414 		}
11415 	}
11416 	return false;
11417 }
11418 
11419 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11420 {
11421 	switch (l4_proto) {
11422 	case IPPROTO_UDP:
11423 		return bnxt_udp_tunl_check(bp, skb);
11424 	case IPPROTO_IPIP:
11425 		return true;
11426 	case IPPROTO_GRE: {
11427 		switch (skb->inner_protocol) {
11428 		default:
11429 			return false;
11430 		case htons(ETH_P_IP):
11431 			return true;
11432 		case htons(ETH_P_IPV6):
11433 			fallthrough;
11434 		}
11435 	}
11436 	case IPPROTO_IPV6:
11437 		/* Check ext headers of inner ipv6 */
11438 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11439 					 NULL);
11440 	}
11441 	return false;
11442 }
11443 
11444 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11445 					     struct net_device *dev,
11446 					     netdev_features_t features)
11447 {
11448 	struct bnxt *bp = netdev_priv(dev);
11449 	u8 *l4_proto;
11450 
11451 	features = vlan_features_check(skb, features);
11452 	switch (vlan_get_protocol(skb)) {
11453 	case htons(ETH_P_IP):
11454 		if (!skb->encapsulation)
11455 			return features;
11456 		l4_proto = &ip_hdr(skb)->protocol;
11457 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11458 			return features;
11459 		break;
11460 	case htons(ETH_P_IPV6):
11461 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11462 				       &l4_proto))
11463 			break;
11464 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11465 			return features;
11466 		break;
11467 	}
11468 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11469 }
11470 
11471 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11472 			 u32 *reg_buf)
11473 {
11474 	struct hwrm_dbg_read_direct_output *resp;
11475 	struct hwrm_dbg_read_direct_input *req;
11476 	__le32 *dbg_reg_buf;
11477 	dma_addr_t mapping;
11478 	int rc, i;
11479 
11480 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11481 	if (rc)
11482 		return rc;
11483 
11484 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11485 					 &mapping);
11486 	if (!dbg_reg_buf) {
11487 		rc = -ENOMEM;
11488 		goto dbg_rd_reg_exit;
11489 	}
11490 
11491 	req->host_dest_addr = cpu_to_le64(mapping);
11492 
11493 	resp = hwrm_req_hold(bp, req);
11494 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11495 	req->read_len32 = cpu_to_le32(num_words);
11496 
11497 	rc = hwrm_req_send(bp, req);
11498 	if (rc || resp->error_code) {
11499 		rc = -EIO;
11500 		goto dbg_rd_reg_exit;
11501 	}
11502 	for (i = 0; i < num_words; i++)
11503 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11504 
11505 dbg_rd_reg_exit:
11506 	hwrm_req_drop(bp, req);
11507 	return rc;
11508 }
11509 
11510 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11511 				       u32 ring_id, u32 *prod, u32 *cons)
11512 {
11513 	struct hwrm_dbg_ring_info_get_output *resp;
11514 	struct hwrm_dbg_ring_info_get_input *req;
11515 	int rc;
11516 
11517 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11518 	if (rc)
11519 		return rc;
11520 
11521 	req->ring_type = ring_type;
11522 	req->fw_ring_id = cpu_to_le32(ring_id);
11523 	resp = hwrm_req_hold(bp, req);
11524 	rc = hwrm_req_send(bp, req);
11525 	if (!rc) {
11526 		*prod = le32_to_cpu(resp->producer_index);
11527 		*cons = le32_to_cpu(resp->consumer_index);
11528 	}
11529 	hwrm_req_drop(bp, req);
11530 	return rc;
11531 }
11532 
11533 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11534 {
11535 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11536 	int i = bnapi->index;
11537 
11538 	if (!txr)
11539 		return;
11540 
11541 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11542 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11543 		    txr->tx_cons);
11544 }
11545 
11546 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11547 {
11548 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11549 	int i = bnapi->index;
11550 
11551 	if (!rxr)
11552 		return;
11553 
11554 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11555 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11556 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11557 		    rxr->rx_sw_agg_prod);
11558 }
11559 
11560 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11561 {
11562 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11563 	int i = bnapi->index;
11564 
11565 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11566 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11567 }
11568 
11569 static void bnxt_dbg_dump_states(struct bnxt *bp)
11570 {
11571 	int i;
11572 	struct bnxt_napi *bnapi;
11573 
11574 	for (i = 0; i < bp->cp_nr_rings; i++) {
11575 		bnapi = bp->bnapi[i];
11576 		if (netif_msg_drv(bp)) {
11577 			bnxt_dump_tx_sw_state(bnapi);
11578 			bnxt_dump_rx_sw_state(bnapi);
11579 			bnxt_dump_cp_sw_state(bnapi);
11580 		}
11581 	}
11582 }
11583 
11584 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11585 {
11586 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11587 	struct hwrm_ring_reset_input *req;
11588 	struct bnxt_napi *bnapi = rxr->bnapi;
11589 	struct bnxt_cp_ring_info *cpr;
11590 	u16 cp_ring_id;
11591 	int rc;
11592 
11593 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11594 	if (rc)
11595 		return rc;
11596 
11597 	cpr = &bnapi->cp_ring;
11598 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11599 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11600 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11601 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11602 	return hwrm_req_send_silent(bp, req);
11603 }
11604 
11605 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11606 {
11607 	if (!silent)
11608 		bnxt_dbg_dump_states(bp);
11609 	if (netif_running(bp->dev)) {
11610 		int rc;
11611 
11612 		if (silent) {
11613 			bnxt_close_nic(bp, false, false);
11614 			bnxt_open_nic(bp, false, false);
11615 		} else {
11616 			bnxt_ulp_stop(bp);
11617 			bnxt_close_nic(bp, true, false);
11618 			rc = bnxt_open_nic(bp, true, false);
11619 			bnxt_ulp_start(bp, rc);
11620 		}
11621 	}
11622 }
11623 
11624 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11625 {
11626 	struct bnxt *bp = netdev_priv(dev);
11627 
11628 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11629 	bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT);
11630 }
11631 
11632 static void bnxt_fw_health_check(struct bnxt *bp)
11633 {
11634 	struct bnxt_fw_health *fw_health = bp->fw_health;
11635 	struct pci_dev *pdev = bp->pdev;
11636 	u32 val;
11637 
11638 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11639 		return;
11640 
11641 	/* Make sure it is enabled before checking the tmr_counter. */
11642 	smp_rmb();
11643 	if (fw_health->tmr_counter) {
11644 		fw_health->tmr_counter--;
11645 		return;
11646 	}
11647 
11648 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11649 	if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) {
11650 		fw_health->arrests++;
11651 		goto fw_reset;
11652 	}
11653 
11654 	fw_health->last_fw_heartbeat = val;
11655 
11656 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11657 	if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) {
11658 		fw_health->discoveries++;
11659 		goto fw_reset;
11660 	}
11661 
11662 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11663 	return;
11664 
11665 fw_reset:
11666 	bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT);
11667 }
11668 
11669 static void bnxt_timer(struct timer_list *t)
11670 {
11671 	struct bnxt *bp = from_timer(bp, t, timer);
11672 	struct net_device *dev = bp->dev;
11673 
11674 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11675 		return;
11676 
11677 	if (atomic_read(&bp->intr_sem) != 0)
11678 		goto bnxt_restart_timer;
11679 
11680 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11681 		bnxt_fw_health_check(bp);
11682 
11683 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks)
11684 		bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT);
11685 
11686 	if (bnxt_tc_flower_enabled(bp))
11687 		bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT);
11688 
11689 #ifdef CONFIG_RFS_ACCEL
11690 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count)
11691 		bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
11692 #endif /*CONFIG_RFS_ACCEL*/
11693 
11694 	if (bp->link_info.phy_retry) {
11695 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11696 			bp->link_info.phy_retry = false;
11697 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11698 		} else {
11699 			bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT);
11700 		}
11701 	}
11702 
11703 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11704 		bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT);
11705 
11706 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11707 	    netif_carrier_ok(dev))
11708 		bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT);
11709 
11710 bnxt_restart_timer:
11711 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11712 }
11713 
11714 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11715 {
11716 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11717 	 * set.  If the device is being closed, bnxt_close() may be holding
11718 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11719 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11720 	 */
11721 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11722 	rtnl_lock();
11723 }
11724 
11725 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11726 {
11727 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11728 	rtnl_unlock();
11729 }
11730 
11731 /* Only called from bnxt_sp_task() */
11732 static void bnxt_reset(struct bnxt *bp, bool silent)
11733 {
11734 	bnxt_rtnl_lock_sp(bp);
11735 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11736 		bnxt_reset_task(bp, silent);
11737 	bnxt_rtnl_unlock_sp(bp);
11738 }
11739 
11740 /* Only called from bnxt_sp_task() */
11741 static void bnxt_rx_ring_reset(struct bnxt *bp)
11742 {
11743 	int i;
11744 
11745 	bnxt_rtnl_lock_sp(bp);
11746 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11747 		bnxt_rtnl_unlock_sp(bp);
11748 		return;
11749 	}
11750 	/* Disable and flush TPA before resetting the RX ring */
11751 	if (bp->flags & BNXT_FLAG_TPA)
11752 		bnxt_set_tpa(bp, false);
11753 	for (i = 0; i < bp->rx_nr_rings; i++) {
11754 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11755 		struct bnxt_cp_ring_info *cpr;
11756 		int rc;
11757 
11758 		if (!rxr->bnapi->in_reset)
11759 			continue;
11760 
11761 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11762 		if (rc) {
11763 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11764 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11765 			else
11766 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11767 					    rc);
11768 			bnxt_reset_task(bp, true);
11769 			break;
11770 		}
11771 		bnxt_free_one_rx_ring_skbs(bp, i);
11772 		rxr->rx_prod = 0;
11773 		rxr->rx_agg_prod = 0;
11774 		rxr->rx_sw_agg_prod = 0;
11775 		rxr->rx_next_cons = 0;
11776 		rxr->bnapi->in_reset = false;
11777 		bnxt_alloc_one_rx_ring(bp, i);
11778 		cpr = &rxr->bnapi->cp_ring;
11779 		cpr->sw_stats.rx.rx_resets++;
11780 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11781 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11782 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11783 	}
11784 	if (bp->flags & BNXT_FLAG_TPA)
11785 		bnxt_set_tpa(bp, true);
11786 	bnxt_rtnl_unlock_sp(bp);
11787 }
11788 
11789 static void bnxt_fw_reset_close(struct bnxt *bp)
11790 {
11791 	bnxt_ulp_stop(bp);
11792 	/* When firmware is in fatal state, quiesce device and disable
11793 	 * bus master to prevent any potential bad DMAs before freeing
11794 	 * kernel memory.
11795 	 */
11796 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11797 		u16 val = 0;
11798 
11799 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11800 		if (val == 0xffff)
11801 			bp->fw_reset_min_dsecs = 0;
11802 		bnxt_tx_disable(bp);
11803 		bnxt_disable_napi(bp);
11804 		bnxt_disable_int_sync(bp);
11805 		bnxt_free_irq(bp);
11806 		bnxt_clear_int_mode(bp);
11807 		pci_disable_device(bp->pdev);
11808 	}
11809 	__bnxt_close_nic(bp, true, false);
11810 	bnxt_vf_reps_free(bp);
11811 	bnxt_clear_int_mode(bp);
11812 	bnxt_hwrm_func_drv_unrgtr(bp);
11813 	if (pci_is_enabled(bp->pdev))
11814 		pci_disable_device(bp->pdev);
11815 	bnxt_free_ctx_mem(bp);
11816 	kfree(bp->ctx);
11817 	bp->ctx = NULL;
11818 }
11819 
11820 static bool is_bnxt_fw_ok(struct bnxt *bp)
11821 {
11822 	struct bnxt_fw_health *fw_health = bp->fw_health;
11823 	bool no_heartbeat = false, has_reset = false;
11824 	u32 val;
11825 
11826 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11827 	if (val == fw_health->last_fw_heartbeat)
11828 		no_heartbeat = true;
11829 
11830 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11831 	if (val != fw_health->last_fw_reset_cnt)
11832 		has_reset = true;
11833 
11834 	if (!no_heartbeat && has_reset)
11835 		return true;
11836 
11837 	return false;
11838 }
11839 
11840 /* rtnl_lock is acquired before calling this function */
11841 static void bnxt_force_fw_reset(struct bnxt *bp)
11842 {
11843 	struct bnxt_fw_health *fw_health = bp->fw_health;
11844 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11845 	u32 wait_dsecs;
11846 
11847 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11848 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11849 		return;
11850 
11851 	if (ptp) {
11852 		spin_lock_bh(&ptp->ptp_lock);
11853 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11854 		spin_unlock_bh(&ptp->ptp_lock);
11855 	} else {
11856 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11857 	}
11858 	bnxt_fw_reset_close(bp);
11859 	wait_dsecs = fw_health->master_func_wait_dsecs;
11860 	if (fw_health->primary) {
11861 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11862 			wait_dsecs = 0;
11863 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11864 	} else {
11865 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11866 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11867 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11868 	}
11869 
11870 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11871 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11872 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11873 }
11874 
11875 void bnxt_fw_exception(struct bnxt *bp)
11876 {
11877 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11878 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11879 	bnxt_rtnl_lock_sp(bp);
11880 	bnxt_force_fw_reset(bp);
11881 	bnxt_rtnl_unlock_sp(bp);
11882 }
11883 
11884 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11885  * < 0 on error.
11886  */
11887 static int bnxt_get_registered_vfs(struct bnxt *bp)
11888 {
11889 #ifdef CONFIG_BNXT_SRIOV
11890 	int rc;
11891 
11892 	if (!BNXT_PF(bp))
11893 		return 0;
11894 
11895 	rc = bnxt_hwrm_func_qcfg(bp);
11896 	if (rc) {
11897 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11898 		return rc;
11899 	}
11900 	if (bp->pf.registered_vfs)
11901 		return bp->pf.registered_vfs;
11902 	if (bp->sriov_cfg)
11903 		return 1;
11904 #endif
11905 	return 0;
11906 }
11907 
11908 void bnxt_fw_reset(struct bnxt *bp)
11909 {
11910 	bnxt_rtnl_lock_sp(bp);
11911 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11912 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11913 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11914 		int n = 0, tmo;
11915 
11916 		if (ptp) {
11917 			spin_lock_bh(&ptp->ptp_lock);
11918 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11919 			spin_unlock_bh(&ptp->ptp_lock);
11920 		} else {
11921 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11922 		}
11923 		if (bp->pf.active_vfs &&
11924 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11925 			n = bnxt_get_registered_vfs(bp);
11926 		if (n < 0) {
11927 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11928 				   n);
11929 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11930 			dev_close(bp->dev);
11931 			goto fw_reset_exit;
11932 		} else if (n > 0) {
11933 			u16 vf_tmo_dsecs = n * 10;
11934 
11935 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11936 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11937 			bp->fw_reset_state =
11938 				BNXT_FW_RESET_STATE_POLL_VF;
11939 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11940 			goto fw_reset_exit;
11941 		}
11942 		bnxt_fw_reset_close(bp);
11943 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11944 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11945 			tmo = HZ / 10;
11946 		} else {
11947 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11948 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11949 		}
11950 		bnxt_queue_fw_reset_work(bp, tmo);
11951 	}
11952 fw_reset_exit:
11953 	bnxt_rtnl_unlock_sp(bp);
11954 }
11955 
11956 static void bnxt_chk_missed_irq(struct bnxt *bp)
11957 {
11958 	int i;
11959 
11960 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11961 		return;
11962 
11963 	for (i = 0; i < bp->cp_nr_rings; i++) {
11964 		struct bnxt_napi *bnapi = bp->bnapi[i];
11965 		struct bnxt_cp_ring_info *cpr;
11966 		u32 fw_ring_id;
11967 		int j;
11968 
11969 		if (!bnapi)
11970 			continue;
11971 
11972 		cpr = &bnapi->cp_ring;
11973 		for (j = 0; j < 2; j++) {
11974 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11975 			u32 val[2];
11976 
11977 			if (!cpr2 || cpr2->has_more_work ||
11978 			    !bnxt_has_work(bp, cpr2))
11979 				continue;
11980 
11981 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11982 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11983 				continue;
11984 			}
11985 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11986 			bnxt_dbg_hwrm_ring_info_get(bp,
11987 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11988 				fw_ring_id, &val[0], &val[1]);
11989 			cpr->sw_stats.cmn.missed_irqs++;
11990 		}
11991 	}
11992 }
11993 
11994 static void bnxt_cfg_ntp_filters(struct bnxt *);
11995 
11996 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11997 {
11998 	struct bnxt_link_info *link_info = &bp->link_info;
11999 
12000 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
12001 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12002 		if (bp->hwrm_spec_code >= 0x10201) {
12003 			if (link_info->auto_pause_setting &
12004 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12005 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12006 		} else {
12007 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12008 		}
12009 		link_info->advertising = link_info->auto_link_speeds;
12010 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
12011 	} else {
12012 		link_info->req_link_speed = link_info->force_link_speed;
12013 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
12014 		if (link_info->force_pam4_link_speed) {
12015 			link_info->req_link_speed =
12016 				link_info->force_pam4_link_speed;
12017 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
12018 		}
12019 		link_info->req_duplex = link_info->duplex_setting;
12020 	}
12021 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12022 		link_info->req_flow_ctrl =
12023 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12024 	else
12025 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12026 }
12027 
12028 static void bnxt_fw_echo_reply(struct bnxt *bp)
12029 {
12030 	struct bnxt_fw_health *fw_health = bp->fw_health;
12031 	struct hwrm_func_echo_response_input *req;
12032 	int rc;
12033 
12034 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12035 	if (rc)
12036 		return;
12037 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12038 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12039 	hwrm_req_send(bp, req);
12040 }
12041 
12042 static void bnxt_sp_task(struct work_struct *work)
12043 {
12044 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12045 
12046 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12047 	smp_mb__after_atomic();
12048 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12049 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12050 		return;
12051 	}
12052 
12053 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12054 		bnxt_cfg_rx_mode(bp);
12055 
12056 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12057 		bnxt_cfg_ntp_filters(bp);
12058 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12059 		bnxt_hwrm_exec_fwd_req(bp);
12060 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12061 		bnxt_hwrm_port_qstats(bp, 0);
12062 		bnxt_hwrm_port_qstats_ext(bp, 0);
12063 		bnxt_accumulate_all_stats(bp);
12064 	}
12065 
12066 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12067 		int rc;
12068 
12069 		mutex_lock(&bp->link_lock);
12070 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12071 				       &bp->sp_event))
12072 			bnxt_hwrm_phy_qcaps(bp);
12073 
12074 		rc = bnxt_update_link(bp, true);
12075 		if (rc)
12076 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12077 				   rc);
12078 
12079 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12080 				       &bp->sp_event))
12081 			bnxt_init_ethtool_link_settings(bp);
12082 		mutex_unlock(&bp->link_lock);
12083 	}
12084 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12085 		int rc;
12086 
12087 		mutex_lock(&bp->link_lock);
12088 		rc = bnxt_update_phy_setting(bp);
12089 		mutex_unlock(&bp->link_lock);
12090 		if (rc) {
12091 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12092 		} else {
12093 			bp->link_info.phy_retry = false;
12094 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12095 		}
12096 	}
12097 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12098 		mutex_lock(&bp->link_lock);
12099 		bnxt_get_port_module_status(bp);
12100 		mutex_unlock(&bp->link_lock);
12101 	}
12102 
12103 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12104 		bnxt_tc_flow_stats_work(bp);
12105 
12106 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12107 		bnxt_chk_missed_irq(bp);
12108 
12109 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12110 		bnxt_fw_echo_reply(bp);
12111 
12112 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12113 	 * must be the last functions to be called before exiting.
12114 	 */
12115 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12116 		bnxt_reset(bp, false);
12117 
12118 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12119 		bnxt_reset(bp, true);
12120 
12121 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12122 		bnxt_rx_ring_reset(bp);
12123 
12124 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12125 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12126 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12127 			bnxt_devlink_health_fw_report(bp);
12128 		else
12129 			bnxt_fw_reset(bp);
12130 	}
12131 
12132 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12133 		if (!is_bnxt_fw_ok(bp))
12134 			bnxt_devlink_health_fw_report(bp);
12135 	}
12136 
12137 	smp_mb__before_atomic();
12138 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12139 }
12140 
12141 /* Under rtnl_lock */
12142 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12143 		     int tx_xdp)
12144 {
12145 	int max_rx, max_tx, tx_sets = 1;
12146 	int tx_rings_needed, stats;
12147 	int rx_rings = rx;
12148 	int cp, vnics, rc;
12149 
12150 	if (tcs)
12151 		tx_sets = tcs;
12152 
12153 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12154 	if (rc)
12155 		return rc;
12156 
12157 	if (max_rx < rx)
12158 		return -ENOMEM;
12159 
12160 	tx_rings_needed = tx * tx_sets + tx_xdp;
12161 	if (max_tx < tx_rings_needed)
12162 		return -ENOMEM;
12163 
12164 	vnics = 1;
12165 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12166 		vnics += rx_rings;
12167 
12168 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12169 		rx_rings <<= 1;
12170 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12171 	stats = cp;
12172 	if (BNXT_NEW_RM(bp)) {
12173 		cp += bnxt_get_ulp_msix_num(bp);
12174 		stats += bnxt_get_ulp_stat_ctxs(bp);
12175 	}
12176 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12177 				     stats, vnics);
12178 }
12179 
12180 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12181 {
12182 	if (bp->bar2) {
12183 		pci_iounmap(pdev, bp->bar2);
12184 		bp->bar2 = NULL;
12185 	}
12186 
12187 	if (bp->bar1) {
12188 		pci_iounmap(pdev, bp->bar1);
12189 		bp->bar1 = NULL;
12190 	}
12191 
12192 	if (bp->bar0) {
12193 		pci_iounmap(pdev, bp->bar0);
12194 		bp->bar0 = NULL;
12195 	}
12196 }
12197 
12198 static void bnxt_cleanup_pci(struct bnxt *bp)
12199 {
12200 	bnxt_unmap_bars(bp, bp->pdev);
12201 	pci_release_regions(bp->pdev);
12202 	if (pci_is_enabled(bp->pdev))
12203 		pci_disable_device(bp->pdev);
12204 }
12205 
12206 static void bnxt_init_dflt_coal(struct bnxt *bp)
12207 {
12208 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12209 	struct bnxt_coal *coal;
12210 	u16 flags = 0;
12211 
12212 	if (coal_cap->cmpl_params &
12213 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12214 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12215 
12216 	/* Tick values in micro seconds.
12217 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12218 	 */
12219 	coal = &bp->rx_coal;
12220 	coal->coal_ticks = 10;
12221 	coal->coal_bufs = 30;
12222 	coal->coal_ticks_irq = 1;
12223 	coal->coal_bufs_irq = 2;
12224 	coal->idle_thresh = 50;
12225 	coal->bufs_per_record = 2;
12226 	coal->budget = 64;		/* NAPI budget */
12227 	coal->flags = flags;
12228 
12229 	coal = &bp->tx_coal;
12230 	coal->coal_ticks = 28;
12231 	coal->coal_bufs = 30;
12232 	coal->coal_ticks_irq = 2;
12233 	coal->coal_bufs_irq = 2;
12234 	coal->bufs_per_record = 1;
12235 	coal->flags = flags;
12236 
12237 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12238 }
12239 
12240 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12241 {
12242 	int rc;
12243 
12244 	bp->fw_cap = 0;
12245 	rc = bnxt_hwrm_ver_get(bp);
12246 	bnxt_try_map_fw_health_reg(bp);
12247 	if (rc) {
12248 		rc = bnxt_try_recover_fw(bp);
12249 		if (rc)
12250 			return rc;
12251 		rc = bnxt_hwrm_ver_get(bp);
12252 		if (rc)
12253 			return rc;
12254 	}
12255 
12256 	bnxt_nvm_cfg_ver_get(bp);
12257 
12258 	rc = bnxt_hwrm_func_reset(bp);
12259 	if (rc)
12260 		return -ENODEV;
12261 
12262 	bnxt_hwrm_fw_set_time(bp);
12263 	return 0;
12264 }
12265 
12266 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12267 {
12268 	int rc;
12269 
12270 	/* Get the MAX capabilities for this function */
12271 	rc = bnxt_hwrm_func_qcaps(bp);
12272 	if (rc) {
12273 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12274 			   rc);
12275 		return -ENODEV;
12276 	}
12277 
12278 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12279 	if (rc)
12280 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12281 			    rc);
12282 
12283 	if (bnxt_alloc_fw_health(bp)) {
12284 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12285 	} else {
12286 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12287 		if (rc)
12288 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12289 				    rc);
12290 	}
12291 
12292 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12293 	if (rc)
12294 		return -ENODEV;
12295 
12296 	bnxt_hwrm_func_qcfg(bp);
12297 	bnxt_hwrm_vnic_qcaps(bp);
12298 	bnxt_hwrm_port_led_qcaps(bp);
12299 	bnxt_ethtool_init(bp);
12300 	if (bp->fw_cap & BNXT_FW_CAP_PTP)
12301 		__bnxt_hwrm_ptp_qcfg(bp);
12302 	bnxt_dcb_init(bp);
12303 	return 0;
12304 }
12305 
12306 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12307 {
12308 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12309 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12310 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12311 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12312 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12313 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
12314 		bp->rss_hash_delta = bp->rss_hash_cfg;
12315 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12316 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12317 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12318 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12319 	}
12320 }
12321 
12322 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12323 {
12324 	struct net_device *dev = bp->dev;
12325 
12326 	dev->hw_features &= ~NETIF_F_NTUPLE;
12327 	dev->features &= ~NETIF_F_NTUPLE;
12328 	bp->flags &= ~BNXT_FLAG_RFS;
12329 	if (bnxt_rfs_supported(bp)) {
12330 		dev->hw_features |= NETIF_F_NTUPLE;
12331 		if (bnxt_rfs_capable(bp)) {
12332 			bp->flags |= BNXT_FLAG_RFS;
12333 			dev->features |= NETIF_F_NTUPLE;
12334 		}
12335 	}
12336 }
12337 
12338 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12339 {
12340 	struct pci_dev *pdev = bp->pdev;
12341 
12342 	bnxt_set_dflt_rss_hash_type(bp);
12343 	bnxt_set_dflt_rfs(bp);
12344 
12345 	bnxt_get_wol_settings(bp);
12346 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12347 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12348 	else
12349 		device_set_wakeup_capable(&pdev->dev, false);
12350 
12351 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12352 	bnxt_hwrm_coal_params_qcaps(bp);
12353 }
12354 
12355 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12356 
12357 int bnxt_fw_init_one(struct bnxt *bp)
12358 {
12359 	int rc;
12360 
12361 	rc = bnxt_fw_init_one_p1(bp);
12362 	if (rc) {
12363 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12364 		return rc;
12365 	}
12366 	rc = bnxt_fw_init_one_p2(bp);
12367 	if (rc) {
12368 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12369 		return rc;
12370 	}
12371 	rc = bnxt_probe_phy(bp, false);
12372 	if (rc)
12373 		return rc;
12374 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12375 	if (rc)
12376 		return rc;
12377 
12378 	bnxt_fw_init_one_p3(bp);
12379 	return 0;
12380 }
12381 
12382 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12383 {
12384 	struct bnxt_fw_health *fw_health = bp->fw_health;
12385 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12386 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12387 	u32 reg_type, reg_off, delay_msecs;
12388 
12389 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12390 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12391 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12392 	switch (reg_type) {
12393 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12394 		pci_write_config_dword(bp->pdev, reg_off, val);
12395 		break;
12396 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12397 		writel(reg_off & BNXT_GRC_BASE_MASK,
12398 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12399 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12400 		fallthrough;
12401 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12402 		writel(val, bp->bar0 + reg_off);
12403 		break;
12404 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12405 		writel(val, bp->bar1 + reg_off);
12406 		break;
12407 	}
12408 	if (delay_msecs) {
12409 		pci_read_config_dword(bp->pdev, 0, &val);
12410 		msleep(delay_msecs);
12411 	}
12412 }
12413 
12414 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12415 {
12416 	struct hwrm_func_qcfg_output *resp;
12417 	struct hwrm_func_qcfg_input *req;
12418 	bool result = true; /* firmware will enforce if unknown */
12419 
12420 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12421 		return result;
12422 
12423 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12424 		return result;
12425 
12426 	req->fid = cpu_to_le16(0xffff);
12427 	resp = hwrm_req_hold(bp, req);
12428 	if (!hwrm_req_send(bp, req))
12429 		result = !!(le16_to_cpu(resp->flags) &
12430 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12431 	hwrm_req_drop(bp, req);
12432 	return result;
12433 }
12434 
12435 static void bnxt_reset_all(struct bnxt *bp)
12436 {
12437 	struct bnxt_fw_health *fw_health = bp->fw_health;
12438 	int i, rc;
12439 
12440 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12441 		bnxt_fw_reset_via_optee(bp);
12442 		bp->fw_reset_timestamp = jiffies;
12443 		return;
12444 	}
12445 
12446 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12447 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12448 			bnxt_fw_reset_writel(bp, i);
12449 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12450 		struct hwrm_fw_reset_input *req;
12451 
12452 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12453 		if (!rc) {
12454 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12455 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12456 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12457 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12458 			rc = hwrm_req_send(bp, req);
12459 		}
12460 		if (rc != -ENODEV)
12461 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12462 	}
12463 	bp->fw_reset_timestamp = jiffies;
12464 }
12465 
12466 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12467 {
12468 	return time_after(jiffies, bp->fw_reset_timestamp +
12469 			  (bp->fw_reset_max_dsecs * HZ / 10));
12470 }
12471 
12472 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12473 {
12474 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12475 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12476 		bnxt_ulp_start(bp, rc);
12477 		bnxt_dl_health_fw_status_update(bp, false);
12478 	}
12479 	bp->fw_reset_state = 0;
12480 	dev_close(bp->dev);
12481 }
12482 
12483 static void bnxt_fw_reset_task(struct work_struct *work)
12484 {
12485 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12486 	int rc = 0;
12487 
12488 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12489 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12490 		return;
12491 	}
12492 
12493 	switch (bp->fw_reset_state) {
12494 	case BNXT_FW_RESET_STATE_POLL_VF: {
12495 		int n = bnxt_get_registered_vfs(bp);
12496 		int tmo;
12497 
12498 		if (n < 0) {
12499 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12500 				   n, jiffies_to_msecs(jiffies -
12501 				   bp->fw_reset_timestamp));
12502 			goto fw_reset_abort;
12503 		} else if (n > 0) {
12504 			if (bnxt_fw_reset_timeout(bp)) {
12505 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12506 				bp->fw_reset_state = 0;
12507 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12508 					   n);
12509 				return;
12510 			}
12511 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12512 			return;
12513 		}
12514 		bp->fw_reset_timestamp = jiffies;
12515 		rtnl_lock();
12516 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12517 			bnxt_fw_reset_abort(bp, rc);
12518 			rtnl_unlock();
12519 			return;
12520 		}
12521 		bnxt_fw_reset_close(bp);
12522 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12523 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12524 			tmo = HZ / 10;
12525 		} else {
12526 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12527 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12528 		}
12529 		rtnl_unlock();
12530 		bnxt_queue_fw_reset_work(bp, tmo);
12531 		return;
12532 	}
12533 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12534 		u32 val;
12535 
12536 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12537 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12538 		    !bnxt_fw_reset_timeout(bp)) {
12539 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12540 			return;
12541 		}
12542 
12543 		if (!bp->fw_health->primary) {
12544 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12545 
12546 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12547 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12548 			return;
12549 		}
12550 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12551 	}
12552 		fallthrough;
12553 	case BNXT_FW_RESET_STATE_RESET_FW:
12554 		bnxt_reset_all(bp);
12555 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12556 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12557 		return;
12558 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12559 		bnxt_inv_fw_health_reg(bp);
12560 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12561 		    !bp->fw_reset_min_dsecs) {
12562 			u16 val;
12563 
12564 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12565 			if (val == 0xffff) {
12566 				if (bnxt_fw_reset_timeout(bp)) {
12567 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12568 					rc = -ETIMEDOUT;
12569 					goto fw_reset_abort;
12570 				}
12571 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12572 				return;
12573 			}
12574 		}
12575 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12576 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12577 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12578 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12579 			bnxt_dl_remote_reload(bp);
12580 		if (pci_enable_device(bp->pdev)) {
12581 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12582 			rc = -ENODEV;
12583 			goto fw_reset_abort;
12584 		}
12585 		pci_set_master(bp->pdev);
12586 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12587 		fallthrough;
12588 	case BNXT_FW_RESET_STATE_POLL_FW:
12589 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12590 		rc = bnxt_hwrm_poll(bp);
12591 		if (rc) {
12592 			if (bnxt_fw_reset_timeout(bp)) {
12593 				netdev_err(bp->dev, "Firmware reset aborted\n");
12594 				goto fw_reset_abort_status;
12595 			}
12596 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12597 			return;
12598 		}
12599 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12600 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12601 		fallthrough;
12602 	case BNXT_FW_RESET_STATE_OPENING:
12603 		while (!rtnl_trylock()) {
12604 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12605 			return;
12606 		}
12607 		rc = bnxt_open(bp->dev);
12608 		if (rc) {
12609 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12610 			bnxt_fw_reset_abort(bp, rc);
12611 			rtnl_unlock();
12612 			return;
12613 		}
12614 
12615 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12616 		    bp->fw_health->enabled) {
12617 			bp->fw_health->last_fw_reset_cnt =
12618 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12619 		}
12620 		bp->fw_reset_state = 0;
12621 		/* Make sure fw_reset_state is 0 before clearing the flag */
12622 		smp_mb__before_atomic();
12623 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12624 		bnxt_ulp_start(bp, 0);
12625 		bnxt_reenable_sriov(bp);
12626 		bnxt_vf_reps_alloc(bp);
12627 		bnxt_vf_reps_open(bp);
12628 		bnxt_ptp_reapply_pps(bp);
12629 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12630 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12631 			bnxt_dl_health_fw_recovery_done(bp);
12632 			bnxt_dl_health_fw_status_update(bp, true);
12633 		}
12634 		rtnl_unlock();
12635 		break;
12636 	}
12637 	return;
12638 
12639 fw_reset_abort_status:
12640 	if (bp->fw_health->status_reliable ||
12641 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12642 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12643 
12644 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12645 	}
12646 fw_reset_abort:
12647 	rtnl_lock();
12648 	bnxt_fw_reset_abort(bp, rc);
12649 	rtnl_unlock();
12650 }
12651 
12652 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12653 {
12654 	int rc;
12655 	struct bnxt *bp = netdev_priv(dev);
12656 
12657 	SET_NETDEV_DEV(dev, &pdev->dev);
12658 
12659 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12660 	rc = pci_enable_device(pdev);
12661 	if (rc) {
12662 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12663 		goto init_err;
12664 	}
12665 
12666 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12667 		dev_err(&pdev->dev,
12668 			"Cannot find PCI device base address, aborting\n");
12669 		rc = -ENODEV;
12670 		goto init_err_disable;
12671 	}
12672 
12673 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12674 	if (rc) {
12675 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12676 		goto init_err_disable;
12677 	}
12678 
12679 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12680 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12681 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12682 		rc = -EIO;
12683 		goto init_err_release;
12684 	}
12685 
12686 	pci_set_master(pdev);
12687 
12688 	bp->dev = dev;
12689 	bp->pdev = pdev;
12690 
12691 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12692 	 * determines the BAR size.
12693 	 */
12694 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12695 	if (!bp->bar0) {
12696 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12697 		rc = -ENOMEM;
12698 		goto init_err_release;
12699 	}
12700 
12701 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12702 	if (!bp->bar2) {
12703 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12704 		rc = -ENOMEM;
12705 		goto init_err_release;
12706 	}
12707 
12708 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12709 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12710 
12711 	spin_lock_init(&bp->ntp_fltr_lock);
12712 #if BITS_PER_LONG == 32
12713 	spin_lock_init(&bp->db_lock);
12714 #endif
12715 
12716 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12717 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12718 
12719 	timer_setup(&bp->timer, bnxt_timer, 0);
12720 	bp->current_interval = BNXT_TIMER_INTERVAL;
12721 
12722 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12723 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12724 
12725 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12726 	return 0;
12727 
12728 init_err_release:
12729 	bnxt_unmap_bars(bp, pdev);
12730 	pci_release_regions(pdev);
12731 
12732 init_err_disable:
12733 	pci_disable_device(pdev);
12734 
12735 init_err:
12736 	return rc;
12737 }
12738 
12739 /* rtnl_lock held */
12740 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12741 {
12742 	struct sockaddr *addr = p;
12743 	struct bnxt *bp = netdev_priv(dev);
12744 	int rc = 0;
12745 
12746 	if (!is_valid_ether_addr(addr->sa_data))
12747 		return -EADDRNOTAVAIL;
12748 
12749 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12750 		return 0;
12751 
12752 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12753 	if (rc)
12754 		return rc;
12755 
12756 	eth_hw_addr_set(dev, addr->sa_data);
12757 	if (netif_running(dev)) {
12758 		bnxt_close_nic(bp, false, false);
12759 		rc = bnxt_open_nic(bp, false, false);
12760 	}
12761 
12762 	return rc;
12763 }
12764 
12765 /* rtnl_lock held */
12766 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12767 {
12768 	struct bnxt *bp = netdev_priv(dev);
12769 
12770 	if (netif_running(dev))
12771 		bnxt_close_nic(bp, true, false);
12772 
12773 	dev->mtu = new_mtu;
12774 	bnxt_set_ring_params(bp);
12775 
12776 	if (netif_running(dev))
12777 		return bnxt_open_nic(bp, true, false);
12778 
12779 	return 0;
12780 }
12781 
12782 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12783 {
12784 	struct bnxt *bp = netdev_priv(dev);
12785 	bool sh = false;
12786 	int rc;
12787 
12788 	if (tc > bp->max_tc) {
12789 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12790 			   tc, bp->max_tc);
12791 		return -EINVAL;
12792 	}
12793 
12794 	if (netdev_get_num_tc(dev) == tc)
12795 		return 0;
12796 
12797 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12798 		sh = true;
12799 
12800 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12801 			      sh, tc, bp->tx_nr_rings_xdp);
12802 	if (rc)
12803 		return rc;
12804 
12805 	/* Needs to close the device and do hw resource re-allocations */
12806 	if (netif_running(bp->dev))
12807 		bnxt_close_nic(bp, true, false);
12808 
12809 	if (tc) {
12810 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12811 		netdev_set_num_tc(dev, tc);
12812 	} else {
12813 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12814 		netdev_reset_tc(dev);
12815 	}
12816 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12817 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12818 			       bp->tx_nr_rings + bp->rx_nr_rings;
12819 
12820 	if (netif_running(bp->dev))
12821 		return bnxt_open_nic(bp, true, false);
12822 
12823 	return 0;
12824 }
12825 
12826 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12827 				  void *cb_priv)
12828 {
12829 	struct bnxt *bp = cb_priv;
12830 
12831 	if (!bnxt_tc_flower_enabled(bp) ||
12832 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12833 		return -EOPNOTSUPP;
12834 
12835 	switch (type) {
12836 	case TC_SETUP_CLSFLOWER:
12837 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12838 	default:
12839 		return -EOPNOTSUPP;
12840 	}
12841 }
12842 
12843 LIST_HEAD(bnxt_block_cb_list);
12844 
12845 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12846 			 void *type_data)
12847 {
12848 	struct bnxt *bp = netdev_priv(dev);
12849 
12850 	switch (type) {
12851 	case TC_SETUP_BLOCK:
12852 		return flow_block_cb_setup_simple(type_data,
12853 						  &bnxt_block_cb_list,
12854 						  bnxt_setup_tc_block_cb,
12855 						  bp, bp, true);
12856 	case TC_SETUP_QDISC_MQPRIO: {
12857 		struct tc_mqprio_qopt *mqprio = type_data;
12858 
12859 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12860 
12861 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12862 	}
12863 	default:
12864 		return -EOPNOTSUPP;
12865 	}
12866 }
12867 
12868 #ifdef CONFIG_RFS_ACCEL
12869 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12870 			    struct bnxt_ntuple_filter *f2)
12871 {
12872 	struct flow_keys *keys1 = &f1->fkeys;
12873 	struct flow_keys *keys2 = &f2->fkeys;
12874 
12875 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12876 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12877 		return false;
12878 
12879 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12880 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12881 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12882 			return false;
12883 	} else {
12884 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12885 			   sizeof(keys1->addrs.v6addrs.src)) ||
12886 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12887 			   sizeof(keys1->addrs.v6addrs.dst)))
12888 			return false;
12889 	}
12890 
12891 	if (keys1->ports.ports == keys2->ports.ports &&
12892 	    keys1->control.flags == keys2->control.flags &&
12893 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12894 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12895 		return true;
12896 
12897 	return false;
12898 }
12899 
12900 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12901 			      u16 rxq_index, u32 flow_id)
12902 {
12903 	struct bnxt *bp = netdev_priv(dev);
12904 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12905 	struct flow_keys *fkeys;
12906 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12907 	int rc = 0, idx, bit_id, l2_idx = 0;
12908 	struct hlist_head *head;
12909 	u32 flags;
12910 
12911 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12912 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12913 		int off = 0, j;
12914 
12915 		netif_addr_lock_bh(dev);
12916 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12917 			if (ether_addr_equal(eth->h_dest,
12918 					     vnic->uc_list + off)) {
12919 				l2_idx = j + 1;
12920 				break;
12921 			}
12922 		}
12923 		netif_addr_unlock_bh(dev);
12924 		if (!l2_idx)
12925 			return -EINVAL;
12926 	}
12927 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12928 	if (!new_fltr)
12929 		return -ENOMEM;
12930 
12931 	fkeys = &new_fltr->fkeys;
12932 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12933 		rc = -EPROTONOSUPPORT;
12934 		goto err_free;
12935 	}
12936 
12937 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12938 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12939 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12940 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12941 		rc = -EPROTONOSUPPORT;
12942 		goto err_free;
12943 	}
12944 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12945 	    bp->hwrm_spec_code < 0x10601) {
12946 		rc = -EPROTONOSUPPORT;
12947 		goto err_free;
12948 	}
12949 	flags = fkeys->control.flags;
12950 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12951 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12952 		rc = -EPROTONOSUPPORT;
12953 		goto err_free;
12954 	}
12955 
12956 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12957 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12958 
12959 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12960 	head = &bp->ntp_fltr_hash_tbl[idx];
12961 	rcu_read_lock();
12962 	hlist_for_each_entry_rcu(fltr, head, hash) {
12963 		if (bnxt_fltr_match(fltr, new_fltr)) {
12964 			rc = fltr->sw_id;
12965 			rcu_read_unlock();
12966 			goto err_free;
12967 		}
12968 	}
12969 	rcu_read_unlock();
12970 
12971 	spin_lock_bh(&bp->ntp_fltr_lock);
12972 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12973 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12974 	if (bit_id < 0) {
12975 		spin_unlock_bh(&bp->ntp_fltr_lock);
12976 		rc = -ENOMEM;
12977 		goto err_free;
12978 	}
12979 
12980 	new_fltr->sw_id = (u16)bit_id;
12981 	new_fltr->flow_id = flow_id;
12982 	new_fltr->l2_fltr_idx = l2_idx;
12983 	new_fltr->rxq = rxq_index;
12984 	hlist_add_head_rcu(&new_fltr->hash, head);
12985 	bp->ntp_fltr_count++;
12986 	spin_unlock_bh(&bp->ntp_fltr_lock);
12987 
12988 	bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT);
12989 
12990 	return new_fltr->sw_id;
12991 
12992 err_free:
12993 	kfree(new_fltr);
12994 	return rc;
12995 }
12996 
12997 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12998 {
12999 	int i;
13000 
13001 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
13002 		struct hlist_head *head;
13003 		struct hlist_node *tmp;
13004 		struct bnxt_ntuple_filter *fltr;
13005 		int rc;
13006 
13007 		head = &bp->ntp_fltr_hash_tbl[i];
13008 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
13009 			bool del = false;
13010 
13011 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
13012 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
13013 							fltr->flow_id,
13014 							fltr->sw_id)) {
13015 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13016 									 fltr);
13017 					del = true;
13018 				}
13019 			} else {
13020 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13021 								       fltr);
13022 				if (rc)
13023 					del = true;
13024 				else
13025 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13026 			}
13027 
13028 			if (del) {
13029 				spin_lock_bh(&bp->ntp_fltr_lock);
13030 				hlist_del_rcu(&fltr->hash);
13031 				bp->ntp_fltr_count--;
13032 				spin_unlock_bh(&bp->ntp_fltr_lock);
13033 				synchronize_rcu();
13034 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13035 				kfree(fltr);
13036 			}
13037 		}
13038 	}
13039 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13040 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13041 }
13042 
13043 #else
13044 
13045 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13046 {
13047 }
13048 
13049 #endif /* CONFIG_RFS_ACCEL */
13050 
13051 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
13052 				    unsigned int entry, struct udp_tunnel_info *ti)
13053 {
13054 	struct bnxt *bp = netdev_priv(netdev);
13055 	unsigned int cmd;
13056 
13057 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13058 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13059 	else
13060 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13061 
13062 	return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd);
13063 }
13064 
13065 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
13066 				      unsigned int entry, struct udp_tunnel_info *ti)
13067 {
13068 	struct bnxt *bp = netdev_priv(netdev);
13069 	unsigned int cmd;
13070 
13071 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
13072 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13073 	else
13074 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13075 
13076 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13077 }
13078 
13079 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13080 	.set_port	= bnxt_udp_tunnel_set_port,
13081 	.unset_port	= bnxt_udp_tunnel_unset_port,
13082 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13083 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13084 	.tables		= {
13085 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13086 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13087 	},
13088 };
13089 
13090 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13091 			       struct net_device *dev, u32 filter_mask,
13092 			       int nlflags)
13093 {
13094 	struct bnxt *bp = netdev_priv(dev);
13095 
13096 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13097 				       nlflags, filter_mask, NULL);
13098 }
13099 
13100 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13101 			       u16 flags, struct netlink_ext_ack *extack)
13102 {
13103 	struct bnxt *bp = netdev_priv(dev);
13104 	struct nlattr *attr, *br_spec;
13105 	int rem, rc = 0;
13106 
13107 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13108 		return -EOPNOTSUPP;
13109 
13110 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13111 	if (!br_spec)
13112 		return -EINVAL;
13113 
13114 	nla_for_each_nested(attr, br_spec, rem) {
13115 		u16 mode;
13116 
13117 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13118 			continue;
13119 
13120 		mode = nla_get_u16(attr);
13121 		if (mode == bp->br_mode)
13122 			break;
13123 
13124 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13125 		if (!rc)
13126 			bp->br_mode = mode;
13127 		break;
13128 	}
13129 	return rc;
13130 }
13131 
13132 int bnxt_get_port_parent_id(struct net_device *dev,
13133 			    struct netdev_phys_item_id *ppid)
13134 {
13135 	struct bnxt *bp = netdev_priv(dev);
13136 
13137 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13138 		return -EOPNOTSUPP;
13139 
13140 	/* The PF and it's VF-reps only support the switchdev framework */
13141 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13142 		return -EOPNOTSUPP;
13143 
13144 	ppid->id_len = sizeof(bp->dsn);
13145 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13146 
13147 	return 0;
13148 }
13149 
13150 static const struct net_device_ops bnxt_netdev_ops = {
13151 	.ndo_open		= bnxt_open,
13152 	.ndo_start_xmit		= bnxt_start_xmit,
13153 	.ndo_stop		= bnxt_close,
13154 	.ndo_get_stats64	= bnxt_get_stats64,
13155 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13156 	.ndo_eth_ioctl		= bnxt_ioctl,
13157 	.ndo_validate_addr	= eth_validate_addr,
13158 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13159 	.ndo_change_mtu		= bnxt_change_mtu,
13160 	.ndo_fix_features	= bnxt_fix_features,
13161 	.ndo_set_features	= bnxt_set_features,
13162 	.ndo_features_check	= bnxt_features_check,
13163 	.ndo_tx_timeout		= bnxt_tx_timeout,
13164 #ifdef CONFIG_BNXT_SRIOV
13165 	.ndo_get_vf_config	= bnxt_get_vf_config,
13166 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13167 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13168 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13169 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13170 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13171 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13172 #endif
13173 	.ndo_setup_tc           = bnxt_setup_tc,
13174 #ifdef CONFIG_RFS_ACCEL
13175 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13176 #endif
13177 	.ndo_bpf		= bnxt_xdp,
13178 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13179 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13180 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13181 };
13182 
13183 static void bnxt_remove_one(struct pci_dev *pdev)
13184 {
13185 	struct net_device *dev = pci_get_drvdata(pdev);
13186 	struct bnxt *bp = netdev_priv(dev);
13187 
13188 	if (BNXT_PF(bp))
13189 		bnxt_sriov_disable(bp);
13190 
13191 	bnxt_rdma_aux_device_uninit(bp);
13192 
13193 	bnxt_ptp_clear(bp);
13194 	unregister_netdev(dev);
13195 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13196 	/* Flush any pending tasks */
13197 	cancel_work_sync(&bp->sp_task);
13198 	cancel_delayed_work_sync(&bp->fw_reset_task);
13199 	bp->sp_event = 0;
13200 
13201 	bnxt_dl_fw_reporters_destroy(bp);
13202 	bnxt_dl_unregister(bp);
13203 	bnxt_shutdown_tc(bp);
13204 
13205 	bnxt_clear_int_mode(bp);
13206 	bnxt_hwrm_func_drv_unrgtr(bp);
13207 	bnxt_free_hwrm_resources(bp);
13208 	bnxt_ethtool_free(bp);
13209 	bnxt_dcb_free(bp);
13210 	kfree(bp->ptp_cfg);
13211 	bp->ptp_cfg = NULL;
13212 	kfree(bp->fw_health);
13213 	bp->fw_health = NULL;
13214 	bnxt_cleanup_pci(bp);
13215 	bnxt_free_ctx_mem(bp);
13216 	kfree(bp->ctx);
13217 	bp->ctx = NULL;
13218 	kfree(bp->rss_indir_tbl);
13219 	bp->rss_indir_tbl = NULL;
13220 	bnxt_free_port_stats(bp);
13221 	free_netdev(dev);
13222 }
13223 
13224 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13225 {
13226 	int rc = 0;
13227 	struct bnxt_link_info *link_info = &bp->link_info;
13228 
13229 	bp->phy_flags = 0;
13230 	rc = bnxt_hwrm_phy_qcaps(bp);
13231 	if (rc) {
13232 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13233 			   rc);
13234 		return rc;
13235 	}
13236 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13237 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13238 	else
13239 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13240 	if (!fw_dflt)
13241 		return 0;
13242 
13243 	mutex_lock(&bp->link_lock);
13244 	rc = bnxt_update_link(bp, false);
13245 	if (rc) {
13246 		mutex_unlock(&bp->link_lock);
13247 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13248 			   rc);
13249 		return rc;
13250 	}
13251 
13252 	/* Older firmware does not have supported_auto_speeds, so assume
13253 	 * that all supported speeds can be autonegotiated.
13254 	 */
13255 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13256 		link_info->support_auto_speeds = link_info->support_speeds;
13257 
13258 	bnxt_init_ethtool_link_settings(bp);
13259 	mutex_unlock(&bp->link_lock);
13260 	return 0;
13261 }
13262 
13263 static int bnxt_get_max_irq(struct pci_dev *pdev)
13264 {
13265 	u16 ctrl;
13266 
13267 	if (!pdev->msix_cap)
13268 		return 1;
13269 
13270 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13271 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13272 }
13273 
13274 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13275 				int *max_cp)
13276 {
13277 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13278 	int max_ring_grps = 0, max_irq;
13279 
13280 	*max_tx = hw_resc->max_tx_rings;
13281 	*max_rx = hw_resc->max_rx_rings;
13282 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13283 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13284 			bnxt_get_ulp_msix_num(bp),
13285 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13286 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13287 		*max_cp = min_t(int, *max_cp, max_irq);
13288 	max_ring_grps = hw_resc->max_hw_ring_grps;
13289 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13290 		*max_cp -= 1;
13291 		*max_rx -= 2;
13292 	}
13293 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13294 		*max_rx >>= 1;
13295 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13296 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13297 		/* On P5 chips, max_cp output param should be available NQs */
13298 		*max_cp = max_irq;
13299 	}
13300 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13301 }
13302 
13303 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13304 {
13305 	int rx, tx, cp;
13306 
13307 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13308 	*max_rx = rx;
13309 	*max_tx = tx;
13310 	if (!rx || !tx || !cp)
13311 		return -ENOMEM;
13312 
13313 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13314 }
13315 
13316 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13317 			       bool shared)
13318 {
13319 	int rc;
13320 
13321 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13322 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13323 		/* Not enough rings, try disabling agg rings. */
13324 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13325 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13326 		if (rc) {
13327 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13328 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13329 			return rc;
13330 		}
13331 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13332 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13333 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13334 		bnxt_set_ring_params(bp);
13335 	}
13336 
13337 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13338 		int max_cp, max_stat, max_irq;
13339 
13340 		/* Reserve minimum resources for RoCE */
13341 		max_cp = bnxt_get_max_func_cp_rings(bp);
13342 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13343 		max_irq = bnxt_get_max_func_irqs(bp);
13344 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13345 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13346 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13347 			return 0;
13348 
13349 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13350 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13351 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13352 		max_cp = min_t(int, max_cp, max_irq);
13353 		max_cp = min_t(int, max_cp, max_stat);
13354 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13355 		if (rc)
13356 			rc = 0;
13357 	}
13358 	return rc;
13359 }
13360 
13361 /* In initial default shared ring setting, each shared ring must have a
13362  * RX/TX ring pair.
13363  */
13364 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13365 {
13366 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13367 	bp->rx_nr_rings = bp->cp_nr_rings;
13368 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13369 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13370 }
13371 
13372 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13373 {
13374 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13375 
13376 	if (!bnxt_can_reserve_rings(bp))
13377 		return 0;
13378 
13379 	if (sh)
13380 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13381 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13382 	/* Reduce default rings on multi-port cards so that total default
13383 	 * rings do not exceed CPU count.
13384 	 */
13385 	if (bp->port_count > 1) {
13386 		int max_rings =
13387 			max_t(int, num_online_cpus() / bp->port_count, 1);
13388 
13389 		dflt_rings = min_t(int, dflt_rings, max_rings);
13390 	}
13391 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13392 	if (rc)
13393 		return rc;
13394 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13395 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13396 	if (sh)
13397 		bnxt_trim_dflt_sh_rings(bp);
13398 	else
13399 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13400 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13401 
13402 	rc = __bnxt_reserve_rings(bp);
13403 	if (rc && rc != -ENODEV)
13404 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13405 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13406 	if (sh)
13407 		bnxt_trim_dflt_sh_rings(bp);
13408 
13409 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13410 	if (bnxt_need_reserve_rings(bp)) {
13411 		rc = __bnxt_reserve_rings(bp);
13412 		if (rc && rc != -ENODEV)
13413 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13414 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13415 	}
13416 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13417 		bp->rx_nr_rings++;
13418 		bp->cp_nr_rings++;
13419 	}
13420 	if (rc) {
13421 		bp->tx_nr_rings = 0;
13422 		bp->rx_nr_rings = 0;
13423 	}
13424 	return rc;
13425 }
13426 
13427 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13428 {
13429 	int rc;
13430 
13431 	if (bp->tx_nr_rings)
13432 		return 0;
13433 
13434 	bnxt_ulp_irq_stop(bp);
13435 	bnxt_clear_int_mode(bp);
13436 	rc = bnxt_set_dflt_rings(bp, true);
13437 	if (rc) {
13438 		if (BNXT_VF(bp) && rc == -ENODEV)
13439 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13440 		else
13441 			netdev_err(bp->dev, "Not enough rings available.\n");
13442 		goto init_dflt_ring_err;
13443 	}
13444 	rc = bnxt_init_int_mode(bp);
13445 	if (rc)
13446 		goto init_dflt_ring_err;
13447 
13448 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13449 
13450 	bnxt_set_dflt_rfs(bp);
13451 
13452 init_dflt_ring_err:
13453 	bnxt_ulp_irq_restart(bp, rc);
13454 	return rc;
13455 }
13456 
13457 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13458 {
13459 	int rc;
13460 
13461 	ASSERT_RTNL();
13462 	bnxt_hwrm_func_qcaps(bp);
13463 
13464 	if (netif_running(bp->dev))
13465 		__bnxt_close_nic(bp, true, false);
13466 
13467 	bnxt_ulp_irq_stop(bp);
13468 	bnxt_clear_int_mode(bp);
13469 	rc = bnxt_init_int_mode(bp);
13470 	bnxt_ulp_irq_restart(bp, rc);
13471 
13472 	if (netif_running(bp->dev)) {
13473 		if (rc)
13474 			dev_close(bp->dev);
13475 		else
13476 			rc = bnxt_open_nic(bp, true, false);
13477 	}
13478 
13479 	return rc;
13480 }
13481 
13482 static int bnxt_init_mac_addr(struct bnxt *bp)
13483 {
13484 	int rc = 0;
13485 
13486 	if (BNXT_PF(bp)) {
13487 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13488 	} else {
13489 #ifdef CONFIG_BNXT_SRIOV
13490 		struct bnxt_vf_info *vf = &bp->vf;
13491 		bool strict_approval = true;
13492 
13493 		if (is_valid_ether_addr(vf->mac_addr)) {
13494 			/* overwrite netdev dev_addr with admin VF MAC */
13495 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13496 			/* Older PF driver or firmware may not approve this
13497 			 * correctly.
13498 			 */
13499 			strict_approval = false;
13500 		} else {
13501 			eth_hw_addr_random(bp->dev);
13502 		}
13503 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13504 #endif
13505 	}
13506 	return rc;
13507 }
13508 
13509 static void bnxt_vpd_read_info(struct bnxt *bp)
13510 {
13511 	struct pci_dev *pdev = bp->pdev;
13512 	unsigned int vpd_size, kw_len;
13513 	int pos, size;
13514 	u8 *vpd_data;
13515 
13516 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13517 	if (IS_ERR(vpd_data)) {
13518 		pci_warn(pdev, "Unable to read VPD\n");
13519 		return;
13520 	}
13521 
13522 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13523 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13524 	if (pos < 0)
13525 		goto read_sn;
13526 
13527 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13528 	memcpy(bp->board_partno, &vpd_data[pos], size);
13529 
13530 read_sn:
13531 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13532 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13533 					   &kw_len);
13534 	if (pos < 0)
13535 		goto exit;
13536 
13537 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13538 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13539 exit:
13540 	kfree(vpd_data);
13541 }
13542 
13543 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13544 {
13545 	struct pci_dev *pdev = bp->pdev;
13546 	u64 qword;
13547 
13548 	qword = pci_get_dsn(pdev);
13549 	if (!qword) {
13550 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13551 		return -EOPNOTSUPP;
13552 	}
13553 
13554 	put_unaligned_le64(qword, dsn);
13555 
13556 	bp->flags |= BNXT_FLAG_DSN_VALID;
13557 	return 0;
13558 }
13559 
13560 static int bnxt_map_db_bar(struct bnxt *bp)
13561 {
13562 	if (!bp->db_size)
13563 		return -ENODEV;
13564 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13565 	if (!bp->bar1)
13566 		return -ENOMEM;
13567 	return 0;
13568 }
13569 
13570 void bnxt_print_device_info(struct bnxt *bp)
13571 {
13572 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13573 		    board_info[bp->board_idx].name,
13574 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13575 
13576 	pcie_print_link_status(bp->pdev);
13577 }
13578 
13579 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13580 {
13581 	struct net_device *dev;
13582 	struct bnxt *bp;
13583 	int rc, max_irqs;
13584 
13585 	if (pci_is_bridge(pdev))
13586 		return -ENODEV;
13587 
13588 	/* Clear any pending DMA transactions from crash kernel
13589 	 * while loading driver in capture kernel.
13590 	 */
13591 	if (is_kdump_kernel()) {
13592 		pci_clear_master(pdev);
13593 		pcie_flr(pdev);
13594 	}
13595 
13596 	max_irqs = bnxt_get_max_irq(pdev);
13597 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13598 	if (!dev)
13599 		return -ENOMEM;
13600 
13601 	bp = netdev_priv(dev);
13602 	bp->board_idx = ent->driver_data;
13603 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13604 	bnxt_set_max_func_irqs(bp, max_irqs);
13605 
13606 	if (bnxt_vf_pciid(bp->board_idx))
13607 		bp->flags |= BNXT_FLAG_VF;
13608 
13609 	/* No devlink port registration in case of a VF */
13610 	if (BNXT_PF(bp))
13611 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
13612 
13613 	if (pdev->msix_cap)
13614 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13615 
13616 	rc = bnxt_init_board(pdev, dev);
13617 	if (rc < 0)
13618 		goto init_err_free;
13619 
13620 	dev->netdev_ops = &bnxt_netdev_ops;
13621 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13622 	dev->ethtool_ops = &bnxt_ethtool_ops;
13623 	pci_set_drvdata(pdev, dev);
13624 
13625 	rc = bnxt_alloc_hwrm_resources(bp);
13626 	if (rc)
13627 		goto init_err_pci_clean;
13628 
13629 	mutex_init(&bp->hwrm_cmd_lock);
13630 	mutex_init(&bp->link_lock);
13631 
13632 	rc = bnxt_fw_init_one_p1(bp);
13633 	if (rc)
13634 		goto init_err_pci_clean;
13635 
13636 	if (BNXT_PF(bp))
13637 		bnxt_vpd_read_info(bp);
13638 
13639 	if (BNXT_CHIP_P5(bp)) {
13640 		bp->flags |= BNXT_FLAG_CHIP_P5;
13641 		if (BNXT_CHIP_SR2(bp))
13642 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13643 	}
13644 
13645 	rc = bnxt_alloc_rss_indir_tbl(bp);
13646 	if (rc)
13647 		goto init_err_pci_clean;
13648 
13649 	rc = bnxt_fw_init_one_p2(bp);
13650 	if (rc)
13651 		goto init_err_pci_clean;
13652 
13653 	rc = bnxt_map_db_bar(bp);
13654 	if (rc) {
13655 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13656 			rc);
13657 		goto init_err_pci_clean;
13658 	}
13659 
13660 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13661 			   NETIF_F_TSO | NETIF_F_TSO6 |
13662 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13663 			   NETIF_F_GSO_IPXIP4 |
13664 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13665 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13666 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13667 
13668 	if (BNXT_SUPPORTS_TPA(bp))
13669 		dev->hw_features |= NETIF_F_LRO;
13670 
13671 	dev->hw_enc_features =
13672 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13673 			NETIF_F_TSO | NETIF_F_TSO6 |
13674 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13675 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13676 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13677 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13678 
13679 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13680 				    NETIF_F_GSO_GRE_CSUM;
13681 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13682 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13683 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13684 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13685 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13686 	if (BNXT_SUPPORTS_TPA(bp))
13687 		dev->hw_features |= NETIF_F_GRO_HW;
13688 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13689 	if (dev->features & NETIF_F_GRO_HW)
13690 		dev->features &= ~NETIF_F_LRO;
13691 	dev->priv_flags |= IFF_UNICAST_FLT;
13692 
13693 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
13694 
13695 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
13696 			    NETDEV_XDP_ACT_RX_SG;
13697 
13698 #ifdef CONFIG_BNXT_SRIOV
13699 	init_waitqueue_head(&bp->sriov_cfg_wait);
13700 #endif
13701 	if (BNXT_SUPPORTS_TPA(bp)) {
13702 		bp->gro_func = bnxt_gro_func_5730x;
13703 		if (BNXT_CHIP_P4(bp))
13704 			bp->gro_func = bnxt_gro_func_5731x;
13705 		else if (BNXT_CHIP_P5(bp))
13706 			bp->gro_func = bnxt_gro_func_5750x;
13707 	}
13708 	if (!BNXT_CHIP_P4_PLUS(bp))
13709 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13710 
13711 	rc = bnxt_init_mac_addr(bp);
13712 	if (rc) {
13713 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13714 		rc = -EADDRNOTAVAIL;
13715 		goto init_err_pci_clean;
13716 	}
13717 
13718 	if (BNXT_PF(bp)) {
13719 		/* Read the adapter's DSN to use as the eswitch switch_id */
13720 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13721 	}
13722 
13723 	/* MTU range: 60 - FW defined max */
13724 	dev->min_mtu = ETH_ZLEN;
13725 	dev->max_mtu = bp->max_mtu;
13726 
13727 	rc = bnxt_probe_phy(bp, true);
13728 	if (rc)
13729 		goto init_err_pci_clean;
13730 
13731 	bnxt_set_rx_skb_mode(bp, false);
13732 	bnxt_set_tpa_flags(bp);
13733 	bnxt_set_ring_params(bp);
13734 	rc = bnxt_set_dflt_rings(bp, true);
13735 	if (rc) {
13736 		if (BNXT_VF(bp) && rc == -ENODEV) {
13737 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13738 		} else {
13739 			netdev_err(bp->dev, "Not enough rings available.\n");
13740 			rc = -ENOMEM;
13741 		}
13742 		goto init_err_pci_clean;
13743 	}
13744 
13745 	bnxt_fw_init_one_p3(bp);
13746 
13747 	bnxt_init_dflt_coal(bp);
13748 
13749 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13750 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13751 
13752 	rc = bnxt_init_int_mode(bp);
13753 	if (rc)
13754 		goto init_err_pci_clean;
13755 
13756 	/* No TC has been set yet and rings may have been trimmed due to
13757 	 * limited MSIX, so we re-initialize the TX rings per TC.
13758 	 */
13759 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13760 
13761 	if (BNXT_PF(bp)) {
13762 		if (!bnxt_pf_wq) {
13763 			bnxt_pf_wq =
13764 				create_singlethread_workqueue("bnxt_pf_wq");
13765 			if (!bnxt_pf_wq) {
13766 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13767 				rc = -ENOMEM;
13768 				goto init_err_pci_clean;
13769 			}
13770 		}
13771 		rc = bnxt_init_tc(bp);
13772 		if (rc)
13773 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13774 				   rc);
13775 	}
13776 
13777 	bnxt_inv_fw_health_reg(bp);
13778 	rc = bnxt_dl_register(bp);
13779 	if (rc)
13780 		goto init_err_dl;
13781 
13782 	rc = register_netdev(dev);
13783 	if (rc)
13784 		goto init_err_cleanup;
13785 
13786 	bnxt_dl_fw_reporters_create(bp);
13787 
13788 	bnxt_rdma_aux_device_init(bp);
13789 
13790 	bnxt_print_device_info(bp);
13791 
13792 	pci_save_state(pdev);
13793 
13794 	return 0;
13795 init_err_cleanup:
13796 	bnxt_dl_unregister(bp);
13797 init_err_dl:
13798 	bnxt_shutdown_tc(bp);
13799 	bnxt_clear_int_mode(bp);
13800 
13801 init_err_pci_clean:
13802 	bnxt_hwrm_func_drv_unrgtr(bp);
13803 	bnxt_free_hwrm_resources(bp);
13804 	bnxt_ethtool_free(bp);
13805 	bnxt_ptp_clear(bp);
13806 	kfree(bp->ptp_cfg);
13807 	bp->ptp_cfg = NULL;
13808 	kfree(bp->fw_health);
13809 	bp->fw_health = NULL;
13810 	bnxt_cleanup_pci(bp);
13811 	bnxt_free_ctx_mem(bp);
13812 	kfree(bp->ctx);
13813 	bp->ctx = NULL;
13814 	kfree(bp->rss_indir_tbl);
13815 	bp->rss_indir_tbl = NULL;
13816 
13817 init_err_free:
13818 	free_netdev(dev);
13819 	return rc;
13820 }
13821 
13822 static void bnxt_shutdown(struct pci_dev *pdev)
13823 {
13824 	struct net_device *dev = pci_get_drvdata(pdev);
13825 	struct bnxt *bp;
13826 
13827 	if (!dev)
13828 		return;
13829 
13830 	rtnl_lock();
13831 	bp = netdev_priv(dev);
13832 	if (!bp)
13833 		goto shutdown_exit;
13834 
13835 	if (netif_running(dev))
13836 		dev_close(dev);
13837 
13838 	bnxt_clear_int_mode(bp);
13839 	pci_disable_device(pdev);
13840 
13841 	if (system_state == SYSTEM_POWER_OFF) {
13842 		pci_wake_from_d3(pdev, bp->wol);
13843 		pci_set_power_state(pdev, PCI_D3hot);
13844 	}
13845 
13846 shutdown_exit:
13847 	rtnl_unlock();
13848 }
13849 
13850 #ifdef CONFIG_PM_SLEEP
13851 static int bnxt_suspend(struct device *device)
13852 {
13853 	struct net_device *dev = dev_get_drvdata(device);
13854 	struct bnxt *bp = netdev_priv(dev);
13855 	int rc = 0;
13856 
13857 	rtnl_lock();
13858 	bnxt_ulp_stop(bp);
13859 	if (netif_running(dev)) {
13860 		netif_device_detach(dev);
13861 		rc = bnxt_close(dev);
13862 	}
13863 	bnxt_hwrm_func_drv_unrgtr(bp);
13864 	pci_disable_device(bp->pdev);
13865 	bnxt_free_ctx_mem(bp);
13866 	kfree(bp->ctx);
13867 	bp->ctx = NULL;
13868 	rtnl_unlock();
13869 	return rc;
13870 }
13871 
13872 static int bnxt_resume(struct device *device)
13873 {
13874 	struct net_device *dev = dev_get_drvdata(device);
13875 	struct bnxt *bp = netdev_priv(dev);
13876 	int rc = 0;
13877 
13878 	rtnl_lock();
13879 	rc = pci_enable_device(bp->pdev);
13880 	if (rc) {
13881 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13882 			   rc);
13883 		goto resume_exit;
13884 	}
13885 	pci_set_master(bp->pdev);
13886 	if (bnxt_hwrm_ver_get(bp)) {
13887 		rc = -ENODEV;
13888 		goto resume_exit;
13889 	}
13890 	rc = bnxt_hwrm_func_reset(bp);
13891 	if (rc) {
13892 		rc = -EBUSY;
13893 		goto resume_exit;
13894 	}
13895 
13896 	rc = bnxt_hwrm_func_qcaps(bp);
13897 	if (rc)
13898 		goto resume_exit;
13899 
13900 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13901 		rc = -ENODEV;
13902 		goto resume_exit;
13903 	}
13904 
13905 	bnxt_get_wol_settings(bp);
13906 	if (netif_running(dev)) {
13907 		rc = bnxt_open(dev);
13908 		if (!rc)
13909 			netif_device_attach(dev);
13910 	}
13911 
13912 resume_exit:
13913 	bnxt_ulp_start(bp, rc);
13914 	if (!rc)
13915 		bnxt_reenable_sriov(bp);
13916 	rtnl_unlock();
13917 	return rc;
13918 }
13919 
13920 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13921 #define BNXT_PM_OPS (&bnxt_pm_ops)
13922 
13923 #else
13924 
13925 #define BNXT_PM_OPS NULL
13926 
13927 #endif /* CONFIG_PM_SLEEP */
13928 
13929 /**
13930  * bnxt_io_error_detected - called when PCI error is detected
13931  * @pdev: Pointer to PCI device
13932  * @state: The current pci connection state
13933  *
13934  * This function is called after a PCI bus error affecting
13935  * this device has been detected.
13936  */
13937 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13938 					       pci_channel_state_t state)
13939 {
13940 	struct net_device *netdev = pci_get_drvdata(pdev);
13941 	struct bnxt *bp = netdev_priv(netdev);
13942 
13943 	netdev_info(netdev, "PCI I/O error detected\n");
13944 
13945 	rtnl_lock();
13946 	netif_device_detach(netdev);
13947 
13948 	bnxt_ulp_stop(bp);
13949 
13950 	if (state == pci_channel_io_perm_failure) {
13951 		rtnl_unlock();
13952 		return PCI_ERS_RESULT_DISCONNECT;
13953 	}
13954 
13955 	if (state == pci_channel_io_frozen)
13956 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13957 
13958 	if (netif_running(netdev))
13959 		bnxt_close(netdev);
13960 
13961 	if (pci_is_enabled(pdev))
13962 		pci_disable_device(pdev);
13963 	bnxt_free_ctx_mem(bp);
13964 	kfree(bp->ctx);
13965 	bp->ctx = NULL;
13966 	rtnl_unlock();
13967 
13968 	/* Request a slot slot reset. */
13969 	return PCI_ERS_RESULT_NEED_RESET;
13970 }
13971 
13972 /**
13973  * bnxt_io_slot_reset - called after the pci bus has been reset.
13974  * @pdev: Pointer to PCI device
13975  *
13976  * Restart the card from scratch, as if from a cold-boot.
13977  * At this point, the card has exprienced a hard reset,
13978  * followed by fixups by BIOS, and has its config space
13979  * set up identically to what it was at cold boot.
13980  */
13981 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13982 {
13983 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13984 	struct net_device *netdev = pci_get_drvdata(pdev);
13985 	struct bnxt *bp = netdev_priv(netdev);
13986 	int retry = 0;
13987 	int err = 0;
13988 	int off;
13989 
13990 	netdev_info(bp->dev, "PCI Slot Reset\n");
13991 
13992 	rtnl_lock();
13993 
13994 	if (pci_enable_device(pdev)) {
13995 		dev_err(&pdev->dev,
13996 			"Cannot re-enable PCI device after reset.\n");
13997 	} else {
13998 		pci_set_master(pdev);
13999 		/* Upon fatal error, our device internal logic that latches to
14000 		 * BAR value is getting reset and will restore only upon
14001 		 * rewritting the BARs.
14002 		 *
14003 		 * As pci_restore_state() does not re-write the BARs if the
14004 		 * value is same as saved value earlier, driver needs to
14005 		 * write the BARs to 0 to force restore, in case of fatal error.
14006 		 */
14007 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
14008 				       &bp->state)) {
14009 			for (off = PCI_BASE_ADDRESS_0;
14010 			     off <= PCI_BASE_ADDRESS_5; off += 4)
14011 				pci_write_config_dword(bp->pdev, off, 0);
14012 		}
14013 		pci_restore_state(pdev);
14014 		pci_save_state(pdev);
14015 
14016 		bnxt_inv_fw_health_reg(bp);
14017 		bnxt_try_map_fw_health_reg(bp);
14018 
14019 		/* In some PCIe AER scenarios, firmware may take up to
14020 		 * 10 seconds to become ready in the worst case.
14021 		 */
14022 		do {
14023 			err = bnxt_try_recover_fw(bp);
14024 			if (!err)
14025 				break;
14026 			retry++;
14027 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14028 
14029 		if (err) {
14030 			dev_err(&pdev->dev, "Firmware not ready\n");
14031 			goto reset_exit;
14032 		}
14033 
14034 		err = bnxt_hwrm_func_reset(bp);
14035 		if (!err)
14036 			result = PCI_ERS_RESULT_RECOVERED;
14037 
14038 		bnxt_ulp_irq_stop(bp);
14039 		bnxt_clear_int_mode(bp);
14040 		err = bnxt_init_int_mode(bp);
14041 		bnxt_ulp_irq_restart(bp, err);
14042 	}
14043 
14044 reset_exit:
14045 	bnxt_clear_reservations(bp, true);
14046 	rtnl_unlock();
14047 
14048 	return result;
14049 }
14050 
14051 /**
14052  * bnxt_io_resume - called when traffic can start flowing again.
14053  * @pdev: Pointer to PCI device
14054  *
14055  * This callback is called when the error recovery driver tells
14056  * us that its OK to resume normal operation.
14057  */
14058 static void bnxt_io_resume(struct pci_dev *pdev)
14059 {
14060 	struct net_device *netdev = pci_get_drvdata(pdev);
14061 	struct bnxt *bp = netdev_priv(netdev);
14062 	int err;
14063 
14064 	netdev_info(bp->dev, "PCI Slot Resume\n");
14065 	rtnl_lock();
14066 
14067 	err = bnxt_hwrm_func_qcaps(bp);
14068 	if (!err && netif_running(netdev))
14069 		err = bnxt_open(netdev);
14070 
14071 	bnxt_ulp_start(bp, err);
14072 	if (!err) {
14073 		bnxt_reenable_sriov(bp);
14074 		netif_device_attach(netdev);
14075 	}
14076 
14077 	rtnl_unlock();
14078 }
14079 
14080 static const struct pci_error_handlers bnxt_err_handler = {
14081 	.error_detected	= bnxt_io_error_detected,
14082 	.slot_reset	= bnxt_io_slot_reset,
14083 	.resume		= bnxt_io_resume
14084 };
14085 
14086 static struct pci_driver bnxt_pci_driver = {
14087 	.name		= DRV_MODULE_NAME,
14088 	.id_table	= bnxt_pci_tbl,
14089 	.probe		= bnxt_init_one,
14090 	.remove		= bnxt_remove_one,
14091 	.shutdown	= bnxt_shutdown,
14092 	.driver.pm	= BNXT_PM_OPS,
14093 	.err_handler	= &bnxt_err_handler,
14094 #if defined(CONFIG_BNXT_SRIOV)
14095 	.sriov_configure = bnxt_sriov_configure,
14096 #endif
14097 };
14098 
14099 static int __init bnxt_init(void)
14100 {
14101 	int err;
14102 
14103 	bnxt_debug_init();
14104 	err = pci_register_driver(&bnxt_pci_driver);
14105 	if (err) {
14106 		bnxt_debug_exit();
14107 		return err;
14108 	}
14109 
14110 	return 0;
14111 }
14112 
14113 static void __exit bnxt_exit(void)
14114 {
14115 	pci_unregister_driver(&bnxt_pci_driver);
14116 	if (bnxt_pf_wq)
14117 		destroy_workqueue(bnxt_pf_wq);
14118 	bnxt_debug_exit();
14119 }
14120 
14121 module_init(bnxt_init);
14122 module_exit(bnxt_exit);
14123