1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2017 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/rtc.h>
37 #include <linux/bpf.h>
38 #include <net/ip.h>
39 #include <net/tcp.h>
40 #include <net/udp.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <net/udp_tunnel.h>
44 #include <linux/workqueue.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/log2.h>
48 #include <linux/aer.h>
49 #include <linux/bitmap.h>
50 #include <linux/cpu_rmap.h>
51 
52 #include "bnxt_hsi.h"
53 #include "bnxt.h"
54 #include "bnxt_ulp.h"
55 #include "bnxt_sriov.h"
56 #include "bnxt_ethtool.h"
57 #include "bnxt_dcb.h"
58 #include "bnxt_xdp.h"
59 
60 #define BNXT_TX_TIMEOUT		(5 * HZ)
61 
62 static const char version[] =
63 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
64 
65 MODULE_LICENSE("GPL");
66 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
67 MODULE_VERSION(DRV_MODULE_VERSION);
68 
69 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
70 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
71 #define BNXT_RX_COPY_THRESH 256
72 
73 #define BNXT_TX_PUSH_THRESH 164
74 
75 enum board_idx {
76 	BCM57301,
77 	BCM57302,
78 	BCM57304,
79 	BCM57417_NPAR,
80 	BCM58700,
81 	BCM57311,
82 	BCM57312,
83 	BCM57402,
84 	BCM57404,
85 	BCM57406,
86 	BCM57402_NPAR,
87 	BCM57407,
88 	BCM57412,
89 	BCM57414,
90 	BCM57416,
91 	BCM57417,
92 	BCM57412_NPAR,
93 	BCM57314,
94 	BCM57417_SFP,
95 	BCM57416_SFP,
96 	BCM57404_NPAR,
97 	BCM57406_NPAR,
98 	BCM57407_SFP,
99 	BCM57407_NPAR,
100 	BCM57414_NPAR,
101 	BCM57416_NPAR,
102 	BCM57452,
103 	BCM57454,
104 	NETXTREME_E_VF,
105 	NETXTREME_C_VF,
106 };
107 
108 /* indexed by enum above */
109 static const struct {
110 	char *name;
111 } board_info[] = {
112 	{ "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
113 	{ "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
114 	{ "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
115 	{ "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
116 	{ "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
117 	{ "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
118 	{ "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
119 	{ "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
120 	{ "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
121 	{ "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
122 	{ "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
123 	{ "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
124 	{ "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
125 	{ "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
126 	{ "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
127 	{ "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
128 	{ "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
129 	{ "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
130 	{ "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
131 	{ "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
132 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
133 	{ "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
134 	{ "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
135 	{ "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
136 	{ "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
137 	{ "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
138 	{ "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
139 	{ "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
140 	{ "Broadcom NetXtreme-E Ethernet Virtual Function" },
141 	{ "Broadcom NetXtreme-C Ethernet Virtual Function" },
142 };
143 
144 static const struct pci_device_id bnxt_pci_tbl[] = {
145 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
146 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
163 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
167 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
174 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
177 #ifdef CONFIG_BNXT_SRIOV
178 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
179 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
180 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
181 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
182 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
183 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
184 #endif
185 	{ 0 }
186 };
187 
188 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
189 
190 static const u16 bnxt_vf_req_snif[] = {
191 	HWRM_FUNC_CFG,
192 	HWRM_PORT_PHY_QCFG,
193 	HWRM_CFA_L2_FILTER_ALLOC,
194 };
195 
196 static const u16 bnxt_async_events_arr[] = {
197 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
198 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
199 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
200 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
201 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
202 };
203 
204 static bool bnxt_vf_pciid(enum board_idx idx)
205 {
206 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
207 }
208 
209 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
210 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
211 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
212 
213 #define BNXT_CP_DB_REARM(db, raw_cons)					\
214 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
215 
216 #define BNXT_CP_DB(db, raw_cons)					\
217 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
218 
219 #define BNXT_CP_DB_IRQ_DIS(db)						\
220 		writel(DB_CP_IRQ_DIS_FLAGS, db)
221 
222 const u16 bnxt_lhint_arr[] = {
223 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
224 	TX_BD_FLAGS_LHINT_512_TO_1023,
225 	TX_BD_FLAGS_LHINT_1024_TO_2047,
226 	TX_BD_FLAGS_LHINT_1024_TO_2047,
227 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
228 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242 };
243 
244 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
245 {
246 	struct bnxt *bp = netdev_priv(dev);
247 	struct tx_bd *txbd;
248 	struct tx_bd_ext *txbd1;
249 	struct netdev_queue *txq;
250 	int i;
251 	dma_addr_t mapping;
252 	unsigned int length, pad = 0;
253 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
254 	u16 prod, last_frag;
255 	struct pci_dev *pdev = bp->pdev;
256 	struct bnxt_tx_ring_info *txr;
257 	struct bnxt_sw_tx_bd *tx_buf;
258 
259 	i = skb_get_queue_mapping(skb);
260 	if (unlikely(i >= bp->tx_nr_rings)) {
261 		dev_kfree_skb_any(skb);
262 		return NETDEV_TX_OK;
263 	}
264 
265 	txq = netdev_get_tx_queue(dev, i);
266 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
267 	prod = txr->tx_prod;
268 
269 	free_size = bnxt_tx_avail(bp, txr);
270 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
271 		netif_tx_stop_queue(txq);
272 		return NETDEV_TX_BUSY;
273 	}
274 
275 	length = skb->len;
276 	len = skb_headlen(skb);
277 	last_frag = skb_shinfo(skb)->nr_frags;
278 
279 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
280 
281 	txbd->tx_bd_opaque = prod;
282 
283 	tx_buf = &txr->tx_buf_ring[prod];
284 	tx_buf->skb = skb;
285 	tx_buf->nr_frags = last_frag;
286 
287 	vlan_tag_flags = 0;
288 	cfa_action = 0;
289 	if (skb_vlan_tag_present(skb)) {
290 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
291 				 skb_vlan_tag_get(skb);
292 		/* Currently supports 8021Q, 8021AD vlan offloads
293 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
294 		 */
295 		if (skb->vlan_proto == htons(ETH_P_8021Q))
296 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
297 	}
298 
299 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
300 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
301 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
302 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
303 		void *pdata = tx_push_buf->data;
304 		u64 *end;
305 		int j, push_len;
306 
307 		/* Set COAL_NOW to be ready quickly for the next push */
308 		tx_push->tx_bd_len_flags_type =
309 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
310 					TX_BD_TYPE_LONG_TX_BD |
311 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
312 					TX_BD_FLAGS_COAL_NOW |
313 					TX_BD_FLAGS_PACKET_END |
314 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
315 
316 		if (skb->ip_summed == CHECKSUM_PARTIAL)
317 			tx_push1->tx_bd_hsize_lflags =
318 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
319 		else
320 			tx_push1->tx_bd_hsize_lflags = 0;
321 
322 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
323 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
324 
325 		end = pdata + length;
326 		end = PTR_ALIGN(end, 8) - 1;
327 		*end = 0;
328 
329 		skb_copy_from_linear_data(skb, pdata, len);
330 		pdata += len;
331 		for (j = 0; j < last_frag; j++) {
332 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
333 			void *fptr;
334 
335 			fptr = skb_frag_address_safe(frag);
336 			if (!fptr)
337 				goto normal_tx;
338 
339 			memcpy(pdata, fptr, skb_frag_size(frag));
340 			pdata += skb_frag_size(frag);
341 		}
342 
343 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
344 		txbd->tx_bd_haddr = txr->data_mapping;
345 		prod = NEXT_TX(prod);
346 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
347 		memcpy(txbd, tx_push1, sizeof(*txbd));
348 		prod = NEXT_TX(prod);
349 		tx_push->doorbell =
350 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
351 		txr->tx_prod = prod;
352 
353 		tx_buf->is_push = 1;
354 		netdev_tx_sent_queue(txq, skb->len);
355 		wmb();	/* Sync is_push and byte queue before pushing data */
356 
357 		push_len = (length + sizeof(*tx_push) + 7) / 8;
358 		if (push_len > 16) {
359 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
360 			__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
361 					 (push_len - 16) << 1);
362 		} else {
363 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
364 					 push_len);
365 		}
366 
367 		goto tx_done;
368 	}
369 
370 normal_tx:
371 	if (length < BNXT_MIN_PKT_SIZE) {
372 		pad = BNXT_MIN_PKT_SIZE - length;
373 		if (skb_pad(skb, pad)) {
374 			/* SKB already freed. */
375 			tx_buf->skb = NULL;
376 			return NETDEV_TX_OK;
377 		}
378 		length = BNXT_MIN_PKT_SIZE;
379 	}
380 
381 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
382 
383 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
384 		dev_kfree_skb_any(skb);
385 		tx_buf->skb = NULL;
386 		return NETDEV_TX_OK;
387 	}
388 
389 	dma_unmap_addr_set(tx_buf, mapping, mapping);
390 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
391 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
392 
393 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
394 
395 	prod = NEXT_TX(prod);
396 	txbd1 = (struct tx_bd_ext *)
397 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
398 
399 	txbd1->tx_bd_hsize_lflags = 0;
400 	if (skb_is_gso(skb)) {
401 		u32 hdr_len;
402 
403 		if (skb->encapsulation)
404 			hdr_len = skb_inner_network_offset(skb) +
405 				skb_inner_network_header_len(skb) +
406 				inner_tcp_hdrlen(skb);
407 		else
408 			hdr_len = skb_transport_offset(skb) +
409 				tcp_hdrlen(skb);
410 
411 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
412 					TX_BD_FLAGS_T_IPID |
413 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
414 		length = skb_shinfo(skb)->gso_size;
415 		txbd1->tx_bd_mss = cpu_to_le32(length);
416 		length += hdr_len;
417 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
418 		txbd1->tx_bd_hsize_lflags =
419 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
420 		txbd1->tx_bd_mss = 0;
421 	}
422 
423 	length >>= 9;
424 	flags |= bnxt_lhint_arr[length];
425 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
426 
427 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
428 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
429 	for (i = 0; i < last_frag; i++) {
430 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
431 
432 		prod = NEXT_TX(prod);
433 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
434 
435 		len = skb_frag_size(frag);
436 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
437 					   DMA_TO_DEVICE);
438 
439 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
440 			goto tx_dma_error;
441 
442 		tx_buf = &txr->tx_buf_ring[prod];
443 		dma_unmap_addr_set(tx_buf, mapping, mapping);
444 
445 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
446 
447 		flags = len << TX_BD_LEN_SHIFT;
448 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
449 	}
450 
451 	flags &= ~TX_BD_LEN;
452 	txbd->tx_bd_len_flags_type =
453 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
454 			    TX_BD_FLAGS_PACKET_END);
455 
456 	netdev_tx_sent_queue(txq, skb->len);
457 
458 	/* Sync BD data before updating doorbell */
459 	wmb();
460 
461 	prod = NEXT_TX(prod);
462 	txr->tx_prod = prod;
463 
464 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
465 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
466 
467 tx_done:
468 
469 	mmiowb();
470 
471 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
472 		netif_tx_stop_queue(txq);
473 
474 		/* netif_tx_stop_queue() must be done before checking
475 		 * tx index in bnxt_tx_avail() below, because in
476 		 * bnxt_tx_int(), we update tx index before checking for
477 		 * netif_tx_queue_stopped().
478 		 */
479 		smp_mb();
480 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
481 			netif_tx_wake_queue(txq);
482 	}
483 	return NETDEV_TX_OK;
484 
485 tx_dma_error:
486 	last_frag = i;
487 
488 	/* start back at beginning and unmap skb */
489 	prod = txr->tx_prod;
490 	tx_buf = &txr->tx_buf_ring[prod];
491 	tx_buf->skb = NULL;
492 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
493 			 skb_headlen(skb), PCI_DMA_TODEVICE);
494 	prod = NEXT_TX(prod);
495 
496 	/* unmap remaining mapped pages */
497 	for (i = 0; i < last_frag; i++) {
498 		prod = NEXT_TX(prod);
499 		tx_buf = &txr->tx_buf_ring[prod];
500 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
501 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
502 			       PCI_DMA_TODEVICE);
503 	}
504 
505 	dev_kfree_skb_any(skb);
506 	return NETDEV_TX_OK;
507 }
508 
509 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
510 {
511 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
512 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
513 	u16 cons = txr->tx_cons;
514 	struct pci_dev *pdev = bp->pdev;
515 	int i;
516 	unsigned int tx_bytes = 0;
517 
518 	for (i = 0; i < nr_pkts; i++) {
519 		struct bnxt_sw_tx_bd *tx_buf;
520 		struct sk_buff *skb;
521 		int j, last;
522 
523 		tx_buf = &txr->tx_buf_ring[cons];
524 		cons = NEXT_TX(cons);
525 		skb = tx_buf->skb;
526 		tx_buf->skb = NULL;
527 
528 		if (tx_buf->is_push) {
529 			tx_buf->is_push = 0;
530 			goto next_tx_int;
531 		}
532 
533 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
534 				 skb_headlen(skb), PCI_DMA_TODEVICE);
535 		last = tx_buf->nr_frags;
536 
537 		for (j = 0; j < last; j++) {
538 			cons = NEXT_TX(cons);
539 			tx_buf = &txr->tx_buf_ring[cons];
540 			dma_unmap_page(
541 				&pdev->dev,
542 				dma_unmap_addr(tx_buf, mapping),
543 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
544 				PCI_DMA_TODEVICE);
545 		}
546 
547 next_tx_int:
548 		cons = NEXT_TX(cons);
549 
550 		tx_bytes += skb->len;
551 		dev_kfree_skb_any(skb);
552 	}
553 
554 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
555 	txr->tx_cons = cons;
556 
557 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
558 	 * before checking for netif_tx_queue_stopped().  Without the
559 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
560 	 * will miss it and cause the queue to be stopped forever.
561 	 */
562 	smp_mb();
563 
564 	if (unlikely(netif_tx_queue_stopped(txq)) &&
565 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
566 		__netif_tx_lock(txq, smp_processor_id());
567 		if (netif_tx_queue_stopped(txq) &&
568 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
569 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
570 			netif_tx_wake_queue(txq);
571 		__netif_tx_unlock(txq);
572 	}
573 }
574 
575 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
576 					 gfp_t gfp)
577 {
578 	struct device *dev = &bp->pdev->dev;
579 	struct page *page;
580 
581 	page = alloc_page(gfp);
582 	if (!page)
583 		return NULL;
584 
585 	*mapping = dma_map_page(dev, page, 0, PAGE_SIZE, bp->rx_dir);
586 	if (dma_mapping_error(dev, *mapping)) {
587 		__free_page(page);
588 		return NULL;
589 	}
590 	*mapping += bp->rx_dma_offset;
591 	return page;
592 }
593 
594 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
595 				       gfp_t gfp)
596 {
597 	u8 *data;
598 	struct pci_dev *pdev = bp->pdev;
599 
600 	data = kmalloc(bp->rx_buf_size, gfp);
601 	if (!data)
602 		return NULL;
603 
604 	*mapping = dma_map_single(&pdev->dev, data + bp->rx_dma_offset,
605 				  bp->rx_buf_use_size, bp->rx_dir);
606 
607 	if (dma_mapping_error(&pdev->dev, *mapping)) {
608 		kfree(data);
609 		data = NULL;
610 	}
611 	return data;
612 }
613 
614 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
615 		       u16 prod, gfp_t gfp)
616 {
617 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
618 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
619 	dma_addr_t mapping;
620 
621 	if (BNXT_RX_PAGE_MODE(bp)) {
622 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
623 
624 		if (!page)
625 			return -ENOMEM;
626 
627 		rx_buf->data = page;
628 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
629 	} else {
630 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
631 
632 		if (!data)
633 			return -ENOMEM;
634 
635 		rx_buf->data = data;
636 		rx_buf->data_ptr = data + bp->rx_offset;
637 	}
638 	rx_buf->mapping = mapping;
639 
640 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
641 	return 0;
642 }
643 
644 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
645 {
646 	u16 prod = rxr->rx_prod;
647 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
648 	struct rx_bd *cons_bd, *prod_bd;
649 
650 	prod_rx_buf = &rxr->rx_buf_ring[prod];
651 	cons_rx_buf = &rxr->rx_buf_ring[cons];
652 
653 	prod_rx_buf->data = data;
654 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
655 
656 	prod_rx_buf->mapping = cons_rx_buf->mapping;
657 
658 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
659 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
660 
661 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
662 }
663 
664 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
665 {
666 	u16 next, max = rxr->rx_agg_bmap_size;
667 
668 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
669 	if (next >= max)
670 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
671 	return next;
672 }
673 
674 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
675 				     struct bnxt_rx_ring_info *rxr,
676 				     u16 prod, gfp_t gfp)
677 {
678 	struct rx_bd *rxbd =
679 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
680 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
681 	struct pci_dev *pdev = bp->pdev;
682 	struct page *page;
683 	dma_addr_t mapping;
684 	u16 sw_prod = rxr->rx_sw_agg_prod;
685 	unsigned int offset = 0;
686 
687 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
688 		page = rxr->rx_page;
689 		if (!page) {
690 			page = alloc_page(gfp);
691 			if (!page)
692 				return -ENOMEM;
693 			rxr->rx_page = page;
694 			rxr->rx_page_offset = 0;
695 		}
696 		offset = rxr->rx_page_offset;
697 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
698 		if (rxr->rx_page_offset == PAGE_SIZE)
699 			rxr->rx_page = NULL;
700 		else
701 			get_page(page);
702 	} else {
703 		page = alloc_page(gfp);
704 		if (!page)
705 			return -ENOMEM;
706 	}
707 
708 	mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
709 			       PCI_DMA_FROMDEVICE);
710 	if (dma_mapping_error(&pdev->dev, mapping)) {
711 		__free_page(page);
712 		return -EIO;
713 	}
714 
715 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
716 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
717 
718 	__set_bit(sw_prod, rxr->rx_agg_bmap);
719 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
720 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
721 
722 	rx_agg_buf->page = page;
723 	rx_agg_buf->offset = offset;
724 	rx_agg_buf->mapping = mapping;
725 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
726 	rxbd->rx_bd_opaque = sw_prod;
727 	return 0;
728 }
729 
730 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
731 				   u32 agg_bufs)
732 {
733 	struct bnxt *bp = bnapi->bp;
734 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
735 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
736 	u16 prod = rxr->rx_agg_prod;
737 	u16 sw_prod = rxr->rx_sw_agg_prod;
738 	u32 i;
739 
740 	for (i = 0; i < agg_bufs; i++) {
741 		u16 cons;
742 		struct rx_agg_cmp *agg;
743 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
744 		struct rx_bd *prod_bd;
745 		struct page *page;
746 
747 		agg = (struct rx_agg_cmp *)
748 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
749 		cons = agg->rx_agg_cmp_opaque;
750 		__clear_bit(cons, rxr->rx_agg_bmap);
751 
752 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
753 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
754 
755 		__set_bit(sw_prod, rxr->rx_agg_bmap);
756 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
757 		cons_rx_buf = &rxr->rx_agg_ring[cons];
758 
759 		/* It is possible for sw_prod to be equal to cons, so
760 		 * set cons_rx_buf->page to NULL first.
761 		 */
762 		page = cons_rx_buf->page;
763 		cons_rx_buf->page = NULL;
764 		prod_rx_buf->page = page;
765 		prod_rx_buf->offset = cons_rx_buf->offset;
766 
767 		prod_rx_buf->mapping = cons_rx_buf->mapping;
768 
769 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
770 
771 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
772 		prod_bd->rx_bd_opaque = sw_prod;
773 
774 		prod = NEXT_RX_AGG(prod);
775 		sw_prod = NEXT_RX_AGG(sw_prod);
776 		cp_cons = NEXT_CMP(cp_cons);
777 	}
778 	rxr->rx_agg_prod = prod;
779 	rxr->rx_sw_agg_prod = sw_prod;
780 }
781 
782 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
783 					struct bnxt_rx_ring_info *rxr,
784 					u16 cons, void *data, u8 *data_ptr,
785 					dma_addr_t dma_addr,
786 					unsigned int offset_and_len)
787 {
788 	unsigned int payload = offset_and_len >> 16;
789 	unsigned int len = offset_and_len & 0xffff;
790 	struct skb_frag_struct *frag;
791 	struct page *page = data;
792 	u16 prod = rxr->rx_prod;
793 	struct sk_buff *skb;
794 	int off, err;
795 
796 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
797 	if (unlikely(err)) {
798 		bnxt_reuse_rx_data(rxr, cons, data);
799 		return NULL;
800 	}
801 	dma_addr -= bp->rx_dma_offset;
802 	dma_unmap_page(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir);
803 
804 	if (unlikely(!payload))
805 		payload = eth_get_headlen(data_ptr, len);
806 
807 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
808 	if (!skb) {
809 		__free_page(page);
810 		return NULL;
811 	}
812 
813 	off = (void *)data_ptr - page_address(page);
814 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
815 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
816 	       payload + NET_IP_ALIGN);
817 
818 	frag = &skb_shinfo(skb)->frags[0];
819 	skb_frag_size_sub(frag, payload);
820 	frag->page_offset += payload;
821 	skb->data_len -= payload;
822 	skb->tail += payload;
823 
824 	return skb;
825 }
826 
827 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
828 				   struct bnxt_rx_ring_info *rxr, u16 cons,
829 				   void *data, u8 *data_ptr,
830 				   dma_addr_t dma_addr,
831 				   unsigned int offset_and_len)
832 {
833 	u16 prod = rxr->rx_prod;
834 	struct sk_buff *skb;
835 	int err;
836 
837 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
838 	if (unlikely(err)) {
839 		bnxt_reuse_rx_data(rxr, cons, data);
840 		return NULL;
841 	}
842 
843 	skb = build_skb(data, 0);
844 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
845 			 bp->rx_dir);
846 	if (!skb) {
847 		kfree(data);
848 		return NULL;
849 	}
850 
851 	skb_reserve(skb, bp->rx_offset);
852 	skb_put(skb, offset_and_len & 0xffff);
853 	return skb;
854 }
855 
856 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
857 				     struct sk_buff *skb, u16 cp_cons,
858 				     u32 agg_bufs)
859 {
860 	struct pci_dev *pdev = bp->pdev;
861 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
862 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
863 	u16 prod = rxr->rx_agg_prod;
864 	u32 i;
865 
866 	for (i = 0; i < agg_bufs; i++) {
867 		u16 cons, frag_len;
868 		struct rx_agg_cmp *agg;
869 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
870 		struct page *page;
871 		dma_addr_t mapping;
872 
873 		agg = (struct rx_agg_cmp *)
874 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
875 		cons = agg->rx_agg_cmp_opaque;
876 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
877 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
878 
879 		cons_rx_buf = &rxr->rx_agg_ring[cons];
880 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
881 				   cons_rx_buf->offset, frag_len);
882 		__clear_bit(cons, rxr->rx_agg_bmap);
883 
884 		/* It is possible for bnxt_alloc_rx_page() to allocate
885 		 * a sw_prod index that equals the cons index, so we
886 		 * need to clear the cons entry now.
887 		 */
888 		mapping = cons_rx_buf->mapping;
889 		page = cons_rx_buf->page;
890 		cons_rx_buf->page = NULL;
891 
892 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
893 			struct skb_shared_info *shinfo;
894 			unsigned int nr_frags;
895 
896 			shinfo = skb_shinfo(skb);
897 			nr_frags = --shinfo->nr_frags;
898 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
899 
900 			dev_kfree_skb(skb);
901 
902 			cons_rx_buf->page = page;
903 
904 			/* Update prod since possibly some pages have been
905 			 * allocated already.
906 			 */
907 			rxr->rx_agg_prod = prod;
908 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
909 			return NULL;
910 		}
911 
912 		dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
913 			       PCI_DMA_FROMDEVICE);
914 
915 		skb->data_len += frag_len;
916 		skb->len += frag_len;
917 		skb->truesize += PAGE_SIZE;
918 
919 		prod = NEXT_RX_AGG(prod);
920 		cp_cons = NEXT_CMP(cp_cons);
921 	}
922 	rxr->rx_agg_prod = prod;
923 	return skb;
924 }
925 
926 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
927 			       u8 agg_bufs, u32 *raw_cons)
928 {
929 	u16 last;
930 	struct rx_agg_cmp *agg;
931 
932 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
933 	last = RING_CMP(*raw_cons);
934 	agg = (struct rx_agg_cmp *)
935 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
936 	return RX_AGG_CMP_VALID(agg, *raw_cons);
937 }
938 
939 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
940 					    unsigned int len,
941 					    dma_addr_t mapping)
942 {
943 	struct bnxt *bp = bnapi->bp;
944 	struct pci_dev *pdev = bp->pdev;
945 	struct sk_buff *skb;
946 
947 	skb = napi_alloc_skb(&bnapi->napi, len);
948 	if (!skb)
949 		return NULL;
950 
951 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
952 				bp->rx_dir);
953 
954 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
955 	       len + NET_IP_ALIGN);
956 
957 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
958 				   bp->rx_dir);
959 
960 	skb_put(skb, len);
961 	return skb;
962 }
963 
964 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
965 			   u32 *raw_cons, void *cmp)
966 {
967 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
968 	struct rx_cmp *rxcmp = cmp;
969 	u32 tmp_raw_cons = *raw_cons;
970 	u8 cmp_type, agg_bufs = 0;
971 
972 	cmp_type = RX_CMP_TYPE(rxcmp);
973 
974 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
975 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
976 			    RX_CMP_AGG_BUFS) >>
977 			   RX_CMP_AGG_BUFS_SHIFT;
978 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
979 		struct rx_tpa_end_cmp *tpa_end = cmp;
980 
981 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
982 			    RX_TPA_END_CMP_AGG_BUFS) >>
983 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
984 	}
985 
986 	if (agg_bufs) {
987 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
988 			return -EBUSY;
989 	}
990 	*raw_cons = tmp_raw_cons;
991 	return 0;
992 }
993 
994 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
995 {
996 	if (!rxr->bnapi->in_reset) {
997 		rxr->bnapi->in_reset = true;
998 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
999 		schedule_work(&bp->sp_task);
1000 	}
1001 	rxr->rx_next_cons = 0xffff;
1002 }
1003 
1004 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1005 			   struct rx_tpa_start_cmp *tpa_start,
1006 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1007 {
1008 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1009 	u16 cons, prod;
1010 	struct bnxt_tpa_info *tpa_info;
1011 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1012 	struct rx_bd *prod_bd;
1013 	dma_addr_t mapping;
1014 
1015 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1016 	prod = rxr->rx_prod;
1017 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1018 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1019 	tpa_info = &rxr->rx_tpa[agg_id];
1020 
1021 	if (unlikely(cons != rxr->rx_next_cons)) {
1022 		bnxt_sched_reset(bp, rxr);
1023 		return;
1024 	}
1025 
1026 	prod_rx_buf->data = tpa_info->data;
1027 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1028 
1029 	mapping = tpa_info->mapping;
1030 	prod_rx_buf->mapping = mapping;
1031 
1032 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1033 
1034 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1035 
1036 	tpa_info->data = cons_rx_buf->data;
1037 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1038 	cons_rx_buf->data = NULL;
1039 	tpa_info->mapping = cons_rx_buf->mapping;
1040 
1041 	tpa_info->len =
1042 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1043 				RX_TPA_START_CMP_LEN_SHIFT;
1044 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1045 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1046 
1047 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1048 		tpa_info->gso_type = SKB_GSO_TCPV4;
1049 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1050 		if (hash_type == 3)
1051 			tpa_info->gso_type = SKB_GSO_TCPV6;
1052 		tpa_info->rss_hash =
1053 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1054 	} else {
1055 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1056 		tpa_info->gso_type = 0;
1057 		if (netif_msg_rx_err(bp))
1058 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1059 	}
1060 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1061 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1062 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1063 
1064 	rxr->rx_prod = NEXT_RX(prod);
1065 	cons = NEXT_RX(cons);
1066 	rxr->rx_next_cons = NEXT_RX(cons);
1067 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1068 
1069 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1070 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1071 	cons_rx_buf->data = NULL;
1072 }
1073 
1074 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1075 			   u16 cp_cons, u32 agg_bufs)
1076 {
1077 	if (agg_bufs)
1078 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1079 }
1080 
1081 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1082 					   int payload_off, int tcp_ts,
1083 					   struct sk_buff *skb)
1084 {
1085 #ifdef CONFIG_INET
1086 	struct tcphdr *th;
1087 	int len, nw_off;
1088 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1089 	u32 hdr_info = tpa_info->hdr_info;
1090 	bool loopback = false;
1091 
1092 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1093 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1094 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1095 
1096 	/* If the packet is an internal loopback packet, the offsets will
1097 	 * have an extra 4 bytes.
1098 	 */
1099 	if (inner_mac_off == 4) {
1100 		loopback = true;
1101 	} else if (inner_mac_off > 4) {
1102 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1103 					    ETH_HLEN - 2));
1104 
1105 		/* We only support inner iPv4/ipv6.  If we don't see the
1106 		 * correct protocol ID, it must be a loopback packet where
1107 		 * the offsets are off by 4.
1108 		 */
1109 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1110 			loopback = true;
1111 	}
1112 	if (loopback) {
1113 		/* internal loopback packet, subtract all offsets by 4 */
1114 		inner_ip_off -= 4;
1115 		inner_mac_off -= 4;
1116 		outer_ip_off -= 4;
1117 	}
1118 
1119 	nw_off = inner_ip_off - ETH_HLEN;
1120 	skb_set_network_header(skb, nw_off);
1121 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1122 		struct ipv6hdr *iph = ipv6_hdr(skb);
1123 
1124 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1125 		len = skb->len - skb_transport_offset(skb);
1126 		th = tcp_hdr(skb);
1127 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1128 	} else {
1129 		struct iphdr *iph = ip_hdr(skb);
1130 
1131 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1132 		len = skb->len - skb_transport_offset(skb);
1133 		th = tcp_hdr(skb);
1134 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1135 	}
1136 
1137 	if (inner_mac_off) { /* tunnel */
1138 		struct udphdr *uh = NULL;
1139 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1140 					    ETH_HLEN - 2));
1141 
1142 		if (proto == htons(ETH_P_IP)) {
1143 			struct iphdr *iph = (struct iphdr *)skb->data;
1144 
1145 			if (iph->protocol == IPPROTO_UDP)
1146 				uh = (struct udphdr *)(iph + 1);
1147 		} else {
1148 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1149 
1150 			if (iph->nexthdr == IPPROTO_UDP)
1151 				uh = (struct udphdr *)(iph + 1);
1152 		}
1153 		if (uh) {
1154 			if (uh->check)
1155 				skb_shinfo(skb)->gso_type |=
1156 					SKB_GSO_UDP_TUNNEL_CSUM;
1157 			else
1158 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1159 		}
1160 	}
1161 #endif
1162 	return skb;
1163 }
1164 
1165 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1166 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1167 
1168 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1169 					   int payload_off, int tcp_ts,
1170 					   struct sk_buff *skb)
1171 {
1172 #ifdef CONFIG_INET
1173 	struct tcphdr *th;
1174 	int len, nw_off, tcp_opt_len = 0;
1175 
1176 	if (tcp_ts)
1177 		tcp_opt_len = 12;
1178 
1179 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1180 		struct iphdr *iph;
1181 
1182 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1183 			 ETH_HLEN;
1184 		skb_set_network_header(skb, nw_off);
1185 		iph = ip_hdr(skb);
1186 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1187 		len = skb->len - skb_transport_offset(skb);
1188 		th = tcp_hdr(skb);
1189 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1190 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1191 		struct ipv6hdr *iph;
1192 
1193 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1194 			 ETH_HLEN;
1195 		skb_set_network_header(skb, nw_off);
1196 		iph = ipv6_hdr(skb);
1197 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1198 		len = skb->len - skb_transport_offset(skb);
1199 		th = tcp_hdr(skb);
1200 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1201 	} else {
1202 		dev_kfree_skb_any(skb);
1203 		return NULL;
1204 	}
1205 
1206 	if (nw_off) { /* tunnel */
1207 		struct udphdr *uh = NULL;
1208 
1209 		if (skb->protocol == htons(ETH_P_IP)) {
1210 			struct iphdr *iph = (struct iphdr *)skb->data;
1211 
1212 			if (iph->protocol == IPPROTO_UDP)
1213 				uh = (struct udphdr *)(iph + 1);
1214 		} else {
1215 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1216 
1217 			if (iph->nexthdr == IPPROTO_UDP)
1218 				uh = (struct udphdr *)(iph + 1);
1219 		}
1220 		if (uh) {
1221 			if (uh->check)
1222 				skb_shinfo(skb)->gso_type |=
1223 					SKB_GSO_UDP_TUNNEL_CSUM;
1224 			else
1225 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1226 		}
1227 	}
1228 #endif
1229 	return skb;
1230 }
1231 
1232 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1233 					   struct bnxt_tpa_info *tpa_info,
1234 					   struct rx_tpa_end_cmp *tpa_end,
1235 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1236 					   struct sk_buff *skb)
1237 {
1238 #ifdef CONFIG_INET
1239 	int payload_off;
1240 	u16 segs;
1241 
1242 	segs = TPA_END_TPA_SEGS(tpa_end);
1243 	if (segs == 1)
1244 		return skb;
1245 
1246 	NAPI_GRO_CB(skb)->count = segs;
1247 	skb_shinfo(skb)->gso_size =
1248 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1249 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1250 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1251 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1252 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1253 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1254 	if (likely(skb))
1255 		tcp_gro_complete(skb);
1256 #endif
1257 	return skb;
1258 }
1259 
1260 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1261 					   struct bnxt_napi *bnapi,
1262 					   u32 *raw_cons,
1263 					   struct rx_tpa_end_cmp *tpa_end,
1264 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1265 					   u8 *event)
1266 {
1267 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1268 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1269 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1270 	u8 *data_ptr, agg_bufs;
1271 	u16 cp_cons = RING_CMP(*raw_cons);
1272 	unsigned int len;
1273 	struct bnxt_tpa_info *tpa_info;
1274 	dma_addr_t mapping;
1275 	struct sk_buff *skb;
1276 	void *data;
1277 
1278 	if (unlikely(bnapi->in_reset)) {
1279 		int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1280 
1281 		if (rc < 0)
1282 			return ERR_PTR(-EBUSY);
1283 		return NULL;
1284 	}
1285 
1286 	tpa_info = &rxr->rx_tpa[agg_id];
1287 	data = tpa_info->data;
1288 	data_ptr = tpa_info->data_ptr;
1289 	prefetch(data_ptr);
1290 	len = tpa_info->len;
1291 	mapping = tpa_info->mapping;
1292 
1293 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1294 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1295 
1296 	if (agg_bufs) {
1297 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1298 			return ERR_PTR(-EBUSY);
1299 
1300 		*event |= BNXT_AGG_EVENT;
1301 		cp_cons = NEXT_CMP(cp_cons);
1302 	}
1303 
1304 	if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1305 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1306 		netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1307 			    agg_bufs, (int)MAX_SKB_FRAGS);
1308 		return NULL;
1309 	}
1310 
1311 	if (len <= bp->rx_copy_thresh) {
1312 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1313 		if (!skb) {
1314 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1315 			return NULL;
1316 		}
1317 	} else {
1318 		u8 *new_data;
1319 		dma_addr_t new_mapping;
1320 
1321 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1322 		if (!new_data) {
1323 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1324 			return NULL;
1325 		}
1326 
1327 		tpa_info->data = new_data;
1328 		tpa_info->data_ptr = new_data + bp->rx_offset;
1329 		tpa_info->mapping = new_mapping;
1330 
1331 		skb = build_skb(data, 0);
1332 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1333 				 bp->rx_dir);
1334 
1335 		if (!skb) {
1336 			kfree(data);
1337 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1338 			return NULL;
1339 		}
1340 		skb_reserve(skb, bp->rx_offset);
1341 		skb_put(skb, len);
1342 	}
1343 
1344 	if (agg_bufs) {
1345 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1346 		if (!skb) {
1347 			/* Page reuse already handled by bnxt_rx_pages(). */
1348 			return NULL;
1349 		}
1350 	}
1351 	skb->protocol = eth_type_trans(skb, bp->dev);
1352 
1353 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1354 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1355 
1356 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1357 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1358 		u16 vlan_proto = tpa_info->metadata >>
1359 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1360 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1361 
1362 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1363 	}
1364 
1365 	skb_checksum_none_assert(skb);
1366 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1367 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1368 		skb->csum_level =
1369 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1370 	}
1371 
1372 	if (TPA_END_GRO(tpa_end))
1373 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1374 
1375 	return skb;
1376 }
1377 
1378 /* returns the following:
1379  * 1       - 1 packet successfully received
1380  * 0       - successful TPA_START, packet not completed yet
1381  * -EBUSY  - completion ring does not have all the agg buffers yet
1382  * -ENOMEM - packet aborted due to out of memory
1383  * -EIO    - packet aborted due to hw error indicated in BD
1384  */
1385 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1386 		       u8 *event)
1387 {
1388 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1389 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1390 	struct net_device *dev = bp->dev;
1391 	struct rx_cmp *rxcmp;
1392 	struct rx_cmp_ext *rxcmp1;
1393 	u32 tmp_raw_cons = *raw_cons;
1394 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1395 	struct bnxt_sw_rx_bd *rx_buf;
1396 	unsigned int len;
1397 	u8 *data_ptr, agg_bufs, cmp_type;
1398 	dma_addr_t dma_addr;
1399 	struct sk_buff *skb;
1400 	void *data;
1401 	int rc = 0;
1402 	u32 misc;
1403 
1404 	rxcmp = (struct rx_cmp *)
1405 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1406 
1407 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1408 	cp_cons = RING_CMP(tmp_raw_cons);
1409 	rxcmp1 = (struct rx_cmp_ext *)
1410 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1411 
1412 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1413 		return -EBUSY;
1414 
1415 	cmp_type = RX_CMP_TYPE(rxcmp);
1416 
1417 	prod = rxr->rx_prod;
1418 
1419 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1420 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1421 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1422 
1423 		*event |= BNXT_RX_EVENT;
1424 		goto next_rx_no_prod;
1425 
1426 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1427 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1428 				   (struct rx_tpa_end_cmp *)rxcmp,
1429 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1430 
1431 		if (unlikely(IS_ERR(skb)))
1432 			return -EBUSY;
1433 
1434 		rc = -ENOMEM;
1435 		if (likely(skb)) {
1436 			skb_record_rx_queue(skb, bnapi->index);
1437 			napi_gro_receive(&bnapi->napi, skb);
1438 			rc = 1;
1439 		}
1440 		*event |= BNXT_RX_EVENT;
1441 		goto next_rx_no_prod;
1442 	}
1443 
1444 	cons = rxcmp->rx_cmp_opaque;
1445 	rx_buf = &rxr->rx_buf_ring[cons];
1446 	data = rx_buf->data;
1447 	data_ptr = rx_buf->data_ptr;
1448 	if (unlikely(cons != rxr->rx_next_cons)) {
1449 		int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1450 
1451 		bnxt_sched_reset(bp, rxr);
1452 		return rc1;
1453 	}
1454 	prefetch(data_ptr);
1455 
1456 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1457 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1458 
1459 	if (agg_bufs) {
1460 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1461 			return -EBUSY;
1462 
1463 		cp_cons = NEXT_CMP(cp_cons);
1464 		*event |= BNXT_AGG_EVENT;
1465 	}
1466 	*event |= BNXT_RX_EVENT;
1467 
1468 	rx_buf->data = NULL;
1469 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1470 		bnxt_reuse_rx_data(rxr, cons, data);
1471 		if (agg_bufs)
1472 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1473 
1474 		rc = -EIO;
1475 		goto next_rx;
1476 	}
1477 
1478 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1479 	dma_addr = rx_buf->mapping;
1480 
1481 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1482 		rc = 1;
1483 		goto next_rx;
1484 	}
1485 
1486 	if (len <= bp->rx_copy_thresh) {
1487 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1488 		bnxt_reuse_rx_data(rxr, cons, data);
1489 		if (!skb) {
1490 			rc = -ENOMEM;
1491 			goto next_rx;
1492 		}
1493 	} else {
1494 		u32 payload;
1495 
1496 		if (rx_buf->data_ptr == data_ptr)
1497 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1498 		else
1499 			payload = 0;
1500 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1501 				      payload | len);
1502 		if (!skb) {
1503 			rc = -ENOMEM;
1504 			goto next_rx;
1505 		}
1506 	}
1507 
1508 	if (agg_bufs) {
1509 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1510 		if (!skb) {
1511 			rc = -ENOMEM;
1512 			goto next_rx;
1513 		}
1514 	}
1515 
1516 	if (RX_CMP_HASH_VALID(rxcmp)) {
1517 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1518 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1519 
1520 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1521 		if (hash_type != 1 && hash_type != 3)
1522 			type = PKT_HASH_TYPE_L3;
1523 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1524 	}
1525 
1526 	skb->protocol = eth_type_trans(skb, dev);
1527 
1528 	if ((rxcmp1->rx_cmp_flags2 &
1529 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1530 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1531 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1532 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1533 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1534 
1535 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1536 	}
1537 
1538 	skb_checksum_none_assert(skb);
1539 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1540 		if (dev->features & NETIF_F_RXCSUM) {
1541 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1542 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1543 		}
1544 	} else {
1545 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1546 			if (dev->features & NETIF_F_RXCSUM)
1547 				cpr->rx_l4_csum_errors++;
1548 		}
1549 	}
1550 
1551 	skb_record_rx_queue(skb, bnapi->index);
1552 	napi_gro_receive(&bnapi->napi, skb);
1553 	rc = 1;
1554 
1555 next_rx:
1556 	rxr->rx_prod = NEXT_RX(prod);
1557 	rxr->rx_next_cons = NEXT_RX(cons);
1558 
1559 next_rx_no_prod:
1560 	*raw_cons = tmp_raw_cons;
1561 
1562 	return rc;
1563 }
1564 
1565 #define BNXT_GET_EVENT_PORT(data)	\
1566 	((data) &			\
1567 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1568 
1569 static int bnxt_async_event_process(struct bnxt *bp,
1570 				    struct hwrm_async_event_cmpl *cmpl)
1571 {
1572 	u16 event_id = le16_to_cpu(cmpl->event_id);
1573 
1574 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1575 	switch (event_id) {
1576 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1577 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1578 		struct bnxt_link_info *link_info = &bp->link_info;
1579 
1580 		if (BNXT_VF(bp))
1581 			goto async_event_process_exit;
1582 		if (data1 & 0x20000) {
1583 			u16 fw_speed = link_info->force_link_speed;
1584 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1585 
1586 			netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1587 				    speed);
1588 		}
1589 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1590 		/* fall thru */
1591 	}
1592 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1593 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1594 		break;
1595 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1596 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1597 		break;
1598 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1599 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1600 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1601 
1602 		if (BNXT_VF(bp))
1603 			break;
1604 
1605 		if (bp->pf.port_id != port_id)
1606 			break;
1607 
1608 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1609 		break;
1610 	}
1611 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1612 		if (BNXT_PF(bp))
1613 			goto async_event_process_exit;
1614 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1615 		break;
1616 	default:
1617 		goto async_event_process_exit;
1618 	}
1619 	schedule_work(&bp->sp_task);
1620 async_event_process_exit:
1621 	bnxt_ulp_async_events(bp, cmpl);
1622 	return 0;
1623 }
1624 
1625 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1626 {
1627 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1628 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1629 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1630 				(struct hwrm_fwd_req_cmpl *)txcmp;
1631 
1632 	switch (cmpl_type) {
1633 	case CMPL_BASE_TYPE_HWRM_DONE:
1634 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1635 		if (seq_id == bp->hwrm_intr_seq_id)
1636 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1637 		else
1638 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1639 		break;
1640 
1641 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1642 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1643 
1644 		if ((vf_id < bp->pf.first_vf_id) ||
1645 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1646 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1647 				   vf_id);
1648 			return -EINVAL;
1649 		}
1650 
1651 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1652 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1653 		schedule_work(&bp->sp_task);
1654 		break;
1655 
1656 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1657 		bnxt_async_event_process(bp,
1658 					 (struct hwrm_async_event_cmpl *)txcmp);
1659 
1660 	default:
1661 		break;
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1668 {
1669 	struct bnxt_napi *bnapi = dev_instance;
1670 	struct bnxt *bp = bnapi->bp;
1671 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1672 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1673 
1674 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1675 	napi_schedule(&bnapi->napi);
1676 	return IRQ_HANDLED;
1677 }
1678 
1679 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1680 {
1681 	u32 raw_cons = cpr->cp_raw_cons;
1682 	u16 cons = RING_CMP(raw_cons);
1683 	struct tx_cmp *txcmp;
1684 
1685 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1686 
1687 	return TX_CMP_VALID(txcmp, raw_cons);
1688 }
1689 
1690 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1691 {
1692 	struct bnxt_napi *bnapi = dev_instance;
1693 	struct bnxt *bp = bnapi->bp;
1694 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1695 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1696 	u32 int_status;
1697 
1698 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1699 
1700 	if (!bnxt_has_work(bp, cpr)) {
1701 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1702 		/* return if erroneous interrupt */
1703 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1704 			return IRQ_NONE;
1705 	}
1706 
1707 	/* disable ring IRQ */
1708 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1709 
1710 	/* Return here if interrupt is shared and is disabled. */
1711 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1712 		return IRQ_HANDLED;
1713 
1714 	napi_schedule(&bnapi->napi);
1715 	return IRQ_HANDLED;
1716 }
1717 
1718 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1719 {
1720 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1721 	u32 raw_cons = cpr->cp_raw_cons;
1722 	u32 cons;
1723 	int tx_pkts = 0;
1724 	int rx_pkts = 0;
1725 	u8 event = 0;
1726 	struct tx_cmp *txcmp;
1727 
1728 	while (1) {
1729 		int rc;
1730 
1731 		cons = RING_CMP(raw_cons);
1732 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1733 
1734 		if (!TX_CMP_VALID(txcmp, raw_cons))
1735 			break;
1736 
1737 		/* The valid test of the entry must be done first before
1738 		 * reading any further.
1739 		 */
1740 		dma_rmb();
1741 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1742 			tx_pkts++;
1743 			/* return full budget so NAPI will complete. */
1744 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1745 				rx_pkts = budget;
1746 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1747 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1748 			if (likely(rc >= 0))
1749 				rx_pkts += rc;
1750 			else if (rc == -EBUSY)	/* partial completion */
1751 				break;
1752 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1753 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1754 				    (TX_CMP_TYPE(txcmp) ==
1755 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1756 				    (TX_CMP_TYPE(txcmp) ==
1757 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1758 			bnxt_hwrm_handler(bp, txcmp);
1759 		}
1760 		raw_cons = NEXT_RAW_CMP(raw_cons);
1761 
1762 		if (rx_pkts == budget)
1763 			break;
1764 	}
1765 
1766 	if (event & BNXT_TX_EVENT) {
1767 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1768 		void __iomem *db = txr->tx_doorbell;
1769 		u16 prod = txr->tx_prod;
1770 
1771 		/* Sync BD data before updating doorbell */
1772 		wmb();
1773 
1774 		writel(DB_KEY_TX | prod, db);
1775 		writel(DB_KEY_TX | prod, db);
1776 	}
1777 
1778 	cpr->cp_raw_cons = raw_cons;
1779 	/* ACK completion ring before freeing tx ring and producing new
1780 	 * buffers in rx/agg rings to prevent overflowing the completion
1781 	 * ring.
1782 	 */
1783 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1784 
1785 	if (tx_pkts)
1786 		bnapi->tx_int(bp, bnapi, tx_pkts);
1787 
1788 	if (event & BNXT_RX_EVENT) {
1789 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1790 
1791 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1792 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1793 		if (event & BNXT_AGG_EVENT) {
1794 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1795 			       rxr->rx_agg_doorbell);
1796 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1797 			       rxr->rx_agg_doorbell);
1798 		}
1799 	}
1800 	return rx_pkts;
1801 }
1802 
1803 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1804 {
1805 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1806 	struct bnxt *bp = bnapi->bp;
1807 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1808 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1809 	struct tx_cmp *txcmp;
1810 	struct rx_cmp_ext *rxcmp1;
1811 	u32 cp_cons, tmp_raw_cons;
1812 	u32 raw_cons = cpr->cp_raw_cons;
1813 	u32 rx_pkts = 0;
1814 	u8 event = 0;
1815 
1816 	while (1) {
1817 		int rc;
1818 
1819 		cp_cons = RING_CMP(raw_cons);
1820 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1821 
1822 		if (!TX_CMP_VALID(txcmp, raw_cons))
1823 			break;
1824 
1825 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1826 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1827 			cp_cons = RING_CMP(tmp_raw_cons);
1828 			rxcmp1 = (struct rx_cmp_ext *)
1829 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1830 
1831 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1832 				break;
1833 
1834 			/* force an error to recycle the buffer */
1835 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1836 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1837 
1838 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1839 			if (likely(rc == -EIO))
1840 				rx_pkts++;
1841 			else if (rc == -EBUSY)	/* partial completion */
1842 				break;
1843 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
1844 				    CMPL_BASE_TYPE_HWRM_DONE)) {
1845 			bnxt_hwrm_handler(bp, txcmp);
1846 		} else {
1847 			netdev_err(bp->dev,
1848 				   "Invalid completion received on special ring\n");
1849 		}
1850 		raw_cons = NEXT_RAW_CMP(raw_cons);
1851 
1852 		if (rx_pkts == budget)
1853 			break;
1854 	}
1855 
1856 	cpr->cp_raw_cons = raw_cons;
1857 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1858 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1859 	writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1860 
1861 	if (event & BNXT_AGG_EVENT) {
1862 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1863 		writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1864 	}
1865 
1866 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1867 		napi_complete_done(napi, rx_pkts);
1868 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1869 	}
1870 	return rx_pkts;
1871 }
1872 
1873 static int bnxt_poll(struct napi_struct *napi, int budget)
1874 {
1875 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1876 	struct bnxt *bp = bnapi->bp;
1877 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1878 	int work_done = 0;
1879 
1880 	while (1) {
1881 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1882 
1883 		if (work_done >= budget)
1884 			break;
1885 
1886 		if (!bnxt_has_work(bp, cpr)) {
1887 			if (napi_complete_done(napi, work_done))
1888 				BNXT_CP_DB_REARM(cpr->cp_doorbell,
1889 						 cpr->cp_raw_cons);
1890 			break;
1891 		}
1892 	}
1893 	mmiowb();
1894 	return work_done;
1895 }
1896 
1897 static void bnxt_free_tx_skbs(struct bnxt *bp)
1898 {
1899 	int i, max_idx;
1900 	struct pci_dev *pdev = bp->pdev;
1901 
1902 	if (!bp->tx_ring)
1903 		return;
1904 
1905 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1906 	for (i = 0; i < bp->tx_nr_rings; i++) {
1907 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1908 		int j;
1909 
1910 		for (j = 0; j < max_idx;) {
1911 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1912 			struct sk_buff *skb = tx_buf->skb;
1913 			int k, last;
1914 
1915 			if (!skb) {
1916 				j++;
1917 				continue;
1918 			}
1919 
1920 			tx_buf->skb = NULL;
1921 
1922 			if (tx_buf->is_push) {
1923 				dev_kfree_skb(skb);
1924 				j += 2;
1925 				continue;
1926 			}
1927 
1928 			dma_unmap_single(&pdev->dev,
1929 					 dma_unmap_addr(tx_buf, mapping),
1930 					 skb_headlen(skb),
1931 					 PCI_DMA_TODEVICE);
1932 
1933 			last = tx_buf->nr_frags;
1934 			j += 2;
1935 			for (k = 0; k < last; k++, j++) {
1936 				int ring_idx = j & bp->tx_ring_mask;
1937 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1938 
1939 				tx_buf = &txr->tx_buf_ring[ring_idx];
1940 				dma_unmap_page(
1941 					&pdev->dev,
1942 					dma_unmap_addr(tx_buf, mapping),
1943 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1944 			}
1945 			dev_kfree_skb(skb);
1946 		}
1947 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1948 	}
1949 }
1950 
1951 static void bnxt_free_rx_skbs(struct bnxt *bp)
1952 {
1953 	int i, max_idx, max_agg_idx;
1954 	struct pci_dev *pdev = bp->pdev;
1955 
1956 	if (!bp->rx_ring)
1957 		return;
1958 
1959 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1960 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1961 	for (i = 0; i < bp->rx_nr_rings; i++) {
1962 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1963 		int j;
1964 
1965 		if (rxr->rx_tpa) {
1966 			for (j = 0; j < MAX_TPA; j++) {
1967 				struct bnxt_tpa_info *tpa_info =
1968 							&rxr->rx_tpa[j];
1969 				u8 *data = tpa_info->data;
1970 
1971 				if (!data)
1972 					continue;
1973 
1974 				dma_unmap_single(&pdev->dev, tpa_info->mapping,
1975 						 bp->rx_buf_use_size,
1976 						 bp->rx_dir);
1977 
1978 				tpa_info->data = NULL;
1979 
1980 				kfree(data);
1981 			}
1982 		}
1983 
1984 		for (j = 0; j < max_idx; j++) {
1985 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1986 			dma_addr_t mapping = rx_buf->mapping;
1987 			void *data = rx_buf->data;
1988 
1989 			if (!data)
1990 				continue;
1991 
1992 			rx_buf->data = NULL;
1993 
1994 			if (BNXT_RX_PAGE_MODE(bp)) {
1995 				mapping -= bp->rx_dma_offset;
1996 				dma_unmap_page(&pdev->dev, mapping,
1997 					       PAGE_SIZE, bp->rx_dir);
1998 				__free_page(data);
1999 			} else {
2000 				dma_unmap_single(&pdev->dev, mapping,
2001 						 bp->rx_buf_use_size,
2002 						 bp->rx_dir);
2003 				kfree(data);
2004 			}
2005 		}
2006 
2007 		for (j = 0; j < max_agg_idx; j++) {
2008 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2009 				&rxr->rx_agg_ring[j];
2010 			struct page *page = rx_agg_buf->page;
2011 
2012 			if (!page)
2013 				continue;
2014 
2015 			dma_unmap_page(&pdev->dev, rx_agg_buf->mapping,
2016 				       BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
2017 
2018 			rx_agg_buf->page = NULL;
2019 			__clear_bit(j, rxr->rx_agg_bmap);
2020 
2021 			__free_page(page);
2022 		}
2023 		if (rxr->rx_page) {
2024 			__free_page(rxr->rx_page);
2025 			rxr->rx_page = NULL;
2026 		}
2027 	}
2028 }
2029 
2030 static void bnxt_free_skbs(struct bnxt *bp)
2031 {
2032 	bnxt_free_tx_skbs(bp);
2033 	bnxt_free_rx_skbs(bp);
2034 }
2035 
2036 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2037 {
2038 	struct pci_dev *pdev = bp->pdev;
2039 	int i;
2040 
2041 	for (i = 0; i < ring->nr_pages; i++) {
2042 		if (!ring->pg_arr[i])
2043 			continue;
2044 
2045 		dma_free_coherent(&pdev->dev, ring->page_size,
2046 				  ring->pg_arr[i], ring->dma_arr[i]);
2047 
2048 		ring->pg_arr[i] = NULL;
2049 	}
2050 	if (ring->pg_tbl) {
2051 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2052 				  ring->pg_tbl, ring->pg_tbl_map);
2053 		ring->pg_tbl = NULL;
2054 	}
2055 	if (ring->vmem_size && *ring->vmem) {
2056 		vfree(*ring->vmem);
2057 		*ring->vmem = NULL;
2058 	}
2059 }
2060 
2061 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2062 {
2063 	int i;
2064 	struct pci_dev *pdev = bp->pdev;
2065 
2066 	if (ring->nr_pages > 1) {
2067 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2068 						  ring->nr_pages * 8,
2069 						  &ring->pg_tbl_map,
2070 						  GFP_KERNEL);
2071 		if (!ring->pg_tbl)
2072 			return -ENOMEM;
2073 	}
2074 
2075 	for (i = 0; i < ring->nr_pages; i++) {
2076 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2077 						     ring->page_size,
2078 						     &ring->dma_arr[i],
2079 						     GFP_KERNEL);
2080 		if (!ring->pg_arr[i])
2081 			return -ENOMEM;
2082 
2083 		if (ring->nr_pages > 1)
2084 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2085 	}
2086 
2087 	if (ring->vmem_size) {
2088 		*ring->vmem = vzalloc(ring->vmem_size);
2089 		if (!(*ring->vmem))
2090 			return -ENOMEM;
2091 	}
2092 	return 0;
2093 }
2094 
2095 static void bnxt_free_rx_rings(struct bnxt *bp)
2096 {
2097 	int i;
2098 
2099 	if (!bp->rx_ring)
2100 		return;
2101 
2102 	for (i = 0; i < bp->rx_nr_rings; i++) {
2103 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2104 		struct bnxt_ring_struct *ring;
2105 
2106 		if (rxr->xdp_prog)
2107 			bpf_prog_put(rxr->xdp_prog);
2108 
2109 		kfree(rxr->rx_tpa);
2110 		rxr->rx_tpa = NULL;
2111 
2112 		kfree(rxr->rx_agg_bmap);
2113 		rxr->rx_agg_bmap = NULL;
2114 
2115 		ring = &rxr->rx_ring_struct;
2116 		bnxt_free_ring(bp, ring);
2117 
2118 		ring = &rxr->rx_agg_ring_struct;
2119 		bnxt_free_ring(bp, ring);
2120 	}
2121 }
2122 
2123 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2124 {
2125 	int i, rc, agg_rings = 0, tpa_rings = 0;
2126 
2127 	if (!bp->rx_ring)
2128 		return -ENOMEM;
2129 
2130 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2131 		agg_rings = 1;
2132 
2133 	if (bp->flags & BNXT_FLAG_TPA)
2134 		tpa_rings = 1;
2135 
2136 	for (i = 0; i < bp->rx_nr_rings; i++) {
2137 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2138 		struct bnxt_ring_struct *ring;
2139 
2140 		ring = &rxr->rx_ring_struct;
2141 
2142 		rc = bnxt_alloc_ring(bp, ring);
2143 		if (rc)
2144 			return rc;
2145 
2146 		if (agg_rings) {
2147 			u16 mem_size;
2148 
2149 			ring = &rxr->rx_agg_ring_struct;
2150 			rc = bnxt_alloc_ring(bp, ring);
2151 			if (rc)
2152 				return rc;
2153 
2154 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2155 			mem_size = rxr->rx_agg_bmap_size / 8;
2156 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2157 			if (!rxr->rx_agg_bmap)
2158 				return -ENOMEM;
2159 
2160 			if (tpa_rings) {
2161 				rxr->rx_tpa = kcalloc(MAX_TPA,
2162 						sizeof(struct bnxt_tpa_info),
2163 						GFP_KERNEL);
2164 				if (!rxr->rx_tpa)
2165 					return -ENOMEM;
2166 			}
2167 		}
2168 	}
2169 	return 0;
2170 }
2171 
2172 static void bnxt_free_tx_rings(struct bnxt *bp)
2173 {
2174 	int i;
2175 	struct pci_dev *pdev = bp->pdev;
2176 
2177 	if (!bp->tx_ring)
2178 		return;
2179 
2180 	for (i = 0; i < bp->tx_nr_rings; i++) {
2181 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2182 		struct bnxt_ring_struct *ring;
2183 
2184 		if (txr->tx_push) {
2185 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2186 					  txr->tx_push, txr->tx_push_mapping);
2187 			txr->tx_push = NULL;
2188 		}
2189 
2190 		ring = &txr->tx_ring_struct;
2191 
2192 		bnxt_free_ring(bp, ring);
2193 	}
2194 }
2195 
2196 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2197 {
2198 	int i, j, rc;
2199 	struct pci_dev *pdev = bp->pdev;
2200 
2201 	bp->tx_push_size = 0;
2202 	if (bp->tx_push_thresh) {
2203 		int push_size;
2204 
2205 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2206 					bp->tx_push_thresh);
2207 
2208 		if (push_size > 256) {
2209 			push_size = 0;
2210 			bp->tx_push_thresh = 0;
2211 		}
2212 
2213 		bp->tx_push_size = push_size;
2214 	}
2215 
2216 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2217 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2218 		struct bnxt_ring_struct *ring;
2219 
2220 		ring = &txr->tx_ring_struct;
2221 
2222 		rc = bnxt_alloc_ring(bp, ring);
2223 		if (rc)
2224 			return rc;
2225 
2226 		if (bp->tx_push_size) {
2227 			dma_addr_t mapping;
2228 
2229 			/* One pre-allocated DMA buffer to backup
2230 			 * TX push operation
2231 			 */
2232 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2233 						bp->tx_push_size,
2234 						&txr->tx_push_mapping,
2235 						GFP_KERNEL);
2236 
2237 			if (!txr->tx_push)
2238 				return -ENOMEM;
2239 
2240 			mapping = txr->tx_push_mapping +
2241 				sizeof(struct tx_push_bd);
2242 			txr->data_mapping = cpu_to_le64(mapping);
2243 
2244 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2245 		}
2246 		ring->queue_id = bp->q_info[j].queue_id;
2247 		if (i < bp->tx_nr_rings_xdp)
2248 			continue;
2249 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2250 			j++;
2251 	}
2252 	return 0;
2253 }
2254 
2255 static void bnxt_free_cp_rings(struct bnxt *bp)
2256 {
2257 	int i;
2258 
2259 	if (!bp->bnapi)
2260 		return;
2261 
2262 	for (i = 0; i < bp->cp_nr_rings; i++) {
2263 		struct bnxt_napi *bnapi = bp->bnapi[i];
2264 		struct bnxt_cp_ring_info *cpr;
2265 		struct bnxt_ring_struct *ring;
2266 
2267 		if (!bnapi)
2268 			continue;
2269 
2270 		cpr = &bnapi->cp_ring;
2271 		ring = &cpr->cp_ring_struct;
2272 
2273 		bnxt_free_ring(bp, ring);
2274 	}
2275 }
2276 
2277 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2278 {
2279 	int i, rc;
2280 
2281 	for (i = 0; i < bp->cp_nr_rings; i++) {
2282 		struct bnxt_napi *bnapi = bp->bnapi[i];
2283 		struct bnxt_cp_ring_info *cpr;
2284 		struct bnxt_ring_struct *ring;
2285 
2286 		if (!bnapi)
2287 			continue;
2288 
2289 		cpr = &bnapi->cp_ring;
2290 		ring = &cpr->cp_ring_struct;
2291 
2292 		rc = bnxt_alloc_ring(bp, ring);
2293 		if (rc)
2294 			return rc;
2295 	}
2296 	return 0;
2297 }
2298 
2299 static void bnxt_init_ring_struct(struct bnxt *bp)
2300 {
2301 	int i;
2302 
2303 	for (i = 0; i < bp->cp_nr_rings; i++) {
2304 		struct bnxt_napi *bnapi = bp->bnapi[i];
2305 		struct bnxt_cp_ring_info *cpr;
2306 		struct bnxt_rx_ring_info *rxr;
2307 		struct bnxt_tx_ring_info *txr;
2308 		struct bnxt_ring_struct *ring;
2309 
2310 		if (!bnapi)
2311 			continue;
2312 
2313 		cpr = &bnapi->cp_ring;
2314 		ring = &cpr->cp_ring_struct;
2315 		ring->nr_pages = bp->cp_nr_pages;
2316 		ring->page_size = HW_CMPD_RING_SIZE;
2317 		ring->pg_arr = (void **)cpr->cp_desc_ring;
2318 		ring->dma_arr = cpr->cp_desc_mapping;
2319 		ring->vmem_size = 0;
2320 
2321 		rxr = bnapi->rx_ring;
2322 		if (!rxr)
2323 			goto skip_rx;
2324 
2325 		ring = &rxr->rx_ring_struct;
2326 		ring->nr_pages = bp->rx_nr_pages;
2327 		ring->page_size = HW_RXBD_RING_SIZE;
2328 		ring->pg_arr = (void **)rxr->rx_desc_ring;
2329 		ring->dma_arr = rxr->rx_desc_mapping;
2330 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2331 		ring->vmem = (void **)&rxr->rx_buf_ring;
2332 
2333 		ring = &rxr->rx_agg_ring_struct;
2334 		ring->nr_pages = bp->rx_agg_nr_pages;
2335 		ring->page_size = HW_RXBD_RING_SIZE;
2336 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2337 		ring->dma_arr = rxr->rx_agg_desc_mapping;
2338 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2339 		ring->vmem = (void **)&rxr->rx_agg_ring;
2340 
2341 skip_rx:
2342 		txr = bnapi->tx_ring;
2343 		if (!txr)
2344 			continue;
2345 
2346 		ring = &txr->tx_ring_struct;
2347 		ring->nr_pages = bp->tx_nr_pages;
2348 		ring->page_size = HW_RXBD_RING_SIZE;
2349 		ring->pg_arr = (void **)txr->tx_desc_ring;
2350 		ring->dma_arr = txr->tx_desc_mapping;
2351 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2352 		ring->vmem = (void **)&txr->tx_buf_ring;
2353 	}
2354 }
2355 
2356 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2357 {
2358 	int i;
2359 	u32 prod;
2360 	struct rx_bd **rx_buf_ring;
2361 
2362 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2363 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2364 		int j;
2365 		struct rx_bd *rxbd;
2366 
2367 		rxbd = rx_buf_ring[i];
2368 		if (!rxbd)
2369 			continue;
2370 
2371 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2372 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2373 			rxbd->rx_bd_opaque = prod;
2374 		}
2375 	}
2376 }
2377 
2378 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2379 {
2380 	struct net_device *dev = bp->dev;
2381 	struct bnxt_rx_ring_info *rxr;
2382 	struct bnxt_ring_struct *ring;
2383 	u32 prod, type;
2384 	int i;
2385 
2386 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2387 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2388 
2389 	if (NET_IP_ALIGN == 2)
2390 		type |= RX_BD_FLAGS_SOP;
2391 
2392 	rxr = &bp->rx_ring[ring_nr];
2393 	ring = &rxr->rx_ring_struct;
2394 	bnxt_init_rxbd_pages(ring, type);
2395 
2396 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2397 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2398 		if (IS_ERR(rxr->xdp_prog)) {
2399 			int rc = PTR_ERR(rxr->xdp_prog);
2400 
2401 			rxr->xdp_prog = NULL;
2402 			return rc;
2403 		}
2404 	}
2405 	prod = rxr->rx_prod;
2406 	for (i = 0; i < bp->rx_ring_size; i++) {
2407 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2408 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2409 				    ring_nr, i, bp->rx_ring_size);
2410 			break;
2411 		}
2412 		prod = NEXT_RX(prod);
2413 	}
2414 	rxr->rx_prod = prod;
2415 	ring->fw_ring_id = INVALID_HW_RING_ID;
2416 
2417 	ring = &rxr->rx_agg_ring_struct;
2418 	ring->fw_ring_id = INVALID_HW_RING_ID;
2419 
2420 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2421 		return 0;
2422 
2423 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2424 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2425 
2426 	bnxt_init_rxbd_pages(ring, type);
2427 
2428 	prod = rxr->rx_agg_prod;
2429 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2430 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2431 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2432 				    ring_nr, i, bp->rx_ring_size);
2433 			break;
2434 		}
2435 		prod = NEXT_RX_AGG(prod);
2436 	}
2437 	rxr->rx_agg_prod = prod;
2438 
2439 	if (bp->flags & BNXT_FLAG_TPA) {
2440 		if (rxr->rx_tpa) {
2441 			u8 *data;
2442 			dma_addr_t mapping;
2443 
2444 			for (i = 0; i < MAX_TPA; i++) {
2445 				data = __bnxt_alloc_rx_data(bp, &mapping,
2446 							    GFP_KERNEL);
2447 				if (!data)
2448 					return -ENOMEM;
2449 
2450 				rxr->rx_tpa[i].data = data;
2451 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2452 				rxr->rx_tpa[i].mapping = mapping;
2453 			}
2454 		} else {
2455 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2456 			return -ENOMEM;
2457 		}
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 static void bnxt_init_cp_rings(struct bnxt *bp)
2464 {
2465 	int i;
2466 
2467 	for (i = 0; i < bp->cp_nr_rings; i++) {
2468 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2469 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2470 
2471 		ring->fw_ring_id = INVALID_HW_RING_ID;
2472 	}
2473 }
2474 
2475 static int bnxt_init_rx_rings(struct bnxt *bp)
2476 {
2477 	int i, rc = 0;
2478 
2479 	if (BNXT_RX_PAGE_MODE(bp)) {
2480 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2481 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2482 	} else {
2483 		bp->rx_offset = BNXT_RX_OFFSET;
2484 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2485 	}
2486 
2487 	for (i = 0; i < bp->rx_nr_rings; i++) {
2488 		rc = bnxt_init_one_rx_ring(bp, i);
2489 		if (rc)
2490 			break;
2491 	}
2492 
2493 	return rc;
2494 }
2495 
2496 static int bnxt_init_tx_rings(struct bnxt *bp)
2497 {
2498 	u16 i;
2499 
2500 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2501 				   MAX_SKB_FRAGS + 1);
2502 
2503 	for (i = 0; i < bp->tx_nr_rings; i++) {
2504 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2505 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2506 
2507 		ring->fw_ring_id = INVALID_HW_RING_ID;
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 static void bnxt_free_ring_grps(struct bnxt *bp)
2514 {
2515 	kfree(bp->grp_info);
2516 	bp->grp_info = NULL;
2517 }
2518 
2519 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2520 {
2521 	int i;
2522 
2523 	if (irq_re_init) {
2524 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2525 				       sizeof(struct bnxt_ring_grp_info),
2526 				       GFP_KERNEL);
2527 		if (!bp->grp_info)
2528 			return -ENOMEM;
2529 	}
2530 	for (i = 0; i < bp->cp_nr_rings; i++) {
2531 		if (irq_re_init)
2532 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2533 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2534 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2535 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2536 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2537 	}
2538 	return 0;
2539 }
2540 
2541 static void bnxt_free_vnics(struct bnxt *bp)
2542 {
2543 	kfree(bp->vnic_info);
2544 	bp->vnic_info = NULL;
2545 	bp->nr_vnics = 0;
2546 }
2547 
2548 static int bnxt_alloc_vnics(struct bnxt *bp)
2549 {
2550 	int num_vnics = 1;
2551 
2552 #ifdef CONFIG_RFS_ACCEL
2553 	if (bp->flags & BNXT_FLAG_RFS)
2554 		num_vnics += bp->rx_nr_rings;
2555 #endif
2556 
2557 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2558 		num_vnics++;
2559 
2560 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2561 				GFP_KERNEL);
2562 	if (!bp->vnic_info)
2563 		return -ENOMEM;
2564 
2565 	bp->nr_vnics = num_vnics;
2566 	return 0;
2567 }
2568 
2569 static void bnxt_init_vnics(struct bnxt *bp)
2570 {
2571 	int i;
2572 
2573 	for (i = 0; i < bp->nr_vnics; i++) {
2574 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2575 
2576 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2577 		vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2578 		vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2579 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2580 
2581 		if (bp->vnic_info[i].rss_hash_key) {
2582 			if (i == 0)
2583 				prandom_bytes(vnic->rss_hash_key,
2584 					      HW_HASH_KEY_SIZE);
2585 			else
2586 				memcpy(vnic->rss_hash_key,
2587 				       bp->vnic_info[0].rss_hash_key,
2588 				       HW_HASH_KEY_SIZE);
2589 		}
2590 	}
2591 }
2592 
2593 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2594 {
2595 	int pages;
2596 
2597 	pages = ring_size / desc_per_pg;
2598 
2599 	if (!pages)
2600 		return 1;
2601 
2602 	pages++;
2603 
2604 	while (pages & (pages - 1))
2605 		pages++;
2606 
2607 	return pages;
2608 }
2609 
2610 void bnxt_set_tpa_flags(struct bnxt *bp)
2611 {
2612 	bp->flags &= ~BNXT_FLAG_TPA;
2613 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2614 		return;
2615 	if (bp->dev->features & NETIF_F_LRO)
2616 		bp->flags |= BNXT_FLAG_LRO;
2617 	if (bp->dev->features & NETIF_F_GRO)
2618 		bp->flags |= BNXT_FLAG_GRO;
2619 }
2620 
2621 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2622  * be set on entry.
2623  */
2624 void bnxt_set_ring_params(struct bnxt *bp)
2625 {
2626 	u32 ring_size, rx_size, rx_space;
2627 	u32 agg_factor = 0, agg_ring_size = 0;
2628 
2629 	/* 8 for CRC and VLAN */
2630 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2631 
2632 	rx_space = rx_size + NET_SKB_PAD +
2633 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2634 
2635 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2636 	ring_size = bp->rx_ring_size;
2637 	bp->rx_agg_ring_size = 0;
2638 	bp->rx_agg_nr_pages = 0;
2639 
2640 	if (bp->flags & BNXT_FLAG_TPA)
2641 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2642 
2643 	bp->flags &= ~BNXT_FLAG_JUMBO;
2644 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2645 		u32 jumbo_factor;
2646 
2647 		bp->flags |= BNXT_FLAG_JUMBO;
2648 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2649 		if (jumbo_factor > agg_factor)
2650 			agg_factor = jumbo_factor;
2651 	}
2652 	agg_ring_size = ring_size * agg_factor;
2653 
2654 	if (agg_ring_size) {
2655 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2656 							RX_DESC_CNT);
2657 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2658 			u32 tmp = agg_ring_size;
2659 
2660 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2661 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2662 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2663 				    tmp, agg_ring_size);
2664 		}
2665 		bp->rx_agg_ring_size = agg_ring_size;
2666 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2667 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2668 		rx_space = rx_size + NET_SKB_PAD +
2669 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2670 	}
2671 
2672 	bp->rx_buf_use_size = rx_size;
2673 	bp->rx_buf_size = rx_space;
2674 
2675 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2676 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2677 
2678 	ring_size = bp->tx_ring_size;
2679 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2680 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2681 
2682 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2683 	bp->cp_ring_size = ring_size;
2684 
2685 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2686 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2687 		bp->cp_nr_pages = MAX_CP_PAGES;
2688 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2689 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2690 			    ring_size, bp->cp_ring_size);
2691 	}
2692 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2693 	bp->cp_ring_mask = bp->cp_bit - 1;
2694 }
2695 
2696 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2697 {
2698 	if (page_mode) {
2699 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2700 			return -EOPNOTSUPP;
2701 		bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
2702 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2703 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2704 		bp->dev->hw_features &= ~NETIF_F_LRO;
2705 		bp->dev->features &= ~NETIF_F_LRO;
2706 		bp->rx_dir = DMA_BIDIRECTIONAL;
2707 		bp->rx_skb_func = bnxt_rx_page_skb;
2708 	} else {
2709 		bp->dev->max_mtu = BNXT_MAX_MTU;
2710 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2711 		bp->rx_dir = DMA_FROM_DEVICE;
2712 		bp->rx_skb_func = bnxt_rx_skb;
2713 	}
2714 	return 0;
2715 }
2716 
2717 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2718 {
2719 	int i;
2720 	struct bnxt_vnic_info *vnic;
2721 	struct pci_dev *pdev = bp->pdev;
2722 
2723 	if (!bp->vnic_info)
2724 		return;
2725 
2726 	for (i = 0; i < bp->nr_vnics; i++) {
2727 		vnic = &bp->vnic_info[i];
2728 
2729 		kfree(vnic->fw_grp_ids);
2730 		vnic->fw_grp_ids = NULL;
2731 
2732 		kfree(vnic->uc_list);
2733 		vnic->uc_list = NULL;
2734 
2735 		if (vnic->mc_list) {
2736 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2737 					  vnic->mc_list, vnic->mc_list_mapping);
2738 			vnic->mc_list = NULL;
2739 		}
2740 
2741 		if (vnic->rss_table) {
2742 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2743 					  vnic->rss_table,
2744 					  vnic->rss_table_dma_addr);
2745 			vnic->rss_table = NULL;
2746 		}
2747 
2748 		vnic->rss_hash_key = NULL;
2749 		vnic->flags = 0;
2750 	}
2751 }
2752 
2753 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2754 {
2755 	int i, rc = 0, size;
2756 	struct bnxt_vnic_info *vnic;
2757 	struct pci_dev *pdev = bp->pdev;
2758 	int max_rings;
2759 
2760 	for (i = 0; i < bp->nr_vnics; i++) {
2761 		vnic = &bp->vnic_info[i];
2762 
2763 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2764 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2765 
2766 			if (mem_size > 0) {
2767 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2768 				if (!vnic->uc_list) {
2769 					rc = -ENOMEM;
2770 					goto out;
2771 				}
2772 			}
2773 		}
2774 
2775 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2776 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2777 			vnic->mc_list =
2778 				dma_alloc_coherent(&pdev->dev,
2779 						   vnic->mc_list_size,
2780 						   &vnic->mc_list_mapping,
2781 						   GFP_KERNEL);
2782 			if (!vnic->mc_list) {
2783 				rc = -ENOMEM;
2784 				goto out;
2785 			}
2786 		}
2787 
2788 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2789 			max_rings = bp->rx_nr_rings;
2790 		else
2791 			max_rings = 1;
2792 
2793 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2794 		if (!vnic->fw_grp_ids) {
2795 			rc = -ENOMEM;
2796 			goto out;
2797 		}
2798 
2799 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2800 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2801 			continue;
2802 
2803 		/* Allocate rss table and hash key */
2804 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2805 						     &vnic->rss_table_dma_addr,
2806 						     GFP_KERNEL);
2807 		if (!vnic->rss_table) {
2808 			rc = -ENOMEM;
2809 			goto out;
2810 		}
2811 
2812 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2813 
2814 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2815 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2816 	}
2817 	return 0;
2818 
2819 out:
2820 	return rc;
2821 }
2822 
2823 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2824 {
2825 	struct pci_dev *pdev = bp->pdev;
2826 
2827 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2828 			  bp->hwrm_cmd_resp_dma_addr);
2829 
2830 	bp->hwrm_cmd_resp_addr = NULL;
2831 	if (bp->hwrm_dbg_resp_addr) {
2832 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2833 				  bp->hwrm_dbg_resp_addr,
2834 				  bp->hwrm_dbg_resp_dma_addr);
2835 
2836 		bp->hwrm_dbg_resp_addr = NULL;
2837 	}
2838 }
2839 
2840 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2841 {
2842 	struct pci_dev *pdev = bp->pdev;
2843 
2844 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2845 						   &bp->hwrm_cmd_resp_dma_addr,
2846 						   GFP_KERNEL);
2847 	if (!bp->hwrm_cmd_resp_addr)
2848 		return -ENOMEM;
2849 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2850 						    HWRM_DBG_REG_BUF_SIZE,
2851 						    &bp->hwrm_dbg_resp_dma_addr,
2852 						    GFP_KERNEL);
2853 	if (!bp->hwrm_dbg_resp_addr)
2854 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2855 
2856 	return 0;
2857 }
2858 
2859 static void bnxt_free_stats(struct bnxt *bp)
2860 {
2861 	u32 size, i;
2862 	struct pci_dev *pdev = bp->pdev;
2863 
2864 	if (bp->hw_rx_port_stats) {
2865 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2866 				  bp->hw_rx_port_stats,
2867 				  bp->hw_rx_port_stats_map);
2868 		bp->hw_rx_port_stats = NULL;
2869 		bp->flags &= ~BNXT_FLAG_PORT_STATS;
2870 	}
2871 
2872 	if (!bp->bnapi)
2873 		return;
2874 
2875 	size = sizeof(struct ctx_hw_stats);
2876 
2877 	for (i = 0; i < bp->cp_nr_rings; i++) {
2878 		struct bnxt_napi *bnapi = bp->bnapi[i];
2879 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2880 
2881 		if (cpr->hw_stats) {
2882 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2883 					  cpr->hw_stats_map);
2884 			cpr->hw_stats = NULL;
2885 		}
2886 	}
2887 }
2888 
2889 static int bnxt_alloc_stats(struct bnxt *bp)
2890 {
2891 	u32 size, i;
2892 	struct pci_dev *pdev = bp->pdev;
2893 
2894 	size = sizeof(struct ctx_hw_stats);
2895 
2896 	for (i = 0; i < bp->cp_nr_rings; i++) {
2897 		struct bnxt_napi *bnapi = bp->bnapi[i];
2898 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2899 
2900 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2901 						   &cpr->hw_stats_map,
2902 						   GFP_KERNEL);
2903 		if (!cpr->hw_stats)
2904 			return -ENOMEM;
2905 
2906 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2907 	}
2908 
2909 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2910 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2911 					 sizeof(struct tx_port_stats) + 1024;
2912 
2913 		bp->hw_rx_port_stats =
2914 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2915 					   &bp->hw_rx_port_stats_map,
2916 					   GFP_KERNEL);
2917 		if (!bp->hw_rx_port_stats)
2918 			return -ENOMEM;
2919 
2920 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2921 				       512;
2922 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2923 					   sizeof(struct rx_port_stats) + 512;
2924 		bp->flags |= BNXT_FLAG_PORT_STATS;
2925 	}
2926 	return 0;
2927 }
2928 
2929 static void bnxt_clear_ring_indices(struct bnxt *bp)
2930 {
2931 	int i;
2932 
2933 	if (!bp->bnapi)
2934 		return;
2935 
2936 	for (i = 0; i < bp->cp_nr_rings; i++) {
2937 		struct bnxt_napi *bnapi = bp->bnapi[i];
2938 		struct bnxt_cp_ring_info *cpr;
2939 		struct bnxt_rx_ring_info *rxr;
2940 		struct bnxt_tx_ring_info *txr;
2941 
2942 		if (!bnapi)
2943 			continue;
2944 
2945 		cpr = &bnapi->cp_ring;
2946 		cpr->cp_raw_cons = 0;
2947 
2948 		txr = bnapi->tx_ring;
2949 		if (txr) {
2950 			txr->tx_prod = 0;
2951 			txr->tx_cons = 0;
2952 		}
2953 
2954 		rxr = bnapi->rx_ring;
2955 		if (rxr) {
2956 			rxr->rx_prod = 0;
2957 			rxr->rx_agg_prod = 0;
2958 			rxr->rx_sw_agg_prod = 0;
2959 			rxr->rx_next_cons = 0;
2960 		}
2961 	}
2962 }
2963 
2964 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2965 {
2966 #ifdef CONFIG_RFS_ACCEL
2967 	int i;
2968 
2969 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
2970 	 * safe to delete the hash table.
2971 	 */
2972 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2973 		struct hlist_head *head;
2974 		struct hlist_node *tmp;
2975 		struct bnxt_ntuple_filter *fltr;
2976 
2977 		head = &bp->ntp_fltr_hash_tbl[i];
2978 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2979 			hlist_del(&fltr->hash);
2980 			kfree(fltr);
2981 		}
2982 	}
2983 	if (irq_reinit) {
2984 		kfree(bp->ntp_fltr_bmap);
2985 		bp->ntp_fltr_bmap = NULL;
2986 	}
2987 	bp->ntp_fltr_count = 0;
2988 #endif
2989 }
2990 
2991 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2992 {
2993 #ifdef CONFIG_RFS_ACCEL
2994 	int i, rc = 0;
2995 
2996 	if (!(bp->flags & BNXT_FLAG_RFS))
2997 		return 0;
2998 
2999 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3000 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3001 
3002 	bp->ntp_fltr_count = 0;
3003 	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3004 				    GFP_KERNEL);
3005 
3006 	if (!bp->ntp_fltr_bmap)
3007 		rc = -ENOMEM;
3008 
3009 	return rc;
3010 #else
3011 	return 0;
3012 #endif
3013 }
3014 
3015 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3016 {
3017 	bnxt_free_vnic_attributes(bp);
3018 	bnxt_free_tx_rings(bp);
3019 	bnxt_free_rx_rings(bp);
3020 	bnxt_free_cp_rings(bp);
3021 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3022 	if (irq_re_init) {
3023 		bnxt_free_stats(bp);
3024 		bnxt_free_ring_grps(bp);
3025 		bnxt_free_vnics(bp);
3026 		kfree(bp->tx_ring_map);
3027 		bp->tx_ring_map = NULL;
3028 		kfree(bp->tx_ring);
3029 		bp->tx_ring = NULL;
3030 		kfree(bp->rx_ring);
3031 		bp->rx_ring = NULL;
3032 		kfree(bp->bnapi);
3033 		bp->bnapi = NULL;
3034 	} else {
3035 		bnxt_clear_ring_indices(bp);
3036 	}
3037 }
3038 
3039 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3040 {
3041 	int i, j, rc, size, arr_size;
3042 	void *bnapi;
3043 
3044 	if (irq_re_init) {
3045 		/* Allocate bnapi mem pointer array and mem block for
3046 		 * all queues
3047 		 */
3048 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3049 				bp->cp_nr_rings);
3050 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3051 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3052 		if (!bnapi)
3053 			return -ENOMEM;
3054 
3055 		bp->bnapi = bnapi;
3056 		bnapi += arr_size;
3057 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3058 			bp->bnapi[i] = bnapi;
3059 			bp->bnapi[i]->index = i;
3060 			bp->bnapi[i]->bp = bp;
3061 		}
3062 
3063 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3064 				      sizeof(struct bnxt_rx_ring_info),
3065 				      GFP_KERNEL);
3066 		if (!bp->rx_ring)
3067 			return -ENOMEM;
3068 
3069 		for (i = 0; i < bp->rx_nr_rings; i++) {
3070 			bp->rx_ring[i].bnapi = bp->bnapi[i];
3071 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3072 		}
3073 
3074 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3075 				      sizeof(struct bnxt_tx_ring_info),
3076 				      GFP_KERNEL);
3077 		if (!bp->tx_ring)
3078 			return -ENOMEM;
3079 
3080 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3081 					  GFP_KERNEL);
3082 
3083 		if (!bp->tx_ring_map)
3084 			return -ENOMEM;
3085 
3086 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3087 			j = 0;
3088 		else
3089 			j = bp->rx_nr_rings;
3090 
3091 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3092 			bp->tx_ring[i].bnapi = bp->bnapi[j];
3093 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3094 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3095 			if (i >= bp->tx_nr_rings_xdp) {
3096 				bp->tx_ring[i].txq_index = i -
3097 					bp->tx_nr_rings_xdp;
3098 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3099 			} else {
3100 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3101 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3102 			}
3103 		}
3104 
3105 		rc = bnxt_alloc_stats(bp);
3106 		if (rc)
3107 			goto alloc_mem_err;
3108 
3109 		rc = bnxt_alloc_ntp_fltrs(bp);
3110 		if (rc)
3111 			goto alloc_mem_err;
3112 
3113 		rc = bnxt_alloc_vnics(bp);
3114 		if (rc)
3115 			goto alloc_mem_err;
3116 	}
3117 
3118 	bnxt_init_ring_struct(bp);
3119 
3120 	rc = bnxt_alloc_rx_rings(bp);
3121 	if (rc)
3122 		goto alloc_mem_err;
3123 
3124 	rc = bnxt_alloc_tx_rings(bp);
3125 	if (rc)
3126 		goto alloc_mem_err;
3127 
3128 	rc = bnxt_alloc_cp_rings(bp);
3129 	if (rc)
3130 		goto alloc_mem_err;
3131 
3132 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3133 				  BNXT_VNIC_UCAST_FLAG;
3134 	rc = bnxt_alloc_vnic_attributes(bp);
3135 	if (rc)
3136 		goto alloc_mem_err;
3137 	return 0;
3138 
3139 alloc_mem_err:
3140 	bnxt_free_mem(bp, true);
3141 	return rc;
3142 }
3143 
3144 static void bnxt_disable_int(struct bnxt *bp)
3145 {
3146 	int i;
3147 
3148 	if (!bp->bnapi)
3149 		return;
3150 
3151 	for (i = 0; i < bp->cp_nr_rings; i++) {
3152 		struct bnxt_napi *bnapi = bp->bnapi[i];
3153 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3154 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3155 
3156 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3157 			BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3158 	}
3159 }
3160 
3161 static void bnxt_disable_int_sync(struct bnxt *bp)
3162 {
3163 	int i;
3164 
3165 	atomic_inc(&bp->intr_sem);
3166 
3167 	bnxt_disable_int(bp);
3168 	for (i = 0; i < bp->cp_nr_rings; i++)
3169 		synchronize_irq(bp->irq_tbl[i].vector);
3170 }
3171 
3172 static void bnxt_enable_int(struct bnxt *bp)
3173 {
3174 	int i;
3175 
3176 	atomic_set(&bp->intr_sem, 0);
3177 	for (i = 0; i < bp->cp_nr_rings; i++) {
3178 		struct bnxt_napi *bnapi = bp->bnapi[i];
3179 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3180 
3181 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3182 	}
3183 }
3184 
3185 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3186 			    u16 cmpl_ring, u16 target_id)
3187 {
3188 	struct input *req = request;
3189 
3190 	req->req_type = cpu_to_le16(req_type);
3191 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3192 	req->target_id = cpu_to_le16(target_id);
3193 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3194 }
3195 
3196 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3197 				 int timeout, bool silent)
3198 {
3199 	int i, intr_process, rc, tmo_count;
3200 	struct input *req = msg;
3201 	u32 *data = msg;
3202 	__le32 *resp_len, *valid;
3203 	u16 cp_ring_id, len = 0;
3204 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3205 
3206 	req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3207 	memset(resp, 0, PAGE_SIZE);
3208 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3209 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3210 
3211 	/* Write request msg to hwrm channel */
3212 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
3213 
3214 	for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3215 		writel(0, bp->bar0 + i);
3216 
3217 	/* currently supports only one outstanding message */
3218 	if (intr_process)
3219 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3220 
3221 	/* Ring channel doorbell */
3222 	writel(1, bp->bar0 + 0x100);
3223 
3224 	if (!timeout)
3225 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3226 
3227 	i = 0;
3228 	tmo_count = timeout * 40;
3229 	if (intr_process) {
3230 		/* Wait until hwrm response cmpl interrupt is processed */
3231 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3232 		       i++ < tmo_count) {
3233 			usleep_range(25, 40);
3234 		}
3235 
3236 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3237 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3238 				   le16_to_cpu(req->req_type));
3239 			return -1;
3240 		}
3241 	} else {
3242 		/* Check if response len is updated */
3243 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3244 		for (i = 0; i < tmo_count; i++) {
3245 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3246 			      HWRM_RESP_LEN_SFT;
3247 			if (len)
3248 				break;
3249 			usleep_range(25, 40);
3250 		}
3251 
3252 		if (i >= tmo_count) {
3253 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3254 				   timeout, le16_to_cpu(req->req_type),
3255 				   le16_to_cpu(req->seq_id), len);
3256 			return -1;
3257 		}
3258 
3259 		/* Last word of resp contains valid bit */
3260 		valid = bp->hwrm_cmd_resp_addr + len - 4;
3261 		for (i = 0; i < 5; i++) {
3262 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3263 				break;
3264 			udelay(1);
3265 		}
3266 
3267 		if (i >= 5) {
3268 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3269 				   timeout, le16_to_cpu(req->req_type),
3270 				   le16_to_cpu(req->seq_id), len, *valid);
3271 			return -1;
3272 		}
3273 	}
3274 
3275 	rc = le16_to_cpu(resp->error_code);
3276 	if (rc && !silent)
3277 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3278 			   le16_to_cpu(resp->req_type),
3279 			   le16_to_cpu(resp->seq_id), rc);
3280 	return rc;
3281 }
3282 
3283 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3284 {
3285 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3286 }
3287 
3288 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3289 {
3290 	int rc;
3291 
3292 	mutex_lock(&bp->hwrm_cmd_lock);
3293 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3294 	mutex_unlock(&bp->hwrm_cmd_lock);
3295 	return rc;
3296 }
3297 
3298 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3299 			     int timeout)
3300 {
3301 	int rc;
3302 
3303 	mutex_lock(&bp->hwrm_cmd_lock);
3304 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3305 	mutex_unlock(&bp->hwrm_cmd_lock);
3306 	return rc;
3307 }
3308 
3309 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3310 				     int bmap_size)
3311 {
3312 	struct hwrm_func_drv_rgtr_input req = {0};
3313 	DECLARE_BITMAP(async_events_bmap, 256);
3314 	u32 *events = (u32 *)async_events_bmap;
3315 	int i;
3316 
3317 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3318 
3319 	req.enables =
3320 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3321 
3322 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
3323 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3324 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
3325 
3326 	if (bmap && bmap_size) {
3327 		for (i = 0; i < bmap_size; i++) {
3328 			if (test_bit(i, bmap))
3329 				__set_bit(i, async_events_bmap);
3330 		}
3331 	}
3332 
3333 	for (i = 0; i < 8; i++)
3334 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3335 
3336 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3337 }
3338 
3339 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3340 {
3341 	struct hwrm_func_drv_rgtr_input req = {0};
3342 
3343 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3344 
3345 	req.enables =
3346 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3347 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
3348 
3349 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3350 	req.ver_maj = DRV_VER_MAJ;
3351 	req.ver_min = DRV_VER_MIN;
3352 	req.ver_upd = DRV_VER_UPD;
3353 
3354 	if (BNXT_PF(bp)) {
3355 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
3356 		u32 *data = (u32 *)vf_req_snif_bmap;
3357 		int i;
3358 
3359 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3360 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3361 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3362 
3363 		for (i = 0; i < 8; i++)
3364 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3365 
3366 		req.enables |=
3367 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3368 	}
3369 
3370 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3371 }
3372 
3373 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3374 {
3375 	struct hwrm_func_drv_unrgtr_input req = {0};
3376 
3377 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3378 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3379 }
3380 
3381 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3382 {
3383 	u32 rc = 0;
3384 	struct hwrm_tunnel_dst_port_free_input req = {0};
3385 
3386 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3387 	req.tunnel_type = tunnel_type;
3388 
3389 	switch (tunnel_type) {
3390 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3391 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3392 		break;
3393 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3394 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3395 		break;
3396 	default:
3397 		break;
3398 	}
3399 
3400 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3401 	if (rc)
3402 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3403 			   rc);
3404 	return rc;
3405 }
3406 
3407 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3408 					   u8 tunnel_type)
3409 {
3410 	u32 rc = 0;
3411 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
3412 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3413 
3414 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3415 
3416 	req.tunnel_type = tunnel_type;
3417 	req.tunnel_dst_port_val = port;
3418 
3419 	mutex_lock(&bp->hwrm_cmd_lock);
3420 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3421 	if (rc) {
3422 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3423 			   rc);
3424 		goto err_out;
3425 	}
3426 
3427 	switch (tunnel_type) {
3428 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3429 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3430 		break;
3431 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3432 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3433 		break;
3434 	default:
3435 		break;
3436 	}
3437 
3438 err_out:
3439 	mutex_unlock(&bp->hwrm_cmd_lock);
3440 	return rc;
3441 }
3442 
3443 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3444 {
3445 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3446 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3447 
3448 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3449 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3450 
3451 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3452 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3453 	req.mask = cpu_to_le32(vnic->rx_mask);
3454 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3455 }
3456 
3457 #ifdef CONFIG_RFS_ACCEL
3458 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3459 					    struct bnxt_ntuple_filter *fltr)
3460 {
3461 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
3462 
3463 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3464 	req.ntuple_filter_id = fltr->filter_id;
3465 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3466 }
3467 
3468 #define BNXT_NTP_FLTR_FLAGS					\
3469 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
3470 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
3471 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
3472 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
3473 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
3474 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
3475 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
3476 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
3477 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
3478 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
3479 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
3480 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
3481 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
3482 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3483 
3484 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
3485 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3486 
3487 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3488 					     struct bnxt_ntuple_filter *fltr)
3489 {
3490 	int rc = 0;
3491 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3492 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3493 		bp->hwrm_cmd_resp_addr;
3494 	struct flow_keys *keys = &fltr->fkeys;
3495 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3496 
3497 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3498 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3499 
3500 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3501 
3502 	req.ethertype = htons(ETH_P_IP);
3503 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3504 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3505 	req.ip_protocol = keys->basic.ip_proto;
3506 
3507 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3508 		int i;
3509 
3510 		req.ethertype = htons(ETH_P_IPV6);
3511 		req.ip_addr_type =
3512 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3513 		*(struct in6_addr *)&req.src_ipaddr[0] =
3514 			keys->addrs.v6addrs.src;
3515 		*(struct in6_addr *)&req.dst_ipaddr[0] =
3516 			keys->addrs.v6addrs.dst;
3517 		for (i = 0; i < 4; i++) {
3518 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3519 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3520 		}
3521 	} else {
3522 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3523 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3524 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3525 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3526 	}
3527 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3528 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3529 		req.tunnel_type =
3530 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3531 	}
3532 
3533 	req.src_port = keys->ports.src;
3534 	req.src_port_mask = cpu_to_be16(0xffff);
3535 	req.dst_port = keys->ports.dst;
3536 	req.dst_port_mask = cpu_to_be16(0xffff);
3537 
3538 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3539 	mutex_lock(&bp->hwrm_cmd_lock);
3540 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3541 	if (!rc)
3542 		fltr->filter_id = resp->ntuple_filter_id;
3543 	mutex_unlock(&bp->hwrm_cmd_lock);
3544 	return rc;
3545 }
3546 #endif
3547 
3548 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3549 				     u8 *mac_addr)
3550 {
3551 	u32 rc = 0;
3552 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
3553 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3554 
3555 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3556 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3557 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3558 		req.flags |=
3559 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3560 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3561 	req.enables =
3562 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3563 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3564 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3565 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3566 	req.l2_addr_mask[0] = 0xff;
3567 	req.l2_addr_mask[1] = 0xff;
3568 	req.l2_addr_mask[2] = 0xff;
3569 	req.l2_addr_mask[3] = 0xff;
3570 	req.l2_addr_mask[4] = 0xff;
3571 	req.l2_addr_mask[5] = 0xff;
3572 
3573 	mutex_lock(&bp->hwrm_cmd_lock);
3574 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3575 	if (!rc)
3576 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3577 							resp->l2_filter_id;
3578 	mutex_unlock(&bp->hwrm_cmd_lock);
3579 	return rc;
3580 }
3581 
3582 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3583 {
3584 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3585 	int rc = 0;
3586 
3587 	/* Any associated ntuple filters will also be cleared by firmware. */
3588 	mutex_lock(&bp->hwrm_cmd_lock);
3589 	for (i = 0; i < num_of_vnics; i++) {
3590 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3591 
3592 		for (j = 0; j < vnic->uc_filter_count; j++) {
3593 			struct hwrm_cfa_l2_filter_free_input req = {0};
3594 
3595 			bnxt_hwrm_cmd_hdr_init(bp, &req,
3596 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
3597 
3598 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
3599 
3600 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3601 						HWRM_CMD_TIMEOUT);
3602 		}
3603 		vnic->uc_filter_count = 0;
3604 	}
3605 	mutex_unlock(&bp->hwrm_cmd_lock);
3606 
3607 	return rc;
3608 }
3609 
3610 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3611 {
3612 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3613 	struct hwrm_vnic_tpa_cfg_input req = {0};
3614 
3615 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3616 
3617 	if (tpa_flags) {
3618 		u16 mss = bp->dev->mtu - 40;
3619 		u32 nsegs, n, segs = 0, flags;
3620 
3621 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3622 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3623 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3624 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3625 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3626 		if (tpa_flags & BNXT_FLAG_GRO)
3627 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3628 
3629 		req.flags = cpu_to_le32(flags);
3630 
3631 		req.enables =
3632 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3633 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3634 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3635 
3636 		/* Number of segs are log2 units, and first packet is not
3637 		 * included as part of this units.
3638 		 */
3639 		if (mss <= BNXT_RX_PAGE_SIZE) {
3640 			n = BNXT_RX_PAGE_SIZE / mss;
3641 			nsegs = (MAX_SKB_FRAGS - 1) * n;
3642 		} else {
3643 			n = mss / BNXT_RX_PAGE_SIZE;
3644 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
3645 				n++;
3646 			nsegs = (MAX_SKB_FRAGS - n) / n;
3647 		}
3648 
3649 		segs = ilog2(nsegs);
3650 		req.max_agg_segs = cpu_to_le16(segs);
3651 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3652 
3653 		req.min_agg_len = cpu_to_le32(512);
3654 	}
3655 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3656 
3657 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3658 }
3659 
3660 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3661 {
3662 	u32 i, j, max_rings;
3663 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3664 	struct hwrm_vnic_rss_cfg_input req = {0};
3665 
3666 	if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3667 		return 0;
3668 
3669 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3670 	if (set_rss) {
3671 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3672 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3673 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3674 				max_rings = bp->rx_nr_rings - 1;
3675 			else
3676 				max_rings = bp->rx_nr_rings;
3677 		} else {
3678 			max_rings = 1;
3679 		}
3680 
3681 		/* Fill the RSS indirection table with ring group ids */
3682 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3683 			if (j == max_rings)
3684 				j = 0;
3685 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3686 		}
3687 
3688 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3689 		req.hash_key_tbl_addr =
3690 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3691 	}
3692 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3693 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3694 }
3695 
3696 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3697 {
3698 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3699 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3700 
3701 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3702 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3703 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3704 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3705 	req.enables =
3706 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3707 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3708 	/* thresholds not implemented in firmware yet */
3709 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3710 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3711 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3712 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3713 }
3714 
3715 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3716 					u16 ctx_idx)
3717 {
3718 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3719 
3720 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3721 	req.rss_cos_lb_ctx_id =
3722 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3723 
3724 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3725 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3726 }
3727 
3728 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3729 {
3730 	int i, j;
3731 
3732 	for (i = 0; i < bp->nr_vnics; i++) {
3733 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3734 
3735 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3736 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3737 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3738 		}
3739 	}
3740 	bp->rsscos_nr_ctxs = 0;
3741 }
3742 
3743 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3744 {
3745 	int rc;
3746 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3747 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3748 						bp->hwrm_cmd_resp_addr;
3749 
3750 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3751 			       -1);
3752 
3753 	mutex_lock(&bp->hwrm_cmd_lock);
3754 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3755 	if (!rc)
3756 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3757 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3758 	mutex_unlock(&bp->hwrm_cmd_lock);
3759 
3760 	return rc;
3761 }
3762 
3763 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3764 {
3765 	unsigned int ring = 0, grp_idx;
3766 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3767 	struct hwrm_vnic_cfg_input req = {0};
3768 	u16 def_vlan = 0;
3769 
3770 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3771 
3772 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3773 	/* Only RSS support for now TBD: COS & LB */
3774 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3775 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3776 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3777 					   VNIC_CFG_REQ_ENABLES_MRU);
3778 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
3779 		req.rss_rule =
3780 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
3781 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3782 					   VNIC_CFG_REQ_ENABLES_MRU);
3783 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
3784 	} else {
3785 		req.rss_rule = cpu_to_le16(0xffff);
3786 	}
3787 
3788 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3789 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3790 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3791 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3792 	} else {
3793 		req.cos_rule = cpu_to_le16(0xffff);
3794 	}
3795 
3796 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3797 		ring = 0;
3798 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3799 		ring = vnic_id - 1;
3800 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3801 		ring = bp->rx_nr_rings - 1;
3802 
3803 	grp_idx = bp->rx_ring[ring].bnapi->index;
3804 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3805 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3806 
3807 	req.lb_rule = cpu_to_le16(0xffff);
3808 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3809 			      VLAN_HLEN);
3810 
3811 #ifdef CONFIG_BNXT_SRIOV
3812 	if (BNXT_VF(bp))
3813 		def_vlan = bp->vf.vlan;
3814 #endif
3815 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3816 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3817 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
3818 		req.flags |=
3819 			cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
3820 
3821 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3822 }
3823 
3824 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3825 {
3826 	u32 rc = 0;
3827 
3828 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3829 		struct hwrm_vnic_free_input req = {0};
3830 
3831 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3832 		req.vnic_id =
3833 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3834 
3835 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3836 		if (rc)
3837 			return rc;
3838 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3839 	}
3840 	return rc;
3841 }
3842 
3843 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3844 {
3845 	u16 i;
3846 
3847 	for (i = 0; i < bp->nr_vnics; i++)
3848 		bnxt_hwrm_vnic_free_one(bp, i);
3849 }
3850 
3851 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3852 				unsigned int start_rx_ring_idx,
3853 				unsigned int nr_rings)
3854 {
3855 	int rc = 0;
3856 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3857 	struct hwrm_vnic_alloc_input req = {0};
3858 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3859 
3860 	/* map ring groups to this vnic */
3861 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3862 		grp_idx = bp->rx_ring[i].bnapi->index;
3863 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3864 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3865 				   j, nr_rings);
3866 			break;
3867 		}
3868 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3869 					bp->grp_info[grp_idx].fw_grp_id;
3870 	}
3871 
3872 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3873 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3874 	if (vnic_id == 0)
3875 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3876 
3877 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3878 
3879 	mutex_lock(&bp->hwrm_cmd_lock);
3880 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3881 	if (!rc)
3882 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3883 	mutex_unlock(&bp->hwrm_cmd_lock);
3884 	return rc;
3885 }
3886 
3887 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
3888 {
3889 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3890 	struct hwrm_vnic_qcaps_input req = {0};
3891 	int rc;
3892 
3893 	if (bp->hwrm_spec_code < 0x10600)
3894 		return 0;
3895 
3896 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
3897 	mutex_lock(&bp->hwrm_cmd_lock);
3898 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3899 	if (!rc) {
3900 		if (resp->flags &
3901 		    cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
3902 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
3903 	}
3904 	mutex_unlock(&bp->hwrm_cmd_lock);
3905 	return rc;
3906 }
3907 
3908 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3909 {
3910 	u16 i;
3911 	u32 rc = 0;
3912 
3913 	mutex_lock(&bp->hwrm_cmd_lock);
3914 	for (i = 0; i < bp->rx_nr_rings; i++) {
3915 		struct hwrm_ring_grp_alloc_input req = {0};
3916 		struct hwrm_ring_grp_alloc_output *resp =
3917 					bp->hwrm_cmd_resp_addr;
3918 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3919 
3920 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3921 
3922 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3923 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3924 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3925 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3926 
3927 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3928 					HWRM_CMD_TIMEOUT);
3929 		if (rc)
3930 			break;
3931 
3932 		bp->grp_info[grp_idx].fw_grp_id =
3933 			le32_to_cpu(resp->ring_group_id);
3934 	}
3935 	mutex_unlock(&bp->hwrm_cmd_lock);
3936 	return rc;
3937 }
3938 
3939 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3940 {
3941 	u16 i;
3942 	u32 rc = 0;
3943 	struct hwrm_ring_grp_free_input req = {0};
3944 
3945 	if (!bp->grp_info)
3946 		return 0;
3947 
3948 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3949 
3950 	mutex_lock(&bp->hwrm_cmd_lock);
3951 	for (i = 0; i < bp->cp_nr_rings; i++) {
3952 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3953 			continue;
3954 		req.ring_group_id =
3955 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
3956 
3957 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3958 					HWRM_CMD_TIMEOUT);
3959 		if (rc)
3960 			break;
3961 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3962 	}
3963 	mutex_unlock(&bp->hwrm_cmd_lock);
3964 	return rc;
3965 }
3966 
3967 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3968 				    struct bnxt_ring_struct *ring,
3969 				    u32 ring_type, u32 map_index,
3970 				    u32 stats_ctx_id)
3971 {
3972 	int rc = 0, err = 0;
3973 	struct hwrm_ring_alloc_input req = {0};
3974 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3975 	u16 ring_id;
3976 
3977 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3978 
3979 	req.enables = 0;
3980 	if (ring->nr_pages > 1) {
3981 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3982 		/* Page size is in log2 units */
3983 		req.page_size = BNXT_PAGE_SHIFT;
3984 		req.page_tbl_depth = 1;
3985 	} else {
3986 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3987 	}
3988 	req.fbo = 0;
3989 	/* Association of ring index with doorbell index and MSIX number */
3990 	req.logical_id = cpu_to_le16(map_index);
3991 
3992 	switch (ring_type) {
3993 	case HWRM_RING_ALLOC_TX:
3994 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3995 		/* Association of transmit ring with completion ring */
3996 		req.cmpl_ring_id =
3997 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3998 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3999 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
4000 		req.queue_id = cpu_to_le16(ring->queue_id);
4001 		break;
4002 	case HWRM_RING_ALLOC_RX:
4003 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4004 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4005 		break;
4006 	case HWRM_RING_ALLOC_AGG:
4007 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4008 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4009 		break;
4010 	case HWRM_RING_ALLOC_CMPL:
4011 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4012 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4013 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4014 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4015 		break;
4016 	default:
4017 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4018 			   ring_type);
4019 		return -1;
4020 	}
4021 
4022 	mutex_lock(&bp->hwrm_cmd_lock);
4023 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4024 	err = le16_to_cpu(resp->error_code);
4025 	ring_id = le16_to_cpu(resp->ring_id);
4026 	mutex_unlock(&bp->hwrm_cmd_lock);
4027 
4028 	if (rc || err) {
4029 		switch (ring_type) {
4030 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4031 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
4032 				   rc, err);
4033 			return -1;
4034 
4035 		case RING_FREE_REQ_RING_TYPE_RX:
4036 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
4037 				   rc, err);
4038 			return -1;
4039 
4040 		case RING_FREE_REQ_RING_TYPE_TX:
4041 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
4042 				   rc, err);
4043 			return -1;
4044 
4045 		default:
4046 			netdev_err(bp->dev, "Invalid ring\n");
4047 			return -1;
4048 		}
4049 	}
4050 	ring->fw_ring_id = ring_id;
4051 	return rc;
4052 }
4053 
4054 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4055 {
4056 	int rc;
4057 
4058 	if (BNXT_PF(bp)) {
4059 		struct hwrm_func_cfg_input req = {0};
4060 
4061 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4062 		req.fid = cpu_to_le16(0xffff);
4063 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4064 		req.async_event_cr = cpu_to_le16(idx);
4065 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4066 	} else {
4067 		struct hwrm_func_vf_cfg_input req = {0};
4068 
4069 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4070 		req.enables =
4071 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4072 		req.async_event_cr = cpu_to_le16(idx);
4073 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4074 	}
4075 	return rc;
4076 }
4077 
4078 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4079 {
4080 	int i, rc = 0;
4081 
4082 	for (i = 0; i < bp->cp_nr_rings; i++) {
4083 		struct bnxt_napi *bnapi = bp->bnapi[i];
4084 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4085 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4086 
4087 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
4088 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
4089 					      INVALID_STATS_CTX_ID);
4090 		if (rc)
4091 			goto err_out;
4092 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4093 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4094 
4095 		if (!i) {
4096 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4097 			if (rc)
4098 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4099 		}
4100 	}
4101 
4102 	for (i = 0; i < bp->tx_nr_rings; i++) {
4103 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4104 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4105 		u32 map_idx = txr->bnapi->index;
4106 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
4107 
4108 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4109 					      map_idx, fw_stats_ctx);
4110 		if (rc)
4111 			goto err_out;
4112 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4113 	}
4114 
4115 	for (i = 0; i < bp->rx_nr_rings; i++) {
4116 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4117 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4118 		u32 map_idx = rxr->bnapi->index;
4119 
4120 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4121 					      map_idx, INVALID_STATS_CTX_ID);
4122 		if (rc)
4123 			goto err_out;
4124 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4125 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4126 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4127 	}
4128 
4129 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4130 		for (i = 0; i < bp->rx_nr_rings; i++) {
4131 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4132 			struct bnxt_ring_struct *ring =
4133 						&rxr->rx_agg_ring_struct;
4134 			u32 grp_idx = rxr->bnapi->index;
4135 			u32 map_idx = grp_idx + bp->rx_nr_rings;
4136 
4137 			rc = hwrm_ring_alloc_send_msg(bp, ring,
4138 						      HWRM_RING_ALLOC_AGG,
4139 						      map_idx,
4140 						      INVALID_STATS_CTX_ID);
4141 			if (rc)
4142 				goto err_out;
4143 
4144 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4145 			writel(DB_KEY_RX | rxr->rx_agg_prod,
4146 			       rxr->rx_agg_doorbell);
4147 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4148 		}
4149 	}
4150 err_out:
4151 	return rc;
4152 }
4153 
4154 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4155 				   struct bnxt_ring_struct *ring,
4156 				   u32 ring_type, int cmpl_ring_id)
4157 {
4158 	int rc;
4159 	struct hwrm_ring_free_input req = {0};
4160 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4161 	u16 error_code;
4162 
4163 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4164 	req.ring_type = ring_type;
4165 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
4166 
4167 	mutex_lock(&bp->hwrm_cmd_lock);
4168 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4169 	error_code = le16_to_cpu(resp->error_code);
4170 	mutex_unlock(&bp->hwrm_cmd_lock);
4171 
4172 	if (rc || error_code) {
4173 		switch (ring_type) {
4174 		case RING_FREE_REQ_RING_TYPE_L2_CMPL:
4175 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
4176 				   rc);
4177 			return rc;
4178 		case RING_FREE_REQ_RING_TYPE_RX:
4179 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
4180 				   rc);
4181 			return rc;
4182 		case RING_FREE_REQ_RING_TYPE_TX:
4183 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
4184 				   rc);
4185 			return rc;
4186 		default:
4187 			netdev_err(bp->dev, "Invalid ring\n");
4188 			return -1;
4189 		}
4190 	}
4191 	return 0;
4192 }
4193 
4194 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4195 {
4196 	int i;
4197 
4198 	if (!bp->bnapi)
4199 		return;
4200 
4201 	for (i = 0; i < bp->tx_nr_rings; i++) {
4202 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4203 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4204 		u32 grp_idx = txr->bnapi->index;
4205 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4206 
4207 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4208 			hwrm_ring_free_send_msg(bp, ring,
4209 						RING_FREE_REQ_RING_TYPE_TX,
4210 						close_path ? cmpl_ring_id :
4211 						INVALID_HW_RING_ID);
4212 			ring->fw_ring_id = INVALID_HW_RING_ID;
4213 		}
4214 	}
4215 
4216 	for (i = 0; i < bp->rx_nr_rings; i++) {
4217 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4218 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4219 		u32 grp_idx = rxr->bnapi->index;
4220 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4221 
4222 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4223 			hwrm_ring_free_send_msg(bp, ring,
4224 						RING_FREE_REQ_RING_TYPE_RX,
4225 						close_path ? cmpl_ring_id :
4226 						INVALID_HW_RING_ID);
4227 			ring->fw_ring_id = INVALID_HW_RING_ID;
4228 			bp->grp_info[grp_idx].rx_fw_ring_id =
4229 				INVALID_HW_RING_ID;
4230 		}
4231 	}
4232 
4233 	for (i = 0; i < bp->rx_nr_rings; i++) {
4234 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4235 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4236 		u32 grp_idx = rxr->bnapi->index;
4237 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4238 
4239 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4240 			hwrm_ring_free_send_msg(bp, ring,
4241 						RING_FREE_REQ_RING_TYPE_RX,
4242 						close_path ? cmpl_ring_id :
4243 						INVALID_HW_RING_ID);
4244 			ring->fw_ring_id = INVALID_HW_RING_ID;
4245 			bp->grp_info[grp_idx].agg_fw_ring_id =
4246 				INVALID_HW_RING_ID;
4247 		}
4248 	}
4249 
4250 	/* The completion rings are about to be freed.  After that the
4251 	 * IRQ doorbell will not work anymore.  So we need to disable
4252 	 * IRQ here.
4253 	 */
4254 	bnxt_disable_int_sync(bp);
4255 
4256 	for (i = 0; i < bp->cp_nr_rings; i++) {
4257 		struct bnxt_napi *bnapi = bp->bnapi[i];
4258 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4259 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4260 
4261 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4262 			hwrm_ring_free_send_msg(bp, ring,
4263 						RING_FREE_REQ_RING_TYPE_L2_CMPL,
4264 						INVALID_HW_RING_ID);
4265 			ring->fw_ring_id = INVALID_HW_RING_ID;
4266 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4267 		}
4268 	}
4269 }
4270 
4271 /* Caller must hold bp->hwrm_cmd_lock */
4272 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4273 {
4274 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4275 	struct hwrm_func_qcfg_input req = {0};
4276 	int rc;
4277 
4278 	if (bp->hwrm_spec_code < 0x10601)
4279 		return 0;
4280 
4281 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4282 	req.fid = cpu_to_le16(fid);
4283 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4284 	if (!rc)
4285 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4286 
4287 	return rc;
4288 }
4289 
4290 static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
4291 {
4292 	struct hwrm_func_cfg_input req = {0};
4293 	int rc;
4294 
4295 	if (bp->hwrm_spec_code < 0x10601)
4296 		return 0;
4297 
4298 	if (BNXT_VF(bp))
4299 		return 0;
4300 
4301 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4302 	req.fid = cpu_to_le16(0xffff);
4303 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
4304 	req.num_tx_rings = cpu_to_le16(*tx_rings);
4305 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4306 	if (rc)
4307 		return rc;
4308 
4309 	mutex_lock(&bp->hwrm_cmd_lock);
4310 	rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
4311 	mutex_unlock(&bp->hwrm_cmd_lock);
4312 	return rc;
4313 }
4314 
4315 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
4316 	u32 buf_tmrs, u16 flags,
4317 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4318 {
4319 	req->flags = cpu_to_le16(flags);
4320 	req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
4321 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
4322 	req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
4323 	req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
4324 	/* Minimum time between 2 interrupts set to buf_tmr x 2 */
4325 	req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
4326 	req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
4327 	req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
4328 }
4329 
4330 int bnxt_hwrm_set_coal(struct bnxt *bp)
4331 {
4332 	int i, rc = 0;
4333 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4334 							   req_tx = {0}, *req;
4335 	u16 max_buf, max_buf_irq;
4336 	u16 buf_tmr, buf_tmr_irq;
4337 	u32 flags;
4338 
4339 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4340 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4341 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4342 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4343 
4344 	/* Each rx completion (2 records) should be DMAed immediately.
4345 	 * DMA 1/4 of the completion buffers at a time.
4346 	 */
4347 	max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4348 	/* max_buf must not be zero */
4349 	max_buf = clamp_t(u16, max_buf, 1, 63);
4350 	max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4351 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4352 	/* buf timer set to 1/4 of interrupt timer */
4353 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4354 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4355 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4356 
4357 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4358 
4359 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
4360 	 * if coal_ticks is less than 25 us.
4361 	 */
4362 	if (bp->rx_coal_ticks < 25)
4363 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4364 
4365 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4366 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4367 
4368 	/* max_buf must not be zero */
4369 	max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4370 	max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4371 	buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4372 	/* buf timer set to 1/4 of interrupt timer */
4373 	buf_tmr = max_t(u16, buf_tmr / 4, 1);
4374 	buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4375 	buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4376 
4377 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4378 	bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4379 				  buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4380 
4381 	mutex_lock(&bp->hwrm_cmd_lock);
4382 	for (i = 0; i < bp->cp_nr_rings; i++) {
4383 		struct bnxt_napi *bnapi = bp->bnapi[i];
4384 
4385 		req = &req_rx;
4386 		if (!bnapi->rx_ring)
4387 			req = &req_tx;
4388 		req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4389 
4390 		rc = _hwrm_send_message(bp, req, sizeof(*req),
4391 					HWRM_CMD_TIMEOUT);
4392 		if (rc)
4393 			break;
4394 	}
4395 	mutex_unlock(&bp->hwrm_cmd_lock);
4396 	return rc;
4397 }
4398 
4399 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4400 {
4401 	int rc = 0, i;
4402 	struct hwrm_stat_ctx_free_input req = {0};
4403 
4404 	if (!bp->bnapi)
4405 		return 0;
4406 
4407 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4408 		return 0;
4409 
4410 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4411 
4412 	mutex_lock(&bp->hwrm_cmd_lock);
4413 	for (i = 0; i < bp->cp_nr_rings; i++) {
4414 		struct bnxt_napi *bnapi = bp->bnapi[i];
4415 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4416 
4417 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4418 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4419 
4420 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4421 						HWRM_CMD_TIMEOUT);
4422 			if (rc)
4423 				break;
4424 
4425 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4426 		}
4427 	}
4428 	mutex_unlock(&bp->hwrm_cmd_lock);
4429 	return rc;
4430 }
4431 
4432 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4433 {
4434 	int rc = 0, i;
4435 	struct hwrm_stat_ctx_alloc_input req = {0};
4436 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4437 
4438 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4439 		return 0;
4440 
4441 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4442 
4443 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4444 
4445 	mutex_lock(&bp->hwrm_cmd_lock);
4446 	for (i = 0; i < bp->cp_nr_rings; i++) {
4447 		struct bnxt_napi *bnapi = bp->bnapi[i];
4448 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4449 
4450 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4451 
4452 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4453 					HWRM_CMD_TIMEOUT);
4454 		if (rc)
4455 			break;
4456 
4457 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4458 
4459 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4460 	}
4461 	mutex_unlock(&bp->hwrm_cmd_lock);
4462 	return rc;
4463 }
4464 
4465 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4466 {
4467 	struct hwrm_func_qcfg_input req = {0};
4468 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4469 	int rc;
4470 
4471 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4472 	req.fid = cpu_to_le16(0xffff);
4473 	mutex_lock(&bp->hwrm_cmd_lock);
4474 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4475 	if (rc)
4476 		goto func_qcfg_exit;
4477 
4478 #ifdef CONFIG_BNXT_SRIOV
4479 	if (BNXT_VF(bp)) {
4480 		struct bnxt_vf_info *vf = &bp->vf;
4481 
4482 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4483 	}
4484 #endif
4485 	if (BNXT_PF(bp)) {
4486 		u16 flags = le16_to_cpu(resp->flags);
4487 
4488 		if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
4489 			     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED))
4490 			bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
4491 		if (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)
4492 			bp->flags |= BNXT_FLAG_MULTI_HOST;
4493 	}
4494 
4495 	switch (resp->port_partition_type) {
4496 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4497 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4498 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4499 		bp->port_partition_type = resp->port_partition_type;
4500 		break;
4501 	}
4502 
4503 func_qcfg_exit:
4504 	mutex_unlock(&bp->hwrm_cmd_lock);
4505 	return rc;
4506 }
4507 
4508 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4509 {
4510 	int rc = 0;
4511 	struct hwrm_func_qcaps_input req = {0};
4512 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4513 
4514 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4515 	req.fid = cpu_to_le16(0xffff);
4516 
4517 	mutex_lock(&bp->hwrm_cmd_lock);
4518 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4519 	if (rc)
4520 		goto hwrm_func_qcaps_exit;
4521 
4522 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4523 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4524 	if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4525 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4526 
4527 	bp->tx_push_thresh = 0;
4528 	if (resp->flags &
4529 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4530 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4531 
4532 	if (BNXT_PF(bp)) {
4533 		struct bnxt_pf_info *pf = &bp->pf;
4534 
4535 		pf->fw_fid = le16_to_cpu(resp->fid);
4536 		pf->port_id = le16_to_cpu(resp->port_id);
4537 		bp->dev->dev_port = pf->port_id;
4538 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4539 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4540 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4541 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4542 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4543 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4544 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4545 		if (!pf->max_hw_ring_grps)
4546 			pf->max_hw_ring_grps = pf->max_tx_rings;
4547 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4548 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
4549 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4550 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4551 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
4552 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4553 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4554 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4555 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4556 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4557 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4558 		if (resp->flags &
4559 		    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
4560 			bp->flags |= BNXT_FLAG_WOL_CAP;
4561 	} else {
4562 #ifdef CONFIG_BNXT_SRIOV
4563 		struct bnxt_vf_info *vf = &bp->vf;
4564 
4565 		vf->fw_fid = le16_to_cpu(resp->fid);
4566 
4567 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4568 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4569 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4570 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4571 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4572 		if (!vf->max_hw_ring_grps)
4573 			vf->max_hw_ring_grps = vf->max_tx_rings;
4574 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4575 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
4576 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4577 
4578 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4579 		mutex_unlock(&bp->hwrm_cmd_lock);
4580 
4581 		if (is_valid_ether_addr(vf->mac_addr)) {
4582 			/* overwrite netdev dev_adr with admin VF MAC */
4583 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4584 		} else {
4585 			eth_hw_addr_random(bp->dev);
4586 			rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
4587 		}
4588 		return rc;
4589 #endif
4590 	}
4591 
4592 hwrm_func_qcaps_exit:
4593 	mutex_unlock(&bp->hwrm_cmd_lock);
4594 	return rc;
4595 }
4596 
4597 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4598 {
4599 	struct hwrm_func_reset_input req = {0};
4600 
4601 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4602 	req.enables = 0;
4603 
4604 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4605 }
4606 
4607 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4608 {
4609 	int rc = 0;
4610 	struct hwrm_queue_qportcfg_input req = {0};
4611 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4612 	u8 i, *qptr;
4613 
4614 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4615 
4616 	mutex_lock(&bp->hwrm_cmd_lock);
4617 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4618 	if (rc)
4619 		goto qportcfg_exit;
4620 
4621 	if (!resp->max_configurable_queues) {
4622 		rc = -EINVAL;
4623 		goto qportcfg_exit;
4624 	}
4625 	bp->max_tc = resp->max_configurable_queues;
4626 	bp->max_lltc = resp->max_configurable_lossless_queues;
4627 	if (bp->max_tc > BNXT_MAX_QUEUE)
4628 		bp->max_tc = BNXT_MAX_QUEUE;
4629 
4630 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4631 		bp->max_tc = 1;
4632 
4633 	if (bp->max_lltc > bp->max_tc)
4634 		bp->max_lltc = bp->max_tc;
4635 
4636 	qptr = &resp->queue_id0;
4637 	for (i = 0; i < bp->max_tc; i++) {
4638 		bp->q_info[i].queue_id = *qptr++;
4639 		bp->q_info[i].queue_profile = *qptr++;
4640 	}
4641 
4642 qportcfg_exit:
4643 	mutex_unlock(&bp->hwrm_cmd_lock);
4644 	return rc;
4645 }
4646 
4647 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4648 {
4649 	int rc;
4650 	struct hwrm_ver_get_input req = {0};
4651 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4652 
4653 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4654 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4655 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4656 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
4657 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4658 	mutex_lock(&bp->hwrm_cmd_lock);
4659 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4660 	if (rc)
4661 		goto hwrm_ver_get_exit;
4662 
4663 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4664 
4665 	bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4666 			     resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4667 	if (resp->hwrm_intf_maj < 1) {
4668 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4669 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
4670 			    resp->hwrm_intf_upd);
4671 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4672 	}
4673 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4674 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4675 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4676 
4677 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4678 	if (!bp->hwrm_cmd_timeout)
4679 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4680 
4681 	if (resp->hwrm_intf_maj >= 1)
4682 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4683 
4684 	bp->chip_num = le16_to_cpu(resp->chip_num);
4685 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4686 	    !resp->chip_metal)
4687 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4688 
4689 hwrm_ver_get_exit:
4690 	mutex_unlock(&bp->hwrm_cmd_lock);
4691 	return rc;
4692 }
4693 
4694 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4695 {
4696 #if IS_ENABLED(CONFIG_RTC_LIB)
4697 	struct hwrm_fw_set_time_input req = {0};
4698 	struct rtc_time tm;
4699 	struct timeval tv;
4700 
4701 	if (bp->hwrm_spec_code < 0x10400)
4702 		return -EOPNOTSUPP;
4703 
4704 	do_gettimeofday(&tv);
4705 	rtc_time_to_tm(tv.tv_sec, &tm);
4706 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4707 	req.year = cpu_to_le16(1900 + tm.tm_year);
4708 	req.month = 1 + tm.tm_mon;
4709 	req.day = tm.tm_mday;
4710 	req.hour = tm.tm_hour;
4711 	req.minute = tm.tm_min;
4712 	req.second = tm.tm_sec;
4713 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4714 #else
4715 	return -EOPNOTSUPP;
4716 #endif
4717 }
4718 
4719 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4720 {
4721 	int rc;
4722 	struct bnxt_pf_info *pf = &bp->pf;
4723 	struct hwrm_port_qstats_input req = {0};
4724 
4725 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4726 		return 0;
4727 
4728 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4729 	req.port_id = cpu_to_le16(pf->port_id);
4730 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4731 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4732 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4733 	return rc;
4734 }
4735 
4736 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4737 {
4738 	if (bp->vxlan_port_cnt) {
4739 		bnxt_hwrm_tunnel_dst_port_free(
4740 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4741 	}
4742 	bp->vxlan_port_cnt = 0;
4743 	if (bp->nge_port_cnt) {
4744 		bnxt_hwrm_tunnel_dst_port_free(
4745 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4746 	}
4747 	bp->nge_port_cnt = 0;
4748 }
4749 
4750 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4751 {
4752 	int rc, i;
4753 	u32 tpa_flags = 0;
4754 
4755 	if (set_tpa)
4756 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
4757 	for (i = 0; i < bp->nr_vnics; i++) {
4758 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4759 		if (rc) {
4760 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4761 				   i, rc);
4762 			return rc;
4763 		}
4764 	}
4765 	return 0;
4766 }
4767 
4768 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4769 {
4770 	int i;
4771 
4772 	for (i = 0; i < bp->nr_vnics; i++)
4773 		bnxt_hwrm_vnic_set_rss(bp, i, false);
4774 }
4775 
4776 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4777 				    bool irq_re_init)
4778 {
4779 	if (bp->vnic_info) {
4780 		bnxt_hwrm_clear_vnic_filter(bp);
4781 		/* clear all RSS setting before free vnic ctx */
4782 		bnxt_hwrm_clear_vnic_rss(bp);
4783 		bnxt_hwrm_vnic_ctx_free(bp);
4784 		/* before free the vnic, undo the vnic tpa settings */
4785 		if (bp->flags & BNXT_FLAG_TPA)
4786 			bnxt_set_tpa(bp, false);
4787 		bnxt_hwrm_vnic_free(bp);
4788 	}
4789 	bnxt_hwrm_ring_free(bp, close_path);
4790 	bnxt_hwrm_ring_grp_free(bp);
4791 	if (irq_re_init) {
4792 		bnxt_hwrm_stat_ctx_free(bp);
4793 		bnxt_hwrm_free_tunnel_ports(bp);
4794 	}
4795 }
4796 
4797 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4798 {
4799 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4800 	int rc;
4801 
4802 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
4803 		goto skip_rss_ctx;
4804 
4805 	/* allocate context for vnic */
4806 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4807 	if (rc) {
4808 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4809 			   vnic_id, rc);
4810 		goto vnic_setup_err;
4811 	}
4812 	bp->rsscos_nr_ctxs++;
4813 
4814 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4815 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4816 		if (rc) {
4817 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4818 				   vnic_id, rc);
4819 			goto vnic_setup_err;
4820 		}
4821 		bp->rsscos_nr_ctxs++;
4822 	}
4823 
4824 skip_rss_ctx:
4825 	/* configure default vnic, ring grp */
4826 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4827 	if (rc) {
4828 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4829 			   vnic_id, rc);
4830 		goto vnic_setup_err;
4831 	}
4832 
4833 	/* Enable RSS hashing on vnic */
4834 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4835 	if (rc) {
4836 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4837 			   vnic_id, rc);
4838 		goto vnic_setup_err;
4839 	}
4840 
4841 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4842 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4843 		if (rc) {
4844 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4845 				   vnic_id, rc);
4846 		}
4847 	}
4848 
4849 vnic_setup_err:
4850 	return rc;
4851 }
4852 
4853 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4854 {
4855 #ifdef CONFIG_RFS_ACCEL
4856 	int i, rc = 0;
4857 
4858 	for (i = 0; i < bp->rx_nr_rings; i++) {
4859 		struct bnxt_vnic_info *vnic;
4860 		u16 vnic_id = i + 1;
4861 		u16 ring_id = i;
4862 
4863 		if (vnic_id >= bp->nr_vnics)
4864 			break;
4865 
4866 		vnic = &bp->vnic_info[vnic_id];
4867 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
4868 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
4869 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
4870 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4871 		if (rc) {
4872 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4873 				   vnic_id, rc);
4874 			break;
4875 		}
4876 		rc = bnxt_setup_vnic(bp, vnic_id);
4877 		if (rc)
4878 			break;
4879 	}
4880 	return rc;
4881 #else
4882 	return 0;
4883 #endif
4884 }
4885 
4886 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4887 static bool bnxt_promisc_ok(struct bnxt *bp)
4888 {
4889 #ifdef CONFIG_BNXT_SRIOV
4890 	if (BNXT_VF(bp) && !bp->vf.vlan)
4891 		return false;
4892 #endif
4893 	return true;
4894 }
4895 
4896 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4897 {
4898 	unsigned int rc = 0;
4899 
4900 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4901 	if (rc) {
4902 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4903 			   rc);
4904 		return rc;
4905 	}
4906 
4907 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
4908 	if (rc) {
4909 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4910 			   rc);
4911 		return rc;
4912 	}
4913 	return rc;
4914 }
4915 
4916 static int bnxt_cfg_rx_mode(struct bnxt *);
4917 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4918 
4919 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4920 {
4921 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4922 	int rc = 0;
4923 	unsigned int rx_nr_rings = bp->rx_nr_rings;
4924 
4925 	if (irq_re_init) {
4926 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
4927 		if (rc) {
4928 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4929 				   rc);
4930 			goto err_out;
4931 		}
4932 	}
4933 
4934 	rc = bnxt_hwrm_ring_alloc(bp);
4935 	if (rc) {
4936 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4937 		goto err_out;
4938 	}
4939 
4940 	rc = bnxt_hwrm_ring_grp_alloc(bp);
4941 	if (rc) {
4942 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4943 		goto err_out;
4944 	}
4945 
4946 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4947 		rx_nr_rings--;
4948 
4949 	/* default vnic 0 */
4950 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4951 	if (rc) {
4952 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4953 		goto err_out;
4954 	}
4955 
4956 	rc = bnxt_setup_vnic(bp, 0);
4957 	if (rc)
4958 		goto err_out;
4959 
4960 	if (bp->flags & BNXT_FLAG_RFS) {
4961 		rc = bnxt_alloc_rfs_vnics(bp);
4962 		if (rc)
4963 			goto err_out;
4964 	}
4965 
4966 	if (bp->flags & BNXT_FLAG_TPA) {
4967 		rc = bnxt_set_tpa(bp, true);
4968 		if (rc)
4969 			goto err_out;
4970 	}
4971 
4972 	if (BNXT_VF(bp))
4973 		bnxt_update_vf_mac(bp);
4974 
4975 	/* Filter for default vnic 0 */
4976 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4977 	if (rc) {
4978 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4979 		goto err_out;
4980 	}
4981 	vnic->uc_filter_count = 1;
4982 
4983 	vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4984 
4985 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4986 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4987 
4988 	if (bp->dev->flags & IFF_ALLMULTI) {
4989 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4990 		vnic->mc_list_count = 0;
4991 	} else {
4992 		u32 mask = 0;
4993 
4994 		bnxt_mc_list_updated(bp, &mask);
4995 		vnic->rx_mask |= mask;
4996 	}
4997 
4998 	rc = bnxt_cfg_rx_mode(bp);
4999 	if (rc)
5000 		goto err_out;
5001 
5002 	rc = bnxt_hwrm_set_coal(bp);
5003 	if (rc)
5004 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5005 				rc);
5006 
5007 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5008 		rc = bnxt_setup_nitroa0_vnic(bp);
5009 		if (rc)
5010 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5011 				   rc);
5012 	}
5013 
5014 	if (BNXT_VF(bp)) {
5015 		bnxt_hwrm_func_qcfg(bp);
5016 		netdev_update_features(bp->dev);
5017 	}
5018 
5019 	return 0;
5020 
5021 err_out:
5022 	bnxt_hwrm_resource_free(bp, 0, true);
5023 
5024 	return rc;
5025 }
5026 
5027 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5028 {
5029 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5030 	return 0;
5031 }
5032 
5033 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5034 {
5035 	bnxt_init_cp_rings(bp);
5036 	bnxt_init_rx_rings(bp);
5037 	bnxt_init_tx_rings(bp);
5038 	bnxt_init_ring_grps(bp, irq_re_init);
5039 	bnxt_init_vnics(bp);
5040 
5041 	return bnxt_init_chip(bp, irq_re_init);
5042 }
5043 
5044 static int bnxt_set_real_num_queues(struct bnxt *bp)
5045 {
5046 	int rc;
5047 	struct net_device *dev = bp->dev;
5048 
5049 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5050 					  bp->tx_nr_rings_xdp);
5051 	if (rc)
5052 		return rc;
5053 
5054 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5055 	if (rc)
5056 		return rc;
5057 
5058 #ifdef CONFIG_RFS_ACCEL
5059 	if (bp->flags & BNXT_FLAG_RFS)
5060 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5061 #endif
5062 
5063 	return rc;
5064 }
5065 
5066 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5067 			   bool shared)
5068 {
5069 	int _rx = *rx, _tx = *tx;
5070 
5071 	if (shared) {
5072 		*rx = min_t(int, _rx, max);
5073 		*tx = min_t(int, _tx, max);
5074 	} else {
5075 		if (max < 2)
5076 			return -ENOMEM;
5077 
5078 		while (_rx + _tx > max) {
5079 			if (_rx > _tx && _rx > 1)
5080 				_rx--;
5081 			else if (_tx > 1)
5082 				_tx--;
5083 		}
5084 		*rx = _rx;
5085 		*tx = _tx;
5086 	}
5087 	return 0;
5088 }
5089 
5090 static void bnxt_setup_msix(struct bnxt *bp)
5091 {
5092 	const int len = sizeof(bp->irq_tbl[0].name);
5093 	struct net_device *dev = bp->dev;
5094 	int tcs, i;
5095 
5096 	tcs = netdev_get_num_tc(dev);
5097 	if (tcs > 1) {
5098 		int i, off, count;
5099 
5100 		for (i = 0; i < tcs; i++) {
5101 			count = bp->tx_nr_rings_per_tc;
5102 			off = i * count;
5103 			netdev_set_tc_queue(dev, i, count, off);
5104 		}
5105 	}
5106 
5107 	for (i = 0; i < bp->cp_nr_rings; i++) {
5108 		char *attr;
5109 
5110 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5111 			attr = "TxRx";
5112 		else if (i < bp->rx_nr_rings)
5113 			attr = "rx";
5114 		else
5115 			attr = "tx";
5116 
5117 		snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
5118 			 i);
5119 		bp->irq_tbl[i].handler = bnxt_msix;
5120 	}
5121 }
5122 
5123 static void bnxt_setup_inta(struct bnxt *bp)
5124 {
5125 	const int len = sizeof(bp->irq_tbl[0].name);
5126 
5127 	if (netdev_get_num_tc(bp->dev))
5128 		netdev_reset_tc(bp->dev);
5129 
5130 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5131 		 0);
5132 	bp->irq_tbl[0].handler = bnxt_inta;
5133 }
5134 
5135 static int bnxt_setup_int_mode(struct bnxt *bp)
5136 {
5137 	int rc;
5138 
5139 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5140 		bnxt_setup_msix(bp);
5141 	else
5142 		bnxt_setup_inta(bp);
5143 
5144 	rc = bnxt_set_real_num_queues(bp);
5145 	return rc;
5146 }
5147 
5148 #ifdef CONFIG_RFS_ACCEL
5149 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5150 {
5151 #if defined(CONFIG_BNXT_SRIOV)
5152 	if (BNXT_VF(bp))
5153 		return bp->vf.max_rsscos_ctxs;
5154 #endif
5155 	return bp->pf.max_rsscos_ctxs;
5156 }
5157 
5158 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5159 {
5160 #if defined(CONFIG_BNXT_SRIOV)
5161 	if (BNXT_VF(bp))
5162 		return bp->vf.max_vnics;
5163 #endif
5164 	return bp->pf.max_vnics;
5165 }
5166 #endif
5167 
5168 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5169 {
5170 #if defined(CONFIG_BNXT_SRIOV)
5171 	if (BNXT_VF(bp))
5172 		return bp->vf.max_stat_ctxs;
5173 #endif
5174 	return bp->pf.max_stat_ctxs;
5175 }
5176 
5177 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5178 {
5179 #if defined(CONFIG_BNXT_SRIOV)
5180 	if (BNXT_VF(bp))
5181 		bp->vf.max_stat_ctxs = max;
5182 	else
5183 #endif
5184 		bp->pf.max_stat_ctxs = max;
5185 }
5186 
5187 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5188 {
5189 #if defined(CONFIG_BNXT_SRIOV)
5190 	if (BNXT_VF(bp))
5191 		return bp->vf.max_cp_rings;
5192 #endif
5193 	return bp->pf.max_cp_rings;
5194 }
5195 
5196 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5197 {
5198 #if defined(CONFIG_BNXT_SRIOV)
5199 	if (BNXT_VF(bp))
5200 		bp->vf.max_cp_rings = max;
5201 	else
5202 #endif
5203 		bp->pf.max_cp_rings = max;
5204 }
5205 
5206 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5207 {
5208 #if defined(CONFIG_BNXT_SRIOV)
5209 	if (BNXT_VF(bp))
5210 		return min_t(unsigned int, bp->vf.max_irqs,
5211 			     bp->vf.max_cp_rings);
5212 #endif
5213 	return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5214 }
5215 
5216 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5217 {
5218 #if defined(CONFIG_BNXT_SRIOV)
5219 	if (BNXT_VF(bp))
5220 		bp->vf.max_irqs = max_irqs;
5221 	else
5222 #endif
5223 		bp->pf.max_irqs = max_irqs;
5224 }
5225 
5226 static int bnxt_init_msix(struct bnxt *bp)
5227 {
5228 	int i, total_vecs, rc = 0, min = 1;
5229 	struct msix_entry *msix_ent;
5230 
5231 	total_vecs = bnxt_get_max_func_irqs(bp);
5232 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5233 	if (!msix_ent)
5234 		return -ENOMEM;
5235 
5236 	for (i = 0; i < total_vecs; i++) {
5237 		msix_ent[i].entry = i;
5238 		msix_ent[i].vector = 0;
5239 	}
5240 
5241 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5242 		min = 2;
5243 
5244 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5245 	if (total_vecs < 0) {
5246 		rc = -ENODEV;
5247 		goto msix_setup_exit;
5248 	}
5249 
5250 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5251 	if (bp->irq_tbl) {
5252 		for (i = 0; i < total_vecs; i++)
5253 			bp->irq_tbl[i].vector = msix_ent[i].vector;
5254 
5255 		bp->total_irqs = total_vecs;
5256 		/* Trim rings based upon num of vectors allocated */
5257 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5258 				     total_vecs, min == 1);
5259 		if (rc)
5260 			goto msix_setup_exit;
5261 
5262 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5263 		bp->cp_nr_rings = (min == 1) ?
5264 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5265 				  bp->tx_nr_rings + bp->rx_nr_rings;
5266 
5267 	} else {
5268 		rc = -ENOMEM;
5269 		goto msix_setup_exit;
5270 	}
5271 	bp->flags |= BNXT_FLAG_USING_MSIX;
5272 	kfree(msix_ent);
5273 	return 0;
5274 
5275 msix_setup_exit:
5276 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
5277 	kfree(bp->irq_tbl);
5278 	bp->irq_tbl = NULL;
5279 	pci_disable_msix(bp->pdev);
5280 	kfree(msix_ent);
5281 	return rc;
5282 }
5283 
5284 static int bnxt_init_inta(struct bnxt *bp)
5285 {
5286 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
5287 	if (!bp->irq_tbl)
5288 		return -ENOMEM;
5289 
5290 	bp->total_irqs = 1;
5291 	bp->rx_nr_rings = 1;
5292 	bp->tx_nr_rings = 1;
5293 	bp->cp_nr_rings = 1;
5294 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
5295 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
5296 	bp->irq_tbl[0].vector = bp->pdev->irq;
5297 	return 0;
5298 }
5299 
5300 static int bnxt_init_int_mode(struct bnxt *bp)
5301 {
5302 	int rc = 0;
5303 
5304 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
5305 		rc = bnxt_init_msix(bp);
5306 
5307 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
5308 		/* fallback to INTA */
5309 		rc = bnxt_init_inta(bp);
5310 	}
5311 	return rc;
5312 }
5313 
5314 static void bnxt_clear_int_mode(struct bnxt *bp)
5315 {
5316 	if (bp->flags & BNXT_FLAG_USING_MSIX)
5317 		pci_disable_msix(bp->pdev);
5318 
5319 	kfree(bp->irq_tbl);
5320 	bp->irq_tbl = NULL;
5321 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
5322 }
5323 
5324 static void bnxt_free_irq(struct bnxt *bp)
5325 {
5326 	struct bnxt_irq *irq;
5327 	int i;
5328 
5329 #ifdef CONFIG_RFS_ACCEL
5330 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5331 	bp->dev->rx_cpu_rmap = NULL;
5332 #endif
5333 	if (!bp->irq_tbl)
5334 		return;
5335 
5336 	for (i = 0; i < bp->cp_nr_rings; i++) {
5337 		irq = &bp->irq_tbl[i];
5338 		if (irq->requested)
5339 			free_irq(irq->vector, bp->bnapi[i]);
5340 		irq->requested = 0;
5341 	}
5342 }
5343 
5344 static int bnxt_request_irq(struct bnxt *bp)
5345 {
5346 	int i, j, rc = 0;
5347 	unsigned long flags = 0;
5348 #ifdef CONFIG_RFS_ACCEL
5349 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5350 #endif
5351 
5352 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5353 		flags = IRQF_SHARED;
5354 
5355 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5356 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5357 #ifdef CONFIG_RFS_ACCEL
5358 		if (rmap && bp->bnapi[i]->rx_ring) {
5359 			rc = irq_cpu_rmap_add(rmap, irq->vector);
5360 			if (rc)
5361 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5362 					    j);
5363 			j++;
5364 		}
5365 #endif
5366 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5367 				 bp->bnapi[i]);
5368 		if (rc)
5369 			break;
5370 
5371 		irq->requested = 1;
5372 	}
5373 	return rc;
5374 }
5375 
5376 static void bnxt_del_napi(struct bnxt *bp)
5377 {
5378 	int i;
5379 
5380 	if (!bp->bnapi)
5381 		return;
5382 
5383 	for (i = 0; i < bp->cp_nr_rings; i++) {
5384 		struct bnxt_napi *bnapi = bp->bnapi[i];
5385 
5386 		napi_hash_del(&bnapi->napi);
5387 		netif_napi_del(&bnapi->napi);
5388 	}
5389 	/* We called napi_hash_del() before netif_napi_del(), we need
5390 	 * to respect an RCU grace period before freeing napi structures.
5391 	 */
5392 	synchronize_net();
5393 }
5394 
5395 static void bnxt_init_napi(struct bnxt *bp)
5396 {
5397 	int i;
5398 	unsigned int cp_nr_rings = bp->cp_nr_rings;
5399 	struct bnxt_napi *bnapi;
5400 
5401 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
5402 		if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5403 			cp_nr_rings--;
5404 		for (i = 0; i < cp_nr_rings; i++) {
5405 			bnapi = bp->bnapi[i];
5406 			netif_napi_add(bp->dev, &bnapi->napi,
5407 				       bnxt_poll, 64);
5408 		}
5409 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5410 			bnapi = bp->bnapi[cp_nr_rings];
5411 			netif_napi_add(bp->dev, &bnapi->napi,
5412 				       bnxt_poll_nitroa0, 64);
5413 		}
5414 	} else {
5415 		bnapi = bp->bnapi[0];
5416 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5417 	}
5418 }
5419 
5420 static void bnxt_disable_napi(struct bnxt *bp)
5421 {
5422 	int i;
5423 
5424 	if (!bp->bnapi)
5425 		return;
5426 
5427 	for (i = 0; i < bp->cp_nr_rings; i++)
5428 		napi_disable(&bp->bnapi[i]->napi);
5429 }
5430 
5431 static void bnxt_enable_napi(struct bnxt *bp)
5432 {
5433 	int i;
5434 
5435 	for (i = 0; i < bp->cp_nr_rings; i++) {
5436 		bp->bnapi[i]->in_reset = false;
5437 		napi_enable(&bp->bnapi[i]->napi);
5438 	}
5439 }
5440 
5441 void bnxt_tx_disable(struct bnxt *bp)
5442 {
5443 	int i;
5444 	struct bnxt_tx_ring_info *txr;
5445 	struct netdev_queue *txq;
5446 
5447 	if (bp->tx_ring) {
5448 		for (i = 0; i < bp->tx_nr_rings; i++) {
5449 			txr = &bp->tx_ring[i];
5450 			txq = netdev_get_tx_queue(bp->dev, i);
5451 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
5452 		}
5453 	}
5454 	/* Stop all TX queues */
5455 	netif_tx_disable(bp->dev);
5456 	netif_carrier_off(bp->dev);
5457 }
5458 
5459 void bnxt_tx_enable(struct bnxt *bp)
5460 {
5461 	int i;
5462 	struct bnxt_tx_ring_info *txr;
5463 	struct netdev_queue *txq;
5464 
5465 	for (i = 0; i < bp->tx_nr_rings; i++) {
5466 		txr = &bp->tx_ring[i];
5467 		txq = netdev_get_tx_queue(bp->dev, i);
5468 		txr->dev_state = 0;
5469 	}
5470 	netif_tx_wake_all_queues(bp->dev);
5471 	if (bp->link_info.link_up)
5472 		netif_carrier_on(bp->dev);
5473 }
5474 
5475 static void bnxt_report_link(struct bnxt *bp)
5476 {
5477 	if (bp->link_info.link_up) {
5478 		const char *duplex;
5479 		const char *flow_ctrl;
5480 		u32 speed;
5481 		u16 fec;
5482 
5483 		netif_carrier_on(bp->dev);
5484 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5485 			duplex = "full";
5486 		else
5487 			duplex = "half";
5488 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5489 			flow_ctrl = "ON - receive & transmit";
5490 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5491 			flow_ctrl = "ON - transmit";
5492 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5493 			flow_ctrl = "ON - receive";
5494 		else
5495 			flow_ctrl = "none";
5496 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5497 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
5498 			    speed, duplex, flow_ctrl);
5499 		if (bp->flags & BNXT_FLAG_EEE_CAP)
5500 			netdev_info(bp->dev, "EEE is %s\n",
5501 				    bp->eee.eee_active ? "active" :
5502 							 "not active");
5503 		fec = bp->link_info.fec_cfg;
5504 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
5505 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
5506 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
5507 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
5508 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
5509 	} else {
5510 		netif_carrier_off(bp->dev);
5511 		netdev_err(bp->dev, "NIC Link is Down\n");
5512 	}
5513 }
5514 
5515 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5516 {
5517 	int rc = 0;
5518 	struct hwrm_port_phy_qcaps_input req = {0};
5519 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5520 	struct bnxt_link_info *link_info = &bp->link_info;
5521 
5522 	if (bp->hwrm_spec_code < 0x10201)
5523 		return 0;
5524 
5525 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5526 
5527 	mutex_lock(&bp->hwrm_cmd_lock);
5528 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5529 	if (rc)
5530 		goto hwrm_phy_qcaps_exit;
5531 
5532 	if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5533 		struct ethtool_eee *eee = &bp->eee;
5534 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5535 
5536 		bp->flags |= BNXT_FLAG_EEE_CAP;
5537 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5538 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5539 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5540 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5541 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5542 	}
5543 	if (resp->supported_speeds_auto_mode)
5544 		link_info->support_auto_speeds =
5545 			le16_to_cpu(resp->supported_speeds_auto_mode);
5546 
5547 hwrm_phy_qcaps_exit:
5548 	mutex_unlock(&bp->hwrm_cmd_lock);
5549 	return rc;
5550 }
5551 
5552 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5553 {
5554 	int rc = 0;
5555 	struct bnxt_link_info *link_info = &bp->link_info;
5556 	struct hwrm_port_phy_qcfg_input req = {0};
5557 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5558 	u8 link_up = link_info->link_up;
5559 	u16 diff;
5560 
5561 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5562 
5563 	mutex_lock(&bp->hwrm_cmd_lock);
5564 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5565 	if (rc) {
5566 		mutex_unlock(&bp->hwrm_cmd_lock);
5567 		return rc;
5568 	}
5569 
5570 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5571 	link_info->phy_link_status = resp->link;
5572 	link_info->duplex =  resp->duplex;
5573 	link_info->pause = resp->pause;
5574 	link_info->auto_mode = resp->auto_mode;
5575 	link_info->auto_pause_setting = resp->auto_pause;
5576 	link_info->lp_pause = resp->link_partner_adv_pause;
5577 	link_info->force_pause_setting = resp->force_pause;
5578 	link_info->duplex_setting = resp->duplex;
5579 	if (link_info->phy_link_status == BNXT_LINK_LINK)
5580 		link_info->link_speed = le16_to_cpu(resp->link_speed);
5581 	else
5582 		link_info->link_speed = 0;
5583 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5584 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5585 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5586 	link_info->lp_auto_link_speeds =
5587 		le16_to_cpu(resp->link_partner_adv_speeds);
5588 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5589 	link_info->phy_ver[0] = resp->phy_maj;
5590 	link_info->phy_ver[1] = resp->phy_min;
5591 	link_info->phy_ver[2] = resp->phy_bld;
5592 	link_info->media_type = resp->media_type;
5593 	link_info->phy_type = resp->phy_type;
5594 	link_info->transceiver = resp->xcvr_pkg_type;
5595 	link_info->phy_addr = resp->eee_config_phy_addr &
5596 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5597 	link_info->module_status = resp->module_status;
5598 
5599 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
5600 		struct ethtool_eee *eee = &bp->eee;
5601 		u16 fw_speeds;
5602 
5603 		eee->eee_active = 0;
5604 		if (resp->eee_config_phy_addr &
5605 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5606 			eee->eee_active = 1;
5607 			fw_speeds = le16_to_cpu(
5608 				resp->link_partner_adv_eee_link_speed_mask);
5609 			eee->lp_advertised =
5610 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5611 		}
5612 
5613 		/* Pull initial EEE config */
5614 		if (!chng_link_state) {
5615 			if (resp->eee_config_phy_addr &
5616 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5617 				eee->eee_enabled = 1;
5618 
5619 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5620 			eee->advertised =
5621 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5622 
5623 			if (resp->eee_config_phy_addr &
5624 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5625 				__le32 tmr;
5626 
5627 				eee->tx_lpi_enabled = 1;
5628 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5629 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
5630 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5631 			}
5632 		}
5633 	}
5634 
5635 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
5636 	if (bp->hwrm_spec_code >= 0x10504)
5637 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
5638 
5639 	/* TODO: need to add more logic to report VF link */
5640 	if (chng_link_state) {
5641 		if (link_info->phy_link_status == BNXT_LINK_LINK)
5642 			link_info->link_up = 1;
5643 		else
5644 			link_info->link_up = 0;
5645 		if (link_up != link_info->link_up)
5646 			bnxt_report_link(bp);
5647 	} else {
5648 		/* alwasy link down if not require to update link state */
5649 		link_info->link_up = 0;
5650 	}
5651 	mutex_unlock(&bp->hwrm_cmd_lock);
5652 
5653 	diff = link_info->support_auto_speeds ^ link_info->advertising;
5654 	if ((link_info->support_auto_speeds | diff) !=
5655 	    link_info->support_auto_speeds) {
5656 		/* An advertised speed is no longer supported, so we need to
5657 		 * update the advertisement settings.  Caller holds RTNL
5658 		 * so we can modify link settings.
5659 		 */
5660 		link_info->advertising = link_info->support_auto_speeds;
5661 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5662 			bnxt_hwrm_set_link_setting(bp, true, false);
5663 	}
5664 	return 0;
5665 }
5666 
5667 static void bnxt_get_port_module_status(struct bnxt *bp)
5668 {
5669 	struct bnxt_link_info *link_info = &bp->link_info;
5670 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5671 	u8 module_status;
5672 
5673 	if (bnxt_update_link(bp, true))
5674 		return;
5675 
5676 	module_status = link_info->module_status;
5677 	switch (module_status) {
5678 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5679 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5680 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5681 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5682 			    bp->pf.port_id);
5683 		if (bp->hwrm_spec_code >= 0x10201) {
5684 			netdev_warn(bp->dev, "Module part number %s\n",
5685 				    resp->phy_vendor_partnumber);
5686 		}
5687 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5688 			netdev_warn(bp->dev, "TX is disabled\n");
5689 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5690 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5691 	}
5692 }
5693 
5694 static void
5695 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5696 {
5697 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5698 		if (bp->hwrm_spec_code >= 0x10201)
5699 			req->auto_pause =
5700 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5701 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5702 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5703 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5704 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5705 		req->enables |=
5706 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5707 	} else {
5708 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5709 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5710 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5711 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5712 		req->enables |=
5713 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5714 		if (bp->hwrm_spec_code >= 0x10201) {
5715 			req->auto_pause = req->force_pause;
5716 			req->enables |= cpu_to_le32(
5717 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5718 		}
5719 	}
5720 }
5721 
5722 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5723 				      struct hwrm_port_phy_cfg_input *req)
5724 {
5725 	u8 autoneg = bp->link_info.autoneg;
5726 	u16 fw_link_speed = bp->link_info.req_link_speed;
5727 	u16 advertising = bp->link_info.advertising;
5728 
5729 	if (autoneg & BNXT_AUTONEG_SPEED) {
5730 		req->auto_mode |=
5731 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5732 
5733 		req->enables |= cpu_to_le32(
5734 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5735 		req->auto_link_speed_mask = cpu_to_le16(advertising);
5736 
5737 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5738 		req->flags |=
5739 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5740 	} else {
5741 		req->force_link_speed = cpu_to_le16(fw_link_speed);
5742 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5743 	}
5744 
5745 	/* tell chimp that the setting takes effect immediately */
5746 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5747 }
5748 
5749 int bnxt_hwrm_set_pause(struct bnxt *bp)
5750 {
5751 	struct hwrm_port_phy_cfg_input req = {0};
5752 	int rc;
5753 
5754 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5755 	bnxt_hwrm_set_pause_common(bp, &req);
5756 
5757 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5758 	    bp->link_info.force_link_chng)
5759 		bnxt_hwrm_set_link_common(bp, &req);
5760 
5761 	mutex_lock(&bp->hwrm_cmd_lock);
5762 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5763 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5764 		/* since changing of pause setting doesn't trigger any link
5765 		 * change event, the driver needs to update the current pause
5766 		 * result upon successfully return of the phy_cfg command
5767 		 */
5768 		bp->link_info.pause =
5769 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5770 		bp->link_info.auto_pause_setting = 0;
5771 		if (!bp->link_info.force_link_chng)
5772 			bnxt_report_link(bp);
5773 	}
5774 	bp->link_info.force_link_chng = false;
5775 	mutex_unlock(&bp->hwrm_cmd_lock);
5776 	return rc;
5777 }
5778 
5779 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5780 			      struct hwrm_port_phy_cfg_input *req)
5781 {
5782 	struct ethtool_eee *eee = &bp->eee;
5783 
5784 	if (eee->eee_enabled) {
5785 		u16 eee_speeds;
5786 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5787 
5788 		if (eee->tx_lpi_enabled)
5789 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5790 		else
5791 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5792 
5793 		req->flags |= cpu_to_le32(flags);
5794 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5795 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5796 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5797 	} else {
5798 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5799 	}
5800 }
5801 
5802 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5803 {
5804 	struct hwrm_port_phy_cfg_input req = {0};
5805 
5806 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5807 	if (set_pause)
5808 		bnxt_hwrm_set_pause_common(bp, &req);
5809 
5810 	bnxt_hwrm_set_link_common(bp, &req);
5811 
5812 	if (set_eee)
5813 		bnxt_hwrm_set_eee(bp, &req);
5814 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5815 }
5816 
5817 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5818 {
5819 	struct hwrm_port_phy_cfg_input req = {0};
5820 
5821 	if (!BNXT_SINGLE_PF(bp))
5822 		return 0;
5823 
5824 	if (pci_num_vf(bp->pdev))
5825 		return 0;
5826 
5827 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5828 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
5829 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5830 }
5831 
5832 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
5833 {
5834 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5835 	struct hwrm_port_led_qcaps_input req = {0};
5836 	struct bnxt_pf_info *pf = &bp->pf;
5837 	int rc;
5838 
5839 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
5840 		return 0;
5841 
5842 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
5843 	req.port_id = cpu_to_le16(pf->port_id);
5844 	mutex_lock(&bp->hwrm_cmd_lock);
5845 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5846 	if (rc) {
5847 		mutex_unlock(&bp->hwrm_cmd_lock);
5848 		return rc;
5849 	}
5850 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
5851 		int i;
5852 
5853 		bp->num_leds = resp->num_leds;
5854 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
5855 						 bp->num_leds);
5856 		for (i = 0; i < bp->num_leds; i++) {
5857 			struct bnxt_led_info *led = &bp->leds[i];
5858 			__le16 caps = led->led_state_caps;
5859 
5860 			if (!led->led_group_id ||
5861 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
5862 				bp->num_leds = 0;
5863 				break;
5864 			}
5865 		}
5866 	}
5867 	mutex_unlock(&bp->hwrm_cmd_lock);
5868 	return 0;
5869 }
5870 
5871 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
5872 {
5873 	struct hwrm_wol_filter_alloc_input req = {0};
5874 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5875 	int rc;
5876 
5877 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
5878 	req.port_id = cpu_to_le16(bp->pf.port_id);
5879 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
5880 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
5881 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
5882 	mutex_lock(&bp->hwrm_cmd_lock);
5883 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5884 	if (!rc)
5885 		bp->wol_filter_id = resp->wol_filter_id;
5886 	mutex_unlock(&bp->hwrm_cmd_lock);
5887 	return rc;
5888 }
5889 
5890 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
5891 {
5892 	struct hwrm_wol_filter_free_input req = {0};
5893 	int rc;
5894 
5895 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
5896 	req.port_id = cpu_to_le16(bp->pf.port_id);
5897 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
5898 	req.wol_filter_id = bp->wol_filter_id;
5899 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5900 	return rc;
5901 }
5902 
5903 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
5904 {
5905 	struct hwrm_wol_filter_qcfg_input req = {0};
5906 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5907 	u16 next_handle = 0;
5908 	int rc;
5909 
5910 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
5911 	req.port_id = cpu_to_le16(bp->pf.port_id);
5912 	req.handle = cpu_to_le16(handle);
5913 	mutex_lock(&bp->hwrm_cmd_lock);
5914 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5915 	if (!rc) {
5916 		next_handle = le16_to_cpu(resp->next_handle);
5917 		if (next_handle != 0) {
5918 			if (resp->wol_type ==
5919 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
5920 				bp->wol = 1;
5921 				bp->wol_filter_id = resp->wol_filter_id;
5922 			}
5923 		}
5924 	}
5925 	mutex_unlock(&bp->hwrm_cmd_lock);
5926 	return next_handle;
5927 }
5928 
5929 static void bnxt_get_wol_settings(struct bnxt *bp)
5930 {
5931 	u16 handle = 0;
5932 
5933 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
5934 		return;
5935 
5936 	do {
5937 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
5938 	} while (handle && handle != 0xffff);
5939 }
5940 
5941 static bool bnxt_eee_config_ok(struct bnxt *bp)
5942 {
5943 	struct ethtool_eee *eee = &bp->eee;
5944 	struct bnxt_link_info *link_info = &bp->link_info;
5945 
5946 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5947 		return true;
5948 
5949 	if (eee->eee_enabled) {
5950 		u32 advertising =
5951 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5952 
5953 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5954 			eee->eee_enabled = 0;
5955 			return false;
5956 		}
5957 		if (eee->advertised & ~advertising) {
5958 			eee->advertised = advertising & eee->supported;
5959 			return false;
5960 		}
5961 	}
5962 	return true;
5963 }
5964 
5965 static int bnxt_update_phy_setting(struct bnxt *bp)
5966 {
5967 	int rc;
5968 	bool update_link = false;
5969 	bool update_pause = false;
5970 	bool update_eee = false;
5971 	struct bnxt_link_info *link_info = &bp->link_info;
5972 
5973 	rc = bnxt_update_link(bp, true);
5974 	if (rc) {
5975 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5976 			   rc);
5977 		return rc;
5978 	}
5979 	if (!BNXT_SINGLE_PF(bp))
5980 		return 0;
5981 
5982 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5983 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5984 	    link_info->req_flow_ctrl)
5985 		update_pause = true;
5986 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5987 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
5988 		update_pause = true;
5989 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5990 		if (BNXT_AUTO_MODE(link_info->auto_mode))
5991 			update_link = true;
5992 		if (link_info->req_link_speed != link_info->force_link_speed)
5993 			update_link = true;
5994 		if (link_info->req_duplex != link_info->duplex_setting)
5995 			update_link = true;
5996 	} else {
5997 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5998 			update_link = true;
5999 		if (link_info->advertising != link_info->auto_link_speeds)
6000 			update_link = true;
6001 	}
6002 
6003 	/* The last close may have shutdown the link, so need to call
6004 	 * PHY_CFG to bring it back up.
6005 	 */
6006 	if (!netif_carrier_ok(bp->dev))
6007 		update_link = true;
6008 
6009 	if (!bnxt_eee_config_ok(bp))
6010 		update_eee = true;
6011 
6012 	if (update_link)
6013 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6014 	else if (update_pause)
6015 		rc = bnxt_hwrm_set_pause(bp);
6016 	if (rc) {
6017 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6018 			   rc);
6019 		return rc;
6020 	}
6021 
6022 	return rc;
6023 }
6024 
6025 /* Common routine to pre-map certain register block to different GRC window.
6026  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6027  * in PF and 3 windows in VF that can be customized to map in different
6028  * register blocks.
6029  */
6030 static void bnxt_preset_reg_win(struct bnxt *bp)
6031 {
6032 	if (BNXT_PF(bp)) {
6033 		/* CAG registers map to GRC window #4 */
6034 		writel(BNXT_CAG_REG_BASE,
6035 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6036 	}
6037 }
6038 
6039 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6040 {
6041 	int rc = 0;
6042 
6043 	bnxt_preset_reg_win(bp);
6044 	netif_carrier_off(bp->dev);
6045 	if (irq_re_init) {
6046 		rc = bnxt_setup_int_mode(bp);
6047 		if (rc) {
6048 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6049 				   rc);
6050 			return rc;
6051 		}
6052 	}
6053 	if ((bp->flags & BNXT_FLAG_RFS) &&
6054 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6055 		/* disable RFS if falling back to INTA */
6056 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6057 		bp->flags &= ~BNXT_FLAG_RFS;
6058 	}
6059 
6060 	rc = bnxt_alloc_mem(bp, irq_re_init);
6061 	if (rc) {
6062 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6063 		goto open_err_free_mem;
6064 	}
6065 
6066 	if (irq_re_init) {
6067 		bnxt_init_napi(bp);
6068 		rc = bnxt_request_irq(bp);
6069 		if (rc) {
6070 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6071 			goto open_err;
6072 		}
6073 	}
6074 
6075 	bnxt_enable_napi(bp);
6076 
6077 	rc = bnxt_init_nic(bp, irq_re_init);
6078 	if (rc) {
6079 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6080 		goto open_err;
6081 	}
6082 
6083 	if (link_re_init) {
6084 		rc = bnxt_update_phy_setting(bp);
6085 		if (rc)
6086 			netdev_warn(bp->dev, "failed to update phy settings\n");
6087 	}
6088 
6089 	if (irq_re_init)
6090 		udp_tunnel_get_rx_info(bp->dev);
6091 
6092 	set_bit(BNXT_STATE_OPEN, &bp->state);
6093 	bnxt_enable_int(bp);
6094 	/* Enable TX queues */
6095 	bnxt_tx_enable(bp);
6096 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6097 	/* Poll link status and check for SFP+ module status */
6098 	bnxt_get_port_module_status(bp);
6099 
6100 	return 0;
6101 
6102 open_err:
6103 	bnxt_disable_napi(bp);
6104 	bnxt_del_napi(bp);
6105 
6106 open_err_free_mem:
6107 	bnxt_free_skbs(bp);
6108 	bnxt_free_irq(bp);
6109 	bnxt_free_mem(bp, true);
6110 	return rc;
6111 }
6112 
6113 /* rtnl_lock held */
6114 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6115 {
6116 	int rc = 0;
6117 
6118 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6119 	if (rc) {
6120 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6121 		dev_close(bp->dev);
6122 	}
6123 	return rc;
6124 }
6125 
6126 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6127  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6128  * self tests.
6129  */
6130 int bnxt_half_open_nic(struct bnxt *bp)
6131 {
6132 	int rc = 0;
6133 
6134 	rc = bnxt_alloc_mem(bp, false);
6135 	if (rc) {
6136 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6137 		goto half_open_err;
6138 	}
6139 	rc = bnxt_init_nic(bp, false);
6140 	if (rc) {
6141 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6142 		goto half_open_err;
6143 	}
6144 	return 0;
6145 
6146 half_open_err:
6147 	bnxt_free_skbs(bp);
6148 	bnxt_free_mem(bp, false);
6149 	dev_close(bp->dev);
6150 	return rc;
6151 }
6152 
6153 /* rtnl_lock held, this call can only be made after a previous successful
6154  * call to bnxt_half_open_nic().
6155  */
6156 void bnxt_half_close_nic(struct bnxt *bp)
6157 {
6158 	bnxt_hwrm_resource_free(bp, false, false);
6159 	bnxt_free_skbs(bp);
6160 	bnxt_free_mem(bp, false);
6161 }
6162 
6163 static int bnxt_open(struct net_device *dev)
6164 {
6165 	struct bnxt *bp = netdev_priv(dev);
6166 
6167 	return __bnxt_open_nic(bp, true, true);
6168 }
6169 
6170 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6171 {
6172 	int rc = 0;
6173 
6174 #ifdef CONFIG_BNXT_SRIOV
6175 	if (bp->sriov_cfg) {
6176 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
6177 						      !bp->sriov_cfg,
6178 						      BNXT_SRIOV_CFG_WAIT_TMO);
6179 		if (rc)
6180 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
6181 	}
6182 #endif
6183 	/* Change device state to avoid TX queue wake up's */
6184 	bnxt_tx_disable(bp);
6185 
6186 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6187 	smp_mb__after_atomic();
6188 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
6189 		msleep(20);
6190 
6191 	/* Flush rings and and disable interrupts */
6192 	bnxt_shutdown_nic(bp, irq_re_init);
6193 
6194 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
6195 
6196 	bnxt_disable_napi(bp);
6197 	del_timer_sync(&bp->timer);
6198 	bnxt_free_skbs(bp);
6199 
6200 	if (irq_re_init) {
6201 		bnxt_free_irq(bp);
6202 		bnxt_del_napi(bp);
6203 	}
6204 	bnxt_free_mem(bp, irq_re_init);
6205 	return rc;
6206 }
6207 
6208 static int bnxt_close(struct net_device *dev)
6209 {
6210 	struct bnxt *bp = netdev_priv(dev);
6211 
6212 	bnxt_close_nic(bp, true, true);
6213 	bnxt_hwrm_shutdown_link(bp);
6214 	return 0;
6215 }
6216 
6217 /* rtnl_lock held */
6218 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6219 {
6220 	switch (cmd) {
6221 	case SIOCGMIIPHY:
6222 		/* fallthru */
6223 	case SIOCGMIIREG: {
6224 		if (!netif_running(dev))
6225 			return -EAGAIN;
6226 
6227 		return 0;
6228 	}
6229 
6230 	case SIOCSMIIREG:
6231 		if (!netif_running(dev))
6232 			return -EAGAIN;
6233 
6234 		return 0;
6235 
6236 	default:
6237 		/* do nothing */
6238 		break;
6239 	}
6240 	return -EOPNOTSUPP;
6241 }
6242 
6243 static void
6244 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6245 {
6246 	u32 i;
6247 	struct bnxt *bp = netdev_priv(dev);
6248 
6249 	if (!bp->bnapi)
6250 		return;
6251 
6252 	/* TODO check if we need to synchronize with bnxt_close path */
6253 	for (i = 0; i < bp->cp_nr_rings; i++) {
6254 		struct bnxt_napi *bnapi = bp->bnapi[i];
6255 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6256 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
6257 
6258 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
6259 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
6260 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
6261 
6262 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
6263 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
6264 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
6265 
6266 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
6267 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
6268 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
6269 
6270 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
6271 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
6272 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
6273 
6274 		stats->rx_missed_errors +=
6275 			le64_to_cpu(hw_stats->rx_discard_pkts);
6276 
6277 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
6278 
6279 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
6280 	}
6281 
6282 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
6283 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
6284 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
6285 
6286 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
6287 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
6288 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
6289 					  le64_to_cpu(rx->rx_ovrsz_frames) +
6290 					  le64_to_cpu(rx->rx_runt_frames);
6291 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
6292 				   le64_to_cpu(rx->rx_jbr_frames);
6293 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
6294 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
6295 		stats->tx_errors = le64_to_cpu(tx->tx_err);
6296 	}
6297 }
6298 
6299 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
6300 {
6301 	struct net_device *dev = bp->dev;
6302 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6303 	struct netdev_hw_addr *ha;
6304 	u8 *haddr;
6305 	int mc_count = 0;
6306 	bool update = false;
6307 	int off = 0;
6308 
6309 	netdev_for_each_mc_addr(ha, dev) {
6310 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
6311 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6312 			vnic->mc_list_count = 0;
6313 			return false;
6314 		}
6315 		haddr = ha->addr;
6316 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
6317 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
6318 			update = true;
6319 		}
6320 		off += ETH_ALEN;
6321 		mc_count++;
6322 	}
6323 	if (mc_count)
6324 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
6325 
6326 	if (mc_count != vnic->mc_list_count) {
6327 		vnic->mc_list_count = mc_count;
6328 		update = true;
6329 	}
6330 	return update;
6331 }
6332 
6333 static bool bnxt_uc_list_updated(struct bnxt *bp)
6334 {
6335 	struct net_device *dev = bp->dev;
6336 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6337 	struct netdev_hw_addr *ha;
6338 	int off = 0;
6339 
6340 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
6341 		return true;
6342 
6343 	netdev_for_each_uc_addr(ha, dev) {
6344 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
6345 			return true;
6346 
6347 		off += ETH_ALEN;
6348 	}
6349 	return false;
6350 }
6351 
6352 static void bnxt_set_rx_mode(struct net_device *dev)
6353 {
6354 	struct bnxt *bp = netdev_priv(dev);
6355 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6356 	u32 mask = vnic->rx_mask;
6357 	bool mc_update = false;
6358 	bool uc_update;
6359 
6360 	if (!netif_running(dev))
6361 		return;
6362 
6363 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
6364 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
6365 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
6366 
6367 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
6368 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6369 
6370 	uc_update = bnxt_uc_list_updated(bp);
6371 
6372 	if (dev->flags & IFF_ALLMULTI) {
6373 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
6374 		vnic->mc_list_count = 0;
6375 	} else {
6376 		mc_update = bnxt_mc_list_updated(bp, &mask);
6377 	}
6378 
6379 	if (mask != vnic->rx_mask || uc_update || mc_update) {
6380 		vnic->rx_mask = mask;
6381 
6382 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
6383 		schedule_work(&bp->sp_task);
6384 	}
6385 }
6386 
6387 static int bnxt_cfg_rx_mode(struct bnxt *bp)
6388 {
6389 	struct net_device *dev = bp->dev;
6390 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6391 	struct netdev_hw_addr *ha;
6392 	int i, off = 0, rc;
6393 	bool uc_update;
6394 
6395 	netif_addr_lock_bh(dev);
6396 	uc_update = bnxt_uc_list_updated(bp);
6397 	netif_addr_unlock_bh(dev);
6398 
6399 	if (!uc_update)
6400 		goto skip_uc;
6401 
6402 	mutex_lock(&bp->hwrm_cmd_lock);
6403 	for (i = 1; i < vnic->uc_filter_count; i++) {
6404 		struct hwrm_cfa_l2_filter_free_input req = {0};
6405 
6406 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
6407 				       -1);
6408 
6409 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
6410 
6411 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6412 					HWRM_CMD_TIMEOUT);
6413 	}
6414 	mutex_unlock(&bp->hwrm_cmd_lock);
6415 
6416 	vnic->uc_filter_count = 1;
6417 
6418 	netif_addr_lock_bh(dev);
6419 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
6420 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
6421 	} else {
6422 		netdev_for_each_uc_addr(ha, dev) {
6423 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
6424 			off += ETH_ALEN;
6425 			vnic->uc_filter_count++;
6426 		}
6427 	}
6428 	netif_addr_unlock_bh(dev);
6429 
6430 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
6431 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
6432 		if (rc) {
6433 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
6434 				   rc);
6435 			vnic->uc_filter_count = i;
6436 			return rc;
6437 		}
6438 	}
6439 
6440 skip_uc:
6441 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
6442 	if (rc)
6443 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
6444 			   rc);
6445 
6446 	return rc;
6447 }
6448 
6449 /* If the chip and firmware supports RFS */
6450 static bool bnxt_rfs_supported(struct bnxt *bp)
6451 {
6452 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6453 		return true;
6454 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6455 		return true;
6456 	return false;
6457 }
6458 
6459 /* If runtime conditions support RFS */
6460 static bool bnxt_rfs_capable(struct bnxt *bp)
6461 {
6462 #ifdef CONFIG_RFS_ACCEL
6463 	int vnics, max_vnics, max_rss_ctxs;
6464 
6465 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
6466 		return false;
6467 
6468 	vnics = 1 + bp->rx_nr_rings;
6469 	max_vnics = bnxt_get_max_func_vnics(bp);
6470 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
6471 
6472 	/* RSS contexts not a limiting factor */
6473 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
6474 		max_rss_ctxs = max_vnics;
6475 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
6476 		netdev_warn(bp->dev,
6477 			    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
6478 			    min(max_rss_ctxs - 1, max_vnics - 1));
6479 		return false;
6480 	}
6481 
6482 	return true;
6483 #else
6484 	return false;
6485 #endif
6486 }
6487 
6488 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6489 					   netdev_features_t features)
6490 {
6491 	struct bnxt *bp = netdev_priv(dev);
6492 
6493 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6494 		features &= ~NETIF_F_NTUPLE;
6495 
6496 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
6497 	 * turned on or off together.
6498 	 */
6499 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6500 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6501 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6502 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6503 				      NETIF_F_HW_VLAN_STAG_RX);
6504 		else
6505 			features |= NETIF_F_HW_VLAN_CTAG_RX |
6506 				    NETIF_F_HW_VLAN_STAG_RX;
6507 	}
6508 #ifdef CONFIG_BNXT_SRIOV
6509 	if (BNXT_VF(bp)) {
6510 		if (bp->vf.vlan) {
6511 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6512 				      NETIF_F_HW_VLAN_STAG_RX);
6513 		}
6514 	}
6515 #endif
6516 	return features;
6517 }
6518 
6519 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6520 {
6521 	struct bnxt *bp = netdev_priv(dev);
6522 	u32 flags = bp->flags;
6523 	u32 changes;
6524 	int rc = 0;
6525 	bool re_init = false;
6526 	bool update_tpa = false;
6527 
6528 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6529 	if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6530 		flags |= BNXT_FLAG_GRO;
6531 	if (features & NETIF_F_LRO)
6532 		flags |= BNXT_FLAG_LRO;
6533 
6534 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
6535 		flags &= ~BNXT_FLAG_TPA;
6536 
6537 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6538 		flags |= BNXT_FLAG_STRIP_VLAN;
6539 
6540 	if (features & NETIF_F_NTUPLE)
6541 		flags |= BNXT_FLAG_RFS;
6542 
6543 	changes = flags ^ bp->flags;
6544 	if (changes & BNXT_FLAG_TPA) {
6545 		update_tpa = true;
6546 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6547 		    (flags & BNXT_FLAG_TPA) == 0)
6548 			re_init = true;
6549 	}
6550 
6551 	if (changes & ~BNXT_FLAG_TPA)
6552 		re_init = true;
6553 
6554 	if (flags != bp->flags) {
6555 		u32 old_flags = bp->flags;
6556 
6557 		bp->flags = flags;
6558 
6559 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6560 			if (update_tpa)
6561 				bnxt_set_ring_params(bp);
6562 			return rc;
6563 		}
6564 
6565 		if (re_init) {
6566 			bnxt_close_nic(bp, false, false);
6567 			if (update_tpa)
6568 				bnxt_set_ring_params(bp);
6569 
6570 			return bnxt_open_nic(bp, false, false);
6571 		}
6572 		if (update_tpa) {
6573 			rc = bnxt_set_tpa(bp,
6574 					  (flags & BNXT_FLAG_TPA) ?
6575 					  true : false);
6576 			if (rc)
6577 				bp->flags = old_flags;
6578 		}
6579 	}
6580 	return rc;
6581 }
6582 
6583 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6584 {
6585 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6586 	int i = bnapi->index;
6587 
6588 	if (!txr)
6589 		return;
6590 
6591 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6592 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6593 		    txr->tx_cons);
6594 }
6595 
6596 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6597 {
6598 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6599 	int i = bnapi->index;
6600 
6601 	if (!rxr)
6602 		return;
6603 
6604 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6605 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6606 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6607 		    rxr->rx_sw_agg_prod);
6608 }
6609 
6610 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6611 {
6612 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6613 	int i = bnapi->index;
6614 
6615 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6616 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6617 }
6618 
6619 static void bnxt_dbg_dump_states(struct bnxt *bp)
6620 {
6621 	int i;
6622 	struct bnxt_napi *bnapi;
6623 
6624 	for (i = 0; i < bp->cp_nr_rings; i++) {
6625 		bnapi = bp->bnapi[i];
6626 		if (netif_msg_drv(bp)) {
6627 			bnxt_dump_tx_sw_state(bnapi);
6628 			bnxt_dump_rx_sw_state(bnapi);
6629 			bnxt_dump_cp_sw_state(bnapi);
6630 		}
6631 	}
6632 }
6633 
6634 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6635 {
6636 	if (!silent)
6637 		bnxt_dbg_dump_states(bp);
6638 	if (netif_running(bp->dev)) {
6639 		int rc;
6640 
6641 		if (!silent)
6642 			bnxt_ulp_stop(bp);
6643 		bnxt_close_nic(bp, false, false);
6644 		rc = bnxt_open_nic(bp, false, false);
6645 		if (!silent && !rc)
6646 			bnxt_ulp_start(bp);
6647 	}
6648 }
6649 
6650 static void bnxt_tx_timeout(struct net_device *dev)
6651 {
6652 	struct bnxt *bp = netdev_priv(dev);
6653 
6654 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6655 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6656 	schedule_work(&bp->sp_task);
6657 }
6658 
6659 #ifdef CONFIG_NET_POLL_CONTROLLER
6660 static void bnxt_poll_controller(struct net_device *dev)
6661 {
6662 	struct bnxt *bp = netdev_priv(dev);
6663 	int i;
6664 
6665 	for (i = 0; i < bp->cp_nr_rings; i++) {
6666 		struct bnxt_irq *irq = &bp->irq_tbl[i];
6667 
6668 		disable_irq(irq->vector);
6669 		irq->handler(irq->vector, bp->bnapi[i]);
6670 		enable_irq(irq->vector);
6671 	}
6672 }
6673 #endif
6674 
6675 static void bnxt_timer(unsigned long data)
6676 {
6677 	struct bnxt *bp = (struct bnxt *)data;
6678 	struct net_device *dev = bp->dev;
6679 
6680 	if (!netif_running(dev))
6681 		return;
6682 
6683 	if (atomic_read(&bp->intr_sem) != 0)
6684 		goto bnxt_restart_timer;
6685 
6686 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6687 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6688 		schedule_work(&bp->sp_task);
6689 	}
6690 bnxt_restart_timer:
6691 	mod_timer(&bp->timer, jiffies + bp->current_interval);
6692 }
6693 
6694 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6695 {
6696 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6697 	 * set.  If the device is being closed, bnxt_close() may be holding
6698 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6699 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6700 	 */
6701 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6702 	rtnl_lock();
6703 }
6704 
6705 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
6706 {
6707 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6708 	rtnl_unlock();
6709 }
6710 
6711 /* Only called from bnxt_sp_task() */
6712 static void bnxt_reset(struct bnxt *bp, bool silent)
6713 {
6714 	bnxt_rtnl_lock_sp(bp);
6715 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
6716 		bnxt_reset_task(bp, silent);
6717 	bnxt_rtnl_unlock_sp(bp);
6718 }
6719 
6720 static void bnxt_cfg_ntp_filters(struct bnxt *);
6721 
6722 static void bnxt_sp_task(struct work_struct *work)
6723 {
6724 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6725 
6726 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6727 	smp_mb__after_atomic();
6728 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6729 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6730 		return;
6731 	}
6732 
6733 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6734 		bnxt_cfg_rx_mode(bp);
6735 
6736 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6737 		bnxt_cfg_ntp_filters(bp);
6738 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6739 		bnxt_hwrm_exec_fwd_req(bp);
6740 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6741 		bnxt_hwrm_tunnel_dst_port_alloc(
6742 			bp, bp->vxlan_port,
6743 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6744 	}
6745 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6746 		bnxt_hwrm_tunnel_dst_port_free(
6747 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6748 	}
6749 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6750 		bnxt_hwrm_tunnel_dst_port_alloc(
6751 			bp, bp->nge_port,
6752 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6753 	}
6754 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6755 		bnxt_hwrm_tunnel_dst_port_free(
6756 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6757 	}
6758 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6759 		bnxt_hwrm_port_qstats(bp);
6760 
6761 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
6762 	 * must be the last functions to be called before exiting.
6763 	 */
6764 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6765 		int rc = 0;
6766 
6767 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
6768 				       &bp->sp_event))
6769 			bnxt_hwrm_phy_qcaps(bp);
6770 
6771 		bnxt_rtnl_lock_sp(bp);
6772 		if (test_bit(BNXT_STATE_OPEN, &bp->state))
6773 			rc = bnxt_update_link(bp, true);
6774 		bnxt_rtnl_unlock_sp(bp);
6775 		if (rc)
6776 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6777 				   rc);
6778 	}
6779 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
6780 		bnxt_rtnl_lock_sp(bp);
6781 		if (test_bit(BNXT_STATE_OPEN, &bp->state))
6782 			bnxt_get_port_module_status(bp);
6783 		bnxt_rtnl_unlock_sp(bp);
6784 	}
6785 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6786 		bnxt_reset(bp, false);
6787 
6788 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6789 		bnxt_reset(bp, true);
6790 
6791 	smp_mb__before_atomic();
6792 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6793 }
6794 
6795 /* Under rtnl_lock */
6796 int bnxt_reserve_rings(struct bnxt *bp, int tx, int rx, int tcs, int tx_xdp)
6797 {
6798 	int max_rx, max_tx, tx_sets = 1;
6799 	int tx_rings_needed;
6800 	bool sh = true;
6801 	int rc;
6802 
6803 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
6804 		sh = false;
6805 
6806 	if (tcs)
6807 		tx_sets = tcs;
6808 
6809 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
6810 	if (rc)
6811 		return rc;
6812 
6813 	if (max_rx < rx)
6814 		return -ENOMEM;
6815 
6816 	tx_rings_needed = tx * tx_sets + tx_xdp;
6817 	if (max_tx < tx_rings_needed)
6818 		return -ENOMEM;
6819 
6820 	if (bnxt_hwrm_reserve_tx_rings(bp, &tx_rings_needed) ||
6821 	    tx_rings_needed < (tx * tx_sets + tx_xdp))
6822 		return -ENOMEM;
6823 	return 0;
6824 }
6825 
6826 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
6827 {
6828 	if (bp->bar2) {
6829 		pci_iounmap(pdev, bp->bar2);
6830 		bp->bar2 = NULL;
6831 	}
6832 
6833 	if (bp->bar1) {
6834 		pci_iounmap(pdev, bp->bar1);
6835 		bp->bar1 = NULL;
6836 	}
6837 
6838 	if (bp->bar0) {
6839 		pci_iounmap(pdev, bp->bar0);
6840 		bp->bar0 = NULL;
6841 	}
6842 }
6843 
6844 static void bnxt_cleanup_pci(struct bnxt *bp)
6845 {
6846 	bnxt_unmap_bars(bp, bp->pdev);
6847 	pci_release_regions(bp->pdev);
6848 	pci_disable_device(bp->pdev);
6849 }
6850 
6851 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6852 {
6853 	int rc;
6854 	struct bnxt *bp = netdev_priv(dev);
6855 
6856 	SET_NETDEV_DEV(dev, &pdev->dev);
6857 
6858 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
6859 	rc = pci_enable_device(pdev);
6860 	if (rc) {
6861 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6862 		goto init_err;
6863 	}
6864 
6865 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6866 		dev_err(&pdev->dev,
6867 			"Cannot find PCI device base address, aborting\n");
6868 		rc = -ENODEV;
6869 		goto init_err_disable;
6870 	}
6871 
6872 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6873 	if (rc) {
6874 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6875 		goto init_err_disable;
6876 	}
6877 
6878 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6879 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6880 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6881 		goto init_err_disable;
6882 	}
6883 
6884 	pci_set_master(pdev);
6885 
6886 	bp->dev = dev;
6887 	bp->pdev = pdev;
6888 
6889 	bp->bar0 = pci_ioremap_bar(pdev, 0);
6890 	if (!bp->bar0) {
6891 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6892 		rc = -ENOMEM;
6893 		goto init_err_release;
6894 	}
6895 
6896 	bp->bar1 = pci_ioremap_bar(pdev, 2);
6897 	if (!bp->bar1) {
6898 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6899 		rc = -ENOMEM;
6900 		goto init_err_release;
6901 	}
6902 
6903 	bp->bar2 = pci_ioremap_bar(pdev, 4);
6904 	if (!bp->bar2) {
6905 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6906 		rc = -ENOMEM;
6907 		goto init_err_release;
6908 	}
6909 
6910 	pci_enable_pcie_error_reporting(pdev);
6911 
6912 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
6913 
6914 	spin_lock_init(&bp->ntp_fltr_lock);
6915 
6916 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6917 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6918 
6919 	/* tick values in micro seconds */
6920 	bp->rx_coal_ticks = 12;
6921 	bp->rx_coal_bufs = 30;
6922 	bp->rx_coal_ticks_irq = 1;
6923 	bp->rx_coal_bufs_irq = 2;
6924 
6925 	bp->tx_coal_ticks = 25;
6926 	bp->tx_coal_bufs = 30;
6927 	bp->tx_coal_ticks_irq = 2;
6928 	bp->tx_coal_bufs_irq = 2;
6929 
6930 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6931 
6932 	init_timer(&bp->timer);
6933 	bp->timer.data = (unsigned long)bp;
6934 	bp->timer.function = bnxt_timer;
6935 	bp->current_interval = BNXT_TIMER_INTERVAL;
6936 
6937 	clear_bit(BNXT_STATE_OPEN, &bp->state);
6938 	return 0;
6939 
6940 init_err_release:
6941 	bnxt_unmap_bars(bp, pdev);
6942 	pci_release_regions(pdev);
6943 
6944 init_err_disable:
6945 	pci_disable_device(pdev);
6946 
6947 init_err:
6948 	return rc;
6949 }
6950 
6951 /* rtnl_lock held */
6952 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6953 {
6954 	struct sockaddr *addr = p;
6955 	struct bnxt *bp = netdev_priv(dev);
6956 	int rc = 0;
6957 
6958 	if (!is_valid_ether_addr(addr->sa_data))
6959 		return -EADDRNOTAVAIL;
6960 
6961 	rc = bnxt_approve_mac(bp, addr->sa_data);
6962 	if (rc)
6963 		return rc;
6964 
6965 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6966 		return 0;
6967 
6968 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6969 	if (netif_running(dev)) {
6970 		bnxt_close_nic(bp, false, false);
6971 		rc = bnxt_open_nic(bp, false, false);
6972 	}
6973 
6974 	return rc;
6975 }
6976 
6977 /* rtnl_lock held */
6978 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6979 {
6980 	struct bnxt *bp = netdev_priv(dev);
6981 
6982 	if (netif_running(dev))
6983 		bnxt_close_nic(bp, false, false);
6984 
6985 	dev->mtu = new_mtu;
6986 	bnxt_set_ring_params(bp);
6987 
6988 	if (netif_running(dev))
6989 		return bnxt_open_nic(bp, false, false);
6990 
6991 	return 0;
6992 }
6993 
6994 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
6995 {
6996 	struct bnxt *bp = netdev_priv(dev);
6997 	bool sh = false;
6998 	int rc;
6999 
7000 	if (tc > bp->max_tc) {
7001 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7002 			   tc, bp->max_tc);
7003 		return -EINVAL;
7004 	}
7005 
7006 	if (netdev_get_num_tc(dev) == tc)
7007 		return 0;
7008 
7009 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7010 		sh = true;
7011 
7012 	rc = bnxt_reserve_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7013 				tc, bp->tx_nr_rings_xdp);
7014 	if (rc)
7015 		return rc;
7016 
7017 	/* Needs to close the device and do hw resource re-allocations */
7018 	if (netif_running(bp->dev))
7019 		bnxt_close_nic(bp, true, false);
7020 
7021 	if (tc) {
7022 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7023 		netdev_set_num_tc(dev, tc);
7024 	} else {
7025 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7026 		netdev_reset_tc(dev);
7027 	}
7028 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7029 			       bp->tx_nr_rings + bp->rx_nr_rings;
7030 	bp->num_stat_ctxs = bp->cp_nr_rings;
7031 
7032 	if (netif_running(bp->dev))
7033 		return bnxt_open_nic(bp, true, false);
7034 
7035 	return 0;
7036 }
7037 
7038 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
7039 			 struct tc_to_netdev *ntc)
7040 {
7041 	if (ntc->type != TC_SETUP_MQPRIO)
7042 		return -EINVAL;
7043 
7044 	ntc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
7045 
7046 	return bnxt_setup_mq_tc(dev, ntc->mqprio->num_tc);
7047 }
7048 
7049 #ifdef CONFIG_RFS_ACCEL
7050 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
7051 			    struct bnxt_ntuple_filter *f2)
7052 {
7053 	struct flow_keys *keys1 = &f1->fkeys;
7054 	struct flow_keys *keys2 = &f2->fkeys;
7055 
7056 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
7057 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
7058 	    keys1->ports.ports == keys2->ports.ports &&
7059 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
7060 	    keys1->basic.n_proto == keys2->basic.n_proto &&
7061 	    keys1->control.flags == keys2->control.flags &&
7062 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
7063 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
7064 		return true;
7065 
7066 	return false;
7067 }
7068 
7069 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
7070 			      u16 rxq_index, u32 flow_id)
7071 {
7072 	struct bnxt *bp = netdev_priv(dev);
7073 	struct bnxt_ntuple_filter *fltr, *new_fltr;
7074 	struct flow_keys *fkeys;
7075 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
7076 	int rc = 0, idx, bit_id, l2_idx = 0;
7077 	struct hlist_head *head;
7078 
7079 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
7080 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7081 		int off = 0, j;
7082 
7083 		netif_addr_lock_bh(dev);
7084 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
7085 			if (ether_addr_equal(eth->h_dest,
7086 					     vnic->uc_list + off)) {
7087 				l2_idx = j + 1;
7088 				break;
7089 			}
7090 		}
7091 		netif_addr_unlock_bh(dev);
7092 		if (!l2_idx)
7093 			return -EINVAL;
7094 	}
7095 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
7096 	if (!new_fltr)
7097 		return -ENOMEM;
7098 
7099 	fkeys = &new_fltr->fkeys;
7100 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
7101 		rc = -EPROTONOSUPPORT;
7102 		goto err_free;
7103 	}
7104 
7105 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
7106 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
7107 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
7108 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
7109 		rc = -EPROTONOSUPPORT;
7110 		goto err_free;
7111 	}
7112 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
7113 	    bp->hwrm_spec_code < 0x10601) {
7114 		rc = -EPROTONOSUPPORT;
7115 		goto err_free;
7116 	}
7117 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
7118 	    bp->hwrm_spec_code < 0x10601) {
7119 		rc = -EPROTONOSUPPORT;
7120 		goto err_free;
7121 	}
7122 
7123 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
7124 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
7125 
7126 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
7127 	head = &bp->ntp_fltr_hash_tbl[idx];
7128 	rcu_read_lock();
7129 	hlist_for_each_entry_rcu(fltr, head, hash) {
7130 		if (bnxt_fltr_match(fltr, new_fltr)) {
7131 			rcu_read_unlock();
7132 			rc = 0;
7133 			goto err_free;
7134 		}
7135 	}
7136 	rcu_read_unlock();
7137 
7138 	spin_lock_bh(&bp->ntp_fltr_lock);
7139 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
7140 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
7141 	if (bit_id < 0) {
7142 		spin_unlock_bh(&bp->ntp_fltr_lock);
7143 		rc = -ENOMEM;
7144 		goto err_free;
7145 	}
7146 
7147 	new_fltr->sw_id = (u16)bit_id;
7148 	new_fltr->flow_id = flow_id;
7149 	new_fltr->l2_fltr_idx = l2_idx;
7150 	new_fltr->rxq = rxq_index;
7151 	hlist_add_head_rcu(&new_fltr->hash, head);
7152 	bp->ntp_fltr_count++;
7153 	spin_unlock_bh(&bp->ntp_fltr_lock);
7154 
7155 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
7156 	schedule_work(&bp->sp_task);
7157 
7158 	return new_fltr->sw_id;
7159 
7160 err_free:
7161 	kfree(new_fltr);
7162 	return rc;
7163 }
7164 
7165 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7166 {
7167 	int i;
7168 
7169 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
7170 		struct hlist_head *head;
7171 		struct hlist_node *tmp;
7172 		struct bnxt_ntuple_filter *fltr;
7173 		int rc;
7174 
7175 		head = &bp->ntp_fltr_hash_tbl[i];
7176 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
7177 			bool del = false;
7178 
7179 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
7180 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
7181 							fltr->flow_id,
7182 							fltr->sw_id)) {
7183 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
7184 									 fltr);
7185 					del = true;
7186 				}
7187 			} else {
7188 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
7189 								       fltr);
7190 				if (rc)
7191 					del = true;
7192 				else
7193 					set_bit(BNXT_FLTR_VALID, &fltr->state);
7194 			}
7195 
7196 			if (del) {
7197 				spin_lock_bh(&bp->ntp_fltr_lock);
7198 				hlist_del_rcu(&fltr->hash);
7199 				bp->ntp_fltr_count--;
7200 				spin_unlock_bh(&bp->ntp_fltr_lock);
7201 				synchronize_rcu();
7202 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
7203 				kfree(fltr);
7204 			}
7205 		}
7206 	}
7207 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
7208 		netdev_info(bp->dev, "Receive PF driver unload event!");
7209 }
7210 
7211 #else
7212 
7213 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
7214 {
7215 }
7216 
7217 #endif /* CONFIG_RFS_ACCEL */
7218 
7219 static void bnxt_udp_tunnel_add(struct net_device *dev,
7220 				struct udp_tunnel_info *ti)
7221 {
7222 	struct bnxt *bp = netdev_priv(dev);
7223 
7224 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7225 		return;
7226 
7227 	if (!netif_running(dev))
7228 		return;
7229 
7230 	switch (ti->type) {
7231 	case UDP_TUNNEL_TYPE_VXLAN:
7232 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
7233 			return;
7234 
7235 		bp->vxlan_port_cnt++;
7236 		if (bp->vxlan_port_cnt == 1) {
7237 			bp->vxlan_port = ti->port;
7238 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
7239 			schedule_work(&bp->sp_task);
7240 		}
7241 		break;
7242 	case UDP_TUNNEL_TYPE_GENEVE:
7243 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
7244 			return;
7245 
7246 		bp->nge_port_cnt++;
7247 		if (bp->nge_port_cnt == 1) {
7248 			bp->nge_port = ti->port;
7249 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
7250 		}
7251 		break;
7252 	default:
7253 		return;
7254 	}
7255 
7256 	schedule_work(&bp->sp_task);
7257 }
7258 
7259 static void bnxt_udp_tunnel_del(struct net_device *dev,
7260 				struct udp_tunnel_info *ti)
7261 {
7262 	struct bnxt *bp = netdev_priv(dev);
7263 
7264 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
7265 		return;
7266 
7267 	if (!netif_running(dev))
7268 		return;
7269 
7270 	switch (ti->type) {
7271 	case UDP_TUNNEL_TYPE_VXLAN:
7272 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
7273 			return;
7274 		bp->vxlan_port_cnt--;
7275 
7276 		if (bp->vxlan_port_cnt != 0)
7277 			return;
7278 
7279 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
7280 		break;
7281 	case UDP_TUNNEL_TYPE_GENEVE:
7282 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
7283 			return;
7284 		bp->nge_port_cnt--;
7285 
7286 		if (bp->nge_port_cnt != 0)
7287 			return;
7288 
7289 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
7290 		break;
7291 	default:
7292 		return;
7293 	}
7294 
7295 	schedule_work(&bp->sp_task);
7296 }
7297 
7298 static const struct net_device_ops bnxt_netdev_ops = {
7299 	.ndo_open		= bnxt_open,
7300 	.ndo_start_xmit		= bnxt_start_xmit,
7301 	.ndo_stop		= bnxt_close,
7302 	.ndo_get_stats64	= bnxt_get_stats64,
7303 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
7304 	.ndo_do_ioctl		= bnxt_ioctl,
7305 	.ndo_validate_addr	= eth_validate_addr,
7306 	.ndo_set_mac_address	= bnxt_change_mac_addr,
7307 	.ndo_change_mtu		= bnxt_change_mtu,
7308 	.ndo_fix_features	= bnxt_fix_features,
7309 	.ndo_set_features	= bnxt_set_features,
7310 	.ndo_tx_timeout		= bnxt_tx_timeout,
7311 #ifdef CONFIG_BNXT_SRIOV
7312 	.ndo_get_vf_config	= bnxt_get_vf_config,
7313 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
7314 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
7315 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
7316 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
7317 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
7318 #endif
7319 #ifdef CONFIG_NET_POLL_CONTROLLER
7320 	.ndo_poll_controller	= bnxt_poll_controller,
7321 #endif
7322 	.ndo_setup_tc           = bnxt_setup_tc,
7323 #ifdef CONFIG_RFS_ACCEL
7324 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
7325 #endif
7326 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
7327 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
7328 	.ndo_xdp		= bnxt_xdp,
7329 };
7330 
7331 static void bnxt_remove_one(struct pci_dev *pdev)
7332 {
7333 	struct net_device *dev = pci_get_drvdata(pdev);
7334 	struct bnxt *bp = netdev_priv(dev);
7335 
7336 	if (BNXT_PF(bp))
7337 		bnxt_sriov_disable(bp);
7338 
7339 	pci_disable_pcie_error_reporting(pdev);
7340 	unregister_netdev(dev);
7341 	cancel_work_sync(&bp->sp_task);
7342 	bp->sp_event = 0;
7343 
7344 	bnxt_clear_int_mode(bp);
7345 	bnxt_hwrm_func_drv_unrgtr(bp);
7346 	bnxt_free_hwrm_resources(bp);
7347 	bnxt_ethtool_free(bp);
7348 	bnxt_dcb_free(bp);
7349 	kfree(bp->edev);
7350 	bp->edev = NULL;
7351 	if (bp->xdp_prog)
7352 		bpf_prog_put(bp->xdp_prog);
7353 	bnxt_cleanup_pci(bp);
7354 	free_netdev(dev);
7355 }
7356 
7357 static int bnxt_probe_phy(struct bnxt *bp)
7358 {
7359 	int rc = 0;
7360 	struct bnxt_link_info *link_info = &bp->link_info;
7361 
7362 	rc = bnxt_hwrm_phy_qcaps(bp);
7363 	if (rc) {
7364 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
7365 			   rc);
7366 		return rc;
7367 	}
7368 
7369 	rc = bnxt_update_link(bp, false);
7370 	if (rc) {
7371 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
7372 			   rc);
7373 		return rc;
7374 	}
7375 
7376 	/* Older firmware does not have supported_auto_speeds, so assume
7377 	 * that all supported speeds can be autonegotiated.
7378 	 */
7379 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
7380 		link_info->support_auto_speeds = link_info->support_speeds;
7381 
7382 	/*initialize the ethool setting copy with NVM settings */
7383 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
7384 		link_info->autoneg = BNXT_AUTONEG_SPEED;
7385 		if (bp->hwrm_spec_code >= 0x10201) {
7386 			if (link_info->auto_pause_setting &
7387 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
7388 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7389 		} else {
7390 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
7391 		}
7392 		link_info->advertising = link_info->auto_link_speeds;
7393 	} else {
7394 		link_info->req_link_speed = link_info->force_link_speed;
7395 		link_info->req_duplex = link_info->duplex_setting;
7396 	}
7397 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
7398 		link_info->req_flow_ctrl =
7399 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
7400 	else
7401 		link_info->req_flow_ctrl = link_info->force_pause_setting;
7402 	return rc;
7403 }
7404 
7405 static int bnxt_get_max_irq(struct pci_dev *pdev)
7406 {
7407 	u16 ctrl;
7408 
7409 	if (!pdev->msix_cap)
7410 		return 1;
7411 
7412 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
7413 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
7414 }
7415 
7416 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7417 				int *max_cp)
7418 {
7419 	int max_ring_grps = 0;
7420 
7421 #ifdef CONFIG_BNXT_SRIOV
7422 	if (!BNXT_PF(bp)) {
7423 		*max_tx = bp->vf.max_tx_rings;
7424 		*max_rx = bp->vf.max_rx_rings;
7425 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
7426 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
7427 		max_ring_grps = bp->vf.max_hw_ring_grps;
7428 	} else
7429 #endif
7430 	{
7431 		*max_tx = bp->pf.max_tx_rings;
7432 		*max_rx = bp->pf.max_rx_rings;
7433 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
7434 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
7435 		max_ring_grps = bp->pf.max_hw_ring_grps;
7436 	}
7437 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
7438 		*max_cp -= 1;
7439 		*max_rx -= 2;
7440 	}
7441 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
7442 		*max_rx >>= 1;
7443 	*max_rx = min_t(int, *max_rx, max_ring_grps);
7444 }
7445 
7446 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
7447 {
7448 	int rx, tx, cp;
7449 
7450 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
7451 	if (!rx || !tx || !cp)
7452 		return -ENOMEM;
7453 
7454 	*max_rx = rx;
7455 	*max_tx = tx;
7456 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
7457 }
7458 
7459 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
7460 			       bool shared)
7461 {
7462 	int rc;
7463 
7464 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7465 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
7466 		/* Not enough rings, try disabling agg rings. */
7467 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
7468 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
7469 		if (rc)
7470 			return rc;
7471 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
7472 		bp->dev->hw_features &= ~NETIF_F_LRO;
7473 		bp->dev->features &= ~NETIF_F_LRO;
7474 		bnxt_set_ring_params(bp);
7475 	}
7476 
7477 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
7478 		int max_cp, max_stat, max_irq;
7479 
7480 		/* Reserve minimum resources for RoCE */
7481 		max_cp = bnxt_get_max_func_cp_rings(bp);
7482 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
7483 		max_irq = bnxt_get_max_func_irqs(bp);
7484 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
7485 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
7486 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
7487 			return 0;
7488 
7489 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
7490 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
7491 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
7492 		max_cp = min_t(int, max_cp, max_irq);
7493 		max_cp = min_t(int, max_cp, max_stat);
7494 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
7495 		if (rc)
7496 			rc = 0;
7497 	}
7498 	return rc;
7499 }
7500 
7501 static int bnxt_set_dflt_rings(struct bnxt *bp)
7502 {
7503 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
7504 	bool sh = true;
7505 
7506 	if (sh)
7507 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
7508 	dflt_rings = netif_get_num_default_rss_queues();
7509 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
7510 	if (rc)
7511 		return rc;
7512 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
7513 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
7514 
7515 	rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
7516 	if (rc)
7517 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
7518 
7519 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7520 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7521 			       bp->tx_nr_rings + bp->rx_nr_rings;
7522 	bp->num_stat_ctxs = bp->cp_nr_rings;
7523 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7524 		bp->rx_nr_rings++;
7525 		bp->cp_nr_rings++;
7526 	}
7527 	return rc;
7528 }
7529 
7530 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
7531 {
7532 	ASSERT_RTNL();
7533 	bnxt_hwrm_func_qcaps(bp);
7534 	bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
7535 }
7536 
7537 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
7538 {
7539 	enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
7540 	enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
7541 
7542 	if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
7543 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
7544 		netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
7545 	else
7546 		netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
7547 			    speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
7548 			    speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
7549 			    speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
7550 			    "Unknown", width);
7551 }
7552 
7553 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7554 {
7555 	static int version_printed;
7556 	struct net_device *dev;
7557 	struct bnxt *bp;
7558 	int rc, max_irqs;
7559 
7560 	if (pci_is_bridge(pdev))
7561 		return -ENODEV;
7562 
7563 	if (version_printed++ == 0)
7564 		pr_info("%s", version);
7565 
7566 	max_irqs = bnxt_get_max_irq(pdev);
7567 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
7568 	if (!dev)
7569 		return -ENOMEM;
7570 
7571 	bp = netdev_priv(dev);
7572 
7573 	if (bnxt_vf_pciid(ent->driver_data))
7574 		bp->flags |= BNXT_FLAG_VF;
7575 
7576 	if (pdev->msix_cap)
7577 		bp->flags |= BNXT_FLAG_MSIX_CAP;
7578 
7579 	rc = bnxt_init_board(pdev, dev);
7580 	if (rc < 0)
7581 		goto init_err_free;
7582 
7583 	dev->netdev_ops = &bnxt_netdev_ops;
7584 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
7585 	dev->ethtool_ops = &bnxt_ethtool_ops;
7586 	pci_set_drvdata(pdev, dev);
7587 
7588 	rc = bnxt_alloc_hwrm_resources(bp);
7589 	if (rc)
7590 		goto init_err_pci_clean;
7591 
7592 	mutex_init(&bp->hwrm_cmd_lock);
7593 	rc = bnxt_hwrm_ver_get(bp);
7594 	if (rc)
7595 		goto init_err_pci_clean;
7596 
7597 	rc = bnxt_hwrm_func_reset(bp);
7598 	if (rc)
7599 		goto init_err_pci_clean;
7600 
7601 	bnxt_hwrm_fw_set_time(bp);
7602 
7603 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7604 			   NETIF_F_TSO | NETIF_F_TSO6 |
7605 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7606 			   NETIF_F_GSO_IPXIP4 |
7607 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7608 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
7609 			   NETIF_F_RXCSUM | NETIF_F_GRO;
7610 
7611 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
7612 		dev->hw_features |= NETIF_F_LRO;
7613 
7614 	dev->hw_enc_features =
7615 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7616 			NETIF_F_TSO | NETIF_F_TSO6 |
7617 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7618 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7619 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
7620 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
7621 				    NETIF_F_GSO_GRE_CSUM;
7622 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
7623 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7624 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
7625 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
7626 	dev->priv_flags |= IFF_UNICAST_FLT;
7627 
7628 	/* MTU range: 60 - 9500 */
7629 	dev->min_mtu = ETH_ZLEN;
7630 	dev->max_mtu = BNXT_MAX_MTU;
7631 
7632 	bnxt_dcb_init(bp);
7633 
7634 #ifdef CONFIG_BNXT_SRIOV
7635 	init_waitqueue_head(&bp->sriov_cfg_wait);
7636 #endif
7637 	bp->gro_func = bnxt_gro_func_5730x;
7638 	if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
7639 		bp->gro_func = bnxt_gro_func_5731x;
7640 
7641 	rc = bnxt_hwrm_func_drv_rgtr(bp);
7642 	if (rc)
7643 		goto init_err_pci_clean;
7644 
7645 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
7646 	if (rc)
7647 		goto init_err_pci_clean;
7648 
7649 	bp->ulp_probe = bnxt_ulp_probe;
7650 
7651 	/* Get the MAX capabilities for this function */
7652 	rc = bnxt_hwrm_func_qcaps(bp);
7653 	if (rc) {
7654 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
7655 			   rc);
7656 		rc = -1;
7657 		goto init_err_pci_clean;
7658 	}
7659 
7660 	rc = bnxt_hwrm_queue_qportcfg(bp);
7661 	if (rc) {
7662 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
7663 			   rc);
7664 		rc = -1;
7665 		goto init_err_pci_clean;
7666 	}
7667 
7668 	bnxt_hwrm_func_qcfg(bp);
7669 	bnxt_hwrm_port_led_qcaps(bp);
7670 	bnxt_ethtool_init(bp);
7671 
7672 	bnxt_set_rx_skb_mode(bp, false);
7673 	bnxt_set_tpa_flags(bp);
7674 	bnxt_set_ring_params(bp);
7675 	bnxt_set_max_func_irqs(bp, max_irqs);
7676 	rc = bnxt_set_dflt_rings(bp);
7677 	if (rc) {
7678 		netdev_err(bp->dev, "Not enough rings available.\n");
7679 		rc = -ENOMEM;
7680 		goto init_err_pci_clean;
7681 	}
7682 
7683 	/* Default RSS hash cfg. */
7684 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
7685 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
7686 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
7687 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
7688 	if (!BNXT_CHIP_NUM_57X0X(bp->chip_num) &&
7689 	    !BNXT_CHIP_TYPE_NITRO_A0(bp) &&
7690 	    bp->hwrm_spec_code >= 0x10501) {
7691 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
7692 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
7693 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
7694 	}
7695 
7696 	bnxt_hwrm_vnic_qcaps(bp);
7697 	if (bnxt_rfs_supported(bp)) {
7698 		dev->hw_features |= NETIF_F_NTUPLE;
7699 		if (bnxt_rfs_capable(bp)) {
7700 			bp->flags |= BNXT_FLAG_RFS;
7701 			dev->features |= NETIF_F_NTUPLE;
7702 		}
7703 	}
7704 
7705 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
7706 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
7707 
7708 	rc = bnxt_probe_phy(bp);
7709 	if (rc)
7710 		goto init_err_pci_clean;
7711 
7712 	rc = bnxt_init_int_mode(bp);
7713 	if (rc)
7714 		goto init_err_pci_clean;
7715 
7716 	bnxt_get_wol_settings(bp);
7717 	if (bp->flags & BNXT_FLAG_WOL_CAP)
7718 		device_set_wakeup_enable(&pdev->dev, bp->wol);
7719 	else
7720 		device_set_wakeup_capable(&pdev->dev, false);
7721 
7722 	rc = register_netdev(dev);
7723 	if (rc)
7724 		goto init_err_clr_int;
7725 
7726 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
7727 		    board_info[ent->driver_data].name,
7728 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
7729 
7730 	bnxt_parse_log_pcie_link(bp);
7731 
7732 	return 0;
7733 
7734 init_err_clr_int:
7735 	bnxt_clear_int_mode(bp);
7736 
7737 init_err_pci_clean:
7738 	bnxt_cleanup_pci(bp);
7739 
7740 init_err_free:
7741 	free_netdev(dev);
7742 	return rc;
7743 }
7744 
7745 static void bnxt_shutdown(struct pci_dev *pdev)
7746 {
7747 	struct net_device *dev = pci_get_drvdata(pdev);
7748 	struct bnxt *bp;
7749 
7750 	if (!dev)
7751 		return;
7752 
7753 	rtnl_lock();
7754 	bp = netdev_priv(dev);
7755 	if (!bp)
7756 		goto shutdown_exit;
7757 
7758 	if (netif_running(dev))
7759 		dev_close(dev);
7760 
7761 	if (system_state == SYSTEM_POWER_OFF) {
7762 		bnxt_clear_int_mode(bp);
7763 		pci_wake_from_d3(pdev, bp->wol);
7764 		pci_set_power_state(pdev, PCI_D3hot);
7765 	}
7766 
7767 shutdown_exit:
7768 	rtnl_unlock();
7769 }
7770 
7771 #ifdef CONFIG_PM_SLEEP
7772 static int bnxt_suspend(struct device *device)
7773 {
7774 	struct pci_dev *pdev = to_pci_dev(device);
7775 	struct net_device *dev = pci_get_drvdata(pdev);
7776 	struct bnxt *bp = netdev_priv(dev);
7777 	int rc = 0;
7778 
7779 	rtnl_lock();
7780 	if (netif_running(dev)) {
7781 		netif_device_detach(dev);
7782 		rc = bnxt_close(dev);
7783 	}
7784 	bnxt_hwrm_func_drv_unrgtr(bp);
7785 	rtnl_unlock();
7786 	return rc;
7787 }
7788 
7789 static int bnxt_resume(struct device *device)
7790 {
7791 	struct pci_dev *pdev = to_pci_dev(device);
7792 	struct net_device *dev = pci_get_drvdata(pdev);
7793 	struct bnxt *bp = netdev_priv(dev);
7794 	int rc = 0;
7795 
7796 	rtnl_lock();
7797 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
7798 		rc = -ENODEV;
7799 		goto resume_exit;
7800 	}
7801 	rc = bnxt_hwrm_func_reset(bp);
7802 	if (rc) {
7803 		rc = -EBUSY;
7804 		goto resume_exit;
7805 	}
7806 	bnxt_get_wol_settings(bp);
7807 	if (netif_running(dev)) {
7808 		rc = bnxt_open(dev);
7809 		if (!rc)
7810 			netif_device_attach(dev);
7811 	}
7812 
7813 resume_exit:
7814 	rtnl_unlock();
7815 	return rc;
7816 }
7817 
7818 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
7819 #define BNXT_PM_OPS (&bnxt_pm_ops)
7820 
7821 #else
7822 
7823 #define BNXT_PM_OPS NULL
7824 
7825 #endif /* CONFIG_PM_SLEEP */
7826 
7827 /**
7828  * bnxt_io_error_detected - called when PCI error is detected
7829  * @pdev: Pointer to PCI device
7830  * @state: The current pci connection state
7831  *
7832  * This function is called after a PCI bus error affecting
7833  * this device has been detected.
7834  */
7835 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
7836 					       pci_channel_state_t state)
7837 {
7838 	struct net_device *netdev = pci_get_drvdata(pdev);
7839 	struct bnxt *bp = netdev_priv(netdev);
7840 
7841 	netdev_info(netdev, "PCI I/O error detected\n");
7842 
7843 	rtnl_lock();
7844 	netif_device_detach(netdev);
7845 
7846 	bnxt_ulp_stop(bp);
7847 
7848 	if (state == pci_channel_io_perm_failure) {
7849 		rtnl_unlock();
7850 		return PCI_ERS_RESULT_DISCONNECT;
7851 	}
7852 
7853 	if (netif_running(netdev))
7854 		bnxt_close(netdev);
7855 
7856 	pci_disable_device(pdev);
7857 	rtnl_unlock();
7858 
7859 	/* Request a slot slot reset. */
7860 	return PCI_ERS_RESULT_NEED_RESET;
7861 }
7862 
7863 /**
7864  * bnxt_io_slot_reset - called after the pci bus has been reset.
7865  * @pdev: Pointer to PCI device
7866  *
7867  * Restart the card from scratch, as if from a cold-boot.
7868  * At this point, the card has exprienced a hard reset,
7869  * followed by fixups by BIOS, and has its config space
7870  * set up identically to what it was at cold boot.
7871  */
7872 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
7873 {
7874 	struct net_device *netdev = pci_get_drvdata(pdev);
7875 	struct bnxt *bp = netdev_priv(netdev);
7876 	int err = 0;
7877 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
7878 
7879 	netdev_info(bp->dev, "PCI Slot Reset\n");
7880 
7881 	rtnl_lock();
7882 
7883 	if (pci_enable_device(pdev)) {
7884 		dev_err(&pdev->dev,
7885 			"Cannot re-enable PCI device after reset.\n");
7886 	} else {
7887 		pci_set_master(pdev);
7888 
7889 		err = bnxt_hwrm_func_reset(bp);
7890 		if (!err && netif_running(netdev))
7891 			err = bnxt_open(netdev);
7892 
7893 		if (!err) {
7894 			result = PCI_ERS_RESULT_RECOVERED;
7895 			bnxt_ulp_start(bp);
7896 		}
7897 	}
7898 
7899 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7900 		dev_close(netdev);
7901 
7902 	rtnl_unlock();
7903 
7904 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7905 	if (err) {
7906 		dev_err(&pdev->dev,
7907 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7908 			 err); /* non-fatal, continue */
7909 	}
7910 
7911 	return PCI_ERS_RESULT_RECOVERED;
7912 }
7913 
7914 /**
7915  * bnxt_io_resume - called when traffic can start flowing again.
7916  * @pdev: Pointer to PCI device
7917  *
7918  * This callback is called when the error recovery driver tells
7919  * us that its OK to resume normal operation.
7920  */
7921 static void bnxt_io_resume(struct pci_dev *pdev)
7922 {
7923 	struct net_device *netdev = pci_get_drvdata(pdev);
7924 
7925 	rtnl_lock();
7926 
7927 	netif_device_attach(netdev);
7928 
7929 	rtnl_unlock();
7930 }
7931 
7932 static const struct pci_error_handlers bnxt_err_handler = {
7933 	.error_detected	= bnxt_io_error_detected,
7934 	.slot_reset	= bnxt_io_slot_reset,
7935 	.resume		= bnxt_io_resume
7936 };
7937 
7938 static struct pci_driver bnxt_pci_driver = {
7939 	.name		= DRV_MODULE_NAME,
7940 	.id_table	= bnxt_pci_tbl,
7941 	.probe		= bnxt_init_one,
7942 	.remove		= bnxt_remove_one,
7943 	.shutdown	= bnxt_shutdown,
7944 	.driver.pm	= BNXT_PM_OPS,
7945 	.err_handler	= &bnxt_err_handler,
7946 #if defined(CONFIG_BNXT_SRIOV)
7947 	.sriov_configure = bnxt_sriov_configure,
7948 #endif
7949 };
7950 
7951 module_pci_driver(bnxt_pci_driver);
7952