1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <linux/hwmon.h> 56 #include <linux/hwmon-sysfs.h> 57 #include <net/page_pool.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 73 #define BNXT_TX_TIMEOUT (5 * HZ) 74 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 75 NETIF_MSG_TX_ERR) 76 77 MODULE_LICENSE("GPL"); 78 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 79 80 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 81 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 82 #define BNXT_RX_COPY_THRESH 256 83 84 #define BNXT_TX_PUSH_THRESH 164 85 86 /* indexed by enum board_idx */ 87 static const struct { 88 char *name; 89 } board_info[] = { 90 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 91 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 92 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 93 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 94 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 95 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 96 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 97 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 98 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 99 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 100 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 101 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 102 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 103 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 104 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 105 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 107 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 108 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 109 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 110 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 111 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 112 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 113 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 114 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 115 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 116 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 117 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 118 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 119 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 120 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 122 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 123 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 124 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 125 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 126 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 127 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 128 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 129 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 130 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 131 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 132 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 133 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 134 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 135 }; 136 137 static const struct pci_device_id bnxt_pci_tbl[] = { 138 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 139 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 140 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 141 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 142 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 143 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 144 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 145 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 146 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 147 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 148 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 149 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 150 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 151 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 152 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 153 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 154 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 158 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 159 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 160 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 161 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 162 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 163 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 164 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 165 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 166 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 167 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 168 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 172 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 173 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 174 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 175 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 176 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 182 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 183 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 184 #ifdef CONFIG_BNXT_SRIOV 185 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 186 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 187 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 188 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 189 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 190 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 191 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 192 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 193 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 194 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 195 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 196 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 197 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 198 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 202 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 203 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 206 #endif 207 { 0 } 208 }; 209 210 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 211 212 static const u16 bnxt_vf_req_snif[] = { 213 HWRM_FUNC_CFG, 214 HWRM_FUNC_VF_CFG, 215 HWRM_PORT_PHY_QCFG, 216 HWRM_CFA_L2_FILTER_ALLOC, 217 }; 218 219 static const u16 bnxt_async_events_arr[] = { 220 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 221 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 222 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 223 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 224 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 225 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 226 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 227 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 228 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 229 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 230 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 231 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 232 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 233 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 234 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 235 }; 236 237 static struct workqueue_struct *bnxt_pf_wq; 238 239 static bool bnxt_vf_pciid(enum board_idx idx) 240 { 241 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 242 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 243 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 244 idx == NETXTREME_E_P5_VF_HV); 245 } 246 247 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 248 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 249 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 250 251 #define BNXT_CP_DB_IRQ_DIS(db) \ 252 writel(DB_CP_IRQ_DIS_FLAGS, db) 253 254 #define BNXT_DB_CQ(db, idx) \ 255 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 256 257 #define BNXT_DB_NQ_P5(db, idx) \ 258 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), \ 259 (db)->doorbell) 260 261 #define BNXT_DB_CQ_ARM(db, idx) \ 262 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 263 264 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 265 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\ 266 (db)->doorbell) 267 268 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 269 { 270 if (bp->flags & BNXT_FLAG_CHIP_P5) 271 BNXT_DB_NQ_P5(db, idx); 272 else 273 BNXT_DB_CQ(db, idx); 274 } 275 276 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 277 { 278 if (bp->flags & BNXT_FLAG_CHIP_P5) 279 BNXT_DB_NQ_ARM_P5(db, idx); 280 else 281 BNXT_DB_CQ_ARM(db, idx); 282 } 283 284 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 285 { 286 if (bp->flags & BNXT_FLAG_CHIP_P5) 287 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 288 RING_CMP(idx), db->doorbell); 289 else 290 BNXT_DB_CQ(db, idx); 291 } 292 293 const u16 bnxt_lhint_arr[] = { 294 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 295 TX_BD_FLAGS_LHINT_512_TO_1023, 296 TX_BD_FLAGS_LHINT_1024_TO_2047, 297 TX_BD_FLAGS_LHINT_1024_TO_2047, 298 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 299 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 300 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 301 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 302 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 303 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 304 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 305 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 306 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 307 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 308 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 309 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 310 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 311 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 312 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 313 }; 314 315 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 316 { 317 struct metadata_dst *md_dst = skb_metadata_dst(skb); 318 319 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 320 return 0; 321 322 return md_dst->u.port_info.port_id; 323 } 324 325 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 326 u16 prod) 327 { 328 bnxt_db_write(bp, &txr->tx_db, prod); 329 txr->kick_pending = 0; 330 } 331 332 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp, 333 struct bnxt_tx_ring_info *txr, 334 struct netdev_queue *txq) 335 { 336 netif_tx_stop_queue(txq); 337 338 /* netif_tx_stop_queue() must be done before checking 339 * tx index in bnxt_tx_avail() below, because in 340 * bnxt_tx_int(), we update tx index before checking for 341 * netif_tx_queue_stopped(). 342 */ 343 smp_mb(); 344 if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) { 345 netif_tx_wake_queue(txq); 346 return false; 347 } 348 349 return true; 350 } 351 352 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 353 { 354 struct bnxt *bp = netdev_priv(dev); 355 struct tx_bd *txbd; 356 struct tx_bd_ext *txbd1; 357 struct netdev_queue *txq; 358 int i; 359 dma_addr_t mapping; 360 unsigned int length, pad = 0; 361 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 362 u16 prod, last_frag; 363 struct pci_dev *pdev = bp->pdev; 364 struct bnxt_tx_ring_info *txr; 365 struct bnxt_sw_tx_bd *tx_buf; 366 __le32 lflags = 0; 367 368 i = skb_get_queue_mapping(skb); 369 if (unlikely(i >= bp->tx_nr_rings)) { 370 dev_kfree_skb_any(skb); 371 atomic_long_inc(&dev->tx_dropped); 372 return NETDEV_TX_OK; 373 } 374 375 txq = netdev_get_tx_queue(dev, i); 376 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 377 prod = txr->tx_prod; 378 379 free_size = bnxt_tx_avail(bp, txr); 380 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 381 /* We must have raced with NAPI cleanup */ 382 if (net_ratelimit() && txr->kick_pending) 383 netif_warn(bp, tx_err, dev, 384 "bnxt: ring busy w/ flush pending!\n"); 385 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq)) 386 return NETDEV_TX_BUSY; 387 } 388 389 length = skb->len; 390 len = skb_headlen(skb); 391 last_frag = skb_shinfo(skb)->nr_frags; 392 393 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 394 395 txbd->tx_bd_opaque = prod; 396 397 tx_buf = &txr->tx_buf_ring[prod]; 398 tx_buf->skb = skb; 399 tx_buf->nr_frags = last_frag; 400 401 vlan_tag_flags = 0; 402 cfa_action = bnxt_xmit_get_cfa_action(skb); 403 if (skb_vlan_tag_present(skb)) { 404 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 405 skb_vlan_tag_get(skb); 406 /* Currently supports 8021Q, 8021AD vlan offloads 407 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 408 */ 409 if (skb->vlan_proto == htons(ETH_P_8021Q)) 410 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 411 } 412 413 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 414 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 415 416 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) && 417 atomic_dec_if_positive(&ptp->tx_avail) >= 0) { 418 if (!bnxt_ptp_parse(skb, &ptp->tx_seqid, 419 &ptp->tx_hdr_off)) { 420 if (vlan_tag_flags) 421 ptp->tx_hdr_off += VLAN_HLEN; 422 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 423 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 424 } else { 425 atomic_inc(&bp->ptp_cfg->tx_avail); 426 } 427 } 428 } 429 430 if (unlikely(skb->no_fcs)) 431 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 432 433 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 434 !lflags) { 435 struct tx_push_buffer *tx_push_buf = txr->tx_push; 436 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 437 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 438 void __iomem *db = txr->tx_db.doorbell; 439 void *pdata = tx_push_buf->data; 440 u64 *end; 441 int j, push_len; 442 443 /* Set COAL_NOW to be ready quickly for the next push */ 444 tx_push->tx_bd_len_flags_type = 445 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 446 TX_BD_TYPE_LONG_TX_BD | 447 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 448 TX_BD_FLAGS_COAL_NOW | 449 TX_BD_FLAGS_PACKET_END | 450 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 451 452 if (skb->ip_summed == CHECKSUM_PARTIAL) 453 tx_push1->tx_bd_hsize_lflags = 454 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 455 else 456 tx_push1->tx_bd_hsize_lflags = 0; 457 458 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 459 tx_push1->tx_bd_cfa_action = 460 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 461 462 end = pdata + length; 463 end = PTR_ALIGN(end, 8) - 1; 464 *end = 0; 465 466 skb_copy_from_linear_data(skb, pdata, len); 467 pdata += len; 468 for (j = 0; j < last_frag; j++) { 469 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 470 void *fptr; 471 472 fptr = skb_frag_address_safe(frag); 473 if (!fptr) 474 goto normal_tx; 475 476 memcpy(pdata, fptr, skb_frag_size(frag)); 477 pdata += skb_frag_size(frag); 478 } 479 480 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 481 txbd->tx_bd_haddr = txr->data_mapping; 482 prod = NEXT_TX(prod); 483 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 484 memcpy(txbd, tx_push1, sizeof(*txbd)); 485 prod = NEXT_TX(prod); 486 tx_push->doorbell = 487 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 488 txr->tx_prod = prod; 489 490 tx_buf->is_push = 1; 491 netdev_tx_sent_queue(txq, skb->len); 492 wmb(); /* Sync is_push and byte queue before pushing data */ 493 494 push_len = (length + sizeof(*tx_push) + 7) / 8; 495 if (push_len > 16) { 496 __iowrite64_copy(db, tx_push_buf, 16); 497 __iowrite32_copy(db + 4, tx_push_buf + 1, 498 (push_len - 16) << 1); 499 } else { 500 __iowrite64_copy(db, tx_push_buf, push_len); 501 } 502 503 goto tx_done; 504 } 505 506 normal_tx: 507 if (length < BNXT_MIN_PKT_SIZE) { 508 pad = BNXT_MIN_PKT_SIZE - length; 509 if (skb_pad(skb, pad)) 510 /* SKB already freed. */ 511 goto tx_kick_pending; 512 length = BNXT_MIN_PKT_SIZE; 513 } 514 515 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 516 517 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 518 goto tx_free; 519 520 dma_unmap_addr_set(tx_buf, mapping, mapping); 521 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 522 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 523 524 txbd->tx_bd_haddr = cpu_to_le64(mapping); 525 526 prod = NEXT_TX(prod); 527 txbd1 = (struct tx_bd_ext *) 528 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 529 530 txbd1->tx_bd_hsize_lflags = lflags; 531 if (skb_is_gso(skb)) { 532 u32 hdr_len; 533 534 if (skb->encapsulation) 535 hdr_len = skb_inner_network_offset(skb) + 536 skb_inner_network_header_len(skb) + 537 inner_tcp_hdrlen(skb); 538 else 539 hdr_len = skb_transport_offset(skb) + 540 tcp_hdrlen(skb); 541 542 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 543 TX_BD_FLAGS_T_IPID | 544 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 545 length = skb_shinfo(skb)->gso_size; 546 txbd1->tx_bd_mss = cpu_to_le32(length); 547 length += hdr_len; 548 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 549 txbd1->tx_bd_hsize_lflags |= 550 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 551 txbd1->tx_bd_mss = 0; 552 } 553 554 length >>= 9; 555 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 556 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 557 skb->len); 558 i = 0; 559 goto tx_dma_error; 560 } 561 flags |= bnxt_lhint_arr[length]; 562 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 563 564 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 565 txbd1->tx_bd_cfa_action = 566 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 567 for (i = 0; i < last_frag; i++) { 568 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 569 570 prod = NEXT_TX(prod); 571 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 572 573 len = skb_frag_size(frag); 574 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 575 DMA_TO_DEVICE); 576 577 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 578 goto tx_dma_error; 579 580 tx_buf = &txr->tx_buf_ring[prod]; 581 dma_unmap_addr_set(tx_buf, mapping, mapping); 582 583 txbd->tx_bd_haddr = cpu_to_le64(mapping); 584 585 flags = len << TX_BD_LEN_SHIFT; 586 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 587 } 588 589 flags &= ~TX_BD_LEN; 590 txbd->tx_bd_len_flags_type = 591 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 592 TX_BD_FLAGS_PACKET_END); 593 594 netdev_tx_sent_queue(txq, skb->len); 595 596 skb_tx_timestamp(skb); 597 598 /* Sync BD data before updating doorbell */ 599 wmb(); 600 601 prod = NEXT_TX(prod); 602 txr->tx_prod = prod; 603 604 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 605 bnxt_txr_db_kick(bp, txr, prod); 606 else 607 txr->kick_pending = 1; 608 609 tx_done: 610 611 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 612 if (netdev_xmit_more() && !tx_buf->is_push) 613 bnxt_txr_db_kick(bp, txr, prod); 614 615 bnxt_txr_netif_try_stop_queue(bp, txr, txq); 616 } 617 return NETDEV_TX_OK; 618 619 tx_dma_error: 620 if (BNXT_TX_PTP_IS_SET(lflags)) 621 atomic_inc(&bp->ptp_cfg->tx_avail); 622 623 last_frag = i; 624 625 /* start back at beginning and unmap skb */ 626 prod = txr->tx_prod; 627 tx_buf = &txr->tx_buf_ring[prod]; 628 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 629 skb_headlen(skb), DMA_TO_DEVICE); 630 prod = NEXT_TX(prod); 631 632 /* unmap remaining mapped pages */ 633 for (i = 0; i < last_frag; i++) { 634 prod = NEXT_TX(prod); 635 tx_buf = &txr->tx_buf_ring[prod]; 636 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 637 skb_frag_size(&skb_shinfo(skb)->frags[i]), 638 DMA_TO_DEVICE); 639 } 640 641 tx_free: 642 dev_kfree_skb_any(skb); 643 tx_kick_pending: 644 if (txr->kick_pending) 645 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 646 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 647 atomic_long_inc(&dev->tx_dropped); 648 return NETDEV_TX_OK; 649 } 650 651 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 652 { 653 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 654 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 655 u16 cons = txr->tx_cons; 656 struct pci_dev *pdev = bp->pdev; 657 int i; 658 unsigned int tx_bytes = 0; 659 660 for (i = 0; i < nr_pkts; i++) { 661 struct bnxt_sw_tx_bd *tx_buf; 662 bool compl_deferred = false; 663 struct sk_buff *skb; 664 int j, last; 665 666 tx_buf = &txr->tx_buf_ring[cons]; 667 cons = NEXT_TX(cons); 668 skb = tx_buf->skb; 669 tx_buf->skb = NULL; 670 671 if (tx_buf->is_push) { 672 tx_buf->is_push = 0; 673 goto next_tx_int; 674 } 675 676 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 677 skb_headlen(skb), DMA_TO_DEVICE); 678 last = tx_buf->nr_frags; 679 680 for (j = 0; j < last; j++) { 681 cons = NEXT_TX(cons); 682 tx_buf = &txr->tx_buf_ring[cons]; 683 dma_unmap_page( 684 &pdev->dev, 685 dma_unmap_addr(tx_buf, mapping), 686 skb_frag_size(&skb_shinfo(skb)->frags[j]), 687 DMA_TO_DEVICE); 688 } 689 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 690 if (bp->flags & BNXT_FLAG_CHIP_P5) { 691 if (!bnxt_get_tx_ts_p5(bp, skb)) 692 compl_deferred = true; 693 else 694 atomic_inc(&bp->ptp_cfg->tx_avail); 695 } 696 } 697 698 next_tx_int: 699 cons = NEXT_TX(cons); 700 701 tx_bytes += skb->len; 702 if (!compl_deferred) 703 dev_kfree_skb_any(skb); 704 } 705 706 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 707 txr->tx_cons = cons; 708 709 /* Need to make the tx_cons update visible to bnxt_start_xmit() 710 * before checking for netif_tx_queue_stopped(). Without the 711 * memory barrier, there is a small possibility that bnxt_start_xmit() 712 * will miss it and cause the queue to be stopped forever. 713 */ 714 smp_mb(); 715 716 if (unlikely(netif_tx_queue_stopped(txq)) && 717 bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh && 718 READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING) 719 netif_tx_wake_queue(txq); 720 } 721 722 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 723 struct bnxt_rx_ring_info *rxr, 724 gfp_t gfp) 725 { 726 struct device *dev = &bp->pdev->dev; 727 struct page *page; 728 729 page = page_pool_dev_alloc_pages(rxr->page_pool); 730 if (!page) 731 return NULL; 732 733 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 734 DMA_ATTR_WEAK_ORDERING); 735 if (dma_mapping_error(dev, *mapping)) { 736 page_pool_recycle_direct(rxr->page_pool, page); 737 return NULL; 738 } 739 *mapping += bp->rx_dma_offset; 740 return page; 741 } 742 743 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 744 gfp_t gfp) 745 { 746 u8 *data; 747 struct pci_dev *pdev = bp->pdev; 748 749 data = kmalloc(bp->rx_buf_size, gfp); 750 if (!data) 751 return NULL; 752 753 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 754 bp->rx_buf_use_size, bp->rx_dir, 755 DMA_ATTR_WEAK_ORDERING); 756 757 if (dma_mapping_error(&pdev->dev, *mapping)) { 758 kfree(data); 759 data = NULL; 760 } 761 return data; 762 } 763 764 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 765 u16 prod, gfp_t gfp) 766 { 767 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 768 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 769 dma_addr_t mapping; 770 771 if (BNXT_RX_PAGE_MODE(bp)) { 772 struct page *page = 773 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 774 775 if (!page) 776 return -ENOMEM; 777 778 rx_buf->data = page; 779 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 780 } else { 781 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 782 783 if (!data) 784 return -ENOMEM; 785 786 rx_buf->data = data; 787 rx_buf->data_ptr = data + bp->rx_offset; 788 } 789 rx_buf->mapping = mapping; 790 791 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 792 return 0; 793 } 794 795 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 796 { 797 u16 prod = rxr->rx_prod; 798 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 799 struct rx_bd *cons_bd, *prod_bd; 800 801 prod_rx_buf = &rxr->rx_buf_ring[prod]; 802 cons_rx_buf = &rxr->rx_buf_ring[cons]; 803 804 prod_rx_buf->data = data; 805 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 806 807 prod_rx_buf->mapping = cons_rx_buf->mapping; 808 809 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 810 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 811 812 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 813 } 814 815 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 816 { 817 u16 next, max = rxr->rx_agg_bmap_size; 818 819 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 820 if (next >= max) 821 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 822 return next; 823 } 824 825 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 826 struct bnxt_rx_ring_info *rxr, 827 u16 prod, gfp_t gfp) 828 { 829 struct rx_bd *rxbd = 830 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 831 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 832 struct pci_dev *pdev = bp->pdev; 833 struct page *page; 834 dma_addr_t mapping; 835 u16 sw_prod = rxr->rx_sw_agg_prod; 836 unsigned int offset = 0; 837 838 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 839 page = rxr->rx_page; 840 if (!page) { 841 page = alloc_page(gfp); 842 if (!page) 843 return -ENOMEM; 844 rxr->rx_page = page; 845 rxr->rx_page_offset = 0; 846 } 847 offset = rxr->rx_page_offset; 848 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 849 if (rxr->rx_page_offset == PAGE_SIZE) 850 rxr->rx_page = NULL; 851 else 852 get_page(page); 853 } else { 854 page = alloc_page(gfp); 855 if (!page) 856 return -ENOMEM; 857 } 858 859 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 860 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 861 DMA_ATTR_WEAK_ORDERING); 862 if (dma_mapping_error(&pdev->dev, mapping)) { 863 __free_page(page); 864 return -EIO; 865 } 866 867 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 868 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 869 870 __set_bit(sw_prod, rxr->rx_agg_bmap); 871 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 872 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 873 874 rx_agg_buf->page = page; 875 rx_agg_buf->offset = offset; 876 rx_agg_buf->mapping = mapping; 877 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 878 rxbd->rx_bd_opaque = sw_prod; 879 return 0; 880 } 881 882 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 883 struct bnxt_cp_ring_info *cpr, 884 u16 cp_cons, u16 curr) 885 { 886 struct rx_agg_cmp *agg; 887 888 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 889 agg = (struct rx_agg_cmp *) 890 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 891 return agg; 892 } 893 894 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 895 struct bnxt_rx_ring_info *rxr, 896 u16 agg_id, u16 curr) 897 { 898 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 899 900 return &tpa_info->agg_arr[curr]; 901 } 902 903 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 904 u16 start, u32 agg_bufs, bool tpa) 905 { 906 struct bnxt_napi *bnapi = cpr->bnapi; 907 struct bnxt *bp = bnapi->bp; 908 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 909 u16 prod = rxr->rx_agg_prod; 910 u16 sw_prod = rxr->rx_sw_agg_prod; 911 bool p5_tpa = false; 912 u32 i; 913 914 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 915 p5_tpa = true; 916 917 for (i = 0; i < agg_bufs; i++) { 918 u16 cons; 919 struct rx_agg_cmp *agg; 920 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 921 struct rx_bd *prod_bd; 922 struct page *page; 923 924 if (p5_tpa) 925 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 926 else 927 agg = bnxt_get_agg(bp, cpr, idx, start + i); 928 cons = agg->rx_agg_cmp_opaque; 929 __clear_bit(cons, rxr->rx_agg_bmap); 930 931 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 932 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 933 934 __set_bit(sw_prod, rxr->rx_agg_bmap); 935 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 936 cons_rx_buf = &rxr->rx_agg_ring[cons]; 937 938 /* It is possible for sw_prod to be equal to cons, so 939 * set cons_rx_buf->page to NULL first. 940 */ 941 page = cons_rx_buf->page; 942 cons_rx_buf->page = NULL; 943 prod_rx_buf->page = page; 944 prod_rx_buf->offset = cons_rx_buf->offset; 945 946 prod_rx_buf->mapping = cons_rx_buf->mapping; 947 948 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 949 950 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 951 prod_bd->rx_bd_opaque = sw_prod; 952 953 prod = NEXT_RX_AGG(prod); 954 sw_prod = NEXT_RX_AGG(sw_prod); 955 } 956 rxr->rx_agg_prod = prod; 957 rxr->rx_sw_agg_prod = sw_prod; 958 } 959 960 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 961 struct bnxt_rx_ring_info *rxr, 962 u16 cons, void *data, u8 *data_ptr, 963 dma_addr_t dma_addr, 964 unsigned int offset_and_len) 965 { 966 unsigned int payload = offset_and_len >> 16; 967 unsigned int len = offset_and_len & 0xffff; 968 skb_frag_t *frag; 969 struct page *page = data; 970 u16 prod = rxr->rx_prod; 971 struct sk_buff *skb; 972 int off, err; 973 974 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 975 if (unlikely(err)) { 976 bnxt_reuse_rx_data(rxr, cons, data); 977 return NULL; 978 } 979 dma_addr -= bp->rx_dma_offset; 980 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 981 DMA_ATTR_WEAK_ORDERING); 982 page_pool_release_page(rxr->page_pool, page); 983 984 if (unlikely(!payload)) 985 payload = eth_get_headlen(bp->dev, data_ptr, len); 986 987 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 988 if (!skb) { 989 __free_page(page); 990 return NULL; 991 } 992 993 off = (void *)data_ptr - page_address(page); 994 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 995 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 996 payload + NET_IP_ALIGN); 997 998 frag = &skb_shinfo(skb)->frags[0]; 999 skb_frag_size_sub(frag, payload); 1000 skb_frag_off_add(frag, payload); 1001 skb->data_len -= payload; 1002 skb->tail += payload; 1003 1004 return skb; 1005 } 1006 1007 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1008 struct bnxt_rx_ring_info *rxr, u16 cons, 1009 void *data, u8 *data_ptr, 1010 dma_addr_t dma_addr, 1011 unsigned int offset_and_len) 1012 { 1013 u16 prod = rxr->rx_prod; 1014 struct sk_buff *skb; 1015 int err; 1016 1017 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1018 if (unlikely(err)) { 1019 bnxt_reuse_rx_data(rxr, cons, data); 1020 return NULL; 1021 } 1022 1023 skb = build_skb(data, 0); 1024 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1025 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1026 if (!skb) { 1027 kfree(data); 1028 return NULL; 1029 } 1030 1031 skb_reserve(skb, bp->rx_offset); 1032 skb_put(skb, offset_and_len & 0xffff); 1033 return skb; 1034 } 1035 1036 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1037 struct bnxt_cp_ring_info *cpr, 1038 struct sk_buff *skb, u16 idx, 1039 u32 agg_bufs, bool tpa) 1040 { 1041 struct bnxt_napi *bnapi = cpr->bnapi; 1042 struct pci_dev *pdev = bp->pdev; 1043 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1044 u16 prod = rxr->rx_agg_prod; 1045 bool p5_tpa = false; 1046 u32 i; 1047 1048 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1049 p5_tpa = true; 1050 1051 for (i = 0; i < agg_bufs; i++) { 1052 u16 cons, frag_len; 1053 struct rx_agg_cmp *agg; 1054 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1055 struct page *page; 1056 dma_addr_t mapping; 1057 1058 if (p5_tpa) 1059 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1060 else 1061 agg = bnxt_get_agg(bp, cpr, idx, i); 1062 cons = agg->rx_agg_cmp_opaque; 1063 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1064 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1065 1066 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1067 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1068 cons_rx_buf->offset, frag_len); 1069 __clear_bit(cons, rxr->rx_agg_bmap); 1070 1071 /* It is possible for bnxt_alloc_rx_page() to allocate 1072 * a sw_prod index that equals the cons index, so we 1073 * need to clear the cons entry now. 1074 */ 1075 mapping = cons_rx_buf->mapping; 1076 page = cons_rx_buf->page; 1077 cons_rx_buf->page = NULL; 1078 1079 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1080 struct skb_shared_info *shinfo; 1081 unsigned int nr_frags; 1082 1083 shinfo = skb_shinfo(skb); 1084 nr_frags = --shinfo->nr_frags; 1085 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1086 1087 dev_kfree_skb(skb); 1088 1089 cons_rx_buf->page = page; 1090 1091 /* Update prod since possibly some pages have been 1092 * allocated already. 1093 */ 1094 rxr->rx_agg_prod = prod; 1095 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1096 return NULL; 1097 } 1098 1099 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1100 DMA_FROM_DEVICE, 1101 DMA_ATTR_WEAK_ORDERING); 1102 1103 skb->data_len += frag_len; 1104 skb->len += frag_len; 1105 skb->truesize += PAGE_SIZE; 1106 1107 prod = NEXT_RX_AGG(prod); 1108 } 1109 rxr->rx_agg_prod = prod; 1110 return skb; 1111 } 1112 1113 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1114 u8 agg_bufs, u32 *raw_cons) 1115 { 1116 u16 last; 1117 struct rx_agg_cmp *agg; 1118 1119 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1120 last = RING_CMP(*raw_cons); 1121 agg = (struct rx_agg_cmp *) 1122 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1123 return RX_AGG_CMP_VALID(agg, *raw_cons); 1124 } 1125 1126 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1127 unsigned int len, 1128 dma_addr_t mapping) 1129 { 1130 struct bnxt *bp = bnapi->bp; 1131 struct pci_dev *pdev = bp->pdev; 1132 struct sk_buff *skb; 1133 1134 skb = napi_alloc_skb(&bnapi->napi, len); 1135 if (!skb) 1136 return NULL; 1137 1138 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1139 bp->rx_dir); 1140 1141 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1142 len + NET_IP_ALIGN); 1143 1144 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1145 bp->rx_dir); 1146 1147 skb_put(skb, len); 1148 return skb; 1149 } 1150 1151 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1152 u32 *raw_cons, void *cmp) 1153 { 1154 struct rx_cmp *rxcmp = cmp; 1155 u32 tmp_raw_cons = *raw_cons; 1156 u8 cmp_type, agg_bufs = 0; 1157 1158 cmp_type = RX_CMP_TYPE(rxcmp); 1159 1160 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1161 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1162 RX_CMP_AGG_BUFS) >> 1163 RX_CMP_AGG_BUFS_SHIFT; 1164 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1165 struct rx_tpa_end_cmp *tpa_end = cmp; 1166 1167 if (bp->flags & BNXT_FLAG_CHIP_P5) 1168 return 0; 1169 1170 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1171 } 1172 1173 if (agg_bufs) { 1174 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1175 return -EBUSY; 1176 } 1177 *raw_cons = tmp_raw_cons; 1178 return 0; 1179 } 1180 1181 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1182 { 1183 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1184 return; 1185 1186 if (BNXT_PF(bp)) 1187 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1188 else 1189 schedule_delayed_work(&bp->fw_reset_task, delay); 1190 } 1191 1192 static void bnxt_queue_sp_work(struct bnxt *bp) 1193 { 1194 if (BNXT_PF(bp)) 1195 queue_work(bnxt_pf_wq, &bp->sp_task); 1196 else 1197 schedule_work(&bp->sp_task); 1198 } 1199 1200 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1201 { 1202 if (!rxr->bnapi->in_reset) { 1203 rxr->bnapi->in_reset = true; 1204 if (bp->flags & BNXT_FLAG_CHIP_P5) 1205 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1206 else 1207 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1208 bnxt_queue_sp_work(bp); 1209 } 1210 rxr->rx_next_cons = 0xffff; 1211 } 1212 1213 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1214 { 1215 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1216 u16 idx = agg_id & MAX_TPA_P5_MASK; 1217 1218 if (test_bit(idx, map->agg_idx_bmap)) 1219 idx = find_first_zero_bit(map->agg_idx_bmap, 1220 BNXT_AGG_IDX_BMAP_SIZE); 1221 __set_bit(idx, map->agg_idx_bmap); 1222 map->agg_id_tbl[agg_id] = idx; 1223 return idx; 1224 } 1225 1226 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1227 { 1228 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1229 1230 __clear_bit(idx, map->agg_idx_bmap); 1231 } 1232 1233 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1234 { 1235 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1236 1237 return map->agg_id_tbl[agg_id]; 1238 } 1239 1240 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1241 struct rx_tpa_start_cmp *tpa_start, 1242 struct rx_tpa_start_cmp_ext *tpa_start1) 1243 { 1244 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1245 struct bnxt_tpa_info *tpa_info; 1246 u16 cons, prod, agg_id; 1247 struct rx_bd *prod_bd; 1248 dma_addr_t mapping; 1249 1250 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1251 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1252 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1253 } else { 1254 agg_id = TPA_START_AGG_ID(tpa_start); 1255 } 1256 cons = tpa_start->rx_tpa_start_cmp_opaque; 1257 prod = rxr->rx_prod; 1258 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1259 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1260 tpa_info = &rxr->rx_tpa[agg_id]; 1261 1262 if (unlikely(cons != rxr->rx_next_cons || 1263 TPA_START_ERROR(tpa_start))) { 1264 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1265 cons, rxr->rx_next_cons, 1266 TPA_START_ERROR_CODE(tpa_start1)); 1267 bnxt_sched_reset(bp, rxr); 1268 return; 1269 } 1270 /* Store cfa_code in tpa_info to use in tpa_end 1271 * completion processing. 1272 */ 1273 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1274 prod_rx_buf->data = tpa_info->data; 1275 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1276 1277 mapping = tpa_info->mapping; 1278 prod_rx_buf->mapping = mapping; 1279 1280 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1281 1282 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1283 1284 tpa_info->data = cons_rx_buf->data; 1285 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1286 cons_rx_buf->data = NULL; 1287 tpa_info->mapping = cons_rx_buf->mapping; 1288 1289 tpa_info->len = 1290 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1291 RX_TPA_START_CMP_LEN_SHIFT; 1292 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1293 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1294 1295 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1296 tpa_info->gso_type = SKB_GSO_TCPV4; 1297 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1298 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1299 tpa_info->gso_type = SKB_GSO_TCPV6; 1300 tpa_info->rss_hash = 1301 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1302 } else { 1303 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1304 tpa_info->gso_type = 0; 1305 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1306 } 1307 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1308 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1309 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1310 tpa_info->agg_count = 0; 1311 1312 rxr->rx_prod = NEXT_RX(prod); 1313 cons = NEXT_RX(cons); 1314 rxr->rx_next_cons = NEXT_RX(cons); 1315 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1316 1317 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1318 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1319 cons_rx_buf->data = NULL; 1320 } 1321 1322 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1323 { 1324 if (agg_bufs) 1325 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1326 } 1327 1328 #ifdef CONFIG_INET 1329 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1330 { 1331 struct udphdr *uh = NULL; 1332 1333 if (ip_proto == htons(ETH_P_IP)) { 1334 struct iphdr *iph = (struct iphdr *)skb->data; 1335 1336 if (iph->protocol == IPPROTO_UDP) 1337 uh = (struct udphdr *)(iph + 1); 1338 } else { 1339 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1340 1341 if (iph->nexthdr == IPPROTO_UDP) 1342 uh = (struct udphdr *)(iph + 1); 1343 } 1344 if (uh) { 1345 if (uh->check) 1346 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1347 else 1348 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1349 } 1350 } 1351 #endif 1352 1353 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1354 int payload_off, int tcp_ts, 1355 struct sk_buff *skb) 1356 { 1357 #ifdef CONFIG_INET 1358 struct tcphdr *th; 1359 int len, nw_off; 1360 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1361 u32 hdr_info = tpa_info->hdr_info; 1362 bool loopback = false; 1363 1364 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1365 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1366 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1367 1368 /* If the packet is an internal loopback packet, the offsets will 1369 * have an extra 4 bytes. 1370 */ 1371 if (inner_mac_off == 4) { 1372 loopback = true; 1373 } else if (inner_mac_off > 4) { 1374 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1375 ETH_HLEN - 2)); 1376 1377 /* We only support inner iPv4/ipv6. If we don't see the 1378 * correct protocol ID, it must be a loopback packet where 1379 * the offsets are off by 4. 1380 */ 1381 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1382 loopback = true; 1383 } 1384 if (loopback) { 1385 /* internal loopback packet, subtract all offsets by 4 */ 1386 inner_ip_off -= 4; 1387 inner_mac_off -= 4; 1388 outer_ip_off -= 4; 1389 } 1390 1391 nw_off = inner_ip_off - ETH_HLEN; 1392 skb_set_network_header(skb, nw_off); 1393 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1394 struct ipv6hdr *iph = ipv6_hdr(skb); 1395 1396 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1397 len = skb->len - skb_transport_offset(skb); 1398 th = tcp_hdr(skb); 1399 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1400 } else { 1401 struct iphdr *iph = ip_hdr(skb); 1402 1403 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1404 len = skb->len - skb_transport_offset(skb); 1405 th = tcp_hdr(skb); 1406 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1407 } 1408 1409 if (inner_mac_off) { /* tunnel */ 1410 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1411 ETH_HLEN - 2)); 1412 1413 bnxt_gro_tunnel(skb, proto); 1414 } 1415 #endif 1416 return skb; 1417 } 1418 1419 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1420 int payload_off, int tcp_ts, 1421 struct sk_buff *skb) 1422 { 1423 #ifdef CONFIG_INET 1424 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1425 u32 hdr_info = tpa_info->hdr_info; 1426 int iphdr_len, nw_off; 1427 1428 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1429 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1430 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1431 1432 nw_off = inner_ip_off - ETH_HLEN; 1433 skb_set_network_header(skb, nw_off); 1434 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1435 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1436 skb_set_transport_header(skb, nw_off + iphdr_len); 1437 1438 if (inner_mac_off) { /* tunnel */ 1439 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1440 ETH_HLEN - 2)); 1441 1442 bnxt_gro_tunnel(skb, proto); 1443 } 1444 #endif 1445 return skb; 1446 } 1447 1448 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1449 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1450 1451 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1452 int payload_off, int tcp_ts, 1453 struct sk_buff *skb) 1454 { 1455 #ifdef CONFIG_INET 1456 struct tcphdr *th; 1457 int len, nw_off, tcp_opt_len = 0; 1458 1459 if (tcp_ts) 1460 tcp_opt_len = 12; 1461 1462 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1463 struct iphdr *iph; 1464 1465 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1466 ETH_HLEN; 1467 skb_set_network_header(skb, nw_off); 1468 iph = ip_hdr(skb); 1469 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1470 len = skb->len - skb_transport_offset(skb); 1471 th = tcp_hdr(skb); 1472 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1473 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1474 struct ipv6hdr *iph; 1475 1476 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1477 ETH_HLEN; 1478 skb_set_network_header(skb, nw_off); 1479 iph = ipv6_hdr(skb); 1480 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1481 len = skb->len - skb_transport_offset(skb); 1482 th = tcp_hdr(skb); 1483 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1484 } else { 1485 dev_kfree_skb_any(skb); 1486 return NULL; 1487 } 1488 1489 if (nw_off) /* tunnel */ 1490 bnxt_gro_tunnel(skb, skb->protocol); 1491 #endif 1492 return skb; 1493 } 1494 1495 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1496 struct bnxt_tpa_info *tpa_info, 1497 struct rx_tpa_end_cmp *tpa_end, 1498 struct rx_tpa_end_cmp_ext *tpa_end1, 1499 struct sk_buff *skb) 1500 { 1501 #ifdef CONFIG_INET 1502 int payload_off; 1503 u16 segs; 1504 1505 segs = TPA_END_TPA_SEGS(tpa_end); 1506 if (segs == 1) 1507 return skb; 1508 1509 NAPI_GRO_CB(skb)->count = segs; 1510 skb_shinfo(skb)->gso_size = 1511 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1512 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1513 if (bp->flags & BNXT_FLAG_CHIP_P5) 1514 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1515 else 1516 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1517 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1518 if (likely(skb)) 1519 tcp_gro_complete(skb); 1520 #endif 1521 return skb; 1522 } 1523 1524 /* Given the cfa_code of a received packet determine which 1525 * netdev (vf-rep or PF) the packet is destined to. 1526 */ 1527 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1528 { 1529 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1530 1531 /* if vf-rep dev is NULL, the must belongs to the PF */ 1532 return dev ? dev : bp->dev; 1533 } 1534 1535 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1536 struct bnxt_cp_ring_info *cpr, 1537 u32 *raw_cons, 1538 struct rx_tpa_end_cmp *tpa_end, 1539 struct rx_tpa_end_cmp_ext *tpa_end1, 1540 u8 *event) 1541 { 1542 struct bnxt_napi *bnapi = cpr->bnapi; 1543 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1544 u8 *data_ptr, agg_bufs; 1545 unsigned int len; 1546 struct bnxt_tpa_info *tpa_info; 1547 dma_addr_t mapping; 1548 struct sk_buff *skb; 1549 u16 idx = 0, agg_id; 1550 void *data; 1551 bool gro; 1552 1553 if (unlikely(bnapi->in_reset)) { 1554 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1555 1556 if (rc < 0) 1557 return ERR_PTR(-EBUSY); 1558 return NULL; 1559 } 1560 1561 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1562 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1563 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1564 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1565 tpa_info = &rxr->rx_tpa[agg_id]; 1566 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1567 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1568 agg_bufs, tpa_info->agg_count); 1569 agg_bufs = tpa_info->agg_count; 1570 } 1571 tpa_info->agg_count = 0; 1572 *event |= BNXT_AGG_EVENT; 1573 bnxt_free_agg_idx(rxr, agg_id); 1574 idx = agg_id; 1575 gro = !!(bp->flags & BNXT_FLAG_GRO); 1576 } else { 1577 agg_id = TPA_END_AGG_ID(tpa_end); 1578 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1579 tpa_info = &rxr->rx_tpa[agg_id]; 1580 idx = RING_CMP(*raw_cons); 1581 if (agg_bufs) { 1582 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1583 return ERR_PTR(-EBUSY); 1584 1585 *event |= BNXT_AGG_EVENT; 1586 idx = NEXT_CMP(idx); 1587 } 1588 gro = !!TPA_END_GRO(tpa_end); 1589 } 1590 data = tpa_info->data; 1591 data_ptr = tpa_info->data_ptr; 1592 prefetch(data_ptr); 1593 len = tpa_info->len; 1594 mapping = tpa_info->mapping; 1595 1596 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1597 bnxt_abort_tpa(cpr, idx, agg_bufs); 1598 if (agg_bufs > MAX_SKB_FRAGS) 1599 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1600 agg_bufs, (int)MAX_SKB_FRAGS); 1601 return NULL; 1602 } 1603 1604 if (len <= bp->rx_copy_thresh) { 1605 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1606 if (!skb) { 1607 bnxt_abort_tpa(cpr, idx, agg_bufs); 1608 cpr->sw_stats.rx.rx_oom_discards += 1; 1609 return NULL; 1610 } 1611 } else { 1612 u8 *new_data; 1613 dma_addr_t new_mapping; 1614 1615 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1616 if (!new_data) { 1617 bnxt_abort_tpa(cpr, idx, agg_bufs); 1618 cpr->sw_stats.rx.rx_oom_discards += 1; 1619 return NULL; 1620 } 1621 1622 tpa_info->data = new_data; 1623 tpa_info->data_ptr = new_data + bp->rx_offset; 1624 tpa_info->mapping = new_mapping; 1625 1626 skb = build_skb(data, 0); 1627 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1628 bp->rx_buf_use_size, bp->rx_dir, 1629 DMA_ATTR_WEAK_ORDERING); 1630 1631 if (!skb) { 1632 kfree(data); 1633 bnxt_abort_tpa(cpr, idx, agg_bufs); 1634 cpr->sw_stats.rx.rx_oom_discards += 1; 1635 return NULL; 1636 } 1637 skb_reserve(skb, bp->rx_offset); 1638 skb_put(skb, len); 1639 } 1640 1641 if (agg_bufs) { 1642 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1643 if (!skb) { 1644 /* Page reuse already handled by bnxt_rx_pages(). */ 1645 cpr->sw_stats.rx.rx_oom_discards += 1; 1646 return NULL; 1647 } 1648 } 1649 1650 skb->protocol = 1651 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1652 1653 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1654 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1655 1656 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1657 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1658 __be16 vlan_proto = htons(tpa_info->metadata >> 1659 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1660 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1661 1662 if (eth_type_vlan(vlan_proto)) { 1663 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1664 } else { 1665 dev_kfree_skb(skb); 1666 return NULL; 1667 } 1668 } 1669 1670 skb_checksum_none_assert(skb); 1671 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1672 skb->ip_summed = CHECKSUM_UNNECESSARY; 1673 skb->csum_level = 1674 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1675 } 1676 1677 if (gro) 1678 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1679 1680 return skb; 1681 } 1682 1683 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1684 struct rx_agg_cmp *rx_agg) 1685 { 1686 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1687 struct bnxt_tpa_info *tpa_info; 1688 1689 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1690 tpa_info = &rxr->rx_tpa[agg_id]; 1691 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1692 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1693 } 1694 1695 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1696 struct sk_buff *skb) 1697 { 1698 if (skb->dev != bp->dev) { 1699 /* this packet belongs to a vf-rep */ 1700 bnxt_vf_rep_rx(bp, skb); 1701 return; 1702 } 1703 skb_record_rx_queue(skb, bnapi->index); 1704 napi_gro_receive(&bnapi->napi, skb); 1705 } 1706 1707 /* returns the following: 1708 * 1 - 1 packet successfully received 1709 * 0 - successful TPA_START, packet not completed yet 1710 * -EBUSY - completion ring does not have all the agg buffers yet 1711 * -ENOMEM - packet aborted due to out of memory 1712 * -EIO - packet aborted due to hw error indicated in BD 1713 */ 1714 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1715 u32 *raw_cons, u8 *event) 1716 { 1717 struct bnxt_napi *bnapi = cpr->bnapi; 1718 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1719 struct net_device *dev = bp->dev; 1720 struct rx_cmp *rxcmp; 1721 struct rx_cmp_ext *rxcmp1; 1722 u32 tmp_raw_cons = *raw_cons; 1723 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1724 struct bnxt_sw_rx_bd *rx_buf; 1725 unsigned int len; 1726 u8 *data_ptr, agg_bufs, cmp_type; 1727 dma_addr_t dma_addr; 1728 struct sk_buff *skb; 1729 u32 flags, misc; 1730 void *data; 1731 int rc = 0; 1732 1733 rxcmp = (struct rx_cmp *) 1734 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1735 1736 cmp_type = RX_CMP_TYPE(rxcmp); 1737 1738 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1739 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1740 goto next_rx_no_prod_no_len; 1741 } 1742 1743 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1744 cp_cons = RING_CMP(tmp_raw_cons); 1745 rxcmp1 = (struct rx_cmp_ext *) 1746 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1747 1748 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1749 return -EBUSY; 1750 1751 /* The valid test of the entry must be done first before 1752 * reading any further. 1753 */ 1754 dma_rmb(); 1755 prod = rxr->rx_prod; 1756 1757 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1758 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1759 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1760 1761 *event |= BNXT_RX_EVENT; 1762 goto next_rx_no_prod_no_len; 1763 1764 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1765 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1766 (struct rx_tpa_end_cmp *)rxcmp, 1767 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1768 1769 if (IS_ERR(skb)) 1770 return -EBUSY; 1771 1772 rc = -ENOMEM; 1773 if (likely(skb)) { 1774 bnxt_deliver_skb(bp, bnapi, skb); 1775 rc = 1; 1776 } 1777 *event |= BNXT_RX_EVENT; 1778 goto next_rx_no_prod_no_len; 1779 } 1780 1781 cons = rxcmp->rx_cmp_opaque; 1782 if (unlikely(cons != rxr->rx_next_cons)) { 1783 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 1784 1785 /* 0xffff is forced error, don't print it */ 1786 if (rxr->rx_next_cons != 0xffff) 1787 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1788 cons, rxr->rx_next_cons); 1789 bnxt_sched_reset(bp, rxr); 1790 if (rc1) 1791 return rc1; 1792 goto next_rx_no_prod_no_len; 1793 } 1794 rx_buf = &rxr->rx_buf_ring[cons]; 1795 data = rx_buf->data; 1796 data_ptr = rx_buf->data_ptr; 1797 prefetch(data_ptr); 1798 1799 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1800 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1801 1802 if (agg_bufs) { 1803 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1804 return -EBUSY; 1805 1806 cp_cons = NEXT_CMP(cp_cons); 1807 *event |= BNXT_AGG_EVENT; 1808 } 1809 *event |= BNXT_RX_EVENT; 1810 1811 rx_buf->data = NULL; 1812 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1813 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1814 1815 bnxt_reuse_rx_data(rxr, cons, data); 1816 if (agg_bufs) 1817 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1818 false); 1819 1820 rc = -EIO; 1821 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1822 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1823 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1824 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1825 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1826 rx_err); 1827 bnxt_sched_reset(bp, rxr); 1828 } 1829 } 1830 goto next_rx_no_len; 1831 } 1832 1833 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 1834 len = flags >> RX_CMP_LEN_SHIFT; 1835 dma_addr = rx_buf->mapping; 1836 1837 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1838 rc = 1; 1839 goto next_rx; 1840 } 1841 1842 if (len <= bp->rx_copy_thresh) { 1843 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1844 bnxt_reuse_rx_data(rxr, cons, data); 1845 if (!skb) { 1846 if (agg_bufs) 1847 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1848 agg_bufs, false); 1849 cpr->sw_stats.rx.rx_oom_discards += 1; 1850 rc = -ENOMEM; 1851 goto next_rx; 1852 } 1853 } else { 1854 u32 payload; 1855 1856 if (rx_buf->data_ptr == data_ptr) 1857 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1858 else 1859 payload = 0; 1860 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1861 payload | len); 1862 if (!skb) { 1863 cpr->sw_stats.rx.rx_oom_discards += 1; 1864 rc = -ENOMEM; 1865 goto next_rx; 1866 } 1867 } 1868 1869 if (agg_bufs) { 1870 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1871 if (!skb) { 1872 cpr->sw_stats.rx.rx_oom_discards += 1; 1873 rc = -ENOMEM; 1874 goto next_rx; 1875 } 1876 } 1877 1878 if (RX_CMP_HASH_VALID(rxcmp)) { 1879 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1880 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1881 1882 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1883 if (hash_type != 1 && hash_type != 3) 1884 type = PKT_HASH_TYPE_L3; 1885 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1886 } 1887 1888 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1889 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1890 1891 if ((rxcmp1->rx_cmp_flags2 & 1892 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1893 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1894 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1895 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1896 __be16 vlan_proto = htons(meta_data >> 1897 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1898 1899 if (eth_type_vlan(vlan_proto)) { 1900 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1901 } else { 1902 dev_kfree_skb(skb); 1903 goto next_rx; 1904 } 1905 } 1906 1907 skb_checksum_none_assert(skb); 1908 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1909 if (dev->features & NETIF_F_RXCSUM) { 1910 skb->ip_summed = CHECKSUM_UNNECESSARY; 1911 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1912 } 1913 } else { 1914 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1915 if (dev->features & NETIF_F_RXCSUM) 1916 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1917 } 1918 } 1919 1920 if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) == 1921 RX_CMP_FLAGS_ITYPE_PTP_W_TS)) { 1922 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1923 u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1924 u64 ns, ts; 1925 1926 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 1927 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 1928 1929 spin_lock_bh(&ptp->ptp_lock); 1930 ns = timecounter_cyc2time(&ptp->tc, ts); 1931 spin_unlock_bh(&ptp->ptp_lock); 1932 memset(skb_hwtstamps(skb), 0, 1933 sizeof(*skb_hwtstamps(skb))); 1934 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 1935 } 1936 } 1937 } 1938 bnxt_deliver_skb(bp, bnapi, skb); 1939 rc = 1; 1940 1941 next_rx: 1942 cpr->rx_packets += 1; 1943 cpr->rx_bytes += len; 1944 1945 next_rx_no_len: 1946 rxr->rx_prod = NEXT_RX(prod); 1947 rxr->rx_next_cons = NEXT_RX(cons); 1948 1949 next_rx_no_prod_no_len: 1950 *raw_cons = tmp_raw_cons; 1951 1952 return rc; 1953 } 1954 1955 /* In netpoll mode, if we are using a combined completion ring, we need to 1956 * discard the rx packets and recycle the buffers. 1957 */ 1958 static int bnxt_force_rx_discard(struct bnxt *bp, 1959 struct bnxt_cp_ring_info *cpr, 1960 u32 *raw_cons, u8 *event) 1961 { 1962 u32 tmp_raw_cons = *raw_cons; 1963 struct rx_cmp_ext *rxcmp1; 1964 struct rx_cmp *rxcmp; 1965 u16 cp_cons; 1966 u8 cmp_type; 1967 int rc; 1968 1969 cp_cons = RING_CMP(tmp_raw_cons); 1970 rxcmp = (struct rx_cmp *) 1971 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1972 1973 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1974 cp_cons = RING_CMP(tmp_raw_cons); 1975 rxcmp1 = (struct rx_cmp_ext *) 1976 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1977 1978 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1979 return -EBUSY; 1980 1981 /* The valid test of the entry must be done first before 1982 * reading any further. 1983 */ 1984 dma_rmb(); 1985 cmp_type = RX_CMP_TYPE(rxcmp); 1986 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1987 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 1988 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 1989 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1990 struct rx_tpa_end_cmp_ext *tpa_end1; 1991 1992 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 1993 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 1994 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 1995 } 1996 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 1997 if (rc && rc != -EBUSY) 1998 cpr->sw_stats.rx.rx_netpoll_discards += 1; 1999 return rc; 2000 } 2001 2002 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2003 { 2004 struct bnxt_fw_health *fw_health = bp->fw_health; 2005 u32 reg = fw_health->regs[reg_idx]; 2006 u32 reg_type, reg_off, val = 0; 2007 2008 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2009 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2010 switch (reg_type) { 2011 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2012 pci_read_config_dword(bp->pdev, reg_off, &val); 2013 break; 2014 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2015 reg_off = fw_health->mapped_regs[reg_idx]; 2016 fallthrough; 2017 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2018 val = readl(bp->bar0 + reg_off); 2019 break; 2020 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2021 val = readl(bp->bar1 + reg_off); 2022 break; 2023 } 2024 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2025 val &= fw_health->fw_reset_inprog_reg_mask; 2026 return val; 2027 } 2028 2029 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2030 { 2031 int i; 2032 2033 for (i = 0; i < bp->rx_nr_rings; i++) { 2034 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2035 struct bnxt_ring_grp_info *grp_info; 2036 2037 grp_info = &bp->grp_info[grp_idx]; 2038 if (grp_info->agg_fw_ring_id == ring_id) 2039 return grp_idx; 2040 } 2041 return INVALID_HW_RING_ID; 2042 } 2043 2044 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2045 { 2046 switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) { 2047 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2048 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2049 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2050 break; 2051 default: 2052 netdev_err(bp->dev, "FW reported unknown error type\n"); 2053 break; 2054 } 2055 } 2056 2057 #define BNXT_GET_EVENT_PORT(data) \ 2058 ((data) & \ 2059 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2060 2061 #define BNXT_EVENT_RING_TYPE(data2) \ 2062 ((data2) & \ 2063 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2064 2065 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2066 (BNXT_EVENT_RING_TYPE(data2) == \ 2067 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2068 2069 static int bnxt_async_event_process(struct bnxt *bp, 2070 struct hwrm_async_event_cmpl *cmpl) 2071 { 2072 u16 event_id = le16_to_cpu(cmpl->event_id); 2073 u32 data1 = le32_to_cpu(cmpl->event_data1); 2074 u32 data2 = le32_to_cpu(cmpl->event_data2); 2075 2076 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2077 switch (event_id) { 2078 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2079 struct bnxt_link_info *link_info = &bp->link_info; 2080 2081 if (BNXT_VF(bp)) 2082 goto async_event_process_exit; 2083 2084 /* print unsupported speed warning in forced speed mode only */ 2085 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2086 (data1 & 0x20000)) { 2087 u16 fw_speed = link_info->force_link_speed; 2088 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2089 2090 if (speed != SPEED_UNKNOWN) 2091 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2092 speed); 2093 } 2094 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2095 } 2096 fallthrough; 2097 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2098 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2099 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2100 fallthrough; 2101 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2102 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2103 break; 2104 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2105 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2106 break; 2107 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2108 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2109 2110 if (BNXT_VF(bp)) 2111 break; 2112 2113 if (bp->pf.port_id != port_id) 2114 break; 2115 2116 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2117 break; 2118 } 2119 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2120 if (BNXT_PF(bp)) 2121 goto async_event_process_exit; 2122 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2123 break; 2124 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2125 char *type_str = "Solicited"; 2126 2127 if (!bp->fw_health) 2128 goto async_event_process_exit; 2129 2130 bp->fw_reset_timestamp = jiffies; 2131 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2132 if (!bp->fw_reset_min_dsecs) 2133 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2134 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2135 if (!bp->fw_reset_max_dsecs) 2136 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2137 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2138 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2139 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2140 type_str = "Fatal"; 2141 bp->fw_health->fatalities++; 2142 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2143 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2144 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2145 type_str = "Non-fatal"; 2146 bp->fw_health->survivals++; 2147 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2148 } 2149 netif_warn(bp, hw, bp->dev, 2150 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2151 type_str, data1, data2, 2152 bp->fw_reset_min_dsecs * 100, 2153 bp->fw_reset_max_dsecs * 100); 2154 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2155 break; 2156 } 2157 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2158 struct bnxt_fw_health *fw_health = bp->fw_health; 2159 char *status_desc = "healthy"; 2160 u32 status; 2161 2162 if (!fw_health) 2163 goto async_event_process_exit; 2164 2165 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2166 fw_health->enabled = false; 2167 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2168 break; 2169 } 2170 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2171 fw_health->tmr_multiplier = 2172 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2173 bp->current_interval * 10); 2174 fw_health->tmr_counter = fw_health->tmr_multiplier; 2175 if (!fw_health->enabled) 2176 fw_health->last_fw_heartbeat = 2177 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2178 fw_health->last_fw_reset_cnt = 2179 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2180 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2181 if (status != BNXT_FW_STATUS_HEALTHY) 2182 status_desc = "unhealthy"; 2183 netif_info(bp, drv, bp->dev, 2184 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2185 fw_health->primary ? "primary" : "backup", status, 2186 status_desc, fw_health->last_fw_reset_cnt); 2187 if (!fw_health->enabled) { 2188 /* Make sure tmr_counter is set and visible to 2189 * bnxt_health_check() before setting enabled to true. 2190 */ 2191 smp_wmb(); 2192 fw_health->enabled = true; 2193 } 2194 goto async_event_process_exit; 2195 } 2196 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2197 netif_notice(bp, hw, bp->dev, 2198 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2199 data1, data2); 2200 goto async_event_process_exit; 2201 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2202 struct bnxt_rx_ring_info *rxr; 2203 u16 grp_idx; 2204 2205 if (bp->flags & BNXT_FLAG_CHIP_P5) 2206 goto async_event_process_exit; 2207 2208 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2209 BNXT_EVENT_RING_TYPE(data2), data1); 2210 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2211 goto async_event_process_exit; 2212 2213 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2214 if (grp_idx == INVALID_HW_RING_ID) { 2215 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2216 data1); 2217 goto async_event_process_exit; 2218 } 2219 rxr = bp->bnapi[grp_idx]->rx_ring; 2220 bnxt_sched_reset(bp, rxr); 2221 goto async_event_process_exit; 2222 } 2223 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2224 struct bnxt_fw_health *fw_health = bp->fw_health; 2225 2226 netif_notice(bp, hw, bp->dev, 2227 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2228 data1, data2); 2229 if (fw_health) { 2230 fw_health->echo_req_data1 = data1; 2231 fw_health->echo_req_data2 = data2; 2232 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2233 break; 2234 } 2235 goto async_event_process_exit; 2236 } 2237 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2238 bnxt_ptp_pps_event(bp, data1, data2); 2239 goto async_event_process_exit; 2240 } 2241 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2242 bnxt_event_error_report(bp, data1, data2); 2243 goto async_event_process_exit; 2244 } 2245 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2246 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2247 2248 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2249 goto async_event_process_exit; 2250 } 2251 default: 2252 goto async_event_process_exit; 2253 } 2254 bnxt_queue_sp_work(bp); 2255 async_event_process_exit: 2256 bnxt_ulp_async_events(bp, cmpl); 2257 return 0; 2258 } 2259 2260 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2261 { 2262 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2263 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2264 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2265 (struct hwrm_fwd_req_cmpl *)txcmp; 2266 2267 switch (cmpl_type) { 2268 case CMPL_BASE_TYPE_HWRM_DONE: 2269 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2270 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2271 break; 2272 2273 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2274 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2275 2276 if ((vf_id < bp->pf.first_vf_id) || 2277 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2278 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2279 vf_id); 2280 return -EINVAL; 2281 } 2282 2283 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2284 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2285 bnxt_queue_sp_work(bp); 2286 break; 2287 2288 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2289 bnxt_async_event_process(bp, 2290 (struct hwrm_async_event_cmpl *)txcmp); 2291 break; 2292 2293 default: 2294 break; 2295 } 2296 2297 return 0; 2298 } 2299 2300 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2301 { 2302 struct bnxt_napi *bnapi = dev_instance; 2303 struct bnxt *bp = bnapi->bp; 2304 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2305 u32 cons = RING_CMP(cpr->cp_raw_cons); 2306 2307 cpr->event_ctr++; 2308 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2309 napi_schedule(&bnapi->napi); 2310 return IRQ_HANDLED; 2311 } 2312 2313 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2314 { 2315 u32 raw_cons = cpr->cp_raw_cons; 2316 u16 cons = RING_CMP(raw_cons); 2317 struct tx_cmp *txcmp; 2318 2319 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2320 2321 return TX_CMP_VALID(txcmp, raw_cons); 2322 } 2323 2324 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2325 { 2326 struct bnxt_napi *bnapi = dev_instance; 2327 struct bnxt *bp = bnapi->bp; 2328 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2329 u32 cons = RING_CMP(cpr->cp_raw_cons); 2330 u32 int_status; 2331 2332 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2333 2334 if (!bnxt_has_work(bp, cpr)) { 2335 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2336 /* return if erroneous interrupt */ 2337 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2338 return IRQ_NONE; 2339 } 2340 2341 /* disable ring IRQ */ 2342 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2343 2344 /* Return here if interrupt is shared and is disabled. */ 2345 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2346 return IRQ_HANDLED; 2347 2348 napi_schedule(&bnapi->napi); 2349 return IRQ_HANDLED; 2350 } 2351 2352 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2353 int budget) 2354 { 2355 struct bnxt_napi *bnapi = cpr->bnapi; 2356 u32 raw_cons = cpr->cp_raw_cons; 2357 u32 cons; 2358 int tx_pkts = 0; 2359 int rx_pkts = 0; 2360 u8 event = 0; 2361 struct tx_cmp *txcmp; 2362 2363 cpr->has_more_work = 0; 2364 cpr->had_work_done = 1; 2365 while (1) { 2366 int rc; 2367 2368 cons = RING_CMP(raw_cons); 2369 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2370 2371 if (!TX_CMP_VALID(txcmp, raw_cons)) 2372 break; 2373 2374 /* The valid test of the entry must be done first before 2375 * reading any further. 2376 */ 2377 dma_rmb(); 2378 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2379 tx_pkts++; 2380 /* return full budget so NAPI will complete. */ 2381 if (unlikely(tx_pkts >= bp->tx_wake_thresh)) { 2382 rx_pkts = budget; 2383 raw_cons = NEXT_RAW_CMP(raw_cons); 2384 if (budget) 2385 cpr->has_more_work = 1; 2386 break; 2387 } 2388 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2389 if (likely(budget)) 2390 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2391 else 2392 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2393 &event); 2394 if (likely(rc >= 0)) 2395 rx_pkts += rc; 2396 /* Increment rx_pkts when rc is -ENOMEM to count towards 2397 * the NAPI budget. Otherwise, we may potentially loop 2398 * here forever if we consistently cannot allocate 2399 * buffers. 2400 */ 2401 else if (rc == -ENOMEM && budget) 2402 rx_pkts++; 2403 else if (rc == -EBUSY) /* partial completion */ 2404 break; 2405 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2406 CMPL_BASE_TYPE_HWRM_DONE) || 2407 (TX_CMP_TYPE(txcmp) == 2408 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2409 (TX_CMP_TYPE(txcmp) == 2410 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2411 bnxt_hwrm_handler(bp, txcmp); 2412 } 2413 raw_cons = NEXT_RAW_CMP(raw_cons); 2414 2415 if (rx_pkts && rx_pkts == budget) { 2416 cpr->has_more_work = 1; 2417 break; 2418 } 2419 } 2420 2421 if (event & BNXT_REDIRECT_EVENT) 2422 xdp_do_flush_map(); 2423 2424 if (event & BNXT_TX_EVENT) { 2425 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2426 u16 prod = txr->tx_prod; 2427 2428 /* Sync BD data before updating doorbell */ 2429 wmb(); 2430 2431 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2432 } 2433 2434 cpr->cp_raw_cons = raw_cons; 2435 bnapi->tx_pkts += tx_pkts; 2436 bnapi->events |= event; 2437 return rx_pkts; 2438 } 2439 2440 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2441 { 2442 if (bnapi->tx_pkts) { 2443 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2444 bnapi->tx_pkts = 0; 2445 } 2446 2447 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2448 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2449 2450 if (bnapi->events & BNXT_AGG_EVENT) 2451 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2452 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2453 } 2454 bnapi->events = 0; 2455 } 2456 2457 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2458 int budget) 2459 { 2460 struct bnxt_napi *bnapi = cpr->bnapi; 2461 int rx_pkts; 2462 2463 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2464 2465 /* ACK completion ring before freeing tx ring and producing new 2466 * buffers in rx/agg rings to prevent overflowing the completion 2467 * ring. 2468 */ 2469 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2470 2471 __bnxt_poll_work_done(bp, bnapi); 2472 return rx_pkts; 2473 } 2474 2475 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2476 { 2477 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2478 struct bnxt *bp = bnapi->bp; 2479 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2480 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2481 struct tx_cmp *txcmp; 2482 struct rx_cmp_ext *rxcmp1; 2483 u32 cp_cons, tmp_raw_cons; 2484 u32 raw_cons = cpr->cp_raw_cons; 2485 u32 rx_pkts = 0; 2486 u8 event = 0; 2487 2488 while (1) { 2489 int rc; 2490 2491 cp_cons = RING_CMP(raw_cons); 2492 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2493 2494 if (!TX_CMP_VALID(txcmp, raw_cons)) 2495 break; 2496 2497 /* The valid test of the entry must be done first before 2498 * reading any further. 2499 */ 2500 dma_rmb(); 2501 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2502 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2503 cp_cons = RING_CMP(tmp_raw_cons); 2504 rxcmp1 = (struct rx_cmp_ext *) 2505 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2506 2507 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2508 break; 2509 2510 /* force an error to recycle the buffer */ 2511 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2512 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2513 2514 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2515 if (likely(rc == -EIO) && budget) 2516 rx_pkts++; 2517 else if (rc == -EBUSY) /* partial completion */ 2518 break; 2519 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2520 CMPL_BASE_TYPE_HWRM_DONE)) { 2521 bnxt_hwrm_handler(bp, txcmp); 2522 } else { 2523 netdev_err(bp->dev, 2524 "Invalid completion received on special ring\n"); 2525 } 2526 raw_cons = NEXT_RAW_CMP(raw_cons); 2527 2528 if (rx_pkts == budget) 2529 break; 2530 } 2531 2532 cpr->cp_raw_cons = raw_cons; 2533 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2534 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2535 2536 if (event & BNXT_AGG_EVENT) 2537 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2538 2539 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2540 napi_complete_done(napi, rx_pkts); 2541 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2542 } 2543 return rx_pkts; 2544 } 2545 2546 static int bnxt_poll(struct napi_struct *napi, int budget) 2547 { 2548 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2549 struct bnxt *bp = bnapi->bp; 2550 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2551 int work_done = 0; 2552 2553 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2554 napi_complete(napi); 2555 return 0; 2556 } 2557 while (1) { 2558 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2559 2560 if (work_done >= budget) { 2561 if (!budget) 2562 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2563 break; 2564 } 2565 2566 if (!bnxt_has_work(bp, cpr)) { 2567 if (napi_complete_done(napi, work_done)) 2568 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2569 break; 2570 } 2571 } 2572 if (bp->flags & BNXT_FLAG_DIM) { 2573 struct dim_sample dim_sample = {}; 2574 2575 dim_update_sample(cpr->event_ctr, 2576 cpr->rx_packets, 2577 cpr->rx_bytes, 2578 &dim_sample); 2579 net_dim(&cpr->dim, dim_sample); 2580 } 2581 return work_done; 2582 } 2583 2584 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2585 { 2586 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2587 int i, work_done = 0; 2588 2589 for (i = 0; i < 2; i++) { 2590 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2591 2592 if (cpr2) { 2593 work_done += __bnxt_poll_work(bp, cpr2, 2594 budget - work_done); 2595 cpr->has_more_work |= cpr2->has_more_work; 2596 } 2597 } 2598 return work_done; 2599 } 2600 2601 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2602 u64 dbr_type) 2603 { 2604 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2605 int i; 2606 2607 for (i = 0; i < 2; i++) { 2608 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2609 struct bnxt_db_info *db; 2610 2611 if (cpr2 && cpr2->had_work_done) { 2612 db = &cpr2->cp_db; 2613 bnxt_writeq(bp, db->db_key64 | dbr_type | 2614 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2615 cpr2->had_work_done = 0; 2616 } 2617 } 2618 __bnxt_poll_work_done(bp, bnapi); 2619 } 2620 2621 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2622 { 2623 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2624 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2625 u32 raw_cons = cpr->cp_raw_cons; 2626 struct bnxt *bp = bnapi->bp; 2627 struct nqe_cn *nqcmp; 2628 int work_done = 0; 2629 u32 cons; 2630 2631 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 2632 napi_complete(napi); 2633 return 0; 2634 } 2635 if (cpr->has_more_work) { 2636 cpr->has_more_work = 0; 2637 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2638 } 2639 while (1) { 2640 cons = RING_CMP(raw_cons); 2641 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2642 2643 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2644 if (cpr->has_more_work) 2645 break; 2646 2647 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2648 cpr->cp_raw_cons = raw_cons; 2649 if (napi_complete_done(napi, work_done)) 2650 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2651 cpr->cp_raw_cons); 2652 return work_done; 2653 } 2654 2655 /* The valid test of the entry must be done first before 2656 * reading any further. 2657 */ 2658 dma_rmb(); 2659 2660 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2661 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2662 struct bnxt_cp_ring_info *cpr2; 2663 2664 cpr2 = cpr->cp_ring_arr[idx]; 2665 work_done += __bnxt_poll_work(bp, cpr2, 2666 budget - work_done); 2667 cpr->has_more_work |= cpr2->has_more_work; 2668 } else { 2669 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2670 } 2671 raw_cons = NEXT_RAW_CMP(raw_cons); 2672 } 2673 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2674 if (raw_cons != cpr->cp_raw_cons) { 2675 cpr->cp_raw_cons = raw_cons; 2676 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2677 } 2678 return work_done; 2679 } 2680 2681 static void bnxt_free_tx_skbs(struct bnxt *bp) 2682 { 2683 int i, max_idx; 2684 struct pci_dev *pdev = bp->pdev; 2685 2686 if (!bp->tx_ring) 2687 return; 2688 2689 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2690 for (i = 0; i < bp->tx_nr_rings; i++) { 2691 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2692 int j; 2693 2694 if (!txr->tx_buf_ring) 2695 continue; 2696 2697 for (j = 0; j < max_idx;) { 2698 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2699 struct sk_buff *skb; 2700 int k, last; 2701 2702 if (i < bp->tx_nr_rings_xdp && 2703 tx_buf->action == XDP_REDIRECT) { 2704 dma_unmap_single(&pdev->dev, 2705 dma_unmap_addr(tx_buf, mapping), 2706 dma_unmap_len(tx_buf, len), 2707 DMA_TO_DEVICE); 2708 xdp_return_frame(tx_buf->xdpf); 2709 tx_buf->action = 0; 2710 tx_buf->xdpf = NULL; 2711 j++; 2712 continue; 2713 } 2714 2715 skb = tx_buf->skb; 2716 if (!skb) { 2717 j++; 2718 continue; 2719 } 2720 2721 tx_buf->skb = NULL; 2722 2723 if (tx_buf->is_push) { 2724 dev_kfree_skb(skb); 2725 j += 2; 2726 continue; 2727 } 2728 2729 dma_unmap_single(&pdev->dev, 2730 dma_unmap_addr(tx_buf, mapping), 2731 skb_headlen(skb), 2732 DMA_TO_DEVICE); 2733 2734 last = tx_buf->nr_frags; 2735 j += 2; 2736 for (k = 0; k < last; k++, j++) { 2737 int ring_idx = j & bp->tx_ring_mask; 2738 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2739 2740 tx_buf = &txr->tx_buf_ring[ring_idx]; 2741 dma_unmap_page( 2742 &pdev->dev, 2743 dma_unmap_addr(tx_buf, mapping), 2744 skb_frag_size(frag), DMA_TO_DEVICE); 2745 } 2746 dev_kfree_skb(skb); 2747 } 2748 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2749 } 2750 } 2751 2752 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2753 { 2754 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2755 struct pci_dev *pdev = bp->pdev; 2756 struct bnxt_tpa_idx_map *map; 2757 int i, max_idx, max_agg_idx; 2758 2759 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2760 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2761 if (!rxr->rx_tpa) 2762 goto skip_rx_tpa_free; 2763 2764 for (i = 0; i < bp->max_tpa; i++) { 2765 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2766 u8 *data = tpa_info->data; 2767 2768 if (!data) 2769 continue; 2770 2771 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2772 bp->rx_buf_use_size, bp->rx_dir, 2773 DMA_ATTR_WEAK_ORDERING); 2774 2775 tpa_info->data = NULL; 2776 2777 kfree(data); 2778 } 2779 2780 skip_rx_tpa_free: 2781 if (!rxr->rx_buf_ring) 2782 goto skip_rx_buf_free; 2783 2784 for (i = 0; i < max_idx; i++) { 2785 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2786 dma_addr_t mapping = rx_buf->mapping; 2787 void *data = rx_buf->data; 2788 2789 if (!data) 2790 continue; 2791 2792 rx_buf->data = NULL; 2793 if (BNXT_RX_PAGE_MODE(bp)) { 2794 mapping -= bp->rx_dma_offset; 2795 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2796 bp->rx_dir, 2797 DMA_ATTR_WEAK_ORDERING); 2798 page_pool_recycle_direct(rxr->page_pool, data); 2799 } else { 2800 dma_unmap_single_attrs(&pdev->dev, mapping, 2801 bp->rx_buf_use_size, bp->rx_dir, 2802 DMA_ATTR_WEAK_ORDERING); 2803 kfree(data); 2804 } 2805 } 2806 2807 skip_rx_buf_free: 2808 if (!rxr->rx_agg_ring) 2809 goto skip_rx_agg_free; 2810 2811 for (i = 0; i < max_agg_idx; i++) { 2812 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2813 struct page *page = rx_agg_buf->page; 2814 2815 if (!page) 2816 continue; 2817 2818 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2819 BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE, 2820 DMA_ATTR_WEAK_ORDERING); 2821 2822 rx_agg_buf->page = NULL; 2823 __clear_bit(i, rxr->rx_agg_bmap); 2824 2825 __free_page(page); 2826 } 2827 2828 skip_rx_agg_free: 2829 if (rxr->rx_page) { 2830 __free_page(rxr->rx_page); 2831 rxr->rx_page = NULL; 2832 } 2833 map = rxr->rx_tpa_idx_map; 2834 if (map) 2835 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2836 } 2837 2838 static void bnxt_free_rx_skbs(struct bnxt *bp) 2839 { 2840 int i; 2841 2842 if (!bp->rx_ring) 2843 return; 2844 2845 for (i = 0; i < bp->rx_nr_rings; i++) 2846 bnxt_free_one_rx_ring_skbs(bp, i); 2847 } 2848 2849 static void bnxt_free_skbs(struct bnxt *bp) 2850 { 2851 bnxt_free_tx_skbs(bp); 2852 bnxt_free_rx_skbs(bp); 2853 } 2854 2855 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len) 2856 { 2857 u8 init_val = mem_init->init_val; 2858 u16 offset = mem_init->offset; 2859 u8 *p2 = p; 2860 int i; 2861 2862 if (!init_val) 2863 return; 2864 if (offset == BNXT_MEM_INVALID_OFFSET) { 2865 memset(p, init_val, len); 2866 return; 2867 } 2868 for (i = 0; i < len; i += mem_init->size) 2869 *(p2 + i + offset) = init_val; 2870 } 2871 2872 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2873 { 2874 struct pci_dev *pdev = bp->pdev; 2875 int i; 2876 2877 if (!rmem->pg_arr) 2878 goto skip_pages; 2879 2880 for (i = 0; i < rmem->nr_pages; i++) { 2881 if (!rmem->pg_arr[i]) 2882 continue; 2883 2884 dma_free_coherent(&pdev->dev, rmem->page_size, 2885 rmem->pg_arr[i], rmem->dma_arr[i]); 2886 2887 rmem->pg_arr[i] = NULL; 2888 } 2889 skip_pages: 2890 if (rmem->pg_tbl) { 2891 size_t pg_tbl_size = rmem->nr_pages * 8; 2892 2893 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2894 pg_tbl_size = rmem->page_size; 2895 dma_free_coherent(&pdev->dev, pg_tbl_size, 2896 rmem->pg_tbl, rmem->pg_tbl_map); 2897 rmem->pg_tbl = NULL; 2898 } 2899 if (rmem->vmem_size && *rmem->vmem) { 2900 vfree(*rmem->vmem); 2901 *rmem->vmem = NULL; 2902 } 2903 } 2904 2905 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2906 { 2907 struct pci_dev *pdev = bp->pdev; 2908 u64 valid_bit = 0; 2909 int i; 2910 2911 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2912 valid_bit = PTU_PTE_VALID; 2913 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2914 size_t pg_tbl_size = rmem->nr_pages * 8; 2915 2916 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2917 pg_tbl_size = rmem->page_size; 2918 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2919 &rmem->pg_tbl_map, 2920 GFP_KERNEL); 2921 if (!rmem->pg_tbl) 2922 return -ENOMEM; 2923 } 2924 2925 for (i = 0; i < rmem->nr_pages; i++) { 2926 u64 extra_bits = valid_bit; 2927 2928 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2929 rmem->page_size, 2930 &rmem->dma_arr[i], 2931 GFP_KERNEL); 2932 if (!rmem->pg_arr[i]) 2933 return -ENOMEM; 2934 2935 if (rmem->mem_init) 2936 bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i], 2937 rmem->page_size); 2938 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2939 if (i == rmem->nr_pages - 2 && 2940 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2941 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2942 else if (i == rmem->nr_pages - 1 && 2943 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2944 extra_bits |= PTU_PTE_LAST; 2945 rmem->pg_tbl[i] = 2946 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2947 } 2948 } 2949 2950 if (rmem->vmem_size) { 2951 *rmem->vmem = vzalloc(rmem->vmem_size); 2952 if (!(*rmem->vmem)) 2953 return -ENOMEM; 2954 } 2955 return 0; 2956 } 2957 2958 static void bnxt_free_tpa_info(struct bnxt *bp) 2959 { 2960 int i; 2961 2962 for (i = 0; i < bp->rx_nr_rings; i++) { 2963 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2964 2965 kfree(rxr->rx_tpa_idx_map); 2966 rxr->rx_tpa_idx_map = NULL; 2967 if (rxr->rx_tpa) { 2968 kfree(rxr->rx_tpa[0].agg_arr); 2969 rxr->rx_tpa[0].agg_arr = NULL; 2970 } 2971 kfree(rxr->rx_tpa); 2972 rxr->rx_tpa = NULL; 2973 } 2974 } 2975 2976 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2977 { 2978 int i, j, total_aggs = 0; 2979 2980 bp->max_tpa = MAX_TPA; 2981 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2982 if (!bp->max_tpa_v2) 2983 return 0; 2984 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 2985 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 2986 } 2987 2988 for (i = 0; i < bp->rx_nr_rings; i++) { 2989 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2990 struct rx_agg_cmp *agg; 2991 2992 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 2993 GFP_KERNEL); 2994 if (!rxr->rx_tpa) 2995 return -ENOMEM; 2996 2997 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 2998 continue; 2999 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 3000 rxr->rx_tpa[0].agg_arr = agg; 3001 if (!agg) 3002 return -ENOMEM; 3003 for (j = 1; j < bp->max_tpa; j++) 3004 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 3005 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3006 GFP_KERNEL); 3007 if (!rxr->rx_tpa_idx_map) 3008 return -ENOMEM; 3009 } 3010 return 0; 3011 } 3012 3013 static void bnxt_free_rx_rings(struct bnxt *bp) 3014 { 3015 int i; 3016 3017 if (!bp->rx_ring) 3018 return; 3019 3020 bnxt_free_tpa_info(bp); 3021 for (i = 0; i < bp->rx_nr_rings; i++) { 3022 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3023 struct bnxt_ring_struct *ring; 3024 3025 if (rxr->xdp_prog) 3026 bpf_prog_put(rxr->xdp_prog); 3027 3028 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3029 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3030 3031 page_pool_destroy(rxr->page_pool); 3032 rxr->page_pool = NULL; 3033 3034 kfree(rxr->rx_agg_bmap); 3035 rxr->rx_agg_bmap = NULL; 3036 3037 ring = &rxr->rx_ring_struct; 3038 bnxt_free_ring(bp, &ring->ring_mem); 3039 3040 ring = &rxr->rx_agg_ring_struct; 3041 bnxt_free_ring(bp, &ring->ring_mem); 3042 } 3043 } 3044 3045 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3046 struct bnxt_rx_ring_info *rxr) 3047 { 3048 struct page_pool_params pp = { 0 }; 3049 3050 pp.pool_size = bp->rx_ring_size; 3051 pp.nid = dev_to_node(&bp->pdev->dev); 3052 pp.dev = &bp->pdev->dev; 3053 pp.dma_dir = DMA_BIDIRECTIONAL; 3054 3055 rxr->page_pool = page_pool_create(&pp); 3056 if (IS_ERR(rxr->page_pool)) { 3057 int err = PTR_ERR(rxr->page_pool); 3058 3059 rxr->page_pool = NULL; 3060 return err; 3061 } 3062 return 0; 3063 } 3064 3065 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3066 { 3067 int i, rc = 0, agg_rings = 0; 3068 3069 if (!bp->rx_ring) 3070 return -ENOMEM; 3071 3072 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3073 agg_rings = 1; 3074 3075 for (i = 0; i < bp->rx_nr_rings; i++) { 3076 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3077 struct bnxt_ring_struct *ring; 3078 3079 ring = &rxr->rx_ring_struct; 3080 3081 rc = bnxt_alloc_rx_page_pool(bp, rxr); 3082 if (rc) 3083 return rc; 3084 3085 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3086 if (rc < 0) 3087 return rc; 3088 3089 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3090 MEM_TYPE_PAGE_POOL, 3091 rxr->page_pool); 3092 if (rc) { 3093 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3094 return rc; 3095 } 3096 3097 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3098 if (rc) 3099 return rc; 3100 3101 ring->grp_idx = i; 3102 if (agg_rings) { 3103 u16 mem_size; 3104 3105 ring = &rxr->rx_agg_ring_struct; 3106 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3107 if (rc) 3108 return rc; 3109 3110 ring->grp_idx = i; 3111 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3112 mem_size = rxr->rx_agg_bmap_size / 8; 3113 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3114 if (!rxr->rx_agg_bmap) 3115 return -ENOMEM; 3116 } 3117 } 3118 if (bp->flags & BNXT_FLAG_TPA) 3119 rc = bnxt_alloc_tpa_info(bp); 3120 return rc; 3121 } 3122 3123 static void bnxt_free_tx_rings(struct bnxt *bp) 3124 { 3125 int i; 3126 struct pci_dev *pdev = bp->pdev; 3127 3128 if (!bp->tx_ring) 3129 return; 3130 3131 for (i = 0; i < bp->tx_nr_rings; i++) { 3132 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3133 struct bnxt_ring_struct *ring; 3134 3135 if (txr->tx_push) { 3136 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3137 txr->tx_push, txr->tx_push_mapping); 3138 txr->tx_push = NULL; 3139 } 3140 3141 ring = &txr->tx_ring_struct; 3142 3143 bnxt_free_ring(bp, &ring->ring_mem); 3144 } 3145 } 3146 3147 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3148 { 3149 int i, j, rc; 3150 struct pci_dev *pdev = bp->pdev; 3151 3152 bp->tx_push_size = 0; 3153 if (bp->tx_push_thresh) { 3154 int push_size; 3155 3156 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3157 bp->tx_push_thresh); 3158 3159 if (push_size > 256) { 3160 push_size = 0; 3161 bp->tx_push_thresh = 0; 3162 } 3163 3164 bp->tx_push_size = push_size; 3165 } 3166 3167 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3168 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3169 struct bnxt_ring_struct *ring; 3170 u8 qidx; 3171 3172 ring = &txr->tx_ring_struct; 3173 3174 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3175 if (rc) 3176 return rc; 3177 3178 ring->grp_idx = txr->bnapi->index; 3179 if (bp->tx_push_size) { 3180 dma_addr_t mapping; 3181 3182 /* One pre-allocated DMA buffer to backup 3183 * TX push operation 3184 */ 3185 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3186 bp->tx_push_size, 3187 &txr->tx_push_mapping, 3188 GFP_KERNEL); 3189 3190 if (!txr->tx_push) 3191 return -ENOMEM; 3192 3193 mapping = txr->tx_push_mapping + 3194 sizeof(struct tx_push_bd); 3195 txr->data_mapping = cpu_to_le64(mapping); 3196 } 3197 qidx = bp->tc_to_qidx[j]; 3198 ring->queue_id = bp->q_info[qidx].queue_id; 3199 if (i < bp->tx_nr_rings_xdp) 3200 continue; 3201 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3202 j++; 3203 } 3204 return 0; 3205 } 3206 3207 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3208 { 3209 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3210 3211 kfree(cpr->cp_desc_ring); 3212 cpr->cp_desc_ring = NULL; 3213 ring->ring_mem.pg_arr = NULL; 3214 kfree(cpr->cp_desc_mapping); 3215 cpr->cp_desc_mapping = NULL; 3216 ring->ring_mem.dma_arr = NULL; 3217 } 3218 3219 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3220 { 3221 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3222 if (!cpr->cp_desc_ring) 3223 return -ENOMEM; 3224 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3225 GFP_KERNEL); 3226 if (!cpr->cp_desc_mapping) 3227 return -ENOMEM; 3228 return 0; 3229 } 3230 3231 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3232 { 3233 int i; 3234 3235 if (!bp->bnapi) 3236 return; 3237 for (i = 0; i < bp->cp_nr_rings; i++) { 3238 struct bnxt_napi *bnapi = bp->bnapi[i]; 3239 3240 if (!bnapi) 3241 continue; 3242 bnxt_free_cp_arrays(&bnapi->cp_ring); 3243 } 3244 } 3245 3246 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3247 { 3248 int i, n = bp->cp_nr_pages; 3249 3250 for (i = 0; i < bp->cp_nr_rings; i++) { 3251 struct bnxt_napi *bnapi = bp->bnapi[i]; 3252 int rc; 3253 3254 if (!bnapi) 3255 continue; 3256 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3257 if (rc) 3258 return rc; 3259 } 3260 return 0; 3261 } 3262 3263 static void bnxt_free_cp_rings(struct bnxt *bp) 3264 { 3265 int i; 3266 3267 if (!bp->bnapi) 3268 return; 3269 3270 for (i = 0; i < bp->cp_nr_rings; i++) { 3271 struct bnxt_napi *bnapi = bp->bnapi[i]; 3272 struct bnxt_cp_ring_info *cpr; 3273 struct bnxt_ring_struct *ring; 3274 int j; 3275 3276 if (!bnapi) 3277 continue; 3278 3279 cpr = &bnapi->cp_ring; 3280 ring = &cpr->cp_ring_struct; 3281 3282 bnxt_free_ring(bp, &ring->ring_mem); 3283 3284 for (j = 0; j < 2; j++) { 3285 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3286 3287 if (cpr2) { 3288 ring = &cpr2->cp_ring_struct; 3289 bnxt_free_ring(bp, &ring->ring_mem); 3290 bnxt_free_cp_arrays(cpr2); 3291 kfree(cpr2); 3292 cpr->cp_ring_arr[j] = NULL; 3293 } 3294 } 3295 } 3296 } 3297 3298 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3299 { 3300 struct bnxt_ring_mem_info *rmem; 3301 struct bnxt_ring_struct *ring; 3302 struct bnxt_cp_ring_info *cpr; 3303 int rc; 3304 3305 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3306 if (!cpr) 3307 return NULL; 3308 3309 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3310 if (rc) { 3311 bnxt_free_cp_arrays(cpr); 3312 kfree(cpr); 3313 return NULL; 3314 } 3315 ring = &cpr->cp_ring_struct; 3316 rmem = &ring->ring_mem; 3317 rmem->nr_pages = bp->cp_nr_pages; 3318 rmem->page_size = HW_CMPD_RING_SIZE; 3319 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3320 rmem->dma_arr = cpr->cp_desc_mapping; 3321 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3322 rc = bnxt_alloc_ring(bp, rmem); 3323 if (rc) { 3324 bnxt_free_ring(bp, rmem); 3325 bnxt_free_cp_arrays(cpr); 3326 kfree(cpr); 3327 cpr = NULL; 3328 } 3329 return cpr; 3330 } 3331 3332 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3333 { 3334 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3335 int i, rc, ulp_base_vec, ulp_msix; 3336 3337 ulp_msix = bnxt_get_ulp_msix_num(bp); 3338 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3339 for (i = 0; i < bp->cp_nr_rings; i++) { 3340 struct bnxt_napi *bnapi = bp->bnapi[i]; 3341 struct bnxt_cp_ring_info *cpr; 3342 struct bnxt_ring_struct *ring; 3343 3344 if (!bnapi) 3345 continue; 3346 3347 cpr = &bnapi->cp_ring; 3348 cpr->bnapi = bnapi; 3349 ring = &cpr->cp_ring_struct; 3350 3351 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3352 if (rc) 3353 return rc; 3354 3355 if (ulp_msix && i >= ulp_base_vec) 3356 ring->map_idx = i + ulp_msix; 3357 else 3358 ring->map_idx = i; 3359 3360 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3361 continue; 3362 3363 if (i < bp->rx_nr_rings) { 3364 struct bnxt_cp_ring_info *cpr2 = 3365 bnxt_alloc_cp_sub_ring(bp); 3366 3367 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3368 if (!cpr2) 3369 return -ENOMEM; 3370 cpr2->bnapi = bnapi; 3371 } 3372 if ((sh && i < bp->tx_nr_rings) || 3373 (!sh && i >= bp->rx_nr_rings)) { 3374 struct bnxt_cp_ring_info *cpr2 = 3375 bnxt_alloc_cp_sub_ring(bp); 3376 3377 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3378 if (!cpr2) 3379 return -ENOMEM; 3380 cpr2->bnapi = bnapi; 3381 } 3382 } 3383 return 0; 3384 } 3385 3386 static void bnxt_init_ring_struct(struct bnxt *bp) 3387 { 3388 int i; 3389 3390 for (i = 0; i < bp->cp_nr_rings; i++) { 3391 struct bnxt_napi *bnapi = bp->bnapi[i]; 3392 struct bnxt_ring_mem_info *rmem; 3393 struct bnxt_cp_ring_info *cpr; 3394 struct bnxt_rx_ring_info *rxr; 3395 struct bnxt_tx_ring_info *txr; 3396 struct bnxt_ring_struct *ring; 3397 3398 if (!bnapi) 3399 continue; 3400 3401 cpr = &bnapi->cp_ring; 3402 ring = &cpr->cp_ring_struct; 3403 rmem = &ring->ring_mem; 3404 rmem->nr_pages = bp->cp_nr_pages; 3405 rmem->page_size = HW_CMPD_RING_SIZE; 3406 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3407 rmem->dma_arr = cpr->cp_desc_mapping; 3408 rmem->vmem_size = 0; 3409 3410 rxr = bnapi->rx_ring; 3411 if (!rxr) 3412 goto skip_rx; 3413 3414 ring = &rxr->rx_ring_struct; 3415 rmem = &ring->ring_mem; 3416 rmem->nr_pages = bp->rx_nr_pages; 3417 rmem->page_size = HW_RXBD_RING_SIZE; 3418 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3419 rmem->dma_arr = rxr->rx_desc_mapping; 3420 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3421 rmem->vmem = (void **)&rxr->rx_buf_ring; 3422 3423 ring = &rxr->rx_agg_ring_struct; 3424 rmem = &ring->ring_mem; 3425 rmem->nr_pages = bp->rx_agg_nr_pages; 3426 rmem->page_size = HW_RXBD_RING_SIZE; 3427 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3428 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3429 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3430 rmem->vmem = (void **)&rxr->rx_agg_ring; 3431 3432 skip_rx: 3433 txr = bnapi->tx_ring; 3434 if (!txr) 3435 continue; 3436 3437 ring = &txr->tx_ring_struct; 3438 rmem = &ring->ring_mem; 3439 rmem->nr_pages = bp->tx_nr_pages; 3440 rmem->page_size = HW_RXBD_RING_SIZE; 3441 rmem->pg_arr = (void **)txr->tx_desc_ring; 3442 rmem->dma_arr = txr->tx_desc_mapping; 3443 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3444 rmem->vmem = (void **)&txr->tx_buf_ring; 3445 } 3446 } 3447 3448 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3449 { 3450 int i; 3451 u32 prod; 3452 struct rx_bd **rx_buf_ring; 3453 3454 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3455 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3456 int j; 3457 struct rx_bd *rxbd; 3458 3459 rxbd = rx_buf_ring[i]; 3460 if (!rxbd) 3461 continue; 3462 3463 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3464 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3465 rxbd->rx_bd_opaque = prod; 3466 } 3467 } 3468 } 3469 3470 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3471 { 3472 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3473 struct net_device *dev = bp->dev; 3474 u32 prod; 3475 int i; 3476 3477 prod = rxr->rx_prod; 3478 for (i = 0; i < bp->rx_ring_size; i++) { 3479 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3480 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3481 ring_nr, i, bp->rx_ring_size); 3482 break; 3483 } 3484 prod = NEXT_RX(prod); 3485 } 3486 rxr->rx_prod = prod; 3487 3488 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3489 return 0; 3490 3491 prod = rxr->rx_agg_prod; 3492 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3493 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3494 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3495 ring_nr, i, bp->rx_ring_size); 3496 break; 3497 } 3498 prod = NEXT_RX_AGG(prod); 3499 } 3500 rxr->rx_agg_prod = prod; 3501 3502 if (rxr->rx_tpa) { 3503 dma_addr_t mapping; 3504 u8 *data; 3505 3506 for (i = 0; i < bp->max_tpa; i++) { 3507 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3508 if (!data) 3509 return -ENOMEM; 3510 3511 rxr->rx_tpa[i].data = data; 3512 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3513 rxr->rx_tpa[i].mapping = mapping; 3514 } 3515 } 3516 return 0; 3517 } 3518 3519 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3520 { 3521 struct bnxt_rx_ring_info *rxr; 3522 struct bnxt_ring_struct *ring; 3523 u32 type; 3524 3525 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3526 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3527 3528 if (NET_IP_ALIGN == 2) 3529 type |= RX_BD_FLAGS_SOP; 3530 3531 rxr = &bp->rx_ring[ring_nr]; 3532 ring = &rxr->rx_ring_struct; 3533 bnxt_init_rxbd_pages(ring, type); 3534 3535 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3536 bpf_prog_add(bp->xdp_prog, 1); 3537 rxr->xdp_prog = bp->xdp_prog; 3538 } 3539 ring->fw_ring_id = INVALID_HW_RING_ID; 3540 3541 ring = &rxr->rx_agg_ring_struct; 3542 ring->fw_ring_id = INVALID_HW_RING_ID; 3543 3544 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3545 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3546 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3547 3548 bnxt_init_rxbd_pages(ring, type); 3549 } 3550 3551 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3552 } 3553 3554 static void bnxt_init_cp_rings(struct bnxt *bp) 3555 { 3556 int i, j; 3557 3558 for (i = 0; i < bp->cp_nr_rings; i++) { 3559 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3560 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3561 3562 ring->fw_ring_id = INVALID_HW_RING_ID; 3563 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3564 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3565 for (j = 0; j < 2; j++) { 3566 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3567 3568 if (!cpr2) 3569 continue; 3570 3571 ring = &cpr2->cp_ring_struct; 3572 ring->fw_ring_id = INVALID_HW_RING_ID; 3573 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3574 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3575 } 3576 } 3577 } 3578 3579 static int bnxt_init_rx_rings(struct bnxt *bp) 3580 { 3581 int i, rc = 0; 3582 3583 if (BNXT_RX_PAGE_MODE(bp)) { 3584 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3585 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3586 } else { 3587 bp->rx_offset = BNXT_RX_OFFSET; 3588 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3589 } 3590 3591 for (i = 0; i < bp->rx_nr_rings; i++) { 3592 rc = bnxt_init_one_rx_ring(bp, i); 3593 if (rc) 3594 break; 3595 } 3596 3597 return rc; 3598 } 3599 3600 static int bnxt_init_tx_rings(struct bnxt *bp) 3601 { 3602 u16 i; 3603 3604 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3605 BNXT_MIN_TX_DESC_CNT); 3606 3607 for (i = 0; i < bp->tx_nr_rings; i++) { 3608 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3609 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3610 3611 ring->fw_ring_id = INVALID_HW_RING_ID; 3612 } 3613 3614 return 0; 3615 } 3616 3617 static void bnxt_free_ring_grps(struct bnxt *bp) 3618 { 3619 kfree(bp->grp_info); 3620 bp->grp_info = NULL; 3621 } 3622 3623 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3624 { 3625 int i; 3626 3627 if (irq_re_init) { 3628 bp->grp_info = kcalloc(bp->cp_nr_rings, 3629 sizeof(struct bnxt_ring_grp_info), 3630 GFP_KERNEL); 3631 if (!bp->grp_info) 3632 return -ENOMEM; 3633 } 3634 for (i = 0; i < bp->cp_nr_rings; i++) { 3635 if (irq_re_init) 3636 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3637 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3638 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3639 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3640 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3641 } 3642 return 0; 3643 } 3644 3645 static void bnxt_free_vnics(struct bnxt *bp) 3646 { 3647 kfree(bp->vnic_info); 3648 bp->vnic_info = NULL; 3649 bp->nr_vnics = 0; 3650 } 3651 3652 static int bnxt_alloc_vnics(struct bnxt *bp) 3653 { 3654 int num_vnics = 1; 3655 3656 #ifdef CONFIG_RFS_ACCEL 3657 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3658 num_vnics += bp->rx_nr_rings; 3659 #endif 3660 3661 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3662 num_vnics++; 3663 3664 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3665 GFP_KERNEL); 3666 if (!bp->vnic_info) 3667 return -ENOMEM; 3668 3669 bp->nr_vnics = num_vnics; 3670 return 0; 3671 } 3672 3673 static void bnxt_init_vnics(struct bnxt *bp) 3674 { 3675 int i; 3676 3677 for (i = 0; i < bp->nr_vnics; i++) { 3678 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3679 int j; 3680 3681 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3682 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3683 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3684 3685 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3686 3687 if (bp->vnic_info[i].rss_hash_key) { 3688 if (i == 0) 3689 prandom_bytes(vnic->rss_hash_key, 3690 HW_HASH_KEY_SIZE); 3691 else 3692 memcpy(vnic->rss_hash_key, 3693 bp->vnic_info[0].rss_hash_key, 3694 HW_HASH_KEY_SIZE); 3695 } 3696 } 3697 } 3698 3699 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3700 { 3701 int pages; 3702 3703 pages = ring_size / desc_per_pg; 3704 3705 if (!pages) 3706 return 1; 3707 3708 pages++; 3709 3710 while (pages & (pages - 1)) 3711 pages++; 3712 3713 return pages; 3714 } 3715 3716 void bnxt_set_tpa_flags(struct bnxt *bp) 3717 { 3718 bp->flags &= ~BNXT_FLAG_TPA; 3719 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3720 return; 3721 if (bp->dev->features & NETIF_F_LRO) 3722 bp->flags |= BNXT_FLAG_LRO; 3723 else if (bp->dev->features & NETIF_F_GRO_HW) 3724 bp->flags |= BNXT_FLAG_GRO; 3725 } 3726 3727 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3728 * be set on entry. 3729 */ 3730 void bnxt_set_ring_params(struct bnxt *bp) 3731 { 3732 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3733 u32 agg_factor = 0, agg_ring_size = 0; 3734 3735 /* 8 for CRC and VLAN */ 3736 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3737 3738 rx_space = rx_size + NET_SKB_PAD + 3739 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3740 3741 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3742 ring_size = bp->rx_ring_size; 3743 bp->rx_agg_ring_size = 0; 3744 bp->rx_agg_nr_pages = 0; 3745 3746 if (bp->flags & BNXT_FLAG_TPA) 3747 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3748 3749 bp->flags &= ~BNXT_FLAG_JUMBO; 3750 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3751 u32 jumbo_factor; 3752 3753 bp->flags |= BNXT_FLAG_JUMBO; 3754 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3755 if (jumbo_factor > agg_factor) 3756 agg_factor = jumbo_factor; 3757 } 3758 if (agg_factor) { 3759 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 3760 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 3761 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 3762 bp->rx_ring_size, ring_size); 3763 bp->rx_ring_size = ring_size; 3764 } 3765 agg_ring_size = ring_size * agg_factor; 3766 3767 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3768 RX_DESC_CNT); 3769 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3770 u32 tmp = agg_ring_size; 3771 3772 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3773 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3774 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3775 tmp, agg_ring_size); 3776 } 3777 bp->rx_agg_ring_size = agg_ring_size; 3778 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3779 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3780 rx_space = rx_size + NET_SKB_PAD + 3781 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3782 } 3783 3784 bp->rx_buf_use_size = rx_size; 3785 bp->rx_buf_size = rx_space; 3786 3787 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3788 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3789 3790 ring_size = bp->tx_ring_size; 3791 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3792 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3793 3794 max_rx_cmpl = bp->rx_ring_size; 3795 /* MAX TPA needs to be added because TPA_START completions are 3796 * immediately recycled, so the TPA completions are not bound by 3797 * the RX ring size. 3798 */ 3799 if (bp->flags & BNXT_FLAG_TPA) 3800 max_rx_cmpl += bp->max_tpa; 3801 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3802 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3803 bp->cp_ring_size = ring_size; 3804 3805 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3806 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3807 bp->cp_nr_pages = MAX_CP_PAGES; 3808 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3809 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3810 ring_size, bp->cp_ring_size); 3811 } 3812 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3813 bp->cp_ring_mask = bp->cp_bit - 1; 3814 } 3815 3816 /* Changing allocation mode of RX rings. 3817 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3818 */ 3819 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3820 { 3821 if (page_mode) { 3822 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3823 return -EOPNOTSUPP; 3824 bp->dev->max_mtu = 3825 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3826 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3827 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3828 bp->rx_dir = DMA_BIDIRECTIONAL; 3829 bp->rx_skb_func = bnxt_rx_page_skb; 3830 /* Disable LRO or GRO_HW */ 3831 netdev_update_features(bp->dev); 3832 } else { 3833 bp->dev->max_mtu = bp->max_mtu; 3834 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3835 bp->rx_dir = DMA_FROM_DEVICE; 3836 bp->rx_skb_func = bnxt_rx_skb; 3837 } 3838 return 0; 3839 } 3840 3841 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3842 { 3843 int i; 3844 struct bnxt_vnic_info *vnic; 3845 struct pci_dev *pdev = bp->pdev; 3846 3847 if (!bp->vnic_info) 3848 return; 3849 3850 for (i = 0; i < bp->nr_vnics; i++) { 3851 vnic = &bp->vnic_info[i]; 3852 3853 kfree(vnic->fw_grp_ids); 3854 vnic->fw_grp_ids = NULL; 3855 3856 kfree(vnic->uc_list); 3857 vnic->uc_list = NULL; 3858 3859 if (vnic->mc_list) { 3860 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3861 vnic->mc_list, vnic->mc_list_mapping); 3862 vnic->mc_list = NULL; 3863 } 3864 3865 if (vnic->rss_table) { 3866 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3867 vnic->rss_table, 3868 vnic->rss_table_dma_addr); 3869 vnic->rss_table = NULL; 3870 } 3871 3872 vnic->rss_hash_key = NULL; 3873 vnic->flags = 0; 3874 } 3875 } 3876 3877 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3878 { 3879 int i, rc = 0, size; 3880 struct bnxt_vnic_info *vnic; 3881 struct pci_dev *pdev = bp->pdev; 3882 int max_rings; 3883 3884 for (i = 0; i < bp->nr_vnics; i++) { 3885 vnic = &bp->vnic_info[i]; 3886 3887 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3888 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3889 3890 if (mem_size > 0) { 3891 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3892 if (!vnic->uc_list) { 3893 rc = -ENOMEM; 3894 goto out; 3895 } 3896 } 3897 } 3898 3899 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3900 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3901 vnic->mc_list = 3902 dma_alloc_coherent(&pdev->dev, 3903 vnic->mc_list_size, 3904 &vnic->mc_list_mapping, 3905 GFP_KERNEL); 3906 if (!vnic->mc_list) { 3907 rc = -ENOMEM; 3908 goto out; 3909 } 3910 } 3911 3912 if (bp->flags & BNXT_FLAG_CHIP_P5) 3913 goto vnic_skip_grps; 3914 3915 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3916 max_rings = bp->rx_nr_rings; 3917 else 3918 max_rings = 1; 3919 3920 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3921 if (!vnic->fw_grp_ids) { 3922 rc = -ENOMEM; 3923 goto out; 3924 } 3925 vnic_skip_grps: 3926 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3927 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3928 continue; 3929 3930 /* Allocate rss table and hash key */ 3931 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3932 if (bp->flags & BNXT_FLAG_CHIP_P5) 3933 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3934 3935 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3936 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3937 vnic->rss_table_size, 3938 &vnic->rss_table_dma_addr, 3939 GFP_KERNEL); 3940 if (!vnic->rss_table) { 3941 rc = -ENOMEM; 3942 goto out; 3943 } 3944 3945 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3946 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3947 } 3948 return 0; 3949 3950 out: 3951 return rc; 3952 } 3953 3954 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3955 { 3956 struct bnxt_hwrm_wait_token *token; 3957 3958 dma_pool_destroy(bp->hwrm_dma_pool); 3959 bp->hwrm_dma_pool = NULL; 3960 3961 rcu_read_lock(); 3962 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 3963 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 3964 rcu_read_unlock(); 3965 } 3966 3967 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3968 { 3969 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 3970 BNXT_HWRM_DMA_SIZE, 3971 BNXT_HWRM_DMA_ALIGN, 0); 3972 if (!bp->hwrm_dma_pool) 3973 return -ENOMEM; 3974 3975 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 3976 3977 return 0; 3978 } 3979 3980 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 3981 { 3982 kfree(stats->hw_masks); 3983 stats->hw_masks = NULL; 3984 kfree(stats->sw_stats); 3985 stats->sw_stats = NULL; 3986 if (stats->hw_stats) { 3987 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 3988 stats->hw_stats_map); 3989 stats->hw_stats = NULL; 3990 } 3991 } 3992 3993 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 3994 bool alloc_masks) 3995 { 3996 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 3997 &stats->hw_stats_map, GFP_KERNEL); 3998 if (!stats->hw_stats) 3999 return -ENOMEM; 4000 4001 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4002 if (!stats->sw_stats) 4003 goto stats_mem_err; 4004 4005 if (alloc_masks) { 4006 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4007 if (!stats->hw_masks) 4008 goto stats_mem_err; 4009 } 4010 return 0; 4011 4012 stats_mem_err: 4013 bnxt_free_stats_mem(bp, stats); 4014 return -ENOMEM; 4015 } 4016 4017 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4018 { 4019 int i; 4020 4021 for (i = 0; i < count; i++) 4022 mask_arr[i] = mask; 4023 } 4024 4025 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4026 { 4027 int i; 4028 4029 for (i = 0; i < count; i++) 4030 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4031 } 4032 4033 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4034 struct bnxt_stats_mem *stats) 4035 { 4036 struct hwrm_func_qstats_ext_output *resp; 4037 struct hwrm_func_qstats_ext_input *req; 4038 __le64 *hw_masks; 4039 int rc; 4040 4041 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4042 !(bp->flags & BNXT_FLAG_CHIP_P5)) 4043 return -EOPNOTSUPP; 4044 4045 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4046 if (rc) 4047 return rc; 4048 4049 req->fid = cpu_to_le16(0xffff); 4050 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4051 4052 resp = hwrm_req_hold(bp, req); 4053 rc = hwrm_req_send(bp, req); 4054 if (!rc) { 4055 hw_masks = &resp->rx_ucast_pkts; 4056 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4057 } 4058 hwrm_req_drop(bp, req); 4059 return rc; 4060 } 4061 4062 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4063 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4064 4065 static void bnxt_init_stats(struct bnxt *bp) 4066 { 4067 struct bnxt_napi *bnapi = bp->bnapi[0]; 4068 struct bnxt_cp_ring_info *cpr; 4069 struct bnxt_stats_mem *stats; 4070 __le64 *rx_stats, *tx_stats; 4071 int rc, rx_count, tx_count; 4072 u64 *rx_masks, *tx_masks; 4073 u64 mask; 4074 u8 flags; 4075 4076 cpr = &bnapi->cp_ring; 4077 stats = &cpr->stats; 4078 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4079 if (rc) { 4080 if (bp->flags & BNXT_FLAG_CHIP_P5) 4081 mask = (1ULL << 48) - 1; 4082 else 4083 mask = -1ULL; 4084 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4085 } 4086 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4087 stats = &bp->port_stats; 4088 rx_stats = stats->hw_stats; 4089 rx_masks = stats->hw_masks; 4090 rx_count = sizeof(struct rx_port_stats) / 8; 4091 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4092 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4093 tx_count = sizeof(struct tx_port_stats) / 8; 4094 4095 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4096 rc = bnxt_hwrm_port_qstats(bp, flags); 4097 if (rc) { 4098 mask = (1ULL << 40) - 1; 4099 4100 bnxt_fill_masks(rx_masks, mask, rx_count); 4101 bnxt_fill_masks(tx_masks, mask, tx_count); 4102 } else { 4103 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4104 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4105 bnxt_hwrm_port_qstats(bp, 0); 4106 } 4107 } 4108 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4109 stats = &bp->rx_port_stats_ext; 4110 rx_stats = stats->hw_stats; 4111 rx_masks = stats->hw_masks; 4112 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4113 stats = &bp->tx_port_stats_ext; 4114 tx_stats = stats->hw_stats; 4115 tx_masks = stats->hw_masks; 4116 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4117 4118 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4119 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4120 if (rc) { 4121 mask = (1ULL << 40) - 1; 4122 4123 bnxt_fill_masks(rx_masks, mask, rx_count); 4124 if (tx_stats) 4125 bnxt_fill_masks(tx_masks, mask, tx_count); 4126 } else { 4127 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4128 if (tx_stats) 4129 bnxt_copy_hw_masks(tx_masks, tx_stats, 4130 tx_count); 4131 bnxt_hwrm_port_qstats_ext(bp, 0); 4132 } 4133 } 4134 } 4135 4136 static void bnxt_free_port_stats(struct bnxt *bp) 4137 { 4138 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4139 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4140 4141 bnxt_free_stats_mem(bp, &bp->port_stats); 4142 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4143 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4144 } 4145 4146 static void bnxt_free_ring_stats(struct bnxt *bp) 4147 { 4148 int i; 4149 4150 if (!bp->bnapi) 4151 return; 4152 4153 for (i = 0; i < bp->cp_nr_rings; i++) { 4154 struct bnxt_napi *bnapi = bp->bnapi[i]; 4155 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4156 4157 bnxt_free_stats_mem(bp, &cpr->stats); 4158 } 4159 } 4160 4161 static int bnxt_alloc_stats(struct bnxt *bp) 4162 { 4163 u32 size, i; 4164 int rc; 4165 4166 size = bp->hw_ring_stats_size; 4167 4168 for (i = 0; i < bp->cp_nr_rings; i++) { 4169 struct bnxt_napi *bnapi = bp->bnapi[i]; 4170 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4171 4172 cpr->stats.len = size; 4173 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4174 if (rc) 4175 return rc; 4176 4177 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4178 } 4179 4180 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4181 return 0; 4182 4183 if (bp->port_stats.hw_stats) 4184 goto alloc_ext_stats; 4185 4186 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4187 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4188 if (rc) 4189 return rc; 4190 4191 bp->flags |= BNXT_FLAG_PORT_STATS; 4192 4193 alloc_ext_stats: 4194 /* Display extended statistics only if FW supports it */ 4195 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4196 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4197 return 0; 4198 4199 if (bp->rx_port_stats_ext.hw_stats) 4200 goto alloc_tx_ext_stats; 4201 4202 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4203 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4204 /* Extended stats are optional */ 4205 if (rc) 4206 return 0; 4207 4208 alloc_tx_ext_stats: 4209 if (bp->tx_port_stats_ext.hw_stats) 4210 return 0; 4211 4212 if (bp->hwrm_spec_code >= 0x10902 || 4213 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4214 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4215 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4216 /* Extended stats are optional */ 4217 if (rc) 4218 return 0; 4219 } 4220 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4221 return 0; 4222 } 4223 4224 static void bnxt_clear_ring_indices(struct bnxt *bp) 4225 { 4226 int i; 4227 4228 if (!bp->bnapi) 4229 return; 4230 4231 for (i = 0; i < bp->cp_nr_rings; i++) { 4232 struct bnxt_napi *bnapi = bp->bnapi[i]; 4233 struct bnxt_cp_ring_info *cpr; 4234 struct bnxt_rx_ring_info *rxr; 4235 struct bnxt_tx_ring_info *txr; 4236 4237 if (!bnapi) 4238 continue; 4239 4240 cpr = &bnapi->cp_ring; 4241 cpr->cp_raw_cons = 0; 4242 4243 txr = bnapi->tx_ring; 4244 if (txr) { 4245 txr->tx_prod = 0; 4246 txr->tx_cons = 0; 4247 } 4248 4249 rxr = bnapi->rx_ring; 4250 if (rxr) { 4251 rxr->rx_prod = 0; 4252 rxr->rx_agg_prod = 0; 4253 rxr->rx_sw_agg_prod = 0; 4254 rxr->rx_next_cons = 0; 4255 } 4256 } 4257 } 4258 4259 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4260 { 4261 #ifdef CONFIG_RFS_ACCEL 4262 int i; 4263 4264 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4265 * safe to delete the hash table. 4266 */ 4267 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4268 struct hlist_head *head; 4269 struct hlist_node *tmp; 4270 struct bnxt_ntuple_filter *fltr; 4271 4272 head = &bp->ntp_fltr_hash_tbl[i]; 4273 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4274 hlist_del(&fltr->hash); 4275 kfree(fltr); 4276 } 4277 } 4278 if (irq_reinit) { 4279 kfree(bp->ntp_fltr_bmap); 4280 bp->ntp_fltr_bmap = NULL; 4281 } 4282 bp->ntp_fltr_count = 0; 4283 #endif 4284 } 4285 4286 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4287 { 4288 #ifdef CONFIG_RFS_ACCEL 4289 int i, rc = 0; 4290 4291 if (!(bp->flags & BNXT_FLAG_RFS)) 4292 return 0; 4293 4294 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4295 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4296 4297 bp->ntp_fltr_count = 0; 4298 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4299 sizeof(long), 4300 GFP_KERNEL); 4301 4302 if (!bp->ntp_fltr_bmap) 4303 rc = -ENOMEM; 4304 4305 return rc; 4306 #else 4307 return 0; 4308 #endif 4309 } 4310 4311 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4312 { 4313 bnxt_free_vnic_attributes(bp); 4314 bnxt_free_tx_rings(bp); 4315 bnxt_free_rx_rings(bp); 4316 bnxt_free_cp_rings(bp); 4317 bnxt_free_all_cp_arrays(bp); 4318 bnxt_free_ntp_fltrs(bp, irq_re_init); 4319 if (irq_re_init) { 4320 bnxt_free_ring_stats(bp); 4321 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 4322 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 4323 bnxt_free_port_stats(bp); 4324 bnxt_free_ring_grps(bp); 4325 bnxt_free_vnics(bp); 4326 kfree(bp->tx_ring_map); 4327 bp->tx_ring_map = NULL; 4328 kfree(bp->tx_ring); 4329 bp->tx_ring = NULL; 4330 kfree(bp->rx_ring); 4331 bp->rx_ring = NULL; 4332 kfree(bp->bnapi); 4333 bp->bnapi = NULL; 4334 } else { 4335 bnxt_clear_ring_indices(bp); 4336 } 4337 } 4338 4339 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4340 { 4341 int i, j, rc, size, arr_size; 4342 void *bnapi; 4343 4344 if (irq_re_init) { 4345 /* Allocate bnapi mem pointer array and mem block for 4346 * all queues 4347 */ 4348 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4349 bp->cp_nr_rings); 4350 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4351 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4352 if (!bnapi) 4353 return -ENOMEM; 4354 4355 bp->bnapi = bnapi; 4356 bnapi += arr_size; 4357 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4358 bp->bnapi[i] = bnapi; 4359 bp->bnapi[i]->index = i; 4360 bp->bnapi[i]->bp = bp; 4361 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4362 struct bnxt_cp_ring_info *cpr = 4363 &bp->bnapi[i]->cp_ring; 4364 4365 cpr->cp_ring_struct.ring_mem.flags = 4366 BNXT_RMEM_RING_PTE_FLAG; 4367 } 4368 } 4369 4370 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4371 sizeof(struct bnxt_rx_ring_info), 4372 GFP_KERNEL); 4373 if (!bp->rx_ring) 4374 return -ENOMEM; 4375 4376 for (i = 0; i < bp->rx_nr_rings; i++) { 4377 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4378 4379 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4380 rxr->rx_ring_struct.ring_mem.flags = 4381 BNXT_RMEM_RING_PTE_FLAG; 4382 rxr->rx_agg_ring_struct.ring_mem.flags = 4383 BNXT_RMEM_RING_PTE_FLAG; 4384 } 4385 rxr->bnapi = bp->bnapi[i]; 4386 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4387 } 4388 4389 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4390 sizeof(struct bnxt_tx_ring_info), 4391 GFP_KERNEL); 4392 if (!bp->tx_ring) 4393 return -ENOMEM; 4394 4395 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4396 GFP_KERNEL); 4397 4398 if (!bp->tx_ring_map) 4399 return -ENOMEM; 4400 4401 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4402 j = 0; 4403 else 4404 j = bp->rx_nr_rings; 4405 4406 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4407 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4408 4409 if (bp->flags & BNXT_FLAG_CHIP_P5) 4410 txr->tx_ring_struct.ring_mem.flags = 4411 BNXT_RMEM_RING_PTE_FLAG; 4412 txr->bnapi = bp->bnapi[j]; 4413 bp->bnapi[j]->tx_ring = txr; 4414 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4415 if (i >= bp->tx_nr_rings_xdp) { 4416 txr->txq_index = i - bp->tx_nr_rings_xdp; 4417 bp->bnapi[j]->tx_int = bnxt_tx_int; 4418 } else { 4419 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4420 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4421 } 4422 } 4423 4424 rc = bnxt_alloc_stats(bp); 4425 if (rc) 4426 goto alloc_mem_err; 4427 bnxt_init_stats(bp); 4428 4429 rc = bnxt_alloc_ntp_fltrs(bp); 4430 if (rc) 4431 goto alloc_mem_err; 4432 4433 rc = bnxt_alloc_vnics(bp); 4434 if (rc) 4435 goto alloc_mem_err; 4436 } 4437 4438 rc = bnxt_alloc_all_cp_arrays(bp); 4439 if (rc) 4440 goto alloc_mem_err; 4441 4442 bnxt_init_ring_struct(bp); 4443 4444 rc = bnxt_alloc_rx_rings(bp); 4445 if (rc) 4446 goto alloc_mem_err; 4447 4448 rc = bnxt_alloc_tx_rings(bp); 4449 if (rc) 4450 goto alloc_mem_err; 4451 4452 rc = bnxt_alloc_cp_rings(bp); 4453 if (rc) 4454 goto alloc_mem_err; 4455 4456 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4457 BNXT_VNIC_UCAST_FLAG; 4458 rc = bnxt_alloc_vnic_attributes(bp); 4459 if (rc) 4460 goto alloc_mem_err; 4461 return 0; 4462 4463 alloc_mem_err: 4464 bnxt_free_mem(bp, true); 4465 return rc; 4466 } 4467 4468 static void bnxt_disable_int(struct bnxt *bp) 4469 { 4470 int i; 4471 4472 if (!bp->bnapi) 4473 return; 4474 4475 for (i = 0; i < bp->cp_nr_rings; i++) { 4476 struct bnxt_napi *bnapi = bp->bnapi[i]; 4477 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4478 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4479 4480 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4481 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4482 } 4483 } 4484 4485 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4486 { 4487 struct bnxt_napi *bnapi = bp->bnapi[n]; 4488 struct bnxt_cp_ring_info *cpr; 4489 4490 cpr = &bnapi->cp_ring; 4491 return cpr->cp_ring_struct.map_idx; 4492 } 4493 4494 static void bnxt_disable_int_sync(struct bnxt *bp) 4495 { 4496 int i; 4497 4498 if (!bp->irq_tbl) 4499 return; 4500 4501 atomic_inc(&bp->intr_sem); 4502 4503 bnxt_disable_int(bp); 4504 for (i = 0; i < bp->cp_nr_rings; i++) { 4505 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4506 4507 synchronize_irq(bp->irq_tbl[map_idx].vector); 4508 } 4509 } 4510 4511 static void bnxt_enable_int(struct bnxt *bp) 4512 { 4513 int i; 4514 4515 atomic_set(&bp->intr_sem, 0); 4516 for (i = 0; i < bp->cp_nr_rings; i++) { 4517 struct bnxt_napi *bnapi = bp->bnapi[i]; 4518 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4519 4520 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4521 } 4522 } 4523 4524 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4525 bool async_only) 4526 { 4527 DECLARE_BITMAP(async_events_bmap, 256); 4528 u32 *events = (u32 *)async_events_bmap; 4529 struct hwrm_func_drv_rgtr_output *resp; 4530 struct hwrm_func_drv_rgtr_input *req; 4531 u32 flags; 4532 int rc, i; 4533 4534 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 4535 if (rc) 4536 return rc; 4537 4538 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4539 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4540 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4541 4542 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4543 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4544 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4545 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4546 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4547 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4548 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4549 req->flags = cpu_to_le32(flags); 4550 req->ver_maj_8b = DRV_VER_MAJ; 4551 req->ver_min_8b = DRV_VER_MIN; 4552 req->ver_upd_8b = DRV_VER_UPD; 4553 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 4554 req->ver_min = cpu_to_le16(DRV_VER_MIN); 4555 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 4556 4557 if (BNXT_PF(bp)) { 4558 u32 data[8]; 4559 int i; 4560 4561 memset(data, 0, sizeof(data)); 4562 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4563 u16 cmd = bnxt_vf_req_snif[i]; 4564 unsigned int bit, idx; 4565 4566 idx = cmd / 32; 4567 bit = cmd % 32; 4568 data[idx] |= 1 << bit; 4569 } 4570 4571 for (i = 0; i < 8; i++) 4572 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 4573 4574 req->enables |= 4575 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4576 } 4577 4578 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4579 req->flags |= cpu_to_le32( 4580 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4581 4582 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4583 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4584 u16 event_id = bnxt_async_events_arr[i]; 4585 4586 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4587 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4588 continue; 4589 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4590 } 4591 if (bmap && bmap_size) { 4592 for (i = 0; i < bmap_size; i++) { 4593 if (test_bit(i, bmap)) 4594 __set_bit(i, async_events_bmap); 4595 } 4596 } 4597 for (i = 0; i < 8; i++) 4598 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 4599 4600 if (async_only) 4601 req->enables = 4602 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4603 4604 resp = hwrm_req_hold(bp, req); 4605 rc = hwrm_req_send(bp, req); 4606 if (!rc) { 4607 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4608 if (resp->flags & 4609 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4610 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4611 } 4612 hwrm_req_drop(bp, req); 4613 return rc; 4614 } 4615 4616 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4617 { 4618 struct hwrm_func_drv_unrgtr_input *req; 4619 int rc; 4620 4621 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4622 return 0; 4623 4624 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 4625 if (rc) 4626 return rc; 4627 return hwrm_req_send(bp, req); 4628 } 4629 4630 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4631 { 4632 struct hwrm_tunnel_dst_port_free_input *req; 4633 int rc; 4634 4635 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 4636 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 4637 return 0; 4638 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 4639 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 4640 return 0; 4641 4642 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 4643 if (rc) 4644 return rc; 4645 4646 req->tunnel_type = tunnel_type; 4647 4648 switch (tunnel_type) { 4649 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4650 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4651 bp->vxlan_port = 0; 4652 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4653 break; 4654 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4655 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4656 bp->nge_port = 0; 4657 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4658 break; 4659 default: 4660 break; 4661 } 4662 4663 rc = hwrm_req_send(bp, req); 4664 if (rc) 4665 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4666 rc); 4667 return rc; 4668 } 4669 4670 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4671 u8 tunnel_type) 4672 { 4673 struct hwrm_tunnel_dst_port_alloc_output *resp; 4674 struct hwrm_tunnel_dst_port_alloc_input *req; 4675 int rc; 4676 4677 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 4678 if (rc) 4679 return rc; 4680 4681 req->tunnel_type = tunnel_type; 4682 req->tunnel_dst_port_val = port; 4683 4684 resp = hwrm_req_hold(bp, req); 4685 rc = hwrm_req_send(bp, req); 4686 if (rc) { 4687 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4688 rc); 4689 goto err_out; 4690 } 4691 4692 switch (tunnel_type) { 4693 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4694 bp->vxlan_port = port; 4695 bp->vxlan_fw_dst_port_id = 4696 le16_to_cpu(resp->tunnel_dst_port_id); 4697 break; 4698 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4699 bp->nge_port = port; 4700 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4701 break; 4702 default: 4703 break; 4704 } 4705 4706 err_out: 4707 hwrm_req_drop(bp, req); 4708 return rc; 4709 } 4710 4711 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4712 { 4713 struct hwrm_cfa_l2_set_rx_mask_input *req; 4714 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4715 int rc; 4716 4717 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 4718 if (rc) 4719 return rc; 4720 4721 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4722 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4723 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4724 req->mask = cpu_to_le32(vnic->rx_mask); 4725 return hwrm_req_send_silent(bp, req); 4726 } 4727 4728 #ifdef CONFIG_RFS_ACCEL 4729 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4730 struct bnxt_ntuple_filter *fltr) 4731 { 4732 struct hwrm_cfa_ntuple_filter_free_input *req; 4733 int rc; 4734 4735 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 4736 if (rc) 4737 return rc; 4738 4739 req->ntuple_filter_id = fltr->filter_id; 4740 return hwrm_req_send(bp, req); 4741 } 4742 4743 #define BNXT_NTP_FLTR_FLAGS \ 4744 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4745 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4746 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4747 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4748 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4749 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4750 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4751 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4752 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4753 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4754 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4755 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4756 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4757 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4758 4759 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4760 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4761 4762 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4763 struct bnxt_ntuple_filter *fltr) 4764 { 4765 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4766 struct hwrm_cfa_ntuple_filter_alloc_input *req; 4767 struct flow_keys *keys = &fltr->fkeys; 4768 struct bnxt_vnic_info *vnic; 4769 u32 flags = 0; 4770 int rc; 4771 4772 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 4773 if (rc) 4774 return rc; 4775 4776 req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4777 4778 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4779 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4780 req->dst_id = cpu_to_le16(fltr->rxq); 4781 } else { 4782 vnic = &bp->vnic_info[fltr->rxq + 1]; 4783 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 4784 } 4785 req->flags = cpu_to_le32(flags); 4786 req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4787 4788 req->ethertype = htons(ETH_P_IP); 4789 memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4790 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4791 req->ip_protocol = keys->basic.ip_proto; 4792 4793 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4794 int i; 4795 4796 req->ethertype = htons(ETH_P_IPV6); 4797 req->ip_addr_type = 4798 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4799 *(struct in6_addr *)&req->src_ipaddr[0] = 4800 keys->addrs.v6addrs.src; 4801 *(struct in6_addr *)&req->dst_ipaddr[0] = 4802 keys->addrs.v6addrs.dst; 4803 for (i = 0; i < 4; i++) { 4804 req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4805 req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4806 } 4807 } else { 4808 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 4809 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4810 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 4811 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4812 } 4813 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 4814 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 4815 req->tunnel_type = 4816 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 4817 } 4818 4819 req->src_port = keys->ports.src; 4820 req->src_port_mask = cpu_to_be16(0xffff); 4821 req->dst_port = keys->ports.dst; 4822 req->dst_port_mask = cpu_to_be16(0xffff); 4823 4824 resp = hwrm_req_hold(bp, req); 4825 rc = hwrm_req_send(bp, req); 4826 if (!rc) 4827 fltr->filter_id = resp->ntuple_filter_id; 4828 hwrm_req_drop(bp, req); 4829 return rc; 4830 } 4831 #endif 4832 4833 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 4834 const u8 *mac_addr) 4835 { 4836 struct hwrm_cfa_l2_filter_alloc_output *resp; 4837 struct hwrm_cfa_l2_filter_alloc_input *req; 4838 int rc; 4839 4840 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 4841 if (rc) 4842 return rc; 4843 4844 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 4845 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 4846 req->flags |= 4847 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 4848 req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 4849 req->enables = 4850 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 4851 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 4852 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 4853 memcpy(req->l2_addr, mac_addr, ETH_ALEN); 4854 req->l2_addr_mask[0] = 0xff; 4855 req->l2_addr_mask[1] = 0xff; 4856 req->l2_addr_mask[2] = 0xff; 4857 req->l2_addr_mask[3] = 0xff; 4858 req->l2_addr_mask[4] = 0xff; 4859 req->l2_addr_mask[5] = 0xff; 4860 4861 resp = hwrm_req_hold(bp, req); 4862 rc = hwrm_req_send(bp, req); 4863 if (!rc) 4864 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 4865 resp->l2_filter_id; 4866 hwrm_req_drop(bp, req); 4867 return rc; 4868 } 4869 4870 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 4871 { 4872 struct hwrm_cfa_l2_filter_free_input *req; 4873 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 4874 int rc; 4875 4876 /* Any associated ntuple filters will also be cleared by firmware. */ 4877 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 4878 if (rc) 4879 return rc; 4880 hwrm_req_hold(bp, req); 4881 for (i = 0; i < num_of_vnics; i++) { 4882 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4883 4884 for (j = 0; j < vnic->uc_filter_count; j++) { 4885 req->l2_filter_id = vnic->fw_l2_filter_id[j]; 4886 4887 rc = hwrm_req_send(bp, req); 4888 } 4889 vnic->uc_filter_count = 0; 4890 } 4891 hwrm_req_drop(bp, req); 4892 return rc; 4893 } 4894 4895 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 4896 { 4897 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4898 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 4899 struct hwrm_vnic_tpa_cfg_input *req; 4900 int rc; 4901 4902 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 4903 return 0; 4904 4905 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 4906 if (rc) 4907 return rc; 4908 4909 if (tpa_flags) { 4910 u16 mss = bp->dev->mtu - 40; 4911 u32 nsegs, n, segs = 0, flags; 4912 4913 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 4914 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 4915 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 4916 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 4917 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 4918 if (tpa_flags & BNXT_FLAG_GRO) 4919 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 4920 4921 req->flags = cpu_to_le32(flags); 4922 4923 req->enables = 4924 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 4925 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 4926 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 4927 4928 /* Number of segs are log2 units, and first packet is not 4929 * included as part of this units. 4930 */ 4931 if (mss <= BNXT_RX_PAGE_SIZE) { 4932 n = BNXT_RX_PAGE_SIZE / mss; 4933 nsegs = (MAX_SKB_FRAGS - 1) * n; 4934 } else { 4935 n = mss / BNXT_RX_PAGE_SIZE; 4936 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 4937 n++; 4938 nsegs = (MAX_SKB_FRAGS - n) / n; 4939 } 4940 4941 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4942 segs = MAX_TPA_SEGS_P5; 4943 max_aggs = bp->max_tpa; 4944 } else { 4945 segs = ilog2(nsegs); 4946 } 4947 req->max_agg_segs = cpu_to_le16(segs); 4948 req->max_aggs = cpu_to_le16(max_aggs); 4949 4950 req->min_agg_len = cpu_to_le32(512); 4951 } 4952 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 4953 4954 return hwrm_req_send(bp, req); 4955 } 4956 4957 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 4958 { 4959 struct bnxt_ring_grp_info *grp_info; 4960 4961 grp_info = &bp->grp_info[ring->grp_idx]; 4962 return grp_info->cp_fw_ring_id; 4963 } 4964 4965 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 4966 { 4967 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4968 struct bnxt_napi *bnapi = rxr->bnapi; 4969 struct bnxt_cp_ring_info *cpr; 4970 4971 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 4972 return cpr->cp_ring_struct.fw_ring_id; 4973 } else { 4974 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 4975 } 4976 } 4977 4978 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 4979 { 4980 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4981 struct bnxt_napi *bnapi = txr->bnapi; 4982 struct bnxt_cp_ring_info *cpr; 4983 4984 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 4985 return cpr->cp_ring_struct.fw_ring_id; 4986 } else { 4987 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 4988 } 4989 } 4990 4991 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 4992 { 4993 int entries; 4994 4995 if (bp->flags & BNXT_FLAG_CHIP_P5) 4996 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 4997 else 4998 entries = HW_HASH_INDEX_SIZE; 4999 5000 bp->rss_indir_tbl_entries = entries; 5001 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5002 GFP_KERNEL); 5003 if (!bp->rss_indir_tbl) 5004 return -ENOMEM; 5005 return 0; 5006 } 5007 5008 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5009 { 5010 u16 max_rings, max_entries, pad, i; 5011 5012 if (!bp->rx_nr_rings) 5013 return; 5014 5015 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5016 max_rings = bp->rx_nr_rings - 1; 5017 else 5018 max_rings = bp->rx_nr_rings; 5019 5020 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5021 5022 for (i = 0; i < max_entries; i++) 5023 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5024 5025 pad = bp->rss_indir_tbl_entries - max_entries; 5026 if (pad) 5027 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5028 } 5029 5030 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5031 { 5032 u16 i, tbl_size, max_ring = 0; 5033 5034 if (!bp->rss_indir_tbl) 5035 return 0; 5036 5037 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5038 for (i = 0; i < tbl_size; i++) 5039 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5040 return max_ring; 5041 } 5042 5043 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5044 { 5045 if (bp->flags & BNXT_FLAG_CHIP_P5) 5046 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5047 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5048 return 2; 5049 return 1; 5050 } 5051 5052 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5053 { 5054 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5055 u16 i, j; 5056 5057 /* Fill the RSS indirection table with ring group ids */ 5058 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5059 if (!no_rss) 5060 j = bp->rss_indir_tbl[i]; 5061 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5062 } 5063 } 5064 5065 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5066 struct bnxt_vnic_info *vnic) 5067 { 5068 __le16 *ring_tbl = vnic->rss_table; 5069 struct bnxt_rx_ring_info *rxr; 5070 u16 tbl_size, i; 5071 5072 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5073 5074 for (i = 0; i < tbl_size; i++) { 5075 u16 ring_id, j; 5076 5077 j = bp->rss_indir_tbl[i]; 5078 rxr = &bp->rx_ring[j]; 5079 5080 ring_id = rxr->rx_ring_struct.fw_ring_id; 5081 *ring_tbl++ = cpu_to_le16(ring_id); 5082 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5083 *ring_tbl++ = cpu_to_le16(ring_id); 5084 } 5085 } 5086 5087 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5088 { 5089 if (bp->flags & BNXT_FLAG_CHIP_P5) 5090 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5091 else 5092 __bnxt_fill_hw_rss_tbl(bp, vnic); 5093 } 5094 5095 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5096 { 5097 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5098 struct hwrm_vnic_rss_cfg_input *req; 5099 int rc; 5100 5101 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5102 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5103 return 0; 5104 5105 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5106 if (rc) 5107 return rc; 5108 5109 if (set_rss) { 5110 bnxt_fill_hw_rss_tbl(bp, vnic); 5111 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5112 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5113 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5114 req->hash_key_tbl_addr = 5115 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5116 } 5117 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5118 return hwrm_req_send(bp, req); 5119 } 5120 5121 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5122 { 5123 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5124 struct hwrm_vnic_rss_cfg_input *req; 5125 dma_addr_t ring_tbl_map; 5126 u32 i, nr_ctxs; 5127 int rc; 5128 5129 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 5130 if (rc) 5131 return rc; 5132 5133 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5134 if (!set_rss) 5135 return hwrm_req_send(bp, req); 5136 5137 bnxt_fill_hw_rss_tbl(bp, vnic); 5138 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 5139 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5140 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5141 ring_tbl_map = vnic->rss_table_dma_addr; 5142 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5143 5144 hwrm_req_hold(bp, req); 5145 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5146 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5147 req->ring_table_pair_index = i; 5148 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5149 rc = hwrm_req_send(bp, req); 5150 if (rc) 5151 goto exit; 5152 } 5153 5154 exit: 5155 hwrm_req_drop(bp, req); 5156 return rc; 5157 } 5158 5159 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5160 { 5161 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5162 struct hwrm_vnic_plcmodes_cfg_input *req; 5163 int rc; 5164 5165 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 5166 if (rc) 5167 return rc; 5168 5169 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5170 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5171 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5172 req->enables = 5173 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5174 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5175 /* thresholds not implemented in firmware yet */ 5176 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5177 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5178 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5179 return hwrm_req_send(bp, req); 5180 } 5181 5182 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5183 u16 ctx_idx) 5184 { 5185 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 5186 5187 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 5188 return; 5189 5190 req->rss_cos_lb_ctx_id = 5191 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5192 5193 hwrm_req_send(bp, req); 5194 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5195 } 5196 5197 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5198 { 5199 int i, j; 5200 5201 for (i = 0; i < bp->nr_vnics; i++) { 5202 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5203 5204 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5205 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5206 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5207 } 5208 } 5209 bp->rsscos_nr_ctxs = 0; 5210 } 5211 5212 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5213 { 5214 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 5215 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 5216 int rc; 5217 5218 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 5219 if (rc) 5220 return rc; 5221 5222 resp = hwrm_req_hold(bp, req); 5223 rc = hwrm_req_send(bp, req); 5224 if (!rc) 5225 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5226 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5227 hwrm_req_drop(bp, req); 5228 5229 return rc; 5230 } 5231 5232 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5233 { 5234 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5235 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5236 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5237 } 5238 5239 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5240 { 5241 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5242 struct hwrm_vnic_cfg_input *req; 5243 unsigned int ring = 0, grp_idx; 5244 u16 def_vlan = 0; 5245 int rc; 5246 5247 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 5248 if (rc) 5249 return rc; 5250 5251 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5252 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5253 5254 req->default_rx_ring_id = 5255 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5256 req->default_cmpl_ring_id = 5257 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5258 req->enables = 5259 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5260 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5261 goto vnic_mru; 5262 } 5263 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5264 /* Only RSS support for now TBD: COS & LB */ 5265 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5266 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5267 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5268 VNIC_CFG_REQ_ENABLES_MRU); 5269 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5270 req->rss_rule = 5271 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5272 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5273 VNIC_CFG_REQ_ENABLES_MRU); 5274 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5275 } else { 5276 req->rss_rule = cpu_to_le16(0xffff); 5277 } 5278 5279 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5280 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5281 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5282 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5283 } else { 5284 req->cos_rule = cpu_to_le16(0xffff); 5285 } 5286 5287 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5288 ring = 0; 5289 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5290 ring = vnic_id - 1; 5291 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5292 ring = bp->rx_nr_rings - 1; 5293 5294 grp_idx = bp->rx_ring[ring].bnapi->index; 5295 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5296 req->lb_rule = cpu_to_le16(0xffff); 5297 vnic_mru: 5298 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5299 5300 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5301 #ifdef CONFIG_BNXT_SRIOV 5302 if (BNXT_VF(bp)) 5303 def_vlan = bp->vf.vlan; 5304 #endif 5305 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5306 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5307 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5308 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5309 5310 return hwrm_req_send(bp, req); 5311 } 5312 5313 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5314 { 5315 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5316 struct hwrm_vnic_free_input *req; 5317 5318 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 5319 return; 5320 5321 req->vnic_id = 5322 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5323 5324 hwrm_req_send(bp, req); 5325 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5326 } 5327 } 5328 5329 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5330 { 5331 u16 i; 5332 5333 for (i = 0; i < bp->nr_vnics; i++) 5334 bnxt_hwrm_vnic_free_one(bp, i); 5335 } 5336 5337 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5338 unsigned int start_rx_ring_idx, 5339 unsigned int nr_rings) 5340 { 5341 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5342 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5343 struct hwrm_vnic_alloc_output *resp; 5344 struct hwrm_vnic_alloc_input *req; 5345 int rc; 5346 5347 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 5348 if (rc) 5349 return rc; 5350 5351 if (bp->flags & BNXT_FLAG_CHIP_P5) 5352 goto vnic_no_ring_grps; 5353 5354 /* map ring groups to this vnic */ 5355 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5356 grp_idx = bp->rx_ring[i].bnapi->index; 5357 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5358 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5359 j, nr_rings); 5360 break; 5361 } 5362 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5363 } 5364 5365 vnic_no_ring_grps: 5366 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5367 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5368 if (vnic_id == 0) 5369 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5370 5371 resp = hwrm_req_hold(bp, req); 5372 rc = hwrm_req_send(bp, req); 5373 if (!rc) 5374 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5375 hwrm_req_drop(bp, req); 5376 return rc; 5377 } 5378 5379 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5380 { 5381 struct hwrm_vnic_qcaps_output *resp; 5382 struct hwrm_vnic_qcaps_input *req; 5383 int rc; 5384 5385 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5386 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5387 if (bp->hwrm_spec_code < 0x10600) 5388 return 0; 5389 5390 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 5391 if (rc) 5392 return rc; 5393 5394 resp = hwrm_req_hold(bp, req); 5395 rc = hwrm_req_send(bp, req); 5396 if (!rc) { 5397 u32 flags = le32_to_cpu(resp->flags); 5398 5399 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5400 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5401 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5402 if (flags & 5403 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5404 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5405 5406 /* Older P5 fw before EXT_HW_STATS support did not set 5407 * VLAN_STRIP_CAP properly. 5408 */ 5409 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5410 (BNXT_CHIP_P5_THOR(bp) && 5411 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5412 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5413 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5414 if (bp->max_tpa_v2) { 5415 if (BNXT_CHIP_P5_THOR(bp)) 5416 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5417 else 5418 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5419 } 5420 } 5421 hwrm_req_drop(bp, req); 5422 return rc; 5423 } 5424 5425 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5426 { 5427 struct hwrm_ring_grp_alloc_output *resp; 5428 struct hwrm_ring_grp_alloc_input *req; 5429 int rc; 5430 u16 i; 5431 5432 if (bp->flags & BNXT_FLAG_CHIP_P5) 5433 return 0; 5434 5435 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 5436 if (rc) 5437 return rc; 5438 5439 resp = hwrm_req_hold(bp, req); 5440 for (i = 0; i < bp->rx_nr_rings; i++) { 5441 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5442 5443 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5444 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5445 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5446 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5447 5448 rc = hwrm_req_send(bp, req); 5449 5450 if (rc) 5451 break; 5452 5453 bp->grp_info[grp_idx].fw_grp_id = 5454 le32_to_cpu(resp->ring_group_id); 5455 } 5456 hwrm_req_drop(bp, req); 5457 return rc; 5458 } 5459 5460 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5461 { 5462 struct hwrm_ring_grp_free_input *req; 5463 u16 i; 5464 5465 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5466 return; 5467 5468 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 5469 return; 5470 5471 hwrm_req_hold(bp, req); 5472 for (i = 0; i < bp->cp_nr_rings; i++) { 5473 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5474 continue; 5475 req->ring_group_id = 5476 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5477 5478 hwrm_req_send(bp, req); 5479 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5480 } 5481 hwrm_req_drop(bp, req); 5482 } 5483 5484 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5485 struct bnxt_ring_struct *ring, 5486 u32 ring_type, u32 map_index) 5487 { 5488 struct hwrm_ring_alloc_output *resp; 5489 struct hwrm_ring_alloc_input *req; 5490 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5491 struct bnxt_ring_grp_info *grp_info; 5492 int rc, err = 0; 5493 u16 ring_id; 5494 5495 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 5496 if (rc) 5497 goto exit; 5498 5499 req->enables = 0; 5500 if (rmem->nr_pages > 1) { 5501 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5502 /* Page size is in log2 units */ 5503 req->page_size = BNXT_PAGE_SHIFT; 5504 req->page_tbl_depth = 1; 5505 } else { 5506 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5507 } 5508 req->fbo = 0; 5509 /* Association of ring index with doorbell index and MSIX number */ 5510 req->logical_id = cpu_to_le16(map_index); 5511 5512 switch (ring_type) { 5513 case HWRM_RING_ALLOC_TX: { 5514 struct bnxt_tx_ring_info *txr; 5515 5516 txr = container_of(ring, struct bnxt_tx_ring_info, 5517 tx_ring_struct); 5518 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5519 /* Association of transmit ring with completion ring */ 5520 grp_info = &bp->grp_info[ring->grp_idx]; 5521 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5522 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 5523 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5524 req->queue_id = cpu_to_le16(ring->queue_id); 5525 break; 5526 } 5527 case HWRM_RING_ALLOC_RX: 5528 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5529 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 5530 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5531 u16 flags = 0; 5532 5533 /* Association of rx ring with stats context */ 5534 grp_info = &bp->grp_info[ring->grp_idx]; 5535 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5536 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5537 req->enables |= cpu_to_le32( 5538 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5539 if (NET_IP_ALIGN == 2) 5540 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5541 req->flags = cpu_to_le16(flags); 5542 } 5543 break; 5544 case HWRM_RING_ALLOC_AGG: 5545 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5546 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5547 /* Association of agg ring with rx ring */ 5548 grp_info = &bp->grp_info[ring->grp_idx]; 5549 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5550 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5551 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5552 req->enables |= cpu_to_le32( 5553 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5554 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5555 } else { 5556 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5557 } 5558 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5559 break; 5560 case HWRM_RING_ALLOC_CMPL: 5561 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5562 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5563 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5564 /* Association of cp ring with nq */ 5565 grp_info = &bp->grp_info[map_index]; 5566 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5567 req->cq_handle = cpu_to_le64(ring->handle); 5568 req->enables |= cpu_to_le32( 5569 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5570 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5571 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5572 } 5573 break; 5574 case HWRM_RING_ALLOC_NQ: 5575 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5576 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 5577 if (bp->flags & BNXT_FLAG_USING_MSIX) 5578 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5579 break; 5580 default: 5581 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5582 ring_type); 5583 return -1; 5584 } 5585 5586 resp = hwrm_req_hold(bp, req); 5587 rc = hwrm_req_send(bp, req); 5588 err = le16_to_cpu(resp->error_code); 5589 ring_id = le16_to_cpu(resp->ring_id); 5590 hwrm_req_drop(bp, req); 5591 5592 exit: 5593 if (rc || err) { 5594 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5595 ring_type, rc, err); 5596 return -EIO; 5597 } 5598 ring->fw_ring_id = ring_id; 5599 return rc; 5600 } 5601 5602 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5603 { 5604 int rc; 5605 5606 if (BNXT_PF(bp)) { 5607 struct hwrm_func_cfg_input *req; 5608 5609 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 5610 if (rc) 5611 return rc; 5612 5613 req->fid = cpu_to_le16(0xffff); 5614 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5615 req->async_event_cr = cpu_to_le16(idx); 5616 return hwrm_req_send(bp, req); 5617 } else { 5618 struct hwrm_func_vf_cfg_input *req; 5619 5620 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 5621 if (rc) 5622 return rc; 5623 5624 req->enables = 5625 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5626 req->async_event_cr = cpu_to_le16(idx); 5627 return hwrm_req_send(bp, req); 5628 } 5629 } 5630 5631 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5632 u32 map_idx, u32 xid) 5633 { 5634 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5635 if (BNXT_PF(bp)) 5636 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5637 else 5638 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5639 switch (ring_type) { 5640 case HWRM_RING_ALLOC_TX: 5641 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5642 break; 5643 case HWRM_RING_ALLOC_RX: 5644 case HWRM_RING_ALLOC_AGG: 5645 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5646 break; 5647 case HWRM_RING_ALLOC_CMPL: 5648 db->db_key64 = DBR_PATH_L2; 5649 break; 5650 case HWRM_RING_ALLOC_NQ: 5651 db->db_key64 = DBR_PATH_L2; 5652 break; 5653 } 5654 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5655 } else { 5656 db->doorbell = bp->bar1 + map_idx * 0x80; 5657 switch (ring_type) { 5658 case HWRM_RING_ALLOC_TX: 5659 db->db_key32 = DB_KEY_TX; 5660 break; 5661 case HWRM_RING_ALLOC_RX: 5662 case HWRM_RING_ALLOC_AGG: 5663 db->db_key32 = DB_KEY_RX; 5664 break; 5665 case HWRM_RING_ALLOC_CMPL: 5666 db->db_key32 = DB_KEY_CP; 5667 break; 5668 } 5669 } 5670 } 5671 5672 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5673 { 5674 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5675 int i, rc = 0; 5676 u32 type; 5677 5678 if (bp->flags & BNXT_FLAG_CHIP_P5) 5679 type = HWRM_RING_ALLOC_NQ; 5680 else 5681 type = HWRM_RING_ALLOC_CMPL; 5682 for (i = 0; i < bp->cp_nr_rings; i++) { 5683 struct bnxt_napi *bnapi = bp->bnapi[i]; 5684 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5685 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5686 u32 map_idx = ring->map_idx; 5687 unsigned int vector; 5688 5689 vector = bp->irq_tbl[map_idx].vector; 5690 disable_irq_nosync(vector); 5691 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5692 if (rc) { 5693 enable_irq(vector); 5694 goto err_out; 5695 } 5696 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5697 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5698 enable_irq(vector); 5699 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5700 5701 if (!i) { 5702 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5703 if (rc) 5704 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5705 } 5706 } 5707 5708 type = HWRM_RING_ALLOC_TX; 5709 for (i = 0; i < bp->tx_nr_rings; i++) { 5710 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5711 struct bnxt_ring_struct *ring; 5712 u32 map_idx; 5713 5714 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5715 struct bnxt_napi *bnapi = txr->bnapi; 5716 struct bnxt_cp_ring_info *cpr, *cpr2; 5717 u32 type2 = HWRM_RING_ALLOC_CMPL; 5718 5719 cpr = &bnapi->cp_ring; 5720 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5721 ring = &cpr2->cp_ring_struct; 5722 ring->handle = BNXT_TX_HDL; 5723 map_idx = bnapi->index; 5724 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5725 if (rc) 5726 goto err_out; 5727 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5728 ring->fw_ring_id); 5729 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5730 } 5731 ring = &txr->tx_ring_struct; 5732 map_idx = i; 5733 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5734 if (rc) 5735 goto err_out; 5736 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5737 } 5738 5739 type = HWRM_RING_ALLOC_RX; 5740 for (i = 0; i < bp->rx_nr_rings; i++) { 5741 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5742 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5743 struct bnxt_napi *bnapi = rxr->bnapi; 5744 u32 map_idx = bnapi->index; 5745 5746 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5747 if (rc) 5748 goto err_out; 5749 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5750 /* If we have agg rings, post agg buffers first. */ 5751 if (!agg_rings) 5752 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5753 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5754 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5755 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5756 u32 type2 = HWRM_RING_ALLOC_CMPL; 5757 struct bnxt_cp_ring_info *cpr2; 5758 5759 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5760 ring = &cpr2->cp_ring_struct; 5761 ring->handle = BNXT_RX_HDL; 5762 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5763 if (rc) 5764 goto err_out; 5765 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5766 ring->fw_ring_id); 5767 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5768 } 5769 } 5770 5771 if (agg_rings) { 5772 type = HWRM_RING_ALLOC_AGG; 5773 for (i = 0; i < bp->rx_nr_rings; i++) { 5774 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5775 struct bnxt_ring_struct *ring = 5776 &rxr->rx_agg_ring_struct; 5777 u32 grp_idx = ring->grp_idx; 5778 u32 map_idx = grp_idx + bp->rx_nr_rings; 5779 5780 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5781 if (rc) 5782 goto err_out; 5783 5784 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5785 ring->fw_ring_id); 5786 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5787 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5788 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5789 } 5790 } 5791 err_out: 5792 return rc; 5793 } 5794 5795 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5796 struct bnxt_ring_struct *ring, 5797 u32 ring_type, int cmpl_ring_id) 5798 { 5799 struct hwrm_ring_free_output *resp; 5800 struct hwrm_ring_free_input *req; 5801 u16 error_code = 0; 5802 int rc; 5803 5804 if (BNXT_NO_FW_ACCESS(bp)) 5805 return 0; 5806 5807 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 5808 if (rc) 5809 goto exit; 5810 5811 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 5812 req->ring_type = ring_type; 5813 req->ring_id = cpu_to_le16(ring->fw_ring_id); 5814 5815 resp = hwrm_req_hold(bp, req); 5816 rc = hwrm_req_send(bp, req); 5817 error_code = le16_to_cpu(resp->error_code); 5818 hwrm_req_drop(bp, req); 5819 exit: 5820 if (rc || error_code) { 5821 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5822 ring_type, rc, error_code); 5823 return -EIO; 5824 } 5825 return 0; 5826 } 5827 5828 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5829 { 5830 u32 type; 5831 int i; 5832 5833 if (!bp->bnapi) 5834 return; 5835 5836 for (i = 0; i < bp->tx_nr_rings; i++) { 5837 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5838 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5839 5840 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5841 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5842 5843 hwrm_ring_free_send_msg(bp, ring, 5844 RING_FREE_REQ_RING_TYPE_TX, 5845 close_path ? cmpl_ring_id : 5846 INVALID_HW_RING_ID); 5847 ring->fw_ring_id = INVALID_HW_RING_ID; 5848 } 5849 } 5850 5851 for (i = 0; i < bp->rx_nr_rings; i++) { 5852 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5853 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5854 u32 grp_idx = rxr->bnapi->index; 5855 5856 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5857 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5858 5859 hwrm_ring_free_send_msg(bp, ring, 5860 RING_FREE_REQ_RING_TYPE_RX, 5861 close_path ? cmpl_ring_id : 5862 INVALID_HW_RING_ID); 5863 ring->fw_ring_id = INVALID_HW_RING_ID; 5864 bp->grp_info[grp_idx].rx_fw_ring_id = 5865 INVALID_HW_RING_ID; 5866 } 5867 } 5868 5869 if (bp->flags & BNXT_FLAG_CHIP_P5) 5870 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 5871 else 5872 type = RING_FREE_REQ_RING_TYPE_RX; 5873 for (i = 0; i < bp->rx_nr_rings; i++) { 5874 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5875 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 5876 u32 grp_idx = rxr->bnapi->index; 5877 5878 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5879 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5880 5881 hwrm_ring_free_send_msg(bp, ring, type, 5882 close_path ? cmpl_ring_id : 5883 INVALID_HW_RING_ID); 5884 ring->fw_ring_id = INVALID_HW_RING_ID; 5885 bp->grp_info[grp_idx].agg_fw_ring_id = 5886 INVALID_HW_RING_ID; 5887 } 5888 } 5889 5890 /* The completion rings are about to be freed. After that the 5891 * IRQ doorbell will not work anymore. So we need to disable 5892 * IRQ here. 5893 */ 5894 bnxt_disable_int_sync(bp); 5895 5896 if (bp->flags & BNXT_FLAG_CHIP_P5) 5897 type = RING_FREE_REQ_RING_TYPE_NQ; 5898 else 5899 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 5900 for (i = 0; i < bp->cp_nr_rings; i++) { 5901 struct bnxt_napi *bnapi = bp->bnapi[i]; 5902 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5903 struct bnxt_ring_struct *ring; 5904 int j; 5905 5906 for (j = 0; j < 2; j++) { 5907 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 5908 5909 if (cpr2) { 5910 ring = &cpr2->cp_ring_struct; 5911 if (ring->fw_ring_id == INVALID_HW_RING_ID) 5912 continue; 5913 hwrm_ring_free_send_msg(bp, ring, 5914 RING_FREE_REQ_RING_TYPE_L2_CMPL, 5915 INVALID_HW_RING_ID); 5916 ring->fw_ring_id = INVALID_HW_RING_ID; 5917 } 5918 } 5919 ring = &cpr->cp_ring_struct; 5920 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5921 hwrm_ring_free_send_msg(bp, ring, type, 5922 INVALID_HW_RING_ID); 5923 ring->fw_ring_id = INVALID_HW_RING_ID; 5924 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 5925 } 5926 } 5927 } 5928 5929 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5930 bool shared); 5931 5932 static int bnxt_hwrm_get_rings(struct bnxt *bp) 5933 { 5934 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5935 struct hwrm_func_qcfg_output *resp; 5936 struct hwrm_func_qcfg_input *req; 5937 int rc; 5938 5939 if (bp->hwrm_spec_code < 0x10601) 5940 return 0; 5941 5942 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 5943 if (rc) 5944 return rc; 5945 5946 req->fid = cpu_to_le16(0xffff); 5947 resp = hwrm_req_hold(bp, req); 5948 rc = hwrm_req_send(bp, req); 5949 if (rc) { 5950 hwrm_req_drop(bp, req); 5951 return rc; 5952 } 5953 5954 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 5955 if (BNXT_NEW_RM(bp)) { 5956 u16 cp, stats; 5957 5958 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 5959 hw_resc->resv_hw_ring_grps = 5960 le32_to_cpu(resp->alloc_hw_ring_grps); 5961 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 5962 cp = le16_to_cpu(resp->alloc_cmpl_rings); 5963 stats = le16_to_cpu(resp->alloc_stat_ctx); 5964 hw_resc->resv_irqs = cp; 5965 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5966 int rx = hw_resc->resv_rx_rings; 5967 int tx = hw_resc->resv_tx_rings; 5968 5969 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5970 rx >>= 1; 5971 if (cp < (rx + tx)) { 5972 bnxt_trim_rings(bp, &rx, &tx, cp, false); 5973 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5974 rx <<= 1; 5975 hw_resc->resv_rx_rings = rx; 5976 hw_resc->resv_tx_rings = tx; 5977 } 5978 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 5979 hw_resc->resv_hw_ring_grps = rx; 5980 } 5981 hw_resc->resv_cp_rings = cp; 5982 hw_resc->resv_stat_ctxs = stats; 5983 } 5984 hwrm_req_drop(bp, req); 5985 return 0; 5986 } 5987 5988 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 5989 { 5990 struct hwrm_func_qcfg_output *resp; 5991 struct hwrm_func_qcfg_input *req; 5992 int rc; 5993 5994 if (bp->hwrm_spec_code < 0x10601) 5995 return 0; 5996 5997 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 5998 if (rc) 5999 return rc; 6000 6001 req->fid = cpu_to_le16(fid); 6002 resp = hwrm_req_hold(bp, req); 6003 rc = hwrm_req_send(bp, req); 6004 if (!rc) 6005 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 6006 6007 hwrm_req_drop(bp, req); 6008 return rc; 6009 } 6010 6011 static bool bnxt_rfs_supported(struct bnxt *bp); 6012 6013 static struct hwrm_func_cfg_input * 6014 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6015 int ring_grps, int cp_rings, int stats, int vnics) 6016 { 6017 struct hwrm_func_cfg_input *req; 6018 u32 enables = 0; 6019 6020 if (hwrm_req_init(bp, req, HWRM_FUNC_CFG)) 6021 return NULL; 6022 6023 req->fid = cpu_to_le16(0xffff); 6024 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6025 req->num_tx_rings = cpu_to_le16(tx_rings); 6026 if (BNXT_NEW_RM(bp)) { 6027 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 6028 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6029 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6030 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6031 enables |= tx_rings + ring_grps ? 6032 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6033 enables |= rx_rings ? 6034 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6035 } else { 6036 enables |= cp_rings ? 6037 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6038 enables |= ring_grps ? 6039 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6040 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6041 } 6042 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6043 6044 req->num_rx_rings = cpu_to_le16(rx_rings); 6045 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6046 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6047 req->num_msix = cpu_to_le16(cp_rings); 6048 req->num_rsscos_ctxs = 6049 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6050 } else { 6051 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6052 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6053 req->num_rsscos_ctxs = cpu_to_le16(1); 6054 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6055 bnxt_rfs_supported(bp)) 6056 req->num_rsscos_ctxs = 6057 cpu_to_le16(ring_grps + 1); 6058 } 6059 req->num_stat_ctxs = cpu_to_le16(stats); 6060 req->num_vnics = cpu_to_le16(vnics); 6061 } 6062 req->enables = cpu_to_le32(enables); 6063 return req; 6064 } 6065 6066 static struct hwrm_func_vf_cfg_input * 6067 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6068 int ring_grps, int cp_rings, int stats, int vnics) 6069 { 6070 struct hwrm_func_vf_cfg_input *req; 6071 u32 enables = 0; 6072 6073 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 6074 return NULL; 6075 6076 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6077 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6078 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6079 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6080 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6081 enables |= tx_rings + ring_grps ? 6082 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6083 } else { 6084 enables |= cp_rings ? 6085 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6086 enables |= ring_grps ? 6087 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6088 } 6089 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6090 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6091 6092 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6093 req->num_tx_rings = cpu_to_le16(tx_rings); 6094 req->num_rx_rings = cpu_to_le16(rx_rings); 6095 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6096 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6097 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6098 } else { 6099 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6100 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6101 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6102 } 6103 req->num_stat_ctxs = cpu_to_le16(stats); 6104 req->num_vnics = cpu_to_le16(vnics); 6105 6106 req->enables = cpu_to_le32(enables); 6107 return req; 6108 } 6109 6110 static int 6111 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6112 int ring_grps, int cp_rings, int stats, int vnics) 6113 { 6114 struct hwrm_func_cfg_input *req; 6115 int rc; 6116 6117 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6118 cp_rings, stats, vnics); 6119 if (!req) 6120 return -ENOMEM; 6121 6122 if (!req->enables) { 6123 hwrm_req_drop(bp, req); 6124 return 0; 6125 } 6126 6127 rc = hwrm_req_send(bp, req); 6128 if (rc) 6129 return rc; 6130 6131 if (bp->hwrm_spec_code < 0x10601) 6132 bp->hw_resc.resv_tx_rings = tx_rings; 6133 6134 return bnxt_hwrm_get_rings(bp); 6135 } 6136 6137 static int 6138 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6139 int ring_grps, int cp_rings, int stats, int vnics) 6140 { 6141 struct hwrm_func_vf_cfg_input *req; 6142 int rc; 6143 6144 if (!BNXT_NEW_RM(bp)) { 6145 bp->hw_resc.resv_tx_rings = tx_rings; 6146 return 0; 6147 } 6148 6149 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6150 cp_rings, stats, vnics); 6151 if (!req) 6152 return -ENOMEM; 6153 6154 rc = hwrm_req_send(bp, req); 6155 if (rc) 6156 return rc; 6157 6158 return bnxt_hwrm_get_rings(bp); 6159 } 6160 6161 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6162 int cp, int stat, int vnic) 6163 { 6164 if (BNXT_PF(bp)) 6165 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6166 vnic); 6167 else 6168 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6169 vnic); 6170 } 6171 6172 int bnxt_nq_rings_in_use(struct bnxt *bp) 6173 { 6174 int cp = bp->cp_nr_rings; 6175 int ulp_msix, ulp_base; 6176 6177 ulp_msix = bnxt_get_ulp_msix_num(bp); 6178 if (ulp_msix) { 6179 ulp_base = bnxt_get_ulp_msix_base(bp); 6180 cp += ulp_msix; 6181 if ((ulp_base + ulp_msix) > cp) 6182 cp = ulp_base + ulp_msix; 6183 } 6184 return cp; 6185 } 6186 6187 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6188 { 6189 int cp; 6190 6191 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6192 return bnxt_nq_rings_in_use(bp); 6193 6194 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6195 return cp; 6196 } 6197 6198 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6199 { 6200 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6201 int cp = bp->cp_nr_rings; 6202 6203 if (!ulp_stat) 6204 return cp; 6205 6206 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6207 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6208 6209 return cp + ulp_stat; 6210 } 6211 6212 /* Check if a default RSS map needs to be setup. This function is only 6213 * used on older firmware that does not require reserving RX rings. 6214 */ 6215 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6216 { 6217 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6218 6219 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6220 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6221 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6222 if (!netif_is_rxfh_configured(bp->dev)) 6223 bnxt_set_dflt_rss_indir_tbl(bp); 6224 } 6225 } 6226 6227 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6228 { 6229 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6230 int cp = bnxt_cp_rings_in_use(bp); 6231 int nq = bnxt_nq_rings_in_use(bp); 6232 int rx = bp->rx_nr_rings, stat; 6233 int vnic = 1, grp = rx; 6234 6235 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6236 bp->hwrm_spec_code >= 0x10601) 6237 return true; 6238 6239 /* Old firmware does not need RX ring reservations but we still 6240 * need to setup a default RSS map when needed. With new firmware 6241 * we go through RX ring reservations first and then set up the 6242 * RSS map for the successfully reserved RX rings when needed. 6243 */ 6244 if (!BNXT_NEW_RM(bp)) { 6245 bnxt_check_rss_tbl_no_rmgr(bp); 6246 return false; 6247 } 6248 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6249 vnic = rx + 1; 6250 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6251 rx <<= 1; 6252 stat = bnxt_get_func_stat_ctxs(bp); 6253 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6254 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6255 (hw_resc->resv_hw_ring_grps != grp && 6256 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6257 return true; 6258 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6259 hw_resc->resv_irqs != nq) 6260 return true; 6261 return false; 6262 } 6263 6264 static int __bnxt_reserve_rings(struct bnxt *bp) 6265 { 6266 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6267 int cp = bnxt_nq_rings_in_use(bp); 6268 int tx = bp->tx_nr_rings; 6269 int rx = bp->rx_nr_rings; 6270 int grp, rx_rings, rc; 6271 int vnic = 1, stat; 6272 bool sh = false; 6273 6274 if (!bnxt_need_reserve_rings(bp)) 6275 return 0; 6276 6277 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6278 sh = true; 6279 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6280 vnic = rx + 1; 6281 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6282 rx <<= 1; 6283 grp = bp->rx_nr_rings; 6284 stat = bnxt_get_func_stat_ctxs(bp); 6285 6286 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6287 if (rc) 6288 return rc; 6289 6290 tx = hw_resc->resv_tx_rings; 6291 if (BNXT_NEW_RM(bp)) { 6292 rx = hw_resc->resv_rx_rings; 6293 cp = hw_resc->resv_irqs; 6294 grp = hw_resc->resv_hw_ring_grps; 6295 vnic = hw_resc->resv_vnics; 6296 stat = hw_resc->resv_stat_ctxs; 6297 } 6298 6299 rx_rings = rx; 6300 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6301 if (rx >= 2) { 6302 rx_rings = rx >> 1; 6303 } else { 6304 if (netif_running(bp->dev)) 6305 return -ENOMEM; 6306 6307 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6308 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6309 bp->dev->hw_features &= ~NETIF_F_LRO; 6310 bp->dev->features &= ~NETIF_F_LRO; 6311 bnxt_set_ring_params(bp); 6312 } 6313 } 6314 rx_rings = min_t(int, rx_rings, grp); 6315 cp = min_t(int, cp, bp->cp_nr_rings); 6316 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6317 stat -= bnxt_get_ulp_stat_ctxs(bp); 6318 cp = min_t(int, cp, stat); 6319 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6320 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6321 rx = rx_rings << 1; 6322 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6323 bp->tx_nr_rings = tx; 6324 6325 /* If we cannot reserve all the RX rings, reset the RSS map only 6326 * if absolutely necessary 6327 */ 6328 if (rx_rings != bp->rx_nr_rings) { 6329 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6330 rx_rings, bp->rx_nr_rings); 6331 if (netif_is_rxfh_configured(bp->dev) && 6332 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6333 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6334 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6335 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6336 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6337 } 6338 } 6339 bp->rx_nr_rings = rx_rings; 6340 bp->cp_nr_rings = cp; 6341 6342 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6343 return -ENOMEM; 6344 6345 if (!netif_is_rxfh_configured(bp->dev)) 6346 bnxt_set_dflt_rss_indir_tbl(bp); 6347 6348 return rc; 6349 } 6350 6351 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6352 int ring_grps, int cp_rings, int stats, 6353 int vnics) 6354 { 6355 struct hwrm_func_vf_cfg_input *req; 6356 u32 flags; 6357 6358 if (!BNXT_NEW_RM(bp)) 6359 return 0; 6360 6361 req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6362 cp_rings, stats, vnics); 6363 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6364 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6365 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6366 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6367 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6368 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6369 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6370 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6371 6372 req->flags = cpu_to_le32(flags); 6373 return hwrm_req_send_silent(bp, req); 6374 } 6375 6376 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6377 int ring_grps, int cp_rings, int stats, 6378 int vnics) 6379 { 6380 struct hwrm_func_cfg_input *req; 6381 u32 flags; 6382 6383 req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps, 6384 cp_rings, stats, vnics); 6385 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6386 if (BNXT_NEW_RM(bp)) { 6387 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6388 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6389 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6390 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6391 if (bp->flags & BNXT_FLAG_CHIP_P5) 6392 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6393 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6394 else 6395 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6396 } 6397 6398 req->flags = cpu_to_le32(flags); 6399 return hwrm_req_send_silent(bp, req); 6400 } 6401 6402 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6403 int ring_grps, int cp_rings, int stats, 6404 int vnics) 6405 { 6406 if (bp->hwrm_spec_code < 0x10801) 6407 return 0; 6408 6409 if (BNXT_PF(bp)) 6410 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6411 ring_grps, cp_rings, stats, 6412 vnics); 6413 6414 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6415 cp_rings, stats, vnics); 6416 } 6417 6418 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6419 { 6420 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6421 struct hwrm_ring_aggint_qcaps_output *resp; 6422 struct hwrm_ring_aggint_qcaps_input *req; 6423 int rc; 6424 6425 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6426 coal_cap->num_cmpl_dma_aggr_max = 63; 6427 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6428 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6429 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6430 coal_cap->int_lat_tmr_min_max = 65535; 6431 coal_cap->int_lat_tmr_max_max = 65535; 6432 coal_cap->num_cmpl_aggr_int_max = 65535; 6433 coal_cap->timer_units = 80; 6434 6435 if (bp->hwrm_spec_code < 0x10902) 6436 return; 6437 6438 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 6439 return; 6440 6441 resp = hwrm_req_hold(bp, req); 6442 rc = hwrm_req_send_silent(bp, req); 6443 if (!rc) { 6444 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6445 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6446 coal_cap->num_cmpl_dma_aggr_max = 6447 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6448 coal_cap->num_cmpl_dma_aggr_during_int_max = 6449 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6450 coal_cap->cmpl_aggr_dma_tmr_max = 6451 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6452 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6453 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6454 coal_cap->int_lat_tmr_min_max = 6455 le16_to_cpu(resp->int_lat_tmr_min_max); 6456 coal_cap->int_lat_tmr_max_max = 6457 le16_to_cpu(resp->int_lat_tmr_max_max); 6458 coal_cap->num_cmpl_aggr_int_max = 6459 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6460 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6461 } 6462 hwrm_req_drop(bp, req); 6463 } 6464 6465 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6466 { 6467 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6468 6469 return usec * 1000 / coal_cap->timer_units; 6470 } 6471 6472 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6473 struct bnxt_coal *hw_coal, 6474 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6475 { 6476 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6477 u32 cmpl_params = coal_cap->cmpl_params; 6478 u16 val, tmr, max, flags = 0; 6479 6480 max = hw_coal->bufs_per_record * 128; 6481 if (hw_coal->budget) 6482 max = hw_coal->bufs_per_record * hw_coal->budget; 6483 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6484 6485 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6486 req->num_cmpl_aggr_int = cpu_to_le16(val); 6487 6488 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6489 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6490 6491 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6492 coal_cap->num_cmpl_dma_aggr_during_int_max); 6493 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6494 6495 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6496 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6497 req->int_lat_tmr_max = cpu_to_le16(tmr); 6498 6499 /* min timer set to 1/2 of interrupt timer */ 6500 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6501 val = tmr / 2; 6502 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6503 req->int_lat_tmr_min = cpu_to_le16(val); 6504 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6505 } 6506 6507 /* buf timer set to 1/4 of interrupt timer */ 6508 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6509 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6510 6511 if (cmpl_params & 6512 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6513 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6514 val = clamp_t(u16, tmr, 1, 6515 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6516 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6517 req->enables |= 6518 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6519 } 6520 6521 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6522 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6523 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6524 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6525 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6526 req->flags = cpu_to_le16(flags); 6527 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6528 } 6529 6530 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6531 struct bnxt_coal *hw_coal) 6532 { 6533 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 6534 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6535 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6536 u32 nq_params = coal_cap->nq_params; 6537 u16 tmr; 6538 int rc; 6539 6540 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6541 return 0; 6542 6543 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6544 if (rc) 6545 return rc; 6546 6547 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6548 req->flags = 6549 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6550 6551 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6552 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6553 req->int_lat_tmr_min = cpu_to_le16(tmr); 6554 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6555 return hwrm_req_send(bp, req); 6556 } 6557 6558 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6559 { 6560 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 6561 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6562 struct bnxt_coal coal; 6563 int rc; 6564 6565 /* Tick values in micro seconds. 6566 * 1 coal_buf x bufs_per_record = 1 completion record. 6567 */ 6568 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6569 6570 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6571 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6572 6573 if (!bnapi->rx_ring) 6574 return -ENODEV; 6575 6576 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6577 if (rc) 6578 return rc; 6579 6580 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 6581 6582 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6583 6584 return hwrm_req_send(bp, req_rx); 6585 } 6586 6587 int bnxt_hwrm_set_coal(struct bnxt *bp) 6588 { 6589 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx, 6590 *req; 6591 int i, rc; 6592 6593 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6594 if (rc) 6595 return rc; 6596 6597 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 6598 if (rc) { 6599 hwrm_req_drop(bp, req_rx); 6600 return rc; 6601 } 6602 6603 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 6604 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 6605 6606 hwrm_req_hold(bp, req_rx); 6607 hwrm_req_hold(bp, req_tx); 6608 for (i = 0; i < bp->cp_nr_rings; i++) { 6609 struct bnxt_napi *bnapi = bp->bnapi[i]; 6610 struct bnxt_coal *hw_coal; 6611 u16 ring_id; 6612 6613 req = req_rx; 6614 if (!bnapi->rx_ring) { 6615 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6616 req = req_tx; 6617 } else { 6618 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6619 } 6620 req->ring_id = cpu_to_le16(ring_id); 6621 6622 rc = hwrm_req_send(bp, req); 6623 if (rc) 6624 break; 6625 6626 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6627 continue; 6628 6629 if (bnapi->rx_ring && bnapi->tx_ring) { 6630 req = req_tx; 6631 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6632 req->ring_id = cpu_to_le16(ring_id); 6633 rc = hwrm_req_send(bp, req); 6634 if (rc) 6635 break; 6636 } 6637 if (bnapi->rx_ring) 6638 hw_coal = &bp->rx_coal; 6639 else 6640 hw_coal = &bp->tx_coal; 6641 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6642 } 6643 hwrm_req_drop(bp, req_rx); 6644 hwrm_req_drop(bp, req_tx); 6645 return rc; 6646 } 6647 6648 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6649 { 6650 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 6651 struct hwrm_stat_ctx_free_input *req; 6652 int i; 6653 6654 if (!bp->bnapi) 6655 return; 6656 6657 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6658 return; 6659 6660 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 6661 return; 6662 if (BNXT_FW_MAJ(bp) <= 20) { 6663 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 6664 hwrm_req_drop(bp, req); 6665 return; 6666 } 6667 hwrm_req_hold(bp, req0); 6668 } 6669 hwrm_req_hold(bp, req); 6670 for (i = 0; i < bp->cp_nr_rings; i++) { 6671 struct bnxt_napi *bnapi = bp->bnapi[i]; 6672 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6673 6674 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6675 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6676 if (req0) { 6677 req0->stat_ctx_id = req->stat_ctx_id; 6678 hwrm_req_send(bp, req0); 6679 } 6680 hwrm_req_send(bp, req); 6681 6682 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6683 } 6684 } 6685 hwrm_req_drop(bp, req); 6686 if (req0) 6687 hwrm_req_drop(bp, req0); 6688 } 6689 6690 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6691 { 6692 struct hwrm_stat_ctx_alloc_output *resp; 6693 struct hwrm_stat_ctx_alloc_input *req; 6694 int rc, i; 6695 6696 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6697 return 0; 6698 6699 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 6700 if (rc) 6701 return rc; 6702 6703 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6704 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6705 6706 resp = hwrm_req_hold(bp, req); 6707 for (i = 0; i < bp->cp_nr_rings; i++) { 6708 struct bnxt_napi *bnapi = bp->bnapi[i]; 6709 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6710 6711 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6712 6713 rc = hwrm_req_send(bp, req); 6714 if (rc) 6715 break; 6716 6717 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6718 6719 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6720 } 6721 hwrm_req_drop(bp, req); 6722 return rc; 6723 } 6724 6725 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6726 { 6727 struct hwrm_func_qcfg_output *resp; 6728 struct hwrm_func_qcfg_input *req; 6729 u32 min_db_offset = 0; 6730 u16 flags; 6731 int rc; 6732 6733 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 6734 if (rc) 6735 return rc; 6736 6737 req->fid = cpu_to_le16(0xffff); 6738 resp = hwrm_req_hold(bp, req); 6739 rc = hwrm_req_send(bp, req); 6740 if (rc) 6741 goto func_qcfg_exit; 6742 6743 #ifdef CONFIG_BNXT_SRIOV 6744 if (BNXT_VF(bp)) { 6745 struct bnxt_vf_info *vf = &bp->vf; 6746 6747 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6748 } else { 6749 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6750 } 6751 #endif 6752 flags = le16_to_cpu(resp->flags); 6753 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6754 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6755 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6756 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6757 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6758 } 6759 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6760 bp->flags |= BNXT_FLAG_MULTI_HOST; 6761 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6762 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6763 6764 switch (resp->port_partition_type) { 6765 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6766 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6767 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6768 bp->port_partition_type = resp->port_partition_type; 6769 break; 6770 } 6771 if (bp->hwrm_spec_code < 0x10707 || 6772 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6773 bp->br_mode = BRIDGE_MODE_VEB; 6774 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6775 bp->br_mode = BRIDGE_MODE_VEPA; 6776 else 6777 bp->br_mode = BRIDGE_MODE_UNDEF; 6778 6779 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6780 if (!bp->max_mtu) 6781 bp->max_mtu = BNXT_MAX_MTU; 6782 6783 if (bp->db_size) 6784 goto func_qcfg_exit; 6785 6786 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6787 if (BNXT_PF(bp)) 6788 min_db_offset = DB_PF_OFFSET_P5; 6789 else 6790 min_db_offset = DB_VF_OFFSET_P5; 6791 } 6792 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6793 1024); 6794 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6795 bp->db_size <= min_db_offset) 6796 bp->db_size = pci_resource_len(bp->pdev, 2); 6797 6798 func_qcfg_exit: 6799 hwrm_req_drop(bp, req); 6800 return rc; 6801 } 6802 6803 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx, 6804 struct hwrm_func_backing_store_qcaps_output *resp) 6805 { 6806 struct bnxt_mem_init *mem_init; 6807 u16 init_mask; 6808 u8 init_val; 6809 u8 *offset; 6810 int i; 6811 6812 init_val = resp->ctx_kind_initializer; 6813 init_mask = le16_to_cpu(resp->ctx_init_mask); 6814 offset = &resp->qp_init_offset; 6815 mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 6816 for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) { 6817 mem_init->init_val = init_val; 6818 mem_init->offset = BNXT_MEM_INVALID_OFFSET; 6819 if (!init_mask) 6820 continue; 6821 if (i == BNXT_CTX_MEM_INIT_STAT) 6822 offset = &resp->stat_init_offset; 6823 if (init_mask & (1 << i)) 6824 mem_init->offset = *offset * 4; 6825 else 6826 mem_init->init_val = 0; 6827 } 6828 ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size; 6829 ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size; 6830 ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size; 6831 ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size; 6832 ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size; 6833 ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size; 6834 } 6835 6836 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6837 { 6838 struct hwrm_func_backing_store_qcaps_output *resp; 6839 struct hwrm_func_backing_store_qcaps_input *req; 6840 int rc; 6841 6842 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6843 return 0; 6844 6845 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 6846 if (rc) 6847 return rc; 6848 6849 resp = hwrm_req_hold(bp, req); 6850 rc = hwrm_req_send_silent(bp, req); 6851 if (!rc) { 6852 struct bnxt_ctx_pg_info *ctx_pg; 6853 struct bnxt_ctx_mem_info *ctx; 6854 int i, tqm_rings; 6855 6856 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6857 if (!ctx) { 6858 rc = -ENOMEM; 6859 goto ctx_err; 6860 } 6861 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6862 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6863 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6864 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6865 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6866 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6867 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6868 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6869 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6870 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6871 ctx->vnic_max_vnic_entries = 6872 le16_to_cpu(resp->vnic_max_vnic_entries); 6873 ctx->vnic_max_ring_table_entries = 6874 le16_to_cpu(resp->vnic_max_ring_table_entries); 6875 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6876 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6877 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6878 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6879 ctx->tqm_min_entries_per_ring = 6880 le32_to_cpu(resp->tqm_min_entries_per_ring); 6881 ctx->tqm_max_entries_per_ring = 6882 le32_to_cpu(resp->tqm_max_entries_per_ring); 6883 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6884 if (!ctx->tqm_entries_multiple) 6885 ctx->tqm_entries_multiple = 1; 6886 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6887 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 6888 ctx->mrav_num_entries_units = 6889 le16_to_cpu(resp->mrav_num_entries_units); 6890 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 6891 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 6892 6893 bnxt_init_ctx_initializer(ctx, resp); 6894 6895 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 6896 if (!ctx->tqm_fp_rings_count) 6897 ctx->tqm_fp_rings_count = bp->max_q; 6898 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 6899 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 6900 6901 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS; 6902 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 6903 if (!ctx_pg) { 6904 kfree(ctx); 6905 rc = -ENOMEM; 6906 goto ctx_err; 6907 } 6908 for (i = 0; i < tqm_rings; i++, ctx_pg++) 6909 ctx->tqm_mem[i] = ctx_pg; 6910 bp->ctx = ctx; 6911 } else { 6912 rc = 0; 6913 } 6914 ctx_err: 6915 hwrm_req_drop(bp, req); 6916 return rc; 6917 } 6918 6919 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 6920 __le64 *pg_dir) 6921 { 6922 if (!rmem->nr_pages) 6923 return; 6924 6925 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 6926 if (rmem->depth >= 1) { 6927 if (rmem->depth == 2) 6928 *pg_attr |= 2; 6929 else 6930 *pg_attr |= 1; 6931 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 6932 } else { 6933 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 6934 } 6935 } 6936 6937 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 6938 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 6939 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 6940 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 6941 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 6942 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 6943 6944 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 6945 { 6946 struct hwrm_func_backing_store_cfg_input *req; 6947 struct bnxt_ctx_mem_info *ctx = bp->ctx; 6948 struct bnxt_ctx_pg_info *ctx_pg; 6949 void **__req = (void **)&req; 6950 u32 req_len = sizeof(*req); 6951 __le32 *num_entries; 6952 __le64 *pg_dir; 6953 u32 flags = 0; 6954 u8 *pg_attr; 6955 u32 ena; 6956 int rc; 6957 int i; 6958 6959 if (!ctx) 6960 return 0; 6961 6962 if (req_len > bp->hwrm_max_ext_req_len) 6963 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 6964 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 6965 if (rc) 6966 return rc; 6967 6968 req->enables = cpu_to_le32(enables); 6969 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 6970 ctx_pg = &ctx->qp_mem; 6971 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 6972 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 6973 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 6974 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 6975 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6976 &req->qpc_pg_size_qpc_lvl, 6977 &req->qpc_page_dir); 6978 } 6979 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 6980 ctx_pg = &ctx->srq_mem; 6981 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 6982 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 6983 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 6984 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6985 &req->srq_pg_size_srq_lvl, 6986 &req->srq_page_dir); 6987 } 6988 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 6989 ctx_pg = &ctx->cq_mem; 6990 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 6991 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 6992 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 6993 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6994 &req->cq_pg_size_cq_lvl, 6995 &req->cq_page_dir); 6996 } 6997 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 6998 ctx_pg = &ctx->vnic_mem; 6999 req->vnic_num_vnic_entries = 7000 cpu_to_le16(ctx->vnic_max_vnic_entries); 7001 req->vnic_num_ring_table_entries = 7002 cpu_to_le16(ctx->vnic_max_ring_table_entries); 7003 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 7004 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7005 &req->vnic_pg_size_vnic_lvl, 7006 &req->vnic_page_dir); 7007 } 7008 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 7009 ctx_pg = &ctx->stat_mem; 7010 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 7011 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 7012 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7013 &req->stat_pg_size_stat_lvl, 7014 &req->stat_page_dir); 7015 } 7016 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 7017 ctx_pg = &ctx->mrav_mem; 7018 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 7019 if (ctx->mrav_num_entries_units) 7020 flags |= 7021 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 7022 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 7023 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7024 &req->mrav_pg_size_mrav_lvl, 7025 &req->mrav_page_dir); 7026 } 7027 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 7028 ctx_pg = &ctx->tim_mem; 7029 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 7030 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 7031 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 7032 &req->tim_pg_size_tim_lvl, 7033 &req->tim_page_dir); 7034 } 7035 for (i = 0, num_entries = &req->tqm_sp_num_entries, 7036 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 7037 pg_dir = &req->tqm_sp_page_dir, 7038 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 7039 i < BNXT_MAX_TQM_RINGS; 7040 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 7041 if (!(enables & ena)) 7042 continue; 7043 7044 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 7045 ctx_pg = ctx->tqm_mem[i]; 7046 *num_entries = cpu_to_le32(ctx_pg->entries); 7047 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 7048 } 7049 req->flags = cpu_to_le32(flags); 7050 return hwrm_req_send(bp, req); 7051 } 7052 7053 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 7054 struct bnxt_ctx_pg_info *ctx_pg) 7055 { 7056 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7057 7058 rmem->page_size = BNXT_PAGE_SIZE; 7059 rmem->pg_arr = ctx_pg->ctx_pg_arr; 7060 rmem->dma_arr = ctx_pg->ctx_dma_arr; 7061 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 7062 if (rmem->depth >= 1) 7063 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 7064 return bnxt_alloc_ring(bp, rmem); 7065 } 7066 7067 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 7068 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 7069 u8 depth, struct bnxt_mem_init *mem_init) 7070 { 7071 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7072 int rc; 7073 7074 if (!mem_size) 7075 return -EINVAL; 7076 7077 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7078 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 7079 ctx_pg->nr_pages = 0; 7080 return -EINVAL; 7081 } 7082 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 7083 int nr_tbls, i; 7084 7085 rmem->depth = 2; 7086 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 7087 GFP_KERNEL); 7088 if (!ctx_pg->ctx_pg_tbl) 7089 return -ENOMEM; 7090 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 7091 rmem->nr_pages = nr_tbls; 7092 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7093 if (rc) 7094 return rc; 7095 for (i = 0; i < nr_tbls; i++) { 7096 struct bnxt_ctx_pg_info *pg_tbl; 7097 7098 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 7099 if (!pg_tbl) 7100 return -ENOMEM; 7101 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 7102 rmem = &pg_tbl->ring_mem; 7103 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7104 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7105 rmem->depth = 1; 7106 rmem->nr_pages = MAX_CTX_PAGES; 7107 rmem->mem_init = mem_init; 7108 if (i == (nr_tbls - 1)) { 7109 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7110 7111 if (rem) 7112 rmem->nr_pages = rem; 7113 } 7114 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7115 if (rc) 7116 break; 7117 } 7118 } else { 7119 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7120 if (rmem->nr_pages > 1 || depth) 7121 rmem->depth = 1; 7122 rmem->mem_init = mem_init; 7123 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7124 } 7125 return rc; 7126 } 7127 7128 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7129 struct bnxt_ctx_pg_info *ctx_pg) 7130 { 7131 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7132 7133 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7134 ctx_pg->ctx_pg_tbl) { 7135 int i, nr_tbls = rmem->nr_pages; 7136 7137 for (i = 0; i < nr_tbls; i++) { 7138 struct bnxt_ctx_pg_info *pg_tbl; 7139 struct bnxt_ring_mem_info *rmem2; 7140 7141 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7142 if (!pg_tbl) 7143 continue; 7144 rmem2 = &pg_tbl->ring_mem; 7145 bnxt_free_ring(bp, rmem2); 7146 ctx_pg->ctx_pg_arr[i] = NULL; 7147 kfree(pg_tbl); 7148 ctx_pg->ctx_pg_tbl[i] = NULL; 7149 } 7150 kfree(ctx_pg->ctx_pg_tbl); 7151 ctx_pg->ctx_pg_tbl = NULL; 7152 } 7153 bnxt_free_ring(bp, rmem); 7154 ctx_pg->nr_pages = 0; 7155 } 7156 7157 void bnxt_free_ctx_mem(struct bnxt *bp) 7158 { 7159 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7160 int i; 7161 7162 if (!ctx) 7163 return; 7164 7165 if (ctx->tqm_mem[0]) { 7166 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7167 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7168 kfree(ctx->tqm_mem[0]); 7169 ctx->tqm_mem[0] = NULL; 7170 } 7171 7172 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7173 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7174 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7175 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7176 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7177 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7178 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7179 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7180 } 7181 7182 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7183 { 7184 struct bnxt_ctx_pg_info *ctx_pg; 7185 struct bnxt_ctx_mem_info *ctx; 7186 struct bnxt_mem_init *init; 7187 u32 mem_size, ena, entries; 7188 u32 entries_sp, min; 7189 u32 num_mr, num_ah; 7190 u32 extra_srqs = 0; 7191 u32 extra_qps = 0; 7192 u8 pg_lvl = 1; 7193 int i, rc; 7194 7195 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7196 if (rc) { 7197 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7198 rc); 7199 return rc; 7200 } 7201 ctx = bp->ctx; 7202 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7203 return 0; 7204 7205 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7206 pg_lvl = 2; 7207 extra_qps = 65536; 7208 extra_srqs = 8192; 7209 } 7210 7211 ctx_pg = &ctx->qp_mem; 7212 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7213 extra_qps; 7214 if (ctx->qp_entry_size) { 7215 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7216 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP]; 7217 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7218 if (rc) 7219 return rc; 7220 } 7221 7222 ctx_pg = &ctx->srq_mem; 7223 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7224 if (ctx->srq_entry_size) { 7225 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7226 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ]; 7227 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7228 if (rc) 7229 return rc; 7230 } 7231 7232 ctx_pg = &ctx->cq_mem; 7233 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7234 if (ctx->cq_entry_size) { 7235 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7236 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ]; 7237 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init); 7238 if (rc) 7239 return rc; 7240 } 7241 7242 ctx_pg = &ctx->vnic_mem; 7243 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7244 ctx->vnic_max_ring_table_entries; 7245 if (ctx->vnic_entry_size) { 7246 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7247 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC]; 7248 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7249 if (rc) 7250 return rc; 7251 } 7252 7253 ctx_pg = &ctx->stat_mem; 7254 ctx_pg->entries = ctx->stat_max_entries; 7255 if (ctx->stat_entry_size) { 7256 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7257 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT]; 7258 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init); 7259 if (rc) 7260 return rc; 7261 } 7262 7263 ena = 0; 7264 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7265 goto skip_rdma; 7266 7267 ctx_pg = &ctx->mrav_mem; 7268 /* 128K extra is needed to accommodate static AH context 7269 * allocation by f/w. 7270 */ 7271 num_mr = 1024 * 256; 7272 num_ah = 1024 * 128; 7273 ctx_pg->entries = num_mr + num_ah; 7274 if (ctx->mrav_entry_size) { 7275 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7276 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV]; 7277 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init); 7278 if (rc) 7279 return rc; 7280 } 7281 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7282 if (ctx->mrav_num_entries_units) 7283 ctx_pg->entries = 7284 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7285 (num_ah / ctx->mrav_num_entries_units); 7286 7287 ctx_pg = &ctx->tim_mem; 7288 ctx_pg->entries = ctx->qp_mem.entries; 7289 if (ctx->tim_entry_size) { 7290 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7291 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL); 7292 if (rc) 7293 return rc; 7294 } 7295 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7296 7297 skip_rdma: 7298 min = ctx->tqm_min_entries_per_ring; 7299 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7300 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7301 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7302 entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries); 7303 entries = roundup(entries, ctx->tqm_entries_multiple); 7304 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7305 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7306 ctx_pg = ctx->tqm_mem[i]; 7307 ctx_pg->entries = i ? entries : entries_sp; 7308 if (ctx->tqm_entry_size) { 7309 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7310 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, 7311 NULL); 7312 if (rc) 7313 return rc; 7314 } 7315 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7316 } 7317 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7318 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7319 if (rc) { 7320 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7321 rc); 7322 return rc; 7323 } 7324 ctx->flags |= BNXT_CTX_FLAG_INITED; 7325 return 0; 7326 } 7327 7328 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7329 { 7330 struct hwrm_func_resource_qcaps_output *resp; 7331 struct hwrm_func_resource_qcaps_input *req; 7332 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7333 int rc; 7334 7335 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 7336 if (rc) 7337 return rc; 7338 7339 req->fid = cpu_to_le16(0xffff); 7340 resp = hwrm_req_hold(bp, req); 7341 rc = hwrm_req_send_silent(bp, req); 7342 if (rc) 7343 goto hwrm_func_resc_qcaps_exit; 7344 7345 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7346 if (!all) 7347 goto hwrm_func_resc_qcaps_exit; 7348 7349 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7350 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7351 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7352 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7353 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7354 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7355 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7356 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7357 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7358 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7359 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7360 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7361 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7362 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7363 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7364 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7365 7366 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7367 u16 max_msix = le16_to_cpu(resp->max_msix); 7368 7369 hw_resc->max_nqs = max_msix; 7370 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7371 } 7372 7373 if (BNXT_PF(bp)) { 7374 struct bnxt_pf_info *pf = &bp->pf; 7375 7376 pf->vf_resv_strategy = 7377 le16_to_cpu(resp->vf_reservation_strategy); 7378 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7379 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7380 } 7381 hwrm_func_resc_qcaps_exit: 7382 hwrm_req_drop(bp, req); 7383 return rc; 7384 } 7385 7386 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 7387 { 7388 struct hwrm_port_mac_ptp_qcfg_output *resp; 7389 struct hwrm_port_mac_ptp_qcfg_input *req; 7390 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 7391 u8 flags; 7392 int rc; 7393 7394 if (bp->hwrm_spec_code < 0x10801) { 7395 rc = -ENODEV; 7396 goto no_ptp; 7397 } 7398 7399 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 7400 if (rc) 7401 goto no_ptp; 7402 7403 req->port_id = cpu_to_le16(bp->pf.port_id); 7404 resp = hwrm_req_hold(bp, req); 7405 rc = hwrm_req_send(bp, req); 7406 if (rc) 7407 goto exit; 7408 7409 flags = resp->flags; 7410 if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 7411 rc = -ENODEV; 7412 goto exit; 7413 } 7414 if (!ptp) { 7415 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 7416 if (!ptp) { 7417 rc = -ENOMEM; 7418 goto exit; 7419 } 7420 ptp->bp = bp; 7421 bp->ptp_cfg = ptp; 7422 } 7423 if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) { 7424 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 7425 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 7426 } else if (bp->flags & BNXT_FLAG_CHIP_P5) { 7427 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 7428 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 7429 } else { 7430 rc = -ENODEV; 7431 goto exit; 7432 } 7433 rc = bnxt_ptp_init(bp); 7434 if (rc) 7435 netdev_warn(bp->dev, "PTP initialization failed.\n"); 7436 exit: 7437 hwrm_req_drop(bp, req); 7438 if (!rc) 7439 return 0; 7440 7441 no_ptp: 7442 bnxt_ptp_clear(bp); 7443 kfree(ptp); 7444 bp->ptp_cfg = NULL; 7445 return rc; 7446 } 7447 7448 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7449 { 7450 struct hwrm_func_qcaps_output *resp; 7451 struct hwrm_func_qcaps_input *req; 7452 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7453 u32 flags, flags_ext; 7454 int rc; 7455 7456 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 7457 if (rc) 7458 return rc; 7459 7460 req->fid = cpu_to_le16(0xffff); 7461 resp = hwrm_req_hold(bp, req); 7462 rc = hwrm_req_send(bp, req); 7463 if (rc) 7464 goto hwrm_func_qcaps_exit; 7465 7466 flags = le32_to_cpu(resp->flags); 7467 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7468 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7469 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7470 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7471 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7472 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7473 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7474 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7475 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7476 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7477 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7478 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7479 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7480 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7481 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7482 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7483 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 7484 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 7485 7486 flags_ext = le32_to_cpu(resp->flags_ext); 7487 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7488 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7489 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 7490 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 7491 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 7492 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 7493 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 7494 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 7495 7496 bp->tx_push_thresh = 0; 7497 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7498 BNXT_FW_MAJ(bp) > 217) 7499 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7500 7501 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7502 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7503 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7504 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7505 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7506 if (!hw_resc->max_hw_ring_grps) 7507 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7508 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7509 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7510 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7511 7512 if (BNXT_PF(bp)) { 7513 struct bnxt_pf_info *pf = &bp->pf; 7514 7515 pf->fw_fid = le16_to_cpu(resp->fid); 7516 pf->port_id = le16_to_cpu(resp->port_id); 7517 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7518 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7519 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7520 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7521 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7522 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7523 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7524 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7525 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7526 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7527 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7528 bp->flags |= BNXT_FLAG_WOL_CAP; 7529 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 7530 __bnxt_hwrm_ptp_qcfg(bp); 7531 } else { 7532 bnxt_ptp_clear(bp); 7533 kfree(bp->ptp_cfg); 7534 bp->ptp_cfg = NULL; 7535 } 7536 } else { 7537 #ifdef CONFIG_BNXT_SRIOV 7538 struct bnxt_vf_info *vf = &bp->vf; 7539 7540 vf->fw_fid = le16_to_cpu(resp->fid); 7541 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7542 #endif 7543 } 7544 7545 hwrm_func_qcaps_exit: 7546 hwrm_req_drop(bp, req); 7547 return rc; 7548 } 7549 7550 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 7551 { 7552 struct hwrm_dbg_qcaps_output *resp; 7553 struct hwrm_dbg_qcaps_input *req; 7554 int rc; 7555 7556 bp->fw_dbg_cap = 0; 7557 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 7558 return; 7559 7560 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 7561 if (rc) 7562 return; 7563 7564 req->fid = cpu_to_le16(0xffff); 7565 resp = hwrm_req_hold(bp, req); 7566 rc = hwrm_req_send(bp, req); 7567 if (rc) 7568 goto hwrm_dbg_qcaps_exit; 7569 7570 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 7571 7572 hwrm_dbg_qcaps_exit: 7573 hwrm_req_drop(bp, req); 7574 } 7575 7576 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7577 7578 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7579 { 7580 int rc; 7581 7582 rc = __bnxt_hwrm_func_qcaps(bp); 7583 if (rc) 7584 return rc; 7585 7586 bnxt_hwrm_dbg_qcaps(bp); 7587 7588 rc = bnxt_hwrm_queue_qportcfg(bp); 7589 if (rc) { 7590 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7591 return rc; 7592 } 7593 if (bp->hwrm_spec_code >= 0x10803) { 7594 rc = bnxt_alloc_ctx_mem(bp); 7595 if (rc) 7596 return rc; 7597 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7598 if (!rc) 7599 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7600 } 7601 return 0; 7602 } 7603 7604 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7605 { 7606 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7607 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 7608 u32 flags; 7609 int rc; 7610 7611 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7612 return 0; 7613 7614 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 7615 if (rc) 7616 return rc; 7617 7618 resp = hwrm_req_hold(bp, req); 7619 rc = hwrm_req_send(bp, req); 7620 if (rc) 7621 goto hwrm_cfa_adv_qcaps_exit; 7622 7623 flags = le32_to_cpu(resp->flags); 7624 if (flags & 7625 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7626 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7627 7628 hwrm_cfa_adv_qcaps_exit: 7629 hwrm_req_drop(bp, req); 7630 return rc; 7631 } 7632 7633 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7634 { 7635 if (bp->fw_health) 7636 return 0; 7637 7638 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7639 if (!bp->fw_health) 7640 return -ENOMEM; 7641 7642 mutex_init(&bp->fw_health->lock); 7643 return 0; 7644 } 7645 7646 static int bnxt_alloc_fw_health(struct bnxt *bp) 7647 { 7648 int rc; 7649 7650 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7651 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7652 return 0; 7653 7654 rc = __bnxt_alloc_fw_health(bp); 7655 if (rc) { 7656 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7657 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7658 return rc; 7659 } 7660 7661 return 0; 7662 } 7663 7664 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7665 { 7666 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7667 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7668 BNXT_FW_HEALTH_WIN_MAP_OFF); 7669 } 7670 7671 bool bnxt_is_fw_healthy(struct bnxt *bp) 7672 { 7673 if (bp->fw_health && bp->fw_health->status_reliable) { 7674 u32 fw_status; 7675 7676 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 7677 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status)) 7678 return false; 7679 } 7680 7681 return true; 7682 } 7683 7684 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 7685 { 7686 struct bnxt_fw_health *fw_health = bp->fw_health; 7687 u32 reg_type; 7688 7689 if (!fw_health) 7690 return; 7691 7692 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 7693 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7694 fw_health->status_reliable = false; 7695 7696 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 7697 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 7698 fw_health->resets_reliable = false; 7699 } 7700 7701 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7702 { 7703 void __iomem *hs; 7704 u32 status_loc; 7705 u32 reg_type; 7706 u32 sig; 7707 7708 if (bp->fw_health) 7709 bp->fw_health->status_reliable = false; 7710 7711 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7712 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7713 7714 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7715 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7716 if (!bp->chip_num) { 7717 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 7718 bp->chip_num = readl(bp->bar0 + 7719 BNXT_FW_HEALTH_WIN_BASE + 7720 BNXT_GRC_REG_CHIP_NUM); 7721 } 7722 if (!BNXT_CHIP_P5(bp)) 7723 return; 7724 7725 status_loc = BNXT_GRC_REG_STATUS_P5 | 7726 BNXT_FW_HEALTH_REG_TYPE_BAR0; 7727 } else { 7728 status_loc = readl(hs + offsetof(struct hcomm_status, 7729 fw_status_loc)); 7730 } 7731 7732 if (__bnxt_alloc_fw_health(bp)) { 7733 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7734 return; 7735 } 7736 7737 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7738 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7739 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7740 __bnxt_map_fw_health_reg(bp, status_loc); 7741 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7742 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7743 } 7744 7745 bp->fw_health->status_reliable = true; 7746 } 7747 7748 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7749 { 7750 struct bnxt_fw_health *fw_health = bp->fw_health; 7751 u32 reg_base = 0xffffffff; 7752 int i; 7753 7754 bp->fw_health->status_reliable = false; 7755 bp->fw_health->resets_reliable = false; 7756 /* Only pre-map the monitoring GRC registers using window 3 */ 7757 for (i = 0; i < 4; i++) { 7758 u32 reg = fw_health->regs[i]; 7759 7760 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7761 continue; 7762 if (reg_base == 0xffffffff) 7763 reg_base = reg & BNXT_GRC_BASE_MASK; 7764 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7765 return -ERANGE; 7766 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7767 } 7768 bp->fw_health->status_reliable = true; 7769 bp->fw_health->resets_reliable = true; 7770 if (reg_base == 0xffffffff) 7771 return 0; 7772 7773 __bnxt_map_fw_health_reg(bp, reg_base); 7774 return 0; 7775 } 7776 7777 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7778 { 7779 struct bnxt_fw_health *fw_health = bp->fw_health; 7780 struct hwrm_error_recovery_qcfg_output *resp; 7781 struct hwrm_error_recovery_qcfg_input *req; 7782 int rc, i; 7783 7784 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7785 return 0; 7786 7787 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 7788 if (rc) 7789 return rc; 7790 7791 resp = hwrm_req_hold(bp, req); 7792 rc = hwrm_req_send(bp, req); 7793 if (rc) 7794 goto err_recovery_out; 7795 fw_health->flags = le32_to_cpu(resp->flags); 7796 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7797 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7798 rc = -EINVAL; 7799 goto err_recovery_out; 7800 } 7801 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7802 fw_health->master_func_wait_dsecs = 7803 le32_to_cpu(resp->master_func_wait_period); 7804 fw_health->normal_func_wait_dsecs = 7805 le32_to_cpu(resp->normal_func_wait_period); 7806 fw_health->post_reset_wait_dsecs = 7807 le32_to_cpu(resp->master_func_wait_period_after_reset); 7808 fw_health->post_reset_max_wait_dsecs = 7809 le32_to_cpu(resp->max_bailout_time_after_reset); 7810 fw_health->regs[BNXT_FW_HEALTH_REG] = 7811 le32_to_cpu(resp->fw_health_status_reg); 7812 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7813 le32_to_cpu(resp->fw_heartbeat_reg); 7814 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7815 le32_to_cpu(resp->fw_reset_cnt_reg); 7816 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7817 le32_to_cpu(resp->reset_inprogress_reg); 7818 fw_health->fw_reset_inprog_reg_mask = 7819 le32_to_cpu(resp->reset_inprogress_reg_mask); 7820 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7821 if (fw_health->fw_reset_seq_cnt >= 16) { 7822 rc = -EINVAL; 7823 goto err_recovery_out; 7824 } 7825 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7826 fw_health->fw_reset_seq_regs[i] = 7827 le32_to_cpu(resp->reset_reg[i]); 7828 fw_health->fw_reset_seq_vals[i] = 7829 le32_to_cpu(resp->reset_reg_val[i]); 7830 fw_health->fw_reset_seq_delay_msec[i] = 7831 resp->delay_after_reset[i]; 7832 } 7833 err_recovery_out: 7834 hwrm_req_drop(bp, req); 7835 if (!rc) 7836 rc = bnxt_map_fw_health_regs(bp); 7837 if (rc) 7838 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7839 return rc; 7840 } 7841 7842 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7843 { 7844 struct hwrm_func_reset_input *req; 7845 int rc; 7846 7847 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 7848 if (rc) 7849 return rc; 7850 7851 req->enables = 0; 7852 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 7853 return hwrm_req_send(bp, req); 7854 } 7855 7856 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7857 { 7858 struct hwrm_nvm_get_dev_info_output nvm_info; 7859 7860 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7861 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7862 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7863 nvm_info.nvm_cfg_ver_upd); 7864 } 7865 7866 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7867 { 7868 struct hwrm_queue_qportcfg_output *resp; 7869 struct hwrm_queue_qportcfg_input *req; 7870 u8 i, j, *qptr; 7871 bool no_rdma; 7872 int rc = 0; 7873 7874 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 7875 if (rc) 7876 return rc; 7877 7878 resp = hwrm_req_hold(bp, req); 7879 rc = hwrm_req_send(bp, req); 7880 if (rc) 7881 goto qportcfg_exit; 7882 7883 if (!resp->max_configurable_queues) { 7884 rc = -EINVAL; 7885 goto qportcfg_exit; 7886 } 7887 bp->max_tc = resp->max_configurable_queues; 7888 bp->max_lltc = resp->max_configurable_lossless_queues; 7889 if (bp->max_tc > BNXT_MAX_QUEUE) 7890 bp->max_tc = BNXT_MAX_QUEUE; 7891 7892 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7893 qptr = &resp->queue_id0; 7894 for (i = 0, j = 0; i < bp->max_tc; i++) { 7895 bp->q_info[j].queue_id = *qptr; 7896 bp->q_ids[i] = *qptr++; 7897 bp->q_info[j].queue_profile = *qptr++; 7898 bp->tc_to_qidx[j] = j; 7899 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7900 (no_rdma && BNXT_PF(bp))) 7901 j++; 7902 } 7903 bp->max_q = bp->max_tc; 7904 bp->max_tc = max_t(u8, j, 1); 7905 7906 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7907 bp->max_tc = 1; 7908 7909 if (bp->max_lltc > bp->max_tc) 7910 bp->max_lltc = bp->max_tc; 7911 7912 qportcfg_exit: 7913 hwrm_req_drop(bp, req); 7914 return rc; 7915 } 7916 7917 static int bnxt_hwrm_poll(struct bnxt *bp) 7918 { 7919 struct hwrm_ver_get_input *req; 7920 int rc; 7921 7922 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7923 if (rc) 7924 return rc; 7925 7926 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7927 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7928 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7929 7930 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 7931 rc = hwrm_req_send(bp, req); 7932 return rc; 7933 } 7934 7935 static int bnxt_hwrm_ver_get(struct bnxt *bp) 7936 { 7937 struct hwrm_ver_get_output *resp; 7938 struct hwrm_ver_get_input *req; 7939 u16 fw_maj, fw_min, fw_bld, fw_rsv; 7940 u32 dev_caps_cfg, hwrm_ver; 7941 int rc, len; 7942 7943 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 7944 if (rc) 7945 return rc; 7946 7947 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 7948 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 7949 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 7950 req->hwrm_intf_min = HWRM_VERSION_MINOR; 7951 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 7952 7953 resp = hwrm_req_hold(bp, req); 7954 rc = hwrm_req_send(bp, req); 7955 if (rc) 7956 goto hwrm_ver_get_exit; 7957 7958 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 7959 7960 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 7961 resp->hwrm_intf_min_8b << 8 | 7962 resp->hwrm_intf_upd_8b; 7963 if (resp->hwrm_intf_maj_8b < 1) { 7964 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 7965 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7966 resp->hwrm_intf_upd_8b); 7967 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 7968 } 7969 7970 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 7971 HWRM_VERSION_UPDATE; 7972 7973 if (bp->hwrm_spec_code > hwrm_ver) 7974 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7975 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 7976 HWRM_VERSION_UPDATE); 7977 else 7978 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7979 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7980 resp->hwrm_intf_upd_8b); 7981 7982 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 7983 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 7984 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 7985 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 7986 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 7987 len = FW_VER_STR_LEN; 7988 } else { 7989 fw_maj = resp->hwrm_fw_maj_8b; 7990 fw_min = resp->hwrm_fw_min_8b; 7991 fw_bld = resp->hwrm_fw_bld_8b; 7992 fw_rsv = resp->hwrm_fw_rsvd_8b; 7993 len = BC_HWRM_STR_LEN; 7994 } 7995 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 7996 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 7997 fw_rsv); 7998 7999 if (strlen(resp->active_pkg_name)) { 8000 int fw_ver_len = strlen(bp->fw_ver_str); 8001 8002 snprintf(bp->fw_ver_str + fw_ver_len, 8003 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 8004 resp->active_pkg_name); 8005 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 8006 } 8007 8008 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 8009 if (!bp->hwrm_cmd_timeout) 8010 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 8011 8012 if (resp->hwrm_intf_maj_8b >= 1) { 8013 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 8014 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 8015 } 8016 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 8017 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 8018 8019 bp->chip_num = le16_to_cpu(resp->chip_num); 8020 bp->chip_rev = resp->chip_rev; 8021 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 8022 !resp->chip_metal) 8023 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 8024 8025 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 8026 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 8027 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 8028 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 8029 8030 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 8031 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 8032 8033 if (dev_caps_cfg & 8034 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 8035 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 8036 8037 if (dev_caps_cfg & 8038 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 8039 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 8040 8041 if (dev_caps_cfg & 8042 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 8043 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 8044 8045 hwrm_ver_get_exit: 8046 hwrm_req_drop(bp, req); 8047 return rc; 8048 } 8049 8050 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 8051 { 8052 struct hwrm_fw_set_time_input *req; 8053 struct tm tm; 8054 time64_t now = ktime_get_real_seconds(); 8055 int rc; 8056 8057 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 8058 bp->hwrm_spec_code < 0x10400) 8059 return -EOPNOTSUPP; 8060 8061 time64_to_tm(now, 0, &tm); 8062 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 8063 if (rc) 8064 return rc; 8065 8066 req->year = cpu_to_le16(1900 + tm.tm_year); 8067 req->month = 1 + tm.tm_mon; 8068 req->day = tm.tm_mday; 8069 req->hour = tm.tm_hour; 8070 req->minute = tm.tm_min; 8071 req->second = tm.tm_sec; 8072 return hwrm_req_send(bp, req); 8073 } 8074 8075 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 8076 { 8077 u64 sw_tmp; 8078 8079 hw &= mask; 8080 sw_tmp = (*sw & ~mask) | hw; 8081 if (hw < (*sw & mask)) 8082 sw_tmp += mask + 1; 8083 WRITE_ONCE(*sw, sw_tmp); 8084 } 8085 8086 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 8087 int count, bool ignore_zero) 8088 { 8089 int i; 8090 8091 for (i = 0; i < count; i++) { 8092 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 8093 8094 if (ignore_zero && !hw) 8095 continue; 8096 8097 if (masks[i] == -1ULL) 8098 sw_stats[i] = hw; 8099 else 8100 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 8101 } 8102 } 8103 8104 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 8105 { 8106 if (!stats->hw_stats) 8107 return; 8108 8109 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8110 stats->hw_masks, stats->len / 8, false); 8111 } 8112 8113 static void bnxt_accumulate_all_stats(struct bnxt *bp) 8114 { 8115 struct bnxt_stats_mem *ring0_stats; 8116 bool ignore_zero = false; 8117 int i; 8118 8119 /* Chip bug. Counter intermittently becomes 0. */ 8120 if (bp->flags & BNXT_FLAG_CHIP_P5) 8121 ignore_zero = true; 8122 8123 for (i = 0; i < bp->cp_nr_rings; i++) { 8124 struct bnxt_napi *bnapi = bp->bnapi[i]; 8125 struct bnxt_cp_ring_info *cpr; 8126 struct bnxt_stats_mem *stats; 8127 8128 cpr = &bnapi->cp_ring; 8129 stats = &cpr->stats; 8130 if (!i) 8131 ring0_stats = stats; 8132 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 8133 ring0_stats->hw_masks, 8134 ring0_stats->len / 8, ignore_zero); 8135 } 8136 if (bp->flags & BNXT_FLAG_PORT_STATS) { 8137 struct bnxt_stats_mem *stats = &bp->port_stats; 8138 __le64 *hw_stats = stats->hw_stats; 8139 u64 *sw_stats = stats->sw_stats; 8140 u64 *masks = stats->hw_masks; 8141 int cnt; 8142 8143 cnt = sizeof(struct rx_port_stats) / 8; 8144 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8145 8146 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8147 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8148 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 8149 cnt = sizeof(struct tx_port_stats) / 8; 8150 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 8151 } 8152 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 8153 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 8154 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 8155 } 8156 } 8157 8158 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 8159 { 8160 struct hwrm_port_qstats_input *req; 8161 struct bnxt_pf_info *pf = &bp->pf; 8162 int rc; 8163 8164 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 8165 return 0; 8166 8167 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8168 return -EOPNOTSUPP; 8169 8170 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 8171 if (rc) 8172 return rc; 8173 8174 req->flags = flags; 8175 req->port_id = cpu_to_le16(pf->port_id); 8176 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 8177 BNXT_TX_PORT_STATS_BYTE_OFFSET); 8178 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 8179 return hwrm_req_send(bp, req); 8180 } 8181 8182 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 8183 { 8184 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 8185 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 8186 struct hwrm_port_qstats_ext_output *resp_qs; 8187 struct hwrm_port_qstats_ext_input *req_qs; 8188 struct bnxt_pf_info *pf = &bp->pf; 8189 u32 tx_stat_size; 8190 int rc; 8191 8192 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 8193 return 0; 8194 8195 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 8196 return -EOPNOTSUPP; 8197 8198 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 8199 if (rc) 8200 return rc; 8201 8202 req_qs->flags = flags; 8203 req_qs->port_id = cpu_to_le16(pf->port_id); 8204 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 8205 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 8206 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 8207 sizeof(struct tx_port_stats_ext) : 0; 8208 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 8209 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 8210 resp_qs = hwrm_req_hold(bp, req_qs); 8211 rc = hwrm_req_send(bp, req_qs); 8212 if (!rc) { 8213 bp->fw_rx_stats_ext_size = 8214 le16_to_cpu(resp_qs->rx_stat_size) / 8; 8215 if (BNXT_FW_MAJ(bp) < 220 && 8216 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 8217 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 8218 8219 bp->fw_tx_stats_ext_size = tx_stat_size ? 8220 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 8221 } else { 8222 bp->fw_rx_stats_ext_size = 0; 8223 bp->fw_tx_stats_ext_size = 0; 8224 } 8225 hwrm_req_drop(bp, req_qs); 8226 8227 if (flags) 8228 return rc; 8229 8230 if (bp->fw_tx_stats_ext_size <= 8231 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 8232 bp->pri2cos_valid = 0; 8233 return rc; 8234 } 8235 8236 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 8237 if (rc) 8238 return rc; 8239 8240 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 8241 8242 resp_qc = hwrm_req_hold(bp, req_qc); 8243 rc = hwrm_req_send(bp, req_qc); 8244 if (!rc) { 8245 u8 *pri2cos; 8246 int i, j; 8247 8248 pri2cos = &resp_qc->pri0_cos_queue_id; 8249 for (i = 0; i < 8; i++) { 8250 u8 queue_id = pri2cos[i]; 8251 u8 queue_idx; 8252 8253 /* Per port queue IDs start from 0, 10, 20, etc */ 8254 queue_idx = queue_id % 10; 8255 if (queue_idx > BNXT_MAX_QUEUE) { 8256 bp->pri2cos_valid = false; 8257 hwrm_req_drop(bp, req_qc); 8258 return rc; 8259 } 8260 for (j = 0; j < bp->max_q; j++) { 8261 if (bp->q_ids[j] == queue_id) 8262 bp->pri2cos_idx[i] = queue_idx; 8263 } 8264 } 8265 bp->pri2cos_valid = true; 8266 } 8267 hwrm_req_drop(bp, req_qc); 8268 8269 return rc; 8270 } 8271 8272 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 8273 { 8274 bnxt_hwrm_tunnel_dst_port_free(bp, 8275 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 8276 bnxt_hwrm_tunnel_dst_port_free(bp, 8277 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 8278 } 8279 8280 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 8281 { 8282 int rc, i; 8283 u32 tpa_flags = 0; 8284 8285 if (set_tpa) 8286 tpa_flags = bp->flags & BNXT_FLAG_TPA; 8287 else if (BNXT_NO_FW_ACCESS(bp)) 8288 return 0; 8289 for (i = 0; i < bp->nr_vnics; i++) { 8290 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 8291 if (rc) { 8292 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 8293 i, rc); 8294 return rc; 8295 } 8296 } 8297 return 0; 8298 } 8299 8300 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 8301 { 8302 int i; 8303 8304 for (i = 0; i < bp->nr_vnics; i++) 8305 bnxt_hwrm_vnic_set_rss(bp, i, false); 8306 } 8307 8308 static void bnxt_clear_vnic(struct bnxt *bp) 8309 { 8310 if (!bp->vnic_info) 8311 return; 8312 8313 bnxt_hwrm_clear_vnic_filter(bp); 8314 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 8315 /* clear all RSS setting before free vnic ctx */ 8316 bnxt_hwrm_clear_vnic_rss(bp); 8317 bnxt_hwrm_vnic_ctx_free(bp); 8318 } 8319 /* before free the vnic, undo the vnic tpa settings */ 8320 if (bp->flags & BNXT_FLAG_TPA) 8321 bnxt_set_tpa(bp, false); 8322 bnxt_hwrm_vnic_free(bp); 8323 if (bp->flags & BNXT_FLAG_CHIP_P5) 8324 bnxt_hwrm_vnic_ctx_free(bp); 8325 } 8326 8327 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8328 bool irq_re_init) 8329 { 8330 bnxt_clear_vnic(bp); 8331 bnxt_hwrm_ring_free(bp, close_path); 8332 bnxt_hwrm_ring_grp_free(bp); 8333 if (irq_re_init) { 8334 bnxt_hwrm_stat_ctx_free(bp); 8335 bnxt_hwrm_free_tunnel_ports(bp); 8336 } 8337 } 8338 8339 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8340 { 8341 struct hwrm_func_cfg_input *req; 8342 u8 evb_mode; 8343 int rc; 8344 8345 if (br_mode == BRIDGE_MODE_VEB) 8346 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8347 else if (br_mode == BRIDGE_MODE_VEPA) 8348 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8349 else 8350 return -EINVAL; 8351 8352 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8353 if (rc) 8354 return rc; 8355 8356 req->fid = cpu_to_le16(0xffff); 8357 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8358 req->evb_mode = evb_mode; 8359 return hwrm_req_send(bp, req); 8360 } 8361 8362 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8363 { 8364 struct hwrm_func_cfg_input *req; 8365 int rc; 8366 8367 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8368 return 0; 8369 8370 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG); 8371 if (rc) 8372 return rc; 8373 8374 req->fid = cpu_to_le16(0xffff); 8375 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8376 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8377 if (size == 128) 8378 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8379 8380 return hwrm_req_send(bp, req); 8381 } 8382 8383 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8384 { 8385 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8386 int rc; 8387 8388 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8389 goto skip_rss_ctx; 8390 8391 /* allocate context for vnic */ 8392 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8393 if (rc) { 8394 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8395 vnic_id, rc); 8396 goto vnic_setup_err; 8397 } 8398 bp->rsscos_nr_ctxs++; 8399 8400 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8401 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8402 if (rc) { 8403 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8404 vnic_id, rc); 8405 goto vnic_setup_err; 8406 } 8407 bp->rsscos_nr_ctxs++; 8408 } 8409 8410 skip_rss_ctx: 8411 /* configure default vnic, ring grp */ 8412 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8413 if (rc) { 8414 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8415 vnic_id, rc); 8416 goto vnic_setup_err; 8417 } 8418 8419 /* Enable RSS hashing on vnic */ 8420 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8421 if (rc) { 8422 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8423 vnic_id, rc); 8424 goto vnic_setup_err; 8425 } 8426 8427 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8428 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8429 if (rc) { 8430 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8431 vnic_id, rc); 8432 } 8433 } 8434 8435 vnic_setup_err: 8436 return rc; 8437 } 8438 8439 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8440 { 8441 int rc, i, nr_ctxs; 8442 8443 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8444 for (i = 0; i < nr_ctxs; i++) { 8445 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8446 if (rc) { 8447 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8448 vnic_id, i, rc); 8449 break; 8450 } 8451 bp->rsscos_nr_ctxs++; 8452 } 8453 if (i < nr_ctxs) 8454 return -ENOMEM; 8455 8456 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8457 if (rc) { 8458 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8459 vnic_id, rc); 8460 return rc; 8461 } 8462 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8463 if (rc) { 8464 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8465 vnic_id, rc); 8466 return rc; 8467 } 8468 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8469 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8470 if (rc) { 8471 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8472 vnic_id, rc); 8473 } 8474 } 8475 return rc; 8476 } 8477 8478 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8479 { 8480 if (bp->flags & BNXT_FLAG_CHIP_P5) 8481 return __bnxt_setup_vnic_p5(bp, vnic_id); 8482 else 8483 return __bnxt_setup_vnic(bp, vnic_id); 8484 } 8485 8486 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8487 { 8488 #ifdef CONFIG_RFS_ACCEL 8489 int i, rc = 0; 8490 8491 if (bp->flags & BNXT_FLAG_CHIP_P5) 8492 return 0; 8493 8494 for (i = 0; i < bp->rx_nr_rings; i++) { 8495 struct bnxt_vnic_info *vnic; 8496 u16 vnic_id = i + 1; 8497 u16 ring_id = i; 8498 8499 if (vnic_id >= bp->nr_vnics) 8500 break; 8501 8502 vnic = &bp->vnic_info[vnic_id]; 8503 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8504 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8505 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8506 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8507 if (rc) { 8508 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8509 vnic_id, rc); 8510 break; 8511 } 8512 rc = bnxt_setup_vnic(bp, vnic_id); 8513 if (rc) 8514 break; 8515 } 8516 return rc; 8517 #else 8518 return 0; 8519 #endif 8520 } 8521 8522 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 8523 static bool bnxt_promisc_ok(struct bnxt *bp) 8524 { 8525 #ifdef CONFIG_BNXT_SRIOV 8526 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 8527 return false; 8528 #endif 8529 return true; 8530 } 8531 8532 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8533 { 8534 unsigned int rc = 0; 8535 8536 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8537 if (rc) { 8538 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8539 rc); 8540 return rc; 8541 } 8542 8543 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8544 if (rc) { 8545 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8546 rc); 8547 return rc; 8548 } 8549 return rc; 8550 } 8551 8552 static int bnxt_cfg_rx_mode(struct bnxt *); 8553 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8554 8555 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8556 { 8557 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8558 int rc = 0; 8559 unsigned int rx_nr_rings = bp->rx_nr_rings; 8560 8561 if (irq_re_init) { 8562 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8563 if (rc) { 8564 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8565 rc); 8566 goto err_out; 8567 } 8568 } 8569 8570 rc = bnxt_hwrm_ring_alloc(bp); 8571 if (rc) { 8572 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8573 goto err_out; 8574 } 8575 8576 rc = bnxt_hwrm_ring_grp_alloc(bp); 8577 if (rc) { 8578 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8579 goto err_out; 8580 } 8581 8582 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8583 rx_nr_rings--; 8584 8585 /* default vnic 0 */ 8586 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8587 if (rc) { 8588 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8589 goto err_out; 8590 } 8591 8592 rc = bnxt_setup_vnic(bp, 0); 8593 if (rc) 8594 goto err_out; 8595 8596 if (bp->flags & BNXT_FLAG_RFS) { 8597 rc = bnxt_alloc_rfs_vnics(bp); 8598 if (rc) 8599 goto err_out; 8600 } 8601 8602 if (bp->flags & BNXT_FLAG_TPA) { 8603 rc = bnxt_set_tpa(bp, true); 8604 if (rc) 8605 goto err_out; 8606 } 8607 8608 if (BNXT_VF(bp)) 8609 bnxt_update_vf_mac(bp); 8610 8611 /* Filter for default vnic 0 */ 8612 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8613 if (rc) { 8614 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8615 goto err_out; 8616 } 8617 vnic->uc_filter_count = 1; 8618 8619 vnic->rx_mask = 0; 8620 if (bp->dev->flags & IFF_BROADCAST) 8621 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8622 8623 if (bp->dev->flags & IFF_PROMISC) 8624 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8625 8626 if (bp->dev->flags & IFF_ALLMULTI) { 8627 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8628 vnic->mc_list_count = 0; 8629 } else { 8630 u32 mask = 0; 8631 8632 bnxt_mc_list_updated(bp, &mask); 8633 vnic->rx_mask |= mask; 8634 } 8635 8636 rc = bnxt_cfg_rx_mode(bp); 8637 if (rc) 8638 goto err_out; 8639 8640 rc = bnxt_hwrm_set_coal(bp); 8641 if (rc) 8642 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8643 rc); 8644 8645 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8646 rc = bnxt_setup_nitroa0_vnic(bp); 8647 if (rc) 8648 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8649 rc); 8650 } 8651 8652 if (BNXT_VF(bp)) { 8653 bnxt_hwrm_func_qcfg(bp); 8654 netdev_update_features(bp->dev); 8655 } 8656 8657 return 0; 8658 8659 err_out: 8660 bnxt_hwrm_resource_free(bp, 0, true); 8661 8662 return rc; 8663 } 8664 8665 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8666 { 8667 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8668 return 0; 8669 } 8670 8671 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8672 { 8673 bnxt_init_cp_rings(bp); 8674 bnxt_init_rx_rings(bp); 8675 bnxt_init_tx_rings(bp); 8676 bnxt_init_ring_grps(bp, irq_re_init); 8677 bnxt_init_vnics(bp); 8678 8679 return bnxt_init_chip(bp, irq_re_init); 8680 } 8681 8682 static int bnxt_set_real_num_queues(struct bnxt *bp) 8683 { 8684 int rc; 8685 struct net_device *dev = bp->dev; 8686 8687 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8688 bp->tx_nr_rings_xdp); 8689 if (rc) 8690 return rc; 8691 8692 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8693 if (rc) 8694 return rc; 8695 8696 #ifdef CONFIG_RFS_ACCEL 8697 if (bp->flags & BNXT_FLAG_RFS) 8698 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8699 #endif 8700 8701 return rc; 8702 } 8703 8704 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8705 bool shared) 8706 { 8707 int _rx = *rx, _tx = *tx; 8708 8709 if (shared) { 8710 *rx = min_t(int, _rx, max); 8711 *tx = min_t(int, _tx, max); 8712 } else { 8713 if (max < 2) 8714 return -ENOMEM; 8715 8716 while (_rx + _tx > max) { 8717 if (_rx > _tx && _rx > 1) 8718 _rx--; 8719 else if (_tx > 1) 8720 _tx--; 8721 } 8722 *rx = _rx; 8723 *tx = _tx; 8724 } 8725 return 0; 8726 } 8727 8728 static void bnxt_setup_msix(struct bnxt *bp) 8729 { 8730 const int len = sizeof(bp->irq_tbl[0].name); 8731 struct net_device *dev = bp->dev; 8732 int tcs, i; 8733 8734 tcs = netdev_get_num_tc(dev); 8735 if (tcs) { 8736 int i, off, count; 8737 8738 for (i = 0; i < tcs; i++) { 8739 count = bp->tx_nr_rings_per_tc; 8740 off = i * count; 8741 netdev_set_tc_queue(dev, i, count, off); 8742 } 8743 } 8744 8745 for (i = 0; i < bp->cp_nr_rings; i++) { 8746 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8747 char *attr; 8748 8749 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8750 attr = "TxRx"; 8751 else if (i < bp->rx_nr_rings) 8752 attr = "rx"; 8753 else 8754 attr = "tx"; 8755 8756 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8757 attr, i); 8758 bp->irq_tbl[map_idx].handler = bnxt_msix; 8759 } 8760 } 8761 8762 static void bnxt_setup_inta(struct bnxt *bp) 8763 { 8764 const int len = sizeof(bp->irq_tbl[0].name); 8765 8766 if (netdev_get_num_tc(bp->dev)) 8767 netdev_reset_tc(bp->dev); 8768 8769 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8770 0); 8771 bp->irq_tbl[0].handler = bnxt_inta; 8772 } 8773 8774 static int bnxt_init_int_mode(struct bnxt *bp); 8775 8776 static int bnxt_setup_int_mode(struct bnxt *bp) 8777 { 8778 int rc; 8779 8780 if (!bp->irq_tbl) { 8781 rc = bnxt_init_int_mode(bp); 8782 if (rc || !bp->irq_tbl) 8783 return rc ?: -ENODEV; 8784 } 8785 8786 if (bp->flags & BNXT_FLAG_USING_MSIX) 8787 bnxt_setup_msix(bp); 8788 else 8789 bnxt_setup_inta(bp); 8790 8791 rc = bnxt_set_real_num_queues(bp); 8792 return rc; 8793 } 8794 8795 #ifdef CONFIG_RFS_ACCEL 8796 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8797 { 8798 return bp->hw_resc.max_rsscos_ctxs; 8799 } 8800 8801 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8802 { 8803 return bp->hw_resc.max_vnics; 8804 } 8805 #endif 8806 8807 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8808 { 8809 return bp->hw_resc.max_stat_ctxs; 8810 } 8811 8812 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8813 { 8814 return bp->hw_resc.max_cp_rings; 8815 } 8816 8817 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8818 { 8819 unsigned int cp = bp->hw_resc.max_cp_rings; 8820 8821 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8822 cp -= bnxt_get_ulp_msix_num(bp); 8823 8824 return cp; 8825 } 8826 8827 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8828 { 8829 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8830 8831 if (bp->flags & BNXT_FLAG_CHIP_P5) 8832 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8833 8834 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8835 } 8836 8837 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8838 { 8839 bp->hw_resc.max_irqs = max_irqs; 8840 } 8841 8842 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8843 { 8844 unsigned int cp; 8845 8846 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8847 if (bp->flags & BNXT_FLAG_CHIP_P5) 8848 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8849 else 8850 return cp - bp->cp_nr_rings; 8851 } 8852 8853 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8854 { 8855 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8856 } 8857 8858 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8859 { 8860 int max_cp = bnxt_get_max_func_cp_rings(bp); 8861 int max_irq = bnxt_get_max_func_irqs(bp); 8862 int total_req = bp->cp_nr_rings + num; 8863 int max_idx, avail_msix; 8864 8865 max_idx = bp->total_irqs; 8866 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8867 max_idx = min_t(int, bp->total_irqs, max_cp); 8868 avail_msix = max_idx - bp->cp_nr_rings; 8869 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8870 return avail_msix; 8871 8872 if (max_irq < total_req) { 8873 num = max_irq - bp->cp_nr_rings; 8874 if (num <= 0) 8875 return 0; 8876 } 8877 return num; 8878 } 8879 8880 static int bnxt_get_num_msix(struct bnxt *bp) 8881 { 8882 if (!BNXT_NEW_RM(bp)) 8883 return bnxt_get_max_func_irqs(bp); 8884 8885 return bnxt_nq_rings_in_use(bp); 8886 } 8887 8888 static int bnxt_init_msix(struct bnxt *bp) 8889 { 8890 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8891 struct msix_entry *msix_ent; 8892 8893 total_vecs = bnxt_get_num_msix(bp); 8894 max = bnxt_get_max_func_irqs(bp); 8895 if (total_vecs > max) 8896 total_vecs = max; 8897 8898 if (!total_vecs) 8899 return 0; 8900 8901 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8902 if (!msix_ent) 8903 return -ENOMEM; 8904 8905 for (i = 0; i < total_vecs; i++) { 8906 msix_ent[i].entry = i; 8907 msix_ent[i].vector = 0; 8908 } 8909 8910 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8911 min = 2; 8912 8913 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8914 ulp_msix = bnxt_get_ulp_msix_num(bp); 8915 if (total_vecs < 0 || total_vecs < ulp_msix) { 8916 rc = -ENODEV; 8917 goto msix_setup_exit; 8918 } 8919 8920 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8921 if (bp->irq_tbl) { 8922 for (i = 0; i < total_vecs; i++) 8923 bp->irq_tbl[i].vector = msix_ent[i].vector; 8924 8925 bp->total_irqs = total_vecs; 8926 /* Trim rings based upon num of vectors allocated */ 8927 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8928 total_vecs - ulp_msix, min == 1); 8929 if (rc) 8930 goto msix_setup_exit; 8931 8932 bp->cp_nr_rings = (min == 1) ? 8933 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8934 bp->tx_nr_rings + bp->rx_nr_rings; 8935 8936 } else { 8937 rc = -ENOMEM; 8938 goto msix_setup_exit; 8939 } 8940 bp->flags |= BNXT_FLAG_USING_MSIX; 8941 kfree(msix_ent); 8942 return 0; 8943 8944 msix_setup_exit: 8945 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 8946 kfree(bp->irq_tbl); 8947 bp->irq_tbl = NULL; 8948 pci_disable_msix(bp->pdev); 8949 kfree(msix_ent); 8950 return rc; 8951 } 8952 8953 static int bnxt_init_inta(struct bnxt *bp) 8954 { 8955 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 8956 if (!bp->irq_tbl) 8957 return -ENOMEM; 8958 8959 bp->total_irqs = 1; 8960 bp->rx_nr_rings = 1; 8961 bp->tx_nr_rings = 1; 8962 bp->cp_nr_rings = 1; 8963 bp->flags |= BNXT_FLAG_SHARED_RINGS; 8964 bp->irq_tbl[0].vector = bp->pdev->irq; 8965 return 0; 8966 } 8967 8968 static int bnxt_init_int_mode(struct bnxt *bp) 8969 { 8970 int rc = -ENODEV; 8971 8972 if (bp->flags & BNXT_FLAG_MSIX_CAP) 8973 rc = bnxt_init_msix(bp); 8974 8975 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 8976 /* fallback to INTA */ 8977 rc = bnxt_init_inta(bp); 8978 } 8979 return rc; 8980 } 8981 8982 static void bnxt_clear_int_mode(struct bnxt *bp) 8983 { 8984 if (bp->flags & BNXT_FLAG_USING_MSIX) 8985 pci_disable_msix(bp->pdev); 8986 8987 kfree(bp->irq_tbl); 8988 bp->irq_tbl = NULL; 8989 bp->flags &= ~BNXT_FLAG_USING_MSIX; 8990 } 8991 8992 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 8993 { 8994 int tcs = netdev_get_num_tc(bp->dev); 8995 bool irq_cleared = false; 8996 int rc; 8997 8998 if (!bnxt_need_reserve_rings(bp)) 8999 return 0; 9000 9001 if (irq_re_init && BNXT_NEW_RM(bp) && 9002 bnxt_get_num_msix(bp) != bp->total_irqs) { 9003 bnxt_ulp_irq_stop(bp); 9004 bnxt_clear_int_mode(bp); 9005 irq_cleared = true; 9006 } 9007 rc = __bnxt_reserve_rings(bp); 9008 if (irq_cleared) { 9009 if (!rc) 9010 rc = bnxt_init_int_mode(bp); 9011 bnxt_ulp_irq_restart(bp, rc); 9012 } 9013 if (rc) { 9014 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 9015 return rc; 9016 } 9017 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 9018 netdev_err(bp->dev, "tx ring reservation failure\n"); 9019 netdev_reset_tc(bp->dev); 9020 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 9021 return -ENOMEM; 9022 } 9023 return 0; 9024 } 9025 9026 static void bnxt_free_irq(struct bnxt *bp) 9027 { 9028 struct bnxt_irq *irq; 9029 int i; 9030 9031 #ifdef CONFIG_RFS_ACCEL 9032 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 9033 bp->dev->rx_cpu_rmap = NULL; 9034 #endif 9035 if (!bp->irq_tbl || !bp->bnapi) 9036 return; 9037 9038 for (i = 0; i < bp->cp_nr_rings; i++) { 9039 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9040 9041 irq = &bp->irq_tbl[map_idx]; 9042 if (irq->requested) { 9043 if (irq->have_cpumask) { 9044 irq_set_affinity_hint(irq->vector, NULL); 9045 free_cpumask_var(irq->cpu_mask); 9046 irq->have_cpumask = 0; 9047 } 9048 free_irq(irq->vector, bp->bnapi[i]); 9049 } 9050 9051 irq->requested = 0; 9052 } 9053 } 9054 9055 static int bnxt_request_irq(struct bnxt *bp) 9056 { 9057 int i, j, rc = 0; 9058 unsigned long flags = 0; 9059 #ifdef CONFIG_RFS_ACCEL 9060 struct cpu_rmap *rmap; 9061 #endif 9062 9063 rc = bnxt_setup_int_mode(bp); 9064 if (rc) { 9065 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 9066 rc); 9067 return rc; 9068 } 9069 #ifdef CONFIG_RFS_ACCEL 9070 rmap = bp->dev->rx_cpu_rmap; 9071 #endif 9072 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 9073 flags = IRQF_SHARED; 9074 9075 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 9076 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 9077 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 9078 9079 #ifdef CONFIG_RFS_ACCEL 9080 if (rmap && bp->bnapi[i]->rx_ring) { 9081 rc = irq_cpu_rmap_add(rmap, irq->vector); 9082 if (rc) 9083 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 9084 j); 9085 j++; 9086 } 9087 #endif 9088 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 9089 bp->bnapi[i]); 9090 if (rc) 9091 break; 9092 9093 irq->requested = 1; 9094 9095 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 9096 int numa_node = dev_to_node(&bp->pdev->dev); 9097 9098 irq->have_cpumask = 1; 9099 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 9100 irq->cpu_mask); 9101 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 9102 if (rc) { 9103 netdev_warn(bp->dev, 9104 "Set affinity failed, IRQ = %d\n", 9105 irq->vector); 9106 break; 9107 } 9108 } 9109 } 9110 return rc; 9111 } 9112 9113 static void bnxt_del_napi(struct bnxt *bp) 9114 { 9115 int i; 9116 9117 if (!bp->bnapi) 9118 return; 9119 9120 for (i = 0; i < bp->cp_nr_rings; i++) { 9121 struct bnxt_napi *bnapi = bp->bnapi[i]; 9122 9123 __netif_napi_del(&bnapi->napi); 9124 } 9125 /* We called __netif_napi_del(), we need 9126 * to respect an RCU grace period before freeing napi structures. 9127 */ 9128 synchronize_net(); 9129 } 9130 9131 static void bnxt_init_napi(struct bnxt *bp) 9132 { 9133 int i; 9134 unsigned int cp_nr_rings = bp->cp_nr_rings; 9135 struct bnxt_napi *bnapi; 9136 9137 if (bp->flags & BNXT_FLAG_USING_MSIX) { 9138 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 9139 9140 if (bp->flags & BNXT_FLAG_CHIP_P5) 9141 poll_fn = bnxt_poll_p5; 9142 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 9143 cp_nr_rings--; 9144 for (i = 0; i < cp_nr_rings; i++) { 9145 bnapi = bp->bnapi[i]; 9146 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 9147 } 9148 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 9149 bnapi = bp->bnapi[cp_nr_rings]; 9150 netif_napi_add(bp->dev, &bnapi->napi, 9151 bnxt_poll_nitroa0, 64); 9152 } 9153 } else { 9154 bnapi = bp->bnapi[0]; 9155 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 9156 } 9157 } 9158 9159 static void bnxt_disable_napi(struct bnxt *bp) 9160 { 9161 int i; 9162 9163 if (!bp->bnapi || 9164 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 9165 return; 9166 9167 for (i = 0; i < bp->cp_nr_rings; i++) { 9168 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 9169 9170 napi_disable(&bp->bnapi[i]->napi); 9171 if (bp->bnapi[i]->rx_ring) 9172 cancel_work_sync(&cpr->dim.work); 9173 } 9174 } 9175 9176 static void bnxt_enable_napi(struct bnxt *bp) 9177 { 9178 int i; 9179 9180 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 9181 for (i = 0; i < bp->cp_nr_rings; i++) { 9182 struct bnxt_napi *bnapi = bp->bnapi[i]; 9183 struct bnxt_cp_ring_info *cpr; 9184 9185 cpr = &bnapi->cp_ring; 9186 if (bnapi->in_reset) 9187 cpr->sw_stats.rx.rx_resets++; 9188 bnapi->in_reset = false; 9189 9190 if (bnapi->rx_ring) { 9191 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 9192 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 9193 } 9194 napi_enable(&bnapi->napi); 9195 } 9196 } 9197 9198 void bnxt_tx_disable(struct bnxt *bp) 9199 { 9200 int i; 9201 struct bnxt_tx_ring_info *txr; 9202 9203 if (bp->tx_ring) { 9204 for (i = 0; i < bp->tx_nr_rings; i++) { 9205 txr = &bp->tx_ring[i]; 9206 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 9207 } 9208 } 9209 /* Make sure napi polls see @dev_state change */ 9210 synchronize_net(); 9211 /* Drop carrier first to prevent TX timeout */ 9212 netif_carrier_off(bp->dev); 9213 /* Stop all TX queues */ 9214 netif_tx_disable(bp->dev); 9215 } 9216 9217 void bnxt_tx_enable(struct bnxt *bp) 9218 { 9219 int i; 9220 struct bnxt_tx_ring_info *txr; 9221 9222 for (i = 0; i < bp->tx_nr_rings; i++) { 9223 txr = &bp->tx_ring[i]; 9224 WRITE_ONCE(txr->dev_state, 0); 9225 } 9226 /* Make sure napi polls see @dev_state change */ 9227 synchronize_net(); 9228 netif_tx_wake_all_queues(bp->dev); 9229 if (bp->link_info.link_up) 9230 netif_carrier_on(bp->dev); 9231 } 9232 9233 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 9234 { 9235 u8 active_fec = link_info->active_fec_sig_mode & 9236 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 9237 9238 switch (active_fec) { 9239 default: 9240 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 9241 return "None"; 9242 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 9243 return "Clause 74 BaseR"; 9244 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 9245 return "Clause 91 RS(528,514)"; 9246 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 9247 return "Clause 91 RS544_1XN"; 9248 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 9249 return "Clause 91 RS(544,514)"; 9250 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 9251 return "Clause 91 RS272_1XN"; 9252 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 9253 return "Clause 91 RS(272,257)"; 9254 } 9255 } 9256 9257 void bnxt_report_link(struct bnxt *bp) 9258 { 9259 if (bp->link_info.link_up) { 9260 const char *signal = ""; 9261 const char *flow_ctrl; 9262 const char *duplex; 9263 u32 speed; 9264 u16 fec; 9265 9266 netif_carrier_on(bp->dev); 9267 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 9268 if (speed == SPEED_UNKNOWN) { 9269 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 9270 return; 9271 } 9272 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 9273 duplex = "full"; 9274 else 9275 duplex = "half"; 9276 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 9277 flow_ctrl = "ON - receive & transmit"; 9278 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 9279 flow_ctrl = "ON - transmit"; 9280 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 9281 flow_ctrl = "ON - receive"; 9282 else 9283 flow_ctrl = "none"; 9284 if (bp->link_info.phy_qcfg_resp.option_flags & 9285 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 9286 u8 sig_mode = bp->link_info.active_fec_sig_mode & 9287 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 9288 switch (sig_mode) { 9289 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 9290 signal = "(NRZ) "; 9291 break; 9292 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 9293 signal = "(PAM4) "; 9294 break; 9295 default: 9296 break; 9297 } 9298 } 9299 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 9300 speed, signal, duplex, flow_ctrl); 9301 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 9302 netdev_info(bp->dev, "EEE is %s\n", 9303 bp->eee.eee_active ? "active" : 9304 "not active"); 9305 fec = bp->link_info.fec_cfg; 9306 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 9307 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 9308 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 9309 bnxt_report_fec(&bp->link_info)); 9310 } else { 9311 netif_carrier_off(bp->dev); 9312 netdev_err(bp->dev, "NIC Link is Down\n"); 9313 } 9314 } 9315 9316 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 9317 { 9318 if (!resp->supported_speeds_auto_mode && 9319 !resp->supported_speeds_force_mode && 9320 !resp->supported_pam4_speeds_auto_mode && 9321 !resp->supported_pam4_speeds_force_mode) 9322 return true; 9323 return false; 9324 } 9325 9326 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 9327 { 9328 struct bnxt_link_info *link_info = &bp->link_info; 9329 struct hwrm_port_phy_qcaps_output *resp; 9330 struct hwrm_port_phy_qcaps_input *req; 9331 int rc = 0; 9332 9333 if (bp->hwrm_spec_code < 0x10201) 9334 return 0; 9335 9336 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 9337 if (rc) 9338 return rc; 9339 9340 resp = hwrm_req_hold(bp, req); 9341 rc = hwrm_req_send(bp, req); 9342 if (rc) 9343 goto hwrm_phy_qcaps_exit; 9344 9345 bp->phy_flags = resp->flags; 9346 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 9347 struct ethtool_eee *eee = &bp->eee; 9348 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 9349 9350 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9351 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 9352 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 9353 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 9354 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 9355 } 9356 9357 if (bp->hwrm_spec_code >= 0x10a01) { 9358 if (bnxt_phy_qcaps_no_speed(resp)) { 9359 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9360 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9361 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9362 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9363 netdev_info(bp->dev, "Ethernet link enabled\n"); 9364 /* Phy re-enabled, reprobe the speeds */ 9365 link_info->support_auto_speeds = 0; 9366 link_info->support_pam4_auto_speeds = 0; 9367 } 9368 } 9369 if (resp->supported_speeds_auto_mode) 9370 link_info->support_auto_speeds = 9371 le16_to_cpu(resp->supported_speeds_auto_mode); 9372 if (resp->supported_pam4_speeds_auto_mode) 9373 link_info->support_pam4_auto_speeds = 9374 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9375 9376 bp->port_count = resp->port_cnt; 9377 9378 hwrm_phy_qcaps_exit: 9379 hwrm_req_drop(bp, req); 9380 return rc; 9381 } 9382 9383 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9384 { 9385 u16 diff = advertising ^ supported; 9386 9387 return ((supported | diff) != supported); 9388 } 9389 9390 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9391 { 9392 struct bnxt_link_info *link_info = &bp->link_info; 9393 struct hwrm_port_phy_qcfg_output *resp; 9394 struct hwrm_port_phy_qcfg_input *req; 9395 u8 link_up = link_info->link_up; 9396 bool support_changed = false; 9397 int rc; 9398 9399 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 9400 if (rc) 9401 return rc; 9402 9403 resp = hwrm_req_hold(bp, req); 9404 rc = hwrm_req_send(bp, req); 9405 if (rc) { 9406 hwrm_req_drop(bp, req); 9407 return rc; 9408 } 9409 9410 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9411 link_info->phy_link_status = resp->link; 9412 link_info->duplex = resp->duplex_cfg; 9413 if (bp->hwrm_spec_code >= 0x10800) 9414 link_info->duplex = resp->duplex_state; 9415 link_info->pause = resp->pause; 9416 link_info->auto_mode = resp->auto_mode; 9417 link_info->auto_pause_setting = resp->auto_pause; 9418 link_info->lp_pause = resp->link_partner_adv_pause; 9419 link_info->force_pause_setting = resp->force_pause; 9420 link_info->duplex_setting = resp->duplex_cfg; 9421 if (link_info->phy_link_status == BNXT_LINK_LINK) 9422 link_info->link_speed = le16_to_cpu(resp->link_speed); 9423 else 9424 link_info->link_speed = 0; 9425 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9426 link_info->force_pam4_link_speed = 9427 le16_to_cpu(resp->force_pam4_link_speed); 9428 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9429 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9430 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9431 link_info->auto_pam4_link_speeds = 9432 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9433 link_info->lp_auto_link_speeds = 9434 le16_to_cpu(resp->link_partner_adv_speeds); 9435 link_info->lp_auto_pam4_link_speeds = 9436 resp->link_partner_pam4_adv_speeds; 9437 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9438 link_info->phy_ver[0] = resp->phy_maj; 9439 link_info->phy_ver[1] = resp->phy_min; 9440 link_info->phy_ver[2] = resp->phy_bld; 9441 link_info->media_type = resp->media_type; 9442 link_info->phy_type = resp->phy_type; 9443 link_info->transceiver = resp->xcvr_pkg_type; 9444 link_info->phy_addr = resp->eee_config_phy_addr & 9445 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9446 link_info->module_status = resp->module_status; 9447 9448 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 9449 struct ethtool_eee *eee = &bp->eee; 9450 u16 fw_speeds; 9451 9452 eee->eee_active = 0; 9453 if (resp->eee_config_phy_addr & 9454 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9455 eee->eee_active = 1; 9456 fw_speeds = le16_to_cpu( 9457 resp->link_partner_adv_eee_link_speed_mask); 9458 eee->lp_advertised = 9459 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9460 } 9461 9462 /* Pull initial EEE config */ 9463 if (!chng_link_state) { 9464 if (resp->eee_config_phy_addr & 9465 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9466 eee->eee_enabled = 1; 9467 9468 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9469 eee->advertised = 9470 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9471 9472 if (resp->eee_config_phy_addr & 9473 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9474 __le32 tmr; 9475 9476 eee->tx_lpi_enabled = 1; 9477 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9478 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9479 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9480 } 9481 } 9482 } 9483 9484 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9485 if (bp->hwrm_spec_code >= 0x10504) { 9486 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9487 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9488 } 9489 /* TODO: need to add more logic to report VF link */ 9490 if (chng_link_state) { 9491 if (link_info->phy_link_status == BNXT_LINK_LINK) 9492 link_info->link_up = 1; 9493 else 9494 link_info->link_up = 0; 9495 if (link_up != link_info->link_up) 9496 bnxt_report_link(bp); 9497 } else { 9498 /* alwasy link down if not require to update link state */ 9499 link_info->link_up = 0; 9500 } 9501 hwrm_req_drop(bp, req); 9502 9503 if (!BNXT_PHY_CFG_ABLE(bp)) 9504 return 0; 9505 9506 /* Check if any advertised speeds are no longer supported. The caller 9507 * holds the link_lock mutex, so we can modify link_info settings. 9508 */ 9509 if (bnxt_support_dropped(link_info->advertising, 9510 link_info->support_auto_speeds)) { 9511 link_info->advertising = link_info->support_auto_speeds; 9512 support_changed = true; 9513 } 9514 if (bnxt_support_dropped(link_info->advertising_pam4, 9515 link_info->support_pam4_auto_speeds)) { 9516 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9517 support_changed = true; 9518 } 9519 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9520 bnxt_hwrm_set_link_setting(bp, true, false); 9521 return 0; 9522 } 9523 9524 static void bnxt_get_port_module_status(struct bnxt *bp) 9525 { 9526 struct bnxt_link_info *link_info = &bp->link_info; 9527 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9528 u8 module_status; 9529 9530 if (bnxt_update_link(bp, true)) 9531 return; 9532 9533 module_status = link_info->module_status; 9534 switch (module_status) { 9535 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9536 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9537 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9538 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9539 bp->pf.port_id); 9540 if (bp->hwrm_spec_code >= 0x10201) { 9541 netdev_warn(bp->dev, "Module part number %s\n", 9542 resp->phy_vendor_partnumber); 9543 } 9544 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9545 netdev_warn(bp->dev, "TX is disabled\n"); 9546 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9547 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9548 } 9549 } 9550 9551 static void 9552 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9553 { 9554 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9555 if (bp->hwrm_spec_code >= 0x10201) 9556 req->auto_pause = 9557 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9558 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9559 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9560 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9561 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9562 req->enables |= 9563 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9564 } else { 9565 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9566 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9567 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9568 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9569 req->enables |= 9570 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9571 if (bp->hwrm_spec_code >= 0x10201) { 9572 req->auto_pause = req->force_pause; 9573 req->enables |= cpu_to_le32( 9574 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9575 } 9576 } 9577 } 9578 9579 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9580 { 9581 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9582 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9583 if (bp->link_info.advertising) { 9584 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9585 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9586 } 9587 if (bp->link_info.advertising_pam4) { 9588 req->enables |= 9589 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9590 req->auto_link_pam4_speed_mask = 9591 cpu_to_le16(bp->link_info.advertising_pam4); 9592 } 9593 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9594 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9595 } else { 9596 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9597 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9598 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9599 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9600 } else { 9601 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9602 } 9603 } 9604 9605 /* tell chimp that the setting takes effect immediately */ 9606 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9607 } 9608 9609 int bnxt_hwrm_set_pause(struct bnxt *bp) 9610 { 9611 struct hwrm_port_phy_cfg_input *req; 9612 int rc; 9613 9614 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9615 if (rc) 9616 return rc; 9617 9618 bnxt_hwrm_set_pause_common(bp, req); 9619 9620 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9621 bp->link_info.force_link_chng) 9622 bnxt_hwrm_set_link_common(bp, req); 9623 9624 rc = hwrm_req_send(bp, req); 9625 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9626 /* since changing of pause setting doesn't trigger any link 9627 * change event, the driver needs to update the current pause 9628 * result upon successfully return of the phy_cfg command 9629 */ 9630 bp->link_info.pause = 9631 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9632 bp->link_info.auto_pause_setting = 0; 9633 if (!bp->link_info.force_link_chng) 9634 bnxt_report_link(bp); 9635 } 9636 bp->link_info.force_link_chng = false; 9637 return rc; 9638 } 9639 9640 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9641 struct hwrm_port_phy_cfg_input *req) 9642 { 9643 struct ethtool_eee *eee = &bp->eee; 9644 9645 if (eee->eee_enabled) { 9646 u16 eee_speeds; 9647 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9648 9649 if (eee->tx_lpi_enabled) 9650 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9651 else 9652 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9653 9654 req->flags |= cpu_to_le32(flags); 9655 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9656 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9657 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9658 } else { 9659 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9660 } 9661 } 9662 9663 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9664 { 9665 struct hwrm_port_phy_cfg_input *req; 9666 int rc; 9667 9668 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9669 if (rc) 9670 return rc; 9671 9672 if (set_pause) 9673 bnxt_hwrm_set_pause_common(bp, req); 9674 9675 bnxt_hwrm_set_link_common(bp, req); 9676 9677 if (set_eee) 9678 bnxt_hwrm_set_eee(bp, req); 9679 return hwrm_req_send(bp, req); 9680 } 9681 9682 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9683 { 9684 struct hwrm_port_phy_cfg_input *req; 9685 int rc; 9686 9687 if (!BNXT_SINGLE_PF(bp)) 9688 return 0; 9689 9690 if (pci_num_vf(bp->pdev) && 9691 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 9692 return 0; 9693 9694 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 9695 if (rc) 9696 return rc; 9697 9698 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9699 return hwrm_req_send(bp, req); 9700 } 9701 9702 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 9703 { 9704 #ifdef CONFIG_TEE_BNXT_FW 9705 int rc = tee_bnxt_fw_load(); 9706 9707 if (rc) 9708 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 9709 9710 return rc; 9711 #else 9712 netdev_err(bp->dev, "OP-TEE not supported\n"); 9713 return -ENODEV; 9714 #endif 9715 } 9716 9717 static int bnxt_try_recover_fw(struct bnxt *bp) 9718 { 9719 if (bp->fw_health && bp->fw_health->status_reliable) { 9720 int retry = 0, rc; 9721 u32 sts; 9722 9723 do { 9724 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 9725 rc = bnxt_hwrm_poll(bp); 9726 if (!BNXT_FW_IS_BOOTING(sts) && 9727 !BNXT_FW_IS_RECOVERING(sts)) 9728 break; 9729 retry++; 9730 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 9731 9732 if (!BNXT_FW_IS_HEALTHY(sts)) { 9733 netdev_err(bp->dev, 9734 "Firmware not responding, status: 0x%x\n", 9735 sts); 9736 rc = -ENODEV; 9737 } 9738 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 9739 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 9740 return bnxt_fw_reset_via_optee(bp); 9741 } 9742 return rc; 9743 } 9744 9745 return -ENODEV; 9746 } 9747 9748 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 9749 { 9750 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9751 int rc; 9752 9753 if (!BNXT_NEW_RM(bp)) 9754 return 0; /* no resource reservations required */ 9755 9756 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9757 if (rc) 9758 netdev_err(bp->dev, "resc_qcaps failed\n"); 9759 9760 hw_resc->resv_cp_rings = 0; 9761 hw_resc->resv_stat_ctxs = 0; 9762 hw_resc->resv_irqs = 0; 9763 hw_resc->resv_tx_rings = 0; 9764 hw_resc->resv_rx_rings = 0; 9765 hw_resc->resv_hw_ring_grps = 0; 9766 hw_resc->resv_vnics = 0; 9767 if (!fw_reset) { 9768 bp->tx_nr_rings = 0; 9769 bp->rx_nr_rings = 0; 9770 } 9771 9772 return rc; 9773 } 9774 9775 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9776 { 9777 struct hwrm_func_drv_if_change_output *resp; 9778 struct hwrm_func_drv_if_change_input *req; 9779 bool fw_reset = !bp->irq_tbl; 9780 bool resc_reinit = false; 9781 int rc, retry = 0; 9782 u32 flags = 0; 9783 9784 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9785 return 0; 9786 9787 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 9788 if (rc) 9789 return rc; 9790 9791 if (up) 9792 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9793 resp = hwrm_req_hold(bp, req); 9794 9795 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9796 while (retry < BNXT_FW_IF_RETRY) { 9797 rc = hwrm_req_send(bp, req); 9798 if (rc != -EAGAIN) 9799 break; 9800 9801 msleep(50); 9802 retry++; 9803 } 9804 9805 if (rc == -EAGAIN) { 9806 hwrm_req_drop(bp, req); 9807 return rc; 9808 } else if (!rc) { 9809 flags = le32_to_cpu(resp->flags); 9810 } else if (up) { 9811 rc = bnxt_try_recover_fw(bp); 9812 fw_reset = true; 9813 } 9814 hwrm_req_drop(bp, req); 9815 if (rc) 9816 return rc; 9817 9818 if (!up) { 9819 bnxt_inv_fw_health_reg(bp); 9820 return 0; 9821 } 9822 9823 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9824 resc_reinit = true; 9825 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9826 fw_reset = true; 9827 else if (bp->fw_health && !bp->fw_health->status_reliable) 9828 bnxt_try_map_fw_health_reg(bp); 9829 9830 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9831 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9832 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9833 return -ENODEV; 9834 } 9835 if (resc_reinit || fw_reset) { 9836 if (fw_reset) { 9837 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9838 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9839 bnxt_ulp_stop(bp); 9840 bnxt_free_ctx_mem(bp); 9841 kfree(bp->ctx); 9842 bp->ctx = NULL; 9843 bnxt_dcb_free(bp); 9844 rc = bnxt_fw_init_one(bp); 9845 if (rc) { 9846 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9847 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9848 return rc; 9849 } 9850 bnxt_clear_int_mode(bp); 9851 rc = bnxt_init_int_mode(bp); 9852 if (rc) { 9853 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9854 netdev_err(bp->dev, "init int mode failed\n"); 9855 return rc; 9856 } 9857 } 9858 rc = bnxt_cancel_reservations(bp, fw_reset); 9859 } 9860 return rc; 9861 } 9862 9863 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9864 { 9865 struct hwrm_port_led_qcaps_output *resp; 9866 struct hwrm_port_led_qcaps_input *req; 9867 struct bnxt_pf_info *pf = &bp->pf; 9868 int rc; 9869 9870 bp->num_leds = 0; 9871 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9872 return 0; 9873 9874 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 9875 if (rc) 9876 return rc; 9877 9878 req->port_id = cpu_to_le16(pf->port_id); 9879 resp = hwrm_req_hold(bp, req); 9880 rc = hwrm_req_send(bp, req); 9881 if (rc) { 9882 hwrm_req_drop(bp, req); 9883 return rc; 9884 } 9885 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9886 int i; 9887 9888 bp->num_leds = resp->num_leds; 9889 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9890 bp->num_leds); 9891 for (i = 0; i < bp->num_leds; i++) { 9892 struct bnxt_led_info *led = &bp->leds[i]; 9893 __le16 caps = led->led_state_caps; 9894 9895 if (!led->led_group_id || 9896 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9897 bp->num_leds = 0; 9898 break; 9899 } 9900 } 9901 } 9902 hwrm_req_drop(bp, req); 9903 return 0; 9904 } 9905 9906 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9907 { 9908 struct hwrm_wol_filter_alloc_output *resp; 9909 struct hwrm_wol_filter_alloc_input *req; 9910 int rc; 9911 9912 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 9913 if (rc) 9914 return rc; 9915 9916 req->port_id = cpu_to_le16(bp->pf.port_id); 9917 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9918 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9919 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 9920 9921 resp = hwrm_req_hold(bp, req); 9922 rc = hwrm_req_send(bp, req); 9923 if (!rc) 9924 bp->wol_filter_id = resp->wol_filter_id; 9925 hwrm_req_drop(bp, req); 9926 return rc; 9927 } 9928 9929 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9930 { 9931 struct hwrm_wol_filter_free_input *req; 9932 int rc; 9933 9934 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 9935 if (rc) 9936 return rc; 9937 9938 req->port_id = cpu_to_le16(bp->pf.port_id); 9939 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 9940 req->wol_filter_id = bp->wol_filter_id; 9941 9942 return hwrm_req_send(bp, req); 9943 } 9944 9945 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 9946 { 9947 struct hwrm_wol_filter_qcfg_output *resp; 9948 struct hwrm_wol_filter_qcfg_input *req; 9949 u16 next_handle = 0; 9950 int rc; 9951 9952 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 9953 if (rc) 9954 return rc; 9955 9956 req->port_id = cpu_to_le16(bp->pf.port_id); 9957 req->handle = cpu_to_le16(handle); 9958 resp = hwrm_req_hold(bp, req); 9959 rc = hwrm_req_send(bp, req); 9960 if (!rc) { 9961 next_handle = le16_to_cpu(resp->next_handle); 9962 if (next_handle != 0) { 9963 if (resp->wol_type == 9964 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 9965 bp->wol = 1; 9966 bp->wol_filter_id = resp->wol_filter_id; 9967 } 9968 } 9969 } 9970 hwrm_req_drop(bp, req); 9971 return next_handle; 9972 } 9973 9974 static void bnxt_get_wol_settings(struct bnxt *bp) 9975 { 9976 u16 handle = 0; 9977 9978 bp->wol = 0; 9979 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 9980 return; 9981 9982 do { 9983 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 9984 } while (handle && handle != 0xffff); 9985 } 9986 9987 #ifdef CONFIG_BNXT_HWMON 9988 static ssize_t bnxt_show_temp(struct device *dev, 9989 struct device_attribute *devattr, char *buf) 9990 { 9991 struct hwrm_temp_monitor_query_output *resp; 9992 struct hwrm_temp_monitor_query_input *req; 9993 struct bnxt *bp = dev_get_drvdata(dev); 9994 u32 len = 0; 9995 int rc; 9996 9997 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 9998 if (rc) 9999 return rc; 10000 resp = hwrm_req_hold(bp, req); 10001 rc = hwrm_req_send(bp, req); 10002 if (!rc) 10003 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 10004 hwrm_req_drop(bp, req); 10005 if (rc) 10006 return rc; 10007 return len; 10008 } 10009 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 10010 10011 static struct attribute *bnxt_attrs[] = { 10012 &sensor_dev_attr_temp1_input.dev_attr.attr, 10013 NULL 10014 }; 10015 ATTRIBUTE_GROUPS(bnxt); 10016 10017 static void bnxt_hwmon_close(struct bnxt *bp) 10018 { 10019 if (bp->hwmon_dev) { 10020 hwmon_device_unregister(bp->hwmon_dev); 10021 bp->hwmon_dev = NULL; 10022 } 10023 } 10024 10025 static void bnxt_hwmon_open(struct bnxt *bp) 10026 { 10027 struct hwrm_temp_monitor_query_input *req; 10028 struct pci_dev *pdev = bp->pdev; 10029 int rc; 10030 10031 rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY); 10032 if (!rc) 10033 rc = hwrm_req_send_silent(bp, req); 10034 if (rc == -EACCES || rc == -EOPNOTSUPP) { 10035 bnxt_hwmon_close(bp); 10036 return; 10037 } 10038 10039 if (bp->hwmon_dev) 10040 return; 10041 10042 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 10043 DRV_MODULE_NAME, bp, 10044 bnxt_groups); 10045 if (IS_ERR(bp->hwmon_dev)) { 10046 bp->hwmon_dev = NULL; 10047 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 10048 } 10049 } 10050 #else 10051 static void bnxt_hwmon_close(struct bnxt *bp) 10052 { 10053 } 10054 10055 static void bnxt_hwmon_open(struct bnxt *bp) 10056 { 10057 } 10058 #endif 10059 10060 static bool bnxt_eee_config_ok(struct bnxt *bp) 10061 { 10062 struct ethtool_eee *eee = &bp->eee; 10063 struct bnxt_link_info *link_info = &bp->link_info; 10064 10065 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 10066 return true; 10067 10068 if (eee->eee_enabled) { 10069 u32 advertising = 10070 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 10071 10072 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10073 eee->eee_enabled = 0; 10074 return false; 10075 } 10076 if (eee->advertised & ~advertising) { 10077 eee->advertised = advertising & eee->supported; 10078 return false; 10079 } 10080 } 10081 return true; 10082 } 10083 10084 static int bnxt_update_phy_setting(struct bnxt *bp) 10085 { 10086 int rc; 10087 bool update_link = false; 10088 bool update_pause = false; 10089 bool update_eee = false; 10090 struct bnxt_link_info *link_info = &bp->link_info; 10091 10092 rc = bnxt_update_link(bp, true); 10093 if (rc) { 10094 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 10095 rc); 10096 return rc; 10097 } 10098 if (!BNXT_SINGLE_PF(bp)) 10099 return 0; 10100 10101 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10102 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 10103 link_info->req_flow_ctrl) 10104 update_pause = true; 10105 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 10106 link_info->force_pause_setting != link_info->req_flow_ctrl) 10107 update_pause = true; 10108 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 10109 if (BNXT_AUTO_MODE(link_info->auto_mode)) 10110 update_link = true; 10111 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 10112 link_info->req_link_speed != link_info->force_link_speed) 10113 update_link = true; 10114 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 10115 link_info->req_link_speed != link_info->force_pam4_link_speed) 10116 update_link = true; 10117 if (link_info->req_duplex != link_info->duplex_setting) 10118 update_link = true; 10119 } else { 10120 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 10121 update_link = true; 10122 if (link_info->advertising != link_info->auto_link_speeds || 10123 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 10124 update_link = true; 10125 } 10126 10127 /* The last close may have shutdown the link, so need to call 10128 * PHY_CFG to bring it back up. 10129 */ 10130 if (!bp->link_info.link_up) 10131 update_link = true; 10132 10133 if (!bnxt_eee_config_ok(bp)) 10134 update_eee = true; 10135 10136 if (update_link) 10137 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 10138 else if (update_pause) 10139 rc = bnxt_hwrm_set_pause(bp); 10140 if (rc) { 10141 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 10142 rc); 10143 return rc; 10144 } 10145 10146 return rc; 10147 } 10148 10149 /* Common routine to pre-map certain register block to different GRC window. 10150 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 10151 * in PF and 3 windows in VF that can be customized to map in different 10152 * register blocks. 10153 */ 10154 static void bnxt_preset_reg_win(struct bnxt *bp) 10155 { 10156 if (BNXT_PF(bp)) { 10157 /* CAG registers map to GRC window #4 */ 10158 writel(BNXT_CAG_REG_BASE, 10159 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 10160 } 10161 } 10162 10163 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 10164 10165 static int bnxt_reinit_after_abort(struct bnxt *bp) 10166 { 10167 int rc; 10168 10169 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10170 return -EBUSY; 10171 10172 if (bp->dev->reg_state == NETREG_UNREGISTERED) 10173 return -ENODEV; 10174 10175 rc = bnxt_fw_init_one(bp); 10176 if (!rc) { 10177 bnxt_clear_int_mode(bp); 10178 rc = bnxt_init_int_mode(bp); 10179 if (!rc) { 10180 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10181 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 10182 } 10183 } 10184 return rc; 10185 } 10186 10187 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10188 { 10189 int rc = 0; 10190 10191 bnxt_preset_reg_win(bp); 10192 netif_carrier_off(bp->dev); 10193 if (irq_re_init) { 10194 /* Reserve rings now if none were reserved at driver probe. */ 10195 rc = bnxt_init_dflt_ring_mode(bp); 10196 if (rc) { 10197 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 10198 return rc; 10199 } 10200 } 10201 rc = bnxt_reserve_rings(bp, irq_re_init); 10202 if (rc) 10203 return rc; 10204 if ((bp->flags & BNXT_FLAG_RFS) && 10205 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 10206 /* disable RFS if falling back to INTA */ 10207 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 10208 bp->flags &= ~BNXT_FLAG_RFS; 10209 } 10210 10211 rc = bnxt_alloc_mem(bp, irq_re_init); 10212 if (rc) { 10213 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10214 goto open_err_free_mem; 10215 } 10216 10217 if (irq_re_init) { 10218 bnxt_init_napi(bp); 10219 rc = bnxt_request_irq(bp); 10220 if (rc) { 10221 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 10222 goto open_err_irq; 10223 } 10224 } 10225 10226 rc = bnxt_init_nic(bp, irq_re_init); 10227 if (rc) { 10228 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10229 goto open_err_irq; 10230 } 10231 10232 bnxt_enable_napi(bp); 10233 bnxt_debug_dev_init(bp); 10234 10235 if (link_re_init) { 10236 mutex_lock(&bp->link_lock); 10237 rc = bnxt_update_phy_setting(bp); 10238 mutex_unlock(&bp->link_lock); 10239 if (rc) { 10240 netdev_warn(bp->dev, "failed to update phy settings\n"); 10241 if (BNXT_SINGLE_PF(bp)) { 10242 bp->link_info.phy_retry = true; 10243 bp->link_info.phy_retry_expires = 10244 jiffies + 5 * HZ; 10245 } 10246 } 10247 } 10248 10249 if (irq_re_init) 10250 udp_tunnel_nic_reset_ntf(bp->dev); 10251 10252 set_bit(BNXT_STATE_OPEN, &bp->state); 10253 bnxt_enable_int(bp); 10254 /* Enable TX queues */ 10255 bnxt_tx_enable(bp); 10256 mod_timer(&bp->timer, jiffies + bp->current_interval); 10257 /* Poll link status and check for SFP+ module status */ 10258 mutex_lock(&bp->link_lock); 10259 bnxt_get_port_module_status(bp); 10260 mutex_unlock(&bp->link_lock); 10261 10262 /* VF-reps may need to be re-opened after the PF is re-opened */ 10263 if (BNXT_PF(bp)) 10264 bnxt_vf_reps_open(bp); 10265 return 0; 10266 10267 open_err_irq: 10268 bnxt_del_napi(bp); 10269 10270 open_err_free_mem: 10271 bnxt_free_skbs(bp); 10272 bnxt_free_irq(bp); 10273 bnxt_free_mem(bp, true); 10274 return rc; 10275 } 10276 10277 /* rtnl_lock held */ 10278 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10279 { 10280 int rc = 0; 10281 10282 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 10283 rc = -EIO; 10284 if (!rc) 10285 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 10286 if (rc) { 10287 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 10288 dev_close(bp->dev); 10289 } 10290 return rc; 10291 } 10292 10293 /* rtnl_lock held, open the NIC half way by allocating all resources, but 10294 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 10295 * self tests. 10296 */ 10297 int bnxt_half_open_nic(struct bnxt *bp) 10298 { 10299 int rc = 0; 10300 10301 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10302 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 10303 rc = -ENODEV; 10304 goto half_open_err; 10305 } 10306 10307 rc = bnxt_alloc_mem(bp, false); 10308 if (rc) { 10309 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 10310 goto half_open_err; 10311 } 10312 rc = bnxt_init_nic(bp, false); 10313 if (rc) { 10314 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 10315 goto half_open_err; 10316 } 10317 return 0; 10318 10319 half_open_err: 10320 bnxt_free_skbs(bp); 10321 bnxt_free_mem(bp, false); 10322 dev_close(bp->dev); 10323 return rc; 10324 } 10325 10326 /* rtnl_lock held, this call can only be made after a previous successful 10327 * call to bnxt_half_open_nic(). 10328 */ 10329 void bnxt_half_close_nic(struct bnxt *bp) 10330 { 10331 bnxt_hwrm_resource_free(bp, false, false); 10332 bnxt_free_skbs(bp); 10333 bnxt_free_mem(bp, false); 10334 } 10335 10336 void bnxt_reenable_sriov(struct bnxt *bp) 10337 { 10338 if (BNXT_PF(bp)) { 10339 struct bnxt_pf_info *pf = &bp->pf; 10340 int n = pf->active_vfs; 10341 10342 if (n) 10343 bnxt_cfg_hw_sriov(bp, &n, true); 10344 } 10345 } 10346 10347 static int bnxt_open(struct net_device *dev) 10348 { 10349 struct bnxt *bp = netdev_priv(dev); 10350 int rc; 10351 10352 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 10353 rc = bnxt_reinit_after_abort(bp); 10354 if (rc) { 10355 if (rc == -EBUSY) 10356 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 10357 else 10358 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 10359 return -ENODEV; 10360 } 10361 } 10362 10363 rc = bnxt_hwrm_if_change(bp, true); 10364 if (rc) 10365 return rc; 10366 10367 rc = __bnxt_open_nic(bp, true, true); 10368 if (rc) { 10369 bnxt_hwrm_if_change(bp, false); 10370 } else { 10371 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 10372 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10373 bnxt_ulp_start(bp, 0); 10374 bnxt_reenable_sriov(bp); 10375 } 10376 } 10377 bnxt_hwmon_open(bp); 10378 } 10379 10380 return rc; 10381 } 10382 10383 static bool bnxt_drv_busy(struct bnxt *bp) 10384 { 10385 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 10386 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 10387 } 10388 10389 static void bnxt_get_ring_stats(struct bnxt *bp, 10390 struct rtnl_link_stats64 *stats); 10391 10392 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 10393 bool link_re_init) 10394 { 10395 /* Close the VF-reps before closing PF */ 10396 if (BNXT_PF(bp)) 10397 bnxt_vf_reps_close(bp); 10398 10399 /* Change device state to avoid TX queue wake up's */ 10400 bnxt_tx_disable(bp); 10401 10402 clear_bit(BNXT_STATE_OPEN, &bp->state); 10403 smp_mb__after_atomic(); 10404 while (bnxt_drv_busy(bp)) 10405 msleep(20); 10406 10407 /* Flush rings and and disable interrupts */ 10408 bnxt_shutdown_nic(bp, irq_re_init); 10409 10410 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 10411 10412 bnxt_debug_dev_exit(bp); 10413 bnxt_disable_napi(bp); 10414 del_timer_sync(&bp->timer); 10415 bnxt_free_skbs(bp); 10416 10417 /* Save ring stats before shutdown */ 10418 if (bp->bnapi && irq_re_init) 10419 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 10420 if (irq_re_init) { 10421 bnxt_free_irq(bp); 10422 bnxt_del_napi(bp); 10423 } 10424 bnxt_free_mem(bp, irq_re_init); 10425 } 10426 10427 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 10428 { 10429 int rc = 0; 10430 10431 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10432 /* If we get here, it means firmware reset is in progress 10433 * while we are trying to close. We can safely proceed with 10434 * the close because we are holding rtnl_lock(). Some firmware 10435 * messages may fail as we proceed to close. We set the 10436 * ABORT_ERR flag here so that the FW reset thread will later 10437 * abort when it gets the rtnl_lock() and sees the flag. 10438 */ 10439 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 10440 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 10441 } 10442 10443 #ifdef CONFIG_BNXT_SRIOV 10444 if (bp->sriov_cfg) { 10445 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 10446 !bp->sriov_cfg, 10447 BNXT_SRIOV_CFG_WAIT_TMO); 10448 if (rc) 10449 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 10450 } 10451 #endif 10452 __bnxt_close_nic(bp, irq_re_init, link_re_init); 10453 return rc; 10454 } 10455 10456 static int bnxt_close(struct net_device *dev) 10457 { 10458 struct bnxt *bp = netdev_priv(dev); 10459 10460 bnxt_hwmon_close(bp); 10461 bnxt_close_nic(bp, true, true); 10462 bnxt_hwrm_shutdown_link(bp); 10463 bnxt_hwrm_if_change(bp, false); 10464 return 0; 10465 } 10466 10467 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 10468 u16 *val) 10469 { 10470 struct hwrm_port_phy_mdio_read_output *resp; 10471 struct hwrm_port_phy_mdio_read_input *req; 10472 int rc; 10473 10474 if (bp->hwrm_spec_code < 0x10a00) 10475 return -EOPNOTSUPP; 10476 10477 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 10478 if (rc) 10479 return rc; 10480 10481 req->port_id = cpu_to_le16(bp->pf.port_id); 10482 req->phy_addr = phy_addr; 10483 req->reg_addr = cpu_to_le16(reg & 0x1f); 10484 if (mdio_phy_id_is_c45(phy_addr)) { 10485 req->cl45_mdio = 1; 10486 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10487 req->dev_addr = mdio_phy_id_devad(phy_addr); 10488 req->reg_addr = cpu_to_le16(reg); 10489 } 10490 10491 resp = hwrm_req_hold(bp, req); 10492 rc = hwrm_req_send(bp, req); 10493 if (!rc) 10494 *val = le16_to_cpu(resp->reg_data); 10495 hwrm_req_drop(bp, req); 10496 return rc; 10497 } 10498 10499 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 10500 u16 val) 10501 { 10502 struct hwrm_port_phy_mdio_write_input *req; 10503 int rc; 10504 10505 if (bp->hwrm_spec_code < 0x10a00) 10506 return -EOPNOTSUPP; 10507 10508 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 10509 if (rc) 10510 return rc; 10511 10512 req->port_id = cpu_to_le16(bp->pf.port_id); 10513 req->phy_addr = phy_addr; 10514 req->reg_addr = cpu_to_le16(reg & 0x1f); 10515 if (mdio_phy_id_is_c45(phy_addr)) { 10516 req->cl45_mdio = 1; 10517 req->phy_addr = mdio_phy_id_prtad(phy_addr); 10518 req->dev_addr = mdio_phy_id_devad(phy_addr); 10519 req->reg_addr = cpu_to_le16(reg); 10520 } 10521 req->reg_data = cpu_to_le16(val); 10522 10523 return hwrm_req_send(bp, req); 10524 } 10525 10526 /* rtnl_lock held */ 10527 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10528 { 10529 struct mii_ioctl_data *mdio = if_mii(ifr); 10530 struct bnxt *bp = netdev_priv(dev); 10531 int rc; 10532 10533 switch (cmd) { 10534 case SIOCGMIIPHY: 10535 mdio->phy_id = bp->link_info.phy_addr; 10536 10537 fallthrough; 10538 case SIOCGMIIREG: { 10539 u16 mii_regval = 0; 10540 10541 if (!netif_running(dev)) 10542 return -EAGAIN; 10543 10544 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10545 &mii_regval); 10546 mdio->val_out = mii_regval; 10547 return rc; 10548 } 10549 10550 case SIOCSMIIREG: 10551 if (!netif_running(dev)) 10552 return -EAGAIN; 10553 10554 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10555 mdio->val_in); 10556 10557 case SIOCSHWTSTAMP: 10558 return bnxt_hwtstamp_set(dev, ifr); 10559 10560 case SIOCGHWTSTAMP: 10561 return bnxt_hwtstamp_get(dev, ifr); 10562 10563 default: 10564 /* do nothing */ 10565 break; 10566 } 10567 return -EOPNOTSUPP; 10568 } 10569 10570 static void bnxt_get_ring_stats(struct bnxt *bp, 10571 struct rtnl_link_stats64 *stats) 10572 { 10573 int i; 10574 10575 for (i = 0; i < bp->cp_nr_rings; i++) { 10576 struct bnxt_napi *bnapi = bp->bnapi[i]; 10577 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10578 u64 *sw = cpr->stats.sw_stats; 10579 10580 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10581 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10582 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10583 10584 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10585 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10586 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10587 10588 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10589 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10590 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10591 10592 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10593 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10594 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10595 10596 stats->rx_missed_errors += 10597 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10598 10599 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10600 10601 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10602 10603 stats->rx_dropped += 10604 cpr->sw_stats.rx.rx_netpoll_discards + 10605 cpr->sw_stats.rx.rx_oom_discards; 10606 } 10607 } 10608 10609 static void bnxt_add_prev_stats(struct bnxt *bp, 10610 struct rtnl_link_stats64 *stats) 10611 { 10612 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10613 10614 stats->rx_packets += prev_stats->rx_packets; 10615 stats->tx_packets += prev_stats->tx_packets; 10616 stats->rx_bytes += prev_stats->rx_bytes; 10617 stats->tx_bytes += prev_stats->tx_bytes; 10618 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10619 stats->multicast += prev_stats->multicast; 10620 stats->rx_dropped += prev_stats->rx_dropped; 10621 stats->tx_dropped += prev_stats->tx_dropped; 10622 } 10623 10624 static void 10625 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10626 { 10627 struct bnxt *bp = netdev_priv(dev); 10628 10629 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10630 /* Make sure bnxt_close_nic() sees that we are reading stats before 10631 * we check the BNXT_STATE_OPEN flag. 10632 */ 10633 smp_mb__after_atomic(); 10634 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10635 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10636 *stats = bp->net_stats_prev; 10637 return; 10638 } 10639 10640 bnxt_get_ring_stats(bp, stats); 10641 bnxt_add_prev_stats(bp, stats); 10642 10643 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10644 u64 *rx = bp->port_stats.sw_stats; 10645 u64 *tx = bp->port_stats.sw_stats + 10646 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10647 10648 stats->rx_crc_errors = 10649 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10650 stats->rx_frame_errors = 10651 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10652 stats->rx_length_errors = 10653 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10654 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10655 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10656 stats->rx_errors = 10657 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10658 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10659 stats->collisions = 10660 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10661 stats->tx_fifo_errors = 10662 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10663 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10664 } 10665 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10666 } 10667 10668 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10669 { 10670 struct net_device *dev = bp->dev; 10671 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10672 struct netdev_hw_addr *ha; 10673 u8 *haddr; 10674 int mc_count = 0; 10675 bool update = false; 10676 int off = 0; 10677 10678 netdev_for_each_mc_addr(ha, dev) { 10679 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10680 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10681 vnic->mc_list_count = 0; 10682 return false; 10683 } 10684 haddr = ha->addr; 10685 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10686 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10687 update = true; 10688 } 10689 off += ETH_ALEN; 10690 mc_count++; 10691 } 10692 if (mc_count) 10693 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10694 10695 if (mc_count != vnic->mc_list_count) { 10696 vnic->mc_list_count = mc_count; 10697 update = true; 10698 } 10699 return update; 10700 } 10701 10702 static bool bnxt_uc_list_updated(struct bnxt *bp) 10703 { 10704 struct net_device *dev = bp->dev; 10705 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10706 struct netdev_hw_addr *ha; 10707 int off = 0; 10708 10709 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10710 return true; 10711 10712 netdev_for_each_uc_addr(ha, dev) { 10713 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10714 return true; 10715 10716 off += ETH_ALEN; 10717 } 10718 return false; 10719 } 10720 10721 static void bnxt_set_rx_mode(struct net_device *dev) 10722 { 10723 struct bnxt *bp = netdev_priv(dev); 10724 struct bnxt_vnic_info *vnic; 10725 bool mc_update = false; 10726 bool uc_update; 10727 u32 mask; 10728 10729 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10730 return; 10731 10732 vnic = &bp->vnic_info[0]; 10733 mask = vnic->rx_mask; 10734 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10735 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10736 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10737 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10738 10739 if (dev->flags & IFF_PROMISC) 10740 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10741 10742 uc_update = bnxt_uc_list_updated(bp); 10743 10744 if (dev->flags & IFF_BROADCAST) 10745 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10746 if (dev->flags & IFF_ALLMULTI) { 10747 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10748 vnic->mc_list_count = 0; 10749 } else { 10750 mc_update = bnxt_mc_list_updated(bp, &mask); 10751 } 10752 10753 if (mask != vnic->rx_mask || uc_update || mc_update) { 10754 vnic->rx_mask = mask; 10755 10756 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10757 bnxt_queue_sp_work(bp); 10758 } 10759 } 10760 10761 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10762 { 10763 struct net_device *dev = bp->dev; 10764 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10765 struct hwrm_cfa_l2_filter_free_input *req; 10766 struct netdev_hw_addr *ha; 10767 int i, off = 0, rc; 10768 bool uc_update; 10769 10770 netif_addr_lock_bh(dev); 10771 uc_update = bnxt_uc_list_updated(bp); 10772 netif_addr_unlock_bh(dev); 10773 10774 if (!uc_update) 10775 goto skip_uc; 10776 10777 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 10778 if (rc) 10779 return rc; 10780 hwrm_req_hold(bp, req); 10781 for (i = 1; i < vnic->uc_filter_count; i++) { 10782 req->l2_filter_id = vnic->fw_l2_filter_id[i]; 10783 10784 rc = hwrm_req_send(bp, req); 10785 } 10786 hwrm_req_drop(bp, req); 10787 10788 vnic->uc_filter_count = 1; 10789 10790 netif_addr_lock_bh(dev); 10791 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10792 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10793 } else { 10794 netdev_for_each_uc_addr(ha, dev) { 10795 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10796 off += ETH_ALEN; 10797 vnic->uc_filter_count++; 10798 } 10799 } 10800 netif_addr_unlock_bh(dev); 10801 10802 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10803 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10804 if (rc) { 10805 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10806 rc); 10807 vnic->uc_filter_count = i; 10808 return rc; 10809 } 10810 } 10811 10812 skip_uc: 10813 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 10814 !bnxt_promisc_ok(bp)) 10815 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10816 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10817 if (rc && vnic->mc_list_count) { 10818 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10819 rc); 10820 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10821 vnic->mc_list_count = 0; 10822 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10823 } 10824 if (rc) 10825 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10826 rc); 10827 10828 return rc; 10829 } 10830 10831 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10832 { 10833 #ifdef CONFIG_BNXT_SRIOV 10834 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10835 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10836 10837 /* No minimum rings were provisioned by the PF. Don't 10838 * reserve rings by default when device is down. 10839 */ 10840 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10841 return true; 10842 10843 if (!netif_running(bp->dev)) 10844 return false; 10845 } 10846 #endif 10847 return true; 10848 } 10849 10850 /* If the chip and firmware supports RFS */ 10851 static bool bnxt_rfs_supported(struct bnxt *bp) 10852 { 10853 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10854 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10855 return true; 10856 return false; 10857 } 10858 /* 212 firmware is broken for aRFS */ 10859 if (BNXT_FW_MAJ(bp) == 212) 10860 return false; 10861 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10862 return true; 10863 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10864 return true; 10865 return false; 10866 } 10867 10868 /* If runtime conditions support RFS */ 10869 static bool bnxt_rfs_capable(struct bnxt *bp) 10870 { 10871 #ifdef CONFIG_RFS_ACCEL 10872 int vnics, max_vnics, max_rss_ctxs; 10873 10874 if (bp->flags & BNXT_FLAG_CHIP_P5) 10875 return bnxt_rfs_supported(bp); 10876 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10877 return false; 10878 10879 vnics = 1 + bp->rx_nr_rings; 10880 max_vnics = bnxt_get_max_func_vnics(bp); 10881 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10882 10883 /* RSS contexts not a limiting factor */ 10884 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10885 max_rss_ctxs = max_vnics; 10886 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10887 if (bp->rx_nr_rings > 1) 10888 netdev_warn(bp->dev, 10889 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10890 min(max_rss_ctxs - 1, max_vnics - 1)); 10891 return false; 10892 } 10893 10894 if (!BNXT_NEW_RM(bp)) 10895 return true; 10896 10897 if (vnics == bp->hw_resc.resv_vnics) 10898 return true; 10899 10900 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10901 if (vnics <= bp->hw_resc.resv_vnics) 10902 return true; 10903 10904 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10905 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10906 return false; 10907 #else 10908 return false; 10909 #endif 10910 } 10911 10912 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10913 netdev_features_t features) 10914 { 10915 struct bnxt *bp = netdev_priv(dev); 10916 netdev_features_t vlan_features; 10917 10918 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10919 features &= ~NETIF_F_NTUPLE; 10920 10921 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10922 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10923 10924 if (!(features & NETIF_F_GRO)) 10925 features &= ~NETIF_F_GRO_HW; 10926 10927 if (features & NETIF_F_GRO_HW) 10928 features &= ~NETIF_F_LRO; 10929 10930 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10931 * turned on or off together. 10932 */ 10933 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10934 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10935 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10936 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10937 else if (vlan_features) 10938 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10939 } 10940 #ifdef CONFIG_BNXT_SRIOV 10941 if (BNXT_VF(bp) && bp->vf.vlan) 10942 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10943 #endif 10944 return features; 10945 } 10946 10947 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10948 { 10949 struct bnxt *bp = netdev_priv(dev); 10950 u32 flags = bp->flags; 10951 u32 changes; 10952 int rc = 0; 10953 bool re_init = false; 10954 bool update_tpa = false; 10955 10956 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 10957 if (features & NETIF_F_GRO_HW) 10958 flags |= BNXT_FLAG_GRO; 10959 else if (features & NETIF_F_LRO) 10960 flags |= BNXT_FLAG_LRO; 10961 10962 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10963 flags &= ~BNXT_FLAG_TPA; 10964 10965 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10966 flags |= BNXT_FLAG_STRIP_VLAN; 10967 10968 if (features & NETIF_F_NTUPLE) 10969 flags |= BNXT_FLAG_RFS; 10970 10971 changes = flags ^ bp->flags; 10972 if (changes & BNXT_FLAG_TPA) { 10973 update_tpa = true; 10974 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 10975 (flags & BNXT_FLAG_TPA) == 0 || 10976 (bp->flags & BNXT_FLAG_CHIP_P5)) 10977 re_init = true; 10978 } 10979 10980 if (changes & ~BNXT_FLAG_TPA) 10981 re_init = true; 10982 10983 if (flags != bp->flags) { 10984 u32 old_flags = bp->flags; 10985 10986 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10987 bp->flags = flags; 10988 if (update_tpa) 10989 bnxt_set_ring_params(bp); 10990 return rc; 10991 } 10992 10993 if (re_init) { 10994 bnxt_close_nic(bp, false, false); 10995 bp->flags = flags; 10996 if (update_tpa) 10997 bnxt_set_ring_params(bp); 10998 10999 return bnxt_open_nic(bp, false, false); 11000 } 11001 if (update_tpa) { 11002 bp->flags = flags; 11003 rc = bnxt_set_tpa(bp, 11004 (flags & BNXT_FLAG_TPA) ? 11005 true : false); 11006 if (rc) 11007 bp->flags = old_flags; 11008 } 11009 } 11010 return rc; 11011 } 11012 11013 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 11014 u8 **nextp) 11015 { 11016 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 11017 int hdr_count = 0; 11018 u8 *nexthdr; 11019 int start; 11020 11021 /* Check that there are at most 2 IPv6 extension headers, no 11022 * fragment header, and each is <= 64 bytes. 11023 */ 11024 start = nw_off + sizeof(*ip6h); 11025 nexthdr = &ip6h->nexthdr; 11026 while (ipv6_ext_hdr(*nexthdr)) { 11027 struct ipv6_opt_hdr *hp; 11028 int hdrlen; 11029 11030 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 11031 *nexthdr == NEXTHDR_FRAGMENT) 11032 return false; 11033 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 11034 skb_headlen(skb), NULL); 11035 if (!hp) 11036 return false; 11037 if (*nexthdr == NEXTHDR_AUTH) 11038 hdrlen = ipv6_authlen(hp); 11039 else 11040 hdrlen = ipv6_optlen(hp); 11041 11042 if (hdrlen > 64) 11043 return false; 11044 nexthdr = &hp->nexthdr; 11045 start += hdrlen; 11046 hdr_count++; 11047 } 11048 if (nextp) { 11049 /* Caller will check inner protocol */ 11050 if (skb->encapsulation) { 11051 *nextp = nexthdr; 11052 return true; 11053 } 11054 *nextp = NULL; 11055 } 11056 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 11057 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 11058 } 11059 11060 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 11061 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 11062 { 11063 struct udphdr *uh = udp_hdr(skb); 11064 __be16 udp_port = uh->dest; 11065 11066 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port) 11067 return false; 11068 if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) { 11069 struct ethhdr *eh = inner_eth_hdr(skb); 11070 11071 switch (eh->h_proto) { 11072 case htons(ETH_P_IP): 11073 return true; 11074 case htons(ETH_P_IPV6): 11075 return bnxt_exthdr_check(bp, skb, 11076 skb_inner_network_offset(skb), 11077 NULL); 11078 } 11079 } 11080 return false; 11081 } 11082 11083 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 11084 { 11085 switch (l4_proto) { 11086 case IPPROTO_UDP: 11087 return bnxt_udp_tunl_check(bp, skb); 11088 case IPPROTO_IPIP: 11089 return true; 11090 case IPPROTO_GRE: { 11091 switch (skb->inner_protocol) { 11092 default: 11093 return false; 11094 case htons(ETH_P_IP): 11095 return true; 11096 case htons(ETH_P_IPV6): 11097 fallthrough; 11098 } 11099 } 11100 case IPPROTO_IPV6: 11101 /* Check ext headers of inner ipv6 */ 11102 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 11103 NULL); 11104 } 11105 return false; 11106 } 11107 11108 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 11109 struct net_device *dev, 11110 netdev_features_t features) 11111 { 11112 struct bnxt *bp = netdev_priv(dev); 11113 u8 *l4_proto; 11114 11115 features = vlan_features_check(skb, features); 11116 switch (vlan_get_protocol(skb)) { 11117 case htons(ETH_P_IP): 11118 if (!skb->encapsulation) 11119 return features; 11120 l4_proto = &ip_hdr(skb)->protocol; 11121 if (bnxt_tunl_check(bp, skb, *l4_proto)) 11122 return features; 11123 break; 11124 case htons(ETH_P_IPV6): 11125 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 11126 &l4_proto)) 11127 break; 11128 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 11129 return features; 11130 break; 11131 } 11132 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11133 } 11134 11135 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 11136 u32 *reg_buf) 11137 { 11138 struct hwrm_dbg_read_direct_output *resp; 11139 struct hwrm_dbg_read_direct_input *req; 11140 __le32 *dbg_reg_buf; 11141 dma_addr_t mapping; 11142 int rc, i; 11143 11144 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 11145 if (rc) 11146 return rc; 11147 11148 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 11149 &mapping); 11150 if (!dbg_reg_buf) { 11151 rc = -ENOMEM; 11152 goto dbg_rd_reg_exit; 11153 } 11154 11155 req->host_dest_addr = cpu_to_le64(mapping); 11156 11157 resp = hwrm_req_hold(bp, req); 11158 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 11159 req->read_len32 = cpu_to_le32(num_words); 11160 11161 rc = hwrm_req_send(bp, req); 11162 if (rc || resp->error_code) { 11163 rc = -EIO; 11164 goto dbg_rd_reg_exit; 11165 } 11166 for (i = 0; i < num_words; i++) 11167 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 11168 11169 dbg_rd_reg_exit: 11170 hwrm_req_drop(bp, req); 11171 return rc; 11172 } 11173 11174 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 11175 u32 ring_id, u32 *prod, u32 *cons) 11176 { 11177 struct hwrm_dbg_ring_info_get_output *resp; 11178 struct hwrm_dbg_ring_info_get_input *req; 11179 int rc; 11180 11181 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 11182 if (rc) 11183 return rc; 11184 11185 req->ring_type = ring_type; 11186 req->fw_ring_id = cpu_to_le32(ring_id); 11187 resp = hwrm_req_hold(bp, req); 11188 rc = hwrm_req_send(bp, req); 11189 if (!rc) { 11190 *prod = le32_to_cpu(resp->producer_index); 11191 *cons = le32_to_cpu(resp->consumer_index); 11192 } 11193 hwrm_req_drop(bp, req); 11194 return rc; 11195 } 11196 11197 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 11198 { 11199 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 11200 int i = bnapi->index; 11201 11202 if (!txr) 11203 return; 11204 11205 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 11206 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 11207 txr->tx_cons); 11208 } 11209 11210 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 11211 { 11212 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 11213 int i = bnapi->index; 11214 11215 if (!rxr) 11216 return; 11217 11218 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 11219 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 11220 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 11221 rxr->rx_sw_agg_prod); 11222 } 11223 11224 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 11225 { 11226 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 11227 int i = bnapi->index; 11228 11229 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 11230 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 11231 } 11232 11233 static void bnxt_dbg_dump_states(struct bnxt *bp) 11234 { 11235 int i; 11236 struct bnxt_napi *bnapi; 11237 11238 for (i = 0; i < bp->cp_nr_rings; i++) { 11239 bnapi = bp->bnapi[i]; 11240 if (netif_msg_drv(bp)) { 11241 bnxt_dump_tx_sw_state(bnapi); 11242 bnxt_dump_rx_sw_state(bnapi); 11243 bnxt_dump_cp_sw_state(bnapi); 11244 } 11245 } 11246 } 11247 11248 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 11249 { 11250 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 11251 struct hwrm_ring_reset_input *req; 11252 struct bnxt_napi *bnapi = rxr->bnapi; 11253 struct bnxt_cp_ring_info *cpr; 11254 u16 cp_ring_id; 11255 int rc; 11256 11257 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 11258 if (rc) 11259 return rc; 11260 11261 cpr = &bnapi->cp_ring; 11262 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 11263 req->cmpl_ring = cpu_to_le16(cp_ring_id); 11264 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 11265 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 11266 return hwrm_req_send_silent(bp, req); 11267 } 11268 11269 static void bnxt_reset_task(struct bnxt *bp, bool silent) 11270 { 11271 if (!silent) 11272 bnxt_dbg_dump_states(bp); 11273 if (netif_running(bp->dev)) { 11274 int rc; 11275 11276 if (silent) { 11277 bnxt_close_nic(bp, false, false); 11278 bnxt_open_nic(bp, false, false); 11279 } else { 11280 bnxt_ulp_stop(bp); 11281 bnxt_close_nic(bp, true, false); 11282 rc = bnxt_open_nic(bp, true, false); 11283 bnxt_ulp_start(bp, rc); 11284 } 11285 } 11286 } 11287 11288 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 11289 { 11290 struct bnxt *bp = netdev_priv(dev); 11291 11292 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 11293 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 11294 bnxt_queue_sp_work(bp); 11295 } 11296 11297 static void bnxt_fw_health_check(struct bnxt *bp) 11298 { 11299 struct bnxt_fw_health *fw_health = bp->fw_health; 11300 u32 val; 11301 11302 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11303 return; 11304 11305 /* Make sure it is enabled before checking the tmr_counter. */ 11306 smp_rmb(); 11307 if (fw_health->tmr_counter) { 11308 fw_health->tmr_counter--; 11309 return; 11310 } 11311 11312 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11313 if (val == fw_health->last_fw_heartbeat) { 11314 fw_health->arrests++; 11315 goto fw_reset; 11316 } 11317 11318 fw_health->last_fw_heartbeat = val; 11319 11320 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11321 if (val != fw_health->last_fw_reset_cnt) { 11322 fw_health->discoveries++; 11323 goto fw_reset; 11324 } 11325 11326 fw_health->tmr_counter = fw_health->tmr_multiplier; 11327 return; 11328 11329 fw_reset: 11330 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 11331 bnxt_queue_sp_work(bp); 11332 } 11333 11334 static void bnxt_timer(struct timer_list *t) 11335 { 11336 struct bnxt *bp = from_timer(bp, t, timer); 11337 struct net_device *dev = bp->dev; 11338 11339 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 11340 return; 11341 11342 if (atomic_read(&bp->intr_sem) != 0) 11343 goto bnxt_restart_timer; 11344 11345 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 11346 bnxt_fw_health_check(bp); 11347 11348 if (bp->link_info.link_up && bp->stats_coal_ticks) { 11349 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 11350 bnxt_queue_sp_work(bp); 11351 } 11352 11353 if (bnxt_tc_flower_enabled(bp)) { 11354 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 11355 bnxt_queue_sp_work(bp); 11356 } 11357 11358 #ifdef CONFIG_RFS_ACCEL 11359 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 11360 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11361 bnxt_queue_sp_work(bp); 11362 } 11363 #endif /*CONFIG_RFS_ACCEL*/ 11364 11365 if (bp->link_info.phy_retry) { 11366 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 11367 bp->link_info.phy_retry = false; 11368 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 11369 } else { 11370 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 11371 bnxt_queue_sp_work(bp); 11372 } 11373 } 11374 11375 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 11376 netif_carrier_ok(dev)) { 11377 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 11378 bnxt_queue_sp_work(bp); 11379 } 11380 bnxt_restart_timer: 11381 mod_timer(&bp->timer, jiffies + bp->current_interval); 11382 } 11383 11384 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 11385 { 11386 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 11387 * set. If the device is being closed, bnxt_close() may be holding 11388 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 11389 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 11390 */ 11391 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11392 rtnl_lock(); 11393 } 11394 11395 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 11396 { 11397 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11398 rtnl_unlock(); 11399 } 11400 11401 /* Only called from bnxt_sp_task() */ 11402 static void bnxt_reset(struct bnxt *bp, bool silent) 11403 { 11404 bnxt_rtnl_lock_sp(bp); 11405 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 11406 bnxt_reset_task(bp, silent); 11407 bnxt_rtnl_unlock_sp(bp); 11408 } 11409 11410 /* Only called from bnxt_sp_task() */ 11411 static void bnxt_rx_ring_reset(struct bnxt *bp) 11412 { 11413 int i; 11414 11415 bnxt_rtnl_lock_sp(bp); 11416 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11417 bnxt_rtnl_unlock_sp(bp); 11418 return; 11419 } 11420 /* Disable and flush TPA before resetting the RX ring */ 11421 if (bp->flags & BNXT_FLAG_TPA) 11422 bnxt_set_tpa(bp, false); 11423 for (i = 0; i < bp->rx_nr_rings; i++) { 11424 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 11425 struct bnxt_cp_ring_info *cpr; 11426 int rc; 11427 11428 if (!rxr->bnapi->in_reset) 11429 continue; 11430 11431 rc = bnxt_hwrm_rx_ring_reset(bp, i); 11432 if (rc) { 11433 if (rc == -EINVAL || rc == -EOPNOTSUPP) 11434 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 11435 else 11436 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 11437 rc); 11438 bnxt_reset_task(bp, true); 11439 break; 11440 } 11441 bnxt_free_one_rx_ring_skbs(bp, i); 11442 rxr->rx_prod = 0; 11443 rxr->rx_agg_prod = 0; 11444 rxr->rx_sw_agg_prod = 0; 11445 rxr->rx_next_cons = 0; 11446 rxr->bnapi->in_reset = false; 11447 bnxt_alloc_one_rx_ring(bp, i); 11448 cpr = &rxr->bnapi->cp_ring; 11449 cpr->sw_stats.rx.rx_resets++; 11450 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11451 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 11452 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 11453 } 11454 if (bp->flags & BNXT_FLAG_TPA) 11455 bnxt_set_tpa(bp, true); 11456 bnxt_rtnl_unlock_sp(bp); 11457 } 11458 11459 static void bnxt_fw_reset_close(struct bnxt *bp) 11460 { 11461 bnxt_ulp_stop(bp); 11462 /* When firmware is in fatal state, quiesce device and disable 11463 * bus master to prevent any potential bad DMAs before freeing 11464 * kernel memory. 11465 */ 11466 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11467 u16 val = 0; 11468 11469 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 11470 if (val == 0xffff) 11471 bp->fw_reset_min_dsecs = 0; 11472 bnxt_tx_disable(bp); 11473 bnxt_disable_napi(bp); 11474 bnxt_disable_int_sync(bp); 11475 bnxt_free_irq(bp); 11476 bnxt_clear_int_mode(bp); 11477 pci_disable_device(bp->pdev); 11478 } 11479 __bnxt_close_nic(bp, true, false); 11480 bnxt_vf_reps_free(bp); 11481 bnxt_clear_int_mode(bp); 11482 bnxt_hwrm_func_drv_unrgtr(bp); 11483 if (pci_is_enabled(bp->pdev)) 11484 pci_disable_device(bp->pdev); 11485 bnxt_free_ctx_mem(bp); 11486 kfree(bp->ctx); 11487 bp->ctx = NULL; 11488 } 11489 11490 static bool is_bnxt_fw_ok(struct bnxt *bp) 11491 { 11492 struct bnxt_fw_health *fw_health = bp->fw_health; 11493 bool no_heartbeat = false, has_reset = false; 11494 u32 val; 11495 11496 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 11497 if (val == fw_health->last_fw_heartbeat) 11498 no_heartbeat = true; 11499 11500 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 11501 if (val != fw_health->last_fw_reset_cnt) 11502 has_reset = true; 11503 11504 if (!no_heartbeat && has_reset) 11505 return true; 11506 11507 return false; 11508 } 11509 11510 /* rtnl_lock is acquired before calling this function */ 11511 static void bnxt_force_fw_reset(struct bnxt *bp) 11512 { 11513 struct bnxt_fw_health *fw_health = bp->fw_health; 11514 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11515 u32 wait_dsecs; 11516 11517 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 11518 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11519 return; 11520 11521 if (ptp) { 11522 spin_lock_bh(&ptp->ptp_lock); 11523 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11524 spin_unlock_bh(&ptp->ptp_lock); 11525 } else { 11526 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11527 } 11528 bnxt_fw_reset_close(bp); 11529 wait_dsecs = fw_health->master_func_wait_dsecs; 11530 if (fw_health->primary) { 11531 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 11532 wait_dsecs = 0; 11533 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11534 } else { 11535 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 11536 wait_dsecs = fw_health->normal_func_wait_dsecs; 11537 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11538 } 11539 11540 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 11541 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 11542 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11543 } 11544 11545 void bnxt_fw_exception(struct bnxt *bp) 11546 { 11547 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 11548 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11549 bnxt_rtnl_lock_sp(bp); 11550 bnxt_force_fw_reset(bp); 11551 bnxt_rtnl_unlock_sp(bp); 11552 } 11553 11554 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 11555 * < 0 on error. 11556 */ 11557 static int bnxt_get_registered_vfs(struct bnxt *bp) 11558 { 11559 #ifdef CONFIG_BNXT_SRIOV 11560 int rc; 11561 11562 if (!BNXT_PF(bp)) 11563 return 0; 11564 11565 rc = bnxt_hwrm_func_qcfg(bp); 11566 if (rc) { 11567 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 11568 return rc; 11569 } 11570 if (bp->pf.registered_vfs) 11571 return bp->pf.registered_vfs; 11572 if (bp->sriov_cfg) 11573 return 1; 11574 #endif 11575 return 0; 11576 } 11577 11578 void bnxt_fw_reset(struct bnxt *bp) 11579 { 11580 bnxt_rtnl_lock_sp(bp); 11581 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 11582 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11583 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 11584 int n = 0, tmo; 11585 11586 if (ptp) { 11587 spin_lock_bh(&ptp->ptp_lock); 11588 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11589 spin_unlock_bh(&ptp->ptp_lock); 11590 } else { 11591 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11592 } 11593 if (bp->pf.active_vfs && 11594 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 11595 n = bnxt_get_registered_vfs(bp); 11596 if (n < 0) { 11597 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 11598 n); 11599 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11600 dev_close(bp->dev); 11601 goto fw_reset_exit; 11602 } else if (n > 0) { 11603 u16 vf_tmo_dsecs = n * 10; 11604 11605 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 11606 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 11607 bp->fw_reset_state = 11608 BNXT_FW_RESET_STATE_POLL_VF; 11609 bnxt_queue_fw_reset_work(bp, HZ / 10); 11610 goto fw_reset_exit; 11611 } 11612 bnxt_fw_reset_close(bp); 11613 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11614 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11615 tmo = HZ / 10; 11616 } else { 11617 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11618 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11619 } 11620 bnxt_queue_fw_reset_work(bp, tmo); 11621 } 11622 fw_reset_exit: 11623 bnxt_rtnl_unlock_sp(bp); 11624 } 11625 11626 static void bnxt_chk_missed_irq(struct bnxt *bp) 11627 { 11628 int i; 11629 11630 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 11631 return; 11632 11633 for (i = 0; i < bp->cp_nr_rings; i++) { 11634 struct bnxt_napi *bnapi = bp->bnapi[i]; 11635 struct bnxt_cp_ring_info *cpr; 11636 u32 fw_ring_id; 11637 int j; 11638 11639 if (!bnapi) 11640 continue; 11641 11642 cpr = &bnapi->cp_ring; 11643 for (j = 0; j < 2; j++) { 11644 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 11645 u32 val[2]; 11646 11647 if (!cpr2 || cpr2->has_more_work || 11648 !bnxt_has_work(bp, cpr2)) 11649 continue; 11650 11651 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 11652 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 11653 continue; 11654 } 11655 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 11656 bnxt_dbg_hwrm_ring_info_get(bp, 11657 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 11658 fw_ring_id, &val[0], &val[1]); 11659 cpr->sw_stats.cmn.missed_irqs++; 11660 } 11661 } 11662 } 11663 11664 static void bnxt_cfg_ntp_filters(struct bnxt *); 11665 11666 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 11667 { 11668 struct bnxt_link_info *link_info = &bp->link_info; 11669 11670 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 11671 link_info->autoneg = BNXT_AUTONEG_SPEED; 11672 if (bp->hwrm_spec_code >= 0x10201) { 11673 if (link_info->auto_pause_setting & 11674 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 11675 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11676 } else { 11677 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 11678 } 11679 link_info->advertising = link_info->auto_link_speeds; 11680 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 11681 } else { 11682 link_info->req_link_speed = link_info->force_link_speed; 11683 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 11684 if (link_info->force_pam4_link_speed) { 11685 link_info->req_link_speed = 11686 link_info->force_pam4_link_speed; 11687 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 11688 } 11689 link_info->req_duplex = link_info->duplex_setting; 11690 } 11691 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 11692 link_info->req_flow_ctrl = 11693 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 11694 else 11695 link_info->req_flow_ctrl = link_info->force_pause_setting; 11696 } 11697 11698 static void bnxt_fw_echo_reply(struct bnxt *bp) 11699 { 11700 struct bnxt_fw_health *fw_health = bp->fw_health; 11701 struct hwrm_func_echo_response_input *req; 11702 int rc; 11703 11704 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 11705 if (rc) 11706 return; 11707 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 11708 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 11709 hwrm_req_send(bp, req); 11710 } 11711 11712 static void bnxt_sp_task(struct work_struct *work) 11713 { 11714 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11715 11716 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11717 smp_mb__after_atomic(); 11718 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11719 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11720 return; 11721 } 11722 11723 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11724 bnxt_cfg_rx_mode(bp); 11725 11726 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11727 bnxt_cfg_ntp_filters(bp); 11728 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11729 bnxt_hwrm_exec_fwd_req(bp); 11730 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11731 bnxt_hwrm_port_qstats(bp, 0); 11732 bnxt_hwrm_port_qstats_ext(bp, 0); 11733 bnxt_accumulate_all_stats(bp); 11734 } 11735 11736 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11737 int rc; 11738 11739 mutex_lock(&bp->link_lock); 11740 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11741 &bp->sp_event)) 11742 bnxt_hwrm_phy_qcaps(bp); 11743 11744 rc = bnxt_update_link(bp, true); 11745 if (rc) 11746 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11747 rc); 11748 11749 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11750 &bp->sp_event)) 11751 bnxt_init_ethtool_link_settings(bp); 11752 mutex_unlock(&bp->link_lock); 11753 } 11754 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11755 int rc; 11756 11757 mutex_lock(&bp->link_lock); 11758 rc = bnxt_update_phy_setting(bp); 11759 mutex_unlock(&bp->link_lock); 11760 if (rc) { 11761 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11762 } else { 11763 bp->link_info.phy_retry = false; 11764 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11765 } 11766 } 11767 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11768 mutex_lock(&bp->link_lock); 11769 bnxt_get_port_module_status(bp); 11770 mutex_unlock(&bp->link_lock); 11771 } 11772 11773 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11774 bnxt_tc_flow_stats_work(bp); 11775 11776 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11777 bnxt_chk_missed_irq(bp); 11778 11779 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 11780 bnxt_fw_echo_reply(bp); 11781 11782 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11783 * must be the last functions to be called before exiting. 11784 */ 11785 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11786 bnxt_reset(bp, false); 11787 11788 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11789 bnxt_reset(bp, true); 11790 11791 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11792 bnxt_rx_ring_reset(bp); 11793 11794 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 11795 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 11796 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 11797 bnxt_devlink_health_fw_report(bp); 11798 else 11799 bnxt_fw_reset(bp); 11800 } 11801 11802 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11803 if (!is_bnxt_fw_ok(bp)) 11804 bnxt_devlink_health_fw_report(bp); 11805 } 11806 11807 smp_mb__before_atomic(); 11808 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11809 } 11810 11811 /* Under rtnl_lock */ 11812 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11813 int tx_xdp) 11814 { 11815 int max_rx, max_tx, tx_sets = 1; 11816 int tx_rings_needed, stats; 11817 int rx_rings = rx; 11818 int cp, vnics, rc; 11819 11820 if (tcs) 11821 tx_sets = tcs; 11822 11823 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11824 if (rc) 11825 return rc; 11826 11827 if (max_rx < rx) 11828 return -ENOMEM; 11829 11830 tx_rings_needed = tx * tx_sets + tx_xdp; 11831 if (max_tx < tx_rings_needed) 11832 return -ENOMEM; 11833 11834 vnics = 1; 11835 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11836 vnics += rx_rings; 11837 11838 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11839 rx_rings <<= 1; 11840 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11841 stats = cp; 11842 if (BNXT_NEW_RM(bp)) { 11843 cp += bnxt_get_ulp_msix_num(bp); 11844 stats += bnxt_get_ulp_stat_ctxs(bp); 11845 } 11846 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11847 stats, vnics); 11848 } 11849 11850 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11851 { 11852 if (bp->bar2) { 11853 pci_iounmap(pdev, bp->bar2); 11854 bp->bar2 = NULL; 11855 } 11856 11857 if (bp->bar1) { 11858 pci_iounmap(pdev, bp->bar1); 11859 bp->bar1 = NULL; 11860 } 11861 11862 if (bp->bar0) { 11863 pci_iounmap(pdev, bp->bar0); 11864 bp->bar0 = NULL; 11865 } 11866 } 11867 11868 static void bnxt_cleanup_pci(struct bnxt *bp) 11869 { 11870 bnxt_unmap_bars(bp, bp->pdev); 11871 pci_release_regions(bp->pdev); 11872 if (pci_is_enabled(bp->pdev)) 11873 pci_disable_device(bp->pdev); 11874 } 11875 11876 static void bnxt_init_dflt_coal(struct bnxt *bp) 11877 { 11878 struct bnxt_coal *coal; 11879 11880 /* Tick values in micro seconds. 11881 * 1 coal_buf x bufs_per_record = 1 completion record. 11882 */ 11883 coal = &bp->rx_coal; 11884 coal->coal_ticks = 10; 11885 coal->coal_bufs = 30; 11886 coal->coal_ticks_irq = 1; 11887 coal->coal_bufs_irq = 2; 11888 coal->idle_thresh = 50; 11889 coal->bufs_per_record = 2; 11890 coal->budget = 64; /* NAPI budget */ 11891 11892 coal = &bp->tx_coal; 11893 coal->coal_ticks = 28; 11894 coal->coal_bufs = 30; 11895 coal->coal_ticks_irq = 2; 11896 coal->coal_bufs_irq = 2; 11897 coal->bufs_per_record = 1; 11898 11899 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11900 } 11901 11902 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11903 { 11904 int rc; 11905 11906 bp->fw_cap = 0; 11907 rc = bnxt_hwrm_ver_get(bp); 11908 bnxt_try_map_fw_health_reg(bp); 11909 if (rc) { 11910 rc = bnxt_try_recover_fw(bp); 11911 if (rc) 11912 return rc; 11913 rc = bnxt_hwrm_ver_get(bp); 11914 if (rc) 11915 return rc; 11916 } 11917 11918 bnxt_nvm_cfg_ver_get(bp); 11919 11920 rc = bnxt_hwrm_func_reset(bp); 11921 if (rc) 11922 return -ENODEV; 11923 11924 bnxt_hwrm_fw_set_time(bp); 11925 return 0; 11926 } 11927 11928 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11929 { 11930 int rc; 11931 11932 /* Get the MAX capabilities for this function */ 11933 rc = bnxt_hwrm_func_qcaps(bp); 11934 if (rc) { 11935 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11936 rc); 11937 return -ENODEV; 11938 } 11939 11940 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11941 if (rc) 11942 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11943 rc); 11944 11945 if (bnxt_alloc_fw_health(bp)) { 11946 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11947 } else { 11948 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11949 if (rc) 11950 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11951 rc); 11952 } 11953 11954 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11955 if (rc) 11956 return -ENODEV; 11957 11958 bnxt_hwrm_func_qcfg(bp); 11959 bnxt_hwrm_vnic_qcaps(bp); 11960 bnxt_hwrm_port_led_qcaps(bp); 11961 bnxt_ethtool_init(bp); 11962 bnxt_dcb_init(bp); 11963 return 0; 11964 } 11965 11966 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11967 { 11968 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11969 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11970 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 11971 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 11972 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 11973 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 11974 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 11975 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 11976 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 11977 } 11978 } 11979 11980 static void bnxt_set_dflt_rfs(struct bnxt *bp) 11981 { 11982 struct net_device *dev = bp->dev; 11983 11984 dev->hw_features &= ~NETIF_F_NTUPLE; 11985 dev->features &= ~NETIF_F_NTUPLE; 11986 bp->flags &= ~BNXT_FLAG_RFS; 11987 if (bnxt_rfs_supported(bp)) { 11988 dev->hw_features |= NETIF_F_NTUPLE; 11989 if (bnxt_rfs_capable(bp)) { 11990 bp->flags |= BNXT_FLAG_RFS; 11991 dev->features |= NETIF_F_NTUPLE; 11992 } 11993 } 11994 } 11995 11996 static void bnxt_fw_init_one_p3(struct bnxt *bp) 11997 { 11998 struct pci_dev *pdev = bp->pdev; 11999 12000 bnxt_set_dflt_rss_hash_type(bp); 12001 bnxt_set_dflt_rfs(bp); 12002 12003 bnxt_get_wol_settings(bp); 12004 if (bp->flags & BNXT_FLAG_WOL_CAP) 12005 device_set_wakeup_enable(&pdev->dev, bp->wol); 12006 else 12007 device_set_wakeup_capable(&pdev->dev, false); 12008 12009 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 12010 bnxt_hwrm_coal_params_qcaps(bp); 12011 } 12012 12013 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 12014 12015 int bnxt_fw_init_one(struct bnxt *bp) 12016 { 12017 int rc; 12018 12019 rc = bnxt_fw_init_one_p1(bp); 12020 if (rc) { 12021 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 12022 return rc; 12023 } 12024 rc = bnxt_fw_init_one_p2(bp); 12025 if (rc) { 12026 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 12027 return rc; 12028 } 12029 rc = bnxt_probe_phy(bp, false); 12030 if (rc) 12031 return rc; 12032 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 12033 if (rc) 12034 return rc; 12035 12036 /* In case fw capabilities have changed, destroy the unneeded 12037 * reporters and create newly capable ones. 12038 */ 12039 bnxt_dl_fw_reporters_destroy(bp, false); 12040 bnxt_dl_fw_reporters_create(bp); 12041 bnxt_fw_init_one_p3(bp); 12042 return 0; 12043 } 12044 12045 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 12046 { 12047 struct bnxt_fw_health *fw_health = bp->fw_health; 12048 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 12049 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 12050 u32 reg_type, reg_off, delay_msecs; 12051 12052 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 12053 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 12054 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 12055 switch (reg_type) { 12056 case BNXT_FW_HEALTH_REG_TYPE_CFG: 12057 pci_write_config_dword(bp->pdev, reg_off, val); 12058 break; 12059 case BNXT_FW_HEALTH_REG_TYPE_GRC: 12060 writel(reg_off & BNXT_GRC_BASE_MASK, 12061 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 12062 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 12063 fallthrough; 12064 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 12065 writel(val, bp->bar0 + reg_off); 12066 break; 12067 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 12068 writel(val, bp->bar1 + reg_off); 12069 break; 12070 } 12071 if (delay_msecs) { 12072 pci_read_config_dword(bp->pdev, 0, &val); 12073 msleep(delay_msecs); 12074 } 12075 } 12076 12077 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 12078 { 12079 struct hwrm_func_qcfg_output *resp; 12080 struct hwrm_func_qcfg_input *req; 12081 bool result = true; /* firmware will enforce if unknown */ 12082 12083 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 12084 return result; 12085 12086 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 12087 return result; 12088 12089 req->fid = cpu_to_le16(0xffff); 12090 resp = hwrm_req_hold(bp, req); 12091 if (!hwrm_req_send(bp, req)) 12092 result = !!(le16_to_cpu(resp->flags) & 12093 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 12094 hwrm_req_drop(bp, req); 12095 return result; 12096 } 12097 12098 static void bnxt_reset_all(struct bnxt *bp) 12099 { 12100 struct bnxt_fw_health *fw_health = bp->fw_health; 12101 int i, rc; 12102 12103 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12104 bnxt_fw_reset_via_optee(bp); 12105 bp->fw_reset_timestamp = jiffies; 12106 return; 12107 } 12108 12109 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 12110 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 12111 bnxt_fw_reset_writel(bp, i); 12112 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 12113 struct hwrm_fw_reset_input *req; 12114 12115 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 12116 if (!rc) { 12117 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 12118 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 12119 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 12120 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 12121 rc = hwrm_req_send(bp, req); 12122 } 12123 if (rc != -ENODEV) 12124 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 12125 } 12126 bp->fw_reset_timestamp = jiffies; 12127 } 12128 12129 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 12130 { 12131 return time_after(jiffies, bp->fw_reset_timestamp + 12132 (bp->fw_reset_max_dsecs * HZ / 10)); 12133 } 12134 12135 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 12136 { 12137 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12138 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) { 12139 bnxt_ulp_start(bp, rc); 12140 bnxt_dl_health_fw_status_update(bp, false); 12141 } 12142 bp->fw_reset_state = 0; 12143 dev_close(bp->dev); 12144 } 12145 12146 static void bnxt_fw_reset_task(struct work_struct *work) 12147 { 12148 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 12149 int rc = 0; 12150 12151 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12152 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 12153 return; 12154 } 12155 12156 switch (bp->fw_reset_state) { 12157 case BNXT_FW_RESET_STATE_POLL_VF: { 12158 int n = bnxt_get_registered_vfs(bp); 12159 int tmo; 12160 12161 if (n < 0) { 12162 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 12163 n, jiffies_to_msecs(jiffies - 12164 bp->fw_reset_timestamp)); 12165 goto fw_reset_abort; 12166 } else if (n > 0) { 12167 if (bnxt_fw_reset_timeout(bp)) { 12168 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12169 bp->fw_reset_state = 0; 12170 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 12171 n); 12172 return; 12173 } 12174 bnxt_queue_fw_reset_work(bp, HZ / 10); 12175 return; 12176 } 12177 bp->fw_reset_timestamp = jiffies; 12178 rtnl_lock(); 12179 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12180 bnxt_fw_reset_abort(bp, rc); 12181 rtnl_unlock(); 12182 return; 12183 } 12184 bnxt_fw_reset_close(bp); 12185 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 12186 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 12187 tmo = HZ / 10; 12188 } else { 12189 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12190 tmo = bp->fw_reset_min_dsecs * HZ / 10; 12191 } 12192 rtnl_unlock(); 12193 bnxt_queue_fw_reset_work(bp, tmo); 12194 return; 12195 } 12196 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 12197 u32 val; 12198 12199 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12200 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 12201 !bnxt_fw_reset_timeout(bp)) { 12202 bnxt_queue_fw_reset_work(bp, HZ / 5); 12203 return; 12204 } 12205 12206 if (!bp->fw_health->primary) { 12207 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 12208 12209 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12210 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 12211 return; 12212 } 12213 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 12214 } 12215 fallthrough; 12216 case BNXT_FW_RESET_STATE_RESET_FW: 12217 bnxt_reset_all(bp); 12218 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 12219 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 12220 return; 12221 case BNXT_FW_RESET_STATE_ENABLE_DEV: 12222 bnxt_inv_fw_health_reg(bp); 12223 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 12224 !bp->fw_reset_min_dsecs) { 12225 u16 val; 12226 12227 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 12228 if (val == 0xffff) { 12229 if (bnxt_fw_reset_timeout(bp)) { 12230 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 12231 rc = -ETIMEDOUT; 12232 goto fw_reset_abort; 12233 } 12234 bnxt_queue_fw_reset_work(bp, HZ / 1000); 12235 return; 12236 } 12237 } 12238 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 12239 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 12240 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 12241 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 12242 bnxt_dl_remote_reload(bp); 12243 if (pci_enable_device(bp->pdev)) { 12244 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 12245 rc = -ENODEV; 12246 goto fw_reset_abort; 12247 } 12248 pci_set_master(bp->pdev); 12249 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 12250 fallthrough; 12251 case BNXT_FW_RESET_STATE_POLL_FW: 12252 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 12253 rc = bnxt_hwrm_poll(bp); 12254 if (rc) { 12255 if (bnxt_fw_reset_timeout(bp)) { 12256 netdev_err(bp->dev, "Firmware reset aborted\n"); 12257 goto fw_reset_abort_status; 12258 } 12259 bnxt_queue_fw_reset_work(bp, HZ / 5); 12260 return; 12261 } 12262 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 12263 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 12264 fallthrough; 12265 case BNXT_FW_RESET_STATE_OPENING: 12266 while (!rtnl_trylock()) { 12267 bnxt_queue_fw_reset_work(bp, HZ / 10); 12268 return; 12269 } 12270 rc = bnxt_open(bp->dev); 12271 if (rc) { 12272 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 12273 bnxt_fw_reset_abort(bp, rc); 12274 rtnl_unlock(); 12275 return; 12276 } 12277 12278 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 12279 bp->fw_health->enabled) { 12280 bp->fw_health->last_fw_reset_cnt = 12281 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 12282 } 12283 bp->fw_reset_state = 0; 12284 /* Make sure fw_reset_state is 0 before clearing the flag */ 12285 smp_mb__before_atomic(); 12286 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12287 bnxt_ulp_start(bp, 0); 12288 bnxt_reenable_sriov(bp); 12289 bnxt_vf_reps_alloc(bp); 12290 bnxt_vf_reps_open(bp); 12291 bnxt_ptp_reapply_pps(bp); 12292 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 12293 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 12294 bnxt_dl_health_fw_recovery_done(bp); 12295 bnxt_dl_health_fw_status_update(bp, true); 12296 } 12297 rtnl_unlock(); 12298 break; 12299 } 12300 return; 12301 12302 fw_reset_abort_status: 12303 if (bp->fw_health->status_reliable || 12304 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 12305 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12306 12307 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 12308 } 12309 fw_reset_abort: 12310 rtnl_lock(); 12311 bnxt_fw_reset_abort(bp, rc); 12312 rtnl_unlock(); 12313 } 12314 12315 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 12316 { 12317 int rc; 12318 struct bnxt *bp = netdev_priv(dev); 12319 12320 SET_NETDEV_DEV(dev, &pdev->dev); 12321 12322 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 12323 rc = pci_enable_device(pdev); 12324 if (rc) { 12325 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 12326 goto init_err; 12327 } 12328 12329 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12330 dev_err(&pdev->dev, 12331 "Cannot find PCI device base address, aborting\n"); 12332 rc = -ENODEV; 12333 goto init_err_disable; 12334 } 12335 12336 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12337 if (rc) { 12338 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 12339 goto init_err_disable; 12340 } 12341 12342 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 12343 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 12344 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 12345 rc = -EIO; 12346 goto init_err_release; 12347 } 12348 12349 pci_set_master(pdev); 12350 12351 bp->dev = dev; 12352 bp->pdev = pdev; 12353 12354 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 12355 * determines the BAR size. 12356 */ 12357 bp->bar0 = pci_ioremap_bar(pdev, 0); 12358 if (!bp->bar0) { 12359 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 12360 rc = -ENOMEM; 12361 goto init_err_release; 12362 } 12363 12364 bp->bar2 = pci_ioremap_bar(pdev, 4); 12365 if (!bp->bar2) { 12366 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 12367 rc = -ENOMEM; 12368 goto init_err_release; 12369 } 12370 12371 pci_enable_pcie_error_reporting(pdev); 12372 12373 INIT_WORK(&bp->sp_task, bnxt_sp_task); 12374 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 12375 12376 spin_lock_init(&bp->ntp_fltr_lock); 12377 #if BITS_PER_LONG == 32 12378 spin_lock_init(&bp->db_lock); 12379 #endif 12380 12381 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 12382 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 12383 12384 bnxt_init_dflt_coal(bp); 12385 12386 timer_setup(&bp->timer, bnxt_timer, 0); 12387 bp->current_interval = BNXT_TIMER_INTERVAL; 12388 12389 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 12390 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 12391 12392 clear_bit(BNXT_STATE_OPEN, &bp->state); 12393 return 0; 12394 12395 init_err_release: 12396 bnxt_unmap_bars(bp, pdev); 12397 pci_release_regions(pdev); 12398 12399 init_err_disable: 12400 pci_disable_device(pdev); 12401 12402 init_err: 12403 return rc; 12404 } 12405 12406 /* rtnl_lock held */ 12407 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 12408 { 12409 struct sockaddr *addr = p; 12410 struct bnxt *bp = netdev_priv(dev); 12411 int rc = 0; 12412 12413 if (!is_valid_ether_addr(addr->sa_data)) 12414 return -EADDRNOTAVAIL; 12415 12416 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 12417 return 0; 12418 12419 rc = bnxt_approve_mac(bp, addr->sa_data, true); 12420 if (rc) 12421 return rc; 12422 12423 eth_hw_addr_set(dev, addr->sa_data); 12424 if (netif_running(dev)) { 12425 bnxt_close_nic(bp, false, false); 12426 rc = bnxt_open_nic(bp, false, false); 12427 } 12428 12429 return rc; 12430 } 12431 12432 /* rtnl_lock held */ 12433 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 12434 { 12435 struct bnxt *bp = netdev_priv(dev); 12436 12437 if (netif_running(dev)) 12438 bnxt_close_nic(bp, true, false); 12439 12440 dev->mtu = new_mtu; 12441 bnxt_set_ring_params(bp); 12442 12443 if (netif_running(dev)) 12444 return bnxt_open_nic(bp, true, false); 12445 12446 return 0; 12447 } 12448 12449 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 12450 { 12451 struct bnxt *bp = netdev_priv(dev); 12452 bool sh = false; 12453 int rc; 12454 12455 if (tc > bp->max_tc) { 12456 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 12457 tc, bp->max_tc); 12458 return -EINVAL; 12459 } 12460 12461 if (netdev_get_num_tc(dev) == tc) 12462 return 0; 12463 12464 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 12465 sh = true; 12466 12467 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 12468 sh, tc, bp->tx_nr_rings_xdp); 12469 if (rc) 12470 return rc; 12471 12472 /* Needs to close the device and do hw resource re-allocations */ 12473 if (netif_running(bp->dev)) 12474 bnxt_close_nic(bp, true, false); 12475 12476 if (tc) { 12477 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 12478 netdev_set_num_tc(dev, tc); 12479 } else { 12480 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12481 netdev_reset_tc(dev); 12482 } 12483 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 12484 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 12485 bp->tx_nr_rings + bp->rx_nr_rings; 12486 12487 if (netif_running(bp->dev)) 12488 return bnxt_open_nic(bp, true, false); 12489 12490 return 0; 12491 } 12492 12493 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 12494 void *cb_priv) 12495 { 12496 struct bnxt *bp = cb_priv; 12497 12498 if (!bnxt_tc_flower_enabled(bp) || 12499 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 12500 return -EOPNOTSUPP; 12501 12502 switch (type) { 12503 case TC_SETUP_CLSFLOWER: 12504 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 12505 default: 12506 return -EOPNOTSUPP; 12507 } 12508 } 12509 12510 LIST_HEAD(bnxt_block_cb_list); 12511 12512 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 12513 void *type_data) 12514 { 12515 struct bnxt *bp = netdev_priv(dev); 12516 12517 switch (type) { 12518 case TC_SETUP_BLOCK: 12519 return flow_block_cb_setup_simple(type_data, 12520 &bnxt_block_cb_list, 12521 bnxt_setup_tc_block_cb, 12522 bp, bp, true); 12523 case TC_SETUP_QDISC_MQPRIO: { 12524 struct tc_mqprio_qopt *mqprio = type_data; 12525 12526 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 12527 12528 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 12529 } 12530 default: 12531 return -EOPNOTSUPP; 12532 } 12533 } 12534 12535 #ifdef CONFIG_RFS_ACCEL 12536 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 12537 struct bnxt_ntuple_filter *f2) 12538 { 12539 struct flow_keys *keys1 = &f1->fkeys; 12540 struct flow_keys *keys2 = &f2->fkeys; 12541 12542 if (keys1->basic.n_proto != keys2->basic.n_proto || 12543 keys1->basic.ip_proto != keys2->basic.ip_proto) 12544 return false; 12545 12546 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 12547 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 12548 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 12549 return false; 12550 } else { 12551 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 12552 sizeof(keys1->addrs.v6addrs.src)) || 12553 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 12554 sizeof(keys1->addrs.v6addrs.dst))) 12555 return false; 12556 } 12557 12558 if (keys1->ports.ports == keys2->ports.ports && 12559 keys1->control.flags == keys2->control.flags && 12560 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 12561 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 12562 return true; 12563 12564 return false; 12565 } 12566 12567 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 12568 u16 rxq_index, u32 flow_id) 12569 { 12570 struct bnxt *bp = netdev_priv(dev); 12571 struct bnxt_ntuple_filter *fltr, *new_fltr; 12572 struct flow_keys *fkeys; 12573 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 12574 int rc = 0, idx, bit_id, l2_idx = 0; 12575 struct hlist_head *head; 12576 u32 flags; 12577 12578 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 12579 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 12580 int off = 0, j; 12581 12582 netif_addr_lock_bh(dev); 12583 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 12584 if (ether_addr_equal(eth->h_dest, 12585 vnic->uc_list + off)) { 12586 l2_idx = j + 1; 12587 break; 12588 } 12589 } 12590 netif_addr_unlock_bh(dev); 12591 if (!l2_idx) 12592 return -EINVAL; 12593 } 12594 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 12595 if (!new_fltr) 12596 return -ENOMEM; 12597 12598 fkeys = &new_fltr->fkeys; 12599 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 12600 rc = -EPROTONOSUPPORT; 12601 goto err_free; 12602 } 12603 12604 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 12605 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 12606 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 12607 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 12608 rc = -EPROTONOSUPPORT; 12609 goto err_free; 12610 } 12611 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 12612 bp->hwrm_spec_code < 0x10601) { 12613 rc = -EPROTONOSUPPORT; 12614 goto err_free; 12615 } 12616 flags = fkeys->control.flags; 12617 if (((flags & FLOW_DIS_ENCAPSULATION) && 12618 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 12619 rc = -EPROTONOSUPPORT; 12620 goto err_free; 12621 } 12622 12623 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 12624 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 12625 12626 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 12627 head = &bp->ntp_fltr_hash_tbl[idx]; 12628 rcu_read_lock(); 12629 hlist_for_each_entry_rcu(fltr, head, hash) { 12630 if (bnxt_fltr_match(fltr, new_fltr)) { 12631 rcu_read_unlock(); 12632 rc = 0; 12633 goto err_free; 12634 } 12635 } 12636 rcu_read_unlock(); 12637 12638 spin_lock_bh(&bp->ntp_fltr_lock); 12639 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 12640 BNXT_NTP_FLTR_MAX_FLTR, 0); 12641 if (bit_id < 0) { 12642 spin_unlock_bh(&bp->ntp_fltr_lock); 12643 rc = -ENOMEM; 12644 goto err_free; 12645 } 12646 12647 new_fltr->sw_id = (u16)bit_id; 12648 new_fltr->flow_id = flow_id; 12649 new_fltr->l2_fltr_idx = l2_idx; 12650 new_fltr->rxq = rxq_index; 12651 hlist_add_head_rcu(&new_fltr->hash, head); 12652 bp->ntp_fltr_count++; 12653 spin_unlock_bh(&bp->ntp_fltr_lock); 12654 12655 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 12656 bnxt_queue_sp_work(bp); 12657 12658 return new_fltr->sw_id; 12659 12660 err_free: 12661 kfree(new_fltr); 12662 return rc; 12663 } 12664 12665 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12666 { 12667 int i; 12668 12669 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 12670 struct hlist_head *head; 12671 struct hlist_node *tmp; 12672 struct bnxt_ntuple_filter *fltr; 12673 int rc; 12674 12675 head = &bp->ntp_fltr_hash_tbl[i]; 12676 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 12677 bool del = false; 12678 12679 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 12680 if (rps_may_expire_flow(bp->dev, fltr->rxq, 12681 fltr->flow_id, 12682 fltr->sw_id)) { 12683 bnxt_hwrm_cfa_ntuple_filter_free(bp, 12684 fltr); 12685 del = true; 12686 } 12687 } else { 12688 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 12689 fltr); 12690 if (rc) 12691 del = true; 12692 else 12693 set_bit(BNXT_FLTR_VALID, &fltr->state); 12694 } 12695 12696 if (del) { 12697 spin_lock_bh(&bp->ntp_fltr_lock); 12698 hlist_del_rcu(&fltr->hash); 12699 bp->ntp_fltr_count--; 12700 spin_unlock_bh(&bp->ntp_fltr_lock); 12701 synchronize_rcu(); 12702 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 12703 kfree(fltr); 12704 } 12705 } 12706 } 12707 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 12708 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 12709 } 12710 12711 #else 12712 12713 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 12714 { 12715 } 12716 12717 #endif /* CONFIG_RFS_ACCEL */ 12718 12719 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 12720 { 12721 struct bnxt *bp = netdev_priv(netdev); 12722 struct udp_tunnel_info ti; 12723 unsigned int cmd; 12724 12725 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 12726 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) 12727 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 12728 else 12729 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 12730 12731 if (ti.port) 12732 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 12733 12734 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 12735 } 12736 12737 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 12738 .sync_table = bnxt_udp_tunnel_sync, 12739 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 12740 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 12741 .tables = { 12742 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 12743 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 12744 }, 12745 }; 12746 12747 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12748 struct net_device *dev, u32 filter_mask, 12749 int nlflags) 12750 { 12751 struct bnxt *bp = netdev_priv(dev); 12752 12753 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12754 nlflags, filter_mask, NULL); 12755 } 12756 12757 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12758 u16 flags, struct netlink_ext_ack *extack) 12759 { 12760 struct bnxt *bp = netdev_priv(dev); 12761 struct nlattr *attr, *br_spec; 12762 int rem, rc = 0; 12763 12764 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12765 return -EOPNOTSUPP; 12766 12767 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12768 if (!br_spec) 12769 return -EINVAL; 12770 12771 nla_for_each_nested(attr, br_spec, rem) { 12772 u16 mode; 12773 12774 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12775 continue; 12776 12777 if (nla_len(attr) < sizeof(mode)) 12778 return -EINVAL; 12779 12780 mode = nla_get_u16(attr); 12781 if (mode == bp->br_mode) 12782 break; 12783 12784 rc = bnxt_hwrm_set_br_mode(bp, mode); 12785 if (!rc) 12786 bp->br_mode = mode; 12787 break; 12788 } 12789 return rc; 12790 } 12791 12792 int bnxt_get_port_parent_id(struct net_device *dev, 12793 struct netdev_phys_item_id *ppid) 12794 { 12795 struct bnxt *bp = netdev_priv(dev); 12796 12797 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12798 return -EOPNOTSUPP; 12799 12800 /* The PF and it's VF-reps only support the switchdev framework */ 12801 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12802 return -EOPNOTSUPP; 12803 12804 ppid->id_len = sizeof(bp->dsn); 12805 memcpy(ppid->id, bp->dsn, ppid->id_len); 12806 12807 return 0; 12808 } 12809 12810 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12811 { 12812 struct bnxt *bp = netdev_priv(dev); 12813 12814 return &bp->dl_port; 12815 } 12816 12817 static const struct net_device_ops bnxt_netdev_ops = { 12818 .ndo_open = bnxt_open, 12819 .ndo_start_xmit = bnxt_start_xmit, 12820 .ndo_stop = bnxt_close, 12821 .ndo_get_stats64 = bnxt_get_stats64, 12822 .ndo_set_rx_mode = bnxt_set_rx_mode, 12823 .ndo_eth_ioctl = bnxt_ioctl, 12824 .ndo_validate_addr = eth_validate_addr, 12825 .ndo_set_mac_address = bnxt_change_mac_addr, 12826 .ndo_change_mtu = bnxt_change_mtu, 12827 .ndo_fix_features = bnxt_fix_features, 12828 .ndo_set_features = bnxt_set_features, 12829 .ndo_features_check = bnxt_features_check, 12830 .ndo_tx_timeout = bnxt_tx_timeout, 12831 #ifdef CONFIG_BNXT_SRIOV 12832 .ndo_get_vf_config = bnxt_get_vf_config, 12833 .ndo_set_vf_mac = bnxt_set_vf_mac, 12834 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12835 .ndo_set_vf_rate = bnxt_set_vf_bw, 12836 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12837 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12838 .ndo_set_vf_trust = bnxt_set_vf_trust, 12839 #endif 12840 .ndo_setup_tc = bnxt_setup_tc, 12841 #ifdef CONFIG_RFS_ACCEL 12842 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12843 #endif 12844 .ndo_bpf = bnxt_xdp, 12845 .ndo_xdp_xmit = bnxt_xdp_xmit, 12846 .ndo_bridge_getlink = bnxt_bridge_getlink, 12847 .ndo_bridge_setlink = bnxt_bridge_setlink, 12848 .ndo_get_devlink_port = bnxt_get_devlink_port, 12849 }; 12850 12851 static void bnxt_remove_one(struct pci_dev *pdev) 12852 { 12853 struct net_device *dev = pci_get_drvdata(pdev); 12854 struct bnxt *bp = netdev_priv(dev); 12855 12856 if (BNXT_PF(bp)) 12857 bnxt_sriov_disable(bp); 12858 12859 if (BNXT_PF(bp)) 12860 devlink_port_type_clear(&bp->dl_port); 12861 12862 bnxt_ptp_clear(bp); 12863 pci_disable_pcie_error_reporting(pdev); 12864 unregister_netdev(dev); 12865 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12866 /* Flush any pending tasks */ 12867 cancel_work_sync(&bp->sp_task); 12868 cancel_delayed_work_sync(&bp->fw_reset_task); 12869 bp->sp_event = 0; 12870 12871 bnxt_dl_fw_reporters_destroy(bp, true); 12872 bnxt_dl_unregister(bp); 12873 bnxt_shutdown_tc(bp); 12874 12875 bnxt_clear_int_mode(bp); 12876 bnxt_hwrm_func_drv_unrgtr(bp); 12877 bnxt_free_hwrm_resources(bp); 12878 bnxt_ethtool_free(bp); 12879 bnxt_dcb_free(bp); 12880 kfree(bp->edev); 12881 bp->edev = NULL; 12882 kfree(bp->ptp_cfg); 12883 bp->ptp_cfg = NULL; 12884 kfree(bp->fw_health); 12885 bp->fw_health = NULL; 12886 bnxt_cleanup_pci(bp); 12887 bnxt_free_ctx_mem(bp); 12888 kfree(bp->ctx); 12889 bp->ctx = NULL; 12890 kfree(bp->rss_indir_tbl); 12891 bp->rss_indir_tbl = NULL; 12892 bnxt_free_port_stats(bp); 12893 free_netdev(dev); 12894 } 12895 12896 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12897 { 12898 int rc = 0; 12899 struct bnxt_link_info *link_info = &bp->link_info; 12900 12901 bp->phy_flags = 0; 12902 rc = bnxt_hwrm_phy_qcaps(bp); 12903 if (rc) { 12904 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12905 rc); 12906 return rc; 12907 } 12908 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 12909 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 12910 else 12911 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 12912 if (!fw_dflt) 12913 return 0; 12914 12915 mutex_lock(&bp->link_lock); 12916 rc = bnxt_update_link(bp, false); 12917 if (rc) { 12918 mutex_unlock(&bp->link_lock); 12919 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12920 rc); 12921 return rc; 12922 } 12923 12924 /* Older firmware does not have supported_auto_speeds, so assume 12925 * that all supported speeds can be autonegotiated. 12926 */ 12927 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12928 link_info->support_auto_speeds = link_info->support_speeds; 12929 12930 bnxt_init_ethtool_link_settings(bp); 12931 mutex_unlock(&bp->link_lock); 12932 return 0; 12933 } 12934 12935 static int bnxt_get_max_irq(struct pci_dev *pdev) 12936 { 12937 u16 ctrl; 12938 12939 if (!pdev->msix_cap) 12940 return 1; 12941 12942 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12943 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12944 } 12945 12946 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12947 int *max_cp) 12948 { 12949 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12950 int max_ring_grps = 0, max_irq; 12951 12952 *max_tx = hw_resc->max_tx_rings; 12953 *max_rx = hw_resc->max_rx_rings; 12954 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12955 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12956 bnxt_get_ulp_msix_num(bp), 12957 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12958 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12959 *max_cp = min_t(int, *max_cp, max_irq); 12960 max_ring_grps = hw_resc->max_hw_ring_grps; 12961 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12962 *max_cp -= 1; 12963 *max_rx -= 2; 12964 } 12965 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12966 *max_rx >>= 1; 12967 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12968 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12969 /* On P5 chips, max_cp output param should be available NQs */ 12970 *max_cp = max_irq; 12971 } 12972 *max_rx = min_t(int, *max_rx, max_ring_grps); 12973 } 12974 12975 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12976 { 12977 int rx, tx, cp; 12978 12979 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12980 *max_rx = rx; 12981 *max_tx = tx; 12982 if (!rx || !tx || !cp) 12983 return -ENOMEM; 12984 12985 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12986 } 12987 12988 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12989 bool shared) 12990 { 12991 int rc; 12992 12993 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12994 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12995 /* Not enough rings, try disabling agg rings. */ 12996 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12997 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12998 if (rc) { 12999 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 13000 bp->flags |= BNXT_FLAG_AGG_RINGS; 13001 return rc; 13002 } 13003 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 13004 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13005 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13006 bnxt_set_ring_params(bp); 13007 } 13008 13009 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 13010 int max_cp, max_stat, max_irq; 13011 13012 /* Reserve minimum resources for RoCE */ 13013 max_cp = bnxt_get_max_func_cp_rings(bp); 13014 max_stat = bnxt_get_max_func_stat_ctxs(bp); 13015 max_irq = bnxt_get_max_func_irqs(bp); 13016 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 13017 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 13018 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 13019 return 0; 13020 13021 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 13022 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 13023 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 13024 max_cp = min_t(int, max_cp, max_irq); 13025 max_cp = min_t(int, max_cp, max_stat); 13026 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 13027 if (rc) 13028 rc = 0; 13029 } 13030 return rc; 13031 } 13032 13033 /* In initial default shared ring setting, each shared ring must have a 13034 * RX/TX ring pair. 13035 */ 13036 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 13037 { 13038 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 13039 bp->rx_nr_rings = bp->cp_nr_rings; 13040 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 13041 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13042 } 13043 13044 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 13045 { 13046 int dflt_rings, max_rx_rings, max_tx_rings, rc; 13047 13048 if (!bnxt_can_reserve_rings(bp)) 13049 return 0; 13050 13051 if (sh) 13052 bp->flags |= BNXT_FLAG_SHARED_RINGS; 13053 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 13054 /* Reduce default rings on multi-port cards so that total default 13055 * rings do not exceed CPU count. 13056 */ 13057 if (bp->port_count > 1) { 13058 int max_rings = 13059 max_t(int, num_online_cpus() / bp->port_count, 1); 13060 13061 dflt_rings = min_t(int, dflt_rings, max_rings); 13062 } 13063 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 13064 if (rc) 13065 return rc; 13066 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 13067 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 13068 if (sh) 13069 bnxt_trim_dflt_sh_rings(bp); 13070 else 13071 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 13072 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 13073 13074 rc = __bnxt_reserve_rings(bp); 13075 if (rc) 13076 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 13077 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13078 if (sh) 13079 bnxt_trim_dflt_sh_rings(bp); 13080 13081 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 13082 if (bnxt_need_reserve_rings(bp)) { 13083 rc = __bnxt_reserve_rings(bp); 13084 if (rc) 13085 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 13086 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13087 } 13088 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 13089 bp->rx_nr_rings++; 13090 bp->cp_nr_rings++; 13091 } 13092 if (rc) { 13093 bp->tx_nr_rings = 0; 13094 bp->rx_nr_rings = 0; 13095 } 13096 return rc; 13097 } 13098 13099 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 13100 { 13101 int rc; 13102 13103 if (bp->tx_nr_rings) 13104 return 0; 13105 13106 bnxt_ulp_irq_stop(bp); 13107 bnxt_clear_int_mode(bp); 13108 rc = bnxt_set_dflt_rings(bp, true); 13109 if (rc) { 13110 netdev_err(bp->dev, "Not enough rings available.\n"); 13111 goto init_dflt_ring_err; 13112 } 13113 rc = bnxt_init_int_mode(bp); 13114 if (rc) 13115 goto init_dflt_ring_err; 13116 13117 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13118 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 13119 bp->flags |= BNXT_FLAG_RFS; 13120 bp->dev->features |= NETIF_F_NTUPLE; 13121 } 13122 init_dflt_ring_err: 13123 bnxt_ulp_irq_restart(bp, rc); 13124 return rc; 13125 } 13126 13127 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 13128 { 13129 int rc; 13130 13131 ASSERT_RTNL(); 13132 bnxt_hwrm_func_qcaps(bp); 13133 13134 if (netif_running(bp->dev)) 13135 __bnxt_close_nic(bp, true, false); 13136 13137 bnxt_ulp_irq_stop(bp); 13138 bnxt_clear_int_mode(bp); 13139 rc = bnxt_init_int_mode(bp); 13140 bnxt_ulp_irq_restart(bp, rc); 13141 13142 if (netif_running(bp->dev)) { 13143 if (rc) 13144 dev_close(bp->dev); 13145 else 13146 rc = bnxt_open_nic(bp, true, false); 13147 } 13148 13149 return rc; 13150 } 13151 13152 static int bnxt_init_mac_addr(struct bnxt *bp) 13153 { 13154 int rc = 0; 13155 13156 if (BNXT_PF(bp)) { 13157 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 13158 } else { 13159 #ifdef CONFIG_BNXT_SRIOV 13160 struct bnxt_vf_info *vf = &bp->vf; 13161 bool strict_approval = true; 13162 13163 if (is_valid_ether_addr(vf->mac_addr)) { 13164 /* overwrite netdev dev_addr with admin VF MAC */ 13165 eth_hw_addr_set(bp->dev, vf->mac_addr); 13166 /* Older PF driver or firmware may not approve this 13167 * correctly. 13168 */ 13169 strict_approval = false; 13170 } else { 13171 eth_hw_addr_random(bp->dev); 13172 } 13173 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 13174 #endif 13175 } 13176 return rc; 13177 } 13178 13179 static void bnxt_vpd_read_info(struct bnxt *bp) 13180 { 13181 struct pci_dev *pdev = bp->pdev; 13182 unsigned int vpd_size, kw_len; 13183 int pos, size; 13184 u8 *vpd_data; 13185 13186 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 13187 if (IS_ERR(vpd_data)) { 13188 pci_warn(pdev, "Unable to read VPD\n"); 13189 return; 13190 } 13191 13192 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13193 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 13194 if (pos < 0) 13195 goto read_sn; 13196 13197 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13198 memcpy(bp->board_partno, &vpd_data[pos], size); 13199 13200 read_sn: 13201 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 13202 PCI_VPD_RO_KEYWORD_SERIALNO, 13203 &kw_len); 13204 if (pos < 0) 13205 goto exit; 13206 13207 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 13208 memcpy(bp->board_serialno, &vpd_data[pos], size); 13209 exit: 13210 kfree(vpd_data); 13211 } 13212 13213 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 13214 { 13215 struct pci_dev *pdev = bp->pdev; 13216 u64 qword; 13217 13218 qword = pci_get_dsn(pdev); 13219 if (!qword) { 13220 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 13221 return -EOPNOTSUPP; 13222 } 13223 13224 put_unaligned_le64(qword, dsn); 13225 13226 bp->flags |= BNXT_FLAG_DSN_VALID; 13227 return 0; 13228 } 13229 13230 static int bnxt_map_db_bar(struct bnxt *bp) 13231 { 13232 if (!bp->db_size) 13233 return -ENODEV; 13234 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 13235 if (!bp->bar1) 13236 return -ENOMEM; 13237 return 0; 13238 } 13239 13240 void bnxt_print_device_info(struct bnxt *bp) 13241 { 13242 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 13243 board_info[bp->board_idx].name, 13244 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 13245 13246 pcie_print_link_status(bp->pdev); 13247 } 13248 13249 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 13250 { 13251 struct net_device *dev; 13252 struct bnxt *bp; 13253 int rc, max_irqs; 13254 13255 if (pci_is_bridge(pdev)) 13256 return -ENODEV; 13257 13258 /* Clear any pending DMA transactions from crash kernel 13259 * while loading driver in capture kernel. 13260 */ 13261 if (is_kdump_kernel()) { 13262 pci_clear_master(pdev); 13263 pcie_flr(pdev); 13264 } 13265 13266 max_irqs = bnxt_get_max_irq(pdev); 13267 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 13268 if (!dev) 13269 return -ENOMEM; 13270 13271 bp = netdev_priv(dev); 13272 bp->board_idx = ent->driver_data; 13273 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 13274 bnxt_set_max_func_irqs(bp, max_irqs); 13275 13276 if (bnxt_vf_pciid(bp->board_idx)) 13277 bp->flags |= BNXT_FLAG_VF; 13278 13279 if (pdev->msix_cap) 13280 bp->flags |= BNXT_FLAG_MSIX_CAP; 13281 13282 rc = bnxt_init_board(pdev, dev); 13283 if (rc < 0) 13284 goto init_err_free; 13285 13286 dev->netdev_ops = &bnxt_netdev_ops; 13287 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 13288 dev->ethtool_ops = &bnxt_ethtool_ops; 13289 pci_set_drvdata(pdev, dev); 13290 13291 rc = bnxt_alloc_hwrm_resources(bp); 13292 if (rc) 13293 goto init_err_pci_clean; 13294 13295 mutex_init(&bp->hwrm_cmd_lock); 13296 mutex_init(&bp->link_lock); 13297 13298 rc = bnxt_fw_init_one_p1(bp); 13299 if (rc) 13300 goto init_err_pci_clean; 13301 13302 if (BNXT_PF(bp)) 13303 bnxt_vpd_read_info(bp); 13304 13305 if (BNXT_CHIP_P5(bp)) { 13306 bp->flags |= BNXT_FLAG_CHIP_P5; 13307 if (BNXT_CHIP_SR2(bp)) 13308 bp->flags |= BNXT_FLAG_CHIP_SR2; 13309 } 13310 13311 rc = bnxt_alloc_rss_indir_tbl(bp); 13312 if (rc) 13313 goto init_err_pci_clean; 13314 13315 rc = bnxt_fw_init_one_p2(bp); 13316 if (rc) 13317 goto init_err_pci_clean; 13318 13319 rc = bnxt_map_db_bar(bp); 13320 if (rc) { 13321 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 13322 rc); 13323 goto init_err_pci_clean; 13324 } 13325 13326 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13327 NETIF_F_TSO | NETIF_F_TSO6 | 13328 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13329 NETIF_F_GSO_IPXIP4 | 13330 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13331 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 13332 NETIF_F_RXCSUM | NETIF_F_GRO; 13333 13334 if (BNXT_SUPPORTS_TPA(bp)) 13335 dev->hw_features |= NETIF_F_LRO; 13336 13337 dev->hw_enc_features = 13338 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13339 NETIF_F_TSO | NETIF_F_TSO6 | 13340 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 13341 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 13342 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 13343 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 13344 13345 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 13346 NETIF_F_GSO_GRE_CSUM; 13347 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 13348 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 13349 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13350 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 13351 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 13352 if (BNXT_SUPPORTS_TPA(bp)) 13353 dev->hw_features |= NETIF_F_GRO_HW; 13354 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 13355 if (dev->features & NETIF_F_GRO_HW) 13356 dev->features &= ~NETIF_F_LRO; 13357 dev->priv_flags |= IFF_UNICAST_FLT; 13358 13359 #ifdef CONFIG_BNXT_SRIOV 13360 init_waitqueue_head(&bp->sriov_cfg_wait); 13361 mutex_init(&bp->sriov_lock); 13362 #endif 13363 if (BNXT_SUPPORTS_TPA(bp)) { 13364 bp->gro_func = bnxt_gro_func_5730x; 13365 if (BNXT_CHIP_P4(bp)) 13366 bp->gro_func = bnxt_gro_func_5731x; 13367 else if (BNXT_CHIP_P5(bp)) 13368 bp->gro_func = bnxt_gro_func_5750x; 13369 } 13370 if (!BNXT_CHIP_P4_PLUS(bp)) 13371 bp->flags |= BNXT_FLAG_DOUBLE_DB; 13372 13373 rc = bnxt_init_mac_addr(bp); 13374 if (rc) { 13375 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 13376 rc = -EADDRNOTAVAIL; 13377 goto init_err_pci_clean; 13378 } 13379 13380 if (BNXT_PF(bp)) { 13381 /* Read the adapter's DSN to use as the eswitch switch_id */ 13382 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 13383 } 13384 13385 /* MTU range: 60 - FW defined max */ 13386 dev->min_mtu = ETH_ZLEN; 13387 dev->max_mtu = bp->max_mtu; 13388 13389 rc = bnxt_probe_phy(bp, true); 13390 if (rc) 13391 goto init_err_pci_clean; 13392 13393 bnxt_set_rx_skb_mode(bp, false); 13394 bnxt_set_tpa_flags(bp); 13395 bnxt_set_ring_params(bp); 13396 rc = bnxt_set_dflt_rings(bp, true); 13397 if (rc) { 13398 netdev_err(bp->dev, "Not enough rings available.\n"); 13399 rc = -ENOMEM; 13400 goto init_err_pci_clean; 13401 } 13402 13403 bnxt_fw_init_one_p3(bp); 13404 13405 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13406 bp->flags |= BNXT_FLAG_STRIP_VLAN; 13407 13408 rc = bnxt_init_int_mode(bp); 13409 if (rc) 13410 goto init_err_pci_clean; 13411 13412 /* No TC has been set yet and rings may have been trimmed due to 13413 * limited MSIX, so we re-initialize the TX rings per TC. 13414 */ 13415 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 13416 13417 if (BNXT_PF(bp)) { 13418 if (!bnxt_pf_wq) { 13419 bnxt_pf_wq = 13420 create_singlethread_workqueue("bnxt_pf_wq"); 13421 if (!bnxt_pf_wq) { 13422 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 13423 rc = -ENOMEM; 13424 goto init_err_pci_clean; 13425 } 13426 } 13427 rc = bnxt_init_tc(bp); 13428 if (rc) 13429 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 13430 rc); 13431 } 13432 13433 bnxt_inv_fw_health_reg(bp); 13434 rc = bnxt_dl_register(bp); 13435 if (rc) 13436 goto init_err_dl; 13437 13438 rc = register_netdev(dev); 13439 if (rc) 13440 goto init_err_cleanup; 13441 13442 if (BNXT_PF(bp)) 13443 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 13444 bnxt_dl_fw_reporters_create(bp); 13445 13446 bnxt_print_device_info(bp); 13447 13448 pci_save_state(pdev); 13449 return 0; 13450 13451 init_err_cleanup: 13452 bnxt_dl_unregister(bp); 13453 init_err_dl: 13454 bnxt_shutdown_tc(bp); 13455 bnxt_clear_int_mode(bp); 13456 13457 init_err_pci_clean: 13458 bnxt_hwrm_func_drv_unrgtr(bp); 13459 bnxt_free_hwrm_resources(bp); 13460 bnxt_ethtool_free(bp); 13461 bnxt_ptp_clear(bp); 13462 kfree(bp->ptp_cfg); 13463 bp->ptp_cfg = NULL; 13464 kfree(bp->fw_health); 13465 bp->fw_health = NULL; 13466 bnxt_cleanup_pci(bp); 13467 bnxt_free_ctx_mem(bp); 13468 kfree(bp->ctx); 13469 bp->ctx = NULL; 13470 kfree(bp->rss_indir_tbl); 13471 bp->rss_indir_tbl = NULL; 13472 13473 init_err_free: 13474 free_netdev(dev); 13475 return rc; 13476 } 13477 13478 static void bnxt_shutdown(struct pci_dev *pdev) 13479 { 13480 struct net_device *dev = pci_get_drvdata(pdev); 13481 struct bnxt *bp; 13482 13483 if (!dev) 13484 return; 13485 13486 rtnl_lock(); 13487 bp = netdev_priv(dev); 13488 if (!bp) 13489 goto shutdown_exit; 13490 13491 if (netif_running(dev)) 13492 dev_close(dev); 13493 13494 bnxt_ulp_shutdown(bp); 13495 bnxt_clear_int_mode(bp); 13496 pci_disable_device(pdev); 13497 13498 if (system_state == SYSTEM_POWER_OFF) { 13499 pci_wake_from_d3(pdev, bp->wol); 13500 pci_set_power_state(pdev, PCI_D3hot); 13501 } 13502 13503 shutdown_exit: 13504 rtnl_unlock(); 13505 } 13506 13507 #ifdef CONFIG_PM_SLEEP 13508 static int bnxt_suspend(struct device *device) 13509 { 13510 struct net_device *dev = dev_get_drvdata(device); 13511 struct bnxt *bp = netdev_priv(dev); 13512 int rc = 0; 13513 13514 rtnl_lock(); 13515 bnxt_ulp_stop(bp); 13516 if (netif_running(dev)) { 13517 netif_device_detach(dev); 13518 rc = bnxt_close(dev); 13519 } 13520 bnxt_hwrm_func_drv_unrgtr(bp); 13521 pci_disable_device(bp->pdev); 13522 bnxt_free_ctx_mem(bp); 13523 kfree(bp->ctx); 13524 bp->ctx = NULL; 13525 rtnl_unlock(); 13526 return rc; 13527 } 13528 13529 static int bnxt_resume(struct device *device) 13530 { 13531 struct net_device *dev = dev_get_drvdata(device); 13532 struct bnxt *bp = netdev_priv(dev); 13533 int rc = 0; 13534 13535 rtnl_lock(); 13536 rc = pci_enable_device(bp->pdev); 13537 if (rc) { 13538 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 13539 rc); 13540 goto resume_exit; 13541 } 13542 pci_set_master(bp->pdev); 13543 if (bnxt_hwrm_ver_get(bp)) { 13544 rc = -ENODEV; 13545 goto resume_exit; 13546 } 13547 rc = bnxt_hwrm_func_reset(bp); 13548 if (rc) { 13549 rc = -EBUSY; 13550 goto resume_exit; 13551 } 13552 13553 rc = bnxt_hwrm_func_qcaps(bp); 13554 if (rc) 13555 goto resume_exit; 13556 13557 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 13558 rc = -ENODEV; 13559 goto resume_exit; 13560 } 13561 13562 bnxt_get_wol_settings(bp); 13563 if (netif_running(dev)) { 13564 rc = bnxt_open(dev); 13565 if (!rc) 13566 netif_device_attach(dev); 13567 } 13568 13569 resume_exit: 13570 bnxt_ulp_start(bp, rc); 13571 if (!rc) 13572 bnxt_reenable_sriov(bp); 13573 rtnl_unlock(); 13574 return rc; 13575 } 13576 13577 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 13578 #define BNXT_PM_OPS (&bnxt_pm_ops) 13579 13580 #else 13581 13582 #define BNXT_PM_OPS NULL 13583 13584 #endif /* CONFIG_PM_SLEEP */ 13585 13586 /** 13587 * bnxt_io_error_detected - called when PCI error is detected 13588 * @pdev: Pointer to PCI device 13589 * @state: The current pci connection state 13590 * 13591 * This function is called after a PCI bus error affecting 13592 * this device has been detected. 13593 */ 13594 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 13595 pci_channel_state_t state) 13596 { 13597 struct net_device *netdev = pci_get_drvdata(pdev); 13598 struct bnxt *bp = netdev_priv(netdev); 13599 13600 netdev_info(netdev, "PCI I/O error detected\n"); 13601 13602 rtnl_lock(); 13603 netif_device_detach(netdev); 13604 13605 bnxt_ulp_stop(bp); 13606 13607 if (state == pci_channel_io_perm_failure) { 13608 rtnl_unlock(); 13609 return PCI_ERS_RESULT_DISCONNECT; 13610 } 13611 13612 if (state == pci_channel_io_frozen) 13613 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 13614 13615 if (netif_running(netdev)) 13616 bnxt_close(netdev); 13617 13618 if (pci_is_enabled(pdev)) 13619 pci_disable_device(pdev); 13620 bnxt_free_ctx_mem(bp); 13621 kfree(bp->ctx); 13622 bp->ctx = NULL; 13623 rtnl_unlock(); 13624 13625 /* Request a slot slot reset. */ 13626 return PCI_ERS_RESULT_NEED_RESET; 13627 } 13628 13629 /** 13630 * bnxt_io_slot_reset - called after the pci bus has been reset. 13631 * @pdev: Pointer to PCI device 13632 * 13633 * Restart the card from scratch, as if from a cold-boot. 13634 * At this point, the card has exprienced a hard reset, 13635 * followed by fixups by BIOS, and has its config space 13636 * set up identically to what it was at cold boot. 13637 */ 13638 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 13639 { 13640 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 13641 struct net_device *netdev = pci_get_drvdata(pdev); 13642 struct bnxt *bp = netdev_priv(netdev); 13643 int err = 0, off; 13644 13645 netdev_info(bp->dev, "PCI Slot Reset\n"); 13646 13647 rtnl_lock(); 13648 13649 if (pci_enable_device(pdev)) { 13650 dev_err(&pdev->dev, 13651 "Cannot re-enable PCI device after reset.\n"); 13652 } else { 13653 pci_set_master(pdev); 13654 /* Upon fatal error, our device internal logic that latches to 13655 * BAR value is getting reset and will restore only upon 13656 * rewritting the BARs. 13657 * 13658 * As pci_restore_state() does not re-write the BARs if the 13659 * value is same as saved value earlier, driver needs to 13660 * write the BARs to 0 to force restore, in case of fatal error. 13661 */ 13662 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 13663 &bp->state)) { 13664 for (off = PCI_BASE_ADDRESS_0; 13665 off <= PCI_BASE_ADDRESS_5; off += 4) 13666 pci_write_config_dword(bp->pdev, off, 0); 13667 } 13668 pci_restore_state(pdev); 13669 pci_save_state(pdev); 13670 13671 err = bnxt_hwrm_func_reset(bp); 13672 if (!err) 13673 result = PCI_ERS_RESULT_RECOVERED; 13674 } 13675 13676 rtnl_unlock(); 13677 13678 return result; 13679 } 13680 13681 /** 13682 * bnxt_io_resume - called when traffic can start flowing again. 13683 * @pdev: Pointer to PCI device 13684 * 13685 * This callback is called when the error recovery driver tells 13686 * us that its OK to resume normal operation. 13687 */ 13688 static void bnxt_io_resume(struct pci_dev *pdev) 13689 { 13690 struct net_device *netdev = pci_get_drvdata(pdev); 13691 struct bnxt *bp = netdev_priv(netdev); 13692 int err; 13693 13694 netdev_info(bp->dev, "PCI Slot Resume\n"); 13695 rtnl_lock(); 13696 13697 err = bnxt_hwrm_func_qcaps(bp); 13698 if (!err && netif_running(netdev)) 13699 err = bnxt_open(netdev); 13700 13701 bnxt_ulp_start(bp, err); 13702 if (!err) { 13703 bnxt_reenable_sriov(bp); 13704 netif_device_attach(netdev); 13705 } 13706 13707 rtnl_unlock(); 13708 } 13709 13710 static const struct pci_error_handlers bnxt_err_handler = { 13711 .error_detected = bnxt_io_error_detected, 13712 .slot_reset = bnxt_io_slot_reset, 13713 .resume = bnxt_io_resume 13714 }; 13715 13716 static struct pci_driver bnxt_pci_driver = { 13717 .name = DRV_MODULE_NAME, 13718 .id_table = bnxt_pci_tbl, 13719 .probe = bnxt_init_one, 13720 .remove = bnxt_remove_one, 13721 .shutdown = bnxt_shutdown, 13722 .driver.pm = BNXT_PM_OPS, 13723 .err_handler = &bnxt_err_handler, 13724 #if defined(CONFIG_BNXT_SRIOV) 13725 .sriov_configure = bnxt_sriov_configure, 13726 #endif 13727 }; 13728 13729 static int __init bnxt_init(void) 13730 { 13731 bnxt_debug_init(); 13732 return pci_register_driver(&bnxt_pci_driver); 13733 } 13734 13735 static void __exit bnxt_exit(void) 13736 { 13737 pci_unregister_driver(&bnxt_pci_driver); 13738 if (bnxt_pf_wq) 13739 destroy_workqueue(bnxt_pf_wq); 13740 bnxt_debug_exit(); 13741 } 13742 13743 module_init(bnxt_init); 13744 module_exit(bnxt_exit); 13745