1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 #include <linux/align.h>
60 
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74 
75 #define BNXT_TX_TIMEOUT		(5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
77 				 NETIF_MSG_TX_ERR)
78 
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81 
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85 
86 #define BNXT_TX_PUSH_THRESH 164
87 
88 /* indexed by enum board_idx */
89 static const struct {
90 	char *name;
91 } board_info[] = {
92 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
93 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
94 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
95 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
96 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
97 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
98 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
99 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
100 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
101 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
102 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
103 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
104 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
105 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
106 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
108 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
109 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
110 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
111 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
112 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
113 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
114 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
115 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
116 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
117 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
118 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
119 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
120 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
121 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
123 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
124 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
125 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
126 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
127 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
128 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
130 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
131 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
132 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
133 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
134 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
135 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
136 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
137 };
138 
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
142 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
148 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
160 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
161 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
166 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
167 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
178 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
184 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
185 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
186 #ifdef CONFIG_BNXT_SRIOV
187 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
188 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
190 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
191 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
197 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
202 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
203 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
205 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
207 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
208 #endif
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
213 
214 static const u16 bnxt_vf_req_snif[] = {
215 	HWRM_FUNC_CFG,
216 	HWRM_FUNC_VF_CFG,
217 	HWRM_PORT_PHY_QCFG,
218 	HWRM_CFA_L2_FILTER_ALLOC,
219 };
220 
221 static const u16 bnxt_async_events_arr[] = {
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
229 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
232 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
233 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
234 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
235 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
236 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE,
238 };
239 
240 static struct workqueue_struct *bnxt_pf_wq;
241 
242 static bool bnxt_vf_pciid(enum board_idx idx)
243 {
244 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
245 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
246 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
247 		idx == NETXTREME_E_P5_VF_HV);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
262 		    (db)->doorbell)
263 
264 #define BNXT_DB_CQ_ARM(db, idx)						\
265 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
266 
267 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
268 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
269 		    (db)->doorbell)
270 
271 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
272 {
273 	if (bp->flags & BNXT_FLAG_CHIP_P5)
274 		BNXT_DB_NQ_P5(db, idx);
275 	else
276 		BNXT_DB_CQ(db, idx);
277 }
278 
279 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
280 {
281 	if (bp->flags & BNXT_FLAG_CHIP_P5)
282 		BNXT_DB_NQ_ARM_P5(db, idx);
283 	else
284 		BNXT_DB_CQ_ARM(db, idx);
285 }
286 
287 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
288 {
289 	if (bp->flags & BNXT_FLAG_CHIP_P5)
290 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
291 			    RING_CMP(idx), db->doorbell);
292 	else
293 		BNXT_DB_CQ(db, idx);
294 }
295 
296 const u16 bnxt_lhint_arr[] = {
297 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
298 	TX_BD_FLAGS_LHINT_512_TO_1023,
299 	TX_BD_FLAGS_LHINT_1024_TO_2047,
300 	TX_BD_FLAGS_LHINT_1024_TO_2047,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 };
317 
318 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
319 {
320 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
321 
322 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
323 		return 0;
324 
325 	return md_dst->u.port_info.port_id;
326 }
327 
328 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
329 			     u16 prod)
330 {
331 	bnxt_db_write(bp, &txr->tx_db, prod);
332 	txr->kick_pending = 0;
333 }
334 
335 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
336 					  struct bnxt_tx_ring_info *txr,
337 					  struct netdev_queue *txq)
338 {
339 	netif_tx_stop_queue(txq);
340 
341 	/* netif_tx_stop_queue() must be done before checking
342 	 * tx index in bnxt_tx_avail() below, because in
343 	 * bnxt_tx_int(), we update tx index before checking for
344 	 * netif_tx_queue_stopped().
345 	 */
346 	smp_mb();
347 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
348 		netif_tx_wake_queue(txq);
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct bnxt *bp = netdev_priv(dev);
358 	struct tx_bd *txbd;
359 	struct tx_bd_ext *txbd1;
360 	struct netdev_queue *txq;
361 	int i;
362 	dma_addr_t mapping;
363 	unsigned int length, pad = 0;
364 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
365 	u16 prod, last_frag;
366 	struct pci_dev *pdev = bp->pdev;
367 	struct bnxt_tx_ring_info *txr;
368 	struct bnxt_sw_tx_bd *tx_buf;
369 	__le32 lflags = 0;
370 
371 	i = skb_get_queue_mapping(skb);
372 	if (unlikely(i >= bp->tx_nr_rings)) {
373 		dev_kfree_skb_any(skb);
374 		dev_core_stats_tx_dropped_inc(dev);
375 		return NETDEV_TX_OK;
376 	}
377 
378 	txq = netdev_get_tx_queue(dev, i);
379 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
380 	prod = txr->tx_prod;
381 
382 	free_size = bnxt_tx_avail(bp, txr);
383 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
384 		/* We must have raced with NAPI cleanup */
385 		if (net_ratelimit() && txr->kick_pending)
386 			netif_warn(bp, tx_err, dev,
387 				   "bnxt: ring busy w/ flush pending!\n");
388 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
389 			return NETDEV_TX_BUSY;
390 	}
391 
392 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
393 		goto tx_free;
394 
395 	length = skb->len;
396 	len = skb_headlen(skb);
397 	last_frag = skb_shinfo(skb)->nr_frags;
398 
399 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
400 
401 	txbd->tx_bd_opaque = prod;
402 
403 	tx_buf = &txr->tx_buf_ring[prod];
404 	tx_buf->skb = skb;
405 	tx_buf->nr_frags = last_frag;
406 
407 	vlan_tag_flags = 0;
408 	cfa_action = bnxt_xmit_get_cfa_action(skb);
409 	if (skb_vlan_tag_present(skb)) {
410 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
411 				 skb_vlan_tag_get(skb);
412 		/* Currently supports 8021Q, 8021AD vlan offloads
413 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
414 		 */
415 		if (skb->vlan_proto == htons(ETH_P_8021Q))
416 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
417 	}
418 
419 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
420 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
421 
422 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
423 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
424 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
425 					    &ptp->tx_hdr_off)) {
426 				if (vlan_tag_flags)
427 					ptp->tx_hdr_off += VLAN_HLEN;
428 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
429 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
430 			} else {
431 				atomic_inc(&bp->ptp_cfg->tx_avail);
432 			}
433 		}
434 	}
435 
436 	if (unlikely(skb->no_fcs))
437 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
438 
439 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
440 	    !lflags) {
441 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
442 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
443 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
444 		void __iomem *db = txr->tx_db.doorbell;
445 		void *pdata = tx_push_buf->data;
446 		u64 *end;
447 		int j, push_len;
448 
449 		/* Set COAL_NOW to be ready quickly for the next push */
450 		tx_push->tx_bd_len_flags_type =
451 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
452 					TX_BD_TYPE_LONG_TX_BD |
453 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
454 					TX_BD_FLAGS_COAL_NOW |
455 					TX_BD_FLAGS_PACKET_END |
456 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
457 
458 		if (skb->ip_summed == CHECKSUM_PARTIAL)
459 			tx_push1->tx_bd_hsize_lflags =
460 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
461 		else
462 			tx_push1->tx_bd_hsize_lflags = 0;
463 
464 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
465 		tx_push1->tx_bd_cfa_action =
466 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
467 
468 		end = pdata + length;
469 		end = PTR_ALIGN(end, 8) - 1;
470 		*end = 0;
471 
472 		skb_copy_from_linear_data(skb, pdata, len);
473 		pdata += len;
474 		for (j = 0; j < last_frag; j++) {
475 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
476 			void *fptr;
477 
478 			fptr = skb_frag_address_safe(frag);
479 			if (!fptr)
480 				goto normal_tx;
481 
482 			memcpy(pdata, fptr, skb_frag_size(frag));
483 			pdata += skb_frag_size(frag);
484 		}
485 
486 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
487 		txbd->tx_bd_haddr = txr->data_mapping;
488 		prod = NEXT_TX(prod);
489 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
490 		memcpy(txbd, tx_push1, sizeof(*txbd));
491 		prod = NEXT_TX(prod);
492 		tx_push->doorbell =
493 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
494 		txr->tx_prod = prod;
495 
496 		tx_buf->is_push = 1;
497 		netdev_tx_sent_queue(txq, skb->len);
498 		wmb();	/* Sync is_push and byte queue before pushing data */
499 
500 		push_len = (length + sizeof(*tx_push) + 7) / 8;
501 		if (push_len > 16) {
502 			__iowrite64_copy(db, tx_push_buf, 16);
503 			__iowrite32_copy(db + 4, tx_push_buf + 1,
504 					 (push_len - 16) << 1);
505 		} else {
506 			__iowrite64_copy(db, tx_push_buf, push_len);
507 		}
508 
509 		goto tx_done;
510 	}
511 
512 normal_tx:
513 	if (length < BNXT_MIN_PKT_SIZE) {
514 		pad = BNXT_MIN_PKT_SIZE - length;
515 		if (skb_pad(skb, pad))
516 			/* SKB already freed. */
517 			goto tx_kick_pending;
518 		length = BNXT_MIN_PKT_SIZE;
519 	}
520 
521 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
522 
523 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
524 		goto tx_free;
525 
526 	dma_unmap_addr_set(tx_buf, mapping, mapping);
527 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
528 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
529 
530 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
531 
532 	prod = NEXT_TX(prod);
533 	txbd1 = (struct tx_bd_ext *)
534 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
535 
536 	txbd1->tx_bd_hsize_lflags = lflags;
537 	if (skb_is_gso(skb)) {
538 		u32 hdr_len;
539 
540 		if (skb->encapsulation)
541 			hdr_len = skb_inner_tcp_all_headers(skb);
542 		else
543 			hdr_len = skb_tcp_all_headers(skb);
544 
545 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
546 					TX_BD_FLAGS_T_IPID |
547 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
548 		length = skb_shinfo(skb)->gso_size;
549 		txbd1->tx_bd_mss = cpu_to_le32(length);
550 		length += hdr_len;
551 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
552 		txbd1->tx_bd_hsize_lflags |=
553 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
554 		txbd1->tx_bd_mss = 0;
555 	}
556 
557 	length >>= 9;
558 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
559 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
560 				     skb->len);
561 		i = 0;
562 		goto tx_dma_error;
563 	}
564 	flags |= bnxt_lhint_arr[length];
565 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
566 
567 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
568 	txbd1->tx_bd_cfa_action =
569 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
570 	for (i = 0; i < last_frag; i++) {
571 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
572 
573 		prod = NEXT_TX(prod);
574 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
575 
576 		len = skb_frag_size(frag);
577 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
578 					   DMA_TO_DEVICE);
579 
580 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
581 			goto tx_dma_error;
582 
583 		tx_buf = &txr->tx_buf_ring[prod];
584 		dma_unmap_addr_set(tx_buf, mapping, mapping);
585 
586 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
587 
588 		flags = len << TX_BD_LEN_SHIFT;
589 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
590 	}
591 
592 	flags &= ~TX_BD_LEN;
593 	txbd->tx_bd_len_flags_type =
594 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
595 			    TX_BD_FLAGS_PACKET_END);
596 
597 	netdev_tx_sent_queue(txq, skb->len);
598 
599 	skb_tx_timestamp(skb);
600 
601 	/* Sync BD data before updating doorbell */
602 	wmb();
603 
604 	prod = NEXT_TX(prod);
605 	txr->tx_prod = prod;
606 
607 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
608 		bnxt_txr_db_kick(bp, txr, prod);
609 	else
610 		txr->kick_pending = 1;
611 
612 tx_done:
613 
614 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
615 		if (netdev_xmit_more() && !tx_buf->is_push)
616 			bnxt_txr_db_kick(bp, txr, prod);
617 
618 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
619 	}
620 	return NETDEV_TX_OK;
621 
622 tx_dma_error:
623 	if (BNXT_TX_PTP_IS_SET(lflags))
624 		atomic_inc(&bp->ptp_cfg->tx_avail);
625 
626 	last_frag = i;
627 
628 	/* start back at beginning and unmap skb */
629 	prod = txr->tx_prod;
630 	tx_buf = &txr->tx_buf_ring[prod];
631 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
632 			 skb_headlen(skb), DMA_TO_DEVICE);
633 	prod = NEXT_TX(prod);
634 
635 	/* unmap remaining mapped pages */
636 	for (i = 0; i < last_frag; i++) {
637 		prod = NEXT_TX(prod);
638 		tx_buf = &txr->tx_buf_ring[prod];
639 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
640 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
641 			       DMA_TO_DEVICE);
642 	}
643 
644 tx_free:
645 	dev_kfree_skb_any(skb);
646 tx_kick_pending:
647 	if (txr->kick_pending)
648 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
649 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
650 	dev_core_stats_tx_dropped_inc(dev);
651 	return NETDEV_TX_OK;
652 }
653 
654 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
655 {
656 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
657 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
658 	u16 cons = txr->tx_cons;
659 	struct pci_dev *pdev = bp->pdev;
660 	int i;
661 	unsigned int tx_bytes = 0;
662 
663 	for (i = 0; i < nr_pkts; i++) {
664 		struct bnxt_sw_tx_bd *tx_buf;
665 		struct sk_buff *skb;
666 		int j, last;
667 
668 		tx_buf = &txr->tx_buf_ring[cons];
669 		cons = NEXT_TX(cons);
670 		skb = tx_buf->skb;
671 		tx_buf->skb = NULL;
672 
673 		tx_bytes += skb->len;
674 
675 		if (tx_buf->is_push) {
676 			tx_buf->is_push = 0;
677 			goto next_tx_int;
678 		}
679 
680 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
681 				 skb_headlen(skb), DMA_TO_DEVICE);
682 		last = tx_buf->nr_frags;
683 
684 		for (j = 0; j < last; j++) {
685 			cons = NEXT_TX(cons);
686 			tx_buf = &txr->tx_buf_ring[cons];
687 			dma_unmap_page(
688 				&pdev->dev,
689 				dma_unmap_addr(tx_buf, mapping),
690 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
691 				DMA_TO_DEVICE);
692 		}
693 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
694 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
695 				/* PTP worker takes ownership of the skb */
696 				if (!bnxt_get_tx_ts_p5(bp, skb))
697 					skb = NULL;
698 				else
699 					atomic_inc(&bp->ptp_cfg->tx_avail);
700 			}
701 		}
702 
703 next_tx_int:
704 		cons = NEXT_TX(cons);
705 
706 		dev_kfree_skb_any(skb);
707 	}
708 
709 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
710 	txr->tx_cons = cons;
711 
712 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
713 	 * before checking for netif_tx_queue_stopped().  Without the
714 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
715 	 * will miss it and cause the queue to be stopped forever.
716 	 */
717 	smp_mb();
718 
719 	if (unlikely(netif_tx_queue_stopped(txq)) &&
720 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
721 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
722 		netif_tx_wake_queue(txq);
723 }
724 
725 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
726 					 struct bnxt_rx_ring_info *rxr,
727 					 gfp_t gfp)
728 {
729 	struct device *dev = &bp->pdev->dev;
730 	struct page *page;
731 
732 	page = page_pool_dev_alloc_pages(rxr->page_pool);
733 	if (!page)
734 		return NULL;
735 
736 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
737 				      DMA_ATTR_WEAK_ORDERING);
738 	if (dma_mapping_error(dev, *mapping)) {
739 		page_pool_recycle_direct(rxr->page_pool, page);
740 		return NULL;
741 	}
742 	return page;
743 }
744 
745 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
746 				       gfp_t gfp)
747 {
748 	u8 *data;
749 	struct pci_dev *pdev = bp->pdev;
750 
751 	if (gfp == GFP_ATOMIC)
752 		data = napi_alloc_frag(bp->rx_buf_size);
753 	else
754 		data = netdev_alloc_frag(bp->rx_buf_size);
755 	if (!data)
756 		return NULL;
757 
758 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
759 					bp->rx_buf_use_size, bp->rx_dir,
760 					DMA_ATTR_WEAK_ORDERING);
761 
762 	if (dma_mapping_error(&pdev->dev, *mapping)) {
763 		skb_free_frag(data);
764 		data = NULL;
765 	}
766 	return data;
767 }
768 
769 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
770 		       u16 prod, gfp_t gfp)
771 {
772 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
774 	dma_addr_t mapping;
775 
776 	if (BNXT_RX_PAGE_MODE(bp)) {
777 		struct page *page =
778 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
779 
780 		if (!page)
781 			return -ENOMEM;
782 
783 		mapping += bp->rx_dma_offset;
784 		rx_buf->data = page;
785 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
786 	} else {
787 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
788 
789 		if (!data)
790 			return -ENOMEM;
791 
792 		rx_buf->data = data;
793 		rx_buf->data_ptr = data + bp->rx_offset;
794 	}
795 	rx_buf->mapping = mapping;
796 
797 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
798 	return 0;
799 }
800 
801 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
802 {
803 	u16 prod = rxr->rx_prod;
804 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
805 	struct rx_bd *cons_bd, *prod_bd;
806 
807 	prod_rx_buf = &rxr->rx_buf_ring[prod];
808 	cons_rx_buf = &rxr->rx_buf_ring[cons];
809 
810 	prod_rx_buf->data = data;
811 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
812 
813 	prod_rx_buf->mapping = cons_rx_buf->mapping;
814 
815 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
816 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
817 
818 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
819 }
820 
821 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
822 {
823 	u16 next, max = rxr->rx_agg_bmap_size;
824 
825 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
826 	if (next >= max)
827 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
828 	return next;
829 }
830 
831 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
832 				     struct bnxt_rx_ring_info *rxr,
833 				     u16 prod, gfp_t gfp)
834 {
835 	struct rx_bd *rxbd =
836 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
837 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
838 	struct pci_dev *pdev = bp->pdev;
839 	struct page *page;
840 	dma_addr_t mapping;
841 	u16 sw_prod = rxr->rx_sw_agg_prod;
842 	unsigned int offset = 0;
843 
844 	if (BNXT_RX_PAGE_MODE(bp)) {
845 		page = __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
846 
847 		if (!page)
848 			return -ENOMEM;
849 
850 	} else {
851 		if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
852 			page = rxr->rx_page;
853 			if (!page) {
854 				page = alloc_page(gfp);
855 				if (!page)
856 					return -ENOMEM;
857 				rxr->rx_page = page;
858 				rxr->rx_page_offset = 0;
859 			}
860 			offset = rxr->rx_page_offset;
861 			rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
862 			if (rxr->rx_page_offset == PAGE_SIZE)
863 				rxr->rx_page = NULL;
864 			else
865 				get_page(page);
866 		} else {
867 			page = alloc_page(gfp);
868 			if (!page)
869 				return -ENOMEM;
870 		}
871 
872 		mapping = dma_map_page_attrs(&pdev->dev, page, offset,
873 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
874 					     DMA_ATTR_WEAK_ORDERING);
875 		if (dma_mapping_error(&pdev->dev, mapping)) {
876 			__free_page(page);
877 			return -EIO;
878 		}
879 	}
880 
881 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
882 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
883 
884 	__set_bit(sw_prod, rxr->rx_agg_bmap);
885 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
886 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
887 
888 	rx_agg_buf->page = page;
889 	rx_agg_buf->offset = offset;
890 	rx_agg_buf->mapping = mapping;
891 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
892 	rxbd->rx_bd_opaque = sw_prod;
893 	return 0;
894 }
895 
896 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
897 				       struct bnxt_cp_ring_info *cpr,
898 				       u16 cp_cons, u16 curr)
899 {
900 	struct rx_agg_cmp *agg;
901 
902 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
903 	agg = (struct rx_agg_cmp *)
904 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
905 	return agg;
906 }
907 
908 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
909 					      struct bnxt_rx_ring_info *rxr,
910 					      u16 agg_id, u16 curr)
911 {
912 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
913 
914 	return &tpa_info->agg_arr[curr];
915 }
916 
917 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
918 				   u16 start, u32 agg_bufs, bool tpa)
919 {
920 	struct bnxt_napi *bnapi = cpr->bnapi;
921 	struct bnxt *bp = bnapi->bp;
922 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
923 	u16 prod = rxr->rx_agg_prod;
924 	u16 sw_prod = rxr->rx_sw_agg_prod;
925 	bool p5_tpa = false;
926 	u32 i;
927 
928 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
929 		p5_tpa = true;
930 
931 	for (i = 0; i < agg_bufs; i++) {
932 		u16 cons;
933 		struct rx_agg_cmp *agg;
934 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
935 		struct rx_bd *prod_bd;
936 		struct page *page;
937 
938 		if (p5_tpa)
939 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
940 		else
941 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
942 		cons = agg->rx_agg_cmp_opaque;
943 		__clear_bit(cons, rxr->rx_agg_bmap);
944 
945 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
946 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
947 
948 		__set_bit(sw_prod, rxr->rx_agg_bmap);
949 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
950 		cons_rx_buf = &rxr->rx_agg_ring[cons];
951 
952 		/* It is possible for sw_prod to be equal to cons, so
953 		 * set cons_rx_buf->page to NULL first.
954 		 */
955 		page = cons_rx_buf->page;
956 		cons_rx_buf->page = NULL;
957 		prod_rx_buf->page = page;
958 		prod_rx_buf->offset = cons_rx_buf->offset;
959 
960 		prod_rx_buf->mapping = cons_rx_buf->mapping;
961 
962 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
963 
964 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
965 		prod_bd->rx_bd_opaque = sw_prod;
966 
967 		prod = NEXT_RX_AGG(prod);
968 		sw_prod = NEXT_RX_AGG(sw_prod);
969 	}
970 	rxr->rx_agg_prod = prod;
971 	rxr->rx_sw_agg_prod = sw_prod;
972 }
973 
974 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp,
975 					      struct bnxt_rx_ring_info *rxr,
976 					      u16 cons, void *data, u8 *data_ptr,
977 					      dma_addr_t dma_addr,
978 					      unsigned int offset_and_len)
979 {
980 	unsigned int len = offset_and_len & 0xffff;
981 	struct page *page = data;
982 	u16 prod = rxr->rx_prod;
983 	struct sk_buff *skb;
984 	int err;
985 
986 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
987 	if (unlikely(err)) {
988 		bnxt_reuse_rx_data(rxr, cons, data);
989 		return NULL;
990 	}
991 	dma_addr -= bp->rx_dma_offset;
992 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
993 			     DMA_ATTR_WEAK_ORDERING);
994 	skb = build_skb(page_address(page), PAGE_SIZE);
995 	if (!skb) {
996 		page_pool_recycle_direct(rxr->page_pool, page);
997 		return NULL;
998 	}
999 	skb_mark_for_recycle(skb);
1000 	skb_reserve(skb, bp->rx_dma_offset);
1001 	__skb_put(skb, len);
1002 
1003 	return skb;
1004 }
1005 
1006 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1007 					struct bnxt_rx_ring_info *rxr,
1008 					u16 cons, void *data, u8 *data_ptr,
1009 					dma_addr_t dma_addr,
1010 					unsigned int offset_and_len)
1011 {
1012 	unsigned int payload = offset_and_len >> 16;
1013 	unsigned int len = offset_and_len & 0xffff;
1014 	skb_frag_t *frag;
1015 	struct page *page = data;
1016 	u16 prod = rxr->rx_prod;
1017 	struct sk_buff *skb;
1018 	int off, err;
1019 
1020 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1021 	if (unlikely(err)) {
1022 		bnxt_reuse_rx_data(rxr, cons, data);
1023 		return NULL;
1024 	}
1025 	dma_addr -= bp->rx_dma_offset;
1026 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1027 			     DMA_ATTR_WEAK_ORDERING);
1028 
1029 	if (unlikely(!payload))
1030 		payload = eth_get_headlen(bp->dev, data_ptr, len);
1031 
1032 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1033 	if (!skb) {
1034 		page_pool_recycle_direct(rxr->page_pool, page);
1035 		return NULL;
1036 	}
1037 
1038 	skb_mark_for_recycle(skb);
1039 	off = (void *)data_ptr - page_address(page);
1040 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1041 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1042 	       payload + NET_IP_ALIGN);
1043 
1044 	frag = &skb_shinfo(skb)->frags[0];
1045 	skb_frag_size_sub(frag, payload);
1046 	skb_frag_off_add(frag, payload);
1047 	skb->data_len -= payload;
1048 	skb->tail += payload;
1049 
1050 	return skb;
1051 }
1052 
1053 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1054 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1055 				   void *data, u8 *data_ptr,
1056 				   dma_addr_t dma_addr,
1057 				   unsigned int offset_and_len)
1058 {
1059 	u16 prod = rxr->rx_prod;
1060 	struct sk_buff *skb;
1061 	int err;
1062 
1063 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1064 	if (unlikely(err)) {
1065 		bnxt_reuse_rx_data(rxr, cons, data);
1066 		return NULL;
1067 	}
1068 
1069 	skb = build_skb(data, bp->rx_buf_size);
1070 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1071 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1072 	if (!skb) {
1073 		skb_free_frag(data);
1074 		return NULL;
1075 	}
1076 
1077 	skb_reserve(skb, bp->rx_offset);
1078 	skb_put(skb, offset_and_len & 0xffff);
1079 	return skb;
1080 }
1081 
1082 static u32 __bnxt_rx_agg_pages(struct bnxt *bp,
1083 			       struct bnxt_cp_ring_info *cpr,
1084 			       struct skb_shared_info *shinfo,
1085 			       u16 idx, u32 agg_bufs, bool tpa,
1086 			       struct xdp_buff *xdp)
1087 {
1088 	struct bnxt_napi *bnapi = cpr->bnapi;
1089 	struct pci_dev *pdev = bp->pdev;
1090 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1091 	u16 prod = rxr->rx_agg_prod;
1092 	u32 i, total_frag_len = 0;
1093 	bool p5_tpa = false;
1094 
1095 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1096 		p5_tpa = true;
1097 
1098 	for (i = 0; i < agg_bufs; i++) {
1099 		skb_frag_t *frag = &shinfo->frags[i];
1100 		u16 cons, frag_len;
1101 		struct rx_agg_cmp *agg;
1102 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1103 		struct page *page;
1104 		dma_addr_t mapping;
1105 
1106 		if (p5_tpa)
1107 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1108 		else
1109 			agg = bnxt_get_agg(bp, cpr, idx, i);
1110 		cons = agg->rx_agg_cmp_opaque;
1111 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1112 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1113 
1114 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1115 		skb_frag_off_set(frag, cons_rx_buf->offset);
1116 		skb_frag_size_set(frag, frag_len);
1117 		__skb_frag_set_page(frag, cons_rx_buf->page);
1118 		shinfo->nr_frags = i + 1;
1119 		__clear_bit(cons, rxr->rx_agg_bmap);
1120 
1121 		/* It is possible for bnxt_alloc_rx_page() to allocate
1122 		 * a sw_prod index that equals the cons index, so we
1123 		 * need to clear the cons entry now.
1124 		 */
1125 		mapping = cons_rx_buf->mapping;
1126 		page = cons_rx_buf->page;
1127 		cons_rx_buf->page = NULL;
1128 
1129 		if (xdp && page_is_pfmemalloc(page))
1130 			xdp_buff_set_frag_pfmemalloc(xdp);
1131 
1132 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1133 			unsigned int nr_frags;
1134 
1135 			nr_frags = --shinfo->nr_frags;
1136 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1137 			cons_rx_buf->page = page;
1138 
1139 			/* Update prod since possibly some pages have been
1140 			 * allocated already.
1141 			 */
1142 			rxr->rx_agg_prod = prod;
1143 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1144 			return 0;
1145 		}
1146 
1147 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1148 				     bp->rx_dir,
1149 				     DMA_ATTR_WEAK_ORDERING);
1150 
1151 		total_frag_len += frag_len;
1152 		prod = NEXT_RX_AGG(prod);
1153 	}
1154 	rxr->rx_agg_prod = prod;
1155 	return total_frag_len;
1156 }
1157 
1158 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp,
1159 					     struct bnxt_cp_ring_info *cpr,
1160 					     struct sk_buff *skb, u16 idx,
1161 					     u32 agg_bufs, bool tpa)
1162 {
1163 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1164 	u32 total_frag_len = 0;
1165 
1166 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx,
1167 					     agg_bufs, tpa, NULL);
1168 	if (!total_frag_len) {
1169 		dev_kfree_skb(skb);
1170 		return NULL;
1171 	}
1172 
1173 	skb->data_len += total_frag_len;
1174 	skb->len += total_frag_len;
1175 	skb->truesize += PAGE_SIZE * agg_bufs;
1176 	return skb;
1177 }
1178 
1179 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp,
1180 				 struct bnxt_cp_ring_info *cpr,
1181 				 struct xdp_buff *xdp, u16 idx,
1182 				 u32 agg_bufs, bool tpa)
1183 {
1184 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp);
1185 	u32 total_frag_len = 0;
1186 
1187 	if (!xdp_buff_has_frags(xdp))
1188 		shinfo->nr_frags = 0;
1189 
1190 	total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo,
1191 					     idx, agg_bufs, tpa, xdp);
1192 	if (total_frag_len) {
1193 		xdp_buff_set_frags_flag(xdp);
1194 		shinfo->nr_frags = agg_bufs;
1195 		shinfo->xdp_frags_size = total_frag_len;
1196 	}
1197 	return total_frag_len;
1198 }
1199 
1200 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1201 			       u8 agg_bufs, u32 *raw_cons)
1202 {
1203 	u16 last;
1204 	struct rx_agg_cmp *agg;
1205 
1206 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1207 	last = RING_CMP(*raw_cons);
1208 	agg = (struct rx_agg_cmp *)
1209 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1210 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1211 }
1212 
1213 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1214 					    unsigned int len,
1215 					    dma_addr_t mapping)
1216 {
1217 	struct bnxt *bp = bnapi->bp;
1218 	struct pci_dev *pdev = bp->pdev;
1219 	struct sk_buff *skb;
1220 
1221 	skb = napi_alloc_skb(&bnapi->napi, len);
1222 	if (!skb)
1223 		return NULL;
1224 
1225 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1226 				bp->rx_dir);
1227 
1228 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1229 	       len + NET_IP_ALIGN);
1230 
1231 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1232 				   bp->rx_dir);
1233 
1234 	skb_put(skb, len);
1235 	return skb;
1236 }
1237 
1238 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1239 			   u32 *raw_cons, void *cmp)
1240 {
1241 	struct rx_cmp *rxcmp = cmp;
1242 	u32 tmp_raw_cons = *raw_cons;
1243 	u8 cmp_type, agg_bufs = 0;
1244 
1245 	cmp_type = RX_CMP_TYPE(rxcmp);
1246 
1247 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1248 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1249 			    RX_CMP_AGG_BUFS) >>
1250 			   RX_CMP_AGG_BUFS_SHIFT;
1251 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1252 		struct rx_tpa_end_cmp *tpa_end = cmp;
1253 
1254 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1255 			return 0;
1256 
1257 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1258 	}
1259 
1260 	if (agg_bufs) {
1261 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1262 			return -EBUSY;
1263 	}
1264 	*raw_cons = tmp_raw_cons;
1265 	return 0;
1266 }
1267 
1268 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1269 {
1270 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1271 		return;
1272 
1273 	if (BNXT_PF(bp))
1274 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1275 	else
1276 		schedule_delayed_work(&bp->fw_reset_task, delay);
1277 }
1278 
1279 static void bnxt_queue_sp_work(struct bnxt *bp)
1280 {
1281 	if (BNXT_PF(bp))
1282 		queue_work(bnxt_pf_wq, &bp->sp_task);
1283 	else
1284 		schedule_work(&bp->sp_task);
1285 }
1286 
1287 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1288 {
1289 	if (!rxr->bnapi->in_reset) {
1290 		rxr->bnapi->in_reset = true;
1291 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1292 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1293 		else
1294 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1295 		bnxt_queue_sp_work(bp);
1296 	}
1297 	rxr->rx_next_cons = 0xffff;
1298 }
1299 
1300 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1301 {
1302 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1303 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1304 
1305 	if (test_bit(idx, map->agg_idx_bmap))
1306 		idx = find_first_zero_bit(map->agg_idx_bmap,
1307 					  BNXT_AGG_IDX_BMAP_SIZE);
1308 	__set_bit(idx, map->agg_idx_bmap);
1309 	map->agg_id_tbl[agg_id] = idx;
1310 	return idx;
1311 }
1312 
1313 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1314 {
1315 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1316 
1317 	__clear_bit(idx, map->agg_idx_bmap);
1318 }
1319 
1320 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1321 {
1322 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1323 
1324 	return map->agg_id_tbl[agg_id];
1325 }
1326 
1327 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1328 			   struct rx_tpa_start_cmp *tpa_start,
1329 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1330 {
1331 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1332 	struct bnxt_tpa_info *tpa_info;
1333 	u16 cons, prod, agg_id;
1334 	struct rx_bd *prod_bd;
1335 	dma_addr_t mapping;
1336 
1337 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1338 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1339 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1340 	} else {
1341 		agg_id = TPA_START_AGG_ID(tpa_start);
1342 	}
1343 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1344 	prod = rxr->rx_prod;
1345 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1346 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1347 	tpa_info = &rxr->rx_tpa[agg_id];
1348 
1349 	if (unlikely(cons != rxr->rx_next_cons ||
1350 		     TPA_START_ERROR(tpa_start))) {
1351 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1352 			    cons, rxr->rx_next_cons,
1353 			    TPA_START_ERROR_CODE(tpa_start1));
1354 		bnxt_sched_reset(bp, rxr);
1355 		return;
1356 	}
1357 	/* Store cfa_code in tpa_info to use in tpa_end
1358 	 * completion processing.
1359 	 */
1360 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1361 	prod_rx_buf->data = tpa_info->data;
1362 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1363 
1364 	mapping = tpa_info->mapping;
1365 	prod_rx_buf->mapping = mapping;
1366 
1367 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1368 
1369 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1370 
1371 	tpa_info->data = cons_rx_buf->data;
1372 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1373 	cons_rx_buf->data = NULL;
1374 	tpa_info->mapping = cons_rx_buf->mapping;
1375 
1376 	tpa_info->len =
1377 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1378 				RX_TPA_START_CMP_LEN_SHIFT;
1379 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1380 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1381 
1382 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1383 		tpa_info->gso_type = SKB_GSO_TCPV4;
1384 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1385 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1386 			tpa_info->gso_type = SKB_GSO_TCPV6;
1387 		tpa_info->rss_hash =
1388 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1389 	} else {
1390 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1391 		tpa_info->gso_type = 0;
1392 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1393 	}
1394 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1395 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1396 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1397 	tpa_info->agg_count = 0;
1398 
1399 	rxr->rx_prod = NEXT_RX(prod);
1400 	cons = NEXT_RX(cons);
1401 	rxr->rx_next_cons = NEXT_RX(cons);
1402 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1403 
1404 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1405 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1406 	cons_rx_buf->data = NULL;
1407 }
1408 
1409 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1410 {
1411 	if (agg_bufs)
1412 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1413 }
1414 
1415 #ifdef CONFIG_INET
1416 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1417 {
1418 	struct udphdr *uh = NULL;
1419 
1420 	if (ip_proto == htons(ETH_P_IP)) {
1421 		struct iphdr *iph = (struct iphdr *)skb->data;
1422 
1423 		if (iph->protocol == IPPROTO_UDP)
1424 			uh = (struct udphdr *)(iph + 1);
1425 	} else {
1426 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1427 
1428 		if (iph->nexthdr == IPPROTO_UDP)
1429 			uh = (struct udphdr *)(iph + 1);
1430 	}
1431 	if (uh) {
1432 		if (uh->check)
1433 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1434 		else
1435 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1436 	}
1437 }
1438 #endif
1439 
1440 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1441 					   int payload_off, int tcp_ts,
1442 					   struct sk_buff *skb)
1443 {
1444 #ifdef CONFIG_INET
1445 	struct tcphdr *th;
1446 	int len, nw_off;
1447 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1448 	u32 hdr_info = tpa_info->hdr_info;
1449 	bool loopback = false;
1450 
1451 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1452 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1453 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1454 
1455 	/* If the packet is an internal loopback packet, the offsets will
1456 	 * have an extra 4 bytes.
1457 	 */
1458 	if (inner_mac_off == 4) {
1459 		loopback = true;
1460 	} else if (inner_mac_off > 4) {
1461 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1462 					    ETH_HLEN - 2));
1463 
1464 		/* We only support inner iPv4/ipv6.  If we don't see the
1465 		 * correct protocol ID, it must be a loopback packet where
1466 		 * the offsets are off by 4.
1467 		 */
1468 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1469 			loopback = true;
1470 	}
1471 	if (loopback) {
1472 		/* internal loopback packet, subtract all offsets by 4 */
1473 		inner_ip_off -= 4;
1474 		inner_mac_off -= 4;
1475 		outer_ip_off -= 4;
1476 	}
1477 
1478 	nw_off = inner_ip_off - ETH_HLEN;
1479 	skb_set_network_header(skb, nw_off);
1480 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1481 		struct ipv6hdr *iph = ipv6_hdr(skb);
1482 
1483 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1484 		len = skb->len - skb_transport_offset(skb);
1485 		th = tcp_hdr(skb);
1486 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1487 	} else {
1488 		struct iphdr *iph = ip_hdr(skb);
1489 
1490 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1491 		len = skb->len - skb_transport_offset(skb);
1492 		th = tcp_hdr(skb);
1493 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1494 	}
1495 
1496 	if (inner_mac_off) { /* tunnel */
1497 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1498 					    ETH_HLEN - 2));
1499 
1500 		bnxt_gro_tunnel(skb, proto);
1501 	}
1502 #endif
1503 	return skb;
1504 }
1505 
1506 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1507 					   int payload_off, int tcp_ts,
1508 					   struct sk_buff *skb)
1509 {
1510 #ifdef CONFIG_INET
1511 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1512 	u32 hdr_info = tpa_info->hdr_info;
1513 	int iphdr_len, nw_off;
1514 
1515 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1516 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1517 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1518 
1519 	nw_off = inner_ip_off - ETH_HLEN;
1520 	skb_set_network_header(skb, nw_off);
1521 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1522 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1523 	skb_set_transport_header(skb, nw_off + iphdr_len);
1524 
1525 	if (inner_mac_off) { /* tunnel */
1526 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1527 					    ETH_HLEN - 2));
1528 
1529 		bnxt_gro_tunnel(skb, proto);
1530 	}
1531 #endif
1532 	return skb;
1533 }
1534 
1535 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1536 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1537 
1538 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1539 					   int payload_off, int tcp_ts,
1540 					   struct sk_buff *skb)
1541 {
1542 #ifdef CONFIG_INET
1543 	struct tcphdr *th;
1544 	int len, nw_off, tcp_opt_len = 0;
1545 
1546 	if (tcp_ts)
1547 		tcp_opt_len = 12;
1548 
1549 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1550 		struct iphdr *iph;
1551 
1552 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1553 			 ETH_HLEN;
1554 		skb_set_network_header(skb, nw_off);
1555 		iph = ip_hdr(skb);
1556 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1557 		len = skb->len - skb_transport_offset(skb);
1558 		th = tcp_hdr(skb);
1559 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1560 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1561 		struct ipv6hdr *iph;
1562 
1563 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1564 			 ETH_HLEN;
1565 		skb_set_network_header(skb, nw_off);
1566 		iph = ipv6_hdr(skb);
1567 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1568 		len = skb->len - skb_transport_offset(skb);
1569 		th = tcp_hdr(skb);
1570 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1571 	} else {
1572 		dev_kfree_skb_any(skb);
1573 		return NULL;
1574 	}
1575 
1576 	if (nw_off) /* tunnel */
1577 		bnxt_gro_tunnel(skb, skb->protocol);
1578 #endif
1579 	return skb;
1580 }
1581 
1582 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1583 					   struct bnxt_tpa_info *tpa_info,
1584 					   struct rx_tpa_end_cmp *tpa_end,
1585 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1586 					   struct sk_buff *skb)
1587 {
1588 #ifdef CONFIG_INET
1589 	int payload_off;
1590 	u16 segs;
1591 
1592 	segs = TPA_END_TPA_SEGS(tpa_end);
1593 	if (segs == 1)
1594 		return skb;
1595 
1596 	NAPI_GRO_CB(skb)->count = segs;
1597 	skb_shinfo(skb)->gso_size =
1598 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1599 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1600 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1601 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1602 	else
1603 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1604 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1605 	if (likely(skb))
1606 		tcp_gro_complete(skb);
1607 #endif
1608 	return skb;
1609 }
1610 
1611 /* Given the cfa_code of a received packet determine which
1612  * netdev (vf-rep or PF) the packet is destined to.
1613  */
1614 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1615 {
1616 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1617 
1618 	/* if vf-rep dev is NULL, the must belongs to the PF */
1619 	return dev ? dev : bp->dev;
1620 }
1621 
1622 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1623 					   struct bnxt_cp_ring_info *cpr,
1624 					   u32 *raw_cons,
1625 					   struct rx_tpa_end_cmp *tpa_end,
1626 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1627 					   u8 *event)
1628 {
1629 	struct bnxt_napi *bnapi = cpr->bnapi;
1630 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1631 	u8 *data_ptr, agg_bufs;
1632 	unsigned int len;
1633 	struct bnxt_tpa_info *tpa_info;
1634 	dma_addr_t mapping;
1635 	struct sk_buff *skb;
1636 	u16 idx = 0, agg_id;
1637 	void *data;
1638 	bool gro;
1639 
1640 	if (unlikely(bnapi->in_reset)) {
1641 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1642 
1643 		if (rc < 0)
1644 			return ERR_PTR(-EBUSY);
1645 		return NULL;
1646 	}
1647 
1648 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1649 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1650 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1651 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1652 		tpa_info = &rxr->rx_tpa[agg_id];
1653 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1654 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1655 				    agg_bufs, tpa_info->agg_count);
1656 			agg_bufs = tpa_info->agg_count;
1657 		}
1658 		tpa_info->agg_count = 0;
1659 		*event |= BNXT_AGG_EVENT;
1660 		bnxt_free_agg_idx(rxr, agg_id);
1661 		idx = agg_id;
1662 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1663 	} else {
1664 		agg_id = TPA_END_AGG_ID(tpa_end);
1665 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1666 		tpa_info = &rxr->rx_tpa[agg_id];
1667 		idx = RING_CMP(*raw_cons);
1668 		if (agg_bufs) {
1669 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1670 				return ERR_PTR(-EBUSY);
1671 
1672 			*event |= BNXT_AGG_EVENT;
1673 			idx = NEXT_CMP(idx);
1674 		}
1675 		gro = !!TPA_END_GRO(tpa_end);
1676 	}
1677 	data = tpa_info->data;
1678 	data_ptr = tpa_info->data_ptr;
1679 	prefetch(data_ptr);
1680 	len = tpa_info->len;
1681 	mapping = tpa_info->mapping;
1682 
1683 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1684 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1685 		if (agg_bufs > MAX_SKB_FRAGS)
1686 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1687 				    agg_bufs, (int)MAX_SKB_FRAGS);
1688 		return NULL;
1689 	}
1690 
1691 	if (len <= bp->rx_copy_thresh) {
1692 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1693 		if (!skb) {
1694 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1695 			cpr->sw_stats.rx.rx_oom_discards += 1;
1696 			return NULL;
1697 		}
1698 	} else {
1699 		u8 *new_data;
1700 		dma_addr_t new_mapping;
1701 
1702 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1703 		if (!new_data) {
1704 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1705 			cpr->sw_stats.rx.rx_oom_discards += 1;
1706 			return NULL;
1707 		}
1708 
1709 		tpa_info->data = new_data;
1710 		tpa_info->data_ptr = new_data + bp->rx_offset;
1711 		tpa_info->mapping = new_mapping;
1712 
1713 		skb = build_skb(data, bp->rx_buf_size);
1714 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1715 				       bp->rx_buf_use_size, bp->rx_dir,
1716 				       DMA_ATTR_WEAK_ORDERING);
1717 
1718 		if (!skb) {
1719 			skb_free_frag(data);
1720 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1721 			cpr->sw_stats.rx.rx_oom_discards += 1;
1722 			return NULL;
1723 		}
1724 		skb_reserve(skb, bp->rx_offset);
1725 		skb_put(skb, len);
1726 	}
1727 
1728 	if (agg_bufs) {
1729 		skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true);
1730 		if (!skb) {
1731 			/* Page reuse already handled by bnxt_rx_pages(). */
1732 			cpr->sw_stats.rx.rx_oom_discards += 1;
1733 			return NULL;
1734 		}
1735 	}
1736 
1737 	skb->protocol =
1738 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1739 
1740 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1741 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1742 
1743 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1744 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1745 		__be16 vlan_proto = htons(tpa_info->metadata >>
1746 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1747 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1748 
1749 		if (eth_type_vlan(vlan_proto)) {
1750 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1751 		} else {
1752 			dev_kfree_skb(skb);
1753 			return NULL;
1754 		}
1755 	}
1756 
1757 	skb_checksum_none_assert(skb);
1758 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1759 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1760 		skb->csum_level =
1761 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1762 	}
1763 
1764 	if (gro)
1765 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1766 
1767 	return skb;
1768 }
1769 
1770 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1771 			 struct rx_agg_cmp *rx_agg)
1772 {
1773 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1774 	struct bnxt_tpa_info *tpa_info;
1775 
1776 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1777 	tpa_info = &rxr->rx_tpa[agg_id];
1778 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1779 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1780 }
1781 
1782 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1783 			     struct sk_buff *skb)
1784 {
1785 	if (skb->dev != bp->dev) {
1786 		/* this packet belongs to a vf-rep */
1787 		bnxt_vf_rep_rx(bp, skb);
1788 		return;
1789 	}
1790 	skb_record_rx_queue(skb, bnapi->index);
1791 	napi_gro_receive(&bnapi->napi, skb);
1792 }
1793 
1794 /* returns the following:
1795  * 1       - 1 packet successfully received
1796  * 0       - successful TPA_START, packet not completed yet
1797  * -EBUSY  - completion ring does not have all the agg buffers yet
1798  * -ENOMEM - packet aborted due to out of memory
1799  * -EIO    - packet aborted due to hw error indicated in BD
1800  */
1801 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1802 		       u32 *raw_cons, u8 *event)
1803 {
1804 	struct bnxt_napi *bnapi = cpr->bnapi;
1805 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1806 	struct net_device *dev = bp->dev;
1807 	struct rx_cmp *rxcmp;
1808 	struct rx_cmp_ext *rxcmp1;
1809 	u32 tmp_raw_cons = *raw_cons;
1810 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1811 	struct bnxt_sw_rx_bd *rx_buf;
1812 	unsigned int len;
1813 	u8 *data_ptr, agg_bufs, cmp_type;
1814 	bool xdp_active = false;
1815 	dma_addr_t dma_addr;
1816 	struct sk_buff *skb;
1817 	struct xdp_buff xdp;
1818 	u32 flags, misc;
1819 	void *data;
1820 	int rc = 0;
1821 
1822 	rxcmp = (struct rx_cmp *)
1823 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1824 
1825 	cmp_type = RX_CMP_TYPE(rxcmp);
1826 
1827 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1828 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1829 		goto next_rx_no_prod_no_len;
1830 	}
1831 
1832 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1833 	cp_cons = RING_CMP(tmp_raw_cons);
1834 	rxcmp1 = (struct rx_cmp_ext *)
1835 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1836 
1837 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1838 		return -EBUSY;
1839 
1840 	/* The valid test of the entry must be done first before
1841 	 * reading any further.
1842 	 */
1843 	dma_rmb();
1844 	prod = rxr->rx_prod;
1845 
1846 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1847 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1848 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1849 
1850 		*event |= BNXT_RX_EVENT;
1851 		goto next_rx_no_prod_no_len;
1852 
1853 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1854 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1855 				   (struct rx_tpa_end_cmp *)rxcmp,
1856 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1857 
1858 		if (IS_ERR(skb))
1859 			return -EBUSY;
1860 
1861 		rc = -ENOMEM;
1862 		if (likely(skb)) {
1863 			bnxt_deliver_skb(bp, bnapi, skb);
1864 			rc = 1;
1865 		}
1866 		*event |= BNXT_RX_EVENT;
1867 		goto next_rx_no_prod_no_len;
1868 	}
1869 
1870 	cons = rxcmp->rx_cmp_opaque;
1871 	if (unlikely(cons != rxr->rx_next_cons)) {
1872 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1873 
1874 		/* 0xffff is forced error, don't print it */
1875 		if (rxr->rx_next_cons != 0xffff)
1876 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1877 				    cons, rxr->rx_next_cons);
1878 		bnxt_sched_reset(bp, rxr);
1879 		if (rc1)
1880 			return rc1;
1881 		goto next_rx_no_prod_no_len;
1882 	}
1883 	rx_buf = &rxr->rx_buf_ring[cons];
1884 	data = rx_buf->data;
1885 	data_ptr = rx_buf->data_ptr;
1886 	prefetch(data_ptr);
1887 
1888 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1889 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1890 
1891 	if (agg_bufs) {
1892 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1893 			return -EBUSY;
1894 
1895 		cp_cons = NEXT_CMP(cp_cons);
1896 		*event |= BNXT_AGG_EVENT;
1897 	}
1898 	*event |= BNXT_RX_EVENT;
1899 
1900 	rx_buf->data = NULL;
1901 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1902 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1903 
1904 		bnxt_reuse_rx_data(rxr, cons, data);
1905 		if (agg_bufs)
1906 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1907 					       false);
1908 
1909 		rc = -EIO;
1910 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1911 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1912 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1913 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1914 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1915 						 rx_err);
1916 				bnxt_sched_reset(bp, rxr);
1917 			}
1918 		}
1919 		goto next_rx_no_len;
1920 	}
1921 
1922 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1923 	len = flags >> RX_CMP_LEN_SHIFT;
1924 	dma_addr = rx_buf->mapping;
1925 
1926 	if (bnxt_xdp_attached(bp, rxr)) {
1927 		bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp);
1928 		if (agg_bufs) {
1929 			u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp,
1930 							     cp_cons, agg_bufs,
1931 							     false);
1932 			if (!frag_len) {
1933 				cpr->sw_stats.rx.rx_oom_discards += 1;
1934 				rc = -ENOMEM;
1935 				goto next_rx;
1936 			}
1937 		}
1938 		xdp_active = true;
1939 	}
1940 
1941 	if (xdp_active) {
1942 		if (bnxt_rx_xdp(bp, rxr, cons, xdp, data, &data_ptr, &len, event)) {
1943 			rc = 1;
1944 			goto next_rx;
1945 		}
1946 	}
1947 
1948 	if (len <= bp->rx_copy_thresh) {
1949 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1950 		bnxt_reuse_rx_data(rxr, cons, data);
1951 		if (!skb) {
1952 			if (agg_bufs) {
1953 				if (!xdp_active)
1954 					bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1955 							       agg_bufs, false);
1956 				else
1957 					bnxt_xdp_buff_frags_free(rxr, &xdp);
1958 			}
1959 			cpr->sw_stats.rx.rx_oom_discards += 1;
1960 			rc = -ENOMEM;
1961 			goto next_rx;
1962 		}
1963 	} else {
1964 		u32 payload;
1965 
1966 		if (rx_buf->data_ptr == data_ptr)
1967 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1968 		else
1969 			payload = 0;
1970 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1971 				      payload | len);
1972 		if (!skb) {
1973 			cpr->sw_stats.rx.rx_oom_discards += 1;
1974 			rc = -ENOMEM;
1975 			goto next_rx;
1976 		}
1977 	}
1978 
1979 	if (agg_bufs) {
1980 		if (!xdp_active) {
1981 			skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false);
1982 			if (!skb) {
1983 				cpr->sw_stats.rx.rx_oom_discards += 1;
1984 				rc = -ENOMEM;
1985 				goto next_rx;
1986 			}
1987 		} else {
1988 			skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1);
1989 			if (!skb) {
1990 				/* we should be able to free the old skb here */
1991 				bnxt_xdp_buff_frags_free(rxr, &xdp);
1992 				cpr->sw_stats.rx.rx_oom_discards += 1;
1993 				rc = -ENOMEM;
1994 				goto next_rx;
1995 			}
1996 		}
1997 	}
1998 
1999 	if (RX_CMP_HASH_VALID(rxcmp)) {
2000 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
2001 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
2002 
2003 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
2004 		if (hash_type != 1 && hash_type != 3)
2005 			type = PKT_HASH_TYPE_L3;
2006 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
2007 	}
2008 
2009 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
2010 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
2011 
2012 	if ((rxcmp1->rx_cmp_flags2 &
2013 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
2014 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
2015 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
2016 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
2017 		__be16 vlan_proto = htons(meta_data >>
2018 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
2019 
2020 		if (eth_type_vlan(vlan_proto)) {
2021 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
2022 		} else {
2023 			dev_kfree_skb(skb);
2024 			goto next_rx;
2025 		}
2026 	}
2027 
2028 	skb_checksum_none_assert(skb);
2029 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
2030 		if (dev->features & NETIF_F_RXCSUM) {
2031 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2032 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
2033 		}
2034 	} else {
2035 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
2036 			if (dev->features & NETIF_F_RXCSUM)
2037 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
2038 		}
2039 	}
2040 
2041 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
2042 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS) || bp->ptp_all_rx_tstamp) {
2043 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
2044 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
2045 			u64 ns, ts;
2046 
2047 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
2048 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2049 
2050 				spin_lock_bh(&ptp->ptp_lock);
2051 				ns = timecounter_cyc2time(&ptp->tc, ts);
2052 				spin_unlock_bh(&ptp->ptp_lock);
2053 				memset(skb_hwtstamps(skb), 0,
2054 				       sizeof(*skb_hwtstamps(skb)));
2055 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
2056 			}
2057 		}
2058 	}
2059 	bnxt_deliver_skb(bp, bnapi, skb);
2060 	rc = 1;
2061 
2062 next_rx:
2063 	cpr->rx_packets += 1;
2064 	cpr->rx_bytes += len;
2065 
2066 next_rx_no_len:
2067 	rxr->rx_prod = NEXT_RX(prod);
2068 	rxr->rx_next_cons = NEXT_RX(cons);
2069 
2070 next_rx_no_prod_no_len:
2071 	*raw_cons = tmp_raw_cons;
2072 
2073 	return rc;
2074 }
2075 
2076 /* In netpoll mode, if we are using a combined completion ring, we need to
2077  * discard the rx packets and recycle the buffers.
2078  */
2079 static int bnxt_force_rx_discard(struct bnxt *bp,
2080 				 struct bnxt_cp_ring_info *cpr,
2081 				 u32 *raw_cons, u8 *event)
2082 {
2083 	u32 tmp_raw_cons = *raw_cons;
2084 	struct rx_cmp_ext *rxcmp1;
2085 	struct rx_cmp *rxcmp;
2086 	u16 cp_cons;
2087 	u8 cmp_type;
2088 	int rc;
2089 
2090 	cp_cons = RING_CMP(tmp_raw_cons);
2091 	rxcmp = (struct rx_cmp *)
2092 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2093 
2094 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2095 	cp_cons = RING_CMP(tmp_raw_cons);
2096 	rxcmp1 = (struct rx_cmp_ext *)
2097 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2098 
2099 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2100 		return -EBUSY;
2101 
2102 	/* The valid test of the entry must be done first before
2103 	 * reading any further.
2104 	 */
2105 	dma_rmb();
2106 	cmp_type = RX_CMP_TYPE(rxcmp);
2107 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2108 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2109 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2110 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2111 		struct rx_tpa_end_cmp_ext *tpa_end1;
2112 
2113 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2114 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2115 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2116 	}
2117 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2118 	if (rc && rc != -EBUSY)
2119 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2120 	return rc;
2121 }
2122 
2123 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2124 {
2125 	struct bnxt_fw_health *fw_health = bp->fw_health;
2126 	u32 reg = fw_health->regs[reg_idx];
2127 	u32 reg_type, reg_off, val = 0;
2128 
2129 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2130 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2131 	switch (reg_type) {
2132 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2133 		pci_read_config_dword(bp->pdev, reg_off, &val);
2134 		break;
2135 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2136 		reg_off = fw_health->mapped_regs[reg_idx];
2137 		fallthrough;
2138 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2139 		val = readl(bp->bar0 + reg_off);
2140 		break;
2141 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2142 		val = readl(bp->bar1 + reg_off);
2143 		break;
2144 	}
2145 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2146 		val &= fw_health->fw_reset_inprog_reg_mask;
2147 	return val;
2148 }
2149 
2150 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2151 {
2152 	int i;
2153 
2154 	for (i = 0; i < bp->rx_nr_rings; i++) {
2155 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2156 		struct bnxt_ring_grp_info *grp_info;
2157 
2158 		grp_info = &bp->grp_info[grp_idx];
2159 		if (grp_info->agg_fw_ring_id == ring_id)
2160 			return grp_idx;
2161 	}
2162 	return INVALID_HW_RING_ID;
2163 }
2164 
2165 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2166 {
2167 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2168 
2169 	switch (err_type) {
2170 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2171 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2172 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2173 		break;
2174 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2175 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2176 		break;
2177 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2178 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2179 		break;
2180 	default:
2181 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2182 			   err_type);
2183 		break;
2184 	}
2185 }
2186 
2187 #define BNXT_GET_EVENT_PORT(data)	\
2188 	((data) &			\
2189 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2190 
2191 #define BNXT_EVENT_RING_TYPE(data2)	\
2192 	((data2) &			\
2193 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2194 
2195 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2196 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2197 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2198 
2199 #define BNXT_EVENT_PHC_EVENT_TYPE(data1)	\
2200 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\
2201 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT)
2202 
2203 #define BNXT_EVENT_PHC_RTC_UPDATE(data1)	\
2204 	(((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\
2205 	 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT)
2206 
2207 #define BNXT_PHC_BITS	48
2208 
2209 static int bnxt_async_event_process(struct bnxt *bp,
2210 				    struct hwrm_async_event_cmpl *cmpl)
2211 {
2212 	u16 event_id = le16_to_cpu(cmpl->event_id);
2213 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2214 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2215 
2216 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2217 		   event_id, data1, data2);
2218 
2219 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2220 	switch (event_id) {
2221 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2222 		struct bnxt_link_info *link_info = &bp->link_info;
2223 
2224 		if (BNXT_VF(bp))
2225 			goto async_event_process_exit;
2226 
2227 		/* print unsupported speed warning in forced speed mode only */
2228 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2229 		    (data1 & 0x20000)) {
2230 			u16 fw_speed = link_info->force_link_speed;
2231 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2232 
2233 			if (speed != SPEED_UNKNOWN)
2234 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2235 					    speed);
2236 		}
2237 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2238 	}
2239 		fallthrough;
2240 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2241 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2242 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2243 		fallthrough;
2244 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2245 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2246 		break;
2247 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2248 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2249 		break;
2250 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2251 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2252 
2253 		if (BNXT_VF(bp))
2254 			break;
2255 
2256 		if (bp->pf.port_id != port_id)
2257 			break;
2258 
2259 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2260 		break;
2261 	}
2262 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2263 		if (BNXT_PF(bp))
2264 			goto async_event_process_exit;
2265 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2266 		break;
2267 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2268 		char *type_str = "Solicited";
2269 
2270 		if (!bp->fw_health)
2271 			goto async_event_process_exit;
2272 
2273 		bp->fw_reset_timestamp = jiffies;
2274 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2275 		if (!bp->fw_reset_min_dsecs)
2276 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2277 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2278 		if (!bp->fw_reset_max_dsecs)
2279 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2280 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2281 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2282 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2283 			type_str = "Fatal";
2284 			bp->fw_health->fatalities++;
2285 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2286 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2287 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2288 			type_str = "Non-fatal";
2289 			bp->fw_health->survivals++;
2290 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2291 		}
2292 		netif_warn(bp, hw, bp->dev,
2293 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2294 			   type_str, data1, data2,
2295 			   bp->fw_reset_min_dsecs * 100,
2296 			   bp->fw_reset_max_dsecs * 100);
2297 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2298 		break;
2299 	}
2300 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2301 		struct bnxt_fw_health *fw_health = bp->fw_health;
2302 		char *status_desc = "healthy";
2303 		u32 status;
2304 
2305 		if (!fw_health)
2306 			goto async_event_process_exit;
2307 
2308 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2309 			fw_health->enabled = false;
2310 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2311 			break;
2312 		}
2313 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2314 		fw_health->tmr_multiplier =
2315 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2316 				     bp->current_interval * 10);
2317 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2318 		if (!fw_health->enabled)
2319 			fw_health->last_fw_heartbeat =
2320 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2321 		fw_health->last_fw_reset_cnt =
2322 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2323 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2324 		if (status != BNXT_FW_STATUS_HEALTHY)
2325 			status_desc = "unhealthy";
2326 		netif_info(bp, drv, bp->dev,
2327 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2328 			   fw_health->primary ? "primary" : "backup", status,
2329 			   status_desc, fw_health->last_fw_reset_cnt);
2330 		if (!fw_health->enabled) {
2331 			/* Make sure tmr_counter is set and visible to
2332 			 * bnxt_health_check() before setting enabled to true.
2333 			 */
2334 			smp_wmb();
2335 			fw_health->enabled = true;
2336 		}
2337 		goto async_event_process_exit;
2338 	}
2339 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2340 		netif_notice(bp, hw, bp->dev,
2341 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2342 			     data1, data2);
2343 		goto async_event_process_exit;
2344 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2345 		struct bnxt_rx_ring_info *rxr;
2346 		u16 grp_idx;
2347 
2348 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2349 			goto async_event_process_exit;
2350 
2351 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2352 			    BNXT_EVENT_RING_TYPE(data2), data1);
2353 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2354 			goto async_event_process_exit;
2355 
2356 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2357 		if (grp_idx == INVALID_HW_RING_ID) {
2358 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2359 				    data1);
2360 			goto async_event_process_exit;
2361 		}
2362 		rxr = bp->bnapi[grp_idx]->rx_ring;
2363 		bnxt_sched_reset(bp, rxr);
2364 		goto async_event_process_exit;
2365 	}
2366 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2367 		struct bnxt_fw_health *fw_health = bp->fw_health;
2368 
2369 		netif_notice(bp, hw, bp->dev,
2370 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2371 			     data1, data2);
2372 		if (fw_health) {
2373 			fw_health->echo_req_data1 = data1;
2374 			fw_health->echo_req_data2 = data2;
2375 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2376 			break;
2377 		}
2378 		goto async_event_process_exit;
2379 	}
2380 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2381 		bnxt_ptp_pps_event(bp, data1, data2);
2382 		goto async_event_process_exit;
2383 	}
2384 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2385 		bnxt_event_error_report(bp, data1, data2);
2386 		goto async_event_process_exit;
2387 	}
2388 	case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: {
2389 		switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) {
2390 		case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE:
2391 			if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC) {
2392 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2393 				u64 ns;
2394 
2395 				spin_lock_bh(&ptp->ptp_lock);
2396 				bnxt_ptp_update_current_time(bp);
2397 				ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) <<
2398 				       BNXT_PHC_BITS) | ptp->current_time);
2399 				bnxt_ptp_rtc_timecounter_init(ptp, ns);
2400 				spin_unlock_bh(&ptp->ptp_lock);
2401 			}
2402 			break;
2403 		}
2404 		goto async_event_process_exit;
2405 	}
2406 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2407 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2408 
2409 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2410 		goto async_event_process_exit;
2411 	}
2412 	default:
2413 		goto async_event_process_exit;
2414 	}
2415 	bnxt_queue_sp_work(bp);
2416 async_event_process_exit:
2417 	return 0;
2418 }
2419 
2420 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2421 {
2422 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2423 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2424 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2425 				(struct hwrm_fwd_req_cmpl *)txcmp;
2426 
2427 	switch (cmpl_type) {
2428 	case CMPL_BASE_TYPE_HWRM_DONE:
2429 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2430 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2431 		break;
2432 
2433 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2434 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2435 
2436 		if ((vf_id < bp->pf.first_vf_id) ||
2437 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2438 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2439 				   vf_id);
2440 			return -EINVAL;
2441 		}
2442 
2443 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2444 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2445 		bnxt_queue_sp_work(bp);
2446 		break;
2447 
2448 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2449 		bnxt_async_event_process(bp,
2450 					 (struct hwrm_async_event_cmpl *)txcmp);
2451 		break;
2452 
2453 	default:
2454 		break;
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2461 {
2462 	struct bnxt_napi *bnapi = dev_instance;
2463 	struct bnxt *bp = bnapi->bp;
2464 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2465 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2466 
2467 	cpr->event_ctr++;
2468 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2469 	napi_schedule(&bnapi->napi);
2470 	return IRQ_HANDLED;
2471 }
2472 
2473 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2474 {
2475 	u32 raw_cons = cpr->cp_raw_cons;
2476 	u16 cons = RING_CMP(raw_cons);
2477 	struct tx_cmp *txcmp;
2478 
2479 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2480 
2481 	return TX_CMP_VALID(txcmp, raw_cons);
2482 }
2483 
2484 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2485 {
2486 	struct bnxt_napi *bnapi = dev_instance;
2487 	struct bnxt *bp = bnapi->bp;
2488 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2489 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2490 	u32 int_status;
2491 
2492 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2493 
2494 	if (!bnxt_has_work(bp, cpr)) {
2495 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2496 		/* return if erroneous interrupt */
2497 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2498 			return IRQ_NONE;
2499 	}
2500 
2501 	/* disable ring IRQ */
2502 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2503 
2504 	/* Return here if interrupt is shared and is disabled. */
2505 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2506 		return IRQ_HANDLED;
2507 
2508 	napi_schedule(&bnapi->napi);
2509 	return IRQ_HANDLED;
2510 }
2511 
2512 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2513 			    int budget)
2514 {
2515 	struct bnxt_napi *bnapi = cpr->bnapi;
2516 	u32 raw_cons = cpr->cp_raw_cons;
2517 	u32 cons;
2518 	int tx_pkts = 0;
2519 	int rx_pkts = 0;
2520 	u8 event = 0;
2521 	struct tx_cmp *txcmp;
2522 
2523 	cpr->has_more_work = 0;
2524 	cpr->had_work_done = 1;
2525 	while (1) {
2526 		int rc;
2527 
2528 		cons = RING_CMP(raw_cons);
2529 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2530 
2531 		if (!TX_CMP_VALID(txcmp, raw_cons))
2532 			break;
2533 
2534 		/* The valid test of the entry must be done first before
2535 		 * reading any further.
2536 		 */
2537 		dma_rmb();
2538 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2539 			tx_pkts++;
2540 			/* return full budget so NAPI will complete. */
2541 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2542 				rx_pkts = budget;
2543 				raw_cons = NEXT_RAW_CMP(raw_cons);
2544 				if (budget)
2545 					cpr->has_more_work = 1;
2546 				break;
2547 			}
2548 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2549 			if (likely(budget))
2550 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2551 			else
2552 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2553 							   &event);
2554 			if (likely(rc >= 0))
2555 				rx_pkts += rc;
2556 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2557 			 * the NAPI budget.  Otherwise, we may potentially loop
2558 			 * here forever if we consistently cannot allocate
2559 			 * buffers.
2560 			 */
2561 			else if (rc == -ENOMEM && budget)
2562 				rx_pkts++;
2563 			else if (rc == -EBUSY)	/* partial completion */
2564 				break;
2565 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2566 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2567 				    (TX_CMP_TYPE(txcmp) ==
2568 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2569 				    (TX_CMP_TYPE(txcmp) ==
2570 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2571 			bnxt_hwrm_handler(bp, txcmp);
2572 		}
2573 		raw_cons = NEXT_RAW_CMP(raw_cons);
2574 
2575 		if (rx_pkts && rx_pkts == budget) {
2576 			cpr->has_more_work = 1;
2577 			break;
2578 		}
2579 	}
2580 
2581 	if (event & BNXT_REDIRECT_EVENT)
2582 		xdp_do_flush();
2583 
2584 	if (event & BNXT_TX_EVENT) {
2585 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2586 		u16 prod = txr->tx_prod;
2587 
2588 		/* Sync BD data before updating doorbell */
2589 		wmb();
2590 
2591 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2592 	}
2593 
2594 	cpr->cp_raw_cons = raw_cons;
2595 	bnapi->tx_pkts += tx_pkts;
2596 	bnapi->events |= event;
2597 	return rx_pkts;
2598 }
2599 
2600 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2601 {
2602 	if (bnapi->tx_pkts) {
2603 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2604 		bnapi->tx_pkts = 0;
2605 	}
2606 
2607 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2608 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2609 
2610 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2611 	}
2612 	if (bnapi->events & BNXT_AGG_EVENT) {
2613 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2614 
2615 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2616 	}
2617 	bnapi->events = 0;
2618 }
2619 
2620 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2621 			  int budget)
2622 {
2623 	struct bnxt_napi *bnapi = cpr->bnapi;
2624 	int rx_pkts;
2625 
2626 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2627 
2628 	/* ACK completion ring before freeing tx ring and producing new
2629 	 * buffers in rx/agg rings to prevent overflowing the completion
2630 	 * ring.
2631 	 */
2632 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2633 
2634 	__bnxt_poll_work_done(bp, bnapi);
2635 	return rx_pkts;
2636 }
2637 
2638 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2639 {
2640 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2641 	struct bnxt *bp = bnapi->bp;
2642 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2643 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2644 	struct tx_cmp *txcmp;
2645 	struct rx_cmp_ext *rxcmp1;
2646 	u32 cp_cons, tmp_raw_cons;
2647 	u32 raw_cons = cpr->cp_raw_cons;
2648 	u32 rx_pkts = 0;
2649 	u8 event = 0;
2650 
2651 	while (1) {
2652 		int rc;
2653 
2654 		cp_cons = RING_CMP(raw_cons);
2655 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2656 
2657 		if (!TX_CMP_VALID(txcmp, raw_cons))
2658 			break;
2659 
2660 		/* The valid test of the entry must be done first before
2661 		 * reading any further.
2662 		 */
2663 		dma_rmb();
2664 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2665 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2666 			cp_cons = RING_CMP(tmp_raw_cons);
2667 			rxcmp1 = (struct rx_cmp_ext *)
2668 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2669 
2670 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2671 				break;
2672 
2673 			/* force an error to recycle the buffer */
2674 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2675 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2676 
2677 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2678 			if (likely(rc == -EIO) && budget)
2679 				rx_pkts++;
2680 			else if (rc == -EBUSY)	/* partial completion */
2681 				break;
2682 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2683 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2684 			bnxt_hwrm_handler(bp, txcmp);
2685 		} else {
2686 			netdev_err(bp->dev,
2687 				   "Invalid completion received on special ring\n");
2688 		}
2689 		raw_cons = NEXT_RAW_CMP(raw_cons);
2690 
2691 		if (rx_pkts == budget)
2692 			break;
2693 	}
2694 
2695 	cpr->cp_raw_cons = raw_cons;
2696 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2697 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2698 
2699 	if (event & BNXT_AGG_EVENT)
2700 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2701 
2702 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2703 		napi_complete_done(napi, rx_pkts);
2704 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2705 	}
2706 	return rx_pkts;
2707 }
2708 
2709 static int bnxt_poll(struct napi_struct *napi, int budget)
2710 {
2711 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2712 	struct bnxt *bp = bnapi->bp;
2713 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2714 	int work_done = 0;
2715 
2716 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2717 		napi_complete(napi);
2718 		return 0;
2719 	}
2720 	while (1) {
2721 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2722 
2723 		if (work_done >= budget) {
2724 			if (!budget)
2725 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2726 			break;
2727 		}
2728 
2729 		if (!bnxt_has_work(bp, cpr)) {
2730 			if (napi_complete_done(napi, work_done))
2731 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2732 			break;
2733 		}
2734 	}
2735 	if (bp->flags & BNXT_FLAG_DIM) {
2736 		struct dim_sample dim_sample = {};
2737 
2738 		dim_update_sample(cpr->event_ctr,
2739 				  cpr->rx_packets,
2740 				  cpr->rx_bytes,
2741 				  &dim_sample);
2742 		net_dim(&cpr->dim, dim_sample);
2743 	}
2744 	return work_done;
2745 }
2746 
2747 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2748 {
2749 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2750 	int i, work_done = 0;
2751 
2752 	for (i = 0; i < 2; i++) {
2753 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2754 
2755 		if (cpr2) {
2756 			work_done += __bnxt_poll_work(bp, cpr2,
2757 						      budget - work_done);
2758 			cpr->has_more_work |= cpr2->has_more_work;
2759 		}
2760 	}
2761 	return work_done;
2762 }
2763 
2764 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2765 				 u64 dbr_type)
2766 {
2767 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2768 	int i;
2769 
2770 	for (i = 0; i < 2; i++) {
2771 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2772 		struct bnxt_db_info *db;
2773 
2774 		if (cpr2 && cpr2->had_work_done) {
2775 			db = &cpr2->cp_db;
2776 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2777 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2778 			cpr2->had_work_done = 0;
2779 		}
2780 	}
2781 	__bnxt_poll_work_done(bp, bnapi);
2782 }
2783 
2784 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2785 {
2786 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2787 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2788 	struct bnxt_cp_ring_info *cpr_rx;
2789 	u32 raw_cons = cpr->cp_raw_cons;
2790 	struct bnxt *bp = bnapi->bp;
2791 	struct nqe_cn *nqcmp;
2792 	int work_done = 0;
2793 	u32 cons;
2794 
2795 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2796 		napi_complete(napi);
2797 		return 0;
2798 	}
2799 	if (cpr->has_more_work) {
2800 		cpr->has_more_work = 0;
2801 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2802 	}
2803 	while (1) {
2804 		cons = RING_CMP(raw_cons);
2805 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2806 
2807 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2808 			if (cpr->has_more_work)
2809 				break;
2810 
2811 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2812 			cpr->cp_raw_cons = raw_cons;
2813 			if (napi_complete_done(napi, work_done))
2814 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2815 						  cpr->cp_raw_cons);
2816 			goto poll_done;
2817 		}
2818 
2819 		/* The valid test of the entry must be done first before
2820 		 * reading any further.
2821 		 */
2822 		dma_rmb();
2823 
2824 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2825 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2826 			struct bnxt_cp_ring_info *cpr2;
2827 
2828 			/* No more budget for RX work */
2829 			if (budget && work_done >= budget && idx == BNXT_RX_HDL)
2830 				break;
2831 
2832 			cpr2 = cpr->cp_ring_arr[idx];
2833 			work_done += __bnxt_poll_work(bp, cpr2,
2834 						      budget - work_done);
2835 			cpr->has_more_work |= cpr2->has_more_work;
2836 		} else {
2837 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2838 		}
2839 		raw_cons = NEXT_RAW_CMP(raw_cons);
2840 	}
2841 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2842 	if (raw_cons != cpr->cp_raw_cons) {
2843 		cpr->cp_raw_cons = raw_cons;
2844 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2845 	}
2846 poll_done:
2847 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2848 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2849 		struct dim_sample dim_sample = {};
2850 
2851 		dim_update_sample(cpr->event_ctr,
2852 				  cpr_rx->rx_packets,
2853 				  cpr_rx->rx_bytes,
2854 				  &dim_sample);
2855 		net_dim(&cpr->dim, dim_sample);
2856 	}
2857 	return work_done;
2858 }
2859 
2860 static void bnxt_free_tx_skbs(struct bnxt *bp)
2861 {
2862 	int i, max_idx;
2863 	struct pci_dev *pdev = bp->pdev;
2864 
2865 	if (!bp->tx_ring)
2866 		return;
2867 
2868 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2869 	for (i = 0; i < bp->tx_nr_rings; i++) {
2870 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2871 		int j;
2872 
2873 		if (!txr->tx_buf_ring)
2874 			continue;
2875 
2876 		for (j = 0; j < max_idx;) {
2877 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2878 			struct sk_buff *skb;
2879 			int k, last;
2880 
2881 			if (i < bp->tx_nr_rings_xdp &&
2882 			    tx_buf->action == XDP_REDIRECT) {
2883 				dma_unmap_single(&pdev->dev,
2884 					dma_unmap_addr(tx_buf, mapping),
2885 					dma_unmap_len(tx_buf, len),
2886 					DMA_TO_DEVICE);
2887 				xdp_return_frame(tx_buf->xdpf);
2888 				tx_buf->action = 0;
2889 				tx_buf->xdpf = NULL;
2890 				j++;
2891 				continue;
2892 			}
2893 
2894 			skb = tx_buf->skb;
2895 			if (!skb) {
2896 				j++;
2897 				continue;
2898 			}
2899 
2900 			tx_buf->skb = NULL;
2901 
2902 			if (tx_buf->is_push) {
2903 				dev_kfree_skb(skb);
2904 				j += 2;
2905 				continue;
2906 			}
2907 
2908 			dma_unmap_single(&pdev->dev,
2909 					 dma_unmap_addr(tx_buf, mapping),
2910 					 skb_headlen(skb),
2911 					 DMA_TO_DEVICE);
2912 
2913 			last = tx_buf->nr_frags;
2914 			j += 2;
2915 			for (k = 0; k < last; k++, j++) {
2916 				int ring_idx = j & bp->tx_ring_mask;
2917 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2918 
2919 				tx_buf = &txr->tx_buf_ring[ring_idx];
2920 				dma_unmap_page(
2921 					&pdev->dev,
2922 					dma_unmap_addr(tx_buf, mapping),
2923 					skb_frag_size(frag), DMA_TO_DEVICE);
2924 			}
2925 			dev_kfree_skb(skb);
2926 		}
2927 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2928 	}
2929 }
2930 
2931 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2932 {
2933 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2934 	struct pci_dev *pdev = bp->pdev;
2935 	struct bnxt_tpa_idx_map *map;
2936 	int i, max_idx, max_agg_idx;
2937 
2938 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2939 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2940 	if (!rxr->rx_tpa)
2941 		goto skip_rx_tpa_free;
2942 
2943 	for (i = 0; i < bp->max_tpa; i++) {
2944 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2945 		u8 *data = tpa_info->data;
2946 
2947 		if (!data)
2948 			continue;
2949 
2950 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2951 				       bp->rx_buf_use_size, bp->rx_dir,
2952 				       DMA_ATTR_WEAK_ORDERING);
2953 
2954 		tpa_info->data = NULL;
2955 
2956 		skb_free_frag(data);
2957 	}
2958 
2959 skip_rx_tpa_free:
2960 	if (!rxr->rx_buf_ring)
2961 		goto skip_rx_buf_free;
2962 
2963 	for (i = 0; i < max_idx; i++) {
2964 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2965 		dma_addr_t mapping = rx_buf->mapping;
2966 		void *data = rx_buf->data;
2967 
2968 		if (!data)
2969 			continue;
2970 
2971 		rx_buf->data = NULL;
2972 		if (BNXT_RX_PAGE_MODE(bp)) {
2973 			mapping -= bp->rx_dma_offset;
2974 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2975 					     bp->rx_dir,
2976 					     DMA_ATTR_WEAK_ORDERING);
2977 			page_pool_recycle_direct(rxr->page_pool, data);
2978 		} else {
2979 			dma_unmap_single_attrs(&pdev->dev, mapping,
2980 					       bp->rx_buf_use_size, bp->rx_dir,
2981 					       DMA_ATTR_WEAK_ORDERING);
2982 			skb_free_frag(data);
2983 		}
2984 	}
2985 
2986 skip_rx_buf_free:
2987 	if (!rxr->rx_agg_ring)
2988 		goto skip_rx_agg_free;
2989 
2990 	for (i = 0; i < max_agg_idx; i++) {
2991 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2992 		struct page *page = rx_agg_buf->page;
2993 
2994 		if (!page)
2995 			continue;
2996 
2997 		if (BNXT_RX_PAGE_MODE(bp)) {
2998 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2999 					     BNXT_RX_PAGE_SIZE, bp->rx_dir,
3000 					     DMA_ATTR_WEAK_ORDERING);
3001 			rx_agg_buf->page = NULL;
3002 			__clear_bit(i, rxr->rx_agg_bmap);
3003 
3004 			page_pool_recycle_direct(rxr->page_pool, page);
3005 		} else {
3006 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
3007 					     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
3008 					     DMA_ATTR_WEAK_ORDERING);
3009 			rx_agg_buf->page = NULL;
3010 			__clear_bit(i, rxr->rx_agg_bmap);
3011 
3012 			__free_page(page);
3013 		}
3014 	}
3015 
3016 skip_rx_agg_free:
3017 	if (rxr->rx_page) {
3018 		__free_page(rxr->rx_page);
3019 		rxr->rx_page = NULL;
3020 	}
3021 	map = rxr->rx_tpa_idx_map;
3022 	if (map)
3023 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
3024 }
3025 
3026 static void bnxt_free_rx_skbs(struct bnxt *bp)
3027 {
3028 	int i;
3029 
3030 	if (!bp->rx_ring)
3031 		return;
3032 
3033 	for (i = 0; i < bp->rx_nr_rings; i++)
3034 		bnxt_free_one_rx_ring_skbs(bp, i);
3035 }
3036 
3037 static void bnxt_free_skbs(struct bnxt *bp)
3038 {
3039 	bnxt_free_tx_skbs(bp);
3040 	bnxt_free_rx_skbs(bp);
3041 }
3042 
3043 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
3044 {
3045 	u8 init_val = mem_init->init_val;
3046 	u16 offset = mem_init->offset;
3047 	u8 *p2 = p;
3048 	int i;
3049 
3050 	if (!init_val)
3051 		return;
3052 	if (offset == BNXT_MEM_INVALID_OFFSET) {
3053 		memset(p, init_val, len);
3054 		return;
3055 	}
3056 	for (i = 0; i < len; i += mem_init->size)
3057 		*(p2 + i + offset) = init_val;
3058 }
3059 
3060 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3061 {
3062 	struct pci_dev *pdev = bp->pdev;
3063 	int i;
3064 
3065 	if (!rmem->pg_arr)
3066 		goto skip_pages;
3067 
3068 	for (i = 0; i < rmem->nr_pages; i++) {
3069 		if (!rmem->pg_arr[i])
3070 			continue;
3071 
3072 		dma_free_coherent(&pdev->dev, rmem->page_size,
3073 				  rmem->pg_arr[i], rmem->dma_arr[i]);
3074 
3075 		rmem->pg_arr[i] = NULL;
3076 	}
3077 skip_pages:
3078 	if (rmem->pg_tbl) {
3079 		size_t pg_tbl_size = rmem->nr_pages * 8;
3080 
3081 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3082 			pg_tbl_size = rmem->page_size;
3083 		dma_free_coherent(&pdev->dev, pg_tbl_size,
3084 				  rmem->pg_tbl, rmem->pg_tbl_map);
3085 		rmem->pg_tbl = NULL;
3086 	}
3087 	if (rmem->vmem_size && *rmem->vmem) {
3088 		vfree(*rmem->vmem);
3089 		*rmem->vmem = NULL;
3090 	}
3091 }
3092 
3093 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
3094 {
3095 	struct pci_dev *pdev = bp->pdev;
3096 	u64 valid_bit = 0;
3097 	int i;
3098 
3099 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
3100 		valid_bit = PTU_PTE_VALID;
3101 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
3102 		size_t pg_tbl_size = rmem->nr_pages * 8;
3103 
3104 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
3105 			pg_tbl_size = rmem->page_size;
3106 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
3107 						  &rmem->pg_tbl_map,
3108 						  GFP_KERNEL);
3109 		if (!rmem->pg_tbl)
3110 			return -ENOMEM;
3111 	}
3112 
3113 	for (i = 0; i < rmem->nr_pages; i++) {
3114 		u64 extra_bits = valid_bit;
3115 
3116 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
3117 						     rmem->page_size,
3118 						     &rmem->dma_arr[i],
3119 						     GFP_KERNEL);
3120 		if (!rmem->pg_arr[i])
3121 			return -ENOMEM;
3122 
3123 		if (rmem->mem_init)
3124 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
3125 					  rmem->page_size);
3126 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
3127 			if (i == rmem->nr_pages - 2 &&
3128 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3129 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
3130 			else if (i == rmem->nr_pages - 1 &&
3131 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3132 				extra_bits |= PTU_PTE_LAST;
3133 			rmem->pg_tbl[i] =
3134 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
3135 		}
3136 	}
3137 
3138 	if (rmem->vmem_size) {
3139 		*rmem->vmem = vzalloc(rmem->vmem_size);
3140 		if (!(*rmem->vmem))
3141 			return -ENOMEM;
3142 	}
3143 	return 0;
3144 }
3145 
3146 static void bnxt_free_tpa_info(struct bnxt *bp)
3147 {
3148 	int i, j;
3149 
3150 	for (i = 0; i < bp->rx_nr_rings; i++) {
3151 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3152 
3153 		kfree(rxr->rx_tpa_idx_map);
3154 		rxr->rx_tpa_idx_map = NULL;
3155 		if (rxr->rx_tpa) {
3156 			for (j = 0; j < bp->max_tpa; j++) {
3157 				kfree(rxr->rx_tpa[j].agg_arr);
3158 				rxr->rx_tpa[j].agg_arr = NULL;
3159 			}
3160 		}
3161 		kfree(rxr->rx_tpa);
3162 		rxr->rx_tpa = NULL;
3163 	}
3164 }
3165 
3166 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3167 {
3168 	int i, j;
3169 
3170 	bp->max_tpa = MAX_TPA;
3171 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3172 		if (!bp->max_tpa_v2)
3173 			return 0;
3174 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3175 	}
3176 
3177 	for (i = 0; i < bp->rx_nr_rings; i++) {
3178 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3179 		struct rx_agg_cmp *agg;
3180 
3181 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3182 				      GFP_KERNEL);
3183 		if (!rxr->rx_tpa)
3184 			return -ENOMEM;
3185 
3186 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3187 			continue;
3188 		for (j = 0; j < bp->max_tpa; j++) {
3189 			agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL);
3190 			if (!agg)
3191 				return -ENOMEM;
3192 			rxr->rx_tpa[j].agg_arr = agg;
3193 		}
3194 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3195 					      GFP_KERNEL);
3196 		if (!rxr->rx_tpa_idx_map)
3197 			return -ENOMEM;
3198 	}
3199 	return 0;
3200 }
3201 
3202 static void bnxt_free_rx_rings(struct bnxt *bp)
3203 {
3204 	int i;
3205 
3206 	if (!bp->rx_ring)
3207 		return;
3208 
3209 	bnxt_free_tpa_info(bp);
3210 	for (i = 0; i < bp->rx_nr_rings; i++) {
3211 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3212 		struct bnxt_ring_struct *ring;
3213 
3214 		if (rxr->xdp_prog)
3215 			bpf_prog_put(rxr->xdp_prog);
3216 
3217 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3218 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3219 
3220 		page_pool_destroy(rxr->page_pool);
3221 		rxr->page_pool = NULL;
3222 
3223 		kfree(rxr->rx_agg_bmap);
3224 		rxr->rx_agg_bmap = NULL;
3225 
3226 		ring = &rxr->rx_ring_struct;
3227 		bnxt_free_ring(bp, &ring->ring_mem);
3228 
3229 		ring = &rxr->rx_agg_ring_struct;
3230 		bnxt_free_ring(bp, &ring->ring_mem);
3231 	}
3232 }
3233 
3234 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3235 				   struct bnxt_rx_ring_info *rxr)
3236 {
3237 	struct page_pool_params pp = { 0 };
3238 
3239 	pp.pool_size = bp->rx_ring_size;
3240 	pp.nid = dev_to_node(&bp->pdev->dev);
3241 	pp.dev = &bp->pdev->dev;
3242 	pp.dma_dir = DMA_BIDIRECTIONAL;
3243 
3244 	rxr->page_pool = page_pool_create(&pp);
3245 	if (IS_ERR(rxr->page_pool)) {
3246 		int err = PTR_ERR(rxr->page_pool);
3247 
3248 		rxr->page_pool = NULL;
3249 		return err;
3250 	}
3251 	return 0;
3252 }
3253 
3254 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3255 {
3256 	int i, rc = 0, agg_rings = 0;
3257 
3258 	if (!bp->rx_ring)
3259 		return -ENOMEM;
3260 
3261 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3262 		agg_rings = 1;
3263 
3264 	for (i = 0; i < bp->rx_nr_rings; i++) {
3265 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3266 		struct bnxt_ring_struct *ring;
3267 
3268 		ring = &rxr->rx_ring_struct;
3269 
3270 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3271 		if (rc)
3272 			return rc;
3273 
3274 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3275 		if (rc < 0)
3276 			return rc;
3277 
3278 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3279 						MEM_TYPE_PAGE_POOL,
3280 						rxr->page_pool);
3281 		if (rc) {
3282 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3283 			return rc;
3284 		}
3285 
3286 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3287 		if (rc)
3288 			return rc;
3289 
3290 		ring->grp_idx = i;
3291 		if (agg_rings) {
3292 			u16 mem_size;
3293 
3294 			ring = &rxr->rx_agg_ring_struct;
3295 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3296 			if (rc)
3297 				return rc;
3298 
3299 			ring->grp_idx = i;
3300 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3301 			mem_size = rxr->rx_agg_bmap_size / 8;
3302 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3303 			if (!rxr->rx_agg_bmap)
3304 				return -ENOMEM;
3305 		}
3306 	}
3307 	if (bp->flags & BNXT_FLAG_TPA)
3308 		rc = bnxt_alloc_tpa_info(bp);
3309 	return rc;
3310 }
3311 
3312 static void bnxt_free_tx_rings(struct bnxt *bp)
3313 {
3314 	int i;
3315 	struct pci_dev *pdev = bp->pdev;
3316 
3317 	if (!bp->tx_ring)
3318 		return;
3319 
3320 	for (i = 0; i < bp->tx_nr_rings; i++) {
3321 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3322 		struct bnxt_ring_struct *ring;
3323 
3324 		if (txr->tx_push) {
3325 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3326 					  txr->tx_push, txr->tx_push_mapping);
3327 			txr->tx_push = NULL;
3328 		}
3329 
3330 		ring = &txr->tx_ring_struct;
3331 
3332 		bnxt_free_ring(bp, &ring->ring_mem);
3333 	}
3334 }
3335 
3336 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3337 {
3338 	int i, j, rc;
3339 	struct pci_dev *pdev = bp->pdev;
3340 
3341 	bp->tx_push_size = 0;
3342 	if (bp->tx_push_thresh) {
3343 		int push_size;
3344 
3345 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3346 					bp->tx_push_thresh);
3347 
3348 		if (push_size > 256) {
3349 			push_size = 0;
3350 			bp->tx_push_thresh = 0;
3351 		}
3352 
3353 		bp->tx_push_size = push_size;
3354 	}
3355 
3356 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3357 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3358 		struct bnxt_ring_struct *ring;
3359 		u8 qidx;
3360 
3361 		ring = &txr->tx_ring_struct;
3362 
3363 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3364 		if (rc)
3365 			return rc;
3366 
3367 		ring->grp_idx = txr->bnapi->index;
3368 		if (bp->tx_push_size) {
3369 			dma_addr_t mapping;
3370 
3371 			/* One pre-allocated DMA buffer to backup
3372 			 * TX push operation
3373 			 */
3374 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3375 						bp->tx_push_size,
3376 						&txr->tx_push_mapping,
3377 						GFP_KERNEL);
3378 
3379 			if (!txr->tx_push)
3380 				return -ENOMEM;
3381 
3382 			mapping = txr->tx_push_mapping +
3383 				sizeof(struct tx_push_bd);
3384 			txr->data_mapping = cpu_to_le64(mapping);
3385 		}
3386 		qidx = bp->tc_to_qidx[j];
3387 		ring->queue_id = bp->q_info[qidx].queue_id;
3388 		spin_lock_init(&txr->xdp_tx_lock);
3389 		if (i < bp->tx_nr_rings_xdp)
3390 			continue;
3391 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3392 			j++;
3393 	}
3394 	return 0;
3395 }
3396 
3397 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3398 {
3399 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3400 
3401 	kfree(cpr->cp_desc_ring);
3402 	cpr->cp_desc_ring = NULL;
3403 	ring->ring_mem.pg_arr = NULL;
3404 	kfree(cpr->cp_desc_mapping);
3405 	cpr->cp_desc_mapping = NULL;
3406 	ring->ring_mem.dma_arr = NULL;
3407 }
3408 
3409 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3410 {
3411 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3412 	if (!cpr->cp_desc_ring)
3413 		return -ENOMEM;
3414 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3415 				       GFP_KERNEL);
3416 	if (!cpr->cp_desc_mapping)
3417 		return -ENOMEM;
3418 	return 0;
3419 }
3420 
3421 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3422 {
3423 	int i;
3424 
3425 	if (!bp->bnapi)
3426 		return;
3427 	for (i = 0; i < bp->cp_nr_rings; i++) {
3428 		struct bnxt_napi *bnapi = bp->bnapi[i];
3429 
3430 		if (!bnapi)
3431 			continue;
3432 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3433 	}
3434 }
3435 
3436 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3437 {
3438 	int i, n = bp->cp_nr_pages;
3439 
3440 	for (i = 0; i < bp->cp_nr_rings; i++) {
3441 		struct bnxt_napi *bnapi = bp->bnapi[i];
3442 		int rc;
3443 
3444 		if (!bnapi)
3445 			continue;
3446 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3447 		if (rc)
3448 			return rc;
3449 	}
3450 	return 0;
3451 }
3452 
3453 static void bnxt_free_cp_rings(struct bnxt *bp)
3454 {
3455 	int i;
3456 
3457 	if (!bp->bnapi)
3458 		return;
3459 
3460 	for (i = 0; i < bp->cp_nr_rings; i++) {
3461 		struct bnxt_napi *bnapi = bp->bnapi[i];
3462 		struct bnxt_cp_ring_info *cpr;
3463 		struct bnxt_ring_struct *ring;
3464 		int j;
3465 
3466 		if (!bnapi)
3467 			continue;
3468 
3469 		cpr = &bnapi->cp_ring;
3470 		ring = &cpr->cp_ring_struct;
3471 
3472 		bnxt_free_ring(bp, &ring->ring_mem);
3473 
3474 		for (j = 0; j < 2; j++) {
3475 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3476 
3477 			if (cpr2) {
3478 				ring = &cpr2->cp_ring_struct;
3479 				bnxt_free_ring(bp, &ring->ring_mem);
3480 				bnxt_free_cp_arrays(cpr2);
3481 				kfree(cpr2);
3482 				cpr->cp_ring_arr[j] = NULL;
3483 			}
3484 		}
3485 	}
3486 }
3487 
3488 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3489 {
3490 	struct bnxt_ring_mem_info *rmem;
3491 	struct bnxt_ring_struct *ring;
3492 	struct bnxt_cp_ring_info *cpr;
3493 	int rc;
3494 
3495 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3496 	if (!cpr)
3497 		return NULL;
3498 
3499 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3500 	if (rc) {
3501 		bnxt_free_cp_arrays(cpr);
3502 		kfree(cpr);
3503 		return NULL;
3504 	}
3505 	ring = &cpr->cp_ring_struct;
3506 	rmem = &ring->ring_mem;
3507 	rmem->nr_pages = bp->cp_nr_pages;
3508 	rmem->page_size = HW_CMPD_RING_SIZE;
3509 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3510 	rmem->dma_arr = cpr->cp_desc_mapping;
3511 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3512 	rc = bnxt_alloc_ring(bp, rmem);
3513 	if (rc) {
3514 		bnxt_free_ring(bp, rmem);
3515 		bnxt_free_cp_arrays(cpr);
3516 		kfree(cpr);
3517 		cpr = NULL;
3518 	}
3519 	return cpr;
3520 }
3521 
3522 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3523 {
3524 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3525 	int i, rc, ulp_base_vec, ulp_msix;
3526 
3527 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3528 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3529 	for (i = 0; i < bp->cp_nr_rings; i++) {
3530 		struct bnxt_napi *bnapi = bp->bnapi[i];
3531 		struct bnxt_cp_ring_info *cpr;
3532 		struct bnxt_ring_struct *ring;
3533 
3534 		if (!bnapi)
3535 			continue;
3536 
3537 		cpr = &bnapi->cp_ring;
3538 		cpr->bnapi = bnapi;
3539 		ring = &cpr->cp_ring_struct;
3540 
3541 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3542 		if (rc)
3543 			return rc;
3544 
3545 		if (ulp_msix && i >= ulp_base_vec)
3546 			ring->map_idx = i + ulp_msix;
3547 		else
3548 			ring->map_idx = i;
3549 
3550 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3551 			continue;
3552 
3553 		if (i < bp->rx_nr_rings) {
3554 			struct bnxt_cp_ring_info *cpr2 =
3555 				bnxt_alloc_cp_sub_ring(bp);
3556 
3557 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3558 			if (!cpr2)
3559 				return -ENOMEM;
3560 			cpr2->bnapi = bnapi;
3561 		}
3562 		if ((sh && i < bp->tx_nr_rings) ||
3563 		    (!sh && i >= bp->rx_nr_rings)) {
3564 			struct bnxt_cp_ring_info *cpr2 =
3565 				bnxt_alloc_cp_sub_ring(bp);
3566 
3567 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3568 			if (!cpr2)
3569 				return -ENOMEM;
3570 			cpr2->bnapi = bnapi;
3571 		}
3572 	}
3573 	return 0;
3574 }
3575 
3576 static void bnxt_init_ring_struct(struct bnxt *bp)
3577 {
3578 	int i;
3579 
3580 	for (i = 0; i < bp->cp_nr_rings; i++) {
3581 		struct bnxt_napi *bnapi = bp->bnapi[i];
3582 		struct bnxt_ring_mem_info *rmem;
3583 		struct bnxt_cp_ring_info *cpr;
3584 		struct bnxt_rx_ring_info *rxr;
3585 		struct bnxt_tx_ring_info *txr;
3586 		struct bnxt_ring_struct *ring;
3587 
3588 		if (!bnapi)
3589 			continue;
3590 
3591 		cpr = &bnapi->cp_ring;
3592 		ring = &cpr->cp_ring_struct;
3593 		rmem = &ring->ring_mem;
3594 		rmem->nr_pages = bp->cp_nr_pages;
3595 		rmem->page_size = HW_CMPD_RING_SIZE;
3596 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3597 		rmem->dma_arr = cpr->cp_desc_mapping;
3598 		rmem->vmem_size = 0;
3599 
3600 		rxr = bnapi->rx_ring;
3601 		if (!rxr)
3602 			goto skip_rx;
3603 
3604 		ring = &rxr->rx_ring_struct;
3605 		rmem = &ring->ring_mem;
3606 		rmem->nr_pages = bp->rx_nr_pages;
3607 		rmem->page_size = HW_RXBD_RING_SIZE;
3608 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3609 		rmem->dma_arr = rxr->rx_desc_mapping;
3610 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3611 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3612 
3613 		ring = &rxr->rx_agg_ring_struct;
3614 		rmem = &ring->ring_mem;
3615 		rmem->nr_pages = bp->rx_agg_nr_pages;
3616 		rmem->page_size = HW_RXBD_RING_SIZE;
3617 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3618 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3619 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3620 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3621 
3622 skip_rx:
3623 		txr = bnapi->tx_ring;
3624 		if (!txr)
3625 			continue;
3626 
3627 		ring = &txr->tx_ring_struct;
3628 		rmem = &ring->ring_mem;
3629 		rmem->nr_pages = bp->tx_nr_pages;
3630 		rmem->page_size = HW_RXBD_RING_SIZE;
3631 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3632 		rmem->dma_arr = txr->tx_desc_mapping;
3633 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3634 		rmem->vmem = (void **)&txr->tx_buf_ring;
3635 	}
3636 }
3637 
3638 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3639 {
3640 	int i;
3641 	u32 prod;
3642 	struct rx_bd **rx_buf_ring;
3643 
3644 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3645 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3646 		int j;
3647 		struct rx_bd *rxbd;
3648 
3649 		rxbd = rx_buf_ring[i];
3650 		if (!rxbd)
3651 			continue;
3652 
3653 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3654 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3655 			rxbd->rx_bd_opaque = prod;
3656 		}
3657 	}
3658 }
3659 
3660 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3661 {
3662 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3663 	struct net_device *dev = bp->dev;
3664 	u32 prod;
3665 	int i;
3666 
3667 	prod = rxr->rx_prod;
3668 	for (i = 0; i < bp->rx_ring_size; i++) {
3669 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3670 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3671 				    ring_nr, i, bp->rx_ring_size);
3672 			break;
3673 		}
3674 		prod = NEXT_RX(prod);
3675 	}
3676 	rxr->rx_prod = prod;
3677 
3678 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3679 		return 0;
3680 
3681 	prod = rxr->rx_agg_prod;
3682 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3683 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3684 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3685 				    ring_nr, i, bp->rx_ring_size);
3686 			break;
3687 		}
3688 		prod = NEXT_RX_AGG(prod);
3689 	}
3690 	rxr->rx_agg_prod = prod;
3691 
3692 	if (rxr->rx_tpa) {
3693 		dma_addr_t mapping;
3694 		u8 *data;
3695 
3696 		for (i = 0; i < bp->max_tpa; i++) {
3697 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3698 			if (!data)
3699 				return -ENOMEM;
3700 
3701 			rxr->rx_tpa[i].data = data;
3702 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3703 			rxr->rx_tpa[i].mapping = mapping;
3704 		}
3705 	}
3706 	return 0;
3707 }
3708 
3709 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3710 {
3711 	struct bnxt_rx_ring_info *rxr;
3712 	struct bnxt_ring_struct *ring;
3713 	u32 type;
3714 
3715 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3716 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3717 
3718 	if (NET_IP_ALIGN == 2)
3719 		type |= RX_BD_FLAGS_SOP;
3720 
3721 	rxr = &bp->rx_ring[ring_nr];
3722 	ring = &rxr->rx_ring_struct;
3723 	bnxt_init_rxbd_pages(ring, type);
3724 
3725 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3726 		bpf_prog_add(bp->xdp_prog, 1);
3727 		rxr->xdp_prog = bp->xdp_prog;
3728 	}
3729 	ring->fw_ring_id = INVALID_HW_RING_ID;
3730 
3731 	ring = &rxr->rx_agg_ring_struct;
3732 	ring->fw_ring_id = INVALID_HW_RING_ID;
3733 
3734 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3735 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3736 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3737 
3738 		bnxt_init_rxbd_pages(ring, type);
3739 	}
3740 
3741 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3742 }
3743 
3744 static void bnxt_init_cp_rings(struct bnxt *bp)
3745 {
3746 	int i, j;
3747 
3748 	for (i = 0; i < bp->cp_nr_rings; i++) {
3749 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3750 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3751 
3752 		ring->fw_ring_id = INVALID_HW_RING_ID;
3753 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3754 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3755 		for (j = 0; j < 2; j++) {
3756 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3757 
3758 			if (!cpr2)
3759 				continue;
3760 
3761 			ring = &cpr2->cp_ring_struct;
3762 			ring->fw_ring_id = INVALID_HW_RING_ID;
3763 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3764 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3765 		}
3766 	}
3767 }
3768 
3769 static int bnxt_init_rx_rings(struct bnxt *bp)
3770 {
3771 	int i, rc = 0;
3772 
3773 	if (BNXT_RX_PAGE_MODE(bp)) {
3774 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3775 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3776 	} else {
3777 		bp->rx_offset = BNXT_RX_OFFSET;
3778 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3779 	}
3780 
3781 	for (i = 0; i < bp->rx_nr_rings; i++) {
3782 		rc = bnxt_init_one_rx_ring(bp, i);
3783 		if (rc)
3784 			break;
3785 	}
3786 
3787 	return rc;
3788 }
3789 
3790 static int bnxt_init_tx_rings(struct bnxt *bp)
3791 {
3792 	u16 i;
3793 
3794 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3795 				   BNXT_MIN_TX_DESC_CNT);
3796 
3797 	for (i = 0; i < bp->tx_nr_rings; i++) {
3798 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3799 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3800 
3801 		ring->fw_ring_id = INVALID_HW_RING_ID;
3802 	}
3803 
3804 	return 0;
3805 }
3806 
3807 static void bnxt_free_ring_grps(struct bnxt *bp)
3808 {
3809 	kfree(bp->grp_info);
3810 	bp->grp_info = NULL;
3811 }
3812 
3813 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3814 {
3815 	int i;
3816 
3817 	if (irq_re_init) {
3818 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3819 				       sizeof(struct bnxt_ring_grp_info),
3820 				       GFP_KERNEL);
3821 		if (!bp->grp_info)
3822 			return -ENOMEM;
3823 	}
3824 	for (i = 0; i < bp->cp_nr_rings; i++) {
3825 		if (irq_re_init)
3826 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3827 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3828 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3829 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3830 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3831 	}
3832 	return 0;
3833 }
3834 
3835 static void bnxt_free_vnics(struct bnxt *bp)
3836 {
3837 	kfree(bp->vnic_info);
3838 	bp->vnic_info = NULL;
3839 	bp->nr_vnics = 0;
3840 }
3841 
3842 static int bnxt_alloc_vnics(struct bnxt *bp)
3843 {
3844 	int num_vnics = 1;
3845 
3846 #ifdef CONFIG_RFS_ACCEL
3847 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3848 		num_vnics += bp->rx_nr_rings;
3849 #endif
3850 
3851 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3852 		num_vnics++;
3853 
3854 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3855 				GFP_KERNEL);
3856 	if (!bp->vnic_info)
3857 		return -ENOMEM;
3858 
3859 	bp->nr_vnics = num_vnics;
3860 	return 0;
3861 }
3862 
3863 static void bnxt_init_vnics(struct bnxt *bp)
3864 {
3865 	int i;
3866 
3867 	for (i = 0; i < bp->nr_vnics; i++) {
3868 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3869 		int j;
3870 
3871 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3872 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3873 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3874 
3875 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3876 
3877 		if (bp->vnic_info[i].rss_hash_key) {
3878 			if (i == 0)
3879 				get_random_bytes(vnic->rss_hash_key,
3880 					      HW_HASH_KEY_SIZE);
3881 			else
3882 				memcpy(vnic->rss_hash_key,
3883 				       bp->vnic_info[0].rss_hash_key,
3884 				       HW_HASH_KEY_SIZE);
3885 		}
3886 	}
3887 }
3888 
3889 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3890 {
3891 	int pages;
3892 
3893 	pages = ring_size / desc_per_pg;
3894 
3895 	if (!pages)
3896 		return 1;
3897 
3898 	pages++;
3899 
3900 	while (pages & (pages - 1))
3901 		pages++;
3902 
3903 	return pages;
3904 }
3905 
3906 void bnxt_set_tpa_flags(struct bnxt *bp)
3907 {
3908 	bp->flags &= ~BNXT_FLAG_TPA;
3909 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3910 		return;
3911 	if (bp->dev->features & NETIF_F_LRO)
3912 		bp->flags |= BNXT_FLAG_LRO;
3913 	else if (bp->dev->features & NETIF_F_GRO_HW)
3914 		bp->flags |= BNXT_FLAG_GRO;
3915 }
3916 
3917 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3918  * be set on entry.
3919  */
3920 void bnxt_set_ring_params(struct bnxt *bp)
3921 {
3922 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3923 	u32 agg_factor = 0, agg_ring_size = 0;
3924 
3925 	/* 8 for CRC and VLAN */
3926 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3927 
3928 	rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) +
3929 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3930 
3931 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3932 	ring_size = bp->rx_ring_size;
3933 	bp->rx_agg_ring_size = 0;
3934 	bp->rx_agg_nr_pages = 0;
3935 
3936 	if (bp->flags & BNXT_FLAG_TPA)
3937 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3938 
3939 	bp->flags &= ~BNXT_FLAG_JUMBO;
3940 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3941 		u32 jumbo_factor;
3942 
3943 		bp->flags |= BNXT_FLAG_JUMBO;
3944 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3945 		if (jumbo_factor > agg_factor)
3946 			agg_factor = jumbo_factor;
3947 	}
3948 	if (agg_factor) {
3949 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3950 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3951 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3952 				    bp->rx_ring_size, ring_size);
3953 			bp->rx_ring_size = ring_size;
3954 		}
3955 		agg_ring_size = ring_size * agg_factor;
3956 
3957 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3958 							RX_DESC_CNT);
3959 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3960 			u32 tmp = agg_ring_size;
3961 
3962 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3963 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3964 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3965 				    tmp, agg_ring_size);
3966 		}
3967 		bp->rx_agg_ring_size = agg_ring_size;
3968 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3969 
3970 		if (BNXT_RX_PAGE_MODE(bp)) {
3971 			rx_space = PAGE_SIZE;
3972 			rx_size = PAGE_SIZE -
3973 				  ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) -
3974 				  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3975 		} else {
3976 			rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3977 			rx_space = rx_size + NET_SKB_PAD +
3978 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3979 		}
3980 	}
3981 
3982 	bp->rx_buf_use_size = rx_size;
3983 	bp->rx_buf_size = rx_space;
3984 
3985 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3986 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3987 
3988 	ring_size = bp->tx_ring_size;
3989 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3990 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3991 
3992 	max_rx_cmpl = bp->rx_ring_size;
3993 	/* MAX TPA needs to be added because TPA_START completions are
3994 	 * immediately recycled, so the TPA completions are not bound by
3995 	 * the RX ring size.
3996 	 */
3997 	if (bp->flags & BNXT_FLAG_TPA)
3998 		max_rx_cmpl += bp->max_tpa;
3999 	/* RX and TPA completions are 32-byte, all others are 16-byte */
4000 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
4001 	bp->cp_ring_size = ring_size;
4002 
4003 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
4004 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
4005 		bp->cp_nr_pages = MAX_CP_PAGES;
4006 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
4007 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
4008 			    ring_size, bp->cp_ring_size);
4009 	}
4010 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
4011 	bp->cp_ring_mask = bp->cp_bit - 1;
4012 }
4013 
4014 /* Changing allocation mode of RX rings.
4015  * TODO: Update when extending xdp_rxq_info to support allocation modes.
4016  */
4017 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
4018 {
4019 	if (page_mode) {
4020 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4021 		bp->flags |= BNXT_FLAG_RX_PAGE_MODE;
4022 
4023 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) {
4024 			bp->flags |= BNXT_FLAG_JUMBO;
4025 			bp->rx_skb_func = bnxt_rx_multi_page_skb;
4026 			bp->dev->max_mtu =
4027 				min_t(u16, bp->max_mtu, BNXT_MAX_MTU);
4028 		} else {
4029 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4030 			bp->rx_skb_func = bnxt_rx_page_skb;
4031 			bp->dev->max_mtu =
4032 				min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
4033 		}
4034 		bp->rx_dir = DMA_BIDIRECTIONAL;
4035 		/* Disable LRO or GRO_HW */
4036 		netdev_update_features(bp->dev);
4037 	} else {
4038 		bp->dev->max_mtu = bp->max_mtu;
4039 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
4040 		bp->rx_dir = DMA_FROM_DEVICE;
4041 		bp->rx_skb_func = bnxt_rx_skb;
4042 	}
4043 	return 0;
4044 }
4045 
4046 static void bnxt_free_vnic_attributes(struct bnxt *bp)
4047 {
4048 	int i;
4049 	struct bnxt_vnic_info *vnic;
4050 	struct pci_dev *pdev = bp->pdev;
4051 
4052 	if (!bp->vnic_info)
4053 		return;
4054 
4055 	for (i = 0; i < bp->nr_vnics; i++) {
4056 		vnic = &bp->vnic_info[i];
4057 
4058 		kfree(vnic->fw_grp_ids);
4059 		vnic->fw_grp_ids = NULL;
4060 
4061 		kfree(vnic->uc_list);
4062 		vnic->uc_list = NULL;
4063 
4064 		if (vnic->mc_list) {
4065 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
4066 					  vnic->mc_list, vnic->mc_list_mapping);
4067 			vnic->mc_list = NULL;
4068 		}
4069 
4070 		if (vnic->rss_table) {
4071 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
4072 					  vnic->rss_table,
4073 					  vnic->rss_table_dma_addr);
4074 			vnic->rss_table = NULL;
4075 		}
4076 
4077 		vnic->rss_hash_key = NULL;
4078 		vnic->flags = 0;
4079 	}
4080 }
4081 
4082 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
4083 {
4084 	int i, rc = 0, size;
4085 	struct bnxt_vnic_info *vnic;
4086 	struct pci_dev *pdev = bp->pdev;
4087 	int max_rings;
4088 
4089 	for (i = 0; i < bp->nr_vnics; i++) {
4090 		vnic = &bp->vnic_info[i];
4091 
4092 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
4093 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
4094 
4095 			if (mem_size > 0) {
4096 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
4097 				if (!vnic->uc_list) {
4098 					rc = -ENOMEM;
4099 					goto out;
4100 				}
4101 			}
4102 		}
4103 
4104 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
4105 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
4106 			vnic->mc_list =
4107 				dma_alloc_coherent(&pdev->dev,
4108 						   vnic->mc_list_size,
4109 						   &vnic->mc_list_mapping,
4110 						   GFP_KERNEL);
4111 			if (!vnic->mc_list) {
4112 				rc = -ENOMEM;
4113 				goto out;
4114 			}
4115 		}
4116 
4117 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4118 			goto vnic_skip_grps;
4119 
4120 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4121 			max_rings = bp->rx_nr_rings;
4122 		else
4123 			max_rings = 1;
4124 
4125 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
4126 		if (!vnic->fw_grp_ids) {
4127 			rc = -ENOMEM;
4128 			goto out;
4129 		}
4130 vnic_skip_grps:
4131 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
4132 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
4133 			continue;
4134 
4135 		/* Allocate rss table and hash key */
4136 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
4137 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4138 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
4139 
4140 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
4141 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
4142 						     vnic->rss_table_size,
4143 						     &vnic->rss_table_dma_addr,
4144 						     GFP_KERNEL);
4145 		if (!vnic->rss_table) {
4146 			rc = -ENOMEM;
4147 			goto out;
4148 		}
4149 
4150 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
4151 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
4152 	}
4153 	return 0;
4154 
4155 out:
4156 	return rc;
4157 }
4158 
4159 static void bnxt_free_hwrm_resources(struct bnxt *bp)
4160 {
4161 	struct bnxt_hwrm_wait_token *token;
4162 
4163 	dma_pool_destroy(bp->hwrm_dma_pool);
4164 	bp->hwrm_dma_pool = NULL;
4165 
4166 	rcu_read_lock();
4167 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4168 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4169 	rcu_read_unlock();
4170 }
4171 
4172 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4173 {
4174 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4175 					    BNXT_HWRM_DMA_SIZE,
4176 					    BNXT_HWRM_DMA_ALIGN, 0);
4177 	if (!bp->hwrm_dma_pool)
4178 		return -ENOMEM;
4179 
4180 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4181 
4182 	return 0;
4183 }
4184 
4185 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4186 {
4187 	kfree(stats->hw_masks);
4188 	stats->hw_masks = NULL;
4189 	kfree(stats->sw_stats);
4190 	stats->sw_stats = NULL;
4191 	if (stats->hw_stats) {
4192 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4193 				  stats->hw_stats_map);
4194 		stats->hw_stats = NULL;
4195 	}
4196 }
4197 
4198 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4199 				bool alloc_masks)
4200 {
4201 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4202 					     &stats->hw_stats_map, GFP_KERNEL);
4203 	if (!stats->hw_stats)
4204 		return -ENOMEM;
4205 
4206 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4207 	if (!stats->sw_stats)
4208 		goto stats_mem_err;
4209 
4210 	if (alloc_masks) {
4211 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4212 		if (!stats->hw_masks)
4213 			goto stats_mem_err;
4214 	}
4215 	return 0;
4216 
4217 stats_mem_err:
4218 	bnxt_free_stats_mem(bp, stats);
4219 	return -ENOMEM;
4220 }
4221 
4222 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4223 {
4224 	int i;
4225 
4226 	for (i = 0; i < count; i++)
4227 		mask_arr[i] = mask;
4228 }
4229 
4230 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4231 {
4232 	int i;
4233 
4234 	for (i = 0; i < count; i++)
4235 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4236 }
4237 
4238 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4239 				    struct bnxt_stats_mem *stats)
4240 {
4241 	struct hwrm_func_qstats_ext_output *resp;
4242 	struct hwrm_func_qstats_ext_input *req;
4243 	__le64 *hw_masks;
4244 	int rc;
4245 
4246 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4247 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4248 		return -EOPNOTSUPP;
4249 
4250 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4251 	if (rc)
4252 		return rc;
4253 
4254 	req->fid = cpu_to_le16(0xffff);
4255 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4256 
4257 	resp = hwrm_req_hold(bp, req);
4258 	rc = hwrm_req_send(bp, req);
4259 	if (!rc) {
4260 		hw_masks = &resp->rx_ucast_pkts;
4261 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4262 	}
4263 	hwrm_req_drop(bp, req);
4264 	return rc;
4265 }
4266 
4267 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4268 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4269 
4270 static void bnxt_init_stats(struct bnxt *bp)
4271 {
4272 	struct bnxt_napi *bnapi = bp->bnapi[0];
4273 	struct bnxt_cp_ring_info *cpr;
4274 	struct bnxt_stats_mem *stats;
4275 	__le64 *rx_stats, *tx_stats;
4276 	int rc, rx_count, tx_count;
4277 	u64 *rx_masks, *tx_masks;
4278 	u64 mask;
4279 	u8 flags;
4280 
4281 	cpr = &bnapi->cp_ring;
4282 	stats = &cpr->stats;
4283 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4284 	if (rc) {
4285 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4286 			mask = (1ULL << 48) - 1;
4287 		else
4288 			mask = -1ULL;
4289 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4290 	}
4291 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4292 		stats = &bp->port_stats;
4293 		rx_stats = stats->hw_stats;
4294 		rx_masks = stats->hw_masks;
4295 		rx_count = sizeof(struct rx_port_stats) / 8;
4296 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4297 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4298 		tx_count = sizeof(struct tx_port_stats) / 8;
4299 
4300 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4301 		rc = bnxt_hwrm_port_qstats(bp, flags);
4302 		if (rc) {
4303 			mask = (1ULL << 40) - 1;
4304 
4305 			bnxt_fill_masks(rx_masks, mask, rx_count);
4306 			bnxt_fill_masks(tx_masks, mask, tx_count);
4307 		} else {
4308 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4309 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4310 			bnxt_hwrm_port_qstats(bp, 0);
4311 		}
4312 	}
4313 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4314 		stats = &bp->rx_port_stats_ext;
4315 		rx_stats = stats->hw_stats;
4316 		rx_masks = stats->hw_masks;
4317 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4318 		stats = &bp->tx_port_stats_ext;
4319 		tx_stats = stats->hw_stats;
4320 		tx_masks = stats->hw_masks;
4321 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4322 
4323 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4324 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4325 		if (rc) {
4326 			mask = (1ULL << 40) - 1;
4327 
4328 			bnxt_fill_masks(rx_masks, mask, rx_count);
4329 			if (tx_stats)
4330 				bnxt_fill_masks(tx_masks, mask, tx_count);
4331 		} else {
4332 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4333 			if (tx_stats)
4334 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4335 						   tx_count);
4336 			bnxt_hwrm_port_qstats_ext(bp, 0);
4337 		}
4338 	}
4339 }
4340 
4341 static void bnxt_free_port_stats(struct bnxt *bp)
4342 {
4343 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4344 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4345 
4346 	bnxt_free_stats_mem(bp, &bp->port_stats);
4347 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4348 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4349 }
4350 
4351 static void bnxt_free_ring_stats(struct bnxt *bp)
4352 {
4353 	int i;
4354 
4355 	if (!bp->bnapi)
4356 		return;
4357 
4358 	for (i = 0; i < bp->cp_nr_rings; i++) {
4359 		struct bnxt_napi *bnapi = bp->bnapi[i];
4360 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4361 
4362 		bnxt_free_stats_mem(bp, &cpr->stats);
4363 	}
4364 }
4365 
4366 static int bnxt_alloc_stats(struct bnxt *bp)
4367 {
4368 	u32 size, i;
4369 	int rc;
4370 
4371 	size = bp->hw_ring_stats_size;
4372 
4373 	for (i = 0; i < bp->cp_nr_rings; i++) {
4374 		struct bnxt_napi *bnapi = bp->bnapi[i];
4375 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4376 
4377 		cpr->stats.len = size;
4378 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4379 		if (rc)
4380 			return rc;
4381 
4382 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4383 	}
4384 
4385 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4386 		return 0;
4387 
4388 	if (bp->port_stats.hw_stats)
4389 		goto alloc_ext_stats;
4390 
4391 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4392 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4393 	if (rc)
4394 		return rc;
4395 
4396 	bp->flags |= BNXT_FLAG_PORT_STATS;
4397 
4398 alloc_ext_stats:
4399 	/* Display extended statistics only if FW supports it */
4400 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4401 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4402 			return 0;
4403 
4404 	if (bp->rx_port_stats_ext.hw_stats)
4405 		goto alloc_tx_ext_stats;
4406 
4407 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4408 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4409 	/* Extended stats are optional */
4410 	if (rc)
4411 		return 0;
4412 
4413 alloc_tx_ext_stats:
4414 	if (bp->tx_port_stats_ext.hw_stats)
4415 		return 0;
4416 
4417 	if (bp->hwrm_spec_code >= 0x10902 ||
4418 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4419 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4420 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4421 		/* Extended stats are optional */
4422 		if (rc)
4423 			return 0;
4424 	}
4425 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4426 	return 0;
4427 }
4428 
4429 static void bnxt_clear_ring_indices(struct bnxt *bp)
4430 {
4431 	int i;
4432 
4433 	if (!bp->bnapi)
4434 		return;
4435 
4436 	for (i = 0; i < bp->cp_nr_rings; i++) {
4437 		struct bnxt_napi *bnapi = bp->bnapi[i];
4438 		struct bnxt_cp_ring_info *cpr;
4439 		struct bnxt_rx_ring_info *rxr;
4440 		struct bnxt_tx_ring_info *txr;
4441 
4442 		if (!bnapi)
4443 			continue;
4444 
4445 		cpr = &bnapi->cp_ring;
4446 		cpr->cp_raw_cons = 0;
4447 
4448 		txr = bnapi->tx_ring;
4449 		if (txr) {
4450 			txr->tx_prod = 0;
4451 			txr->tx_cons = 0;
4452 		}
4453 
4454 		rxr = bnapi->rx_ring;
4455 		if (rxr) {
4456 			rxr->rx_prod = 0;
4457 			rxr->rx_agg_prod = 0;
4458 			rxr->rx_sw_agg_prod = 0;
4459 			rxr->rx_next_cons = 0;
4460 		}
4461 	}
4462 }
4463 
4464 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4465 {
4466 #ifdef CONFIG_RFS_ACCEL
4467 	int i;
4468 
4469 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4470 	 * safe to delete the hash table.
4471 	 */
4472 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4473 		struct hlist_head *head;
4474 		struct hlist_node *tmp;
4475 		struct bnxt_ntuple_filter *fltr;
4476 
4477 		head = &bp->ntp_fltr_hash_tbl[i];
4478 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4479 			hlist_del(&fltr->hash);
4480 			kfree(fltr);
4481 		}
4482 	}
4483 	if (irq_reinit) {
4484 		bitmap_free(bp->ntp_fltr_bmap);
4485 		bp->ntp_fltr_bmap = NULL;
4486 	}
4487 	bp->ntp_fltr_count = 0;
4488 #endif
4489 }
4490 
4491 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4492 {
4493 #ifdef CONFIG_RFS_ACCEL
4494 	int i, rc = 0;
4495 
4496 	if (!(bp->flags & BNXT_FLAG_RFS))
4497 		return 0;
4498 
4499 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4500 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4501 
4502 	bp->ntp_fltr_count = 0;
4503 	bp->ntp_fltr_bmap = bitmap_zalloc(BNXT_NTP_FLTR_MAX_FLTR, GFP_KERNEL);
4504 
4505 	if (!bp->ntp_fltr_bmap)
4506 		rc = -ENOMEM;
4507 
4508 	return rc;
4509 #else
4510 	return 0;
4511 #endif
4512 }
4513 
4514 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4515 {
4516 	bnxt_free_vnic_attributes(bp);
4517 	bnxt_free_tx_rings(bp);
4518 	bnxt_free_rx_rings(bp);
4519 	bnxt_free_cp_rings(bp);
4520 	bnxt_free_all_cp_arrays(bp);
4521 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4522 	if (irq_re_init) {
4523 		bnxt_free_ring_stats(bp);
4524 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4525 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4526 			bnxt_free_port_stats(bp);
4527 		bnxt_free_ring_grps(bp);
4528 		bnxt_free_vnics(bp);
4529 		kfree(bp->tx_ring_map);
4530 		bp->tx_ring_map = NULL;
4531 		kfree(bp->tx_ring);
4532 		bp->tx_ring = NULL;
4533 		kfree(bp->rx_ring);
4534 		bp->rx_ring = NULL;
4535 		kfree(bp->bnapi);
4536 		bp->bnapi = NULL;
4537 	} else {
4538 		bnxt_clear_ring_indices(bp);
4539 	}
4540 }
4541 
4542 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4543 {
4544 	int i, j, rc, size, arr_size;
4545 	void *bnapi;
4546 
4547 	if (irq_re_init) {
4548 		/* Allocate bnapi mem pointer array and mem block for
4549 		 * all queues
4550 		 */
4551 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4552 				bp->cp_nr_rings);
4553 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4554 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4555 		if (!bnapi)
4556 			return -ENOMEM;
4557 
4558 		bp->bnapi = bnapi;
4559 		bnapi += arr_size;
4560 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4561 			bp->bnapi[i] = bnapi;
4562 			bp->bnapi[i]->index = i;
4563 			bp->bnapi[i]->bp = bp;
4564 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4565 				struct bnxt_cp_ring_info *cpr =
4566 					&bp->bnapi[i]->cp_ring;
4567 
4568 				cpr->cp_ring_struct.ring_mem.flags =
4569 					BNXT_RMEM_RING_PTE_FLAG;
4570 			}
4571 		}
4572 
4573 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4574 				      sizeof(struct bnxt_rx_ring_info),
4575 				      GFP_KERNEL);
4576 		if (!bp->rx_ring)
4577 			return -ENOMEM;
4578 
4579 		for (i = 0; i < bp->rx_nr_rings; i++) {
4580 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4581 
4582 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4583 				rxr->rx_ring_struct.ring_mem.flags =
4584 					BNXT_RMEM_RING_PTE_FLAG;
4585 				rxr->rx_agg_ring_struct.ring_mem.flags =
4586 					BNXT_RMEM_RING_PTE_FLAG;
4587 			}
4588 			rxr->bnapi = bp->bnapi[i];
4589 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4590 		}
4591 
4592 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4593 				      sizeof(struct bnxt_tx_ring_info),
4594 				      GFP_KERNEL);
4595 		if (!bp->tx_ring)
4596 			return -ENOMEM;
4597 
4598 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4599 					  GFP_KERNEL);
4600 
4601 		if (!bp->tx_ring_map)
4602 			return -ENOMEM;
4603 
4604 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4605 			j = 0;
4606 		else
4607 			j = bp->rx_nr_rings;
4608 
4609 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4610 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4611 
4612 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4613 				txr->tx_ring_struct.ring_mem.flags =
4614 					BNXT_RMEM_RING_PTE_FLAG;
4615 			txr->bnapi = bp->bnapi[j];
4616 			bp->bnapi[j]->tx_ring = txr;
4617 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4618 			if (i >= bp->tx_nr_rings_xdp) {
4619 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4620 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4621 			} else {
4622 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4623 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4624 			}
4625 		}
4626 
4627 		rc = bnxt_alloc_stats(bp);
4628 		if (rc)
4629 			goto alloc_mem_err;
4630 		bnxt_init_stats(bp);
4631 
4632 		rc = bnxt_alloc_ntp_fltrs(bp);
4633 		if (rc)
4634 			goto alloc_mem_err;
4635 
4636 		rc = bnxt_alloc_vnics(bp);
4637 		if (rc)
4638 			goto alloc_mem_err;
4639 	}
4640 
4641 	rc = bnxt_alloc_all_cp_arrays(bp);
4642 	if (rc)
4643 		goto alloc_mem_err;
4644 
4645 	bnxt_init_ring_struct(bp);
4646 
4647 	rc = bnxt_alloc_rx_rings(bp);
4648 	if (rc)
4649 		goto alloc_mem_err;
4650 
4651 	rc = bnxt_alloc_tx_rings(bp);
4652 	if (rc)
4653 		goto alloc_mem_err;
4654 
4655 	rc = bnxt_alloc_cp_rings(bp);
4656 	if (rc)
4657 		goto alloc_mem_err;
4658 
4659 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4660 				  BNXT_VNIC_UCAST_FLAG;
4661 	rc = bnxt_alloc_vnic_attributes(bp);
4662 	if (rc)
4663 		goto alloc_mem_err;
4664 	return 0;
4665 
4666 alloc_mem_err:
4667 	bnxt_free_mem(bp, true);
4668 	return rc;
4669 }
4670 
4671 static void bnxt_disable_int(struct bnxt *bp)
4672 {
4673 	int i;
4674 
4675 	if (!bp->bnapi)
4676 		return;
4677 
4678 	for (i = 0; i < bp->cp_nr_rings; i++) {
4679 		struct bnxt_napi *bnapi = bp->bnapi[i];
4680 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4681 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4682 
4683 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4684 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4685 	}
4686 }
4687 
4688 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4689 {
4690 	struct bnxt_napi *bnapi = bp->bnapi[n];
4691 	struct bnxt_cp_ring_info *cpr;
4692 
4693 	cpr = &bnapi->cp_ring;
4694 	return cpr->cp_ring_struct.map_idx;
4695 }
4696 
4697 static void bnxt_disable_int_sync(struct bnxt *bp)
4698 {
4699 	int i;
4700 
4701 	if (!bp->irq_tbl)
4702 		return;
4703 
4704 	atomic_inc(&bp->intr_sem);
4705 
4706 	bnxt_disable_int(bp);
4707 	for (i = 0; i < bp->cp_nr_rings; i++) {
4708 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4709 
4710 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4711 	}
4712 }
4713 
4714 static void bnxt_enable_int(struct bnxt *bp)
4715 {
4716 	int i;
4717 
4718 	atomic_set(&bp->intr_sem, 0);
4719 	for (i = 0; i < bp->cp_nr_rings; i++) {
4720 		struct bnxt_napi *bnapi = bp->bnapi[i];
4721 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4722 
4723 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4724 	}
4725 }
4726 
4727 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4728 			    bool async_only)
4729 {
4730 	DECLARE_BITMAP(async_events_bmap, 256);
4731 	u32 *events = (u32 *)async_events_bmap;
4732 	struct hwrm_func_drv_rgtr_output *resp;
4733 	struct hwrm_func_drv_rgtr_input *req;
4734 	u32 flags;
4735 	int rc, i;
4736 
4737 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4738 	if (rc)
4739 		return rc;
4740 
4741 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4742 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4743 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4744 
4745 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4746 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4747 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4748 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4749 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4750 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4751 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4752 	req->flags = cpu_to_le32(flags);
4753 	req->ver_maj_8b = DRV_VER_MAJ;
4754 	req->ver_min_8b = DRV_VER_MIN;
4755 	req->ver_upd_8b = DRV_VER_UPD;
4756 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4757 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4758 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4759 
4760 	if (BNXT_PF(bp)) {
4761 		u32 data[8];
4762 		int i;
4763 
4764 		memset(data, 0, sizeof(data));
4765 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4766 			u16 cmd = bnxt_vf_req_snif[i];
4767 			unsigned int bit, idx;
4768 
4769 			idx = cmd / 32;
4770 			bit = cmd % 32;
4771 			data[idx] |= 1 << bit;
4772 		}
4773 
4774 		for (i = 0; i < 8; i++)
4775 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4776 
4777 		req->enables |=
4778 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4779 	}
4780 
4781 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4782 		req->flags |= cpu_to_le32(
4783 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4784 
4785 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4786 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4787 		u16 event_id = bnxt_async_events_arr[i];
4788 
4789 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4790 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4791 			continue;
4792 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4793 	}
4794 	if (bmap && bmap_size) {
4795 		for (i = 0; i < bmap_size; i++) {
4796 			if (test_bit(i, bmap))
4797 				__set_bit(i, async_events_bmap);
4798 		}
4799 	}
4800 	for (i = 0; i < 8; i++)
4801 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4802 
4803 	if (async_only)
4804 		req->enables =
4805 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4806 
4807 	resp = hwrm_req_hold(bp, req);
4808 	rc = hwrm_req_send(bp, req);
4809 	if (!rc) {
4810 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4811 		if (resp->flags &
4812 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4813 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4814 	}
4815 	hwrm_req_drop(bp, req);
4816 	return rc;
4817 }
4818 
4819 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4820 {
4821 	struct hwrm_func_drv_unrgtr_input *req;
4822 	int rc;
4823 
4824 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4825 		return 0;
4826 
4827 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4828 	if (rc)
4829 		return rc;
4830 	return hwrm_req_send(bp, req);
4831 }
4832 
4833 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4834 {
4835 	struct hwrm_tunnel_dst_port_free_input *req;
4836 	int rc;
4837 
4838 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4839 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4840 		return 0;
4841 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4842 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4843 		return 0;
4844 
4845 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4846 	if (rc)
4847 		return rc;
4848 
4849 	req->tunnel_type = tunnel_type;
4850 
4851 	switch (tunnel_type) {
4852 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4853 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4854 		bp->vxlan_port = 0;
4855 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4856 		break;
4857 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4858 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4859 		bp->nge_port = 0;
4860 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4861 		break;
4862 	default:
4863 		break;
4864 	}
4865 
4866 	rc = hwrm_req_send(bp, req);
4867 	if (rc)
4868 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4869 			   rc);
4870 	return rc;
4871 }
4872 
4873 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4874 					   u8 tunnel_type)
4875 {
4876 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4877 	struct hwrm_tunnel_dst_port_alloc_input *req;
4878 	int rc;
4879 
4880 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4881 	if (rc)
4882 		return rc;
4883 
4884 	req->tunnel_type = tunnel_type;
4885 	req->tunnel_dst_port_val = port;
4886 
4887 	resp = hwrm_req_hold(bp, req);
4888 	rc = hwrm_req_send(bp, req);
4889 	if (rc) {
4890 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4891 			   rc);
4892 		goto err_out;
4893 	}
4894 
4895 	switch (tunnel_type) {
4896 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4897 		bp->vxlan_port = port;
4898 		bp->vxlan_fw_dst_port_id =
4899 			le16_to_cpu(resp->tunnel_dst_port_id);
4900 		break;
4901 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4902 		bp->nge_port = port;
4903 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4904 		break;
4905 	default:
4906 		break;
4907 	}
4908 
4909 err_out:
4910 	hwrm_req_drop(bp, req);
4911 	return rc;
4912 }
4913 
4914 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4915 {
4916 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4917 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4918 	int rc;
4919 
4920 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4921 	if (rc)
4922 		return rc;
4923 
4924 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4925 	if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) {
4926 		req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4927 		req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4928 	}
4929 	req->mask = cpu_to_le32(vnic->rx_mask);
4930 	return hwrm_req_send_silent(bp, req);
4931 }
4932 
4933 #ifdef CONFIG_RFS_ACCEL
4934 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4935 					    struct bnxt_ntuple_filter *fltr)
4936 {
4937 	struct hwrm_cfa_ntuple_filter_free_input *req;
4938 	int rc;
4939 
4940 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4941 	if (rc)
4942 		return rc;
4943 
4944 	req->ntuple_filter_id = fltr->filter_id;
4945 	return hwrm_req_send(bp, req);
4946 }
4947 
4948 #define BNXT_NTP_FLTR_FLAGS					\
4949 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4950 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4951 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4952 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4953 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4954 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4955 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4956 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4957 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4958 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4959 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4960 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4961 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4962 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4963 
4964 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4965 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4966 
4967 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4968 					     struct bnxt_ntuple_filter *fltr)
4969 {
4970 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4971 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4972 	struct flow_keys *keys = &fltr->fkeys;
4973 	struct bnxt_vnic_info *vnic;
4974 	u32 flags = 0;
4975 	int rc;
4976 
4977 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4978 	if (rc)
4979 		return rc;
4980 
4981 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4982 
4983 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4984 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4985 		req->dst_id = cpu_to_le16(fltr->rxq);
4986 	} else {
4987 		vnic = &bp->vnic_info[fltr->rxq + 1];
4988 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4989 	}
4990 	req->flags = cpu_to_le32(flags);
4991 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4992 
4993 	req->ethertype = htons(ETH_P_IP);
4994 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4995 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4996 	req->ip_protocol = keys->basic.ip_proto;
4997 
4998 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4999 		int i;
5000 
5001 		req->ethertype = htons(ETH_P_IPV6);
5002 		req->ip_addr_type =
5003 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
5004 		*(struct in6_addr *)&req->src_ipaddr[0] =
5005 			keys->addrs.v6addrs.src;
5006 		*(struct in6_addr *)&req->dst_ipaddr[0] =
5007 			keys->addrs.v6addrs.dst;
5008 		for (i = 0; i < 4; i++) {
5009 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5010 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
5011 		}
5012 	} else {
5013 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
5014 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5015 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
5016 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
5017 	}
5018 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
5019 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
5020 		req->tunnel_type =
5021 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
5022 	}
5023 
5024 	req->src_port = keys->ports.src;
5025 	req->src_port_mask = cpu_to_be16(0xffff);
5026 	req->dst_port = keys->ports.dst;
5027 	req->dst_port_mask = cpu_to_be16(0xffff);
5028 
5029 	resp = hwrm_req_hold(bp, req);
5030 	rc = hwrm_req_send(bp, req);
5031 	if (!rc)
5032 		fltr->filter_id = resp->ntuple_filter_id;
5033 	hwrm_req_drop(bp, req);
5034 	return rc;
5035 }
5036 #endif
5037 
5038 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
5039 				     const u8 *mac_addr)
5040 {
5041 	struct hwrm_cfa_l2_filter_alloc_output *resp;
5042 	struct hwrm_cfa_l2_filter_alloc_input *req;
5043 	int rc;
5044 
5045 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
5046 	if (rc)
5047 		return rc;
5048 
5049 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
5050 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
5051 		req->flags |=
5052 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
5053 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
5054 	req->enables =
5055 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
5056 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
5057 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
5058 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
5059 	req->l2_addr_mask[0] = 0xff;
5060 	req->l2_addr_mask[1] = 0xff;
5061 	req->l2_addr_mask[2] = 0xff;
5062 	req->l2_addr_mask[3] = 0xff;
5063 	req->l2_addr_mask[4] = 0xff;
5064 	req->l2_addr_mask[5] = 0xff;
5065 
5066 	resp = hwrm_req_hold(bp, req);
5067 	rc = hwrm_req_send(bp, req);
5068 	if (!rc)
5069 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
5070 							resp->l2_filter_id;
5071 	hwrm_req_drop(bp, req);
5072 	return rc;
5073 }
5074 
5075 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
5076 {
5077 	struct hwrm_cfa_l2_filter_free_input *req;
5078 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
5079 	int rc;
5080 
5081 	/* Any associated ntuple filters will also be cleared by firmware. */
5082 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
5083 	if (rc)
5084 		return rc;
5085 	hwrm_req_hold(bp, req);
5086 	for (i = 0; i < num_of_vnics; i++) {
5087 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5088 
5089 		for (j = 0; j < vnic->uc_filter_count; j++) {
5090 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
5091 
5092 			rc = hwrm_req_send(bp, req);
5093 		}
5094 		vnic->uc_filter_count = 0;
5095 	}
5096 	hwrm_req_drop(bp, req);
5097 	return rc;
5098 }
5099 
5100 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
5101 {
5102 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5103 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
5104 	struct hwrm_vnic_tpa_cfg_input *req;
5105 	int rc;
5106 
5107 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
5108 		return 0;
5109 
5110 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
5111 	if (rc)
5112 		return rc;
5113 
5114 	if (tpa_flags) {
5115 		u16 mss = bp->dev->mtu - 40;
5116 		u32 nsegs, n, segs = 0, flags;
5117 
5118 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
5119 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
5120 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
5121 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
5122 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
5123 		if (tpa_flags & BNXT_FLAG_GRO)
5124 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
5125 
5126 		req->flags = cpu_to_le32(flags);
5127 
5128 		req->enables =
5129 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
5130 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
5131 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
5132 
5133 		/* Number of segs are log2 units, and first packet is not
5134 		 * included as part of this units.
5135 		 */
5136 		if (mss <= BNXT_RX_PAGE_SIZE) {
5137 			n = BNXT_RX_PAGE_SIZE / mss;
5138 			nsegs = (MAX_SKB_FRAGS - 1) * n;
5139 		} else {
5140 			n = mss / BNXT_RX_PAGE_SIZE;
5141 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
5142 				n++;
5143 			nsegs = (MAX_SKB_FRAGS - n) / n;
5144 		}
5145 
5146 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5147 			segs = MAX_TPA_SEGS_P5;
5148 			max_aggs = bp->max_tpa;
5149 		} else {
5150 			segs = ilog2(nsegs);
5151 		}
5152 		req->max_agg_segs = cpu_to_le16(segs);
5153 		req->max_aggs = cpu_to_le16(max_aggs);
5154 
5155 		req->min_agg_len = cpu_to_le32(512);
5156 	}
5157 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5158 
5159 	return hwrm_req_send(bp, req);
5160 }
5161 
5162 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
5163 {
5164 	struct bnxt_ring_grp_info *grp_info;
5165 
5166 	grp_info = &bp->grp_info[ring->grp_idx];
5167 	return grp_info->cp_fw_ring_id;
5168 }
5169 
5170 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5171 {
5172 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5173 		struct bnxt_napi *bnapi = rxr->bnapi;
5174 		struct bnxt_cp_ring_info *cpr;
5175 
5176 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5177 		return cpr->cp_ring_struct.fw_ring_id;
5178 	} else {
5179 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5180 	}
5181 }
5182 
5183 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5184 {
5185 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5186 		struct bnxt_napi *bnapi = txr->bnapi;
5187 		struct bnxt_cp_ring_info *cpr;
5188 
5189 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5190 		return cpr->cp_ring_struct.fw_ring_id;
5191 	} else {
5192 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5193 	}
5194 }
5195 
5196 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5197 {
5198 	int entries;
5199 
5200 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5201 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5202 	else
5203 		entries = HW_HASH_INDEX_SIZE;
5204 
5205 	bp->rss_indir_tbl_entries = entries;
5206 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5207 					  GFP_KERNEL);
5208 	if (!bp->rss_indir_tbl)
5209 		return -ENOMEM;
5210 	return 0;
5211 }
5212 
5213 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5214 {
5215 	u16 max_rings, max_entries, pad, i;
5216 
5217 	if (!bp->rx_nr_rings)
5218 		return;
5219 
5220 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5221 		max_rings = bp->rx_nr_rings - 1;
5222 	else
5223 		max_rings = bp->rx_nr_rings;
5224 
5225 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5226 
5227 	for (i = 0; i < max_entries; i++)
5228 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5229 
5230 	pad = bp->rss_indir_tbl_entries - max_entries;
5231 	if (pad)
5232 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5233 }
5234 
5235 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5236 {
5237 	u16 i, tbl_size, max_ring = 0;
5238 
5239 	if (!bp->rss_indir_tbl)
5240 		return 0;
5241 
5242 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5243 	for (i = 0; i < tbl_size; i++)
5244 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5245 	return max_ring;
5246 }
5247 
5248 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5249 {
5250 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5251 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5252 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5253 		return 2;
5254 	return 1;
5255 }
5256 
5257 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5258 {
5259 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5260 	u16 i, j;
5261 
5262 	/* Fill the RSS indirection table with ring group ids */
5263 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5264 		if (!no_rss)
5265 			j = bp->rss_indir_tbl[i];
5266 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5267 	}
5268 }
5269 
5270 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5271 				    struct bnxt_vnic_info *vnic)
5272 {
5273 	__le16 *ring_tbl = vnic->rss_table;
5274 	struct bnxt_rx_ring_info *rxr;
5275 	u16 tbl_size, i;
5276 
5277 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5278 
5279 	for (i = 0; i < tbl_size; i++) {
5280 		u16 ring_id, j;
5281 
5282 		j = bp->rss_indir_tbl[i];
5283 		rxr = &bp->rx_ring[j];
5284 
5285 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5286 		*ring_tbl++ = cpu_to_le16(ring_id);
5287 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5288 		*ring_tbl++ = cpu_to_le16(ring_id);
5289 	}
5290 }
5291 
5292 static void
5293 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req,
5294 			 struct bnxt_vnic_info *vnic)
5295 {
5296 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5297 		bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5298 	else
5299 		bnxt_fill_hw_rss_tbl(bp, vnic);
5300 
5301 	if (bp->rss_hash_delta) {
5302 		req->hash_type = cpu_to_le32(bp->rss_hash_delta);
5303 		if (bp->rss_hash_cfg & bp->rss_hash_delta)
5304 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE;
5305 		else
5306 			req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE;
5307 	} else {
5308 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5309 	}
5310 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5311 	req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5312 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5313 }
5314 
5315 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5316 {
5317 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5318 	struct hwrm_vnic_rss_cfg_input *req;
5319 	int rc;
5320 
5321 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5322 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5323 		return 0;
5324 
5325 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5326 	if (rc)
5327 		return rc;
5328 
5329 	if (set_rss)
5330 		__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5331 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5332 	return hwrm_req_send(bp, req);
5333 }
5334 
5335 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5336 {
5337 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5338 	struct hwrm_vnic_rss_cfg_input *req;
5339 	dma_addr_t ring_tbl_map;
5340 	u32 i, nr_ctxs;
5341 	int rc;
5342 
5343 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5344 	if (rc)
5345 		return rc;
5346 
5347 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5348 	if (!set_rss)
5349 		return hwrm_req_send(bp, req);
5350 
5351 	__bnxt_hwrm_vnic_set_rss(bp, req, vnic);
5352 	ring_tbl_map = vnic->rss_table_dma_addr;
5353 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5354 
5355 	hwrm_req_hold(bp, req);
5356 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5357 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5358 		req->ring_table_pair_index = i;
5359 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5360 		rc = hwrm_req_send(bp, req);
5361 		if (rc)
5362 			goto exit;
5363 	}
5364 
5365 exit:
5366 	hwrm_req_drop(bp, req);
5367 	return rc;
5368 }
5369 
5370 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp)
5371 {
5372 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5373 	struct hwrm_vnic_rss_qcfg_output *resp;
5374 	struct hwrm_vnic_rss_qcfg_input *req;
5375 
5376 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG))
5377 		return;
5378 
5379 	/* all contexts configured to same hash_type, zero always exists */
5380 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5381 	resp = hwrm_req_hold(bp, req);
5382 	if (!hwrm_req_send(bp, req)) {
5383 		bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg;
5384 		bp->rss_hash_delta = 0;
5385 	}
5386 	hwrm_req_drop(bp, req);
5387 }
5388 
5389 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5390 {
5391 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5392 	struct hwrm_vnic_plcmodes_cfg_input *req;
5393 	int rc;
5394 
5395 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5396 	if (rc)
5397 		return rc;
5398 
5399 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT);
5400 	req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID);
5401 
5402 	if (BNXT_RX_PAGE_MODE(bp)) {
5403 		req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size);
5404 	} else {
5405 		req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5406 					  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5407 		req->enables |=
5408 			cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5409 		req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5410 		req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5411 	}
5412 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5413 	return hwrm_req_send(bp, req);
5414 }
5415 
5416 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5417 					u16 ctx_idx)
5418 {
5419 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5420 
5421 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5422 		return;
5423 
5424 	req->rss_cos_lb_ctx_id =
5425 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5426 
5427 	hwrm_req_send(bp, req);
5428 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5429 }
5430 
5431 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5432 {
5433 	int i, j;
5434 
5435 	for (i = 0; i < bp->nr_vnics; i++) {
5436 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5437 
5438 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5439 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5440 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5441 		}
5442 	}
5443 	bp->rsscos_nr_ctxs = 0;
5444 }
5445 
5446 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5447 {
5448 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5449 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5450 	int rc;
5451 
5452 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5453 	if (rc)
5454 		return rc;
5455 
5456 	resp = hwrm_req_hold(bp, req);
5457 	rc = hwrm_req_send(bp, req);
5458 	if (!rc)
5459 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5460 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5461 	hwrm_req_drop(bp, req);
5462 
5463 	return rc;
5464 }
5465 
5466 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5467 {
5468 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5469 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5470 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5471 }
5472 
5473 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5474 {
5475 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5476 	struct hwrm_vnic_cfg_input *req;
5477 	unsigned int ring = 0, grp_idx;
5478 	u16 def_vlan = 0;
5479 	int rc;
5480 
5481 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5482 	if (rc)
5483 		return rc;
5484 
5485 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5486 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5487 
5488 		req->default_rx_ring_id =
5489 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5490 		req->default_cmpl_ring_id =
5491 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5492 		req->enables =
5493 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5494 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5495 		goto vnic_mru;
5496 	}
5497 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5498 	/* Only RSS support for now TBD: COS & LB */
5499 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5500 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5501 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5502 					   VNIC_CFG_REQ_ENABLES_MRU);
5503 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5504 		req->rss_rule =
5505 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5506 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5507 					   VNIC_CFG_REQ_ENABLES_MRU);
5508 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5509 	} else {
5510 		req->rss_rule = cpu_to_le16(0xffff);
5511 	}
5512 
5513 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5514 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5515 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5516 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5517 	} else {
5518 		req->cos_rule = cpu_to_le16(0xffff);
5519 	}
5520 
5521 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5522 		ring = 0;
5523 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5524 		ring = vnic_id - 1;
5525 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5526 		ring = bp->rx_nr_rings - 1;
5527 
5528 	grp_idx = bp->rx_ring[ring].bnapi->index;
5529 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5530 	req->lb_rule = cpu_to_le16(0xffff);
5531 vnic_mru:
5532 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5533 
5534 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5535 #ifdef CONFIG_BNXT_SRIOV
5536 	if (BNXT_VF(bp))
5537 		def_vlan = bp->vf.vlan;
5538 #endif
5539 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5540 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5541 	if (!vnic_id && bnxt_ulp_registered(bp->edev))
5542 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5543 
5544 	return hwrm_req_send(bp, req);
5545 }
5546 
5547 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5548 {
5549 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5550 		struct hwrm_vnic_free_input *req;
5551 
5552 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5553 			return;
5554 
5555 		req->vnic_id =
5556 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5557 
5558 		hwrm_req_send(bp, req);
5559 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5560 	}
5561 }
5562 
5563 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5564 {
5565 	u16 i;
5566 
5567 	for (i = 0; i < bp->nr_vnics; i++)
5568 		bnxt_hwrm_vnic_free_one(bp, i);
5569 }
5570 
5571 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5572 				unsigned int start_rx_ring_idx,
5573 				unsigned int nr_rings)
5574 {
5575 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5576 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5577 	struct hwrm_vnic_alloc_output *resp;
5578 	struct hwrm_vnic_alloc_input *req;
5579 	int rc;
5580 
5581 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5582 	if (rc)
5583 		return rc;
5584 
5585 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5586 		goto vnic_no_ring_grps;
5587 
5588 	/* map ring groups to this vnic */
5589 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5590 		grp_idx = bp->rx_ring[i].bnapi->index;
5591 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5592 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5593 				   j, nr_rings);
5594 			break;
5595 		}
5596 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5597 	}
5598 
5599 vnic_no_ring_grps:
5600 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5601 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5602 	if (vnic_id == 0)
5603 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5604 
5605 	resp = hwrm_req_hold(bp, req);
5606 	rc = hwrm_req_send(bp, req);
5607 	if (!rc)
5608 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5609 	hwrm_req_drop(bp, req);
5610 	return rc;
5611 }
5612 
5613 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5614 {
5615 	struct hwrm_vnic_qcaps_output *resp;
5616 	struct hwrm_vnic_qcaps_input *req;
5617 	int rc;
5618 
5619 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5620 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5621 	if (bp->hwrm_spec_code < 0x10600)
5622 		return 0;
5623 
5624 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5625 	if (rc)
5626 		return rc;
5627 
5628 	resp = hwrm_req_hold(bp, req);
5629 	rc = hwrm_req_send(bp, req);
5630 	if (!rc) {
5631 		u32 flags = le32_to_cpu(resp->flags);
5632 
5633 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5634 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5635 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5636 		if (flags &
5637 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5638 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5639 
5640 		/* Older P5 fw before EXT_HW_STATS support did not set
5641 		 * VLAN_STRIP_CAP properly.
5642 		 */
5643 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5644 		    (BNXT_CHIP_P5_THOR(bp) &&
5645 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5646 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5647 		if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP)
5648 			bp->fw_cap |= BNXT_FW_CAP_RSS_HASH_TYPE_DELTA;
5649 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5650 		if (bp->max_tpa_v2) {
5651 			if (BNXT_CHIP_P5_THOR(bp))
5652 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5653 			else
5654 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5655 		}
5656 	}
5657 	hwrm_req_drop(bp, req);
5658 	return rc;
5659 }
5660 
5661 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5662 {
5663 	struct hwrm_ring_grp_alloc_output *resp;
5664 	struct hwrm_ring_grp_alloc_input *req;
5665 	int rc;
5666 	u16 i;
5667 
5668 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5669 		return 0;
5670 
5671 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5672 	if (rc)
5673 		return rc;
5674 
5675 	resp = hwrm_req_hold(bp, req);
5676 	for (i = 0; i < bp->rx_nr_rings; i++) {
5677 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5678 
5679 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5680 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5681 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5682 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5683 
5684 		rc = hwrm_req_send(bp, req);
5685 
5686 		if (rc)
5687 			break;
5688 
5689 		bp->grp_info[grp_idx].fw_grp_id =
5690 			le32_to_cpu(resp->ring_group_id);
5691 	}
5692 	hwrm_req_drop(bp, req);
5693 	return rc;
5694 }
5695 
5696 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5697 {
5698 	struct hwrm_ring_grp_free_input *req;
5699 	u16 i;
5700 
5701 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5702 		return;
5703 
5704 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5705 		return;
5706 
5707 	hwrm_req_hold(bp, req);
5708 	for (i = 0; i < bp->cp_nr_rings; i++) {
5709 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5710 			continue;
5711 		req->ring_group_id =
5712 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5713 
5714 		hwrm_req_send(bp, req);
5715 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5716 	}
5717 	hwrm_req_drop(bp, req);
5718 }
5719 
5720 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5721 				    struct bnxt_ring_struct *ring,
5722 				    u32 ring_type, u32 map_index)
5723 {
5724 	struct hwrm_ring_alloc_output *resp;
5725 	struct hwrm_ring_alloc_input *req;
5726 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5727 	struct bnxt_ring_grp_info *grp_info;
5728 	int rc, err = 0;
5729 	u16 ring_id;
5730 
5731 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5732 	if (rc)
5733 		goto exit;
5734 
5735 	req->enables = 0;
5736 	if (rmem->nr_pages > 1) {
5737 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5738 		/* Page size is in log2 units */
5739 		req->page_size = BNXT_PAGE_SHIFT;
5740 		req->page_tbl_depth = 1;
5741 	} else {
5742 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5743 	}
5744 	req->fbo = 0;
5745 	/* Association of ring index with doorbell index and MSIX number */
5746 	req->logical_id = cpu_to_le16(map_index);
5747 
5748 	switch (ring_type) {
5749 	case HWRM_RING_ALLOC_TX: {
5750 		struct bnxt_tx_ring_info *txr;
5751 
5752 		txr = container_of(ring, struct bnxt_tx_ring_info,
5753 				   tx_ring_struct);
5754 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5755 		/* Association of transmit ring with completion ring */
5756 		grp_info = &bp->grp_info[ring->grp_idx];
5757 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5758 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5759 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5760 		req->queue_id = cpu_to_le16(ring->queue_id);
5761 		break;
5762 	}
5763 	case HWRM_RING_ALLOC_RX:
5764 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5765 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5766 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5767 			u16 flags = 0;
5768 
5769 			/* Association of rx ring with stats context */
5770 			grp_info = &bp->grp_info[ring->grp_idx];
5771 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5772 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5773 			req->enables |= cpu_to_le32(
5774 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5775 			if (NET_IP_ALIGN == 2)
5776 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5777 			req->flags = cpu_to_le16(flags);
5778 		}
5779 		break;
5780 	case HWRM_RING_ALLOC_AGG:
5781 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5782 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5783 			/* Association of agg ring with rx ring */
5784 			grp_info = &bp->grp_info[ring->grp_idx];
5785 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5786 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5787 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5788 			req->enables |= cpu_to_le32(
5789 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5790 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5791 		} else {
5792 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5793 		}
5794 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5795 		break;
5796 	case HWRM_RING_ALLOC_CMPL:
5797 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5798 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5799 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5800 			/* Association of cp ring with nq */
5801 			grp_info = &bp->grp_info[map_index];
5802 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5803 			req->cq_handle = cpu_to_le64(ring->handle);
5804 			req->enables |= cpu_to_le32(
5805 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5806 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5807 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5808 		}
5809 		break;
5810 	case HWRM_RING_ALLOC_NQ:
5811 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5812 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5813 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5814 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5815 		break;
5816 	default:
5817 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5818 			   ring_type);
5819 		return -1;
5820 	}
5821 
5822 	resp = hwrm_req_hold(bp, req);
5823 	rc = hwrm_req_send(bp, req);
5824 	err = le16_to_cpu(resp->error_code);
5825 	ring_id = le16_to_cpu(resp->ring_id);
5826 	hwrm_req_drop(bp, req);
5827 
5828 exit:
5829 	if (rc || err) {
5830 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5831 			   ring_type, rc, err);
5832 		return -EIO;
5833 	}
5834 	ring->fw_ring_id = ring_id;
5835 	return rc;
5836 }
5837 
5838 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5839 {
5840 	int rc;
5841 
5842 	if (BNXT_PF(bp)) {
5843 		struct hwrm_func_cfg_input *req;
5844 
5845 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5846 		if (rc)
5847 			return rc;
5848 
5849 		req->fid = cpu_to_le16(0xffff);
5850 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5851 		req->async_event_cr = cpu_to_le16(idx);
5852 		return hwrm_req_send(bp, req);
5853 	} else {
5854 		struct hwrm_func_vf_cfg_input *req;
5855 
5856 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5857 		if (rc)
5858 			return rc;
5859 
5860 		req->enables =
5861 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5862 		req->async_event_cr = cpu_to_le16(idx);
5863 		return hwrm_req_send(bp, req);
5864 	}
5865 }
5866 
5867 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5868 			u32 map_idx, u32 xid)
5869 {
5870 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5871 		if (BNXT_PF(bp))
5872 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5873 		else
5874 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5875 		switch (ring_type) {
5876 		case HWRM_RING_ALLOC_TX:
5877 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5878 			break;
5879 		case HWRM_RING_ALLOC_RX:
5880 		case HWRM_RING_ALLOC_AGG:
5881 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5882 			break;
5883 		case HWRM_RING_ALLOC_CMPL:
5884 			db->db_key64 = DBR_PATH_L2;
5885 			break;
5886 		case HWRM_RING_ALLOC_NQ:
5887 			db->db_key64 = DBR_PATH_L2;
5888 			break;
5889 		}
5890 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5891 	} else {
5892 		db->doorbell = bp->bar1 + map_idx * 0x80;
5893 		switch (ring_type) {
5894 		case HWRM_RING_ALLOC_TX:
5895 			db->db_key32 = DB_KEY_TX;
5896 			break;
5897 		case HWRM_RING_ALLOC_RX:
5898 		case HWRM_RING_ALLOC_AGG:
5899 			db->db_key32 = DB_KEY_RX;
5900 			break;
5901 		case HWRM_RING_ALLOC_CMPL:
5902 			db->db_key32 = DB_KEY_CP;
5903 			break;
5904 		}
5905 	}
5906 }
5907 
5908 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5909 {
5910 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5911 	int i, rc = 0;
5912 	u32 type;
5913 
5914 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5915 		type = HWRM_RING_ALLOC_NQ;
5916 	else
5917 		type = HWRM_RING_ALLOC_CMPL;
5918 	for (i = 0; i < bp->cp_nr_rings; i++) {
5919 		struct bnxt_napi *bnapi = bp->bnapi[i];
5920 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5921 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5922 		u32 map_idx = ring->map_idx;
5923 		unsigned int vector;
5924 
5925 		vector = bp->irq_tbl[map_idx].vector;
5926 		disable_irq_nosync(vector);
5927 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5928 		if (rc) {
5929 			enable_irq(vector);
5930 			goto err_out;
5931 		}
5932 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5933 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5934 		enable_irq(vector);
5935 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5936 
5937 		if (!i) {
5938 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5939 			if (rc)
5940 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5941 		}
5942 	}
5943 
5944 	type = HWRM_RING_ALLOC_TX;
5945 	for (i = 0; i < bp->tx_nr_rings; i++) {
5946 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5947 		struct bnxt_ring_struct *ring;
5948 		u32 map_idx;
5949 
5950 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5951 			struct bnxt_napi *bnapi = txr->bnapi;
5952 			struct bnxt_cp_ring_info *cpr, *cpr2;
5953 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5954 
5955 			cpr = &bnapi->cp_ring;
5956 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5957 			ring = &cpr2->cp_ring_struct;
5958 			ring->handle = BNXT_TX_HDL;
5959 			map_idx = bnapi->index;
5960 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5961 			if (rc)
5962 				goto err_out;
5963 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5964 				    ring->fw_ring_id);
5965 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5966 		}
5967 		ring = &txr->tx_ring_struct;
5968 		map_idx = i;
5969 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5970 		if (rc)
5971 			goto err_out;
5972 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5973 	}
5974 
5975 	type = HWRM_RING_ALLOC_RX;
5976 	for (i = 0; i < bp->rx_nr_rings; i++) {
5977 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5978 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5979 		struct bnxt_napi *bnapi = rxr->bnapi;
5980 		u32 map_idx = bnapi->index;
5981 
5982 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5983 		if (rc)
5984 			goto err_out;
5985 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5986 		/* If we have agg rings, post agg buffers first. */
5987 		if (!agg_rings)
5988 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5989 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5990 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5991 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5992 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5993 			struct bnxt_cp_ring_info *cpr2;
5994 
5995 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5996 			ring = &cpr2->cp_ring_struct;
5997 			ring->handle = BNXT_RX_HDL;
5998 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5999 			if (rc)
6000 				goto err_out;
6001 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
6002 				    ring->fw_ring_id);
6003 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
6004 		}
6005 	}
6006 
6007 	if (agg_rings) {
6008 		type = HWRM_RING_ALLOC_AGG;
6009 		for (i = 0; i < bp->rx_nr_rings; i++) {
6010 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6011 			struct bnxt_ring_struct *ring =
6012 						&rxr->rx_agg_ring_struct;
6013 			u32 grp_idx = ring->grp_idx;
6014 			u32 map_idx = grp_idx + bp->rx_nr_rings;
6015 
6016 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
6017 			if (rc)
6018 				goto err_out;
6019 
6020 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
6021 				    ring->fw_ring_id);
6022 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
6023 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
6024 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
6025 		}
6026 	}
6027 err_out:
6028 	return rc;
6029 }
6030 
6031 static int hwrm_ring_free_send_msg(struct bnxt *bp,
6032 				   struct bnxt_ring_struct *ring,
6033 				   u32 ring_type, int cmpl_ring_id)
6034 {
6035 	struct hwrm_ring_free_output *resp;
6036 	struct hwrm_ring_free_input *req;
6037 	u16 error_code = 0;
6038 	int rc;
6039 
6040 	if (BNXT_NO_FW_ACCESS(bp))
6041 		return 0;
6042 
6043 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
6044 	if (rc)
6045 		goto exit;
6046 
6047 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
6048 	req->ring_type = ring_type;
6049 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
6050 
6051 	resp = hwrm_req_hold(bp, req);
6052 	rc = hwrm_req_send(bp, req);
6053 	error_code = le16_to_cpu(resp->error_code);
6054 	hwrm_req_drop(bp, req);
6055 exit:
6056 	if (rc || error_code) {
6057 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
6058 			   ring_type, rc, error_code);
6059 		return -EIO;
6060 	}
6061 	return 0;
6062 }
6063 
6064 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
6065 {
6066 	u32 type;
6067 	int i;
6068 
6069 	if (!bp->bnapi)
6070 		return;
6071 
6072 	for (i = 0; i < bp->tx_nr_rings; i++) {
6073 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
6074 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
6075 
6076 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6077 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
6078 
6079 			hwrm_ring_free_send_msg(bp, ring,
6080 						RING_FREE_REQ_RING_TYPE_TX,
6081 						close_path ? cmpl_ring_id :
6082 						INVALID_HW_RING_ID);
6083 			ring->fw_ring_id = INVALID_HW_RING_ID;
6084 		}
6085 	}
6086 
6087 	for (i = 0; i < bp->rx_nr_rings; i++) {
6088 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6089 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
6090 		u32 grp_idx = rxr->bnapi->index;
6091 
6092 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6093 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6094 
6095 			hwrm_ring_free_send_msg(bp, ring,
6096 						RING_FREE_REQ_RING_TYPE_RX,
6097 						close_path ? cmpl_ring_id :
6098 						INVALID_HW_RING_ID);
6099 			ring->fw_ring_id = INVALID_HW_RING_ID;
6100 			bp->grp_info[grp_idx].rx_fw_ring_id =
6101 				INVALID_HW_RING_ID;
6102 		}
6103 	}
6104 
6105 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6106 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
6107 	else
6108 		type = RING_FREE_REQ_RING_TYPE_RX;
6109 	for (i = 0; i < bp->rx_nr_rings; i++) {
6110 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
6111 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
6112 		u32 grp_idx = rxr->bnapi->index;
6113 
6114 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6115 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
6116 
6117 			hwrm_ring_free_send_msg(bp, ring, type,
6118 						close_path ? cmpl_ring_id :
6119 						INVALID_HW_RING_ID);
6120 			ring->fw_ring_id = INVALID_HW_RING_ID;
6121 			bp->grp_info[grp_idx].agg_fw_ring_id =
6122 				INVALID_HW_RING_ID;
6123 		}
6124 	}
6125 
6126 	/* The completion rings are about to be freed.  After that the
6127 	 * IRQ doorbell will not work anymore.  So we need to disable
6128 	 * IRQ here.
6129 	 */
6130 	bnxt_disable_int_sync(bp);
6131 
6132 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6133 		type = RING_FREE_REQ_RING_TYPE_NQ;
6134 	else
6135 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
6136 	for (i = 0; i < bp->cp_nr_rings; i++) {
6137 		struct bnxt_napi *bnapi = bp->bnapi[i];
6138 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6139 		struct bnxt_ring_struct *ring;
6140 		int j;
6141 
6142 		for (j = 0; j < 2; j++) {
6143 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
6144 
6145 			if (cpr2) {
6146 				ring = &cpr2->cp_ring_struct;
6147 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
6148 					continue;
6149 				hwrm_ring_free_send_msg(bp, ring,
6150 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
6151 					INVALID_HW_RING_ID);
6152 				ring->fw_ring_id = INVALID_HW_RING_ID;
6153 			}
6154 		}
6155 		ring = &cpr->cp_ring_struct;
6156 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
6157 			hwrm_ring_free_send_msg(bp, ring, type,
6158 						INVALID_HW_RING_ID);
6159 			ring->fw_ring_id = INVALID_HW_RING_ID;
6160 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
6161 		}
6162 	}
6163 }
6164 
6165 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
6166 			   bool shared);
6167 
6168 static int bnxt_hwrm_get_rings(struct bnxt *bp)
6169 {
6170 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6171 	struct hwrm_func_qcfg_output *resp;
6172 	struct hwrm_func_qcfg_input *req;
6173 	int rc;
6174 
6175 	if (bp->hwrm_spec_code < 0x10601)
6176 		return 0;
6177 
6178 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6179 	if (rc)
6180 		return rc;
6181 
6182 	req->fid = cpu_to_le16(0xffff);
6183 	resp = hwrm_req_hold(bp, req);
6184 	rc = hwrm_req_send(bp, req);
6185 	if (rc) {
6186 		hwrm_req_drop(bp, req);
6187 		return rc;
6188 	}
6189 
6190 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6191 	if (BNXT_NEW_RM(bp)) {
6192 		u16 cp, stats;
6193 
6194 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
6195 		hw_resc->resv_hw_ring_grps =
6196 			le32_to_cpu(resp->alloc_hw_ring_grps);
6197 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6198 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
6199 		stats = le16_to_cpu(resp->alloc_stat_ctx);
6200 		hw_resc->resv_irqs = cp;
6201 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6202 			int rx = hw_resc->resv_rx_rings;
6203 			int tx = hw_resc->resv_tx_rings;
6204 
6205 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
6206 				rx >>= 1;
6207 			if (cp < (rx + tx)) {
6208 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6209 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6210 					rx <<= 1;
6211 				hw_resc->resv_rx_rings = rx;
6212 				hw_resc->resv_tx_rings = tx;
6213 			}
6214 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6215 			hw_resc->resv_hw_ring_grps = rx;
6216 		}
6217 		hw_resc->resv_cp_rings = cp;
6218 		hw_resc->resv_stat_ctxs = stats;
6219 	}
6220 	hwrm_req_drop(bp, req);
6221 	return 0;
6222 }
6223 
6224 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6225 {
6226 	struct hwrm_func_qcfg_output *resp;
6227 	struct hwrm_func_qcfg_input *req;
6228 	int rc;
6229 
6230 	if (bp->hwrm_spec_code < 0x10601)
6231 		return 0;
6232 
6233 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6234 	if (rc)
6235 		return rc;
6236 
6237 	req->fid = cpu_to_le16(fid);
6238 	resp = hwrm_req_hold(bp, req);
6239 	rc = hwrm_req_send(bp, req);
6240 	if (!rc)
6241 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6242 
6243 	hwrm_req_drop(bp, req);
6244 	return rc;
6245 }
6246 
6247 static bool bnxt_rfs_supported(struct bnxt *bp);
6248 
6249 static struct hwrm_func_cfg_input *
6250 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6251 			     int ring_grps, int cp_rings, int stats, int vnics)
6252 {
6253 	struct hwrm_func_cfg_input *req;
6254 	u32 enables = 0;
6255 
6256 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6257 		return NULL;
6258 
6259 	req->fid = cpu_to_le16(0xffff);
6260 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6261 	req->num_tx_rings = cpu_to_le16(tx_rings);
6262 	if (BNXT_NEW_RM(bp)) {
6263 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6264 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6265 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6266 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6267 			enables |= tx_rings + ring_grps ?
6268 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6269 			enables |= rx_rings ?
6270 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6271 		} else {
6272 			enables |= cp_rings ?
6273 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6274 			enables |= ring_grps ?
6275 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6276 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6277 		}
6278 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6279 
6280 		req->num_rx_rings = cpu_to_le16(rx_rings);
6281 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6282 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6283 			req->num_msix = cpu_to_le16(cp_rings);
6284 			req->num_rsscos_ctxs =
6285 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6286 		} else {
6287 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6288 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6289 			req->num_rsscos_ctxs = cpu_to_le16(1);
6290 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6291 			    bnxt_rfs_supported(bp))
6292 				req->num_rsscos_ctxs =
6293 					cpu_to_le16(ring_grps + 1);
6294 		}
6295 		req->num_stat_ctxs = cpu_to_le16(stats);
6296 		req->num_vnics = cpu_to_le16(vnics);
6297 	}
6298 	req->enables = cpu_to_le32(enables);
6299 	return req;
6300 }
6301 
6302 static struct hwrm_func_vf_cfg_input *
6303 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6304 			     int ring_grps, int cp_rings, int stats, int vnics)
6305 {
6306 	struct hwrm_func_vf_cfg_input *req;
6307 	u32 enables = 0;
6308 
6309 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6310 		return NULL;
6311 
6312 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6313 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6314 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6315 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6316 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6317 		enables |= tx_rings + ring_grps ?
6318 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6319 	} else {
6320 		enables |= cp_rings ?
6321 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6322 		enables |= ring_grps ?
6323 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6324 	}
6325 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6326 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6327 
6328 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6329 	req->num_tx_rings = cpu_to_le16(tx_rings);
6330 	req->num_rx_rings = cpu_to_le16(rx_rings);
6331 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6332 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6333 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6334 	} else {
6335 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6336 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6337 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6338 	}
6339 	req->num_stat_ctxs = cpu_to_le16(stats);
6340 	req->num_vnics = cpu_to_le16(vnics);
6341 
6342 	req->enables = cpu_to_le32(enables);
6343 	return req;
6344 }
6345 
6346 static int
6347 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6348 			   int ring_grps, int cp_rings, int stats, int vnics)
6349 {
6350 	struct hwrm_func_cfg_input *req;
6351 	int rc;
6352 
6353 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6354 					   cp_rings, stats, vnics);
6355 	if (!req)
6356 		return -ENOMEM;
6357 
6358 	if (!req->enables) {
6359 		hwrm_req_drop(bp, req);
6360 		return 0;
6361 	}
6362 
6363 	rc = hwrm_req_send(bp, req);
6364 	if (rc)
6365 		return rc;
6366 
6367 	if (bp->hwrm_spec_code < 0x10601)
6368 		bp->hw_resc.resv_tx_rings = tx_rings;
6369 
6370 	return bnxt_hwrm_get_rings(bp);
6371 }
6372 
6373 static int
6374 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6375 			   int ring_grps, int cp_rings, int stats, int vnics)
6376 {
6377 	struct hwrm_func_vf_cfg_input *req;
6378 	int rc;
6379 
6380 	if (!BNXT_NEW_RM(bp)) {
6381 		bp->hw_resc.resv_tx_rings = tx_rings;
6382 		return 0;
6383 	}
6384 
6385 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6386 					   cp_rings, stats, vnics);
6387 	if (!req)
6388 		return -ENOMEM;
6389 
6390 	rc = hwrm_req_send(bp, req);
6391 	if (rc)
6392 		return rc;
6393 
6394 	return bnxt_hwrm_get_rings(bp);
6395 }
6396 
6397 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6398 				   int cp, int stat, int vnic)
6399 {
6400 	if (BNXT_PF(bp))
6401 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6402 						  vnic);
6403 	else
6404 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6405 						  vnic);
6406 }
6407 
6408 int bnxt_nq_rings_in_use(struct bnxt *bp)
6409 {
6410 	int cp = bp->cp_nr_rings;
6411 	int ulp_msix, ulp_base;
6412 
6413 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6414 	if (ulp_msix) {
6415 		ulp_base = bnxt_get_ulp_msix_base(bp);
6416 		cp += ulp_msix;
6417 		if ((ulp_base + ulp_msix) > cp)
6418 			cp = ulp_base + ulp_msix;
6419 	}
6420 	return cp;
6421 }
6422 
6423 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6424 {
6425 	int cp;
6426 
6427 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6428 		return bnxt_nq_rings_in_use(bp);
6429 
6430 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6431 	return cp;
6432 }
6433 
6434 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6435 {
6436 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6437 	int cp = bp->cp_nr_rings;
6438 
6439 	if (!ulp_stat)
6440 		return cp;
6441 
6442 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6443 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6444 
6445 	return cp + ulp_stat;
6446 }
6447 
6448 /* Check if a default RSS map needs to be setup.  This function is only
6449  * used on older firmware that does not require reserving RX rings.
6450  */
6451 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6452 {
6453 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6454 
6455 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6456 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6457 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6458 		if (!netif_is_rxfh_configured(bp->dev))
6459 			bnxt_set_dflt_rss_indir_tbl(bp);
6460 	}
6461 }
6462 
6463 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6464 {
6465 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6466 	int cp = bnxt_cp_rings_in_use(bp);
6467 	int nq = bnxt_nq_rings_in_use(bp);
6468 	int rx = bp->rx_nr_rings, stat;
6469 	int vnic = 1, grp = rx;
6470 
6471 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6472 	    bp->hwrm_spec_code >= 0x10601)
6473 		return true;
6474 
6475 	/* Old firmware does not need RX ring reservations but we still
6476 	 * need to setup a default RSS map when needed.  With new firmware
6477 	 * we go through RX ring reservations first and then set up the
6478 	 * RSS map for the successfully reserved RX rings when needed.
6479 	 */
6480 	if (!BNXT_NEW_RM(bp)) {
6481 		bnxt_check_rss_tbl_no_rmgr(bp);
6482 		return false;
6483 	}
6484 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6485 		vnic = rx + 1;
6486 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6487 		rx <<= 1;
6488 	stat = bnxt_get_func_stat_ctxs(bp);
6489 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6490 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6491 	    (hw_resc->resv_hw_ring_grps != grp &&
6492 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6493 		return true;
6494 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6495 	    hw_resc->resv_irqs != nq)
6496 		return true;
6497 	return false;
6498 }
6499 
6500 static int __bnxt_reserve_rings(struct bnxt *bp)
6501 {
6502 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6503 	int cp = bnxt_nq_rings_in_use(bp);
6504 	int tx = bp->tx_nr_rings;
6505 	int rx = bp->rx_nr_rings;
6506 	int grp, rx_rings, rc;
6507 	int vnic = 1, stat;
6508 	bool sh = false;
6509 
6510 	if (!bnxt_need_reserve_rings(bp))
6511 		return 0;
6512 
6513 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6514 		sh = true;
6515 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6516 		vnic = rx + 1;
6517 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6518 		rx <<= 1;
6519 	grp = bp->rx_nr_rings;
6520 	stat = bnxt_get_func_stat_ctxs(bp);
6521 
6522 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6523 	if (rc)
6524 		return rc;
6525 
6526 	tx = hw_resc->resv_tx_rings;
6527 	if (BNXT_NEW_RM(bp)) {
6528 		rx = hw_resc->resv_rx_rings;
6529 		cp = hw_resc->resv_irqs;
6530 		grp = hw_resc->resv_hw_ring_grps;
6531 		vnic = hw_resc->resv_vnics;
6532 		stat = hw_resc->resv_stat_ctxs;
6533 	}
6534 
6535 	rx_rings = rx;
6536 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6537 		if (rx >= 2) {
6538 			rx_rings = rx >> 1;
6539 		} else {
6540 			if (netif_running(bp->dev))
6541 				return -ENOMEM;
6542 
6543 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6544 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6545 			bp->dev->hw_features &= ~NETIF_F_LRO;
6546 			bp->dev->features &= ~NETIF_F_LRO;
6547 			bnxt_set_ring_params(bp);
6548 		}
6549 	}
6550 	rx_rings = min_t(int, rx_rings, grp);
6551 	cp = min_t(int, cp, bp->cp_nr_rings);
6552 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6553 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6554 	cp = min_t(int, cp, stat);
6555 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6556 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6557 		rx = rx_rings << 1;
6558 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6559 	bp->tx_nr_rings = tx;
6560 
6561 	/* If we cannot reserve all the RX rings, reset the RSS map only
6562 	 * if absolutely necessary
6563 	 */
6564 	if (rx_rings != bp->rx_nr_rings) {
6565 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6566 			    rx_rings, bp->rx_nr_rings);
6567 		if (netif_is_rxfh_configured(bp->dev) &&
6568 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6569 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6570 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6571 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6572 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6573 		}
6574 	}
6575 	bp->rx_nr_rings = rx_rings;
6576 	bp->cp_nr_rings = cp;
6577 
6578 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6579 		return -ENOMEM;
6580 
6581 	if (!netif_is_rxfh_configured(bp->dev))
6582 		bnxt_set_dflt_rss_indir_tbl(bp);
6583 
6584 	return rc;
6585 }
6586 
6587 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6588 				    int ring_grps, int cp_rings, int stats,
6589 				    int vnics)
6590 {
6591 	struct hwrm_func_vf_cfg_input *req;
6592 	u32 flags;
6593 
6594 	if (!BNXT_NEW_RM(bp))
6595 		return 0;
6596 
6597 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6598 					   cp_rings, stats, vnics);
6599 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6600 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6601 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6602 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6603 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6604 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6605 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6606 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6607 
6608 	req->flags = cpu_to_le32(flags);
6609 	return hwrm_req_send_silent(bp, req);
6610 }
6611 
6612 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6613 				    int ring_grps, int cp_rings, int stats,
6614 				    int vnics)
6615 {
6616 	struct hwrm_func_cfg_input *req;
6617 	u32 flags;
6618 
6619 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6620 					   cp_rings, stats, vnics);
6621 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6622 	if (BNXT_NEW_RM(bp)) {
6623 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6624 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6625 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6626 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6627 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6628 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6629 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6630 		else
6631 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6632 	}
6633 
6634 	req->flags = cpu_to_le32(flags);
6635 	return hwrm_req_send_silent(bp, req);
6636 }
6637 
6638 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6639 				 int ring_grps, int cp_rings, int stats,
6640 				 int vnics)
6641 {
6642 	if (bp->hwrm_spec_code < 0x10801)
6643 		return 0;
6644 
6645 	if (BNXT_PF(bp))
6646 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6647 						ring_grps, cp_rings, stats,
6648 						vnics);
6649 
6650 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6651 					cp_rings, stats, vnics);
6652 }
6653 
6654 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6655 {
6656 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6657 	struct hwrm_ring_aggint_qcaps_output *resp;
6658 	struct hwrm_ring_aggint_qcaps_input *req;
6659 	int rc;
6660 
6661 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6662 	coal_cap->num_cmpl_dma_aggr_max = 63;
6663 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6664 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6665 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6666 	coal_cap->int_lat_tmr_min_max = 65535;
6667 	coal_cap->int_lat_tmr_max_max = 65535;
6668 	coal_cap->num_cmpl_aggr_int_max = 65535;
6669 	coal_cap->timer_units = 80;
6670 
6671 	if (bp->hwrm_spec_code < 0x10902)
6672 		return;
6673 
6674 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6675 		return;
6676 
6677 	resp = hwrm_req_hold(bp, req);
6678 	rc = hwrm_req_send_silent(bp, req);
6679 	if (!rc) {
6680 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6681 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6682 		coal_cap->num_cmpl_dma_aggr_max =
6683 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6684 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6685 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6686 		coal_cap->cmpl_aggr_dma_tmr_max =
6687 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6688 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6689 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6690 		coal_cap->int_lat_tmr_min_max =
6691 			le16_to_cpu(resp->int_lat_tmr_min_max);
6692 		coal_cap->int_lat_tmr_max_max =
6693 			le16_to_cpu(resp->int_lat_tmr_max_max);
6694 		coal_cap->num_cmpl_aggr_int_max =
6695 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6696 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6697 	}
6698 	hwrm_req_drop(bp, req);
6699 }
6700 
6701 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6702 {
6703 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6704 
6705 	return usec * 1000 / coal_cap->timer_units;
6706 }
6707 
6708 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6709 	struct bnxt_coal *hw_coal,
6710 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6711 {
6712 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6713 	u16 val, tmr, max, flags = hw_coal->flags;
6714 	u32 cmpl_params = coal_cap->cmpl_params;
6715 
6716 	max = hw_coal->bufs_per_record * 128;
6717 	if (hw_coal->budget)
6718 		max = hw_coal->bufs_per_record * hw_coal->budget;
6719 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6720 
6721 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6722 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6723 
6724 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6725 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6726 
6727 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6728 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6729 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6730 
6731 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6732 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6733 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6734 
6735 	/* min timer set to 1/2 of interrupt timer */
6736 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6737 		val = tmr / 2;
6738 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6739 		req->int_lat_tmr_min = cpu_to_le16(val);
6740 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6741 	}
6742 
6743 	/* buf timer set to 1/4 of interrupt timer */
6744 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6745 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6746 
6747 	if (cmpl_params &
6748 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6749 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6750 		val = clamp_t(u16, tmr, 1,
6751 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6752 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6753 		req->enables |=
6754 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6755 	}
6756 
6757 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6758 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6759 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6760 	req->flags = cpu_to_le16(flags);
6761 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6762 }
6763 
6764 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6765 				   struct bnxt_coal *hw_coal)
6766 {
6767 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6768 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6769 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6770 	u32 nq_params = coal_cap->nq_params;
6771 	u16 tmr;
6772 	int rc;
6773 
6774 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6775 		return 0;
6776 
6777 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6778 	if (rc)
6779 		return rc;
6780 
6781 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6782 	req->flags =
6783 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6784 
6785 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6786 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6787 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6788 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6789 	return hwrm_req_send(bp, req);
6790 }
6791 
6792 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6793 {
6794 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6795 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6796 	struct bnxt_coal coal;
6797 	int rc;
6798 
6799 	/* Tick values in micro seconds.
6800 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6801 	 */
6802 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6803 
6804 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6805 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6806 
6807 	if (!bnapi->rx_ring)
6808 		return -ENODEV;
6809 
6810 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6811 	if (rc)
6812 		return rc;
6813 
6814 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6815 
6816 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6817 
6818 	return hwrm_req_send(bp, req_rx);
6819 }
6820 
6821 int bnxt_hwrm_set_coal(struct bnxt *bp)
6822 {
6823 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6824 							   *req;
6825 	int i, rc;
6826 
6827 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6828 	if (rc)
6829 		return rc;
6830 
6831 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6832 	if (rc) {
6833 		hwrm_req_drop(bp, req_rx);
6834 		return rc;
6835 	}
6836 
6837 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6838 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6839 
6840 	hwrm_req_hold(bp, req_rx);
6841 	hwrm_req_hold(bp, req_tx);
6842 	for (i = 0; i < bp->cp_nr_rings; i++) {
6843 		struct bnxt_napi *bnapi = bp->bnapi[i];
6844 		struct bnxt_coal *hw_coal;
6845 		u16 ring_id;
6846 
6847 		req = req_rx;
6848 		if (!bnapi->rx_ring) {
6849 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6850 			req = req_tx;
6851 		} else {
6852 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6853 		}
6854 		req->ring_id = cpu_to_le16(ring_id);
6855 
6856 		rc = hwrm_req_send(bp, req);
6857 		if (rc)
6858 			break;
6859 
6860 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6861 			continue;
6862 
6863 		if (bnapi->rx_ring && bnapi->tx_ring) {
6864 			req = req_tx;
6865 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6866 			req->ring_id = cpu_to_le16(ring_id);
6867 			rc = hwrm_req_send(bp, req);
6868 			if (rc)
6869 				break;
6870 		}
6871 		if (bnapi->rx_ring)
6872 			hw_coal = &bp->rx_coal;
6873 		else
6874 			hw_coal = &bp->tx_coal;
6875 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6876 	}
6877 	hwrm_req_drop(bp, req_rx);
6878 	hwrm_req_drop(bp, req_tx);
6879 	return rc;
6880 }
6881 
6882 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6883 {
6884 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6885 	struct hwrm_stat_ctx_free_input *req;
6886 	int i;
6887 
6888 	if (!bp->bnapi)
6889 		return;
6890 
6891 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6892 		return;
6893 
6894 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6895 		return;
6896 	if (BNXT_FW_MAJ(bp) <= 20) {
6897 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6898 			hwrm_req_drop(bp, req);
6899 			return;
6900 		}
6901 		hwrm_req_hold(bp, req0);
6902 	}
6903 	hwrm_req_hold(bp, req);
6904 	for (i = 0; i < bp->cp_nr_rings; i++) {
6905 		struct bnxt_napi *bnapi = bp->bnapi[i];
6906 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6907 
6908 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6909 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6910 			if (req0) {
6911 				req0->stat_ctx_id = req->stat_ctx_id;
6912 				hwrm_req_send(bp, req0);
6913 			}
6914 			hwrm_req_send(bp, req);
6915 
6916 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6917 		}
6918 	}
6919 	hwrm_req_drop(bp, req);
6920 	if (req0)
6921 		hwrm_req_drop(bp, req0);
6922 }
6923 
6924 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6925 {
6926 	struct hwrm_stat_ctx_alloc_output *resp;
6927 	struct hwrm_stat_ctx_alloc_input *req;
6928 	int rc, i;
6929 
6930 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6931 		return 0;
6932 
6933 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6934 	if (rc)
6935 		return rc;
6936 
6937 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6938 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6939 
6940 	resp = hwrm_req_hold(bp, req);
6941 	for (i = 0; i < bp->cp_nr_rings; i++) {
6942 		struct bnxt_napi *bnapi = bp->bnapi[i];
6943 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6944 
6945 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6946 
6947 		rc = hwrm_req_send(bp, req);
6948 		if (rc)
6949 			break;
6950 
6951 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6952 
6953 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6954 	}
6955 	hwrm_req_drop(bp, req);
6956 	return rc;
6957 }
6958 
6959 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6960 {
6961 	struct hwrm_func_qcfg_output *resp;
6962 	struct hwrm_func_qcfg_input *req;
6963 	u32 min_db_offset = 0;
6964 	u16 flags;
6965 	int rc;
6966 
6967 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6968 	if (rc)
6969 		return rc;
6970 
6971 	req->fid = cpu_to_le16(0xffff);
6972 	resp = hwrm_req_hold(bp, req);
6973 	rc = hwrm_req_send(bp, req);
6974 	if (rc)
6975 		goto func_qcfg_exit;
6976 
6977 #ifdef CONFIG_BNXT_SRIOV
6978 	if (BNXT_VF(bp)) {
6979 		struct bnxt_vf_info *vf = &bp->vf;
6980 
6981 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6982 	} else {
6983 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6984 	}
6985 #endif
6986 	flags = le16_to_cpu(resp->flags);
6987 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6988 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6989 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6990 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6991 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6992 	}
6993 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) {
6994 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6995 		if (bp->fw_cap & BNXT_FW_CAP_PTP_RTC)
6996 			bp->fw_cap &= ~BNXT_FW_CAP_PTP_RTC;
6997 	}
6998 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6999 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
7000 
7001 	switch (resp->port_partition_type) {
7002 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
7003 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
7004 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
7005 		bp->port_partition_type = resp->port_partition_type;
7006 		break;
7007 	}
7008 	if (bp->hwrm_spec_code < 0x10707 ||
7009 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
7010 		bp->br_mode = BRIDGE_MODE_VEB;
7011 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
7012 		bp->br_mode = BRIDGE_MODE_VEPA;
7013 	else
7014 		bp->br_mode = BRIDGE_MODE_UNDEF;
7015 
7016 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
7017 	if (!bp->max_mtu)
7018 		bp->max_mtu = BNXT_MAX_MTU;
7019 
7020 	if (bp->db_size)
7021 		goto func_qcfg_exit;
7022 
7023 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7024 		if (BNXT_PF(bp))
7025 			min_db_offset = DB_PF_OFFSET_P5;
7026 		else
7027 			min_db_offset = DB_VF_OFFSET_P5;
7028 	}
7029 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
7030 				 1024);
7031 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
7032 	    bp->db_size <= min_db_offset)
7033 		bp->db_size = pci_resource_len(bp->pdev, 2);
7034 
7035 func_qcfg_exit:
7036 	hwrm_req_drop(bp, req);
7037 	return rc;
7038 }
7039 
7040 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
7041 			struct hwrm_func_backing_store_qcaps_output *resp)
7042 {
7043 	struct bnxt_mem_init *mem_init;
7044 	u16 init_mask;
7045 	u8 init_val;
7046 	u8 *offset;
7047 	int i;
7048 
7049 	init_val = resp->ctx_kind_initializer;
7050 	init_mask = le16_to_cpu(resp->ctx_init_mask);
7051 	offset = &resp->qp_init_offset;
7052 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7053 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
7054 		mem_init->init_val = init_val;
7055 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
7056 		if (!init_mask)
7057 			continue;
7058 		if (i == BNXT_CTX_MEM_INIT_STAT)
7059 			offset = &resp->stat_init_offset;
7060 		if (init_mask & (1 << i))
7061 			mem_init->offset = *offset * 4;
7062 		else
7063 			mem_init->init_val = 0;
7064 	}
7065 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
7066 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
7067 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
7068 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
7069 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
7070 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
7071 }
7072 
7073 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
7074 {
7075 	struct hwrm_func_backing_store_qcaps_output *resp;
7076 	struct hwrm_func_backing_store_qcaps_input *req;
7077 	int rc;
7078 
7079 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
7080 		return 0;
7081 
7082 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
7083 	if (rc)
7084 		return rc;
7085 
7086 	resp = hwrm_req_hold(bp, req);
7087 	rc = hwrm_req_send_silent(bp, req);
7088 	if (!rc) {
7089 		struct bnxt_ctx_pg_info *ctx_pg;
7090 		struct bnxt_ctx_mem_info *ctx;
7091 		int i, tqm_rings;
7092 
7093 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7094 		if (!ctx) {
7095 			rc = -ENOMEM;
7096 			goto ctx_err;
7097 		}
7098 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
7099 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
7100 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
7101 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
7102 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
7103 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
7104 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
7105 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
7106 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
7107 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
7108 		ctx->vnic_max_vnic_entries =
7109 			le16_to_cpu(resp->vnic_max_vnic_entries);
7110 		ctx->vnic_max_ring_table_entries =
7111 			le16_to_cpu(resp->vnic_max_ring_table_entries);
7112 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
7113 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
7114 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
7115 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
7116 		ctx->tqm_min_entries_per_ring =
7117 			le32_to_cpu(resp->tqm_min_entries_per_ring);
7118 		ctx->tqm_max_entries_per_ring =
7119 			le32_to_cpu(resp->tqm_max_entries_per_ring);
7120 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
7121 		if (!ctx->tqm_entries_multiple)
7122 			ctx->tqm_entries_multiple = 1;
7123 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
7124 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
7125 		ctx->mrav_num_entries_units =
7126 			le16_to_cpu(resp->mrav_num_entries_units);
7127 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
7128 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
7129 
7130 		bnxt_init_ctx_initializer(ctx, resp);
7131 
7132 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
7133 		if (!ctx->tqm_fp_rings_count)
7134 			ctx->tqm_fp_rings_count = bp->max_q;
7135 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
7136 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
7137 
7138 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
7139 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
7140 		if (!ctx_pg) {
7141 			kfree(ctx);
7142 			rc = -ENOMEM;
7143 			goto ctx_err;
7144 		}
7145 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
7146 			ctx->tqm_mem[i] = ctx_pg;
7147 		bp->ctx = ctx;
7148 	} else {
7149 		rc = 0;
7150 	}
7151 ctx_err:
7152 	hwrm_req_drop(bp, req);
7153 	return rc;
7154 }
7155 
7156 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
7157 				  __le64 *pg_dir)
7158 {
7159 	if (!rmem->nr_pages)
7160 		return;
7161 
7162 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
7163 	if (rmem->depth >= 1) {
7164 		if (rmem->depth == 2)
7165 			*pg_attr |= 2;
7166 		else
7167 			*pg_attr |= 1;
7168 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
7169 	} else {
7170 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
7171 	}
7172 }
7173 
7174 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
7175 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
7176 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
7177 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
7178 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
7179 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
7180 
7181 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
7182 {
7183 	struct hwrm_func_backing_store_cfg_input *req;
7184 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7185 	struct bnxt_ctx_pg_info *ctx_pg;
7186 	void **__req = (void **)&req;
7187 	u32 req_len = sizeof(*req);
7188 	__le32 *num_entries;
7189 	__le64 *pg_dir;
7190 	u32 flags = 0;
7191 	u8 *pg_attr;
7192 	u32 ena;
7193 	int rc;
7194 	int i;
7195 
7196 	if (!ctx)
7197 		return 0;
7198 
7199 	if (req_len > bp->hwrm_max_ext_req_len)
7200 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7201 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7202 	if (rc)
7203 		return rc;
7204 
7205 	req->enables = cpu_to_le32(enables);
7206 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7207 		ctx_pg = &ctx->qp_mem;
7208 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7209 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7210 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7211 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7212 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7213 				      &req->qpc_pg_size_qpc_lvl,
7214 				      &req->qpc_page_dir);
7215 	}
7216 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7217 		ctx_pg = &ctx->srq_mem;
7218 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7219 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7220 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7221 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7222 				      &req->srq_pg_size_srq_lvl,
7223 				      &req->srq_page_dir);
7224 	}
7225 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7226 		ctx_pg = &ctx->cq_mem;
7227 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7228 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7229 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7230 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7231 				      &req->cq_pg_size_cq_lvl,
7232 				      &req->cq_page_dir);
7233 	}
7234 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7235 		ctx_pg = &ctx->vnic_mem;
7236 		req->vnic_num_vnic_entries =
7237 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7238 		req->vnic_num_ring_table_entries =
7239 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7240 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7241 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7242 				      &req->vnic_pg_size_vnic_lvl,
7243 				      &req->vnic_page_dir);
7244 	}
7245 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7246 		ctx_pg = &ctx->stat_mem;
7247 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7248 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7249 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7250 				      &req->stat_pg_size_stat_lvl,
7251 				      &req->stat_page_dir);
7252 	}
7253 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7254 		ctx_pg = &ctx->mrav_mem;
7255 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7256 		if (ctx->mrav_num_entries_units)
7257 			flags |=
7258 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7259 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7260 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7261 				      &req->mrav_pg_size_mrav_lvl,
7262 				      &req->mrav_page_dir);
7263 	}
7264 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7265 		ctx_pg = &ctx->tim_mem;
7266 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7267 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7268 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7269 				      &req->tim_pg_size_tim_lvl,
7270 				      &req->tim_page_dir);
7271 	}
7272 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7273 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7274 	     pg_dir = &req->tqm_sp_page_dir,
7275 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7276 	     i < BNXT_MAX_TQM_RINGS;
7277 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7278 		if (!(enables & ena))
7279 			continue;
7280 
7281 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7282 		ctx_pg = ctx->tqm_mem[i];
7283 		*num_entries = cpu_to_le32(ctx_pg->entries);
7284 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7285 	}
7286 	req->flags = cpu_to_le32(flags);
7287 	return hwrm_req_send(bp, req);
7288 }
7289 
7290 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7291 				  struct bnxt_ctx_pg_info *ctx_pg)
7292 {
7293 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7294 
7295 	rmem->page_size = BNXT_PAGE_SIZE;
7296 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7297 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7298 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7299 	if (rmem->depth >= 1)
7300 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7301 	return bnxt_alloc_ring(bp, rmem);
7302 }
7303 
7304 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7305 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7306 				  u8 depth, struct bnxt_mem_init *mem_init)
7307 {
7308 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7309 	int rc;
7310 
7311 	if (!mem_size)
7312 		return -EINVAL;
7313 
7314 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7315 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7316 		ctx_pg->nr_pages = 0;
7317 		return -EINVAL;
7318 	}
7319 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7320 		int nr_tbls, i;
7321 
7322 		rmem->depth = 2;
7323 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7324 					     GFP_KERNEL);
7325 		if (!ctx_pg->ctx_pg_tbl)
7326 			return -ENOMEM;
7327 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7328 		rmem->nr_pages = nr_tbls;
7329 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7330 		if (rc)
7331 			return rc;
7332 		for (i = 0; i < nr_tbls; i++) {
7333 			struct bnxt_ctx_pg_info *pg_tbl;
7334 
7335 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7336 			if (!pg_tbl)
7337 				return -ENOMEM;
7338 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7339 			rmem = &pg_tbl->ring_mem;
7340 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7341 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7342 			rmem->depth = 1;
7343 			rmem->nr_pages = MAX_CTX_PAGES;
7344 			rmem->mem_init = mem_init;
7345 			if (i == (nr_tbls - 1)) {
7346 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7347 
7348 				if (rem)
7349 					rmem->nr_pages = rem;
7350 			}
7351 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7352 			if (rc)
7353 				break;
7354 		}
7355 	} else {
7356 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7357 		if (rmem->nr_pages > 1 || depth)
7358 			rmem->depth = 1;
7359 		rmem->mem_init = mem_init;
7360 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7361 	}
7362 	return rc;
7363 }
7364 
7365 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7366 				  struct bnxt_ctx_pg_info *ctx_pg)
7367 {
7368 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7369 
7370 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7371 	    ctx_pg->ctx_pg_tbl) {
7372 		int i, nr_tbls = rmem->nr_pages;
7373 
7374 		for (i = 0; i < nr_tbls; i++) {
7375 			struct bnxt_ctx_pg_info *pg_tbl;
7376 			struct bnxt_ring_mem_info *rmem2;
7377 
7378 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7379 			if (!pg_tbl)
7380 				continue;
7381 			rmem2 = &pg_tbl->ring_mem;
7382 			bnxt_free_ring(bp, rmem2);
7383 			ctx_pg->ctx_pg_arr[i] = NULL;
7384 			kfree(pg_tbl);
7385 			ctx_pg->ctx_pg_tbl[i] = NULL;
7386 		}
7387 		kfree(ctx_pg->ctx_pg_tbl);
7388 		ctx_pg->ctx_pg_tbl = NULL;
7389 	}
7390 	bnxt_free_ring(bp, rmem);
7391 	ctx_pg->nr_pages = 0;
7392 }
7393 
7394 void bnxt_free_ctx_mem(struct bnxt *bp)
7395 {
7396 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7397 	int i;
7398 
7399 	if (!ctx)
7400 		return;
7401 
7402 	if (ctx->tqm_mem[0]) {
7403 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7404 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7405 		kfree(ctx->tqm_mem[0]);
7406 		ctx->tqm_mem[0] = NULL;
7407 	}
7408 
7409 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7410 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7411 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7412 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7413 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7414 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7415 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7416 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7417 }
7418 
7419 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7420 {
7421 	struct bnxt_ctx_pg_info *ctx_pg;
7422 	struct bnxt_ctx_mem_info *ctx;
7423 	struct bnxt_mem_init *init;
7424 	u32 mem_size, ena, entries;
7425 	u32 entries_sp, min;
7426 	u32 num_mr, num_ah;
7427 	u32 extra_srqs = 0;
7428 	u32 extra_qps = 0;
7429 	u8 pg_lvl = 1;
7430 	int i, rc;
7431 
7432 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7433 	if (rc) {
7434 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7435 			   rc);
7436 		return rc;
7437 	}
7438 	ctx = bp->ctx;
7439 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7440 		return 0;
7441 
7442 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7443 		pg_lvl = 2;
7444 		extra_qps = 65536;
7445 		extra_srqs = 8192;
7446 	}
7447 
7448 	ctx_pg = &ctx->qp_mem;
7449 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7450 			  extra_qps;
7451 	if (ctx->qp_entry_size) {
7452 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7453 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7454 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7455 		if (rc)
7456 			return rc;
7457 	}
7458 
7459 	ctx_pg = &ctx->srq_mem;
7460 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7461 	if (ctx->srq_entry_size) {
7462 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7463 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7464 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7465 		if (rc)
7466 			return rc;
7467 	}
7468 
7469 	ctx_pg = &ctx->cq_mem;
7470 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7471 	if (ctx->cq_entry_size) {
7472 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7473 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7474 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7475 		if (rc)
7476 			return rc;
7477 	}
7478 
7479 	ctx_pg = &ctx->vnic_mem;
7480 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7481 			  ctx->vnic_max_ring_table_entries;
7482 	if (ctx->vnic_entry_size) {
7483 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7484 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7485 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7486 		if (rc)
7487 			return rc;
7488 	}
7489 
7490 	ctx_pg = &ctx->stat_mem;
7491 	ctx_pg->entries = ctx->stat_max_entries;
7492 	if (ctx->stat_entry_size) {
7493 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7494 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7495 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7496 		if (rc)
7497 			return rc;
7498 	}
7499 
7500 	ena = 0;
7501 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7502 		goto skip_rdma;
7503 
7504 	ctx_pg = &ctx->mrav_mem;
7505 	/* 128K extra is needed to accommodate static AH context
7506 	 * allocation by f/w.
7507 	 */
7508 	num_mr = 1024 * 256;
7509 	num_ah = 1024 * 128;
7510 	ctx_pg->entries = num_mr + num_ah;
7511 	if (ctx->mrav_entry_size) {
7512 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7513 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7514 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7515 		if (rc)
7516 			return rc;
7517 	}
7518 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7519 	if (ctx->mrav_num_entries_units)
7520 		ctx_pg->entries =
7521 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7522 			 (num_ah / ctx->mrav_num_entries_units);
7523 
7524 	ctx_pg = &ctx->tim_mem;
7525 	ctx_pg->entries = ctx->qp_mem.entries;
7526 	if (ctx->tim_entry_size) {
7527 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7528 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7529 		if (rc)
7530 			return rc;
7531 	}
7532 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7533 
7534 skip_rdma:
7535 	min = ctx->tqm_min_entries_per_ring;
7536 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7537 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7538 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7539 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7540 	entries = roundup(entries, ctx->tqm_entries_multiple);
7541 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7542 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7543 		ctx_pg = ctx->tqm_mem[i];
7544 		ctx_pg->entries = i ? entries : entries_sp;
7545 		if (ctx->tqm_entry_size) {
7546 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7547 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7548 						    NULL);
7549 			if (rc)
7550 				return rc;
7551 		}
7552 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7553 	}
7554 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7555 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7556 	if (rc) {
7557 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7558 			   rc);
7559 		return rc;
7560 	}
7561 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7562 	return 0;
7563 }
7564 
7565 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7566 {
7567 	struct hwrm_func_resource_qcaps_output *resp;
7568 	struct hwrm_func_resource_qcaps_input *req;
7569 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7570 	int rc;
7571 
7572 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7573 	if (rc)
7574 		return rc;
7575 
7576 	req->fid = cpu_to_le16(0xffff);
7577 	resp = hwrm_req_hold(bp, req);
7578 	rc = hwrm_req_send_silent(bp, req);
7579 	if (rc)
7580 		goto hwrm_func_resc_qcaps_exit;
7581 
7582 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7583 	if (!all)
7584 		goto hwrm_func_resc_qcaps_exit;
7585 
7586 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7587 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7588 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7589 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7590 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7591 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7592 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7593 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7594 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7595 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7596 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7597 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7598 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7599 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7600 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7601 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7602 
7603 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7604 		u16 max_msix = le16_to_cpu(resp->max_msix);
7605 
7606 		hw_resc->max_nqs = max_msix;
7607 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7608 	}
7609 
7610 	if (BNXT_PF(bp)) {
7611 		struct bnxt_pf_info *pf = &bp->pf;
7612 
7613 		pf->vf_resv_strategy =
7614 			le16_to_cpu(resp->vf_reservation_strategy);
7615 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7616 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7617 	}
7618 hwrm_func_resc_qcaps_exit:
7619 	hwrm_req_drop(bp, req);
7620 	return rc;
7621 }
7622 
7623 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7624 {
7625 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7626 	struct hwrm_port_mac_ptp_qcfg_input *req;
7627 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7628 	bool phc_cfg;
7629 	u8 flags;
7630 	int rc;
7631 
7632 	if (bp->hwrm_spec_code < 0x10801) {
7633 		rc = -ENODEV;
7634 		goto no_ptp;
7635 	}
7636 
7637 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7638 	if (rc)
7639 		goto no_ptp;
7640 
7641 	req->port_id = cpu_to_le16(bp->pf.port_id);
7642 	resp = hwrm_req_hold(bp, req);
7643 	rc = hwrm_req_send(bp, req);
7644 	if (rc)
7645 		goto exit;
7646 
7647 	flags = resp->flags;
7648 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7649 		rc = -ENODEV;
7650 		goto exit;
7651 	}
7652 	if (!ptp) {
7653 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7654 		if (!ptp) {
7655 			rc = -ENOMEM;
7656 			goto exit;
7657 		}
7658 		ptp->bp = bp;
7659 		bp->ptp_cfg = ptp;
7660 	}
7661 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7662 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7663 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7664 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7665 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7666 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7667 	} else {
7668 		rc = -ENODEV;
7669 		goto exit;
7670 	}
7671 	phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0;
7672 	rc = bnxt_ptp_init(bp, phc_cfg);
7673 	if (rc)
7674 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7675 exit:
7676 	hwrm_req_drop(bp, req);
7677 	if (!rc)
7678 		return 0;
7679 
7680 no_ptp:
7681 	bnxt_ptp_clear(bp);
7682 	kfree(ptp);
7683 	bp->ptp_cfg = NULL;
7684 	return rc;
7685 }
7686 
7687 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7688 {
7689 	struct hwrm_func_qcaps_output *resp;
7690 	struct hwrm_func_qcaps_input *req;
7691 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7692 	u32 flags, flags_ext, flags_ext2;
7693 	int rc;
7694 
7695 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7696 	if (rc)
7697 		return rc;
7698 
7699 	req->fid = cpu_to_le16(0xffff);
7700 	resp = hwrm_req_hold(bp, req);
7701 	rc = hwrm_req_send(bp, req);
7702 	if (rc)
7703 		goto hwrm_func_qcaps_exit;
7704 
7705 	flags = le32_to_cpu(resp->flags);
7706 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7707 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7708 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7709 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7710 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7711 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7712 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7713 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7714 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7715 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7716 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7717 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7718 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7719 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7720 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7721 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7722 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7723 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7724 
7725 	flags_ext = le32_to_cpu(resp->flags_ext);
7726 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7727 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7728 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7729 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7730 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED)
7731 		bp->fw_cap |= BNXT_FW_CAP_PTP_RTC;
7732 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7733 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7734 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7735 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7736 
7737 	flags_ext2 = le32_to_cpu(resp->flags_ext2);
7738 	if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED)
7739 		bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS;
7740 
7741 	bp->tx_push_thresh = 0;
7742 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7743 	    BNXT_FW_MAJ(bp) > 217)
7744 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7745 
7746 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7747 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7748 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7749 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7750 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7751 	if (!hw_resc->max_hw_ring_grps)
7752 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7753 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7754 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7755 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7756 
7757 	if (BNXT_PF(bp)) {
7758 		struct bnxt_pf_info *pf = &bp->pf;
7759 
7760 		pf->fw_fid = le16_to_cpu(resp->fid);
7761 		pf->port_id = le16_to_cpu(resp->port_id);
7762 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7763 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7764 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7765 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7766 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7767 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7768 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7769 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7770 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7771 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7772 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7773 			bp->flags |= BNXT_FLAG_WOL_CAP;
7774 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7775 			__bnxt_hwrm_ptp_qcfg(bp);
7776 		} else {
7777 			bnxt_ptp_clear(bp);
7778 			kfree(bp->ptp_cfg);
7779 			bp->ptp_cfg = NULL;
7780 		}
7781 	} else {
7782 #ifdef CONFIG_BNXT_SRIOV
7783 		struct bnxt_vf_info *vf = &bp->vf;
7784 
7785 		vf->fw_fid = le16_to_cpu(resp->fid);
7786 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7787 #endif
7788 	}
7789 
7790 hwrm_func_qcaps_exit:
7791 	hwrm_req_drop(bp, req);
7792 	return rc;
7793 }
7794 
7795 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7796 {
7797 	struct hwrm_dbg_qcaps_output *resp;
7798 	struct hwrm_dbg_qcaps_input *req;
7799 	int rc;
7800 
7801 	bp->fw_dbg_cap = 0;
7802 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7803 		return;
7804 
7805 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7806 	if (rc)
7807 		return;
7808 
7809 	req->fid = cpu_to_le16(0xffff);
7810 	resp = hwrm_req_hold(bp, req);
7811 	rc = hwrm_req_send(bp, req);
7812 	if (rc)
7813 		goto hwrm_dbg_qcaps_exit;
7814 
7815 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7816 
7817 hwrm_dbg_qcaps_exit:
7818 	hwrm_req_drop(bp, req);
7819 }
7820 
7821 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7822 
7823 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7824 {
7825 	int rc;
7826 
7827 	rc = __bnxt_hwrm_func_qcaps(bp);
7828 	if (rc)
7829 		return rc;
7830 
7831 	bnxt_hwrm_dbg_qcaps(bp);
7832 
7833 	rc = bnxt_hwrm_queue_qportcfg(bp);
7834 	if (rc) {
7835 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7836 		return rc;
7837 	}
7838 	if (bp->hwrm_spec_code >= 0x10803) {
7839 		rc = bnxt_alloc_ctx_mem(bp);
7840 		if (rc)
7841 			return rc;
7842 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7843 		if (!rc)
7844 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7845 	}
7846 	return 0;
7847 }
7848 
7849 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7850 {
7851 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7852 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7853 	u32 flags;
7854 	int rc;
7855 
7856 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7857 		return 0;
7858 
7859 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7860 	if (rc)
7861 		return rc;
7862 
7863 	resp = hwrm_req_hold(bp, req);
7864 	rc = hwrm_req_send(bp, req);
7865 	if (rc)
7866 		goto hwrm_cfa_adv_qcaps_exit;
7867 
7868 	flags = le32_to_cpu(resp->flags);
7869 	if (flags &
7870 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7871 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7872 
7873 hwrm_cfa_adv_qcaps_exit:
7874 	hwrm_req_drop(bp, req);
7875 	return rc;
7876 }
7877 
7878 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7879 {
7880 	if (bp->fw_health)
7881 		return 0;
7882 
7883 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7884 	if (!bp->fw_health)
7885 		return -ENOMEM;
7886 
7887 	mutex_init(&bp->fw_health->lock);
7888 	return 0;
7889 }
7890 
7891 static int bnxt_alloc_fw_health(struct bnxt *bp)
7892 {
7893 	int rc;
7894 
7895 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7896 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7897 		return 0;
7898 
7899 	rc = __bnxt_alloc_fw_health(bp);
7900 	if (rc) {
7901 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7902 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7903 		return rc;
7904 	}
7905 
7906 	return 0;
7907 }
7908 
7909 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7910 {
7911 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7912 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7913 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7914 }
7915 
7916 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7917 {
7918 	struct bnxt_fw_health *fw_health = bp->fw_health;
7919 	u32 reg_type;
7920 
7921 	if (!fw_health)
7922 		return;
7923 
7924 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7925 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7926 		fw_health->status_reliable = false;
7927 
7928 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7929 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7930 		fw_health->resets_reliable = false;
7931 }
7932 
7933 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7934 {
7935 	void __iomem *hs;
7936 	u32 status_loc;
7937 	u32 reg_type;
7938 	u32 sig;
7939 
7940 	if (bp->fw_health)
7941 		bp->fw_health->status_reliable = false;
7942 
7943 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7944 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7945 
7946 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7947 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7948 		if (!bp->chip_num) {
7949 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7950 			bp->chip_num = readl(bp->bar0 +
7951 					     BNXT_FW_HEALTH_WIN_BASE +
7952 					     BNXT_GRC_REG_CHIP_NUM);
7953 		}
7954 		if (!BNXT_CHIP_P5(bp))
7955 			return;
7956 
7957 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7958 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7959 	} else {
7960 		status_loc = readl(hs + offsetof(struct hcomm_status,
7961 						 fw_status_loc));
7962 	}
7963 
7964 	if (__bnxt_alloc_fw_health(bp)) {
7965 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7966 		return;
7967 	}
7968 
7969 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7970 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7971 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7972 		__bnxt_map_fw_health_reg(bp, status_loc);
7973 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7974 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7975 	}
7976 
7977 	bp->fw_health->status_reliable = true;
7978 }
7979 
7980 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7981 {
7982 	struct bnxt_fw_health *fw_health = bp->fw_health;
7983 	u32 reg_base = 0xffffffff;
7984 	int i;
7985 
7986 	bp->fw_health->status_reliable = false;
7987 	bp->fw_health->resets_reliable = false;
7988 	/* Only pre-map the monitoring GRC registers using window 3 */
7989 	for (i = 0; i < 4; i++) {
7990 		u32 reg = fw_health->regs[i];
7991 
7992 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7993 			continue;
7994 		if (reg_base == 0xffffffff)
7995 			reg_base = reg & BNXT_GRC_BASE_MASK;
7996 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7997 			return -ERANGE;
7998 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7999 	}
8000 	bp->fw_health->status_reliable = true;
8001 	bp->fw_health->resets_reliable = true;
8002 	if (reg_base == 0xffffffff)
8003 		return 0;
8004 
8005 	__bnxt_map_fw_health_reg(bp, reg_base);
8006 	return 0;
8007 }
8008 
8009 static void bnxt_remap_fw_health_regs(struct bnxt *bp)
8010 {
8011 	if (!bp->fw_health)
8012 		return;
8013 
8014 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) {
8015 		bp->fw_health->status_reliable = true;
8016 		bp->fw_health->resets_reliable = true;
8017 	} else {
8018 		bnxt_try_map_fw_health_reg(bp);
8019 	}
8020 }
8021 
8022 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
8023 {
8024 	struct bnxt_fw_health *fw_health = bp->fw_health;
8025 	struct hwrm_error_recovery_qcfg_output *resp;
8026 	struct hwrm_error_recovery_qcfg_input *req;
8027 	int rc, i;
8028 
8029 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
8030 		return 0;
8031 
8032 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
8033 	if (rc)
8034 		return rc;
8035 
8036 	resp = hwrm_req_hold(bp, req);
8037 	rc = hwrm_req_send(bp, req);
8038 	if (rc)
8039 		goto err_recovery_out;
8040 	fw_health->flags = le32_to_cpu(resp->flags);
8041 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
8042 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
8043 		rc = -EINVAL;
8044 		goto err_recovery_out;
8045 	}
8046 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
8047 	fw_health->master_func_wait_dsecs =
8048 		le32_to_cpu(resp->master_func_wait_period);
8049 	fw_health->normal_func_wait_dsecs =
8050 		le32_to_cpu(resp->normal_func_wait_period);
8051 	fw_health->post_reset_wait_dsecs =
8052 		le32_to_cpu(resp->master_func_wait_period_after_reset);
8053 	fw_health->post_reset_max_wait_dsecs =
8054 		le32_to_cpu(resp->max_bailout_time_after_reset);
8055 	fw_health->regs[BNXT_FW_HEALTH_REG] =
8056 		le32_to_cpu(resp->fw_health_status_reg);
8057 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
8058 		le32_to_cpu(resp->fw_heartbeat_reg);
8059 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
8060 		le32_to_cpu(resp->fw_reset_cnt_reg);
8061 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
8062 		le32_to_cpu(resp->reset_inprogress_reg);
8063 	fw_health->fw_reset_inprog_reg_mask =
8064 		le32_to_cpu(resp->reset_inprogress_reg_mask);
8065 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
8066 	if (fw_health->fw_reset_seq_cnt >= 16) {
8067 		rc = -EINVAL;
8068 		goto err_recovery_out;
8069 	}
8070 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
8071 		fw_health->fw_reset_seq_regs[i] =
8072 			le32_to_cpu(resp->reset_reg[i]);
8073 		fw_health->fw_reset_seq_vals[i] =
8074 			le32_to_cpu(resp->reset_reg_val[i]);
8075 		fw_health->fw_reset_seq_delay_msec[i] =
8076 			resp->delay_after_reset[i];
8077 	}
8078 err_recovery_out:
8079 	hwrm_req_drop(bp, req);
8080 	if (!rc)
8081 		rc = bnxt_map_fw_health_regs(bp);
8082 	if (rc)
8083 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
8084 	return rc;
8085 }
8086 
8087 static int bnxt_hwrm_func_reset(struct bnxt *bp)
8088 {
8089 	struct hwrm_func_reset_input *req;
8090 	int rc;
8091 
8092 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
8093 	if (rc)
8094 		return rc;
8095 
8096 	req->enables = 0;
8097 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
8098 	return hwrm_req_send(bp, req);
8099 }
8100 
8101 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
8102 {
8103 	struct hwrm_nvm_get_dev_info_output nvm_info;
8104 
8105 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
8106 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
8107 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
8108 			 nvm_info.nvm_cfg_ver_upd);
8109 }
8110 
8111 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
8112 {
8113 	struct hwrm_queue_qportcfg_output *resp;
8114 	struct hwrm_queue_qportcfg_input *req;
8115 	u8 i, j, *qptr;
8116 	bool no_rdma;
8117 	int rc = 0;
8118 
8119 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
8120 	if (rc)
8121 		return rc;
8122 
8123 	resp = hwrm_req_hold(bp, req);
8124 	rc = hwrm_req_send(bp, req);
8125 	if (rc)
8126 		goto qportcfg_exit;
8127 
8128 	if (!resp->max_configurable_queues) {
8129 		rc = -EINVAL;
8130 		goto qportcfg_exit;
8131 	}
8132 	bp->max_tc = resp->max_configurable_queues;
8133 	bp->max_lltc = resp->max_configurable_lossless_queues;
8134 	if (bp->max_tc > BNXT_MAX_QUEUE)
8135 		bp->max_tc = BNXT_MAX_QUEUE;
8136 
8137 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
8138 	qptr = &resp->queue_id0;
8139 	for (i = 0, j = 0; i < bp->max_tc; i++) {
8140 		bp->q_info[j].queue_id = *qptr;
8141 		bp->q_ids[i] = *qptr++;
8142 		bp->q_info[j].queue_profile = *qptr++;
8143 		bp->tc_to_qidx[j] = j;
8144 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
8145 		    (no_rdma && BNXT_PF(bp)))
8146 			j++;
8147 	}
8148 	bp->max_q = bp->max_tc;
8149 	bp->max_tc = max_t(u8, j, 1);
8150 
8151 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
8152 		bp->max_tc = 1;
8153 
8154 	if (bp->max_lltc > bp->max_tc)
8155 		bp->max_lltc = bp->max_tc;
8156 
8157 qportcfg_exit:
8158 	hwrm_req_drop(bp, req);
8159 	return rc;
8160 }
8161 
8162 static int bnxt_hwrm_poll(struct bnxt *bp)
8163 {
8164 	struct hwrm_ver_get_input *req;
8165 	int rc;
8166 
8167 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8168 	if (rc)
8169 		return rc;
8170 
8171 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8172 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8173 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8174 
8175 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
8176 	rc = hwrm_req_send(bp, req);
8177 	return rc;
8178 }
8179 
8180 static int bnxt_hwrm_ver_get(struct bnxt *bp)
8181 {
8182 	struct hwrm_ver_get_output *resp;
8183 	struct hwrm_ver_get_input *req;
8184 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
8185 	u32 dev_caps_cfg, hwrm_ver;
8186 	int rc, len;
8187 
8188 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
8189 	if (rc)
8190 		return rc;
8191 
8192 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
8193 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
8194 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
8195 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
8196 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
8197 
8198 	resp = hwrm_req_hold(bp, req);
8199 	rc = hwrm_req_send(bp, req);
8200 	if (rc)
8201 		goto hwrm_ver_get_exit;
8202 
8203 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
8204 
8205 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
8206 			     resp->hwrm_intf_min_8b << 8 |
8207 			     resp->hwrm_intf_upd_8b;
8208 	if (resp->hwrm_intf_maj_8b < 1) {
8209 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
8210 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8211 			    resp->hwrm_intf_upd_8b);
8212 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
8213 	}
8214 
8215 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
8216 			HWRM_VERSION_UPDATE;
8217 
8218 	if (bp->hwrm_spec_code > hwrm_ver)
8219 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8220 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
8221 			 HWRM_VERSION_UPDATE);
8222 	else
8223 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
8224 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
8225 			 resp->hwrm_intf_upd_8b);
8226 
8227 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
8228 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
8229 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
8230 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
8231 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8232 		len = FW_VER_STR_LEN;
8233 	} else {
8234 		fw_maj = resp->hwrm_fw_maj_8b;
8235 		fw_min = resp->hwrm_fw_min_8b;
8236 		fw_bld = resp->hwrm_fw_bld_8b;
8237 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8238 		len = BC_HWRM_STR_LEN;
8239 	}
8240 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8241 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8242 		 fw_rsv);
8243 
8244 	if (strlen(resp->active_pkg_name)) {
8245 		int fw_ver_len = strlen(bp->fw_ver_str);
8246 
8247 		snprintf(bp->fw_ver_str + fw_ver_len,
8248 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8249 			 resp->active_pkg_name);
8250 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8251 	}
8252 
8253 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8254 	if (!bp->hwrm_cmd_timeout)
8255 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8256 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8257 	if (!bp->hwrm_cmd_max_timeout)
8258 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8259 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8260 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8261 			    bp->hwrm_cmd_max_timeout / 1000);
8262 
8263 	if (resp->hwrm_intf_maj_8b >= 1) {
8264 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8265 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8266 	}
8267 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8268 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8269 
8270 	bp->chip_num = le16_to_cpu(resp->chip_num);
8271 	bp->chip_rev = resp->chip_rev;
8272 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8273 	    !resp->chip_metal)
8274 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8275 
8276 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8277 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8278 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8279 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8280 
8281 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8282 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8283 
8284 	if (dev_caps_cfg &
8285 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8286 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8287 
8288 	if (dev_caps_cfg &
8289 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8290 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8291 
8292 	if (dev_caps_cfg &
8293 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8294 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8295 
8296 hwrm_ver_get_exit:
8297 	hwrm_req_drop(bp, req);
8298 	return rc;
8299 }
8300 
8301 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8302 {
8303 	struct hwrm_fw_set_time_input *req;
8304 	struct tm tm;
8305 	time64_t now = ktime_get_real_seconds();
8306 	int rc;
8307 
8308 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8309 	    bp->hwrm_spec_code < 0x10400)
8310 		return -EOPNOTSUPP;
8311 
8312 	time64_to_tm(now, 0, &tm);
8313 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8314 	if (rc)
8315 		return rc;
8316 
8317 	req->year = cpu_to_le16(1900 + tm.tm_year);
8318 	req->month = 1 + tm.tm_mon;
8319 	req->day = tm.tm_mday;
8320 	req->hour = tm.tm_hour;
8321 	req->minute = tm.tm_min;
8322 	req->second = tm.tm_sec;
8323 	return hwrm_req_send(bp, req);
8324 }
8325 
8326 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8327 {
8328 	u64 sw_tmp;
8329 
8330 	hw &= mask;
8331 	sw_tmp = (*sw & ~mask) | hw;
8332 	if (hw < (*sw & mask))
8333 		sw_tmp += mask + 1;
8334 	WRITE_ONCE(*sw, sw_tmp);
8335 }
8336 
8337 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8338 				    int count, bool ignore_zero)
8339 {
8340 	int i;
8341 
8342 	for (i = 0; i < count; i++) {
8343 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8344 
8345 		if (ignore_zero && !hw)
8346 			continue;
8347 
8348 		if (masks[i] == -1ULL)
8349 			sw_stats[i] = hw;
8350 		else
8351 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8352 	}
8353 }
8354 
8355 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8356 {
8357 	if (!stats->hw_stats)
8358 		return;
8359 
8360 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8361 				stats->hw_masks, stats->len / 8, false);
8362 }
8363 
8364 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8365 {
8366 	struct bnxt_stats_mem *ring0_stats;
8367 	bool ignore_zero = false;
8368 	int i;
8369 
8370 	/* Chip bug.  Counter intermittently becomes 0. */
8371 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8372 		ignore_zero = true;
8373 
8374 	for (i = 0; i < bp->cp_nr_rings; i++) {
8375 		struct bnxt_napi *bnapi = bp->bnapi[i];
8376 		struct bnxt_cp_ring_info *cpr;
8377 		struct bnxt_stats_mem *stats;
8378 
8379 		cpr = &bnapi->cp_ring;
8380 		stats = &cpr->stats;
8381 		if (!i)
8382 			ring0_stats = stats;
8383 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8384 					ring0_stats->hw_masks,
8385 					ring0_stats->len / 8, ignore_zero);
8386 	}
8387 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8388 		struct bnxt_stats_mem *stats = &bp->port_stats;
8389 		__le64 *hw_stats = stats->hw_stats;
8390 		u64 *sw_stats = stats->sw_stats;
8391 		u64 *masks = stats->hw_masks;
8392 		int cnt;
8393 
8394 		cnt = sizeof(struct rx_port_stats) / 8;
8395 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8396 
8397 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8398 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8399 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8400 		cnt = sizeof(struct tx_port_stats) / 8;
8401 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8402 	}
8403 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8404 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8405 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8406 	}
8407 }
8408 
8409 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8410 {
8411 	struct hwrm_port_qstats_input *req;
8412 	struct bnxt_pf_info *pf = &bp->pf;
8413 	int rc;
8414 
8415 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8416 		return 0;
8417 
8418 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8419 		return -EOPNOTSUPP;
8420 
8421 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8422 	if (rc)
8423 		return rc;
8424 
8425 	req->flags = flags;
8426 	req->port_id = cpu_to_le16(pf->port_id);
8427 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8428 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8429 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8430 	return hwrm_req_send(bp, req);
8431 }
8432 
8433 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8434 {
8435 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8436 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8437 	struct hwrm_port_qstats_ext_output *resp_qs;
8438 	struct hwrm_port_qstats_ext_input *req_qs;
8439 	struct bnxt_pf_info *pf = &bp->pf;
8440 	u32 tx_stat_size;
8441 	int rc;
8442 
8443 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8444 		return 0;
8445 
8446 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8447 		return -EOPNOTSUPP;
8448 
8449 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8450 	if (rc)
8451 		return rc;
8452 
8453 	req_qs->flags = flags;
8454 	req_qs->port_id = cpu_to_le16(pf->port_id);
8455 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8456 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8457 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8458 		       sizeof(struct tx_port_stats_ext) : 0;
8459 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8460 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8461 	resp_qs = hwrm_req_hold(bp, req_qs);
8462 	rc = hwrm_req_send(bp, req_qs);
8463 	if (!rc) {
8464 		bp->fw_rx_stats_ext_size =
8465 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8466 		if (BNXT_FW_MAJ(bp) < 220 &&
8467 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8468 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8469 
8470 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8471 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8472 	} else {
8473 		bp->fw_rx_stats_ext_size = 0;
8474 		bp->fw_tx_stats_ext_size = 0;
8475 	}
8476 	hwrm_req_drop(bp, req_qs);
8477 
8478 	if (flags)
8479 		return rc;
8480 
8481 	if (bp->fw_tx_stats_ext_size <=
8482 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8483 		bp->pri2cos_valid = 0;
8484 		return rc;
8485 	}
8486 
8487 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8488 	if (rc)
8489 		return rc;
8490 
8491 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8492 
8493 	resp_qc = hwrm_req_hold(bp, req_qc);
8494 	rc = hwrm_req_send(bp, req_qc);
8495 	if (!rc) {
8496 		u8 *pri2cos;
8497 		int i, j;
8498 
8499 		pri2cos = &resp_qc->pri0_cos_queue_id;
8500 		for (i = 0; i < 8; i++) {
8501 			u8 queue_id = pri2cos[i];
8502 			u8 queue_idx;
8503 
8504 			/* Per port queue IDs start from 0, 10, 20, etc */
8505 			queue_idx = queue_id % 10;
8506 			if (queue_idx > BNXT_MAX_QUEUE) {
8507 				bp->pri2cos_valid = false;
8508 				hwrm_req_drop(bp, req_qc);
8509 				return rc;
8510 			}
8511 			for (j = 0; j < bp->max_q; j++) {
8512 				if (bp->q_ids[j] == queue_id)
8513 					bp->pri2cos_idx[i] = queue_idx;
8514 			}
8515 		}
8516 		bp->pri2cos_valid = true;
8517 	}
8518 	hwrm_req_drop(bp, req_qc);
8519 
8520 	return rc;
8521 }
8522 
8523 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8524 {
8525 	bnxt_hwrm_tunnel_dst_port_free(bp,
8526 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8527 	bnxt_hwrm_tunnel_dst_port_free(bp,
8528 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8529 }
8530 
8531 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8532 {
8533 	int rc, i;
8534 	u32 tpa_flags = 0;
8535 
8536 	if (set_tpa)
8537 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8538 	else if (BNXT_NO_FW_ACCESS(bp))
8539 		return 0;
8540 	for (i = 0; i < bp->nr_vnics; i++) {
8541 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8542 		if (rc) {
8543 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8544 				   i, rc);
8545 			return rc;
8546 		}
8547 	}
8548 	return 0;
8549 }
8550 
8551 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8552 {
8553 	int i;
8554 
8555 	for (i = 0; i < bp->nr_vnics; i++)
8556 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8557 }
8558 
8559 static void bnxt_clear_vnic(struct bnxt *bp)
8560 {
8561 	if (!bp->vnic_info)
8562 		return;
8563 
8564 	bnxt_hwrm_clear_vnic_filter(bp);
8565 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8566 		/* clear all RSS setting before free vnic ctx */
8567 		bnxt_hwrm_clear_vnic_rss(bp);
8568 		bnxt_hwrm_vnic_ctx_free(bp);
8569 	}
8570 	/* before free the vnic, undo the vnic tpa settings */
8571 	if (bp->flags & BNXT_FLAG_TPA)
8572 		bnxt_set_tpa(bp, false);
8573 	bnxt_hwrm_vnic_free(bp);
8574 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8575 		bnxt_hwrm_vnic_ctx_free(bp);
8576 }
8577 
8578 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8579 				    bool irq_re_init)
8580 {
8581 	bnxt_clear_vnic(bp);
8582 	bnxt_hwrm_ring_free(bp, close_path);
8583 	bnxt_hwrm_ring_grp_free(bp);
8584 	if (irq_re_init) {
8585 		bnxt_hwrm_stat_ctx_free(bp);
8586 		bnxt_hwrm_free_tunnel_ports(bp);
8587 	}
8588 }
8589 
8590 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8591 {
8592 	struct hwrm_func_cfg_input *req;
8593 	u8 evb_mode;
8594 	int rc;
8595 
8596 	if (br_mode == BRIDGE_MODE_VEB)
8597 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8598 	else if (br_mode == BRIDGE_MODE_VEPA)
8599 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8600 	else
8601 		return -EINVAL;
8602 
8603 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8604 	if (rc)
8605 		return rc;
8606 
8607 	req->fid = cpu_to_le16(0xffff);
8608 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8609 	req->evb_mode = evb_mode;
8610 	return hwrm_req_send(bp, req);
8611 }
8612 
8613 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8614 {
8615 	struct hwrm_func_cfg_input *req;
8616 	int rc;
8617 
8618 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8619 		return 0;
8620 
8621 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8622 	if (rc)
8623 		return rc;
8624 
8625 	req->fid = cpu_to_le16(0xffff);
8626 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8627 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8628 	if (size == 128)
8629 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8630 
8631 	return hwrm_req_send(bp, req);
8632 }
8633 
8634 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8635 {
8636 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8637 	int rc;
8638 
8639 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8640 		goto skip_rss_ctx;
8641 
8642 	/* allocate context for vnic */
8643 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8644 	if (rc) {
8645 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8646 			   vnic_id, rc);
8647 		goto vnic_setup_err;
8648 	}
8649 	bp->rsscos_nr_ctxs++;
8650 
8651 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8652 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8653 		if (rc) {
8654 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8655 				   vnic_id, rc);
8656 			goto vnic_setup_err;
8657 		}
8658 		bp->rsscos_nr_ctxs++;
8659 	}
8660 
8661 skip_rss_ctx:
8662 	/* configure default vnic, ring grp */
8663 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8664 	if (rc) {
8665 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8666 			   vnic_id, rc);
8667 		goto vnic_setup_err;
8668 	}
8669 
8670 	/* Enable RSS hashing on vnic */
8671 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8672 	if (rc) {
8673 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8674 			   vnic_id, rc);
8675 		goto vnic_setup_err;
8676 	}
8677 
8678 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8679 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8680 		if (rc) {
8681 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8682 				   vnic_id, rc);
8683 		}
8684 	}
8685 
8686 vnic_setup_err:
8687 	return rc;
8688 }
8689 
8690 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8691 {
8692 	int rc, i, nr_ctxs;
8693 
8694 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8695 	for (i = 0; i < nr_ctxs; i++) {
8696 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8697 		if (rc) {
8698 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8699 				   vnic_id, i, rc);
8700 			break;
8701 		}
8702 		bp->rsscos_nr_ctxs++;
8703 	}
8704 	if (i < nr_ctxs)
8705 		return -ENOMEM;
8706 
8707 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8708 	if (rc) {
8709 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8710 			   vnic_id, rc);
8711 		return rc;
8712 	}
8713 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8714 	if (rc) {
8715 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8716 			   vnic_id, rc);
8717 		return rc;
8718 	}
8719 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8720 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8721 		if (rc) {
8722 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8723 				   vnic_id, rc);
8724 		}
8725 	}
8726 	return rc;
8727 }
8728 
8729 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8730 {
8731 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8732 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8733 	else
8734 		return __bnxt_setup_vnic(bp, vnic_id);
8735 }
8736 
8737 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8738 {
8739 #ifdef CONFIG_RFS_ACCEL
8740 	int i, rc = 0;
8741 
8742 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8743 		return 0;
8744 
8745 	for (i = 0; i < bp->rx_nr_rings; i++) {
8746 		struct bnxt_vnic_info *vnic;
8747 		u16 vnic_id = i + 1;
8748 		u16 ring_id = i;
8749 
8750 		if (vnic_id >= bp->nr_vnics)
8751 			break;
8752 
8753 		vnic = &bp->vnic_info[vnic_id];
8754 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8755 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8756 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8757 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8758 		if (rc) {
8759 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8760 				   vnic_id, rc);
8761 			break;
8762 		}
8763 		rc = bnxt_setup_vnic(bp, vnic_id);
8764 		if (rc)
8765 			break;
8766 	}
8767 	return rc;
8768 #else
8769 	return 0;
8770 #endif
8771 }
8772 
8773 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8774 static bool bnxt_promisc_ok(struct bnxt *bp)
8775 {
8776 #ifdef CONFIG_BNXT_SRIOV
8777 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8778 		return false;
8779 #endif
8780 	return true;
8781 }
8782 
8783 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8784 {
8785 	unsigned int rc = 0;
8786 
8787 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8788 	if (rc) {
8789 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8790 			   rc);
8791 		return rc;
8792 	}
8793 
8794 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8795 	if (rc) {
8796 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8797 			   rc);
8798 		return rc;
8799 	}
8800 	return rc;
8801 }
8802 
8803 static int bnxt_cfg_rx_mode(struct bnxt *);
8804 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8805 
8806 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8807 {
8808 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8809 	int rc = 0;
8810 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8811 
8812 	if (irq_re_init) {
8813 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8814 		if (rc) {
8815 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8816 				   rc);
8817 			goto err_out;
8818 		}
8819 	}
8820 
8821 	rc = bnxt_hwrm_ring_alloc(bp);
8822 	if (rc) {
8823 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8824 		goto err_out;
8825 	}
8826 
8827 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8828 	if (rc) {
8829 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8830 		goto err_out;
8831 	}
8832 
8833 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8834 		rx_nr_rings--;
8835 
8836 	/* default vnic 0 */
8837 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8838 	if (rc) {
8839 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8840 		goto err_out;
8841 	}
8842 
8843 	rc = bnxt_setup_vnic(bp, 0);
8844 	if (rc)
8845 		goto err_out;
8846 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
8847 		bnxt_hwrm_update_rss_hash_cfg(bp);
8848 
8849 	if (bp->flags & BNXT_FLAG_RFS) {
8850 		rc = bnxt_alloc_rfs_vnics(bp);
8851 		if (rc)
8852 			goto err_out;
8853 	}
8854 
8855 	if (bp->flags & BNXT_FLAG_TPA) {
8856 		rc = bnxt_set_tpa(bp, true);
8857 		if (rc)
8858 			goto err_out;
8859 	}
8860 
8861 	if (BNXT_VF(bp))
8862 		bnxt_update_vf_mac(bp);
8863 
8864 	/* Filter for default vnic 0 */
8865 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8866 	if (rc) {
8867 		if (BNXT_VF(bp) && rc == -ENODEV)
8868 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8869 		else
8870 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8871 		goto err_out;
8872 	}
8873 	vnic->uc_filter_count = 1;
8874 
8875 	vnic->rx_mask = 0;
8876 	if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state))
8877 		goto skip_rx_mask;
8878 
8879 	if (bp->dev->flags & IFF_BROADCAST)
8880 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8881 
8882 	if (bp->dev->flags & IFF_PROMISC)
8883 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8884 
8885 	if (bp->dev->flags & IFF_ALLMULTI) {
8886 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8887 		vnic->mc_list_count = 0;
8888 	} else if (bp->dev->flags & IFF_MULTICAST) {
8889 		u32 mask = 0;
8890 
8891 		bnxt_mc_list_updated(bp, &mask);
8892 		vnic->rx_mask |= mask;
8893 	}
8894 
8895 	rc = bnxt_cfg_rx_mode(bp);
8896 	if (rc)
8897 		goto err_out;
8898 
8899 skip_rx_mask:
8900 	rc = bnxt_hwrm_set_coal(bp);
8901 	if (rc)
8902 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8903 				rc);
8904 
8905 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8906 		rc = bnxt_setup_nitroa0_vnic(bp);
8907 		if (rc)
8908 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8909 				   rc);
8910 	}
8911 
8912 	if (BNXT_VF(bp)) {
8913 		bnxt_hwrm_func_qcfg(bp);
8914 		netdev_update_features(bp->dev);
8915 	}
8916 
8917 	return 0;
8918 
8919 err_out:
8920 	bnxt_hwrm_resource_free(bp, 0, true);
8921 
8922 	return rc;
8923 }
8924 
8925 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8926 {
8927 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8928 	return 0;
8929 }
8930 
8931 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8932 {
8933 	bnxt_init_cp_rings(bp);
8934 	bnxt_init_rx_rings(bp);
8935 	bnxt_init_tx_rings(bp);
8936 	bnxt_init_ring_grps(bp, irq_re_init);
8937 	bnxt_init_vnics(bp);
8938 
8939 	return bnxt_init_chip(bp, irq_re_init);
8940 }
8941 
8942 static int bnxt_set_real_num_queues(struct bnxt *bp)
8943 {
8944 	int rc;
8945 	struct net_device *dev = bp->dev;
8946 
8947 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8948 					  bp->tx_nr_rings_xdp);
8949 	if (rc)
8950 		return rc;
8951 
8952 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8953 	if (rc)
8954 		return rc;
8955 
8956 #ifdef CONFIG_RFS_ACCEL
8957 	if (bp->flags & BNXT_FLAG_RFS)
8958 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8959 #endif
8960 
8961 	return rc;
8962 }
8963 
8964 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8965 			   bool shared)
8966 {
8967 	int _rx = *rx, _tx = *tx;
8968 
8969 	if (shared) {
8970 		*rx = min_t(int, _rx, max);
8971 		*tx = min_t(int, _tx, max);
8972 	} else {
8973 		if (max < 2)
8974 			return -ENOMEM;
8975 
8976 		while (_rx + _tx > max) {
8977 			if (_rx > _tx && _rx > 1)
8978 				_rx--;
8979 			else if (_tx > 1)
8980 				_tx--;
8981 		}
8982 		*rx = _rx;
8983 		*tx = _tx;
8984 	}
8985 	return 0;
8986 }
8987 
8988 static void bnxt_setup_msix(struct bnxt *bp)
8989 {
8990 	const int len = sizeof(bp->irq_tbl[0].name);
8991 	struct net_device *dev = bp->dev;
8992 	int tcs, i;
8993 
8994 	tcs = netdev_get_num_tc(dev);
8995 	if (tcs) {
8996 		int i, off, count;
8997 
8998 		for (i = 0; i < tcs; i++) {
8999 			count = bp->tx_nr_rings_per_tc;
9000 			off = i * count;
9001 			netdev_set_tc_queue(dev, i, count, off);
9002 		}
9003 	}
9004 
9005 	for (i = 0; i < bp->cp_nr_rings; i++) {
9006 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9007 		char *attr;
9008 
9009 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9010 			attr = "TxRx";
9011 		else if (i < bp->rx_nr_rings)
9012 			attr = "rx";
9013 		else
9014 			attr = "tx";
9015 
9016 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
9017 			 attr, i);
9018 		bp->irq_tbl[map_idx].handler = bnxt_msix;
9019 	}
9020 }
9021 
9022 static void bnxt_setup_inta(struct bnxt *bp)
9023 {
9024 	const int len = sizeof(bp->irq_tbl[0].name);
9025 
9026 	if (netdev_get_num_tc(bp->dev))
9027 		netdev_reset_tc(bp->dev);
9028 
9029 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
9030 		 0);
9031 	bp->irq_tbl[0].handler = bnxt_inta;
9032 }
9033 
9034 static int bnxt_init_int_mode(struct bnxt *bp);
9035 
9036 static int bnxt_setup_int_mode(struct bnxt *bp)
9037 {
9038 	int rc;
9039 
9040 	if (!bp->irq_tbl) {
9041 		rc = bnxt_init_int_mode(bp);
9042 		if (rc || !bp->irq_tbl)
9043 			return rc ?: -ENODEV;
9044 	}
9045 
9046 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9047 		bnxt_setup_msix(bp);
9048 	else
9049 		bnxt_setup_inta(bp);
9050 
9051 	rc = bnxt_set_real_num_queues(bp);
9052 	return rc;
9053 }
9054 
9055 #ifdef CONFIG_RFS_ACCEL
9056 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
9057 {
9058 	return bp->hw_resc.max_rsscos_ctxs;
9059 }
9060 
9061 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
9062 {
9063 	return bp->hw_resc.max_vnics;
9064 }
9065 #endif
9066 
9067 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
9068 {
9069 	return bp->hw_resc.max_stat_ctxs;
9070 }
9071 
9072 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
9073 {
9074 	return bp->hw_resc.max_cp_rings;
9075 }
9076 
9077 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
9078 {
9079 	unsigned int cp = bp->hw_resc.max_cp_rings;
9080 
9081 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9082 		cp -= bnxt_get_ulp_msix_num(bp);
9083 
9084 	return cp;
9085 }
9086 
9087 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
9088 {
9089 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9090 
9091 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9092 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
9093 
9094 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
9095 }
9096 
9097 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
9098 {
9099 	bp->hw_resc.max_irqs = max_irqs;
9100 }
9101 
9102 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
9103 {
9104 	unsigned int cp;
9105 
9106 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
9107 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9108 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
9109 	else
9110 		return cp - bp->cp_nr_rings;
9111 }
9112 
9113 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
9114 {
9115 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
9116 }
9117 
9118 int bnxt_get_avail_msix(struct bnxt *bp, int num)
9119 {
9120 	int max_cp = bnxt_get_max_func_cp_rings(bp);
9121 	int max_irq = bnxt_get_max_func_irqs(bp);
9122 	int total_req = bp->cp_nr_rings + num;
9123 	int max_idx, avail_msix;
9124 
9125 	max_idx = bp->total_irqs;
9126 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9127 		max_idx = min_t(int, bp->total_irqs, max_cp);
9128 	avail_msix = max_idx - bp->cp_nr_rings;
9129 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
9130 		return avail_msix;
9131 
9132 	if (max_irq < total_req) {
9133 		num = max_irq - bp->cp_nr_rings;
9134 		if (num <= 0)
9135 			return 0;
9136 	}
9137 	return num;
9138 }
9139 
9140 static int bnxt_get_num_msix(struct bnxt *bp)
9141 {
9142 	if (!BNXT_NEW_RM(bp))
9143 		return bnxt_get_max_func_irqs(bp);
9144 
9145 	return bnxt_nq_rings_in_use(bp);
9146 }
9147 
9148 static int bnxt_init_msix(struct bnxt *bp)
9149 {
9150 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
9151 	struct msix_entry *msix_ent;
9152 
9153 	total_vecs = bnxt_get_num_msix(bp);
9154 	max = bnxt_get_max_func_irqs(bp);
9155 	if (total_vecs > max)
9156 		total_vecs = max;
9157 
9158 	if (!total_vecs)
9159 		return 0;
9160 
9161 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
9162 	if (!msix_ent)
9163 		return -ENOMEM;
9164 
9165 	for (i = 0; i < total_vecs; i++) {
9166 		msix_ent[i].entry = i;
9167 		msix_ent[i].vector = 0;
9168 	}
9169 
9170 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
9171 		min = 2;
9172 
9173 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
9174 	ulp_msix = bnxt_get_ulp_msix_num(bp);
9175 	if (total_vecs < 0 || total_vecs < ulp_msix) {
9176 		rc = -ENODEV;
9177 		goto msix_setup_exit;
9178 	}
9179 
9180 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
9181 	if (bp->irq_tbl) {
9182 		for (i = 0; i < total_vecs; i++)
9183 			bp->irq_tbl[i].vector = msix_ent[i].vector;
9184 
9185 		bp->total_irqs = total_vecs;
9186 		/* Trim rings based upon num of vectors allocated */
9187 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
9188 				     total_vecs - ulp_msix, min == 1);
9189 		if (rc)
9190 			goto msix_setup_exit;
9191 
9192 		bp->cp_nr_rings = (min == 1) ?
9193 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9194 				  bp->tx_nr_rings + bp->rx_nr_rings;
9195 
9196 	} else {
9197 		rc = -ENOMEM;
9198 		goto msix_setup_exit;
9199 	}
9200 	bp->flags |= BNXT_FLAG_USING_MSIX;
9201 	kfree(msix_ent);
9202 	return 0;
9203 
9204 msix_setup_exit:
9205 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
9206 	kfree(bp->irq_tbl);
9207 	bp->irq_tbl = NULL;
9208 	pci_disable_msix(bp->pdev);
9209 	kfree(msix_ent);
9210 	return rc;
9211 }
9212 
9213 static int bnxt_init_inta(struct bnxt *bp)
9214 {
9215 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
9216 	if (!bp->irq_tbl)
9217 		return -ENOMEM;
9218 
9219 	bp->total_irqs = 1;
9220 	bp->rx_nr_rings = 1;
9221 	bp->tx_nr_rings = 1;
9222 	bp->cp_nr_rings = 1;
9223 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
9224 	bp->irq_tbl[0].vector = bp->pdev->irq;
9225 	return 0;
9226 }
9227 
9228 static int bnxt_init_int_mode(struct bnxt *bp)
9229 {
9230 	int rc = -ENODEV;
9231 
9232 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
9233 		rc = bnxt_init_msix(bp);
9234 
9235 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
9236 		/* fallback to INTA */
9237 		rc = bnxt_init_inta(bp);
9238 	}
9239 	return rc;
9240 }
9241 
9242 static void bnxt_clear_int_mode(struct bnxt *bp)
9243 {
9244 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9245 		pci_disable_msix(bp->pdev);
9246 
9247 	kfree(bp->irq_tbl);
9248 	bp->irq_tbl = NULL;
9249 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9250 }
9251 
9252 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9253 {
9254 	int tcs = netdev_get_num_tc(bp->dev);
9255 	bool irq_cleared = false;
9256 	int rc;
9257 
9258 	if (!bnxt_need_reserve_rings(bp))
9259 		return 0;
9260 
9261 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9262 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9263 		bnxt_ulp_irq_stop(bp);
9264 		bnxt_clear_int_mode(bp);
9265 		irq_cleared = true;
9266 	}
9267 	rc = __bnxt_reserve_rings(bp);
9268 	if (irq_cleared) {
9269 		if (!rc)
9270 			rc = bnxt_init_int_mode(bp);
9271 		bnxt_ulp_irq_restart(bp, rc);
9272 	}
9273 	if (rc) {
9274 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9275 		return rc;
9276 	}
9277 	if (tcs && (bp->tx_nr_rings_per_tc * tcs !=
9278 		    bp->tx_nr_rings - bp->tx_nr_rings_xdp)) {
9279 		netdev_err(bp->dev, "tx ring reservation failure\n");
9280 		netdev_reset_tc(bp->dev);
9281 		if (bp->tx_nr_rings_xdp)
9282 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp;
9283 		else
9284 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9285 		return -ENOMEM;
9286 	}
9287 	return 0;
9288 }
9289 
9290 static void bnxt_free_irq(struct bnxt *bp)
9291 {
9292 	struct bnxt_irq *irq;
9293 	int i;
9294 
9295 #ifdef CONFIG_RFS_ACCEL
9296 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9297 	bp->dev->rx_cpu_rmap = NULL;
9298 #endif
9299 	if (!bp->irq_tbl || !bp->bnapi)
9300 		return;
9301 
9302 	for (i = 0; i < bp->cp_nr_rings; i++) {
9303 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9304 
9305 		irq = &bp->irq_tbl[map_idx];
9306 		if (irq->requested) {
9307 			if (irq->have_cpumask) {
9308 				irq_set_affinity_hint(irq->vector, NULL);
9309 				free_cpumask_var(irq->cpu_mask);
9310 				irq->have_cpumask = 0;
9311 			}
9312 			free_irq(irq->vector, bp->bnapi[i]);
9313 		}
9314 
9315 		irq->requested = 0;
9316 	}
9317 }
9318 
9319 static int bnxt_request_irq(struct bnxt *bp)
9320 {
9321 	int i, j, rc = 0;
9322 	unsigned long flags = 0;
9323 #ifdef CONFIG_RFS_ACCEL
9324 	struct cpu_rmap *rmap;
9325 #endif
9326 
9327 	rc = bnxt_setup_int_mode(bp);
9328 	if (rc) {
9329 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9330 			   rc);
9331 		return rc;
9332 	}
9333 #ifdef CONFIG_RFS_ACCEL
9334 	rmap = bp->dev->rx_cpu_rmap;
9335 #endif
9336 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9337 		flags = IRQF_SHARED;
9338 
9339 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9340 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9341 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9342 
9343 #ifdef CONFIG_RFS_ACCEL
9344 		if (rmap && bp->bnapi[i]->rx_ring) {
9345 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9346 			if (rc)
9347 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9348 					    j);
9349 			j++;
9350 		}
9351 #endif
9352 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9353 				 bp->bnapi[i]);
9354 		if (rc)
9355 			break;
9356 
9357 		irq->requested = 1;
9358 
9359 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9360 			int numa_node = dev_to_node(&bp->pdev->dev);
9361 
9362 			irq->have_cpumask = 1;
9363 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9364 					irq->cpu_mask);
9365 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9366 			if (rc) {
9367 				netdev_warn(bp->dev,
9368 					    "Set affinity failed, IRQ = %d\n",
9369 					    irq->vector);
9370 				break;
9371 			}
9372 		}
9373 	}
9374 	return rc;
9375 }
9376 
9377 static void bnxt_del_napi(struct bnxt *bp)
9378 {
9379 	int i;
9380 
9381 	if (!bp->bnapi)
9382 		return;
9383 
9384 	for (i = 0; i < bp->cp_nr_rings; i++) {
9385 		struct bnxt_napi *bnapi = bp->bnapi[i];
9386 
9387 		__netif_napi_del(&bnapi->napi);
9388 	}
9389 	/* We called __netif_napi_del(), we need
9390 	 * to respect an RCU grace period before freeing napi structures.
9391 	 */
9392 	synchronize_net();
9393 }
9394 
9395 static void bnxt_init_napi(struct bnxt *bp)
9396 {
9397 	int i;
9398 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9399 	struct bnxt_napi *bnapi;
9400 
9401 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9402 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9403 
9404 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9405 			poll_fn = bnxt_poll_p5;
9406 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9407 			cp_nr_rings--;
9408 		for (i = 0; i < cp_nr_rings; i++) {
9409 			bnapi = bp->bnapi[i];
9410 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn);
9411 		}
9412 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9413 			bnapi = bp->bnapi[cp_nr_rings];
9414 			netif_napi_add(bp->dev, &bnapi->napi,
9415 				       bnxt_poll_nitroa0);
9416 		}
9417 	} else {
9418 		bnapi = bp->bnapi[0];
9419 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll);
9420 	}
9421 }
9422 
9423 static void bnxt_disable_napi(struct bnxt *bp)
9424 {
9425 	int i;
9426 
9427 	if (!bp->bnapi ||
9428 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9429 		return;
9430 
9431 	for (i = 0; i < bp->cp_nr_rings; i++) {
9432 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9433 
9434 		napi_disable(&bp->bnapi[i]->napi);
9435 		if (bp->bnapi[i]->rx_ring)
9436 			cancel_work_sync(&cpr->dim.work);
9437 	}
9438 }
9439 
9440 static void bnxt_enable_napi(struct bnxt *bp)
9441 {
9442 	int i;
9443 
9444 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9445 	for (i = 0; i < bp->cp_nr_rings; i++) {
9446 		struct bnxt_napi *bnapi = bp->bnapi[i];
9447 		struct bnxt_cp_ring_info *cpr;
9448 
9449 		cpr = &bnapi->cp_ring;
9450 		if (bnapi->in_reset)
9451 			cpr->sw_stats.rx.rx_resets++;
9452 		bnapi->in_reset = false;
9453 
9454 		if (bnapi->rx_ring) {
9455 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9456 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9457 		}
9458 		napi_enable(&bnapi->napi);
9459 	}
9460 }
9461 
9462 void bnxt_tx_disable(struct bnxt *bp)
9463 {
9464 	int i;
9465 	struct bnxt_tx_ring_info *txr;
9466 
9467 	if (bp->tx_ring) {
9468 		for (i = 0; i < bp->tx_nr_rings; i++) {
9469 			txr = &bp->tx_ring[i];
9470 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9471 		}
9472 	}
9473 	/* Make sure napi polls see @dev_state change */
9474 	synchronize_net();
9475 	/* Drop carrier first to prevent TX timeout */
9476 	netif_carrier_off(bp->dev);
9477 	/* Stop all TX queues */
9478 	netif_tx_disable(bp->dev);
9479 }
9480 
9481 void bnxt_tx_enable(struct bnxt *bp)
9482 {
9483 	int i;
9484 	struct bnxt_tx_ring_info *txr;
9485 
9486 	for (i = 0; i < bp->tx_nr_rings; i++) {
9487 		txr = &bp->tx_ring[i];
9488 		WRITE_ONCE(txr->dev_state, 0);
9489 	}
9490 	/* Make sure napi polls see @dev_state change */
9491 	synchronize_net();
9492 	netif_tx_wake_all_queues(bp->dev);
9493 	if (BNXT_LINK_IS_UP(bp))
9494 		netif_carrier_on(bp->dev);
9495 }
9496 
9497 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9498 {
9499 	u8 active_fec = link_info->active_fec_sig_mode &
9500 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9501 
9502 	switch (active_fec) {
9503 	default:
9504 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9505 		return "None";
9506 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9507 		return "Clause 74 BaseR";
9508 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9509 		return "Clause 91 RS(528,514)";
9510 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9511 		return "Clause 91 RS544_1XN";
9512 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9513 		return "Clause 91 RS(544,514)";
9514 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9515 		return "Clause 91 RS272_1XN";
9516 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9517 		return "Clause 91 RS(272,257)";
9518 	}
9519 }
9520 
9521 void bnxt_report_link(struct bnxt *bp)
9522 {
9523 	if (BNXT_LINK_IS_UP(bp)) {
9524 		const char *signal = "";
9525 		const char *flow_ctrl;
9526 		const char *duplex;
9527 		u32 speed;
9528 		u16 fec;
9529 
9530 		netif_carrier_on(bp->dev);
9531 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9532 		if (speed == SPEED_UNKNOWN) {
9533 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9534 			return;
9535 		}
9536 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9537 			duplex = "full";
9538 		else
9539 			duplex = "half";
9540 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9541 			flow_ctrl = "ON - receive & transmit";
9542 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9543 			flow_ctrl = "ON - transmit";
9544 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9545 			flow_ctrl = "ON - receive";
9546 		else
9547 			flow_ctrl = "none";
9548 		if (bp->link_info.phy_qcfg_resp.option_flags &
9549 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9550 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9551 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9552 			switch (sig_mode) {
9553 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9554 				signal = "(NRZ) ";
9555 				break;
9556 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9557 				signal = "(PAM4) ";
9558 				break;
9559 			default:
9560 				break;
9561 			}
9562 		}
9563 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9564 			    speed, signal, duplex, flow_ctrl);
9565 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9566 			netdev_info(bp->dev, "EEE is %s\n",
9567 				    bp->eee.eee_active ? "active" :
9568 							 "not active");
9569 		fec = bp->link_info.fec_cfg;
9570 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9571 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9572 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9573 				    bnxt_report_fec(&bp->link_info));
9574 	} else {
9575 		netif_carrier_off(bp->dev);
9576 		netdev_err(bp->dev, "NIC Link is Down\n");
9577 	}
9578 }
9579 
9580 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9581 {
9582 	if (!resp->supported_speeds_auto_mode &&
9583 	    !resp->supported_speeds_force_mode &&
9584 	    !resp->supported_pam4_speeds_auto_mode &&
9585 	    !resp->supported_pam4_speeds_force_mode)
9586 		return true;
9587 	return false;
9588 }
9589 
9590 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9591 {
9592 	struct bnxt_link_info *link_info = &bp->link_info;
9593 	struct hwrm_port_phy_qcaps_output *resp;
9594 	struct hwrm_port_phy_qcaps_input *req;
9595 	int rc = 0;
9596 
9597 	if (bp->hwrm_spec_code < 0x10201)
9598 		return 0;
9599 
9600 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9601 	if (rc)
9602 		return rc;
9603 
9604 	resp = hwrm_req_hold(bp, req);
9605 	rc = hwrm_req_send(bp, req);
9606 	if (rc)
9607 		goto hwrm_phy_qcaps_exit;
9608 
9609 	bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8);
9610 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9611 		struct ethtool_eee *eee = &bp->eee;
9612 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9613 
9614 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9615 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9616 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9617 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9618 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9619 	}
9620 
9621 	if (bp->hwrm_spec_code >= 0x10a01) {
9622 		if (bnxt_phy_qcaps_no_speed(resp)) {
9623 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9624 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9625 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9626 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9627 			netdev_info(bp->dev, "Ethernet link enabled\n");
9628 			/* Phy re-enabled, reprobe the speeds */
9629 			link_info->support_auto_speeds = 0;
9630 			link_info->support_pam4_auto_speeds = 0;
9631 		}
9632 	}
9633 	if (resp->supported_speeds_auto_mode)
9634 		link_info->support_auto_speeds =
9635 			le16_to_cpu(resp->supported_speeds_auto_mode);
9636 	if (resp->supported_pam4_speeds_auto_mode)
9637 		link_info->support_pam4_auto_speeds =
9638 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9639 
9640 	bp->port_count = resp->port_cnt;
9641 
9642 hwrm_phy_qcaps_exit:
9643 	hwrm_req_drop(bp, req);
9644 	return rc;
9645 }
9646 
9647 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9648 {
9649 	u16 diff = advertising ^ supported;
9650 
9651 	return ((supported | diff) != supported);
9652 }
9653 
9654 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9655 {
9656 	struct bnxt_link_info *link_info = &bp->link_info;
9657 	struct hwrm_port_phy_qcfg_output *resp;
9658 	struct hwrm_port_phy_qcfg_input *req;
9659 	u8 link_state = link_info->link_state;
9660 	bool support_changed = false;
9661 	int rc;
9662 
9663 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9664 	if (rc)
9665 		return rc;
9666 
9667 	resp = hwrm_req_hold(bp, req);
9668 	rc = hwrm_req_send(bp, req);
9669 	if (rc) {
9670 		hwrm_req_drop(bp, req);
9671 		if (BNXT_VF(bp) && rc == -ENODEV) {
9672 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9673 			rc = 0;
9674 		}
9675 		return rc;
9676 	}
9677 
9678 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9679 	link_info->phy_link_status = resp->link;
9680 	link_info->duplex = resp->duplex_cfg;
9681 	if (bp->hwrm_spec_code >= 0x10800)
9682 		link_info->duplex = resp->duplex_state;
9683 	link_info->pause = resp->pause;
9684 	link_info->auto_mode = resp->auto_mode;
9685 	link_info->auto_pause_setting = resp->auto_pause;
9686 	link_info->lp_pause = resp->link_partner_adv_pause;
9687 	link_info->force_pause_setting = resp->force_pause;
9688 	link_info->duplex_setting = resp->duplex_cfg;
9689 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9690 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9691 	else
9692 		link_info->link_speed = 0;
9693 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9694 	link_info->force_pam4_link_speed =
9695 		le16_to_cpu(resp->force_pam4_link_speed);
9696 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9697 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9698 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9699 	link_info->auto_pam4_link_speeds =
9700 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9701 	link_info->lp_auto_link_speeds =
9702 		le16_to_cpu(resp->link_partner_adv_speeds);
9703 	link_info->lp_auto_pam4_link_speeds =
9704 		resp->link_partner_pam4_adv_speeds;
9705 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9706 	link_info->phy_ver[0] = resp->phy_maj;
9707 	link_info->phy_ver[1] = resp->phy_min;
9708 	link_info->phy_ver[2] = resp->phy_bld;
9709 	link_info->media_type = resp->media_type;
9710 	link_info->phy_type = resp->phy_type;
9711 	link_info->transceiver = resp->xcvr_pkg_type;
9712 	link_info->phy_addr = resp->eee_config_phy_addr &
9713 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9714 	link_info->module_status = resp->module_status;
9715 
9716 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9717 		struct ethtool_eee *eee = &bp->eee;
9718 		u16 fw_speeds;
9719 
9720 		eee->eee_active = 0;
9721 		if (resp->eee_config_phy_addr &
9722 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9723 			eee->eee_active = 1;
9724 			fw_speeds = le16_to_cpu(
9725 				resp->link_partner_adv_eee_link_speed_mask);
9726 			eee->lp_advertised =
9727 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9728 		}
9729 
9730 		/* Pull initial EEE config */
9731 		if (!chng_link_state) {
9732 			if (resp->eee_config_phy_addr &
9733 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9734 				eee->eee_enabled = 1;
9735 
9736 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9737 			eee->advertised =
9738 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9739 
9740 			if (resp->eee_config_phy_addr &
9741 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9742 				__le32 tmr;
9743 
9744 				eee->tx_lpi_enabled = 1;
9745 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9746 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9747 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9748 			}
9749 		}
9750 	}
9751 
9752 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9753 	if (bp->hwrm_spec_code >= 0x10504) {
9754 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9755 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9756 	}
9757 	/* TODO: need to add more logic to report VF link */
9758 	if (chng_link_state) {
9759 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9760 			link_info->link_state = BNXT_LINK_STATE_UP;
9761 		else
9762 			link_info->link_state = BNXT_LINK_STATE_DOWN;
9763 		if (link_state != link_info->link_state)
9764 			bnxt_report_link(bp);
9765 	} else {
9766 		/* always link down if not require to update link state */
9767 		link_info->link_state = BNXT_LINK_STATE_DOWN;
9768 	}
9769 	hwrm_req_drop(bp, req);
9770 
9771 	if (!BNXT_PHY_CFG_ABLE(bp))
9772 		return 0;
9773 
9774 	/* Check if any advertised speeds are no longer supported. The caller
9775 	 * holds the link_lock mutex, so we can modify link_info settings.
9776 	 */
9777 	if (bnxt_support_dropped(link_info->advertising,
9778 				 link_info->support_auto_speeds)) {
9779 		link_info->advertising = link_info->support_auto_speeds;
9780 		support_changed = true;
9781 	}
9782 	if (bnxt_support_dropped(link_info->advertising_pam4,
9783 				 link_info->support_pam4_auto_speeds)) {
9784 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9785 		support_changed = true;
9786 	}
9787 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9788 		bnxt_hwrm_set_link_setting(bp, true, false);
9789 	return 0;
9790 }
9791 
9792 static void bnxt_get_port_module_status(struct bnxt *bp)
9793 {
9794 	struct bnxt_link_info *link_info = &bp->link_info;
9795 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9796 	u8 module_status;
9797 
9798 	if (bnxt_update_link(bp, true))
9799 		return;
9800 
9801 	module_status = link_info->module_status;
9802 	switch (module_status) {
9803 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9804 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9805 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9806 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9807 			    bp->pf.port_id);
9808 		if (bp->hwrm_spec_code >= 0x10201) {
9809 			netdev_warn(bp->dev, "Module part number %s\n",
9810 				    resp->phy_vendor_partnumber);
9811 		}
9812 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9813 			netdev_warn(bp->dev, "TX is disabled\n");
9814 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9815 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9816 	}
9817 }
9818 
9819 static void
9820 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9821 {
9822 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9823 		if (bp->hwrm_spec_code >= 0x10201)
9824 			req->auto_pause =
9825 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9826 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9827 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9828 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9829 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9830 		req->enables |=
9831 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9832 	} else {
9833 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9834 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9835 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9836 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9837 		req->enables |=
9838 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9839 		if (bp->hwrm_spec_code >= 0x10201) {
9840 			req->auto_pause = req->force_pause;
9841 			req->enables |= cpu_to_le32(
9842 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9843 		}
9844 	}
9845 }
9846 
9847 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9848 {
9849 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9850 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9851 		if (bp->link_info.advertising) {
9852 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9853 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9854 		}
9855 		if (bp->link_info.advertising_pam4) {
9856 			req->enables |=
9857 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9858 			req->auto_link_pam4_speed_mask =
9859 				cpu_to_le16(bp->link_info.advertising_pam4);
9860 		}
9861 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9862 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9863 	} else {
9864 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9865 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9866 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9867 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9868 		} else {
9869 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9870 		}
9871 	}
9872 
9873 	/* tell chimp that the setting takes effect immediately */
9874 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9875 }
9876 
9877 int bnxt_hwrm_set_pause(struct bnxt *bp)
9878 {
9879 	struct hwrm_port_phy_cfg_input *req;
9880 	int rc;
9881 
9882 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9883 	if (rc)
9884 		return rc;
9885 
9886 	bnxt_hwrm_set_pause_common(bp, req);
9887 
9888 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9889 	    bp->link_info.force_link_chng)
9890 		bnxt_hwrm_set_link_common(bp, req);
9891 
9892 	rc = hwrm_req_send(bp, req);
9893 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9894 		/* since changing of pause setting doesn't trigger any link
9895 		 * change event, the driver needs to update the current pause
9896 		 * result upon successfully return of the phy_cfg command
9897 		 */
9898 		bp->link_info.pause =
9899 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9900 		bp->link_info.auto_pause_setting = 0;
9901 		if (!bp->link_info.force_link_chng)
9902 			bnxt_report_link(bp);
9903 	}
9904 	bp->link_info.force_link_chng = false;
9905 	return rc;
9906 }
9907 
9908 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9909 			      struct hwrm_port_phy_cfg_input *req)
9910 {
9911 	struct ethtool_eee *eee = &bp->eee;
9912 
9913 	if (eee->eee_enabled) {
9914 		u16 eee_speeds;
9915 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9916 
9917 		if (eee->tx_lpi_enabled)
9918 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9919 		else
9920 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9921 
9922 		req->flags |= cpu_to_le32(flags);
9923 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9924 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9925 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9926 	} else {
9927 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9928 	}
9929 }
9930 
9931 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9932 {
9933 	struct hwrm_port_phy_cfg_input *req;
9934 	int rc;
9935 
9936 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9937 	if (rc)
9938 		return rc;
9939 
9940 	if (set_pause)
9941 		bnxt_hwrm_set_pause_common(bp, req);
9942 
9943 	bnxt_hwrm_set_link_common(bp, req);
9944 
9945 	if (set_eee)
9946 		bnxt_hwrm_set_eee(bp, req);
9947 	return hwrm_req_send(bp, req);
9948 }
9949 
9950 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9951 {
9952 	struct hwrm_port_phy_cfg_input *req;
9953 	int rc;
9954 
9955 	if (!BNXT_SINGLE_PF(bp))
9956 		return 0;
9957 
9958 	if (pci_num_vf(bp->pdev) &&
9959 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9960 		return 0;
9961 
9962 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9963 	if (rc)
9964 		return rc;
9965 
9966 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9967 	rc = hwrm_req_send(bp, req);
9968 	if (!rc) {
9969 		mutex_lock(&bp->link_lock);
9970 		/* Device is not obliged link down in certain scenarios, even
9971 		 * when forced. Setting the state unknown is consistent with
9972 		 * driver startup and will force link state to be reported
9973 		 * during subsequent open based on PORT_PHY_QCFG.
9974 		 */
9975 		bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN;
9976 		mutex_unlock(&bp->link_lock);
9977 	}
9978 	return rc;
9979 }
9980 
9981 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9982 {
9983 #ifdef CONFIG_TEE_BNXT_FW
9984 	int rc = tee_bnxt_fw_load();
9985 
9986 	if (rc)
9987 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9988 
9989 	return rc;
9990 #else
9991 	netdev_err(bp->dev, "OP-TEE not supported\n");
9992 	return -ENODEV;
9993 #endif
9994 }
9995 
9996 static int bnxt_try_recover_fw(struct bnxt *bp)
9997 {
9998 	if (bp->fw_health && bp->fw_health->status_reliable) {
9999 		int retry = 0, rc;
10000 		u32 sts;
10001 
10002 		do {
10003 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
10004 			rc = bnxt_hwrm_poll(bp);
10005 			if (!BNXT_FW_IS_BOOTING(sts) &&
10006 			    !BNXT_FW_IS_RECOVERING(sts))
10007 				break;
10008 			retry++;
10009 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
10010 
10011 		if (!BNXT_FW_IS_HEALTHY(sts)) {
10012 			netdev_err(bp->dev,
10013 				   "Firmware not responding, status: 0x%x\n",
10014 				   sts);
10015 			rc = -ENODEV;
10016 		}
10017 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
10018 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
10019 			return bnxt_fw_reset_via_optee(bp);
10020 		}
10021 		return rc;
10022 	}
10023 
10024 	return -ENODEV;
10025 }
10026 
10027 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset)
10028 {
10029 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10030 
10031 	if (!BNXT_NEW_RM(bp))
10032 		return; /* no resource reservations required */
10033 
10034 	hw_resc->resv_cp_rings = 0;
10035 	hw_resc->resv_stat_ctxs = 0;
10036 	hw_resc->resv_irqs = 0;
10037 	hw_resc->resv_tx_rings = 0;
10038 	hw_resc->resv_rx_rings = 0;
10039 	hw_resc->resv_hw_ring_grps = 0;
10040 	hw_resc->resv_vnics = 0;
10041 	if (!fw_reset) {
10042 		bp->tx_nr_rings = 0;
10043 		bp->rx_nr_rings = 0;
10044 	}
10045 }
10046 
10047 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
10048 {
10049 	int rc;
10050 
10051 	if (!BNXT_NEW_RM(bp))
10052 		return 0; /* no resource reservations required */
10053 
10054 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
10055 	if (rc)
10056 		netdev_err(bp->dev, "resc_qcaps failed\n");
10057 
10058 	bnxt_clear_reservations(bp, fw_reset);
10059 
10060 	return rc;
10061 }
10062 
10063 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
10064 {
10065 	struct hwrm_func_drv_if_change_output *resp;
10066 	struct hwrm_func_drv_if_change_input *req;
10067 	bool fw_reset = !bp->irq_tbl;
10068 	bool resc_reinit = false;
10069 	int rc, retry = 0;
10070 	u32 flags = 0;
10071 
10072 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
10073 		return 0;
10074 
10075 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
10076 	if (rc)
10077 		return rc;
10078 
10079 	if (up)
10080 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
10081 	resp = hwrm_req_hold(bp, req);
10082 
10083 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
10084 	while (retry < BNXT_FW_IF_RETRY) {
10085 		rc = hwrm_req_send(bp, req);
10086 		if (rc != -EAGAIN)
10087 			break;
10088 
10089 		msleep(50);
10090 		retry++;
10091 	}
10092 
10093 	if (rc == -EAGAIN) {
10094 		hwrm_req_drop(bp, req);
10095 		return rc;
10096 	} else if (!rc) {
10097 		flags = le32_to_cpu(resp->flags);
10098 	} else if (up) {
10099 		rc = bnxt_try_recover_fw(bp);
10100 		fw_reset = true;
10101 	}
10102 	hwrm_req_drop(bp, req);
10103 	if (rc)
10104 		return rc;
10105 
10106 	if (!up) {
10107 		bnxt_inv_fw_health_reg(bp);
10108 		return 0;
10109 	}
10110 
10111 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
10112 		resc_reinit = true;
10113 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE ||
10114 	    test_bit(BNXT_STATE_FW_RESET_DET, &bp->state))
10115 		fw_reset = true;
10116 	else
10117 		bnxt_remap_fw_health_regs(bp);
10118 
10119 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
10120 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
10121 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10122 		return -ENODEV;
10123 	}
10124 	if (resc_reinit || fw_reset) {
10125 		if (fw_reset) {
10126 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10127 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10128 				bnxt_ulp_stop(bp);
10129 			bnxt_free_ctx_mem(bp);
10130 			kfree(bp->ctx);
10131 			bp->ctx = NULL;
10132 			bnxt_dcb_free(bp);
10133 			rc = bnxt_fw_init_one(bp);
10134 			if (rc) {
10135 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10136 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10137 				return rc;
10138 			}
10139 			bnxt_clear_int_mode(bp);
10140 			rc = bnxt_init_int_mode(bp);
10141 			if (rc) {
10142 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10143 				netdev_err(bp->dev, "init int mode failed\n");
10144 				return rc;
10145 			}
10146 		}
10147 		rc = bnxt_cancel_reservations(bp, fw_reset);
10148 	}
10149 	return rc;
10150 }
10151 
10152 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
10153 {
10154 	struct hwrm_port_led_qcaps_output *resp;
10155 	struct hwrm_port_led_qcaps_input *req;
10156 	struct bnxt_pf_info *pf = &bp->pf;
10157 	int rc;
10158 
10159 	bp->num_leds = 0;
10160 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
10161 		return 0;
10162 
10163 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
10164 	if (rc)
10165 		return rc;
10166 
10167 	req->port_id = cpu_to_le16(pf->port_id);
10168 	resp = hwrm_req_hold(bp, req);
10169 	rc = hwrm_req_send(bp, req);
10170 	if (rc) {
10171 		hwrm_req_drop(bp, req);
10172 		return rc;
10173 	}
10174 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
10175 		int i;
10176 
10177 		bp->num_leds = resp->num_leds;
10178 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
10179 						 bp->num_leds);
10180 		for (i = 0; i < bp->num_leds; i++) {
10181 			struct bnxt_led_info *led = &bp->leds[i];
10182 			__le16 caps = led->led_state_caps;
10183 
10184 			if (!led->led_group_id ||
10185 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
10186 				bp->num_leds = 0;
10187 				break;
10188 			}
10189 		}
10190 	}
10191 	hwrm_req_drop(bp, req);
10192 	return 0;
10193 }
10194 
10195 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
10196 {
10197 	struct hwrm_wol_filter_alloc_output *resp;
10198 	struct hwrm_wol_filter_alloc_input *req;
10199 	int rc;
10200 
10201 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
10202 	if (rc)
10203 		return rc;
10204 
10205 	req->port_id = cpu_to_le16(bp->pf.port_id);
10206 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
10207 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
10208 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
10209 
10210 	resp = hwrm_req_hold(bp, req);
10211 	rc = hwrm_req_send(bp, req);
10212 	if (!rc)
10213 		bp->wol_filter_id = resp->wol_filter_id;
10214 	hwrm_req_drop(bp, req);
10215 	return rc;
10216 }
10217 
10218 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
10219 {
10220 	struct hwrm_wol_filter_free_input *req;
10221 	int rc;
10222 
10223 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
10224 	if (rc)
10225 		return rc;
10226 
10227 	req->port_id = cpu_to_le16(bp->pf.port_id);
10228 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
10229 	req->wol_filter_id = bp->wol_filter_id;
10230 
10231 	return hwrm_req_send(bp, req);
10232 }
10233 
10234 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
10235 {
10236 	struct hwrm_wol_filter_qcfg_output *resp;
10237 	struct hwrm_wol_filter_qcfg_input *req;
10238 	u16 next_handle = 0;
10239 	int rc;
10240 
10241 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
10242 	if (rc)
10243 		return rc;
10244 
10245 	req->port_id = cpu_to_le16(bp->pf.port_id);
10246 	req->handle = cpu_to_le16(handle);
10247 	resp = hwrm_req_hold(bp, req);
10248 	rc = hwrm_req_send(bp, req);
10249 	if (!rc) {
10250 		next_handle = le16_to_cpu(resp->next_handle);
10251 		if (next_handle != 0) {
10252 			if (resp->wol_type ==
10253 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
10254 				bp->wol = 1;
10255 				bp->wol_filter_id = resp->wol_filter_id;
10256 			}
10257 		}
10258 	}
10259 	hwrm_req_drop(bp, req);
10260 	return next_handle;
10261 }
10262 
10263 static void bnxt_get_wol_settings(struct bnxt *bp)
10264 {
10265 	u16 handle = 0;
10266 
10267 	bp->wol = 0;
10268 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10269 		return;
10270 
10271 	do {
10272 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10273 	} while (handle && handle != 0xffff);
10274 }
10275 
10276 #ifdef CONFIG_BNXT_HWMON
10277 static ssize_t bnxt_show_temp(struct device *dev,
10278 			      struct device_attribute *devattr, char *buf)
10279 {
10280 	struct hwrm_temp_monitor_query_output *resp;
10281 	struct hwrm_temp_monitor_query_input *req;
10282 	struct bnxt *bp = dev_get_drvdata(dev);
10283 	u32 len = 0;
10284 	int rc;
10285 
10286 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10287 	if (rc)
10288 		return rc;
10289 	resp = hwrm_req_hold(bp, req);
10290 	rc = hwrm_req_send(bp, req);
10291 	if (!rc)
10292 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10293 	hwrm_req_drop(bp, req);
10294 	if (rc)
10295 		return rc;
10296 	return len;
10297 }
10298 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10299 
10300 static struct attribute *bnxt_attrs[] = {
10301 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10302 	NULL
10303 };
10304 ATTRIBUTE_GROUPS(bnxt);
10305 
10306 static void bnxt_hwmon_close(struct bnxt *bp)
10307 {
10308 	if (bp->hwmon_dev) {
10309 		hwmon_device_unregister(bp->hwmon_dev);
10310 		bp->hwmon_dev = NULL;
10311 	}
10312 }
10313 
10314 static void bnxt_hwmon_open(struct bnxt *bp)
10315 {
10316 	struct hwrm_temp_monitor_query_input *req;
10317 	struct pci_dev *pdev = bp->pdev;
10318 	int rc;
10319 
10320 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10321 	if (!rc)
10322 		rc = hwrm_req_send_silent(bp, req);
10323 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10324 		bnxt_hwmon_close(bp);
10325 		return;
10326 	}
10327 
10328 	if (bp->hwmon_dev)
10329 		return;
10330 
10331 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10332 							  DRV_MODULE_NAME, bp,
10333 							  bnxt_groups);
10334 	if (IS_ERR(bp->hwmon_dev)) {
10335 		bp->hwmon_dev = NULL;
10336 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10337 	}
10338 }
10339 #else
10340 static void bnxt_hwmon_close(struct bnxt *bp)
10341 {
10342 }
10343 
10344 static void bnxt_hwmon_open(struct bnxt *bp)
10345 {
10346 }
10347 #endif
10348 
10349 static bool bnxt_eee_config_ok(struct bnxt *bp)
10350 {
10351 	struct ethtool_eee *eee = &bp->eee;
10352 	struct bnxt_link_info *link_info = &bp->link_info;
10353 
10354 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10355 		return true;
10356 
10357 	if (eee->eee_enabled) {
10358 		u32 advertising =
10359 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10360 
10361 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10362 			eee->eee_enabled = 0;
10363 			return false;
10364 		}
10365 		if (eee->advertised & ~advertising) {
10366 			eee->advertised = advertising & eee->supported;
10367 			return false;
10368 		}
10369 	}
10370 	return true;
10371 }
10372 
10373 static int bnxt_update_phy_setting(struct bnxt *bp)
10374 {
10375 	int rc;
10376 	bool update_link = false;
10377 	bool update_pause = false;
10378 	bool update_eee = false;
10379 	struct bnxt_link_info *link_info = &bp->link_info;
10380 
10381 	rc = bnxt_update_link(bp, true);
10382 	if (rc) {
10383 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10384 			   rc);
10385 		return rc;
10386 	}
10387 	if (!BNXT_SINGLE_PF(bp))
10388 		return 0;
10389 
10390 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10391 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10392 	    link_info->req_flow_ctrl)
10393 		update_pause = true;
10394 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10395 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10396 		update_pause = true;
10397 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10398 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10399 			update_link = true;
10400 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10401 		    link_info->req_link_speed != link_info->force_link_speed)
10402 			update_link = true;
10403 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10404 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10405 			update_link = true;
10406 		if (link_info->req_duplex != link_info->duplex_setting)
10407 			update_link = true;
10408 	} else {
10409 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10410 			update_link = true;
10411 		if (link_info->advertising != link_info->auto_link_speeds ||
10412 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10413 			update_link = true;
10414 	}
10415 
10416 	/* The last close may have shutdown the link, so need to call
10417 	 * PHY_CFG to bring it back up.
10418 	 */
10419 	if (!BNXT_LINK_IS_UP(bp))
10420 		update_link = true;
10421 
10422 	if (!bnxt_eee_config_ok(bp))
10423 		update_eee = true;
10424 
10425 	if (update_link)
10426 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10427 	else if (update_pause)
10428 		rc = bnxt_hwrm_set_pause(bp);
10429 	if (rc) {
10430 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10431 			   rc);
10432 		return rc;
10433 	}
10434 
10435 	return rc;
10436 }
10437 
10438 /* Common routine to pre-map certain register block to different GRC window.
10439  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10440  * in PF and 3 windows in VF that can be customized to map in different
10441  * register blocks.
10442  */
10443 static void bnxt_preset_reg_win(struct bnxt *bp)
10444 {
10445 	if (BNXT_PF(bp)) {
10446 		/* CAG registers map to GRC window #4 */
10447 		writel(BNXT_CAG_REG_BASE,
10448 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10449 	}
10450 }
10451 
10452 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10453 
10454 static int bnxt_reinit_after_abort(struct bnxt *bp)
10455 {
10456 	int rc;
10457 
10458 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10459 		return -EBUSY;
10460 
10461 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10462 		return -ENODEV;
10463 
10464 	rc = bnxt_fw_init_one(bp);
10465 	if (!rc) {
10466 		bnxt_clear_int_mode(bp);
10467 		rc = bnxt_init_int_mode(bp);
10468 		if (!rc) {
10469 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10470 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10471 		}
10472 	}
10473 	return rc;
10474 }
10475 
10476 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10477 {
10478 	int rc = 0;
10479 
10480 	bnxt_preset_reg_win(bp);
10481 	netif_carrier_off(bp->dev);
10482 	if (irq_re_init) {
10483 		/* Reserve rings now if none were reserved at driver probe. */
10484 		rc = bnxt_init_dflt_ring_mode(bp);
10485 		if (rc) {
10486 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10487 			return rc;
10488 		}
10489 	}
10490 	rc = bnxt_reserve_rings(bp, irq_re_init);
10491 	if (rc)
10492 		return rc;
10493 	if ((bp->flags & BNXT_FLAG_RFS) &&
10494 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10495 		/* disable RFS if falling back to INTA */
10496 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10497 		bp->flags &= ~BNXT_FLAG_RFS;
10498 	}
10499 
10500 	rc = bnxt_alloc_mem(bp, irq_re_init);
10501 	if (rc) {
10502 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10503 		goto open_err_free_mem;
10504 	}
10505 
10506 	if (irq_re_init) {
10507 		bnxt_init_napi(bp);
10508 		rc = bnxt_request_irq(bp);
10509 		if (rc) {
10510 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10511 			goto open_err_irq;
10512 		}
10513 	}
10514 
10515 	rc = bnxt_init_nic(bp, irq_re_init);
10516 	if (rc) {
10517 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10518 		goto open_err_irq;
10519 	}
10520 
10521 	bnxt_enable_napi(bp);
10522 	bnxt_debug_dev_init(bp);
10523 
10524 	if (link_re_init) {
10525 		mutex_lock(&bp->link_lock);
10526 		rc = bnxt_update_phy_setting(bp);
10527 		mutex_unlock(&bp->link_lock);
10528 		if (rc) {
10529 			netdev_warn(bp->dev, "failed to update phy settings\n");
10530 			if (BNXT_SINGLE_PF(bp)) {
10531 				bp->link_info.phy_retry = true;
10532 				bp->link_info.phy_retry_expires =
10533 					jiffies + 5 * HZ;
10534 			}
10535 		}
10536 	}
10537 
10538 	if (irq_re_init)
10539 		udp_tunnel_nic_reset_ntf(bp->dev);
10540 
10541 	if (bp->tx_nr_rings_xdp < num_possible_cpus()) {
10542 		if (!static_key_enabled(&bnxt_xdp_locking_key))
10543 			static_branch_enable(&bnxt_xdp_locking_key);
10544 	} else if (static_key_enabled(&bnxt_xdp_locking_key)) {
10545 		static_branch_disable(&bnxt_xdp_locking_key);
10546 	}
10547 	set_bit(BNXT_STATE_OPEN, &bp->state);
10548 	bnxt_enable_int(bp);
10549 	/* Enable TX queues */
10550 	bnxt_tx_enable(bp);
10551 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10552 	/* Poll link status and check for SFP+ module status */
10553 	mutex_lock(&bp->link_lock);
10554 	bnxt_get_port_module_status(bp);
10555 	mutex_unlock(&bp->link_lock);
10556 
10557 	/* VF-reps may need to be re-opened after the PF is re-opened */
10558 	if (BNXT_PF(bp))
10559 		bnxt_vf_reps_open(bp);
10560 	bnxt_ptp_init_rtc(bp, true);
10561 	bnxt_ptp_cfg_tstamp_filters(bp);
10562 	return 0;
10563 
10564 open_err_irq:
10565 	bnxt_del_napi(bp);
10566 
10567 open_err_free_mem:
10568 	bnxt_free_skbs(bp);
10569 	bnxt_free_irq(bp);
10570 	bnxt_free_mem(bp, true);
10571 	return rc;
10572 }
10573 
10574 /* rtnl_lock held */
10575 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10576 {
10577 	int rc = 0;
10578 
10579 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10580 		rc = -EIO;
10581 	if (!rc)
10582 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10583 	if (rc) {
10584 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10585 		dev_close(bp->dev);
10586 	}
10587 	return rc;
10588 }
10589 
10590 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10591  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10592  * self tests.
10593  */
10594 int bnxt_half_open_nic(struct bnxt *bp)
10595 {
10596 	int rc = 0;
10597 
10598 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10599 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10600 		rc = -ENODEV;
10601 		goto half_open_err;
10602 	}
10603 
10604 	rc = bnxt_alloc_mem(bp, true);
10605 	if (rc) {
10606 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10607 		goto half_open_err;
10608 	}
10609 	set_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10610 	rc = bnxt_init_nic(bp, true);
10611 	if (rc) {
10612 		clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10613 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10614 		goto half_open_err;
10615 	}
10616 	return 0;
10617 
10618 half_open_err:
10619 	bnxt_free_skbs(bp);
10620 	bnxt_free_mem(bp, true);
10621 	dev_close(bp->dev);
10622 	return rc;
10623 }
10624 
10625 /* rtnl_lock held, this call can only be made after a previous successful
10626  * call to bnxt_half_open_nic().
10627  */
10628 void bnxt_half_close_nic(struct bnxt *bp)
10629 {
10630 	bnxt_hwrm_resource_free(bp, false, true);
10631 	bnxt_free_skbs(bp);
10632 	bnxt_free_mem(bp, true);
10633 	clear_bit(BNXT_STATE_HALF_OPEN, &bp->state);
10634 }
10635 
10636 void bnxt_reenable_sriov(struct bnxt *bp)
10637 {
10638 	if (BNXT_PF(bp)) {
10639 		struct bnxt_pf_info *pf = &bp->pf;
10640 		int n = pf->active_vfs;
10641 
10642 		if (n)
10643 			bnxt_cfg_hw_sriov(bp, &n, true);
10644 	}
10645 }
10646 
10647 static int bnxt_open(struct net_device *dev)
10648 {
10649 	struct bnxt *bp = netdev_priv(dev);
10650 	int rc;
10651 
10652 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10653 		rc = bnxt_reinit_after_abort(bp);
10654 		if (rc) {
10655 			if (rc == -EBUSY)
10656 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10657 			else
10658 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10659 			return -ENODEV;
10660 		}
10661 	}
10662 
10663 	rc = bnxt_hwrm_if_change(bp, true);
10664 	if (rc)
10665 		return rc;
10666 
10667 	rc = __bnxt_open_nic(bp, true, true);
10668 	if (rc) {
10669 		bnxt_hwrm_if_change(bp, false);
10670 	} else {
10671 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10672 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10673 				bnxt_ulp_start(bp, 0);
10674 				bnxt_reenable_sriov(bp);
10675 			}
10676 		}
10677 		bnxt_hwmon_open(bp);
10678 	}
10679 
10680 	return rc;
10681 }
10682 
10683 static bool bnxt_drv_busy(struct bnxt *bp)
10684 {
10685 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10686 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10687 }
10688 
10689 static void bnxt_get_ring_stats(struct bnxt *bp,
10690 				struct rtnl_link_stats64 *stats);
10691 
10692 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10693 			     bool link_re_init)
10694 {
10695 	/* Close the VF-reps before closing PF */
10696 	if (BNXT_PF(bp))
10697 		bnxt_vf_reps_close(bp);
10698 
10699 	/* Change device state to avoid TX queue wake up's */
10700 	bnxt_tx_disable(bp);
10701 
10702 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10703 	smp_mb__after_atomic();
10704 	while (bnxt_drv_busy(bp))
10705 		msleep(20);
10706 
10707 	/* Flush rings and disable interrupts */
10708 	bnxt_shutdown_nic(bp, irq_re_init);
10709 
10710 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10711 
10712 	bnxt_debug_dev_exit(bp);
10713 	bnxt_disable_napi(bp);
10714 	del_timer_sync(&bp->timer);
10715 	bnxt_free_skbs(bp);
10716 
10717 	/* Save ring stats before shutdown */
10718 	if (bp->bnapi && irq_re_init)
10719 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10720 	if (irq_re_init) {
10721 		bnxt_free_irq(bp);
10722 		bnxt_del_napi(bp);
10723 	}
10724 	bnxt_free_mem(bp, irq_re_init);
10725 }
10726 
10727 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10728 {
10729 	int rc = 0;
10730 
10731 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10732 		/* If we get here, it means firmware reset is in progress
10733 		 * while we are trying to close.  We can safely proceed with
10734 		 * the close because we are holding rtnl_lock().  Some firmware
10735 		 * messages may fail as we proceed to close.  We set the
10736 		 * ABORT_ERR flag here so that the FW reset thread will later
10737 		 * abort when it gets the rtnl_lock() and sees the flag.
10738 		 */
10739 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10740 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10741 	}
10742 
10743 #ifdef CONFIG_BNXT_SRIOV
10744 	if (bp->sriov_cfg) {
10745 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10746 						      !bp->sriov_cfg,
10747 						      BNXT_SRIOV_CFG_WAIT_TMO);
10748 		if (rc)
10749 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10750 	}
10751 #endif
10752 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10753 	return rc;
10754 }
10755 
10756 static int bnxt_close(struct net_device *dev)
10757 {
10758 	struct bnxt *bp = netdev_priv(dev);
10759 
10760 	bnxt_hwmon_close(bp);
10761 	bnxt_close_nic(bp, true, true);
10762 	bnxt_hwrm_shutdown_link(bp);
10763 	bnxt_hwrm_if_change(bp, false);
10764 	return 0;
10765 }
10766 
10767 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10768 				   u16 *val)
10769 {
10770 	struct hwrm_port_phy_mdio_read_output *resp;
10771 	struct hwrm_port_phy_mdio_read_input *req;
10772 	int rc;
10773 
10774 	if (bp->hwrm_spec_code < 0x10a00)
10775 		return -EOPNOTSUPP;
10776 
10777 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10778 	if (rc)
10779 		return rc;
10780 
10781 	req->port_id = cpu_to_le16(bp->pf.port_id);
10782 	req->phy_addr = phy_addr;
10783 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10784 	if (mdio_phy_id_is_c45(phy_addr)) {
10785 		req->cl45_mdio = 1;
10786 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10787 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10788 		req->reg_addr = cpu_to_le16(reg);
10789 	}
10790 
10791 	resp = hwrm_req_hold(bp, req);
10792 	rc = hwrm_req_send(bp, req);
10793 	if (!rc)
10794 		*val = le16_to_cpu(resp->reg_data);
10795 	hwrm_req_drop(bp, req);
10796 	return rc;
10797 }
10798 
10799 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10800 				    u16 val)
10801 {
10802 	struct hwrm_port_phy_mdio_write_input *req;
10803 	int rc;
10804 
10805 	if (bp->hwrm_spec_code < 0x10a00)
10806 		return -EOPNOTSUPP;
10807 
10808 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10809 	if (rc)
10810 		return rc;
10811 
10812 	req->port_id = cpu_to_le16(bp->pf.port_id);
10813 	req->phy_addr = phy_addr;
10814 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10815 	if (mdio_phy_id_is_c45(phy_addr)) {
10816 		req->cl45_mdio = 1;
10817 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10818 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10819 		req->reg_addr = cpu_to_le16(reg);
10820 	}
10821 	req->reg_data = cpu_to_le16(val);
10822 
10823 	return hwrm_req_send(bp, req);
10824 }
10825 
10826 /* rtnl_lock held */
10827 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10828 {
10829 	struct mii_ioctl_data *mdio = if_mii(ifr);
10830 	struct bnxt *bp = netdev_priv(dev);
10831 	int rc;
10832 
10833 	switch (cmd) {
10834 	case SIOCGMIIPHY:
10835 		mdio->phy_id = bp->link_info.phy_addr;
10836 
10837 		fallthrough;
10838 	case SIOCGMIIREG: {
10839 		u16 mii_regval = 0;
10840 
10841 		if (!netif_running(dev))
10842 			return -EAGAIN;
10843 
10844 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10845 					     &mii_regval);
10846 		mdio->val_out = mii_regval;
10847 		return rc;
10848 	}
10849 
10850 	case SIOCSMIIREG:
10851 		if (!netif_running(dev))
10852 			return -EAGAIN;
10853 
10854 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10855 						mdio->val_in);
10856 
10857 	case SIOCSHWTSTAMP:
10858 		return bnxt_hwtstamp_set(dev, ifr);
10859 
10860 	case SIOCGHWTSTAMP:
10861 		return bnxt_hwtstamp_get(dev, ifr);
10862 
10863 	default:
10864 		/* do nothing */
10865 		break;
10866 	}
10867 	return -EOPNOTSUPP;
10868 }
10869 
10870 static void bnxt_get_ring_stats(struct bnxt *bp,
10871 				struct rtnl_link_stats64 *stats)
10872 {
10873 	int i;
10874 
10875 	for (i = 0; i < bp->cp_nr_rings; i++) {
10876 		struct bnxt_napi *bnapi = bp->bnapi[i];
10877 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10878 		u64 *sw = cpr->stats.sw_stats;
10879 
10880 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10881 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10882 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10883 
10884 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10885 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10886 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10887 
10888 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10889 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10890 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10891 
10892 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10893 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10894 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10895 
10896 		stats->rx_missed_errors +=
10897 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10898 
10899 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10900 
10901 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10902 
10903 		stats->rx_dropped +=
10904 			cpr->sw_stats.rx.rx_netpoll_discards +
10905 			cpr->sw_stats.rx.rx_oom_discards;
10906 	}
10907 }
10908 
10909 static void bnxt_add_prev_stats(struct bnxt *bp,
10910 				struct rtnl_link_stats64 *stats)
10911 {
10912 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10913 
10914 	stats->rx_packets += prev_stats->rx_packets;
10915 	stats->tx_packets += prev_stats->tx_packets;
10916 	stats->rx_bytes += prev_stats->rx_bytes;
10917 	stats->tx_bytes += prev_stats->tx_bytes;
10918 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10919 	stats->multicast += prev_stats->multicast;
10920 	stats->rx_dropped += prev_stats->rx_dropped;
10921 	stats->tx_dropped += prev_stats->tx_dropped;
10922 }
10923 
10924 static void
10925 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10926 {
10927 	struct bnxt *bp = netdev_priv(dev);
10928 
10929 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10930 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10931 	 * we check the BNXT_STATE_OPEN flag.
10932 	 */
10933 	smp_mb__after_atomic();
10934 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10935 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10936 		*stats = bp->net_stats_prev;
10937 		return;
10938 	}
10939 
10940 	bnxt_get_ring_stats(bp, stats);
10941 	bnxt_add_prev_stats(bp, stats);
10942 
10943 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10944 		u64 *rx = bp->port_stats.sw_stats;
10945 		u64 *tx = bp->port_stats.sw_stats +
10946 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10947 
10948 		stats->rx_crc_errors =
10949 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10950 		stats->rx_frame_errors =
10951 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10952 		stats->rx_length_errors =
10953 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10954 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10955 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10956 		stats->rx_errors =
10957 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10958 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10959 		stats->collisions =
10960 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10961 		stats->tx_fifo_errors =
10962 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10963 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10964 	}
10965 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10966 }
10967 
10968 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10969 {
10970 	struct net_device *dev = bp->dev;
10971 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10972 	struct netdev_hw_addr *ha;
10973 	u8 *haddr;
10974 	int mc_count = 0;
10975 	bool update = false;
10976 	int off = 0;
10977 
10978 	netdev_for_each_mc_addr(ha, dev) {
10979 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10980 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10981 			vnic->mc_list_count = 0;
10982 			return false;
10983 		}
10984 		haddr = ha->addr;
10985 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10986 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10987 			update = true;
10988 		}
10989 		off += ETH_ALEN;
10990 		mc_count++;
10991 	}
10992 	if (mc_count)
10993 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10994 
10995 	if (mc_count != vnic->mc_list_count) {
10996 		vnic->mc_list_count = mc_count;
10997 		update = true;
10998 	}
10999 	return update;
11000 }
11001 
11002 static bool bnxt_uc_list_updated(struct bnxt *bp)
11003 {
11004 	struct net_device *dev = bp->dev;
11005 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11006 	struct netdev_hw_addr *ha;
11007 	int off = 0;
11008 
11009 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
11010 		return true;
11011 
11012 	netdev_for_each_uc_addr(ha, dev) {
11013 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
11014 			return true;
11015 
11016 		off += ETH_ALEN;
11017 	}
11018 	return false;
11019 }
11020 
11021 static void bnxt_set_rx_mode(struct net_device *dev)
11022 {
11023 	struct bnxt *bp = netdev_priv(dev);
11024 	struct bnxt_vnic_info *vnic;
11025 	bool mc_update = false;
11026 	bool uc_update;
11027 	u32 mask;
11028 
11029 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
11030 		return;
11031 
11032 	vnic = &bp->vnic_info[0];
11033 	mask = vnic->rx_mask;
11034 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
11035 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
11036 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
11037 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
11038 
11039 	if (dev->flags & IFF_PROMISC)
11040 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11041 
11042 	uc_update = bnxt_uc_list_updated(bp);
11043 
11044 	if (dev->flags & IFF_BROADCAST)
11045 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
11046 	if (dev->flags & IFF_ALLMULTI) {
11047 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11048 		vnic->mc_list_count = 0;
11049 	} else if (dev->flags & IFF_MULTICAST) {
11050 		mc_update = bnxt_mc_list_updated(bp, &mask);
11051 	}
11052 
11053 	if (mask != vnic->rx_mask || uc_update || mc_update) {
11054 		vnic->rx_mask = mask;
11055 
11056 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11057 		bnxt_queue_sp_work(bp);
11058 	}
11059 }
11060 
11061 static int bnxt_cfg_rx_mode(struct bnxt *bp)
11062 {
11063 	struct net_device *dev = bp->dev;
11064 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
11065 	struct hwrm_cfa_l2_filter_free_input *req;
11066 	struct netdev_hw_addr *ha;
11067 	int i, off = 0, rc;
11068 	bool uc_update;
11069 
11070 	netif_addr_lock_bh(dev);
11071 	uc_update = bnxt_uc_list_updated(bp);
11072 	netif_addr_unlock_bh(dev);
11073 
11074 	if (!uc_update)
11075 		goto skip_uc;
11076 
11077 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
11078 	if (rc)
11079 		return rc;
11080 	hwrm_req_hold(bp, req);
11081 	for (i = 1; i < vnic->uc_filter_count; i++) {
11082 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
11083 
11084 		rc = hwrm_req_send(bp, req);
11085 	}
11086 	hwrm_req_drop(bp, req);
11087 
11088 	vnic->uc_filter_count = 1;
11089 
11090 	netif_addr_lock_bh(dev);
11091 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
11092 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11093 	} else {
11094 		netdev_for_each_uc_addr(ha, dev) {
11095 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
11096 			off += ETH_ALEN;
11097 			vnic->uc_filter_count++;
11098 		}
11099 	}
11100 	netif_addr_unlock_bh(dev);
11101 
11102 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
11103 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
11104 		if (rc) {
11105 			if (BNXT_VF(bp) && rc == -ENODEV) {
11106 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11107 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
11108 				else
11109 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
11110 				rc = 0;
11111 			} else {
11112 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
11113 			}
11114 			vnic->uc_filter_count = i;
11115 			return rc;
11116 		}
11117 	}
11118 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
11119 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
11120 
11121 skip_uc:
11122 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
11123 	    !bnxt_promisc_ok(bp))
11124 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
11125 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11126 	if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) {
11127 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
11128 			    rc);
11129 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
11130 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
11131 		vnic->mc_list_count = 0;
11132 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
11133 	}
11134 	if (rc)
11135 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
11136 			   rc);
11137 
11138 	return rc;
11139 }
11140 
11141 static bool bnxt_can_reserve_rings(struct bnxt *bp)
11142 {
11143 #ifdef CONFIG_BNXT_SRIOV
11144 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
11145 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11146 
11147 		/* No minimum rings were provisioned by the PF.  Don't
11148 		 * reserve rings by default when device is down.
11149 		 */
11150 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
11151 			return true;
11152 
11153 		if (!netif_running(bp->dev))
11154 			return false;
11155 	}
11156 #endif
11157 	return true;
11158 }
11159 
11160 /* If the chip and firmware supports RFS */
11161 static bool bnxt_rfs_supported(struct bnxt *bp)
11162 {
11163 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
11164 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
11165 			return true;
11166 		return false;
11167 	}
11168 	/* 212 firmware is broken for aRFS */
11169 	if (BNXT_FW_MAJ(bp) == 212)
11170 		return false;
11171 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
11172 		return true;
11173 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11174 		return true;
11175 	return false;
11176 }
11177 
11178 /* If runtime conditions support RFS */
11179 static bool bnxt_rfs_capable(struct bnxt *bp)
11180 {
11181 #ifdef CONFIG_RFS_ACCEL
11182 	int vnics, max_vnics, max_rss_ctxs;
11183 
11184 	if (bp->flags & BNXT_FLAG_CHIP_P5)
11185 		return bnxt_rfs_supported(bp);
11186 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings)
11187 		return false;
11188 
11189 	vnics = 1 + bp->rx_nr_rings;
11190 	max_vnics = bnxt_get_max_func_vnics(bp);
11191 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
11192 
11193 	/* RSS contexts not a limiting factor */
11194 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
11195 		max_rss_ctxs = max_vnics;
11196 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
11197 		if (bp->rx_nr_rings > 1)
11198 			netdev_warn(bp->dev,
11199 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
11200 				    min(max_rss_ctxs - 1, max_vnics - 1));
11201 		return false;
11202 	}
11203 
11204 	if (!BNXT_NEW_RM(bp))
11205 		return true;
11206 
11207 	if (vnics == bp->hw_resc.resv_vnics)
11208 		return true;
11209 
11210 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
11211 	if (vnics <= bp->hw_resc.resv_vnics)
11212 		return true;
11213 
11214 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
11215 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
11216 	return false;
11217 #else
11218 	return false;
11219 #endif
11220 }
11221 
11222 static netdev_features_t bnxt_fix_features(struct net_device *dev,
11223 					   netdev_features_t features)
11224 {
11225 	struct bnxt *bp = netdev_priv(dev);
11226 	netdev_features_t vlan_features;
11227 
11228 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
11229 		features &= ~NETIF_F_NTUPLE;
11230 
11231 	if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog)
11232 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11233 
11234 	if (!(features & NETIF_F_GRO))
11235 		features &= ~NETIF_F_GRO_HW;
11236 
11237 	if (features & NETIF_F_GRO_HW)
11238 		features &= ~NETIF_F_LRO;
11239 
11240 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
11241 	 * turned on or off together.
11242 	 */
11243 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
11244 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
11245 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11246 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11247 		else if (vlan_features)
11248 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
11249 	}
11250 #ifdef CONFIG_BNXT_SRIOV
11251 	if (BNXT_VF(bp) && bp->vf.vlan)
11252 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
11253 #endif
11254 	return features;
11255 }
11256 
11257 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
11258 {
11259 	struct bnxt *bp = netdev_priv(dev);
11260 	u32 flags = bp->flags;
11261 	u32 changes;
11262 	int rc = 0;
11263 	bool re_init = false;
11264 	bool update_tpa = false;
11265 
11266 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
11267 	if (features & NETIF_F_GRO_HW)
11268 		flags |= BNXT_FLAG_GRO;
11269 	else if (features & NETIF_F_LRO)
11270 		flags |= BNXT_FLAG_LRO;
11271 
11272 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
11273 		flags &= ~BNXT_FLAG_TPA;
11274 
11275 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11276 		flags |= BNXT_FLAG_STRIP_VLAN;
11277 
11278 	if (features & NETIF_F_NTUPLE)
11279 		flags |= BNXT_FLAG_RFS;
11280 
11281 	changes = flags ^ bp->flags;
11282 	if (changes & BNXT_FLAG_TPA) {
11283 		update_tpa = true;
11284 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11285 		    (flags & BNXT_FLAG_TPA) == 0 ||
11286 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11287 			re_init = true;
11288 	}
11289 
11290 	if (changes & ~BNXT_FLAG_TPA)
11291 		re_init = true;
11292 
11293 	if (flags != bp->flags) {
11294 		u32 old_flags = bp->flags;
11295 
11296 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11297 			bp->flags = flags;
11298 			if (update_tpa)
11299 				bnxt_set_ring_params(bp);
11300 			return rc;
11301 		}
11302 
11303 		if (re_init) {
11304 			bnxt_close_nic(bp, false, false);
11305 			bp->flags = flags;
11306 			if (update_tpa)
11307 				bnxt_set_ring_params(bp);
11308 
11309 			return bnxt_open_nic(bp, false, false);
11310 		}
11311 		if (update_tpa) {
11312 			bp->flags = flags;
11313 			rc = bnxt_set_tpa(bp,
11314 					  (flags & BNXT_FLAG_TPA) ?
11315 					  true : false);
11316 			if (rc)
11317 				bp->flags = old_flags;
11318 		}
11319 	}
11320 	return rc;
11321 }
11322 
11323 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11324 			      u8 **nextp)
11325 {
11326 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11327 	struct hop_jumbo_hdr *jhdr;
11328 	int hdr_count = 0;
11329 	u8 *nexthdr;
11330 	int start;
11331 
11332 	/* Check that there are at most 2 IPv6 extension headers, no
11333 	 * fragment header, and each is <= 64 bytes.
11334 	 */
11335 	start = nw_off + sizeof(*ip6h);
11336 	nexthdr = &ip6h->nexthdr;
11337 	while (ipv6_ext_hdr(*nexthdr)) {
11338 		struct ipv6_opt_hdr *hp;
11339 		int hdrlen;
11340 
11341 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11342 		    *nexthdr == NEXTHDR_FRAGMENT)
11343 			return false;
11344 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11345 					  skb_headlen(skb), NULL);
11346 		if (!hp)
11347 			return false;
11348 		if (*nexthdr == NEXTHDR_AUTH)
11349 			hdrlen = ipv6_authlen(hp);
11350 		else
11351 			hdrlen = ipv6_optlen(hp);
11352 
11353 		if (hdrlen > 64)
11354 			return false;
11355 
11356 		/* The ext header may be a hop-by-hop header inserted for
11357 		 * big TCP purposes. This will be removed before sending
11358 		 * from NIC, so do not count it.
11359 		 */
11360 		if (*nexthdr == NEXTHDR_HOP) {
11361 			if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
11362 				goto increment_hdr;
11363 
11364 			jhdr = (struct hop_jumbo_hdr *)hp;
11365 			if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
11366 			    jhdr->nexthdr != IPPROTO_TCP)
11367 				goto increment_hdr;
11368 
11369 			goto next_hdr;
11370 		}
11371 increment_hdr:
11372 		hdr_count++;
11373 next_hdr:
11374 		nexthdr = &hp->nexthdr;
11375 		start += hdrlen;
11376 	}
11377 	if (nextp) {
11378 		/* Caller will check inner protocol */
11379 		if (skb->encapsulation) {
11380 			*nextp = nexthdr;
11381 			return true;
11382 		}
11383 		*nextp = NULL;
11384 	}
11385 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11386 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11387 }
11388 
11389 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11390 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11391 {
11392 	struct udphdr *uh = udp_hdr(skb);
11393 	__be16 udp_port = uh->dest;
11394 
11395 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11396 		return false;
11397 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11398 		struct ethhdr *eh = inner_eth_hdr(skb);
11399 
11400 		switch (eh->h_proto) {
11401 		case htons(ETH_P_IP):
11402 			return true;
11403 		case htons(ETH_P_IPV6):
11404 			return bnxt_exthdr_check(bp, skb,
11405 						 skb_inner_network_offset(skb),
11406 						 NULL);
11407 		}
11408 	}
11409 	return false;
11410 }
11411 
11412 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11413 {
11414 	switch (l4_proto) {
11415 	case IPPROTO_UDP:
11416 		return bnxt_udp_tunl_check(bp, skb);
11417 	case IPPROTO_IPIP:
11418 		return true;
11419 	case IPPROTO_GRE: {
11420 		switch (skb->inner_protocol) {
11421 		default:
11422 			return false;
11423 		case htons(ETH_P_IP):
11424 			return true;
11425 		case htons(ETH_P_IPV6):
11426 			fallthrough;
11427 		}
11428 	}
11429 	case IPPROTO_IPV6:
11430 		/* Check ext headers of inner ipv6 */
11431 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11432 					 NULL);
11433 	}
11434 	return false;
11435 }
11436 
11437 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11438 					     struct net_device *dev,
11439 					     netdev_features_t features)
11440 {
11441 	struct bnxt *bp = netdev_priv(dev);
11442 	u8 *l4_proto;
11443 
11444 	features = vlan_features_check(skb, features);
11445 	switch (vlan_get_protocol(skb)) {
11446 	case htons(ETH_P_IP):
11447 		if (!skb->encapsulation)
11448 			return features;
11449 		l4_proto = &ip_hdr(skb)->protocol;
11450 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11451 			return features;
11452 		break;
11453 	case htons(ETH_P_IPV6):
11454 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11455 				       &l4_proto))
11456 			break;
11457 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11458 			return features;
11459 		break;
11460 	}
11461 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11462 }
11463 
11464 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11465 			 u32 *reg_buf)
11466 {
11467 	struct hwrm_dbg_read_direct_output *resp;
11468 	struct hwrm_dbg_read_direct_input *req;
11469 	__le32 *dbg_reg_buf;
11470 	dma_addr_t mapping;
11471 	int rc, i;
11472 
11473 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11474 	if (rc)
11475 		return rc;
11476 
11477 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11478 					 &mapping);
11479 	if (!dbg_reg_buf) {
11480 		rc = -ENOMEM;
11481 		goto dbg_rd_reg_exit;
11482 	}
11483 
11484 	req->host_dest_addr = cpu_to_le64(mapping);
11485 
11486 	resp = hwrm_req_hold(bp, req);
11487 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11488 	req->read_len32 = cpu_to_le32(num_words);
11489 
11490 	rc = hwrm_req_send(bp, req);
11491 	if (rc || resp->error_code) {
11492 		rc = -EIO;
11493 		goto dbg_rd_reg_exit;
11494 	}
11495 	for (i = 0; i < num_words; i++)
11496 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11497 
11498 dbg_rd_reg_exit:
11499 	hwrm_req_drop(bp, req);
11500 	return rc;
11501 }
11502 
11503 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11504 				       u32 ring_id, u32 *prod, u32 *cons)
11505 {
11506 	struct hwrm_dbg_ring_info_get_output *resp;
11507 	struct hwrm_dbg_ring_info_get_input *req;
11508 	int rc;
11509 
11510 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11511 	if (rc)
11512 		return rc;
11513 
11514 	req->ring_type = ring_type;
11515 	req->fw_ring_id = cpu_to_le32(ring_id);
11516 	resp = hwrm_req_hold(bp, req);
11517 	rc = hwrm_req_send(bp, req);
11518 	if (!rc) {
11519 		*prod = le32_to_cpu(resp->producer_index);
11520 		*cons = le32_to_cpu(resp->consumer_index);
11521 	}
11522 	hwrm_req_drop(bp, req);
11523 	return rc;
11524 }
11525 
11526 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11527 {
11528 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11529 	int i = bnapi->index;
11530 
11531 	if (!txr)
11532 		return;
11533 
11534 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11535 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11536 		    txr->tx_cons);
11537 }
11538 
11539 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11540 {
11541 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11542 	int i = bnapi->index;
11543 
11544 	if (!rxr)
11545 		return;
11546 
11547 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11548 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11549 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11550 		    rxr->rx_sw_agg_prod);
11551 }
11552 
11553 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11554 {
11555 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11556 	int i = bnapi->index;
11557 
11558 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11559 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11560 }
11561 
11562 static void bnxt_dbg_dump_states(struct bnxt *bp)
11563 {
11564 	int i;
11565 	struct bnxt_napi *bnapi;
11566 
11567 	for (i = 0; i < bp->cp_nr_rings; i++) {
11568 		bnapi = bp->bnapi[i];
11569 		if (netif_msg_drv(bp)) {
11570 			bnxt_dump_tx_sw_state(bnapi);
11571 			bnxt_dump_rx_sw_state(bnapi);
11572 			bnxt_dump_cp_sw_state(bnapi);
11573 		}
11574 	}
11575 }
11576 
11577 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11578 {
11579 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11580 	struct hwrm_ring_reset_input *req;
11581 	struct bnxt_napi *bnapi = rxr->bnapi;
11582 	struct bnxt_cp_ring_info *cpr;
11583 	u16 cp_ring_id;
11584 	int rc;
11585 
11586 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11587 	if (rc)
11588 		return rc;
11589 
11590 	cpr = &bnapi->cp_ring;
11591 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11592 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11593 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11594 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11595 	return hwrm_req_send_silent(bp, req);
11596 }
11597 
11598 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11599 {
11600 	if (!silent)
11601 		bnxt_dbg_dump_states(bp);
11602 	if (netif_running(bp->dev)) {
11603 		int rc;
11604 
11605 		if (silent) {
11606 			bnxt_close_nic(bp, false, false);
11607 			bnxt_open_nic(bp, false, false);
11608 		} else {
11609 			bnxt_ulp_stop(bp);
11610 			bnxt_close_nic(bp, true, false);
11611 			rc = bnxt_open_nic(bp, true, false);
11612 			bnxt_ulp_start(bp, rc);
11613 		}
11614 	}
11615 }
11616 
11617 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11618 {
11619 	struct bnxt *bp = netdev_priv(dev);
11620 
11621 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11622 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11623 	bnxt_queue_sp_work(bp);
11624 }
11625 
11626 static void bnxt_fw_health_check(struct bnxt *bp)
11627 {
11628 	struct bnxt_fw_health *fw_health = bp->fw_health;
11629 	u32 val;
11630 
11631 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11632 		return;
11633 
11634 	/* Make sure it is enabled before checking the tmr_counter. */
11635 	smp_rmb();
11636 	if (fw_health->tmr_counter) {
11637 		fw_health->tmr_counter--;
11638 		return;
11639 	}
11640 
11641 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11642 	if (val == fw_health->last_fw_heartbeat) {
11643 		fw_health->arrests++;
11644 		goto fw_reset;
11645 	}
11646 
11647 	fw_health->last_fw_heartbeat = val;
11648 
11649 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11650 	if (val != fw_health->last_fw_reset_cnt) {
11651 		fw_health->discoveries++;
11652 		goto fw_reset;
11653 	}
11654 
11655 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11656 	return;
11657 
11658 fw_reset:
11659 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11660 	bnxt_queue_sp_work(bp);
11661 }
11662 
11663 static void bnxt_timer(struct timer_list *t)
11664 {
11665 	struct bnxt *bp = from_timer(bp, t, timer);
11666 	struct net_device *dev = bp->dev;
11667 
11668 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11669 		return;
11670 
11671 	if (atomic_read(&bp->intr_sem) != 0)
11672 		goto bnxt_restart_timer;
11673 
11674 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11675 		bnxt_fw_health_check(bp);
11676 
11677 	if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) {
11678 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11679 		bnxt_queue_sp_work(bp);
11680 	}
11681 
11682 	if (bnxt_tc_flower_enabled(bp)) {
11683 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11684 		bnxt_queue_sp_work(bp);
11685 	}
11686 
11687 #ifdef CONFIG_RFS_ACCEL
11688 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11689 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11690 		bnxt_queue_sp_work(bp);
11691 	}
11692 #endif /*CONFIG_RFS_ACCEL*/
11693 
11694 	if (bp->link_info.phy_retry) {
11695 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11696 			bp->link_info.phy_retry = false;
11697 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11698 		} else {
11699 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11700 			bnxt_queue_sp_work(bp);
11701 		}
11702 	}
11703 
11704 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11705 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11706 		bnxt_queue_sp_work(bp);
11707 	}
11708 
11709 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11710 	    netif_carrier_ok(dev)) {
11711 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11712 		bnxt_queue_sp_work(bp);
11713 	}
11714 bnxt_restart_timer:
11715 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11716 }
11717 
11718 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11719 {
11720 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11721 	 * set.  If the device is being closed, bnxt_close() may be holding
11722 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11723 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11724 	 */
11725 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11726 	rtnl_lock();
11727 }
11728 
11729 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11730 {
11731 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11732 	rtnl_unlock();
11733 }
11734 
11735 /* Only called from bnxt_sp_task() */
11736 static void bnxt_reset(struct bnxt *bp, bool silent)
11737 {
11738 	bnxt_rtnl_lock_sp(bp);
11739 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11740 		bnxt_reset_task(bp, silent);
11741 	bnxt_rtnl_unlock_sp(bp);
11742 }
11743 
11744 /* Only called from bnxt_sp_task() */
11745 static void bnxt_rx_ring_reset(struct bnxt *bp)
11746 {
11747 	int i;
11748 
11749 	bnxt_rtnl_lock_sp(bp);
11750 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11751 		bnxt_rtnl_unlock_sp(bp);
11752 		return;
11753 	}
11754 	/* Disable and flush TPA before resetting the RX ring */
11755 	if (bp->flags & BNXT_FLAG_TPA)
11756 		bnxt_set_tpa(bp, false);
11757 	for (i = 0; i < bp->rx_nr_rings; i++) {
11758 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11759 		struct bnxt_cp_ring_info *cpr;
11760 		int rc;
11761 
11762 		if (!rxr->bnapi->in_reset)
11763 			continue;
11764 
11765 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11766 		if (rc) {
11767 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11768 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11769 			else
11770 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11771 					    rc);
11772 			bnxt_reset_task(bp, true);
11773 			break;
11774 		}
11775 		bnxt_free_one_rx_ring_skbs(bp, i);
11776 		rxr->rx_prod = 0;
11777 		rxr->rx_agg_prod = 0;
11778 		rxr->rx_sw_agg_prod = 0;
11779 		rxr->rx_next_cons = 0;
11780 		rxr->bnapi->in_reset = false;
11781 		bnxt_alloc_one_rx_ring(bp, i);
11782 		cpr = &rxr->bnapi->cp_ring;
11783 		cpr->sw_stats.rx.rx_resets++;
11784 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11785 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11786 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11787 	}
11788 	if (bp->flags & BNXT_FLAG_TPA)
11789 		bnxt_set_tpa(bp, true);
11790 	bnxt_rtnl_unlock_sp(bp);
11791 }
11792 
11793 static void bnxt_fw_reset_close(struct bnxt *bp)
11794 {
11795 	bnxt_ulp_stop(bp);
11796 	/* When firmware is in fatal state, quiesce device and disable
11797 	 * bus master to prevent any potential bad DMAs before freeing
11798 	 * kernel memory.
11799 	 */
11800 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11801 		u16 val = 0;
11802 
11803 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11804 		if (val == 0xffff)
11805 			bp->fw_reset_min_dsecs = 0;
11806 		bnxt_tx_disable(bp);
11807 		bnxt_disable_napi(bp);
11808 		bnxt_disable_int_sync(bp);
11809 		bnxt_free_irq(bp);
11810 		bnxt_clear_int_mode(bp);
11811 		pci_disable_device(bp->pdev);
11812 	}
11813 	__bnxt_close_nic(bp, true, false);
11814 	bnxt_vf_reps_free(bp);
11815 	bnxt_clear_int_mode(bp);
11816 	bnxt_hwrm_func_drv_unrgtr(bp);
11817 	if (pci_is_enabled(bp->pdev))
11818 		pci_disable_device(bp->pdev);
11819 	bnxt_free_ctx_mem(bp);
11820 	kfree(bp->ctx);
11821 	bp->ctx = NULL;
11822 }
11823 
11824 static bool is_bnxt_fw_ok(struct bnxt *bp)
11825 {
11826 	struct bnxt_fw_health *fw_health = bp->fw_health;
11827 	bool no_heartbeat = false, has_reset = false;
11828 	u32 val;
11829 
11830 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11831 	if (val == fw_health->last_fw_heartbeat)
11832 		no_heartbeat = true;
11833 
11834 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11835 	if (val != fw_health->last_fw_reset_cnt)
11836 		has_reset = true;
11837 
11838 	if (!no_heartbeat && has_reset)
11839 		return true;
11840 
11841 	return false;
11842 }
11843 
11844 /* rtnl_lock is acquired before calling this function */
11845 static void bnxt_force_fw_reset(struct bnxt *bp)
11846 {
11847 	struct bnxt_fw_health *fw_health = bp->fw_health;
11848 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11849 	u32 wait_dsecs;
11850 
11851 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11852 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11853 		return;
11854 
11855 	if (ptp) {
11856 		spin_lock_bh(&ptp->ptp_lock);
11857 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11858 		spin_unlock_bh(&ptp->ptp_lock);
11859 	} else {
11860 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11861 	}
11862 	bnxt_fw_reset_close(bp);
11863 	wait_dsecs = fw_health->master_func_wait_dsecs;
11864 	if (fw_health->primary) {
11865 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11866 			wait_dsecs = 0;
11867 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11868 	} else {
11869 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11870 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11871 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11872 	}
11873 
11874 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11875 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11876 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11877 }
11878 
11879 void bnxt_fw_exception(struct bnxt *bp)
11880 {
11881 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11882 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11883 	bnxt_rtnl_lock_sp(bp);
11884 	bnxt_force_fw_reset(bp);
11885 	bnxt_rtnl_unlock_sp(bp);
11886 }
11887 
11888 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11889  * < 0 on error.
11890  */
11891 static int bnxt_get_registered_vfs(struct bnxt *bp)
11892 {
11893 #ifdef CONFIG_BNXT_SRIOV
11894 	int rc;
11895 
11896 	if (!BNXT_PF(bp))
11897 		return 0;
11898 
11899 	rc = bnxt_hwrm_func_qcfg(bp);
11900 	if (rc) {
11901 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11902 		return rc;
11903 	}
11904 	if (bp->pf.registered_vfs)
11905 		return bp->pf.registered_vfs;
11906 	if (bp->sriov_cfg)
11907 		return 1;
11908 #endif
11909 	return 0;
11910 }
11911 
11912 void bnxt_fw_reset(struct bnxt *bp)
11913 {
11914 	bnxt_rtnl_lock_sp(bp);
11915 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11916 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11917 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11918 		int n = 0, tmo;
11919 
11920 		if (ptp) {
11921 			spin_lock_bh(&ptp->ptp_lock);
11922 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11923 			spin_unlock_bh(&ptp->ptp_lock);
11924 		} else {
11925 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11926 		}
11927 		if (bp->pf.active_vfs &&
11928 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11929 			n = bnxt_get_registered_vfs(bp);
11930 		if (n < 0) {
11931 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11932 				   n);
11933 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11934 			dev_close(bp->dev);
11935 			goto fw_reset_exit;
11936 		} else if (n > 0) {
11937 			u16 vf_tmo_dsecs = n * 10;
11938 
11939 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11940 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11941 			bp->fw_reset_state =
11942 				BNXT_FW_RESET_STATE_POLL_VF;
11943 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11944 			goto fw_reset_exit;
11945 		}
11946 		bnxt_fw_reset_close(bp);
11947 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11948 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11949 			tmo = HZ / 10;
11950 		} else {
11951 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11952 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11953 		}
11954 		bnxt_queue_fw_reset_work(bp, tmo);
11955 	}
11956 fw_reset_exit:
11957 	bnxt_rtnl_unlock_sp(bp);
11958 }
11959 
11960 static void bnxt_chk_missed_irq(struct bnxt *bp)
11961 {
11962 	int i;
11963 
11964 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11965 		return;
11966 
11967 	for (i = 0; i < bp->cp_nr_rings; i++) {
11968 		struct bnxt_napi *bnapi = bp->bnapi[i];
11969 		struct bnxt_cp_ring_info *cpr;
11970 		u32 fw_ring_id;
11971 		int j;
11972 
11973 		if (!bnapi)
11974 			continue;
11975 
11976 		cpr = &bnapi->cp_ring;
11977 		for (j = 0; j < 2; j++) {
11978 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11979 			u32 val[2];
11980 
11981 			if (!cpr2 || cpr2->has_more_work ||
11982 			    !bnxt_has_work(bp, cpr2))
11983 				continue;
11984 
11985 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11986 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11987 				continue;
11988 			}
11989 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11990 			bnxt_dbg_hwrm_ring_info_get(bp,
11991 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11992 				fw_ring_id, &val[0], &val[1]);
11993 			cpr->sw_stats.cmn.missed_irqs++;
11994 		}
11995 	}
11996 }
11997 
11998 static void bnxt_cfg_ntp_filters(struct bnxt *);
11999 
12000 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
12001 {
12002 	struct bnxt_link_info *link_info = &bp->link_info;
12003 
12004 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
12005 		link_info->autoneg = BNXT_AUTONEG_SPEED;
12006 		if (bp->hwrm_spec_code >= 0x10201) {
12007 			if (link_info->auto_pause_setting &
12008 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
12009 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12010 		} else {
12011 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
12012 		}
12013 		link_info->advertising = link_info->auto_link_speeds;
12014 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
12015 	} else {
12016 		link_info->req_link_speed = link_info->force_link_speed;
12017 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
12018 		if (link_info->force_pam4_link_speed) {
12019 			link_info->req_link_speed =
12020 				link_info->force_pam4_link_speed;
12021 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
12022 		}
12023 		link_info->req_duplex = link_info->duplex_setting;
12024 	}
12025 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
12026 		link_info->req_flow_ctrl =
12027 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
12028 	else
12029 		link_info->req_flow_ctrl = link_info->force_pause_setting;
12030 }
12031 
12032 static void bnxt_fw_echo_reply(struct bnxt *bp)
12033 {
12034 	struct bnxt_fw_health *fw_health = bp->fw_health;
12035 	struct hwrm_func_echo_response_input *req;
12036 	int rc;
12037 
12038 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
12039 	if (rc)
12040 		return;
12041 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
12042 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
12043 	hwrm_req_send(bp, req);
12044 }
12045 
12046 static void bnxt_sp_task(struct work_struct *work)
12047 {
12048 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
12049 
12050 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12051 	smp_mb__after_atomic();
12052 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
12053 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12054 		return;
12055 	}
12056 
12057 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
12058 		bnxt_cfg_rx_mode(bp);
12059 
12060 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
12061 		bnxt_cfg_ntp_filters(bp);
12062 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
12063 		bnxt_hwrm_exec_fwd_req(bp);
12064 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
12065 		bnxt_hwrm_port_qstats(bp, 0);
12066 		bnxt_hwrm_port_qstats_ext(bp, 0);
12067 		bnxt_accumulate_all_stats(bp);
12068 	}
12069 
12070 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
12071 		int rc;
12072 
12073 		mutex_lock(&bp->link_lock);
12074 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
12075 				       &bp->sp_event))
12076 			bnxt_hwrm_phy_qcaps(bp);
12077 
12078 		rc = bnxt_update_link(bp, true);
12079 		if (rc)
12080 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
12081 				   rc);
12082 
12083 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
12084 				       &bp->sp_event))
12085 			bnxt_init_ethtool_link_settings(bp);
12086 		mutex_unlock(&bp->link_lock);
12087 	}
12088 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
12089 		int rc;
12090 
12091 		mutex_lock(&bp->link_lock);
12092 		rc = bnxt_update_phy_setting(bp);
12093 		mutex_unlock(&bp->link_lock);
12094 		if (rc) {
12095 			netdev_warn(bp->dev, "update phy settings retry failed\n");
12096 		} else {
12097 			bp->link_info.phy_retry = false;
12098 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
12099 		}
12100 	}
12101 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
12102 		mutex_lock(&bp->link_lock);
12103 		bnxt_get_port_module_status(bp);
12104 		mutex_unlock(&bp->link_lock);
12105 	}
12106 
12107 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
12108 		bnxt_tc_flow_stats_work(bp);
12109 
12110 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
12111 		bnxt_chk_missed_irq(bp);
12112 
12113 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
12114 		bnxt_fw_echo_reply(bp);
12115 
12116 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
12117 	 * must be the last functions to be called before exiting.
12118 	 */
12119 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
12120 		bnxt_reset(bp, false);
12121 
12122 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
12123 		bnxt_reset(bp, true);
12124 
12125 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
12126 		bnxt_rx_ring_reset(bp);
12127 
12128 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
12129 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
12130 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
12131 			bnxt_devlink_health_fw_report(bp);
12132 		else
12133 			bnxt_fw_reset(bp);
12134 	}
12135 
12136 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
12137 		if (!is_bnxt_fw_ok(bp))
12138 			bnxt_devlink_health_fw_report(bp);
12139 	}
12140 
12141 	smp_mb__before_atomic();
12142 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
12143 }
12144 
12145 /* Under rtnl_lock */
12146 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
12147 		     int tx_xdp)
12148 {
12149 	int max_rx, max_tx, tx_sets = 1;
12150 	int tx_rings_needed, stats;
12151 	int rx_rings = rx;
12152 	int cp, vnics, rc;
12153 
12154 	if (tcs)
12155 		tx_sets = tcs;
12156 
12157 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
12158 	if (rc)
12159 		return rc;
12160 
12161 	if (max_rx < rx)
12162 		return -ENOMEM;
12163 
12164 	tx_rings_needed = tx * tx_sets + tx_xdp;
12165 	if (max_tx < tx_rings_needed)
12166 		return -ENOMEM;
12167 
12168 	vnics = 1;
12169 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
12170 		vnics += rx_rings;
12171 
12172 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
12173 		rx_rings <<= 1;
12174 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
12175 	stats = cp;
12176 	if (BNXT_NEW_RM(bp)) {
12177 		cp += bnxt_get_ulp_msix_num(bp);
12178 		stats += bnxt_get_ulp_stat_ctxs(bp);
12179 	}
12180 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
12181 				     stats, vnics);
12182 }
12183 
12184 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
12185 {
12186 	if (bp->bar2) {
12187 		pci_iounmap(pdev, bp->bar2);
12188 		bp->bar2 = NULL;
12189 	}
12190 
12191 	if (bp->bar1) {
12192 		pci_iounmap(pdev, bp->bar1);
12193 		bp->bar1 = NULL;
12194 	}
12195 
12196 	if (bp->bar0) {
12197 		pci_iounmap(pdev, bp->bar0);
12198 		bp->bar0 = NULL;
12199 	}
12200 }
12201 
12202 static void bnxt_cleanup_pci(struct bnxt *bp)
12203 {
12204 	bnxt_unmap_bars(bp, bp->pdev);
12205 	pci_release_regions(bp->pdev);
12206 	if (pci_is_enabled(bp->pdev))
12207 		pci_disable_device(bp->pdev);
12208 }
12209 
12210 static void bnxt_init_dflt_coal(struct bnxt *bp)
12211 {
12212 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
12213 	struct bnxt_coal *coal;
12214 	u16 flags = 0;
12215 
12216 	if (coal_cap->cmpl_params &
12217 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
12218 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
12219 
12220 	/* Tick values in micro seconds.
12221 	 * 1 coal_buf x bufs_per_record = 1 completion record.
12222 	 */
12223 	coal = &bp->rx_coal;
12224 	coal->coal_ticks = 10;
12225 	coal->coal_bufs = 30;
12226 	coal->coal_ticks_irq = 1;
12227 	coal->coal_bufs_irq = 2;
12228 	coal->idle_thresh = 50;
12229 	coal->bufs_per_record = 2;
12230 	coal->budget = 64;		/* NAPI budget */
12231 	coal->flags = flags;
12232 
12233 	coal = &bp->tx_coal;
12234 	coal->coal_ticks = 28;
12235 	coal->coal_bufs = 30;
12236 	coal->coal_ticks_irq = 2;
12237 	coal->coal_bufs_irq = 2;
12238 	coal->bufs_per_record = 1;
12239 	coal->flags = flags;
12240 
12241 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
12242 }
12243 
12244 static int bnxt_fw_init_one_p1(struct bnxt *bp)
12245 {
12246 	int rc;
12247 
12248 	bp->fw_cap = 0;
12249 	rc = bnxt_hwrm_ver_get(bp);
12250 	bnxt_try_map_fw_health_reg(bp);
12251 	if (rc) {
12252 		rc = bnxt_try_recover_fw(bp);
12253 		if (rc)
12254 			return rc;
12255 		rc = bnxt_hwrm_ver_get(bp);
12256 		if (rc)
12257 			return rc;
12258 	}
12259 
12260 	bnxt_nvm_cfg_ver_get(bp);
12261 
12262 	rc = bnxt_hwrm_func_reset(bp);
12263 	if (rc)
12264 		return -ENODEV;
12265 
12266 	bnxt_hwrm_fw_set_time(bp);
12267 	return 0;
12268 }
12269 
12270 static int bnxt_fw_init_one_p2(struct bnxt *bp)
12271 {
12272 	int rc;
12273 
12274 	/* Get the MAX capabilities for this function */
12275 	rc = bnxt_hwrm_func_qcaps(bp);
12276 	if (rc) {
12277 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
12278 			   rc);
12279 		return -ENODEV;
12280 	}
12281 
12282 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
12283 	if (rc)
12284 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
12285 			    rc);
12286 
12287 	if (bnxt_alloc_fw_health(bp)) {
12288 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
12289 	} else {
12290 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
12291 		if (rc)
12292 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
12293 				    rc);
12294 	}
12295 
12296 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12297 	if (rc)
12298 		return -ENODEV;
12299 
12300 	bnxt_hwrm_func_qcfg(bp);
12301 	bnxt_hwrm_vnic_qcaps(bp);
12302 	bnxt_hwrm_port_led_qcaps(bp);
12303 	bnxt_ethtool_init(bp);
12304 	bnxt_dcb_init(bp);
12305 	return 0;
12306 }
12307 
12308 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12309 {
12310 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12311 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12312 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12313 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12314 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12315 	if (bp->fw_cap & BNXT_FW_CAP_RSS_HASH_TYPE_DELTA)
12316 		bp->rss_hash_delta = bp->rss_hash_cfg;
12317 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12318 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12319 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12320 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12321 	}
12322 }
12323 
12324 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12325 {
12326 	struct net_device *dev = bp->dev;
12327 
12328 	dev->hw_features &= ~NETIF_F_NTUPLE;
12329 	dev->features &= ~NETIF_F_NTUPLE;
12330 	bp->flags &= ~BNXT_FLAG_RFS;
12331 	if (bnxt_rfs_supported(bp)) {
12332 		dev->hw_features |= NETIF_F_NTUPLE;
12333 		if (bnxt_rfs_capable(bp)) {
12334 			bp->flags |= BNXT_FLAG_RFS;
12335 			dev->features |= NETIF_F_NTUPLE;
12336 		}
12337 	}
12338 }
12339 
12340 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12341 {
12342 	struct pci_dev *pdev = bp->pdev;
12343 
12344 	bnxt_set_dflt_rss_hash_type(bp);
12345 	bnxt_set_dflt_rfs(bp);
12346 
12347 	bnxt_get_wol_settings(bp);
12348 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12349 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12350 	else
12351 		device_set_wakeup_capable(&pdev->dev, false);
12352 
12353 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12354 	bnxt_hwrm_coal_params_qcaps(bp);
12355 }
12356 
12357 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12358 
12359 int bnxt_fw_init_one(struct bnxt *bp)
12360 {
12361 	int rc;
12362 
12363 	rc = bnxt_fw_init_one_p1(bp);
12364 	if (rc) {
12365 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12366 		return rc;
12367 	}
12368 	rc = bnxt_fw_init_one_p2(bp);
12369 	if (rc) {
12370 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12371 		return rc;
12372 	}
12373 	rc = bnxt_probe_phy(bp, false);
12374 	if (rc)
12375 		return rc;
12376 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12377 	if (rc)
12378 		return rc;
12379 
12380 	bnxt_fw_init_one_p3(bp);
12381 	return 0;
12382 }
12383 
12384 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12385 {
12386 	struct bnxt_fw_health *fw_health = bp->fw_health;
12387 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12388 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12389 	u32 reg_type, reg_off, delay_msecs;
12390 
12391 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12392 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12393 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12394 	switch (reg_type) {
12395 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12396 		pci_write_config_dword(bp->pdev, reg_off, val);
12397 		break;
12398 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12399 		writel(reg_off & BNXT_GRC_BASE_MASK,
12400 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12401 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12402 		fallthrough;
12403 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12404 		writel(val, bp->bar0 + reg_off);
12405 		break;
12406 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12407 		writel(val, bp->bar1 + reg_off);
12408 		break;
12409 	}
12410 	if (delay_msecs) {
12411 		pci_read_config_dword(bp->pdev, 0, &val);
12412 		msleep(delay_msecs);
12413 	}
12414 }
12415 
12416 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12417 {
12418 	struct hwrm_func_qcfg_output *resp;
12419 	struct hwrm_func_qcfg_input *req;
12420 	bool result = true; /* firmware will enforce if unknown */
12421 
12422 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12423 		return result;
12424 
12425 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12426 		return result;
12427 
12428 	req->fid = cpu_to_le16(0xffff);
12429 	resp = hwrm_req_hold(bp, req);
12430 	if (!hwrm_req_send(bp, req))
12431 		result = !!(le16_to_cpu(resp->flags) &
12432 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12433 	hwrm_req_drop(bp, req);
12434 	return result;
12435 }
12436 
12437 static void bnxt_reset_all(struct bnxt *bp)
12438 {
12439 	struct bnxt_fw_health *fw_health = bp->fw_health;
12440 	int i, rc;
12441 
12442 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12443 		bnxt_fw_reset_via_optee(bp);
12444 		bp->fw_reset_timestamp = jiffies;
12445 		return;
12446 	}
12447 
12448 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12449 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12450 			bnxt_fw_reset_writel(bp, i);
12451 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12452 		struct hwrm_fw_reset_input *req;
12453 
12454 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12455 		if (!rc) {
12456 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12457 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12458 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12459 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12460 			rc = hwrm_req_send(bp, req);
12461 		}
12462 		if (rc != -ENODEV)
12463 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12464 	}
12465 	bp->fw_reset_timestamp = jiffies;
12466 }
12467 
12468 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12469 {
12470 	return time_after(jiffies, bp->fw_reset_timestamp +
12471 			  (bp->fw_reset_max_dsecs * HZ / 10));
12472 }
12473 
12474 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12475 {
12476 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12477 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12478 		bnxt_ulp_start(bp, rc);
12479 		bnxt_dl_health_fw_status_update(bp, false);
12480 	}
12481 	bp->fw_reset_state = 0;
12482 	dev_close(bp->dev);
12483 }
12484 
12485 static void bnxt_fw_reset_task(struct work_struct *work)
12486 {
12487 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12488 	int rc = 0;
12489 
12490 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12491 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12492 		return;
12493 	}
12494 
12495 	switch (bp->fw_reset_state) {
12496 	case BNXT_FW_RESET_STATE_POLL_VF: {
12497 		int n = bnxt_get_registered_vfs(bp);
12498 		int tmo;
12499 
12500 		if (n < 0) {
12501 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12502 				   n, jiffies_to_msecs(jiffies -
12503 				   bp->fw_reset_timestamp));
12504 			goto fw_reset_abort;
12505 		} else if (n > 0) {
12506 			if (bnxt_fw_reset_timeout(bp)) {
12507 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12508 				bp->fw_reset_state = 0;
12509 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12510 					   n);
12511 				return;
12512 			}
12513 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12514 			return;
12515 		}
12516 		bp->fw_reset_timestamp = jiffies;
12517 		rtnl_lock();
12518 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12519 			bnxt_fw_reset_abort(bp, rc);
12520 			rtnl_unlock();
12521 			return;
12522 		}
12523 		bnxt_fw_reset_close(bp);
12524 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12525 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12526 			tmo = HZ / 10;
12527 		} else {
12528 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12529 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12530 		}
12531 		rtnl_unlock();
12532 		bnxt_queue_fw_reset_work(bp, tmo);
12533 		return;
12534 	}
12535 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12536 		u32 val;
12537 
12538 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12539 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12540 		    !bnxt_fw_reset_timeout(bp)) {
12541 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12542 			return;
12543 		}
12544 
12545 		if (!bp->fw_health->primary) {
12546 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12547 
12548 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12549 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12550 			return;
12551 		}
12552 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12553 	}
12554 		fallthrough;
12555 	case BNXT_FW_RESET_STATE_RESET_FW:
12556 		bnxt_reset_all(bp);
12557 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12558 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12559 		return;
12560 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12561 		bnxt_inv_fw_health_reg(bp);
12562 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12563 		    !bp->fw_reset_min_dsecs) {
12564 			u16 val;
12565 
12566 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12567 			if (val == 0xffff) {
12568 				if (bnxt_fw_reset_timeout(bp)) {
12569 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12570 					rc = -ETIMEDOUT;
12571 					goto fw_reset_abort;
12572 				}
12573 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12574 				return;
12575 			}
12576 		}
12577 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12578 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12579 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12580 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12581 			bnxt_dl_remote_reload(bp);
12582 		if (pci_enable_device(bp->pdev)) {
12583 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12584 			rc = -ENODEV;
12585 			goto fw_reset_abort;
12586 		}
12587 		pci_set_master(bp->pdev);
12588 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12589 		fallthrough;
12590 	case BNXT_FW_RESET_STATE_POLL_FW:
12591 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12592 		rc = bnxt_hwrm_poll(bp);
12593 		if (rc) {
12594 			if (bnxt_fw_reset_timeout(bp)) {
12595 				netdev_err(bp->dev, "Firmware reset aborted\n");
12596 				goto fw_reset_abort_status;
12597 			}
12598 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12599 			return;
12600 		}
12601 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12602 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12603 		fallthrough;
12604 	case BNXT_FW_RESET_STATE_OPENING:
12605 		while (!rtnl_trylock()) {
12606 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12607 			return;
12608 		}
12609 		rc = bnxt_open(bp->dev);
12610 		if (rc) {
12611 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12612 			bnxt_fw_reset_abort(bp, rc);
12613 			rtnl_unlock();
12614 			return;
12615 		}
12616 
12617 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12618 		    bp->fw_health->enabled) {
12619 			bp->fw_health->last_fw_reset_cnt =
12620 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12621 		}
12622 		bp->fw_reset_state = 0;
12623 		/* Make sure fw_reset_state is 0 before clearing the flag */
12624 		smp_mb__before_atomic();
12625 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12626 		bnxt_ulp_start(bp, 0);
12627 		bnxt_reenable_sriov(bp);
12628 		bnxt_vf_reps_alloc(bp);
12629 		bnxt_vf_reps_open(bp);
12630 		bnxt_ptp_reapply_pps(bp);
12631 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12632 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12633 			bnxt_dl_health_fw_recovery_done(bp);
12634 			bnxt_dl_health_fw_status_update(bp, true);
12635 		}
12636 		rtnl_unlock();
12637 		break;
12638 	}
12639 	return;
12640 
12641 fw_reset_abort_status:
12642 	if (bp->fw_health->status_reliable ||
12643 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12644 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12645 
12646 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12647 	}
12648 fw_reset_abort:
12649 	rtnl_lock();
12650 	bnxt_fw_reset_abort(bp, rc);
12651 	rtnl_unlock();
12652 }
12653 
12654 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12655 {
12656 	int rc;
12657 	struct bnxt *bp = netdev_priv(dev);
12658 
12659 	SET_NETDEV_DEV(dev, &pdev->dev);
12660 
12661 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12662 	rc = pci_enable_device(pdev);
12663 	if (rc) {
12664 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12665 		goto init_err;
12666 	}
12667 
12668 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12669 		dev_err(&pdev->dev,
12670 			"Cannot find PCI device base address, aborting\n");
12671 		rc = -ENODEV;
12672 		goto init_err_disable;
12673 	}
12674 
12675 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12676 	if (rc) {
12677 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12678 		goto init_err_disable;
12679 	}
12680 
12681 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12682 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12683 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12684 		rc = -EIO;
12685 		goto init_err_release;
12686 	}
12687 
12688 	pci_set_master(pdev);
12689 
12690 	bp->dev = dev;
12691 	bp->pdev = pdev;
12692 
12693 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12694 	 * determines the BAR size.
12695 	 */
12696 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12697 	if (!bp->bar0) {
12698 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12699 		rc = -ENOMEM;
12700 		goto init_err_release;
12701 	}
12702 
12703 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12704 	if (!bp->bar2) {
12705 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12706 		rc = -ENOMEM;
12707 		goto init_err_release;
12708 	}
12709 
12710 	pci_enable_pcie_error_reporting(pdev);
12711 
12712 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12713 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12714 
12715 	spin_lock_init(&bp->ntp_fltr_lock);
12716 #if BITS_PER_LONG == 32
12717 	spin_lock_init(&bp->db_lock);
12718 #endif
12719 
12720 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12721 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12722 
12723 	timer_setup(&bp->timer, bnxt_timer, 0);
12724 	bp->current_interval = BNXT_TIMER_INTERVAL;
12725 
12726 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12727 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12728 
12729 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12730 	return 0;
12731 
12732 init_err_release:
12733 	bnxt_unmap_bars(bp, pdev);
12734 	pci_release_regions(pdev);
12735 
12736 init_err_disable:
12737 	pci_disable_device(pdev);
12738 
12739 init_err:
12740 	return rc;
12741 }
12742 
12743 /* rtnl_lock held */
12744 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12745 {
12746 	struct sockaddr *addr = p;
12747 	struct bnxt *bp = netdev_priv(dev);
12748 	int rc = 0;
12749 
12750 	if (!is_valid_ether_addr(addr->sa_data))
12751 		return -EADDRNOTAVAIL;
12752 
12753 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12754 		return 0;
12755 
12756 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12757 	if (rc)
12758 		return rc;
12759 
12760 	eth_hw_addr_set(dev, addr->sa_data);
12761 	if (netif_running(dev)) {
12762 		bnxt_close_nic(bp, false, false);
12763 		rc = bnxt_open_nic(bp, false, false);
12764 	}
12765 
12766 	return rc;
12767 }
12768 
12769 /* rtnl_lock held */
12770 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12771 {
12772 	struct bnxt *bp = netdev_priv(dev);
12773 
12774 	if (netif_running(dev))
12775 		bnxt_close_nic(bp, true, false);
12776 
12777 	dev->mtu = new_mtu;
12778 	bnxt_set_ring_params(bp);
12779 
12780 	if (netif_running(dev))
12781 		return bnxt_open_nic(bp, true, false);
12782 
12783 	return 0;
12784 }
12785 
12786 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12787 {
12788 	struct bnxt *bp = netdev_priv(dev);
12789 	bool sh = false;
12790 	int rc;
12791 
12792 	if (tc > bp->max_tc) {
12793 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12794 			   tc, bp->max_tc);
12795 		return -EINVAL;
12796 	}
12797 
12798 	if (netdev_get_num_tc(dev) == tc)
12799 		return 0;
12800 
12801 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12802 		sh = true;
12803 
12804 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12805 			      sh, tc, bp->tx_nr_rings_xdp);
12806 	if (rc)
12807 		return rc;
12808 
12809 	/* Needs to close the device and do hw resource re-allocations */
12810 	if (netif_running(bp->dev))
12811 		bnxt_close_nic(bp, true, false);
12812 
12813 	if (tc) {
12814 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12815 		netdev_set_num_tc(dev, tc);
12816 	} else {
12817 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12818 		netdev_reset_tc(dev);
12819 	}
12820 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12821 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12822 			       bp->tx_nr_rings + bp->rx_nr_rings;
12823 
12824 	if (netif_running(bp->dev))
12825 		return bnxt_open_nic(bp, true, false);
12826 
12827 	return 0;
12828 }
12829 
12830 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12831 				  void *cb_priv)
12832 {
12833 	struct bnxt *bp = cb_priv;
12834 
12835 	if (!bnxt_tc_flower_enabled(bp) ||
12836 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12837 		return -EOPNOTSUPP;
12838 
12839 	switch (type) {
12840 	case TC_SETUP_CLSFLOWER:
12841 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12842 	default:
12843 		return -EOPNOTSUPP;
12844 	}
12845 }
12846 
12847 LIST_HEAD(bnxt_block_cb_list);
12848 
12849 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12850 			 void *type_data)
12851 {
12852 	struct bnxt *bp = netdev_priv(dev);
12853 
12854 	switch (type) {
12855 	case TC_SETUP_BLOCK:
12856 		return flow_block_cb_setup_simple(type_data,
12857 						  &bnxt_block_cb_list,
12858 						  bnxt_setup_tc_block_cb,
12859 						  bp, bp, true);
12860 	case TC_SETUP_QDISC_MQPRIO: {
12861 		struct tc_mqprio_qopt *mqprio = type_data;
12862 
12863 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12864 
12865 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12866 	}
12867 	default:
12868 		return -EOPNOTSUPP;
12869 	}
12870 }
12871 
12872 #ifdef CONFIG_RFS_ACCEL
12873 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12874 			    struct bnxt_ntuple_filter *f2)
12875 {
12876 	struct flow_keys *keys1 = &f1->fkeys;
12877 	struct flow_keys *keys2 = &f2->fkeys;
12878 
12879 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12880 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12881 		return false;
12882 
12883 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12884 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12885 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12886 			return false;
12887 	} else {
12888 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12889 			   sizeof(keys1->addrs.v6addrs.src)) ||
12890 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12891 			   sizeof(keys1->addrs.v6addrs.dst)))
12892 			return false;
12893 	}
12894 
12895 	if (keys1->ports.ports == keys2->ports.ports &&
12896 	    keys1->control.flags == keys2->control.flags &&
12897 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12898 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12899 		return true;
12900 
12901 	return false;
12902 }
12903 
12904 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12905 			      u16 rxq_index, u32 flow_id)
12906 {
12907 	struct bnxt *bp = netdev_priv(dev);
12908 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12909 	struct flow_keys *fkeys;
12910 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12911 	int rc = 0, idx, bit_id, l2_idx = 0;
12912 	struct hlist_head *head;
12913 	u32 flags;
12914 
12915 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12916 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12917 		int off = 0, j;
12918 
12919 		netif_addr_lock_bh(dev);
12920 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12921 			if (ether_addr_equal(eth->h_dest,
12922 					     vnic->uc_list + off)) {
12923 				l2_idx = j + 1;
12924 				break;
12925 			}
12926 		}
12927 		netif_addr_unlock_bh(dev);
12928 		if (!l2_idx)
12929 			return -EINVAL;
12930 	}
12931 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12932 	if (!new_fltr)
12933 		return -ENOMEM;
12934 
12935 	fkeys = &new_fltr->fkeys;
12936 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12937 		rc = -EPROTONOSUPPORT;
12938 		goto err_free;
12939 	}
12940 
12941 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12942 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12943 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12944 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12945 		rc = -EPROTONOSUPPORT;
12946 		goto err_free;
12947 	}
12948 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12949 	    bp->hwrm_spec_code < 0x10601) {
12950 		rc = -EPROTONOSUPPORT;
12951 		goto err_free;
12952 	}
12953 	flags = fkeys->control.flags;
12954 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12955 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12956 		rc = -EPROTONOSUPPORT;
12957 		goto err_free;
12958 	}
12959 
12960 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12961 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12962 
12963 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12964 	head = &bp->ntp_fltr_hash_tbl[idx];
12965 	rcu_read_lock();
12966 	hlist_for_each_entry_rcu(fltr, head, hash) {
12967 		if (bnxt_fltr_match(fltr, new_fltr)) {
12968 			rc = fltr->sw_id;
12969 			rcu_read_unlock();
12970 			goto err_free;
12971 		}
12972 	}
12973 	rcu_read_unlock();
12974 
12975 	spin_lock_bh(&bp->ntp_fltr_lock);
12976 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12977 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12978 	if (bit_id < 0) {
12979 		spin_unlock_bh(&bp->ntp_fltr_lock);
12980 		rc = -ENOMEM;
12981 		goto err_free;
12982 	}
12983 
12984 	new_fltr->sw_id = (u16)bit_id;
12985 	new_fltr->flow_id = flow_id;
12986 	new_fltr->l2_fltr_idx = l2_idx;
12987 	new_fltr->rxq = rxq_index;
12988 	hlist_add_head_rcu(&new_fltr->hash, head);
12989 	bp->ntp_fltr_count++;
12990 	spin_unlock_bh(&bp->ntp_fltr_lock);
12991 
12992 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12993 	bnxt_queue_sp_work(bp);
12994 
12995 	return new_fltr->sw_id;
12996 
12997 err_free:
12998 	kfree(new_fltr);
12999 	return rc;
13000 }
13001 
13002 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13003 {
13004 	int i;
13005 
13006 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
13007 		struct hlist_head *head;
13008 		struct hlist_node *tmp;
13009 		struct bnxt_ntuple_filter *fltr;
13010 		int rc;
13011 
13012 		head = &bp->ntp_fltr_hash_tbl[i];
13013 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
13014 			bool del = false;
13015 
13016 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
13017 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
13018 							fltr->flow_id,
13019 							fltr->sw_id)) {
13020 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
13021 									 fltr);
13022 					del = true;
13023 				}
13024 			} else {
13025 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
13026 								       fltr);
13027 				if (rc)
13028 					del = true;
13029 				else
13030 					set_bit(BNXT_FLTR_VALID, &fltr->state);
13031 			}
13032 
13033 			if (del) {
13034 				spin_lock_bh(&bp->ntp_fltr_lock);
13035 				hlist_del_rcu(&fltr->hash);
13036 				bp->ntp_fltr_count--;
13037 				spin_unlock_bh(&bp->ntp_fltr_lock);
13038 				synchronize_rcu();
13039 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
13040 				kfree(fltr);
13041 			}
13042 		}
13043 	}
13044 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
13045 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
13046 }
13047 
13048 #else
13049 
13050 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
13051 {
13052 }
13053 
13054 #endif /* CONFIG_RFS_ACCEL */
13055 
13056 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
13057 {
13058 	struct bnxt *bp = netdev_priv(netdev);
13059 	struct udp_tunnel_info ti;
13060 	unsigned int cmd;
13061 
13062 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
13063 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
13064 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
13065 	else
13066 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
13067 
13068 	if (ti.port)
13069 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
13070 
13071 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
13072 }
13073 
13074 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
13075 	.sync_table	= bnxt_udp_tunnel_sync,
13076 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
13077 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
13078 	.tables		= {
13079 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
13080 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
13081 	},
13082 };
13083 
13084 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13085 			       struct net_device *dev, u32 filter_mask,
13086 			       int nlflags)
13087 {
13088 	struct bnxt *bp = netdev_priv(dev);
13089 
13090 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
13091 				       nlflags, filter_mask, NULL);
13092 }
13093 
13094 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
13095 			       u16 flags, struct netlink_ext_ack *extack)
13096 {
13097 	struct bnxt *bp = netdev_priv(dev);
13098 	struct nlattr *attr, *br_spec;
13099 	int rem, rc = 0;
13100 
13101 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
13102 		return -EOPNOTSUPP;
13103 
13104 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13105 	if (!br_spec)
13106 		return -EINVAL;
13107 
13108 	nla_for_each_nested(attr, br_spec, rem) {
13109 		u16 mode;
13110 
13111 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
13112 			continue;
13113 
13114 		if (nla_len(attr) < sizeof(mode))
13115 			return -EINVAL;
13116 
13117 		mode = nla_get_u16(attr);
13118 		if (mode == bp->br_mode)
13119 			break;
13120 
13121 		rc = bnxt_hwrm_set_br_mode(bp, mode);
13122 		if (!rc)
13123 			bp->br_mode = mode;
13124 		break;
13125 	}
13126 	return rc;
13127 }
13128 
13129 int bnxt_get_port_parent_id(struct net_device *dev,
13130 			    struct netdev_phys_item_id *ppid)
13131 {
13132 	struct bnxt *bp = netdev_priv(dev);
13133 
13134 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
13135 		return -EOPNOTSUPP;
13136 
13137 	/* The PF and it's VF-reps only support the switchdev framework */
13138 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
13139 		return -EOPNOTSUPP;
13140 
13141 	ppid->id_len = sizeof(bp->dsn);
13142 	memcpy(ppid->id, bp->dsn, ppid->id_len);
13143 
13144 	return 0;
13145 }
13146 
13147 static const struct net_device_ops bnxt_netdev_ops = {
13148 	.ndo_open		= bnxt_open,
13149 	.ndo_start_xmit		= bnxt_start_xmit,
13150 	.ndo_stop		= bnxt_close,
13151 	.ndo_get_stats64	= bnxt_get_stats64,
13152 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
13153 	.ndo_eth_ioctl		= bnxt_ioctl,
13154 	.ndo_validate_addr	= eth_validate_addr,
13155 	.ndo_set_mac_address	= bnxt_change_mac_addr,
13156 	.ndo_change_mtu		= bnxt_change_mtu,
13157 	.ndo_fix_features	= bnxt_fix_features,
13158 	.ndo_set_features	= bnxt_set_features,
13159 	.ndo_features_check	= bnxt_features_check,
13160 	.ndo_tx_timeout		= bnxt_tx_timeout,
13161 #ifdef CONFIG_BNXT_SRIOV
13162 	.ndo_get_vf_config	= bnxt_get_vf_config,
13163 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
13164 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
13165 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
13166 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
13167 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
13168 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
13169 #endif
13170 	.ndo_setup_tc           = bnxt_setup_tc,
13171 #ifdef CONFIG_RFS_ACCEL
13172 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
13173 #endif
13174 	.ndo_bpf		= bnxt_xdp,
13175 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
13176 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
13177 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
13178 };
13179 
13180 static void bnxt_remove_one(struct pci_dev *pdev)
13181 {
13182 	struct net_device *dev = pci_get_drvdata(pdev);
13183 	struct bnxt *bp = netdev_priv(dev);
13184 
13185 	if (BNXT_PF(bp))
13186 		bnxt_sriov_disable(bp);
13187 
13188 	bnxt_rdma_aux_device_uninit(bp);
13189 
13190 	bnxt_ptp_clear(bp);
13191 	pci_disable_pcie_error_reporting(pdev);
13192 	unregister_netdev(dev);
13193 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
13194 	/* Flush any pending tasks */
13195 	cancel_work_sync(&bp->sp_task);
13196 	cancel_delayed_work_sync(&bp->fw_reset_task);
13197 	bp->sp_event = 0;
13198 
13199 	bnxt_dl_fw_reporters_destroy(bp);
13200 	bnxt_dl_unregister(bp);
13201 	bnxt_shutdown_tc(bp);
13202 
13203 	bnxt_clear_int_mode(bp);
13204 	bnxt_hwrm_func_drv_unrgtr(bp);
13205 	bnxt_free_hwrm_resources(bp);
13206 	bnxt_ethtool_free(bp);
13207 	bnxt_dcb_free(bp);
13208 	kfree(bp->ptp_cfg);
13209 	bp->ptp_cfg = NULL;
13210 	kfree(bp->fw_health);
13211 	bp->fw_health = NULL;
13212 	bnxt_cleanup_pci(bp);
13213 	bnxt_free_ctx_mem(bp);
13214 	kfree(bp->ctx);
13215 	bp->ctx = NULL;
13216 	kfree(bp->rss_indir_tbl);
13217 	bp->rss_indir_tbl = NULL;
13218 	bnxt_free_port_stats(bp);
13219 	free_netdev(dev);
13220 }
13221 
13222 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
13223 {
13224 	int rc = 0;
13225 	struct bnxt_link_info *link_info = &bp->link_info;
13226 
13227 	bp->phy_flags = 0;
13228 	rc = bnxt_hwrm_phy_qcaps(bp);
13229 	if (rc) {
13230 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
13231 			   rc);
13232 		return rc;
13233 	}
13234 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
13235 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
13236 	else
13237 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
13238 	if (!fw_dflt)
13239 		return 0;
13240 
13241 	mutex_lock(&bp->link_lock);
13242 	rc = bnxt_update_link(bp, false);
13243 	if (rc) {
13244 		mutex_unlock(&bp->link_lock);
13245 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
13246 			   rc);
13247 		return rc;
13248 	}
13249 
13250 	/* Older firmware does not have supported_auto_speeds, so assume
13251 	 * that all supported speeds can be autonegotiated.
13252 	 */
13253 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
13254 		link_info->support_auto_speeds = link_info->support_speeds;
13255 
13256 	bnxt_init_ethtool_link_settings(bp);
13257 	mutex_unlock(&bp->link_lock);
13258 	return 0;
13259 }
13260 
13261 static int bnxt_get_max_irq(struct pci_dev *pdev)
13262 {
13263 	u16 ctrl;
13264 
13265 	if (!pdev->msix_cap)
13266 		return 1;
13267 
13268 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
13269 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
13270 }
13271 
13272 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13273 				int *max_cp)
13274 {
13275 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
13276 	int max_ring_grps = 0, max_irq;
13277 
13278 	*max_tx = hw_resc->max_tx_rings;
13279 	*max_rx = hw_resc->max_rx_rings;
13280 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13281 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13282 			bnxt_get_ulp_msix_num(bp),
13283 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13284 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13285 		*max_cp = min_t(int, *max_cp, max_irq);
13286 	max_ring_grps = hw_resc->max_hw_ring_grps;
13287 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13288 		*max_cp -= 1;
13289 		*max_rx -= 2;
13290 	}
13291 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13292 		*max_rx >>= 1;
13293 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13294 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13295 		/* On P5 chips, max_cp output param should be available NQs */
13296 		*max_cp = max_irq;
13297 	}
13298 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13299 }
13300 
13301 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13302 {
13303 	int rx, tx, cp;
13304 
13305 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13306 	*max_rx = rx;
13307 	*max_tx = tx;
13308 	if (!rx || !tx || !cp)
13309 		return -ENOMEM;
13310 
13311 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13312 }
13313 
13314 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13315 			       bool shared)
13316 {
13317 	int rc;
13318 
13319 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13320 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13321 		/* Not enough rings, try disabling agg rings. */
13322 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13323 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13324 		if (rc) {
13325 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13326 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13327 			return rc;
13328 		}
13329 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13330 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13331 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13332 		bnxt_set_ring_params(bp);
13333 	}
13334 
13335 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13336 		int max_cp, max_stat, max_irq;
13337 
13338 		/* Reserve minimum resources for RoCE */
13339 		max_cp = bnxt_get_max_func_cp_rings(bp);
13340 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13341 		max_irq = bnxt_get_max_func_irqs(bp);
13342 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13343 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13344 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13345 			return 0;
13346 
13347 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13348 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13349 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13350 		max_cp = min_t(int, max_cp, max_irq);
13351 		max_cp = min_t(int, max_cp, max_stat);
13352 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13353 		if (rc)
13354 			rc = 0;
13355 	}
13356 	return rc;
13357 }
13358 
13359 /* In initial default shared ring setting, each shared ring must have a
13360  * RX/TX ring pair.
13361  */
13362 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13363 {
13364 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13365 	bp->rx_nr_rings = bp->cp_nr_rings;
13366 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13367 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13368 }
13369 
13370 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13371 {
13372 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13373 
13374 	if (!bnxt_can_reserve_rings(bp))
13375 		return 0;
13376 
13377 	if (sh)
13378 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13379 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13380 	/* Reduce default rings on multi-port cards so that total default
13381 	 * rings do not exceed CPU count.
13382 	 */
13383 	if (bp->port_count > 1) {
13384 		int max_rings =
13385 			max_t(int, num_online_cpus() / bp->port_count, 1);
13386 
13387 		dflt_rings = min_t(int, dflt_rings, max_rings);
13388 	}
13389 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13390 	if (rc)
13391 		return rc;
13392 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13393 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13394 	if (sh)
13395 		bnxt_trim_dflt_sh_rings(bp);
13396 	else
13397 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13398 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13399 
13400 	rc = __bnxt_reserve_rings(bp);
13401 	if (rc && rc != -ENODEV)
13402 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13403 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13404 	if (sh)
13405 		bnxt_trim_dflt_sh_rings(bp);
13406 
13407 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13408 	if (bnxt_need_reserve_rings(bp)) {
13409 		rc = __bnxt_reserve_rings(bp);
13410 		if (rc && rc != -ENODEV)
13411 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13412 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13413 	}
13414 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13415 		bp->rx_nr_rings++;
13416 		bp->cp_nr_rings++;
13417 	}
13418 	if (rc) {
13419 		bp->tx_nr_rings = 0;
13420 		bp->rx_nr_rings = 0;
13421 	}
13422 	return rc;
13423 }
13424 
13425 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13426 {
13427 	int rc;
13428 
13429 	if (bp->tx_nr_rings)
13430 		return 0;
13431 
13432 	bnxt_ulp_irq_stop(bp);
13433 	bnxt_clear_int_mode(bp);
13434 	rc = bnxt_set_dflt_rings(bp, true);
13435 	if (rc) {
13436 		if (BNXT_VF(bp) && rc == -ENODEV)
13437 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13438 		else
13439 			netdev_err(bp->dev, "Not enough rings available.\n");
13440 		goto init_dflt_ring_err;
13441 	}
13442 	rc = bnxt_init_int_mode(bp);
13443 	if (rc)
13444 		goto init_dflt_ring_err;
13445 
13446 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13447 
13448 	bnxt_set_dflt_rfs(bp);
13449 
13450 init_dflt_ring_err:
13451 	bnxt_ulp_irq_restart(bp, rc);
13452 	return rc;
13453 }
13454 
13455 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13456 {
13457 	int rc;
13458 
13459 	ASSERT_RTNL();
13460 	bnxt_hwrm_func_qcaps(bp);
13461 
13462 	if (netif_running(bp->dev))
13463 		__bnxt_close_nic(bp, true, false);
13464 
13465 	bnxt_ulp_irq_stop(bp);
13466 	bnxt_clear_int_mode(bp);
13467 	rc = bnxt_init_int_mode(bp);
13468 	bnxt_ulp_irq_restart(bp, rc);
13469 
13470 	if (netif_running(bp->dev)) {
13471 		if (rc)
13472 			dev_close(bp->dev);
13473 		else
13474 			rc = bnxt_open_nic(bp, true, false);
13475 	}
13476 
13477 	return rc;
13478 }
13479 
13480 static int bnxt_init_mac_addr(struct bnxt *bp)
13481 {
13482 	int rc = 0;
13483 
13484 	if (BNXT_PF(bp)) {
13485 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13486 	} else {
13487 #ifdef CONFIG_BNXT_SRIOV
13488 		struct bnxt_vf_info *vf = &bp->vf;
13489 		bool strict_approval = true;
13490 
13491 		if (is_valid_ether_addr(vf->mac_addr)) {
13492 			/* overwrite netdev dev_addr with admin VF MAC */
13493 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13494 			/* Older PF driver or firmware may not approve this
13495 			 * correctly.
13496 			 */
13497 			strict_approval = false;
13498 		} else {
13499 			eth_hw_addr_random(bp->dev);
13500 		}
13501 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13502 #endif
13503 	}
13504 	return rc;
13505 }
13506 
13507 static void bnxt_vpd_read_info(struct bnxt *bp)
13508 {
13509 	struct pci_dev *pdev = bp->pdev;
13510 	unsigned int vpd_size, kw_len;
13511 	int pos, size;
13512 	u8 *vpd_data;
13513 
13514 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13515 	if (IS_ERR(vpd_data)) {
13516 		pci_warn(pdev, "Unable to read VPD\n");
13517 		return;
13518 	}
13519 
13520 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13521 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13522 	if (pos < 0)
13523 		goto read_sn;
13524 
13525 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13526 	memcpy(bp->board_partno, &vpd_data[pos], size);
13527 
13528 read_sn:
13529 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13530 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13531 					   &kw_len);
13532 	if (pos < 0)
13533 		goto exit;
13534 
13535 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13536 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13537 exit:
13538 	kfree(vpd_data);
13539 }
13540 
13541 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13542 {
13543 	struct pci_dev *pdev = bp->pdev;
13544 	u64 qword;
13545 
13546 	qword = pci_get_dsn(pdev);
13547 	if (!qword) {
13548 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13549 		return -EOPNOTSUPP;
13550 	}
13551 
13552 	put_unaligned_le64(qword, dsn);
13553 
13554 	bp->flags |= BNXT_FLAG_DSN_VALID;
13555 	return 0;
13556 }
13557 
13558 static int bnxt_map_db_bar(struct bnxt *bp)
13559 {
13560 	if (!bp->db_size)
13561 		return -ENODEV;
13562 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13563 	if (!bp->bar1)
13564 		return -ENOMEM;
13565 	return 0;
13566 }
13567 
13568 void bnxt_print_device_info(struct bnxt *bp)
13569 {
13570 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13571 		    board_info[bp->board_idx].name,
13572 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13573 
13574 	pcie_print_link_status(bp->pdev);
13575 }
13576 
13577 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13578 {
13579 	struct net_device *dev;
13580 	struct bnxt *bp;
13581 	int rc, max_irqs;
13582 
13583 	if (pci_is_bridge(pdev))
13584 		return -ENODEV;
13585 
13586 	/* Clear any pending DMA transactions from crash kernel
13587 	 * while loading driver in capture kernel.
13588 	 */
13589 	if (is_kdump_kernel()) {
13590 		pci_clear_master(pdev);
13591 		pcie_flr(pdev);
13592 	}
13593 
13594 	max_irqs = bnxt_get_max_irq(pdev);
13595 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13596 	if (!dev)
13597 		return -ENOMEM;
13598 
13599 	bp = netdev_priv(dev);
13600 	bp->board_idx = ent->driver_data;
13601 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13602 	bnxt_set_max_func_irqs(bp, max_irqs);
13603 
13604 	if (bnxt_vf_pciid(bp->board_idx))
13605 		bp->flags |= BNXT_FLAG_VF;
13606 
13607 	/* No devlink port registration in case of a VF */
13608 	if (BNXT_PF(bp))
13609 		SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port);
13610 
13611 	if (pdev->msix_cap)
13612 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13613 
13614 	rc = bnxt_init_board(pdev, dev);
13615 	if (rc < 0)
13616 		goto init_err_free;
13617 
13618 	dev->netdev_ops = &bnxt_netdev_ops;
13619 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13620 	dev->ethtool_ops = &bnxt_ethtool_ops;
13621 	pci_set_drvdata(pdev, dev);
13622 
13623 	rc = bnxt_alloc_hwrm_resources(bp);
13624 	if (rc)
13625 		goto init_err_pci_clean;
13626 
13627 	mutex_init(&bp->hwrm_cmd_lock);
13628 	mutex_init(&bp->link_lock);
13629 
13630 	rc = bnxt_fw_init_one_p1(bp);
13631 	if (rc)
13632 		goto init_err_pci_clean;
13633 
13634 	if (BNXT_PF(bp))
13635 		bnxt_vpd_read_info(bp);
13636 
13637 	if (BNXT_CHIP_P5(bp)) {
13638 		bp->flags |= BNXT_FLAG_CHIP_P5;
13639 		if (BNXT_CHIP_SR2(bp))
13640 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13641 	}
13642 
13643 	rc = bnxt_alloc_rss_indir_tbl(bp);
13644 	if (rc)
13645 		goto init_err_pci_clean;
13646 
13647 	rc = bnxt_fw_init_one_p2(bp);
13648 	if (rc)
13649 		goto init_err_pci_clean;
13650 
13651 	rc = bnxt_map_db_bar(bp);
13652 	if (rc) {
13653 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13654 			rc);
13655 		goto init_err_pci_clean;
13656 	}
13657 
13658 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13659 			   NETIF_F_TSO | NETIF_F_TSO6 |
13660 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13661 			   NETIF_F_GSO_IPXIP4 |
13662 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13663 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13664 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13665 
13666 	if (BNXT_SUPPORTS_TPA(bp))
13667 		dev->hw_features |= NETIF_F_LRO;
13668 
13669 	dev->hw_enc_features =
13670 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13671 			NETIF_F_TSO | NETIF_F_TSO6 |
13672 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13673 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13674 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13675 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13676 
13677 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13678 				    NETIF_F_GSO_GRE_CSUM;
13679 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13680 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13681 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13682 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13683 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13684 	if (BNXT_SUPPORTS_TPA(bp))
13685 		dev->hw_features |= NETIF_F_GRO_HW;
13686 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13687 	if (dev->features & NETIF_F_GRO_HW)
13688 		dev->features &= ~NETIF_F_LRO;
13689 	dev->priv_flags |= IFF_UNICAST_FLT;
13690 
13691 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
13692 
13693 	dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
13694 			    NETDEV_XDP_ACT_RX_SG;
13695 
13696 #ifdef CONFIG_BNXT_SRIOV
13697 	init_waitqueue_head(&bp->sriov_cfg_wait);
13698 #endif
13699 	if (BNXT_SUPPORTS_TPA(bp)) {
13700 		bp->gro_func = bnxt_gro_func_5730x;
13701 		if (BNXT_CHIP_P4(bp))
13702 			bp->gro_func = bnxt_gro_func_5731x;
13703 		else if (BNXT_CHIP_P5(bp))
13704 			bp->gro_func = bnxt_gro_func_5750x;
13705 	}
13706 	if (!BNXT_CHIP_P4_PLUS(bp))
13707 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13708 
13709 	rc = bnxt_init_mac_addr(bp);
13710 	if (rc) {
13711 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13712 		rc = -EADDRNOTAVAIL;
13713 		goto init_err_pci_clean;
13714 	}
13715 
13716 	if (BNXT_PF(bp)) {
13717 		/* Read the adapter's DSN to use as the eswitch switch_id */
13718 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13719 	}
13720 
13721 	/* MTU range: 60 - FW defined max */
13722 	dev->min_mtu = ETH_ZLEN;
13723 	dev->max_mtu = bp->max_mtu;
13724 
13725 	rc = bnxt_probe_phy(bp, true);
13726 	if (rc)
13727 		goto init_err_pci_clean;
13728 
13729 	bnxt_set_rx_skb_mode(bp, false);
13730 	bnxt_set_tpa_flags(bp);
13731 	bnxt_set_ring_params(bp);
13732 	rc = bnxt_set_dflt_rings(bp, true);
13733 	if (rc) {
13734 		if (BNXT_VF(bp) && rc == -ENODEV) {
13735 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13736 		} else {
13737 			netdev_err(bp->dev, "Not enough rings available.\n");
13738 			rc = -ENOMEM;
13739 		}
13740 		goto init_err_pci_clean;
13741 	}
13742 
13743 	bnxt_fw_init_one_p3(bp);
13744 
13745 	bnxt_init_dflt_coal(bp);
13746 
13747 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13748 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13749 
13750 	rc = bnxt_init_int_mode(bp);
13751 	if (rc)
13752 		goto init_err_pci_clean;
13753 
13754 	/* No TC has been set yet and rings may have been trimmed due to
13755 	 * limited MSIX, so we re-initialize the TX rings per TC.
13756 	 */
13757 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13758 
13759 	if (BNXT_PF(bp)) {
13760 		if (!bnxt_pf_wq) {
13761 			bnxt_pf_wq =
13762 				create_singlethread_workqueue("bnxt_pf_wq");
13763 			if (!bnxt_pf_wq) {
13764 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13765 				rc = -ENOMEM;
13766 				goto init_err_pci_clean;
13767 			}
13768 		}
13769 		rc = bnxt_init_tc(bp);
13770 		if (rc)
13771 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13772 				   rc);
13773 	}
13774 
13775 	bnxt_inv_fw_health_reg(bp);
13776 	rc = bnxt_dl_register(bp);
13777 	if (rc)
13778 		goto init_err_dl;
13779 
13780 	rc = register_netdev(dev);
13781 	if (rc)
13782 		goto init_err_cleanup;
13783 
13784 	bnxt_dl_fw_reporters_create(bp);
13785 
13786 	bnxt_rdma_aux_device_init(bp);
13787 
13788 	bnxt_print_device_info(bp);
13789 
13790 	pci_save_state(pdev);
13791 
13792 	return 0;
13793 init_err_cleanup:
13794 	bnxt_dl_unregister(bp);
13795 init_err_dl:
13796 	bnxt_shutdown_tc(bp);
13797 	bnxt_clear_int_mode(bp);
13798 
13799 init_err_pci_clean:
13800 	bnxt_hwrm_func_drv_unrgtr(bp);
13801 	bnxt_free_hwrm_resources(bp);
13802 	bnxt_ethtool_free(bp);
13803 	bnxt_ptp_clear(bp);
13804 	kfree(bp->ptp_cfg);
13805 	bp->ptp_cfg = NULL;
13806 	kfree(bp->fw_health);
13807 	bp->fw_health = NULL;
13808 	bnxt_cleanup_pci(bp);
13809 	bnxt_free_ctx_mem(bp);
13810 	kfree(bp->ctx);
13811 	bp->ctx = NULL;
13812 	kfree(bp->rss_indir_tbl);
13813 	bp->rss_indir_tbl = NULL;
13814 
13815 init_err_free:
13816 	free_netdev(dev);
13817 	return rc;
13818 }
13819 
13820 static void bnxt_shutdown(struct pci_dev *pdev)
13821 {
13822 	struct net_device *dev = pci_get_drvdata(pdev);
13823 	struct bnxt *bp;
13824 
13825 	if (!dev)
13826 		return;
13827 
13828 	rtnl_lock();
13829 	bp = netdev_priv(dev);
13830 	if (!bp)
13831 		goto shutdown_exit;
13832 
13833 	if (netif_running(dev))
13834 		dev_close(dev);
13835 
13836 	bnxt_clear_int_mode(bp);
13837 	pci_disable_device(pdev);
13838 
13839 	if (system_state == SYSTEM_POWER_OFF) {
13840 		pci_wake_from_d3(pdev, bp->wol);
13841 		pci_set_power_state(pdev, PCI_D3hot);
13842 	}
13843 
13844 shutdown_exit:
13845 	rtnl_unlock();
13846 }
13847 
13848 #ifdef CONFIG_PM_SLEEP
13849 static int bnxt_suspend(struct device *device)
13850 {
13851 	struct net_device *dev = dev_get_drvdata(device);
13852 	struct bnxt *bp = netdev_priv(dev);
13853 	int rc = 0;
13854 
13855 	rtnl_lock();
13856 	bnxt_ulp_stop(bp);
13857 	if (netif_running(dev)) {
13858 		netif_device_detach(dev);
13859 		rc = bnxt_close(dev);
13860 	}
13861 	bnxt_hwrm_func_drv_unrgtr(bp);
13862 	pci_disable_device(bp->pdev);
13863 	bnxt_free_ctx_mem(bp);
13864 	kfree(bp->ctx);
13865 	bp->ctx = NULL;
13866 	rtnl_unlock();
13867 	return rc;
13868 }
13869 
13870 static int bnxt_resume(struct device *device)
13871 {
13872 	struct net_device *dev = dev_get_drvdata(device);
13873 	struct bnxt *bp = netdev_priv(dev);
13874 	int rc = 0;
13875 
13876 	rtnl_lock();
13877 	rc = pci_enable_device(bp->pdev);
13878 	if (rc) {
13879 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13880 			   rc);
13881 		goto resume_exit;
13882 	}
13883 	pci_set_master(bp->pdev);
13884 	if (bnxt_hwrm_ver_get(bp)) {
13885 		rc = -ENODEV;
13886 		goto resume_exit;
13887 	}
13888 	rc = bnxt_hwrm_func_reset(bp);
13889 	if (rc) {
13890 		rc = -EBUSY;
13891 		goto resume_exit;
13892 	}
13893 
13894 	rc = bnxt_hwrm_func_qcaps(bp);
13895 	if (rc)
13896 		goto resume_exit;
13897 
13898 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13899 		rc = -ENODEV;
13900 		goto resume_exit;
13901 	}
13902 
13903 	bnxt_get_wol_settings(bp);
13904 	if (netif_running(dev)) {
13905 		rc = bnxt_open(dev);
13906 		if (!rc)
13907 			netif_device_attach(dev);
13908 	}
13909 
13910 resume_exit:
13911 	bnxt_ulp_start(bp, rc);
13912 	if (!rc)
13913 		bnxt_reenable_sriov(bp);
13914 	rtnl_unlock();
13915 	return rc;
13916 }
13917 
13918 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13919 #define BNXT_PM_OPS (&bnxt_pm_ops)
13920 
13921 #else
13922 
13923 #define BNXT_PM_OPS NULL
13924 
13925 #endif /* CONFIG_PM_SLEEP */
13926 
13927 /**
13928  * bnxt_io_error_detected - called when PCI error is detected
13929  * @pdev: Pointer to PCI device
13930  * @state: The current pci connection state
13931  *
13932  * This function is called after a PCI bus error affecting
13933  * this device has been detected.
13934  */
13935 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13936 					       pci_channel_state_t state)
13937 {
13938 	struct net_device *netdev = pci_get_drvdata(pdev);
13939 	struct bnxt *bp = netdev_priv(netdev);
13940 
13941 	netdev_info(netdev, "PCI I/O error detected\n");
13942 
13943 	rtnl_lock();
13944 	netif_device_detach(netdev);
13945 
13946 	bnxt_ulp_stop(bp);
13947 
13948 	if (state == pci_channel_io_perm_failure) {
13949 		rtnl_unlock();
13950 		return PCI_ERS_RESULT_DISCONNECT;
13951 	}
13952 
13953 	if (state == pci_channel_io_frozen)
13954 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13955 
13956 	if (netif_running(netdev))
13957 		bnxt_close(netdev);
13958 
13959 	if (pci_is_enabled(pdev))
13960 		pci_disable_device(pdev);
13961 	bnxt_free_ctx_mem(bp);
13962 	kfree(bp->ctx);
13963 	bp->ctx = NULL;
13964 	rtnl_unlock();
13965 
13966 	/* Request a slot slot reset. */
13967 	return PCI_ERS_RESULT_NEED_RESET;
13968 }
13969 
13970 /**
13971  * bnxt_io_slot_reset - called after the pci bus has been reset.
13972  * @pdev: Pointer to PCI device
13973  *
13974  * Restart the card from scratch, as if from a cold-boot.
13975  * At this point, the card has exprienced a hard reset,
13976  * followed by fixups by BIOS, and has its config space
13977  * set up identically to what it was at cold boot.
13978  */
13979 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13980 {
13981 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13982 	struct net_device *netdev = pci_get_drvdata(pdev);
13983 	struct bnxt *bp = netdev_priv(netdev);
13984 	int retry = 0;
13985 	int err = 0;
13986 	int off;
13987 
13988 	netdev_info(bp->dev, "PCI Slot Reset\n");
13989 
13990 	rtnl_lock();
13991 
13992 	if (pci_enable_device(pdev)) {
13993 		dev_err(&pdev->dev,
13994 			"Cannot re-enable PCI device after reset.\n");
13995 	} else {
13996 		pci_set_master(pdev);
13997 		/* Upon fatal error, our device internal logic that latches to
13998 		 * BAR value is getting reset and will restore only upon
13999 		 * rewritting the BARs.
14000 		 *
14001 		 * As pci_restore_state() does not re-write the BARs if the
14002 		 * value is same as saved value earlier, driver needs to
14003 		 * write the BARs to 0 to force restore, in case of fatal error.
14004 		 */
14005 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
14006 				       &bp->state)) {
14007 			for (off = PCI_BASE_ADDRESS_0;
14008 			     off <= PCI_BASE_ADDRESS_5; off += 4)
14009 				pci_write_config_dword(bp->pdev, off, 0);
14010 		}
14011 		pci_restore_state(pdev);
14012 		pci_save_state(pdev);
14013 
14014 		bnxt_inv_fw_health_reg(bp);
14015 		bnxt_try_map_fw_health_reg(bp);
14016 
14017 		/* In some PCIe AER scenarios, firmware may take up to
14018 		 * 10 seconds to become ready in the worst case.
14019 		 */
14020 		do {
14021 			err = bnxt_try_recover_fw(bp);
14022 			if (!err)
14023 				break;
14024 			retry++;
14025 		} while (retry < BNXT_FW_SLOT_RESET_RETRY);
14026 
14027 		if (err) {
14028 			dev_err(&pdev->dev, "Firmware not ready\n");
14029 			goto reset_exit;
14030 		}
14031 
14032 		err = bnxt_hwrm_func_reset(bp);
14033 		if (!err)
14034 			result = PCI_ERS_RESULT_RECOVERED;
14035 
14036 		bnxt_ulp_irq_stop(bp);
14037 		bnxt_clear_int_mode(bp);
14038 		err = bnxt_init_int_mode(bp);
14039 		bnxt_ulp_irq_restart(bp, err);
14040 	}
14041 
14042 reset_exit:
14043 	bnxt_clear_reservations(bp, true);
14044 	rtnl_unlock();
14045 
14046 	return result;
14047 }
14048 
14049 /**
14050  * bnxt_io_resume - called when traffic can start flowing again.
14051  * @pdev: Pointer to PCI device
14052  *
14053  * This callback is called when the error recovery driver tells
14054  * us that its OK to resume normal operation.
14055  */
14056 static void bnxt_io_resume(struct pci_dev *pdev)
14057 {
14058 	struct net_device *netdev = pci_get_drvdata(pdev);
14059 	struct bnxt *bp = netdev_priv(netdev);
14060 	int err;
14061 
14062 	netdev_info(bp->dev, "PCI Slot Resume\n");
14063 	rtnl_lock();
14064 
14065 	err = bnxt_hwrm_func_qcaps(bp);
14066 	if (!err && netif_running(netdev))
14067 		err = bnxt_open(netdev);
14068 
14069 	bnxt_ulp_start(bp, err);
14070 	if (!err) {
14071 		bnxt_reenable_sriov(bp);
14072 		netif_device_attach(netdev);
14073 	}
14074 
14075 	rtnl_unlock();
14076 }
14077 
14078 static const struct pci_error_handlers bnxt_err_handler = {
14079 	.error_detected	= bnxt_io_error_detected,
14080 	.slot_reset	= bnxt_io_slot_reset,
14081 	.resume		= bnxt_io_resume
14082 };
14083 
14084 static struct pci_driver bnxt_pci_driver = {
14085 	.name		= DRV_MODULE_NAME,
14086 	.id_table	= bnxt_pci_tbl,
14087 	.probe		= bnxt_init_one,
14088 	.remove		= bnxt_remove_one,
14089 	.shutdown	= bnxt_shutdown,
14090 	.driver.pm	= BNXT_PM_OPS,
14091 	.err_handler	= &bnxt_err_handler,
14092 #if defined(CONFIG_BNXT_SRIOV)
14093 	.sriov_configure = bnxt_sriov_configure,
14094 #endif
14095 };
14096 
14097 static int __init bnxt_init(void)
14098 {
14099 	int err;
14100 
14101 	bnxt_debug_init();
14102 	err = pci_register_driver(&bnxt_pci_driver);
14103 	if (err) {
14104 		bnxt_debug_exit();
14105 		return err;
14106 	}
14107 
14108 	return 0;
14109 }
14110 
14111 static void __exit bnxt_exit(void)
14112 {
14113 	pci_unregister_driver(&bnxt_pci_driver);
14114 	if (bnxt_pf_wq)
14115 		destroy_workqueue(bnxt_pf_wq);
14116 	bnxt_debug_exit();
14117 }
14118 
14119 module_init(bnxt_init);
14120 module_exit(bnxt_exit);
14121