1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/aer.h> 52 #include <linux/bitmap.h> 53 #include <linux/cpu_rmap.h> 54 #include <linux/cpumask.h> 55 #include <net/pkt_cls.h> 56 #include <linux/hwmon.h> 57 #include <linux/hwmon-sysfs.h> 58 #include <net/page_pool.h> 59 #include <linux/align.h> 60 61 #include "bnxt_hsi.h" 62 #include "bnxt.h" 63 #include "bnxt_hwrm.h" 64 #include "bnxt_ulp.h" 65 #include "bnxt_sriov.h" 66 #include "bnxt_ethtool.h" 67 #include "bnxt_dcb.h" 68 #include "bnxt_xdp.h" 69 #include "bnxt_ptp.h" 70 #include "bnxt_vfr.h" 71 #include "bnxt_tc.h" 72 #include "bnxt_devlink.h" 73 #include "bnxt_debugfs.h" 74 75 #define BNXT_TX_TIMEOUT (5 * HZ) 76 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 77 NETIF_MSG_TX_ERR) 78 79 MODULE_LICENSE("GPL"); 80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 81 82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 84 #define BNXT_RX_COPY_THRESH 256 85 86 #define BNXT_TX_PUSH_THRESH 164 87 88 /* indexed by enum board_idx */ 89 static const struct { 90 char *name; 91 } board_info[] = { 92 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 93 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 94 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 95 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 96 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 97 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 98 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 99 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 100 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 101 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 102 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 103 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 104 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 105 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 106 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 108 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 109 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 110 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 111 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 112 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 113 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 114 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 115 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 116 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 117 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 118 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 119 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 120 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 121 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 123 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 124 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 125 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 126 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 127 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 128 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 129 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 130 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 131 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 132 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 133 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 134 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 135 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 136 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 137 }; 138 139 static const struct pci_device_id bnxt_pci_tbl[] = { 140 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 141 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 142 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 143 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 144 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 145 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 146 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 147 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 148 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 149 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 150 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 151 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 152 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 153 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 154 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 155 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 160 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 161 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 162 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 163 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 164 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 166 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 174 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 175 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 176 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 177 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 178 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 182 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 183 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 184 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 185 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 186 #ifdef CONFIG_BNXT_SRIOV 187 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 188 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 189 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 190 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 191 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 192 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 193 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 194 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 195 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 196 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 202 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 204 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 205 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 207 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 208 #endif 209 { 0 } 210 }; 211 212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 213 214 static const u16 bnxt_vf_req_snif[] = { 215 HWRM_FUNC_CFG, 216 HWRM_FUNC_VF_CFG, 217 HWRM_PORT_PHY_QCFG, 218 HWRM_CFA_L2_FILTER_ALLOC, 219 }; 220 221 static const u16 bnxt_async_events_arr[] = { 222 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 223 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 224 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 225 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 226 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 227 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 228 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 229 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 230 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 231 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 232 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 233 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 234 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 235 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 236 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 237 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 238 }; 239 240 static struct workqueue_struct *bnxt_pf_wq; 241 242 static bool bnxt_vf_pciid(enum board_idx idx) 243 { 244 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 245 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 246 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 247 idx == NETXTREME_E_P5_VF_HV); 248 } 249 250 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 251 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 252 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 253 254 #define BNXT_CP_DB_IRQ_DIS(db) \ 255 writel(DB_CP_IRQ_DIS_FLAGS, db) 256 257 #define BNXT_DB_CQ(db, idx) \ 258 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 259 260 #define BNXT_DB_NQ_P5(db, idx) \ 261 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ 262 (db)->doorbell) 263 264 #define BNXT_DB_CQ_ARM(db, idx) \ 265 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 266 267 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 268 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ 269 (db)->doorbell) 270 271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 272 { 273 if (bp->flags & BNXT_FLAG_CHIP_P5) 274 BNXT_DB_NQ_P5(db, idx); 275 else 276 BNXT_DB_CQ(db, idx); 277 } 278 279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 280 { 281 if (bp->flags & BNXT_FLAG_CHIP_P5) 282 BNXT_DB_NQ_ARM_P5(db, idx); 283 else 284 BNXT_DB_CQ_ARM(db, idx); 285 } 286 287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 288 { 289 if (bp->flags & BNXT_FLAG_CHIP_P5) 290 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 291 RING_CMP(idx), db->doorbell); 292 else 293 BNXT_DB_CQ(db, idx); 294 } 295 296 const u16 bnxt_lhint_arr[] = { 297 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 298 TX_BD_FLAGS_LHINT_512_TO_1023, 299 TX_BD_FLAGS_LHINT_1024_TO_2047, 300 TX_BD_FLAGS_LHINT_1024_TO_2047, 301 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 302 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 303 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 304 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 305 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 306 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 307 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 308 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 309 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 310 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 311 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 312 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 313 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 314 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 315 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 316 }; 317 318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 319 { 320 struct metadata_dst *md_dst = skb_metadata_dst(skb); 321 322 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 323 return 0; 324 325 return md_dst->u.port_info.port_id; 326 } 327 328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 329 u16 prod) 330 { 331 bnxt_db_write(bp, &txr->tx_db, prod); 332 txr->kick_pending = 0; 333 } 334 335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 336 struct bnxt_tx_ring_info *txr, 337 struct netdev_queue *txq) 338 { 339 netif_tx_stop_queue(txq); 340 341 /* netif_tx_stop_queue() must be done before checking 342 * tx index in bnxt_tx_avail() below, because in 343 * bnxt_tx_int(), we update tx index before checking for 344 * netif_tx_queue_stopped(). 345 */ 346 smp_mb(); 347 if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) { 348 netif_tx_wake_queue(txq); 349 return false; 350 } 351 352 return true; 353 } 354 355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 356 { 357 struct bnxt *bp = netdev_priv(dev); 358 struct tx_bd *txbd; 359 struct tx_bd_ext *txbd1; 360 struct netdev_queue *txq; 361 int i; 362 dma_addr_t mapping; 363 unsigned int length, pad = 0; 364 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 365 u16 prod, last_frag; 366 struct pci_dev *pdev = bp->pdev; 367 struct bnxt_tx_ring_info *txr; 368 struct bnxt_sw_tx_bd *tx_buf; 369 __le32 lflags = 0; 370 371 i = skb_get_queue_mapping(skb); 372 if (unlikely(i >= bp->tx_nr_rings)) { 373 dev_kfree_skb_any(skb); 374 dev_core_stats_tx_dropped_inc(dev); 375 return NETDEV_TX_OK; 376 } 377 378 txq = netdev_get_tx_queue(dev, i); 379 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 380 prod = txr->tx_prod; 381 382 free_size = bnxt_tx_avail(bp, txr); 383 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 384 /* We must have raced with NAPI cleanup */ 385 if (net_ratelimit() && txr->kick_pending) 386 netif_warn(bp, tx_err, dev, 387 "bnxt: ring busy w/ flush pending!\n"); 388 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 389 return NETDEV_TX_BUSY; 390 } 391 392 length = skb->len; 393 len = skb_headlen(skb); 394 last_frag = skb_shinfo(skb)->nr_frags; 395 396 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 397 398 txbd->tx_bd_opaque = prod; 399 400 tx_buf = &txr->tx_buf_ring[prod]; 401 tx_buf->skb = skb; 402 tx_buf->nr_frags = last_frag; 403 404 vlan_tag_flags = 0; 405 cfa_action = bnxt_xmit_get_cfa_action(skb); 406 if (skb_vlan_tag_present(skb)) { 407 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 408 skb_vlan_tag_get(skb); 409 /* Currently supports 8021Q, 8021AD vlan offloads 410 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 411 */ 412 if (skb->vlan_proto == htons(ETH_P_8021Q)) 413 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 414 } 415 416 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 417 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 418 419 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 420 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 421 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 422 &ptp->tx_hdr_off)) { 423 if (vlan_tag_flags) 424 ptp->tx_hdr_off += VLAN_HLEN; 425 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 426 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 427 } else { 428 atomic_inc(&bp->ptp_cfg->tx_avail); 429 } 430 } 431 } 432 433 if (unlikely(skb->no_fcs)) 434 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 435 436 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 437 !lflags) { 438 struct tx_push_buffer *tx_push_buf = txr->tx_push; 439 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 440 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 441 void __iomem *db = txr->tx_db.doorbell; 442 void *pdata = tx_push_buf->data; 443 u64 *end; 444 int j, push_len; 445 446 /* Set COAL_NOW to be ready quickly for the next push */ 447 tx_push->tx_bd_len_flags_type = 448 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 449 TX_BD_TYPE_LONG_TX_BD | 450 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 451 TX_BD_FLAGS_COAL_NOW | 452 TX_BD_FLAGS_PACKET_END | 453 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 454 455 if (skb->ip_summed == CHECKSUM_PARTIAL) 456 tx_push1->tx_bd_hsize_lflags = 457 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 458 else 459 tx_push1->tx_bd_hsize_lflags = 0; 460 461 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 462 tx_push1->tx_bd_cfa_action = 463 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 464 465 end = pdata + length; 466 end = PTR_ALIGN(end, 8) - 1; 467 *end = 0; 468 469 skb_copy_from_linear_data(skb, pdata, len); 470 pdata += len; 471 for (j = 0; j < last_frag; j++) { 472 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 473 void *fptr; 474 475 fptr = skb_frag_address_safe(frag); 476 if (!fptr) 477 goto normal_tx; 478 479 memcpy(pdata, fptr, skb_frag_size(frag)); 480 pdata += skb_frag_size(frag); 481 } 482 483 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 484 txbd->tx_bd_haddr = txr->data_mapping; 485 prod = NEXT_TX(prod); 486 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 487 memcpy(txbd, tx_push1, sizeof(*txbd)); 488 prod = NEXT_TX(prod); 489 tx_push->doorbell = 490 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 491 txr->tx_prod = prod; 492 493 tx_buf->is_push = 1; 494 netdev_tx_sent_queue(txq, skb->len); 495 wmb(); /* Sync is_push and byte queue before pushing data */ 496 497 push_len = (length + sizeof(*tx_push) + 7) / 8; 498 if (push_len > 16) { 499 __iowrite64_copy(db, tx_push_buf, 16); 500 __iowrite32_copy(db + 4, tx_push_buf + 1, 501 (push_len - 16) << 1); 502 } else { 503 __iowrite64_copy(db, tx_push_buf, push_len); 504 } 505 506 goto tx_done; 507 } 508 509 normal_tx: 510 if (length < BNXT_MIN_PKT_SIZE) { 511 pad = BNXT_MIN_PKT_SIZE - length; 512 if (skb_pad(skb, pad)) 513 /* SKB already freed. */ 514 goto tx_kick_pending; 515 length = BNXT_MIN_PKT_SIZE; 516 } 517 518 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 519 520 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 521 goto tx_free; 522 523 dma_unmap_addr_set(tx_buf, mapping, mapping); 524 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 525 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 526 527 txbd->tx_bd_haddr = cpu_to_le64(mapping); 528 529 prod = NEXT_TX(prod); 530 txbd1 = (struct tx_bd_ext *) 531 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 532 533 txbd1->tx_bd_hsize_lflags = lflags; 534 if (skb_is_gso(skb)) { 535 u32 hdr_len; 536 537 if (skb->encapsulation) 538 hdr_len = skb_inner_network_offset(skb) + 539 skb_inner_network_header_len(skb) + 540 inner_tcp_hdrlen(skb); 541 else 542 hdr_len = skb_transport_offset(skb) + 543 tcp_hdrlen(skb); 544 545 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 546 TX_BD_FLAGS_T_IPID | 547 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 548 length = skb_shinfo(skb)->gso_size; 549 txbd1->tx_bd_mss = cpu_to_le32(length); 550 length += hdr_len; 551 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 552 txbd1->tx_bd_hsize_lflags |= 553 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 554 txbd1->tx_bd_mss = 0; 555 } 556 557 length >>= 9; 558 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 559 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 560 skb->len); 561 i = 0; 562 goto tx_dma_error; 563 } 564 flags |= bnxt_lhint_arr[length]; 565 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 566 567 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 568 txbd1->tx_bd_cfa_action = 569 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 570 for (i = 0; i < last_frag; i++) { 571 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 572 573 prod = NEXT_TX(prod); 574 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 575 576 len = skb_frag_size(frag); 577 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 578 DMA_TO_DEVICE); 579 580 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 581 goto tx_dma_error; 582 583 tx_buf = &txr->tx_buf_ring[prod]; 584 dma_unmap_addr_set(tx_buf, mapping, mapping); 585 586 txbd->tx_bd_haddr = cpu_to_le64(mapping); 587 588 flags = len << TX_BD_LEN_SHIFT; 589 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 590 } 591 592 flags &= ~TX_BD_LEN; 593 txbd->tx_bd_len_flags_type = 594 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 595 TX_BD_FLAGS_PACKET_END); 596 597 netdev_tx_sent_queue(txq, skb->len); 598 599 skb_tx_timestamp(skb); 600 601 /* Sync BD data before updating doorbell */ 602 wmb(); 603 604 prod = NEXT_TX(prod); 605 txr->tx_prod = prod; 606 607 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 608 bnxt_txr_db_kick(bp, txr, prod); 609 else 610 txr->kick_pending = 1; 611 612 tx_done: 613 614 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 615 if (netdev_xmit_more() && !tx_buf->is_push) 616 bnxt_txr_db_kick(bp, txr, prod); 617 618 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 619 } 620 return NETDEV_TX_OK; 621 622 tx_dma_error: 623 if (BNXT_TX_PTP_IS_SET(lflags)) 624 atomic_inc(&bp->ptp_cfg->tx_avail); 625 626 last_frag = i; 627 628 /* start back at beginning and unmap skb */ 629 prod = txr->tx_prod; 630 tx_buf = &txr->tx_buf_ring[prod]; 631 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 632 skb_headlen(skb), DMA_TO_DEVICE); 633 prod = NEXT_TX(prod); 634 635 /* unmap remaining mapped pages */ 636 for (i = 0; i < last_frag; i++) { 637 prod = NEXT_TX(prod); 638 tx_buf = &txr->tx_buf_ring[prod]; 639 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 640 skb_frag_size(&skb_shinfo(skb)->frags[i]), 641 DMA_TO_DEVICE); 642 } 643 644 tx_free: 645 dev_kfree_skb_any(skb); 646 tx_kick_pending: 647 if (txr->kick_pending) 648 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 649 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 650 dev_core_stats_tx_dropped_inc(dev); 651 return NETDEV_TX_OK; 652 } 653 654 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 655 { 656 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 657 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 658 u16 cons = txr->tx_cons; 659 struct pci_dev *pdev = bp->pdev; 660 int i; 661 unsigned int tx_bytes = 0; 662 663 for (i = 0; i < nr_pkts; i++) { 664 struct bnxt_sw_tx_bd *tx_buf; 665 bool compl_deferred = false; 666 struct sk_buff *skb; 667 int j, last; 668 669 tx_buf = &txr->tx_buf_ring[cons]; 670 cons = NEXT_TX(cons); 671 skb = tx_buf->skb; 672 tx_buf->skb = NULL; 673 674 if (tx_buf->is_push) { 675 tx_buf->is_push = 0; 676 goto next_tx_int; 677 } 678 679 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 680 skb_headlen(skb), DMA_TO_DEVICE); 681 last = tx_buf->nr_frags; 682 683 for (j = 0; j < last; j++) { 684 cons = NEXT_TX(cons); 685 tx_buf = &txr->tx_buf_ring[cons]; 686 dma_unmap_page( 687 &pdev->dev, 688 dma_unmap_addr(tx_buf, mapping), 689 skb_frag_size(&skb_shinfo(skb)->frags[j]), 690 DMA_TO_DEVICE); 691 } 692 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 693 if (bp->flags & BNXT_FLAG_CHIP_P5) { 694 if (!bnxt_get_tx_ts_p5(bp, skb)) 695 compl_deferred = true; 696 else 697 atomic_inc(&bp->ptp_cfg->tx_avail); 698 } 699 } 700 701 next_tx_int: 702 cons = NEXT_TX(cons); 703 704 tx_bytes += skb->len; 705 if (!compl_deferred) 706 dev_kfree_skb_any(skb); 707 } 708 709 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 710 txr->tx_cons = cons; 711 712 /* Need to make the tx_cons update visible to bnxt_start_xmit() 713 * before checking for netif_tx_queue_stopped(). Without the 714 * memory barrier, there is a small possibility that bnxt_start_xmit() 715 * will miss it and cause the queue to be stopped forever. 716 */ 717 smp_mb(); 718 719 if (unlikely(netif_tx_queue_stopped(txq)) && 720 bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh && 721 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 722 netif_tx_wake_queue(txq); 723 } 724 725 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 726 struct bnxt_rx_ring_info *rxr, 727 gfp_t gfp) 728 { 729 struct device *dev = &bp->pdev->dev; 730 struct page *page; 731 732 page = page_pool_dev_alloc_pages(rxr->page_pool); 733 if (!page) 734 return NULL; 735 736 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 737 DMA_ATTR_WEAK_ORDERING); 738 if (dma_mapping_error(dev, *mapping)) { 739 page_pool_recycle_direct(rxr->page_pool, page); 740 return NULL; 741 } 742 return page; 743 } 744 745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 746 gfp_t gfp) 747 { 748 u8 *data; 749 struct pci_dev *pdev = bp->pdev; 750 751 if (gfp == GFP_ATOMIC) 752 data = napi_alloc_frag(bp->rx_buf_size); 753 else 754 data = netdev_alloc_frag(bp->rx_buf_size); 755 if (!data) 756 return NULL; 757 758 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 759 bp->rx_buf_use_size, bp->rx_dir, 760 DMA_ATTR_WEAK_ORDERING); 761 762 if (dma_mapping_error(&pdev->dev, *mapping)) { 763 skb_free_frag(data); 764 data = NULL; 765 } 766 return data; 767 } 768 769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 770 u16 prod, gfp_t gfp) 771 { 772 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 773 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 774 dma_addr_t mapping; 775 776 if (BNXT_RX_PAGE_MODE(bp)) { 777 struct page *page = 778 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 779 780 if (!page) 781 return -ENOMEM; 782 783 mapping += bp->rx_dma_offset; 784 rx_buf->data = page; 785 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 786 } else { 787 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 788 789 if (!data) 790 return -ENOMEM; 791 792 rx_buf->data = data; 793 rx_buf->data_ptr = data + bp->rx_offset; 794 } 795 rx_buf->mapping = mapping; 796 797 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 798 return 0; 799 } 800 801 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 802 { 803 u16 prod = rxr->rx_prod; 804 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 805 struct rx_bd *cons_bd, *prod_bd; 806 807 prod_rx_buf = &rxr->rx_buf_ring[prod]; 808 cons_rx_buf = &rxr->rx_buf_ring[cons]; 809 810 prod_rx_buf->data = data; 811 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 812 813 prod_rx_buf->mapping = cons_rx_buf->mapping; 814 815 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 816 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 817 818 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 819 } 820 821 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 822 { 823 u16 next, max = rxr->rx_agg_bmap_size; 824 825 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 826 if (next >= max) 827 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 828 return next; 829 } 830 831 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 832 struct bnxt_rx_ring_info *rxr, 833 u16 prod, gfp_t gfp) 834 { 835 struct rx_bd *rxbd = 836 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 837 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 838 struct pci_dev *pdev = bp->pdev; 839 struct page *page; 840 dma_addr_t mapping; 841 u16 sw_prod = rxr->rx_sw_agg_prod; 842 unsigned int offset = 0; 843 844 if (BNXT_RX_PAGE_MODE(bp)) { 845 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 846 847 if (!page) 848 return -ENOMEM; 849 850 } else { 851 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 852 page = rxr->rx_page; 853 if (!page) { 854 page = alloc_page(gfp); 855 if (!page) 856 return -ENOMEM; 857 rxr->rx_page = page; 858 rxr->rx_page_offset = 0; 859 } 860 offset = rxr->rx_page_offset; 861 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 862 if (rxr->rx_page_offset == PAGE_SIZE) 863 rxr->rx_page = NULL; 864 else 865 get_page(page); 866 } else { 867 page = alloc_page(gfp); 868 if (!page) 869 return -ENOMEM; 870 } 871 872 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 873 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 874 DMA_ATTR_WEAK_ORDERING); 875 if (dma_mapping_error(&pdev->dev, mapping)) { 876 __free_page(page); 877 return -EIO; 878 } 879 } 880 881 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 882 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 883 884 __set_bit(sw_prod, rxr->rx_agg_bmap); 885 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 886 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 887 888 rx_agg_buf->page = page; 889 rx_agg_buf->offset = offset; 890 rx_agg_buf->mapping = mapping; 891 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 892 rxbd->rx_bd_opaque = sw_prod; 893 return 0; 894 } 895 896 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 897 struct bnxt_cp_ring_info *cpr, 898 u16 cp_cons, u16 curr) 899 { 900 struct rx_agg_cmp *agg; 901 902 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 903 agg = (struct rx_agg_cmp *) 904 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 905 return agg; 906 } 907 908 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 909 struct bnxt_rx_ring_info *rxr, 910 u16 agg_id, u16 curr) 911 { 912 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 913 914 return &tpa_info->agg_arr[curr]; 915 } 916 917 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 918 u16 start, u32 agg_bufs, bool tpa) 919 { 920 struct bnxt_napi *bnapi = cpr->bnapi; 921 struct bnxt *bp = bnapi->bp; 922 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 923 u16 prod = rxr->rx_agg_prod; 924 u16 sw_prod = rxr->rx_sw_agg_prod; 925 bool p5_tpa = false; 926 u32 i; 927 928 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 929 p5_tpa = true; 930 931 for (i = 0; i < agg_bufs; i++) { 932 u16 cons; 933 struct rx_agg_cmp *agg; 934 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 935 struct rx_bd *prod_bd; 936 struct page *page; 937 938 if (p5_tpa) 939 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 940 else 941 agg = bnxt_get_agg(bp, cpr, idx, start + i); 942 cons = agg->rx_agg_cmp_opaque; 943 __clear_bit(cons, rxr->rx_agg_bmap); 944 945 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 946 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 947 948 __set_bit(sw_prod, rxr->rx_agg_bmap); 949 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 950 cons_rx_buf = &rxr->rx_agg_ring[cons]; 951 952 /* It is possible for sw_prod to be equal to cons, so 953 * set cons_rx_buf->page to NULL first. 954 */ 955 page = cons_rx_buf->page; 956 cons_rx_buf->page = NULL; 957 prod_rx_buf->page = page; 958 prod_rx_buf->offset = cons_rx_buf->offset; 959 960 prod_rx_buf->mapping = cons_rx_buf->mapping; 961 962 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 963 964 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 965 prod_bd->rx_bd_opaque = sw_prod; 966 967 prod = NEXT_RX_AGG(prod); 968 sw_prod = NEXT_RX_AGG(sw_prod); 969 } 970 rxr->rx_agg_prod = prod; 971 rxr->rx_sw_agg_prod = sw_prod; 972 } 973 974 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 975 struct bnxt_rx_ring_info *rxr, 976 u16 cons, void *data, u8 *data_ptr, 977 dma_addr_t dma_addr, 978 unsigned int offset_and_len) 979 { 980 unsigned int len = offset_and_len & 0xffff; 981 struct page *page = data; 982 u16 prod = rxr->rx_prod; 983 struct sk_buff *skb; 984 int err; 985 986 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 987 if (unlikely(err)) { 988 bnxt_reuse_rx_data(rxr, cons, data); 989 return NULL; 990 } 991 dma_addr -= bp->rx_dma_offset; 992 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 993 DMA_ATTR_WEAK_ORDERING); 994 skb = build_skb(page_address(page), BNXT_PAGE_MODE_BUF_SIZE + 995 bp->rx_dma_offset); 996 if (!skb) { 997 __free_page(page); 998 return NULL; 999 } 1000 skb_mark_for_recycle(skb); 1001 skb_reserve(skb, bp->rx_dma_offset); 1002 __skb_put(skb, len); 1003 1004 return skb; 1005 } 1006 1007 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1008 struct bnxt_rx_ring_info *rxr, 1009 u16 cons, void *data, u8 *data_ptr, 1010 dma_addr_t dma_addr, 1011 unsigned int offset_and_len) 1012 { 1013 unsigned int payload = offset_and_len >> 16; 1014 unsigned int len = offset_and_len & 0xffff; 1015 skb_frag_t *frag; 1016 struct page *page = data; 1017 u16 prod = rxr->rx_prod; 1018 struct sk_buff *skb; 1019 int off, err; 1020 1021 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1022 if (unlikely(err)) { 1023 bnxt_reuse_rx_data(rxr, cons, data); 1024 return NULL; 1025 } 1026 dma_addr -= bp->rx_dma_offset; 1027 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 1028 DMA_ATTR_WEAK_ORDERING); 1029 1030 if (unlikely(!payload)) 1031 payload = eth_get_headlen(bp->dev, data_ptr, len); 1032 1033 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1034 if (!skb) { 1035 __free_page(page); 1036 return NULL; 1037 } 1038 1039 skb_mark_for_recycle(skb); 1040 off = (void *)data_ptr - page_address(page); 1041 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 1042 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1043 payload + NET_IP_ALIGN); 1044 1045 frag = &skb_shinfo(skb)->frags[0]; 1046 skb_frag_size_sub(frag, payload); 1047 skb_frag_off_add(frag, payload); 1048 skb->data_len -= payload; 1049 skb->tail += payload; 1050 1051 return skb; 1052 } 1053 1054 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1055 struct bnxt_rx_ring_info *rxr, u16 cons, 1056 void *data, u8 *data_ptr, 1057 dma_addr_t dma_addr, 1058 unsigned int offset_and_len) 1059 { 1060 u16 prod = rxr->rx_prod; 1061 struct sk_buff *skb; 1062 int err; 1063 1064 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1065 if (unlikely(err)) { 1066 bnxt_reuse_rx_data(rxr, cons, data); 1067 return NULL; 1068 } 1069 1070 skb = build_skb(data, bp->rx_buf_size); 1071 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1072 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1073 if (!skb) { 1074 skb_free_frag(data); 1075 return NULL; 1076 } 1077 1078 skb_reserve(skb, bp->rx_offset); 1079 skb_put(skb, offset_and_len & 0xffff); 1080 return skb; 1081 } 1082 1083 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1084 struct bnxt_cp_ring_info *cpr, 1085 struct skb_shared_info *shinfo, 1086 u16 idx, u32 agg_bufs, bool tpa, 1087 struct xdp_buff *xdp) 1088 { 1089 struct bnxt_napi *bnapi = cpr->bnapi; 1090 struct pci_dev *pdev = bp->pdev; 1091 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1092 u16 prod = rxr->rx_agg_prod; 1093 u32 i, total_frag_len = 0; 1094 bool p5_tpa = false; 1095 1096 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1097 p5_tpa = true; 1098 1099 for (i = 0; i < agg_bufs; i++) { 1100 skb_frag_t *frag = &shinfo->frags[i]; 1101 u16 cons, frag_len; 1102 struct rx_agg_cmp *agg; 1103 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1104 struct page *page; 1105 dma_addr_t mapping; 1106 1107 if (p5_tpa) 1108 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1109 else 1110 agg = bnxt_get_agg(bp, cpr, idx, i); 1111 cons = agg->rx_agg_cmp_opaque; 1112 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1113 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1114 1115 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1116 skb_frag_off_set(frag, cons_rx_buf->offset); 1117 skb_frag_size_set(frag, frag_len); 1118 __skb_frag_set_page(frag, cons_rx_buf->page); 1119 shinfo->nr_frags = i + 1; 1120 __clear_bit(cons, rxr->rx_agg_bmap); 1121 1122 /* It is possible for bnxt_alloc_rx_page() to allocate 1123 * a sw_prod index that equals the cons index, so we 1124 * need to clear the cons entry now. 1125 */ 1126 mapping = cons_rx_buf->mapping; 1127 page = cons_rx_buf->page; 1128 cons_rx_buf->page = NULL; 1129 1130 if (xdp && page_is_pfmemalloc(page)) 1131 xdp_buff_set_frag_pfmemalloc(xdp); 1132 1133 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1134 unsigned int nr_frags; 1135 1136 nr_frags = --shinfo->nr_frags; 1137 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1138 cons_rx_buf->page = page; 1139 1140 /* Update prod since possibly some pages have been 1141 * allocated already. 1142 */ 1143 rxr->rx_agg_prod = prod; 1144 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1145 return 0; 1146 } 1147 1148 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1149 bp->rx_dir, 1150 DMA_ATTR_WEAK_ORDERING); 1151 1152 total_frag_len += frag_len; 1153 prod = NEXT_RX_AGG(prod); 1154 } 1155 rxr->rx_agg_prod = prod; 1156 return total_frag_len; 1157 } 1158 1159 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1160 struct bnxt_cp_ring_info *cpr, 1161 struct sk_buff *skb, u16 idx, 1162 u32 agg_bufs, bool tpa) 1163 { 1164 struct skb_shared_info *shinfo = skb_shinfo(skb); 1165 u32 total_frag_len = 0; 1166 1167 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1168 agg_bufs, tpa, NULL); 1169 if (!total_frag_len) { 1170 dev_kfree_skb(skb); 1171 return NULL; 1172 } 1173 1174 skb->data_len += total_frag_len; 1175 skb->len += total_frag_len; 1176 skb->truesize += PAGE_SIZE * agg_bufs; 1177 return skb; 1178 } 1179 1180 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1181 struct bnxt_cp_ring_info *cpr, 1182 struct xdp_buff *xdp, u16 idx, 1183 u32 agg_bufs, bool tpa) 1184 { 1185 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1186 u32 total_frag_len = 0; 1187 1188 if (!xdp_buff_has_frags(xdp)) 1189 shinfo->nr_frags = 0; 1190 1191 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1192 idx, agg_bufs, tpa, xdp); 1193 if (total_frag_len) { 1194 xdp_buff_set_frags_flag(xdp); 1195 shinfo->nr_frags = agg_bufs; 1196 shinfo->xdp_frags_size = total_frag_len; 1197 } 1198 return total_frag_len; 1199 } 1200 1201 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1202 u8 agg_bufs, u32 *raw_cons) 1203 { 1204 u16 last; 1205 struct rx_agg_cmp *agg; 1206 1207 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1208 last = RING_CMP(*raw_cons); 1209 agg = (struct rx_agg_cmp *) 1210 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1211 return RX_AGG_CMP_VALID(agg, *raw_cons); 1212 } 1213 1214 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1215 unsigned int len, 1216 dma_addr_t mapping) 1217 { 1218 struct bnxt *bp = bnapi->bp; 1219 struct pci_dev *pdev = bp->pdev; 1220 struct sk_buff *skb; 1221 1222 skb = napi_alloc_skb(&bnapi->napi, len); 1223 if (!skb) 1224 return NULL; 1225 1226 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1227 bp->rx_dir); 1228 1229 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1230 len + NET_IP_ALIGN); 1231 1232 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1233 bp->rx_dir); 1234 1235 skb_put(skb, len); 1236 return skb; 1237 } 1238 1239 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1240 u32 *raw_cons, void *cmp) 1241 { 1242 struct rx_cmp *rxcmp = cmp; 1243 u32 tmp_raw_cons = *raw_cons; 1244 u8 cmp_type, agg_bufs = 0; 1245 1246 cmp_type = RX_CMP_TYPE(rxcmp); 1247 1248 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1249 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1250 RX_CMP_AGG_BUFS) >> 1251 RX_CMP_AGG_BUFS_SHIFT; 1252 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1253 struct rx_tpa_end_cmp *tpa_end = cmp; 1254 1255 if (bp->flags & BNXT_FLAG_CHIP_P5) 1256 return 0; 1257 1258 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1259 } 1260 1261 if (agg_bufs) { 1262 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1263 return -EBUSY; 1264 } 1265 *raw_cons = tmp_raw_cons; 1266 return 0; 1267 } 1268 1269 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1270 { 1271 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1272 return; 1273 1274 if (BNXT_PF(bp)) 1275 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1276 else 1277 schedule_delayed_work(&bp->fw_reset_task, delay); 1278 } 1279 1280 static void bnxt_queue_sp_work(struct bnxt *bp) 1281 { 1282 if (BNXT_PF(bp)) 1283 queue_work(bnxt_pf_wq, &bp->sp_task); 1284 else 1285 schedule_work(&bp->sp_task); 1286 } 1287 1288 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1289 { 1290 if (!rxr->bnapi->in_reset) { 1291 rxr->bnapi->in_reset = true; 1292 if (bp->flags & BNXT_FLAG_CHIP_P5) 1293 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1294 else 1295 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1296 bnxt_queue_sp_work(bp); 1297 } 1298 rxr->rx_next_cons = 0xffff; 1299 } 1300 1301 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1302 { 1303 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1304 u16 idx = agg_id & MAX_TPA_P5_MASK; 1305 1306 if (test_bit(idx, map->agg_idx_bmap)) 1307 idx = find_first_zero_bit(map->agg_idx_bmap, 1308 BNXT_AGG_IDX_BMAP_SIZE); 1309 __set_bit(idx, map->agg_idx_bmap); 1310 map->agg_id_tbl[agg_id] = idx; 1311 return idx; 1312 } 1313 1314 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1315 { 1316 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1317 1318 __clear_bit(idx, map->agg_idx_bmap); 1319 } 1320 1321 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1322 { 1323 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1324 1325 return map->agg_id_tbl[agg_id]; 1326 } 1327 1328 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1329 struct rx_tpa_start_cmp *tpa_start, 1330 struct rx_tpa_start_cmp_ext *tpa_start1) 1331 { 1332 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1333 struct bnxt_tpa_info *tpa_info; 1334 u16 cons, prod, agg_id; 1335 struct rx_bd *prod_bd; 1336 dma_addr_t mapping; 1337 1338 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1339 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1340 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1341 } else { 1342 agg_id = TPA_START_AGG_ID(tpa_start); 1343 } 1344 cons = tpa_start->rx_tpa_start_cmp_opaque; 1345 prod = rxr->rx_prod; 1346 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1347 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1348 tpa_info = &rxr->rx_tpa[agg_id]; 1349 1350 if (unlikely(cons != rxr->rx_next_cons || 1351 TPA_START_ERROR(tpa_start))) { 1352 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1353 cons, rxr->rx_next_cons, 1354 TPA_START_ERROR_CODE(tpa_start1)); 1355 bnxt_sched_reset(bp, rxr); 1356 return; 1357 } 1358 /* Store cfa_code in tpa_info to use in tpa_end 1359 * completion processing. 1360 */ 1361 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1362 prod_rx_buf->data = tpa_info->data; 1363 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1364 1365 mapping = tpa_info->mapping; 1366 prod_rx_buf->mapping = mapping; 1367 1368 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1369 1370 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1371 1372 tpa_info->data = cons_rx_buf->data; 1373 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1374 cons_rx_buf->data = NULL; 1375 tpa_info->mapping = cons_rx_buf->mapping; 1376 1377 tpa_info->len = 1378 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1379 RX_TPA_START_CMP_LEN_SHIFT; 1380 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1381 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1382 1383 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1384 tpa_info->gso_type = SKB_GSO_TCPV4; 1385 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1386 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1387 tpa_info->gso_type = SKB_GSO_TCPV6; 1388 tpa_info->rss_hash = 1389 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1390 } else { 1391 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1392 tpa_info->gso_type = 0; 1393 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1394 } 1395 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1396 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1397 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1398 tpa_info->agg_count = 0; 1399 1400 rxr->rx_prod = NEXT_RX(prod); 1401 cons = NEXT_RX(cons); 1402 rxr->rx_next_cons = NEXT_RX(cons); 1403 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1404 1405 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1406 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1407 cons_rx_buf->data = NULL; 1408 } 1409 1410 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1411 { 1412 if (agg_bufs) 1413 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1414 } 1415 1416 #ifdef CONFIG_INET 1417 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1418 { 1419 struct udphdr *uh = NULL; 1420 1421 if (ip_proto == htons(ETH_P_IP)) { 1422 struct iphdr *iph = (struct iphdr *)skb->data; 1423 1424 if (iph->protocol == IPPROTO_UDP) 1425 uh = (struct udphdr *)(iph + 1); 1426 } else { 1427 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1428 1429 if (iph->nexthdr == IPPROTO_UDP) 1430 uh = (struct udphdr *)(iph + 1); 1431 } 1432 if (uh) { 1433 if (uh->check) 1434 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1435 else 1436 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1437 } 1438 } 1439 #endif 1440 1441 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1442 int payload_off, int tcp_ts, 1443 struct sk_buff *skb) 1444 { 1445 #ifdef CONFIG_INET 1446 struct tcphdr *th; 1447 int len, nw_off; 1448 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1449 u32 hdr_info = tpa_info->hdr_info; 1450 bool loopback = false; 1451 1452 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1453 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1454 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1455 1456 /* If the packet is an internal loopback packet, the offsets will 1457 * have an extra 4 bytes. 1458 */ 1459 if (inner_mac_off == 4) { 1460 loopback = true; 1461 } else if (inner_mac_off > 4) { 1462 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1463 ETH_HLEN - 2)); 1464 1465 /* We only support inner iPv4/ipv6. If we don't see the 1466 * correct protocol ID, it must be a loopback packet where 1467 * the offsets are off by 4. 1468 */ 1469 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1470 loopback = true; 1471 } 1472 if (loopback) { 1473 /* internal loopback packet, subtract all offsets by 4 */ 1474 inner_ip_off -= 4; 1475 inner_mac_off -= 4; 1476 outer_ip_off -= 4; 1477 } 1478 1479 nw_off = inner_ip_off - ETH_HLEN; 1480 skb_set_network_header(skb, nw_off); 1481 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1482 struct ipv6hdr *iph = ipv6_hdr(skb); 1483 1484 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1485 len = skb->len - skb_transport_offset(skb); 1486 th = tcp_hdr(skb); 1487 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1488 } else { 1489 struct iphdr *iph = ip_hdr(skb); 1490 1491 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1492 len = skb->len - skb_transport_offset(skb); 1493 th = tcp_hdr(skb); 1494 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1495 } 1496 1497 if (inner_mac_off) { /* tunnel */ 1498 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1499 ETH_HLEN - 2)); 1500 1501 bnxt_gro_tunnel(skb, proto); 1502 } 1503 #endif 1504 return skb; 1505 } 1506 1507 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1508 int payload_off, int tcp_ts, 1509 struct sk_buff *skb) 1510 { 1511 #ifdef CONFIG_INET 1512 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1513 u32 hdr_info = tpa_info->hdr_info; 1514 int iphdr_len, nw_off; 1515 1516 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1517 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1518 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1519 1520 nw_off = inner_ip_off - ETH_HLEN; 1521 skb_set_network_header(skb, nw_off); 1522 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1523 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1524 skb_set_transport_header(skb, nw_off + iphdr_len); 1525 1526 if (inner_mac_off) { /* tunnel */ 1527 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1528 ETH_HLEN - 2)); 1529 1530 bnxt_gro_tunnel(skb, proto); 1531 } 1532 #endif 1533 return skb; 1534 } 1535 1536 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1537 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1538 1539 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1540 int payload_off, int tcp_ts, 1541 struct sk_buff *skb) 1542 { 1543 #ifdef CONFIG_INET 1544 struct tcphdr *th; 1545 int len, nw_off, tcp_opt_len = 0; 1546 1547 if (tcp_ts) 1548 tcp_opt_len = 12; 1549 1550 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1551 struct iphdr *iph; 1552 1553 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1554 ETH_HLEN; 1555 skb_set_network_header(skb, nw_off); 1556 iph = ip_hdr(skb); 1557 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1558 len = skb->len - skb_transport_offset(skb); 1559 th = tcp_hdr(skb); 1560 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1561 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1562 struct ipv6hdr *iph; 1563 1564 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1565 ETH_HLEN; 1566 skb_set_network_header(skb, nw_off); 1567 iph = ipv6_hdr(skb); 1568 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1569 len = skb->len - skb_transport_offset(skb); 1570 th = tcp_hdr(skb); 1571 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1572 } else { 1573 dev_kfree_skb_any(skb); 1574 return NULL; 1575 } 1576 1577 if (nw_off) /* tunnel */ 1578 bnxt_gro_tunnel(skb, skb->protocol); 1579 #endif 1580 return skb; 1581 } 1582 1583 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1584 struct bnxt_tpa_info *tpa_info, 1585 struct rx_tpa_end_cmp *tpa_end, 1586 struct rx_tpa_end_cmp_ext *tpa_end1, 1587 struct sk_buff *skb) 1588 { 1589 #ifdef CONFIG_INET 1590 int payload_off; 1591 u16 segs; 1592 1593 segs = TPA_END_TPA_SEGS(tpa_end); 1594 if (segs == 1) 1595 return skb; 1596 1597 NAPI_GRO_CB(skb)->count = segs; 1598 skb_shinfo(skb)->gso_size = 1599 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1600 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1601 if (bp->flags & BNXT_FLAG_CHIP_P5) 1602 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1603 else 1604 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1605 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1606 if (likely(skb)) 1607 tcp_gro_complete(skb); 1608 #endif 1609 return skb; 1610 } 1611 1612 /* Given the cfa_code of a received packet determine which 1613 * netdev (vf-rep or PF) the packet is destined to. 1614 */ 1615 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1616 { 1617 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1618 1619 /* if vf-rep dev is NULL, the must belongs to the PF */ 1620 return dev ? dev : bp->dev; 1621 } 1622 1623 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1624 struct bnxt_cp_ring_info *cpr, 1625 u32 *raw_cons, 1626 struct rx_tpa_end_cmp *tpa_end, 1627 struct rx_tpa_end_cmp_ext *tpa_end1, 1628 u8 *event) 1629 { 1630 struct bnxt_napi *bnapi = cpr->bnapi; 1631 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1632 u8 *data_ptr, agg_bufs; 1633 unsigned int len; 1634 struct bnxt_tpa_info *tpa_info; 1635 dma_addr_t mapping; 1636 struct sk_buff *skb; 1637 u16 idx = 0, agg_id; 1638 void *data; 1639 bool gro; 1640 1641 if (unlikely(bnapi->in_reset)) { 1642 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1643 1644 if (rc < 0) 1645 return ERR_PTR(-EBUSY); 1646 return NULL; 1647 } 1648 1649 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1650 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1651 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1652 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1653 tpa_info = &rxr->rx_tpa[agg_id]; 1654 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1655 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1656 agg_bufs, tpa_info->agg_count); 1657 agg_bufs = tpa_info->agg_count; 1658 } 1659 tpa_info->agg_count = 0; 1660 *event |= BNXT_AGG_EVENT; 1661 bnxt_free_agg_idx(rxr, agg_id); 1662 idx = agg_id; 1663 gro = !!(bp->flags & BNXT_FLAG_GRO); 1664 } else { 1665 agg_id = TPA_END_AGG_ID(tpa_end); 1666 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1667 tpa_info = &rxr->rx_tpa[agg_id]; 1668 idx = RING_CMP(*raw_cons); 1669 if (agg_bufs) { 1670 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1671 return ERR_PTR(-EBUSY); 1672 1673 *event |= BNXT_AGG_EVENT; 1674 idx = NEXT_CMP(idx); 1675 } 1676 gro = !!TPA_END_GRO(tpa_end); 1677 } 1678 data = tpa_info->data; 1679 data_ptr = tpa_info->data_ptr; 1680 prefetch(data_ptr); 1681 len = tpa_info->len; 1682 mapping = tpa_info->mapping; 1683 1684 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1685 bnxt_abort_tpa(cpr, idx, agg_bufs); 1686 if (agg_bufs > MAX_SKB_FRAGS) 1687 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1688 agg_bufs, (int)MAX_SKB_FRAGS); 1689 return NULL; 1690 } 1691 1692 if (len <= bp->rx_copy_thresh) { 1693 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1694 if (!skb) { 1695 bnxt_abort_tpa(cpr, idx, agg_bufs); 1696 cpr->sw_stats.rx.rx_oom_discards += 1; 1697 return NULL; 1698 } 1699 } else { 1700 u8 *new_data; 1701 dma_addr_t new_mapping; 1702 1703 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1704 if (!new_data) { 1705 bnxt_abort_tpa(cpr, idx, agg_bufs); 1706 cpr->sw_stats.rx.rx_oom_discards += 1; 1707 return NULL; 1708 } 1709 1710 tpa_info->data = new_data; 1711 tpa_info->data_ptr = new_data + bp->rx_offset; 1712 tpa_info->mapping = new_mapping; 1713 1714 skb = build_skb(data, bp->rx_buf_size); 1715 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1716 bp->rx_buf_use_size, bp->rx_dir, 1717 DMA_ATTR_WEAK_ORDERING); 1718 1719 if (!skb) { 1720 skb_free_frag(data); 1721 bnxt_abort_tpa(cpr, idx, agg_bufs); 1722 cpr->sw_stats.rx.rx_oom_discards += 1; 1723 return NULL; 1724 } 1725 skb_reserve(skb, bp->rx_offset); 1726 skb_put(skb, len); 1727 } 1728 1729 if (agg_bufs) { 1730 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1731 if (!skb) { 1732 /* Page reuse already handled by bnxt_rx_pages(). */ 1733 cpr->sw_stats.rx.rx_oom_discards += 1; 1734 return NULL; 1735 } 1736 } 1737 1738 skb->protocol = 1739 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1740 1741 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1742 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1743 1744 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1745 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1746 __be16 vlan_proto = htons(tpa_info->metadata >> 1747 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1748 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1749 1750 if (eth_type_vlan(vlan_proto)) { 1751 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1752 } else { 1753 dev_kfree_skb(skb); 1754 return NULL; 1755 } 1756 } 1757 1758 skb_checksum_none_assert(skb); 1759 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1760 skb->ip_summed = CHECKSUM_UNNECESSARY; 1761 skb->csum_level = 1762 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1763 } 1764 1765 if (gro) 1766 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1767 1768 return skb; 1769 } 1770 1771 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1772 struct rx_agg_cmp *rx_agg) 1773 { 1774 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1775 struct bnxt_tpa_info *tpa_info; 1776 1777 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1778 tpa_info = &rxr->rx_tpa[agg_id]; 1779 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1780 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1781 } 1782 1783 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1784 struct sk_buff *skb) 1785 { 1786 if (skb->dev != bp->dev) { 1787 /* this packet belongs to a vf-rep */ 1788 bnxt_vf_rep_rx(bp, skb); 1789 return; 1790 } 1791 skb_record_rx_queue(skb, bnapi->index); 1792 napi_gro_receive(&bnapi->napi, skb); 1793 } 1794 1795 /* returns the following: 1796 * 1 - 1 packet successfully received 1797 * 0 - successful TPA_START, packet not completed yet 1798 * -EBUSY - completion ring does not have all the agg buffers yet 1799 * -ENOMEM - packet aborted due to out of memory 1800 * -EIO - packet aborted due to hw error indicated in BD 1801 */ 1802 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1803 u32 *raw_cons, u8 *event) 1804 { 1805 struct bnxt_napi *bnapi = cpr->bnapi; 1806 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1807 struct net_device *dev = bp->dev; 1808 struct rx_cmp *rxcmp; 1809 struct rx_cmp_ext *rxcmp1; 1810 u32 tmp_raw_cons = *raw_cons; 1811 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1812 struct bnxt_sw_rx_bd *rx_buf; 1813 unsigned int len; 1814 u8 *data_ptr, agg_bufs, cmp_type; 1815 bool xdp_active = false; 1816 dma_addr_t dma_addr; 1817 struct sk_buff *skb; 1818 struct xdp_buff xdp; 1819 u32 flags, misc; 1820 void *data; 1821 int rc = 0; 1822 1823 rxcmp = (struct rx_cmp *) 1824 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1825 1826 cmp_type = RX_CMP_TYPE(rxcmp); 1827 1828 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1829 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1830 goto next_rx_no_prod_no_len; 1831 } 1832 1833 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1834 cp_cons = RING_CMP(tmp_raw_cons); 1835 rxcmp1 = (struct rx_cmp_ext *) 1836 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1837 1838 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1839 return -EBUSY; 1840 1841 /* The valid test of the entry must be done first before 1842 * reading any further. 1843 */ 1844 dma_rmb(); 1845 prod = rxr->rx_prod; 1846 1847 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1848 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1849 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1850 1851 *event |= BNXT_RX_EVENT; 1852 goto next_rx_no_prod_no_len; 1853 1854 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1855 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1856 (struct rx_tpa_end_cmp *)rxcmp, 1857 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1858 1859 if (IS_ERR(skb)) 1860 return -EBUSY; 1861 1862 rc = -ENOMEM; 1863 if (likely(skb)) { 1864 bnxt_deliver_skb(bp, bnapi, skb); 1865 rc = 1; 1866 } 1867 *event |= BNXT_RX_EVENT; 1868 goto next_rx_no_prod_no_len; 1869 } 1870 1871 cons = rxcmp->rx_cmp_opaque; 1872 if (unlikely(cons != rxr->rx_next_cons)) { 1873 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1874 1875 /* 0xffff is forced error, don't print it */ 1876 if (rxr->rx_next_cons != 0xffff) 1877 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1878 cons, rxr->rx_next_cons); 1879 bnxt_sched_reset(bp, rxr); 1880 if (rc1) 1881 return rc1; 1882 goto next_rx_no_prod_no_len; 1883 } 1884 rx_buf = &rxr->rx_buf_ring[cons]; 1885 data = rx_buf->data; 1886 data_ptr = rx_buf->data_ptr; 1887 prefetch(data_ptr); 1888 1889 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1890 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1891 1892 if (agg_bufs) { 1893 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1894 return -EBUSY; 1895 1896 cp_cons = NEXT_CMP(cp_cons); 1897 *event |= BNXT_AGG_EVENT; 1898 } 1899 *event |= BNXT_RX_EVENT; 1900 1901 rx_buf->data = NULL; 1902 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1903 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1904 1905 bnxt_reuse_rx_data(rxr, cons, data); 1906 if (agg_bufs) 1907 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1908 false); 1909 1910 rc = -EIO; 1911 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1912 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1913 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1914 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1915 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1916 rx_err); 1917 bnxt_sched_reset(bp, rxr); 1918 } 1919 } 1920 goto next_rx_no_len; 1921 } 1922 1923 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1924 len = flags >> RX_CMP_LEN_SHIFT; 1925 dma_addr = rx_buf->mapping; 1926 1927 if (bnxt_xdp_attached(bp, rxr)) { 1928 bnxt_xdp_buff_init(bp, rxr, cons, &data_ptr, &len, &xdp); 1929 if (agg_bufs) { 1930 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 1931 cp_cons, agg_bufs, 1932 false); 1933 if (!frag_len) { 1934 cpr->sw_stats.rx.rx_oom_discards += 1; 1935 rc = -ENOMEM; 1936 goto next_rx; 1937 } 1938 } 1939 xdp_active = true; 1940 } 1941 1942 if (xdp_active) { 1943 if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &len, event)) { 1944 rc = 1; 1945 goto next_rx; 1946 } 1947 } 1948 1949 if (len <= bp->rx_copy_thresh) { 1950 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1951 bnxt_reuse_rx_data(rxr, cons, data); 1952 if (!skb) { 1953 if (agg_bufs) { 1954 if (!xdp_active) 1955 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1956 agg_bufs, false); 1957 else 1958 bnxt_xdp_buff_frags_free(rxr, &xdp); 1959 } 1960 cpr->sw_stats.rx.rx_oom_discards += 1; 1961 rc = -ENOMEM; 1962 goto next_rx; 1963 } 1964 } else { 1965 u32 payload; 1966 1967 if (rx_buf->data_ptr == data_ptr) 1968 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1969 else 1970 payload = 0; 1971 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1972 payload | len); 1973 if (!skb) { 1974 cpr->sw_stats.rx.rx_oom_discards += 1; 1975 rc = -ENOMEM; 1976 goto next_rx; 1977 } 1978 } 1979 1980 if (agg_bufs) { 1981 if (!xdp_active) { 1982 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 1983 if (!skb) { 1984 cpr->sw_stats.rx.rx_oom_discards += 1; 1985 rc = -ENOMEM; 1986 goto next_rx; 1987 } 1988 } else { 1989 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 1990 if (!skb) { 1991 /* we should be able to free the old skb here */ 1992 bnxt_xdp_buff_frags_free(rxr, &xdp); 1993 cpr->sw_stats.rx.rx_oom_discards += 1; 1994 rc = -ENOMEM; 1995 goto next_rx; 1996 } 1997 } 1998 } 1999 2000 if (RX_CMP_HASH_VALID(rxcmp)) { 2001 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2002 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 2003 2004 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 2005 if (hash_type != 1 && hash_type != 3) 2006 type = PKT_HASH_TYPE_L3; 2007 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2008 } 2009 2010 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 2011 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 2012 2013 if ((rxcmp1->rx_cmp_flags2 & 2014 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 2015 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 2016 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 2017 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 2018 __be16 vlan_proto = htons(meta_data >> 2019 RX_CMP_FLAGS2_METADATA_TPID_SFT); 2020 2021 if (eth_type_vlan(vlan_proto)) { 2022 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2023 } else { 2024 dev_kfree_skb(skb); 2025 goto next_rx; 2026 } 2027 } 2028 2029 skb_checksum_none_assert(skb); 2030 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2031 if (dev->features & NETIF_F_RXCSUM) { 2032 skb->ip_summed = CHECKSUM_UNNECESSARY; 2033 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2034 } 2035 } else { 2036 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2037 if (dev->features & NETIF_F_RXCSUM) 2038 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 2039 } 2040 } 2041 2042 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 2043 RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) { 2044 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2045 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 2046 u64 ns, ts; 2047 2048 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2049 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2050 2051 spin_lock_bh(&ptp->ptp_lock); 2052 ns = timecounter_cyc2time(&ptp->tc, ts); 2053 spin_unlock_bh(&ptp->ptp_lock); 2054 memset(skb_hwtstamps(skb), 0, 2055 sizeof(*skb_hwtstamps(skb))); 2056 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2057 } 2058 } 2059 } 2060 bnxt_deliver_skb(bp, bnapi, skb); 2061 rc = 1; 2062 2063 next_rx: 2064 cpr->rx_packets += 1; 2065 cpr->rx_bytes += len; 2066 2067 next_rx_no_len: 2068 rxr->rx_prod = NEXT_RX(prod); 2069 rxr->rx_next_cons = NEXT_RX(cons); 2070 2071 next_rx_no_prod_no_len: 2072 *raw_cons = tmp_raw_cons; 2073 2074 return rc; 2075 } 2076 2077 /* In netpoll mode, if we are using a combined completion ring, we need to 2078 * discard the rx packets and recycle the buffers. 2079 */ 2080 static int bnxt_force_rx_discard(struct bnxt *bp, 2081 struct bnxt_cp_ring_info *cpr, 2082 u32 *raw_cons, u8 *event) 2083 { 2084 u32 tmp_raw_cons = *raw_cons; 2085 struct rx_cmp_ext *rxcmp1; 2086 struct rx_cmp *rxcmp; 2087 u16 cp_cons; 2088 u8 cmp_type; 2089 int rc; 2090 2091 cp_cons = RING_CMP(tmp_raw_cons); 2092 rxcmp = (struct rx_cmp *) 2093 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2094 2095 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2096 cp_cons = RING_CMP(tmp_raw_cons); 2097 rxcmp1 = (struct rx_cmp_ext *) 2098 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2099 2100 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2101 return -EBUSY; 2102 2103 /* The valid test of the entry must be done first before 2104 * reading any further. 2105 */ 2106 dma_rmb(); 2107 cmp_type = RX_CMP_TYPE(rxcmp); 2108 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2109 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2110 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2111 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2112 struct rx_tpa_end_cmp_ext *tpa_end1; 2113 2114 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2115 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2116 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2117 } 2118 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2119 if (rc && rc != -EBUSY) 2120 cpr->sw_stats.rx.rx_netpoll_discards += 1; 2121 return rc; 2122 } 2123 2124 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2125 { 2126 struct bnxt_fw_health *fw_health = bp->fw_health; 2127 u32 reg = fw_health->regs[reg_idx]; 2128 u32 reg_type, reg_off, val = 0; 2129 2130 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2131 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2132 switch (reg_type) { 2133 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2134 pci_read_config_dword(bp->pdev, reg_off, &val); 2135 break; 2136 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2137 reg_off = fw_health->mapped_regs[reg_idx]; 2138 fallthrough; 2139 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2140 val = readl(bp->bar0 + reg_off); 2141 break; 2142 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2143 val = readl(bp->bar1 + reg_off); 2144 break; 2145 } 2146 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2147 val &= fw_health->fw_reset_inprog_reg_mask; 2148 return val; 2149 } 2150 2151 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2152 { 2153 int i; 2154 2155 for (i = 0; i < bp->rx_nr_rings; i++) { 2156 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2157 struct bnxt_ring_grp_info *grp_info; 2158 2159 grp_info = &bp->grp_info[grp_idx]; 2160 if (grp_info->agg_fw_ring_id == ring_id) 2161 return grp_idx; 2162 } 2163 return INVALID_HW_RING_ID; 2164 } 2165 2166 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2167 { 2168 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2169 2170 switch (err_type) { 2171 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2172 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2173 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2174 break; 2175 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2176 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2177 break; 2178 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2179 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2180 break; 2181 default: 2182 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2183 err_type); 2184 break; 2185 } 2186 } 2187 2188 #define BNXT_GET_EVENT_PORT(data) \ 2189 ((data) & \ 2190 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2191 2192 #define BNXT_EVENT_RING_TYPE(data2) \ 2193 ((data2) & \ 2194 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2195 2196 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2197 (BNXT_EVENT_RING_TYPE(data2) == \ 2198 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2199 2200 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2201 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2202 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2203 2204 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2205 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2206 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2207 2208 #define BNXT_PHC_BITS 48 2209 2210 static int bnxt_async_event_process(struct bnxt *bp, 2211 struct hwrm_async_event_cmpl *cmpl) 2212 { 2213 u16 event_id = le16_to_cpu(cmpl->event_id); 2214 u32 data1 = le32_to_cpu(cmpl->event_data1); 2215 u32 data2 = le32_to_cpu(cmpl->event_data2); 2216 2217 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2218 event_id, data1, data2); 2219 2220 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2221 switch (event_id) { 2222 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2223 struct bnxt_link_info *link_info = &bp->link_info; 2224 2225 if (BNXT_VF(bp)) 2226 goto async_event_process_exit; 2227 2228 /* print unsupported speed warning in forced speed mode only */ 2229 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2230 (data1 & 0x20000)) { 2231 u16 fw_speed = link_info->force_link_speed; 2232 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2233 2234 if (speed != SPEED_UNKNOWN) 2235 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2236 speed); 2237 } 2238 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2239 } 2240 fallthrough; 2241 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2242 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2243 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2244 fallthrough; 2245 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2246 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2247 break; 2248 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2249 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2250 break; 2251 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2252 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2253 2254 if (BNXT_VF(bp)) 2255 break; 2256 2257 if (bp->pf.port_id != port_id) 2258 break; 2259 2260 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2261 break; 2262 } 2263 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2264 if (BNXT_PF(bp)) 2265 goto async_event_process_exit; 2266 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2267 break; 2268 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2269 char *type_str = "Solicited"; 2270 2271 if (!bp->fw_health) 2272 goto async_event_process_exit; 2273 2274 bp->fw_reset_timestamp = jiffies; 2275 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2276 if (!bp->fw_reset_min_dsecs) 2277 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2278 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2279 if (!bp->fw_reset_max_dsecs) 2280 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2281 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2282 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2283 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2284 type_str = "Fatal"; 2285 bp->fw_health->fatalities++; 2286 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2287 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2288 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2289 type_str = "Non-fatal"; 2290 bp->fw_health->survivals++; 2291 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2292 } 2293 netif_warn(bp, hw, bp->dev, 2294 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2295 type_str, data1, data2, 2296 bp->fw_reset_min_dsecs * 100, 2297 bp->fw_reset_max_dsecs * 100); 2298 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2299 break; 2300 } 2301 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2302 struct bnxt_fw_health *fw_health = bp->fw_health; 2303 char *status_desc = "healthy"; 2304 u32 status; 2305 2306 if (!fw_health) 2307 goto async_event_process_exit; 2308 2309 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2310 fw_health->enabled = false; 2311 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2312 break; 2313 } 2314 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2315 fw_health->tmr_multiplier = 2316 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2317 bp->current_interval * 10); 2318 fw_health->tmr_counter = fw_health->tmr_multiplier; 2319 if (!fw_health->enabled) 2320 fw_health->last_fw_heartbeat = 2321 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2322 fw_health->last_fw_reset_cnt = 2323 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2324 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2325 if (status != BNXT_FW_STATUS_HEALTHY) 2326 status_desc = "unhealthy"; 2327 netif_info(bp, drv, bp->dev, 2328 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2329 fw_health->primary ? "primary" : "backup", status, 2330 status_desc, fw_health->last_fw_reset_cnt); 2331 if (!fw_health->enabled) { 2332 /* Make sure tmr_counter is set and visible to 2333 * bnxt_health_check() before setting enabled to true. 2334 */ 2335 smp_wmb(); 2336 fw_health->enabled = true; 2337 } 2338 goto async_event_process_exit; 2339 } 2340 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2341 netif_notice(bp, hw, bp->dev, 2342 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2343 data1, data2); 2344 goto async_event_process_exit; 2345 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2346 struct bnxt_rx_ring_info *rxr; 2347 u16 grp_idx; 2348 2349 if (bp->flags & BNXT_FLAG_CHIP_P5) 2350 goto async_event_process_exit; 2351 2352 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2353 BNXT_EVENT_RING_TYPE(data2), data1); 2354 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2355 goto async_event_process_exit; 2356 2357 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2358 if (grp_idx == INVALID_HW_RING_ID) { 2359 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2360 data1); 2361 goto async_event_process_exit; 2362 } 2363 rxr = bp->bnapi[grp_idx]->rx_ring; 2364 bnxt_sched_reset(bp, rxr); 2365 goto async_event_process_exit; 2366 } 2367 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2368 struct bnxt_fw_health *fw_health = bp->fw_health; 2369 2370 netif_notice(bp, hw, bp->dev, 2371 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2372 data1, data2); 2373 if (fw_health) { 2374 fw_health->echo_req_data1 = data1; 2375 fw_health->echo_req_data2 = data2; 2376 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2377 break; 2378 } 2379 goto async_event_process_exit; 2380 } 2381 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2382 bnxt_ptp_pps_event(bp, data1, data2); 2383 goto async_event_process_exit; 2384 } 2385 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2386 bnxt_event_error_report(bp, data1, data2); 2387 goto async_event_process_exit; 2388 } 2389 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2390 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2391 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2392 if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) { 2393 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2394 u64 ns; 2395 2396 spin_lock_bh(&ptp->ptp_lock); 2397 bnxt_ptp_update_current_time(bp); 2398 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2399 BNXT_PHC_BITS) | ptp->current_time); 2400 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2401 spin_unlock_bh(&ptp->ptp_lock); 2402 } 2403 break; 2404 } 2405 goto async_event_process_exit; 2406 } 2407 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2408 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2409 2410 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2411 goto async_event_process_exit; 2412 } 2413 default: 2414 goto async_event_process_exit; 2415 } 2416 bnxt_queue_sp_work(bp); 2417 async_event_process_exit: 2418 bnxt_ulp_async_events(bp, cmpl); 2419 return 0; 2420 } 2421 2422 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2423 { 2424 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2425 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2426 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2427 (struct hwrm_fwd_req_cmpl *)txcmp; 2428 2429 switch (cmpl_type) { 2430 case CMPL_BASE_TYPE_HWRM_DONE: 2431 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2432 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2433 break; 2434 2435 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2436 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2437 2438 if ((vf_id < bp->pf.first_vf_id) || 2439 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2440 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2441 vf_id); 2442 return -EINVAL; 2443 } 2444 2445 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2446 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2447 bnxt_queue_sp_work(bp); 2448 break; 2449 2450 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2451 bnxt_async_event_process(bp, 2452 (struct hwrm_async_event_cmpl *)txcmp); 2453 break; 2454 2455 default: 2456 break; 2457 } 2458 2459 return 0; 2460 } 2461 2462 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2463 { 2464 struct bnxt_napi *bnapi = dev_instance; 2465 struct bnxt *bp = bnapi->bp; 2466 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2467 u32 cons = RING_CMP(cpr->cp_raw_cons); 2468 2469 cpr->event_ctr++; 2470 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2471 napi_schedule(&bnapi->napi); 2472 return IRQ_HANDLED; 2473 } 2474 2475 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2476 { 2477 u32 raw_cons = cpr->cp_raw_cons; 2478 u16 cons = RING_CMP(raw_cons); 2479 struct tx_cmp *txcmp; 2480 2481 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2482 2483 return TX_CMP_VALID(txcmp, raw_cons); 2484 } 2485 2486 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2487 { 2488 struct bnxt_napi *bnapi = dev_instance; 2489 struct bnxt *bp = bnapi->bp; 2490 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2491 u32 cons = RING_CMP(cpr->cp_raw_cons); 2492 u32 int_status; 2493 2494 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2495 2496 if (!bnxt_has_work(bp, cpr)) { 2497 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2498 /* return if erroneous interrupt */ 2499 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2500 return IRQ_NONE; 2501 } 2502 2503 /* disable ring IRQ */ 2504 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2505 2506 /* Return here if interrupt is shared and is disabled. */ 2507 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2508 return IRQ_HANDLED; 2509 2510 napi_schedule(&bnapi->napi); 2511 return IRQ_HANDLED; 2512 } 2513 2514 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2515 int budget) 2516 { 2517 struct bnxt_napi *bnapi = cpr->bnapi; 2518 u32 raw_cons = cpr->cp_raw_cons; 2519 u32 cons; 2520 int tx_pkts = 0; 2521 int rx_pkts = 0; 2522 u8 event = 0; 2523 struct tx_cmp *txcmp; 2524 2525 cpr->has_more_work = 0; 2526 cpr->had_work_done = 1; 2527 while (1) { 2528 int rc; 2529 2530 cons = RING_CMP(raw_cons); 2531 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2532 2533 if (!TX_CMP_VALID(txcmp, raw_cons)) 2534 break; 2535 2536 /* The valid test of the entry must be done first before 2537 * reading any further. 2538 */ 2539 dma_rmb(); 2540 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2541 tx_pkts++; 2542 /* return full budget so NAPI will complete. */ 2543 if (unlikely(tx_pkts >= bp->tx_wake_thresh)) { 2544 rx_pkts = budget; 2545 raw_cons = NEXT_RAW_CMP(raw_cons); 2546 if (budget) 2547 cpr->has_more_work = 1; 2548 break; 2549 } 2550 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2551 if (likely(budget)) 2552 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2553 else 2554 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2555 &event); 2556 if (likely(rc >= 0)) 2557 rx_pkts += rc; 2558 /* Increment rx_pkts when rc is -ENOMEM to count towards 2559 * the NAPI budget. Otherwise, we may potentially loop 2560 * here forever if we consistently cannot allocate 2561 * buffers. 2562 */ 2563 else if (rc == -ENOMEM && budget) 2564 rx_pkts++; 2565 else if (rc == -EBUSY) /* partial completion */ 2566 break; 2567 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2568 CMPL_BASE_TYPE_HWRM_DONE) || 2569 (TX_CMP_TYPE(txcmp) == 2570 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2571 (TX_CMP_TYPE(txcmp) == 2572 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2573 bnxt_hwrm_handler(bp, txcmp); 2574 } 2575 raw_cons = NEXT_RAW_CMP(raw_cons); 2576 2577 if (rx_pkts && rx_pkts == budget) { 2578 cpr->has_more_work = 1; 2579 break; 2580 } 2581 } 2582 2583 if (event & BNXT_REDIRECT_EVENT) 2584 xdp_do_flush(); 2585 2586 if (event & BNXT_TX_EVENT) { 2587 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2588 u16 prod = txr->tx_prod; 2589 2590 /* Sync BD data before updating doorbell */ 2591 wmb(); 2592 2593 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2594 } 2595 2596 cpr->cp_raw_cons = raw_cons; 2597 bnapi->tx_pkts += tx_pkts; 2598 bnapi->events |= event; 2599 return rx_pkts; 2600 } 2601 2602 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2603 { 2604 if (bnapi->tx_pkts) { 2605 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2606 bnapi->tx_pkts = 0; 2607 } 2608 2609 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2610 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2611 2612 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2613 } 2614 if (bnapi->events & BNXT_AGG_EVENT) { 2615 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2616 2617 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2618 } 2619 bnapi->events = 0; 2620 } 2621 2622 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2623 int budget) 2624 { 2625 struct bnxt_napi *bnapi = cpr->bnapi; 2626 int rx_pkts; 2627 2628 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2629 2630 /* ACK completion ring before freeing tx ring and producing new 2631 * buffers in rx/agg rings to prevent overflowing the completion 2632 * ring. 2633 */ 2634 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2635 2636 __bnxt_poll_work_done(bp, bnapi); 2637 return rx_pkts; 2638 } 2639 2640 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2641 { 2642 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2643 struct bnxt *bp = bnapi->bp; 2644 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2645 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2646 struct tx_cmp *txcmp; 2647 struct rx_cmp_ext *rxcmp1; 2648 u32 cp_cons, tmp_raw_cons; 2649 u32 raw_cons = cpr->cp_raw_cons; 2650 u32 rx_pkts = 0; 2651 u8 event = 0; 2652 2653 while (1) { 2654 int rc; 2655 2656 cp_cons = RING_CMP(raw_cons); 2657 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2658 2659 if (!TX_CMP_VALID(txcmp, raw_cons)) 2660 break; 2661 2662 /* The valid test of the entry must be done first before 2663 * reading any further. 2664 */ 2665 dma_rmb(); 2666 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2667 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2668 cp_cons = RING_CMP(tmp_raw_cons); 2669 rxcmp1 = (struct rx_cmp_ext *) 2670 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2671 2672 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2673 break; 2674 2675 /* force an error to recycle the buffer */ 2676 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2677 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2678 2679 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2680 if (likely(rc == -EIO) && budget) 2681 rx_pkts++; 2682 else if (rc == -EBUSY) /* partial completion */ 2683 break; 2684 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2685 CMPL_BASE_TYPE_HWRM_DONE)) { 2686 bnxt_hwrm_handler(bp, txcmp); 2687 } else { 2688 netdev_err(bp->dev, 2689 "Invalid completion received on special ring\n"); 2690 } 2691 raw_cons = NEXT_RAW_CMP(raw_cons); 2692 2693 if (rx_pkts == budget) 2694 break; 2695 } 2696 2697 cpr->cp_raw_cons = raw_cons; 2698 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2699 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2700 2701 if (event & BNXT_AGG_EVENT) 2702 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2703 2704 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2705 napi_complete_done(napi, rx_pkts); 2706 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2707 } 2708 return rx_pkts; 2709 } 2710 2711 static int bnxt_poll(struct napi_struct *napi, int budget) 2712 { 2713 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2714 struct bnxt *bp = bnapi->bp; 2715 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2716 int work_done = 0; 2717 2718 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2719 napi_complete(napi); 2720 return 0; 2721 } 2722 while (1) { 2723 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2724 2725 if (work_done >= budget) { 2726 if (!budget) 2727 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2728 break; 2729 } 2730 2731 if (!bnxt_has_work(bp, cpr)) { 2732 if (napi_complete_done(napi, work_done)) 2733 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2734 break; 2735 } 2736 } 2737 if (bp->flags & BNXT_FLAG_DIM) { 2738 struct dim_sample dim_sample = {}; 2739 2740 dim_update_sample(cpr->event_ctr, 2741 cpr->rx_packets, 2742 cpr->rx_bytes, 2743 &dim_sample); 2744 net_dim(&cpr->dim, dim_sample); 2745 } 2746 return work_done; 2747 } 2748 2749 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2750 { 2751 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2752 int i, work_done = 0; 2753 2754 for (i = 0; i < 2; i++) { 2755 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2756 2757 if (cpr2) { 2758 work_done += __bnxt_poll_work(bp, cpr2, 2759 budget - work_done); 2760 cpr->has_more_work |= cpr2->has_more_work; 2761 } 2762 } 2763 return work_done; 2764 } 2765 2766 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2767 u64 dbr_type) 2768 { 2769 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2770 int i; 2771 2772 for (i = 0; i < 2; i++) { 2773 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2774 struct bnxt_db_info *db; 2775 2776 if (cpr2 && cpr2->had_work_done) { 2777 db = &cpr2->cp_db; 2778 bnxt_writeq(bp, db->db_key64 | dbr_type | 2779 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2780 cpr2->had_work_done = 0; 2781 } 2782 } 2783 __bnxt_poll_work_done(bp, bnapi); 2784 } 2785 2786 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2787 { 2788 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2789 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2790 struct bnxt_cp_ring_info *cpr_rx; 2791 u32 raw_cons = cpr->cp_raw_cons; 2792 struct bnxt *bp = bnapi->bp; 2793 struct nqe_cn *nqcmp; 2794 int work_done = 0; 2795 u32 cons; 2796 2797 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2798 napi_complete(napi); 2799 return 0; 2800 } 2801 if (cpr->has_more_work) { 2802 cpr->has_more_work = 0; 2803 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2804 } 2805 while (1) { 2806 cons = RING_CMP(raw_cons); 2807 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2808 2809 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2810 if (cpr->has_more_work) 2811 break; 2812 2813 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2814 cpr->cp_raw_cons = raw_cons; 2815 if (napi_complete_done(napi, work_done)) 2816 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2817 cpr->cp_raw_cons); 2818 goto poll_done; 2819 } 2820 2821 /* The valid test of the entry must be done first before 2822 * reading any further. 2823 */ 2824 dma_rmb(); 2825 2826 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2827 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2828 struct bnxt_cp_ring_info *cpr2; 2829 2830 /* No more budget for RX work */ 2831 if (budget && work_done >= budget && idx == BNXT_RX_HDL) 2832 break; 2833 2834 cpr2 = cpr->cp_ring_arr[idx]; 2835 work_done += __bnxt_poll_work(bp, cpr2, 2836 budget - work_done); 2837 cpr->has_more_work |= cpr2->has_more_work; 2838 } else { 2839 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2840 } 2841 raw_cons = NEXT_RAW_CMP(raw_cons); 2842 } 2843 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2844 if (raw_cons != cpr->cp_raw_cons) { 2845 cpr->cp_raw_cons = raw_cons; 2846 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2847 } 2848 poll_done: 2849 cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL]; 2850 if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) { 2851 struct dim_sample dim_sample = {}; 2852 2853 dim_update_sample(cpr->event_ctr, 2854 cpr_rx->rx_packets, 2855 cpr_rx->rx_bytes, 2856 &dim_sample); 2857 net_dim(&cpr->dim, dim_sample); 2858 } 2859 return work_done; 2860 } 2861 2862 static void bnxt_free_tx_skbs(struct bnxt *bp) 2863 { 2864 int i, max_idx; 2865 struct pci_dev *pdev = bp->pdev; 2866 2867 if (!bp->tx_ring) 2868 return; 2869 2870 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2871 for (i = 0; i < bp->tx_nr_rings; i++) { 2872 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2873 int j; 2874 2875 if (!txr->tx_buf_ring) 2876 continue; 2877 2878 for (j = 0; j < max_idx;) { 2879 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2880 struct sk_buff *skb; 2881 int k, last; 2882 2883 if (i < bp->tx_nr_rings_xdp && 2884 tx_buf->action == XDP_REDIRECT) { 2885 dma_unmap_single(&pdev->dev, 2886 dma_unmap_addr(tx_buf, mapping), 2887 dma_unmap_len(tx_buf, len), 2888 DMA_TO_DEVICE); 2889 xdp_return_frame(tx_buf->xdpf); 2890 tx_buf->action = 0; 2891 tx_buf->xdpf = NULL; 2892 j++; 2893 continue; 2894 } 2895 2896 skb = tx_buf->skb; 2897 if (!skb) { 2898 j++; 2899 continue; 2900 } 2901 2902 tx_buf->skb = NULL; 2903 2904 if (tx_buf->is_push) { 2905 dev_kfree_skb(skb); 2906 j += 2; 2907 continue; 2908 } 2909 2910 dma_unmap_single(&pdev->dev, 2911 dma_unmap_addr(tx_buf, mapping), 2912 skb_headlen(skb), 2913 DMA_TO_DEVICE); 2914 2915 last = tx_buf->nr_frags; 2916 j += 2; 2917 for (k = 0; k < last; k++, j++) { 2918 int ring_idx = j & bp->tx_ring_mask; 2919 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2920 2921 tx_buf = &txr->tx_buf_ring[ring_idx]; 2922 dma_unmap_page( 2923 &pdev->dev, 2924 dma_unmap_addr(tx_buf, mapping), 2925 skb_frag_size(frag), DMA_TO_DEVICE); 2926 } 2927 dev_kfree_skb(skb); 2928 } 2929 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2930 } 2931 } 2932 2933 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2934 { 2935 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2936 struct pci_dev *pdev = bp->pdev; 2937 struct bnxt_tpa_idx_map *map; 2938 int i, max_idx, max_agg_idx; 2939 2940 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2941 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2942 if (!rxr->rx_tpa) 2943 goto skip_rx_tpa_free; 2944 2945 for (i = 0; i < bp->max_tpa; i++) { 2946 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2947 u8 *data = tpa_info->data; 2948 2949 if (!data) 2950 continue; 2951 2952 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2953 bp->rx_buf_use_size, bp->rx_dir, 2954 DMA_ATTR_WEAK_ORDERING); 2955 2956 tpa_info->data = NULL; 2957 2958 skb_free_frag(data); 2959 } 2960 2961 skip_rx_tpa_free: 2962 if (!rxr->rx_buf_ring) 2963 goto skip_rx_buf_free; 2964 2965 for (i = 0; i < max_idx; i++) { 2966 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2967 dma_addr_t mapping = rx_buf->mapping; 2968 void *data = rx_buf->data; 2969 2970 if (!data) 2971 continue; 2972 2973 rx_buf->data = NULL; 2974 if (BNXT_RX_PAGE_MODE(bp)) { 2975 mapping -= bp->rx_dma_offset; 2976 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2977 bp->rx_dir, 2978 DMA_ATTR_WEAK_ORDERING); 2979 page_pool_recycle_direct(rxr->page_pool, data); 2980 } else { 2981 dma_unmap_single_attrs(&pdev->dev, mapping, 2982 bp->rx_buf_use_size, bp->rx_dir, 2983 DMA_ATTR_WEAK_ORDERING); 2984 skb_free_frag(data); 2985 } 2986 } 2987 2988 skip_rx_buf_free: 2989 if (!rxr->rx_agg_ring) 2990 goto skip_rx_agg_free; 2991 2992 for (i = 0; i < max_agg_idx; i++) { 2993 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2994 struct page *page = rx_agg_buf->page; 2995 2996 if (!page) 2997 continue; 2998 2999 if (BNXT_RX_PAGE_MODE(bp)) { 3000 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 3001 BNXT_RX_PAGE_SIZE, bp->rx_dir, 3002 DMA_ATTR_WEAK_ORDERING); 3003 rx_agg_buf->page = NULL; 3004 __clear_bit(i, rxr->rx_agg_bmap); 3005 3006 page_pool_recycle_direct(rxr->page_pool, page); 3007 } else { 3008 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 3009 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 3010 DMA_ATTR_WEAK_ORDERING); 3011 rx_agg_buf->page = NULL; 3012 __clear_bit(i, rxr->rx_agg_bmap); 3013 3014 __free_page(page); 3015 } 3016 } 3017 3018 skip_rx_agg_free: 3019 if (rxr->rx_page) { 3020 __free_page(rxr->rx_page); 3021 rxr->rx_page = NULL; 3022 } 3023 map = rxr->rx_tpa_idx_map; 3024 if (map) 3025 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3026 } 3027 3028 static void bnxt_free_rx_skbs(struct bnxt *bp) 3029 { 3030 int i; 3031 3032 if (!bp->rx_ring) 3033 return; 3034 3035 for (i = 0; i < bp->rx_nr_rings; i++) 3036 bnxt_free_one_rx_ring_skbs(bp, i); 3037 } 3038 3039 static void bnxt_free_skbs(struct bnxt *bp) 3040 { 3041 bnxt_free_tx_skbs(bp); 3042 bnxt_free_rx_skbs(bp); 3043 } 3044 3045 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 3046 { 3047 u8 init_val = mem_init->init_val; 3048 u16 offset = mem_init->offset; 3049 u8 *p2 = p; 3050 int i; 3051 3052 if (!init_val) 3053 return; 3054 if (offset == BNXT_MEM_INVALID_OFFSET) { 3055 memset(p, init_val, len); 3056 return; 3057 } 3058 for (i = 0; i < len; i += mem_init->size) 3059 *(p2 + i + offset) = init_val; 3060 } 3061 3062 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3063 { 3064 struct pci_dev *pdev = bp->pdev; 3065 int i; 3066 3067 if (!rmem->pg_arr) 3068 goto skip_pages; 3069 3070 for (i = 0; i < rmem->nr_pages; i++) { 3071 if (!rmem->pg_arr[i]) 3072 continue; 3073 3074 dma_free_coherent(&pdev->dev, rmem->page_size, 3075 rmem->pg_arr[i], rmem->dma_arr[i]); 3076 3077 rmem->pg_arr[i] = NULL; 3078 } 3079 skip_pages: 3080 if (rmem->pg_tbl) { 3081 size_t pg_tbl_size = rmem->nr_pages * 8; 3082 3083 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3084 pg_tbl_size = rmem->page_size; 3085 dma_free_coherent(&pdev->dev, pg_tbl_size, 3086 rmem->pg_tbl, rmem->pg_tbl_map); 3087 rmem->pg_tbl = NULL; 3088 } 3089 if (rmem->vmem_size && *rmem->vmem) { 3090 vfree(*rmem->vmem); 3091 *rmem->vmem = NULL; 3092 } 3093 } 3094 3095 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3096 { 3097 struct pci_dev *pdev = bp->pdev; 3098 u64 valid_bit = 0; 3099 int i; 3100 3101 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3102 valid_bit = PTU_PTE_VALID; 3103 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3104 size_t pg_tbl_size = rmem->nr_pages * 8; 3105 3106 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3107 pg_tbl_size = rmem->page_size; 3108 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3109 &rmem->pg_tbl_map, 3110 GFP_KERNEL); 3111 if (!rmem->pg_tbl) 3112 return -ENOMEM; 3113 } 3114 3115 for (i = 0; i < rmem->nr_pages; i++) { 3116 u64 extra_bits = valid_bit; 3117 3118 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3119 rmem->page_size, 3120 &rmem->dma_arr[i], 3121 GFP_KERNEL); 3122 if (!rmem->pg_arr[i]) 3123 return -ENOMEM; 3124 3125 if (rmem->mem_init) 3126 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 3127 rmem->page_size); 3128 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3129 if (i == rmem->nr_pages - 2 && 3130 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3131 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3132 else if (i == rmem->nr_pages - 1 && 3133 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3134 extra_bits |= PTU_PTE_LAST; 3135 rmem->pg_tbl[i] = 3136 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3137 } 3138 } 3139 3140 if (rmem->vmem_size) { 3141 *rmem->vmem = vzalloc(rmem->vmem_size); 3142 if (!(*rmem->vmem)) 3143 return -ENOMEM; 3144 } 3145 return 0; 3146 } 3147 3148 static void bnxt_free_tpa_info(struct bnxt *bp) 3149 { 3150 int i; 3151 3152 for (i = 0; i < bp->rx_nr_rings; i++) { 3153 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3154 3155 kfree(rxr->rx_tpa_idx_map); 3156 rxr->rx_tpa_idx_map = NULL; 3157 if (rxr->rx_tpa) { 3158 kfree(rxr->rx_tpa[0].agg_arr); 3159 rxr->rx_tpa[0].agg_arr = NULL; 3160 } 3161 kfree(rxr->rx_tpa); 3162 rxr->rx_tpa = NULL; 3163 } 3164 } 3165 3166 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3167 { 3168 int i, j, total_aggs = 0; 3169 3170 bp->max_tpa = MAX_TPA; 3171 if (bp->flags & BNXT_FLAG_CHIP_P5) { 3172 if (!bp->max_tpa_v2) 3173 return 0; 3174 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3175 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 3176 } 3177 3178 for (i = 0; i < bp->rx_nr_rings; i++) { 3179 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3180 struct rx_agg_cmp *agg; 3181 3182 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3183 GFP_KERNEL); 3184 if (!rxr->rx_tpa) 3185 return -ENOMEM; 3186 3187 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3188 continue; 3189 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 3190 rxr->rx_tpa[0].agg_arr = agg; 3191 if (!agg) 3192 return -ENOMEM; 3193 for (j = 1; j < bp->max_tpa; j++) 3194 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 3195 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3196 GFP_KERNEL); 3197 if (!rxr->rx_tpa_idx_map) 3198 return -ENOMEM; 3199 } 3200 return 0; 3201 } 3202 3203 static void bnxt_free_rx_rings(struct bnxt *bp) 3204 { 3205 int i; 3206 3207 if (!bp->rx_ring) 3208 return; 3209 3210 bnxt_free_tpa_info(bp); 3211 for (i = 0; i < bp->rx_nr_rings; i++) { 3212 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3213 struct bnxt_ring_struct *ring; 3214 3215 if (rxr->xdp_prog) 3216 bpf_prog_put(rxr->xdp_prog); 3217 3218 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3219 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3220 3221 page_pool_destroy(rxr->page_pool); 3222 rxr->page_pool = NULL; 3223 3224 kfree(rxr->rx_agg_bmap); 3225 rxr->rx_agg_bmap = NULL; 3226 3227 ring = &rxr->rx_ring_struct; 3228 bnxt_free_ring(bp, &ring->ring_mem); 3229 3230 ring = &rxr->rx_agg_ring_struct; 3231 bnxt_free_ring(bp, &ring->ring_mem); 3232 } 3233 } 3234 3235 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3236 struct bnxt_rx_ring_info *rxr) 3237 { 3238 struct page_pool_params pp = { 0 }; 3239 3240 pp.pool_size = bp->rx_ring_size; 3241 pp.nid = dev_to_node(&bp->pdev->dev); 3242 pp.dev = &bp->pdev->dev; 3243 pp.dma_dir = DMA_BIDIRECTIONAL; 3244 3245 rxr->page_pool = page_pool_create(&pp); 3246 if (IS_ERR(rxr->page_pool)) { 3247 int err = PTR_ERR(rxr->page_pool); 3248 3249 rxr->page_pool = NULL; 3250 return err; 3251 } 3252 return 0; 3253 } 3254 3255 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3256 { 3257 int i, rc = 0, agg_rings = 0; 3258 3259 if (!bp->rx_ring) 3260 return -ENOMEM; 3261 3262 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3263 agg_rings = 1; 3264 3265 for (i = 0; i < bp->rx_nr_rings; i++) { 3266 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3267 struct bnxt_ring_struct *ring; 3268 3269 ring = &rxr->rx_ring_struct; 3270 3271 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3272 if (rc) 3273 return rc; 3274 3275 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3276 if (rc < 0) 3277 return rc; 3278 3279 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3280 MEM_TYPE_PAGE_POOL, 3281 rxr->page_pool); 3282 if (rc) { 3283 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3284 return rc; 3285 } 3286 3287 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3288 if (rc) 3289 return rc; 3290 3291 ring->grp_idx = i; 3292 if (agg_rings) { 3293 u16 mem_size; 3294 3295 ring = &rxr->rx_agg_ring_struct; 3296 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3297 if (rc) 3298 return rc; 3299 3300 ring->grp_idx = i; 3301 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3302 mem_size = rxr->rx_agg_bmap_size / 8; 3303 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3304 if (!rxr->rx_agg_bmap) 3305 return -ENOMEM; 3306 } 3307 } 3308 if (bp->flags & BNXT_FLAG_TPA) 3309 rc = bnxt_alloc_tpa_info(bp); 3310 return rc; 3311 } 3312 3313 static void bnxt_free_tx_rings(struct bnxt *bp) 3314 { 3315 int i; 3316 struct pci_dev *pdev = bp->pdev; 3317 3318 if (!bp->tx_ring) 3319 return; 3320 3321 for (i = 0; i < bp->tx_nr_rings; i++) { 3322 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3323 struct bnxt_ring_struct *ring; 3324 3325 if (txr->tx_push) { 3326 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3327 txr->tx_push, txr->tx_push_mapping); 3328 txr->tx_push = NULL; 3329 } 3330 3331 ring = &txr->tx_ring_struct; 3332 3333 bnxt_free_ring(bp, &ring->ring_mem); 3334 } 3335 } 3336 3337 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3338 { 3339 int i, j, rc; 3340 struct pci_dev *pdev = bp->pdev; 3341 3342 bp->tx_push_size = 0; 3343 if (bp->tx_push_thresh) { 3344 int push_size; 3345 3346 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3347 bp->tx_push_thresh); 3348 3349 if (push_size > 256) { 3350 push_size = 0; 3351 bp->tx_push_thresh = 0; 3352 } 3353 3354 bp->tx_push_size = push_size; 3355 } 3356 3357 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3358 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3359 struct bnxt_ring_struct *ring; 3360 u8 qidx; 3361 3362 ring = &txr->tx_ring_struct; 3363 3364 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3365 if (rc) 3366 return rc; 3367 3368 ring->grp_idx = txr->bnapi->index; 3369 if (bp->tx_push_size) { 3370 dma_addr_t mapping; 3371 3372 /* One pre-allocated DMA buffer to backup 3373 * TX push operation 3374 */ 3375 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3376 bp->tx_push_size, 3377 &txr->tx_push_mapping, 3378 GFP_KERNEL); 3379 3380 if (!txr->tx_push) 3381 return -ENOMEM; 3382 3383 mapping = txr->tx_push_mapping + 3384 sizeof(struct tx_push_bd); 3385 txr->data_mapping = cpu_to_le64(mapping); 3386 } 3387 qidx = bp->tc_to_qidx[j]; 3388 ring->queue_id = bp->q_info[qidx].queue_id; 3389 spin_lock_init(&txr->xdp_tx_lock); 3390 if (i < bp->tx_nr_rings_xdp) 3391 continue; 3392 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3393 j++; 3394 } 3395 return 0; 3396 } 3397 3398 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3399 { 3400 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3401 3402 kfree(cpr->cp_desc_ring); 3403 cpr->cp_desc_ring = NULL; 3404 ring->ring_mem.pg_arr = NULL; 3405 kfree(cpr->cp_desc_mapping); 3406 cpr->cp_desc_mapping = NULL; 3407 ring->ring_mem.dma_arr = NULL; 3408 } 3409 3410 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3411 { 3412 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3413 if (!cpr->cp_desc_ring) 3414 return -ENOMEM; 3415 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3416 GFP_KERNEL); 3417 if (!cpr->cp_desc_mapping) 3418 return -ENOMEM; 3419 return 0; 3420 } 3421 3422 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3423 { 3424 int i; 3425 3426 if (!bp->bnapi) 3427 return; 3428 for (i = 0; i < bp->cp_nr_rings; i++) { 3429 struct bnxt_napi *bnapi = bp->bnapi[i]; 3430 3431 if (!bnapi) 3432 continue; 3433 bnxt_free_cp_arrays(&bnapi->cp_ring); 3434 } 3435 } 3436 3437 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3438 { 3439 int i, n = bp->cp_nr_pages; 3440 3441 for (i = 0; i < bp->cp_nr_rings; i++) { 3442 struct bnxt_napi *bnapi = bp->bnapi[i]; 3443 int rc; 3444 3445 if (!bnapi) 3446 continue; 3447 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3448 if (rc) 3449 return rc; 3450 } 3451 return 0; 3452 } 3453 3454 static void bnxt_free_cp_rings(struct bnxt *bp) 3455 { 3456 int i; 3457 3458 if (!bp->bnapi) 3459 return; 3460 3461 for (i = 0; i < bp->cp_nr_rings; i++) { 3462 struct bnxt_napi *bnapi = bp->bnapi[i]; 3463 struct bnxt_cp_ring_info *cpr; 3464 struct bnxt_ring_struct *ring; 3465 int j; 3466 3467 if (!bnapi) 3468 continue; 3469 3470 cpr = &bnapi->cp_ring; 3471 ring = &cpr->cp_ring_struct; 3472 3473 bnxt_free_ring(bp, &ring->ring_mem); 3474 3475 for (j = 0; j < 2; j++) { 3476 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3477 3478 if (cpr2) { 3479 ring = &cpr2->cp_ring_struct; 3480 bnxt_free_ring(bp, &ring->ring_mem); 3481 bnxt_free_cp_arrays(cpr2); 3482 kfree(cpr2); 3483 cpr->cp_ring_arr[j] = NULL; 3484 } 3485 } 3486 } 3487 } 3488 3489 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3490 { 3491 struct bnxt_ring_mem_info *rmem; 3492 struct bnxt_ring_struct *ring; 3493 struct bnxt_cp_ring_info *cpr; 3494 int rc; 3495 3496 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3497 if (!cpr) 3498 return NULL; 3499 3500 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3501 if (rc) { 3502 bnxt_free_cp_arrays(cpr); 3503 kfree(cpr); 3504 return NULL; 3505 } 3506 ring = &cpr->cp_ring_struct; 3507 rmem = &ring->ring_mem; 3508 rmem->nr_pages = bp->cp_nr_pages; 3509 rmem->page_size = HW_CMPD_RING_SIZE; 3510 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3511 rmem->dma_arr = cpr->cp_desc_mapping; 3512 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3513 rc = bnxt_alloc_ring(bp, rmem); 3514 if (rc) { 3515 bnxt_free_ring(bp, rmem); 3516 bnxt_free_cp_arrays(cpr); 3517 kfree(cpr); 3518 cpr = NULL; 3519 } 3520 return cpr; 3521 } 3522 3523 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3524 { 3525 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3526 int i, rc, ulp_base_vec, ulp_msix; 3527 3528 ulp_msix = bnxt_get_ulp_msix_num(bp); 3529 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3530 for (i = 0; i < bp->cp_nr_rings; i++) { 3531 struct bnxt_napi *bnapi = bp->bnapi[i]; 3532 struct bnxt_cp_ring_info *cpr; 3533 struct bnxt_ring_struct *ring; 3534 3535 if (!bnapi) 3536 continue; 3537 3538 cpr = &bnapi->cp_ring; 3539 cpr->bnapi = bnapi; 3540 ring = &cpr->cp_ring_struct; 3541 3542 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3543 if (rc) 3544 return rc; 3545 3546 if (ulp_msix && i >= ulp_base_vec) 3547 ring->map_idx = i + ulp_msix; 3548 else 3549 ring->map_idx = i; 3550 3551 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3552 continue; 3553 3554 if (i < bp->rx_nr_rings) { 3555 struct bnxt_cp_ring_info *cpr2 = 3556 bnxt_alloc_cp_sub_ring(bp); 3557 3558 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3559 if (!cpr2) 3560 return -ENOMEM; 3561 cpr2->bnapi = bnapi; 3562 } 3563 if ((sh && i < bp->tx_nr_rings) || 3564 (!sh && i >= bp->rx_nr_rings)) { 3565 struct bnxt_cp_ring_info *cpr2 = 3566 bnxt_alloc_cp_sub_ring(bp); 3567 3568 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3569 if (!cpr2) 3570 return -ENOMEM; 3571 cpr2->bnapi = bnapi; 3572 } 3573 } 3574 return 0; 3575 } 3576 3577 static void bnxt_init_ring_struct(struct bnxt *bp) 3578 { 3579 int i; 3580 3581 for (i = 0; i < bp->cp_nr_rings; i++) { 3582 struct bnxt_napi *bnapi = bp->bnapi[i]; 3583 struct bnxt_ring_mem_info *rmem; 3584 struct bnxt_cp_ring_info *cpr; 3585 struct bnxt_rx_ring_info *rxr; 3586 struct bnxt_tx_ring_info *txr; 3587 struct bnxt_ring_struct *ring; 3588 3589 if (!bnapi) 3590 continue; 3591 3592 cpr = &bnapi->cp_ring; 3593 ring = &cpr->cp_ring_struct; 3594 rmem = &ring->ring_mem; 3595 rmem->nr_pages = bp->cp_nr_pages; 3596 rmem->page_size = HW_CMPD_RING_SIZE; 3597 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3598 rmem->dma_arr = cpr->cp_desc_mapping; 3599 rmem->vmem_size = 0; 3600 3601 rxr = bnapi->rx_ring; 3602 if (!rxr) 3603 goto skip_rx; 3604 3605 ring = &rxr->rx_ring_struct; 3606 rmem = &ring->ring_mem; 3607 rmem->nr_pages = bp->rx_nr_pages; 3608 rmem->page_size = HW_RXBD_RING_SIZE; 3609 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3610 rmem->dma_arr = rxr->rx_desc_mapping; 3611 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3612 rmem->vmem = (void **)&rxr->rx_buf_ring; 3613 3614 ring = &rxr->rx_agg_ring_struct; 3615 rmem = &ring->ring_mem; 3616 rmem->nr_pages = bp->rx_agg_nr_pages; 3617 rmem->page_size = HW_RXBD_RING_SIZE; 3618 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3619 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3620 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3621 rmem->vmem = (void **)&rxr->rx_agg_ring; 3622 3623 skip_rx: 3624 txr = bnapi->tx_ring; 3625 if (!txr) 3626 continue; 3627 3628 ring = &txr->tx_ring_struct; 3629 rmem = &ring->ring_mem; 3630 rmem->nr_pages = bp->tx_nr_pages; 3631 rmem->page_size = HW_RXBD_RING_SIZE; 3632 rmem->pg_arr = (void **)txr->tx_desc_ring; 3633 rmem->dma_arr = txr->tx_desc_mapping; 3634 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3635 rmem->vmem = (void **)&txr->tx_buf_ring; 3636 } 3637 } 3638 3639 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3640 { 3641 int i; 3642 u32 prod; 3643 struct rx_bd **rx_buf_ring; 3644 3645 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3646 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3647 int j; 3648 struct rx_bd *rxbd; 3649 3650 rxbd = rx_buf_ring[i]; 3651 if (!rxbd) 3652 continue; 3653 3654 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3655 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3656 rxbd->rx_bd_opaque = prod; 3657 } 3658 } 3659 } 3660 3661 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3662 { 3663 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3664 struct net_device *dev = bp->dev; 3665 u32 prod; 3666 int i; 3667 3668 prod = rxr->rx_prod; 3669 for (i = 0; i < bp->rx_ring_size; i++) { 3670 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3671 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3672 ring_nr, i, bp->rx_ring_size); 3673 break; 3674 } 3675 prod = NEXT_RX(prod); 3676 } 3677 rxr->rx_prod = prod; 3678 3679 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3680 return 0; 3681 3682 prod = rxr->rx_agg_prod; 3683 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3684 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3685 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3686 ring_nr, i, bp->rx_ring_size); 3687 break; 3688 } 3689 prod = NEXT_RX_AGG(prod); 3690 } 3691 rxr->rx_agg_prod = prod; 3692 3693 if (rxr->rx_tpa) { 3694 dma_addr_t mapping; 3695 u8 *data; 3696 3697 for (i = 0; i < bp->max_tpa; i++) { 3698 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 3699 if (!data) 3700 return -ENOMEM; 3701 3702 rxr->rx_tpa[i].data = data; 3703 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3704 rxr->rx_tpa[i].mapping = mapping; 3705 } 3706 } 3707 return 0; 3708 } 3709 3710 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3711 { 3712 struct bnxt_rx_ring_info *rxr; 3713 struct bnxt_ring_struct *ring; 3714 u32 type; 3715 3716 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3717 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3718 3719 if (NET_IP_ALIGN == 2) 3720 type |= RX_BD_FLAGS_SOP; 3721 3722 rxr = &bp->rx_ring[ring_nr]; 3723 ring = &rxr->rx_ring_struct; 3724 bnxt_init_rxbd_pages(ring, type); 3725 3726 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3727 bpf_prog_add(bp->xdp_prog, 1); 3728 rxr->xdp_prog = bp->xdp_prog; 3729 } 3730 ring->fw_ring_id = INVALID_HW_RING_ID; 3731 3732 ring = &rxr->rx_agg_ring_struct; 3733 ring->fw_ring_id = INVALID_HW_RING_ID; 3734 3735 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3736 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3737 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3738 3739 bnxt_init_rxbd_pages(ring, type); 3740 } 3741 3742 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3743 } 3744 3745 static void bnxt_init_cp_rings(struct bnxt *bp) 3746 { 3747 int i, j; 3748 3749 for (i = 0; i < bp->cp_nr_rings; i++) { 3750 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3751 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3752 3753 ring->fw_ring_id = INVALID_HW_RING_ID; 3754 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3755 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3756 for (j = 0; j < 2; j++) { 3757 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3758 3759 if (!cpr2) 3760 continue; 3761 3762 ring = &cpr2->cp_ring_struct; 3763 ring->fw_ring_id = INVALID_HW_RING_ID; 3764 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3765 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3766 } 3767 } 3768 } 3769 3770 static int bnxt_init_rx_rings(struct bnxt *bp) 3771 { 3772 int i, rc = 0; 3773 3774 if (BNXT_RX_PAGE_MODE(bp)) { 3775 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3776 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3777 } else { 3778 bp->rx_offset = BNXT_RX_OFFSET; 3779 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3780 } 3781 3782 for (i = 0; i < bp->rx_nr_rings; i++) { 3783 rc = bnxt_init_one_rx_ring(bp, i); 3784 if (rc) 3785 break; 3786 } 3787 3788 return rc; 3789 } 3790 3791 static int bnxt_init_tx_rings(struct bnxt *bp) 3792 { 3793 u16 i; 3794 3795 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3796 BNXT_MIN_TX_DESC_CNT); 3797 3798 for (i = 0; i < bp->tx_nr_rings; i++) { 3799 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3800 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3801 3802 ring->fw_ring_id = INVALID_HW_RING_ID; 3803 } 3804 3805 return 0; 3806 } 3807 3808 static void bnxt_free_ring_grps(struct bnxt *bp) 3809 { 3810 kfree(bp->grp_info); 3811 bp->grp_info = NULL; 3812 } 3813 3814 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3815 { 3816 int i; 3817 3818 if (irq_re_init) { 3819 bp->grp_info = kcalloc(bp->cp_nr_rings, 3820 sizeof(struct bnxt_ring_grp_info), 3821 GFP_KERNEL); 3822 if (!bp->grp_info) 3823 return -ENOMEM; 3824 } 3825 for (i = 0; i < bp->cp_nr_rings; i++) { 3826 if (irq_re_init) 3827 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3828 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3829 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3830 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3831 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3832 } 3833 return 0; 3834 } 3835 3836 static void bnxt_free_vnics(struct bnxt *bp) 3837 { 3838 kfree(bp->vnic_info); 3839 bp->vnic_info = NULL; 3840 bp->nr_vnics = 0; 3841 } 3842 3843 static int bnxt_alloc_vnics(struct bnxt *bp) 3844 { 3845 int num_vnics = 1; 3846 3847 #ifdef CONFIG_RFS_ACCEL 3848 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3849 num_vnics += bp->rx_nr_rings; 3850 #endif 3851 3852 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3853 num_vnics++; 3854 3855 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3856 GFP_KERNEL); 3857 if (!bp->vnic_info) 3858 return -ENOMEM; 3859 3860 bp->nr_vnics = num_vnics; 3861 return 0; 3862 } 3863 3864 static void bnxt_init_vnics(struct bnxt *bp) 3865 { 3866 int i; 3867 3868 for (i = 0; i < bp->nr_vnics; i++) { 3869 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3870 int j; 3871 3872 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3873 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3874 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3875 3876 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3877 3878 if (bp->vnic_info[i].rss_hash_key) { 3879 if (i == 0) 3880 prandom_bytes(vnic->rss_hash_key, 3881 HW_HASH_KEY_SIZE); 3882 else 3883 memcpy(vnic->rss_hash_key, 3884 bp->vnic_info[0].rss_hash_key, 3885 HW_HASH_KEY_SIZE); 3886 } 3887 } 3888 } 3889 3890 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3891 { 3892 int pages; 3893 3894 pages = ring_size / desc_per_pg; 3895 3896 if (!pages) 3897 return 1; 3898 3899 pages++; 3900 3901 while (pages & (pages - 1)) 3902 pages++; 3903 3904 return pages; 3905 } 3906 3907 void bnxt_set_tpa_flags(struct bnxt *bp) 3908 { 3909 bp->flags &= ~BNXT_FLAG_TPA; 3910 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3911 return; 3912 if (bp->dev->features & NETIF_F_LRO) 3913 bp->flags |= BNXT_FLAG_LRO; 3914 else if (bp->dev->features & NETIF_F_GRO_HW) 3915 bp->flags |= BNXT_FLAG_GRO; 3916 } 3917 3918 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3919 * be set on entry. 3920 */ 3921 void bnxt_set_ring_params(struct bnxt *bp) 3922 { 3923 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3924 u32 agg_factor = 0, agg_ring_size = 0; 3925 3926 /* 8 for CRC and VLAN */ 3927 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3928 3929 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 3930 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3931 3932 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3933 ring_size = bp->rx_ring_size; 3934 bp->rx_agg_ring_size = 0; 3935 bp->rx_agg_nr_pages = 0; 3936 3937 if (bp->flags & BNXT_FLAG_TPA) 3938 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3939 3940 bp->flags &= ~BNXT_FLAG_JUMBO; 3941 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3942 u32 jumbo_factor; 3943 3944 bp->flags |= BNXT_FLAG_JUMBO; 3945 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3946 if (jumbo_factor > agg_factor) 3947 agg_factor = jumbo_factor; 3948 } 3949 if (agg_factor) { 3950 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3951 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3952 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3953 bp->rx_ring_size, ring_size); 3954 bp->rx_ring_size = ring_size; 3955 } 3956 agg_ring_size = ring_size * agg_factor; 3957 3958 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3959 RX_DESC_CNT); 3960 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3961 u32 tmp = agg_ring_size; 3962 3963 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3964 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3965 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3966 tmp, agg_ring_size); 3967 } 3968 bp->rx_agg_ring_size = agg_ring_size; 3969 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3970 3971 if (BNXT_RX_PAGE_MODE(bp)) { 3972 rx_space = BNXT_PAGE_MODE_BUF_SIZE; 3973 rx_size = BNXT_MAX_PAGE_MODE_MTU; 3974 } else { 3975 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3976 rx_space = rx_size + NET_SKB_PAD + 3977 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3978 } 3979 } 3980 3981 bp->rx_buf_use_size = rx_size; 3982 bp->rx_buf_size = rx_space; 3983 3984 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3985 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3986 3987 ring_size = bp->tx_ring_size; 3988 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3989 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3990 3991 max_rx_cmpl = bp->rx_ring_size; 3992 /* MAX TPA needs to be added because TPA_START completions are 3993 * immediately recycled, so the TPA completions are not bound by 3994 * the RX ring size. 3995 */ 3996 if (bp->flags & BNXT_FLAG_TPA) 3997 max_rx_cmpl += bp->max_tpa; 3998 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3999 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4000 bp->cp_ring_size = ring_size; 4001 4002 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4003 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4004 bp->cp_nr_pages = MAX_CP_PAGES; 4005 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4006 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4007 ring_size, bp->cp_ring_size); 4008 } 4009 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4010 bp->cp_ring_mask = bp->cp_bit - 1; 4011 } 4012 4013 /* Changing allocation mode of RX rings. 4014 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4015 */ 4016 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4017 { 4018 if (page_mode) { 4019 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4020 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4021 4022 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4023 bp->flags |= BNXT_FLAG_JUMBO; 4024 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4025 bp->dev->max_mtu = 4026 min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4027 } else { 4028 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4029 bp->rx_skb_func = bnxt_rx_page_skb; 4030 bp->dev->max_mtu = 4031 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4032 } 4033 bp->rx_dir = DMA_BIDIRECTIONAL; 4034 /* Disable LRO or GRO_HW */ 4035 netdev_update_features(bp->dev); 4036 } else { 4037 bp->dev->max_mtu = bp->max_mtu; 4038 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4039 bp->rx_dir = DMA_FROM_DEVICE; 4040 bp->rx_skb_func = bnxt_rx_skb; 4041 } 4042 return 0; 4043 } 4044 4045 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4046 { 4047 int i; 4048 struct bnxt_vnic_info *vnic; 4049 struct pci_dev *pdev = bp->pdev; 4050 4051 if (!bp->vnic_info) 4052 return; 4053 4054 for (i = 0; i < bp->nr_vnics; i++) { 4055 vnic = &bp->vnic_info[i]; 4056 4057 kfree(vnic->fw_grp_ids); 4058 vnic->fw_grp_ids = NULL; 4059 4060 kfree(vnic->uc_list); 4061 vnic->uc_list = NULL; 4062 4063 if (vnic->mc_list) { 4064 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4065 vnic->mc_list, vnic->mc_list_mapping); 4066 vnic->mc_list = NULL; 4067 } 4068 4069 if (vnic->rss_table) { 4070 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4071 vnic->rss_table, 4072 vnic->rss_table_dma_addr); 4073 vnic->rss_table = NULL; 4074 } 4075 4076 vnic->rss_hash_key = NULL; 4077 vnic->flags = 0; 4078 } 4079 } 4080 4081 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4082 { 4083 int i, rc = 0, size; 4084 struct bnxt_vnic_info *vnic; 4085 struct pci_dev *pdev = bp->pdev; 4086 int max_rings; 4087 4088 for (i = 0; i < bp->nr_vnics; i++) { 4089 vnic = &bp->vnic_info[i]; 4090 4091 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4092 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4093 4094 if (mem_size > 0) { 4095 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4096 if (!vnic->uc_list) { 4097 rc = -ENOMEM; 4098 goto out; 4099 } 4100 } 4101 } 4102 4103 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4104 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4105 vnic->mc_list = 4106 dma_alloc_coherent(&pdev->dev, 4107 vnic->mc_list_size, 4108 &vnic->mc_list_mapping, 4109 GFP_KERNEL); 4110 if (!vnic->mc_list) { 4111 rc = -ENOMEM; 4112 goto out; 4113 } 4114 } 4115 4116 if (bp->flags & BNXT_FLAG_CHIP_P5) 4117 goto vnic_skip_grps; 4118 4119 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4120 max_rings = bp->rx_nr_rings; 4121 else 4122 max_rings = 1; 4123 4124 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4125 if (!vnic->fw_grp_ids) { 4126 rc = -ENOMEM; 4127 goto out; 4128 } 4129 vnic_skip_grps: 4130 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 4131 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4132 continue; 4133 4134 /* Allocate rss table and hash key */ 4135 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4136 if (bp->flags & BNXT_FLAG_CHIP_P5) 4137 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4138 4139 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4140 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4141 vnic->rss_table_size, 4142 &vnic->rss_table_dma_addr, 4143 GFP_KERNEL); 4144 if (!vnic->rss_table) { 4145 rc = -ENOMEM; 4146 goto out; 4147 } 4148 4149 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4150 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4151 } 4152 return 0; 4153 4154 out: 4155 return rc; 4156 } 4157 4158 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4159 { 4160 struct bnxt_hwrm_wait_token *token; 4161 4162 dma_pool_destroy(bp->hwrm_dma_pool); 4163 bp->hwrm_dma_pool = NULL; 4164 4165 rcu_read_lock(); 4166 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4167 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4168 rcu_read_unlock(); 4169 } 4170 4171 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4172 { 4173 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4174 BNXT_HWRM_DMA_SIZE, 4175 BNXT_HWRM_DMA_ALIGN, 0); 4176 if (!bp->hwrm_dma_pool) 4177 return -ENOMEM; 4178 4179 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4180 4181 return 0; 4182 } 4183 4184 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4185 { 4186 kfree(stats->hw_masks); 4187 stats->hw_masks = NULL; 4188 kfree(stats->sw_stats); 4189 stats->sw_stats = NULL; 4190 if (stats->hw_stats) { 4191 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4192 stats->hw_stats_map); 4193 stats->hw_stats = NULL; 4194 } 4195 } 4196 4197 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4198 bool alloc_masks) 4199 { 4200 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4201 &stats->hw_stats_map, GFP_KERNEL); 4202 if (!stats->hw_stats) 4203 return -ENOMEM; 4204 4205 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4206 if (!stats->sw_stats) 4207 goto stats_mem_err; 4208 4209 if (alloc_masks) { 4210 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4211 if (!stats->hw_masks) 4212 goto stats_mem_err; 4213 } 4214 return 0; 4215 4216 stats_mem_err: 4217 bnxt_free_stats_mem(bp, stats); 4218 return -ENOMEM; 4219 } 4220 4221 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4222 { 4223 int i; 4224 4225 for (i = 0; i < count; i++) 4226 mask_arr[i] = mask; 4227 } 4228 4229 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4230 { 4231 int i; 4232 4233 for (i = 0; i < count; i++) 4234 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4235 } 4236 4237 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4238 struct bnxt_stats_mem *stats) 4239 { 4240 struct hwrm_func_qstats_ext_output *resp; 4241 struct hwrm_func_qstats_ext_input *req; 4242 __le64 *hw_masks; 4243 int rc; 4244 4245 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4246 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4247 return -EOPNOTSUPP; 4248 4249 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4250 if (rc) 4251 return rc; 4252 4253 req->fid = cpu_to_le16(0xffff); 4254 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4255 4256 resp = hwrm_req_hold(bp, req); 4257 rc = hwrm_req_send(bp, req); 4258 if (!rc) { 4259 hw_masks = &resp->rx_ucast_pkts; 4260 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4261 } 4262 hwrm_req_drop(bp, req); 4263 return rc; 4264 } 4265 4266 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4267 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4268 4269 static void bnxt_init_stats(struct bnxt *bp) 4270 { 4271 struct bnxt_napi *bnapi = bp->bnapi[0]; 4272 struct bnxt_cp_ring_info *cpr; 4273 struct bnxt_stats_mem *stats; 4274 __le64 *rx_stats, *tx_stats; 4275 int rc, rx_count, tx_count; 4276 u64 *rx_masks, *tx_masks; 4277 u64 mask; 4278 u8 flags; 4279 4280 cpr = &bnapi->cp_ring; 4281 stats = &cpr->stats; 4282 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4283 if (rc) { 4284 if (bp->flags & BNXT_FLAG_CHIP_P5) 4285 mask = (1ULL << 48) - 1; 4286 else 4287 mask = -1ULL; 4288 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4289 } 4290 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4291 stats = &bp->port_stats; 4292 rx_stats = stats->hw_stats; 4293 rx_masks = stats->hw_masks; 4294 rx_count = sizeof(struct rx_port_stats) / 8; 4295 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4296 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4297 tx_count = sizeof(struct tx_port_stats) / 8; 4298 4299 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4300 rc = bnxt_hwrm_port_qstats(bp, flags); 4301 if (rc) { 4302 mask = (1ULL << 40) - 1; 4303 4304 bnxt_fill_masks(rx_masks, mask, rx_count); 4305 bnxt_fill_masks(tx_masks, mask, tx_count); 4306 } else { 4307 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4308 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4309 bnxt_hwrm_port_qstats(bp, 0); 4310 } 4311 } 4312 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4313 stats = &bp->rx_port_stats_ext; 4314 rx_stats = stats->hw_stats; 4315 rx_masks = stats->hw_masks; 4316 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4317 stats = &bp->tx_port_stats_ext; 4318 tx_stats = stats->hw_stats; 4319 tx_masks = stats->hw_masks; 4320 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4321 4322 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4323 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4324 if (rc) { 4325 mask = (1ULL << 40) - 1; 4326 4327 bnxt_fill_masks(rx_masks, mask, rx_count); 4328 if (tx_stats) 4329 bnxt_fill_masks(tx_masks, mask, tx_count); 4330 } else { 4331 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4332 if (tx_stats) 4333 bnxt_copy_hw_masks(tx_masks, tx_stats, 4334 tx_count); 4335 bnxt_hwrm_port_qstats_ext(bp, 0); 4336 } 4337 } 4338 } 4339 4340 static void bnxt_free_port_stats(struct bnxt *bp) 4341 { 4342 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4343 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4344 4345 bnxt_free_stats_mem(bp, &bp->port_stats); 4346 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4347 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4348 } 4349 4350 static void bnxt_free_ring_stats(struct bnxt *bp) 4351 { 4352 int i; 4353 4354 if (!bp->bnapi) 4355 return; 4356 4357 for (i = 0; i < bp->cp_nr_rings; i++) { 4358 struct bnxt_napi *bnapi = bp->bnapi[i]; 4359 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4360 4361 bnxt_free_stats_mem(bp, &cpr->stats); 4362 } 4363 } 4364 4365 static int bnxt_alloc_stats(struct bnxt *bp) 4366 { 4367 u32 size, i; 4368 int rc; 4369 4370 size = bp->hw_ring_stats_size; 4371 4372 for (i = 0; i < bp->cp_nr_rings; i++) { 4373 struct bnxt_napi *bnapi = bp->bnapi[i]; 4374 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4375 4376 cpr->stats.len = size; 4377 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4378 if (rc) 4379 return rc; 4380 4381 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4382 } 4383 4384 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4385 return 0; 4386 4387 if (bp->port_stats.hw_stats) 4388 goto alloc_ext_stats; 4389 4390 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4391 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4392 if (rc) 4393 return rc; 4394 4395 bp->flags |= BNXT_FLAG_PORT_STATS; 4396 4397 alloc_ext_stats: 4398 /* Display extended statistics only if FW supports it */ 4399 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4400 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4401 return 0; 4402 4403 if (bp->rx_port_stats_ext.hw_stats) 4404 goto alloc_tx_ext_stats; 4405 4406 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4407 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4408 /* Extended stats are optional */ 4409 if (rc) 4410 return 0; 4411 4412 alloc_tx_ext_stats: 4413 if (bp->tx_port_stats_ext.hw_stats) 4414 return 0; 4415 4416 if (bp->hwrm_spec_code >= 0x10902 || 4417 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4418 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4419 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4420 /* Extended stats are optional */ 4421 if (rc) 4422 return 0; 4423 } 4424 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4425 return 0; 4426 } 4427 4428 static void bnxt_clear_ring_indices(struct bnxt *bp) 4429 { 4430 int i; 4431 4432 if (!bp->bnapi) 4433 return; 4434 4435 for (i = 0; i < bp->cp_nr_rings; i++) { 4436 struct bnxt_napi *bnapi = bp->bnapi[i]; 4437 struct bnxt_cp_ring_info *cpr; 4438 struct bnxt_rx_ring_info *rxr; 4439 struct bnxt_tx_ring_info *txr; 4440 4441 if (!bnapi) 4442 continue; 4443 4444 cpr = &bnapi->cp_ring; 4445 cpr->cp_raw_cons = 0; 4446 4447 txr = bnapi->tx_ring; 4448 if (txr) { 4449 txr->tx_prod = 0; 4450 txr->tx_cons = 0; 4451 } 4452 4453 rxr = bnapi->rx_ring; 4454 if (rxr) { 4455 rxr->rx_prod = 0; 4456 rxr->rx_agg_prod = 0; 4457 rxr->rx_sw_agg_prod = 0; 4458 rxr->rx_next_cons = 0; 4459 } 4460 } 4461 } 4462 4463 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4464 { 4465 #ifdef CONFIG_RFS_ACCEL 4466 int i; 4467 4468 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4469 * safe to delete the hash table. 4470 */ 4471 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4472 struct hlist_head *head; 4473 struct hlist_node *tmp; 4474 struct bnxt_ntuple_filter *fltr; 4475 4476 head = &bp->ntp_fltr_hash_tbl[i]; 4477 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4478 hlist_del(&fltr->hash); 4479 kfree(fltr); 4480 } 4481 } 4482 if (irq_reinit) { 4483 kfree(bp->ntp_fltr_bmap); 4484 bp->ntp_fltr_bmap = NULL; 4485 } 4486 bp->ntp_fltr_count = 0; 4487 #endif 4488 } 4489 4490 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4491 { 4492 #ifdef CONFIG_RFS_ACCEL 4493 int i, rc = 0; 4494 4495 if (!(bp->flags & BNXT_FLAG_RFS)) 4496 return 0; 4497 4498 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4499 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4500 4501 bp->ntp_fltr_count = 0; 4502 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4503 sizeof(long), 4504 GFP_KERNEL); 4505 4506 if (!bp->ntp_fltr_bmap) 4507 rc = -ENOMEM; 4508 4509 return rc; 4510 #else 4511 return 0; 4512 #endif 4513 } 4514 4515 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4516 { 4517 bnxt_free_vnic_attributes(bp); 4518 bnxt_free_tx_rings(bp); 4519 bnxt_free_rx_rings(bp); 4520 bnxt_free_cp_rings(bp); 4521 bnxt_free_all_cp_arrays(bp); 4522 bnxt_free_ntp_fltrs(bp, irq_re_init); 4523 if (irq_re_init) { 4524 bnxt_free_ring_stats(bp); 4525 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4526 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4527 bnxt_free_port_stats(bp); 4528 bnxt_free_ring_grps(bp); 4529 bnxt_free_vnics(bp); 4530 kfree(bp->tx_ring_map); 4531 bp->tx_ring_map = NULL; 4532 kfree(bp->tx_ring); 4533 bp->tx_ring = NULL; 4534 kfree(bp->rx_ring); 4535 bp->rx_ring = NULL; 4536 kfree(bp->bnapi); 4537 bp->bnapi = NULL; 4538 } else { 4539 bnxt_clear_ring_indices(bp); 4540 } 4541 } 4542 4543 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4544 { 4545 int i, j, rc, size, arr_size; 4546 void *bnapi; 4547 4548 if (irq_re_init) { 4549 /* Allocate bnapi mem pointer array and mem block for 4550 * all queues 4551 */ 4552 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4553 bp->cp_nr_rings); 4554 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4555 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4556 if (!bnapi) 4557 return -ENOMEM; 4558 4559 bp->bnapi = bnapi; 4560 bnapi += arr_size; 4561 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4562 bp->bnapi[i] = bnapi; 4563 bp->bnapi[i]->index = i; 4564 bp->bnapi[i]->bp = bp; 4565 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4566 struct bnxt_cp_ring_info *cpr = 4567 &bp->bnapi[i]->cp_ring; 4568 4569 cpr->cp_ring_struct.ring_mem.flags = 4570 BNXT_RMEM_RING_PTE_FLAG; 4571 } 4572 } 4573 4574 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4575 sizeof(struct bnxt_rx_ring_info), 4576 GFP_KERNEL); 4577 if (!bp->rx_ring) 4578 return -ENOMEM; 4579 4580 for (i = 0; i < bp->rx_nr_rings; i++) { 4581 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4582 4583 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4584 rxr->rx_ring_struct.ring_mem.flags = 4585 BNXT_RMEM_RING_PTE_FLAG; 4586 rxr->rx_agg_ring_struct.ring_mem.flags = 4587 BNXT_RMEM_RING_PTE_FLAG; 4588 } 4589 rxr->bnapi = bp->bnapi[i]; 4590 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4591 } 4592 4593 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4594 sizeof(struct bnxt_tx_ring_info), 4595 GFP_KERNEL); 4596 if (!bp->tx_ring) 4597 return -ENOMEM; 4598 4599 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4600 GFP_KERNEL); 4601 4602 if (!bp->tx_ring_map) 4603 return -ENOMEM; 4604 4605 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4606 j = 0; 4607 else 4608 j = bp->rx_nr_rings; 4609 4610 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4611 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4612 4613 if (bp->flags & BNXT_FLAG_CHIP_P5) 4614 txr->tx_ring_struct.ring_mem.flags = 4615 BNXT_RMEM_RING_PTE_FLAG; 4616 txr->bnapi = bp->bnapi[j]; 4617 bp->bnapi[j]->tx_ring = txr; 4618 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4619 if (i >= bp->tx_nr_rings_xdp) { 4620 txr->txq_index = i - bp->tx_nr_rings_xdp; 4621 bp->bnapi[j]->tx_int = bnxt_tx_int; 4622 } else { 4623 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4624 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4625 } 4626 } 4627 4628 rc = bnxt_alloc_stats(bp); 4629 if (rc) 4630 goto alloc_mem_err; 4631 bnxt_init_stats(bp); 4632 4633 rc = bnxt_alloc_ntp_fltrs(bp); 4634 if (rc) 4635 goto alloc_mem_err; 4636 4637 rc = bnxt_alloc_vnics(bp); 4638 if (rc) 4639 goto alloc_mem_err; 4640 } 4641 4642 rc = bnxt_alloc_all_cp_arrays(bp); 4643 if (rc) 4644 goto alloc_mem_err; 4645 4646 bnxt_init_ring_struct(bp); 4647 4648 rc = bnxt_alloc_rx_rings(bp); 4649 if (rc) 4650 goto alloc_mem_err; 4651 4652 rc = bnxt_alloc_tx_rings(bp); 4653 if (rc) 4654 goto alloc_mem_err; 4655 4656 rc = bnxt_alloc_cp_rings(bp); 4657 if (rc) 4658 goto alloc_mem_err; 4659 4660 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4661 BNXT_VNIC_UCAST_FLAG; 4662 rc = bnxt_alloc_vnic_attributes(bp); 4663 if (rc) 4664 goto alloc_mem_err; 4665 return 0; 4666 4667 alloc_mem_err: 4668 bnxt_free_mem(bp, true); 4669 return rc; 4670 } 4671 4672 static void bnxt_disable_int(struct bnxt *bp) 4673 { 4674 int i; 4675 4676 if (!bp->bnapi) 4677 return; 4678 4679 for (i = 0; i < bp->cp_nr_rings; i++) { 4680 struct bnxt_napi *bnapi = bp->bnapi[i]; 4681 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4682 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4683 4684 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4685 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4686 } 4687 } 4688 4689 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4690 { 4691 struct bnxt_napi *bnapi = bp->bnapi[n]; 4692 struct bnxt_cp_ring_info *cpr; 4693 4694 cpr = &bnapi->cp_ring; 4695 return cpr->cp_ring_struct.map_idx; 4696 } 4697 4698 static void bnxt_disable_int_sync(struct bnxt *bp) 4699 { 4700 int i; 4701 4702 if (!bp->irq_tbl) 4703 return; 4704 4705 atomic_inc(&bp->intr_sem); 4706 4707 bnxt_disable_int(bp); 4708 for (i = 0; i < bp->cp_nr_rings; i++) { 4709 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4710 4711 synchronize_irq(bp->irq_tbl[map_idx].vector); 4712 } 4713 } 4714 4715 static void bnxt_enable_int(struct bnxt *bp) 4716 { 4717 int i; 4718 4719 atomic_set(&bp->intr_sem, 0); 4720 for (i = 0; i < bp->cp_nr_rings; i++) { 4721 struct bnxt_napi *bnapi = bp->bnapi[i]; 4722 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4723 4724 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4725 } 4726 } 4727 4728 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4729 bool async_only) 4730 { 4731 DECLARE_BITMAP(async_events_bmap, 256); 4732 u32 *events = (u32 *)async_events_bmap; 4733 struct hwrm_func_drv_rgtr_output *resp; 4734 struct hwrm_func_drv_rgtr_input *req; 4735 u32 flags; 4736 int rc, i; 4737 4738 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4739 if (rc) 4740 return rc; 4741 4742 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4743 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4744 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4745 4746 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4747 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4748 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4749 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4750 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4751 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4752 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4753 req->flags = cpu_to_le32(flags); 4754 req->ver_maj_8b = DRV_VER_MAJ; 4755 req->ver_min_8b = DRV_VER_MIN; 4756 req->ver_upd_8b = DRV_VER_UPD; 4757 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4758 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4759 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4760 4761 if (BNXT_PF(bp)) { 4762 u32 data[8]; 4763 int i; 4764 4765 memset(data, 0, sizeof(data)); 4766 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4767 u16 cmd = bnxt_vf_req_snif[i]; 4768 unsigned int bit, idx; 4769 4770 idx = cmd / 32; 4771 bit = cmd % 32; 4772 data[idx] |= 1 << bit; 4773 } 4774 4775 for (i = 0; i < 8; i++) 4776 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4777 4778 req->enables |= 4779 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4780 } 4781 4782 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4783 req->flags |= cpu_to_le32( 4784 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4785 4786 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4787 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4788 u16 event_id = bnxt_async_events_arr[i]; 4789 4790 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4791 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4792 continue; 4793 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4794 } 4795 if (bmap && bmap_size) { 4796 for (i = 0; i < bmap_size; i++) { 4797 if (test_bit(i, bmap)) 4798 __set_bit(i, async_events_bmap); 4799 } 4800 } 4801 for (i = 0; i < 8; i++) 4802 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4803 4804 if (async_only) 4805 req->enables = 4806 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4807 4808 resp = hwrm_req_hold(bp, req); 4809 rc = hwrm_req_send(bp, req); 4810 if (!rc) { 4811 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4812 if (resp->flags & 4813 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4814 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4815 } 4816 hwrm_req_drop(bp, req); 4817 return rc; 4818 } 4819 4820 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4821 { 4822 struct hwrm_func_drv_unrgtr_input *req; 4823 int rc; 4824 4825 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4826 return 0; 4827 4828 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4829 if (rc) 4830 return rc; 4831 return hwrm_req_send(bp, req); 4832 } 4833 4834 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4835 { 4836 struct hwrm_tunnel_dst_port_free_input *req; 4837 int rc; 4838 4839 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 4840 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 4841 return 0; 4842 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 4843 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 4844 return 0; 4845 4846 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4847 if (rc) 4848 return rc; 4849 4850 req->tunnel_type = tunnel_type; 4851 4852 switch (tunnel_type) { 4853 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4854 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4855 bp->vxlan_port = 0; 4856 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4857 break; 4858 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4859 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4860 bp->nge_port = 0; 4861 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4862 break; 4863 default: 4864 break; 4865 } 4866 4867 rc = hwrm_req_send(bp, req); 4868 if (rc) 4869 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4870 rc); 4871 return rc; 4872 } 4873 4874 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4875 u8 tunnel_type) 4876 { 4877 struct hwrm_tunnel_dst_port_alloc_output *resp; 4878 struct hwrm_tunnel_dst_port_alloc_input *req; 4879 int rc; 4880 4881 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4882 if (rc) 4883 return rc; 4884 4885 req->tunnel_type = tunnel_type; 4886 req->tunnel_dst_port_val = port; 4887 4888 resp = hwrm_req_hold(bp, req); 4889 rc = hwrm_req_send(bp, req); 4890 if (rc) { 4891 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4892 rc); 4893 goto err_out; 4894 } 4895 4896 switch (tunnel_type) { 4897 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4898 bp->vxlan_port = port; 4899 bp->vxlan_fw_dst_port_id = 4900 le16_to_cpu(resp->tunnel_dst_port_id); 4901 break; 4902 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4903 bp->nge_port = port; 4904 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4905 break; 4906 default: 4907 break; 4908 } 4909 4910 err_out: 4911 hwrm_req_drop(bp, req); 4912 return rc; 4913 } 4914 4915 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4916 { 4917 struct hwrm_cfa_l2_set_rx_mask_input *req; 4918 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4919 int rc; 4920 4921 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 4922 if (rc) 4923 return rc; 4924 4925 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4926 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 4927 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4928 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4929 } 4930 req->mask = cpu_to_le32(vnic->rx_mask); 4931 return hwrm_req_send_silent(bp, req); 4932 } 4933 4934 #ifdef CONFIG_RFS_ACCEL 4935 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4936 struct bnxt_ntuple_filter *fltr) 4937 { 4938 struct hwrm_cfa_ntuple_filter_free_input *req; 4939 int rc; 4940 4941 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 4942 if (rc) 4943 return rc; 4944 4945 req->ntuple_filter_id = fltr->filter_id; 4946 return hwrm_req_send(bp, req); 4947 } 4948 4949 #define BNXT_NTP_FLTR_FLAGS \ 4950 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4951 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4952 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4953 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4954 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4955 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4956 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4957 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4958 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4959 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4960 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4961 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4962 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4963 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4964 4965 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4966 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4967 4968 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4969 struct bnxt_ntuple_filter *fltr) 4970 { 4971 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4972 struct hwrm_cfa_ntuple_filter_alloc_input *req; 4973 struct flow_keys *keys = &fltr->fkeys; 4974 struct bnxt_vnic_info *vnic; 4975 u32 flags = 0; 4976 int rc; 4977 4978 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 4979 if (rc) 4980 return rc; 4981 4982 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4983 4984 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4985 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4986 req->dst_id = cpu_to_le16(fltr->rxq); 4987 } else { 4988 vnic = &bp->vnic_info[fltr->rxq + 1]; 4989 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 4990 } 4991 req->flags = cpu_to_le32(flags); 4992 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4993 4994 req->ethertype = htons(ETH_P_IP); 4995 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4996 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4997 req->ip_protocol = keys->basic.ip_proto; 4998 4999 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 5000 int i; 5001 5002 req->ethertype = htons(ETH_P_IPV6); 5003 req->ip_addr_type = 5004 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 5005 *(struct in6_addr *)&req->src_ipaddr[0] = 5006 keys->addrs.v6addrs.src; 5007 *(struct in6_addr *)&req->dst_ipaddr[0] = 5008 keys->addrs.v6addrs.dst; 5009 for (i = 0; i < 4; i++) { 5010 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5011 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 5012 } 5013 } else { 5014 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 5015 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5016 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 5017 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 5018 } 5019 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 5020 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 5021 req->tunnel_type = 5022 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 5023 } 5024 5025 req->src_port = keys->ports.src; 5026 req->src_port_mask = cpu_to_be16(0xffff); 5027 req->dst_port = keys->ports.dst; 5028 req->dst_port_mask = cpu_to_be16(0xffff); 5029 5030 resp = hwrm_req_hold(bp, req); 5031 rc = hwrm_req_send(bp, req); 5032 if (!rc) 5033 fltr->filter_id = resp->ntuple_filter_id; 5034 hwrm_req_drop(bp, req); 5035 return rc; 5036 } 5037 #endif 5038 5039 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 5040 const u8 *mac_addr) 5041 { 5042 struct hwrm_cfa_l2_filter_alloc_output *resp; 5043 struct hwrm_cfa_l2_filter_alloc_input *req; 5044 int rc; 5045 5046 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5047 if (rc) 5048 return rc; 5049 5050 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5051 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5052 req->flags |= 5053 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5054 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 5055 req->enables = 5056 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5057 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5058 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5059 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 5060 req->l2_addr_mask[0] = 0xff; 5061 req->l2_addr_mask[1] = 0xff; 5062 req->l2_addr_mask[2] = 0xff; 5063 req->l2_addr_mask[3] = 0xff; 5064 req->l2_addr_mask[4] = 0xff; 5065 req->l2_addr_mask[5] = 0xff; 5066 5067 resp = hwrm_req_hold(bp, req); 5068 rc = hwrm_req_send(bp, req); 5069 if (!rc) 5070 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 5071 resp->l2_filter_id; 5072 hwrm_req_drop(bp, req); 5073 return rc; 5074 } 5075 5076 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 5077 { 5078 struct hwrm_cfa_l2_filter_free_input *req; 5079 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 5080 int rc; 5081 5082 /* Any associated ntuple filters will also be cleared by firmware. */ 5083 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5084 if (rc) 5085 return rc; 5086 hwrm_req_hold(bp, req); 5087 for (i = 0; i < num_of_vnics; i++) { 5088 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5089 5090 for (j = 0; j < vnic->uc_filter_count; j++) { 5091 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 5092 5093 rc = hwrm_req_send(bp, req); 5094 } 5095 vnic->uc_filter_count = 0; 5096 } 5097 hwrm_req_drop(bp, req); 5098 return rc; 5099 } 5100 5101 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 5102 { 5103 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5104 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 5105 struct hwrm_vnic_tpa_cfg_input *req; 5106 int rc; 5107 5108 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 5109 return 0; 5110 5111 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 5112 if (rc) 5113 return rc; 5114 5115 if (tpa_flags) { 5116 u16 mss = bp->dev->mtu - 40; 5117 u32 nsegs, n, segs = 0, flags; 5118 5119 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 5120 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 5121 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 5122 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 5123 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 5124 if (tpa_flags & BNXT_FLAG_GRO) 5125 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 5126 5127 req->flags = cpu_to_le32(flags); 5128 5129 req->enables = 5130 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 5131 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 5132 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 5133 5134 /* Number of segs are log2 units, and first packet is not 5135 * included as part of this units. 5136 */ 5137 if (mss <= BNXT_RX_PAGE_SIZE) { 5138 n = BNXT_RX_PAGE_SIZE / mss; 5139 nsegs = (MAX_SKB_FRAGS - 1) * n; 5140 } else { 5141 n = mss / BNXT_RX_PAGE_SIZE; 5142 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 5143 n++; 5144 nsegs = (MAX_SKB_FRAGS - n) / n; 5145 } 5146 5147 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5148 segs = MAX_TPA_SEGS_P5; 5149 max_aggs = bp->max_tpa; 5150 } else { 5151 segs = ilog2(nsegs); 5152 } 5153 req->max_agg_segs = cpu_to_le16(segs); 5154 req->max_aggs = cpu_to_le16(max_aggs); 5155 5156 req->min_agg_len = cpu_to_le32(512); 5157 } 5158 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5159 5160 return hwrm_req_send(bp, req); 5161 } 5162 5163 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 5164 { 5165 struct bnxt_ring_grp_info *grp_info; 5166 5167 grp_info = &bp->grp_info[ring->grp_idx]; 5168 return grp_info->cp_fw_ring_id; 5169 } 5170 5171 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 5172 { 5173 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5174 struct bnxt_napi *bnapi = rxr->bnapi; 5175 struct bnxt_cp_ring_info *cpr; 5176 5177 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 5178 return cpr->cp_ring_struct.fw_ring_id; 5179 } else { 5180 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 5181 } 5182 } 5183 5184 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 5185 { 5186 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5187 struct bnxt_napi *bnapi = txr->bnapi; 5188 struct bnxt_cp_ring_info *cpr; 5189 5190 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5191 return cpr->cp_ring_struct.fw_ring_id; 5192 } else { 5193 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5194 } 5195 } 5196 5197 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5198 { 5199 int entries; 5200 5201 if (bp->flags & BNXT_FLAG_CHIP_P5) 5202 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5203 else 5204 entries = HW_HASH_INDEX_SIZE; 5205 5206 bp->rss_indir_tbl_entries = entries; 5207 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5208 GFP_KERNEL); 5209 if (!bp->rss_indir_tbl) 5210 return -ENOMEM; 5211 return 0; 5212 } 5213 5214 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5215 { 5216 u16 max_rings, max_entries, pad, i; 5217 5218 if (!bp->rx_nr_rings) 5219 return; 5220 5221 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5222 max_rings = bp->rx_nr_rings - 1; 5223 else 5224 max_rings = bp->rx_nr_rings; 5225 5226 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5227 5228 for (i = 0; i < max_entries; i++) 5229 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5230 5231 pad = bp->rss_indir_tbl_entries - max_entries; 5232 if (pad) 5233 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5234 } 5235 5236 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5237 { 5238 u16 i, tbl_size, max_ring = 0; 5239 5240 if (!bp->rss_indir_tbl) 5241 return 0; 5242 5243 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5244 for (i = 0; i < tbl_size; i++) 5245 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5246 return max_ring; 5247 } 5248 5249 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5250 { 5251 if (bp->flags & BNXT_FLAG_CHIP_P5) 5252 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5253 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5254 return 2; 5255 return 1; 5256 } 5257 5258 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5259 { 5260 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5261 u16 i, j; 5262 5263 /* Fill the RSS indirection table with ring group ids */ 5264 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5265 if (!no_rss) 5266 j = bp->rss_indir_tbl[i]; 5267 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5268 } 5269 } 5270 5271 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5272 struct bnxt_vnic_info *vnic) 5273 { 5274 __le16 *ring_tbl = vnic->rss_table; 5275 struct bnxt_rx_ring_info *rxr; 5276 u16 tbl_size, i; 5277 5278 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5279 5280 for (i = 0; i < tbl_size; i++) { 5281 u16 ring_id, j; 5282 5283 j = bp->rss_indir_tbl[i]; 5284 rxr = &bp->rx_ring[j]; 5285 5286 ring_id = rxr->rx_ring_struct.fw_ring_id; 5287 *ring_tbl++ = cpu_to_le16(ring_id); 5288 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5289 *ring_tbl++ = cpu_to_le16(ring_id); 5290 } 5291 } 5292 5293 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5294 { 5295 if (bp->flags & BNXT_FLAG_CHIP_P5) 5296 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5297 else 5298 __bnxt_fill_hw_rss_tbl(bp, vnic); 5299 } 5300 5301 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5302 { 5303 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5304 struct hwrm_vnic_rss_cfg_input *req; 5305 int rc; 5306 5307 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5308 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5309 return 0; 5310 5311 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5312 if (rc) 5313 return rc; 5314 5315 if (set_rss) { 5316 bnxt_fill_hw_rss_tbl(bp, vnic); 5317 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5318 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5319 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5320 req->hash_key_tbl_addr = 5321 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5322 } 5323 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5324 return hwrm_req_send(bp, req); 5325 } 5326 5327 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5328 { 5329 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5330 struct hwrm_vnic_rss_cfg_input *req; 5331 dma_addr_t ring_tbl_map; 5332 u32 i, nr_ctxs; 5333 int rc; 5334 5335 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5336 if (rc) 5337 return rc; 5338 5339 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5340 if (!set_rss) 5341 return hwrm_req_send(bp, req); 5342 5343 bnxt_fill_hw_rss_tbl(bp, vnic); 5344 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5345 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5346 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5347 ring_tbl_map = vnic->rss_table_dma_addr; 5348 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5349 5350 hwrm_req_hold(bp, req); 5351 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5352 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5353 req->ring_table_pair_index = i; 5354 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5355 rc = hwrm_req_send(bp, req); 5356 if (rc) 5357 goto exit; 5358 } 5359 5360 exit: 5361 hwrm_req_drop(bp, req); 5362 return rc; 5363 } 5364 5365 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5366 { 5367 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5368 struct hwrm_vnic_plcmodes_cfg_input *req; 5369 int rc; 5370 5371 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5372 if (rc) 5373 return rc; 5374 5375 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 5376 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 5377 5378 if (BNXT_RX_PAGE_MODE(bp) && !BNXT_RX_JUMBO_MODE(bp)) { 5379 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5380 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5381 req->enables |= 5382 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5383 } 5384 /* thresholds not implemented in firmware yet */ 5385 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5386 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5387 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5388 return hwrm_req_send(bp, req); 5389 } 5390 5391 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5392 u16 ctx_idx) 5393 { 5394 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5395 5396 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5397 return; 5398 5399 req->rss_cos_lb_ctx_id = 5400 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5401 5402 hwrm_req_send(bp, req); 5403 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5404 } 5405 5406 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5407 { 5408 int i, j; 5409 5410 for (i = 0; i < bp->nr_vnics; i++) { 5411 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5412 5413 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5414 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5415 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5416 } 5417 } 5418 bp->rsscos_nr_ctxs = 0; 5419 } 5420 5421 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5422 { 5423 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5424 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5425 int rc; 5426 5427 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5428 if (rc) 5429 return rc; 5430 5431 resp = hwrm_req_hold(bp, req); 5432 rc = hwrm_req_send(bp, req); 5433 if (!rc) 5434 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5435 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5436 hwrm_req_drop(bp, req); 5437 5438 return rc; 5439 } 5440 5441 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5442 { 5443 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5444 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5445 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5446 } 5447 5448 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5449 { 5450 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5451 struct hwrm_vnic_cfg_input *req; 5452 unsigned int ring = 0, grp_idx; 5453 u16 def_vlan = 0; 5454 int rc; 5455 5456 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5457 if (rc) 5458 return rc; 5459 5460 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5461 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5462 5463 req->default_rx_ring_id = 5464 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5465 req->default_cmpl_ring_id = 5466 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5467 req->enables = 5468 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5469 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5470 goto vnic_mru; 5471 } 5472 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5473 /* Only RSS support for now TBD: COS & LB */ 5474 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5475 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5476 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5477 VNIC_CFG_REQ_ENABLES_MRU); 5478 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5479 req->rss_rule = 5480 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5481 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5482 VNIC_CFG_REQ_ENABLES_MRU); 5483 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5484 } else { 5485 req->rss_rule = cpu_to_le16(0xffff); 5486 } 5487 5488 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5489 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5490 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5491 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5492 } else { 5493 req->cos_rule = cpu_to_le16(0xffff); 5494 } 5495 5496 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5497 ring = 0; 5498 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5499 ring = vnic_id - 1; 5500 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5501 ring = bp->rx_nr_rings - 1; 5502 5503 grp_idx = bp->rx_ring[ring].bnapi->index; 5504 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5505 req->lb_rule = cpu_to_le16(0xffff); 5506 vnic_mru: 5507 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5508 5509 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5510 #ifdef CONFIG_BNXT_SRIOV 5511 if (BNXT_VF(bp)) 5512 def_vlan = bp->vf.vlan; 5513 #endif 5514 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5515 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5516 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5517 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5518 5519 return hwrm_req_send(bp, req); 5520 } 5521 5522 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5523 { 5524 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5525 struct hwrm_vnic_free_input *req; 5526 5527 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5528 return; 5529 5530 req->vnic_id = 5531 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5532 5533 hwrm_req_send(bp, req); 5534 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5535 } 5536 } 5537 5538 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5539 { 5540 u16 i; 5541 5542 for (i = 0; i < bp->nr_vnics; i++) 5543 bnxt_hwrm_vnic_free_one(bp, i); 5544 } 5545 5546 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5547 unsigned int start_rx_ring_idx, 5548 unsigned int nr_rings) 5549 { 5550 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5551 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5552 struct hwrm_vnic_alloc_output *resp; 5553 struct hwrm_vnic_alloc_input *req; 5554 int rc; 5555 5556 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5557 if (rc) 5558 return rc; 5559 5560 if (bp->flags & BNXT_FLAG_CHIP_P5) 5561 goto vnic_no_ring_grps; 5562 5563 /* map ring groups to this vnic */ 5564 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5565 grp_idx = bp->rx_ring[i].bnapi->index; 5566 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5567 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5568 j, nr_rings); 5569 break; 5570 } 5571 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5572 } 5573 5574 vnic_no_ring_grps: 5575 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5576 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5577 if (vnic_id == 0) 5578 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5579 5580 resp = hwrm_req_hold(bp, req); 5581 rc = hwrm_req_send(bp, req); 5582 if (!rc) 5583 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5584 hwrm_req_drop(bp, req); 5585 return rc; 5586 } 5587 5588 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5589 { 5590 struct hwrm_vnic_qcaps_output *resp; 5591 struct hwrm_vnic_qcaps_input *req; 5592 int rc; 5593 5594 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5595 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5596 if (bp->hwrm_spec_code < 0x10600) 5597 return 0; 5598 5599 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5600 if (rc) 5601 return rc; 5602 5603 resp = hwrm_req_hold(bp, req); 5604 rc = hwrm_req_send(bp, req); 5605 if (!rc) { 5606 u32 flags = le32_to_cpu(resp->flags); 5607 5608 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5609 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5610 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5611 if (flags & 5612 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5613 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5614 5615 /* Older P5 fw before EXT_HW_STATS support did not set 5616 * VLAN_STRIP_CAP properly. 5617 */ 5618 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5619 (BNXT_CHIP_P5_THOR(bp) && 5620 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5621 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5622 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5623 if (bp->max_tpa_v2) { 5624 if (BNXT_CHIP_P5_THOR(bp)) 5625 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5626 else 5627 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5628 } 5629 } 5630 hwrm_req_drop(bp, req); 5631 return rc; 5632 } 5633 5634 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5635 { 5636 struct hwrm_ring_grp_alloc_output *resp; 5637 struct hwrm_ring_grp_alloc_input *req; 5638 int rc; 5639 u16 i; 5640 5641 if (bp->flags & BNXT_FLAG_CHIP_P5) 5642 return 0; 5643 5644 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5645 if (rc) 5646 return rc; 5647 5648 resp = hwrm_req_hold(bp, req); 5649 for (i = 0; i < bp->rx_nr_rings; i++) { 5650 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5651 5652 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5653 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5654 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5655 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5656 5657 rc = hwrm_req_send(bp, req); 5658 5659 if (rc) 5660 break; 5661 5662 bp->grp_info[grp_idx].fw_grp_id = 5663 le32_to_cpu(resp->ring_group_id); 5664 } 5665 hwrm_req_drop(bp, req); 5666 return rc; 5667 } 5668 5669 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5670 { 5671 struct hwrm_ring_grp_free_input *req; 5672 u16 i; 5673 5674 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5675 return; 5676 5677 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5678 return; 5679 5680 hwrm_req_hold(bp, req); 5681 for (i = 0; i < bp->cp_nr_rings; i++) { 5682 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5683 continue; 5684 req->ring_group_id = 5685 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5686 5687 hwrm_req_send(bp, req); 5688 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5689 } 5690 hwrm_req_drop(bp, req); 5691 } 5692 5693 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5694 struct bnxt_ring_struct *ring, 5695 u32 ring_type, u32 map_index) 5696 { 5697 struct hwrm_ring_alloc_output *resp; 5698 struct hwrm_ring_alloc_input *req; 5699 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5700 struct bnxt_ring_grp_info *grp_info; 5701 int rc, err = 0; 5702 u16 ring_id; 5703 5704 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5705 if (rc) 5706 goto exit; 5707 5708 req->enables = 0; 5709 if (rmem->nr_pages > 1) { 5710 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5711 /* Page size is in log2 units */ 5712 req->page_size = BNXT_PAGE_SHIFT; 5713 req->page_tbl_depth = 1; 5714 } else { 5715 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5716 } 5717 req->fbo = 0; 5718 /* Association of ring index with doorbell index and MSIX number */ 5719 req->logical_id = cpu_to_le16(map_index); 5720 5721 switch (ring_type) { 5722 case HWRM_RING_ALLOC_TX: { 5723 struct bnxt_tx_ring_info *txr; 5724 5725 txr = container_of(ring, struct bnxt_tx_ring_info, 5726 tx_ring_struct); 5727 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5728 /* Association of transmit ring with completion ring */ 5729 grp_info = &bp->grp_info[ring->grp_idx]; 5730 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5731 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5732 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5733 req->queue_id = cpu_to_le16(ring->queue_id); 5734 break; 5735 } 5736 case HWRM_RING_ALLOC_RX: 5737 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5738 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5739 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5740 u16 flags = 0; 5741 5742 /* Association of rx ring with stats context */ 5743 grp_info = &bp->grp_info[ring->grp_idx]; 5744 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5745 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5746 req->enables |= cpu_to_le32( 5747 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5748 if (NET_IP_ALIGN == 2) 5749 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5750 req->flags = cpu_to_le16(flags); 5751 } 5752 break; 5753 case HWRM_RING_ALLOC_AGG: 5754 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5755 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5756 /* Association of agg ring with rx ring */ 5757 grp_info = &bp->grp_info[ring->grp_idx]; 5758 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5759 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5760 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5761 req->enables |= cpu_to_le32( 5762 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5763 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5764 } else { 5765 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5766 } 5767 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5768 break; 5769 case HWRM_RING_ALLOC_CMPL: 5770 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5771 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5772 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5773 /* Association of cp ring with nq */ 5774 grp_info = &bp->grp_info[map_index]; 5775 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5776 req->cq_handle = cpu_to_le64(ring->handle); 5777 req->enables |= cpu_to_le32( 5778 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5779 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5780 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5781 } 5782 break; 5783 case HWRM_RING_ALLOC_NQ: 5784 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5785 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5786 if (bp->flags & BNXT_FLAG_USING_MSIX) 5787 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5788 break; 5789 default: 5790 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5791 ring_type); 5792 return -1; 5793 } 5794 5795 resp = hwrm_req_hold(bp, req); 5796 rc = hwrm_req_send(bp, req); 5797 err = le16_to_cpu(resp->error_code); 5798 ring_id = le16_to_cpu(resp->ring_id); 5799 hwrm_req_drop(bp, req); 5800 5801 exit: 5802 if (rc || err) { 5803 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5804 ring_type, rc, err); 5805 return -EIO; 5806 } 5807 ring->fw_ring_id = ring_id; 5808 return rc; 5809 } 5810 5811 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5812 { 5813 int rc; 5814 5815 if (BNXT_PF(bp)) { 5816 struct hwrm_func_cfg_input *req; 5817 5818 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 5819 if (rc) 5820 return rc; 5821 5822 req->fid = cpu_to_le16(0xffff); 5823 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5824 req->async_event_cr = cpu_to_le16(idx); 5825 return hwrm_req_send(bp, req); 5826 } else { 5827 struct hwrm_func_vf_cfg_input *req; 5828 5829 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5830 if (rc) 5831 return rc; 5832 5833 req->enables = 5834 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5835 req->async_event_cr = cpu_to_le16(idx); 5836 return hwrm_req_send(bp, req); 5837 } 5838 } 5839 5840 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5841 u32 map_idx, u32 xid) 5842 { 5843 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5844 if (BNXT_PF(bp)) 5845 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5846 else 5847 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5848 switch (ring_type) { 5849 case HWRM_RING_ALLOC_TX: 5850 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5851 break; 5852 case HWRM_RING_ALLOC_RX: 5853 case HWRM_RING_ALLOC_AGG: 5854 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5855 break; 5856 case HWRM_RING_ALLOC_CMPL: 5857 db->db_key64 = DBR_PATH_L2; 5858 break; 5859 case HWRM_RING_ALLOC_NQ: 5860 db->db_key64 = DBR_PATH_L2; 5861 break; 5862 } 5863 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5864 } else { 5865 db->doorbell = bp->bar1 + map_idx * 0x80; 5866 switch (ring_type) { 5867 case HWRM_RING_ALLOC_TX: 5868 db->db_key32 = DB_KEY_TX; 5869 break; 5870 case HWRM_RING_ALLOC_RX: 5871 case HWRM_RING_ALLOC_AGG: 5872 db->db_key32 = DB_KEY_RX; 5873 break; 5874 case HWRM_RING_ALLOC_CMPL: 5875 db->db_key32 = DB_KEY_CP; 5876 break; 5877 } 5878 } 5879 } 5880 5881 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5882 { 5883 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5884 int i, rc = 0; 5885 u32 type; 5886 5887 if (bp->flags & BNXT_FLAG_CHIP_P5) 5888 type = HWRM_RING_ALLOC_NQ; 5889 else 5890 type = HWRM_RING_ALLOC_CMPL; 5891 for (i = 0; i < bp->cp_nr_rings; i++) { 5892 struct bnxt_napi *bnapi = bp->bnapi[i]; 5893 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5894 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5895 u32 map_idx = ring->map_idx; 5896 unsigned int vector; 5897 5898 vector = bp->irq_tbl[map_idx].vector; 5899 disable_irq_nosync(vector); 5900 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5901 if (rc) { 5902 enable_irq(vector); 5903 goto err_out; 5904 } 5905 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5906 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5907 enable_irq(vector); 5908 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5909 5910 if (!i) { 5911 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5912 if (rc) 5913 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5914 } 5915 } 5916 5917 type = HWRM_RING_ALLOC_TX; 5918 for (i = 0; i < bp->tx_nr_rings; i++) { 5919 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5920 struct bnxt_ring_struct *ring; 5921 u32 map_idx; 5922 5923 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5924 struct bnxt_napi *bnapi = txr->bnapi; 5925 struct bnxt_cp_ring_info *cpr, *cpr2; 5926 u32 type2 = HWRM_RING_ALLOC_CMPL; 5927 5928 cpr = &bnapi->cp_ring; 5929 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5930 ring = &cpr2->cp_ring_struct; 5931 ring->handle = BNXT_TX_HDL; 5932 map_idx = bnapi->index; 5933 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5934 if (rc) 5935 goto err_out; 5936 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5937 ring->fw_ring_id); 5938 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5939 } 5940 ring = &txr->tx_ring_struct; 5941 map_idx = i; 5942 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5943 if (rc) 5944 goto err_out; 5945 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5946 } 5947 5948 type = HWRM_RING_ALLOC_RX; 5949 for (i = 0; i < bp->rx_nr_rings; i++) { 5950 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5951 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5952 struct bnxt_napi *bnapi = rxr->bnapi; 5953 u32 map_idx = bnapi->index; 5954 5955 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5956 if (rc) 5957 goto err_out; 5958 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5959 /* If we have agg rings, post agg buffers first. */ 5960 if (!agg_rings) 5961 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5962 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5963 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5964 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5965 u32 type2 = HWRM_RING_ALLOC_CMPL; 5966 struct bnxt_cp_ring_info *cpr2; 5967 5968 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5969 ring = &cpr2->cp_ring_struct; 5970 ring->handle = BNXT_RX_HDL; 5971 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5972 if (rc) 5973 goto err_out; 5974 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5975 ring->fw_ring_id); 5976 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5977 } 5978 } 5979 5980 if (agg_rings) { 5981 type = HWRM_RING_ALLOC_AGG; 5982 for (i = 0; i < bp->rx_nr_rings; i++) { 5983 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5984 struct bnxt_ring_struct *ring = 5985 &rxr->rx_agg_ring_struct; 5986 u32 grp_idx = ring->grp_idx; 5987 u32 map_idx = grp_idx + bp->rx_nr_rings; 5988 5989 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5990 if (rc) 5991 goto err_out; 5992 5993 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5994 ring->fw_ring_id); 5995 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5996 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5997 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5998 } 5999 } 6000 err_out: 6001 return rc; 6002 } 6003 6004 static int hwrm_ring_free_send_msg(struct bnxt *bp, 6005 struct bnxt_ring_struct *ring, 6006 u32 ring_type, int cmpl_ring_id) 6007 { 6008 struct hwrm_ring_free_output *resp; 6009 struct hwrm_ring_free_input *req; 6010 u16 error_code = 0; 6011 int rc; 6012 6013 if (BNXT_NO_FW_ACCESS(bp)) 6014 return 0; 6015 6016 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 6017 if (rc) 6018 goto exit; 6019 6020 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 6021 req->ring_type = ring_type; 6022 req->ring_id = cpu_to_le16(ring->fw_ring_id); 6023 6024 resp = hwrm_req_hold(bp, req); 6025 rc = hwrm_req_send(bp, req); 6026 error_code = le16_to_cpu(resp->error_code); 6027 hwrm_req_drop(bp, req); 6028 exit: 6029 if (rc || error_code) { 6030 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 6031 ring_type, rc, error_code); 6032 return -EIO; 6033 } 6034 return 0; 6035 } 6036 6037 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 6038 { 6039 u32 type; 6040 int i; 6041 6042 if (!bp->bnapi) 6043 return; 6044 6045 for (i = 0; i < bp->tx_nr_rings; i++) { 6046 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 6047 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 6048 6049 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6050 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 6051 6052 hwrm_ring_free_send_msg(bp, ring, 6053 RING_FREE_REQ_RING_TYPE_TX, 6054 close_path ? cmpl_ring_id : 6055 INVALID_HW_RING_ID); 6056 ring->fw_ring_id = INVALID_HW_RING_ID; 6057 } 6058 } 6059 6060 for (i = 0; i < bp->rx_nr_rings; i++) { 6061 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6062 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 6063 u32 grp_idx = rxr->bnapi->index; 6064 6065 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6066 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6067 6068 hwrm_ring_free_send_msg(bp, ring, 6069 RING_FREE_REQ_RING_TYPE_RX, 6070 close_path ? cmpl_ring_id : 6071 INVALID_HW_RING_ID); 6072 ring->fw_ring_id = INVALID_HW_RING_ID; 6073 bp->grp_info[grp_idx].rx_fw_ring_id = 6074 INVALID_HW_RING_ID; 6075 } 6076 } 6077 6078 if (bp->flags & BNXT_FLAG_CHIP_P5) 6079 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 6080 else 6081 type = RING_FREE_REQ_RING_TYPE_RX; 6082 for (i = 0; i < bp->rx_nr_rings; i++) { 6083 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 6084 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 6085 u32 grp_idx = rxr->bnapi->index; 6086 6087 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6088 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6089 6090 hwrm_ring_free_send_msg(bp, ring, type, 6091 close_path ? cmpl_ring_id : 6092 INVALID_HW_RING_ID); 6093 ring->fw_ring_id = INVALID_HW_RING_ID; 6094 bp->grp_info[grp_idx].agg_fw_ring_id = 6095 INVALID_HW_RING_ID; 6096 } 6097 } 6098 6099 /* The completion rings are about to be freed. After that the 6100 * IRQ doorbell will not work anymore. So we need to disable 6101 * IRQ here. 6102 */ 6103 bnxt_disable_int_sync(bp); 6104 6105 if (bp->flags & BNXT_FLAG_CHIP_P5) 6106 type = RING_FREE_REQ_RING_TYPE_NQ; 6107 else 6108 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 6109 for (i = 0; i < bp->cp_nr_rings; i++) { 6110 struct bnxt_napi *bnapi = bp->bnapi[i]; 6111 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6112 struct bnxt_ring_struct *ring; 6113 int j; 6114 6115 for (j = 0; j < 2; j++) { 6116 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 6117 6118 if (cpr2) { 6119 ring = &cpr2->cp_ring_struct; 6120 if (ring->fw_ring_id == INVALID_HW_RING_ID) 6121 continue; 6122 hwrm_ring_free_send_msg(bp, ring, 6123 RING_FREE_REQ_RING_TYPE_L2_CMPL, 6124 INVALID_HW_RING_ID); 6125 ring->fw_ring_id = INVALID_HW_RING_ID; 6126 } 6127 } 6128 ring = &cpr->cp_ring_struct; 6129 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 6130 hwrm_ring_free_send_msg(bp, ring, type, 6131 INVALID_HW_RING_ID); 6132 ring->fw_ring_id = INVALID_HW_RING_ID; 6133 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 6134 } 6135 } 6136 } 6137 6138 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 6139 bool shared); 6140 6141 static int bnxt_hwrm_get_rings(struct bnxt *bp) 6142 { 6143 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6144 struct hwrm_func_qcfg_output *resp; 6145 struct hwrm_func_qcfg_input *req; 6146 int rc; 6147 6148 if (bp->hwrm_spec_code < 0x10601) 6149 return 0; 6150 6151 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6152 if (rc) 6153 return rc; 6154 6155 req->fid = cpu_to_le16(0xffff); 6156 resp = hwrm_req_hold(bp, req); 6157 rc = hwrm_req_send(bp, req); 6158 if (rc) { 6159 hwrm_req_drop(bp, req); 6160 return rc; 6161 } 6162 6163 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6164 if (BNXT_NEW_RM(bp)) { 6165 u16 cp, stats; 6166 6167 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 6168 hw_resc->resv_hw_ring_grps = 6169 le32_to_cpu(resp->alloc_hw_ring_grps); 6170 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 6171 cp = le16_to_cpu(resp->alloc_cmpl_rings); 6172 stats = le16_to_cpu(resp->alloc_stat_ctx); 6173 hw_resc->resv_irqs = cp; 6174 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6175 int rx = hw_resc->resv_rx_rings; 6176 int tx = hw_resc->resv_tx_rings; 6177 6178 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6179 rx >>= 1; 6180 if (cp < (rx + tx)) { 6181 bnxt_trim_rings(bp, &rx, &tx, cp, false); 6182 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6183 rx <<= 1; 6184 hw_resc->resv_rx_rings = rx; 6185 hw_resc->resv_tx_rings = tx; 6186 } 6187 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 6188 hw_resc->resv_hw_ring_grps = rx; 6189 } 6190 hw_resc->resv_cp_rings = cp; 6191 hw_resc->resv_stat_ctxs = stats; 6192 } 6193 hwrm_req_drop(bp, req); 6194 return 0; 6195 } 6196 6197 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 6198 { 6199 struct hwrm_func_qcfg_output *resp; 6200 struct hwrm_func_qcfg_input *req; 6201 int rc; 6202 6203 if (bp->hwrm_spec_code < 0x10601) 6204 return 0; 6205 6206 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6207 if (rc) 6208 return rc; 6209 6210 req->fid = cpu_to_le16(fid); 6211 resp = hwrm_req_hold(bp, req); 6212 rc = hwrm_req_send(bp, req); 6213 if (!rc) 6214 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6215 6216 hwrm_req_drop(bp, req); 6217 return rc; 6218 } 6219 6220 static bool bnxt_rfs_supported(struct bnxt *bp); 6221 6222 static struct hwrm_func_cfg_input * 6223 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6224 int ring_grps, int cp_rings, int stats, int vnics) 6225 { 6226 struct hwrm_func_cfg_input *req; 6227 u32 enables = 0; 6228 6229 if (hwrm_req_init(bp, req, HWRM_FUNC_CFG)) 6230 return NULL; 6231 6232 req->fid = cpu_to_le16(0xffff); 6233 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6234 req->num_tx_rings = cpu_to_le16(tx_rings); 6235 if (BNXT_NEW_RM(bp)) { 6236 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6237 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6238 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6239 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6240 enables |= tx_rings + ring_grps ? 6241 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6242 enables |= rx_rings ? 6243 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6244 } else { 6245 enables |= cp_rings ? 6246 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6247 enables |= ring_grps ? 6248 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6249 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6250 } 6251 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6252 6253 req->num_rx_rings = cpu_to_le16(rx_rings); 6254 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6255 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6256 req->num_msix = cpu_to_le16(cp_rings); 6257 req->num_rsscos_ctxs = 6258 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6259 } else { 6260 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6261 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6262 req->num_rsscos_ctxs = cpu_to_le16(1); 6263 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6264 bnxt_rfs_supported(bp)) 6265 req->num_rsscos_ctxs = 6266 cpu_to_le16(ring_grps + 1); 6267 } 6268 req->num_stat_ctxs = cpu_to_le16(stats); 6269 req->num_vnics = cpu_to_le16(vnics); 6270 } 6271 req->enables = cpu_to_le32(enables); 6272 return req; 6273 } 6274 6275 static struct hwrm_func_vf_cfg_input * 6276 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6277 int ring_grps, int cp_rings, int stats, int vnics) 6278 { 6279 struct hwrm_func_vf_cfg_input *req; 6280 u32 enables = 0; 6281 6282 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6283 return NULL; 6284 6285 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6286 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6287 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6288 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6289 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6290 enables |= tx_rings + ring_grps ? 6291 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6292 } else { 6293 enables |= cp_rings ? 6294 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6295 enables |= ring_grps ? 6296 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6297 } 6298 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6299 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6300 6301 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6302 req->num_tx_rings = cpu_to_le16(tx_rings); 6303 req->num_rx_rings = cpu_to_le16(rx_rings); 6304 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6305 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6306 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6307 } else { 6308 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6309 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6310 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6311 } 6312 req->num_stat_ctxs = cpu_to_le16(stats); 6313 req->num_vnics = cpu_to_le16(vnics); 6314 6315 req->enables = cpu_to_le32(enables); 6316 return req; 6317 } 6318 6319 static int 6320 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6321 int ring_grps, int cp_rings, int stats, int vnics) 6322 { 6323 struct hwrm_func_cfg_input *req; 6324 int rc; 6325 6326 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6327 cp_rings, stats, vnics); 6328 if (!req) 6329 return -ENOMEM; 6330 6331 if (!req->enables) { 6332 hwrm_req_drop(bp, req); 6333 return 0; 6334 } 6335 6336 rc = hwrm_req_send(bp, req); 6337 if (rc) 6338 return rc; 6339 6340 if (bp->hwrm_spec_code < 0x10601) 6341 bp->hw_resc.resv_tx_rings = tx_rings; 6342 6343 return bnxt_hwrm_get_rings(bp); 6344 } 6345 6346 static int 6347 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6348 int ring_grps, int cp_rings, int stats, int vnics) 6349 { 6350 struct hwrm_func_vf_cfg_input *req; 6351 int rc; 6352 6353 if (!BNXT_NEW_RM(bp)) { 6354 bp->hw_resc.resv_tx_rings = tx_rings; 6355 return 0; 6356 } 6357 6358 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6359 cp_rings, stats, vnics); 6360 if (!req) 6361 return -ENOMEM; 6362 6363 rc = hwrm_req_send(bp, req); 6364 if (rc) 6365 return rc; 6366 6367 return bnxt_hwrm_get_rings(bp); 6368 } 6369 6370 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6371 int cp, int stat, int vnic) 6372 { 6373 if (BNXT_PF(bp)) 6374 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6375 vnic); 6376 else 6377 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6378 vnic); 6379 } 6380 6381 int bnxt_nq_rings_in_use(struct bnxt *bp) 6382 { 6383 int cp = bp->cp_nr_rings; 6384 int ulp_msix, ulp_base; 6385 6386 ulp_msix = bnxt_get_ulp_msix_num(bp); 6387 if (ulp_msix) { 6388 ulp_base = bnxt_get_ulp_msix_base(bp); 6389 cp += ulp_msix; 6390 if ((ulp_base + ulp_msix) > cp) 6391 cp = ulp_base + ulp_msix; 6392 } 6393 return cp; 6394 } 6395 6396 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6397 { 6398 int cp; 6399 6400 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6401 return bnxt_nq_rings_in_use(bp); 6402 6403 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6404 return cp; 6405 } 6406 6407 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6408 { 6409 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6410 int cp = bp->cp_nr_rings; 6411 6412 if (!ulp_stat) 6413 return cp; 6414 6415 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6416 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6417 6418 return cp + ulp_stat; 6419 } 6420 6421 /* Check if a default RSS map needs to be setup. This function is only 6422 * used on older firmware that does not require reserving RX rings. 6423 */ 6424 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6425 { 6426 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6427 6428 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6429 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6430 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6431 if (!netif_is_rxfh_configured(bp->dev)) 6432 bnxt_set_dflt_rss_indir_tbl(bp); 6433 } 6434 } 6435 6436 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6437 { 6438 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6439 int cp = bnxt_cp_rings_in_use(bp); 6440 int nq = bnxt_nq_rings_in_use(bp); 6441 int rx = bp->rx_nr_rings, stat; 6442 int vnic = 1, grp = rx; 6443 6444 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6445 bp->hwrm_spec_code >= 0x10601) 6446 return true; 6447 6448 /* Old firmware does not need RX ring reservations but we still 6449 * need to setup a default RSS map when needed. With new firmware 6450 * we go through RX ring reservations first and then set up the 6451 * RSS map for the successfully reserved RX rings when needed. 6452 */ 6453 if (!BNXT_NEW_RM(bp)) { 6454 bnxt_check_rss_tbl_no_rmgr(bp); 6455 return false; 6456 } 6457 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6458 vnic = rx + 1; 6459 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6460 rx <<= 1; 6461 stat = bnxt_get_func_stat_ctxs(bp); 6462 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6463 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6464 (hw_resc->resv_hw_ring_grps != grp && 6465 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6466 return true; 6467 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6468 hw_resc->resv_irqs != nq) 6469 return true; 6470 return false; 6471 } 6472 6473 static int __bnxt_reserve_rings(struct bnxt *bp) 6474 { 6475 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6476 int cp = bnxt_nq_rings_in_use(bp); 6477 int tx = bp->tx_nr_rings; 6478 int rx = bp->rx_nr_rings; 6479 int grp, rx_rings, rc; 6480 int vnic = 1, stat; 6481 bool sh = false; 6482 6483 if (!bnxt_need_reserve_rings(bp)) 6484 return 0; 6485 6486 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6487 sh = true; 6488 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6489 vnic = rx + 1; 6490 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6491 rx <<= 1; 6492 grp = bp->rx_nr_rings; 6493 stat = bnxt_get_func_stat_ctxs(bp); 6494 6495 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6496 if (rc) 6497 return rc; 6498 6499 tx = hw_resc->resv_tx_rings; 6500 if (BNXT_NEW_RM(bp)) { 6501 rx = hw_resc->resv_rx_rings; 6502 cp = hw_resc->resv_irqs; 6503 grp = hw_resc->resv_hw_ring_grps; 6504 vnic = hw_resc->resv_vnics; 6505 stat = hw_resc->resv_stat_ctxs; 6506 } 6507 6508 rx_rings = rx; 6509 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6510 if (rx >= 2) { 6511 rx_rings = rx >> 1; 6512 } else { 6513 if (netif_running(bp->dev)) 6514 return -ENOMEM; 6515 6516 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6517 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6518 bp->dev->hw_features &= ~NETIF_F_LRO; 6519 bp->dev->features &= ~NETIF_F_LRO; 6520 bnxt_set_ring_params(bp); 6521 } 6522 } 6523 rx_rings = min_t(int, rx_rings, grp); 6524 cp = min_t(int, cp, bp->cp_nr_rings); 6525 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6526 stat -= bnxt_get_ulp_stat_ctxs(bp); 6527 cp = min_t(int, cp, stat); 6528 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6529 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6530 rx = rx_rings << 1; 6531 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6532 bp->tx_nr_rings = tx; 6533 6534 /* If we cannot reserve all the RX rings, reset the RSS map only 6535 * if absolutely necessary 6536 */ 6537 if (rx_rings != bp->rx_nr_rings) { 6538 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6539 rx_rings, bp->rx_nr_rings); 6540 if (netif_is_rxfh_configured(bp->dev) && 6541 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6542 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6543 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6544 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6545 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6546 } 6547 } 6548 bp->rx_nr_rings = rx_rings; 6549 bp->cp_nr_rings = cp; 6550 6551 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6552 return -ENOMEM; 6553 6554 if (!netif_is_rxfh_configured(bp->dev)) 6555 bnxt_set_dflt_rss_indir_tbl(bp); 6556 6557 return rc; 6558 } 6559 6560 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6561 int ring_grps, int cp_rings, int stats, 6562 int vnics) 6563 { 6564 struct hwrm_func_vf_cfg_input *req; 6565 u32 flags; 6566 6567 if (!BNXT_NEW_RM(bp)) 6568 return 0; 6569 6570 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6571 cp_rings, stats, vnics); 6572 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6573 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6574 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6575 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6576 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6577 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6578 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6579 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6580 6581 req->flags = cpu_to_le32(flags); 6582 return hwrm_req_send_silent(bp, req); 6583 } 6584 6585 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6586 int ring_grps, int cp_rings, int stats, 6587 int vnics) 6588 { 6589 struct hwrm_func_cfg_input *req; 6590 u32 flags; 6591 6592 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6593 cp_rings, stats, vnics); 6594 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6595 if (BNXT_NEW_RM(bp)) { 6596 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6597 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6598 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6599 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6600 if (bp->flags & BNXT_FLAG_CHIP_P5) 6601 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6602 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6603 else 6604 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6605 } 6606 6607 req->flags = cpu_to_le32(flags); 6608 return hwrm_req_send_silent(bp, req); 6609 } 6610 6611 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6612 int ring_grps, int cp_rings, int stats, 6613 int vnics) 6614 { 6615 if (bp->hwrm_spec_code < 0x10801) 6616 return 0; 6617 6618 if (BNXT_PF(bp)) 6619 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6620 ring_grps, cp_rings, stats, 6621 vnics); 6622 6623 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6624 cp_rings, stats, vnics); 6625 } 6626 6627 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6628 { 6629 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6630 struct hwrm_ring_aggint_qcaps_output *resp; 6631 struct hwrm_ring_aggint_qcaps_input *req; 6632 int rc; 6633 6634 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6635 coal_cap->num_cmpl_dma_aggr_max = 63; 6636 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6637 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6638 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6639 coal_cap->int_lat_tmr_min_max = 65535; 6640 coal_cap->int_lat_tmr_max_max = 65535; 6641 coal_cap->num_cmpl_aggr_int_max = 65535; 6642 coal_cap->timer_units = 80; 6643 6644 if (bp->hwrm_spec_code < 0x10902) 6645 return; 6646 6647 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6648 return; 6649 6650 resp = hwrm_req_hold(bp, req); 6651 rc = hwrm_req_send_silent(bp, req); 6652 if (!rc) { 6653 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6654 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6655 coal_cap->num_cmpl_dma_aggr_max = 6656 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6657 coal_cap->num_cmpl_dma_aggr_during_int_max = 6658 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6659 coal_cap->cmpl_aggr_dma_tmr_max = 6660 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6661 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6662 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6663 coal_cap->int_lat_tmr_min_max = 6664 le16_to_cpu(resp->int_lat_tmr_min_max); 6665 coal_cap->int_lat_tmr_max_max = 6666 le16_to_cpu(resp->int_lat_tmr_max_max); 6667 coal_cap->num_cmpl_aggr_int_max = 6668 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6669 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6670 } 6671 hwrm_req_drop(bp, req); 6672 } 6673 6674 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6675 { 6676 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6677 6678 return usec * 1000 / coal_cap->timer_units; 6679 } 6680 6681 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6682 struct bnxt_coal *hw_coal, 6683 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6684 { 6685 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6686 u16 val, tmr, max, flags = hw_coal->flags; 6687 u32 cmpl_params = coal_cap->cmpl_params; 6688 6689 max = hw_coal->bufs_per_record * 128; 6690 if (hw_coal->budget) 6691 max = hw_coal->bufs_per_record * hw_coal->budget; 6692 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6693 6694 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6695 req->num_cmpl_aggr_int = cpu_to_le16(val); 6696 6697 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6698 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6699 6700 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6701 coal_cap->num_cmpl_dma_aggr_during_int_max); 6702 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6703 6704 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6705 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6706 req->int_lat_tmr_max = cpu_to_le16(tmr); 6707 6708 /* min timer set to 1/2 of interrupt timer */ 6709 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6710 val = tmr / 2; 6711 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6712 req->int_lat_tmr_min = cpu_to_le16(val); 6713 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6714 } 6715 6716 /* buf timer set to 1/4 of interrupt timer */ 6717 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6718 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6719 6720 if (cmpl_params & 6721 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6722 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6723 val = clamp_t(u16, tmr, 1, 6724 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6725 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6726 req->enables |= 6727 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6728 } 6729 6730 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6731 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6732 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6733 req->flags = cpu_to_le16(flags); 6734 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6735 } 6736 6737 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6738 struct bnxt_coal *hw_coal) 6739 { 6740 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6741 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6742 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6743 u32 nq_params = coal_cap->nq_params; 6744 u16 tmr; 6745 int rc; 6746 6747 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6748 return 0; 6749 6750 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6751 if (rc) 6752 return rc; 6753 6754 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6755 req->flags = 6756 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6757 6758 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6759 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6760 req->int_lat_tmr_min = cpu_to_le16(tmr); 6761 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6762 return hwrm_req_send(bp, req); 6763 } 6764 6765 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6766 { 6767 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6768 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6769 struct bnxt_coal coal; 6770 int rc; 6771 6772 /* Tick values in micro seconds. 6773 * 1 coal_buf x bufs_per_record = 1 completion record. 6774 */ 6775 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6776 6777 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6778 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6779 6780 if (!bnapi->rx_ring) 6781 return -ENODEV; 6782 6783 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6784 if (rc) 6785 return rc; 6786 6787 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6788 6789 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6790 6791 return hwrm_req_send(bp, req_rx); 6792 } 6793 6794 int bnxt_hwrm_set_coal(struct bnxt *bp) 6795 { 6796 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6797 *req; 6798 int i, rc; 6799 6800 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6801 if (rc) 6802 return rc; 6803 6804 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6805 if (rc) { 6806 hwrm_req_drop(bp, req_rx); 6807 return rc; 6808 } 6809 6810 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6811 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6812 6813 hwrm_req_hold(bp, req_rx); 6814 hwrm_req_hold(bp, req_tx); 6815 for (i = 0; i < bp->cp_nr_rings; i++) { 6816 struct bnxt_napi *bnapi = bp->bnapi[i]; 6817 struct bnxt_coal *hw_coal; 6818 u16 ring_id; 6819 6820 req = req_rx; 6821 if (!bnapi->rx_ring) { 6822 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6823 req = req_tx; 6824 } else { 6825 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6826 } 6827 req->ring_id = cpu_to_le16(ring_id); 6828 6829 rc = hwrm_req_send(bp, req); 6830 if (rc) 6831 break; 6832 6833 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6834 continue; 6835 6836 if (bnapi->rx_ring && bnapi->tx_ring) { 6837 req = req_tx; 6838 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6839 req->ring_id = cpu_to_le16(ring_id); 6840 rc = hwrm_req_send(bp, req); 6841 if (rc) 6842 break; 6843 } 6844 if (bnapi->rx_ring) 6845 hw_coal = &bp->rx_coal; 6846 else 6847 hw_coal = &bp->tx_coal; 6848 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6849 } 6850 hwrm_req_drop(bp, req_rx); 6851 hwrm_req_drop(bp, req_tx); 6852 return rc; 6853 } 6854 6855 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6856 { 6857 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6858 struct hwrm_stat_ctx_free_input *req; 6859 int i; 6860 6861 if (!bp->bnapi) 6862 return; 6863 6864 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6865 return; 6866 6867 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6868 return; 6869 if (BNXT_FW_MAJ(bp) <= 20) { 6870 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6871 hwrm_req_drop(bp, req); 6872 return; 6873 } 6874 hwrm_req_hold(bp, req0); 6875 } 6876 hwrm_req_hold(bp, req); 6877 for (i = 0; i < bp->cp_nr_rings; i++) { 6878 struct bnxt_napi *bnapi = bp->bnapi[i]; 6879 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6880 6881 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6882 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6883 if (req0) { 6884 req0->stat_ctx_id = req->stat_ctx_id; 6885 hwrm_req_send(bp, req0); 6886 } 6887 hwrm_req_send(bp, req); 6888 6889 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6890 } 6891 } 6892 hwrm_req_drop(bp, req); 6893 if (req0) 6894 hwrm_req_drop(bp, req0); 6895 } 6896 6897 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6898 { 6899 struct hwrm_stat_ctx_alloc_output *resp; 6900 struct hwrm_stat_ctx_alloc_input *req; 6901 int rc, i; 6902 6903 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6904 return 0; 6905 6906 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 6907 if (rc) 6908 return rc; 6909 6910 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6911 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6912 6913 resp = hwrm_req_hold(bp, req); 6914 for (i = 0; i < bp->cp_nr_rings; i++) { 6915 struct bnxt_napi *bnapi = bp->bnapi[i]; 6916 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6917 6918 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6919 6920 rc = hwrm_req_send(bp, req); 6921 if (rc) 6922 break; 6923 6924 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6925 6926 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6927 } 6928 hwrm_req_drop(bp, req); 6929 return rc; 6930 } 6931 6932 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6933 { 6934 struct hwrm_func_qcfg_output *resp; 6935 struct hwrm_func_qcfg_input *req; 6936 u32 min_db_offset = 0; 6937 u16 flags; 6938 int rc; 6939 6940 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6941 if (rc) 6942 return rc; 6943 6944 req->fid = cpu_to_le16(0xffff); 6945 resp = hwrm_req_hold(bp, req); 6946 rc = hwrm_req_send(bp, req); 6947 if (rc) 6948 goto func_qcfg_exit; 6949 6950 #ifdef CONFIG_BNXT_SRIOV 6951 if (BNXT_VF(bp)) { 6952 struct bnxt_vf_info *vf = &bp->vf; 6953 6954 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6955 } else { 6956 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6957 } 6958 #endif 6959 flags = le16_to_cpu(resp->flags); 6960 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6961 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6962 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6963 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6964 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6965 } 6966 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6967 bp->flags |= BNXT_FLAG_MULTI_HOST; 6968 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6969 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6970 6971 switch (resp->port_partition_type) { 6972 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6973 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6974 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6975 bp->port_partition_type = resp->port_partition_type; 6976 break; 6977 } 6978 if (bp->hwrm_spec_code < 0x10707 || 6979 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6980 bp->br_mode = BRIDGE_MODE_VEB; 6981 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6982 bp->br_mode = BRIDGE_MODE_VEPA; 6983 else 6984 bp->br_mode = BRIDGE_MODE_UNDEF; 6985 6986 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6987 if (!bp->max_mtu) 6988 bp->max_mtu = BNXT_MAX_MTU; 6989 6990 if (bp->db_size) 6991 goto func_qcfg_exit; 6992 6993 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6994 if (BNXT_PF(bp)) 6995 min_db_offset = DB_PF_OFFSET_P5; 6996 else 6997 min_db_offset = DB_VF_OFFSET_P5; 6998 } 6999 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 7000 1024); 7001 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 7002 bp->db_size <= min_db_offset) 7003 bp->db_size = pci_resource_len(bp->pdev, 2); 7004 7005 func_qcfg_exit: 7006 hwrm_req_drop(bp, req); 7007 return rc; 7008 } 7009 7010 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 7011 struct hwrm_func_backing_store_qcaps_output *resp) 7012 { 7013 struct bnxt_mem_init *mem_init; 7014 u16 init_mask; 7015 u8 init_val; 7016 u8 *offset; 7017 int i; 7018 7019 init_val = resp->ctx_kind_initializer; 7020 init_mask = le16_to_cpu(resp->ctx_init_mask); 7021 offset = &resp->qp_init_offset; 7022 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7023 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 7024 mem_init->init_val = init_val; 7025 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 7026 if (!init_mask) 7027 continue; 7028 if (i == BNXT_CTX_MEM_INIT_STAT) 7029 offset = &resp->stat_init_offset; 7030 if (init_mask & (1 << i)) 7031 mem_init->offset = *offset * 4; 7032 else 7033 mem_init->init_val = 0; 7034 } 7035 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 7036 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 7037 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 7038 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 7039 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 7040 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 7041 } 7042 7043 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 7044 { 7045 struct hwrm_func_backing_store_qcaps_output *resp; 7046 struct hwrm_func_backing_store_qcaps_input *req; 7047 int rc; 7048 7049 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 7050 return 0; 7051 7052 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 7053 if (rc) 7054 return rc; 7055 7056 resp = hwrm_req_hold(bp, req); 7057 rc = hwrm_req_send_silent(bp, req); 7058 if (!rc) { 7059 struct bnxt_ctx_pg_info *ctx_pg; 7060 struct bnxt_ctx_mem_info *ctx; 7061 int i, tqm_rings; 7062 7063 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7064 if (!ctx) { 7065 rc = -ENOMEM; 7066 goto ctx_err; 7067 } 7068 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 7069 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 7070 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 7071 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 7072 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 7073 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 7074 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 7075 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 7076 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 7077 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 7078 ctx->vnic_max_vnic_entries = 7079 le16_to_cpu(resp->vnic_max_vnic_entries); 7080 ctx->vnic_max_ring_table_entries = 7081 le16_to_cpu(resp->vnic_max_ring_table_entries); 7082 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 7083 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 7084 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 7085 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 7086 ctx->tqm_min_entries_per_ring = 7087 le32_to_cpu(resp->tqm_min_entries_per_ring); 7088 ctx->tqm_max_entries_per_ring = 7089 le32_to_cpu(resp->tqm_max_entries_per_ring); 7090 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 7091 if (!ctx->tqm_entries_multiple) 7092 ctx->tqm_entries_multiple = 1; 7093 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 7094 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 7095 ctx->mrav_num_entries_units = 7096 le16_to_cpu(resp->mrav_num_entries_units); 7097 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 7098 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 7099 7100 bnxt_init_ctx_initializer(ctx, resp); 7101 7102 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 7103 if (!ctx->tqm_fp_rings_count) 7104 ctx->tqm_fp_rings_count = bp->max_q; 7105 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 7106 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 7107 7108 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 7109 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 7110 if (!ctx_pg) { 7111 kfree(ctx); 7112 rc = -ENOMEM; 7113 goto ctx_err; 7114 } 7115 for (i = 0; i < tqm_rings; i++, ctx_pg++) 7116 ctx->tqm_mem[i] = ctx_pg; 7117 bp->ctx = ctx; 7118 } else { 7119 rc = 0; 7120 } 7121 ctx_err: 7122 hwrm_req_drop(bp, req); 7123 return rc; 7124 } 7125 7126 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 7127 __le64 *pg_dir) 7128 { 7129 if (!rmem->nr_pages) 7130 return; 7131 7132 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 7133 if (rmem->depth >= 1) { 7134 if (rmem->depth == 2) 7135 *pg_attr |= 2; 7136 else 7137 *pg_attr |= 1; 7138 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 7139 } else { 7140 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 7141 } 7142 } 7143 7144 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 7145 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 7146 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 7147 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 7148 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 7149 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 7150 7151 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 7152 { 7153 struct hwrm_func_backing_store_cfg_input *req; 7154 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7155 struct bnxt_ctx_pg_info *ctx_pg; 7156 void **__req = (void **)&req; 7157 u32 req_len = sizeof(*req); 7158 __le32 *num_entries; 7159 __le64 *pg_dir; 7160 u32 flags = 0; 7161 u8 *pg_attr; 7162 u32 ena; 7163 int rc; 7164 int i; 7165 7166 if (!ctx) 7167 return 0; 7168 7169 if (req_len > bp->hwrm_max_ext_req_len) 7170 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 7171 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 7172 if (rc) 7173 return rc; 7174 7175 req->enables = cpu_to_le32(enables); 7176 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 7177 ctx_pg = &ctx->qp_mem; 7178 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 7179 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 7180 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 7181 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 7182 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7183 &req->qpc_pg_size_qpc_lvl, 7184 &req->qpc_page_dir); 7185 } 7186 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 7187 ctx_pg = &ctx->srq_mem; 7188 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 7189 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 7190 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 7191 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7192 &req->srq_pg_size_srq_lvl, 7193 &req->srq_page_dir); 7194 } 7195 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 7196 ctx_pg = &ctx->cq_mem; 7197 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 7198 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 7199 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 7200 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7201 &req->cq_pg_size_cq_lvl, 7202 &req->cq_page_dir); 7203 } 7204 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 7205 ctx_pg = &ctx->vnic_mem; 7206 req->vnic_num_vnic_entries = 7207 cpu_to_le16(ctx->vnic_max_vnic_entries); 7208 req->vnic_num_ring_table_entries = 7209 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7210 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7211 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7212 &req->vnic_pg_size_vnic_lvl, 7213 &req->vnic_page_dir); 7214 } 7215 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7216 ctx_pg = &ctx->stat_mem; 7217 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7218 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7219 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7220 &req->stat_pg_size_stat_lvl, 7221 &req->stat_page_dir); 7222 } 7223 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7224 ctx_pg = &ctx->mrav_mem; 7225 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7226 if (ctx->mrav_num_entries_units) 7227 flags |= 7228 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7229 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7230 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7231 &req->mrav_pg_size_mrav_lvl, 7232 &req->mrav_page_dir); 7233 } 7234 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7235 ctx_pg = &ctx->tim_mem; 7236 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7237 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7238 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7239 &req->tim_pg_size_tim_lvl, 7240 &req->tim_page_dir); 7241 } 7242 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7243 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7244 pg_dir = &req->tqm_sp_page_dir, 7245 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7246 i < BNXT_MAX_TQM_RINGS; 7247 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7248 if (!(enables & ena)) 7249 continue; 7250 7251 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7252 ctx_pg = ctx->tqm_mem[i]; 7253 *num_entries = cpu_to_le32(ctx_pg->entries); 7254 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7255 } 7256 req->flags = cpu_to_le32(flags); 7257 return hwrm_req_send(bp, req); 7258 } 7259 7260 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7261 struct bnxt_ctx_pg_info *ctx_pg) 7262 { 7263 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7264 7265 rmem->page_size = BNXT_PAGE_SIZE; 7266 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7267 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7268 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7269 if (rmem->depth >= 1) 7270 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7271 return bnxt_alloc_ring(bp, rmem); 7272 } 7273 7274 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7275 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7276 u8 depth, struct bnxt_mem_init *mem_init) 7277 { 7278 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7279 int rc; 7280 7281 if (!mem_size) 7282 return -EINVAL; 7283 7284 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7285 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7286 ctx_pg->nr_pages = 0; 7287 return -EINVAL; 7288 } 7289 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7290 int nr_tbls, i; 7291 7292 rmem->depth = 2; 7293 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7294 GFP_KERNEL); 7295 if (!ctx_pg->ctx_pg_tbl) 7296 return -ENOMEM; 7297 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7298 rmem->nr_pages = nr_tbls; 7299 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7300 if (rc) 7301 return rc; 7302 for (i = 0; i < nr_tbls; i++) { 7303 struct bnxt_ctx_pg_info *pg_tbl; 7304 7305 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7306 if (!pg_tbl) 7307 return -ENOMEM; 7308 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7309 rmem = &pg_tbl->ring_mem; 7310 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7311 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7312 rmem->depth = 1; 7313 rmem->nr_pages = MAX_CTX_PAGES; 7314 rmem->mem_init = mem_init; 7315 if (i == (nr_tbls - 1)) { 7316 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7317 7318 if (rem) 7319 rmem->nr_pages = rem; 7320 } 7321 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7322 if (rc) 7323 break; 7324 } 7325 } else { 7326 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7327 if (rmem->nr_pages > 1 || depth) 7328 rmem->depth = 1; 7329 rmem->mem_init = mem_init; 7330 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7331 } 7332 return rc; 7333 } 7334 7335 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7336 struct bnxt_ctx_pg_info *ctx_pg) 7337 { 7338 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7339 7340 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7341 ctx_pg->ctx_pg_tbl) { 7342 int i, nr_tbls = rmem->nr_pages; 7343 7344 for (i = 0; i < nr_tbls; i++) { 7345 struct bnxt_ctx_pg_info *pg_tbl; 7346 struct bnxt_ring_mem_info *rmem2; 7347 7348 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7349 if (!pg_tbl) 7350 continue; 7351 rmem2 = &pg_tbl->ring_mem; 7352 bnxt_free_ring(bp, rmem2); 7353 ctx_pg->ctx_pg_arr[i] = NULL; 7354 kfree(pg_tbl); 7355 ctx_pg->ctx_pg_tbl[i] = NULL; 7356 } 7357 kfree(ctx_pg->ctx_pg_tbl); 7358 ctx_pg->ctx_pg_tbl = NULL; 7359 } 7360 bnxt_free_ring(bp, rmem); 7361 ctx_pg->nr_pages = 0; 7362 } 7363 7364 void bnxt_free_ctx_mem(struct bnxt *bp) 7365 { 7366 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7367 int i; 7368 7369 if (!ctx) 7370 return; 7371 7372 if (ctx->tqm_mem[0]) { 7373 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7374 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7375 kfree(ctx->tqm_mem[0]); 7376 ctx->tqm_mem[0] = NULL; 7377 } 7378 7379 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7380 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7381 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7382 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7383 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7384 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7385 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7386 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7387 } 7388 7389 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7390 { 7391 struct bnxt_ctx_pg_info *ctx_pg; 7392 struct bnxt_ctx_mem_info *ctx; 7393 struct bnxt_mem_init *init; 7394 u32 mem_size, ena, entries; 7395 u32 entries_sp, min; 7396 u32 num_mr, num_ah; 7397 u32 extra_srqs = 0; 7398 u32 extra_qps = 0; 7399 u8 pg_lvl = 1; 7400 int i, rc; 7401 7402 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7403 if (rc) { 7404 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7405 rc); 7406 return rc; 7407 } 7408 ctx = bp->ctx; 7409 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7410 return 0; 7411 7412 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7413 pg_lvl = 2; 7414 extra_qps = 65536; 7415 extra_srqs = 8192; 7416 } 7417 7418 ctx_pg = &ctx->qp_mem; 7419 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7420 extra_qps; 7421 if (ctx->qp_entry_size) { 7422 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7423 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7424 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7425 if (rc) 7426 return rc; 7427 } 7428 7429 ctx_pg = &ctx->srq_mem; 7430 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7431 if (ctx->srq_entry_size) { 7432 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7433 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7434 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7435 if (rc) 7436 return rc; 7437 } 7438 7439 ctx_pg = &ctx->cq_mem; 7440 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7441 if (ctx->cq_entry_size) { 7442 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7443 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7444 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7445 if (rc) 7446 return rc; 7447 } 7448 7449 ctx_pg = &ctx->vnic_mem; 7450 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7451 ctx->vnic_max_ring_table_entries; 7452 if (ctx->vnic_entry_size) { 7453 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7454 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7455 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7456 if (rc) 7457 return rc; 7458 } 7459 7460 ctx_pg = &ctx->stat_mem; 7461 ctx_pg->entries = ctx->stat_max_entries; 7462 if (ctx->stat_entry_size) { 7463 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7464 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7465 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7466 if (rc) 7467 return rc; 7468 } 7469 7470 ena = 0; 7471 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7472 goto skip_rdma; 7473 7474 ctx_pg = &ctx->mrav_mem; 7475 /* 128K extra is needed to accommodate static AH context 7476 * allocation by f/w. 7477 */ 7478 num_mr = 1024 * 256; 7479 num_ah = 1024 * 128; 7480 ctx_pg->entries = num_mr + num_ah; 7481 if (ctx->mrav_entry_size) { 7482 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7483 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7484 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7485 if (rc) 7486 return rc; 7487 } 7488 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7489 if (ctx->mrav_num_entries_units) 7490 ctx_pg->entries = 7491 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7492 (num_ah / ctx->mrav_num_entries_units); 7493 7494 ctx_pg = &ctx->tim_mem; 7495 ctx_pg->entries = ctx->qp_mem.entries; 7496 if (ctx->tim_entry_size) { 7497 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7498 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7499 if (rc) 7500 return rc; 7501 } 7502 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7503 7504 skip_rdma: 7505 min = ctx->tqm_min_entries_per_ring; 7506 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7507 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7508 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7509 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7510 entries = roundup(entries, ctx->tqm_entries_multiple); 7511 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7512 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7513 ctx_pg = ctx->tqm_mem[i]; 7514 ctx_pg->entries = i ? entries : entries_sp; 7515 if (ctx->tqm_entry_size) { 7516 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7517 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7518 NULL); 7519 if (rc) 7520 return rc; 7521 } 7522 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7523 } 7524 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7525 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7526 if (rc) { 7527 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7528 rc); 7529 return rc; 7530 } 7531 ctx->flags |= BNXT_CTX_FLAG_INITED; 7532 return 0; 7533 } 7534 7535 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7536 { 7537 struct hwrm_func_resource_qcaps_output *resp; 7538 struct hwrm_func_resource_qcaps_input *req; 7539 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7540 int rc; 7541 7542 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7543 if (rc) 7544 return rc; 7545 7546 req->fid = cpu_to_le16(0xffff); 7547 resp = hwrm_req_hold(bp, req); 7548 rc = hwrm_req_send_silent(bp, req); 7549 if (rc) 7550 goto hwrm_func_resc_qcaps_exit; 7551 7552 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7553 if (!all) 7554 goto hwrm_func_resc_qcaps_exit; 7555 7556 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7557 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7558 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7559 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7560 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7561 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7562 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7563 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7564 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7565 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7566 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7567 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7568 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7569 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7570 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7571 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7572 7573 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7574 u16 max_msix = le16_to_cpu(resp->max_msix); 7575 7576 hw_resc->max_nqs = max_msix; 7577 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7578 } 7579 7580 if (BNXT_PF(bp)) { 7581 struct bnxt_pf_info *pf = &bp->pf; 7582 7583 pf->vf_resv_strategy = 7584 le16_to_cpu(resp->vf_reservation_strategy); 7585 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7586 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7587 } 7588 hwrm_func_resc_qcaps_exit: 7589 hwrm_req_drop(bp, req); 7590 return rc; 7591 } 7592 7593 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7594 { 7595 struct hwrm_port_mac_ptp_qcfg_output *resp; 7596 struct hwrm_port_mac_ptp_qcfg_input *req; 7597 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7598 bool phc_cfg; 7599 u8 flags; 7600 int rc; 7601 7602 if (bp->hwrm_spec_code < 0x10801) { 7603 rc = -ENODEV; 7604 goto no_ptp; 7605 } 7606 7607 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7608 if (rc) 7609 goto no_ptp; 7610 7611 req->port_id = cpu_to_le16(bp->pf.port_id); 7612 resp = hwrm_req_hold(bp, req); 7613 rc = hwrm_req_send(bp, req); 7614 if (rc) 7615 goto exit; 7616 7617 flags = resp->flags; 7618 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7619 rc = -ENODEV; 7620 goto exit; 7621 } 7622 if (!ptp) { 7623 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7624 if (!ptp) { 7625 rc = -ENOMEM; 7626 goto exit; 7627 } 7628 ptp->bp = bp; 7629 bp->ptp_cfg = ptp; 7630 } 7631 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7632 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7633 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7634 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7635 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7636 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7637 } else { 7638 rc = -ENODEV; 7639 goto exit; 7640 } 7641 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 7642 rc = bnxt_ptp_init(bp, phc_cfg); 7643 if (rc) 7644 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7645 exit: 7646 hwrm_req_drop(bp, req); 7647 if (!rc) 7648 return 0; 7649 7650 no_ptp: 7651 bnxt_ptp_clear(bp); 7652 kfree(ptp); 7653 bp->ptp_cfg = NULL; 7654 return rc; 7655 } 7656 7657 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7658 { 7659 struct hwrm_func_qcaps_output *resp; 7660 struct hwrm_func_qcaps_input *req; 7661 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7662 u32 flags, flags_ext, flags_ext2; 7663 int rc; 7664 7665 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7666 if (rc) 7667 return rc; 7668 7669 req->fid = cpu_to_le16(0xffff); 7670 resp = hwrm_req_hold(bp, req); 7671 rc = hwrm_req_send(bp, req); 7672 if (rc) 7673 goto hwrm_func_qcaps_exit; 7674 7675 flags = le32_to_cpu(resp->flags); 7676 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7677 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7678 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7679 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7680 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7681 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7682 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7683 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7684 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7685 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7686 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7687 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7688 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7689 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7690 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7691 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7692 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 7693 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 7694 7695 flags_ext = le32_to_cpu(resp->flags_ext); 7696 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7697 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7698 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7699 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7700 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 7701 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 7702 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 7703 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 7704 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 7705 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 7706 7707 flags_ext2 = le32_to_cpu(resp->flags_ext2); 7708 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 7709 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 7710 7711 bp->tx_push_thresh = 0; 7712 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7713 BNXT_FW_MAJ(bp) > 217) 7714 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7715 7716 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7717 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7718 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7719 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7720 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7721 if (!hw_resc->max_hw_ring_grps) 7722 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7723 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7724 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7725 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7726 7727 if (BNXT_PF(bp)) { 7728 struct bnxt_pf_info *pf = &bp->pf; 7729 7730 pf->fw_fid = le16_to_cpu(resp->fid); 7731 pf->port_id = le16_to_cpu(resp->port_id); 7732 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7733 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7734 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7735 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7736 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7737 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7738 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7739 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7740 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7741 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7742 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7743 bp->flags |= BNXT_FLAG_WOL_CAP; 7744 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7745 __bnxt_hwrm_ptp_qcfg(bp); 7746 } else { 7747 bnxt_ptp_clear(bp); 7748 kfree(bp->ptp_cfg); 7749 bp->ptp_cfg = NULL; 7750 } 7751 } else { 7752 #ifdef CONFIG_BNXT_SRIOV 7753 struct bnxt_vf_info *vf = &bp->vf; 7754 7755 vf->fw_fid = le16_to_cpu(resp->fid); 7756 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7757 #endif 7758 } 7759 7760 hwrm_func_qcaps_exit: 7761 hwrm_req_drop(bp, req); 7762 return rc; 7763 } 7764 7765 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 7766 { 7767 struct hwrm_dbg_qcaps_output *resp; 7768 struct hwrm_dbg_qcaps_input *req; 7769 int rc; 7770 7771 bp->fw_dbg_cap = 0; 7772 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 7773 return; 7774 7775 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 7776 if (rc) 7777 return; 7778 7779 req->fid = cpu_to_le16(0xffff); 7780 resp = hwrm_req_hold(bp, req); 7781 rc = hwrm_req_send(bp, req); 7782 if (rc) 7783 goto hwrm_dbg_qcaps_exit; 7784 7785 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 7786 7787 hwrm_dbg_qcaps_exit: 7788 hwrm_req_drop(bp, req); 7789 } 7790 7791 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7792 7793 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7794 { 7795 int rc; 7796 7797 rc = __bnxt_hwrm_func_qcaps(bp); 7798 if (rc) 7799 return rc; 7800 7801 bnxt_hwrm_dbg_qcaps(bp); 7802 7803 rc = bnxt_hwrm_queue_qportcfg(bp); 7804 if (rc) { 7805 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7806 return rc; 7807 } 7808 if (bp->hwrm_spec_code >= 0x10803) { 7809 rc = bnxt_alloc_ctx_mem(bp); 7810 if (rc) 7811 return rc; 7812 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7813 if (!rc) 7814 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7815 } 7816 return 0; 7817 } 7818 7819 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7820 { 7821 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7822 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7823 u32 flags; 7824 int rc; 7825 7826 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7827 return 0; 7828 7829 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7830 if (rc) 7831 return rc; 7832 7833 resp = hwrm_req_hold(bp, req); 7834 rc = hwrm_req_send(bp, req); 7835 if (rc) 7836 goto hwrm_cfa_adv_qcaps_exit; 7837 7838 flags = le32_to_cpu(resp->flags); 7839 if (flags & 7840 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7841 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7842 7843 hwrm_cfa_adv_qcaps_exit: 7844 hwrm_req_drop(bp, req); 7845 return rc; 7846 } 7847 7848 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7849 { 7850 if (bp->fw_health) 7851 return 0; 7852 7853 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7854 if (!bp->fw_health) 7855 return -ENOMEM; 7856 7857 mutex_init(&bp->fw_health->lock); 7858 return 0; 7859 } 7860 7861 static int bnxt_alloc_fw_health(struct bnxt *bp) 7862 { 7863 int rc; 7864 7865 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7866 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7867 return 0; 7868 7869 rc = __bnxt_alloc_fw_health(bp); 7870 if (rc) { 7871 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7872 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7873 return rc; 7874 } 7875 7876 return 0; 7877 } 7878 7879 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7880 { 7881 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7882 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7883 BNXT_FW_HEALTH_WIN_MAP_OFF); 7884 } 7885 7886 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7887 { 7888 struct bnxt_fw_health *fw_health = bp->fw_health; 7889 u32 reg_type; 7890 7891 if (!fw_health) 7892 return; 7893 7894 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7895 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7896 fw_health->status_reliable = false; 7897 7898 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 7899 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7900 fw_health->resets_reliable = false; 7901 } 7902 7903 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7904 { 7905 void __iomem *hs; 7906 u32 status_loc; 7907 u32 reg_type; 7908 u32 sig; 7909 7910 if (bp->fw_health) 7911 bp->fw_health->status_reliable = false; 7912 7913 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7914 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7915 7916 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7917 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7918 if (!bp->chip_num) { 7919 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7920 bp->chip_num = readl(bp->bar0 + 7921 BNXT_FW_HEALTH_WIN_BASE + 7922 BNXT_GRC_REG_CHIP_NUM); 7923 } 7924 if (!BNXT_CHIP_P5(bp)) 7925 return; 7926 7927 status_loc = BNXT_GRC_REG_STATUS_P5 | 7928 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7929 } else { 7930 status_loc = readl(hs + offsetof(struct hcomm_status, 7931 fw_status_loc)); 7932 } 7933 7934 if (__bnxt_alloc_fw_health(bp)) { 7935 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7936 return; 7937 } 7938 7939 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7940 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7941 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7942 __bnxt_map_fw_health_reg(bp, status_loc); 7943 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7944 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7945 } 7946 7947 bp->fw_health->status_reliable = true; 7948 } 7949 7950 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7951 { 7952 struct bnxt_fw_health *fw_health = bp->fw_health; 7953 u32 reg_base = 0xffffffff; 7954 int i; 7955 7956 bp->fw_health->status_reliable = false; 7957 bp->fw_health->resets_reliable = false; 7958 /* Only pre-map the monitoring GRC registers using window 3 */ 7959 for (i = 0; i < 4; i++) { 7960 u32 reg = fw_health->regs[i]; 7961 7962 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7963 continue; 7964 if (reg_base == 0xffffffff) 7965 reg_base = reg & BNXT_GRC_BASE_MASK; 7966 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7967 return -ERANGE; 7968 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7969 } 7970 bp->fw_health->status_reliable = true; 7971 bp->fw_health->resets_reliable = true; 7972 if (reg_base == 0xffffffff) 7973 return 0; 7974 7975 __bnxt_map_fw_health_reg(bp, reg_base); 7976 return 0; 7977 } 7978 7979 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 7980 { 7981 if (!bp->fw_health) 7982 return; 7983 7984 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 7985 bp->fw_health->status_reliable = true; 7986 bp->fw_health->resets_reliable = true; 7987 } else { 7988 bnxt_try_map_fw_health_reg(bp); 7989 } 7990 } 7991 7992 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7993 { 7994 struct bnxt_fw_health *fw_health = bp->fw_health; 7995 struct hwrm_error_recovery_qcfg_output *resp; 7996 struct hwrm_error_recovery_qcfg_input *req; 7997 int rc, i; 7998 7999 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 8000 return 0; 8001 8002 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 8003 if (rc) 8004 return rc; 8005 8006 resp = hwrm_req_hold(bp, req); 8007 rc = hwrm_req_send(bp, req); 8008 if (rc) 8009 goto err_recovery_out; 8010 fw_health->flags = le32_to_cpu(resp->flags); 8011 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 8012 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 8013 rc = -EINVAL; 8014 goto err_recovery_out; 8015 } 8016 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 8017 fw_health->master_func_wait_dsecs = 8018 le32_to_cpu(resp->master_func_wait_period); 8019 fw_health->normal_func_wait_dsecs = 8020 le32_to_cpu(resp->normal_func_wait_period); 8021 fw_health->post_reset_wait_dsecs = 8022 le32_to_cpu(resp->master_func_wait_period_after_reset); 8023 fw_health->post_reset_max_wait_dsecs = 8024 le32_to_cpu(resp->max_bailout_time_after_reset); 8025 fw_health->regs[BNXT_FW_HEALTH_REG] = 8026 le32_to_cpu(resp->fw_health_status_reg); 8027 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 8028 le32_to_cpu(resp->fw_heartbeat_reg); 8029 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 8030 le32_to_cpu(resp->fw_reset_cnt_reg); 8031 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 8032 le32_to_cpu(resp->reset_inprogress_reg); 8033 fw_health->fw_reset_inprog_reg_mask = 8034 le32_to_cpu(resp->reset_inprogress_reg_mask); 8035 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 8036 if (fw_health->fw_reset_seq_cnt >= 16) { 8037 rc = -EINVAL; 8038 goto err_recovery_out; 8039 } 8040 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 8041 fw_health->fw_reset_seq_regs[i] = 8042 le32_to_cpu(resp->reset_reg[i]); 8043 fw_health->fw_reset_seq_vals[i] = 8044 le32_to_cpu(resp->reset_reg_val[i]); 8045 fw_health->fw_reset_seq_delay_msec[i] = 8046 resp->delay_after_reset[i]; 8047 } 8048 err_recovery_out: 8049 hwrm_req_drop(bp, req); 8050 if (!rc) 8051 rc = bnxt_map_fw_health_regs(bp); 8052 if (rc) 8053 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 8054 return rc; 8055 } 8056 8057 static int bnxt_hwrm_func_reset(struct bnxt *bp) 8058 { 8059 struct hwrm_func_reset_input *req; 8060 int rc; 8061 8062 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 8063 if (rc) 8064 return rc; 8065 8066 req->enables = 0; 8067 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 8068 return hwrm_req_send(bp, req); 8069 } 8070 8071 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 8072 { 8073 struct hwrm_nvm_get_dev_info_output nvm_info; 8074 8075 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 8076 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 8077 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 8078 nvm_info.nvm_cfg_ver_upd); 8079 } 8080 8081 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 8082 { 8083 struct hwrm_queue_qportcfg_output *resp; 8084 struct hwrm_queue_qportcfg_input *req; 8085 u8 i, j, *qptr; 8086 bool no_rdma; 8087 int rc = 0; 8088 8089 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 8090 if (rc) 8091 return rc; 8092 8093 resp = hwrm_req_hold(bp, req); 8094 rc = hwrm_req_send(bp, req); 8095 if (rc) 8096 goto qportcfg_exit; 8097 8098 if (!resp->max_configurable_queues) { 8099 rc = -EINVAL; 8100 goto qportcfg_exit; 8101 } 8102 bp->max_tc = resp->max_configurable_queues; 8103 bp->max_lltc = resp->max_configurable_lossless_queues; 8104 if (bp->max_tc > BNXT_MAX_QUEUE) 8105 bp->max_tc = BNXT_MAX_QUEUE; 8106 8107 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 8108 qptr = &resp->queue_id0; 8109 for (i = 0, j = 0; i < bp->max_tc; i++) { 8110 bp->q_info[j].queue_id = *qptr; 8111 bp->q_ids[i] = *qptr++; 8112 bp->q_info[j].queue_profile = *qptr++; 8113 bp->tc_to_qidx[j] = j; 8114 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 8115 (no_rdma && BNXT_PF(bp))) 8116 j++; 8117 } 8118 bp->max_q = bp->max_tc; 8119 bp->max_tc = max_t(u8, j, 1); 8120 8121 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 8122 bp->max_tc = 1; 8123 8124 if (bp->max_lltc > bp->max_tc) 8125 bp->max_lltc = bp->max_tc; 8126 8127 qportcfg_exit: 8128 hwrm_req_drop(bp, req); 8129 return rc; 8130 } 8131 8132 static int bnxt_hwrm_poll(struct bnxt *bp) 8133 { 8134 struct hwrm_ver_get_input *req; 8135 int rc; 8136 8137 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8138 if (rc) 8139 return rc; 8140 8141 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8142 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8143 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8144 8145 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 8146 rc = hwrm_req_send(bp, req); 8147 return rc; 8148 } 8149 8150 static int bnxt_hwrm_ver_get(struct bnxt *bp) 8151 { 8152 struct hwrm_ver_get_output *resp; 8153 struct hwrm_ver_get_input *req; 8154 u16 fw_maj, fw_min, fw_bld, fw_rsv; 8155 u32 dev_caps_cfg, hwrm_ver; 8156 int rc, len; 8157 8158 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 8159 if (rc) 8160 return rc; 8161 8162 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 8163 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 8164 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 8165 req->hwrm_intf_min = HWRM_VERSION_MINOR; 8166 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 8167 8168 resp = hwrm_req_hold(bp, req); 8169 rc = hwrm_req_send(bp, req); 8170 if (rc) 8171 goto hwrm_ver_get_exit; 8172 8173 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 8174 8175 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 8176 resp->hwrm_intf_min_8b << 8 | 8177 resp->hwrm_intf_upd_8b; 8178 if (resp->hwrm_intf_maj_8b < 1) { 8179 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 8180 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8181 resp->hwrm_intf_upd_8b); 8182 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 8183 } 8184 8185 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 8186 HWRM_VERSION_UPDATE; 8187 8188 if (bp->hwrm_spec_code > hwrm_ver) 8189 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8190 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 8191 HWRM_VERSION_UPDATE); 8192 else 8193 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 8194 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 8195 resp->hwrm_intf_upd_8b); 8196 8197 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 8198 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 8199 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 8200 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 8201 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 8202 len = FW_VER_STR_LEN; 8203 } else { 8204 fw_maj = resp->hwrm_fw_maj_8b; 8205 fw_min = resp->hwrm_fw_min_8b; 8206 fw_bld = resp->hwrm_fw_bld_8b; 8207 fw_rsv = resp->hwrm_fw_rsvd_8b; 8208 len = BC_HWRM_STR_LEN; 8209 } 8210 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 8211 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 8212 fw_rsv); 8213 8214 if (strlen(resp->active_pkg_name)) { 8215 int fw_ver_len = strlen(bp->fw_ver_str); 8216 8217 snprintf(bp->fw_ver_str + fw_ver_len, 8218 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8219 resp->active_pkg_name); 8220 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8221 } 8222 8223 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8224 if (!bp->hwrm_cmd_timeout) 8225 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8226 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 8227 if (!bp->hwrm_cmd_max_timeout) 8228 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 8229 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 8230 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 8231 bp->hwrm_cmd_max_timeout / 1000); 8232 8233 if (resp->hwrm_intf_maj_8b >= 1) { 8234 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8235 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8236 } 8237 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8238 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8239 8240 bp->chip_num = le16_to_cpu(resp->chip_num); 8241 bp->chip_rev = resp->chip_rev; 8242 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8243 !resp->chip_metal) 8244 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8245 8246 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8247 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8248 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8249 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8250 8251 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8252 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8253 8254 if (dev_caps_cfg & 8255 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8256 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8257 8258 if (dev_caps_cfg & 8259 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8260 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8261 8262 if (dev_caps_cfg & 8263 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8264 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8265 8266 hwrm_ver_get_exit: 8267 hwrm_req_drop(bp, req); 8268 return rc; 8269 } 8270 8271 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8272 { 8273 struct hwrm_fw_set_time_input *req; 8274 struct tm tm; 8275 time64_t now = ktime_get_real_seconds(); 8276 int rc; 8277 8278 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8279 bp->hwrm_spec_code < 0x10400) 8280 return -EOPNOTSUPP; 8281 8282 time64_to_tm(now, 0, &tm); 8283 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8284 if (rc) 8285 return rc; 8286 8287 req->year = cpu_to_le16(1900 + tm.tm_year); 8288 req->month = 1 + tm.tm_mon; 8289 req->day = tm.tm_mday; 8290 req->hour = tm.tm_hour; 8291 req->minute = tm.tm_min; 8292 req->second = tm.tm_sec; 8293 return hwrm_req_send(bp, req); 8294 } 8295 8296 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8297 { 8298 u64 sw_tmp; 8299 8300 hw &= mask; 8301 sw_tmp = (*sw & ~mask) | hw; 8302 if (hw < (*sw & mask)) 8303 sw_tmp += mask + 1; 8304 WRITE_ONCE(*sw, sw_tmp); 8305 } 8306 8307 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8308 int count, bool ignore_zero) 8309 { 8310 int i; 8311 8312 for (i = 0; i < count; i++) { 8313 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8314 8315 if (ignore_zero && !hw) 8316 continue; 8317 8318 if (masks[i] == -1ULL) 8319 sw_stats[i] = hw; 8320 else 8321 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8322 } 8323 } 8324 8325 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8326 { 8327 if (!stats->hw_stats) 8328 return; 8329 8330 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8331 stats->hw_masks, stats->len / 8, false); 8332 } 8333 8334 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8335 { 8336 struct bnxt_stats_mem *ring0_stats; 8337 bool ignore_zero = false; 8338 int i; 8339 8340 /* Chip bug. Counter intermittently becomes 0. */ 8341 if (bp->flags & BNXT_FLAG_CHIP_P5) 8342 ignore_zero = true; 8343 8344 for (i = 0; i < bp->cp_nr_rings; i++) { 8345 struct bnxt_napi *bnapi = bp->bnapi[i]; 8346 struct bnxt_cp_ring_info *cpr; 8347 struct bnxt_stats_mem *stats; 8348 8349 cpr = &bnapi->cp_ring; 8350 stats = &cpr->stats; 8351 if (!i) 8352 ring0_stats = stats; 8353 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8354 ring0_stats->hw_masks, 8355 ring0_stats->len / 8, ignore_zero); 8356 } 8357 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8358 struct bnxt_stats_mem *stats = &bp->port_stats; 8359 __le64 *hw_stats = stats->hw_stats; 8360 u64 *sw_stats = stats->sw_stats; 8361 u64 *masks = stats->hw_masks; 8362 int cnt; 8363 8364 cnt = sizeof(struct rx_port_stats) / 8; 8365 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8366 8367 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8368 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8369 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8370 cnt = sizeof(struct tx_port_stats) / 8; 8371 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8372 } 8373 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8374 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8375 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8376 } 8377 } 8378 8379 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8380 { 8381 struct hwrm_port_qstats_input *req; 8382 struct bnxt_pf_info *pf = &bp->pf; 8383 int rc; 8384 8385 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8386 return 0; 8387 8388 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8389 return -EOPNOTSUPP; 8390 8391 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8392 if (rc) 8393 return rc; 8394 8395 req->flags = flags; 8396 req->port_id = cpu_to_le16(pf->port_id); 8397 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8398 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8399 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8400 return hwrm_req_send(bp, req); 8401 } 8402 8403 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8404 { 8405 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8406 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8407 struct hwrm_port_qstats_ext_output *resp_qs; 8408 struct hwrm_port_qstats_ext_input *req_qs; 8409 struct bnxt_pf_info *pf = &bp->pf; 8410 u32 tx_stat_size; 8411 int rc; 8412 8413 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8414 return 0; 8415 8416 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8417 return -EOPNOTSUPP; 8418 8419 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8420 if (rc) 8421 return rc; 8422 8423 req_qs->flags = flags; 8424 req_qs->port_id = cpu_to_le16(pf->port_id); 8425 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8426 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8427 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8428 sizeof(struct tx_port_stats_ext) : 0; 8429 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8430 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8431 resp_qs = hwrm_req_hold(bp, req_qs); 8432 rc = hwrm_req_send(bp, req_qs); 8433 if (!rc) { 8434 bp->fw_rx_stats_ext_size = 8435 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8436 if (BNXT_FW_MAJ(bp) < 220 && 8437 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 8438 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 8439 8440 bp->fw_tx_stats_ext_size = tx_stat_size ? 8441 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8442 } else { 8443 bp->fw_rx_stats_ext_size = 0; 8444 bp->fw_tx_stats_ext_size = 0; 8445 } 8446 hwrm_req_drop(bp, req_qs); 8447 8448 if (flags) 8449 return rc; 8450 8451 if (bp->fw_tx_stats_ext_size <= 8452 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8453 bp->pri2cos_valid = 0; 8454 return rc; 8455 } 8456 8457 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8458 if (rc) 8459 return rc; 8460 8461 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8462 8463 resp_qc = hwrm_req_hold(bp, req_qc); 8464 rc = hwrm_req_send(bp, req_qc); 8465 if (!rc) { 8466 u8 *pri2cos; 8467 int i, j; 8468 8469 pri2cos = &resp_qc->pri0_cos_queue_id; 8470 for (i = 0; i < 8; i++) { 8471 u8 queue_id = pri2cos[i]; 8472 u8 queue_idx; 8473 8474 /* Per port queue IDs start from 0, 10, 20, etc */ 8475 queue_idx = queue_id % 10; 8476 if (queue_idx > BNXT_MAX_QUEUE) { 8477 bp->pri2cos_valid = false; 8478 hwrm_req_drop(bp, req_qc); 8479 return rc; 8480 } 8481 for (j = 0; j < bp->max_q; j++) { 8482 if (bp->q_ids[j] == queue_id) 8483 bp->pri2cos_idx[i] = queue_idx; 8484 } 8485 } 8486 bp->pri2cos_valid = true; 8487 } 8488 hwrm_req_drop(bp, req_qc); 8489 8490 return rc; 8491 } 8492 8493 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8494 { 8495 bnxt_hwrm_tunnel_dst_port_free(bp, 8496 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8497 bnxt_hwrm_tunnel_dst_port_free(bp, 8498 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8499 } 8500 8501 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8502 { 8503 int rc, i; 8504 u32 tpa_flags = 0; 8505 8506 if (set_tpa) 8507 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8508 else if (BNXT_NO_FW_ACCESS(bp)) 8509 return 0; 8510 for (i = 0; i < bp->nr_vnics; i++) { 8511 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8512 if (rc) { 8513 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8514 i, rc); 8515 return rc; 8516 } 8517 } 8518 return 0; 8519 } 8520 8521 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8522 { 8523 int i; 8524 8525 for (i = 0; i < bp->nr_vnics; i++) 8526 bnxt_hwrm_vnic_set_rss(bp, i, false); 8527 } 8528 8529 static void bnxt_clear_vnic(struct bnxt *bp) 8530 { 8531 if (!bp->vnic_info) 8532 return; 8533 8534 bnxt_hwrm_clear_vnic_filter(bp); 8535 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8536 /* clear all RSS setting before free vnic ctx */ 8537 bnxt_hwrm_clear_vnic_rss(bp); 8538 bnxt_hwrm_vnic_ctx_free(bp); 8539 } 8540 /* before free the vnic, undo the vnic tpa settings */ 8541 if (bp->flags & BNXT_FLAG_TPA) 8542 bnxt_set_tpa(bp, false); 8543 bnxt_hwrm_vnic_free(bp); 8544 if (bp->flags & BNXT_FLAG_CHIP_P5) 8545 bnxt_hwrm_vnic_ctx_free(bp); 8546 } 8547 8548 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8549 bool irq_re_init) 8550 { 8551 bnxt_clear_vnic(bp); 8552 bnxt_hwrm_ring_free(bp, close_path); 8553 bnxt_hwrm_ring_grp_free(bp); 8554 if (irq_re_init) { 8555 bnxt_hwrm_stat_ctx_free(bp); 8556 bnxt_hwrm_free_tunnel_ports(bp); 8557 } 8558 } 8559 8560 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8561 { 8562 struct hwrm_func_cfg_input *req; 8563 u8 evb_mode; 8564 int rc; 8565 8566 if (br_mode == BRIDGE_MODE_VEB) 8567 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8568 else if (br_mode == BRIDGE_MODE_VEPA) 8569 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8570 else 8571 return -EINVAL; 8572 8573 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8574 if (rc) 8575 return rc; 8576 8577 req->fid = cpu_to_le16(0xffff); 8578 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8579 req->evb_mode = evb_mode; 8580 return hwrm_req_send(bp, req); 8581 } 8582 8583 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8584 { 8585 struct hwrm_func_cfg_input *req; 8586 int rc; 8587 8588 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8589 return 0; 8590 8591 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8592 if (rc) 8593 return rc; 8594 8595 req->fid = cpu_to_le16(0xffff); 8596 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8597 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8598 if (size == 128) 8599 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8600 8601 return hwrm_req_send(bp, req); 8602 } 8603 8604 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8605 { 8606 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8607 int rc; 8608 8609 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8610 goto skip_rss_ctx; 8611 8612 /* allocate context for vnic */ 8613 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8614 if (rc) { 8615 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8616 vnic_id, rc); 8617 goto vnic_setup_err; 8618 } 8619 bp->rsscos_nr_ctxs++; 8620 8621 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8622 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8623 if (rc) { 8624 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8625 vnic_id, rc); 8626 goto vnic_setup_err; 8627 } 8628 bp->rsscos_nr_ctxs++; 8629 } 8630 8631 skip_rss_ctx: 8632 /* configure default vnic, ring grp */ 8633 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8634 if (rc) { 8635 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8636 vnic_id, rc); 8637 goto vnic_setup_err; 8638 } 8639 8640 /* Enable RSS hashing on vnic */ 8641 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8642 if (rc) { 8643 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8644 vnic_id, rc); 8645 goto vnic_setup_err; 8646 } 8647 8648 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8649 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8650 if (rc) { 8651 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8652 vnic_id, rc); 8653 } 8654 } 8655 8656 vnic_setup_err: 8657 return rc; 8658 } 8659 8660 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8661 { 8662 int rc, i, nr_ctxs; 8663 8664 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8665 for (i = 0; i < nr_ctxs; i++) { 8666 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8667 if (rc) { 8668 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8669 vnic_id, i, rc); 8670 break; 8671 } 8672 bp->rsscos_nr_ctxs++; 8673 } 8674 if (i < nr_ctxs) 8675 return -ENOMEM; 8676 8677 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8678 if (rc) { 8679 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8680 vnic_id, rc); 8681 return rc; 8682 } 8683 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8684 if (rc) { 8685 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8686 vnic_id, rc); 8687 return rc; 8688 } 8689 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8690 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8691 if (rc) { 8692 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8693 vnic_id, rc); 8694 } 8695 } 8696 return rc; 8697 } 8698 8699 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8700 { 8701 if (bp->flags & BNXT_FLAG_CHIP_P5) 8702 return __bnxt_setup_vnic_p5(bp, vnic_id); 8703 else 8704 return __bnxt_setup_vnic(bp, vnic_id); 8705 } 8706 8707 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8708 { 8709 #ifdef CONFIG_RFS_ACCEL 8710 int i, rc = 0; 8711 8712 if (bp->flags & BNXT_FLAG_CHIP_P5) 8713 return 0; 8714 8715 for (i = 0; i < bp->rx_nr_rings; i++) { 8716 struct bnxt_vnic_info *vnic; 8717 u16 vnic_id = i + 1; 8718 u16 ring_id = i; 8719 8720 if (vnic_id >= bp->nr_vnics) 8721 break; 8722 8723 vnic = &bp->vnic_info[vnic_id]; 8724 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8725 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8726 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8727 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8728 if (rc) { 8729 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8730 vnic_id, rc); 8731 break; 8732 } 8733 rc = bnxt_setup_vnic(bp, vnic_id); 8734 if (rc) 8735 break; 8736 } 8737 return rc; 8738 #else 8739 return 0; 8740 #endif 8741 } 8742 8743 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8744 static bool bnxt_promisc_ok(struct bnxt *bp) 8745 { 8746 #ifdef CONFIG_BNXT_SRIOV 8747 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8748 return false; 8749 #endif 8750 return true; 8751 } 8752 8753 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8754 { 8755 unsigned int rc = 0; 8756 8757 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8758 if (rc) { 8759 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8760 rc); 8761 return rc; 8762 } 8763 8764 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8765 if (rc) { 8766 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8767 rc); 8768 return rc; 8769 } 8770 return rc; 8771 } 8772 8773 static int bnxt_cfg_rx_mode(struct bnxt *); 8774 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8775 8776 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8777 { 8778 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8779 int rc = 0; 8780 unsigned int rx_nr_rings = bp->rx_nr_rings; 8781 8782 if (irq_re_init) { 8783 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8784 if (rc) { 8785 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8786 rc); 8787 goto err_out; 8788 } 8789 } 8790 8791 rc = bnxt_hwrm_ring_alloc(bp); 8792 if (rc) { 8793 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8794 goto err_out; 8795 } 8796 8797 rc = bnxt_hwrm_ring_grp_alloc(bp); 8798 if (rc) { 8799 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8800 goto err_out; 8801 } 8802 8803 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8804 rx_nr_rings--; 8805 8806 /* default vnic 0 */ 8807 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8808 if (rc) { 8809 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8810 goto err_out; 8811 } 8812 8813 rc = bnxt_setup_vnic(bp, 0); 8814 if (rc) 8815 goto err_out; 8816 8817 if (bp->flags & BNXT_FLAG_RFS) { 8818 rc = bnxt_alloc_rfs_vnics(bp); 8819 if (rc) 8820 goto err_out; 8821 } 8822 8823 if (bp->flags & BNXT_FLAG_TPA) { 8824 rc = bnxt_set_tpa(bp, true); 8825 if (rc) 8826 goto err_out; 8827 } 8828 8829 if (BNXT_VF(bp)) 8830 bnxt_update_vf_mac(bp); 8831 8832 /* Filter for default vnic 0 */ 8833 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8834 if (rc) { 8835 if (BNXT_VF(bp) && rc == -ENODEV) 8836 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 8837 else 8838 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8839 goto err_out; 8840 } 8841 vnic->uc_filter_count = 1; 8842 8843 vnic->rx_mask = 0; 8844 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 8845 goto skip_rx_mask; 8846 8847 if (bp->dev->flags & IFF_BROADCAST) 8848 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8849 8850 if (bp->dev->flags & IFF_PROMISC) 8851 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8852 8853 if (bp->dev->flags & IFF_ALLMULTI) { 8854 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8855 vnic->mc_list_count = 0; 8856 } else if (bp->dev->flags & IFF_MULTICAST) { 8857 u32 mask = 0; 8858 8859 bnxt_mc_list_updated(bp, &mask); 8860 vnic->rx_mask |= mask; 8861 } 8862 8863 rc = bnxt_cfg_rx_mode(bp); 8864 if (rc) 8865 goto err_out; 8866 8867 skip_rx_mask: 8868 rc = bnxt_hwrm_set_coal(bp); 8869 if (rc) 8870 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8871 rc); 8872 8873 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8874 rc = bnxt_setup_nitroa0_vnic(bp); 8875 if (rc) 8876 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8877 rc); 8878 } 8879 8880 if (BNXT_VF(bp)) { 8881 bnxt_hwrm_func_qcfg(bp); 8882 netdev_update_features(bp->dev); 8883 } 8884 8885 return 0; 8886 8887 err_out: 8888 bnxt_hwrm_resource_free(bp, 0, true); 8889 8890 return rc; 8891 } 8892 8893 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8894 { 8895 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8896 return 0; 8897 } 8898 8899 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8900 { 8901 bnxt_init_cp_rings(bp); 8902 bnxt_init_rx_rings(bp); 8903 bnxt_init_tx_rings(bp); 8904 bnxt_init_ring_grps(bp, irq_re_init); 8905 bnxt_init_vnics(bp); 8906 8907 return bnxt_init_chip(bp, irq_re_init); 8908 } 8909 8910 static int bnxt_set_real_num_queues(struct bnxt *bp) 8911 { 8912 int rc; 8913 struct net_device *dev = bp->dev; 8914 8915 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8916 bp->tx_nr_rings_xdp); 8917 if (rc) 8918 return rc; 8919 8920 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8921 if (rc) 8922 return rc; 8923 8924 #ifdef CONFIG_RFS_ACCEL 8925 if (bp->flags & BNXT_FLAG_RFS) 8926 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8927 #endif 8928 8929 return rc; 8930 } 8931 8932 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8933 bool shared) 8934 { 8935 int _rx = *rx, _tx = *tx; 8936 8937 if (shared) { 8938 *rx = min_t(int, _rx, max); 8939 *tx = min_t(int, _tx, max); 8940 } else { 8941 if (max < 2) 8942 return -ENOMEM; 8943 8944 while (_rx + _tx > max) { 8945 if (_rx > _tx && _rx > 1) 8946 _rx--; 8947 else if (_tx > 1) 8948 _tx--; 8949 } 8950 *rx = _rx; 8951 *tx = _tx; 8952 } 8953 return 0; 8954 } 8955 8956 static void bnxt_setup_msix(struct bnxt *bp) 8957 { 8958 const int len = sizeof(bp->irq_tbl[0].name); 8959 struct net_device *dev = bp->dev; 8960 int tcs, i; 8961 8962 tcs = netdev_get_num_tc(dev); 8963 if (tcs) { 8964 int i, off, count; 8965 8966 for (i = 0; i < tcs; i++) { 8967 count = bp->tx_nr_rings_per_tc; 8968 off = i * count; 8969 netdev_set_tc_queue(dev, i, count, off); 8970 } 8971 } 8972 8973 for (i = 0; i < bp->cp_nr_rings; i++) { 8974 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8975 char *attr; 8976 8977 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8978 attr = "TxRx"; 8979 else if (i < bp->rx_nr_rings) 8980 attr = "rx"; 8981 else 8982 attr = "tx"; 8983 8984 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8985 attr, i); 8986 bp->irq_tbl[map_idx].handler = bnxt_msix; 8987 } 8988 } 8989 8990 static void bnxt_setup_inta(struct bnxt *bp) 8991 { 8992 const int len = sizeof(bp->irq_tbl[0].name); 8993 8994 if (netdev_get_num_tc(bp->dev)) 8995 netdev_reset_tc(bp->dev); 8996 8997 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8998 0); 8999 bp->irq_tbl[0].handler = bnxt_inta; 9000 } 9001 9002 static int bnxt_init_int_mode(struct bnxt *bp); 9003 9004 static int bnxt_setup_int_mode(struct bnxt *bp) 9005 { 9006 int rc; 9007 9008 if (!bp->irq_tbl) { 9009 rc = bnxt_init_int_mode(bp); 9010 if (rc || !bp->irq_tbl) 9011 return rc ?: -ENODEV; 9012 } 9013 9014 if (bp->flags & BNXT_FLAG_USING_MSIX) 9015 bnxt_setup_msix(bp); 9016 else 9017 bnxt_setup_inta(bp); 9018 9019 rc = bnxt_set_real_num_queues(bp); 9020 return rc; 9021 } 9022 9023 #ifdef CONFIG_RFS_ACCEL 9024 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 9025 { 9026 return bp->hw_resc.max_rsscos_ctxs; 9027 } 9028 9029 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 9030 { 9031 return bp->hw_resc.max_vnics; 9032 } 9033 #endif 9034 9035 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 9036 { 9037 return bp->hw_resc.max_stat_ctxs; 9038 } 9039 9040 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 9041 { 9042 return bp->hw_resc.max_cp_rings; 9043 } 9044 9045 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 9046 { 9047 unsigned int cp = bp->hw_resc.max_cp_rings; 9048 9049 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 9050 cp -= bnxt_get_ulp_msix_num(bp); 9051 9052 return cp; 9053 } 9054 9055 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 9056 { 9057 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9058 9059 if (bp->flags & BNXT_FLAG_CHIP_P5) 9060 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 9061 9062 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 9063 } 9064 9065 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 9066 { 9067 bp->hw_resc.max_irqs = max_irqs; 9068 } 9069 9070 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 9071 { 9072 unsigned int cp; 9073 9074 cp = bnxt_get_max_func_cp_rings_for_en(bp); 9075 if (bp->flags & BNXT_FLAG_CHIP_P5) 9076 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 9077 else 9078 return cp - bp->cp_nr_rings; 9079 } 9080 9081 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 9082 { 9083 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 9084 } 9085 9086 int bnxt_get_avail_msix(struct bnxt *bp, int num) 9087 { 9088 int max_cp = bnxt_get_max_func_cp_rings(bp); 9089 int max_irq = bnxt_get_max_func_irqs(bp); 9090 int total_req = bp->cp_nr_rings + num; 9091 int max_idx, avail_msix; 9092 9093 max_idx = bp->total_irqs; 9094 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 9095 max_idx = min_t(int, bp->total_irqs, max_cp); 9096 avail_msix = max_idx - bp->cp_nr_rings; 9097 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 9098 return avail_msix; 9099 9100 if (max_irq < total_req) { 9101 num = max_irq - bp->cp_nr_rings; 9102 if (num <= 0) 9103 return 0; 9104 } 9105 return num; 9106 } 9107 9108 static int bnxt_get_num_msix(struct bnxt *bp) 9109 { 9110 if (!BNXT_NEW_RM(bp)) 9111 return bnxt_get_max_func_irqs(bp); 9112 9113 return bnxt_nq_rings_in_use(bp); 9114 } 9115 9116 static int bnxt_init_msix(struct bnxt *bp) 9117 { 9118 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 9119 struct msix_entry *msix_ent; 9120 9121 total_vecs = bnxt_get_num_msix(bp); 9122 max = bnxt_get_max_func_irqs(bp); 9123 if (total_vecs > max) 9124 total_vecs = max; 9125 9126 if (!total_vecs) 9127 return 0; 9128 9129 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 9130 if (!msix_ent) 9131 return -ENOMEM; 9132 9133 for (i = 0; i < total_vecs; i++) { 9134 msix_ent[i].entry = i; 9135 msix_ent[i].vector = 0; 9136 } 9137 9138 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 9139 min = 2; 9140 9141 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 9142 ulp_msix = bnxt_get_ulp_msix_num(bp); 9143 if (total_vecs < 0 || total_vecs < ulp_msix) { 9144 rc = -ENODEV; 9145 goto msix_setup_exit; 9146 } 9147 9148 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 9149 if (bp->irq_tbl) { 9150 for (i = 0; i < total_vecs; i++) 9151 bp->irq_tbl[i].vector = msix_ent[i].vector; 9152 9153 bp->total_irqs = total_vecs; 9154 /* Trim rings based upon num of vectors allocated */ 9155 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 9156 total_vecs - ulp_msix, min == 1); 9157 if (rc) 9158 goto msix_setup_exit; 9159 9160 bp->cp_nr_rings = (min == 1) ? 9161 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 9162 bp->tx_nr_rings + bp->rx_nr_rings; 9163 9164 } else { 9165 rc = -ENOMEM; 9166 goto msix_setup_exit; 9167 } 9168 bp->flags |= BNXT_FLAG_USING_MSIX; 9169 kfree(msix_ent); 9170 return 0; 9171 9172 msix_setup_exit: 9173 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 9174 kfree(bp->irq_tbl); 9175 bp->irq_tbl = NULL; 9176 pci_disable_msix(bp->pdev); 9177 kfree(msix_ent); 9178 return rc; 9179 } 9180 9181 static int bnxt_init_inta(struct bnxt *bp) 9182 { 9183 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 9184 if (!bp->irq_tbl) 9185 return -ENOMEM; 9186 9187 bp->total_irqs = 1; 9188 bp->rx_nr_rings = 1; 9189 bp->tx_nr_rings = 1; 9190 bp->cp_nr_rings = 1; 9191 bp->flags |= BNXT_FLAG_SHARED_RINGS; 9192 bp->irq_tbl[0].vector = bp->pdev->irq; 9193 return 0; 9194 } 9195 9196 static int bnxt_init_int_mode(struct bnxt *bp) 9197 { 9198 int rc = -ENODEV; 9199 9200 if (bp->flags & BNXT_FLAG_MSIX_CAP) 9201 rc = bnxt_init_msix(bp); 9202 9203 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 9204 /* fallback to INTA */ 9205 rc = bnxt_init_inta(bp); 9206 } 9207 return rc; 9208 } 9209 9210 static void bnxt_clear_int_mode(struct bnxt *bp) 9211 { 9212 if (bp->flags & BNXT_FLAG_USING_MSIX) 9213 pci_disable_msix(bp->pdev); 9214 9215 kfree(bp->irq_tbl); 9216 bp->irq_tbl = NULL; 9217 bp->flags &= ~BNXT_FLAG_USING_MSIX; 9218 } 9219 9220 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 9221 { 9222 int tcs = netdev_get_num_tc(bp->dev); 9223 bool irq_cleared = false; 9224 int rc; 9225 9226 if (!bnxt_need_reserve_rings(bp)) 9227 return 0; 9228 9229 if (irq_re_init && BNXT_NEW_RM(bp) && 9230 bnxt_get_num_msix(bp) != bp->total_irqs) { 9231 bnxt_ulp_irq_stop(bp); 9232 bnxt_clear_int_mode(bp); 9233 irq_cleared = true; 9234 } 9235 rc = __bnxt_reserve_rings(bp); 9236 if (irq_cleared) { 9237 if (!rc) 9238 rc = bnxt_init_int_mode(bp); 9239 bnxt_ulp_irq_restart(bp, rc); 9240 } 9241 if (rc) { 9242 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9243 return rc; 9244 } 9245 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 9246 netdev_err(bp->dev, "tx ring reservation failure\n"); 9247 netdev_reset_tc(bp->dev); 9248 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9249 return -ENOMEM; 9250 } 9251 return 0; 9252 } 9253 9254 static void bnxt_free_irq(struct bnxt *bp) 9255 { 9256 struct bnxt_irq *irq; 9257 int i; 9258 9259 #ifdef CONFIG_RFS_ACCEL 9260 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9261 bp->dev->rx_cpu_rmap = NULL; 9262 #endif 9263 if (!bp->irq_tbl || !bp->bnapi) 9264 return; 9265 9266 for (i = 0; i < bp->cp_nr_rings; i++) { 9267 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9268 9269 irq = &bp->irq_tbl[map_idx]; 9270 if (irq->requested) { 9271 if (irq->have_cpumask) { 9272 irq_set_affinity_hint(irq->vector, NULL); 9273 free_cpumask_var(irq->cpu_mask); 9274 irq->have_cpumask = 0; 9275 } 9276 free_irq(irq->vector, bp->bnapi[i]); 9277 } 9278 9279 irq->requested = 0; 9280 } 9281 } 9282 9283 static int bnxt_request_irq(struct bnxt *bp) 9284 { 9285 int i, j, rc = 0; 9286 unsigned long flags = 0; 9287 #ifdef CONFIG_RFS_ACCEL 9288 struct cpu_rmap *rmap; 9289 #endif 9290 9291 rc = bnxt_setup_int_mode(bp); 9292 if (rc) { 9293 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9294 rc); 9295 return rc; 9296 } 9297 #ifdef CONFIG_RFS_ACCEL 9298 rmap = bp->dev->rx_cpu_rmap; 9299 #endif 9300 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9301 flags = IRQF_SHARED; 9302 9303 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9304 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9305 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9306 9307 #ifdef CONFIG_RFS_ACCEL 9308 if (rmap && bp->bnapi[i]->rx_ring) { 9309 rc = irq_cpu_rmap_add(rmap, irq->vector); 9310 if (rc) 9311 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9312 j); 9313 j++; 9314 } 9315 #endif 9316 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9317 bp->bnapi[i]); 9318 if (rc) 9319 break; 9320 9321 irq->requested = 1; 9322 9323 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9324 int numa_node = dev_to_node(&bp->pdev->dev); 9325 9326 irq->have_cpumask = 1; 9327 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9328 irq->cpu_mask); 9329 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9330 if (rc) { 9331 netdev_warn(bp->dev, 9332 "Set affinity failed, IRQ = %d\n", 9333 irq->vector); 9334 break; 9335 } 9336 } 9337 } 9338 return rc; 9339 } 9340 9341 static void bnxt_del_napi(struct bnxt *bp) 9342 { 9343 int i; 9344 9345 if (!bp->bnapi) 9346 return; 9347 9348 for (i = 0; i < bp->cp_nr_rings; i++) { 9349 struct bnxt_napi *bnapi = bp->bnapi[i]; 9350 9351 __netif_napi_del(&bnapi->napi); 9352 } 9353 /* We called __netif_napi_del(), we need 9354 * to respect an RCU grace period before freeing napi structures. 9355 */ 9356 synchronize_net(); 9357 } 9358 9359 static void bnxt_init_napi(struct bnxt *bp) 9360 { 9361 int i; 9362 unsigned int cp_nr_rings = bp->cp_nr_rings; 9363 struct bnxt_napi *bnapi; 9364 9365 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9366 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9367 9368 if (bp->flags & BNXT_FLAG_CHIP_P5) 9369 poll_fn = bnxt_poll_p5; 9370 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9371 cp_nr_rings--; 9372 for (i = 0; i < cp_nr_rings; i++) { 9373 bnapi = bp->bnapi[i]; 9374 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9375 } 9376 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9377 bnapi = bp->bnapi[cp_nr_rings]; 9378 netif_napi_add(bp->dev, &bnapi->napi, 9379 bnxt_poll_nitroa0, 64); 9380 } 9381 } else { 9382 bnapi = bp->bnapi[0]; 9383 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9384 } 9385 } 9386 9387 static void bnxt_disable_napi(struct bnxt *bp) 9388 { 9389 int i; 9390 9391 if (!bp->bnapi || 9392 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9393 return; 9394 9395 for (i = 0; i < bp->cp_nr_rings; i++) { 9396 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9397 9398 napi_disable(&bp->bnapi[i]->napi); 9399 if (bp->bnapi[i]->rx_ring) 9400 cancel_work_sync(&cpr->dim.work); 9401 } 9402 } 9403 9404 static void bnxt_enable_napi(struct bnxt *bp) 9405 { 9406 int i; 9407 9408 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9409 for (i = 0; i < bp->cp_nr_rings; i++) { 9410 struct bnxt_napi *bnapi = bp->bnapi[i]; 9411 struct bnxt_cp_ring_info *cpr; 9412 9413 cpr = &bnapi->cp_ring; 9414 if (bnapi->in_reset) 9415 cpr->sw_stats.rx.rx_resets++; 9416 bnapi->in_reset = false; 9417 9418 if (bnapi->rx_ring) { 9419 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9420 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9421 } 9422 napi_enable(&bnapi->napi); 9423 } 9424 } 9425 9426 void bnxt_tx_disable(struct bnxt *bp) 9427 { 9428 int i; 9429 struct bnxt_tx_ring_info *txr; 9430 9431 if (bp->tx_ring) { 9432 for (i = 0; i < bp->tx_nr_rings; i++) { 9433 txr = &bp->tx_ring[i]; 9434 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9435 } 9436 } 9437 /* Make sure napi polls see @dev_state change */ 9438 synchronize_net(); 9439 /* Drop carrier first to prevent TX timeout */ 9440 netif_carrier_off(bp->dev); 9441 /* Stop all TX queues */ 9442 netif_tx_disable(bp->dev); 9443 } 9444 9445 void bnxt_tx_enable(struct bnxt *bp) 9446 { 9447 int i; 9448 struct bnxt_tx_ring_info *txr; 9449 9450 for (i = 0; i < bp->tx_nr_rings; i++) { 9451 txr = &bp->tx_ring[i]; 9452 WRITE_ONCE(txr->dev_state, 0); 9453 } 9454 /* Make sure napi polls see @dev_state change */ 9455 synchronize_net(); 9456 netif_tx_wake_all_queues(bp->dev); 9457 if (BNXT_LINK_IS_UP(bp)) 9458 netif_carrier_on(bp->dev); 9459 } 9460 9461 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9462 { 9463 u8 active_fec = link_info->active_fec_sig_mode & 9464 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9465 9466 switch (active_fec) { 9467 default: 9468 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9469 return "None"; 9470 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9471 return "Clause 74 BaseR"; 9472 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9473 return "Clause 91 RS(528,514)"; 9474 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9475 return "Clause 91 RS544_1XN"; 9476 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9477 return "Clause 91 RS(544,514)"; 9478 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9479 return "Clause 91 RS272_1XN"; 9480 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9481 return "Clause 91 RS(272,257)"; 9482 } 9483 } 9484 9485 void bnxt_report_link(struct bnxt *bp) 9486 { 9487 if (BNXT_LINK_IS_UP(bp)) { 9488 const char *signal = ""; 9489 const char *flow_ctrl; 9490 const char *duplex; 9491 u32 speed; 9492 u16 fec; 9493 9494 netif_carrier_on(bp->dev); 9495 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9496 if (speed == SPEED_UNKNOWN) { 9497 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9498 return; 9499 } 9500 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9501 duplex = "full"; 9502 else 9503 duplex = "half"; 9504 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9505 flow_ctrl = "ON - receive & transmit"; 9506 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9507 flow_ctrl = "ON - transmit"; 9508 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9509 flow_ctrl = "ON - receive"; 9510 else 9511 flow_ctrl = "none"; 9512 if (bp->link_info.phy_qcfg_resp.option_flags & 9513 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9514 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9515 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9516 switch (sig_mode) { 9517 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9518 signal = "(NRZ) "; 9519 break; 9520 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9521 signal = "(PAM4) "; 9522 break; 9523 default: 9524 break; 9525 } 9526 } 9527 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9528 speed, signal, duplex, flow_ctrl); 9529 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9530 netdev_info(bp->dev, "EEE is %s\n", 9531 bp->eee.eee_active ? "active" : 9532 "not active"); 9533 fec = bp->link_info.fec_cfg; 9534 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9535 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9536 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9537 bnxt_report_fec(&bp->link_info)); 9538 } else { 9539 netif_carrier_off(bp->dev); 9540 netdev_err(bp->dev, "NIC Link is Down\n"); 9541 } 9542 } 9543 9544 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9545 { 9546 if (!resp->supported_speeds_auto_mode && 9547 !resp->supported_speeds_force_mode && 9548 !resp->supported_pam4_speeds_auto_mode && 9549 !resp->supported_pam4_speeds_force_mode) 9550 return true; 9551 return false; 9552 } 9553 9554 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9555 { 9556 struct bnxt_link_info *link_info = &bp->link_info; 9557 struct hwrm_port_phy_qcaps_output *resp; 9558 struct hwrm_port_phy_qcaps_input *req; 9559 int rc = 0; 9560 9561 if (bp->hwrm_spec_code < 0x10201) 9562 return 0; 9563 9564 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9565 if (rc) 9566 return rc; 9567 9568 resp = hwrm_req_hold(bp, req); 9569 rc = hwrm_req_send(bp, req); 9570 if (rc) 9571 goto hwrm_phy_qcaps_exit; 9572 9573 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 9574 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9575 struct ethtool_eee *eee = &bp->eee; 9576 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9577 9578 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9579 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9580 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9581 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9582 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9583 } 9584 9585 if (bp->hwrm_spec_code >= 0x10a01) { 9586 if (bnxt_phy_qcaps_no_speed(resp)) { 9587 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9588 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9589 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9590 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9591 netdev_info(bp->dev, "Ethernet link enabled\n"); 9592 /* Phy re-enabled, reprobe the speeds */ 9593 link_info->support_auto_speeds = 0; 9594 link_info->support_pam4_auto_speeds = 0; 9595 } 9596 } 9597 if (resp->supported_speeds_auto_mode) 9598 link_info->support_auto_speeds = 9599 le16_to_cpu(resp->supported_speeds_auto_mode); 9600 if (resp->supported_pam4_speeds_auto_mode) 9601 link_info->support_pam4_auto_speeds = 9602 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9603 9604 bp->port_count = resp->port_cnt; 9605 9606 hwrm_phy_qcaps_exit: 9607 hwrm_req_drop(bp, req); 9608 return rc; 9609 } 9610 9611 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9612 { 9613 u16 diff = advertising ^ supported; 9614 9615 return ((supported | diff) != supported); 9616 } 9617 9618 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9619 { 9620 struct bnxt_link_info *link_info = &bp->link_info; 9621 struct hwrm_port_phy_qcfg_output *resp; 9622 struct hwrm_port_phy_qcfg_input *req; 9623 u8 link_state = link_info->link_state; 9624 bool support_changed = false; 9625 int rc; 9626 9627 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9628 if (rc) 9629 return rc; 9630 9631 resp = hwrm_req_hold(bp, req); 9632 rc = hwrm_req_send(bp, req); 9633 if (rc) { 9634 hwrm_req_drop(bp, req); 9635 if (BNXT_VF(bp) && rc == -ENODEV) { 9636 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 9637 rc = 0; 9638 } 9639 return rc; 9640 } 9641 9642 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9643 link_info->phy_link_status = resp->link; 9644 link_info->duplex = resp->duplex_cfg; 9645 if (bp->hwrm_spec_code >= 0x10800) 9646 link_info->duplex = resp->duplex_state; 9647 link_info->pause = resp->pause; 9648 link_info->auto_mode = resp->auto_mode; 9649 link_info->auto_pause_setting = resp->auto_pause; 9650 link_info->lp_pause = resp->link_partner_adv_pause; 9651 link_info->force_pause_setting = resp->force_pause; 9652 link_info->duplex_setting = resp->duplex_cfg; 9653 if (link_info->phy_link_status == BNXT_LINK_LINK) 9654 link_info->link_speed = le16_to_cpu(resp->link_speed); 9655 else 9656 link_info->link_speed = 0; 9657 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9658 link_info->force_pam4_link_speed = 9659 le16_to_cpu(resp->force_pam4_link_speed); 9660 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9661 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9662 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9663 link_info->auto_pam4_link_speeds = 9664 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9665 link_info->lp_auto_link_speeds = 9666 le16_to_cpu(resp->link_partner_adv_speeds); 9667 link_info->lp_auto_pam4_link_speeds = 9668 resp->link_partner_pam4_adv_speeds; 9669 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9670 link_info->phy_ver[0] = resp->phy_maj; 9671 link_info->phy_ver[1] = resp->phy_min; 9672 link_info->phy_ver[2] = resp->phy_bld; 9673 link_info->media_type = resp->media_type; 9674 link_info->phy_type = resp->phy_type; 9675 link_info->transceiver = resp->xcvr_pkg_type; 9676 link_info->phy_addr = resp->eee_config_phy_addr & 9677 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9678 link_info->module_status = resp->module_status; 9679 9680 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9681 struct ethtool_eee *eee = &bp->eee; 9682 u16 fw_speeds; 9683 9684 eee->eee_active = 0; 9685 if (resp->eee_config_phy_addr & 9686 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9687 eee->eee_active = 1; 9688 fw_speeds = le16_to_cpu( 9689 resp->link_partner_adv_eee_link_speed_mask); 9690 eee->lp_advertised = 9691 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9692 } 9693 9694 /* Pull initial EEE config */ 9695 if (!chng_link_state) { 9696 if (resp->eee_config_phy_addr & 9697 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9698 eee->eee_enabled = 1; 9699 9700 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9701 eee->advertised = 9702 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9703 9704 if (resp->eee_config_phy_addr & 9705 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9706 __le32 tmr; 9707 9708 eee->tx_lpi_enabled = 1; 9709 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9710 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9711 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9712 } 9713 } 9714 } 9715 9716 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9717 if (bp->hwrm_spec_code >= 0x10504) { 9718 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9719 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9720 } 9721 /* TODO: need to add more logic to report VF link */ 9722 if (chng_link_state) { 9723 if (link_info->phy_link_status == BNXT_LINK_LINK) 9724 link_info->link_state = BNXT_LINK_STATE_UP; 9725 else 9726 link_info->link_state = BNXT_LINK_STATE_DOWN; 9727 if (link_state != link_info->link_state) 9728 bnxt_report_link(bp); 9729 } else { 9730 /* always link down if not require to update link state */ 9731 link_info->link_state = BNXT_LINK_STATE_DOWN; 9732 } 9733 hwrm_req_drop(bp, req); 9734 9735 if (!BNXT_PHY_CFG_ABLE(bp)) 9736 return 0; 9737 9738 /* Check if any advertised speeds are no longer supported. The caller 9739 * holds the link_lock mutex, so we can modify link_info settings. 9740 */ 9741 if (bnxt_support_dropped(link_info->advertising, 9742 link_info->support_auto_speeds)) { 9743 link_info->advertising = link_info->support_auto_speeds; 9744 support_changed = true; 9745 } 9746 if (bnxt_support_dropped(link_info->advertising_pam4, 9747 link_info->support_pam4_auto_speeds)) { 9748 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9749 support_changed = true; 9750 } 9751 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9752 bnxt_hwrm_set_link_setting(bp, true, false); 9753 return 0; 9754 } 9755 9756 static void bnxt_get_port_module_status(struct bnxt *bp) 9757 { 9758 struct bnxt_link_info *link_info = &bp->link_info; 9759 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9760 u8 module_status; 9761 9762 if (bnxt_update_link(bp, true)) 9763 return; 9764 9765 module_status = link_info->module_status; 9766 switch (module_status) { 9767 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9768 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9769 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9770 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9771 bp->pf.port_id); 9772 if (bp->hwrm_spec_code >= 0x10201) { 9773 netdev_warn(bp->dev, "Module part number %s\n", 9774 resp->phy_vendor_partnumber); 9775 } 9776 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9777 netdev_warn(bp->dev, "TX is disabled\n"); 9778 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9779 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9780 } 9781 } 9782 9783 static void 9784 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9785 { 9786 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9787 if (bp->hwrm_spec_code >= 0x10201) 9788 req->auto_pause = 9789 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9790 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9791 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9792 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9793 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9794 req->enables |= 9795 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9796 } else { 9797 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9798 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9799 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9800 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9801 req->enables |= 9802 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9803 if (bp->hwrm_spec_code >= 0x10201) { 9804 req->auto_pause = req->force_pause; 9805 req->enables |= cpu_to_le32( 9806 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9807 } 9808 } 9809 } 9810 9811 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9812 { 9813 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9814 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9815 if (bp->link_info.advertising) { 9816 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9817 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9818 } 9819 if (bp->link_info.advertising_pam4) { 9820 req->enables |= 9821 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9822 req->auto_link_pam4_speed_mask = 9823 cpu_to_le16(bp->link_info.advertising_pam4); 9824 } 9825 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9826 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9827 } else { 9828 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9829 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9830 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9831 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9832 } else { 9833 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9834 } 9835 } 9836 9837 /* tell chimp that the setting takes effect immediately */ 9838 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9839 } 9840 9841 int bnxt_hwrm_set_pause(struct bnxt *bp) 9842 { 9843 struct hwrm_port_phy_cfg_input *req; 9844 int rc; 9845 9846 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9847 if (rc) 9848 return rc; 9849 9850 bnxt_hwrm_set_pause_common(bp, req); 9851 9852 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9853 bp->link_info.force_link_chng) 9854 bnxt_hwrm_set_link_common(bp, req); 9855 9856 rc = hwrm_req_send(bp, req); 9857 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9858 /* since changing of pause setting doesn't trigger any link 9859 * change event, the driver needs to update the current pause 9860 * result upon successfully return of the phy_cfg command 9861 */ 9862 bp->link_info.pause = 9863 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9864 bp->link_info.auto_pause_setting = 0; 9865 if (!bp->link_info.force_link_chng) 9866 bnxt_report_link(bp); 9867 } 9868 bp->link_info.force_link_chng = false; 9869 return rc; 9870 } 9871 9872 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9873 struct hwrm_port_phy_cfg_input *req) 9874 { 9875 struct ethtool_eee *eee = &bp->eee; 9876 9877 if (eee->eee_enabled) { 9878 u16 eee_speeds; 9879 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9880 9881 if (eee->tx_lpi_enabled) 9882 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9883 else 9884 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9885 9886 req->flags |= cpu_to_le32(flags); 9887 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9888 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9889 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9890 } else { 9891 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9892 } 9893 } 9894 9895 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9896 { 9897 struct hwrm_port_phy_cfg_input *req; 9898 int rc; 9899 9900 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9901 if (rc) 9902 return rc; 9903 9904 if (set_pause) 9905 bnxt_hwrm_set_pause_common(bp, req); 9906 9907 bnxt_hwrm_set_link_common(bp, req); 9908 9909 if (set_eee) 9910 bnxt_hwrm_set_eee(bp, req); 9911 return hwrm_req_send(bp, req); 9912 } 9913 9914 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9915 { 9916 struct hwrm_port_phy_cfg_input *req; 9917 int rc; 9918 9919 if (!BNXT_SINGLE_PF(bp)) 9920 return 0; 9921 9922 if (pci_num_vf(bp->pdev) && 9923 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9924 return 0; 9925 9926 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9927 if (rc) 9928 return rc; 9929 9930 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9931 rc = hwrm_req_send(bp, req); 9932 if (!rc) { 9933 mutex_lock(&bp->link_lock); 9934 /* Device is not obliged link down in certain scenarios, even 9935 * when forced. Setting the state unknown is consistent with 9936 * driver startup and will force link state to be reported 9937 * during subsequent open based on PORT_PHY_QCFG. 9938 */ 9939 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 9940 mutex_unlock(&bp->link_lock); 9941 } 9942 return rc; 9943 } 9944 9945 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9946 { 9947 #ifdef CONFIG_TEE_BNXT_FW 9948 int rc = tee_bnxt_fw_load(); 9949 9950 if (rc) 9951 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9952 9953 return rc; 9954 #else 9955 netdev_err(bp->dev, "OP-TEE not supported\n"); 9956 return -ENODEV; 9957 #endif 9958 } 9959 9960 static int bnxt_try_recover_fw(struct bnxt *bp) 9961 { 9962 if (bp->fw_health && bp->fw_health->status_reliable) { 9963 int retry = 0, rc; 9964 u32 sts; 9965 9966 do { 9967 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9968 rc = bnxt_hwrm_poll(bp); 9969 if (!BNXT_FW_IS_BOOTING(sts) && 9970 !BNXT_FW_IS_RECOVERING(sts)) 9971 break; 9972 retry++; 9973 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9974 9975 if (!BNXT_FW_IS_HEALTHY(sts)) { 9976 netdev_err(bp->dev, 9977 "Firmware not responding, status: 0x%x\n", 9978 sts); 9979 rc = -ENODEV; 9980 } 9981 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9982 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9983 return bnxt_fw_reset_via_optee(bp); 9984 } 9985 return rc; 9986 } 9987 9988 return -ENODEV; 9989 } 9990 9991 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 9992 { 9993 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9994 int rc; 9995 9996 if (!BNXT_NEW_RM(bp)) 9997 return 0; /* no resource reservations required */ 9998 9999 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 10000 if (rc) 10001 netdev_err(bp->dev, "resc_qcaps failed\n"); 10002 10003 hw_resc->resv_cp_rings = 0; 10004 hw_resc->resv_stat_ctxs = 0; 10005 hw_resc->resv_irqs = 0; 10006 hw_resc->resv_tx_rings = 0; 10007 hw_resc->resv_rx_rings = 0; 10008 hw_resc->resv_hw_ring_grps = 0; 10009 hw_resc->resv_vnics = 0; 10010 if (!fw_reset) { 10011 bp->tx_nr_rings = 0; 10012 bp->rx_nr_rings = 0; 10013 } 10014 10015 return rc; 10016 } 10017 10018 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 10019 { 10020 struct hwrm_func_drv_if_change_output *resp; 10021 struct hwrm_func_drv_if_change_input *req; 10022 bool fw_reset = !bp->irq_tbl; 10023 bool resc_reinit = false; 10024 int rc, retry = 0; 10025 u32 flags = 0; 10026 10027 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 10028 return 0; 10029 10030 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 10031 if (rc) 10032 return rc; 10033 10034 if (up) 10035 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 10036 resp = hwrm_req_hold(bp, req); 10037 10038 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10039 while (retry < BNXT_FW_IF_RETRY) { 10040 rc = hwrm_req_send(bp, req); 10041 if (rc != -EAGAIN) 10042 break; 10043 10044 msleep(50); 10045 retry++; 10046 } 10047 10048 if (rc == -EAGAIN) { 10049 hwrm_req_drop(bp, req); 10050 return rc; 10051 } else if (!rc) { 10052 flags = le32_to_cpu(resp->flags); 10053 } else if (up) { 10054 rc = bnxt_try_recover_fw(bp); 10055 fw_reset = true; 10056 } 10057 hwrm_req_drop(bp, req); 10058 if (rc) 10059 return rc; 10060 10061 if (!up) { 10062 bnxt_inv_fw_health_reg(bp); 10063 return 0; 10064 } 10065 10066 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 10067 resc_reinit = true; 10068 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 10069 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 10070 fw_reset = true; 10071 else 10072 bnxt_remap_fw_health_regs(bp); 10073 10074 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 10075 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 10076 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10077 return -ENODEV; 10078 } 10079 if (resc_reinit || fw_reset) { 10080 if (fw_reset) { 10081 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10082 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10083 bnxt_ulp_stop(bp); 10084 bnxt_free_ctx_mem(bp); 10085 kfree(bp->ctx); 10086 bp->ctx = NULL; 10087 bnxt_dcb_free(bp); 10088 rc = bnxt_fw_init_one(bp); 10089 if (rc) { 10090 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10091 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10092 return rc; 10093 } 10094 bnxt_clear_int_mode(bp); 10095 rc = bnxt_init_int_mode(bp); 10096 if (rc) { 10097 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10098 netdev_err(bp->dev, "init int mode failed\n"); 10099 return rc; 10100 } 10101 } 10102 rc = bnxt_cancel_reservations(bp, fw_reset); 10103 } 10104 return rc; 10105 } 10106 10107 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 10108 { 10109 struct hwrm_port_led_qcaps_output *resp; 10110 struct hwrm_port_led_qcaps_input *req; 10111 struct bnxt_pf_info *pf = &bp->pf; 10112 int rc; 10113 10114 bp->num_leds = 0; 10115 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 10116 return 0; 10117 10118 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 10119 if (rc) 10120 return rc; 10121 10122 req->port_id = cpu_to_le16(pf->port_id); 10123 resp = hwrm_req_hold(bp, req); 10124 rc = hwrm_req_send(bp, req); 10125 if (rc) { 10126 hwrm_req_drop(bp, req); 10127 return rc; 10128 } 10129 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 10130 int i; 10131 10132 bp->num_leds = resp->num_leds; 10133 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 10134 bp->num_leds); 10135 for (i = 0; i < bp->num_leds; i++) { 10136 struct bnxt_led_info *led = &bp->leds[i]; 10137 __le16 caps = led->led_state_caps; 10138 10139 if (!led->led_group_id || 10140 !BNXT_LED_ALT_BLINK_CAP(caps)) { 10141 bp->num_leds = 0; 10142 break; 10143 } 10144 } 10145 } 10146 hwrm_req_drop(bp, req); 10147 return 0; 10148 } 10149 10150 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 10151 { 10152 struct hwrm_wol_filter_alloc_output *resp; 10153 struct hwrm_wol_filter_alloc_input *req; 10154 int rc; 10155 10156 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 10157 if (rc) 10158 return rc; 10159 10160 req->port_id = cpu_to_le16(bp->pf.port_id); 10161 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 10162 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 10163 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 10164 10165 resp = hwrm_req_hold(bp, req); 10166 rc = hwrm_req_send(bp, req); 10167 if (!rc) 10168 bp->wol_filter_id = resp->wol_filter_id; 10169 hwrm_req_drop(bp, req); 10170 return rc; 10171 } 10172 10173 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 10174 { 10175 struct hwrm_wol_filter_free_input *req; 10176 int rc; 10177 10178 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 10179 if (rc) 10180 return rc; 10181 10182 req->port_id = cpu_to_le16(bp->pf.port_id); 10183 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 10184 req->wol_filter_id = bp->wol_filter_id; 10185 10186 return hwrm_req_send(bp, req); 10187 } 10188 10189 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 10190 { 10191 struct hwrm_wol_filter_qcfg_output *resp; 10192 struct hwrm_wol_filter_qcfg_input *req; 10193 u16 next_handle = 0; 10194 int rc; 10195 10196 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 10197 if (rc) 10198 return rc; 10199 10200 req->port_id = cpu_to_le16(bp->pf.port_id); 10201 req->handle = cpu_to_le16(handle); 10202 resp = hwrm_req_hold(bp, req); 10203 rc = hwrm_req_send(bp, req); 10204 if (!rc) { 10205 next_handle = le16_to_cpu(resp->next_handle); 10206 if (next_handle != 0) { 10207 if (resp->wol_type == 10208 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 10209 bp->wol = 1; 10210 bp->wol_filter_id = resp->wol_filter_id; 10211 } 10212 } 10213 } 10214 hwrm_req_drop(bp, req); 10215 return next_handle; 10216 } 10217 10218 static void bnxt_get_wol_settings(struct bnxt *bp) 10219 { 10220 u16 handle = 0; 10221 10222 bp->wol = 0; 10223 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 10224 return; 10225 10226 do { 10227 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 10228 } while (handle && handle != 0xffff); 10229 } 10230 10231 #ifdef CONFIG_BNXT_HWMON 10232 static ssize_t bnxt_show_temp(struct device *dev, 10233 struct device_attribute *devattr, char *buf) 10234 { 10235 struct hwrm_temp_monitor_query_output *resp; 10236 struct hwrm_temp_monitor_query_input *req; 10237 struct bnxt *bp = dev_get_drvdata(dev); 10238 u32 len = 0; 10239 int rc; 10240 10241 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 10242 if (rc) 10243 return rc; 10244 resp = hwrm_req_hold(bp, req); 10245 rc = hwrm_req_send(bp, req); 10246 if (!rc) 10247 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 10248 hwrm_req_drop(bp, req); 10249 if (rc) 10250 return rc; 10251 return len; 10252 } 10253 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 10254 10255 static struct attribute *bnxt_attrs[] = { 10256 &sensor_dev_attr_temp1_input.dev_attr.attr, 10257 NULL 10258 }; 10259 ATTRIBUTE_GROUPS(bnxt); 10260 10261 static void bnxt_hwmon_close(struct bnxt *bp) 10262 { 10263 if (bp->hwmon_dev) { 10264 hwmon_device_unregister(bp->hwmon_dev); 10265 bp->hwmon_dev = NULL; 10266 } 10267 } 10268 10269 static void bnxt_hwmon_open(struct bnxt *bp) 10270 { 10271 struct hwrm_temp_monitor_query_input *req; 10272 struct pci_dev *pdev = bp->pdev; 10273 int rc; 10274 10275 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 10276 if (!rc) 10277 rc = hwrm_req_send_silent(bp, req); 10278 if (rc == -EACCES || rc == -EOPNOTSUPP) { 10279 bnxt_hwmon_close(bp); 10280 return; 10281 } 10282 10283 if (bp->hwmon_dev) 10284 return; 10285 10286 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 10287 DRV_MODULE_NAME, bp, 10288 bnxt_groups); 10289 if (IS_ERR(bp->hwmon_dev)) { 10290 bp->hwmon_dev = NULL; 10291 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10292 } 10293 } 10294 #else 10295 static void bnxt_hwmon_close(struct bnxt *bp) 10296 { 10297 } 10298 10299 static void bnxt_hwmon_open(struct bnxt *bp) 10300 { 10301 } 10302 #endif 10303 10304 static bool bnxt_eee_config_ok(struct bnxt *bp) 10305 { 10306 struct ethtool_eee *eee = &bp->eee; 10307 struct bnxt_link_info *link_info = &bp->link_info; 10308 10309 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10310 return true; 10311 10312 if (eee->eee_enabled) { 10313 u32 advertising = 10314 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10315 10316 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10317 eee->eee_enabled = 0; 10318 return false; 10319 } 10320 if (eee->advertised & ~advertising) { 10321 eee->advertised = advertising & eee->supported; 10322 return false; 10323 } 10324 } 10325 return true; 10326 } 10327 10328 static int bnxt_update_phy_setting(struct bnxt *bp) 10329 { 10330 int rc; 10331 bool update_link = false; 10332 bool update_pause = false; 10333 bool update_eee = false; 10334 struct bnxt_link_info *link_info = &bp->link_info; 10335 10336 rc = bnxt_update_link(bp, true); 10337 if (rc) { 10338 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10339 rc); 10340 return rc; 10341 } 10342 if (!BNXT_SINGLE_PF(bp)) 10343 return 0; 10344 10345 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10346 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10347 link_info->req_flow_ctrl) 10348 update_pause = true; 10349 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10350 link_info->force_pause_setting != link_info->req_flow_ctrl) 10351 update_pause = true; 10352 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10353 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10354 update_link = true; 10355 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10356 link_info->req_link_speed != link_info->force_link_speed) 10357 update_link = true; 10358 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10359 link_info->req_link_speed != link_info->force_pam4_link_speed) 10360 update_link = true; 10361 if (link_info->req_duplex != link_info->duplex_setting) 10362 update_link = true; 10363 } else { 10364 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10365 update_link = true; 10366 if (link_info->advertising != link_info->auto_link_speeds || 10367 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10368 update_link = true; 10369 } 10370 10371 /* The last close may have shutdown the link, so need to call 10372 * PHY_CFG to bring it back up. 10373 */ 10374 if (!BNXT_LINK_IS_UP(bp)) 10375 update_link = true; 10376 10377 if (!bnxt_eee_config_ok(bp)) 10378 update_eee = true; 10379 10380 if (update_link) 10381 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10382 else if (update_pause) 10383 rc = bnxt_hwrm_set_pause(bp); 10384 if (rc) { 10385 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10386 rc); 10387 return rc; 10388 } 10389 10390 return rc; 10391 } 10392 10393 /* Common routine to pre-map certain register block to different GRC window. 10394 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10395 * in PF and 3 windows in VF that can be customized to map in different 10396 * register blocks. 10397 */ 10398 static void bnxt_preset_reg_win(struct bnxt *bp) 10399 { 10400 if (BNXT_PF(bp)) { 10401 /* CAG registers map to GRC window #4 */ 10402 writel(BNXT_CAG_REG_BASE, 10403 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10404 } 10405 } 10406 10407 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10408 10409 static int bnxt_reinit_after_abort(struct bnxt *bp) 10410 { 10411 int rc; 10412 10413 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10414 return -EBUSY; 10415 10416 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10417 return -ENODEV; 10418 10419 rc = bnxt_fw_init_one(bp); 10420 if (!rc) { 10421 bnxt_clear_int_mode(bp); 10422 rc = bnxt_init_int_mode(bp); 10423 if (!rc) { 10424 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10425 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10426 } 10427 } 10428 return rc; 10429 } 10430 10431 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10432 { 10433 int rc = 0; 10434 10435 bnxt_preset_reg_win(bp); 10436 netif_carrier_off(bp->dev); 10437 if (irq_re_init) { 10438 /* Reserve rings now if none were reserved at driver probe. */ 10439 rc = bnxt_init_dflt_ring_mode(bp); 10440 if (rc) { 10441 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10442 return rc; 10443 } 10444 } 10445 rc = bnxt_reserve_rings(bp, irq_re_init); 10446 if (rc) 10447 return rc; 10448 if ((bp->flags & BNXT_FLAG_RFS) && 10449 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10450 /* disable RFS if falling back to INTA */ 10451 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10452 bp->flags &= ~BNXT_FLAG_RFS; 10453 } 10454 10455 rc = bnxt_alloc_mem(bp, irq_re_init); 10456 if (rc) { 10457 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10458 goto open_err_free_mem; 10459 } 10460 10461 if (irq_re_init) { 10462 bnxt_init_napi(bp); 10463 rc = bnxt_request_irq(bp); 10464 if (rc) { 10465 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10466 goto open_err_irq; 10467 } 10468 } 10469 10470 rc = bnxt_init_nic(bp, irq_re_init); 10471 if (rc) { 10472 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10473 goto open_err_irq; 10474 } 10475 10476 bnxt_enable_napi(bp); 10477 bnxt_debug_dev_init(bp); 10478 10479 if (link_re_init) { 10480 mutex_lock(&bp->link_lock); 10481 rc = bnxt_update_phy_setting(bp); 10482 mutex_unlock(&bp->link_lock); 10483 if (rc) { 10484 netdev_warn(bp->dev, "failed to update phy settings\n"); 10485 if (BNXT_SINGLE_PF(bp)) { 10486 bp->link_info.phy_retry = true; 10487 bp->link_info.phy_retry_expires = 10488 jiffies + 5 * HZ; 10489 } 10490 } 10491 } 10492 10493 if (irq_re_init) 10494 udp_tunnel_nic_reset_ntf(bp->dev); 10495 10496 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 10497 if (!static_key_enabled(&bnxt_xdp_locking_key)) 10498 static_branch_enable(&bnxt_xdp_locking_key); 10499 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 10500 static_branch_disable(&bnxt_xdp_locking_key); 10501 } 10502 set_bit(BNXT_STATE_OPEN, &bp->state); 10503 bnxt_enable_int(bp); 10504 /* Enable TX queues */ 10505 bnxt_tx_enable(bp); 10506 mod_timer(&bp->timer, jiffies + bp->current_interval); 10507 /* Poll link status and check for SFP+ module status */ 10508 mutex_lock(&bp->link_lock); 10509 bnxt_get_port_module_status(bp); 10510 mutex_unlock(&bp->link_lock); 10511 10512 /* VF-reps may need to be re-opened after the PF is re-opened */ 10513 if (BNXT_PF(bp)) 10514 bnxt_vf_reps_open(bp); 10515 bnxt_ptp_init_rtc(bp, true); 10516 bnxt_ptp_cfg_tstamp_filters(bp); 10517 return 0; 10518 10519 open_err_irq: 10520 bnxt_del_napi(bp); 10521 10522 open_err_free_mem: 10523 bnxt_free_skbs(bp); 10524 bnxt_free_irq(bp); 10525 bnxt_free_mem(bp, true); 10526 return rc; 10527 } 10528 10529 /* rtnl_lock held */ 10530 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10531 { 10532 int rc = 0; 10533 10534 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10535 rc = -EIO; 10536 if (!rc) 10537 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10538 if (rc) { 10539 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10540 dev_close(bp->dev); 10541 } 10542 return rc; 10543 } 10544 10545 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10546 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10547 * self tests. 10548 */ 10549 int bnxt_half_open_nic(struct bnxt *bp) 10550 { 10551 int rc = 0; 10552 10553 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10554 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10555 rc = -ENODEV; 10556 goto half_open_err; 10557 } 10558 10559 rc = bnxt_alloc_mem(bp, true); 10560 if (rc) { 10561 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10562 goto half_open_err; 10563 } 10564 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10565 rc = bnxt_init_nic(bp, true); 10566 if (rc) { 10567 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10568 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10569 goto half_open_err; 10570 } 10571 return 0; 10572 10573 half_open_err: 10574 bnxt_free_skbs(bp); 10575 bnxt_free_mem(bp, true); 10576 dev_close(bp->dev); 10577 return rc; 10578 } 10579 10580 /* rtnl_lock held, this call can only be made after a previous successful 10581 * call to bnxt_half_open_nic(). 10582 */ 10583 void bnxt_half_close_nic(struct bnxt *bp) 10584 { 10585 bnxt_hwrm_resource_free(bp, false, true); 10586 bnxt_free_skbs(bp); 10587 bnxt_free_mem(bp, true); 10588 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 10589 } 10590 10591 void bnxt_reenable_sriov(struct bnxt *bp) 10592 { 10593 if (BNXT_PF(bp)) { 10594 struct bnxt_pf_info *pf = &bp->pf; 10595 int n = pf->active_vfs; 10596 10597 if (n) 10598 bnxt_cfg_hw_sriov(bp, &n, true); 10599 } 10600 } 10601 10602 static int bnxt_open(struct net_device *dev) 10603 { 10604 struct bnxt *bp = netdev_priv(dev); 10605 int rc; 10606 10607 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10608 rc = bnxt_reinit_after_abort(bp); 10609 if (rc) { 10610 if (rc == -EBUSY) 10611 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10612 else 10613 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10614 return -ENODEV; 10615 } 10616 } 10617 10618 rc = bnxt_hwrm_if_change(bp, true); 10619 if (rc) 10620 return rc; 10621 10622 rc = __bnxt_open_nic(bp, true, true); 10623 if (rc) { 10624 bnxt_hwrm_if_change(bp, false); 10625 } else { 10626 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10627 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10628 bnxt_ulp_start(bp, 0); 10629 bnxt_reenable_sriov(bp); 10630 } 10631 } 10632 bnxt_hwmon_open(bp); 10633 } 10634 10635 return rc; 10636 } 10637 10638 static bool bnxt_drv_busy(struct bnxt *bp) 10639 { 10640 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10641 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10642 } 10643 10644 static void bnxt_get_ring_stats(struct bnxt *bp, 10645 struct rtnl_link_stats64 *stats); 10646 10647 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10648 bool link_re_init) 10649 { 10650 /* Close the VF-reps before closing PF */ 10651 if (BNXT_PF(bp)) 10652 bnxt_vf_reps_close(bp); 10653 10654 /* Change device state to avoid TX queue wake up's */ 10655 bnxt_tx_disable(bp); 10656 10657 clear_bit(BNXT_STATE_OPEN, &bp->state); 10658 smp_mb__after_atomic(); 10659 while (bnxt_drv_busy(bp)) 10660 msleep(20); 10661 10662 /* Flush rings and and disable interrupts */ 10663 bnxt_shutdown_nic(bp, irq_re_init); 10664 10665 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10666 10667 bnxt_debug_dev_exit(bp); 10668 bnxt_disable_napi(bp); 10669 del_timer_sync(&bp->timer); 10670 bnxt_free_skbs(bp); 10671 10672 /* Save ring stats before shutdown */ 10673 if (bp->bnapi && irq_re_init) 10674 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10675 if (irq_re_init) { 10676 bnxt_free_irq(bp); 10677 bnxt_del_napi(bp); 10678 } 10679 bnxt_free_mem(bp, irq_re_init); 10680 } 10681 10682 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10683 { 10684 int rc = 0; 10685 10686 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10687 /* If we get here, it means firmware reset is in progress 10688 * while we are trying to close. We can safely proceed with 10689 * the close because we are holding rtnl_lock(). Some firmware 10690 * messages may fail as we proceed to close. We set the 10691 * ABORT_ERR flag here so that the FW reset thread will later 10692 * abort when it gets the rtnl_lock() and sees the flag. 10693 */ 10694 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10695 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10696 } 10697 10698 #ifdef CONFIG_BNXT_SRIOV 10699 if (bp->sriov_cfg) { 10700 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10701 !bp->sriov_cfg, 10702 BNXT_SRIOV_CFG_WAIT_TMO); 10703 if (rc) 10704 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10705 } 10706 #endif 10707 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10708 return rc; 10709 } 10710 10711 static int bnxt_close(struct net_device *dev) 10712 { 10713 struct bnxt *bp = netdev_priv(dev); 10714 10715 bnxt_hwmon_close(bp); 10716 bnxt_close_nic(bp, true, true); 10717 bnxt_hwrm_shutdown_link(bp); 10718 bnxt_hwrm_if_change(bp, false); 10719 return 0; 10720 } 10721 10722 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10723 u16 *val) 10724 { 10725 struct hwrm_port_phy_mdio_read_output *resp; 10726 struct hwrm_port_phy_mdio_read_input *req; 10727 int rc; 10728 10729 if (bp->hwrm_spec_code < 0x10a00) 10730 return -EOPNOTSUPP; 10731 10732 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10733 if (rc) 10734 return rc; 10735 10736 req->port_id = cpu_to_le16(bp->pf.port_id); 10737 req->phy_addr = phy_addr; 10738 req->reg_addr = cpu_to_le16(reg & 0x1f); 10739 if (mdio_phy_id_is_c45(phy_addr)) { 10740 req->cl45_mdio = 1; 10741 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10742 req->dev_addr = mdio_phy_id_devad(phy_addr); 10743 req->reg_addr = cpu_to_le16(reg); 10744 } 10745 10746 resp = hwrm_req_hold(bp, req); 10747 rc = hwrm_req_send(bp, req); 10748 if (!rc) 10749 *val = le16_to_cpu(resp->reg_data); 10750 hwrm_req_drop(bp, req); 10751 return rc; 10752 } 10753 10754 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10755 u16 val) 10756 { 10757 struct hwrm_port_phy_mdio_write_input *req; 10758 int rc; 10759 10760 if (bp->hwrm_spec_code < 0x10a00) 10761 return -EOPNOTSUPP; 10762 10763 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10764 if (rc) 10765 return rc; 10766 10767 req->port_id = cpu_to_le16(bp->pf.port_id); 10768 req->phy_addr = phy_addr; 10769 req->reg_addr = cpu_to_le16(reg & 0x1f); 10770 if (mdio_phy_id_is_c45(phy_addr)) { 10771 req->cl45_mdio = 1; 10772 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10773 req->dev_addr = mdio_phy_id_devad(phy_addr); 10774 req->reg_addr = cpu_to_le16(reg); 10775 } 10776 req->reg_data = cpu_to_le16(val); 10777 10778 return hwrm_req_send(bp, req); 10779 } 10780 10781 /* rtnl_lock held */ 10782 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10783 { 10784 struct mii_ioctl_data *mdio = if_mii(ifr); 10785 struct bnxt *bp = netdev_priv(dev); 10786 int rc; 10787 10788 switch (cmd) { 10789 case SIOCGMIIPHY: 10790 mdio->phy_id = bp->link_info.phy_addr; 10791 10792 fallthrough; 10793 case SIOCGMIIREG: { 10794 u16 mii_regval = 0; 10795 10796 if (!netif_running(dev)) 10797 return -EAGAIN; 10798 10799 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10800 &mii_regval); 10801 mdio->val_out = mii_regval; 10802 return rc; 10803 } 10804 10805 case SIOCSMIIREG: 10806 if (!netif_running(dev)) 10807 return -EAGAIN; 10808 10809 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10810 mdio->val_in); 10811 10812 case SIOCSHWTSTAMP: 10813 return bnxt_hwtstamp_set(dev, ifr); 10814 10815 case SIOCGHWTSTAMP: 10816 return bnxt_hwtstamp_get(dev, ifr); 10817 10818 default: 10819 /* do nothing */ 10820 break; 10821 } 10822 return -EOPNOTSUPP; 10823 } 10824 10825 static void bnxt_get_ring_stats(struct bnxt *bp, 10826 struct rtnl_link_stats64 *stats) 10827 { 10828 int i; 10829 10830 for (i = 0; i < bp->cp_nr_rings; i++) { 10831 struct bnxt_napi *bnapi = bp->bnapi[i]; 10832 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10833 u64 *sw = cpr->stats.sw_stats; 10834 10835 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10836 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10837 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10838 10839 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10840 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10841 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10842 10843 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10844 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10845 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10846 10847 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10848 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10849 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10850 10851 stats->rx_missed_errors += 10852 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10853 10854 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10855 10856 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10857 10858 stats->rx_dropped += 10859 cpr->sw_stats.rx.rx_netpoll_discards + 10860 cpr->sw_stats.rx.rx_oom_discards; 10861 } 10862 } 10863 10864 static void bnxt_add_prev_stats(struct bnxt *bp, 10865 struct rtnl_link_stats64 *stats) 10866 { 10867 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10868 10869 stats->rx_packets += prev_stats->rx_packets; 10870 stats->tx_packets += prev_stats->tx_packets; 10871 stats->rx_bytes += prev_stats->rx_bytes; 10872 stats->tx_bytes += prev_stats->tx_bytes; 10873 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10874 stats->multicast += prev_stats->multicast; 10875 stats->rx_dropped += prev_stats->rx_dropped; 10876 stats->tx_dropped += prev_stats->tx_dropped; 10877 } 10878 10879 static void 10880 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10881 { 10882 struct bnxt *bp = netdev_priv(dev); 10883 10884 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10885 /* Make sure bnxt_close_nic() sees that we are reading stats before 10886 * we check the BNXT_STATE_OPEN flag. 10887 */ 10888 smp_mb__after_atomic(); 10889 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10890 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10891 *stats = bp->net_stats_prev; 10892 return; 10893 } 10894 10895 bnxt_get_ring_stats(bp, stats); 10896 bnxt_add_prev_stats(bp, stats); 10897 10898 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10899 u64 *rx = bp->port_stats.sw_stats; 10900 u64 *tx = bp->port_stats.sw_stats + 10901 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10902 10903 stats->rx_crc_errors = 10904 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10905 stats->rx_frame_errors = 10906 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10907 stats->rx_length_errors = 10908 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10909 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10910 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10911 stats->rx_errors = 10912 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10913 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10914 stats->collisions = 10915 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10916 stats->tx_fifo_errors = 10917 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10918 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10919 } 10920 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10921 } 10922 10923 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10924 { 10925 struct net_device *dev = bp->dev; 10926 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10927 struct netdev_hw_addr *ha; 10928 u8 *haddr; 10929 int mc_count = 0; 10930 bool update = false; 10931 int off = 0; 10932 10933 netdev_for_each_mc_addr(ha, dev) { 10934 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10935 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10936 vnic->mc_list_count = 0; 10937 return false; 10938 } 10939 haddr = ha->addr; 10940 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10941 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10942 update = true; 10943 } 10944 off += ETH_ALEN; 10945 mc_count++; 10946 } 10947 if (mc_count) 10948 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10949 10950 if (mc_count != vnic->mc_list_count) { 10951 vnic->mc_list_count = mc_count; 10952 update = true; 10953 } 10954 return update; 10955 } 10956 10957 static bool bnxt_uc_list_updated(struct bnxt *bp) 10958 { 10959 struct net_device *dev = bp->dev; 10960 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10961 struct netdev_hw_addr *ha; 10962 int off = 0; 10963 10964 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10965 return true; 10966 10967 netdev_for_each_uc_addr(ha, dev) { 10968 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10969 return true; 10970 10971 off += ETH_ALEN; 10972 } 10973 return false; 10974 } 10975 10976 static void bnxt_set_rx_mode(struct net_device *dev) 10977 { 10978 struct bnxt *bp = netdev_priv(dev); 10979 struct bnxt_vnic_info *vnic; 10980 bool mc_update = false; 10981 bool uc_update; 10982 u32 mask; 10983 10984 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10985 return; 10986 10987 vnic = &bp->vnic_info[0]; 10988 mask = vnic->rx_mask; 10989 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10990 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10991 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10992 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10993 10994 if (dev->flags & IFF_PROMISC) 10995 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10996 10997 uc_update = bnxt_uc_list_updated(bp); 10998 10999 if (dev->flags & IFF_BROADCAST) 11000 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 11001 if (dev->flags & IFF_ALLMULTI) { 11002 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11003 vnic->mc_list_count = 0; 11004 } else if (dev->flags & IFF_MULTICAST) { 11005 mc_update = bnxt_mc_list_updated(bp, &mask); 11006 } 11007 11008 if (mask != vnic->rx_mask || uc_update || mc_update) { 11009 vnic->rx_mask = mask; 11010 11011 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 11012 bnxt_queue_sp_work(bp); 11013 } 11014 } 11015 11016 static int bnxt_cfg_rx_mode(struct bnxt *bp) 11017 { 11018 struct net_device *dev = bp->dev; 11019 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11020 struct hwrm_cfa_l2_filter_free_input *req; 11021 struct netdev_hw_addr *ha; 11022 int i, off = 0, rc; 11023 bool uc_update; 11024 11025 netif_addr_lock_bh(dev); 11026 uc_update = bnxt_uc_list_updated(bp); 11027 netif_addr_unlock_bh(dev); 11028 11029 if (!uc_update) 11030 goto skip_uc; 11031 11032 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 11033 if (rc) 11034 return rc; 11035 hwrm_req_hold(bp, req); 11036 for (i = 1; i < vnic->uc_filter_count; i++) { 11037 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 11038 11039 rc = hwrm_req_send(bp, req); 11040 } 11041 hwrm_req_drop(bp, req); 11042 11043 vnic->uc_filter_count = 1; 11044 11045 netif_addr_lock_bh(dev); 11046 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 11047 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11048 } else { 11049 netdev_for_each_uc_addr(ha, dev) { 11050 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 11051 off += ETH_ALEN; 11052 vnic->uc_filter_count++; 11053 } 11054 } 11055 netif_addr_unlock_bh(dev); 11056 11057 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 11058 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 11059 if (rc) { 11060 if (BNXT_VF(bp) && rc == -ENODEV) { 11061 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11062 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 11063 else 11064 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 11065 rc = 0; 11066 } else { 11067 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 11068 } 11069 vnic->uc_filter_count = i; 11070 return rc; 11071 } 11072 } 11073 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 11074 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 11075 11076 skip_uc: 11077 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 11078 !bnxt_promisc_ok(bp)) 11079 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 11080 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11081 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 11082 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 11083 rc); 11084 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 11085 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 11086 vnic->mc_list_count = 0; 11087 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 11088 } 11089 if (rc) 11090 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 11091 rc); 11092 11093 return rc; 11094 } 11095 11096 static bool bnxt_can_reserve_rings(struct bnxt *bp) 11097 { 11098 #ifdef CONFIG_BNXT_SRIOV 11099 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 11100 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11101 11102 /* No minimum rings were provisioned by the PF. Don't 11103 * reserve rings by default when device is down. 11104 */ 11105 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 11106 return true; 11107 11108 if (!netif_running(bp->dev)) 11109 return false; 11110 } 11111 #endif 11112 return true; 11113 } 11114 11115 /* If the chip and firmware supports RFS */ 11116 static bool bnxt_rfs_supported(struct bnxt *bp) 11117 { 11118 if (bp->flags & BNXT_FLAG_CHIP_P5) { 11119 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 11120 return true; 11121 return false; 11122 } 11123 /* 212 firmware is broken for aRFS */ 11124 if (BNXT_FW_MAJ(bp) == 212) 11125 return false; 11126 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 11127 return true; 11128 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 11129 return true; 11130 return false; 11131 } 11132 11133 /* If runtime conditions support RFS */ 11134 static bool bnxt_rfs_capable(struct bnxt *bp) 11135 { 11136 #ifdef CONFIG_RFS_ACCEL 11137 int vnics, max_vnics, max_rss_ctxs; 11138 11139 if (bp->flags & BNXT_FLAG_CHIP_P5) 11140 return bnxt_rfs_supported(bp); 11141 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 11142 return false; 11143 11144 vnics = 1 + bp->rx_nr_rings; 11145 max_vnics = bnxt_get_max_func_vnics(bp); 11146 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 11147 11148 /* RSS contexts not a limiting factor */ 11149 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 11150 max_rss_ctxs = max_vnics; 11151 if (vnics > max_vnics || vnics > max_rss_ctxs) { 11152 if (bp->rx_nr_rings > 1) 11153 netdev_warn(bp->dev, 11154 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 11155 min(max_rss_ctxs - 1, max_vnics - 1)); 11156 return false; 11157 } 11158 11159 if (!BNXT_NEW_RM(bp)) 11160 return true; 11161 11162 if (vnics == bp->hw_resc.resv_vnics) 11163 return true; 11164 11165 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 11166 if (vnics <= bp->hw_resc.resv_vnics) 11167 return true; 11168 11169 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 11170 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 11171 return false; 11172 #else 11173 return false; 11174 #endif 11175 } 11176 11177 static netdev_features_t bnxt_fix_features(struct net_device *dev, 11178 netdev_features_t features) 11179 { 11180 struct bnxt *bp = netdev_priv(dev); 11181 netdev_features_t vlan_features; 11182 11183 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 11184 features &= ~NETIF_F_NTUPLE; 11185 11186 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 11187 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 11188 11189 if (!(bp->flags & BNXT_FLAG_TPA)) 11190 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 11191 11192 if (!(features & NETIF_F_GRO)) 11193 features &= ~NETIF_F_GRO_HW; 11194 11195 if (features & NETIF_F_GRO_HW) 11196 features &= ~NETIF_F_LRO; 11197 11198 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 11199 * turned on or off together. 11200 */ 11201 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 11202 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 11203 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11204 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11205 else if (vlan_features) 11206 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 11207 } 11208 #ifdef CONFIG_BNXT_SRIOV 11209 if (BNXT_VF(bp) && bp->vf.vlan) 11210 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 11211 #endif 11212 return features; 11213 } 11214 11215 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 11216 { 11217 struct bnxt *bp = netdev_priv(dev); 11218 u32 flags = bp->flags; 11219 u32 changes; 11220 int rc = 0; 11221 bool re_init = false; 11222 bool update_tpa = false; 11223 11224 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 11225 if (features & NETIF_F_GRO_HW) 11226 flags |= BNXT_FLAG_GRO; 11227 else if (features & NETIF_F_LRO) 11228 flags |= BNXT_FLAG_LRO; 11229 11230 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 11231 flags &= ~BNXT_FLAG_TPA; 11232 11233 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 11234 flags |= BNXT_FLAG_STRIP_VLAN; 11235 11236 if (features & NETIF_F_NTUPLE) 11237 flags |= BNXT_FLAG_RFS; 11238 11239 changes = flags ^ bp->flags; 11240 if (changes & BNXT_FLAG_TPA) { 11241 update_tpa = true; 11242 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 11243 (flags & BNXT_FLAG_TPA) == 0 || 11244 (bp->flags & BNXT_FLAG_CHIP_P5)) 11245 re_init = true; 11246 } 11247 11248 if (changes & ~BNXT_FLAG_TPA) 11249 re_init = true; 11250 11251 if (flags != bp->flags) { 11252 u32 old_flags = bp->flags; 11253 11254 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11255 bp->flags = flags; 11256 if (update_tpa) 11257 bnxt_set_ring_params(bp); 11258 return rc; 11259 } 11260 11261 if (re_init) { 11262 bnxt_close_nic(bp, false, false); 11263 bp->flags = flags; 11264 if (update_tpa) 11265 bnxt_set_ring_params(bp); 11266 11267 return bnxt_open_nic(bp, false, false); 11268 } 11269 if (update_tpa) { 11270 bp->flags = flags; 11271 rc = bnxt_set_tpa(bp, 11272 (flags & BNXT_FLAG_TPA) ? 11273 true : false); 11274 if (rc) 11275 bp->flags = old_flags; 11276 } 11277 } 11278 return rc; 11279 } 11280 11281 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 11282 u8 **nextp) 11283 { 11284 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11285 int hdr_count = 0; 11286 u8 *nexthdr; 11287 int start; 11288 11289 /* Check that there are at most 2 IPv6 extension headers, no 11290 * fragment header, and each is <= 64 bytes. 11291 */ 11292 start = nw_off + sizeof(*ip6h); 11293 nexthdr = &ip6h->nexthdr; 11294 while (ipv6_ext_hdr(*nexthdr)) { 11295 struct ipv6_opt_hdr *hp; 11296 int hdrlen; 11297 11298 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11299 *nexthdr == NEXTHDR_FRAGMENT) 11300 return false; 11301 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11302 skb_headlen(skb), NULL); 11303 if (!hp) 11304 return false; 11305 if (*nexthdr == NEXTHDR_AUTH) 11306 hdrlen = ipv6_authlen(hp); 11307 else 11308 hdrlen = ipv6_optlen(hp); 11309 11310 if (hdrlen > 64) 11311 return false; 11312 nexthdr = &hp->nexthdr; 11313 start += hdrlen; 11314 hdr_count++; 11315 } 11316 if (nextp) { 11317 /* Caller will check inner protocol */ 11318 if (skb->encapsulation) { 11319 *nextp = nexthdr; 11320 return true; 11321 } 11322 *nextp = NULL; 11323 } 11324 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11325 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11326 } 11327 11328 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11329 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11330 { 11331 struct udphdr *uh = udp_hdr(skb); 11332 __be16 udp_port = uh->dest; 11333 11334 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11335 return false; 11336 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11337 struct ethhdr *eh = inner_eth_hdr(skb); 11338 11339 switch (eh->h_proto) { 11340 case htons(ETH_P_IP): 11341 return true; 11342 case htons(ETH_P_IPV6): 11343 return bnxt_exthdr_check(bp, skb, 11344 skb_inner_network_offset(skb), 11345 NULL); 11346 } 11347 } 11348 return false; 11349 } 11350 11351 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11352 { 11353 switch (l4_proto) { 11354 case IPPROTO_UDP: 11355 return bnxt_udp_tunl_check(bp, skb); 11356 case IPPROTO_IPIP: 11357 return true; 11358 case IPPROTO_GRE: { 11359 switch (skb->inner_protocol) { 11360 default: 11361 return false; 11362 case htons(ETH_P_IP): 11363 return true; 11364 case htons(ETH_P_IPV6): 11365 fallthrough; 11366 } 11367 } 11368 case IPPROTO_IPV6: 11369 /* Check ext headers of inner ipv6 */ 11370 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11371 NULL); 11372 } 11373 return false; 11374 } 11375 11376 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11377 struct net_device *dev, 11378 netdev_features_t features) 11379 { 11380 struct bnxt *bp = netdev_priv(dev); 11381 u8 *l4_proto; 11382 11383 features = vlan_features_check(skb, features); 11384 switch (vlan_get_protocol(skb)) { 11385 case htons(ETH_P_IP): 11386 if (!skb->encapsulation) 11387 return features; 11388 l4_proto = &ip_hdr(skb)->protocol; 11389 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11390 return features; 11391 break; 11392 case htons(ETH_P_IPV6): 11393 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11394 &l4_proto)) 11395 break; 11396 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11397 return features; 11398 break; 11399 } 11400 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11401 } 11402 11403 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11404 u32 *reg_buf) 11405 { 11406 struct hwrm_dbg_read_direct_output *resp; 11407 struct hwrm_dbg_read_direct_input *req; 11408 __le32 *dbg_reg_buf; 11409 dma_addr_t mapping; 11410 int rc, i; 11411 11412 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11413 if (rc) 11414 return rc; 11415 11416 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11417 &mapping); 11418 if (!dbg_reg_buf) { 11419 rc = -ENOMEM; 11420 goto dbg_rd_reg_exit; 11421 } 11422 11423 req->host_dest_addr = cpu_to_le64(mapping); 11424 11425 resp = hwrm_req_hold(bp, req); 11426 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11427 req->read_len32 = cpu_to_le32(num_words); 11428 11429 rc = hwrm_req_send(bp, req); 11430 if (rc || resp->error_code) { 11431 rc = -EIO; 11432 goto dbg_rd_reg_exit; 11433 } 11434 for (i = 0; i < num_words; i++) 11435 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11436 11437 dbg_rd_reg_exit: 11438 hwrm_req_drop(bp, req); 11439 return rc; 11440 } 11441 11442 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11443 u32 ring_id, u32 *prod, u32 *cons) 11444 { 11445 struct hwrm_dbg_ring_info_get_output *resp; 11446 struct hwrm_dbg_ring_info_get_input *req; 11447 int rc; 11448 11449 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11450 if (rc) 11451 return rc; 11452 11453 req->ring_type = ring_type; 11454 req->fw_ring_id = cpu_to_le32(ring_id); 11455 resp = hwrm_req_hold(bp, req); 11456 rc = hwrm_req_send(bp, req); 11457 if (!rc) { 11458 *prod = le32_to_cpu(resp->producer_index); 11459 *cons = le32_to_cpu(resp->consumer_index); 11460 } 11461 hwrm_req_drop(bp, req); 11462 return rc; 11463 } 11464 11465 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11466 { 11467 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11468 int i = bnapi->index; 11469 11470 if (!txr) 11471 return; 11472 11473 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11474 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11475 txr->tx_cons); 11476 } 11477 11478 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11479 { 11480 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11481 int i = bnapi->index; 11482 11483 if (!rxr) 11484 return; 11485 11486 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11487 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11488 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11489 rxr->rx_sw_agg_prod); 11490 } 11491 11492 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11493 { 11494 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11495 int i = bnapi->index; 11496 11497 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11498 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11499 } 11500 11501 static void bnxt_dbg_dump_states(struct bnxt *bp) 11502 { 11503 int i; 11504 struct bnxt_napi *bnapi; 11505 11506 for (i = 0; i < bp->cp_nr_rings; i++) { 11507 bnapi = bp->bnapi[i]; 11508 if (netif_msg_drv(bp)) { 11509 bnxt_dump_tx_sw_state(bnapi); 11510 bnxt_dump_rx_sw_state(bnapi); 11511 bnxt_dump_cp_sw_state(bnapi); 11512 } 11513 } 11514 } 11515 11516 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11517 { 11518 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11519 struct hwrm_ring_reset_input *req; 11520 struct bnxt_napi *bnapi = rxr->bnapi; 11521 struct bnxt_cp_ring_info *cpr; 11522 u16 cp_ring_id; 11523 int rc; 11524 11525 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11526 if (rc) 11527 return rc; 11528 11529 cpr = &bnapi->cp_ring; 11530 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11531 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11532 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11533 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11534 return hwrm_req_send_silent(bp, req); 11535 } 11536 11537 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11538 { 11539 if (!silent) 11540 bnxt_dbg_dump_states(bp); 11541 if (netif_running(bp->dev)) { 11542 int rc; 11543 11544 if (silent) { 11545 bnxt_close_nic(bp, false, false); 11546 bnxt_open_nic(bp, false, false); 11547 } else { 11548 bnxt_ulp_stop(bp); 11549 bnxt_close_nic(bp, true, false); 11550 rc = bnxt_open_nic(bp, true, false); 11551 bnxt_ulp_start(bp, rc); 11552 } 11553 } 11554 } 11555 11556 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11557 { 11558 struct bnxt *bp = netdev_priv(dev); 11559 11560 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11561 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11562 bnxt_queue_sp_work(bp); 11563 } 11564 11565 static void bnxt_fw_health_check(struct bnxt *bp) 11566 { 11567 struct bnxt_fw_health *fw_health = bp->fw_health; 11568 u32 val; 11569 11570 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11571 return; 11572 11573 /* Make sure it is enabled before checking the tmr_counter. */ 11574 smp_rmb(); 11575 if (fw_health->tmr_counter) { 11576 fw_health->tmr_counter--; 11577 return; 11578 } 11579 11580 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11581 if (val == fw_health->last_fw_heartbeat) { 11582 fw_health->arrests++; 11583 goto fw_reset; 11584 } 11585 11586 fw_health->last_fw_heartbeat = val; 11587 11588 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11589 if (val != fw_health->last_fw_reset_cnt) { 11590 fw_health->discoveries++; 11591 goto fw_reset; 11592 } 11593 11594 fw_health->tmr_counter = fw_health->tmr_multiplier; 11595 return; 11596 11597 fw_reset: 11598 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11599 bnxt_queue_sp_work(bp); 11600 } 11601 11602 static void bnxt_timer(struct timer_list *t) 11603 { 11604 struct bnxt *bp = from_timer(bp, t, timer); 11605 struct net_device *dev = bp->dev; 11606 11607 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11608 return; 11609 11610 if (atomic_read(&bp->intr_sem) != 0) 11611 goto bnxt_restart_timer; 11612 11613 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11614 bnxt_fw_health_check(bp); 11615 11616 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) { 11617 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11618 bnxt_queue_sp_work(bp); 11619 } 11620 11621 if (bnxt_tc_flower_enabled(bp)) { 11622 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11623 bnxt_queue_sp_work(bp); 11624 } 11625 11626 #ifdef CONFIG_RFS_ACCEL 11627 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11628 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11629 bnxt_queue_sp_work(bp); 11630 } 11631 #endif /*CONFIG_RFS_ACCEL*/ 11632 11633 if (bp->link_info.phy_retry) { 11634 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11635 bp->link_info.phy_retry = false; 11636 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11637 } else { 11638 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11639 bnxt_queue_sp_work(bp); 11640 } 11641 } 11642 11643 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) { 11644 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 11645 bnxt_queue_sp_work(bp); 11646 } 11647 11648 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11649 netif_carrier_ok(dev)) { 11650 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11651 bnxt_queue_sp_work(bp); 11652 } 11653 bnxt_restart_timer: 11654 mod_timer(&bp->timer, jiffies + bp->current_interval); 11655 } 11656 11657 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11658 { 11659 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11660 * set. If the device is being closed, bnxt_close() may be holding 11661 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11662 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11663 */ 11664 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11665 rtnl_lock(); 11666 } 11667 11668 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11669 { 11670 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11671 rtnl_unlock(); 11672 } 11673 11674 /* Only called from bnxt_sp_task() */ 11675 static void bnxt_reset(struct bnxt *bp, bool silent) 11676 { 11677 bnxt_rtnl_lock_sp(bp); 11678 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11679 bnxt_reset_task(bp, silent); 11680 bnxt_rtnl_unlock_sp(bp); 11681 } 11682 11683 /* Only called from bnxt_sp_task() */ 11684 static void bnxt_rx_ring_reset(struct bnxt *bp) 11685 { 11686 int i; 11687 11688 bnxt_rtnl_lock_sp(bp); 11689 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11690 bnxt_rtnl_unlock_sp(bp); 11691 return; 11692 } 11693 /* Disable and flush TPA before resetting the RX ring */ 11694 if (bp->flags & BNXT_FLAG_TPA) 11695 bnxt_set_tpa(bp, false); 11696 for (i = 0; i < bp->rx_nr_rings; i++) { 11697 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11698 struct bnxt_cp_ring_info *cpr; 11699 int rc; 11700 11701 if (!rxr->bnapi->in_reset) 11702 continue; 11703 11704 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11705 if (rc) { 11706 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11707 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11708 else 11709 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11710 rc); 11711 bnxt_reset_task(bp, true); 11712 break; 11713 } 11714 bnxt_free_one_rx_ring_skbs(bp, i); 11715 rxr->rx_prod = 0; 11716 rxr->rx_agg_prod = 0; 11717 rxr->rx_sw_agg_prod = 0; 11718 rxr->rx_next_cons = 0; 11719 rxr->bnapi->in_reset = false; 11720 bnxt_alloc_one_rx_ring(bp, i); 11721 cpr = &rxr->bnapi->cp_ring; 11722 cpr->sw_stats.rx.rx_resets++; 11723 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11724 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11725 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11726 } 11727 if (bp->flags & BNXT_FLAG_TPA) 11728 bnxt_set_tpa(bp, true); 11729 bnxt_rtnl_unlock_sp(bp); 11730 } 11731 11732 static void bnxt_fw_reset_close(struct bnxt *bp) 11733 { 11734 bnxt_ulp_stop(bp); 11735 /* When firmware is in fatal state, quiesce device and disable 11736 * bus master to prevent any potential bad DMAs before freeing 11737 * kernel memory. 11738 */ 11739 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11740 u16 val = 0; 11741 11742 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11743 if (val == 0xffff) 11744 bp->fw_reset_min_dsecs = 0; 11745 bnxt_tx_disable(bp); 11746 bnxt_disable_napi(bp); 11747 bnxt_disable_int_sync(bp); 11748 bnxt_free_irq(bp); 11749 bnxt_clear_int_mode(bp); 11750 pci_disable_device(bp->pdev); 11751 } 11752 __bnxt_close_nic(bp, true, false); 11753 bnxt_vf_reps_free(bp); 11754 bnxt_clear_int_mode(bp); 11755 bnxt_hwrm_func_drv_unrgtr(bp); 11756 if (pci_is_enabled(bp->pdev)) 11757 pci_disable_device(bp->pdev); 11758 bnxt_free_ctx_mem(bp); 11759 kfree(bp->ctx); 11760 bp->ctx = NULL; 11761 } 11762 11763 static bool is_bnxt_fw_ok(struct bnxt *bp) 11764 { 11765 struct bnxt_fw_health *fw_health = bp->fw_health; 11766 bool no_heartbeat = false, has_reset = false; 11767 u32 val; 11768 11769 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11770 if (val == fw_health->last_fw_heartbeat) 11771 no_heartbeat = true; 11772 11773 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11774 if (val != fw_health->last_fw_reset_cnt) 11775 has_reset = true; 11776 11777 if (!no_heartbeat && has_reset) 11778 return true; 11779 11780 return false; 11781 } 11782 11783 /* rtnl_lock is acquired before calling this function */ 11784 static void bnxt_force_fw_reset(struct bnxt *bp) 11785 { 11786 struct bnxt_fw_health *fw_health = bp->fw_health; 11787 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11788 u32 wait_dsecs; 11789 11790 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11791 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11792 return; 11793 11794 if (ptp) { 11795 spin_lock_bh(&ptp->ptp_lock); 11796 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11797 spin_unlock_bh(&ptp->ptp_lock); 11798 } else { 11799 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11800 } 11801 bnxt_fw_reset_close(bp); 11802 wait_dsecs = fw_health->master_func_wait_dsecs; 11803 if (fw_health->primary) { 11804 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11805 wait_dsecs = 0; 11806 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11807 } else { 11808 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11809 wait_dsecs = fw_health->normal_func_wait_dsecs; 11810 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11811 } 11812 11813 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11814 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11815 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11816 } 11817 11818 void bnxt_fw_exception(struct bnxt *bp) 11819 { 11820 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11821 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11822 bnxt_rtnl_lock_sp(bp); 11823 bnxt_force_fw_reset(bp); 11824 bnxt_rtnl_unlock_sp(bp); 11825 } 11826 11827 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11828 * < 0 on error. 11829 */ 11830 static int bnxt_get_registered_vfs(struct bnxt *bp) 11831 { 11832 #ifdef CONFIG_BNXT_SRIOV 11833 int rc; 11834 11835 if (!BNXT_PF(bp)) 11836 return 0; 11837 11838 rc = bnxt_hwrm_func_qcfg(bp); 11839 if (rc) { 11840 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11841 return rc; 11842 } 11843 if (bp->pf.registered_vfs) 11844 return bp->pf.registered_vfs; 11845 if (bp->sriov_cfg) 11846 return 1; 11847 #endif 11848 return 0; 11849 } 11850 11851 void bnxt_fw_reset(struct bnxt *bp) 11852 { 11853 bnxt_rtnl_lock_sp(bp); 11854 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11855 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11856 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11857 int n = 0, tmo; 11858 11859 if (ptp) { 11860 spin_lock_bh(&ptp->ptp_lock); 11861 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11862 spin_unlock_bh(&ptp->ptp_lock); 11863 } else { 11864 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11865 } 11866 if (bp->pf.active_vfs && 11867 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11868 n = bnxt_get_registered_vfs(bp); 11869 if (n < 0) { 11870 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11871 n); 11872 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11873 dev_close(bp->dev); 11874 goto fw_reset_exit; 11875 } else if (n > 0) { 11876 u16 vf_tmo_dsecs = n * 10; 11877 11878 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11879 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11880 bp->fw_reset_state = 11881 BNXT_FW_RESET_STATE_POLL_VF; 11882 bnxt_queue_fw_reset_work(bp, HZ / 10); 11883 goto fw_reset_exit; 11884 } 11885 bnxt_fw_reset_close(bp); 11886 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11887 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11888 tmo = HZ / 10; 11889 } else { 11890 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11891 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11892 } 11893 bnxt_queue_fw_reset_work(bp, tmo); 11894 } 11895 fw_reset_exit: 11896 bnxt_rtnl_unlock_sp(bp); 11897 } 11898 11899 static void bnxt_chk_missed_irq(struct bnxt *bp) 11900 { 11901 int i; 11902 11903 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11904 return; 11905 11906 for (i = 0; i < bp->cp_nr_rings; i++) { 11907 struct bnxt_napi *bnapi = bp->bnapi[i]; 11908 struct bnxt_cp_ring_info *cpr; 11909 u32 fw_ring_id; 11910 int j; 11911 11912 if (!bnapi) 11913 continue; 11914 11915 cpr = &bnapi->cp_ring; 11916 for (j = 0; j < 2; j++) { 11917 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11918 u32 val[2]; 11919 11920 if (!cpr2 || cpr2->has_more_work || 11921 !bnxt_has_work(bp, cpr2)) 11922 continue; 11923 11924 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11925 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11926 continue; 11927 } 11928 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11929 bnxt_dbg_hwrm_ring_info_get(bp, 11930 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11931 fw_ring_id, &val[0], &val[1]); 11932 cpr->sw_stats.cmn.missed_irqs++; 11933 } 11934 } 11935 } 11936 11937 static void bnxt_cfg_ntp_filters(struct bnxt *); 11938 11939 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11940 { 11941 struct bnxt_link_info *link_info = &bp->link_info; 11942 11943 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11944 link_info->autoneg = BNXT_AUTONEG_SPEED; 11945 if (bp->hwrm_spec_code >= 0x10201) { 11946 if (link_info->auto_pause_setting & 11947 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11948 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11949 } else { 11950 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11951 } 11952 link_info->advertising = link_info->auto_link_speeds; 11953 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11954 } else { 11955 link_info->req_link_speed = link_info->force_link_speed; 11956 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11957 if (link_info->force_pam4_link_speed) { 11958 link_info->req_link_speed = 11959 link_info->force_pam4_link_speed; 11960 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11961 } 11962 link_info->req_duplex = link_info->duplex_setting; 11963 } 11964 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11965 link_info->req_flow_ctrl = 11966 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11967 else 11968 link_info->req_flow_ctrl = link_info->force_pause_setting; 11969 } 11970 11971 static void bnxt_fw_echo_reply(struct bnxt *bp) 11972 { 11973 struct bnxt_fw_health *fw_health = bp->fw_health; 11974 struct hwrm_func_echo_response_input *req; 11975 int rc; 11976 11977 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 11978 if (rc) 11979 return; 11980 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11981 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11982 hwrm_req_send(bp, req); 11983 } 11984 11985 static void bnxt_sp_task(struct work_struct *work) 11986 { 11987 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11988 11989 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11990 smp_mb__after_atomic(); 11991 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11992 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11993 return; 11994 } 11995 11996 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11997 bnxt_cfg_rx_mode(bp); 11998 11999 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 12000 bnxt_cfg_ntp_filters(bp); 12001 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 12002 bnxt_hwrm_exec_fwd_req(bp); 12003 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 12004 bnxt_hwrm_port_qstats(bp, 0); 12005 bnxt_hwrm_port_qstats_ext(bp, 0); 12006 bnxt_accumulate_all_stats(bp); 12007 } 12008 12009 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 12010 int rc; 12011 12012 mutex_lock(&bp->link_lock); 12013 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 12014 &bp->sp_event)) 12015 bnxt_hwrm_phy_qcaps(bp); 12016 12017 rc = bnxt_update_link(bp, true); 12018 if (rc) 12019 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 12020 rc); 12021 12022 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 12023 &bp->sp_event)) 12024 bnxt_init_ethtool_link_settings(bp); 12025 mutex_unlock(&bp->link_lock); 12026 } 12027 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 12028 int rc; 12029 12030 mutex_lock(&bp->link_lock); 12031 rc = bnxt_update_phy_setting(bp); 12032 mutex_unlock(&bp->link_lock); 12033 if (rc) { 12034 netdev_warn(bp->dev, "update phy settings retry failed\n"); 12035 } else { 12036 bp->link_info.phy_retry = false; 12037 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 12038 } 12039 } 12040 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 12041 mutex_lock(&bp->link_lock); 12042 bnxt_get_port_module_status(bp); 12043 mutex_unlock(&bp->link_lock); 12044 } 12045 12046 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 12047 bnxt_tc_flow_stats_work(bp); 12048 12049 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 12050 bnxt_chk_missed_irq(bp); 12051 12052 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 12053 bnxt_fw_echo_reply(bp); 12054 12055 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 12056 * must be the last functions to be called before exiting. 12057 */ 12058 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 12059 bnxt_reset(bp, false); 12060 12061 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 12062 bnxt_reset(bp, true); 12063 12064 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 12065 bnxt_rx_ring_reset(bp); 12066 12067 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 12068 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 12069 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 12070 bnxt_devlink_health_fw_report(bp); 12071 else 12072 bnxt_fw_reset(bp); 12073 } 12074 12075 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 12076 if (!is_bnxt_fw_ok(bp)) 12077 bnxt_devlink_health_fw_report(bp); 12078 } 12079 12080 smp_mb__before_atomic(); 12081 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 12082 } 12083 12084 /* Under rtnl_lock */ 12085 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 12086 int tx_xdp) 12087 { 12088 int max_rx, max_tx, tx_sets = 1; 12089 int tx_rings_needed, stats; 12090 int rx_rings = rx; 12091 int cp, vnics, rc; 12092 12093 if (tcs) 12094 tx_sets = tcs; 12095 12096 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 12097 if (rc) 12098 return rc; 12099 12100 if (max_rx < rx) 12101 return -ENOMEM; 12102 12103 tx_rings_needed = tx * tx_sets + tx_xdp; 12104 if (max_tx < tx_rings_needed) 12105 return -ENOMEM; 12106 12107 vnics = 1; 12108 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 12109 vnics += rx_rings; 12110 12111 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12112 rx_rings <<= 1; 12113 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 12114 stats = cp; 12115 if (BNXT_NEW_RM(bp)) { 12116 cp += bnxt_get_ulp_msix_num(bp); 12117 stats += bnxt_get_ulp_stat_ctxs(bp); 12118 } 12119 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 12120 stats, vnics); 12121 } 12122 12123 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 12124 { 12125 if (bp->bar2) { 12126 pci_iounmap(pdev, bp->bar2); 12127 bp->bar2 = NULL; 12128 } 12129 12130 if (bp->bar1) { 12131 pci_iounmap(pdev, bp->bar1); 12132 bp->bar1 = NULL; 12133 } 12134 12135 if (bp->bar0) { 12136 pci_iounmap(pdev, bp->bar0); 12137 bp->bar0 = NULL; 12138 } 12139 } 12140 12141 static void bnxt_cleanup_pci(struct bnxt *bp) 12142 { 12143 bnxt_unmap_bars(bp, bp->pdev); 12144 pci_release_regions(bp->pdev); 12145 if (pci_is_enabled(bp->pdev)) 12146 pci_disable_device(bp->pdev); 12147 } 12148 12149 static void bnxt_init_dflt_coal(struct bnxt *bp) 12150 { 12151 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 12152 struct bnxt_coal *coal; 12153 u16 flags = 0; 12154 12155 if (coal_cap->cmpl_params & 12156 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 12157 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 12158 12159 /* Tick values in micro seconds. 12160 * 1 coal_buf x bufs_per_record = 1 completion record. 12161 */ 12162 coal = &bp->rx_coal; 12163 coal->coal_ticks = 10; 12164 coal->coal_bufs = 30; 12165 coal->coal_ticks_irq = 1; 12166 coal->coal_bufs_irq = 2; 12167 coal->idle_thresh = 50; 12168 coal->bufs_per_record = 2; 12169 coal->budget = 64; /* NAPI budget */ 12170 coal->flags = flags; 12171 12172 coal = &bp->tx_coal; 12173 coal->coal_ticks = 28; 12174 coal->coal_bufs = 30; 12175 coal->coal_ticks_irq = 2; 12176 coal->coal_bufs_irq = 2; 12177 coal->bufs_per_record = 1; 12178 coal->flags = flags; 12179 12180 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 12181 } 12182 12183 static int bnxt_fw_init_one_p1(struct bnxt *bp) 12184 { 12185 int rc; 12186 12187 bp->fw_cap = 0; 12188 rc = bnxt_hwrm_ver_get(bp); 12189 bnxt_try_map_fw_health_reg(bp); 12190 if (rc) { 12191 rc = bnxt_try_recover_fw(bp); 12192 if (rc) 12193 return rc; 12194 rc = bnxt_hwrm_ver_get(bp); 12195 if (rc) 12196 return rc; 12197 } 12198 12199 bnxt_nvm_cfg_ver_get(bp); 12200 12201 rc = bnxt_hwrm_func_reset(bp); 12202 if (rc) 12203 return -ENODEV; 12204 12205 bnxt_hwrm_fw_set_time(bp); 12206 return 0; 12207 } 12208 12209 static int bnxt_fw_init_one_p2(struct bnxt *bp) 12210 { 12211 int rc; 12212 12213 /* Get the MAX capabilities for this function */ 12214 rc = bnxt_hwrm_func_qcaps(bp); 12215 if (rc) { 12216 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 12217 rc); 12218 return -ENODEV; 12219 } 12220 12221 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 12222 if (rc) 12223 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 12224 rc); 12225 12226 if (bnxt_alloc_fw_health(bp)) { 12227 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 12228 } else { 12229 rc = bnxt_hwrm_error_recovery_qcfg(bp); 12230 if (rc) 12231 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 12232 rc); 12233 } 12234 12235 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 12236 if (rc) 12237 return -ENODEV; 12238 12239 bnxt_hwrm_func_qcfg(bp); 12240 bnxt_hwrm_vnic_qcaps(bp); 12241 bnxt_hwrm_port_led_qcaps(bp); 12242 bnxt_ethtool_init(bp); 12243 bnxt_dcb_init(bp); 12244 return 0; 12245 } 12246 12247 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 12248 { 12249 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 12250 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 12251 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 12252 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 12253 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 12254 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 12255 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 12256 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 12257 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 12258 } 12259 } 12260 12261 static void bnxt_set_dflt_rfs(struct bnxt *bp) 12262 { 12263 struct net_device *dev = bp->dev; 12264 12265 dev->hw_features &= ~NETIF_F_NTUPLE; 12266 dev->features &= ~NETIF_F_NTUPLE; 12267 bp->flags &= ~BNXT_FLAG_RFS; 12268 if (bnxt_rfs_supported(bp)) { 12269 dev->hw_features |= NETIF_F_NTUPLE; 12270 if (bnxt_rfs_capable(bp)) { 12271 bp->flags |= BNXT_FLAG_RFS; 12272 dev->features |= NETIF_F_NTUPLE; 12273 } 12274 } 12275 } 12276 12277 static void bnxt_fw_init_one_p3(struct bnxt *bp) 12278 { 12279 struct pci_dev *pdev = bp->pdev; 12280 12281 bnxt_set_dflt_rss_hash_type(bp); 12282 bnxt_set_dflt_rfs(bp); 12283 12284 bnxt_get_wol_settings(bp); 12285 if (bp->flags & BNXT_FLAG_WOL_CAP) 12286 device_set_wakeup_enable(&pdev->dev, bp->wol); 12287 else 12288 device_set_wakeup_capable(&pdev->dev, false); 12289 12290 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 12291 bnxt_hwrm_coal_params_qcaps(bp); 12292 } 12293 12294 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 12295 12296 int bnxt_fw_init_one(struct bnxt *bp) 12297 { 12298 int rc; 12299 12300 rc = bnxt_fw_init_one_p1(bp); 12301 if (rc) { 12302 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 12303 return rc; 12304 } 12305 rc = bnxt_fw_init_one_p2(bp); 12306 if (rc) { 12307 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12308 return rc; 12309 } 12310 rc = bnxt_probe_phy(bp, false); 12311 if (rc) 12312 return rc; 12313 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12314 if (rc) 12315 return rc; 12316 12317 bnxt_fw_init_one_p3(bp); 12318 return 0; 12319 } 12320 12321 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12322 { 12323 struct bnxt_fw_health *fw_health = bp->fw_health; 12324 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12325 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12326 u32 reg_type, reg_off, delay_msecs; 12327 12328 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12329 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12330 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12331 switch (reg_type) { 12332 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12333 pci_write_config_dword(bp->pdev, reg_off, val); 12334 break; 12335 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12336 writel(reg_off & BNXT_GRC_BASE_MASK, 12337 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12338 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12339 fallthrough; 12340 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12341 writel(val, bp->bar0 + reg_off); 12342 break; 12343 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12344 writel(val, bp->bar1 + reg_off); 12345 break; 12346 } 12347 if (delay_msecs) { 12348 pci_read_config_dword(bp->pdev, 0, &val); 12349 msleep(delay_msecs); 12350 } 12351 } 12352 12353 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 12354 { 12355 struct hwrm_func_qcfg_output *resp; 12356 struct hwrm_func_qcfg_input *req; 12357 bool result = true; /* firmware will enforce if unknown */ 12358 12359 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 12360 return result; 12361 12362 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 12363 return result; 12364 12365 req->fid = cpu_to_le16(0xffff); 12366 resp = hwrm_req_hold(bp, req); 12367 if (!hwrm_req_send(bp, req)) 12368 result = !!(le16_to_cpu(resp->flags) & 12369 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 12370 hwrm_req_drop(bp, req); 12371 return result; 12372 } 12373 12374 static void bnxt_reset_all(struct bnxt *bp) 12375 { 12376 struct bnxt_fw_health *fw_health = bp->fw_health; 12377 int i, rc; 12378 12379 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12380 bnxt_fw_reset_via_optee(bp); 12381 bp->fw_reset_timestamp = jiffies; 12382 return; 12383 } 12384 12385 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12386 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12387 bnxt_fw_reset_writel(bp, i); 12388 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12389 struct hwrm_fw_reset_input *req; 12390 12391 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12392 if (!rc) { 12393 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12394 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12395 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12396 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12397 rc = hwrm_req_send(bp, req); 12398 } 12399 if (rc != -ENODEV) 12400 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12401 } 12402 bp->fw_reset_timestamp = jiffies; 12403 } 12404 12405 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12406 { 12407 return time_after(jiffies, bp->fw_reset_timestamp + 12408 (bp->fw_reset_max_dsecs * HZ / 10)); 12409 } 12410 12411 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12412 { 12413 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12414 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12415 bnxt_ulp_start(bp, rc); 12416 bnxt_dl_health_fw_status_update(bp, false); 12417 } 12418 bp->fw_reset_state = 0; 12419 dev_close(bp->dev); 12420 } 12421 12422 static void bnxt_fw_reset_task(struct work_struct *work) 12423 { 12424 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12425 int rc = 0; 12426 12427 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12428 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12429 return; 12430 } 12431 12432 switch (bp->fw_reset_state) { 12433 case BNXT_FW_RESET_STATE_POLL_VF: { 12434 int n = bnxt_get_registered_vfs(bp); 12435 int tmo; 12436 12437 if (n < 0) { 12438 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12439 n, jiffies_to_msecs(jiffies - 12440 bp->fw_reset_timestamp)); 12441 goto fw_reset_abort; 12442 } else if (n > 0) { 12443 if (bnxt_fw_reset_timeout(bp)) { 12444 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12445 bp->fw_reset_state = 0; 12446 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12447 n); 12448 return; 12449 } 12450 bnxt_queue_fw_reset_work(bp, HZ / 10); 12451 return; 12452 } 12453 bp->fw_reset_timestamp = jiffies; 12454 rtnl_lock(); 12455 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12456 bnxt_fw_reset_abort(bp, rc); 12457 rtnl_unlock(); 12458 return; 12459 } 12460 bnxt_fw_reset_close(bp); 12461 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12462 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12463 tmo = HZ / 10; 12464 } else { 12465 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12466 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12467 } 12468 rtnl_unlock(); 12469 bnxt_queue_fw_reset_work(bp, tmo); 12470 return; 12471 } 12472 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12473 u32 val; 12474 12475 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12476 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12477 !bnxt_fw_reset_timeout(bp)) { 12478 bnxt_queue_fw_reset_work(bp, HZ / 5); 12479 return; 12480 } 12481 12482 if (!bp->fw_health->primary) { 12483 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12484 12485 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12486 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12487 return; 12488 } 12489 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12490 } 12491 fallthrough; 12492 case BNXT_FW_RESET_STATE_RESET_FW: 12493 bnxt_reset_all(bp); 12494 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12495 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12496 return; 12497 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12498 bnxt_inv_fw_health_reg(bp); 12499 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12500 !bp->fw_reset_min_dsecs) { 12501 u16 val; 12502 12503 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12504 if (val == 0xffff) { 12505 if (bnxt_fw_reset_timeout(bp)) { 12506 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12507 rc = -ETIMEDOUT; 12508 goto fw_reset_abort; 12509 } 12510 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12511 return; 12512 } 12513 } 12514 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12515 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 12516 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 12517 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 12518 bnxt_dl_remote_reload(bp); 12519 if (pci_enable_device(bp->pdev)) { 12520 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12521 rc = -ENODEV; 12522 goto fw_reset_abort; 12523 } 12524 pci_set_master(bp->pdev); 12525 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12526 fallthrough; 12527 case BNXT_FW_RESET_STATE_POLL_FW: 12528 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12529 rc = bnxt_hwrm_poll(bp); 12530 if (rc) { 12531 if (bnxt_fw_reset_timeout(bp)) { 12532 netdev_err(bp->dev, "Firmware reset aborted\n"); 12533 goto fw_reset_abort_status; 12534 } 12535 bnxt_queue_fw_reset_work(bp, HZ / 5); 12536 return; 12537 } 12538 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12539 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12540 fallthrough; 12541 case BNXT_FW_RESET_STATE_OPENING: 12542 while (!rtnl_trylock()) { 12543 bnxt_queue_fw_reset_work(bp, HZ / 10); 12544 return; 12545 } 12546 rc = bnxt_open(bp->dev); 12547 if (rc) { 12548 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12549 bnxt_fw_reset_abort(bp, rc); 12550 rtnl_unlock(); 12551 return; 12552 } 12553 12554 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 12555 bp->fw_health->enabled) { 12556 bp->fw_health->last_fw_reset_cnt = 12557 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12558 } 12559 bp->fw_reset_state = 0; 12560 /* Make sure fw_reset_state is 0 before clearing the flag */ 12561 smp_mb__before_atomic(); 12562 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12563 bnxt_ulp_start(bp, 0); 12564 bnxt_reenable_sriov(bp); 12565 bnxt_vf_reps_alloc(bp); 12566 bnxt_vf_reps_open(bp); 12567 bnxt_ptp_reapply_pps(bp); 12568 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 12569 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 12570 bnxt_dl_health_fw_recovery_done(bp); 12571 bnxt_dl_health_fw_status_update(bp, true); 12572 } 12573 rtnl_unlock(); 12574 break; 12575 } 12576 return; 12577 12578 fw_reset_abort_status: 12579 if (bp->fw_health->status_reliable || 12580 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12581 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12582 12583 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12584 } 12585 fw_reset_abort: 12586 rtnl_lock(); 12587 bnxt_fw_reset_abort(bp, rc); 12588 rtnl_unlock(); 12589 } 12590 12591 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12592 { 12593 int rc; 12594 struct bnxt *bp = netdev_priv(dev); 12595 12596 SET_NETDEV_DEV(dev, &pdev->dev); 12597 12598 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12599 rc = pci_enable_device(pdev); 12600 if (rc) { 12601 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12602 goto init_err; 12603 } 12604 12605 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12606 dev_err(&pdev->dev, 12607 "Cannot find PCI device base address, aborting\n"); 12608 rc = -ENODEV; 12609 goto init_err_disable; 12610 } 12611 12612 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12613 if (rc) { 12614 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12615 goto init_err_disable; 12616 } 12617 12618 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12619 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12620 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12621 rc = -EIO; 12622 goto init_err_release; 12623 } 12624 12625 pci_set_master(pdev); 12626 12627 bp->dev = dev; 12628 bp->pdev = pdev; 12629 12630 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12631 * determines the BAR size. 12632 */ 12633 bp->bar0 = pci_ioremap_bar(pdev, 0); 12634 if (!bp->bar0) { 12635 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12636 rc = -ENOMEM; 12637 goto init_err_release; 12638 } 12639 12640 bp->bar2 = pci_ioremap_bar(pdev, 4); 12641 if (!bp->bar2) { 12642 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12643 rc = -ENOMEM; 12644 goto init_err_release; 12645 } 12646 12647 pci_enable_pcie_error_reporting(pdev); 12648 12649 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12650 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12651 12652 spin_lock_init(&bp->ntp_fltr_lock); 12653 #if BITS_PER_LONG == 32 12654 spin_lock_init(&bp->db_lock); 12655 #endif 12656 12657 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12658 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12659 12660 timer_setup(&bp->timer, bnxt_timer, 0); 12661 bp->current_interval = BNXT_TIMER_INTERVAL; 12662 12663 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12664 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12665 12666 clear_bit(BNXT_STATE_OPEN, &bp->state); 12667 return 0; 12668 12669 init_err_release: 12670 bnxt_unmap_bars(bp, pdev); 12671 pci_release_regions(pdev); 12672 12673 init_err_disable: 12674 pci_disable_device(pdev); 12675 12676 init_err: 12677 return rc; 12678 } 12679 12680 /* rtnl_lock held */ 12681 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12682 { 12683 struct sockaddr *addr = p; 12684 struct bnxt *bp = netdev_priv(dev); 12685 int rc = 0; 12686 12687 if (!is_valid_ether_addr(addr->sa_data)) 12688 return -EADDRNOTAVAIL; 12689 12690 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12691 return 0; 12692 12693 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12694 if (rc) 12695 return rc; 12696 12697 eth_hw_addr_set(dev, addr->sa_data); 12698 if (netif_running(dev)) { 12699 bnxt_close_nic(bp, false, false); 12700 rc = bnxt_open_nic(bp, false, false); 12701 } 12702 12703 return rc; 12704 } 12705 12706 /* rtnl_lock held */ 12707 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12708 { 12709 struct bnxt *bp = netdev_priv(dev); 12710 12711 if (netif_running(dev)) 12712 bnxt_close_nic(bp, true, false); 12713 12714 dev->mtu = new_mtu; 12715 bnxt_set_ring_params(bp); 12716 12717 if (netif_running(dev)) 12718 return bnxt_open_nic(bp, true, false); 12719 12720 return 0; 12721 } 12722 12723 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12724 { 12725 struct bnxt *bp = netdev_priv(dev); 12726 bool sh = false; 12727 int rc; 12728 12729 if (tc > bp->max_tc) { 12730 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12731 tc, bp->max_tc); 12732 return -EINVAL; 12733 } 12734 12735 if (netdev_get_num_tc(dev) == tc) 12736 return 0; 12737 12738 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12739 sh = true; 12740 12741 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12742 sh, tc, bp->tx_nr_rings_xdp); 12743 if (rc) 12744 return rc; 12745 12746 /* Needs to close the device and do hw resource re-allocations */ 12747 if (netif_running(bp->dev)) 12748 bnxt_close_nic(bp, true, false); 12749 12750 if (tc) { 12751 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12752 netdev_set_num_tc(dev, tc); 12753 } else { 12754 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12755 netdev_reset_tc(dev); 12756 } 12757 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12758 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12759 bp->tx_nr_rings + bp->rx_nr_rings; 12760 12761 if (netif_running(bp->dev)) 12762 return bnxt_open_nic(bp, true, false); 12763 12764 return 0; 12765 } 12766 12767 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12768 void *cb_priv) 12769 { 12770 struct bnxt *bp = cb_priv; 12771 12772 if (!bnxt_tc_flower_enabled(bp) || 12773 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12774 return -EOPNOTSUPP; 12775 12776 switch (type) { 12777 case TC_SETUP_CLSFLOWER: 12778 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12779 default: 12780 return -EOPNOTSUPP; 12781 } 12782 } 12783 12784 LIST_HEAD(bnxt_block_cb_list); 12785 12786 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12787 void *type_data) 12788 { 12789 struct bnxt *bp = netdev_priv(dev); 12790 12791 switch (type) { 12792 case TC_SETUP_BLOCK: 12793 return flow_block_cb_setup_simple(type_data, 12794 &bnxt_block_cb_list, 12795 bnxt_setup_tc_block_cb, 12796 bp, bp, true); 12797 case TC_SETUP_QDISC_MQPRIO: { 12798 struct tc_mqprio_qopt *mqprio = type_data; 12799 12800 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12801 12802 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12803 } 12804 default: 12805 return -EOPNOTSUPP; 12806 } 12807 } 12808 12809 #ifdef CONFIG_RFS_ACCEL 12810 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12811 struct bnxt_ntuple_filter *f2) 12812 { 12813 struct flow_keys *keys1 = &f1->fkeys; 12814 struct flow_keys *keys2 = &f2->fkeys; 12815 12816 if (keys1->basic.n_proto != keys2->basic.n_proto || 12817 keys1->basic.ip_proto != keys2->basic.ip_proto) 12818 return false; 12819 12820 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12821 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12822 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12823 return false; 12824 } else { 12825 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12826 sizeof(keys1->addrs.v6addrs.src)) || 12827 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12828 sizeof(keys1->addrs.v6addrs.dst))) 12829 return false; 12830 } 12831 12832 if (keys1->ports.ports == keys2->ports.ports && 12833 keys1->control.flags == keys2->control.flags && 12834 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12835 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12836 return true; 12837 12838 return false; 12839 } 12840 12841 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12842 u16 rxq_index, u32 flow_id) 12843 { 12844 struct bnxt *bp = netdev_priv(dev); 12845 struct bnxt_ntuple_filter *fltr, *new_fltr; 12846 struct flow_keys *fkeys; 12847 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12848 int rc = 0, idx, bit_id, l2_idx = 0; 12849 struct hlist_head *head; 12850 u32 flags; 12851 12852 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12853 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12854 int off = 0, j; 12855 12856 netif_addr_lock_bh(dev); 12857 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12858 if (ether_addr_equal(eth->h_dest, 12859 vnic->uc_list + off)) { 12860 l2_idx = j + 1; 12861 break; 12862 } 12863 } 12864 netif_addr_unlock_bh(dev); 12865 if (!l2_idx) 12866 return -EINVAL; 12867 } 12868 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12869 if (!new_fltr) 12870 return -ENOMEM; 12871 12872 fkeys = &new_fltr->fkeys; 12873 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12874 rc = -EPROTONOSUPPORT; 12875 goto err_free; 12876 } 12877 12878 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12879 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12880 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12881 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12882 rc = -EPROTONOSUPPORT; 12883 goto err_free; 12884 } 12885 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12886 bp->hwrm_spec_code < 0x10601) { 12887 rc = -EPROTONOSUPPORT; 12888 goto err_free; 12889 } 12890 flags = fkeys->control.flags; 12891 if (((flags & FLOW_DIS_ENCAPSULATION) && 12892 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12893 rc = -EPROTONOSUPPORT; 12894 goto err_free; 12895 } 12896 12897 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12898 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12899 12900 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12901 head = &bp->ntp_fltr_hash_tbl[idx]; 12902 rcu_read_lock(); 12903 hlist_for_each_entry_rcu(fltr, head, hash) { 12904 if (bnxt_fltr_match(fltr, new_fltr)) { 12905 rcu_read_unlock(); 12906 rc = 0; 12907 goto err_free; 12908 } 12909 } 12910 rcu_read_unlock(); 12911 12912 spin_lock_bh(&bp->ntp_fltr_lock); 12913 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12914 BNXT_NTP_FLTR_MAX_FLTR, 0); 12915 if (bit_id < 0) { 12916 spin_unlock_bh(&bp->ntp_fltr_lock); 12917 rc = -ENOMEM; 12918 goto err_free; 12919 } 12920 12921 new_fltr->sw_id = (u16)bit_id; 12922 new_fltr->flow_id = flow_id; 12923 new_fltr->l2_fltr_idx = l2_idx; 12924 new_fltr->rxq = rxq_index; 12925 hlist_add_head_rcu(&new_fltr->hash, head); 12926 bp->ntp_fltr_count++; 12927 spin_unlock_bh(&bp->ntp_fltr_lock); 12928 12929 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12930 bnxt_queue_sp_work(bp); 12931 12932 return new_fltr->sw_id; 12933 12934 err_free: 12935 kfree(new_fltr); 12936 return rc; 12937 } 12938 12939 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12940 { 12941 int i; 12942 12943 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12944 struct hlist_head *head; 12945 struct hlist_node *tmp; 12946 struct bnxt_ntuple_filter *fltr; 12947 int rc; 12948 12949 head = &bp->ntp_fltr_hash_tbl[i]; 12950 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12951 bool del = false; 12952 12953 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12954 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12955 fltr->flow_id, 12956 fltr->sw_id)) { 12957 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12958 fltr); 12959 del = true; 12960 } 12961 } else { 12962 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12963 fltr); 12964 if (rc) 12965 del = true; 12966 else 12967 set_bit(BNXT_FLTR_VALID, &fltr->state); 12968 } 12969 12970 if (del) { 12971 spin_lock_bh(&bp->ntp_fltr_lock); 12972 hlist_del_rcu(&fltr->hash); 12973 bp->ntp_fltr_count--; 12974 spin_unlock_bh(&bp->ntp_fltr_lock); 12975 synchronize_rcu(); 12976 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12977 kfree(fltr); 12978 } 12979 } 12980 } 12981 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12982 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12983 } 12984 12985 #else 12986 12987 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12988 { 12989 } 12990 12991 #endif /* CONFIG_RFS_ACCEL */ 12992 12993 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12994 { 12995 struct bnxt *bp = netdev_priv(netdev); 12996 struct udp_tunnel_info ti; 12997 unsigned int cmd; 12998 12999 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 13000 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) 13001 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 13002 else 13003 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 13004 13005 if (ti.port) 13006 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 13007 13008 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 13009 } 13010 13011 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 13012 .sync_table = bnxt_udp_tunnel_sync, 13013 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 13014 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 13015 .tables = { 13016 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 13017 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 13018 }, 13019 }; 13020 13021 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 13022 struct net_device *dev, u32 filter_mask, 13023 int nlflags) 13024 { 13025 struct bnxt *bp = netdev_priv(dev); 13026 13027 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 13028 nlflags, filter_mask, NULL); 13029 } 13030 13031 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 13032 u16 flags, struct netlink_ext_ack *extack) 13033 { 13034 struct bnxt *bp = netdev_priv(dev); 13035 struct nlattr *attr, *br_spec; 13036 int rem, rc = 0; 13037 13038 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 13039 return -EOPNOTSUPP; 13040 13041 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 13042 if (!br_spec) 13043 return -EINVAL; 13044 13045 nla_for_each_nested(attr, br_spec, rem) { 13046 u16 mode; 13047 13048 if (nla_type(attr) != IFLA_BRIDGE_MODE) 13049 continue; 13050 13051 if (nla_len(attr) < sizeof(mode)) 13052 return -EINVAL; 13053 13054 mode = nla_get_u16(attr); 13055 if (mode == bp->br_mode) 13056 break; 13057 13058 rc = bnxt_hwrm_set_br_mode(bp, mode); 13059 if (!rc) 13060 bp->br_mode = mode; 13061 break; 13062 } 13063 return rc; 13064 } 13065 13066 int bnxt_get_port_parent_id(struct net_device *dev, 13067 struct netdev_phys_item_id *ppid) 13068 { 13069 struct bnxt *bp = netdev_priv(dev); 13070 13071 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 13072 return -EOPNOTSUPP; 13073 13074 /* The PF and it's VF-reps only support the switchdev framework */ 13075 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 13076 return -EOPNOTSUPP; 13077 13078 ppid->id_len = sizeof(bp->dsn); 13079 memcpy(ppid->id, bp->dsn, ppid->id_len); 13080 13081 return 0; 13082 } 13083 13084 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 13085 { 13086 struct bnxt *bp = netdev_priv(dev); 13087 13088 return &bp->dl_port; 13089 } 13090 13091 static const struct net_device_ops bnxt_netdev_ops = { 13092 .ndo_open = bnxt_open, 13093 .ndo_start_xmit = bnxt_start_xmit, 13094 .ndo_stop = bnxt_close, 13095 .ndo_get_stats64 = bnxt_get_stats64, 13096 .ndo_set_rx_mode = bnxt_set_rx_mode, 13097 .ndo_eth_ioctl = bnxt_ioctl, 13098 .ndo_validate_addr = eth_validate_addr, 13099 .ndo_set_mac_address = bnxt_change_mac_addr, 13100 .ndo_change_mtu = bnxt_change_mtu, 13101 .ndo_fix_features = bnxt_fix_features, 13102 .ndo_set_features = bnxt_set_features, 13103 .ndo_features_check = bnxt_features_check, 13104 .ndo_tx_timeout = bnxt_tx_timeout, 13105 #ifdef CONFIG_BNXT_SRIOV 13106 .ndo_get_vf_config = bnxt_get_vf_config, 13107 .ndo_set_vf_mac = bnxt_set_vf_mac, 13108 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 13109 .ndo_set_vf_rate = bnxt_set_vf_bw, 13110 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 13111 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 13112 .ndo_set_vf_trust = bnxt_set_vf_trust, 13113 #endif 13114 .ndo_setup_tc = bnxt_setup_tc, 13115 #ifdef CONFIG_RFS_ACCEL 13116 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 13117 #endif 13118 .ndo_bpf = bnxt_xdp, 13119 .ndo_xdp_xmit = bnxt_xdp_xmit, 13120 .ndo_bridge_getlink = bnxt_bridge_getlink, 13121 .ndo_bridge_setlink = bnxt_bridge_setlink, 13122 .ndo_get_devlink_port = bnxt_get_devlink_port, 13123 }; 13124 13125 static void bnxt_remove_one(struct pci_dev *pdev) 13126 { 13127 struct net_device *dev = pci_get_drvdata(pdev); 13128 struct bnxt *bp = netdev_priv(dev); 13129 13130 if (BNXT_PF(bp)) 13131 bnxt_sriov_disable(bp); 13132 13133 if (BNXT_PF(bp)) 13134 devlink_port_type_clear(&bp->dl_port); 13135 13136 bnxt_ptp_clear(bp); 13137 pci_disable_pcie_error_reporting(pdev); 13138 unregister_netdev(dev); 13139 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13140 /* Flush any pending tasks */ 13141 cancel_work_sync(&bp->sp_task); 13142 cancel_delayed_work_sync(&bp->fw_reset_task); 13143 bp->sp_event = 0; 13144 13145 bnxt_dl_fw_reporters_destroy(bp); 13146 bnxt_dl_unregister(bp); 13147 bnxt_shutdown_tc(bp); 13148 13149 bnxt_clear_int_mode(bp); 13150 bnxt_hwrm_func_drv_unrgtr(bp); 13151 bnxt_free_hwrm_resources(bp); 13152 bnxt_ethtool_free(bp); 13153 bnxt_dcb_free(bp); 13154 kfree(bp->edev); 13155 bp->edev = NULL; 13156 kfree(bp->ptp_cfg); 13157 bp->ptp_cfg = NULL; 13158 kfree(bp->fw_health); 13159 bp->fw_health = NULL; 13160 bnxt_cleanup_pci(bp); 13161 bnxt_free_ctx_mem(bp); 13162 kfree(bp->ctx); 13163 bp->ctx = NULL; 13164 kfree(bp->rss_indir_tbl); 13165 bp->rss_indir_tbl = NULL; 13166 bnxt_free_port_stats(bp); 13167 free_netdev(dev); 13168 } 13169 13170 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 13171 { 13172 int rc = 0; 13173 struct bnxt_link_info *link_info = &bp->link_info; 13174 13175 bp->phy_flags = 0; 13176 rc = bnxt_hwrm_phy_qcaps(bp); 13177 if (rc) { 13178 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 13179 rc); 13180 return rc; 13181 } 13182 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 13183 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 13184 else 13185 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 13186 if (!fw_dflt) 13187 return 0; 13188 13189 mutex_lock(&bp->link_lock); 13190 rc = bnxt_update_link(bp, false); 13191 if (rc) { 13192 mutex_unlock(&bp->link_lock); 13193 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 13194 rc); 13195 return rc; 13196 } 13197 13198 /* Older firmware does not have supported_auto_speeds, so assume 13199 * that all supported speeds can be autonegotiated. 13200 */ 13201 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 13202 link_info->support_auto_speeds = link_info->support_speeds; 13203 13204 bnxt_init_ethtool_link_settings(bp); 13205 mutex_unlock(&bp->link_lock); 13206 return 0; 13207 } 13208 13209 static int bnxt_get_max_irq(struct pci_dev *pdev) 13210 { 13211 u16 ctrl; 13212 13213 if (!pdev->msix_cap) 13214 return 1; 13215 13216 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 13217 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 13218 } 13219 13220 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13221 int *max_cp) 13222 { 13223 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13224 int max_ring_grps = 0, max_irq; 13225 13226 *max_tx = hw_resc->max_tx_rings; 13227 *max_rx = hw_resc->max_rx_rings; 13228 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 13229 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 13230 bnxt_get_ulp_msix_num(bp), 13231 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 13232 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 13233 *max_cp = min_t(int, *max_cp, max_irq); 13234 max_ring_grps = hw_resc->max_hw_ring_grps; 13235 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 13236 *max_cp -= 1; 13237 *max_rx -= 2; 13238 } 13239 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13240 *max_rx >>= 1; 13241 if (bp->flags & BNXT_FLAG_CHIP_P5) { 13242 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 13243 /* On P5 chips, max_cp output param should be available NQs */ 13244 *max_cp = max_irq; 13245 } 13246 *max_rx = min_t(int, *max_rx, max_ring_grps); 13247 } 13248 13249 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 13250 { 13251 int rx, tx, cp; 13252 13253 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 13254 *max_rx = rx; 13255 *max_tx = tx; 13256 if (!rx || !tx || !cp) 13257 return -ENOMEM; 13258 13259 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 13260 } 13261 13262 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13263 bool shared) 13264 { 13265 int rc; 13266 13267 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13268 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 13269 /* Not enough rings, try disabling agg rings. */ 13270 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 13271 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 13272 if (rc) { 13273 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 13274 bp->flags |= BNXT_FLAG_AGG_RINGS; 13275 return rc; 13276 } 13277 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 13278 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13279 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13280 bnxt_set_ring_params(bp); 13281 } 13282 13283 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 13284 int max_cp, max_stat, max_irq; 13285 13286 /* Reserve minimum resources for RoCE */ 13287 max_cp = bnxt_get_max_func_cp_rings(bp); 13288 max_stat = bnxt_get_max_func_stat_ctxs(bp); 13289 max_irq = bnxt_get_max_func_irqs(bp); 13290 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 13291 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 13292 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 13293 return 0; 13294 13295 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 13296 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 13297 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 13298 max_cp = min_t(int, max_cp, max_irq); 13299 max_cp = min_t(int, max_cp, max_stat); 13300 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 13301 if (rc) 13302 rc = 0; 13303 } 13304 return rc; 13305 } 13306 13307 /* In initial default shared ring setting, each shared ring must have a 13308 * RX/TX ring pair. 13309 */ 13310 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 13311 { 13312 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 13313 bp->rx_nr_rings = bp->cp_nr_rings; 13314 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 13315 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13316 } 13317 13318 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 13319 { 13320 int dflt_rings, max_rx_rings, max_tx_rings, rc; 13321 13322 if (!bnxt_can_reserve_rings(bp)) 13323 return 0; 13324 13325 if (sh) 13326 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13327 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13328 /* Reduce default rings on multi-port cards so that total default 13329 * rings do not exceed CPU count. 13330 */ 13331 if (bp->port_count > 1) { 13332 int max_rings = 13333 max_t(int, num_online_cpus() / bp->port_count, 1); 13334 13335 dflt_rings = min_t(int, dflt_rings, max_rings); 13336 } 13337 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13338 if (rc) 13339 return rc; 13340 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13341 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13342 if (sh) 13343 bnxt_trim_dflt_sh_rings(bp); 13344 else 13345 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13346 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13347 13348 rc = __bnxt_reserve_rings(bp); 13349 if (rc && rc != -ENODEV) 13350 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13351 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13352 if (sh) 13353 bnxt_trim_dflt_sh_rings(bp); 13354 13355 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13356 if (bnxt_need_reserve_rings(bp)) { 13357 rc = __bnxt_reserve_rings(bp); 13358 if (rc && rc != -ENODEV) 13359 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13360 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13361 } 13362 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13363 bp->rx_nr_rings++; 13364 bp->cp_nr_rings++; 13365 } 13366 if (rc) { 13367 bp->tx_nr_rings = 0; 13368 bp->rx_nr_rings = 0; 13369 } 13370 return rc; 13371 } 13372 13373 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13374 { 13375 int rc; 13376 13377 if (bp->tx_nr_rings) 13378 return 0; 13379 13380 bnxt_ulp_irq_stop(bp); 13381 bnxt_clear_int_mode(bp); 13382 rc = bnxt_set_dflt_rings(bp, true); 13383 if (rc) { 13384 if (BNXT_VF(bp) && rc == -ENODEV) 13385 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13386 else 13387 netdev_err(bp->dev, "Not enough rings available.\n"); 13388 goto init_dflt_ring_err; 13389 } 13390 rc = bnxt_init_int_mode(bp); 13391 if (rc) 13392 goto init_dflt_ring_err; 13393 13394 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13395 13396 bnxt_set_dflt_rfs(bp); 13397 13398 init_dflt_ring_err: 13399 bnxt_ulp_irq_restart(bp, rc); 13400 return rc; 13401 } 13402 13403 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13404 { 13405 int rc; 13406 13407 ASSERT_RTNL(); 13408 bnxt_hwrm_func_qcaps(bp); 13409 13410 if (netif_running(bp->dev)) 13411 __bnxt_close_nic(bp, true, false); 13412 13413 bnxt_ulp_irq_stop(bp); 13414 bnxt_clear_int_mode(bp); 13415 rc = bnxt_init_int_mode(bp); 13416 bnxt_ulp_irq_restart(bp, rc); 13417 13418 if (netif_running(bp->dev)) { 13419 if (rc) 13420 dev_close(bp->dev); 13421 else 13422 rc = bnxt_open_nic(bp, true, false); 13423 } 13424 13425 return rc; 13426 } 13427 13428 static int bnxt_init_mac_addr(struct bnxt *bp) 13429 { 13430 int rc = 0; 13431 13432 if (BNXT_PF(bp)) { 13433 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 13434 } else { 13435 #ifdef CONFIG_BNXT_SRIOV 13436 struct bnxt_vf_info *vf = &bp->vf; 13437 bool strict_approval = true; 13438 13439 if (is_valid_ether_addr(vf->mac_addr)) { 13440 /* overwrite netdev dev_addr with admin VF MAC */ 13441 eth_hw_addr_set(bp->dev, vf->mac_addr); 13442 /* Older PF driver or firmware may not approve this 13443 * correctly. 13444 */ 13445 strict_approval = false; 13446 } else { 13447 eth_hw_addr_random(bp->dev); 13448 } 13449 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13450 #endif 13451 } 13452 return rc; 13453 } 13454 13455 static void bnxt_vpd_read_info(struct bnxt *bp) 13456 { 13457 struct pci_dev *pdev = bp->pdev; 13458 unsigned int vpd_size, kw_len; 13459 int pos, size; 13460 u8 *vpd_data; 13461 13462 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 13463 if (IS_ERR(vpd_data)) { 13464 pci_warn(pdev, "Unable to read VPD\n"); 13465 return; 13466 } 13467 13468 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13469 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 13470 if (pos < 0) 13471 goto read_sn; 13472 13473 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13474 memcpy(bp->board_partno, &vpd_data[pos], size); 13475 13476 read_sn: 13477 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13478 PCI_VPD_RO_KEYWORD_SERIALNO, 13479 &kw_len); 13480 if (pos < 0) 13481 goto exit; 13482 13483 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13484 memcpy(bp->board_serialno, &vpd_data[pos], size); 13485 exit: 13486 kfree(vpd_data); 13487 } 13488 13489 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13490 { 13491 struct pci_dev *pdev = bp->pdev; 13492 u64 qword; 13493 13494 qword = pci_get_dsn(pdev); 13495 if (!qword) { 13496 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13497 return -EOPNOTSUPP; 13498 } 13499 13500 put_unaligned_le64(qword, dsn); 13501 13502 bp->flags |= BNXT_FLAG_DSN_VALID; 13503 return 0; 13504 } 13505 13506 static int bnxt_map_db_bar(struct bnxt *bp) 13507 { 13508 if (!bp->db_size) 13509 return -ENODEV; 13510 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13511 if (!bp->bar1) 13512 return -ENOMEM; 13513 return 0; 13514 } 13515 13516 void bnxt_print_device_info(struct bnxt *bp) 13517 { 13518 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 13519 board_info[bp->board_idx].name, 13520 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 13521 13522 pcie_print_link_status(bp->pdev); 13523 } 13524 13525 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13526 { 13527 struct net_device *dev; 13528 struct bnxt *bp; 13529 int rc, max_irqs; 13530 13531 if (pci_is_bridge(pdev)) 13532 return -ENODEV; 13533 13534 /* Clear any pending DMA transactions from crash kernel 13535 * while loading driver in capture kernel. 13536 */ 13537 if (is_kdump_kernel()) { 13538 pci_clear_master(pdev); 13539 pcie_flr(pdev); 13540 } 13541 13542 max_irqs = bnxt_get_max_irq(pdev); 13543 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13544 if (!dev) 13545 return -ENOMEM; 13546 13547 bp = netdev_priv(dev); 13548 bp->board_idx = ent->driver_data; 13549 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13550 bnxt_set_max_func_irqs(bp, max_irqs); 13551 13552 if (bnxt_vf_pciid(bp->board_idx)) 13553 bp->flags |= BNXT_FLAG_VF; 13554 13555 if (pdev->msix_cap) 13556 bp->flags |= BNXT_FLAG_MSIX_CAP; 13557 13558 rc = bnxt_init_board(pdev, dev); 13559 if (rc < 0) 13560 goto init_err_free; 13561 13562 dev->netdev_ops = &bnxt_netdev_ops; 13563 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13564 dev->ethtool_ops = &bnxt_ethtool_ops; 13565 pci_set_drvdata(pdev, dev); 13566 13567 rc = bnxt_alloc_hwrm_resources(bp); 13568 if (rc) 13569 goto init_err_pci_clean; 13570 13571 mutex_init(&bp->hwrm_cmd_lock); 13572 mutex_init(&bp->link_lock); 13573 13574 rc = bnxt_fw_init_one_p1(bp); 13575 if (rc) 13576 goto init_err_pci_clean; 13577 13578 if (BNXT_PF(bp)) 13579 bnxt_vpd_read_info(bp); 13580 13581 if (BNXT_CHIP_P5(bp)) { 13582 bp->flags |= BNXT_FLAG_CHIP_P5; 13583 if (BNXT_CHIP_SR2(bp)) 13584 bp->flags |= BNXT_FLAG_CHIP_SR2; 13585 } 13586 13587 rc = bnxt_alloc_rss_indir_tbl(bp); 13588 if (rc) 13589 goto init_err_pci_clean; 13590 13591 rc = bnxt_fw_init_one_p2(bp); 13592 if (rc) 13593 goto init_err_pci_clean; 13594 13595 rc = bnxt_map_db_bar(bp); 13596 if (rc) { 13597 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13598 rc); 13599 goto init_err_pci_clean; 13600 } 13601 13602 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13603 NETIF_F_TSO | NETIF_F_TSO6 | 13604 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13605 NETIF_F_GSO_IPXIP4 | 13606 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13607 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13608 NETIF_F_RXCSUM | NETIF_F_GRO; 13609 13610 if (BNXT_SUPPORTS_TPA(bp)) 13611 dev->hw_features |= NETIF_F_LRO; 13612 13613 dev->hw_enc_features = 13614 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13615 NETIF_F_TSO | NETIF_F_TSO6 | 13616 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13617 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13618 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13619 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13620 13621 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13622 NETIF_F_GSO_GRE_CSUM; 13623 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13624 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13625 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13626 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13627 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13628 if (BNXT_SUPPORTS_TPA(bp)) 13629 dev->hw_features |= NETIF_F_GRO_HW; 13630 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13631 if (dev->features & NETIF_F_GRO_HW) 13632 dev->features &= ~NETIF_F_LRO; 13633 dev->priv_flags |= IFF_UNICAST_FLT; 13634 13635 #ifdef CONFIG_BNXT_SRIOV 13636 init_waitqueue_head(&bp->sriov_cfg_wait); 13637 #endif 13638 if (BNXT_SUPPORTS_TPA(bp)) { 13639 bp->gro_func = bnxt_gro_func_5730x; 13640 if (BNXT_CHIP_P4(bp)) 13641 bp->gro_func = bnxt_gro_func_5731x; 13642 else if (BNXT_CHIP_P5(bp)) 13643 bp->gro_func = bnxt_gro_func_5750x; 13644 } 13645 if (!BNXT_CHIP_P4_PLUS(bp)) 13646 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13647 13648 rc = bnxt_init_mac_addr(bp); 13649 if (rc) { 13650 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13651 rc = -EADDRNOTAVAIL; 13652 goto init_err_pci_clean; 13653 } 13654 13655 if (BNXT_PF(bp)) { 13656 /* Read the adapter's DSN to use as the eswitch switch_id */ 13657 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13658 } 13659 13660 /* MTU range: 60 - FW defined max */ 13661 dev->min_mtu = ETH_ZLEN; 13662 dev->max_mtu = bp->max_mtu; 13663 13664 rc = bnxt_probe_phy(bp, true); 13665 if (rc) 13666 goto init_err_pci_clean; 13667 13668 bnxt_set_rx_skb_mode(bp, false); 13669 bnxt_set_tpa_flags(bp); 13670 bnxt_set_ring_params(bp); 13671 rc = bnxt_set_dflt_rings(bp, true); 13672 if (rc) { 13673 if (BNXT_VF(bp) && rc == -ENODEV) { 13674 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 13675 } else { 13676 netdev_err(bp->dev, "Not enough rings available.\n"); 13677 rc = -ENOMEM; 13678 } 13679 goto init_err_pci_clean; 13680 } 13681 13682 bnxt_fw_init_one_p3(bp); 13683 13684 bnxt_init_dflt_coal(bp); 13685 13686 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13687 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13688 13689 rc = bnxt_init_int_mode(bp); 13690 if (rc) 13691 goto init_err_pci_clean; 13692 13693 /* No TC has been set yet and rings may have been trimmed due to 13694 * limited MSIX, so we re-initialize the TX rings per TC. 13695 */ 13696 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13697 13698 if (BNXT_PF(bp)) { 13699 if (!bnxt_pf_wq) { 13700 bnxt_pf_wq = 13701 create_singlethread_workqueue("bnxt_pf_wq"); 13702 if (!bnxt_pf_wq) { 13703 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13704 rc = -ENOMEM; 13705 goto init_err_pci_clean; 13706 } 13707 } 13708 rc = bnxt_init_tc(bp); 13709 if (rc) 13710 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13711 rc); 13712 } 13713 13714 bnxt_inv_fw_health_reg(bp); 13715 rc = bnxt_dl_register(bp); 13716 if (rc) 13717 goto init_err_dl; 13718 13719 rc = register_netdev(dev); 13720 if (rc) 13721 goto init_err_cleanup; 13722 13723 if (BNXT_PF(bp)) 13724 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13725 bnxt_dl_fw_reporters_create(bp); 13726 13727 bnxt_print_device_info(bp); 13728 13729 pci_save_state(pdev); 13730 return 0; 13731 13732 init_err_cleanup: 13733 bnxt_dl_unregister(bp); 13734 init_err_dl: 13735 bnxt_shutdown_tc(bp); 13736 bnxt_clear_int_mode(bp); 13737 13738 init_err_pci_clean: 13739 bnxt_hwrm_func_drv_unrgtr(bp); 13740 bnxt_free_hwrm_resources(bp); 13741 bnxt_ethtool_free(bp); 13742 bnxt_ptp_clear(bp); 13743 kfree(bp->ptp_cfg); 13744 bp->ptp_cfg = NULL; 13745 kfree(bp->fw_health); 13746 bp->fw_health = NULL; 13747 bnxt_cleanup_pci(bp); 13748 bnxt_free_ctx_mem(bp); 13749 kfree(bp->ctx); 13750 bp->ctx = NULL; 13751 kfree(bp->rss_indir_tbl); 13752 bp->rss_indir_tbl = NULL; 13753 13754 init_err_free: 13755 free_netdev(dev); 13756 return rc; 13757 } 13758 13759 static void bnxt_shutdown(struct pci_dev *pdev) 13760 { 13761 struct net_device *dev = pci_get_drvdata(pdev); 13762 struct bnxt *bp; 13763 13764 if (!dev) 13765 return; 13766 13767 rtnl_lock(); 13768 bp = netdev_priv(dev); 13769 if (!bp) 13770 goto shutdown_exit; 13771 13772 if (netif_running(dev)) 13773 dev_close(dev); 13774 13775 bnxt_ulp_shutdown(bp); 13776 bnxt_clear_int_mode(bp); 13777 pci_disable_device(pdev); 13778 13779 if (system_state == SYSTEM_POWER_OFF) { 13780 pci_wake_from_d3(pdev, bp->wol); 13781 pci_set_power_state(pdev, PCI_D3hot); 13782 } 13783 13784 shutdown_exit: 13785 rtnl_unlock(); 13786 } 13787 13788 #ifdef CONFIG_PM_SLEEP 13789 static int bnxt_suspend(struct device *device) 13790 { 13791 struct net_device *dev = dev_get_drvdata(device); 13792 struct bnxt *bp = netdev_priv(dev); 13793 int rc = 0; 13794 13795 rtnl_lock(); 13796 bnxt_ulp_stop(bp); 13797 if (netif_running(dev)) { 13798 netif_device_detach(dev); 13799 rc = bnxt_close(dev); 13800 } 13801 bnxt_hwrm_func_drv_unrgtr(bp); 13802 pci_disable_device(bp->pdev); 13803 bnxt_free_ctx_mem(bp); 13804 kfree(bp->ctx); 13805 bp->ctx = NULL; 13806 rtnl_unlock(); 13807 return rc; 13808 } 13809 13810 static int bnxt_resume(struct device *device) 13811 { 13812 struct net_device *dev = dev_get_drvdata(device); 13813 struct bnxt *bp = netdev_priv(dev); 13814 int rc = 0; 13815 13816 rtnl_lock(); 13817 rc = pci_enable_device(bp->pdev); 13818 if (rc) { 13819 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13820 rc); 13821 goto resume_exit; 13822 } 13823 pci_set_master(bp->pdev); 13824 if (bnxt_hwrm_ver_get(bp)) { 13825 rc = -ENODEV; 13826 goto resume_exit; 13827 } 13828 rc = bnxt_hwrm_func_reset(bp); 13829 if (rc) { 13830 rc = -EBUSY; 13831 goto resume_exit; 13832 } 13833 13834 rc = bnxt_hwrm_func_qcaps(bp); 13835 if (rc) 13836 goto resume_exit; 13837 13838 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13839 rc = -ENODEV; 13840 goto resume_exit; 13841 } 13842 13843 bnxt_get_wol_settings(bp); 13844 if (netif_running(dev)) { 13845 rc = bnxt_open(dev); 13846 if (!rc) 13847 netif_device_attach(dev); 13848 } 13849 13850 resume_exit: 13851 bnxt_ulp_start(bp, rc); 13852 if (!rc) 13853 bnxt_reenable_sriov(bp); 13854 rtnl_unlock(); 13855 return rc; 13856 } 13857 13858 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13859 #define BNXT_PM_OPS (&bnxt_pm_ops) 13860 13861 #else 13862 13863 #define BNXT_PM_OPS NULL 13864 13865 #endif /* CONFIG_PM_SLEEP */ 13866 13867 /** 13868 * bnxt_io_error_detected - called when PCI error is detected 13869 * @pdev: Pointer to PCI device 13870 * @state: The current pci connection state 13871 * 13872 * This function is called after a PCI bus error affecting 13873 * this device has been detected. 13874 */ 13875 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13876 pci_channel_state_t state) 13877 { 13878 struct net_device *netdev = pci_get_drvdata(pdev); 13879 struct bnxt *bp = netdev_priv(netdev); 13880 13881 netdev_info(netdev, "PCI I/O error detected\n"); 13882 13883 rtnl_lock(); 13884 netif_device_detach(netdev); 13885 13886 bnxt_ulp_stop(bp); 13887 13888 if (state == pci_channel_io_perm_failure) { 13889 rtnl_unlock(); 13890 return PCI_ERS_RESULT_DISCONNECT; 13891 } 13892 13893 if (state == pci_channel_io_frozen) 13894 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13895 13896 if (netif_running(netdev)) 13897 bnxt_close(netdev); 13898 13899 if (pci_is_enabled(pdev)) 13900 pci_disable_device(pdev); 13901 bnxt_free_ctx_mem(bp); 13902 kfree(bp->ctx); 13903 bp->ctx = NULL; 13904 rtnl_unlock(); 13905 13906 /* Request a slot slot reset. */ 13907 return PCI_ERS_RESULT_NEED_RESET; 13908 } 13909 13910 /** 13911 * bnxt_io_slot_reset - called after the pci bus has been reset. 13912 * @pdev: Pointer to PCI device 13913 * 13914 * Restart the card from scratch, as if from a cold-boot. 13915 * At this point, the card has exprienced a hard reset, 13916 * followed by fixups by BIOS, and has its config space 13917 * set up identically to what it was at cold boot. 13918 */ 13919 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13920 { 13921 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13922 struct net_device *netdev = pci_get_drvdata(pdev); 13923 struct bnxt *bp = netdev_priv(netdev); 13924 int err = 0, off; 13925 13926 netdev_info(bp->dev, "PCI Slot Reset\n"); 13927 13928 rtnl_lock(); 13929 13930 if (pci_enable_device(pdev)) { 13931 dev_err(&pdev->dev, 13932 "Cannot re-enable PCI device after reset.\n"); 13933 } else { 13934 pci_set_master(pdev); 13935 /* Upon fatal error, our device internal logic that latches to 13936 * BAR value is getting reset and will restore only upon 13937 * rewritting the BARs. 13938 * 13939 * As pci_restore_state() does not re-write the BARs if the 13940 * value is same as saved value earlier, driver needs to 13941 * write the BARs to 0 to force restore, in case of fatal error. 13942 */ 13943 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13944 &bp->state)) { 13945 for (off = PCI_BASE_ADDRESS_0; 13946 off <= PCI_BASE_ADDRESS_5; off += 4) 13947 pci_write_config_dword(bp->pdev, off, 0); 13948 } 13949 pci_restore_state(pdev); 13950 pci_save_state(pdev); 13951 13952 err = bnxt_hwrm_func_reset(bp); 13953 if (!err) 13954 result = PCI_ERS_RESULT_RECOVERED; 13955 } 13956 13957 rtnl_unlock(); 13958 13959 return result; 13960 } 13961 13962 /** 13963 * bnxt_io_resume - called when traffic can start flowing again. 13964 * @pdev: Pointer to PCI device 13965 * 13966 * This callback is called when the error recovery driver tells 13967 * us that its OK to resume normal operation. 13968 */ 13969 static void bnxt_io_resume(struct pci_dev *pdev) 13970 { 13971 struct net_device *netdev = pci_get_drvdata(pdev); 13972 struct bnxt *bp = netdev_priv(netdev); 13973 int err; 13974 13975 netdev_info(bp->dev, "PCI Slot Resume\n"); 13976 rtnl_lock(); 13977 13978 err = bnxt_hwrm_func_qcaps(bp); 13979 if (!err && netif_running(netdev)) 13980 err = bnxt_open(netdev); 13981 13982 bnxt_ulp_start(bp, err); 13983 if (!err) { 13984 bnxt_reenable_sriov(bp); 13985 netif_device_attach(netdev); 13986 } 13987 13988 rtnl_unlock(); 13989 } 13990 13991 static const struct pci_error_handlers bnxt_err_handler = { 13992 .error_detected = bnxt_io_error_detected, 13993 .slot_reset = bnxt_io_slot_reset, 13994 .resume = bnxt_io_resume 13995 }; 13996 13997 static struct pci_driver bnxt_pci_driver = { 13998 .name = DRV_MODULE_NAME, 13999 .id_table = bnxt_pci_tbl, 14000 .probe = bnxt_init_one, 14001 .remove = bnxt_remove_one, 14002 .shutdown = bnxt_shutdown, 14003 .driver.pm = BNXT_PM_OPS, 14004 .err_handler = &bnxt_err_handler, 14005 #if defined(CONFIG_BNXT_SRIOV) 14006 .sriov_configure = bnxt_sriov_configure, 14007 #endif 14008 }; 14009 14010 static int __init bnxt_init(void) 14011 { 14012 bnxt_debug_init(); 14013 return pci_register_driver(&bnxt_pci_driver); 14014 } 14015 14016 static void __exit bnxt_exit(void) 14017 { 14018 pci_unregister_driver(&bnxt_pci_driver); 14019 if (bnxt_pf_wq) 14020 destroy_workqueue(bnxt_pf_wq); 14021 bnxt_debug_exit(); 14022 } 14023 14024 module_init(bnxt_init); 14025 module_exit(bnxt_exit); 14026