1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/ip.h> 41 #include <net/tcp.h> 42 #include <net/udp.h> 43 #include <net/checksum.h> 44 #include <net/ip6_checksum.h> 45 #include <net/udp_tunnel.h> 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <linux/hwmon.h> 56 #include <linux/hwmon-sysfs.h> 57 #include <net/page_pool.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_ulp.h" 62 #include "bnxt_sriov.h" 63 #include "bnxt_ethtool.h" 64 #include "bnxt_dcb.h" 65 #include "bnxt_xdp.h" 66 #include "bnxt_vfr.h" 67 #include "bnxt_tc.h" 68 #include "bnxt_devlink.h" 69 #include "bnxt_debugfs.h" 70 71 #define BNXT_TX_TIMEOUT (5 * HZ) 72 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW) 73 74 MODULE_LICENSE("GPL"); 75 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 76 77 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 78 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 79 #define BNXT_RX_COPY_THRESH 256 80 81 #define BNXT_TX_PUSH_THRESH 164 82 83 enum board_idx { 84 BCM57301, 85 BCM57302, 86 BCM57304, 87 BCM57417_NPAR, 88 BCM58700, 89 BCM57311, 90 BCM57312, 91 BCM57402, 92 BCM57404, 93 BCM57406, 94 BCM57402_NPAR, 95 BCM57407, 96 BCM57412, 97 BCM57414, 98 BCM57416, 99 BCM57417, 100 BCM57412_NPAR, 101 BCM57314, 102 BCM57417_SFP, 103 BCM57416_SFP, 104 BCM57404_NPAR, 105 BCM57406_NPAR, 106 BCM57407_SFP, 107 BCM57407_NPAR, 108 BCM57414_NPAR, 109 BCM57416_NPAR, 110 BCM57452, 111 BCM57454, 112 BCM5745x_NPAR, 113 BCM57508, 114 BCM57504, 115 BCM57502, 116 BCM57508_NPAR, 117 BCM57504_NPAR, 118 BCM57502_NPAR, 119 BCM58802, 120 BCM58804, 121 BCM58808, 122 NETXTREME_E_VF, 123 NETXTREME_C_VF, 124 NETXTREME_S_VF, 125 NETXTREME_E_P5_VF, 126 }; 127 128 /* indexed by enum above */ 129 static const struct { 130 char *name; 131 } board_info[] = { 132 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 133 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 134 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 135 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 136 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 137 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 138 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 139 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 140 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 141 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 142 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 143 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 144 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 145 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 146 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 147 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 148 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 149 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 150 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 151 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 152 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 153 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 154 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 155 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 156 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 157 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 158 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 159 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 160 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 161 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 162 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 163 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 164 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 165 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 166 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 167 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 168 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 169 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 170 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 171 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 172 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 173 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 174 }; 175 176 static const struct pci_device_id bnxt_pci_tbl[] = { 177 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 180 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 182 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 183 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 184 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 185 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 186 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 187 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 188 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 189 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 190 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 191 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 193 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 194 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 195 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 196 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 197 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 198 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 199 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 200 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 201 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 202 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 203 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 204 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 205 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 206 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 207 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 208 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 209 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 210 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 211 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 212 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 213 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 214 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 215 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR }, 216 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 217 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR }, 218 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR }, 219 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 220 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR }, 221 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 222 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 223 #ifdef CONFIG_BNXT_SRIOV 224 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 225 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 226 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 227 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 228 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 229 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 230 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 231 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 232 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 233 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 234 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 235 #endif 236 { 0 } 237 }; 238 239 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 240 241 static const u16 bnxt_vf_req_snif[] = { 242 HWRM_FUNC_CFG, 243 HWRM_FUNC_VF_CFG, 244 HWRM_PORT_PHY_QCFG, 245 HWRM_CFA_L2_FILTER_ALLOC, 246 }; 247 248 static const u16 bnxt_async_events_arr[] = { 249 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 250 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 251 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 252 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 253 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 254 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 255 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 256 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 257 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 258 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 259 }; 260 261 static struct workqueue_struct *bnxt_pf_wq; 262 263 static bool bnxt_vf_pciid(enum board_idx idx) 264 { 265 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 266 idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF); 267 } 268 269 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 270 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 271 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 272 273 #define BNXT_CP_DB_IRQ_DIS(db) \ 274 writel(DB_CP_IRQ_DIS_FLAGS, db) 275 276 #define BNXT_DB_CQ(db, idx) \ 277 writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell) 278 279 #define BNXT_DB_NQ_P5(db, idx) \ 280 writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell) 281 282 #define BNXT_DB_CQ_ARM(db, idx) \ 283 writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell) 284 285 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 286 writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell) 287 288 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 289 { 290 if (bp->flags & BNXT_FLAG_CHIP_P5) 291 BNXT_DB_NQ_P5(db, idx); 292 else 293 BNXT_DB_CQ(db, idx); 294 } 295 296 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 297 { 298 if (bp->flags & BNXT_FLAG_CHIP_P5) 299 BNXT_DB_NQ_ARM_P5(db, idx); 300 else 301 BNXT_DB_CQ_ARM(db, idx); 302 } 303 304 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 305 { 306 if (bp->flags & BNXT_FLAG_CHIP_P5) 307 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx), 308 db->doorbell); 309 else 310 BNXT_DB_CQ(db, idx); 311 } 312 313 const u16 bnxt_lhint_arr[] = { 314 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 315 TX_BD_FLAGS_LHINT_512_TO_1023, 316 TX_BD_FLAGS_LHINT_1024_TO_2047, 317 TX_BD_FLAGS_LHINT_1024_TO_2047, 318 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 319 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 320 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 321 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 322 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 323 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 324 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 325 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 326 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 327 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 328 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 329 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 330 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 331 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 332 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 333 }; 334 335 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 336 { 337 struct metadata_dst *md_dst = skb_metadata_dst(skb); 338 339 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 340 return 0; 341 342 return md_dst->u.port_info.port_id; 343 } 344 345 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 346 { 347 struct bnxt *bp = netdev_priv(dev); 348 struct tx_bd *txbd; 349 struct tx_bd_ext *txbd1; 350 struct netdev_queue *txq; 351 int i; 352 dma_addr_t mapping; 353 unsigned int length, pad = 0; 354 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 355 u16 prod, last_frag; 356 struct pci_dev *pdev = bp->pdev; 357 struct bnxt_tx_ring_info *txr; 358 struct bnxt_sw_tx_bd *tx_buf; 359 360 i = skb_get_queue_mapping(skb); 361 if (unlikely(i >= bp->tx_nr_rings)) { 362 dev_kfree_skb_any(skb); 363 return NETDEV_TX_OK; 364 } 365 366 txq = netdev_get_tx_queue(dev, i); 367 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 368 prod = txr->tx_prod; 369 370 free_size = bnxt_tx_avail(bp, txr); 371 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 372 netif_tx_stop_queue(txq); 373 return NETDEV_TX_BUSY; 374 } 375 376 length = skb->len; 377 len = skb_headlen(skb); 378 last_frag = skb_shinfo(skb)->nr_frags; 379 380 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 381 382 txbd->tx_bd_opaque = prod; 383 384 tx_buf = &txr->tx_buf_ring[prod]; 385 tx_buf->skb = skb; 386 tx_buf->nr_frags = last_frag; 387 388 vlan_tag_flags = 0; 389 cfa_action = bnxt_xmit_get_cfa_action(skb); 390 if (skb_vlan_tag_present(skb)) { 391 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 392 skb_vlan_tag_get(skb); 393 /* Currently supports 8021Q, 8021AD vlan offloads 394 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 395 */ 396 if (skb->vlan_proto == htons(ETH_P_8021Q)) 397 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 398 } 399 400 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) { 401 struct tx_push_buffer *tx_push_buf = txr->tx_push; 402 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 403 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 404 void __iomem *db = txr->tx_db.doorbell; 405 void *pdata = tx_push_buf->data; 406 u64 *end; 407 int j, push_len; 408 409 /* Set COAL_NOW to be ready quickly for the next push */ 410 tx_push->tx_bd_len_flags_type = 411 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 412 TX_BD_TYPE_LONG_TX_BD | 413 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 414 TX_BD_FLAGS_COAL_NOW | 415 TX_BD_FLAGS_PACKET_END | 416 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 417 418 if (skb->ip_summed == CHECKSUM_PARTIAL) 419 tx_push1->tx_bd_hsize_lflags = 420 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 421 else 422 tx_push1->tx_bd_hsize_lflags = 0; 423 424 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 425 tx_push1->tx_bd_cfa_action = 426 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 427 428 end = pdata + length; 429 end = PTR_ALIGN(end, 8) - 1; 430 *end = 0; 431 432 skb_copy_from_linear_data(skb, pdata, len); 433 pdata += len; 434 for (j = 0; j < last_frag; j++) { 435 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 436 void *fptr; 437 438 fptr = skb_frag_address_safe(frag); 439 if (!fptr) 440 goto normal_tx; 441 442 memcpy(pdata, fptr, skb_frag_size(frag)); 443 pdata += skb_frag_size(frag); 444 } 445 446 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 447 txbd->tx_bd_haddr = txr->data_mapping; 448 prod = NEXT_TX(prod); 449 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 450 memcpy(txbd, tx_push1, sizeof(*txbd)); 451 prod = NEXT_TX(prod); 452 tx_push->doorbell = 453 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 454 txr->tx_prod = prod; 455 456 tx_buf->is_push = 1; 457 netdev_tx_sent_queue(txq, skb->len); 458 wmb(); /* Sync is_push and byte queue before pushing data */ 459 460 push_len = (length + sizeof(*tx_push) + 7) / 8; 461 if (push_len > 16) { 462 __iowrite64_copy(db, tx_push_buf, 16); 463 __iowrite32_copy(db + 4, tx_push_buf + 1, 464 (push_len - 16) << 1); 465 } else { 466 __iowrite64_copy(db, tx_push_buf, push_len); 467 } 468 469 goto tx_done; 470 } 471 472 normal_tx: 473 if (length < BNXT_MIN_PKT_SIZE) { 474 pad = BNXT_MIN_PKT_SIZE - length; 475 if (skb_pad(skb, pad)) { 476 /* SKB already freed. */ 477 tx_buf->skb = NULL; 478 return NETDEV_TX_OK; 479 } 480 length = BNXT_MIN_PKT_SIZE; 481 } 482 483 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 484 485 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { 486 dev_kfree_skb_any(skb); 487 tx_buf->skb = NULL; 488 return NETDEV_TX_OK; 489 } 490 491 dma_unmap_addr_set(tx_buf, mapping, mapping); 492 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 493 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 494 495 txbd->tx_bd_haddr = cpu_to_le64(mapping); 496 497 prod = NEXT_TX(prod); 498 txbd1 = (struct tx_bd_ext *) 499 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 500 501 txbd1->tx_bd_hsize_lflags = 0; 502 if (skb_is_gso(skb)) { 503 u32 hdr_len; 504 505 if (skb->encapsulation) 506 hdr_len = skb_inner_network_offset(skb) + 507 skb_inner_network_header_len(skb) + 508 inner_tcp_hdrlen(skb); 509 else 510 hdr_len = skb_transport_offset(skb) + 511 tcp_hdrlen(skb); 512 513 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO | 514 TX_BD_FLAGS_T_IPID | 515 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 516 length = skb_shinfo(skb)->gso_size; 517 txbd1->tx_bd_mss = cpu_to_le32(length); 518 length += hdr_len; 519 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 520 txbd1->tx_bd_hsize_lflags = 521 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 522 txbd1->tx_bd_mss = 0; 523 } 524 525 length >>= 9; 526 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 527 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 528 skb->len); 529 i = 0; 530 goto tx_dma_error; 531 } 532 flags |= bnxt_lhint_arr[length]; 533 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 534 535 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 536 txbd1->tx_bd_cfa_action = 537 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 538 for (i = 0; i < last_frag; i++) { 539 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 540 541 prod = NEXT_TX(prod); 542 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 543 544 len = skb_frag_size(frag); 545 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 546 DMA_TO_DEVICE); 547 548 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 549 goto tx_dma_error; 550 551 tx_buf = &txr->tx_buf_ring[prod]; 552 dma_unmap_addr_set(tx_buf, mapping, mapping); 553 554 txbd->tx_bd_haddr = cpu_to_le64(mapping); 555 556 flags = len << TX_BD_LEN_SHIFT; 557 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 558 } 559 560 flags &= ~TX_BD_LEN; 561 txbd->tx_bd_len_flags_type = 562 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 563 TX_BD_FLAGS_PACKET_END); 564 565 netdev_tx_sent_queue(txq, skb->len); 566 567 /* Sync BD data before updating doorbell */ 568 wmb(); 569 570 prod = NEXT_TX(prod); 571 txr->tx_prod = prod; 572 573 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 574 bnxt_db_write(bp, &txr->tx_db, prod); 575 576 tx_done: 577 578 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 579 if (netdev_xmit_more() && !tx_buf->is_push) 580 bnxt_db_write(bp, &txr->tx_db, prod); 581 582 netif_tx_stop_queue(txq); 583 584 /* netif_tx_stop_queue() must be done before checking 585 * tx index in bnxt_tx_avail() below, because in 586 * bnxt_tx_int(), we update tx index before checking for 587 * netif_tx_queue_stopped(). 588 */ 589 smp_mb(); 590 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) 591 netif_tx_wake_queue(txq); 592 } 593 return NETDEV_TX_OK; 594 595 tx_dma_error: 596 last_frag = i; 597 598 /* start back at beginning and unmap skb */ 599 prod = txr->tx_prod; 600 tx_buf = &txr->tx_buf_ring[prod]; 601 tx_buf->skb = NULL; 602 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 603 skb_headlen(skb), PCI_DMA_TODEVICE); 604 prod = NEXT_TX(prod); 605 606 /* unmap remaining mapped pages */ 607 for (i = 0; i < last_frag; i++) { 608 prod = NEXT_TX(prod); 609 tx_buf = &txr->tx_buf_ring[prod]; 610 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 611 skb_frag_size(&skb_shinfo(skb)->frags[i]), 612 PCI_DMA_TODEVICE); 613 } 614 615 dev_kfree_skb_any(skb); 616 return NETDEV_TX_OK; 617 } 618 619 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 620 { 621 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 622 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 623 u16 cons = txr->tx_cons; 624 struct pci_dev *pdev = bp->pdev; 625 int i; 626 unsigned int tx_bytes = 0; 627 628 for (i = 0; i < nr_pkts; i++) { 629 struct bnxt_sw_tx_bd *tx_buf; 630 struct sk_buff *skb; 631 int j, last; 632 633 tx_buf = &txr->tx_buf_ring[cons]; 634 cons = NEXT_TX(cons); 635 skb = tx_buf->skb; 636 tx_buf->skb = NULL; 637 638 if (tx_buf->is_push) { 639 tx_buf->is_push = 0; 640 goto next_tx_int; 641 } 642 643 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 644 skb_headlen(skb), PCI_DMA_TODEVICE); 645 last = tx_buf->nr_frags; 646 647 for (j = 0; j < last; j++) { 648 cons = NEXT_TX(cons); 649 tx_buf = &txr->tx_buf_ring[cons]; 650 dma_unmap_page( 651 &pdev->dev, 652 dma_unmap_addr(tx_buf, mapping), 653 skb_frag_size(&skb_shinfo(skb)->frags[j]), 654 PCI_DMA_TODEVICE); 655 } 656 657 next_tx_int: 658 cons = NEXT_TX(cons); 659 660 tx_bytes += skb->len; 661 dev_kfree_skb_any(skb); 662 } 663 664 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 665 txr->tx_cons = cons; 666 667 /* Need to make the tx_cons update visible to bnxt_start_xmit() 668 * before checking for netif_tx_queue_stopped(). Without the 669 * memory barrier, there is a small possibility that bnxt_start_xmit() 670 * will miss it and cause the queue to be stopped forever. 671 */ 672 smp_mb(); 673 674 if (unlikely(netif_tx_queue_stopped(txq)) && 675 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { 676 __netif_tx_lock(txq, smp_processor_id()); 677 if (netif_tx_queue_stopped(txq) && 678 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 679 txr->dev_state != BNXT_DEV_STATE_CLOSING) 680 netif_tx_wake_queue(txq); 681 __netif_tx_unlock(txq); 682 } 683 } 684 685 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 686 struct bnxt_rx_ring_info *rxr, 687 gfp_t gfp) 688 { 689 struct device *dev = &bp->pdev->dev; 690 struct page *page; 691 692 page = page_pool_dev_alloc_pages(rxr->page_pool); 693 if (!page) 694 return NULL; 695 696 *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir, 697 DMA_ATTR_WEAK_ORDERING); 698 if (dma_mapping_error(dev, *mapping)) { 699 page_pool_recycle_direct(rxr->page_pool, page); 700 return NULL; 701 } 702 *mapping += bp->rx_dma_offset; 703 return page; 704 } 705 706 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 707 gfp_t gfp) 708 { 709 u8 *data; 710 struct pci_dev *pdev = bp->pdev; 711 712 data = kmalloc(bp->rx_buf_size, gfp); 713 if (!data) 714 return NULL; 715 716 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 717 bp->rx_buf_use_size, bp->rx_dir, 718 DMA_ATTR_WEAK_ORDERING); 719 720 if (dma_mapping_error(&pdev->dev, *mapping)) { 721 kfree(data); 722 data = NULL; 723 } 724 return data; 725 } 726 727 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 728 u16 prod, gfp_t gfp) 729 { 730 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 731 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 732 dma_addr_t mapping; 733 734 if (BNXT_RX_PAGE_MODE(bp)) { 735 struct page *page = 736 __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp); 737 738 if (!page) 739 return -ENOMEM; 740 741 rx_buf->data = page; 742 rx_buf->data_ptr = page_address(page) + bp->rx_offset; 743 } else { 744 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 745 746 if (!data) 747 return -ENOMEM; 748 749 rx_buf->data = data; 750 rx_buf->data_ptr = data + bp->rx_offset; 751 } 752 rx_buf->mapping = mapping; 753 754 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 755 return 0; 756 } 757 758 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 759 { 760 u16 prod = rxr->rx_prod; 761 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 762 struct rx_bd *cons_bd, *prod_bd; 763 764 prod_rx_buf = &rxr->rx_buf_ring[prod]; 765 cons_rx_buf = &rxr->rx_buf_ring[cons]; 766 767 prod_rx_buf->data = data; 768 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 769 770 prod_rx_buf->mapping = cons_rx_buf->mapping; 771 772 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 773 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 774 775 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 776 } 777 778 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 779 { 780 u16 next, max = rxr->rx_agg_bmap_size; 781 782 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 783 if (next >= max) 784 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 785 return next; 786 } 787 788 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 789 struct bnxt_rx_ring_info *rxr, 790 u16 prod, gfp_t gfp) 791 { 792 struct rx_bd *rxbd = 793 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 794 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 795 struct pci_dev *pdev = bp->pdev; 796 struct page *page; 797 dma_addr_t mapping; 798 u16 sw_prod = rxr->rx_sw_agg_prod; 799 unsigned int offset = 0; 800 801 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 802 page = rxr->rx_page; 803 if (!page) { 804 page = alloc_page(gfp); 805 if (!page) 806 return -ENOMEM; 807 rxr->rx_page = page; 808 rxr->rx_page_offset = 0; 809 } 810 offset = rxr->rx_page_offset; 811 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE; 812 if (rxr->rx_page_offset == PAGE_SIZE) 813 rxr->rx_page = NULL; 814 else 815 get_page(page); 816 } else { 817 page = alloc_page(gfp); 818 if (!page) 819 return -ENOMEM; 820 } 821 822 mapping = dma_map_page_attrs(&pdev->dev, page, offset, 823 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 824 DMA_ATTR_WEAK_ORDERING); 825 if (dma_mapping_error(&pdev->dev, mapping)) { 826 __free_page(page); 827 return -EIO; 828 } 829 830 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 831 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 832 833 __set_bit(sw_prod, rxr->rx_agg_bmap); 834 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 835 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 836 837 rx_agg_buf->page = page; 838 rx_agg_buf->offset = offset; 839 rx_agg_buf->mapping = mapping; 840 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 841 rxbd->rx_bd_opaque = sw_prod; 842 return 0; 843 } 844 845 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 846 struct bnxt_cp_ring_info *cpr, 847 u16 cp_cons, u16 curr) 848 { 849 struct rx_agg_cmp *agg; 850 851 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 852 agg = (struct rx_agg_cmp *) 853 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 854 return agg; 855 } 856 857 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 858 struct bnxt_rx_ring_info *rxr, 859 u16 agg_id, u16 curr) 860 { 861 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 862 863 return &tpa_info->agg_arr[curr]; 864 } 865 866 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 867 u16 start, u32 agg_bufs, bool tpa) 868 { 869 struct bnxt_napi *bnapi = cpr->bnapi; 870 struct bnxt *bp = bnapi->bp; 871 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 872 u16 prod = rxr->rx_agg_prod; 873 u16 sw_prod = rxr->rx_sw_agg_prod; 874 bool p5_tpa = false; 875 u32 i; 876 877 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 878 p5_tpa = true; 879 880 for (i = 0; i < agg_bufs; i++) { 881 u16 cons; 882 struct rx_agg_cmp *agg; 883 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 884 struct rx_bd *prod_bd; 885 struct page *page; 886 887 if (p5_tpa) 888 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 889 else 890 agg = bnxt_get_agg(bp, cpr, idx, start + i); 891 cons = agg->rx_agg_cmp_opaque; 892 __clear_bit(cons, rxr->rx_agg_bmap); 893 894 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 895 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 896 897 __set_bit(sw_prod, rxr->rx_agg_bmap); 898 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 899 cons_rx_buf = &rxr->rx_agg_ring[cons]; 900 901 /* It is possible for sw_prod to be equal to cons, so 902 * set cons_rx_buf->page to NULL first. 903 */ 904 page = cons_rx_buf->page; 905 cons_rx_buf->page = NULL; 906 prod_rx_buf->page = page; 907 prod_rx_buf->offset = cons_rx_buf->offset; 908 909 prod_rx_buf->mapping = cons_rx_buf->mapping; 910 911 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 912 913 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 914 prod_bd->rx_bd_opaque = sw_prod; 915 916 prod = NEXT_RX_AGG(prod); 917 sw_prod = NEXT_RX_AGG(sw_prod); 918 } 919 rxr->rx_agg_prod = prod; 920 rxr->rx_sw_agg_prod = sw_prod; 921 } 922 923 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 924 struct bnxt_rx_ring_info *rxr, 925 u16 cons, void *data, u8 *data_ptr, 926 dma_addr_t dma_addr, 927 unsigned int offset_and_len) 928 { 929 unsigned int payload = offset_and_len >> 16; 930 unsigned int len = offset_and_len & 0xffff; 931 skb_frag_t *frag; 932 struct page *page = data; 933 u16 prod = rxr->rx_prod; 934 struct sk_buff *skb; 935 int off, err; 936 937 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 938 if (unlikely(err)) { 939 bnxt_reuse_rx_data(rxr, cons, data); 940 return NULL; 941 } 942 dma_addr -= bp->rx_dma_offset; 943 dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir, 944 DMA_ATTR_WEAK_ORDERING); 945 page_pool_release_page(rxr->page_pool, page); 946 947 if (unlikely(!payload)) 948 payload = eth_get_headlen(bp->dev, data_ptr, len); 949 950 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 951 if (!skb) { 952 __free_page(page); 953 return NULL; 954 } 955 956 off = (void *)data_ptr - page_address(page); 957 skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE); 958 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 959 payload + NET_IP_ALIGN); 960 961 frag = &skb_shinfo(skb)->frags[0]; 962 skb_frag_size_sub(frag, payload); 963 skb_frag_off_add(frag, payload); 964 skb->data_len -= payload; 965 skb->tail += payload; 966 967 return skb; 968 } 969 970 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 971 struct bnxt_rx_ring_info *rxr, u16 cons, 972 void *data, u8 *data_ptr, 973 dma_addr_t dma_addr, 974 unsigned int offset_and_len) 975 { 976 u16 prod = rxr->rx_prod; 977 struct sk_buff *skb; 978 int err; 979 980 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 981 if (unlikely(err)) { 982 bnxt_reuse_rx_data(rxr, cons, data); 983 return NULL; 984 } 985 986 skb = build_skb(data, 0); 987 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 988 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 989 if (!skb) { 990 kfree(data); 991 return NULL; 992 } 993 994 skb_reserve(skb, bp->rx_offset); 995 skb_put(skb, offset_and_len & 0xffff); 996 return skb; 997 } 998 999 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, 1000 struct bnxt_cp_ring_info *cpr, 1001 struct sk_buff *skb, u16 idx, 1002 u32 agg_bufs, bool tpa) 1003 { 1004 struct bnxt_napi *bnapi = cpr->bnapi; 1005 struct pci_dev *pdev = bp->pdev; 1006 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1007 u16 prod = rxr->rx_agg_prod; 1008 bool p5_tpa = false; 1009 u32 i; 1010 1011 if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa) 1012 p5_tpa = true; 1013 1014 for (i = 0; i < agg_bufs; i++) { 1015 u16 cons, frag_len; 1016 struct rx_agg_cmp *agg; 1017 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1018 struct page *page; 1019 dma_addr_t mapping; 1020 1021 if (p5_tpa) 1022 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1023 else 1024 agg = bnxt_get_agg(bp, cpr, idx, i); 1025 cons = agg->rx_agg_cmp_opaque; 1026 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1027 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1028 1029 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1030 skb_fill_page_desc(skb, i, cons_rx_buf->page, 1031 cons_rx_buf->offset, frag_len); 1032 __clear_bit(cons, rxr->rx_agg_bmap); 1033 1034 /* It is possible for bnxt_alloc_rx_page() to allocate 1035 * a sw_prod index that equals the cons index, so we 1036 * need to clear the cons entry now. 1037 */ 1038 mapping = cons_rx_buf->mapping; 1039 page = cons_rx_buf->page; 1040 cons_rx_buf->page = NULL; 1041 1042 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1043 struct skb_shared_info *shinfo; 1044 unsigned int nr_frags; 1045 1046 shinfo = skb_shinfo(skb); 1047 nr_frags = --shinfo->nr_frags; 1048 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 1049 1050 dev_kfree_skb(skb); 1051 1052 cons_rx_buf->page = page; 1053 1054 /* Update prod since possibly some pages have been 1055 * allocated already. 1056 */ 1057 rxr->rx_agg_prod = prod; 1058 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1059 return NULL; 1060 } 1061 1062 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1063 PCI_DMA_FROMDEVICE, 1064 DMA_ATTR_WEAK_ORDERING); 1065 1066 skb->data_len += frag_len; 1067 skb->len += frag_len; 1068 skb->truesize += PAGE_SIZE; 1069 1070 prod = NEXT_RX_AGG(prod); 1071 } 1072 rxr->rx_agg_prod = prod; 1073 return skb; 1074 } 1075 1076 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1077 u8 agg_bufs, u32 *raw_cons) 1078 { 1079 u16 last; 1080 struct rx_agg_cmp *agg; 1081 1082 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1083 last = RING_CMP(*raw_cons); 1084 agg = (struct rx_agg_cmp *) 1085 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1086 return RX_AGG_CMP_VALID(agg, *raw_cons); 1087 } 1088 1089 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1090 unsigned int len, 1091 dma_addr_t mapping) 1092 { 1093 struct bnxt *bp = bnapi->bp; 1094 struct pci_dev *pdev = bp->pdev; 1095 struct sk_buff *skb; 1096 1097 skb = napi_alloc_skb(&bnapi->napi, len); 1098 if (!skb) 1099 return NULL; 1100 1101 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1102 bp->rx_dir); 1103 1104 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1105 len + NET_IP_ALIGN); 1106 1107 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1108 bp->rx_dir); 1109 1110 skb_put(skb, len); 1111 return skb; 1112 } 1113 1114 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1115 u32 *raw_cons, void *cmp) 1116 { 1117 struct rx_cmp *rxcmp = cmp; 1118 u32 tmp_raw_cons = *raw_cons; 1119 u8 cmp_type, agg_bufs = 0; 1120 1121 cmp_type = RX_CMP_TYPE(rxcmp); 1122 1123 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1124 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1125 RX_CMP_AGG_BUFS) >> 1126 RX_CMP_AGG_BUFS_SHIFT; 1127 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1128 struct rx_tpa_end_cmp *tpa_end = cmp; 1129 1130 if (bp->flags & BNXT_FLAG_CHIP_P5) 1131 return 0; 1132 1133 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1134 } 1135 1136 if (agg_bufs) { 1137 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1138 return -EBUSY; 1139 } 1140 *raw_cons = tmp_raw_cons; 1141 return 0; 1142 } 1143 1144 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 1145 { 1146 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 1147 return; 1148 1149 if (BNXT_PF(bp)) 1150 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 1151 else 1152 schedule_delayed_work(&bp->fw_reset_task, delay); 1153 } 1154 1155 static void bnxt_queue_sp_work(struct bnxt *bp) 1156 { 1157 if (BNXT_PF(bp)) 1158 queue_work(bnxt_pf_wq, &bp->sp_task); 1159 else 1160 schedule_work(&bp->sp_task); 1161 } 1162 1163 static void bnxt_cancel_sp_work(struct bnxt *bp) 1164 { 1165 if (BNXT_PF(bp)) { 1166 flush_workqueue(bnxt_pf_wq); 1167 } else { 1168 cancel_work_sync(&bp->sp_task); 1169 cancel_delayed_work_sync(&bp->fw_reset_task); 1170 } 1171 } 1172 1173 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 1174 { 1175 if (!rxr->bnapi->in_reset) { 1176 rxr->bnapi->in_reset = true; 1177 if (bp->flags & BNXT_FLAG_CHIP_P5) 1178 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 1179 else 1180 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 1181 bnxt_queue_sp_work(bp); 1182 } 1183 rxr->rx_next_cons = 0xffff; 1184 } 1185 1186 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1187 { 1188 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1189 u16 idx = agg_id & MAX_TPA_P5_MASK; 1190 1191 if (test_bit(idx, map->agg_idx_bmap)) 1192 idx = find_first_zero_bit(map->agg_idx_bmap, 1193 BNXT_AGG_IDX_BMAP_SIZE); 1194 __set_bit(idx, map->agg_idx_bmap); 1195 map->agg_id_tbl[agg_id] = idx; 1196 return idx; 1197 } 1198 1199 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1200 { 1201 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1202 1203 __clear_bit(idx, map->agg_idx_bmap); 1204 } 1205 1206 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1207 { 1208 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1209 1210 return map->agg_id_tbl[agg_id]; 1211 } 1212 1213 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1214 struct rx_tpa_start_cmp *tpa_start, 1215 struct rx_tpa_start_cmp_ext *tpa_start1) 1216 { 1217 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1218 struct bnxt_tpa_info *tpa_info; 1219 u16 cons, prod, agg_id; 1220 struct rx_bd *prod_bd; 1221 dma_addr_t mapping; 1222 1223 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1224 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1225 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1226 } else { 1227 agg_id = TPA_START_AGG_ID(tpa_start); 1228 } 1229 cons = tpa_start->rx_tpa_start_cmp_opaque; 1230 prod = rxr->rx_prod; 1231 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1232 prod_rx_buf = &rxr->rx_buf_ring[prod]; 1233 tpa_info = &rxr->rx_tpa[agg_id]; 1234 1235 if (unlikely(cons != rxr->rx_next_cons || 1236 TPA_START_ERROR(tpa_start))) { 1237 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1238 cons, rxr->rx_next_cons, 1239 TPA_START_ERROR_CODE(tpa_start1)); 1240 bnxt_sched_reset(bp, rxr); 1241 return; 1242 } 1243 /* Store cfa_code in tpa_info to use in tpa_end 1244 * completion processing. 1245 */ 1246 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1247 prod_rx_buf->data = tpa_info->data; 1248 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1249 1250 mapping = tpa_info->mapping; 1251 prod_rx_buf->mapping = mapping; 1252 1253 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 1254 1255 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1256 1257 tpa_info->data = cons_rx_buf->data; 1258 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1259 cons_rx_buf->data = NULL; 1260 tpa_info->mapping = cons_rx_buf->mapping; 1261 1262 tpa_info->len = 1263 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1264 RX_TPA_START_CMP_LEN_SHIFT; 1265 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1266 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 1267 1268 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1269 tpa_info->gso_type = SKB_GSO_TCPV4; 1270 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1271 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1)) 1272 tpa_info->gso_type = SKB_GSO_TCPV6; 1273 tpa_info->rss_hash = 1274 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1275 } else { 1276 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1277 tpa_info->gso_type = 0; 1278 if (netif_msg_rx_err(bp)) 1279 netdev_warn(bp->dev, "TPA packet without valid hash\n"); 1280 } 1281 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1282 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1283 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1284 tpa_info->agg_count = 0; 1285 1286 rxr->rx_prod = NEXT_RX(prod); 1287 cons = NEXT_RX(cons); 1288 rxr->rx_next_cons = NEXT_RX(cons); 1289 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1290 1291 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1292 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1293 cons_rx_buf->data = NULL; 1294 } 1295 1296 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1297 { 1298 if (agg_bufs) 1299 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1300 } 1301 1302 #ifdef CONFIG_INET 1303 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1304 { 1305 struct udphdr *uh = NULL; 1306 1307 if (ip_proto == htons(ETH_P_IP)) { 1308 struct iphdr *iph = (struct iphdr *)skb->data; 1309 1310 if (iph->protocol == IPPROTO_UDP) 1311 uh = (struct udphdr *)(iph + 1); 1312 } else { 1313 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1314 1315 if (iph->nexthdr == IPPROTO_UDP) 1316 uh = (struct udphdr *)(iph + 1); 1317 } 1318 if (uh) { 1319 if (uh->check) 1320 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1321 else 1322 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1323 } 1324 } 1325 #endif 1326 1327 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1328 int payload_off, int tcp_ts, 1329 struct sk_buff *skb) 1330 { 1331 #ifdef CONFIG_INET 1332 struct tcphdr *th; 1333 int len, nw_off; 1334 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1335 u32 hdr_info = tpa_info->hdr_info; 1336 bool loopback = false; 1337 1338 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1339 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1340 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1341 1342 /* If the packet is an internal loopback packet, the offsets will 1343 * have an extra 4 bytes. 1344 */ 1345 if (inner_mac_off == 4) { 1346 loopback = true; 1347 } else if (inner_mac_off > 4) { 1348 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1349 ETH_HLEN - 2)); 1350 1351 /* We only support inner iPv4/ipv6. If we don't see the 1352 * correct protocol ID, it must be a loopback packet where 1353 * the offsets are off by 4. 1354 */ 1355 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1356 loopback = true; 1357 } 1358 if (loopback) { 1359 /* internal loopback packet, subtract all offsets by 4 */ 1360 inner_ip_off -= 4; 1361 inner_mac_off -= 4; 1362 outer_ip_off -= 4; 1363 } 1364 1365 nw_off = inner_ip_off - ETH_HLEN; 1366 skb_set_network_header(skb, nw_off); 1367 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1368 struct ipv6hdr *iph = ipv6_hdr(skb); 1369 1370 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1371 len = skb->len - skb_transport_offset(skb); 1372 th = tcp_hdr(skb); 1373 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1374 } else { 1375 struct iphdr *iph = ip_hdr(skb); 1376 1377 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1378 len = skb->len - skb_transport_offset(skb); 1379 th = tcp_hdr(skb); 1380 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1381 } 1382 1383 if (inner_mac_off) { /* tunnel */ 1384 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1385 ETH_HLEN - 2)); 1386 1387 bnxt_gro_tunnel(skb, proto); 1388 } 1389 #endif 1390 return skb; 1391 } 1392 1393 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1394 int payload_off, int tcp_ts, 1395 struct sk_buff *skb) 1396 { 1397 #ifdef CONFIG_INET 1398 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1399 u32 hdr_info = tpa_info->hdr_info; 1400 int iphdr_len, nw_off; 1401 1402 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1403 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1404 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1405 1406 nw_off = inner_ip_off - ETH_HLEN; 1407 skb_set_network_header(skb, nw_off); 1408 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1409 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1410 skb_set_transport_header(skb, nw_off + iphdr_len); 1411 1412 if (inner_mac_off) { /* tunnel */ 1413 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1414 ETH_HLEN - 2)); 1415 1416 bnxt_gro_tunnel(skb, proto); 1417 } 1418 #endif 1419 return skb; 1420 } 1421 1422 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1423 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1424 1425 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1426 int payload_off, int tcp_ts, 1427 struct sk_buff *skb) 1428 { 1429 #ifdef CONFIG_INET 1430 struct tcphdr *th; 1431 int len, nw_off, tcp_opt_len = 0; 1432 1433 if (tcp_ts) 1434 tcp_opt_len = 12; 1435 1436 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1437 struct iphdr *iph; 1438 1439 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1440 ETH_HLEN; 1441 skb_set_network_header(skb, nw_off); 1442 iph = ip_hdr(skb); 1443 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1444 len = skb->len - skb_transport_offset(skb); 1445 th = tcp_hdr(skb); 1446 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1447 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1448 struct ipv6hdr *iph; 1449 1450 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1451 ETH_HLEN; 1452 skb_set_network_header(skb, nw_off); 1453 iph = ipv6_hdr(skb); 1454 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1455 len = skb->len - skb_transport_offset(skb); 1456 th = tcp_hdr(skb); 1457 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1458 } else { 1459 dev_kfree_skb_any(skb); 1460 return NULL; 1461 } 1462 1463 if (nw_off) /* tunnel */ 1464 bnxt_gro_tunnel(skb, skb->protocol); 1465 #endif 1466 return skb; 1467 } 1468 1469 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1470 struct bnxt_tpa_info *tpa_info, 1471 struct rx_tpa_end_cmp *tpa_end, 1472 struct rx_tpa_end_cmp_ext *tpa_end1, 1473 struct sk_buff *skb) 1474 { 1475 #ifdef CONFIG_INET 1476 int payload_off; 1477 u16 segs; 1478 1479 segs = TPA_END_TPA_SEGS(tpa_end); 1480 if (segs == 1) 1481 return skb; 1482 1483 NAPI_GRO_CB(skb)->count = segs; 1484 skb_shinfo(skb)->gso_size = 1485 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1486 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1487 if (bp->flags & BNXT_FLAG_CHIP_P5) 1488 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1489 else 1490 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1491 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1492 if (likely(skb)) 1493 tcp_gro_complete(skb); 1494 #endif 1495 return skb; 1496 } 1497 1498 /* Given the cfa_code of a received packet determine which 1499 * netdev (vf-rep or PF) the packet is destined to. 1500 */ 1501 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1502 { 1503 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1504 1505 /* if vf-rep dev is NULL, the must belongs to the PF */ 1506 return dev ? dev : bp->dev; 1507 } 1508 1509 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1510 struct bnxt_cp_ring_info *cpr, 1511 u32 *raw_cons, 1512 struct rx_tpa_end_cmp *tpa_end, 1513 struct rx_tpa_end_cmp_ext *tpa_end1, 1514 u8 *event) 1515 { 1516 struct bnxt_napi *bnapi = cpr->bnapi; 1517 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1518 u8 *data_ptr, agg_bufs; 1519 unsigned int len; 1520 struct bnxt_tpa_info *tpa_info; 1521 dma_addr_t mapping; 1522 struct sk_buff *skb; 1523 u16 idx = 0, agg_id; 1524 void *data; 1525 bool gro; 1526 1527 if (unlikely(bnapi->in_reset)) { 1528 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1529 1530 if (rc < 0) 1531 return ERR_PTR(-EBUSY); 1532 return NULL; 1533 } 1534 1535 if (bp->flags & BNXT_FLAG_CHIP_P5) { 1536 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1537 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1538 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1539 tpa_info = &rxr->rx_tpa[agg_id]; 1540 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1541 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1542 agg_bufs, tpa_info->agg_count); 1543 agg_bufs = tpa_info->agg_count; 1544 } 1545 tpa_info->agg_count = 0; 1546 *event |= BNXT_AGG_EVENT; 1547 bnxt_free_agg_idx(rxr, agg_id); 1548 idx = agg_id; 1549 gro = !!(bp->flags & BNXT_FLAG_GRO); 1550 } else { 1551 agg_id = TPA_END_AGG_ID(tpa_end); 1552 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1553 tpa_info = &rxr->rx_tpa[agg_id]; 1554 idx = RING_CMP(*raw_cons); 1555 if (agg_bufs) { 1556 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1557 return ERR_PTR(-EBUSY); 1558 1559 *event |= BNXT_AGG_EVENT; 1560 idx = NEXT_CMP(idx); 1561 } 1562 gro = !!TPA_END_GRO(tpa_end); 1563 } 1564 data = tpa_info->data; 1565 data_ptr = tpa_info->data_ptr; 1566 prefetch(data_ptr); 1567 len = tpa_info->len; 1568 mapping = tpa_info->mapping; 1569 1570 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1571 bnxt_abort_tpa(cpr, idx, agg_bufs); 1572 if (agg_bufs > MAX_SKB_FRAGS) 1573 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1574 agg_bufs, (int)MAX_SKB_FRAGS); 1575 return NULL; 1576 } 1577 1578 if (len <= bp->rx_copy_thresh) { 1579 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1580 if (!skb) { 1581 bnxt_abort_tpa(cpr, idx, agg_bufs); 1582 return NULL; 1583 } 1584 } else { 1585 u8 *new_data; 1586 dma_addr_t new_mapping; 1587 1588 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 1589 if (!new_data) { 1590 bnxt_abort_tpa(cpr, idx, agg_bufs); 1591 return NULL; 1592 } 1593 1594 tpa_info->data = new_data; 1595 tpa_info->data_ptr = new_data + bp->rx_offset; 1596 tpa_info->mapping = new_mapping; 1597 1598 skb = build_skb(data, 0); 1599 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1600 bp->rx_buf_use_size, bp->rx_dir, 1601 DMA_ATTR_WEAK_ORDERING); 1602 1603 if (!skb) { 1604 kfree(data); 1605 bnxt_abort_tpa(cpr, idx, agg_bufs); 1606 return NULL; 1607 } 1608 skb_reserve(skb, bp->rx_offset); 1609 skb_put(skb, len); 1610 } 1611 1612 if (agg_bufs) { 1613 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true); 1614 if (!skb) { 1615 /* Page reuse already handled by bnxt_rx_pages(). */ 1616 return NULL; 1617 } 1618 } 1619 1620 skb->protocol = 1621 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code)); 1622 1623 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1624 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1625 1626 if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) && 1627 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1628 u16 vlan_proto = tpa_info->metadata >> 1629 RX_CMP_FLAGS2_METADATA_TPID_SFT; 1630 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1631 1632 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); 1633 } 1634 1635 skb_checksum_none_assert(skb); 1636 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1637 skb->ip_summed = CHECKSUM_UNNECESSARY; 1638 skb->csum_level = 1639 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1640 } 1641 1642 if (gro) 1643 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1644 1645 return skb; 1646 } 1647 1648 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1649 struct rx_agg_cmp *rx_agg) 1650 { 1651 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1652 struct bnxt_tpa_info *tpa_info; 1653 1654 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1655 tpa_info = &rxr->rx_tpa[agg_id]; 1656 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1657 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1658 } 1659 1660 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1661 struct sk_buff *skb) 1662 { 1663 if (skb->dev != bp->dev) { 1664 /* this packet belongs to a vf-rep */ 1665 bnxt_vf_rep_rx(bp, skb); 1666 return; 1667 } 1668 skb_record_rx_queue(skb, bnapi->index); 1669 napi_gro_receive(&bnapi->napi, skb); 1670 } 1671 1672 /* returns the following: 1673 * 1 - 1 packet successfully received 1674 * 0 - successful TPA_START, packet not completed yet 1675 * -EBUSY - completion ring does not have all the agg buffers yet 1676 * -ENOMEM - packet aborted due to out of memory 1677 * -EIO - packet aborted due to hw error indicated in BD 1678 */ 1679 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1680 u32 *raw_cons, u8 *event) 1681 { 1682 struct bnxt_napi *bnapi = cpr->bnapi; 1683 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1684 struct net_device *dev = bp->dev; 1685 struct rx_cmp *rxcmp; 1686 struct rx_cmp_ext *rxcmp1; 1687 u32 tmp_raw_cons = *raw_cons; 1688 u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1689 struct bnxt_sw_rx_bd *rx_buf; 1690 unsigned int len; 1691 u8 *data_ptr, agg_bufs, cmp_type; 1692 dma_addr_t dma_addr; 1693 struct sk_buff *skb; 1694 void *data; 1695 int rc = 0; 1696 u32 misc; 1697 1698 rxcmp = (struct rx_cmp *) 1699 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1700 1701 cmp_type = RX_CMP_TYPE(rxcmp); 1702 1703 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 1704 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 1705 goto next_rx_no_prod_no_len; 1706 } 1707 1708 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1709 cp_cons = RING_CMP(tmp_raw_cons); 1710 rxcmp1 = (struct rx_cmp_ext *) 1711 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1712 1713 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1714 return -EBUSY; 1715 1716 prod = rxr->rx_prod; 1717 1718 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1719 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1720 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1721 1722 *event |= BNXT_RX_EVENT; 1723 goto next_rx_no_prod_no_len; 1724 1725 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1726 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 1727 (struct rx_tpa_end_cmp *)rxcmp, 1728 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 1729 1730 if (IS_ERR(skb)) 1731 return -EBUSY; 1732 1733 rc = -ENOMEM; 1734 if (likely(skb)) { 1735 bnxt_deliver_skb(bp, bnapi, skb); 1736 rc = 1; 1737 } 1738 *event |= BNXT_RX_EVENT; 1739 goto next_rx_no_prod_no_len; 1740 } 1741 1742 cons = rxcmp->rx_cmp_opaque; 1743 if (unlikely(cons != rxr->rx_next_cons)) { 1744 int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp); 1745 1746 /* 0xffff is forced error, don't print it */ 1747 if (rxr->rx_next_cons != 0xffff) 1748 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 1749 cons, rxr->rx_next_cons); 1750 bnxt_sched_reset(bp, rxr); 1751 return rc1; 1752 } 1753 rx_buf = &rxr->rx_buf_ring[cons]; 1754 data = rx_buf->data; 1755 data_ptr = rx_buf->data_ptr; 1756 prefetch(data_ptr); 1757 1758 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 1759 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 1760 1761 if (agg_bufs) { 1762 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1763 return -EBUSY; 1764 1765 cp_cons = NEXT_CMP(cp_cons); 1766 *event |= BNXT_AGG_EVENT; 1767 } 1768 *event |= BNXT_RX_EVENT; 1769 1770 rx_buf->data = NULL; 1771 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1772 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 1773 1774 bnxt_reuse_rx_data(rxr, cons, data); 1775 if (agg_bufs) 1776 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 1777 false); 1778 1779 rc = -EIO; 1780 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 1781 bnapi->cp_ring.sw_stats.rx.rx_buf_errors++; 1782 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 1783 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 1784 netdev_warn_once(bp->dev, "RX buffer error %x\n", 1785 rx_err); 1786 bnxt_sched_reset(bp, rxr); 1787 } 1788 } 1789 goto next_rx_no_len; 1790 } 1791 1792 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT; 1793 dma_addr = rx_buf->mapping; 1794 1795 if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) { 1796 rc = 1; 1797 goto next_rx; 1798 } 1799 1800 if (len <= bp->rx_copy_thresh) { 1801 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 1802 bnxt_reuse_rx_data(rxr, cons, data); 1803 if (!skb) { 1804 if (agg_bufs) 1805 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 1806 agg_bufs, false); 1807 rc = -ENOMEM; 1808 goto next_rx; 1809 } 1810 } else { 1811 u32 payload; 1812 1813 if (rx_buf->data_ptr == data_ptr) 1814 payload = misc & RX_CMP_PAYLOAD_OFFSET; 1815 else 1816 payload = 0; 1817 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 1818 payload | len); 1819 if (!skb) { 1820 rc = -ENOMEM; 1821 goto next_rx; 1822 } 1823 } 1824 1825 if (agg_bufs) { 1826 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false); 1827 if (!skb) { 1828 rc = -ENOMEM; 1829 goto next_rx; 1830 } 1831 } 1832 1833 if (RX_CMP_HASH_VALID(rxcmp)) { 1834 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1835 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1836 1837 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1838 if (hash_type != 1 && hash_type != 3) 1839 type = PKT_HASH_TYPE_L3; 1840 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1841 } 1842 1843 cfa_code = RX_CMP_CFA_CODE(rxcmp1); 1844 skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code)); 1845 1846 if ((rxcmp1->rx_cmp_flags2 & 1847 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) && 1848 (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1849 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1850 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1851 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT; 1852 1853 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag); 1854 } 1855 1856 skb_checksum_none_assert(skb); 1857 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1858 if (dev->features & NETIF_F_RXCSUM) { 1859 skb->ip_summed = CHECKSUM_UNNECESSARY; 1860 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1861 } 1862 } else { 1863 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 1864 if (dev->features & NETIF_F_RXCSUM) 1865 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++; 1866 } 1867 } 1868 1869 bnxt_deliver_skb(bp, bnapi, skb); 1870 rc = 1; 1871 1872 next_rx: 1873 cpr->rx_packets += 1; 1874 cpr->rx_bytes += len; 1875 1876 next_rx_no_len: 1877 rxr->rx_prod = NEXT_RX(prod); 1878 rxr->rx_next_cons = NEXT_RX(cons); 1879 1880 next_rx_no_prod_no_len: 1881 *raw_cons = tmp_raw_cons; 1882 1883 return rc; 1884 } 1885 1886 /* In netpoll mode, if we are using a combined completion ring, we need to 1887 * discard the rx packets and recycle the buffers. 1888 */ 1889 static int bnxt_force_rx_discard(struct bnxt *bp, 1890 struct bnxt_cp_ring_info *cpr, 1891 u32 *raw_cons, u8 *event) 1892 { 1893 u32 tmp_raw_cons = *raw_cons; 1894 struct rx_cmp_ext *rxcmp1; 1895 struct rx_cmp *rxcmp; 1896 u16 cp_cons; 1897 u8 cmp_type; 1898 1899 cp_cons = RING_CMP(tmp_raw_cons); 1900 rxcmp = (struct rx_cmp *) 1901 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1902 1903 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1904 cp_cons = RING_CMP(tmp_raw_cons); 1905 rxcmp1 = (struct rx_cmp_ext *) 1906 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1907 1908 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1909 return -EBUSY; 1910 1911 cmp_type = RX_CMP_TYPE(rxcmp); 1912 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1913 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 1914 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 1915 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1916 struct rx_tpa_end_cmp_ext *tpa_end1; 1917 1918 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 1919 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 1920 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 1921 } 1922 return bnxt_rx_pkt(bp, cpr, raw_cons, event); 1923 } 1924 1925 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 1926 { 1927 struct bnxt_fw_health *fw_health = bp->fw_health; 1928 u32 reg = fw_health->regs[reg_idx]; 1929 u32 reg_type, reg_off, val = 0; 1930 1931 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 1932 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 1933 switch (reg_type) { 1934 case BNXT_FW_HEALTH_REG_TYPE_CFG: 1935 pci_read_config_dword(bp->pdev, reg_off, &val); 1936 break; 1937 case BNXT_FW_HEALTH_REG_TYPE_GRC: 1938 reg_off = fw_health->mapped_regs[reg_idx]; 1939 fallthrough; 1940 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 1941 val = readl(bp->bar0 + reg_off); 1942 break; 1943 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 1944 val = readl(bp->bar1 + reg_off); 1945 break; 1946 } 1947 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 1948 val &= fw_health->fw_reset_inprog_reg_mask; 1949 return val; 1950 } 1951 1952 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 1953 { 1954 int i; 1955 1956 for (i = 0; i < bp->rx_nr_rings; i++) { 1957 u16 grp_idx = bp->rx_ring[i].bnapi->index; 1958 struct bnxt_ring_grp_info *grp_info; 1959 1960 grp_info = &bp->grp_info[grp_idx]; 1961 if (grp_info->agg_fw_ring_id == ring_id) 1962 return grp_idx; 1963 } 1964 return INVALID_HW_RING_ID; 1965 } 1966 1967 #define BNXT_GET_EVENT_PORT(data) \ 1968 ((data) & \ 1969 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 1970 1971 #define BNXT_EVENT_RING_TYPE(data2) \ 1972 ((data2) & \ 1973 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 1974 1975 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 1976 (BNXT_EVENT_RING_TYPE(data2) == \ 1977 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 1978 1979 static int bnxt_async_event_process(struct bnxt *bp, 1980 struct hwrm_async_event_cmpl *cmpl) 1981 { 1982 u16 event_id = le16_to_cpu(cmpl->event_id); 1983 u32 data1 = le32_to_cpu(cmpl->event_data1); 1984 u32 data2 = le32_to_cpu(cmpl->event_data2); 1985 1986 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 1987 switch (event_id) { 1988 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 1989 struct bnxt_link_info *link_info = &bp->link_info; 1990 1991 if (BNXT_VF(bp)) 1992 goto async_event_process_exit; 1993 1994 /* print unsupported speed warning in forced speed mode only */ 1995 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 1996 (data1 & 0x20000)) { 1997 u16 fw_speed = link_info->force_link_speed; 1998 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 1999 2000 if (speed != SPEED_UNKNOWN) 2001 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2002 speed); 2003 } 2004 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2005 } 2006 fallthrough; 2007 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2008 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2009 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2010 fallthrough; 2011 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2012 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2013 break; 2014 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2015 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2016 break; 2017 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2018 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2019 2020 if (BNXT_VF(bp)) 2021 break; 2022 2023 if (bp->pf.port_id != port_id) 2024 break; 2025 2026 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2027 break; 2028 } 2029 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2030 if (BNXT_PF(bp)) 2031 goto async_event_process_exit; 2032 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2033 break; 2034 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: 2035 if (netif_msg_hw(bp)) 2036 netdev_warn(bp->dev, "Received RESET_NOTIFY event, data1: 0x%x, data2: 0x%x\n", 2037 data1, data2); 2038 if (!bp->fw_health) 2039 goto async_event_process_exit; 2040 2041 bp->fw_reset_timestamp = jiffies; 2042 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2043 if (!bp->fw_reset_min_dsecs) 2044 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2045 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2046 if (!bp->fw_reset_max_dsecs) 2047 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2048 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2049 netdev_warn(bp->dev, "Firmware fatal reset event received\n"); 2050 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2051 } else { 2052 netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n", 2053 bp->fw_reset_max_dsecs * 100); 2054 } 2055 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2056 break; 2057 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2058 struct bnxt_fw_health *fw_health = bp->fw_health; 2059 2060 if (!fw_health) 2061 goto async_event_process_exit; 2062 2063 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1); 2064 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2065 if (!fw_health->enabled) 2066 break; 2067 2068 if (netif_msg_drv(bp)) 2069 netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n", 2070 fw_health->enabled, fw_health->master, 2071 bnxt_fw_health_readl(bp, 2072 BNXT_FW_RESET_CNT_REG), 2073 bnxt_fw_health_readl(bp, 2074 BNXT_FW_HEALTH_REG)); 2075 fw_health->tmr_multiplier = 2076 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2077 bp->current_interval * 10); 2078 fw_health->tmr_counter = fw_health->tmr_multiplier; 2079 fw_health->last_fw_heartbeat = 2080 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2081 fw_health->last_fw_reset_cnt = 2082 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2083 goto async_event_process_exit; 2084 } 2085 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2086 struct bnxt_rx_ring_info *rxr; 2087 u16 grp_idx; 2088 2089 if (bp->flags & BNXT_FLAG_CHIP_P5) 2090 goto async_event_process_exit; 2091 2092 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2093 BNXT_EVENT_RING_TYPE(data2), data1); 2094 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2095 goto async_event_process_exit; 2096 2097 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2098 if (grp_idx == INVALID_HW_RING_ID) { 2099 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2100 data1); 2101 goto async_event_process_exit; 2102 } 2103 rxr = bp->bnapi[grp_idx]->rx_ring; 2104 bnxt_sched_reset(bp, rxr); 2105 goto async_event_process_exit; 2106 } 2107 default: 2108 goto async_event_process_exit; 2109 } 2110 bnxt_queue_sp_work(bp); 2111 async_event_process_exit: 2112 bnxt_ulp_async_events(bp, cmpl); 2113 return 0; 2114 } 2115 2116 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2117 { 2118 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2119 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2120 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2121 (struct hwrm_fwd_req_cmpl *)txcmp; 2122 2123 switch (cmpl_type) { 2124 case CMPL_BASE_TYPE_HWRM_DONE: 2125 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2126 if (seq_id == bp->hwrm_intr_seq_id) 2127 bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id; 2128 else 2129 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 2130 break; 2131 2132 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2133 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2134 2135 if ((vf_id < bp->pf.first_vf_id) || 2136 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2137 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2138 vf_id); 2139 return -EINVAL; 2140 } 2141 2142 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2143 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 2144 bnxt_queue_sp_work(bp); 2145 break; 2146 2147 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2148 bnxt_async_event_process(bp, 2149 (struct hwrm_async_event_cmpl *)txcmp); 2150 2151 default: 2152 break; 2153 } 2154 2155 return 0; 2156 } 2157 2158 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2159 { 2160 struct bnxt_napi *bnapi = dev_instance; 2161 struct bnxt *bp = bnapi->bp; 2162 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2163 u32 cons = RING_CMP(cpr->cp_raw_cons); 2164 2165 cpr->event_ctr++; 2166 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2167 napi_schedule(&bnapi->napi); 2168 return IRQ_HANDLED; 2169 } 2170 2171 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2172 { 2173 u32 raw_cons = cpr->cp_raw_cons; 2174 u16 cons = RING_CMP(raw_cons); 2175 struct tx_cmp *txcmp; 2176 2177 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2178 2179 return TX_CMP_VALID(txcmp, raw_cons); 2180 } 2181 2182 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2183 { 2184 struct bnxt_napi *bnapi = dev_instance; 2185 struct bnxt *bp = bnapi->bp; 2186 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2187 u32 cons = RING_CMP(cpr->cp_raw_cons); 2188 u32 int_status; 2189 2190 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2191 2192 if (!bnxt_has_work(bp, cpr)) { 2193 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2194 /* return if erroneous interrupt */ 2195 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2196 return IRQ_NONE; 2197 } 2198 2199 /* disable ring IRQ */ 2200 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2201 2202 /* Return here if interrupt is shared and is disabled. */ 2203 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2204 return IRQ_HANDLED; 2205 2206 napi_schedule(&bnapi->napi); 2207 return IRQ_HANDLED; 2208 } 2209 2210 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2211 int budget) 2212 { 2213 struct bnxt_napi *bnapi = cpr->bnapi; 2214 u32 raw_cons = cpr->cp_raw_cons; 2215 u32 cons; 2216 int tx_pkts = 0; 2217 int rx_pkts = 0; 2218 u8 event = 0; 2219 struct tx_cmp *txcmp; 2220 2221 cpr->has_more_work = 0; 2222 cpr->had_work_done = 1; 2223 while (1) { 2224 int rc; 2225 2226 cons = RING_CMP(raw_cons); 2227 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2228 2229 if (!TX_CMP_VALID(txcmp, raw_cons)) 2230 break; 2231 2232 /* The valid test of the entry must be done first before 2233 * reading any further. 2234 */ 2235 dma_rmb(); 2236 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 2237 tx_pkts++; 2238 /* return full budget so NAPI will complete. */ 2239 if (unlikely(tx_pkts > bp->tx_wake_thresh)) { 2240 rx_pkts = budget; 2241 raw_cons = NEXT_RAW_CMP(raw_cons); 2242 if (budget) 2243 cpr->has_more_work = 1; 2244 break; 2245 } 2246 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2247 if (likely(budget)) 2248 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2249 else 2250 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2251 &event); 2252 if (likely(rc >= 0)) 2253 rx_pkts += rc; 2254 /* Increment rx_pkts when rc is -ENOMEM to count towards 2255 * the NAPI budget. Otherwise, we may potentially loop 2256 * here forever if we consistently cannot allocate 2257 * buffers. 2258 */ 2259 else if (rc == -ENOMEM && budget) 2260 rx_pkts++; 2261 else if (rc == -EBUSY) /* partial completion */ 2262 break; 2263 } else if (unlikely((TX_CMP_TYPE(txcmp) == 2264 CMPL_BASE_TYPE_HWRM_DONE) || 2265 (TX_CMP_TYPE(txcmp) == 2266 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 2267 (TX_CMP_TYPE(txcmp) == 2268 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 2269 bnxt_hwrm_handler(bp, txcmp); 2270 } 2271 raw_cons = NEXT_RAW_CMP(raw_cons); 2272 2273 if (rx_pkts && rx_pkts == budget) { 2274 cpr->has_more_work = 1; 2275 break; 2276 } 2277 } 2278 2279 if (event & BNXT_REDIRECT_EVENT) 2280 xdp_do_flush_map(); 2281 2282 if (event & BNXT_TX_EVENT) { 2283 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 2284 u16 prod = txr->tx_prod; 2285 2286 /* Sync BD data before updating doorbell */ 2287 wmb(); 2288 2289 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2290 } 2291 2292 cpr->cp_raw_cons = raw_cons; 2293 bnapi->tx_pkts += tx_pkts; 2294 bnapi->events |= event; 2295 return rx_pkts; 2296 } 2297 2298 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi) 2299 { 2300 if (bnapi->tx_pkts) { 2301 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts); 2302 bnapi->tx_pkts = 0; 2303 } 2304 2305 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2306 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2307 2308 if (bnapi->events & BNXT_AGG_EVENT) 2309 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2310 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2311 } 2312 bnapi->events = 0; 2313 } 2314 2315 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2316 int budget) 2317 { 2318 struct bnxt_napi *bnapi = cpr->bnapi; 2319 int rx_pkts; 2320 2321 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 2322 2323 /* ACK completion ring before freeing tx ring and producing new 2324 * buffers in rx/agg rings to prevent overflowing the completion 2325 * ring. 2326 */ 2327 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 2328 2329 __bnxt_poll_work_done(bp, bnapi); 2330 return rx_pkts; 2331 } 2332 2333 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 2334 { 2335 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2336 struct bnxt *bp = bnapi->bp; 2337 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2338 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2339 struct tx_cmp *txcmp; 2340 struct rx_cmp_ext *rxcmp1; 2341 u32 cp_cons, tmp_raw_cons; 2342 u32 raw_cons = cpr->cp_raw_cons; 2343 u32 rx_pkts = 0; 2344 u8 event = 0; 2345 2346 while (1) { 2347 int rc; 2348 2349 cp_cons = RING_CMP(raw_cons); 2350 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2351 2352 if (!TX_CMP_VALID(txcmp, raw_cons)) 2353 break; 2354 2355 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 2356 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 2357 cp_cons = RING_CMP(tmp_raw_cons); 2358 rxcmp1 = (struct rx_cmp_ext *) 2359 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2360 2361 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2362 break; 2363 2364 /* force an error to recycle the buffer */ 2365 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2366 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2367 2368 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2369 if (likely(rc == -EIO) && budget) 2370 rx_pkts++; 2371 else if (rc == -EBUSY) /* partial completion */ 2372 break; 2373 } else if (unlikely(TX_CMP_TYPE(txcmp) == 2374 CMPL_BASE_TYPE_HWRM_DONE)) { 2375 bnxt_hwrm_handler(bp, txcmp); 2376 } else { 2377 netdev_err(bp->dev, 2378 "Invalid completion received on special ring\n"); 2379 } 2380 raw_cons = NEXT_RAW_CMP(raw_cons); 2381 2382 if (rx_pkts == budget) 2383 break; 2384 } 2385 2386 cpr->cp_raw_cons = raw_cons; 2387 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 2388 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2389 2390 if (event & BNXT_AGG_EVENT) 2391 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 2392 2393 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 2394 napi_complete_done(napi, rx_pkts); 2395 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2396 } 2397 return rx_pkts; 2398 } 2399 2400 static int bnxt_poll(struct napi_struct *napi, int budget) 2401 { 2402 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2403 struct bnxt *bp = bnapi->bp; 2404 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2405 int work_done = 0; 2406 2407 while (1) { 2408 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 2409 2410 if (work_done >= budget) { 2411 if (!budget) 2412 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2413 break; 2414 } 2415 2416 if (!bnxt_has_work(bp, cpr)) { 2417 if (napi_complete_done(napi, work_done)) 2418 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 2419 break; 2420 } 2421 } 2422 if (bp->flags & BNXT_FLAG_DIM) { 2423 struct dim_sample dim_sample = {}; 2424 2425 dim_update_sample(cpr->event_ctr, 2426 cpr->rx_packets, 2427 cpr->rx_bytes, 2428 &dim_sample); 2429 net_dim(&cpr->dim, dim_sample); 2430 } 2431 return work_done; 2432 } 2433 2434 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 2435 { 2436 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2437 int i, work_done = 0; 2438 2439 for (i = 0; i < 2; i++) { 2440 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2441 2442 if (cpr2) { 2443 work_done += __bnxt_poll_work(bp, cpr2, 2444 budget - work_done); 2445 cpr->has_more_work |= cpr2->has_more_work; 2446 } 2447 } 2448 return work_done; 2449 } 2450 2451 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2452 u64 dbr_type) 2453 { 2454 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2455 int i; 2456 2457 for (i = 0; i < 2; i++) { 2458 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i]; 2459 struct bnxt_db_info *db; 2460 2461 if (cpr2 && cpr2->had_work_done) { 2462 db = &cpr2->cp_db; 2463 writeq(db->db_key64 | dbr_type | 2464 RING_CMP(cpr2->cp_raw_cons), db->doorbell); 2465 cpr2->had_work_done = 0; 2466 } 2467 } 2468 __bnxt_poll_work_done(bp, bnapi); 2469 } 2470 2471 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 2472 { 2473 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 2474 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2475 u32 raw_cons = cpr->cp_raw_cons; 2476 struct bnxt *bp = bnapi->bp; 2477 struct nqe_cn *nqcmp; 2478 int work_done = 0; 2479 u32 cons; 2480 2481 if (cpr->has_more_work) { 2482 cpr->has_more_work = 0; 2483 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 2484 } 2485 while (1) { 2486 cons = RING_CMP(raw_cons); 2487 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2488 2489 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 2490 if (cpr->has_more_work) 2491 break; 2492 2493 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL); 2494 cpr->cp_raw_cons = raw_cons; 2495 if (napi_complete_done(napi, work_done)) 2496 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 2497 cpr->cp_raw_cons); 2498 return work_done; 2499 } 2500 2501 /* The valid test of the entry must be done first before 2502 * reading any further. 2503 */ 2504 dma_rmb(); 2505 2506 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) { 2507 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 2508 struct bnxt_cp_ring_info *cpr2; 2509 2510 cpr2 = cpr->cp_ring_arr[idx]; 2511 work_done += __bnxt_poll_work(bp, cpr2, 2512 budget - work_done); 2513 cpr->has_more_work |= cpr2->has_more_work; 2514 } else { 2515 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 2516 } 2517 raw_cons = NEXT_RAW_CMP(raw_cons); 2518 } 2519 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ); 2520 if (raw_cons != cpr->cp_raw_cons) { 2521 cpr->cp_raw_cons = raw_cons; 2522 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 2523 } 2524 return work_done; 2525 } 2526 2527 static void bnxt_free_tx_skbs(struct bnxt *bp) 2528 { 2529 int i, max_idx; 2530 struct pci_dev *pdev = bp->pdev; 2531 2532 if (!bp->tx_ring) 2533 return; 2534 2535 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 2536 for (i = 0; i < bp->tx_nr_rings; i++) { 2537 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2538 int j; 2539 2540 for (j = 0; j < max_idx;) { 2541 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 2542 struct sk_buff *skb; 2543 int k, last; 2544 2545 if (i < bp->tx_nr_rings_xdp && 2546 tx_buf->action == XDP_REDIRECT) { 2547 dma_unmap_single(&pdev->dev, 2548 dma_unmap_addr(tx_buf, mapping), 2549 dma_unmap_len(tx_buf, len), 2550 PCI_DMA_TODEVICE); 2551 xdp_return_frame(tx_buf->xdpf); 2552 tx_buf->action = 0; 2553 tx_buf->xdpf = NULL; 2554 j++; 2555 continue; 2556 } 2557 2558 skb = tx_buf->skb; 2559 if (!skb) { 2560 j++; 2561 continue; 2562 } 2563 2564 tx_buf->skb = NULL; 2565 2566 if (tx_buf->is_push) { 2567 dev_kfree_skb(skb); 2568 j += 2; 2569 continue; 2570 } 2571 2572 dma_unmap_single(&pdev->dev, 2573 dma_unmap_addr(tx_buf, mapping), 2574 skb_headlen(skb), 2575 PCI_DMA_TODEVICE); 2576 2577 last = tx_buf->nr_frags; 2578 j += 2; 2579 for (k = 0; k < last; k++, j++) { 2580 int ring_idx = j & bp->tx_ring_mask; 2581 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2582 2583 tx_buf = &txr->tx_buf_ring[ring_idx]; 2584 dma_unmap_page( 2585 &pdev->dev, 2586 dma_unmap_addr(tx_buf, mapping), 2587 skb_frag_size(frag), PCI_DMA_TODEVICE); 2588 } 2589 dev_kfree_skb(skb); 2590 } 2591 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 2592 } 2593 } 2594 2595 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 2596 { 2597 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 2598 struct pci_dev *pdev = bp->pdev; 2599 struct bnxt_tpa_idx_map *map; 2600 int i, max_idx, max_agg_idx; 2601 2602 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 2603 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 2604 if (!rxr->rx_tpa) 2605 goto skip_rx_tpa_free; 2606 2607 for (i = 0; i < bp->max_tpa; i++) { 2608 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 2609 u8 *data = tpa_info->data; 2610 2611 if (!data) 2612 continue; 2613 2614 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 2615 bp->rx_buf_use_size, bp->rx_dir, 2616 DMA_ATTR_WEAK_ORDERING); 2617 2618 tpa_info->data = NULL; 2619 2620 kfree(data); 2621 } 2622 2623 skip_rx_tpa_free: 2624 for (i = 0; i < max_idx; i++) { 2625 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 2626 dma_addr_t mapping = rx_buf->mapping; 2627 void *data = rx_buf->data; 2628 2629 if (!data) 2630 continue; 2631 2632 rx_buf->data = NULL; 2633 if (BNXT_RX_PAGE_MODE(bp)) { 2634 mapping -= bp->rx_dma_offset; 2635 dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE, 2636 bp->rx_dir, 2637 DMA_ATTR_WEAK_ORDERING); 2638 page_pool_recycle_direct(rxr->page_pool, data); 2639 } else { 2640 dma_unmap_single_attrs(&pdev->dev, mapping, 2641 bp->rx_buf_use_size, bp->rx_dir, 2642 DMA_ATTR_WEAK_ORDERING); 2643 kfree(data); 2644 } 2645 } 2646 for (i = 0; i < max_agg_idx; i++) { 2647 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 2648 struct page *page = rx_agg_buf->page; 2649 2650 if (!page) 2651 continue; 2652 2653 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping, 2654 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE, 2655 DMA_ATTR_WEAK_ORDERING); 2656 2657 rx_agg_buf->page = NULL; 2658 __clear_bit(i, rxr->rx_agg_bmap); 2659 2660 __free_page(page); 2661 } 2662 if (rxr->rx_page) { 2663 __free_page(rxr->rx_page); 2664 rxr->rx_page = NULL; 2665 } 2666 map = rxr->rx_tpa_idx_map; 2667 if (map) 2668 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 2669 } 2670 2671 static void bnxt_free_rx_skbs(struct bnxt *bp) 2672 { 2673 int i; 2674 2675 if (!bp->rx_ring) 2676 return; 2677 2678 for (i = 0; i < bp->rx_nr_rings; i++) 2679 bnxt_free_one_rx_ring_skbs(bp, i); 2680 } 2681 2682 static void bnxt_free_skbs(struct bnxt *bp) 2683 { 2684 bnxt_free_tx_skbs(bp); 2685 bnxt_free_rx_skbs(bp); 2686 } 2687 2688 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2689 { 2690 struct pci_dev *pdev = bp->pdev; 2691 int i; 2692 2693 for (i = 0; i < rmem->nr_pages; i++) { 2694 if (!rmem->pg_arr[i]) 2695 continue; 2696 2697 dma_free_coherent(&pdev->dev, rmem->page_size, 2698 rmem->pg_arr[i], rmem->dma_arr[i]); 2699 2700 rmem->pg_arr[i] = NULL; 2701 } 2702 if (rmem->pg_tbl) { 2703 size_t pg_tbl_size = rmem->nr_pages * 8; 2704 2705 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2706 pg_tbl_size = rmem->page_size; 2707 dma_free_coherent(&pdev->dev, pg_tbl_size, 2708 rmem->pg_tbl, rmem->pg_tbl_map); 2709 rmem->pg_tbl = NULL; 2710 } 2711 if (rmem->vmem_size && *rmem->vmem) { 2712 vfree(*rmem->vmem); 2713 *rmem->vmem = NULL; 2714 } 2715 } 2716 2717 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 2718 { 2719 struct pci_dev *pdev = bp->pdev; 2720 u64 valid_bit = 0; 2721 int i; 2722 2723 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 2724 valid_bit = PTU_PTE_VALID; 2725 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 2726 size_t pg_tbl_size = rmem->nr_pages * 8; 2727 2728 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 2729 pg_tbl_size = rmem->page_size; 2730 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 2731 &rmem->pg_tbl_map, 2732 GFP_KERNEL); 2733 if (!rmem->pg_tbl) 2734 return -ENOMEM; 2735 } 2736 2737 for (i = 0; i < rmem->nr_pages; i++) { 2738 u64 extra_bits = valid_bit; 2739 2740 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 2741 rmem->page_size, 2742 &rmem->dma_arr[i], 2743 GFP_KERNEL); 2744 if (!rmem->pg_arr[i]) 2745 return -ENOMEM; 2746 2747 if (rmem->init_val) 2748 memset(rmem->pg_arr[i], rmem->init_val, 2749 rmem->page_size); 2750 if (rmem->nr_pages > 1 || rmem->depth > 0) { 2751 if (i == rmem->nr_pages - 2 && 2752 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2753 extra_bits |= PTU_PTE_NEXT_TO_LAST; 2754 else if (i == rmem->nr_pages - 1 && 2755 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 2756 extra_bits |= PTU_PTE_LAST; 2757 rmem->pg_tbl[i] = 2758 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 2759 } 2760 } 2761 2762 if (rmem->vmem_size) { 2763 *rmem->vmem = vzalloc(rmem->vmem_size); 2764 if (!(*rmem->vmem)) 2765 return -ENOMEM; 2766 } 2767 return 0; 2768 } 2769 2770 static void bnxt_free_tpa_info(struct bnxt *bp) 2771 { 2772 int i; 2773 2774 for (i = 0; i < bp->rx_nr_rings; i++) { 2775 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2776 2777 kfree(rxr->rx_tpa_idx_map); 2778 rxr->rx_tpa_idx_map = NULL; 2779 if (rxr->rx_tpa) { 2780 kfree(rxr->rx_tpa[0].agg_arr); 2781 rxr->rx_tpa[0].agg_arr = NULL; 2782 } 2783 kfree(rxr->rx_tpa); 2784 rxr->rx_tpa = NULL; 2785 } 2786 } 2787 2788 static int bnxt_alloc_tpa_info(struct bnxt *bp) 2789 { 2790 int i, j, total_aggs = 0; 2791 2792 bp->max_tpa = MAX_TPA; 2793 if (bp->flags & BNXT_FLAG_CHIP_P5) { 2794 if (!bp->max_tpa_v2) 2795 return 0; 2796 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 2797 total_aggs = bp->max_tpa * MAX_SKB_FRAGS; 2798 } 2799 2800 for (i = 0; i < bp->rx_nr_rings; i++) { 2801 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2802 struct rx_agg_cmp *agg; 2803 2804 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 2805 GFP_KERNEL); 2806 if (!rxr->rx_tpa) 2807 return -ENOMEM; 2808 2809 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 2810 continue; 2811 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL); 2812 rxr->rx_tpa[0].agg_arr = agg; 2813 if (!agg) 2814 return -ENOMEM; 2815 for (j = 1; j < bp->max_tpa; j++) 2816 rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS; 2817 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 2818 GFP_KERNEL); 2819 if (!rxr->rx_tpa_idx_map) 2820 return -ENOMEM; 2821 } 2822 return 0; 2823 } 2824 2825 static void bnxt_free_rx_rings(struct bnxt *bp) 2826 { 2827 int i; 2828 2829 if (!bp->rx_ring) 2830 return; 2831 2832 bnxt_free_tpa_info(bp); 2833 for (i = 0; i < bp->rx_nr_rings; i++) { 2834 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2835 struct bnxt_ring_struct *ring; 2836 2837 if (rxr->xdp_prog) 2838 bpf_prog_put(rxr->xdp_prog); 2839 2840 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 2841 xdp_rxq_info_unreg(&rxr->xdp_rxq); 2842 2843 page_pool_destroy(rxr->page_pool); 2844 rxr->page_pool = NULL; 2845 2846 kfree(rxr->rx_agg_bmap); 2847 rxr->rx_agg_bmap = NULL; 2848 2849 ring = &rxr->rx_ring_struct; 2850 bnxt_free_ring(bp, &ring->ring_mem); 2851 2852 ring = &rxr->rx_agg_ring_struct; 2853 bnxt_free_ring(bp, &ring->ring_mem); 2854 } 2855 } 2856 2857 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 2858 struct bnxt_rx_ring_info *rxr) 2859 { 2860 struct page_pool_params pp = { 0 }; 2861 2862 pp.pool_size = bp->rx_ring_size; 2863 pp.nid = dev_to_node(&bp->pdev->dev); 2864 pp.dev = &bp->pdev->dev; 2865 pp.dma_dir = DMA_BIDIRECTIONAL; 2866 2867 rxr->page_pool = page_pool_create(&pp); 2868 if (IS_ERR(rxr->page_pool)) { 2869 int err = PTR_ERR(rxr->page_pool); 2870 2871 rxr->page_pool = NULL; 2872 return err; 2873 } 2874 return 0; 2875 } 2876 2877 static int bnxt_alloc_rx_rings(struct bnxt *bp) 2878 { 2879 int i, rc = 0, agg_rings = 0; 2880 2881 if (!bp->rx_ring) 2882 return -ENOMEM; 2883 2884 if (bp->flags & BNXT_FLAG_AGG_RINGS) 2885 agg_rings = 1; 2886 2887 for (i = 0; i < bp->rx_nr_rings; i++) { 2888 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 2889 struct bnxt_ring_struct *ring; 2890 2891 ring = &rxr->rx_ring_struct; 2892 2893 rc = bnxt_alloc_rx_page_pool(bp, rxr); 2894 if (rc) 2895 return rc; 2896 2897 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i); 2898 if (rc < 0) 2899 return rc; 2900 2901 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 2902 MEM_TYPE_PAGE_POOL, 2903 rxr->page_pool); 2904 if (rc) { 2905 xdp_rxq_info_unreg(&rxr->xdp_rxq); 2906 return rc; 2907 } 2908 2909 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 2910 if (rc) 2911 return rc; 2912 2913 ring->grp_idx = i; 2914 if (agg_rings) { 2915 u16 mem_size; 2916 2917 ring = &rxr->rx_agg_ring_struct; 2918 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 2919 if (rc) 2920 return rc; 2921 2922 ring->grp_idx = i; 2923 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 2924 mem_size = rxr->rx_agg_bmap_size / 8; 2925 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 2926 if (!rxr->rx_agg_bmap) 2927 return -ENOMEM; 2928 } 2929 } 2930 if (bp->flags & BNXT_FLAG_TPA) 2931 rc = bnxt_alloc_tpa_info(bp); 2932 return rc; 2933 } 2934 2935 static void bnxt_free_tx_rings(struct bnxt *bp) 2936 { 2937 int i; 2938 struct pci_dev *pdev = bp->pdev; 2939 2940 if (!bp->tx_ring) 2941 return; 2942 2943 for (i = 0; i < bp->tx_nr_rings; i++) { 2944 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2945 struct bnxt_ring_struct *ring; 2946 2947 if (txr->tx_push) { 2948 dma_free_coherent(&pdev->dev, bp->tx_push_size, 2949 txr->tx_push, txr->tx_push_mapping); 2950 txr->tx_push = NULL; 2951 } 2952 2953 ring = &txr->tx_ring_struct; 2954 2955 bnxt_free_ring(bp, &ring->ring_mem); 2956 } 2957 } 2958 2959 static int bnxt_alloc_tx_rings(struct bnxt *bp) 2960 { 2961 int i, j, rc; 2962 struct pci_dev *pdev = bp->pdev; 2963 2964 bp->tx_push_size = 0; 2965 if (bp->tx_push_thresh) { 2966 int push_size; 2967 2968 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 2969 bp->tx_push_thresh); 2970 2971 if (push_size > 256) { 2972 push_size = 0; 2973 bp->tx_push_thresh = 0; 2974 } 2975 2976 bp->tx_push_size = push_size; 2977 } 2978 2979 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 2980 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 2981 struct bnxt_ring_struct *ring; 2982 u8 qidx; 2983 2984 ring = &txr->tx_ring_struct; 2985 2986 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 2987 if (rc) 2988 return rc; 2989 2990 ring->grp_idx = txr->bnapi->index; 2991 if (bp->tx_push_size) { 2992 dma_addr_t mapping; 2993 2994 /* One pre-allocated DMA buffer to backup 2995 * TX push operation 2996 */ 2997 txr->tx_push = dma_alloc_coherent(&pdev->dev, 2998 bp->tx_push_size, 2999 &txr->tx_push_mapping, 3000 GFP_KERNEL); 3001 3002 if (!txr->tx_push) 3003 return -ENOMEM; 3004 3005 mapping = txr->tx_push_mapping + 3006 sizeof(struct tx_push_bd); 3007 txr->data_mapping = cpu_to_le64(mapping); 3008 } 3009 qidx = bp->tc_to_qidx[j]; 3010 ring->queue_id = bp->q_info[qidx].queue_id; 3011 if (i < bp->tx_nr_rings_xdp) 3012 continue; 3013 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 3014 j++; 3015 } 3016 return 0; 3017 } 3018 3019 static void bnxt_free_cp_rings(struct bnxt *bp) 3020 { 3021 int i; 3022 3023 if (!bp->bnapi) 3024 return; 3025 3026 for (i = 0; i < bp->cp_nr_rings; i++) { 3027 struct bnxt_napi *bnapi = bp->bnapi[i]; 3028 struct bnxt_cp_ring_info *cpr; 3029 struct bnxt_ring_struct *ring; 3030 int j; 3031 3032 if (!bnapi) 3033 continue; 3034 3035 cpr = &bnapi->cp_ring; 3036 ring = &cpr->cp_ring_struct; 3037 3038 bnxt_free_ring(bp, &ring->ring_mem); 3039 3040 for (j = 0; j < 2; j++) { 3041 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3042 3043 if (cpr2) { 3044 ring = &cpr2->cp_ring_struct; 3045 bnxt_free_ring(bp, &ring->ring_mem); 3046 kfree(cpr2); 3047 cpr->cp_ring_arr[j] = NULL; 3048 } 3049 } 3050 } 3051 } 3052 3053 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp) 3054 { 3055 struct bnxt_ring_mem_info *rmem; 3056 struct bnxt_ring_struct *ring; 3057 struct bnxt_cp_ring_info *cpr; 3058 int rc; 3059 3060 cpr = kzalloc(sizeof(*cpr), GFP_KERNEL); 3061 if (!cpr) 3062 return NULL; 3063 3064 ring = &cpr->cp_ring_struct; 3065 rmem = &ring->ring_mem; 3066 rmem->nr_pages = bp->cp_nr_pages; 3067 rmem->page_size = HW_CMPD_RING_SIZE; 3068 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3069 rmem->dma_arr = cpr->cp_desc_mapping; 3070 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3071 rc = bnxt_alloc_ring(bp, rmem); 3072 if (rc) { 3073 bnxt_free_ring(bp, rmem); 3074 kfree(cpr); 3075 cpr = NULL; 3076 } 3077 return cpr; 3078 } 3079 3080 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3081 { 3082 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3083 int i, rc, ulp_base_vec, ulp_msix; 3084 3085 ulp_msix = bnxt_get_ulp_msix_num(bp); 3086 ulp_base_vec = bnxt_get_ulp_msix_base(bp); 3087 for (i = 0; i < bp->cp_nr_rings; i++) { 3088 struct bnxt_napi *bnapi = bp->bnapi[i]; 3089 struct bnxt_cp_ring_info *cpr; 3090 struct bnxt_ring_struct *ring; 3091 3092 if (!bnapi) 3093 continue; 3094 3095 cpr = &bnapi->cp_ring; 3096 cpr->bnapi = bnapi; 3097 ring = &cpr->cp_ring_struct; 3098 3099 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3100 if (rc) 3101 return rc; 3102 3103 if (ulp_msix && i >= ulp_base_vec) 3104 ring->map_idx = i + ulp_msix; 3105 else 3106 ring->map_idx = i; 3107 3108 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 3109 continue; 3110 3111 if (i < bp->rx_nr_rings) { 3112 struct bnxt_cp_ring_info *cpr2 = 3113 bnxt_alloc_cp_sub_ring(bp); 3114 3115 cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2; 3116 if (!cpr2) 3117 return -ENOMEM; 3118 cpr2->bnapi = bnapi; 3119 } 3120 if ((sh && i < bp->tx_nr_rings) || 3121 (!sh && i >= bp->rx_nr_rings)) { 3122 struct bnxt_cp_ring_info *cpr2 = 3123 bnxt_alloc_cp_sub_ring(bp); 3124 3125 cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2; 3126 if (!cpr2) 3127 return -ENOMEM; 3128 cpr2->bnapi = bnapi; 3129 } 3130 } 3131 return 0; 3132 } 3133 3134 static void bnxt_init_ring_struct(struct bnxt *bp) 3135 { 3136 int i; 3137 3138 for (i = 0; i < bp->cp_nr_rings; i++) { 3139 struct bnxt_napi *bnapi = bp->bnapi[i]; 3140 struct bnxt_ring_mem_info *rmem; 3141 struct bnxt_cp_ring_info *cpr; 3142 struct bnxt_rx_ring_info *rxr; 3143 struct bnxt_tx_ring_info *txr; 3144 struct bnxt_ring_struct *ring; 3145 3146 if (!bnapi) 3147 continue; 3148 3149 cpr = &bnapi->cp_ring; 3150 ring = &cpr->cp_ring_struct; 3151 rmem = &ring->ring_mem; 3152 rmem->nr_pages = bp->cp_nr_pages; 3153 rmem->page_size = HW_CMPD_RING_SIZE; 3154 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3155 rmem->dma_arr = cpr->cp_desc_mapping; 3156 rmem->vmem_size = 0; 3157 3158 rxr = bnapi->rx_ring; 3159 if (!rxr) 3160 goto skip_rx; 3161 3162 ring = &rxr->rx_ring_struct; 3163 rmem = &ring->ring_mem; 3164 rmem->nr_pages = bp->rx_nr_pages; 3165 rmem->page_size = HW_RXBD_RING_SIZE; 3166 rmem->pg_arr = (void **)rxr->rx_desc_ring; 3167 rmem->dma_arr = rxr->rx_desc_mapping; 3168 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 3169 rmem->vmem = (void **)&rxr->rx_buf_ring; 3170 3171 ring = &rxr->rx_agg_ring_struct; 3172 rmem = &ring->ring_mem; 3173 rmem->nr_pages = bp->rx_agg_nr_pages; 3174 rmem->page_size = HW_RXBD_RING_SIZE; 3175 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 3176 rmem->dma_arr = rxr->rx_agg_desc_mapping; 3177 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 3178 rmem->vmem = (void **)&rxr->rx_agg_ring; 3179 3180 skip_rx: 3181 txr = bnapi->tx_ring; 3182 if (!txr) 3183 continue; 3184 3185 ring = &txr->tx_ring_struct; 3186 rmem = &ring->ring_mem; 3187 rmem->nr_pages = bp->tx_nr_pages; 3188 rmem->page_size = HW_RXBD_RING_SIZE; 3189 rmem->pg_arr = (void **)txr->tx_desc_ring; 3190 rmem->dma_arr = txr->tx_desc_mapping; 3191 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 3192 rmem->vmem = (void **)&txr->tx_buf_ring; 3193 } 3194 } 3195 3196 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 3197 { 3198 int i; 3199 u32 prod; 3200 struct rx_bd **rx_buf_ring; 3201 3202 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 3203 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 3204 int j; 3205 struct rx_bd *rxbd; 3206 3207 rxbd = rx_buf_ring[i]; 3208 if (!rxbd) 3209 continue; 3210 3211 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 3212 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 3213 rxbd->rx_bd_opaque = prod; 3214 } 3215 } 3216 } 3217 3218 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 3219 { 3220 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3221 struct net_device *dev = bp->dev; 3222 u32 prod; 3223 int i; 3224 3225 prod = rxr->rx_prod; 3226 for (i = 0; i < bp->rx_ring_size; i++) { 3227 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 3228 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 3229 ring_nr, i, bp->rx_ring_size); 3230 break; 3231 } 3232 prod = NEXT_RX(prod); 3233 } 3234 rxr->rx_prod = prod; 3235 3236 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 3237 return 0; 3238 3239 prod = rxr->rx_agg_prod; 3240 for (i = 0; i < bp->rx_agg_ring_size; i++) { 3241 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 3242 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 3243 ring_nr, i, bp->rx_ring_size); 3244 break; 3245 } 3246 prod = NEXT_RX_AGG(prod); 3247 } 3248 rxr->rx_agg_prod = prod; 3249 3250 if (rxr->rx_tpa) { 3251 dma_addr_t mapping; 3252 u8 *data; 3253 3254 for (i = 0; i < bp->max_tpa; i++) { 3255 data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL); 3256 if (!data) 3257 return -ENOMEM; 3258 3259 rxr->rx_tpa[i].data = data; 3260 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 3261 rxr->rx_tpa[i].mapping = mapping; 3262 } 3263 } 3264 return 0; 3265 } 3266 3267 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 3268 { 3269 struct bnxt_rx_ring_info *rxr; 3270 struct bnxt_ring_struct *ring; 3271 u32 type; 3272 3273 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 3274 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 3275 3276 if (NET_IP_ALIGN == 2) 3277 type |= RX_BD_FLAGS_SOP; 3278 3279 rxr = &bp->rx_ring[ring_nr]; 3280 ring = &rxr->rx_ring_struct; 3281 bnxt_init_rxbd_pages(ring, type); 3282 3283 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 3284 bpf_prog_add(bp->xdp_prog, 1); 3285 rxr->xdp_prog = bp->xdp_prog; 3286 } 3287 ring->fw_ring_id = INVALID_HW_RING_ID; 3288 3289 ring = &rxr->rx_agg_ring_struct; 3290 ring->fw_ring_id = INVALID_HW_RING_ID; 3291 3292 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 3293 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 3294 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 3295 3296 bnxt_init_rxbd_pages(ring, type); 3297 } 3298 3299 return bnxt_alloc_one_rx_ring(bp, ring_nr); 3300 } 3301 3302 static void bnxt_init_cp_rings(struct bnxt *bp) 3303 { 3304 int i, j; 3305 3306 for (i = 0; i < bp->cp_nr_rings; i++) { 3307 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 3308 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3309 3310 ring->fw_ring_id = INVALID_HW_RING_ID; 3311 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3312 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3313 for (j = 0; j < 2; j++) { 3314 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 3315 3316 if (!cpr2) 3317 continue; 3318 3319 ring = &cpr2->cp_ring_struct; 3320 ring->fw_ring_id = INVALID_HW_RING_ID; 3321 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 3322 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 3323 } 3324 } 3325 } 3326 3327 static int bnxt_init_rx_rings(struct bnxt *bp) 3328 { 3329 int i, rc = 0; 3330 3331 if (BNXT_RX_PAGE_MODE(bp)) { 3332 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 3333 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 3334 } else { 3335 bp->rx_offset = BNXT_RX_OFFSET; 3336 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 3337 } 3338 3339 for (i = 0; i < bp->rx_nr_rings; i++) { 3340 rc = bnxt_init_one_rx_ring(bp, i); 3341 if (rc) 3342 break; 3343 } 3344 3345 return rc; 3346 } 3347 3348 static int bnxt_init_tx_rings(struct bnxt *bp) 3349 { 3350 u16 i; 3351 3352 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 3353 MAX_SKB_FRAGS + 1); 3354 3355 for (i = 0; i < bp->tx_nr_rings; i++) { 3356 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3357 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3358 3359 ring->fw_ring_id = INVALID_HW_RING_ID; 3360 } 3361 3362 return 0; 3363 } 3364 3365 static void bnxt_free_ring_grps(struct bnxt *bp) 3366 { 3367 kfree(bp->grp_info); 3368 bp->grp_info = NULL; 3369 } 3370 3371 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 3372 { 3373 int i; 3374 3375 if (irq_re_init) { 3376 bp->grp_info = kcalloc(bp->cp_nr_rings, 3377 sizeof(struct bnxt_ring_grp_info), 3378 GFP_KERNEL); 3379 if (!bp->grp_info) 3380 return -ENOMEM; 3381 } 3382 for (i = 0; i < bp->cp_nr_rings; i++) { 3383 if (irq_re_init) 3384 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 3385 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3386 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 3387 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 3388 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 3389 } 3390 return 0; 3391 } 3392 3393 static void bnxt_free_vnics(struct bnxt *bp) 3394 { 3395 kfree(bp->vnic_info); 3396 bp->vnic_info = NULL; 3397 bp->nr_vnics = 0; 3398 } 3399 3400 static int bnxt_alloc_vnics(struct bnxt *bp) 3401 { 3402 int num_vnics = 1; 3403 3404 #ifdef CONFIG_RFS_ACCEL 3405 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 3406 num_vnics += bp->rx_nr_rings; 3407 #endif 3408 3409 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 3410 num_vnics++; 3411 3412 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 3413 GFP_KERNEL); 3414 if (!bp->vnic_info) 3415 return -ENOMEM; 3416 3417 bp->nr_vnics = num_vnics; 3418 return 0; 3419 } 3420 3421 static void bnxt_init_vnics(struct bnxt *bp) 3422 { 3423 int i; 3424 3425 for (i = 0; i < bp->nr_vnics; i++) { 3426 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3427 int j; 3428 3429 vnic->fw_vnic_id = INVALID_HW_RING_ID; 3430 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 3431 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 3432 3433 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 3434 3435 if (bp->vnic_info[i].rss_hash_key) { 3436 if (i == 0) 3437 prandom_bytes(vnic->rss_hash_key, 3438 HW_HASH_KEY_SIZE); 3439 else 3440 memcpy(vnic->rss_hash_key, 3441 bp->vnic_info[0].rss_hash_key, 3442 HW_HASH_KEY_SIZE); 3443 } 3444 } 3445 } 3446 3447 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 3448 { 3449 int pages; 3450 3451 pages = ring_size / desc_per_pg; 3452 3453 if (!pages) 3454 return 1; 3455 3456 pages++; 3457 3458 while (pages & (pages - 1)) 3459 pages++; 3460 3461 return pages; 3462 } 3463 3464 void bnxt_set_tpa_flags(struct bnxt *bp) 3465 { 3466 bp->flags &= ~BNXT_FLAG_TPA; 3467 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 3468 return; 3469 if (bp->dev->features & NETIF_F_LRO) 3470 bp->flags |= BNXT_FLAG_LRO; 3471 else if (bp->dev->features & NETIF_F_GRO_HW) 3472 bp->flags |= BNXT_FLAG_GRO; 3473 } 3474 3475 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 3476 * be set on entry. 3477 */ 3478 void bnxt_set_ring_params(struct bnxt *bp) 3479 { 3480 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 3481 u32 agg_factor = 0, agg_ring_size = 0; 3482 3483 /* 8 for CRC and VLAN */ 3484 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 3485 3486 rx_space = rx_size + NET_SKB_PAD + 3487 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3488 3489 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 3490 ring_size = bp->rx_ring_size; 3491 bp->rx_agg_ring_size = 0; 3492 bp->rx_agg_nr_pages = 0; 3493 3494 if (bp->flags & BNXT_FLAG_TPA) 3495 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 3496 3497 bp->flags &= ~BNXT_FLAG_JUMBO; 3498 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 3499 u32 jumbo_factor; 3500 3501 bp->flags |= BNXT_FLAG_JUMBO; 3502 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 3503 if (jumbo_factor > agg_factor) 3504 agg_factor = jumbo_factor; 3505 } 3506 agg_ring_size = ring_size * agg_factor; 3507 3508 if (agg_ring_size) { 3509 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 3510 RX_DESC_CNT); 3511 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 3512 u32 tmp = agg_ring_size; 3513 3514 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 3515 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 3516 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 3517 tmp, agg_ring_size); 3518 } 3519 bp->rx_agg_ring_size = agg_ring_size; 3520 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 3521 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 3522 rx_space = rx_size + NET_SKB_PAD + 3523 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3524 } 3525 3526 bp->rx_buf_use_size = rx_size; 3527 bp->rx_buf_size = rx_space; 3528 3529 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 3530 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 3531 3532 ring_size = bp->tx_ring_size; 3533 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 3534 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 3535 3536 max_rx_cmpl = bp->rx_ring_size; 3537 /* MAX TPA needs to be added because TPA_START completions are 3538 * immediately recycled, so the TPA completions are not bound by 3539 * the RX ring size. 3540 */ 3541 if (bp->flags & BNXT_FLAG_TPA) 3542 max_rx_cmpl += bp->max_tpa; 3543 /* RX and TPA completions are 32-byte, all others are 16-byte */ 3544 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 3545 bp->cp_ring_size = ring_size; 3546 3547 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 3548 if (bp->cp_nr_pages > MAX_CP_PAGES) { 3549 bp->cp_nr_pages = MAX_CP_PAGES; 3550 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 3551 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 3552 ring_size, bp->cp_ring_size); 3553 } 3554 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 3555 bp->cp_ring_mask = bp->cp_bit - 1; 3556 } 3557 3558 /* Changing allocation mode of RX rings. 3559 * TODO: Update when extending xdp_rxq_info to support allocation modes. 3560 */ 3561 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 3562 { 3563 if (page_mode) { 3564 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU) 3565 return -EOPNOTSUPP; 3566 bp->dev->max_mtu = 3567 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 3568 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 3569 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE; 3570 bp->rx_dir = DMA_BIDIRECTIONAL; 3571 bp->rx_skb_func = bnxt_rx_page_skb; 3572 /* Disable LRO or GRO_HW */ 3573 netdev_update_features(bp->dev); 3574 } else { 3575 bp->dev->max_mtu = bp->max_mtu; 3576 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 3577 bp->rx_dir = DMA_FROM_DEVICE; 3578 bp->rx_skb_func = bnxt_rx_skb; 3579 } 3580 return 0; 3581 } 3582 3583 static void bnxt_free_vnic_attributes(struct bnxt *bp) 3584 { 3585 int i; 3586 struct bnxt_vnic_info *vnic; 3587 struct pci_dev *pdev = bp->pdev; 3588 3589 if (!bp->vnic_info) 3590 return; 3591 3592 for (i = 0; i < bp->nr_vnics; i++) { 3593 vnic = &bp->vnic_info[i]; 3594 3595 kfree(vnic->fw_grp_ids); 3596 vnic->fw_grp_ids = NULL; 3597 3598 kfree(vnic->uc_list); 3599 vnic->uc_list = NULL; 3600 3601 if (vnic->mc_list) { 3602 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 3603 vnic->mc_list, vnic->mc_list_mapping); 3604 vnic->mc_list = NULL; 3605 } 3606 3607 if (vnic->rss_table) { 3608 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 3609 vnic->rss_table, 3610 vnic->rss_table_dma_addr); 3611 vnic->rss_table = NULL; 3612 } 3613 3614 vnic->rss_hash_key = NULL; 3615 vnic->flags = 0; 3616 } 3617 } 3618 3619 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 3620 { 3621 int i, rc = 0, size; 3622 struct bnxt_vnic_info *vnic; 3623 struct pci_dev *pdev = bp->pdev; 3624 int max_rings; 3625 3626 for (i = 0; i < bp->nr_vnics; i++) { 3627 vnic = &bp->vnic_info[i]; 3628 3629 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 3630 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 3631 3632 if (mem_size > 0) { 3633 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 3634 if (!vnic->uc_list) { 3635 rc = -ENOMEM; 3636 goto out; 3637 } 3638 } 3639 } 3640 3641 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 3642 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 3643 vnic->mc_list = 3644 dma_alloc_coherent(&pdev->dev, 3645 vnic->mc_list_size, 3646 &vnic->mc_list_mapping, 3647 GFP_KERNEL); 3648 if (!vnic->mc_list) { 3649 rc = -ENOMEM; 3650 goto out; 3651 } 3652 } 3653 3654 if (bp->flags & BNXT_FLAG_CHIP_P5) 3655 goto vnic_skip_grps; 3656 3657 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3658 max_rings = bp->rx_nr_rings; 3659 else 3660 max_rings = 1; 3661 3662 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 3663 if (!vnic->fw_grp_ids) { 3664 rc = -ENOMEM; 3665 goto out; 3666 } 3667 vnic_skip_grps: 3668 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 3669 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 3670 continue; 3671 3672 /* Allocate rss table and hash key */ 3673 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 3674 if (bp->flags & BNXT_FLAG_CHIP_P5) 3675 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 3676 3677 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 3678 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 3679 vnic->rss_table_size, 3680 &vnic->rss_table_dma_addr, 3681 GFP_KERNEL); 3682 if (!vnic->rss_table) { 3683 rc = -ENOMEM; 3684 goto out; 3685 } 3686 3687 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 3688 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 3689 } 3690 return 0; 3691 3692 out: 3693 return rc; 3694 } 3695 3696 static void bnxt_free_hwrm_resources(struct bnxt *bp) 3697 { 3698 struct pci_dev *pdev = bp->pdev; 3699 3700 if (bp->hwrm_cmd_resp_addr) { 3701 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 3702 bp->hwrm_cmd_resp_dma_addr); 3703 bp->hwrm_cmd_resp_addr = NULL; 3704 } 3705 3706 if (bp->hwrm_cmd_kong_resp_addr) { 3707 dma_free_coherent(&pdev->dev, PAGE_SIZE, 3708 bp->hwrm_cmd_kong_resp_addr, 3709 bp->hwrm_cmd_kong_resp_dma_addr); 3710 bp->hwrm_cmd_kong_resp_addr = NULL; 3711 } 3712 } 3713 3714 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp) 3715 { 3716 struct pci_dev *pdev = bp->pdev; 3717 3718 if (bp->hwrm_cmd_kong_resp_addr) 3719 return 0; 3720 3721 bp->hwrm_cmd_kong_resp_addr = 3722 dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3723 &bp->hwrm_cmd_kong_resp_dma_addr, 3724 GFP_KERNEL); 3725 if (!bp->hwrm_cmd_kong_resp_addr) 3726 return -ENOMEM; 3727 3728 return 0; 3729 } 3730 3731 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 3732 { 3733 struct pci_dev *pdev = bp->pdev; 3734 3735 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 3736 &bp->hwrm_cmd_resp_dma_addr, 3737 GFP_KERNEL); 3738 if (!bp->hwrm_cmd_resp_addr) 3739 return -ENOMEM; 3740 3741 return 0; 3742 } 3743 3744 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp) 3745 { 3746 if (bp->hwrm_short_cmd_req_addr) { 3747 struct pci_dev *pdev = bp->pdev; 3748 3749 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3750 bp->hwrm_short_cmd_req_addr, 3751 bp->hwrm_short_cmd_req_dma_addr); 3752 bp->hwrm_short_cmd_req_addr = NULL; 3753 } 3754 } 3755 3756 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp) 3757 { 3758 struct pci_dev *pdev = bp->pdev; 3759 3760 if (bp->hwrm_short_cmd_req_addr) 3761 return 0; 3762 3763 bp->hwrm_short_cmd_req_addr = 3764 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len, 3765 &bp->hwrm_short_cmd_req_dma_addr, 3766 GFP_KERNEL); 3767 if (!bp->hwrm_short_cmd_req_addr) 3768 return -ENOMEM; 3769 3770 return 0; 3771 } 3772 3773 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 3774 { 3775 kfree(stats->hw_masks); 3776 stats->hw_masks = NULL; 3777 kfree(stats->sw_stats); 3778 stats->sw_stats = NULL; 3779 if (stats->hw_stats) { 3780 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 3781 stats->hw_stats_map); 3782 stats->hw_stats = NULL; 3783 } 3784 } 3785 3786 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 3787 bool alloc_masks) 3788 { 3789 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 3790 &stats->hw_stats_map, GFP_KERNEL); 3791 if (!stats->hw_stats) 3792 return -ENOMEM; 3793 3794 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 3795 if (!stats->sw_stats) 3796 goto stats_mem_err; 3797 3798 if (alloc_masks) { 3799 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 3800 if (!stats->hw_masks) 3801 goto stats_mem_err; 3802 } 3803 return 0; 3804 3805 stats_mem_err: 3806 bnxt_free_stats_mem(bp, stats); 3807 return -ENOMEM; 3808 } 3809 3810 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 3811 { 3812 int i; 3813 3814 for (i = 0; i < count; i++) 3815 mask_arr[i] = mask; 3816 } 3817 3818 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 3819 { 3820 int i; 3821 3822 for (i = 0; i < count; i++) 3823 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 3824 } 3825 3826 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 3827 struct bnxt_stats_mem *stats) 3828 { 3829 struct hwrm_func_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 3830 struct hwrm_func_qstats_ext_input req = {0}; 3831 __le64 *hw_masks; 3832 int rc; 3833 3834 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 3835 !(bp->flags & BNXT_FLAG_CHIP_P5)) 3836 return -EOPNOTSUPP; 3837 3838 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QSTATS_EXT, -1, -1); 3839 req.fid = cpu_to_le16(0xffff); 3840 req.flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 3841 mutex_lock(&bp->hwrm_cmd_lock); 3842 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3843 if (rc) 3844 goto qstat_exit; 3845 3846 hw_masks = &resp->rx_ucast_pkts; 3847 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 3848 3849 qstat_exit: 3850 mutex_unlock(&bp->hwrm_cmd_lock); 3851 return rc; 3852 } 3853 3854 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 3855 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 3856 3857 static void bnxt_init_stats(struct bnxt *bp) 3858 { 3859 struct bnxt_napi *bnapi = bp->bnapi[0]; 3860 struct bnxt_cp_ring_info *cpr; 3861 struct bnxt_stats_mem *stats; 3862 __le64 *rx_stats, *tx_stats; 3863 int rc, rx_count, tx_count; 3864 u64 *rx_masks, *tx_masks; 3865 u64 mask; 3866 u8 flags; 3867 3868 cpr = &bnapi->cp_ring; 3869 stats = &cpr->stats; 3870 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 3871 if (rc) { 3872 if (bp->flags & BNXT_FLAG_CHIP_P5) 3873 mask = (1ULL << 48) - 1; 3874 else 3875 mask = -1ULL; 3876 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 3877 } 3878 if (bp->flags & BNXT_FLAG_PORT_STATS) { 3879 stats = &bp->port_stats; 3880 rx_stats = stats->hw_stats; 3881 rx_masks = stats->hw_masks; 3882 rx_count = sizeof(struct rx_port_stats) / 8; 3883 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 3884 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 3885 tx_count = sizeof(struct tx_port_stats) / 8; 3886 3887 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 3888 rc = bnxt_hwrm_port_qstats(bp, flags); 3889 if (rc) { 3890 mask = (1ULL << 40) - 1; 3891 3892 bnxt_fill_masks(rx_masks, mask, rx_count); 3893 bnxt_fill_masks(tx_masks, mask, tx_count); 3894 } else { 3895 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 3896 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 3897 bnxt_hwrm_port_qstats(bp, 0); 3898 } 3899 } 3900 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 3901 stats = &bp->rx_port_stats_ext; 3902 rx_stats = stats->hw_stats; 3903 rx_masks = stats->hw_masks; 3904 rx_count = sizeof(struct rx_port_stats_ext) / 8; 3905 stats = &bp->tx_port_stats_ext; 3906 tx_stats = stats->hw_stats; 3907 tx_masks = stats->hw_masks; 3908 tx_count = sizeof(struct tx_port_stats_ext) / 8; 3909 3910 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 3911 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 3912 if (rc) { 3913 mask = (1ULL << 40) - 1; 3914 3915 bnxt_fill_masks(rx_masks, mask, rx_count); 3916 if (tx_stats) 3917 bnxt_fill_masks(tx_masks, mask, tx_count); 3918 } else { 3919 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 3920 if (tx_stats) 3921 bnxt_copy_hw_masks(tx_masks, tx_stats, 3922 tx_count); 3923 bnxt_hwrm_port_qstats_ext(bp, 0); 3924 } 3925 } 3926 } 3927 3928 static void bnxt_free_port_stats(struct bnxt *bp) 3929 { 3930 bp->flags &= ~BNXT_FLAG_PORT_STATS; 3931 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 3932 3933 bnxt_free_stats_mem(bp, &bp->port_stats); 3934 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 3935 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 3936 } 3937 3938 static void bnxt_free_ring_stats(struct bnxt *bp) 3939 { 3940 int i; 3941 3942 if (!bp->bnapi) 3943 return; 3944 3945 for (i = 0; i < bp->cp_nr_rings; i++) { 3946 struct bnxt_napi *bnapi = bp->bnapi[i]; 3947 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3948 3949 bnxt_free_stats_mem(bp, &cpr->stats); 3950 } 3951 } 3952 3953 static int bnxt_alloc_stats(struct bnxt *bp) 3954 { 3955 u32 size, i; 3956 int rc; 3957 3958 size = bp->hw_ring_stats_size; 3959 3960 for (i = 0; i < bp->cp_nr_rings; i++) { 3961 struct bnxt_napi *bnapi = bp->bnapi[i]; 3962 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3963 3964 cpr->stats.len = size; 3965 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 3966 if (rc) 3967 return rc; 3968 3969 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 3970 } 3971 3972 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 3973 return 0; 3974 3975 if (bp->port_stats.hw_stats) 3976 goto alloc_ext_stats; 3977 3978 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 3979 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 3980 if (rc) 3981 return rc; 3982 3983 bp->flags |= BNXT_FLAG_PORT_STATS; 3984 3985 alloc_ext_stats: 3986 /* Display extended statistics only if FW supports it */ 3987 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 3988 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 3989 return 0; 3990 3991 if (bp->rx_port_stats_ext.hw_stats) 3992 goto alloc_tx_ext_stats; 3993 3994 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 3995 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 3996 /* Extended stats are optional */ 3997 if (rc) 3998 return 0; 3999 4000 alloc_tx_ext_stats: 4001 if (bp->tx_port_stats_ext.hw_stats) 4002 return 0; 4003 4004 if (bp->hwrm_spec_code >= 0x10902 || 4005 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4006 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4007 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4008 /* Extended stats are optional */ 4009 if (rc) 4010 return 0; 4011 } 4012 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 4013 return 0; 4014 } 4015 4016 static void bnxt_clear_ring_indices(struct bnxt *bp) 4017 { 4018 int i; 4019 4020 if (!bp->bnapi) 4021 return; 4022 4023 for (i = 0; i < bp->cp_nr_rings; i++) { 4024 struct bnxt_napi *bnapi = bp->bnapi[i]; 4025 struct bnxt_cp_ring_info *cpr; 4026 struct bnxt_rx_ring_info *rxr; 4027 struct bnxt_tx_ring_info *txr; 4028 4029 if (!bnapi) 4030 continue; 4031 4032 cpr = &bnapi->cp_ring; 4033 cpr->cp_raw_cons = 0; 4034 4035 txr = bnapi->tx_ring; 4036 if (txr) { 4037 txr->tx_prod = 0; 4038 txr->tx_cons = 0; 4039 } 4040 4041 rxr = bnapi->rx_ring; 4042 if (rxr) { 4043 rxr->rx_prod = 0; 4044 rxr->rx_agg_prod = 0; 4045 rxr->rx_sw_agg_prod = 0; 4046 rxr->rx_next_cons = 0; 4047 } 4048 } 4049 } 4050 4051 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 4052 { 4053 #ifdef CONFIG_RFS_ACCEL 4054 int i; 4055 4056 /* Under rtnl_lock and all our NAPIs have been disabled. It's 4057 * safe to delete the hash table. 4058 */ 4059 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 4060 struct hlist_head *head; 4061 struct hlist_node *tmp; 4062 struct bnxt_ntuple_filter *fltr; 4063 4064 head = &bp->ntp_fltr_hash_tbl[i]; 4065 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 4066 hlist_del(&fltr->hash); 4067 kfree(fltr); 4068 } 4069 } 4070 if (irq_reinit) { 4071 kfree(bp->ntp_fltr_bmap); 4072 bp->ntp_fltr_bmap = NULL; 4073 } 4074 bp->ntp_fltr_count = 0; 4075 #endif 4076 } 4077 4078 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 4079 { 4080 #ifdef CONFIG_RFS_ACCEL 4081 int i, rc = 0; 4082 4083 if (!(bp->flags & BNXT_FLAG_RFS)) 4084 return 0; 4085 4086 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 4087 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 4088 4089 bp->ntp_fltr_count = 0; 4090 bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 4091 sizeof(long), 4092 GFP_KERNEL); 4093 4094 if (!bp->ntp_fltr_bmap) 4095 rc = -ENOMEM; 4096 4097 return rc; 4098 #else 4099 return 0; 4100 #endif 4101 } 4102 4103 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 4104 { 4105 bnxt_free_vnic_attributes(bp); 4106 bnxt_free_tx_rings(bp); 4107 bnxt_free_rx_rings(bp); 4108 bnxt_free_cp_rings(bp); 4109 bnxt_free_ntp_fltrs(bp, irq_re_init); 4110 if (irq_re_init) { 4111 bnxt_free_ring_stats(bp); 4112 if (!(bp->fw_cap & BNXT_FW_CAP_PORT_STATS_NO_RESET)) 4113 bnxt_free_port_stats(bp); 4114 bnxt_free_ring_grps(bp); 4115 bnxt_free_vnics(bp); 4116 kfree(bp->tx_ring_map); 4117 bp->tx_ring_map = NULL; 4118 kfree(bp->tx_ring); 4119 bp->tx_ring = NULL; 4120 kfree(bp->rx_ring); 4121 bp->rx_ring = NULL; 4122 kfree(bp->bnapi); 4123 bp->bnapi = NULL; 4124 } else { 4125 bnxt_clear_ring_indices(bp); 4126 } 4127 } 4128 4129 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 4130 { 4131 int i, j, rc, size, arr_size; 4132 void *bnapi; 4133 4134 if (irq_re_init) { 4135 /* Allocate bnapi mem pointer array and mem block for 4136 * all queues 4137 */ 4138 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 4139 bp->cp_nr_rings); 4140 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 4141 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 4142 if (!bnapi) 4143 return -ENOMEM; 4144 4145 bp->bnapi = bnapi; 4146 bnapi += arr_size; 4147 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 4148 bp->bnapi[i] = bnapi; 4149 bp->bnapi[i]->index = i; 4150 bp->bnapi[i]->bp = bp; 4151 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4152 struct bnxt_cp_ring_info *cpr = 4153 &bp->bnapi[i]->cp_ring; 4154 4155 cpr->cp_ring_struct.ring_mem.flags = 4156 BNXT_RMEM_RING_PTE_FLAG; 4157 } 4158 } 4159 4160 bp->rx_ring = kcalloc(bp->rx_nr_rings, 4161 sizeof(struct bnxt_rx_ring_info), 4162 GFP_KERNEL); 4163 if (!bp->rx_ring) 4164 return -ENOMEM; 4165 4166 for (i = 0; i < bp->rx_nr_rings; i++) { 4167 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 4168 4169 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4170 rxr->rx_ring_struct.ring_mem.flags = 4171 BNXT_RMEM_RING_PTE_FLAG; 4172 rxr->rx_agg_ring_struct.ring_mem.flags = 4173 BNXT_RMEM_RING_PTE_FLAG; 4174 } 4175 rxr->bnapi = bp->bnapi[i]; 4176 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 4177 } 4178 4179 bp->tx_ring = kcalloc(bp->tx_nr_rings, 4180 sizeof(struct bnxt_tx_ring_info), 4181 GFP_KERNEL); 4182 if (!bp->tx_ring) 4183 return -ENOMEM; 4184 4185 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 4186 GFP_KERNEL); 4187 4188 if (!bp->tx_ring_map) 4189 return -ENOMEM; 4190 4191 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 4192 j = 0; 4193 else 4194 j = bp->rx_nr_rings; 4195 4196 for (i = 0; i < bp->tx_nr_rings; i++, j++) { 4197 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4198 4199 if (bp->flags & BNXT_FLAG_CHIP_P5) 4200 txr->tx_ring_struct.ring_mem.flags = 4201 BNXT_RMEM_RING_PTE_FLAG; 4202 txr->bnapi = bp->bnapi[j]; 4203 bp->bnapi[j]->tx_ring = txr; 4204 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 4205 if (i >= bp->tx_nr_rings_xdp) { 4206 txr->txq_index = i - bp->tx_nr_rings_xdp; 4207 bp->bnapi[j]->tx_int = bnxt_tx_int; 4208 } else { 4209 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP; 4210 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp; 4211 } 4212 } 4213 4214 rc = bnxt_alloc_stats(bp); 4215 if (rc) 4216 goto alloc_mem_err; 4217 bnxt_init_stats(bp); 4218 4219 rc = bnxt_alloc_ntp_fltrs(bp); 4220 if (rc) 4221 goto alloc_mem_err; 4222 4223 rc = bnxt_alloc_vnics(bp); 4224 if (rc) 4225 goto alloc_mem_err; 4226 } 4227 4228 bnxt_init_ring_struct(bp); 4229 4230 rc = bnxt_alloc_rx_rings(bp); 4231 if (rc) 4232 goto alloc_mem_err; 4233 4234 rc = bnxt_alloc_tx_rings(bp); 4235 if (rc) 4236 goto alloc_mem_err; 4237 4238 rc = bnxt_alloc_cp_rings(bp); 4239 if (rc) 4240 goto alloc_mem_err; 4241 4242 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 4243 BNXT_VNIC_UCAST_FLAG; 4244 rc = bnxt_alloc_vnic_attributes(bp); 4245 if (rc) 4246 goto alloc_mem_err; 4247 return 0; 4248 4249 alloc_mem_err: 4250 bnxt_free_mem(bp, true); 4251 return rc; 4252 } 4253 4254 static void bnxt_disable_int(struct bnxt *bp) 4255 { 4256 int i; 4257 4258 if (!bp->bnapi) 4259 return; 4260 4261 for (i = 0; i < bp->cp_nr_rings; i++) { 4262 struct bnxt_napi *bnapi = bp->bnapi[i]; 4263 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4264 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4265 4266 if (ring->fw_ring_id != INVALID_HW_RING_ID) 4267 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 4268 } 4269 } 4270 4271 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 4272 { 4273 struct bnxt_napi *bnapi = bp->bnapi[n]; 4274 struct bnxt_cp_ring_info *cpr; 4275 4276 cpr = &bnapi->cp_ring; 4277 return cpr->cp_ring_struct.map_idx; 4278 } 4279 4280 static void bnxt_disable_int_sync(struct bnxt *bp) 4281 { 4282 int i; 4283 4284 atomic_inc(&bp->intr_sem); 4285 4286 bnxt_disable_int(bp); 4287 for (i = 0; i < bp->cp_nr_rings; i++) { 4288 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 4289 4290 synchronize_irq(bp->irq_tbl[map_idx].vector); 4291 } 4292 } 4293 4294 static void bnxt_enable_int(struct bnxt *bp) 4295 { 4296 int i; 4297 4298 atomic_set(&bp->intr_sem, 0); 4299 for (i = 0; i < bp->cp_nr_rings; i++) { 4300 struct bnxt_napi *bnapi = bp->bnapi[i]; 4301 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4302 4303 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 4304 } 4305 } 4306 4307 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 4308 u16 cmpl_ring, u16 target_id) 4309 { 4310 struct input *req = request; 4311 4312 req->req_type = cpu_to_le16(req_type); 4313 req->cmpl_ring = cpu_to_le16(cmpl_ring); 4314 req->target_id = cpu_to_le16(target_id); 4315 if (bnxt_kong_hwrm_message(bp, req)) 4316 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 4317 else 4318 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 4319 } 4320 4321 static int bnxt_hwrm_to_stderr(u32 hwrm_err) 4322 { 4323 switch (hwrm_err) { 4324 case HWRM_ERR_CODE_SUCCESS: 4325 return 0; 4326 case HWRM_ERR_CODE_RESOURCE_LOCKED: 4327 return -EROFS; 4328 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: 4329 return -EACCES; 4330 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: 4331 return -ENOSPC; 4332 case HWRM_ERR_CODE_INVALID_PARAMS: 4333 case HWRM_ERR_CODE_INVALID_FLAGS: 4334 case HWRM_ERR_CODE_INVALID_ENABLES: 4335 case HWRM_ERR_CODE_UNSUPPORTED_TLV: 4336 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: 4337 return -EINVAL; 4338 case HWRM_ERR_CODE_NO_BUFFER: 4339 return -ENOMEM; 4340 case HWRM_ERR_CODE_HOT_RESET_PROGRESS: 4341 case HWRM_ERR_CODE_BUSY: 4342 return -EAGAIN; 4343 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: 4344 return -EOPNOTSUPP; 4345 default: 4346 return -EIO; 4347 } 4348 } 4349 4350 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len, 4351 int timeout, bool silent) 4352 { 4353 int i, intr_process, rc, tmo_count; 4354 struct input *req = msg; 4355 u32 *data = msg; 4356 u8 *valid; 4357 u16 cp_ring_id, len = 0; 4358 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 4359 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; 4360 struct hwrm_short_input short_input = {0}; 4361 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; 4362 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; 4363 u16 dst = BNXT_HWRM_CHNL_CHIMP; 4364 4365 if (BNXT_NO_FW_ACCESS(bp)) 4366 return -EBUSY; 4367 4368 if (msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4369 if (msg_len > bp->hwrm_max_ext_req_len || 4370 !bp->hwrm_short_cmd_req_addr) 4371 return -EINVAL; 4372 } 4373 4374 if (bnxt_hwrm_kong_chnl(bp, req)) { 4375 dst = BNXT_HWRM_CHNL_KONG; 4376 bar_offset = BNXT_GRCPF_REG_KONG_COMM; 4377 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; 4378 resp = bp->hwrm_cmd_kong_resp_addr; 4379 } 4380 4381 memset(resp, 0, PAGE_SIZE); 4382 cp_ring_id = le16_to_cpu(req->cmpl_ring); 4383 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 4384 4385 req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst)); 4386 /* currently supports only one outstanding message */ 4387 if (intr_process) 4388 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id); 4389 4390 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 4391 msg_len > BNXT_HWRM_MAX_REQ_LEN) { 4392 void *short_cmd_req = bp->hwrm_short_cmd_req_addr; 4393 u16 max_msg_len; 4394 4395 /* Set boundary for maximum extended request length for short 4396 * cmd format. If passed up from device use the max supported 4397 * internal req length. 4398 */ 4399 max_msg_len = bp->hwrm_max_ext_req_len; 4400 4401 memcpy(short_cmd_req, req, msg_len); 4402 if (msg_len < max_msg_len) 4403 memset(short_cmd_req + msg_len, 0, 4404 max_msg_len - msg_len); 4405 4406 short_input.req_type = req->req_type; 4407 short_input.signature = 4408 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); 4409 short_input.size = cpu_to_le16(msg_len); 4410 short_input.req_addr = 4411 cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr); 4412 4413 data = (u32 *)&short_input; 4414 msg_len = sizeof(short_input); 4415 4416 /* Sync memory write before updating doorbell */ 4417 wmb(); 4418 4419 max_req_len = BNXT_HWRM_SHORT_REQ_LEN; 4420 } 4421 4422 /* Write request msg to hwrm channel */ 4423 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); 4424 4425 for (i = msg_len; i < max_req_len; i += 4) 4426 writel(0, bp->bar0 + bar_offset + i); 4427 4428 /* Ring channel doorbell */ 4429 writel(1, bp->bar0 + doorbell_offset); 4430 4431 if (!pci_is_enabled(bp->pdev)) 4432 return 0; 4433 4434 if (!timeout) 4435 timeout = DFLT_HWRM_CMD_TIMEOUT; 4436 /* convert timeout to usec */ 4437 timeout *= 1000; 4438 4439 i = 0; 4440 /* Short timeout for the first few iterations: 4441 * number of loops = number of loops for short timeout + 4442 * number of loops for standard timeout. 4443 */ 4444 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; 4445 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; 4446 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); 4447 4448 if (intr_process) { 4449 u16 seq_id = bp->hwrm_intr_seq_id; 4450 4451 /* Wait until hwrm response cmpl interrupt is processed */ 4452 while (bp->hwrm_intr_seq_id != (u16)~seq_id && 4453 i++ < tmo_count) { 4454 /* Abort the wait for completion if the FW health 4455 * check has failed. 4456 */ 4457 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4458 return -EBUSY; 4459 /* on first few passes, just barely sleep */ 4460 if (i < HWRM_SHORT_TIMEOUT_COUNTER) 4461 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4462 HWRM_SHORT_MAX_TIMEOUT); 4463 else 4464 usleep_range(HWRM_MIN_TIMEOUT, 4465 HWRM_MAX_TIMEOUT); 4466 } 4467 4468 if (bp->hwrm_intr_seq_id != (u16)~seq_id) { 4469 if (!silent) 4470 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 4471 le16_to_cpu(req->req_type)); 4472 return -EBUSY; 4473 } 4474 len = le16_to_cpu(resp->resp_len); 4475 valid = ((u8 *)resp) + len - 1; 4476 } else { 4477 int j; 4478 4479 /* Check if response len is updated */ 4480 for (i = 0; i < tmo_count; i++) { 4481 /* Abort the wait for completion if the FW health 4482 * check has failed. 4483 */ 4484 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 4485 return -EBUSY; 4486 len = le16_to_cpu(resp->resp_len); 4487 if (len) 4488 break; 4489 /* on first few passes, just barely sleep */ 4490 if (i < HWRM_SHORT_TIMEOUT_COUNTER) 4491 usleep_range(HWRM_SHORT_MIN_TIMEOUT, 4492 HWRM_SHORT_MAX_TIMEOUT); 4493 else 4494 usleep_range(HWRM_MIN_TIMEOUT, 4495 HWRM_MAX_TIMEOUT); 4496 } 4497 4498 if (i >= tmo_count) { 4499 if (!silent) 4500 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 4501 HWRM_TOTAL_TIMEOUT(i), 4502 le16_to_cpu(req->req_type), 4503 le16_to_cpu(req->seq_id), len); 4504 return -EBUSY; 4505 } 4506 4507 /* Last byte of resp contains valid bit */ 4508 valid = ((u8 *)resp) + len - 1; 4509 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) { 4510 /* make sure we read from updated DMA memory */ 4511 dma_rmb(); 4512 if (*valid) 4513 break; 4514 usleep_range(1, 5); 4515 } 4516 4517 if (j >= HWRM_VALID_BIT_DELAY_USEC) { 4518 if (!silent) 4519 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 4520 HWRM_TOTAL_TIMEOUT(i), 4521 le16_to_cpu(req->req_type), 4522 le16_to_cpu(req->seq_id), len, 4523 *valid); 4524 return -EBUSY; 4525 } 4526 } 4527 4528 /* Zero valid bit for compatibility. Valid bit in an older spec 4529 * may become a new field in a newer spec. We must make sure that 4530 * a new field not implemented by old spec will read zero. 4531 */ 4532 *valid = 0; 4533 rc = le16_to_cpu(resp->error_code); 4534 if (rc && !silent) 4535 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 4536 le16_to_cpu(resp->req_type), 4537 le16_to_cpu(resp->seq_id), rc); 4538 return bnxt_hwrm_to_stderr(rc); 4539 } 4540 4541 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4542 { 4543 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false); 4544 } 4545 4546 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4547 int timeout) 4548 { 4549 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4550 } 4551 4552 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 4553 { 4554 int rc; 4555 4556 mutex_lock(&bp->hwrm_cmd_lock); 4557 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 4558 mutex_unlock(&bp->hwrm_cmd_lock); 4559 return rc; 4560 } 4561 4562 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len, 4563 int timeout) 4564 { 4565 int rc; 4566 4567 mutex_lock(&bp->hwrm_cmd_lock); 4568 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true); 4569 mutex_unlock(&bp->hwrm_cmd_lock); 4570 return rc; 4571 } 4572 4573 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 4574 bool async_only) 4575 { 4576 struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr; 4577 struct hwrm_func_drv_rgtr_input req = {0}; 4578 DECLARE_BITMAP(async_events_bmap, 256); 4579 u32 *events = (u32 *)async_events_bmap; 4580 u32 flags; 4581 int rc, i; 4582 4583 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 4584 4585 req.enables = 4586 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 4587 FUNC_DRV_RGTR_REQ_ENABLES_VER | 4588 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4589 4590 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 4591 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 4592 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 4593 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 4594 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 4595 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 4596 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 4597 req.flags = cpu_to_le32(flags); 4598 req.ver_maj_8b = DRV_VER_MAJ; 4599 req.ver_min_8b = DRV_VER_MIN; 4600 req.ver_upd_8b = DRV_VER_UPD; 4601 req.ver_maj = cpu_to_le16(DRV_VER_MAJ); 4602 req.ver_min = cpu_to_le16(DRV_VER_MIN); 4603 req.ver_upd = cpu_to_le16(DRV_VER_UPD); 4604 4605 if (BNXT_PF(bp)) { 4606 u32 data[8]; 4607 int i; 4608 4609 memset(data, 0, sizeof(data)); 4610 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 4611 u16 cmd = bnxt_vf_req_snif[i]; 4612 unsigned int bit, idx; 4613 4614 idx = cmd / 32; 4615 bit = cmd % 32; 4616 data[idx] |= 1 << bit; 4617 } 4618 4619 for (i = 0; i < 8; i++) 4620 req.vf_req_fwd[i] = cpu_to_le32(data[i]); 4621 4622 req.enables |= 4623 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 4624 } 4625 4626 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 4627 req.flags |= cpu_to_le32( 4628 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 4629 4630 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 4631 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 4632 u16 event_id = bnxt_async_events_arr[i]; 4633 4634 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 4635 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 4636 continue; 4637 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 4638 } 4639 if (bmap && bmap_size) { 4640 for (i = 0; i < bmap_size; i++) { 4641 if (test_bit(i, bmap)) 4642 __set_bit(i, async_events_bmap); 4643 } 4644 } 4645 for (i = 0; i < 8; i++) 4646 req.async_event_fwd[i] |= cpu_to_le32(events[i]); 4647 4648 if (async_only) 4649 req.enables = 4650 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 4651 4652 mutex_lock(&bp->hwrm_cmd_lock); 4653 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4654 if (!rc) { 4655 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 4656 if (resp->flags & 4657 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 4658 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 4659 } 4660 mutex_unlock(&bp->hwrm_cmd_lock); 4661 return rc; 4662 } 4663 4664 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 4665 { 4666 struct hwrm_func_drv_unrgtr_input req = {0}; 4667 4668 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 4669 return 0; 4670 4671 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1); 4672 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4673 } 4674 4675 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 4676 { 4677 u32 rc = 0; 4678 struct hwrm_tunnel_dst_port_free_input req = {0}; 4679 4680 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 4681 req.tunnel_type = tunnel_type; 4682 4683 switch (tunnel_type) { 4684 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 4685 req.tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 4686 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 4687 break; 4688 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 4689 req.tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 4690 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 4691 break; 4692 default: 4693 break; 4694 } 4695 4696 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4697 if (rc) 4698 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 4699 rc); 4700 return rc; 4701 } 4702 4703 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 4704 u8 tunnel_type) 4705 { 4706 u32 rc = 0; 4707 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 4708 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4709 4710 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 4711 4712 req.tunnel_type = tunnel_type; 4713 req.tunnel_dst_port_val = port; 4714 4715 mutex_lock(&bp->hwrm_cmd_lock); 4716 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4717 if (rc) { 4718 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 4719 rc); 4720 goto err_out; 4721 } 4722 4723 switch (tunnel_type) { 4724 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 4725 bp->vxlan_fw_dst_port_id = 4726 le16_to_cpu(resp->tunnel_dst_port_id); 4727 break; 4728 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 4729 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 4730 break; 4731 default: 4732 break; 4733 } 4734 4735 err_out: 4736 mutex_unlock(&bp->hwrm_cmd_lock); 4737 return rc; 4738 } 4739 4740 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 4741 { 4742 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 4743 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4744 4745 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 4746 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 4747 4748 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 4749 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 4750 req.mask = cpu_to_le32(vnic->rx_mask); 4751 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4752 } 4753 4754 #ifdef CONFIG_RFS_ACCEL 4755 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 4756 struct bnxt_ntuple_filter *fltr) 4757 { 4758 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 4759 4760 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 4761 req.ntuple_filter_id = fltr->filter_id; 4762 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4763 } 4764 4765 #define BNXT_NTP_FLTR_FLAGS \ 4766 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 4767 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 4768 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 4769 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 4770 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 4771 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 4772 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 4773 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 4774 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 4775 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 4776 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 4777 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 4778 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 4779 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 4780 4781 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 4782 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 4783 4784 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 4785 struct bnxt_ntuple_filter *fltr) 4786 { 4787 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 4788 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 4789 struct flow_keys *keys = &fltr->fkeys; 4790 struct bnxt_vnic_info *vnic; 4791 u32 flags = 0; 4792 int rc = 0; 4793 4794 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 4795 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx]; 4796 4797 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 4798 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 4799 req.dst_id = cpu_to_le16(fltr->rxq); 4800 } else { 4801 vnic = &bp->vnic_info[fltr->rxq + 1]; 4802 req.dst_id = cpu_to_le16(vnic->fw_vnic_id); 4803 } 4804 req.flags = cpu_to_le32(flags); 4805 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 4806 4807 req.ethertype = htons(ETH_P_IP); 4808 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 4809 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 4810 req.ip_protocol = keys->basic.ip_proto; 4811 4812 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 4813 int i; 4814 4815 req.ethertype = htons(ETH_P_IPV6); 4816 req.ip_addr_type = 4817 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 4818 *(struct in6_addr *)&req.src_ipaddr[0] = 4819 keys->addrs.v6addrs.src; 4820 *(struct in6_addr *)&req.dst_ipaddr[0] = 4821 keys->addrs.v6addrs.dst; 4822 for (i = 0; i < 4; i++) { 4823 req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4824 req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff); 4825 } 4826 } else { 4827 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 4828 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4829 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 4830 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 4831 } 4832 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 4833 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 4834 req.tunnel_type = 4835 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 4836 } 4837 4838 req.src_port = keys->ports.src; 4839 req.src_port_mask = cpu_to_be16(0xffff); 4840 req.dst_port = keys->ports.dst; 4841 req.dst_port_mask = cpu_to_be16(0xffff); 4842 4843 mutex_lock(&bp->hwrm_cmd_lock); 4844 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4845 if (!rc) { 4846 resp = bnxt_get_hwrm_resp_addr(bp, &req); 4847 fltr->filter_id = resp->ntuple_filter_id; 4848 } 4849 mutex_unlock(&bp->hwrm_cmd_lock); 4850 return rc; 4851 } 4852 #endif 4853 4854 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 4855 u8 *mac_addr) 4856 { 4857 u32 rc = 0; 4858 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 4859 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 4860 4861 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 4862 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 4863 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 4864 req.flags |= 4865 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 4866 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 4867 req.enables = 4868 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 4869 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 4870 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 4871 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 4872 req.l2_addr_mask[0] = 0xff; 4873 req.l2_addr_mask[1] = 0xff; 4874 req.l2_addr_mask[2] = 0xff; 4875 req.l2_addr_mask[3] = 0xff; 4876 req.l2_addr_mask[4] = 0xff; 4877 req.l2_addr_mask[5] = 0xff; 4878 4879 mutex_lock(&bp->hwrm_cmd_lock); 4880 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4881 if (!rc) 4882 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 4883 resp->l2_filter_id; 4884 mutex_unlock(&bp->hwrm_cmd_lock); 4885 return rc; 4886 } 4887 4888 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 4889 { 4890 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 4891 int rc = 0; 4892 4893 /* Any associated ntuple filters will also be cleared by firmware. */ 4894 mutex_lock(&bp->hwrm_cmd_lock); 4895 for (i = 0; i < num_of_vnics; i++) { 4896 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4897 4898 for (j = 0; j < vnic->uc_filter_count; j++) { 4899 struct hwrm_cfa_l2_filter_free_input req = {0}; 4900 4901 bnxt_hwrm_cmd_hdr_init(bp, &req, 4902 HWRM_CFA_L2_FILTER_FREE, -1, -1); 4903 4904 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 4905 4906 rc = _hwrm_send_message(bp, &req, sizeof(req), 4907 HWRM_CMD_TIMEOUT); 4908 } 4909 vnic->uc_filter_count = 0; 4910 } 4911 mutex_unlock(&bp->hwrm_cmd_lock); 4912 4913 return rc; 4914 } 4915 4916 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 4917 { 4918 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 4919 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 4920 struct hwrm_vnic_tpa_cfg_input req = {0}; 4921 4922 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 4923 return 0; 4924 4925 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 4926 4927 if (tpa_flags) { 4928 u16 mss = bp->dev->mtu - 40; 4929 u32 nsegs, n, segs = 0, flags; 4930 4931 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 4932 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 4933 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 4934 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 4935 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 4936 if (tpa_flags & BNXT_FLAG_GRO) 4937 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 4938 4939 req.flags = cpu_to_le32(flags); 4940 4941 req.enables = 4942 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 4943 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 4944 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 4945 4946 /* Number of segs are log2 units, and first packet is not 4947 * included as part of this units. 4948 */ 4949 if (mss <= BNXT_RX_PAGE_SIZE) { 4950 n = BNXT_RX_PAGE_SIZE / mss; 4951 nsegs = (MAX_SKB_FRAGS - 1) * n; 4952 } else { 4953 n = mss / BNXT_RX_PAGE_SIZE; 4954 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 4955 n++; 4956 nsegs = (MAX_SKB_FRAGS - n) / n; 4957 } 4958 4959 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4960 segs = MAX_TPA_SEGS_P5; 4961 max_aggs = bp->max_tpa; 4962 } else { 4963 segs = ilog2(nsegs); 4964 } 4965 req.max_agg_segs = cpu_to_le16(segs); 4966 req.max_aggs = cpu_to_le16(max_aggs); 4967 4968 req.min_agg_len = cpu_to_le32(512); 4969 } 4970 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 4971 4972 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4973 } 4974 4975 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 4976 { 4977 struct bnxt_ring_grp_info *grp_info; 4978 4979 grp_info = &bp->grp_info[ring->grp_idx]; 4980 return grp_info->cp_fw_ring_id; 4981 } 4982 4983 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 4984 { 4985 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4986 struct bnxt_napi *bnapi = rxr->bnapi; 4987 struct bnxt_cp_ring_info *cpr; 4988 4989 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL]; 4990 return cpr->cp_ring_struct.fw_ring_id; 4991 } else { 4992 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 4993 } 4994 } 4995 4996 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 4997 { 4998 if (bp->flags & BNXT_FLAG_CHIP_P5) { 4999 struct bnxt_napi *bnapi = txr->bnapi; 5000 struct bnxt_cp_ring_info *cpr; 5001 5002 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL]; 5003 return cpr->cp_ring_struct.fw_ring_id; 5004 } else { 5005 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 5006 } 5007 } 5008 5009 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 5010 { 5011 int entries; 5012 5013 if (bp->flags & BNXT_FLAG_CHIP_P5) 5014 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 5015 else 5016 entries = HW_HASH_INDEX_SIZE; 5017 5018 bp->rss_indir_tbl_entries = entries; 5019 bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), 5020 GFP_KERNEL); 5021 if (!bp->rss_indir_tbl) 5022 return -ENOMEM; 5023 return 0; 5024 } 5025 5026 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp) 5027 { 5028 u16 max_rings, max_entries, pad, i; 5029 5030 if (!bp->rx_nr_rings) 5031 return; 5032 5033 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5034 max_rings = bp->rx_nr_rings - 1; 5035 else 5036 max_rings = bp->rx_nr_rings; 5037 5038 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 5039 5040 for (i = 0; i < max_entries; i++) 5041 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 5042 5043 pad = bp->rss_indir_tbl_entries - max_entries; 5044 if (pad) 5045 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16)); 5046 } 5047 5048 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 5049 { 5050 u16 i, tbl_size, max_ring = 0; 5051 5052 if (!bp->rss_indir_tbl) 5053 return 0; 5054 5055 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5056 for (i = 0; i < tbl_size; i++) 5057 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 5058 return max_ring; 5059 } 5060 5061 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 5062 { 5063 if (bp->flags & BNXT_FLAG_CHIP_P5) 5064 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5); 5065 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 5066 return 2; 5067 return 1; 5068 } 5069 5070 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5071 { 5072 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 5073 u16 i, j; 5074 5075 /* Fill the RSS indirection table with ring group ids */ 5076 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 5077 if (!no_rss) 5078 j = bp->rss_indir_tbl[i]; 5079 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 5080 } 5081 } 5082 5083 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 5084 struct bnxt_vnic_info *vnic) 5085 { 5086 __le16 *ring_tbl = vnic->rss_table; 5087 struct bnxt_rx_ring_info *rxr; 5088 u16 tbl_size, i; 5089 5090 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 5091 5092 for (i = 0; i < tbl_size; i++) { 5093 u16 ring_id, j; 5094 5095 j = bp->rss_indir_tbl[i]; 5096 rxr = &bp->rx_ring[j]; 5097 5098 ring_id = rxr->rx_ring_struct.fw_ring_id; 5099 *ring_tbl++ = cpu_to_le16(ring_id); 5100 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5101 *ring_tbl++ = cpu_to_le16(ring_id); 5102 } 5103 } 5104 5105 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 5106 { 5107 if (bp->flags & BNXT_FLAG_CHIP_P5) 5108 __bnxt_fill_hw_rss_tbl_p5(bp, vnic); 5109 else 5110 __bnxt_fill_hw_rss_tbl(bp, vnic); 5111 } 5112 5113 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 5114 { 5115 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5116 struct hwrm_vnic_rss_cfg_input req = {0}; 5117 5118 if ((bp->flags & BNXT_FLAG_CHIP_P5) || 5119 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 5120 return 0; 5121 5122 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5123 if (set_rss) { 5124 bnxt_fill_hw_rss_tbl(bp, vnic); 5125 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5126 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5127 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 5128 req.hash_key_tbl_addr = 5129 cpu_to_le64(vnic->rss_hash_key_dma_addr); 5130 } 5131 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5132 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5133 } 5134 5135 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss) 5136 { 5137 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5138 struct hwrm_vnic_rss_cfg_input req = {0}; 5139 dma_addr_t ring_tbl_map; 5140 u32 i, nr_ctxs; 5141 5142 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 5143 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5144 if (!set_rss) { 5145 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5146 return 0; 5147 } 5148 bnxt_fill_hw_rss_tbl(bp, vnic); 5149 req.hash_type = cpu_to_le32(bp->rss_hash_cfg); 5150 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 5151 req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 5152 ring_tbl_map = vnic->rss_table_dma_addr; 5153 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 5154 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 5155 int rc; 5156 5157 req.ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 5158 req.ring_table_pair_index = i; 5159 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 5160 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5161 if (rc) 5162 return rc; 5163 } 5164 return 0; 5165 } 5166 5167 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 5168 { 5169 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5170 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 5171 5172 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 5173 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 5174 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 5175 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 5176 req.enables = 5177 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 5178 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 5179 /* thresholds not implemented in firmware yet */ 5180 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 5181 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 5182 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5183 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5184 } 5185 5186 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id, 5187 u16 ctx_idx) 5188 { 5189 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 5190 5191 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 5192 req.rss_cos_lb_ctx_id = 5193 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]); 5194 5195 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5196 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 5197 } 5198 5199 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 5200 { 5201 int i, j; 5202 5203 for (i = 0; i < bp->nr_vnics; i++) { 5204 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 5205 5206 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 5207 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 5208 bnxt_hwrm_vnic_ctx_free_one(bp, i, j); 5209 } 5210 } 5211 bp->rsscos_nr_ctxs = 0; 5212 } 5213 5214 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx) 5215 { 5216 int rc; 5217 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 5218 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 5219 bp->hwrm_cmd_resp_addr; 5220 5221 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 5222 -1); 5223 5224 mutex_lock(&bp->hwrm_cmd_lock); 5225 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5226 if (!rc) 5227 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = 5228 le16_to_cpu(resp->rss_cos_lb_ctx_id); 5229 mutex_unlock(&bp->hwrm_cmd_lock); 5230 5231 return rc; 5232 } 5233 5234 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 5235 { 5236 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 5237 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 5238 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 5239 } 5240 5241 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 5242 { 5243 unsigned int ring = 0, grp_idx; 5244 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5245 struct hwrm_vnic_cfg_input req = {0}; 5246 u16 def_vlan = 0; 5247 5248 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 5249 5250 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5251 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 5252 5253 req.default_rx_ring_id = 5254 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 5255 req.default_cmpl_ring_id = 5256 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 5257 req.enables = 5258 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 5259 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 5260 goto vnic_mru; 5261 } 5262 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 5263 /* Only RSS support for now TBD: COS & LB */ 5264 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 5265 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 5266 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5267 VNIC_CFG_REQ_ENABLES_MRU); 5268 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 5269 req.rss_rule = 5270 cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]); 5271 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 5272 VNIC_CFG_REQ_ENABLES_MRU); 5273 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 5274 } else { 5275 req.rss_rule = cpu_to_le16(0xffff); 5276 } 5277 5278 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 5279 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 5280 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 5281 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 5282 } else { 5283 req.cos_rule = cpu_to_le16(0xffff); 5284 } 5285 5286 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 5287 ring = 0; 5288 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 5289 ring = vnic_id - 1; 5290 else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 5291 ring = bp->rx_nr_rings - 1; 5292 5293 grp_idx = bp->rx_ring[ring].bnapi->index; 5294 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 5295 req.lb_rule = cpu_to_le16(0xffff); 5296 vnic_mru: 5297 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 5298 5299 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 5300 #ifdef CONFIG_BNXT_SRIOV 5301 if (BNXT_VF(bp)) 5302 def_vlan = bp->vf.vlan; 5303 #endif 5304 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 5305 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 5306 if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP)) 5307 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 5308 5309 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5310 } 5311 5312 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 5313 { 5314 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 5315 struct hwrm_vnic_free_input req = {0}; 5316 5317 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 5318 req.vnic_id = 5319 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 5320 5321 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5322 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 5323 } 5324 } 5325 5326 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 5327 { 5328 u16 i; 5329 5330 for (i = 0; i < bp->nr_vnics; i++) 5331 bnxt_hwrm_vnic_free_one(bp, i); 5332 } 5333 5334 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, 5335 unsigned int start_rx_ring_idx, 5336 unsigned int nr_rings) 5337 { 5338 int rc = 0; 5339 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 5340 struct hwrm_vnic_alloc_input req = {0}; 5341 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5342 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5343 5344 if (bp->flags & BNXT_FLAG_CHIP_P5) 5345 goto vnic_no_ring_grps; 5346 5347 /* map ring groups to this vnic */ 5348 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 5349 grp_idx = bp->rx_ring[i].bnapi->index; 5350 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 5351 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 5352 j, nr_rings); 5353 break; 5354 } 5355 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 5356 } 5357 5358 vnic_no_ring_grps: 5359 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 5360 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 5361 if (vnic_id == 0) 5362 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 5363 5364 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 5365 5366 mutex_lock(&bp->hwrm_cmd_lock); 5367 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5368 if (!rc) 5369 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 5370 mutex_unlock(&bp->hwrm_cmd_lock); 5371 return rc; 5372 } 5373 5374 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 5375 { 5376 struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 5377 struct hwrm_vnic_qcaps_input req = {0}; 5378 int rc; 5379 5380 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 5381 bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP); 5382 if (bp->hwrm_spec_code < 0x10600) 5383 return 0; 5384 5385 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1); 5386 mutex_lock(&bp->hwrm_cmd_lock); 5387 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5388 if (!rc) { 5389 u32 flags = le32_to_cpu(resp->flags); 5390 5391 if (!(bp->flags & BNXT_FLAG_CHIP_P5) && 5392 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 5393 bp->flags |= BNXT_FLAG_NEW_RSS_CAP; 5394 if (flags & 5395 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 5396 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 5397 5398 /* Older P5 fw before EXT_HW_STATS support did not set 5399 * VLAN_STRIP_CAP properly. 5400 */ 5401 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 5402 (BNXT_CHIP_P5_THOR(bp) && 5403 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 5404 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 5405 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 5406 if (bp->max_tpa_v2) { 5407 if (BNXT_CHIP_P5_THOR(bp)) 5408 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 5409 else 5410 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2; 5411 } 5412 } 5413 mutex_unlock(&bp->hwrm_cmd_lock); 5414 return rc; 5415 } 5416 5417 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 5418 { 5419 u16 i; 5420 u32 rc = 0; 5421 5422 if (bp->flags & BNXT_FLAG_CHIP_P5) 5423 return 0; 5424 5425 mutex_lock(&bp->hwrm_cmd_lock); 5426 for (i = 0; i < bp->rx_nr_rings; i++) { 5427 struct hwrm_ring_grp_alloc_input req = {0}; 5428 struct hwrm_ring_grp_alloc_output *resp = 5429 bp->hwrm_cmd_resp_addr; 5430 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 5431 5432 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 5433 5434 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 5435 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 5436 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 5437 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 5438 5439 rc = _hwrm_send_message(bp, &req, sizeof(req), 5440 HWRM_CMD_TIMEOUT); 5441 if (rc) 5442 break; 5443 5444 bp->grp_info[grp_idx].fw_grp_id = 5445 le32_to_cpu(resp->ring_group_id); 5446 } 5447 mutex_unlock(&bp->hwrm_cmd_lock); 5448 return rc; 5449 } 5450 5451 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 5452 { 5453 u16 i; 5454 struct hwrm_ring_grp_free_input req = {0}; 5455 5456 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5)) 5457 return; 5458 5459 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 5460 5461 mutex_lock(&bp->hwrm_cmd_lock); 5462 for (i = 0; i < bp->cp_nr_rings; i++) { 5463 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 5464 continue; 5465 req.ring_group_id = 5466 cpu_to_le32(bp->grp_info[i].fw_grp_id); 5467 5468 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5469 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 5470 } 5471 mutex_unlock(&bp->hwrm_cmd_lock); 5472 } 5473 5474 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 5475 struct bnxt_ring_struct *ring, 5476 u32 ring_type, u32 map_index) 5477 { 5478 int rc = 0, err = 0; 5479 struct hwrm_ring_alloc_input req = {0}; 5480 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 5481 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 5482 struct bnxt_ring_grp_info *grp_info; 5483 u16 ring_id; 5484 5485 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 5486 5487 req.enables = 0; 5488 if (rmem->nr_pages > 1) { 5489 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 5490 /* Page size is in log2 units */ 5491 req.page_size = BNXT_PAGE_SHIFT; 5492 req.page_tbl_depth = 1; 5493 } else { 5494 req.page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 5495 } 5496 req.fbo = 0; 5497 /* Association of ring index with doorbell index and MSIX number */ 5498 req.logical_id = cpu_to_le16(map_index); 5499 5500 switch (ring_type) { 5501 case HWRM_RING_ALLOC_TX: { 5502 struct bnxt_tx_ring_info *txr; 5503 5504 txr = container_of(ring, struct bnxt_tx_ring_info, 5505 tx_ring_struct); 5506 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 5507 /* Association of transmit ring with completion ring */ 5508 grp_info = &bp->grp_info[ring->grp_idx]; 5509 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 5510 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 5511 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5512 req.queue_id = cpu_to_le16(ring->queue_id); 5513 break; 5514 } 5515 case HWRM_RING_ALLOC_RX: 5516 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5517 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 5518 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5519 u16 flags = 0; 5520 5521 /* Association of rx ring with stats context */ 5522 grp_info = &bp->grp_info[ring->grp_idx]; 5523 req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 5524 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5525 req.enables |= cpu_to_le32( 5526 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5527 if (NET_IP_ALIGN == 2) 5528 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 5529 req.flags = cpu_to_le16(flags); 5530 } 5531 break; 5532 case HWRM_RING_ALLOC_AGG: 5533 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5534 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 5535 /* Association of agg ring with rx ring */ 5536 grp_info = &bp->grp_info[ring->grp_idx]; 5537 req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 5538 req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 5539 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 5540 req.enables |= cpu_to_le32( 5541 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 5542 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 5543 } else { 5544 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 5545 } 5546 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 5547 break; 5548 case HWRM_RING_ALLOC_CMPL: 5549 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 5550 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5551 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5552 /* Association of cp ring with nq */ 5553 grp_info = &bp->grp_info[map_index]; 5554 req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 5555 req.cq_handle = cpu_to_le64(ring->handle); 5556 req.enables |= cpu_to_le32( 5557 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 5558 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 5559 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5560 } 5561 break; 5562 case HWRM_RING_ALLOC_NQ: 5563 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 5564 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 5565 if (bp->flags & BNXT_FLAG_USING_MSIX) 5566 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 5567 break; 5568 default: 5569 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 5570 ring_type); 5571 return -1; 5572 } 5573 5574 mutex_lock(&bp->hwrm_cmd_lock); 5575 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5576 err = le16_to_cpu(resp->error_code); 5577 ring_id = le16_to_cpu(resp->ring_id); 5578 mutex_unlock(&bp->hwrm_cmd_lock); 5579 5580 if (rc || err) { 5581 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 5582 ring_type, rc, err); 5583 return -EIO; 5584 } 5585 ring->fw_ring_id = ring_id; 5586 return rc; 5587 } 5588 5589 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 5590 { 5591 int rc; 5592 5593 if (BNXT_PF(bp)) { 5594 struct hwrm_func_cfg_input req = {0}; 5595 5596 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 5597 req.fid = cpu_to_le16(0xffff); 5598 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5599 req.async_event_cr = cpu_to_le16(idx); 5600 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5601 } else { 5602 struct hwrm_func_vf_cfg_input req = {0}; 5603 5604 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 5605 req.enables = 5606 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 5607 req.async_event_cr = cpu_to_le16(idx); 5608 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5609 } 5610 return rc; 5611 } 5612 5613 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 5614 u32 map_idx, u32 xid) 5615 { 5616 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5617 if (BNXT_PF(bp)) 5618 db->doorbell = bp->bar1 + DB_PF_OFFSET_P5; 5619 else 5620 db->doorbell = bp->bar1 + DB_VF_OFFSET_P5; 5621 switch (ring_type) { 5622 case HWRM_RING_ALLOC_TX: 5623 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 5624 break; 5625 case HWRM_RING_ALLOC_RX: 5626 case HWRM_RING_ALLOC_AGG: 5627 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 5628 break; 5629 case HWRM_RING_ALLOC_CMPL: 5630 db->db_key64 = DBR_PATH_L2; 5631 break; 5632 case HWRM_RING_ALLOC_NQ: 5633 db->db_key64 = DBR_PATH_L2; 5634 break; 5635 } 5636 db->db_key64 |= (u64)xid << DBR_XID_SFT; 5637 } else { 5638 db->doorbell = bp->bar1 + map_idx * 0x80; 5639 switch (ring_type) { 5640 case HWRM_RING_ALLOC_TX: 5641 db->db_key32 = DB_KEY_TX; 5642 break; 5643 case HWRM_RING_ALLOC_RX: 5644 case HWRM_RING_ALLOC_AGG: 5645 db->db_key32 = DB_KEY_RX; 5646 break; 5647 case HWRM_RING_ALLOC_CMPL: 5648 db->db_key32 = DB_KEY_CP; 5649 break; 5650 } 5651 } 5652 } 5653 5654 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 5655 { 5656 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 5657 int i, rc = 0; 5658 u32 type; 5659 5660 if (bp->flags & BNXT_FLAG_CHIP_P5) 5661 type = HWRM_RING_ALLOC_NQ; 5662 else 5663 type = HWRM_RING_ALLOC_CMPL; 5664 for (i = 0; i < bp->cp_nr_rings; i++) { 5665 struct bnxt_napi *bnapi = bp->bnapi[i]; 5666 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5667 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5668 u32 map_idx = ring->map_idx; 5669 unsigned int vector; 5670 5671 vector = bp->irq_tbl[map_idx].vector; 5672 disable_irq_nosync(vector); 5673 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5674 if (rc) { 5675 enable_irq(vector); 5676 goto err_out; 5677 } 5678 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 5679 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5680 enable_irq(vector); 5681 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 5682 5683 if (!i) { 5684 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 5685 if (rc) 5686 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 5687 } 5688 } 5689 5690 type = HWRM_RING_ALLOC_TX; 5691 for (i = 0; i < bp->tx_nr_rings; i++) { 5692 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5693 struct bnxt_ring_struct *ring; 5694 u32 map_idx; 5695 5696 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5697 struct bnxt_napi *bnapi = txr->bnapi; 5698 struct bnxt_cp_ring_info *cpr, *cpr2; 5699 u32 type2 = HWRM_RING_ALLOC_CMPL; 5700 5701 cpr = &bnapi->cp_ring; 5702 cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL]; 5703 ring = &cpr2->cp_ring_struct; 5704 ring->handle = BNXT_TX_HDL; 5705 map_idx = bnapi->index; 5706 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5707 if (rc) 5708 goto err_out; 5709 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5710 ring->fw_ring_id); 5711 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5712 } 5713 ring = &txr->tx_ring_struct; 5714 map_idx = i; 5715 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5716 if (rc) 5717 goto err_out; 5718 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 5719 } 5720 5721 type = HWRM_RING_ALLOC_RX; 5722 for (i = 0; i < bp->rx_nr_rings; i++) { 5723 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5724 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5725 struct bnxt_napi *bnapi = rxr->bnapi; 5726 u32 map_idx = bnapi->index; 5727 5728 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5729 if (rc) 5730 goto err_out; 5731 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 5732 /* If we have agg rings, post agg buffers first. */ 5733 if (!agg_rings) 5734 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5735 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 5736 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5737 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5738 u32 type2 = HWRM_RING_ALLOC_CMPL; 5739 struct bnxt_cp_ring_info *cpr2; 5740 5741 cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL]; 5742 ring = &cpr2->cp_ring_struct; 5743 ring->handle = BNXT_RX_HDL; 5744 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 5745 if (rc) 5746 goto err_out; 5747 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 5748 ring->fw_ring_id); 5749 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 5750 } 5751 } 5752 5753 if (agg_rings) { 5754 type = HWRM_RING_ALLOC_AGG; 5755 for (i = 0; i < bp->rx_nr_rings; i++) { 5756 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5757 struct bnxt_ring_struct *ring = 5758 &rxr->rx_agg_ring_struct; 5759 u32 grp_idx = ring->grp_idx; 5760 u32 map_idx = grp_idx + bp->rx_nr_rings; 5761 5762 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 5763 if (rc) 5764 goto err_out; 5765 5766 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 5767 ring->fw_ring_id); 5768 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 5769 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 5770 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 5771 } 5772 } 5773 err_out: 5774 return rc; 5775 } 5776 5777 static int hwrm_ring_free_send_msg(struct bnxt *bp, 5778 struct bnxt_ring_struct *ring, 5779 u32 ring_type, int cmpl_ring_id) 5780 { 5781 int rc; 5782 struct hwrm_ring_free_input req = {0}; 5783 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 5784 u16 error_code; 5785 5786 if (BNXT_NO_FW_ACCESS(bp)) 5787 return 0; 5788 5789 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1); 5790 req.ring_type = ring_type; 5791 req.ring_id = cpu_to_le16(ring->fw_ring_id); 5792 5793 mutex_lock(&bp->hwrm_cmd_lock); 5794 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5795 error_code = le16_to_cpu(resp->error_code); 5796 mutex_unlock(&bp->hwrm_cmd_lock); 5797 5798 if (rc || error_code) { 5799 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 5800 ring_type, rc, error_code); 5801 return -EIO; 5802 } 5803 return 0; 5804 } 5805 5806 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 5807 { 5808 u32 type; 5809 int i; 5810 5811 if (!bp->bnapi) 5812 return; 5813 5814 for (i = 0; i < bp->tx_nr_rings; i++) { 5815 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5816 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 5817 5818 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5819 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 5820 5821 hwrm_ring_free_send_msg(bp, ring, 5822 RING_FREE_REQ_RING_TYPE_TX, 5823 close_path ? cmpl_ring_id : 5824 INVALID_HW_RING_ID); 5825 ring->fw_ring_id = INVALID_HW_RING_ID; 5826 } 5827 } 5828 5829 for (i = 0; i < bp->rx_nr_rings; i++) { 5830 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5831 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 5832 u32 grp_idx = rxr->bnapi->index; 5833 5834 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5835 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5836 5837 hwrm_ring_free_send_msg(bp, ring, 5838 RING_FREE_REQ_RING_TYPE_RX, 5839 close_path ? cmpl_ring_id : 5840 INVALID_HW_RING_ID); 5841 ring->fw_ring_id = INVALID_HW_RING_ID; 5842 bp->grp_info[grp_idx].rx_fw_ring_id = 5843 INVALID_HW_RING_ID; 5844 } 5845 } 5846 5847 if (bp->flags & BNXT_FLAG_CHIP_P5) 5848 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 5849 else 5850 type = RING_FREE_REQ_RING_TYPE_RX; 5851 for (i = 0; i < bp->rx_nr_rings; i++) { 5852 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5853 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 5854 u32 grp_idx = rxr->bnapi->index; 5855 5856 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5857 u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 5858 5859 hwrm_ring_free_send_msg(bp, ring, type, 5860 close_path ? cmpl_ring_id : 5861 INVALID_HW_RING_ID); 5862 ring->fw_ring_id = INVALID_HW_RING_ID; 5863 bp->grp_info[grp_idx].agg_fw_ring_id = 5864 INVALID_HW_RING_ID; 5865 } 5866 } 5867 5868 /* The completion rings are about to be freed. After that the 5869 * IRQ doorbell will not work anymore. So we need to disable 5870 * IRQ here. 5871 */ 5872 bnxt_disable_int_sync(bp); 5873 5874 if (bp->flags & BNXT_FLAG_CHIP_P5) 5875 type = RING_FREE_REQ_RING_TYPE_NQ; 5876 else 5877 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 5878 for (i = 0; i < bp->cp_nr_rings; i++) { 5879 struct bnxt_napi *bnapi = bp->bnapi[i]; 5880 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5881 struct bnxt_ring_struct *ring; 5882 int j; 5883 5884 for (j = 0; j < 2; j++) { 5885 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 5886 5887 if (cpr2) { 5888 ring = &cpr2->cp_ring_struct; 5889 if (ring->fw_ring_id == INVALID_HW_RING_ID) 5890 continue; 5891 hwrm_ring_free_send_msg(bp, ring, 5892 RING_FREE_REQ_RING_TYPE_L2_CMPL, 5893 INVALID_HW_RING_ID); 5894 ring->fw_ring_id = INVALID_HW_RING_ID; 5895 } 5896 } 5897 ring = &cpr->cp_ring_struct; 5898 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 5899 hwrm_ring_free_send_msg(bp, ring, type, 5900 INVALID_HW_RING_ID); 5901 ring->fw_ring_id = INVALID_HW_RING_ID; 5902 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 5903 } 5904 } 5905 } 5906 5907 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 5908 bool shared); 5909 5910 static int bnxt_hwrm_get_rings(struct bnxt *bp) 5911 { 5912 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 5913 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 5914 struct hwrm_func_qcfg_input req = {0}; 5915 int rc; 5916 5917 if (bp->hwrm_spec_code < 0x10601) 5918 return 0; 5919 5920 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 5921 req.fid = cpu_to_le16(0xffff); 5922 mutex_lock(&bp->hwrm_cmd_lock); 5923 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5924 if (rc) { 5925 mutex_unlock(&bp->hwrm_cmd_lock); 5926 return rc; 5927 } 5928 5929 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 5930 if (BNXT_NEW_RM(bp)) { 5931 u16 cp, stats; 5932 5933 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 5934 hw_resc->resv_hw_ring_grps = 5935 le32_to_cpu(resp->alloc_hw_ring_grps); 5936 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 5937 cp = le16_to_cpu(resp->alloc_cmpl_rings); 5938 stats = le16_to_cpu(resp->alloc_stat_ctx); 5939 hw_resc->resv_irqs = cp; 5940 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5941 int rx = hw_resc->resv_rx_rings; 5942 int tx = hw_resc->resv_tx_rings; 5943 5944 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5945 rx >>= 1; 5946 if (cp < (rx + tx)) { 5947 bnxt_trim_rings(bp, &rx, &tx, cp, false); 5948 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5949 rx <<= 1; 5950 hw_resc->resv_rx_rings = rx; 5951 hw_resc->resv_tx_rings = tx; 5952 } 5953 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 5954 hw_resc->resv_hw_ring_grps = rx; 5955 } 5956 hw_resc->resv_cp_rings = cp; 5957 hw_resc->resv_stat_ctxs = stats; 5958 } 5959 mutex_unlock(&bp->hwrm_cmd_lock); 5960 return 0; 5961 } 5962 5963 /* Caller must hold bp->hwrm_cmd_lock */ 5964 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 5965 { 5966 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 5967 struct hwrm_func_qcfg_input req = {0}; 5968 int rc; 5969 5970 if (bp->hwrm_spec_code < 0x10601) 5971 return 0; 5972 5973 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 5974 req.fid = cpu_to_le16(fid); 5975 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 5976 if (!rc) 5977 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 5978 5979 return rc; 5980 } 5981 5982 static bool bnxt_rfs_supported(struct bnxt *bp); 5983 5984 static void 5985 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req, 5986 int tx_rings, int rx_rings, int ring_grps, 5987 int cp_rings, int stats, int vnics) 5988 { 5989 u32 enables = 0; 5990 5991 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1); 5992 req->fid = cpu_to_le16(0xffff); 5993 enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 5994 req->num_tx_rings = cpu_to_le16(tx_rings); 5995 if (BNXT_NEW_RM(bp)) { 5996 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 5997 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 5998 if (bp->flags & BNXT_FLAG_CHIP_P5) { 5999 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 6000 enables |= tx_rings + ring_grps ? 6001 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6002 enables |= rx_rings ? 6003 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6004 } else { 6005 enables |= cp_rings ? 6006 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6007 enables |= ring_grps ? 6008 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS | 6009 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6010 } 6011 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 6012 6013 req->num_rx_rings = cpu_to_le16(rx_rings); 6014 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6015 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6016 req->num_msix = cpu_to_le16(cp_rings); 6017 req->num_rsscos_ctxs = 6018 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6019 } else { 6020 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6021 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6022 req->num_rsscos_ctxs = cpu_to_le16(1); 6023 if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) && 6024 bnxt_rfs_supported(bp)) 6025 req->num_rsscos_ctxs = 6026 cpu_to_le16(ring_grps + 1); 6027 } 6028 req->num_stat_ctxs = cpu_to_le16(stats); 6029 req->num_vnics = cpu_to_le16(vnics); 6030 } 6031 req->enables = cpu_to_le32(enables); 6032 } 6033 6034 static void 6035 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, 6036 struct hwrm_func_vf_cfg_input *req, int tx_rings, 6037 int rx_rings, int ring_grps, int cp_rings, 6038 int stats, int vnics) 6039 { 6040 u32 enables = 0; 6041 6042 bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1); 6043 enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 6044 enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 6045 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 6046 enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 6047 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6048 enables |= tx_rings + ring_grps ? 6049 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6050 } else { 6051 enables |= cp_rings ? 6052 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 6053 enables |= ring_grps ? 6054 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 6055 } 6056 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 6057 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 6058 6059 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 6060 req->num_tx_rings = cpu_to_le16(tx_rings); 6061 req->num_rx_rings = cpu_to_le16(rx_rings); 6062 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6063 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps); 6064 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64)); 6065 } else { 6066 req->num_cmpl_rings = cpu_to_le16(cp_rings); 6067 req->num_hw_ring_grps = cpu_to_le16(ring_grps); 6068 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 6069 } 6070 req->num_stat_ctxs = cpu_to_le16(stats); 6071 req->num_vnics = cpu_to_le16(vnics); 6072 6073 req->enables = cpu_to_le32(enables); 6074 } 6075 6076 static int 6077 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6078 int ring_grps, int cp_rings, int stats, int vnics) 6079 { 6080 struct hwrm_func_cfg_input req = {0}; 6081 int rc; 6082 6083 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6084 cp_rings, stats, vnics); 6085 if (!req.enables) 6086 return 0; 6087 6088 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6089 if (rc) 6090 return rc; 6091 6092 if (bp->hwrm_spec_code < 0x10601) 6093 bp->hw_resc.resv_tx_rings = tx_rings; 6094 6095 return bnxt_hwrm_get_rings(bp); 6096 } 6097 6098 static int 6099 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6100 int ring_grps, int cp_rings, int stats, int vnics) 6101 { 6102 struct hwrm_func_vf_cfg_input req = {0}; 6103 int rc; 6104 6105 if (!BNXT_NEW_RM(bp)) { 6106 bp->hw_resc.resv_tx_rings = tx_rings; 6107 return 0; 6108 } 6109 6110 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6111 cp_rings, stats, vnics); 6112 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6113 if (rc) 6114 return rc; 6115 6116 return bnxt_hwrm_get_rings(bp); 6117 } 6118 6119 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp, 6120 int cp, int stat, int vnic) 6121 { 6122 if (BNXT_PF(bp)) 6123 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat, 6124 vnic); 6125 else 6126 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat, 6127 vnic); 6128 } 6129 6130 int bnxt_nq_rings_in_use(struct bnxt *bp) 6131 { 6132 int cp = bp->cp_nr_rings; 6133 int ulp_msix, ulp_base; 6134 6135 ulp_msix = bnxt_get_ulp_msix_num(bp); 6136 if (ulp_msix) { 6137 ulp_base = bnxt_get_ulp_msix_base(bp); 6138 cp += ulp_msix; 6139 if ((ulp_base + ulp_msix) > cp) 6140 cp = ulp_base + ulp_msix; 6141 } 6142 return cp; 6143 } 6144 6145 static int bnxt_cp_rings_in_use(struct bnxt *bp) 6146 { 6147 int cp; 6148 6149 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6150 return bnxt_nq_rings_in_use(bp); 6151 6152 cp = bp->tx_nr_rings + bp->rx_nr_rings; 6153 return cp; 6154 } 6155 6156 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 6157 { 6158 int ulp_stat = bnxt_get_ulp_stat_ctxs(bp); 6159 int cp = bp->cp_nr_rings; 6160 6161 if (!ulp_stat) 6162 return cp; 6163 6164 if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp)) 6165 return bnxt_get_ulp_msix_base(bp) + ulp_stat; 6166 6167 return cp + ulp_stat; 6168 } 6169 6170 /* Check if a default RSS map needs to be setup. This function is only 6171 * used on older firmware that does not require reserving RX rings. 6172 */ 6173 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 6174 { 6175 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6176 6177 /* The RSS map is valid for RX rings set to resv_rx_rings */ 6178 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 6179 hw_resc->resv_rx_rings = bp->rx_nr_rings; 6180 if (!netif_is_rxfh_configured(bp->dev)) 6181 bnxt_set_dflt_rss_indir_tbl(bp); 6182 } 6183 } 6184 6185 static bool bnxt_need_reserve_rings(struct bnxt *bp) 6186 { 6187 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6188 int cp = bnxt_cp_rings_in_use(bp); 6189 int nq = bnxt_nq_rings_in_use(bp); 6190 int rx = bp->rx_nr_rings, stat; 6191 int vnic = 1, grp = rx; 6192 6193 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 6194 bp->hwrm_spec_code >= 0x10601) 6195 return true; 6196 6197 /* Old firmware does not need RX ring reservations but we still 6198 * need to setup a default RSS map when needed. With new firmware 6199 * we go through RX ring reservations first and then set up the 6200 * RSS map for the successfully reserved RX rings when needed. 6201 */ 6202 if (!BNXT_NEW_RM(bp)) { 6203 bnxt_check_rss_tbl_no_rmgr(bp); 6204 return false; 6205 } 6206 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6207 vnic = rx + 1; 6208 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6209 rx <<= 1; 6210 stat = bnxt_get_func_stat_ctxs(bp); 6211 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 6212 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 6213 (hw_resc->resv_hw_ring_grps != grp && 6214 !(bp->flags & BNXT_FLAG_CHIP_P5))) 6215 return true; 6216 if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) && 6217 hw_resc->resv_irqs != nq) 6218 return true; 6219 return false; 6220 } 6221 6222 static int __bnxt_reserve_rings(struct bnxt *bp) 6223 { 6224 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 6225 int cp = bnxt_nq_rings_in_use(bp); 6226 int tx = bp->tx_nr_rings; 6227 int rx = bp->rx_nr_rings; 6228 int grp, rx_rings, rc; 6229 int vnic = 1, stat; 6230 bool sh = false; 6231 6232 if (!bnxt_need_reserve_rings(bp)) 6233 return 0; 6234 6235 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 6236 sh = true; 6237 if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5)) 6238 vnic = rx + 1; 6239 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6240 rx <<= 1; 6241 grp = bp->rx_nr_rings; 6242 stat = bnxt_get_func_stat_ctxs(bp); 6243 6244 rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic); 6245 if (rc) 6246 return rc; 6247 6248 tx = hw_resc->resv_tx_rings; 6249 if (BNXT_NEW_RM(bp)) { 6250 rx = hw_resc->resv_rx_rings; 6251 cp = hw_resc->resv_irqs; 6252 grp = hw_resc->resv_hw_ring_grps; 6253 vnic = hw_resc->resv_vnics; 6254 stat = hw_resc->resv_stat_ctxs; 6255 } 6256 6257 rx_rings = rx; 6258 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 6259 if (rx >= 2) { 6260 rx_rings = rx >> 1; 6261 } else { 6262 if (netif_running(bp->dev)) 6263 return -ENOMEM; 6264 6265 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 6266 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 6267 bp->dev->hw_features &= ~NETIF_F_LRO; 6268 bp->dev->features &= ~NETIF_F_LRO; 6269 bnxt_set_ring_params(bp); 6270 } 6271 } 6272 rx_rings = min_t(int, rx_rings, grp); 6273 cp = min_t(int, cp, bp->cp_nr_rings); 6274 if (stat > bnxt_get_ulp_stat_ctxs(bp)) 6275 stat -= bnxt_get_ulp_stat_ctxs(bp); 6276 cp = min_t(int, cp, stat); 6277 rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh); 6278 if (bp->flags & BNXT_FLAG_AGG_RINGS) 6279 rx = rx_rings << 1; 6280 cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings; 6281 bp->tx_nr_rings = tx; 6282 6283 /* If we cannot reserve all the RX rings, reset the RSS map only 6284 * if absolutely necessary 6285 */ 6286 if (rx_rings != bp->rx_nr_rings) { 6287 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 6288 rx_rings, bp->rx_nr_rings); 6289 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) && 6290 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 6291 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 6292 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 6293 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 6294 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 6295 } 6296 } 6297 bp->rx_nr_rings = rx_rings; 6298 bp->cp_nr_rings = cp; 6299 6300 if (!tx || !rx || !cp || !grp || !vnic || !stat) 6301 return -ENOMEM; 6302 6303 if (!netif_is_rxfh_configured(bp->dev)) 6304 bnxt_set_dflt_rss_indir_tbl(bp); 6305 6306 return rc; 6307 } 6308 6309 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6310 int ring_grps, int cp_rings, int stats, 6311 int vnics) 6312 { 6313 struct hwrm_func_vf_cfg_input req = {0}; 6314 u32 flags; 6315 6316 if (!BNXT_NEW_RM(bp)) 6317 return 0; 6318 6319 __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6320 cp_rings, stats, vnics); 6321 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 6322 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6323 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6324 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6325 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 6326 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 6327 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6328 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6329 6330 req.flags = cpu_to_le32(flags); 6331 return hwrm_send_message_silent(bp, &req, sizeof(req), 6332 HWRM_CMD_TIMEOUT); 6333 } 6334 6335 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6336 int ring_grps, int cp_rings, int stats, 6337 int vnics) 6338 { 6339 struct hwrm_func_cfg_input req = {0}; 6340 u32 flags; 6341 6342 __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps, 6343 cp_rings, stats, vnics); 6344 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 6345 if (BNXT_NEW_RM(bp)) { 6346 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 6347 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 6348 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 6349 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 6350 if (bp->flags & BNXT_FLAG_CHIP_P5) 6351 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 6352 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 6353 else 6354 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 6355 } 6356 6357 req.flags = cpu_to_le32(flags); 6358 return hwrm_send_message_silent(bp, &req, sizeof(req), 6359 HWRM_CMD_TIMEOUT); 6360 } 6361 6362 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings, 6363 int ring_grps, int cp_rings, int stats, 6364 int vnics) 6365 { 6366 if (bp->hwrm_spec_code < 0x10801) 6367 return 0; 6368 6369 if (BNXT_PF(bp)) 6370 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings, 6371 ring_grps, cp_rings, stats, 6372 vnics); 6373 6374 return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps, 6375 cp_rings, stats, vnics); 6376 } 6377 6378 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 6379 { 6380 struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 6381 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6382 struct hwrm_ring_aggint_qcaps_input req = {0}; 6383 int rc; 6384 6385 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 6386 coal_cap->num_cmpl_dma_aggr_max = 63; 6387 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 6388 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 6389 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 6390 coal_cap->int_lat_tmr_min_max = 65535; 6391 coal_cap->int_lat_tmr_max_max = 65535; 6392 coal_cap->num_cmpl_aggr_int_max = 65535; 6393 coal_cap->timer_units = 80; 6394 6395 if (bp->hwrm_spec_code < 0x10902) 6396 return; 6397 6398 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1); 6399 mutex_lock(&bp->hwrm_cmd_lock); 6400 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6401 if (!rc) { 6402 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 6403 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 6404 coal_cap->num_cmpl_dma_aggr_max = 6405 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 6406 coal_cap->num_cmpl_dma_aggr_during_int_max = 6407 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 6408 coal_cap->cmpl_aggr_dma_tmr_max = 6409 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 6410 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 6411 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 6412 coal_cap->int_lat_tmr_min_max = 6413 le16_to_cpu(resp->int_lat_tmr_min_max); 6414 coal_cap->int_lat_tmr_max_max = 6415 le16_to_cpu(resp->int_lat_tmr_max_max); 6416 coal_cap->num_cmpl_aggr_int_max = 6417 le16_to_cpu(resp->num_cmpl_aggr_int_max); 6418 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 6419 } 6420 mutex_unlock(&bp->hwrm_cmd_lock); 6421 } 6422 6423 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 6424 { 6425 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6426 6427 return usec * 1000 / coal_cap->timer_units; 6428 } 6429 6430 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 6431 struct bnxt_coal *hw_coal, 6432 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 6433 { 6434 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6435 u32 cmpl_params = coal_cap->cmpl_params; 6436 u16 val, tmr, max, flags = 0; 6437 6438 max = hw_coal->bufs_per_record * 128; 6439 if (hw_coal->budget) 6440 max = hw_coal->bufs_per_record * hw_coal->budget; 6441 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 6442 6443 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 6444 req->num_cmpl_aggr_int = cpu_to_le16(val); 6445 6446 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 6447 req->num_cmpl_dma_aggr = cpu_to_le16(val); 6448 6449 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 6450 coal_cap->num_cmpl_dma_aggr_during_int_max); 6451 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 6452 6453 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 6454 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 6455 req->int_lat_tmr_max = cpu_to_le16(tmr); 6456 6457 /* min timer set to 1/2 of interrupt timer */ 6458 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 6459 val = tmr / 2; 6460 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 6461 req->int_lat_tmr_min = cpu_to_le16(val); 6462 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6463 } 6464 6465 /* buf timer set to 1/4 of interrupt timer */ 6466 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 6467 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 6468 6469 if (cmpl_params & 6470 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 6471 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 6472 val = clamp_t(u16, tmr, 1, 6473 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 6474 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 6475 req->enables |= 6476 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 6477 } 6478 6479 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 6480 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 6481 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 6482 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 6483 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 6484 req->flags = cpu_to_le16(flags); 6485 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 6486 } 6487 6488 /* Caller holds bp->hwrm_cmd_lock */ 6489 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 6490 struct bnxt_coal *hw_coal) 6491 { 6492 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0}; 6493 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6494 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 6495 u32 nq_params = coal_cap->nq_params; 6496 u16 tmr; 6497 6498 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 6499 return 0; 6500 6501 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, 6502 -1, -1); 6503 req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 6504 req.flags = 6505 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 6506 6507 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 6508 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 6509 req.int_lat_tmr_min = cpu_to_le16(tmr); 6510 req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 6511 return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6512 } 6513 6514 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 6515 { 6516 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}; 6517 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6518 struct bnxt_coal coal; 6519 6520 /* Tick values in micro seconds. 6521 * 1 coal_buf x bufs_per_record = 1 completion record. 6522 */ 6523 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 6524 6525 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 6526 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 6527 6528 if (!bnapi->rx_ring) 6529 return -ENODEV; 6530 6531 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6532 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6533 6534 bnxt_hwrm_set_coal_params(bp, &coal, &req_rx); 6535 6536 req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 6537 6538 return hwrm_send_message(bp, &req_rx, sizeof(req_rx), 6539 HWRM_CMD_TIMEOUT); 6540 } 6541 6542 int bnxt_hwrm_set_coal(struct bnxt *bp) 6543 { 6544 int i, rc = 0; 6545 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0}, 6546 req_tx = {0}, *req; 6547 6548 bnxt_hwrm_cmd_hdr_init(bp, &req_rx, 6549 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6550 bnxt_hwrm_cmd_hdr_init(bp, &req_tx, 6551 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1); 6552 6553 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx); 6554 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx); 6555 6556 mutex_lock(&bp->hwrm_cmd_lock); 6557 for (i = 0; i < bp->cp_nr_rings; i++) { 6558 struct bnxt_napi *bnapi = bp->bnapi[i]; 6559 struct bnxt_coal *hw_coal; 6560 u16 ring_id; 6561 6562 req = &req_rx; 6563 if (!bnapi->rx_ring) { 6564 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6565 req = &req_tx; 6566 } else { 6567 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 6568 } 6569 req->ring_id = cpu_to_le16(ring_id); 6570 6571 rc = _hwrm_send_message(bp, req, sizeof(*req), 6572 HWRM_CMD_TIMEOUT); 6573 if (rc) 6574 break; 6575 6576 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 6577 continue; 6578 6579 if (bnapi->rx_ring && bnapi->tx_ring) { 6580 req = &req_tx; 6581 ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring); 6582 req->ring_id = cpu_to_le16(ring_id); 6583 rc = _hwrm_send_message(bp, req, sizeof(*req), 6584 HWRM_CMD_TIMEOUT); 6585 if (rc) 6586 break; 6587 } 6588 if (bnapi->rx_ring) 6589 hw_coal = &bp->rx_coal; 6590 else 6591 hw_coal = &bp->tx_coal; 6592 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 6593 } 6594 mutex_unlock(&bp->hwrm_cmd_lock); 6595 return rc; 6596 } 6597 6598 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 6599 { 6600 struct hwrm_stat_ctx_clr_stats_input req0 = {0}; 6601 struct hwrm_stat_ctx_free_input req = {0}; 6602 int i; 6603 6604 if (!bp->bnapi) 6605 return; 6606 6607 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6608 return; 6609 6610 bnxt_hwrm_cmd_hdr_init(bp, &req0, HWRM_STAT_CTX_CLR_STATS, -1, -1); 6611 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 6612 6613 mutex_lock(&bp->hwrm_cmd_lock); 6614 for (i = 0; i < bp->cp_nr_rings; i++) { 6615 struct bnxt_napi *bnapi = bp->bnapi[i]; 6616 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6617 6618 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 6619 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 6620 if (BNXT_FW_MAJ(bp) <= 20) { 6621 req0.stat_ctx_id = req.stat_ctx_id; 6622 _hwrm_send_message(bp, &req0, sizeof(req0), 6623 HWRM_CMD_TIMEOUT); 6624 } 6625 _hwrm_send_message(bp, &req, sizeof(req), 6626 HWRM_CMD_TIMEOUT); 6627 6628 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 6629 } 6630 } 6631 mutex_unlock(&bp->hwrm_cmd_lock); 6632 } 6633 6634 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 6635 { 6636 int rc = 0, i; 6637 struct hwrm_stat_ctx_alloc_input req = {0}; 6638 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 6639 6640 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6641 return 0; 6642 6643 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 6644 6645 req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 6646 req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 6647 6648 mutex_lock(&bp->hwrm_cmd_lock); 6649 for (i = 0; i < bp->cp_nr_rings; i++) { 6650 struct bnxt_napi *bnapi = bp->bnapi[i]; 6651 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 6652 6653 req.stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 6654 6655 rc = _hwrm_send_message(bp, &req, sizeof(req), 6656 HWRM_CMD_TIMEOUT); 6657 if (rc) 6658 break; 6659 6660 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 6661 6662 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 6663 } 6664 mutex_unlock(&bp->hwrm_cmd_lock); 6665 return rc; 6666 } 6667 6668 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 6669 { 6670 struct hwrm_func_qcfg_input req = {0}; 6671 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 6672 u32 min_db_offset = 0; 6673 u16 flags; 6674 int rc; 6675 6676 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 6677 req.fid = cpu_to_le16(0xffff); 6678 mutex_lock(&bp->hwrm_cmd_lock); 6679 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6680 if (rc) 6681 goto func_qcfg_exit; 6682 6683 #ifdef CONFIG_BNXT_SRIOV 6684 if (BNXT_VF(bp)) { 6685 struct bnxt_vf_info *vf = &bp->vf; 6686 6687 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 6688 } else { 6689 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 6690 } 6691 #endif 6692 flags = le16_to_cpu(resp->flags); 6693 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 6694 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 6695 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 6696 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 6697 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 6698 } 6699 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 6700 bp->flags |= BNXT_FLAG_MULTI_HOST; 6701 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 6702 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 6703 6704 switch (resp->port_partition_type) { 6705 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 6706 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 6707 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 6708 bp->port_partition_type = resp->port_partition_type; 6709 break; 6710 } 6711 if (bp->hwrm_spec_code < 0x10707 || 6712 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 6713 bp->br_mode = BRIDGE_MODE_VEB; 6714 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 6715 bp->br_mode = BRIDGE_MODE_VEPA; 6716 else 6717 bp->br_mode = BRIDGE_MODE_UNDEF; 6718 6719 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 6720 if (!bp->max_mtu) 6721 bp->max_mtu = BNXT_MAX_MTU; 6722 6723 if (bp->db_size) 6724 goto func_qcfg_exit; 6725 6726 if (bp->flags & BNXT_FLAG_CHIP_P5) { 6727 if (BNXT_PF(bp)) 6728 min_db_offset = DB_PF_OFFSET_P5; 6729 else 6730 min_db_offset = DB_VF_OFFSET_P5; 6731 } 6732 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 6733 1024); 6734 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 6735 bp->db_size <= min_db_offset) 6736 bp->db_size = pci_resource_len(bp->pdev, 2); 6737 6738 func_qcfg_exit: 6739 mutex_unlock(&bp->hwrm_cmd_lock); 6740 return rc; 6741 } 6742 6743 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 6744 { 6745 struct hwrm_func_backing_store_qcaps_input req = {0}; 6746 struct hwrm_func_backing_store_qcaps_output *resp = 6747 bp->hwrm_cmd_resp_addr; 6748 int rc; 6749 6750 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 6751 return 0; 6752 6753 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1); 6754 mutex_lock(&bp->hwrm_cmd_lock); 6755 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6756 if (!rc) { 6757 struct bnxt_ctx_pg_info *ctx_pg; 6758 struct bnxt_ctx_mem_info *ctx; 6759 int i, tqm_rings; 6760 6761 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 6762 if (!ctx) { 6763 rc = -ENOMEM; 6764 goto ctx_err; 6765 } 6766 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries); 6767 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 6768 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 6769 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size); 6770 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 6771 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries); 6772 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size); 6773 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 6774 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries); 6775 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size); 6776 ctx->vnic_max_vnic_entries = 6777 le16_to_cpu(resp->vnic_max_vnic_entries); 6778 ctx->vnic_max_ring_table_entries = 6779 le16_to_cpu(resp->vnic_max_ring_table_entries); 6780 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size); 6781 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries); 6782 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size); 6783 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size); 6784 ctx->tqm_min_entries_per_ring = 6785 le32_to_cpu(resp->tqm_min_entries_per_ring); 6786 ctx->tqm_max_entries_per_ring = 6787 le32_to_cpu(resp->tqm_max_entries_per_ring); 6788 ctx->tqm_entries_multiple = resp->tqm_entries_multiple; 6789 if (!ctx->tqm_entries_multiple) 6790 ctx->tqm_entries_multiple = 1; 6791 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries); 6792 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size); 6793 ctx->mrav_num_entries_units = 6794 le16_to_cpu(resp->mrav_num_entries_units); 6795 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size); 6796 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries); 6797 ctx->ctx_kind_initializer = resp->ctx_kind_initializer; 6798 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 6799 if (!ctx->tqm_fp_rings_count) 6800 ctx->tqm_fp_rings_count = bp->max_q; 6801 6802 tqm_rings = ctx->tqm_fp_rings_count + 1; 6803 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL); 6804 if (!ctx_pg) { 6805 kfree(ctx); 6806 rc = -ENOMEM; 6807 goto ctx_err; 6808 } 6809 for (i = 0; i < tqm_rings; i++, ctx_pg++) 6810 ctx->tqm_mem[i] = ctx_pg; 6811 bp->ctx = ctx; 6812 } else { 6813 rc = 0; 6814 } 6815 ctx_err: 6816 mutex_unlock(&bp->hwrm_cmd_lock); 6817 return rc; 6818 } 6819 6820 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 6821 __le64 *pg_dir) 6822 { 6823 u8 pg_size = 0; 6824 6825 if (BNXT_PAGE_SHIFT == 13) 6826 pg_size = 1 << 4; 6827 else if (BNXT_PAGE_SIZE == 16) 6828 pg_size = 2 << 4; 6829 6830 *pg_attr = pg_size; 6831 if (rmem->depth >= 1) { 6832 if (rmem->depth == 2) 6833 *pg_attr |= 2; 6834 else 6835 *pg_attr |= 1; 6836 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 6837 } else { 6838 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 6839 } 6840 } 6841 6842 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 6843 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 6844 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 6845 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 6846 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 6847 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 6848 6849 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 6850 { 6851 struct hwrm_func_backing_store_cfg_input req = {0}; 6852 struct bnxt_ctx_mem_info *ctx = bp->ctx; 6853 struct bnxt_ctx_pg_info *ctx_pg; 6854 __le32 *num_entries; 6855 __le64 *pg_dir; 6856 u32 flags = 0; 6857 u8 *pg_attr; 6858 u32 ena; 6859 int i; 6860 6861 if (!ctx) 6862 return 0; 6863 6864 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1); 6865 req.enables = cpu_to_le32(enables); 6866 6867 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 6868 ctx_pg = &ctx->qp_mem; 6869 req.qp_num_entries = cpu_to_le32(ctx_pg->entries); 6870 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries); 6871 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries); 6872 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size); 6873 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6874 &req.qpc_pg_size_qpc_lvl, 6875 &req.qpc_page_dir); 6876 } 6877 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 6878 ctx_pg = &ctx->srq_mem; 6879 req.srq_num_entries = cpu_to_le32(ctx_pg->entries); 6880 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries); 6881 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size); 6882 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6883 &req.srq_pg_size_srq_lvl, 6884 &req.srq_page_dir); 6885 } 6886 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 6887 ctx_pg = &ctx->cq_mem; 6888 req.cq_num_entries = cpu_to_le32(ctx_pg->entries); 6889 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries); 6890 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size); 6891 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl, 6892 &req.cq_page_dir); 6893 } 6894 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 6895 ctx_pg = &ctx->vnic_mem; 6896 req.vnic_num_vnic_entries = 6897 cpu_to_le16(ctx->vnic_max_vnic_entries); 6898 req.vnic_num_ring_table_entries = 6899 cpu_to_le16(ctx->vnic_max_ring_table_entries); 6900 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size); 6901 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6902 &req.vnic_pg_size_vnic_lvl, 6903 &req.vnic_page_dir); 6904 } 6905 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 6906 ctx_pg = &ctx->stat_mem; 6907 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries); 6908 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size); 6909 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6910 &req.stat_pg_size_stat_lvl, 6911 &req.stat_page_dir); 6912 } 6913 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 6914 ctx_pg = &ctx->mrav_mem; 6915 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries); 6916 if (ctx->mrav_num_entries_units) 6917 flags |= 6918 FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 6919 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size); 6920 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6921 &req.mrav_pg_size_mrav_lvl, 6922 &req.mrav_page_dir); 6923 } 6924 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 6925 ctx_pg = &ctx->tim_mem; 6926 req.tim_num_entries = cpu_to_le32(ctx_pg->entries); 6927 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size); 6928 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 6929 &req.tim_pg_size_tim_lvl, 6930 &req.tim_page_dir); 6931 } 6932 for (i = 0, num_entries = &req.tqm_sp_num_entries, 6933 pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl, 6934 pg_dir = &req.tqm_sp_page_dir, 6935 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP; 6936 i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 6937 if (!(enables & ena)) 6938 continue; 6939 6940 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size); 6941 ctx_pg = ctx->tqm_mem[i]; 6942 *num_entries = cpu_to_le32(ctx_pg->entries); 6943 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 6944 } 6945 req.flags = cpu_to_le32(flags); 6946 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 6947 } 6948 6949 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 6950 struct bnxt_ctx_pg_info *ctx_pg) 6951 { 6952 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 6953 6954 rmem->page_size = BNXT_PAGE_SIZE; 6955 rmem->pg_arr = ctx_pg->ctx_pg_arr; 6956 rmem->dma_arr = ctx_pg->ctx_dma_arr; 6957 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 6958 if (rmem->depth >= 1) 6959 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 6960 return bnxt_alloc_ring(bp, rmem); 6961 } 6962 6963 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 6964 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 6965 u8 depth, bool use_init_val) 6966 { 6967 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 6968 int rc; 6969 6970 if (!mem_size) 6971 return -EINVAL; 6972 6973 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 6974 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 6975 ctx_pg->nr_pages = 0; 6976 return -EINVAL; 6977 } 6978 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 6979 int nr_tbls, i; 6980 6981 rmem->depth = 2; 6982 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 6983 GFP_KERNEL); 6984 if (!ctx_pg->ctx_pg_tbl) 6985 return -ENOMEM; 6986 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 6987 rmem->nr_pages = nr_tbls; 6988 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 6989 if (rc) 6990 return rc; 6991 for (i = 0; i < nr_tbls; i++) { 6992 struct bnxt_ctx_pg_info *pg_tbl; 6993 6994 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 6995 if (!pg_tbl) 6996 return -ENOMEM; 6997 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 6998 rmem = &pg_tbl->ring_mem; 6999 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 7000 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 7001 rmem->depth = 1; 7002 rmem->nr_pages = MAX_CTX_PAGES; 7003 if (use_init_val) 7004 rmem->init_val = bp->ctx->ctx_kind_initializer; 7005 if (i == (nr_tbls - 1)) { 7006 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 7007 7008 if (rem) 7009 rmem->nr_pages = rem; 7010 } 7011 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 7012 if (rc) 7013 break; 7014 } 7015 } else { 7016 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 7017 if (rmem->nr_pages > 1 || depth) 7018 rmem->depth = 1; 7019 if (use_init_val) 7020 rmem->init_val = bp->ctx->ctx_kind_initializer; 7021 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 7022 } 7023 return rc; 7024 } 7025 7026 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 7027 struct bnxt_ctx_pg_info *ctx_pg) 7028 { 7029 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 7030 7031 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 7032 ctx_pg->ctx_pg_tbl) { 7033 int i, nr_tbls = rmem->nr_pages; 7034 7035 for (i = 0; i < nr_tbls; i++) { 7036 struct bnxt_ctx_pg_info *pg_tbl; 7037 struct bnxt_ring_mem_info *rmem2; 7038 7039 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 7040 if (!pg_tbl) 7041 continue; 7042 rmem2 = &pg_tbl->ring_mem; 7043 bnxt_free_ring(bp, rmem2); 7044 ctx_pg->ctx_pg_arr[i] = NULL; 7045 kfree(pg_tbl); 7046 ctx_pg->ctx_pg_tbl[i] = NULL; 7047 } 7048 kfree(ctx_pg->ctx_pg_tbl); 7049 ctx_pg->ctx_pg_tbl = NULL; 7050 } 7051 bnxt_free_ring(bp, rmem); 7052 ctx_pg->nr_pages = 0; 7053 } 7054 7055 static void bnxt_free_ctx_mem(struct bnxt *bp) 7056 { 7057 struct bnxt_ctx_mem_info *ctx = bp->ctx; 7058 int i; 7059 7060 if (!ctx) 7061 return; 7062 7063 if (ctx->tqm_mem[0]) { 7064 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 7065 bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]); 7066 kfree(ctx->tqm_mem[0]); 7067 ctx->tqm_mem[0] = NULL; 7068 } 7069 7070 bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem); 7071 bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem); 7072 bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem); 7073 bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem); 7074 bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem); 7075 bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem); 7076 bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem); 7077 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 7078 } 7079 7080 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 7081 { 7082 struct bnxt_ctx_pg_info *ctx_pg; 7083 struct bnxt_ctx_mem_info *ctx; 7084 u32 mem_size, ena, entries; 7085 u32 entries_sp, min; 7086 u32 num_mr, num_ah; 7087 u32 extra_srqs = 0; 7088 u32 extra_qps = 0; 7089 u8 pg_lvl = 1; 7090 int i, rc; 7091 7092 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 7093 if (rc) { 7094 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 7095 rc); 7096 return rc; 7097 } 7098 ctx = bp->ctx; 7099 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 7100 return 0; 7101 7102 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 7103 pg_lvl = 2; 7104 extra_qps = 65536; 7105 extra_srqs = 8192; 7106 } 7107 7108 ctx_pg = &ctx->qp_mem; 7109 ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries + 7110 extra_qps; 7111 mem_size = ctx->qp_entry_size * ctx_pg->entries; 7112 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true); 7113 if (rc) 7114 return rc; 7115 7116 ctx_pg = &ctx->srq_mem; 7117 ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs; 7118 mem_size = ctx->srq_entry_size * ctx_pg->entries; 7119 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true); 7120 if (rc) 7121 return rc; 7122 7123 ctx_pg = &ctx->cq_mem; 7124 ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2; 7125 mem_size = ctx->cq_entry_size * ctx_pg->entries; 7126 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, true); 7127 if (rc) 7128 return rc; 7129 7130 ctx_pg = &ctx->vnic_mem; 7131 ctx_pg->entries = ctx->vnic_max_vnic_entries + 7132 ctx->vnic_max_ring_table_entries; 7133 mem_size = ctx->vnic_entry_size * ctx_pg->entries; 7134 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true); 7135 if (rc) 7136 return rc; 7137 7138 ctx_pg = &ctx->stat_mem; 7139 ctx_pg->entries = ctx->stat_max_entries; 7140 mem_size = ctx->stat_entry_size * ctx_pg->entries; 7141 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, true); 7142 if (rc) 7143 return rc; 7144 7145 ena = 0; 7146 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 7147 goto skip_rdma; 7148 7149 ctx_pg = &ctx->mrav_mem; 7150 /* 128K extra is needed to accommodate static AH context 7151 * allocation by f/w. 7152 */ 7153 num_mr = 1024 * 256; 7154 num_ah = 1024 * 128; 7155 ctx_pg->entries = num_mr + num_ah; 7156 mem_size = ctx->mrav_entry_size * ctx_pg->entries; 7157 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, true); 7158 if (rc) 7159 return rc; 7160 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 7161 if (ctx->mrav_num_entries_units) 7162 ctx_pg->entries = 7163 ((num_mr / ctx->mrav_num_entries_units) << 16) | 7164 (num_ah / ctx->mrav_num_entries_units); 7165 7166 ctx_pg = &ctx->tim_mem; 7167 ctx_pg->entries = ctx->qp_mem.entries; 7168 mem_size = ctx->tim_entry_size * ctx_pg->entries; 7169 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false); 7170 if (rc) 7171 return rc; 7172 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 7173 7174 skip_rdma: 7175 min = ctx->tqm_min_entries_per_ring; 7176 entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries + 7177 2 * (extra_qps + ctx->qp_min_qp1_entries) + min; 7178 entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple); 7179 entries = ctx->qp_max_l2_entries + extra_qps + ctx->qp_min_qp1_entries; 7180 entries = roundup(entries, ctx->tqm_entries_multiple); 7181 entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring); 7182 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) { 7183 ctx_pg = ctx->tqm_mem[i]; 7184 ctx_pg->entries = i ? entries : entries_sp; 7185 mem_size = ctx->tqm_entry_size * ctx_pg->entries; 7186 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, false); 7187 if (rc) 7188 return rc; 7189 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 7190 } 7191 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 7192 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 7193 if (rc) { 7194 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 7195 rc); 7196 return rc; 7197 } 7198 ctx->flags |= BNXT_CTX_FLAG_INITED; 7199 return 0; 7200 } 7201 7202 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 7203 { 7204 struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7205 struct hwrm_func_resource_qcaps_input req = {0}; 7206 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7207 int rc; 7208 7209 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1); 7210 req.fid = cpu_to_le16(0xffff); 7211 7212 mutex_lock(&bp->hwrm_cmd_lock); 7213 rc = _hwrm_send_message_silent(bp, &req, sizeof(req), 7214 HWRM_CMD_TIMEOUT); 7215 if (rc) 7216 goto hwrm_func_resc_qcaps_exit; 7217 7218 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 7219 if (!all) 7220 goto hwrm_func_resc_qcaps_exit; 7221 7222 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 7223 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7224 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 7225 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7226 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 7227 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7228 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 7229 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7230 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 7231 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 7232 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 7233 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7234 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 7235 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7236 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 7237 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7238 7239 if (bp->flags & BNXT_FLAG_CHIP_P5) { 7240 u16 max_msix = le16_to_cpu(resp->max_msix); 7241 7242 hw_resc->max_nqs = max_msix; 7243 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 7244 } 7245 7246 if (BNXT_PF(bp)) { 7247 struct bnxt_pf_info *pf = &bp->pf; 7248 7249 pf->vf_resv_strategy = 7250 le16_to_cpu(resp->vf_reservation_strategy); 7251 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 7252 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 7253 } 7254 hwrm_func_resc_qcaps_exit: 7255 mutex_unlock(&bp->hwrm_cmd_lock); 7256 return rc; 7257 } 7258 7259 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 7260 { 7261 int rc = 0; 7262 struct hwrm_func_qcaps_input req = {0}; 7263 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 7264 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7265 u32 flags, flags_ext; 7266 7267 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 7268 req.fid = cpu_to_le16(0xffff); 7269 7270 mutex_lock(&bp->hwrm_cmd_lock); 7271 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7272 if (rc) 7273 goto hwrm_func_qcaps_exit; 7274 7275 flags = le32_to_cpu(resp->flags); 7276 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 7277 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 7278 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 7279 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 7280 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 7281 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 7282 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 7283 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 7284 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 7285 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 7286 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 7287 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 7288 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 7289 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 7290 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 7291 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 7292 7293 flags_ext = le32_to_cpu(resp->flags_ext); 7294 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 7295 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 7296 7297 bp->tx_push_thresh = 0; 7298 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 7299 BNXT_FW_MAJ(bp) > 217) 7300 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 7301 7302 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 7303 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 7304 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 7305 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 7306 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 7307 if (!hw_resc->max_hw_ring_grps) 7308 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 7309 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 7310 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 7311 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 7312 7313 if (BNXT_PF(bp)) { 7314 struct bnxt_pf_info *pf = &bp->pf; 7315 7316 pf->fw_fid = le16_to_cpu(resp->fid); 7317 pf->port_id = le16_to_cpu(resp->port_id); 7318 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 7319 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 7320 pf->max_vfs = le16_to_cpu(resp->max_vfs); 7321 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 7322 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 7323 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 7324 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 7325 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 7326 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 7327 bp->flags &= ~BNXT_FLAG_WOL_CAP; 7328 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 7329 bp->flags |= BNXT_FLAG_WOL_CAP; 7330 } else { 7331 #ifdef CONFIG_BNXT_SRIOV 7332 struct bnxt_vf_info *vf = &bp->vf; 7333 7334 vf->fw_fid = le16_to_cpu(resp->fid); 7335 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 7336 #endif 7337 } 7338 7339 hwrm_func_qcaps_exit: 7340 mutex_unlock(&bp->hwrm_cmd_lock); 7341 return rc; 7342 } 7343 7344 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 7345 7346 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 7347 { 7348 int rc; 7349 7350 rc = __bnxt_hwrm_func_qcaps(bp); 7351 if (rc) 7352 return rc; 7353 rc = bnxt_hwrm_queue_qportcfg(bp); 7354 if (rc) { 7355 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 7356 return rc; 7357 } 7358 if (bp->hwrm_spec_code >= 0x10803) { 7359 rc = bnxt_alloc_ctx_mem(bp); 7360 if (rc) 7361 return rc; 7362 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 7363 if (!rc) 7364 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 7365 } 7366 return 0; 7367 } 7368 7369 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 7370 { 7371 struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0}; 7372 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 7373 int rc = 0; 7374 u32 flags; 7375 7376 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 7377 return 0; 7378 7379 resp = bp->hwrm_cmd_resp_addr; 7380 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1); 7381 7382 mutex_lock(&bp->hwrm_cmd_lock); 7383 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7384 if (rc) 7385 goto hwrm_cfa_adv_qcaps_exit; 7386 7387 flags = le32_to_cpu(resp->flags); 7388 if (flags & 7389 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 7390 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 7391 7392 hwrm_cfa_adv_qcaps_exit: 7393 mutex_unlock(&bp->hwrm_cmd_lock); 7394 return rc; 7395 } 7396 7397 static int __bnxt_alloc_fw_health(struct bnxt *bp) 7398 { 7399 if (bp->fw_health) 7400 return 0; 7401 7402 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 7403 if (!bp->fw_health) 7404 return -ENOMEM; 7405 7406 return 0; 7407 } 7408 7409 static int bnxt_alloc_fw_health(struct bnxt *bp) 7410 { 7411 int rc; 7412 7413 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 7414 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7415 return 0; 7416 7417 rc = __bnxt_alloc_fw_health(bp); 7418 if (rc) { 7419 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 7420 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7421 return rc; 7422 } 7423 7424 return 0; 7425 } 7426 7427 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 7428 { 7429 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 7430 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 7431 BNXT_FW_HEALTH_WIN_MAP_OFF); 7432 } 7433 7434 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 7435 { 7436 void __iomem *hs; 7437 u32 status_loc; 7438 u32 reg_type; 7439 u32 sig; 7440 7441 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 7442 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 7443 7444 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 7445 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 7446 if (bp->fw_health) 7447 bp->fw_health->status_reliable = false; 7448 return; 7449 } 7450 7451 if (__bnxt_alloc_fw_health(bp)) { 7452 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 7453 return; 7454 } 7455 7456 status_loc = readl(hs + offsetof(struct hcomm_status, fw_status_loc)); 7457 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 7458 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 7459 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 7460 __bnxt_map_fw_health_reg(bp, status_loc); 7461 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 7462 BNXT_FW_HEALTH_WIN_OFF(status_loc); 7463 } 7464 7465 bp->fw_health->status_reliable = true; 7466 } 7467 7468 static int bnxt_map_fw_health_regs(struct bnxt *bp) 7469 { 7470 struct bnxt_fw_health *fw_health = bp->fw_health; 7471 u32 reg_base = 0xffffffff; 7472 int i; 7473 7474 /* Only pre-map the monitoring GRC registers using window 3 */ 7475 for (i = 0; i < 4; i++) { 7476 u32 reg = fw_health->regs[i]; 7477 7478 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 7479 continue; 7480 if (reg_base == 0xffffffff) 7481 reg_base = reg & BNXT_GRC_BASE_MASK; 7482 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 7483 return -ERANGE; 7484 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 7485 } 7486 if (reg_base == 0xffffffff) 7487 return 0; 7488 7489 __bnxt_map_fw_health_reg(bp, reg_base); 7490 return 0; 7491 } 7492 7493 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 7494 { 7495 struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 7496 struct bnxt_fw_health *fw_health = bp->fw_health; 7497 struct hwrm_error_recovery_qcfg_input req = {0}; 7498 int rc, i; 7499 7500 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 7501 return 0; 7502 7503 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1); 7504 mutex_lock(&bp->hwrm_cmd_lock); 7505 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7506 if (rc) 7507 goto err_recovery_out; 7508 fw_health->flags = le32_to_cpu(resp->flags); 7509 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 7510 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 7511 rc = -EINVAL; 7512 goto err_recovery_out; 7513 } 7514 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 7515 fw_health->master_func_wait_dsecs = 7516 le32_to_cpu(resp->master_func_wait_period); 7517 fw_health->normal_func_wait_dsecs = 7518 le32_to_cpu(resp->normal_func_wait_period); 7519 fw_health->post_reset_wait_dsecs = 7520 le32_to_cpu(resp->master_func_wait_period_after_reset); 7521 fw_health->post_reset_max_wait_dsecs = 7522 le32_to_cpu(resp->max_bailout_time_after_reset); 7523 fw_health->regs[BNXT_FW_HEALTH_REG] = 7524 le32_to_cpu(resp->fw_health_status_reg); 7525 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 7526 le32_to_cpu(resp->fw_heartbeat_reg); 7527 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 7528 le32_to_cpu(resp->fw_reset_cnt_reg); 7529 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 7530 le32_to_cpu(resp->reset_inprogress_reg); 7531 fw_health->fw_reset_inprog_reg_mask = 7532 le32_to_cpu(resp->reset_inprogress_reg_mask); 7533 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 7534 if (fw_health->fw_reset_seq_cnt >= 16) { 7535 rc = -EINVAL; 7536 goto err_recovery_out; 7537 } 7538 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 7539 fw_health->fw_reset_seq_regs[i] = 7540 le32_to_cpu(resp->reset_reg[i]); 7541 fw_health->fw_reset_seq_vals[i] = 7542 le32_to_cpu(resp->reset_reg_val[i]); 7543 fw_health->fw_reset_seq_delay_msec[i] = 7544 resp->delay_after_reset[i]; 7545 } 7546 err_recovery_out: 7547 mutex_unlock(&bp->hwrm_cmd_lock); 7548 if (!rc) 7549 rc = bnxt_map_fw_health_regs(bp); 7550 if (rc) 7551 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 7552 return rc; 7553 } 7554 7555 static int bnxt_hwrm_func_reset(struct bnxt *bp) 7556 { 7557 struct hwrm_func_reset_input req = {0}; 7558 7559 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 7560 req.enables = 0; 7561 7562 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 7563 } 7564 7565 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 7566 { 7567 struct hwrm_nvm_get_dev_info_output nvm_info; 7568 7569 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 7570 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 7571 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 7572 nvm_info.nvm_cfg_ver_upd); 7573 } 7574 7575 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 7576 { 7577 int rc = 0; 7578 struct hwrm_queue_qportcfg_input req = {0}; 7579 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 7580 u8 i, j, *qptr; 7581 bool no_rdma; 7582 7583 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 7584 7585 mutex_lock(&bp->hwrm_cmd_lock); 7586 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7587 if (rc) 7588 goto qportcfg_exit; 7589 7590 if (!resp->max_configurable_queues) { 7591 rc = -EINVAL; 7592 goto qportcfg_exit; 7593 } 7594 bp->max_tc = resp->max_configurable_queues; 7595 bp->max_lltc = resp->max_configurable_lossless_queues; 7596 if (bp->max_tc > BNXT_MAX_QUEUE) 7597 bp->max_tc = BNXT_MAX_QUEUE; 7598 7599 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 7600 qptr = &resp->queue_id0; 7601 for (i = 0, j = 0; i < bp->max_tc; i++) { 7602 bp->q_info[j].queue_id = *qptr; 7603 bp->q_ids[i] = *qptr++; 7604 bp->q_info[j].queue_profile = *qptr++; 7605 bp->tc_to_qidx[j] = j; 7606 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 7607 (no_rdma && BNXT_PF(bp))) 7608 j++; 7609 } 7610 bp->max_q = bp->max_tc; 7611 bp->max_tc = max_t(u8, j, 1); 7612 7613 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 7614 bp->max_tc = 1; 7615 7616 if (bp->max_lltc > bp->max_tc) 7617 bp->max_lltc = bp->max_tc; 7618 7619 qportcfg_exit: 7620 mutex_unlock(&bp->hwrm_cmd_lock); 7621 return rc; 7622 } 7623 7624 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent) 7625 { 7626 struct hwrm_ver_get_input req = {0}; 7627 int rc; 7628 7629 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 7630 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 7631 req.hwrm_intf_min = HWRM_VERSION_MINOR; 7632 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 7633 7634 rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT, 7635 silent); 7636 return rc; 7637 } 7638 7639 static int bnxt_hwrm_ver_get(struct bnxt *bp) 7640 { 7641 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 7642 u16 fw_maj, fw_min, fw_bld, fw_rsv; 7643 u32 dev_caps_cfg, hwrm_ver; 7644 int rc, len; 7645 7646 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 7647 mutex_lock(&bp->hwrm_cmd_lock); 7648 rc = __bnxt_hwrm_ver_get(bp, false); 7649 if (rc) 7650 goto hwrm_ver_get_exit; 7651 7652 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 7653 7654 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 7655 resp->hwrm_intf_min_8b << 8 | 7656 resp->hwrm_intf_upd_8b; 7657 if (resp->hwrm_intf_maj_8b < 1) { 7658 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 7659 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7660 resp->hwrm_intf_upd_8b); 7661 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 7662 } 7663 7664 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 7665 HWRM_VERSION_UPDATE; 7666 7667 if (bp->hwrm_spec_code > hwrm_ver) 7668 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7669 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 7670 HWRM_VERSION_UPDATE); 7671 else 7672 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 7673 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 7674 resp->hwrm_intf_upd_8b); 7675 7676 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 7677 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 7678 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 7679 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 7680 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 7681 len = FW_VER_STR_LEN; 7682 } else { 7683 fw_maj = resp->hwrm_fw_maj_8b; 7684 fw_min = resp->hwrm_fw_min_8b; 7685 fw_bld = resp->hwrm_fw_bld_8b; 7686 fw_rsv = resp->hwrm_fw_rsvd_8b; 7687 len = BC_HWRM_STR_LEN; 7688 } 7689 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 7690 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 7691 fw_rsv); 7692 7693 if (strlen(resp->active_pkg_name)) { 7694 int fw_ver_len = strlen(bp->fw_ver_str); 7695 7696 snprintf(bp->fw_ver_str + fw_ver_len, 7697 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 7698 resp->active_pkg_name); 7699 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 7700 } 7701 7702 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 7703 if (!bp->hwrm_cmd_timeout) 7704 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 7705 7706 if (resp->hwrm_intf_maj_8b >= 1) { 7707 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 7708 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 7709 } 7710 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 7711 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 7712 7713 bp->chip_num = le16_to_cpu(resp->chip_num); 7714 bp->chip_rev = resp->chip_rev; 7715 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 7716 !resp->chip_metal) 7717 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 7718 7719 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 7720 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 7721 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 7722 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 7723 7724 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 7725 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 7726 7727 if (dev_caps_cfg & 7728 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 7729 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 7730 7731 if (dev_caps_cfg & 7732 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 7733 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 7734 7735 if (dev_caps_cfg & 7736 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 7737 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 7738 7739 hwrm_ver_get_exit: 7740 mutex_unlock(&bp->hwrm_cmd_lock); 7741 return rc; 7742 } 7743 7744 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 7745 { 7746 struct hwrm_fw_set_time_input req = {0}; 7747 struct tm tm; 7748 time64_t now = ktime_get_real_seconds(); 7749 7750 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 7751 bp->hwrm_spec_code < 0x10400) 7752 return -EOPNOTSUPP; 7753 7754 time64_to_tm(now, 0, &tm); 7755 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1); 7756 req.year = cpu_to_le16(1900 + tm.tm_year); 7757 req.month = 1 + tm.tm_mon; 7758 req.day = tm.tm_mday; 7759 req.hour = tm.tm_hour; 7760 req.minute = tm.tm_min; 7761 req.second = tm.tm_sec; 7762 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7763 } 7764 7765 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 7766 { 7767 u64 sw_tmp; 7768 7769 sw_tmp = (*sw & ~mask) | hw; 7770 if (hw < (*sw & mask)) 7771 sw_tmp += mask + 1; 7772 WRITE_ONCE(*sw, sw_tmp); 7773 } 7774 7775 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 7776 int count, bool ignore_zero) 7777 { 7778 int i; 7779 7780 for (i = 0; i < count; i++) { 7781 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 7782 7783 if (ignore_zero && !hw) 7784 continue; 7785 7786 if (masks[i] == -1ULL) 7787 sw_stats[i] = hw; 7788 else 7789 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 7790 } 7791 } 7792 7793 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 7794 { 7795 if (!stats->hw_stats) 7796 return; 7797 7798 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 7799 stats->hw_masks, stats->len / 8, false); 7800 } 7801 7802 static void bnxt_accumulate_all_stats(struct bnxt *bp) 7803 { 7804 struct bnxt_stats_mem *ring0_stats; 7805 bool ignore_zero = false; 7806 int i; 7807 7808 /* Chip bug. Counter intermittently becomes 0. */ 7809 if (bp->flags & BNXT_FLAG_CHIP_P5) 7810 ignore_zero = true; 7811 7812 for (i = 0; i < bp->cp_nr_rings; i++) { 7813 struct bnxt_napi *bnapi = bp->bnapi[i]; 7814 struct bnxt_cp_ring_info *cpr; 7815 struct bnxt_stats_mem *stats; 7816 7817 cpr = &bnapi->cp_ring; 7818 stats = &cpr->stats; 7819 if (!i) 7820 ring0_stats = stats; 7821 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 7822 ring0_stats->hw_masks, 7823 ring0_stats->len / 8, ignore_zero); 7824 } 7825 if (bp->flags & BNXT_FLAG_PORT_STATS) { 7826 struct bnxt_stats_mem *stats = &bp->port_stats; 7827 __le64 *hw_stats = stats->hw_stats; 7828 u64 *sw_stats = stats->sw_stats; 7829 u64 *masks = stats->hw_masks; 7830 int cnt; 7831 7832 cnt = sizeof(struct rx_port_stats) / 8; 7833 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 7834 7835 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 7836 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 7837 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 7838 cnt = sizeof(struct tx_port_stats) / 8; 7839 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 7840 } 7841 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 7842 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 7843 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 7844 } 7845 } 7846 7847 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 7848 { 7849 struct bnxt_pf_info *pf = &bp->pf; 7850 struct hwrm_port_qstats_input req = {0}; 7851 7852 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 7853 return 0; 7854 7855 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 7856 return -EOPNOTSUPP; 7857 7858 req.flags = flags; 7859 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1); 7860 req.port_id = cpu_to_le16(pf->port_id); 7861 req.tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 7862 BNXT_TX_PORT_STATS_BYTE_OFFSET); 7863 req.rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 7864 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7865 } 7866 7867 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 7868 { 7869 struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr; 7870 struct hwrm_queue_pri2cos_qcfg_input req2 = {0}; 7871 struct hwrm_port_qstats_ext_input req = {0}; 7872 struct bnxt_pf_info *pf = &bp->pf; 7873 u32 tx_stat_size; 7874 int rc; 7875 7876 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 7877 return 0; 7878 7879 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 7880 return -EOPNOTSUPP; 7881 7882 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1); 7883 req.flags = flags; 7884 req.port_id = cpu_to_le16(pf->port_id); 7885 req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 7886 req.rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 7887 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 7888 sizeof(struct tx_port_stats_ext) : 0; 7889 req.tx_stat_size = cpu_to_le16(tx_stat_size); 7890 req.tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 7891 mutex_lock(&bp->hwrm_cmd_lock); 7892 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 7893 if (!rc) { 7894 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8; 7895 bp->fw_tx_stats_ext_size = tx_stat_size ? 7896 le16_to_cpu(resp->tx_stat_size) / 8 : 0; 7897 } else { 7898 bp->fw_rx_stats_ext_size = 0; 7899 bp->fw_tx_stats_ext_size = 0; 7900 } 7901 if (flags) 7902 goto qstats_done; 7903 7904 if (bp->fw_tx_stats_ext_size <= 7905 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 7906 mutex_unlock(&bp->hwrm_cmd_lock); 7907 bp->pri2cos_valid = 0; 7908 return rc; 7909 } 7910 7911 bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1); 7912 req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 7913 7914 rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT); 7915 if (!rc) { 7916 struct hwrm_queue_pri2cos_qcfg_output *resp2; 7917 u8 *pri2cos; 7918 int i, j; 7919 7920 resp2 = bp->hwrm_cmd_resp_addr; 7921 pri2cos = &resp2->pri0_cos_queue_id; 7922 for (i = 0; i < 8; i++) { 7923 u8 queue_id = pri2cos[i]; 7924 u8 queue_idx; 7925 7926 /* Per port queue IDs start from 0, 10, 20, etc */ 7927 queue_idx = queue_id % 10; 7928 if (queue_idx > BNXT_MAX_QUEUE) { 7929 bp->pri2cos_valid = false; 7930 goto qstats_done; 7931 } 7932 for (j = 0; j < bp->max_q; j++) { 7933 if (bp->q_ids[j] == queue_id) 7934 bp->pri2cos_idx[i] = queue_idx; 7935 } 7936 } 7937 bp->pri2cos_valid = 1; 7938 } 7939 qstats_done: 7940 mutex_unlock(&bp->hwrm_cmd_lock); 7941 return rc; 7942 } 7943 7944 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 7945 { 7946 if (bp->vxlan_fw_dst_port_id != INVALID_HW_RING_ID) 7947 bnxt_hwrm_tunnel_dst_port_free( 7948 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 7949 if (bp->nge_fw_dst_port_id != INVALID_HW_RING_ID) 7950 bnxt_hwrm_tunnel_dst_port_free( 7951 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 7952 } 7953 7954 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 7955 { 7956 int rc, i; 7957 u32 tpa_flags = 0; 7958 7959 if (set_tpa) 7960 tpa_flags = bp->flags & BNXT_FLAG_TPA; 7961 else if (BNXT_NO_FW_ACCESS(bp)) 7962 return 0; 7963 for (i = 0; i < bp->nr_vnics; i++) { 7964 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 7965 if (rc) { 7966 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 7967 i, rc); 7968 return rc; 7969 } 7970 } 7971 return 0; 7972 } 7973 7974 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 7975 { 7976 int i; 7977 7978 for (i = 0; i < bp->nr_vnics; i++) 7979 bnxt_hwrm_vnic_set_rss(bp, i, false); 7980 } 7981 7982 static void bnxt_clear_vnic(struct bnxt *bp) 7983 { 7984 if (!bp->vnic_info) 7985 return; 7986 7987 bnxt_hwrm_clear_vnic_filter(bp); 7988 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) { 7989 /* clear all RSS setting before free vnic ctx */ 7990 bnxt_hwrm_clear_vnic_rss(bp); 7991 bnxt_hwrm_vnic_ctx_free(bp); 7992 } 7993 /* before free the vnic, undo the vnic tpa settings */ 7994 if (bp->flags & BNXT_FLAG_TPA) 7995 bnxt_set_tpa(bp, false); 7996 bnxt_hwrm_vnic_free(bp); 7997 if (bp->flags & BNXT_FLAG_CHIP_P5) 7998 bnxt_hwrm_vnic_ctx_free(bp); 7999 } 8000 8001 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 8002 bool irq_re_init) 8003 { 8004 bnxt_clear_vnic(bp); 8005 bnxt_hwrm_ring_free(bp, close_path); 8006 bnxt_hwrm_ring_grp_free(bp); 8007 if (irq_re_init) { 8008 bnxt_hwrm_stat_ctx_free(bp); 8009 bnxt_hwrm_free_tunnel_ports(bp); 8010 } 8011 } 8012 8013 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 8014 { 8015 struct hwrm_func_cfg_input req = {0}; 8016 8017 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8018 req.fid = cpu_to_le16(0xffff); 8019 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 8020 if (br_mode == BRIDGE_MODE_VEB) 8021 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 8022 else if (br_mode == BRIDGE_MODE_VEPA) 8023 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 8024 else 8025 return -EINVAL; 8026 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8027 } 8028 8029 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 8030 { 8031 struct hwrm_func_cfg_input req = {0}; 8032 8033 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 8034 return 0; 8035 8036 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 8037 req.fid = cpu_to_le16(0xffff); 8038 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 8039 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 8040 if (size == 128) 8041 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 8042 8043 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8044 } 8045 8046 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8047 { 8048 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 8049 int rc; 8050 8051 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 8052 goto skip_rss_ctx; 8053 8054 /* allocate context for vnic */ 8055 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0); 8056 if (rc) { 8057 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8058 vnic_id, rc); 8059 goto vnic_setup_err; 8060 } 8061 bp->rsscos_nr_ctxs++; 8062 8063 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8064 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1); 8065 if (rc) { 8066 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 8067 vnic_id, rc); 8068 goto vnic_setup_err; 8069 } 8070 bp->rsscos_nr_ctxs++; 8071 } 8072 8073 skip_rss_ctx: 8074 /* configure default vnic, ring grp */ 8075 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8076 if (rc) { 8077 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8078 vnic_id, rc); 8079 goto vnic_setup_err; 8080 } 8081 8082 /* Enable RSS hashing on vnic */ 8083 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 8084 if (rc) { 8085 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 8086 vnic_id, rc); 8087 goto vnic_setup_err; 8088 } 8089 8090 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8091 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8092 if (rc) { 8093 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8094 vnic_id, rc); 8095 } 8096 } 8097 8098 vnic_setup_err: 8099 return rc; 8100 } 8101 8102 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id) 8103 { 8104 int rc, i, nr_ctxs; 8105 8106 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 8107 for (i = 0; i < nr_ctxs; i++) { 8108 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i); 8109 if (rc) { 8110 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 8111 vnic_id, i, rc); 8112 break; 8113 } 8114 bp->rsscos_nr_ctxs++; 8115 } 8116 if (i < nr_ctxs) 8117 return -ENOMEM; 8118 8119 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true); 8120 if (rc) { 8121 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 8122 vnic_id, rc); 8123 return rc; 8124 } 8125 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 8126 if (rc) { 8127 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 8128 vnic_id, rc); 8129 return rc; 8130 } 8131 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 8132 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 8133 if (rc) { 8134 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 8135 vnic_id, rc); 8136 } 8137 } 8138 return rc; 8139 } 8140 8141 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 8142 { 8143 if (bp->flags & BNXT_FLAG_CHIP_P5) 8144 return __bnxt_setup_vnic_p5(bp, vnic_id); 8145 else 8146 return __bnxt_setup_vnic(bp, vnic_id); 8147 } 8148 8149 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 8150 { 8151 #ifdef CONFIG_RFS_ACCEL 8152 int i, rc = 0; 8153 8154 if (bp->flags & BNXT_FLAG_CHIP_P5) 8155 return 0; 8156 8157 for (i = 0; i < bp->rx_nr_rings; i++) { 8158 struct bnxt_vnic_info *vnic; 8159 u16 vnic_id = i + 1; 8160 u16 ring_id = i; 8161 8162 if (vnic_id >= bp->nr_vnics) 8163 break; 8164 8165 vnic = &bp->vnic_info[vnic_id]; 8166 vnic->flags |= BNXT_VNIC_RFS_FLAG; 8167 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 8168 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 8169 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1); 8170 if (rc) { 8171 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 8172 vnic_id, rc); 8173 break; 8174 } 8175 rc = bnxt_setup_vnic(bp, vnic_id); 8176 if (rc) 8177 break; 8178 } 8179 return rc; 8180 #else 8181 return 0; 8182 #endif 8183 } 8184 8185 /* Allow PF and VF with default VLAN to be in promiscuous mode */ 8186 static bool bnxt_promisc_ok(struct bnxt *bp) 8187 { 8188 #ifdef CONFIG_BNXT_SRIOV 8189 if (BNXT_VF(bp) && !bp->vf.vlan) 8190 return false; 8191 #endif 8192 return true; 8193 } 8194 8195 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 8196 { 8197 unsigned int rc = 0; 8198 8199 rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1); 8200 if (rc) { 8201 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8202 rc); 8203 return rc; 8204 } 8205 8206 rc = bnxt_hwrm_vnic_cfg(bp, 1); 8207 if (rc) { 8208 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 8209 rc); 8210 return rc; 8211 } 8212 return rc; 8213 } 8214 8215 static int bnxt_cfg_rx_mode(struct bnxt *); 8216 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 8217 8218 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 8219 { 8220 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 8221 int rc = 0; 8222 unsigned int rx_nr_rings = bp->rx_nr_rings; 8223 8224 if (irq_re_init) { 8225 rc = bnxt_hwrm_stat_ctx_alloc(bp); 8226 if (rc) { 8227 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 8228 rc); 8229 goto err_out; 8230 } 8231 } 8232 8233 rc = bnxt_hwrm_ring_alloc(bp); 8234 if (rc) { 8235 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 8236 goto err_out; 8237 } 8238 8239 rc = bnxt_hwrm_ring_grp_alloc(bp); 8240 if (rc) { 8241 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 8242 goto err_out; 8243 } 8244 8245 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8246 rx_nr_rings--; 8247 8248 /* default vnic 0 */ 8249 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings); 8250 if (rc) { 8251 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 8252 goto err_out; 8253 } 8254 8255 rc = bnxt_setup_vnic(bp, 0); 8256 if (rc) 8257 goto err_out; 8258 8259 if (bp->flags & BNXT_FLAG_RFS) { 8260 rc = bnxt_alloc_rfs_vnics(bp); 8261 if (rc) 8262 goto err_out; 8263 } 8264 8265 if (bp->flags & BNXT_FLAG_TPA) { 8266 rc = bnxt_set_tpa(bp, true); 8267 if (rc) 8268 goto err_out; 8269 } 8270 8271 if (BNXT_VF(bp)) 8272 bnxt_update_vf_mac(bp); 8273 8274 /* Filter for default vnic 0 */ 8275 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 8276 if (rc) { 8277 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 8278 goto err_out; 8279 } 8280 vnic->uc_filter_count = 1; 8281 8282 vnic->rx_mask = 0; 8283 if (bp->dev->flags & IFF_BROADCAST) 8284 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 8285 8286 if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) 8287 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 8288 8289 if (bp->dev->flags & IFF_ALLMULTI) { 8290 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 8291 vnic->mc_list_count = 0; 8292 } else { 8293 u32 mask = 0; 8294 8295 bnxt_mc_list_updated(bp, &mask); 8296 vnic->rx_mask |= mask; 8297 } 8298 8299 rc = bnxt_cfg_rx_mode(bp); 8300 if (rc) 8301 goto err_out; 8302 8303 rc = bnxt_hwrm_set_coal(bp); 8304 if (rc) 8305 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 8306 rc); 8307 8308 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8309 rc = bnxt_setup_nitroa0_vnic(bp); 8310 if (rc) 8311 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 8312 rc); 8313 } 8314 8315 if (BNXT_VF(bp)) { 8316 bnxt_hwrm_func_qcfg(bp); 8317 netdev_update_features(bp->dev); 8318 } 8319 8320 return 0; 8321 8322 err_out: 8323 bnxt_hwrm_resource_free(bp, 0, true); 8324 8325 return rc; 8326 } 8327 8328 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 8329 { 8330 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 8331 return 0; 8332 } 8333 8334 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 8335 { 8336 bnxt_init_cp_rings(bp); 8337 bnxt_init_rx_rings(bp); 8338 bnxt_init_tx_rings(bp); 8339 bnxt_init_ring_grps(bp, irq_re_init); 8340 bnxt_init_vnics(bp); 8341 8342 return bnxt_init_chip(bp, irq_re_init); 8343 } 8344 8345 static int bnxt_set_real_num_queues(struct bnxt *bp) 8346 { 8347 int rc; 8348 struct net_device *dev = bp->dev; 8349 8350 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 8351 bp->tx_nr_rings_xdp); 8352 if (rc) 8353 return rc; 8354 8355 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 8356 if (rc) 8357 return rc; 8358 8359 #ifdef CONFIG_RFS_ACCEL 8360 if (bp->flags & BNXT_FLAG_RFS) 8361 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 8362 #endif 8363 8364 return rc; 8365 } 8366 8367 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 8368 bool shared) 8369 { 8370 int _rx = *rx, _tx = *tx; 8371 8372 if (shared) { 8373 *rx = min_t(int, _rx, max); 8374 *tx = min_t(int, _tx, max); 8375 } else { 8376 if (max < 2) 8377 return -ENOMEM; 8378 8379 while (_rx + _tx > max) { 8380 if (_rx > _tx && _rx > 1) 8381 _rx--; 8382 else if (_tx > 1) 8383 _tx--; 8384 } 8385 *rx = _rx; 8386 *tx = _tx; 8387 } 8388 return 0; 8389 } 8390 8391 static void bnxt_setup_msix(struct bnxt *bp) 8392 { 8393 const int len = sizeof(bp->irq_tbl[0].name); 8394 struct net_device *dev = bp->dev; 8395 int tcs, i; 8396 8397 tcs = netdev_get_num_tc(dev); 8398 if (tcs) { 8399 int i, off, count; 8400 8401 for (i = 0; i < tcs; i++) { 8402 count = bp->tx_nr_rings_per_tc; 8403 off = i * count; 8404 netdev_set_tc_queue(dev, i, count, off); 8405 } 8406 } 8407 8408 for (i = 0; i < bp->cp_nr_rings; i++) { 8409 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8410 char *attr; 8411 8412 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 8413 attr = "TxRx"; 8414 else if (i < bp->rx_nr_rings) 8415 attr = "rx"; 8416 else 8417 attr = "tx"; 8418 8419 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 8420 attr, i); 8421 bp->irq_tbl[map_idx].handler = bnxt_msix; 8422 } 8423 } 8424 8425 static void bnxt_setup_inta(struct bnxt *bp) 8426 { 8427 const int len = sizeof(bp->irq_tbl[0].name); 8428 8429 if (netdev_get_num_tc(bp->dev)) 8430 netdev_reset_tc(bp->dev); 8431 8432 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 8433 0); 8434 bp->irq_tbl[0].handler = bnxt_inta; 8435 } 8436 8437 static int bnxt_setup_int_mode(struct bnxt *bp) 8438 { 8439 int rc; 8440 8441 if (bp->flags & BNXT_FLAG_USING_MSIX) 8442 bnxt_setup_msix(bp); 8443 else 8444 bnxt_setup_inta(bp); 8445 8446 rc = bnxt_set_real_num_queues(bp); 8447 return rc; 8448 } 8449 8450 #ifdef CONFIG_RFS_ACCEL 8451 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 8452 { 8453 return bp->hw_resc.max_rsscos_ctxs; 8454 } 8455 8456 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 8457 { 8458 return bp->hw_resc.max_vnics; 8459 } 8460 #endif 8461 8462 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 8463 { 8464 return bp->hw_resc.max_stat_ctxs; 8465 } 8466 8467 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 8468 { 8469 return bp->hw_resc.max_cp_rings; 8470 } 8471 8472 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 8473 { 8474 unsigned int cp = bp->hw_resc.max_cp_rings; 8475 8476 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8477 cp -= bnxt_get_ulp_msix_num(bp); 8478 8479 return cp; 8480 } 8481 8482 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 8483 { 8484 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8485 8486 if (bp->flags & BNXT_FLAG_CHIP_P5) 8487 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 8488 8489 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 8490 } 8491 8492 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 8493 { 8494 bp->hw_resc.max_irqs = max_irqs; 8495 } 8496 8497 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 8498 { 8499 unsigned int cp; 8500 8501 cp = bnxt_get_max_func_cp_rings_for_en(bp); 8502 if (bp->flags & BNXT_FLAG_CHIP_P5) 8503 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 8504 else 8505 return cp - bp->cp_nr_rings; 8506 } 8507 8508 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 8509 { 8510 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 8511 } 8512 8513 int bnxt_get_avail_msix(struct bnxt *bp, int num) 8514 { 8515 int max_cp = bnxt_get_max_func_cp_rings(bp); 8516 int max_irq = bnxt_get_max_func_irqs(bp); 8517 int total_req = bp->cp_nr_rings + num; 8518 int max_idx, avail_msix; 8519 8520 max_idx = bp->total_irqs; 8521 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 8522 max_idx = min_t(int, bp->total_irqs, max_cp); 8523 avail_msix = max_idx - bp->cp_nr_rings; 8524 if (!BNXT_NEW_RM(bp) || avail_msix >= num) 8525 return avail_msix; 8526 8527 if (max_irq < total_req) { 8528 num = max_irq - bp->cp_nr_rings; 8529 if (num <= 0) 8530 return 0; 8531 } 8532 return num; 8533 } 8534 8535 static int bnxt_get_num_msix(struct bnxt *bp) 8536 { 8537 if (!BNXT_NEW_RM(bp)) 8538 return bnxt_get_max_func_irqs(bp); 8539 8540 return bnxt_nq_rings_in_use(bp); 8541 } 8542 8543 static int bnxt_init_msix(struct bnxt *bp) 8544 { 8545 int i, total_vecs, max, rc = 0, min = 1, ulp_msix; 8546 struct msix_entry *msix_ent; 8547 8548 total_vecs = bnxt_get_num_msix(bp); 8549 max = bnxt_get_max_func_irqs(bp); 8550 if (total_vecs > max) 8551 total_vecs = max; 8552 8553 if (!total_vecs) 8554 return 0; 8555 8556 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 8557 if (!msix_ent) 8558 return -ENOMEM; 8559 8560 for (i = 0; i < total_vecs; i++) { 8561 msix_ent[i].entry = i; 8562 msix_ent[i].vector = 0; 8563 } 8564 8565 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 8566 min = 2; 8567 8568 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 8569 ulp_msix = bnxt_get_ulp_msix_num(bp); 8570 if (total_vecs < 0 || total_vecs < ulp_msix) { 8571 rc = -ENODEV; 8572 goto msix_setup_exit; 8573 } 8574 8575 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 8576 if (bp->irq_tbl) { 8577 for (i = 0; i < total_vecs; i++) 8578 bp->irq_tbl[i].vector = msix_ent[i].vector; 8579 8580 bp->total_irqs = total_vecs; 8581 /* Trim rings based upon num of vectors allocated */ 8582 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 8583 total_vecs - ulp_msix, min == 1); 8584 if (rc) 8585 goto msix_setup_exit; 8586 8587 bp->cp_nr_rings = (min == 1) ? 8588 max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 8589 bp->tx_nr_rings + bp->rx_nr_rings; 8590 8591 } else { 8592 rc = -ENOMEM; 8593 goto msix_setup_exit; 8594 } 8595 bp->flags |= BNXT_FLAG_USING_MSIX; 8596 kfree(msix_ent); 8597 return 0; 8598 8599 msix_setup_exit: 8600 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 8601 kfree(bp->irq_tbl); 8602 bp->irq_tbl = NULL; 8603 pci_disable_msix(bp->pdev); 8604 kfree(msix_ent); 8605 return rc; 8606 } 8607 8608 static int bnxt_init_inta(struct bnxt *bp) 8609 { 8610 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL); 8611 if (!bp->irq_tbl) 8612 return -ENOMEM; 8613 8614 bp->total_irqs = 1; 8615 bp->rx_nr_rings = 1; 8616 bp->tx_nr_rings = 1; 8617 bp->cp_nr_rings = 1; 8618 bp->flags |= BNXT_FLAG_SHARED_RINGS; 8619 bp->irq_tbl[0].vector = bp->pdev->irq; 8620 return 0; 8621 } 8622 8623 static int bnxt_init_int_mode(struct bnxt *bp) 8624 { 8625 int rc = 0; 8626 8627 if (bp->flags & BNXT_FLAG_MSIX_CAP) 8628 rc = bnxt_init_msix(bp); 8629 8630 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 8631 /* fallback to INTA */ 8632 rc = bnxt_init_inta(bp); 8633 } 8634 return rc; 8635 } 8636 8637 static void bnxt_clear_int_mode(struct bnxt *bp) 8638 { 8639 if (bp->flags & BNXT_FLAG_USING_MSIX) 8640 pci_disable_msix(bp->pdev); 8641 8642 kfree(bp->irq_tbl); 8643 bp->irq_tbl = NULL; 8644 bp->flags &= ~BNXT_FLAG_USING_MSIX; 8645 } 8646 8647 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 8648 { 8649 int tcs = netdev_get_num_tc(bp->dev); 8650 bool irq_cleared = false; 8651 int rc; 8652 8653 if (!bnxt_need_reserve_rings(bp)) 8654 return 0; 8655 8656 if (irq_re_init && BNXT_NEW_RM(bp) && 8657 bnxt_get_num_msix(bp) != bp->total_irqs) { 8658 bnxt_ulp_irq_stop(bp); 8659 bnxt_clear_int_mode(bp); 8660 irq_cleared = true; 8661 } 8662 rc = __bnxt_reserve_rings(bp); 8663 if (irq_cleared) { 8664 if (!rc) 8665 rc = bnxt_init_int_mode(bp); 8666 bnxt_ulp_irq_restart(bp, rc); 8667 } 8668 if (rc) { 8669 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 8670 return rc; 8671 } 8672 if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) { 8673 netdev_err(bp->dev, "tx ring reservation failure\n"); 8674 netdev_reset_tc(bp->dev); 8675 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 8676 return -ENOMEM; 8677 } 8678 return 0; 8679 } 8680 8681 static void bnxt_free_irq(struct bnxt *bp) 8682 { 8683 struct bnxt_irq *irq; 8684 int i; 8685 8686 #ifdef CONFIG_RFS_ACCEL 8687 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 8688 bp->dev->rx_cpu_rmap = NULL; 8689 #endif 8690 if (!bp->irq_tbl || !bp->bnapi) 8691 return; 8692 8693 for (i = 0; i < bp->cp_nr_rings; i++) { 8694 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8695 8696 irq = &bp->irq_tbl[map_idx]; 8697 if (irq->requested) { 8698 if (irq->have_cpumask) { 8699 irq_set_affinity_hint(irq->vector, NULL); 8700 free_cpumask_var(irq->cpu_mask); 8701 irq->have_cpumask = 0; 8702 } 8703 free_irq(irq->vector, bp->bnapi[i]); 8704 } 8705 8706 irq->requested = 0; 8707 } 8708 } 8709 8710 static int bnxt_request_irq(struct bnxt *bp) 8711 { 8712 int i, j, rc = 0; 8713 unsigned long flags = 0; 8714 #ifdef CONFIG_RFS_ACCEL 8715 struct cpu_rmap *rmap; 8716 #endif 8717 8718 rc = bnxt_setup_int_mode(bp); 8719 if (rc) { 8720 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 8721 rc); 8722 return rc; 8723 } 8724 #ifdef CONFIG_RFS_ACCEL 8725 rmap = bp->dev->rx_cpu_rmap; 8726 #endif 8727 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 8728 flags = IRQF_SHARED; 8729 8730 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 8731 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 8732 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 8733 8734 #ifdef CONFIG_RFS_ACCEL 8735 if (rmap && bp->bnapi[i]->rx_ring) { 8736 rc = irq_cpu_rmap_add(rmap, irq->vector); 8737 if (rc) 8738 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 8739 j); 8740 j++; 8741 } 8742 #endif 8743 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 8744 bp->bnapi[i]); 8745 if (rc) 8746 break; 8747 8748 irq->requested = 1; 8749 8750 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 8751 int numa_node = dev_to_node(&bp->pdev->dev); 8752 8753 irq->have_cpumask = 1; 8754 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 8755 irq->cpu_mask); 8756 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 8757 if (rc) { 8758 netdev_warn(bp->dev, 8759 "Set affinity failed, IRQ = %d\n", 8760 irq->vector); 8761 break; 8762 } 8763 } 8764 } 8765 return rc; 8766 } 8767 8768 static void bnxt_del_napi(struct bnxt *bp) 8769 { 8770 int i; 8771 8772 if (!bp->bnapi) 8773 return; 8774 8775 for (i = 0; i < bp->cp_nr_rings; i++) { 8776 struct bnxt_napi *bnapi = bp->bnapi[i]; 8777 8778 __netif_napi_del(&bnapi->napi); 8779 } 8780 /* We called __netif_napi_del(), we need 8781 * to respect an RCU grace period before freeing napi structures. 8782 */ 8783 synchronize_net(); 8784 } 8785 8786 static void bnxt_init_napi(struct bnxt *bp) 8787 { 8788 int i; 8789 unsigned int cp_nr_rings = bp->cp_nr_rings; 8790 struct bnxt_napi *bnapi; 8791 8792 if (bp->flags & BNXT_FLAG_USING_MSIX) { 8793 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 8794 8795 if (bp->flags & BNXT_FLAG_CHIP_P5) 8796 poll_fn = bnxt_poll_p5; 8797 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8798 cp_nr_rings--; 8799 for (i = 0; i < cp_nr_rings; i++) { 8800 bnapi = bp->bnapi[i]; 8801 netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64); 8802 } 8803 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 8804 bnapi = bp->bnapi[cp_nr_rings]; 8805 netif_napi_add(bp->dev, &bnapi->napi, 8806 bnxt_poll_nitroa0, 64); 8807 } 8808 } else { 8809 bnapi = bp->bnapi[0]; 8810 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 8811 } 8812 } 8813 8814 static void bnxt_disable_napi(struct bnxt *bp) 8815 { 8816 int i; 8817 8818 if (!bp->bnapi) 8819 return; 8820 8821 for (i = 0; i < bp->cp_nr_rings; i++) { 8822 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 8823 8824 if (bp->bnapi[i]->rx_ring) 8825 cancel_work_sync(&cpr->dim.work); 8826 8827 napi_disable(&bp->bnapi[i]->napi); 8828 } 8829 } 8830 8831 static void bnxt_enable_napi(struct bnxt *bp) 8832 { 8833 int i; 8834 8835 for (i = 0; i < bp->cp_nr_rings; i++) { 8836 struct bnxt_napi *bnapi = bp->bnapi[i]; 8837 struct bnxt_cp_ring_info *cpr; 8838 8839 cpr = &bnapi->cp_ring; 8840 if (bnapi->in_reset) 8841 cpr->sw_stats.rx.rx_resets++; 8842 bnapi->in_reset = false; 8843 8844 if (bnapi->rx_ring) { 8845 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 8846 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 8847 } 8848 napi_enable(&bnapi->napi); 8849 } 8850 } 8851 8852 void bnxt_tx_disable(struct bnxt *bp) 8853 { 8854 int i; 8855 struct bnxt_tx_ring_info *txr; 8856 8857 if (bp->tx_ring) { 8858 for (i = 0; i < bp->tx_nr_rings; i++) { 8859 txr = &bp->tx_ring[i]; 8860 txr->dev_state = BNXT_DEV_STATE_CLOSING; 8861 } 8862 } 8863 /* Stop all TX queues */ 8864 netif_tx_disable(bp->dev); 8865 netif_carrier_off(bp->dev); 8866 } 8867 8868 void bnxt_tx_enable(struct bnxt *bp) 8869 { 8870 int i; 8871 struct bnxt_tx_ring_info *txr; 8872 8873 for (i = 0; i < bp->tx_nr_rings; i++) { 8874 txr = &bp->tx_ring[i]; 8875 txr->dev_state = 0; 8876 } 8877 netif_tx_wake_all_queues(bp->dev); 8878 if (bp->link_info.link_up) 8879 netif_carrier_on(bp->dev); 8880 } 8881 8882 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 8883 { 8884 u8 active_fec = link_info->active_fec_sig_mode & 8885 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 8886 8887 switch (active_fec) { 8888 default: 8889 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 8890 return "None"; 8891 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 8892 return "Clause 74 BaseR"; 8893 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 8894 return "Clause 91 RS(528,514)"; 8895 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 8896 return "Clause 91 RS544_1XN"; 8897 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 8898 return "Clause 91 RS(544,514)"; 8899 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 8900 return "Clause 91 RS272_1XN"; 8901 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 8902 return "Clause 91 RS(272,257)"; 8903 } 8904 } 8905 8906 static void bnxt_report_link(struct bnxt *bp) 8907 { 8908 if (bp->link_info.link_up) { 8909 const char *duplex; 8910 const char *flow_ctrl; 8911 u32 speed; 8912 u16 fec; 8913 8914 netif_carrier_on(bp->dev); 8915 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 8916 if (speed == SPEED_UNKNOWN) { 8917 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 8918 return; 8919 } 8920 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 8921 duplex = "full"; 8922 else 8923 duplex = "half"; 8924 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 8925 flow_ctrl = "ON - receive & transmit"; 8926 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 8927 flow_ctrl = "ON - transmit"; 8928 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 8929 flow_ctrl = "ON - receive"; 8930 else 8931 flow_ctrl = "none"; 8932 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n", 8933 speed, duplex, flow_ctrl); 8934 if (bp->flags & BNXT_FLAG_EEE_CAP) 8935 netdev_info(bp->dev, "EEE is %s\n", 8936 bp->eee.eee_active ? "active" : 8937 "not active"); 8938 fec = bp->link_info.fec_cfg; 8939 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 8940 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 8941 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 8942 bnxt_report_fec(&bp->link_info)); 8943 } else { 8944 netif_carrier_off(bp->dev); 8945 netdev_err(bp->dev, "NIC Link is Down\n"); 8946 } 8947 } 8948 8949 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 8950 { 8951 if (!resp->supported_speeds_auto_mode && 8952 !resp->supported_speeds_force_mode && 8953 !resp->supported_pam4_speeds_auto_mode && 8954 !resp->supported_pam4_speeds_force_mode) 8955 return true; 8956 return false; 8957 } 8958 8959 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 8960 { 8961 int rc = 0; 8962 struct hwrm_port_phy_qcaps_input req = {0}; 8963 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 8964 struct bnxt_link_info *link_info = &bp->link_info; 8965 8966 bp->flags &= ~BNXT_FLAG_EEE_CAP; 8967 if (bp->test_info) 8968 bp->test_info->flags &= ~(BNXT_TEST_FL_EXT_LPBK | 8969 BNXT_TEST_FL_AN_PHY_LPBK); 8970 if (bp->hwrm_spec_code < 0x10201) 8971 return 0; 8972 8973 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1); 8974 8975 mutex_lock(&bp->hwrm_cmd_lock); 8976 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 8977 if (rc) 8978 goto hwrm_phy_qcaps_exit; 8979 8980 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 8981 struct ethtool_eee *eee = &bp->eee; 8982 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 8983 8984 bp->flags |= BNXT_FLAG_EEE_CAP; 8985 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 8986 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 8987 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 8988 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 8989 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 8990 } 8991 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) { 8992 if (bp->test_info) 8993 bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK; 8994 } 8995 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_AUTONEG_LPBK_SUPPORTED) { 8996 if (bp->test_info) 8997 bp->test_info->flags |= BNXT_TEST_FL_AN_PHY_LPBK; 8998 } 8999 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_SHARED_PHY_CFG_SUPPORTED) { 9000 if (BNXT_PF(bp)) 9001 bp->fw_cap |= BNXT_FW_CAP_SHARED_PORT_CFG; 9002 } 9003 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_CUMULATIVE_COUNTERS_ON_RESET) 9004 bp->fw_cap |= BNXT_FW_CAP_PORT_STATS_NO_RESET; 9005 9006 if (bp->hwrm_spec_code >= 0x10a01) { 9007 if (bnxt_phy_qcaps_no_speed(resp)) { 9008 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 9009 netdev_warn(bp->dev, "Ethernet link disabled\n"); 9010 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 9011 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 9012 netdev_info(bp->dev, "Ethernet link enabled\n"); 9013 /* Phy re-enabled, reprobe the speeds */ 9014 link_info->support_auto_speeds = 0; 9015 link_info->support_pam4_auto_speeds = 0; 9016 } 9017 } 9018 if (resp->supported_speeds_auto_mode) 9019 link_info->support_auto_speeds = 9020 le16_to_cpu(resp->supported_speeds_auto_mode); 9021 if (resp->supported_pam4_speeds_auto_mode) 9022 link_info->support_pam4_auto_speeds = 9023 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 9024 9025 bp->port_count = resp->port_cnt; 9026 9027 hwrm_phy_qcaps_exit: 9028 mutex_unlock(&bp->hwrm_cmd_lock); 9029 return rc; 9030 } 9031 9032 static bool bnxt_support_dropped(u16 advertising, u16 supported) 9033 { 9034 u16 diff = advertising ^ supported; 9035 9036 return ((supported | diff) != supported); 9037 } 9038 9039 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 9040 { 9041 int rc = 0; 9042 struct bnxt_link_info *link_info = &bp->link_info; 9043 struct hwrm_port_phy_qcfg_input req = {0}; 9044 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 9045 u8 link_up = link_info->link_up; 9046 bool support_changed = false; 9047 9048 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 9049 9050 mutex_lock(&bp->hwrm_cmd_lock); 9051 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9052 if (rc) { 9053 mutex_unlock(&bp->hwrm_cmd_lock); 9054 return rc; 9055 } 9056 9057 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 9058 link_info->phy_link_status = resp->link; 9059 link_info->duplex = resp->duplex_cfg; 9060 if (bp->hwrm_spec_code >= 0x10800) 9061 link_info->duplex = resp->duplex_state; 9062 link_info->pause = resp->pause; 9063 link_info->auto_mode = resp->auto_mode; 9064 link_info->auto_pause_setting = resp->auto_pause; 9065 link_info->lp_pause = resp->link_partner_adv_pause; 9066 link_info->force_pause_setting = resp->force_pause; 9067 link_info->duplex_setting = resp->duplex_cfg; 9068 if (link_info->phy_link_status == BNXT_LINK_LINK) 9069 link_info->link_speed = le16_to_cpu(resp->link_speed); 9070 else 9071 link_info->link_speed = 0; 9072 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 9073 link_info->force_pam4_link_speed = 9074 le16_to_cpu(resp->force_pam4_link_speed); 9075 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 9076 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 9077 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 9078 link_info->auto_pam4_link_speeds = 9079 le16_to_cpu(resp->auto_pam4_link_speed_mask); 9080 link_info->lp_auto_link_speeds = 9081 le16_to_cpu(resp->link_partner_adv_speeds); 9082 link_info->lp_auto_pam4_link_speeds = 9083 resp->link_partner_pam4_adv_speeds; 9084 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 9085 link_info->phy_ver[0] = resp->phy_maj; 9086 link_info->phy_ver[1] = resp->phy_min; 9087 link_info->phy_ver[2] = resp->phy_bld; 9088 link_info->media_type = resp->media_type; 9089 link_info->phy_type = resp->phy_type; 9090 link_info->transceiver = resp->xcvr_pkg_type; 9091 link_info->phy_addr = resp->eee_config_phy_addr & 9092 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 9093 link_info->module_status = resp->module_status; 9094 9095 if (bp->flags & BNXT_FLAG_EEE_CAP) { 9096 struct ethtool_eee *eee = &bp->eee; 9097 u16 fw_speeds; 9098 9099 eee->eee_active = 0; 9100 if (resp->eee_config_phy_addr & 9101 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 9102 eee->eee_active = 1; 9103 fw_speeds = le16_to_cpu( 9104 resp->link_partner_adv_eee_link_speed_mask); 9105 eee->lp_advertised = 9106 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9107 } 9108 9109 /* Pull initial EEE config */ 9110 if (!chng_link_state) { 9111 if (resp->eee_config_phy_addr & 9112 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 9113 eee->eee_enabled = 1; 9114 9115 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 9116 eee->advertised = 9117 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0); 9118 9119 if (resp->eee_config_phy_addr & 9120 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 9121 __le32 tmr; 9122 9123 eee->tx_lpi_enabled = 1; 9124 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 9125 eee->tx_lpi_timer = le32_to_cpu(tmr) & 9126 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 9127 } 9128 } 9129 } 9130 9131 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 9132 if (bp->hwrm_spec_code >= 0x10504) { 9133 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 9134 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 9135 } 9136 /* TODO: need to add more logic to report VF link */ 9137 if (chng_link_state) { 9138 if (link_info->phy_link_status == BNXT_LINK_LINK) 9139 link_info->link_up = 1; 9140 else 9141 link_info->link_up = 0; 9142 if (link_up != link_info->link_up) 9143 bnxt_report_link(bp); 9144 } else { 9145 /* alwasy link down if not require to update link state */ 9146 link_info->link_up = 0; 9147 } 9148 mutex_unlock(&bp->hwrm_cmd_lock); 9149 9150 if (!BNXT_PHY_CFG_ABLE(bp)) 9151 return 0; 9152 9153 /* Check if any advertised speeds are no longer supported. The caller 9154 * holds the link_lock mutex, so we can modify link_info settings. 9155 */ 9156 if (bnxt_support_dropped(link_info->advertising, 9157 link_info->support_auto_speeds)) { 9158 link_info->advertising = link_info->support_auto_speeds; 9159 support_changed = true; 9160 } 9161 if (bnxt_support_dropped(link_info->advertising_pam4, 9162 link_info->support_pam4_auto_speeds)) { 9163 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 9164 support_changed = true; 9165 } 9166 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 9167 bnxt_hwrm_set_link_setting(bp, true, false); 9168 return 0; 9169 } 9170 9171 static void bnxt_get_port_module_status(struct bnxt *bp) 9172 { 9173 struct bnxt_link_info *link_info = &bp->link_info; 9174 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 9175 u8 module_status; 9176 9177 if (bnxt_update_link(bp, true)) 9178 return; 9179 9180 module_status = link_info->module_status; 9181 switch (module_status) { 9182 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 9183 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 9184 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 9185 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 9186 bp->pf.port_id); 9187 if (bp->hwrm_spec_code >= 0x10201) { 9188 netdev_warn(bp->dev, "Module part number %s\n", 9189 resp->phy_vendor_partnumber); 9190 } 9191 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 9192 netdev_warn(bp->dev, "TX is disabled\n"); 9193 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 9194 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 9195 } 9196 } 9197 9198 static void 9199 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9200 { 9201 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 9202 if (bp->hwrm_spec_code >= 0x10201) 9203 req->auto_pause = 9204 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 9205 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9206 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 9207 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9208 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 9209 req->enables |= 9210 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9211 } else { 9212 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 9213 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 9214 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 9215 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 9216 req->enables |= 9217 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 9218 if (bp->hwrm_spec_code >= 0x10201) { 9219 req->auto_pause = req->force_pause; 9220 req->enables |= cpu_to_le32( 9221 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 9222 } 9223 } 9224 } 9225 9226 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 9227 { 9228 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 9229 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 9230 if (bp->link_info.advertising) { 9231 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 9232 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 9233 } 9234 if (bp->link_info.advertising_pam4) { 9235 req->enables |= 9236 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 9237 req->auto_link_pam4_speed_mask = 9238 cpu_to_le16(bp->link_info.advertising_pam4); 9239 } 9240 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 9241 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 9242 } else { 9243 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 9244 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 9245 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9246 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 9247 } else { 9248 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 9249 } 9250 } 9251 9252 /* tell chimp that the setting takes effect immediately */ 9253 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 9254 } 9255 9256 int bnxt_hwrm_set_pause(struct bnxt *bp) 9257 { 9258 struct hwrm_port_phy_cfg_input req = {0}; 9259 int rc; 9260 9261 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9262 bnxt_hwrm_set_pause_common(bp, &req); 9263 9264 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 9265 bp->link_info.force_link_chng) 9266 bnxt_hwrm_set_link_common(bp, &req); 9267 9268 mutex_lock(&bp->hwrm_cmd_lock); 9269 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9270 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 9271 /* since changing of pause setting doesn't trigger any link 9272 * change event, the driver needs to update the current pause 9273 * result upon successfully return of the phy_cfg command 9274 */ 9275 bp->link_info.pause = 9276 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 9277 bp->link_info.auto_pause_setting = 0; 9278 if (!bp->link_info.force_link_chng) 9279 bnxt_report_link(bp); 9280 } 9281 bp->link_info.force_link_chng = false; 9282 mutex_unlock(&bp->hwrm_cmd_lock); 9283 return rc; 9284 } 9285 9286 static void bnxt_hwrm_set_eee(struct bnxt *bp, 9287 struct hwrm_port_phy_cfg_input *req) 9288 { 9289 struct ethtool_eee *eee = &bp->eee; 9290 9291 if (eee->eee_enabled) { 9292 u16 eee_speeds; 9293 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 9294 9295 if (eee->tx_lpi_enabled) 9296 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 9297 else 9298 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 9299 9300 req->flags |= cpu_to_le32(flags); 9301 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 9302 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 9303 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 9304 } else { 9305 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 9306 } 9307 } 9308 9309 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 9310 { 9311 struct hwrm_port_phy_cfg_input req = {0}; 9312 9313 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9314 if (set_pause) 9315 bnxt_hwrm_set_pause_common(bp, &req); 9316 9317 bnxt_hwrm_set_link_common(bp, &req); 9318 9319 if (set_eee) 9320 bnxt_hwrm_set_eee(bp, &req); 9321 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9322 } 9323 9324 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 9325 { 9326 struct hwrm_port_phy_cfg_input req = {0}; 9327 9328 if (!BNXT_SINGLE_PF(bp)) 9329 return 0; 9330 9331 if (pci_num_vf(bp->pdev)) 9332 return 0; 9333 9334 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 9335 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 9336 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9337 } 9338 9339 static int bnxt_fw_init_one(struct bnxt *bp); 9340 9341 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 9342 { 9343 struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr; 9344 struct hwrm_func_drv_if_change_input req = {0}; 9345 bool resc_reinit = false, fw_reset = false; 9346 u32 flags = 0; 9347 int rc; 9348 9349 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 9350 return 0; 9351 9352 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1); 9353 if (up) 9354 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 9355 mutex_lock(&bp->hwrm_cmd_lock); 9356 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9357 if (!rc) 9358 flags = le32_to_cpu(resp->flags); 9359 mutex_unlock(&bp->hwrm_cmd_lock); 9360 if (rc) 9361 return rc; 9362 9363 if (!up) 9364 return 0; 9365 9366 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 9367 resc_reinit = true; 9368 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE) 9369 fw_reset = true; 9370 9371 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 9372 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 9373 return -ENODEV; 9374 } 9375 if (resc_reinit || fw_reset) { 9376 if (fw_reset) { 9377 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 9378 bnxt_ulp_stop(bp); 9379 bnxt_free_ctx_mem(bp); 9380 kfree(bp->ctx); 9381 bp->ctx = NULL; 9382 bnxt_dcb_free(bp); 9383 rc = bnxt_fw_init_one(bp); 9384 if (rc) { 9385 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9386 return rc; 9387 } 9388 bnxt_clear_int_mode(bp); 9389 rc = bnxt_init_int_mode(bp); 9390 if (rc) { 9391 netdev_err(bp->dev, "init int mode failed\n"); 9392 return rc; 9393 } 9394 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 9395 } 9396 if (BNXT_NEW_RM(bp)) { 9397 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9398 9399 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9400 hw_resc->resv_cp_rings = 0; 9401 hw_resc->resv_stat_ctxs = 0; 9402 hw_resc->resv_irqs = 0; 9403 hw_resc->resv_tx_rings = 0; 9404 hw_resc->resv_rx_rings = 0; 9405 hw_resc->resv_hw_ring_grps = 0; 9406 hw_resc->resv_vnics = 0; 9407 if (!fw_reset) { 9408 bp->tx_nr_rings = 0; 9409 bp->rx_nr_rings = 0; 9410 } 9411 } 9412 } 9413 return 0; 9414 } 9415 9416 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 9417 { 9418 struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 9419 struct hwrm_port_led_qcaps_input req = {0}; 9420 struct bnxt_pf_info *pf = &bp->pf; 9421 int rc; 9422 9423 bp->num_leds = 0; 9424 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 9425 return 0; 9426 9427 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1); 9428 req.port_id = cpu_to_le16(pf->port_id); 9429 mutex_lock(&bp->hwrm_cmd_lock); 9430 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9431 if (rc) { 9432 mutex_unlock(&bp->hwrm_cmd_lock); 9433 return rc; 9434 } 9435 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 9436 int i; 9437 9438 bp->num_leds = resp->num_leds; 9439 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 9440 bp->num_leds); 9441 for (i = 0; i < bp->num_leds; i++) { 9442 struct bnxt_led_info *led = &bp->leds[i]; 9443 __le16 caps = led->led_state_caps; 9444 9445 if (!led->led_group_id || 9446 !BNXT_LED_ALT_BLINK_CAP(caps)) { 9447 bp->num_leds = 0; 9448 break; 9449 } 9450 } 9451 } 9452 mutex_unlock(&bp->hwrm_cmd_lock); 9453 return 0; 9454 } 9455 9456 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 9457 { 9458 struct hwrm_wol_filter_alloc_input req = {0}; 9459 struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 9460 int rc; 9461 9462 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1); 9463 req.port_id = cpu_to_le16(bp->pf.port_id); 9464 req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 9465 req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 9466 memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN); 9467 mutex_lock(&bp->hwrm_cmd_lock); 9468 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9469 if (!rc) 9470 bp->wol_filter_id = resp->wol_filter_id; 9471 mutex_unlock(&bp->hwrm_cmd_lock); 9472 return rc; 9473 } 9474 9475 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 9476 { 9477 struct hwrm_wol_filter_free_input req = {0}; 9478 9479 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1); 9480 req.port_id = cpu_to_le16(bp->pf.port_id); 9481 req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 9482 req.wol_filter_id = bp->wol_filter_id; 9483 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9484 } 9485 9486 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 9487 { 9488 struct hwrm_wol_filter_qcfg_input req = {0}; 9489 struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 9490 u16 next_handle = 0; 9491 int rc; 9492 9493 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1); 9494 req.port_id = cpu_to_le16(bp->pf.port_id); 9495 req.handle = cpu_to_le16(handle); 9496 mutex_lock(&bp->hwrm_cmd_lock); 9497 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9498 if (!rc) { 9499 next_handle = le16_to_cpu(resp->next_handle); 9500 if (next_handle != 0) { 9501 if (resp->wol_type == 9502 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 9503 bp->wol = 1; 9504 bp->wol_filter_id = resp->wol_filter_id; 9505 } 9506 } 9507 } 9508 mutex_unlock(&bp->hwrm_cmd_lock); 9509 return next_handle; 9510 } 9511 9512 static void bnxt_get_wol_settings(struct bnxt *bp) 9513 { 9514 u16 handle = 0; 9515 9516 bp->wol = 0; 9517 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 9518 return; 9519 9520 do { 9521 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 9522 } while (handle && handle != 0xffff); 9523 } 9524 9525 #ifdef CONFIG_BNXT_HWMON 9526 static ssize_t bnxt_show_temp(struct device *dev, 9527 struct device_attribute *devattr, char *buf) 9528 { 9529 struct hwrm_temp_monitor_query_input req = {0}; 9530 struct hwrm_temp_monitor_query_output *resp; 9531 struct bnxt *bp = dev_get_drvdata(dev); 9532 u32 len = 0; 9533 int rc; 9534 9535 resp = bp->hwrm_cmd_resp_addr; 9536 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 9537 mutex_lock(&bp->hwrm_cmd_lock); 9538 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9539 if (!rc) 9540 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */ 9541 mutex_unlock(&bp->hwrm_cmd_lock); 9542 return rc ?: len; 9543 } 9544 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0); 9545 9546 static struct attribute *bnxt_attrs[] = { 9547 &sensor_dev_attr_temp1_input.dev_attr.attr, 9548 NULL 9549 }; 9550 ATTRIBUTE_GROUPS(bnxt); 9551 9552 static void bnxt_hwmon_close(struct bnxt *bp) 9553 { 9554 if (bp->hwmon_dev) { 9555 hwmon_device_unregister(bp->hwmon_dev); 9556 bp->hwmon_dev = NULL; 9557 } 9558 } 9559 9560 static void bnxt_hwmon_open(struct bnxt *bp) 9561 { 9562 struct hwrm_temp_monitor_query_input req = {0}; 9563 struct pci_dev *pdev = bp->pdev; 9564 int rc; 9565 9566 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1); 9567 rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9568 if (rc == -EACCES || rc == -EOPNOTSUPP) { 9569 bnxt_hwmon_close(bp); 9570 return; 9571 } 9572 9573 if (bp->hwmon_dev) 9574 return; 9575 9576 bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, 9577 DRV_MODULE_NAME, bp, 9578 bnxt_groups); 9579 if (IS_ERR(bp->hwmon_dev)) { 9580 bp->hwmon_dev = NULL; 9581 dev_warn(&pdev->dev, "Cannot register hwmon device\n"); 9582 } 9583 } 9584 #else 9585 static void bnxt_hwmon_close(struct bnxt *bp) 9586 { 9587 } 9588 9589 static void bnxt_hwmon_open(struct bnxt *bp) 9590 { 9591 } 9592 #endif 9593 9594 static bool bnxt_eee_config_ok(struct bnxt *bp) 9595 { 9596 struct ethtool_eee *eee = &bp->eee; 9597 struct bnxt_link_info *link_info = &bp->link_info; 9598 9599 if (!(bp->flags & BNXT_FLAG_EEE_CAP)) 9600 return true; 9601 9602 if (eee->eee_enabled) { 9603 u32 advertising = 9604 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0); 9605 9606 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 9607 eee->eee_enabled = 0; 9608 return false; 9609 } 9610 if (eee->advertised & ~advertising) { 9611 eee->advertised = advertising & eee->supported; 9612 return false; 9613 } 9614 } 9615 return true; 9616 } 9617 9618 static int bnxt_update_phy_setting(struct bnxt *bp) 9619 { 9620 int rc; 9621 bool update_link = false; 9622 bool update_pause = false; 9623 bool update_eee = false; 9624 struct bnxt_link_info *link_info = &bp->link_info; 9625 9626 rc = bnxt_update_link(bp, true); 9627 if (rc) { 9628 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 9629 rc); 9630 return rc; 9631 } 9632 if (!BNXT_SINGLE_PF(bp)) 9633 return 0; 9634 9635 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 9636 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 9637 link_info->req_flow_ctrl) 9638 update_pause = true; 9639 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 9640 link_info->force_pause_setting != link_info->req_flow_ctrl) 9641 update_pause = true; 9642 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 9643 if (BNXT_AUTO_MODE(link_info->auto_mode)) 9644 update_link = true; 9645 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 9646 link_info->req_link_speed != link_info->force_link_speed) 9647 update_link = true; 9648 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 9649 link_info->req_link_speed != link_info->force_pam4_link_speed) 9650 update_link = true; 9651 if (link_info->req_duplex != link_info->duplex_setting) 9652 update_link = true; 9653 } else { 9654 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 9655 update_link = true; 9656 if (link_info->advertising != link_info->auto_link_speeds || 9657 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 9658 update_link = true; 9659 } 9660 9661 /* The last close may have shutdown the link, so need to call 9662 * PHY_CFG to bring it back up. 9663 */ 9664 if (!bp->link_info.link_up) 9665 update_link = true; 9666 9667 if (!bnxt_eee_config_ok(bp)) 9668 update_eee = true; 9669 9670 if (update_link) 9671 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 9672 else if (update_pause) 9673 rc = bnxt_hwrm_set_pause(bp); 9674 if (rc) { 9675 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 9676 rc); 9677 return rc; 9678 } 9679 9680 return rc; 9681 } 9682 9683 /* Common routine to pre-map certain register block to different GRC window. 9684 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 9685 * in PF and 3 windows in VF that can be customized to map in different 9686 * register blocks. 9687 */ 9688 static void bnxt_preset_reg_win(struct bnxt *bp) 9689 { 9690 if (BNXT_PF(bp)) { 9691 /* CAG registers map to GRC window #4 */ 9692 writel(BNXT_CAG_REG_BASE, 9693 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 9694 } 9695 } 9696 9697 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 9698 9699 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 9700 { 9701 int rc = 0; 9702 9703 bnxt_preset_reg_win(bp); 9704 netif_carrier_off(bp->dev); 9705 if (irq_re_init) { 9706 /* Reserve rings now if none were reserved at driver probe. */ 9707 rc = bnxt_init_dflt_ring_mode(bp); 9708 if (rc) { 9709 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 9710 return rc; 9711 } 9712 } 9713 rc = bnxt_reserve_rings(bp, irq_re_init); 9714 if (rc) 9715 return rc; 9716 if ((bp->flags & BNXT_FLAG_RFS) && 9717 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 9718 /* disable RFS if falling back to INTA */ 9719 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 9720 bp->flags &= ~BNXT_FLAG_RFS; 9721 } 9722 9723 rc = bnxt_alloc_mem(bp, irq_re_init); 9724 if (rc) { 9725 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 9726 goto open_err_free_mem; 9727 } 9728 9729 if (irq_re_init) { 9730 bnxt_init_napi(bp); 9731 rc = bnxt_request_irq(bp); 9732 if (rc) { 9733 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 9734 goto open_err_irq; 9735 } 9736 } 9737 9738 rc = bnxt_init_nic(bp, irq_re_init); 9739 if (rc) { 9740 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 9741 goto open_err_irq; 9742 } 9743 9744 bnxt_enable_napi(bp); 9745 bnxt_debug_dev_init(bp); 9746 9747 if (link_re_init) { 9748 mutex_lock(&bp->link_lock); 9749 rc = bnxt_update_phy_setting(bp); 9750 mutex_unlock(&bp->link_lock); 9751 if (rc) { 9752 netdev_warn(bp->dev, "failed to update phy settings\n"); 9753 if (BNXT_SINGLE_PF(bp)) { 9754 bp->link_info.phy_retry = true; 9755 bp->link_info.phy_retry_expires = 9756 jiffies + 5 * HZ; 9757 } 9758 } 9759 } 9760 9761 if (irq_re_init) 9762 udp_tunnel_nic_reset_ntf(bp->dev); 9763 9764 set_bit(BNXT_STATE_OPEN, &bp->state); 9765 bnxt_enable_int(bp); 9766 /* Enable TX queues */ 9767 bnxt_tx_enable(bp); 9768 mod_timer(&bp->timer, jiffies + bp->current_interval); 9769 /* Poll link status and check for SFP+ module status */ 9770 bnxt_get_port_module_status(bp); 9771 9772 /* VF-reps may need to be re-opened after the PF is re-opened */ 9773 if (BNXT_PF(bp)) 9774 bnxt_vf_reps_open(bp); 9775 return 0; 9776 9777 open_err_irq: 9778 bnxt_del_napi(bp); 9779 9780 open_err_free_mem: 9781 bnxt_free_skbs(bp); 9782 bnxt_free_irq(bp); 9783 bnxt_free_mem(bp, true); 9784 return rc; 9785 } 9786 9787 /* rtnl_lock held */ 9788 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 9789 { 9790 int rc = 0; 9791 9792 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 9793 if (rc) { 9794 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 9795 dev_close(bp->dev); 9796 } 9797 return rc; 9798 } 9799 9800 /* rtnl_lock held, open the NIC half way by allocating all resources, but 9801 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 9802 * self tests. 9803 */ 9804 int bnxt_half_open_nic(struct bnxt *bp) 9805 { 9806 int rc = 0; 9807 9808 rc = bnxt_alloc_mem(bp, false); 9809 if (rc) { 9810 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 9811 goto half_open_err; 9812 } 9813 rc = bnxt_init_nic(bp, false); 9814 if (rc) { 9815 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 9816 goto half_open_err; 9817 } 9818 return 0; 9819 9820 half_open_err: 9821 bnxt_free_skbs(bp); 9822 bnxt_free_mem(bp, false); 9823 dev_close(bp->dev); 9824 return rc; 9825 } 9826 9827 /* rtnl_lock held, this call can only be made after a previous successful 9828 * call to bnxt_half_open_nic(). 9829 */ 9830 void bnxt_half_close_nic(struct bnxt *bp) 9831 { 9832 bnxt_hwrm_resource_free(bp, false, false); 9833 bnxt_free_skbs(bp); 9834 bnxt_free_mem(bp, false); 9835 } 9836 9837 static void bnxt_reenable_sriov(struct bnxt *bp) 9838 { 9839 if (BNXT_PF(bp)) { 9840 struct bnxt_pf_info *pf = &bp->pf; 9841 int n = pf->active_vfs; 9842 9843 if (n) 9844 bnxt_cfg_hw_sriov(bp, &n, true); 9845 } 9846 } 9847 9848 static int bnxt_open(struct net_device *dev) 9849 { 9850 struct bnxt *bp = netdev_priv(dev); 9851 int rc; 9852 9853 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 9854 netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n"); 9855 return -ENODEV; 9856 } 9857 9858 rc = bnxt_hwrm_if_change(bp, true); 9859 if (rc) 9860 return rc; 9861 rc = __bnxt_open_nic(bp, true, true); 9862 if (rc) { 9863 bnxt_hwrm_if_change(bp, false); 9864 } else { 9865 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 9866 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 9867 bnxt_ulp_start(bp, 0); 9868 bnxt_reenable_sriov(bp); 9869 } 9870 } 9871 bnxt_hwmon_open(bp); 9872 } 9873 9874 return rc; 9875 } 9876 9877 static bool bnxt_drv_busy(struct bnxt *bp) 9878 { 9879 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 9880 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 9881 } 9882 9883 static void bnxt_get_ring_stats(struct bnxt *bp, 9884 struct rtnl_link_stats64 *stats); 9885 9886 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 9887 bool link_re_init) 9888 { 9889 /* Close the VF-reps before closing PF */ 9890 if (BNXT_PF(bp)) 9891 bnxt_vf_reps_close(bp); 9892 9893 /* Change device state to avoid TX queue wake up's */ 9894 bnxt_tx_disable(bp); 9895 9896 clear_bit(BNXT_STATE_OPEN, &bp->state); 9897 smp_mb__after_atomic(); 9898 while (bnxt_drv_busy(bp)) 9899 msleep(20); 9900 9901 /* Flush rings and and disable interrupts */ 9902 bnxt_shutdown_nic(bp, irq_re_init); 9903 9904 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 9905 9906 bnxt_debug_dev_exit(bp); 9907 bnxt_disable_napi(bp); 9908 del_timer_sync(&bp->timer); 9909 bnxt_free_skbs(bp); 9910 9911 /* Save ring stats before shutdown */ 9912 if (bp->bnapi && irq_re_init) 9913 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 9914 if (irq_re_init) { 9915 bnxt_free_irq(bp); 9916 bnxt_del_napi(bp); 9917 } 9918 bnxt_free_mem(bp, irq_re_init); 9919 } 9920 9921 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 9922 { 9923 int rc = 0; 9924 9925 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 9926 /* If we get here, it means firmware reset is in progress 9927 * while we are trying to close. We can safely proceed with 9928 * the close because we are holding rtnl_lock(). Some firmware 9929 * messages may fail as we proceed to close. We set the 9930 * ABORT_ERR flag here so that the FW reset thread will later 9931 * abort when it gets the rtnl_lock() and sees the flag. 9932 */ 9933 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 9934 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 9935 } 9936 9937 #ifdef CONFIG_BNXT_SRIOV 9938 if (bp->sriov_cfg) { 9939 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 9940 !bp->sriov_cfg, 9941 BNXT_SRIOV_CFG_WAIT_TMO); 9942 if (rc) 9943 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 9944 } 9945 #endif 9946 __bnxt_close_nic(bp, irq_re_init, link_re_init); 9947 return rc; 9948 } 9949 9950 static int bnxt_close(struct net_device *dev) 9951 { 9952 struct bnxt *bp = netdev_priv(dev); 9953 9954 bnxt_hwmon_close(bp); 9955 bnxt_close_nic(bp, true, true); 9956 bnxt_hwrm_shutdown_link(bp); 9957 bnxt_hwrm_if_change(bp, false); 9958 return 0; 9959 } 9960 9961 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 9962 u16 *val) 9963 { 9964 struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr; 9965 struct hwrm_port_phy_mdio_read_input req = {0}; 9966 int rc; 9967 9968 if (bp->hwrm_spec_code < 0x10a00) 9969 return -EOPNOTSUPP; 9970 9971 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1); 9972 req.port_id = cpu_to_le16(bp->pf.port_id); 9973 req.phy_addr = phy_addr; 9974 req.reg_addr = cpu_to_le16(reg & 0x1f); 9975 if (mdio_phy_id_is_c45(phy_addr)) { 9976 req.cl45_mdio = 1; 9977 req.phy_addr = mdio_phy_id_prtad(phy_addr); 9978 req.dev_addr = mdio_phy_id_devad(phy_addr); 9979 req.reg_addr = cpu_to_le16(reg); 9980 } 9981 9982 mutex_lock(&bp->hwrm_cmd_lock); 9983 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 9984 if (!rc) 9985 *val = le16_to_cpu(resp->reg_data); 9986 mutex_unlock(&bp->hwrm_cmd_lock); 9987 return rc; 9988 } 9989 9990 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 9991 u16 val) 9992 { 9993 struct hwrm_port_phy_mdio_write_input req = {0}; 9994 9995 if (bp->hwrm_spec_code < 0x10a00) 9996 return -EOPNOTSUPP; 9997 9998 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1); 9999 req.port_id = cpu_to_le16(bp->pf.port_id); 10000 req.phy_addr = phy_addr; 10001 req.reg_addr = cpu_to_le16(reg & 0x1f); 10002 if (mdio_phy_id_is_c45(phy_addr)) { 10003 req.cl45_mdio = 1; 10004 req.phy_addr = mdio_phy_id_prtad(phy_addr); 10005 req.dev_addr = mdio_phy_id_devad(phy_addr); 10006 req.reg_addr = cpu_to_le16(reg); 10007 } 10008 req.reg_data = cpu_to_le16(val); 10009 10010 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10011 } 10012 10013 /* rtnl_lock held */ 10014 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 10015 { 10016 struct mii_ioctl_data *mdio = if_mii(ifr); 10017 struct bnxt *bp = netdev_priv(dev); 10018 int rc; 10019 10020 switch (cmd) { 10021 case SIOCGMIIPHY: 10022 mdio->phy_id = bp->link_info.phy_addr; 10023 10024 fallthrough; 10025 case SIOCGMIIREG: { 10026 u16 mii_regval = 0; 10027 10028 if (!netif_running(dev)) 10029 return -EAGAIN; 10030 10031 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 10032 &mii_regval); 10033 mdio->val_out = mii_regval; 10034 return rc; 10035 } 10036 10037 case SIOCSMIIREG: 10038 if (!netif_running(dev)) 10039 return -EAGAIN; 10040 10041 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 10042 mdio->val_in); 10043 10044 default: 10045 /* do nothing */ 10046 break; 10047 } 10048 return -EOPNOTSUPP; 10049 } 10050 10051 static void bnxt_get_ring_stats(struct bnxt *bp, 10052 struct rtnl_link_stats64 *stats) 10053 { 10054 int i; 10055 10056 for (i = 0; i < bp->cp_nr_rings; i++) { 10057 struct bnxt_napi *bnapi = bp->bnapi[i]; 10058 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10059 u64 *sw = cpr->stats.sw_stats; 10060 10061 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 10062 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10063 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 10064 10065 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 10066 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 10067 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 10068 10069 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 10070 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 10071 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 10072 10073 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 10074 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 10075 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 10076 10077 stats->rx_missed_errors += 10078 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 10079 10080 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 10081 10082 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 10083 } 10084 } 10085 10086 static void bnxt_add_prev_stats(struct bnxt *bp, 10087 struct rtnl_link_stats64 *stats) 10088 { 10089 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 10090 10091 stats->rx_packets += prev_stats->rx_packets; 10092 stats->tx_packets += prev_stats->tx_packets; 10093 stats->rx_bytes += prev_stats->rx_bytes; 10094 stats->tx_bytes += prev_stats->tx_bytes; 10095 stats->rx_missed_errors += prev_stats->rx_missed_errors; 10096 stats->multicast += prev_stats->multicast; 10097 stats->tx_dropped += prev_stats->tx_dropped; 10098 } 10099 10100 static void 10101 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 10102 { 10103 struct bnxt *bp = netdev_priv(dev); 10104 10105 set_bit(BNXT_STATE_READ_STATS, &bp->state); 10106 /* Make sure bnxt_close_nic() sees that we are reading stats before 10107 * we check the BNXT_STATE_OPEN flag. 10108 */ 10109 smp_mb__after_atomic(); 10110 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10111 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10112 *stats = bp->net_stats_prev; 10113 return; 10114 } 10115 10116 bnxt_get_ring_stats(bp, stats); 10117 bnxt_add_prev_stats(bp, stats); 10118 10119 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10120 u64 *rx = bp->port_stats.sw_stats; 10121 u64 *tx = bp->port_stats.sw_stats + 10122 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10123 10124 stats->rx_crc_errors = 10125 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 10126 stats->rx_frame_errors = 10127 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 10128 stats->rx_length_errors = 10129 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 10130 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 10131 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 10132 stats->rx_errors = 10133 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 10134 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 10135 stats->collisions = 10136 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 10137 stats->tx_fifo_errors = 10138 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 10139 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 10140 } 10141 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 10142 } 10143 10144 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 10145 { 10146 struct net_device *dev = bp->dev; 10147 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10148 struct netdev_hw_addr *ha; 10149 u8 *haddr; 10150 int mc_count = 0; 10151 bool update = false; 10152 int off = 0; 10153 10154 netdev_for_each_mc_addr(ha, dev) { 10155 if (mc_count >= BNXT_MAX_MC_ADDRS) { 10156 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10157 vnic->mc_list_count = 0; 10158 return false; 10159 } 10160 haddr = ha->addr; 10161 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 10162 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 10163 update = true; 10164 } 10165 off += ETH_ALEN; 10166 mc_count++; 10167 } 10168 if (mc_count) 10169 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 10170 10171 if (mc_count != vnic->mc_list_count) { 10172 vnic->mc_list_count = mc_count; 10173 update = true; 10174 } 10175 return update; 10176 } 10177 10178 static bool bnxt_uc_list_updated(struct bnxt *bp) 10179 { 10180 struct net_device *dev = bp->dev; 10181 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10182 struct netdev_hw_addr *ha; 10183 int off = 0; 10184 10185 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 10186 return true; 10187 10188 netdev_for_each_uc_addr(ha, dev) { 10189 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 10190 return true; 10191 10192 off += ETH_ALEN; 10193 } 10194 return false; 10195 } 10196 10197 static void bnxt_set_rx_mode(struct net_device *dev) 10198 { 10199 struct bnxt *bp = netdev_priv(dev); 10200 struct bnxt_vnic_info *vnic; 10201 bool mc_update = false; 10202 bool uc_update; 10203 u32 mask; 10204 10205 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 10206 return; 10207 10208 vnic = &bp->vnic_info[0]; 10209 mask = vnic->rx_mask; 10210 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 10211 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 10212 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 10213 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 10214 10215 if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp)) 10216 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10217 10218 uc_update = bnxt_uc_list_updated(bp); 10219 10220 if (dev->flags & IFF_BROADCAST) 10221 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10222 if (dev->flags & IFF_ALLMULTI) { 10223 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10224 vnic->mc_list_count = 0; 10225 } else { 10226 mc_update = bnxt_mc_list_updated(bp, &mask); 10227 } 10228 10229 if (mask != vnic->rx_mask || uc_update || mc_update) { 10230 vnic->rx_mask = mask; 10231 10232 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 10233 bnxt_queue_sp_work(bp); 10234 } 10235 } 10236 10237 static int bnxt_cfg_rx_mode(struct bnxt *bp) 10238 { 10239 struct net_device *dev = bp->dev; 10240 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 10241 struct netdev_hw_addr *ha; 10242 int i, off = 0, rc; 10243 bool uc_update; 10244 10245 netif_addr_lock_bh(dev); 10246 uc_update = bnxt_uc_list_updated(bp); 10247 netif_addr_unlock_bh(dev); 10248 10249 if (!uc_update) 10250 goto skip_uc; 10251 10252 mutex_lock(&bp->hwrm_cmd_lock); 10253 for (i = 1; i < vnic->uc_filter_count; i++) { 10254 struct hwrm_cfa_l2_filter_free_input req = {0}; 10255 10256 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 10257 -1); 10258 10259 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 10260 10261 rc = _hwrm_send_message(bp, &req, sizeof(req), 10262 HWRM_CMD_TIMEOUT); 10263 } 10264 mutex_unlock(&bp->hwrm_cmd_lock); 10265 10266 vnic->uc_filter_count = 1; 10267 10268 netif_addr_lock_bh(dev); 10269 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 10270 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10271 } else { 10272 netdev_for_each_uc_addr(ha, dev) { 10273 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 10274 off += ETH_ALEN; 10275 vnic->uc_filter_count++; 10276 } 10277 } 10278 netif_addr_unlock_bh(dev); 10279 10280 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 10281 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 10282 if (rc) { 10283 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 10284 rc); 10285 vnic->uc_filter_count = i; 10286 return rc; 10287 } 10288 } 10289 10290 skip_uc: 10291 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10292 if (rc && vnic->mc_list_count) { 10293 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 10294 rc); 10295 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10296 vnic->mc_list_count = 0; 10297 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 10298 } 10299 if (rc) 10300 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 10301 rc); 10302 10303 return rc; 10304 } 10305 10306 static bool bnxt_can_reserve_rings(struct bnxt *bp) 10307 { 10308 #ifdef CONFIG_BNXT_SRIOV 10309 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 10310 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10311 10312 /* No minimum rings were provisioned by the PF. Don't 10313 * reserve rings by default when device is down. 10314 */ 10315 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 10316 return true; 10317 10318 if (!netif_running(bp->dev)) 10319 return false; 10320 } 10321 #endif 10322 return true; 10323 } 10324 10325 /* If the chip and firmware supports RFS */ 10326 static bool bnxt_rfs_supported(struct bnxt *bp) 10327 { 10328 if (bp->flags & BNXT_FLAG_CHIP_P5) { 10329 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 10330 return true; 10331 return false; 10332 } 10333 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 10334 return true; 10335 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10336 return true; 10337 return false; 10338 } 10339 10340 /* If runtime conditions support RFS */ 10341 static bool bnxt_rfs_capable(struct bnxt *bp) 10342 { 10343 #ifdef CONFIG_RFS_ACCEL 10344 int vnics, max_vnics, max_rss_ctxs; 10345 10346 if (bp->flags & BNXT_FLAG_CHIP_P5) 10347 return bnxt_rfs_supported(bp); 10348 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp)) 10349 return false; 10350 10351 vnics = 1 + bp->rx_nr_rings; 10352 max_vnics = bnxt_get_max_func_vnics(bp); 10353 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 10354 10355 /* RSS contexts not a limiting factor */ 10356 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP) 10357 max_rss_ctxs = max_vnics; 10358 if (vnics > max_vnics || vnics > max_rss_ctxs) { 10359 if (bp->rx_nr_rings > 1) 10360 netdev_warn(bp->dev, 10361 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 10362 min(max_rss_ctxs - 1, max_vnics - 1)); 10363 return false; 10364 } 10365 10366 if (!BNXT_NEW_RM(bp)) 10367 return true; 10368 10369 if (vnics == bp->hw_resc.resv_vnics) 10370 return true; 10371 10372 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics); 10373 if (vnics <= bp->hw_resc.resv_vnics) 10374 return true; 10375 10376 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 10377 bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1); 10378 return false; 10379 #else 10380 return false; 10381 #endif 10382 } 10383 10384 static netdev_features_t bnxt_fix_features(struct net_device *dev, 10385 netdev_features_t features) 10386 { 10387 struct bnxt *bp = netdev_priv(dev); 10388 netdev_features_t vlan_features; 10389 10390 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp)) 10391 features &= ~NETIF_F_NTUPLE; 10392 10393 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10394 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 10395 10396 if (!(features & NETIF_F_GRO)) 10397 features &= ~NETIF_F_GRO_HW; 10398 10399 if (features & NETIF_F_GRO_HW) 10400 features &= ~NETIF_F_LRO; 10401 10402 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 10403 * turned on or off together. 10404 */ 10405 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 10406 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 10407 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10408 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10409 else if (vlan_features) 10410 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 10411 } 10412 #ifdef CONFIG_BNXT_SRIOV 10413 if (BNXT_VF(bp) && bp->vf.vlan) 10414 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 10415 #endif 10416 return features; 10417 } 10418 10419 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 10420 { 10421 struct bnxt *bp = netdev_priv(dev); 10422 u32 flags = bp->flags; 10423 u32 changes; 10424 int rc = 0; 10425 bool re_init = false; 10426 bool update_tpa = false; 10427 10428 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 10429 if (features & NETIF_F_GRO_HW) 10430 flags |= BNXT_FLAG_GRO; 10431 else if (features & NETIF_F_LRO) 10432 flags |= BNXT_FLAG_LRO; 10433 10434 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 10435 flags &= ~BNXT_FLAG_TPA; 10436 10437 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 10438 flags |= BNXT_FLAG_STRIP_VLAN; 10439 10440 if (features & NETIF_F_NTUPLE) 10441 flags |= BNXT_FLAG_RFS; 10442 10443 changes = flags ^ bp->flags; 10444 if (changes & BNXT_FLAG_TPA) { 10445 update_tpa = true; 10446 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 10447 (flags & BNXT_FLAG_TPA) == 0 || 10448 (bp->flags & BNXT_FLAG_CHIP_P5)) 10449 re_init = true; 10450 } 10451 10452 if (changes & ~BNXT_FLAG_TPA) 10453 re_init = true; 10454 10455 if (flags != bp->flags) { 10456 u32 old_flags = bp->flags; 10457 10458 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10459 bp->flags = flags; 10460 if (update_tpa) 10461 bnxt_set_ring_params(bp); 10462 return rc; 10463 } 10464 10465 if (re_init) { 10466 bnxt_close_nic(bp, false, false); 10467 bp->flags = flags; 10468 if (update_tpa) 10469 bnxt_set_ring_params(bp); 10470 10471 return bnxt_open_nic(bp, false, false); 10472 } 10473 if (update_tpa) { 10474 bp->flags = flags; 10475 rc = bnxt_set_tpa(bp, 10476 (flags & BNXT_FLAG_TPA) ? 10477 true : false); 10478 if (rc) 10479 bp->flags = old_flags; 10480 } 10481 } 10482 return rc; 10483 } 10484 10485 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 10486 u32 *reg_buf) 10487 { 10488 struct hwrm_dbg_read_direct_output *resp = bp->hwrm_cmd_resp_addr; 10489 struct hwrm_dbg_read_direct_input req = {0}; 10490 __le32 *dbg_reg_buf; 10491 dma_addr_t mapping; 10492 int rc, i; 10493 10494 dbg_reg_buf = dma_alloc_coherent(&bp->pdev->dev, num_words * 4, 10495 &mapping, GFP_KERNEL); 10496 if (!dbg_reg_buf) 10497 return -ENOMEM; 10498 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_READ_DIRECT, -1, -1); 10499 req.host_dest_addr = cpu_to_le64(mapping); 10500 req.read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 10501 req.read_len32 = cpu_to_le32(num_words); 10502 mutex_lock(&bp->hwrm_cmd_lock); 10503 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10504 if (rc || resp->error_code) { 10505 rc = -EIO; 10506 goto dbg_rd_reg_exit; 10507 } 10508 for (i = 0; i < num_words; i++) 10509 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 10510 10511 dbg_rd_reg_exit: 10512 mutex_unlock(&bp->hwrm_cmd_lock); 10513 dma_free_coherent(&bp->pdev->dev, num_words * 4, dbg_reg_buf, mapping); 10514 return rc; 10515 } 10516 10517 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 10518 u32 ring_id, u32 *prod, u32 *cons) 10519 { 10520 struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr; 10521 struct hwrm_dbg_ring_info_get_input req = {0}; 10522 int rc; 10523 10524 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1); 10525 req.ring_type = ring_type; 10526 req.fw_ring_id = cpu_to_le32(ring_id); 10527 mutex_lock(&bp->hwrm_cmd_lock); 10528 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 10529 if (!rc) { 10530 *prod = le32_to_cpu(resp->producer_index); 10531 *cons = le32_to_cpu(resp->consumer_index); 10532 } 10533 mutex_unlock(&bp->hwrm_cmd_lock); 10534 return rc; 10535 } 10536 10537 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 10538 { 10539 struct bnxt_tx_ring_info *txr = bnapi->tx_ring; 10540 int i = bnapi->index; 10541 10542 if (!txr) 10543 return; 10544 10545 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 10546 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 10547 txr->tx_cons); 10548 } 10549 10550 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 10551 { 10552 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 10553 int i = bnapi->index; 10554 10555 if (!rxr) 10556 return; 10557 10558 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 10559 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 10560 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 10561 rxr->rx_sw_agg_prod); 10562 } 10563 10564 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 10565 { 10566 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 10567 int i = bnapi->index; 10568 10569 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 10570 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 10571 } 10572 10573 static void bnxt_dbg_dump_states(struct bnxt *bp) 10574 { 10575 int i; 10576 struct bnxt_napi *bnapi; 10577 10578 for (i = 0; i < bp->cp_nr_rings; i++) { 10579 bnapi = bp->bnapi[i]; 10580 if (netif_msg_drv(bp)) { 10581 bnxt_dump_tx_sw_state(bnapi); 10582 bnxt_dump_rx_sw_state(bnapi); 10583 bnxt_dump_cp_sw_state(bnapi); 10584 } 10585 } 10586 } 10587 10588 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 10589 { 10590 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 10591 struct hwrm_ring_reset_input req = {0}; 10592 struct bnxt_napi *bnapi = rxr->bnapi; 10593 struct bnxt_cp_ring_info *cpr; 10594 u16 cp_ring_id; 10595 10596 cpr = &bnapi->cp_ring; 10597 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 10598 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_RESET, cp_ring_id, -1); 10599 req.ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 10600 req.ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 10601 return hwrm_send_message_silent(bp, &req, sizeof(req), 10602 HWRM_CMD_TIMEOUT); 10603 } 10604 10605 static void bnxt_reset_task(struct bnxt *bp, bool silent) 10606 { 10607 if (!silent) 10608 bnxt_dbg_dump_states(bp); 10609 if (netif_running(bp->dev)) { 10610 int rc; 10611 10612 if (silent) { 10613 bnxt_close_nic(bp, false, false); 10614 bnxt_open_nic(bp, false, false); 10615 } else { 10616 bnxt_ulp_stop(bp); 10617 bnxt_close_nic(bp, true, false); 10618 rc = bnxt_open_nic(bp, true, false); 10619 bnxt_ulp_start(bp, rc); 10620 } 10621 } 10622 } 10623 10624 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 10625 { 10626 struct bnxt *bp = netdev_priv(dev); 10627 10628 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 10629 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 10630 bnxt_queue_sp_work(bp); 10631 } 10632 10633 static void bnxt_fw_health_check(struct bnxt *bp) 10634 { 10635 struct bnxt_fw_health *fw_health = bp->fw_health; 10636 u32 val; 10637 10638 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10639 return; 10640 10641 if (fw_health->tmr_counter) { 10642 fw_health->tmr_counter--; 10643 return; 10644 } 10645 10646 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 10647 if (val == fw_health->last_fw_heartbeat) 10648 goto fw_reset; 10649 10650 fw_health->last_fw_heartbeat = val; 10651 10652 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 10653 if (val != fw_health->last_fw_reset_cnt) 10654 goto fw_reset; 10655 10656 fw_health->tmr_counter = fw_health->tmr_multiplier; 10657 return; 10658 10659 fw_reset: 10660 set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event); 10661 bnxt_queue_sp_work(bp); 10662 } 10663 10664 static void bnxt_timer(struct timer_list *t) 10665 { 10666 struct bnxt *bp = from_timer(bp, t, timer); 10667 struct net_device *dev = bp->dev; 10668 10669 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 10670 return; 10671 10672 if (atomic_read(&bp->intr_sem) != 0) 10673 goto bnxt_restart_timer; 10674 10675 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 10676 bnxt_fw_health_check(bp); 10677 10678 if (bp->link_info.link_up && bp->stats_coal_ticks) { 10679 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event); 10680 bnxt_queue_sp_work(bp); 10681 } 10682 10683 if (bnxt_tc_flower_enabled(bp)) { 10684 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event); 10685 bnxt_queue_sp_work(bp); 10686 } 10687 10688 #ifdef CONFIG_RFS_ACCEL 10689 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) { 10690 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 10691 bnxt_queue_sp_work(bp); 10692 } 10693 #endif /*CONFIG_RFS_ACCEL*/ 10694 10695 if (bp->link_info.phy_retry) { 10696 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 10697 bp->link_info.phy_retry = false; 10698 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 10699 } else { 10700 set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event); 10701 bnxt_queue_sp_work(bp); 10702 } 10703 } 10704 10705 if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev && 10706 netif_carrier_ok(dev)) { 10707 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event); 10708 bnxt_queue_sp_work(bp); 10709 } 10710 bnxt_restart_timer: 10711 mod_timer(&bp->timer, jiffies + bp->current_interval); 10712 } 10713 10714 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 10715 { 10716 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 10717 * set. If the device is being closed, bnxt_close() may be holding 10718 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 10719 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 10720 */ 10721 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 10722 rtnl_lock(); 10723 } 10724 10725 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 10726 { 10727 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 10728 rtnl_unlock(); 10729 } 10730 10731 /* Only called from bnxt_sp_task() */ 10732 static void bnxt_reset(struct bnxt *bp, bool silent) 10733 { 10734 bnxt_rtnl_lock_sp(bp); 10735 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 10736 bnxt_reset_task(bp, silent); 10737 bnxt_rtnl_unlock_sp(bp); 10738 } 10739 10740 /* Only called from bnxt_sp_task() */ 10741 static void bnxt_rx_ring_reset(struct bnxt *bp) 10742 { 10743 int i; 10744 10745 bnxt_rtnl_lock_sp(bp); 10746 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 10747 bnxt_rtnl_unlock_sp(bp); 10748 return; 10749 } 10750 /* Disable and flush TPA before resetting the RX ring */ 10751 if (bp->flags & BNXT_FLAG_TPA) 10752 bnxt_set_tpa(bp, false); 10753 for (i = 0; i < bp->rx_nr_rings; i++) { 10754 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 10755 struct bnxt_cp_ring_info *cpr; 10756 int rc; 10757 10758 if (!rxr->bnapi->in_reset) 10759 continue; 10760 10761 rc = bnxt_hwrm_rx_ring_reset(bp, i); 10762 if (rc) { 10763 if (rc == -EINVAL || rc == -EOPNOTSUPP) 10764 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 10765 else 10766 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 10767 rc); 10768 bnxt_reset_task(bp, true); 10769 break; 10770 } 10771 bnxt_free_one_rx_ring_skbs(bp, i); 10772 rxr->rx_prod = 0; 10773 rxr->rx_agg_prod = 0; 10774 rxr->rx_sw_agg_prod = 0; 10775 rxr->rx_next_cons = 0; 10776 rxr->bnapi->in_reset = false; 10777 bnxt_alloc_one_rx_ring(bp, i); 10778 cpr = &rxr->bnapi->cp_ring; 10779 cpr->sw_stats.rx.rx_resets++; 10780 if (bp->flags & BNXT_FLAG_AGG_RINGS) 10781 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 10782 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 10783 } 10784 if (bp->flags & BNXT_FLAG_TPA) 10785 bnxt_set_tpa(bp, true); 10786 bnxt_rtnl_unlock_sp(bp); 10787 } 10788 10789 static void bnxt_fw_reset_close(struct bnxt *bp) 10790 { 10791 bnxt_ulp_stop(bp); 10792 /* When firmware is fatal state, disable PCI device to prevent 10793 * any potential bad DMAs before freeing kernel memory. 10794 */ 10795 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 10796 pci_disable_device(bp->pdev); 10797 __bnxt_close_nic(bp, true, false); 10798 bnxt_clear_int_mode(bp); 10799 bnxt_hwrm_func_drv_unrgtr(bp); 10800 if (pci_is_enabled(bp->pdev)) 10801 pci_disable_device(bp->pdev); 10802 bnxt_free_ctx_mem(bp); 10803 kfree(bp->ctx); 10804 bp->ctx = NULL; 10805 } 10806 10807 static bool is_bnxt_fw_ok(struct bnxt *bp) 10808 { 10809 struct bnxt_fw_health *fw_health = bp->fw_health; 10810 bool no_heartbeat = false, has_reset = false; 10811 u32 val; 10812 10813 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 10814 if (val == fw_health->last_fw_heartbeat) 10815 no_heartbeat = true; 10816 10817 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 10818 if (val != fw_health->last_fw_reset_cnt) 10819 has_reset = true; 10820 10821 if (!no_heartbeat && has_reset) 10822 return true; 10823 10824 return false; 10825 } 10826 10827 /* rtnl_lock is acquired before calling this function */ 10828 static void bnxt_force_fw_reset(struct bnxt *bp) 10829 { 10830 struct bnxt_fw_health *fw_health = bp->fw_health; 10831 u32 wait_dsecs; 10832 10833 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 10834 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 10835 return; 10836 10837 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10838 bnxt_fw_reset_close(bp); 10839 wait_dsecs = fw_health->master_func_wait_dsecs; 10840 if (fw_health->master) { 10841 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 10842 wait_dsecs = 0; 10843 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 10844 } else { 10845 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 10846 wait_dsecs = fw_health->normal_func_wait_dsecs; 10847 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 10848 } 10849 10850 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 10851 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 10852 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 10853 } 10854 10855 void bnxt_fw_exception(struct bnxt *bp) 10856 { 10857 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 10858 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 10859 bnxt_rtnl_lock_sp(bp); 10860 bnxt_force_fw_reset(bp); 10861 bnxt_rtnl_unlock_sp(bp); 10862 } 10863 10864 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 10865 * < 0 on error. 10866 */ 10867 static int bnxt_get_registered_vfs(struct bnxt *bp) 10868 { 10869 #ifdef CONFIG_BNXT_SRIOV 10870 int rc; 10871 10872 if (!BNXT_PF(bp)) 10873 return 0; 10874 10875 rc = bnxt_hwrm_func_qcfg(bp); 10876 if (rc) { 10877 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 10878 return rc; 10879 } 10880 if (bp->pf.registered_vfs) 10881 return bp->pf.registered_vfs; 10882 if (bp->sriov_cfg) 10883 return 1; 10884 #endif 10885 return 0; 10886 } 10887 10888 void bnxt_fw_reset(struct bnxt *bp) 10889 { 10890 bnxt_rtnl_lock_sp(bp); 10891 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 10892 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 10893 int n = 0, tmo; 10894 10895 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10896 if (bp->pf.active_vfs && 10897 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 10898 n = bnxt_get_registered_vfs(bp); 10899 if (n < 0) { 10900 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 10901 n); 10902 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 10903 dev_close(bp->dev); 10904 goto fw_reset_exit; 10905 } else if (n > 0) { 10906 u16 vf_tmo_dsecs = n * 10; 10907 10908 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 10909 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 10910 bp->fw_reset_state = 10911 BNXT_FW_RESET_STATE_POLL_VF; 10912 bnxt_queue_fw_reset_work(bp, HZ / 10); 10913 goto fw_reset_exit; 10914 } 10915 bnxt_fw_reset_close(bp); 10916 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 10917 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 10918 tmo = HZ / 10; 10919 } else { 10920 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 10921 tmo = bp->fw_reset_min_dsecs * HZ / 10; 10922 } 10923 bnxt_queue_fw_reset_work(bp, tmo); 10924 } 10925 fw_reset_exit: 10926 bnxt_rtnl_unlock_sp(bp); 10927 } 10928 10929 static void bnxt_chk_missed_irq(struct bnxt *bp) 10930 { 10931 int i; 10932 10933 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 10934 return; 10935 10936 for (i = 0; i < bp->cp_nr_rings; i++) { 10937 struct bnxt_napi *bnapi = bp->bnapi[i]; 10938 struct bnxt_cp_ring_info *cpr; 10939 u32 fw_ring_id; 10940 int j; 10941 10942 if (!bnapi) 10943 continue; 10944 10945 cpr = &bnapi->cp_ring; 10946 for (j = 0; j < 2; j++) { 10947 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j]; 10948 u32 val[2]; 10949 10950 if (!cpr2 || cpr2->has_more_work || 10951 !bnxt_has_work(bp, cpr2)) 10952 continue; 10953 10954 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 10955 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 10956 continue; 10957 } 10958 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 10959 bnxt_dbg_hwrm_ring_info_get(bp, 10960 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 10961 fw_ring_id, &val[0], &val[1]); 10962 cpr->sw_stats.cmn.missed_irqs++; 10963 } 10964 } 10965 } 10966 10967 static void bnxt_cfg_ntp_filters(struct bnxt *); 10968 10969 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 10970 { 10971 struct bnxt_link_info *link_info = &bp->link_info; 10972 10973 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 10974 link_info->autoneg = BNXT_AUTONEG_SPEED; 10975 if (bp->hwrm_spec_code >= 0x10201) { 10976 if (link_info->auto_pause_setting & 10977 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 10978 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 10979 } else { 10980 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 10981 } 10982 link_info->advertising = link_info->auto_link_speeds; 10983 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 10984 } else { 10985 link_info->req_link_speed = link_info->force_link_speed; 10986 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 10987 if (link_info->force_pam4_link_speed) { 10988 link_info->req_link_speed = 10989 link_info->force_pam4_link_speed; 10990 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 10991 } 10992 link_info->req_duplex = link_info->duplex_setting; 10993 } 10994 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 10995 link_info->req_flow_ctrl = 10996 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 10997 else 10998 link_info->req_flow_ctrl = link_info->force_pause_setting; 10999 } 11000 11001 static void bnxt_sp_task(struct work_struct *work) 11002 { 11003 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 11004 11005 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11006 smp_mb__after_atomic(); 11007 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 11008 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11009 return; 11010 } 11011 11012 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 11013 bnxt_cfg_rx_mode(bp); 11014 11015 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 11016 bnxt_cfg_ntp_filters(bp); 11017 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 11018 bnxt_hwrm_exec_fwd_req(bp); 11019 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 11020 bnxt_hwrm_port_qstats(bp, 0); 11021 bnxt_hwrm_port_qstats_ext(bp, 0); 11022 bnxt_accumulate_all_stats(bp); 11023 } 11024 11025 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 11026 int rc; 11027 11028 mutex_lock(&bp->link_lock); 11029 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 11030 &bp->sp_event)) 11031 bnxt_hwrm_phy_qcaps(bp); 11032 11033 rc = bnxt_update_link(bp, true); 11034 if (rc) 11035 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 11036 rc); 11037 11038 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 11039 &bp->sp_event)) 11040 bnxt_init_ethtool_link_settings(bp); 11041 mutex_unlock(&bp->link_lock); 11042 } 11043 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 11044 int rc; 11045 11046 mutex_lock(&bp->link_lock); 11047 rc = bnxt_update_phy_setting(bp); 11048 mutex_unlock(&bp->link_lock); 11049 if (rc) { 11050 netdev_warn(bp->dev, "update phy settings retry failed\n"); 11051 } else { 11052 bp->link_info.phy_retry = false; 11053 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 11054 } 11055 } 11056 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 11057 mutex_lock(&bp->link_lock); 11058 bnxt_get_port_module_status(bp); 11059 mutex_unlock(&bp->link_lock); 11060 } 11061 11062 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 11063 bnxt_tc_flow_stats_work(bp); 11064 11065 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 11066 bnxt_chk_missed_irq(bp); 11067 11068 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 11069 * must be the last functions to be called before exiting. 11070 */ 11071 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 11072 bnxt_reset(bp, false); 11073 11074 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 11075 bnxt_reset(bp, true); 11076 11077 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 11078 bnxt_rx_ring_reset(bp); 11079 11080 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) 11081 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT); 11082 11083 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 11084 if (!is_bnxt_fw_ok(bp)) 11085 bnxt_devlink_health_report(bp, 11086 BNXT_FW_EXCEPTION_SP_EVENT); 11087 } 11088 11089 smp_mb__before_atomic(); 11090 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 11091 } 11092 11093 /* Under rtnl_lock */ 11094 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 11095 int tx_xdp) 11096 { 11097 int max_rx, max_tx, tx_sets = 1; 11098 int tx_rings_needed, stats; 11099 int rx_rings = rx; 11100 int cp, vnics, rc; 11101 11102 if (tcs) 11103 tx_sets = tcs; 11104 11105 rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh); 11106 if (rc) 11107 return rc; 11108 11109 if (max_rx < rx) 11110 return -ENOMEM; 11111 11112 tx_rings_needed = tx * tx_sets + tx_xdp; 11113 if (max_tx < tx_rings_needed) 11114 return -ENOMEM; 11115 11116 vnics = 1; 11117 if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS) 11118 vnics += rx_rings; 11119 11120 if (bp->flags & BNXT_FLAG_AGG_RINGS) 11121 rx_rings <<= 1; 11122 cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx; 11123 stats = cp; 11124 if (BNXT_NEW_RM(bp)) { 11125 cp += bnxt_get_ulp_msix_num(bp); 11126 stats += bnxt_get_ulp_stat_ctxs(bp); 11127 } 11128 return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp, 11129 stats, vnics); 11130 } 11131 11132 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 11133 { 11134 if (bp->bar2) { 11135 pci_iounmap(pdev, bp->bar2); 11136 bp->bar2 = NULL; 11137 } 11138 11139 if (bp->bar1) { 11140 pci_iounmap(pdev, bp->bar1); 11141 bp->bar1 = NULL; 11142 } 11143 11144 if (bp->bar0) { 11145 pci_iounmap(pdev, bp->bar0); 11146 bp->bar0 = NULL; 11147 } 11148 } 11149 11150 static void bnxt_cleanup_pci(struct bnxt *bp) 11151 { 11152 bnxt_unmap_bars(bp, bp->pdev); 11153 pci_release_regions(bp->pdev); 11154 if (pci_is_enabled(bp->pdev)) 11155 pci_disable_device(bp->pdev); 11156 } 11157 11158 static void bnxt_init_dflt_coal(struct bnxt *bp) 11159 { 11160 struct bnxt_coal *coal; 11161 11162 /* Tick values in micro seconds. 11163 * 1 coal_buf x bufs_per_record = 1 completion record. 11164 */ 11165 coal = &bp->rx_coal; 11166 coal->coal_ticks = 10; 11167 coal->coal_bufs = 30; 11168 coal->coal_ticks_irq = 1; 11169 coal->coal_bufs_irq = 2; 11170 coal->idle_thresh = 50; 11171 coal->bufs_per_record = 2; 11172 coal->budget = 64; /* NAPI budget */ 11173 11174 coal = &bp->tx_coal; 11175 coal->coal_ticks = 28; 11176 coal->coal_bufs = 30; 11177 coal->coal_ticks_irq = 2; 11178 coal->coal_bufs_irq = 2; 11179 coal->bufs_per_record = 1; 11180 11181 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 11182 } 11183 11184 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11185 { 11186 #ifdef CONFIG_TEE_BNXT_FW 11187 int rc = tee_bnxt_fw_load(); 11188 11189 if (rc) 11190 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11191 11192 return rc; 11193 #else 11194 netdev_err(bp->dev, "OP-TEE not supported\n"); 11195 return -ENODEV; 11196 #endif 11197 } 11198 11199 static int bnxt_fw_init_one_p1(struct bnxt *bp) 11200 { 11201 int rc; 11202 11203 bp->fw_cap = 0; 11204 rc = bnxt_hwrm_ver_get(bp); 11205 bnxt_try_map_fw_health_reg(bp); 11206 if (rc) { 11207 if (bp->fw_health && bp->fw_health->status_reliable) { 11208 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11209 11210 netdev_err(bp->dev, 11211 "Firmware not responding, status: 0x%x\n", 11212 sts); 11213 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11214 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11215 rc = bnxt_fw_reset_via_optee(bp); 11216 if (!rc) 11217 rc = bnxt_hwrm_ver_get(bp); 11218 } 11219 } 11220 if (rc) 11221 return rc; 11222 } 11223 11224 if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) { 11225 rc = bnxt_alloc_kong_hwrm_resources(bp); 11226 if (rc) 11227 bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL; 11228 } 11229 11230 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || 11231 bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) { 11232 rc = bnxt_alloc_hwrm_short_cmd_req(bp); 11233 if (rc) 11234 return rc; 11235 } 11236 bnxt_nvm_cfg_ver_get(bp); 11237 11238 rc = bnxt_hwrm_func_reset(bp); 11239 if (rc) 11240 return -ENODEV; 11241 11242 bnxt_hwrm_fw_set_time(bp); 11243 return 0; 11244 } 11245 11246 static int bnxt_fw_init_one_p2(struct bnxt *bp) 11247 { 11248 int rc; 11249 11250 /* Get the MAX capabilities for this function */ 11251 rc = bnxt_hwrm_func_qcaps(bp); 11252 if (rc) { 11253 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 11254 rc); 11255 return -ENODEV; 11256 } 11257 11258 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 11259 if (rc) 11260 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 11261 rc); 11262 11263 if (bnxt_alloc_fw_health(bp)) { 11264 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 11265 } else { 11266 rc = bnxt_hwrm_error_recovery_qcfg(bp); 11267 if (rc) 11268 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 11269 rc); 11270 } 11271 11272 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 11273 if (rc) 11274 return -ENODEV; 11275 11276 bnxt_hwrm_func_qcfg(bp); 11277 bnxt_hwrm_vnic_qcaps(bp); 11278 bnxt_hwrm_port_led_qcaps(bp); 11279 bnxt_ethtool_init(bp); 11280 bnxt_dcb_init(bp); 11281 return 0; 11282 } 11283 11284 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 11285 { 11286 bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP; 11287 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 11288 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 11289 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 11290 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 11291 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 11292 bp->flags |= BNXT_FLAG_UDP_RSS_CAP; 11293 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 11294 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 11295 } 11296 } 11297 11298 static void bnxt_set_dflt_rfs(struct bnxt *bp) 11299 { 11300 struct net_device *dev = bp->dev; 11301 11302 dev->hw_features &= ~NETIF_F_NTUPLE; 11303 dev->features &= ~NETIF_F_NTUPLE; 11304 bp->flags &= ~BNXT_FLAG_RFS; 11305 if (bnxt_rfs_supported(bp)) { 11306 dev->hw_features |= NETIF_F_NTUPLE; 11307 if (bnxt_rfs_capable(bp)) { 11308 bp->flags |= BNXT_FLAG_RFS; 11309 dev->features |= NETIF_F_NTUPLE; 11310 } 11311 } 11312 } 11313 11314 static void bnxt_fw_init_one_p3(struct bnxt *bp) 11315 { 11316 struct pci_dev *pdev = bp->pdev; 11317 11318 bnxt_set_dflt_rss_hash_type(bp); 11319 bnxt_set_dflt_rfs(bp); 11320 11321 bnxt_get_wol_settings(bp); 11322 if (bp->flags & BNXT_FLAG_WOL_CAP) 11323 device_set_wakeup_enable(&pdev->dev, bp->wol); 11324 else 11325 device_set_wakeup_capable(&pdev->dev, false); 11326 11327 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 11328 bnxt_hwrm_coal_params_qcaps(bp); 11329 } 11330 11331 static int bnxt_fw_init_one(struct bnxt *bp) 11332 { 11333 int rc; 11334 11335 rc = bnxt_fw_init_one_p1(bp); 11336 if (rc) { 11337 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 11338 return rc; 11339 } 11340 rc = bnxt_fw_init_one_p2(bp); 11341 if (rc) { 11342 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 11343 return rc; 11344 } 11345 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 11346 if (rc) 11347 return rc; 11348 11349 /* In case fw capabilities have changed, destroy the unneeded 11350 * reporters and create newly capable ones. 11351 */ 11352 bnxt_dl_fw_reporters_destroy(bp, false); 11353 bnxt_dl_fw_reporters_create(bp); 11354 bnxt_fw_init_one_p3(bp); 11355 return 0; 11356 } 11357 11358 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 11359 { 11360 struct bnxt_fw_health *fw_health = bp->fw_health; 11361 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 11362 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 11363 u32 reg_type, reg_off, delay_msecs; 11364 11365 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 11366 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 11367 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 11368 switch (reg_type) { 11369 case BNXT_FW_HEALTH_REG_TYPE_CFG: 11370 pci_write_config_dword(bp->pdev, reg_off, val); 11371 break; 11372 case BNXT_FW_HEALTH_REG_TYPE_GRC: 11373 writel(reg_off & BNXT_GRC_BASE_MASK, 11374 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 11375 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 11376 fallthrough; 11377 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 11378 writel(val, bp->bar0 + reg_off); 11379 break; 11380 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 11381 writel(val, bp->bar1 + reg_off); 11382 break; 11383 } 11384 if (delay_msecs) { 11385 pci_read_config_dword(bp->pdev, 0, &val); 11386 msleep(delay_msecs); 11387 } 11388 } 11389 11390 static void bnxt_reset_all(struct bnxt *bp) 11391 { 11392 struct bnxt_fw_health *fw_health = bp->fw_health; 11393 int i, rc; 11394 11395 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11396 bnxt_fw_reset_via_optee(bp); 11397 bp->fw_reset_timestamp = jiffies; 11398 return; 11399 } 11400 11401 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 11402 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 11403 bnxt_fw_reset_writel(bp, i); 11404 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 11405 struct hwrm_fw_reset_input req = {0}; 11406 11407 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1); 11408 req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr); 11409 req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 11410 req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 11411 req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 11412 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 11413 if (rc) 11414 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 11415 } 11416 bp->fw_reset_timestamp = jiffies; 11417 } 11418 11419 static void bnxt_fw_reset_task(struct work_struct *work) 11420 { 11421 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 11422 int rc; 11423 11424 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 11425 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 11426 return; 11427 } 11428 11429 switch (bp->fw_reset_state) { 11430 case BNXT_FW_RESET_STATE_POLL_VF: { 11431 int n = bnxt_get_registered_vfs(bp); 11432 int tmo; 11433 11434 if (n < 0) { 11435 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 11436 n, jiffies_to_msecs(jiffies - 11437 bp->fw_reset_timestamp)); 11438 goto fw_reset_abort; 11439 } else if (n > 0) { 11440 if (time_after(jiffies, bp->fw_reset_timestamp + 11441 (bp->fw_reset_max_dsecs * HZ / 10))) { 11442 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11443 bp->fw_reset_state = 0; 11444 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 11445 n); 11446 return; 11447 } 11448 bnxt_queue_fw_reset_work(bp, HZ / 10); 11449 return; 11450 } 11451 bp->fw_reset_timestamp = jiffies; 11452 rtnl_lock(); 11453 bnxt_fw_reset_close(bp); 11454 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 11455 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 11456 tmo = HZ / 10; 11457 } else { 11458 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11459 tmo = bp->fw_reset_min_dsecs * HZ / 10; 11460 } 11461 rtnl_unlock(); 11462 bnxt_queue_fw_reset_work(bp, tmo); 11463 return; 11464 } 11465 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 11466 u32 val; 11467 11468 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11469 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 11470 !time_after(jiffies, bp->fw_reset_timestamp + 11471 (bp->fw_reset_max_dsecs * HZ / 10))) { 11472 bnxt_queue_fw_reset_work(bp, HZ / 5); 11473 return; 11474 } 11475 11476 if (!bp->fw_health->master) { 11477 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 11478 11479 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11480 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 11481 return; 11482 } 11483 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 11484 } 11485 fallthrough; 11486 case BNXT_FW_RESET_STATE_RESET_FW: 11487 bnxt_reset_all(bp); 11488 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 11489 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 11490 return; 11491 case BNXT_FW_RESET_STATE_ENABLE_DEV: 11492 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 11493 u32 val; 11494 11495 val = bnxt_fw_health_readl(bp, 11496 BNXT_FW_RESET_INPROG_REG); 11497 if (val) 11498 netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n", 11499 val); 11500 } 11501 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 11502 if (pci_enable_device(bp->pdev)) { 11503 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 11504 goto fw_reset_abort; 11505 } 11506 pci_set_master(bp->pdev); 11507 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 11508 fallthrough; 11509 case BNXT_FW_RESET_STATE_POLL_FW: 11510 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 11511 rc = __bnxt_hwrm_ver_get(bp, true); 11512 if (rc) { 11513 if (time_after(jiffies, bp->fw_reset_timestamp + 11514 (bp->fw_reset_max_dsecs * HZ / 10))) { 11515 netdev_err(bp->dev, "Firmware reset aborted\n"); 11516 goto fw_reset_abort_status; 11517 } 11518 bnxt_queue_fw_reset_work(bp, HZ / 5); 11519 return; 11520 } 11521 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 11522 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 11523 fallthrough; 11524 case BNXT_FW_RESET_STATE_OPENING: 11525 while (!rtnl_trylock()) { 11526 bnxt_queue_fw_reset_work(bp, HZ / 10); 11527 return; 11528 } 11529 rc = bnxt_open(bp->dev); 11530 if (rc) { 11531 netdev_err(bp->dev, "bnxt_open_nic() failed\n"); 11532 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11533 dev_close(bp->dev); 11534 } 11535 11536 bp->fw_reset_state = 0; 11537 /* Make sure fw_reset_state is 0 before clearing the flag */ 11538 smp_mb__before_atomic(); 11539 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11540 bnxt_ulp_start(bp, rc); 11541 if (!rc) 11542 bnxt_reenable_sriov(bp); 11543 bnxt_dl_health_recovery_done(bp); 11544 bnxt_dl_health_status_update(bp, true); 11545 rtnl_unlock(); 11546 break; 11547 } 11548 return; 11549 11550 fw_reset_abort_status: 11551 if (bp->fw_health->status_reliable || 11552 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 11553 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11554 11555 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 11556 } 11557 fw_reset_abort: 11558 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 11559 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 11560 bnxt_dl_health_status_update(bp, false); 11561 bp->fw_reset_state = 0; 11562 rtnl_lock(); 11563 dev_close(bp->dev); 11564 rtnl_unlock(); 11565 } 11566 11567 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 11568 { 11569 int rc; 11570 struct bnxt *bp = netdev_priv(dev); 11571 11572 SET_NETDEV_DEV(dev, &pdev->dev); 11573 11574 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 11575 rc = pci_enable_device(pdev); 11576 if (rc) { 11577 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 11578 goto init_err; 11579 } 11580 11581 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 11582 dev_err(&pdev->dev, 11583 "Cannot find PCI device base address, aborting\n"); 11584 rc = -ENODEV; 11585 goto init_err_disable; 11586 } 11587 11588 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 11589 if (rc) { 11590 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 11591 goto init_err_disable; 11592 } 11593 11594 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 11595 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 11596 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 11597 goto init_err_disable; 11598 } 11599 11600 pci_set_master(pdev); 11601 11602 bp->dev = dev; 11603 bp->pdev = pdev; 11604 11605 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 11606 * determines the BAR size. 11607 */ 11608 bp->bar0 = pci_ioremap_bar(pdev, 0); 11609 if (!bp->bar0) { 11610 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 11611 rc = -ENOMEM; 11612 goto init_err_release; 11613 } 11614 11615 bp->bar2 = pci_ioremap_bar(pdev, 4); 11616 if (!bp->bar2) { 11617 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 11618 rc = -ENOMEM; 11619 goto init_err_release; 11620 } 11621 11622 pci_enable_pcie_error_reporting(pdev); 11623 11624 INIT_WORK(&bp->sp_task, bnxt_sp_task); 11625 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 11626 11627 spin_lock_init(&bp->ntp_fltr_lock); 11628 #if BITS_PER_LONG == 32 11629 spin_lock_init(&bp->db_lock); 11630 #endif 11631 11632 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 11633 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 11634 11635 bnxt_init_dflt_coal(bp); 11636 11637 timer_setup(&bp->timer, bnxt_timer, 0); 11638 bp->current_interval = BNXT_TIMER_INTERVAL; 11639 11640 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 11641 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 11642 11643 clear_bit(BNXT_STATE_OPEN, &bp->state); 11644 return 0; 11645 11646 init_err_release: 11647 bnxt_unmap_bars(bp, pdev); 11648 pci_release_regions(pdev); 11649 11650 init_err_disable: 11651 pci_disable_device(pdev); 11652 11653 init_err: 11654 return rc; 11655 } 11656 11657 /* rtnl_lock held */ 11658 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 11659 { 11660 struct sockaddr *addr = p; 11661 struct bnxt *bp = netdev_priv(dev); 11662 int rc = 0; 11663 11664 if (!is_valid_ether_addr(addr->sa_data)) 11665 return -EADDRNOTAVAIL; 11666 11667 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 11668 return 0; 11669 11670 rc = bnxt_approve_mac(bp, addr->sa_data, true); 11671 if (rc) 11672 return rc; 11673 11674 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 11675 if (netif_running(dev)) { 11676 bnxt_close_nic(bp, false, false); 11677 rc = bnxt_open_nic(bp, false, false); 11678 } 11679 11680 return rc; 11681 } 11682 11683 /* rtnl_lock held */ 11684 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 11685 { 11686 struct bnxt *bp = netdev_priv(dev); 11687 11688 if (netif_running(dev)) 11689 bnxt_close_nic(bp, true, false); 11690 11691 dev->mtu = new_mtu; 11692 bnxt_set_ring_params(bp); 11693 11694 if (netif_running(dev)) 11695 return bnxt_open_nic(bp, true, false); 11696 11697 return 0; 11698 } 11699 11700 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 11701 { 11702 struct bnxt *bp = netdev_priv(dev); 11703 bool sh = false; 11704 int rc; 11705 11706 if (tc > bp->max_tc) { 11707 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 11708 tc, bp->max_tc); 11709 return -EINVAL; 11710 } 11711 11712 if (netdev_get_num_tc(dev) == tc) 11713 return 0; 11714 11715 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 11716 sh = true; 11717 11718 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 11719 sh, tc, bp->tx_nr_rings_xdp); 11720 if (rc) 11721 return rc; 11722 11723 /* Needs to close the device and do hw resource re-allocations */ 11724 if (netif_running(bp->dev)) 11725 bnxt_close_nic(bp, true, false); 11726 11727 if (tc) { 11728 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 11729 netdev_set_num_tc(dev, tc); 11730 } else { 11731 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 11732 netdev_reset_tc(dev); 11733 } 11734 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 11735 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) : 11736 bp->tx_nr_rings + bp->rx_nr_rings; 11737 11738 if (netif_running(bp->dev)) 11739 return bnxt_open_nic(bp, true, false); 11740 11741 return 0; 11742 } 11743 11744 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 11745 void *cb_priv) 11746 { 11747 struct bnxt *bp = cb_priv; 11748 11749 if (!bnxt_tc_flower_enabled(bp) || 11750 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 11751 return -EOPNOTSUPP; 11752 11753 switch (type) { 11754 case TC_SETUP_CLSFLOWER: 11755 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 11756 default: 11757 return -EOPNOTSUPP; 11758 } 11759 } 11760 11761 LIST_HEAD(bnxt_block_cb_list); 11762 11763 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 11764 void *type_data) 11765 { 11766 struct bnxt *bp = netdev_priv(dev); 11767 11768 switch (type) { 11769 case TC_SETUP_BLOCK: 11770 return flow_block_cb_setup_simple(type_data, 11771 &bnxt_block_cb_list, 11772 bnxt_setup_tc_block_cb, 11773 bp, bp, true); 11774 case TC_SETUP_QDISC_MQPRIO: { 11775 struct tc_mqprio_qopt *mqprio = type_data; 11776 11777 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 11778 11779 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 11780 } 11781 default: 11782 return -EOPNOTSUPP; 11783 } 11784 } 11785 11786 #ifdef CONFIG_RFS_ACCEL 11787 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 11788 struct bnxt_ntuple_filter *f2) 11789 { 11790 struct flow_keys *keys1 = &f1->fkeys; 11791 struct flow_keys *keys2 = &f2->fkeys; 11792 11793 if (keys1->basic.n_proto != keys2->basic.n_proto || 11794 keys1->basic.ip_proto != keys2->basic.ip_proto) 11795 return false; 11796 11797 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 11798 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 11799 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst) 11800 return false; 11801 } else { 11802 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src, 11803 sizeof(keys1->addrs.v6addrs.src)) || 11804 memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst, 11805 sizeof(keys1->addrs.v6addrs.dst))) 11806 return false; 11807 } 11808 11809 if (keys1->ports.ports == keys2->ports.ports && 11810 keys1->control.flags == keys2->control.flags && 11811 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) && 11812 ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr)) 11813 return true; 11814 11815 return false; 11816 } 11817 11818 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 11819 u16 rxq_index, u32 flow_id) 11820 { 11821 struct bnxt *bp = netdev_priv(dev); 11822 struct bnxt_ntuple_filter *fltr, *new_fltr; 11823 struct flow_keys *fkeys; 11824 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 11825 int rc = 0, idx, bit_id, l2_idx = 0; 11826 struct hlist_head *head; 11827 u32 flags; 11828 11829 if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) { 11830 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 11831 int off = 0, j; 11832 11833 netif_addr_lock_bh(dev); 11834 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) { 11835 if (ether_addr_equal(eth->h_dest, 11836 vnic->uc_list + off)) { 11837 l2_idx = j + 1; 11838 break; 11839 } 11840 } 11841 netif_addr_unlock_bh(dev); 11842 if (!l2_idx) 11843 return -EINVAL; 11844 } 11845 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 11846 if (!new_fltr) 11847 return -ENOMEM; 11848 11849 fkeys = &new_fltr->fkeys; 11850 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 11851 rc = -EPROTONOSUPPORT; 11852 goto err_free; 11853 } 11854 11855 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 11856 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 11857 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 11858 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 11859 rc = -EPROTONOSUPPORT; 11860 goto err_free; 11861 } 11862 if (fkeys->basic.n_proto == htons(ETH_P_IPV6) && 11863 bp->hwrm_spec_code < 0x10601) { 11864 rc = -EPROTONOSUPPORT; 11865 goto err_free; 11866 } 11867 flags = fkeys->control.flags; 11868 if (((flags & FLOW_DIS_ENCAPSULATION) && 11869 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 11870 rc = -EPROTONOSUPPORT; 11871 goto err_free; 11872 } 11873 11874 memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN); 11875 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 11876 11877 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 11878 head = &bp->ntp_fltr_hash_tbl[idx]; 11879 rcu_read_lock(); 11880 hlist_for_each_entry_rcu(fltr, head, hash) { 11881 if (bnxt_fltr_match(fltr, new_fltr)) { 11882 rcu_read_unlock(); 11883 rc = 0; 11884 goto err_free; 11885 } 11886 } 11887 rcu_read_unlock(); 11888 11889 spin_lock_bh(&bp->ntp_fltr_lock); 11890 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 11891 BNXT_NTP_FLTR_MAX_FLTR, 0); 11892 if (bit_id < 0) { 11893 spin_unlock_bh(&bp->ntp_fltr_lock); 11894 rc = -ENOMEM; 11895 goto err_free; 11896 } 11897 11898 new_fltr->sw_id = (u16)bit_id; 11899 new_fltr->flow_id = flow_id; 11900 new_fltr->l2_fltr_idx = l2_idx; 11901 new_fltr->rxq = rxq_index; 11902 hlist_add_head_rcu(&new_fltr->hash, head); 11903 bp->ntp_fltr_count++; 11904 spin_unlock_bh(&bp->ntp_fltr_lock); 11905 11906 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 11907 bnxt_queue_sp_work(bp); 11908 11909 return new_fltr->sw_id; 11910 11911 err_free: 11912 kfree(new_fltr); 11913 return rc; 11914 } 11915 11916 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 11917 { 11918 int i; 11919 11920 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 11921 struct hlist_head *head; 11922 struct hlist_node *tmp; 11923 struct bnxt_ntuple_filter *fltr; 11924 int rc; 11925 11926 head = &bp->ntp_fltr_hash_tbl[i]; 11927 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 11928 bool del = false; 11929 11930 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 11931 if (rps_may_expire_flow(bp->dev, fltr->rxq, 11932 fltr->flow_id, 11933 fltr->sw_id)) { 11934 bnxt_hwrm_cfa_ntuple_filter_free(bp, 11935 fltr); 11936 del = true; 11937 } 11938 } else { 11939 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 11940 fltr); 11941 if (rc) 11942 del = true; 11943 else 11944 set_bit(BNXT_FLTR_VALID, &fltr->state); 11945 } 11946 11947 if (del) { 11948 spin_lock_bh(&bp->ntp_fltr_lock); 11949 hlist_del_rcu(&fltr->hash); 11950 bp->ntp_fltr_count--; 11951 spin_unlock_bh(&bp->ntp_fltr_lock); 11952 synchronize_rcu(); 11953 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 11954 kfree(fltr); 11955 } 11956 } 11957 } 11958 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 11959 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 11960 } 11961 11962 #else 11963 11964 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 11965 { 11966 } 11967 11968 #endif /* CONFIG_RFS_ACCEL */ 11969 11970 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 11971 { 11972 struct bnxt *bp = netdev_priv(netdev); 11973 struct udp_tunnel_info ti; 11974 unsigned int cmd; 11975 11976 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 11977 if (ti.type == UDP_TUNNEL_TYPE_VXLAN) 11978 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 11979 else 11980 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 11981 11982 if (ti.port) 11983 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd); 11984 11985 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 11986 } 11987 11988 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 11989 .sync_table = bnxt_udp_tunnel_sync, 11990 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 11991 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 11992 .tables = { 11993 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 11994 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 11995 }, 11996 }; 11997 11998 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11999 struct net_device *dev, u32 filter_mask, 12000 int nlflags) 12001 { 12002 struct bnxt *bp = netdev_priv(dev); 12003 12004 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 12005 nlflags, filter_mask, NULL); 12006 } 12007 12008 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 12009 u16 flags, struct netlink_ext_ack *extack) 12010 { 12011 struct bnxt *bp = netdev_priv(dev); 12012 struct nlattr *attr, *br_spec; 12013 int rem, rc = 0; 12014 12015 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 12016 return -EOPNOTSUPP; 12017 12018 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12019 if (!br_spec) 12020 return -EINVAL; 12021 12022 nla_for_each_nested(attr, br_spec, rem) { 12023 u16 mode; 12024 12025 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12026 continue; 12027 12028 if (nla_len(attr) < sizeof(mode)) 12029 return -EINVAL; 12030 12031 mode = nla_get_u16(attr); 12032 if (mode == bp->br_mode) 12033 break; 12034 12035 rc = bnxt_hwrm_set_br_mode(bp, mode); 12036 if (!rc) 12037 bp->br_mode = mode; 12038 break; 12039 } 12040 return rc; 12041 } 12042 12043 int bnxt_get_port_parent_id(struct net_device *dev, 12044 struct netdev_phys_item_id *ppid) 12045 { 12046 struct bnxt *bp = netdev_priv(dev); 12047 12048 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 12049 return -EOPNOTSUPP; 12050 12051 /* The PF and it's VF-reps only support the switchdev framework */ 12052 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 12053 return -EOPNOTSUPP; 12054 12055 ppid->id_len = sizeof(bp->dsn); 12056 memcpy(ppid->id, bp->dsn, ppid->id_len); 12057 12058 return 0; 12059 } 12060 12061 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev) 12062 { 12063 struct bnxt *bp = netdev_priv(dev); 12064 12065 return &bp->dl_port; 12066 } 12067 12068 static const struct net_device_ops bnxt_netdev_ops = { 12069 .ndo_open = bnxt_open, 12070 .ndo_start_xmit = bnxt_start_xmit, 12071 .ndo_stop = bnxt_close, 12072 .ndo_get_stats64 = bnxt_get_stats64, 12073 .ndo_set_rx_mode = bnxt_set_rx_mode, 12074 .ndo_do_ioctl = bnxt_ioctl, 12075 .ndo_validate_addr = eth_validate_addr, 12076 .ndo_set_mac_address = bnxt_change_mac_addr, 12077 .ndo_change_mtu = bnxt_change_mtu, 12078 .ndo_fix_features = bnxt_fix_features, 12079 .ndo_set_features = bnxt_set_features, 12080 .ndo_tx_timeout = bnxt_tx_timeout, 12081 #ifdef CONFIG_BNXT_SRIOV 12082 .ndo_get_vf_config = bnxt_get_vf_config, 12083 .ndo_set_vf_mac = bnxt_set_vf_mac, 12084 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 12085 .ndo_set_vf_rate = bnxt_set_vf_bw, 12086 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 12087 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 12088 .ndo_set_vf_trust = bnxt_set_vf_trust, 12089 #endif 12090 .ndo_setup_tc = bnxt_setup_tc, 12091 #ifdef CONFIG_RFS_ACCEL 12092 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 12093 #endif 12094 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 12095 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 12096 .ndo_bpf = bnxt_xdp, 12097 .ndo_xdp_xmit = bnxt_xdp_xmit, 12098 .ndo_bridge_getlink = bnxt_bridge_getlink, 12099 .ndo_bridge_setlink = bnxt_bridge_setlink, 12100 .ndo_get_devlink_port = bnxt_get_devlink_port, 12101 }; 12102 12103 static void bnxt_remove_one(struct pci_dev *pdev) 12104 { 12105 struct net_device *dev = pci_get_drvdata(pdev); 12106 struct bnxt *bp = netdev_priv(dev); 12107 12108 if (BNXT_PF(bp)) 12109 bnxt_sriov_disable(bp); 12110 12111 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 12112 bnxt_cancel_sp_work(bp); 12113 bp->sp_event = 0; 12114 12115 bnxt_dl_fw_reporters_destroy(bp, true); 12116 if (BNXT_PF(bp)) 12117 devlink_port_type_clear(&bp->dl_port); 12118 pci_disable_pcie_error_reporting(pdev); 12119 unregister_netdev(dev); 12120 bnxt_dl_unregister(bp); 12121 bnxt_shutdown_tc(bp); 12122 12123 bnxt_clear_int_mode(bp); 12124 bnxt_hwrm_func_drv_unrgtr(bp); 12125 bnxt_free_hwrm_resources(bp); 12126 bnxt_free_hwrm_short_cmd_req(bp); 12127 bnxt_ethtool_free(bp); 12128 bnxt_dcb_free(bp); 12129 kfree(bp->edev); 12130 bp->edev = NULL; 12131 kfree(bp->fw_health); 12132 bp->fw_health = NULL; 12133 bnxt_cleanup_pci(bp); 12134 bnxt_free_ctx_mem(bp); 12135 kfree(bp->ctx); 12136 bp->ctx = NULL; 12137 kfree(bp->rss_indir_tbl); 12138 bp->rss_indir_tbl = NULL; 12139 bnxt_free_port_stats(bp); 12140 free_netdev(dev); 12141 } 12142 12143 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 12144 { 12145 int rc = 0; 12146 struct bnxt_link_info *link_info = &bp->link_info; 12147 12148 rc = bnxt_hwrm_phy_qcaps(bp); 12149 if (rc) { 12150 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 12151 rc); 12152 return rc; 12153 } 12154 if (!fw_dflt) 12155 return 0; 12156 12157 rc = bnxt_update_link(bp, false); 12158 if (rc) { 12159 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 12160 rc); 12161 return rc; 12162 } 12163 12164 /* Older firmware does not have supported_auto_speeds, so assume 12165 * that all supported speeds can be autonegotiated. 12166 */ 12167 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 12168 link_info->support_auto_speeds = link_info->support_speeds; 12169 12170 bnxt_init_ethtool_link_settings(bp); 12171 return 0; 12172 } 12173 12174 static int bnxt_get_max_irq(struct pci_dev *pdev) 12175 { 12176 u16 ctrl; 12177 12178 if (!pdev->msix_cap) 12179 return 1; 12180 12181 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 12182 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 12183 } 12184 12185 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12186 int *max_cp) 12187 { 12188 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12189 int max_ring_grps = 0, max_irq; 12190 12191 *max_tx = hw_resc->max_tx_rings; 12192 *max_rx = hw_resc->max_rx_rings; 12193 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 12194 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 12195 bnxt_get_ulp_msix_num(bp), 12196 hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp)); 12197 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 12198 *max_cp = min_t(int, *max_cp, max_irq); 12199 max_ring_grps = hw_resc->max_hw_ring_grps; 12200 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 12201 *max_cp -= 1; 12202 *max_rx -= 2; 12203 } 12204 if (bp->flags & BNXT_FLAG_AGG_RINGS) 12205 *max_rx >>= 1; 12206 if (bp->flags & BNXT_FLAG_CHIP_P5) { 12207 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 12208 /* On P5 chips, max_cp output param should be available NQs */ 12209 *max_cp = max_irq; 12210 } 12211 *max_rx = min_t(int, *max_rx, max_ring_grps); 12212 } 12213 12214 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 12215 { 12216 int rx, tx, cp; 12217 12218 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 12219 *max_rx = rx; 12220 *max_tx = tx; 12221 if (!rx || !tx || !cp) 12222 return -ENOMEM; 12223 12224 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 12225 } 12226 12227 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 12228 bool shared) 12229 { 12230 int rc; 12231 12232 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12233 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 12234 /* Not enough rings, try disabling agg rings. */ 12235 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 12236 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 12237 if (rc) { 12238 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 12239 bp->flags |= BNXT_FLAG_AGG_RINGS; 12240 return rc; 12241 } 12242 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 12243 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12244 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12245 bnxt_set_ring_params(bp); 12246 } 12247 12248 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 12249 int max_cp, max_stat, max_irq; 12250 12251 /* Reserve minimum resources for RoCE */ 12252 max_cp = bnxt_get_max_func_cp_rings(bp); 12253 max_stat = bnxt_get_max_func_stat_ctxs(bp); 12254 max_irq = bnxt_get_max_func_irqs(bp); 12255 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 12256 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 12257 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 12258 return 0; 12259 12260 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 12261 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 12262 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 12263 max_cp = min_t(int, max_cp, max_irq); 12264 max_cp = min_t(int, max_cp, max_stat); 12265 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 12266 if (rc) 12267 rc = 0; 12268 } 12269 return rc; 12270 } 12271 12272 /* In initial default shared ring setting, each shared ring must have a 12273 * RX/TX ring pair. 12274 */ 12275 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 12276 { 12277 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 12278 bp->rx_nr_rings = bp->cp_nr_rings; 12279 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 12280 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12281 } 12282 12283 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 12284 { 12285 int dflt_rings, max_rx_rings, max_tx_rings, rc; 12286 12287 if (!bnxt_can_reserve_rings(bp)) 12288 return 0; 12289 12290 if (sh) 12291 bp->flags |= BNXT_FLAG_SHARED_RINGS; 12292 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 12293 /* Reduce default rings on multi-port cards so that total default 12294 * rings do not exceed CPU count. 12295 */ 12296 if (bp->port_count > 1) { 12297 int max_rings = 12298 max_t(int, num_online_cpus() / bp->port_count, 1); 12299 12300 dflt_rings = min_t(int, dflt_rings, max_rings); 12301 } 12302 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 12303 if (rc) 12304 return rc; 12305 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 12306 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 12307 if (sh) 12308 bnxt_trim_dflt_sh_rings(bp); 12309 else 12310 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 12311 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 12312 12313 rc = __bnxt_reserve_rings(bp); 12314 if (rc) 12315 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 12316 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12317 if (sh) 12318 bnxt_trim_dflt_sh_rings(bp); 12319 12320 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 12321 if (bnxt_need_reserve_rings(bp)) { 12322 rc = __bnxt_reserve_rings(bp); 12323 if (rc) 12324 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 12325 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12326 } 12327 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 12328 bp->rx_nr_rings++; 12329 bp->cp_nr_rings++; 12330 } 12331 if (rc) { 12332 bp->tx_nr_rings = 0; 12333 bp->rx_nr_rings = 0; 12334 } 12335 return rc; 12336 } 12337 12338 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 12339 { 12340 int rc; 12341 12342 if (bp->tx_nr_rings) 12343 return 0; 12344 12345 bnxt_ulp_irq_stop(bp); 12346 bnxt_clear_int_mode(bp); 12347 rc = bnxt_set_dflt_rings(bp, true); 12348 if (rc) { 12349 netdev_err(bp->dev, "Not enough rings available.\n"); 12350 goto init_dflt_ring_err; 12351 } 12352 rc = bnxt_init_int_mode(bp); 12353 if (rc) 12354 goto init_dflt_ring_err; 12355 12356 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12357 if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) { 12358 bp->flags |= BNXT_FLAG_RFS; 12359 bp->dev->features |= NETIF_F_NTUPLE; 12360 } 12361 init_dflt_ring_err: 12362 bnxt_ulp_irq_restart(bp, rc); 12363 return rc; 12364 } 12365 12366 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 12367 { 12368 int rc; 12369 12370 ASSERT_RTNL(); 12371 bnxt_hwrm_func_qcaps(bp); 12372 12373 if (netif_running(bp->dev)) 12374 __bnxt_close_nic(bp, true, false); 12375 12376 bnxt_ulp_irq_stop(bp); 12377 bnxt_clear_int_mode(bp); 12378 rc = bnxt_init_int_mode(bp); 12379 bnxt_ulp_irq_restart(bp, rc); 12380 12381 if (netif_running(bp->dev)) { 12382 if (rc) 12383 dev_close(bp->dev); 12384 else 12385 rc = bnxt_open_nic(bp, true, false); 12386 } 12387 12388 return rc; 12389 } 12390 12391 static int bnxt_init_mac_addr(struct bnxt *bp) 12392 { 12393 int rc = 0; 12394 12395 if (BNXT_PF(bp)) { 12396 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN); 12397 } else { 12398 #ifdef CONFIG_BNXT_SRIOV 12399 struct bnxt_vf_info *vf = &bp->vf; 12400 bool strict_approval = true; 12401 12402 if (is_valid_ether_addr(vf->mac_addr)) { 12403 /* overwrite netdev dev_addr with admin VF MAC */ 12404 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 12405 /* Older PF driver or firmware may not approve this 12406 * correctly. 12407 */ 12408 strict_approval = false; 12409 } else { 12410 eth_hw_addr_random(bp->dev); 12411 } 12412 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 12413 #endif 12414 } 12415 return rc; 12416 } 12417 12418 #define BNXT_VPD_LEN 512 12419 static void bnxt_vpd_read_info(struct bnxt *bp) 12420 { 12421 struct pci_dev *pdev = bp->pdev; 12422 int i, len, pos, ro_size, size; 12423 ssize_t vpd_size; 12424 u8 *vpd_data; 12425 12426 vpd_data = kmalloc(BNXT_VPD_LEN, GFP_KERNEL); 12427 if (!vpd_data) 12428 return; 12429 12430 vpd_size = pci_read_vpd(pdev, 0, BNXT_VPD_LEN, vpd_data); 12431 if (vpd_size <= 0) { 12432 netdev_err(bp->dev, "Unable to read VPD\n"); 12433 goto exit; 12434 } 12435 12436 i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 12437 if (i < 0) { 12438 netdev_err(bp->dev, "VPD READ-Only not found\n"); 12439 goto exit; 12440 } 12441 12442 ro_size = pci_vpd_lrdt_size(&vpd_data[i]); 12443 i += PCI_VPD_LRDT_TAG_SIZE; 12444 if (i + ro_size > vpd_size) 12445 goto exit; 12446 12447 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 12448 PCI_VPD_RO_KEYWORD_PARTNO); 12449 if (pos < 0) 12450 goto read_sn; 12451 12452 len = pci_vpd_info_field_size(&vpd_data[pos]); 12453 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 12454 if (len + pos > vpd_size) 12455 goto read_sn; 12456 12457 size = min(len, BNXT_VPD_FLD_LEN - 1); 12458 memcpy(bp->board_partno, &vpd_data[pos], size); 12459 12460 read_sn: 12461 pos = pci_vpd_find_info_keyword(vpd_data, i, ro_size, 12462 PCI_VPD_RO_KEYWORD_SERIALNO); 12463 if (pos < 0) 12464 goto exit; 12465 12466 len = pci_vpd_info_field_size(&vpd_data[pos]); 12467 pos += PCI_VPD_INFO_FLD_HDR_SIZE; 12468 if (len + pos > vpd_size) 12469 goto exit; 12470 12471 size = min(len, BNXT_VPD_FLD_LEN - 1); 12472 memcpy(bp->board_serialno, &vpd_data[pos], size); 12473 exit: 12474 kfree(vpd_data); 12475 } 12476 12477 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 12478 { 12479 struct pci_dev *pdev = bp->pdev; 12480 u64 qword; 12481 12482 qword = pci_get_dsn(pdev); 12483 if (!qword) { 12484 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 12485 return -EOPNOTSUPP; 12486 } 12487 12488 put_unaligned_le64(qword, dsn); 12489 12490 bp->flags |= BNXT_FLAG_DSN_VALID; 12491 return 0; 12492 } 12493 12494 static int bnxt_map_db_bar(struct bnxt *bp) 12495 { 12496 if (!bp->db_size) 12497 return -ENODEV; 12498 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 12499 if (!bp->bar1) 12500 return -ENOMEM; 12501 return 0; 12502 } 12503 12504 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 12505 { 12506 struct net_device *dev; 12507 struct bnxt *bp; 12508 int rc, max_irqs; 12509 12510 if (pci_is_bridge(pdev)) 12511 return -ENODEV; 12512 12513 /* Clear any pending DMA transactions from crash kernel 12514 * while loading driver in capture kernel. 12515 */ 12516 if (is_kdump_kernel()) { 12517 pci_clear_master(pdev); 12518 pcie_flr(pdev); 12519 } 12520 12521 max_irqs = bnxt_get_max_irq(pdev); 12522 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 12523 if (!dev) 12524 return -ENOMEM; 12525 12526 bp = netdev_priv(dev); 12527 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 12528 bnxt_set_max_func_irqs(bp, max_irqs); 12529 12530 if (bnxt_vf_pciid(ent->driver_data)) 12531 bp->flags |= BNXT_FLAG_VF; 12532 12533 if (pdev->msix_cap) 12534 bp->flags |= BNXT_FLAG_MSIX_CAP; 12535 12536 rc = bnxt_init_board(pdev, dev); 12537 if (rc < 0) 12538 goto init_err_free; 12539 12540 dev->netdev_ops = &bnxt_netdev_ops; 12541 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 12542 dev->ethtool_ops = &bnxt_ethtool_ops; 12543 pci_set_drvdata(pdev, dev); 12544 12545 if (BNXT_PF(bp)) 12546 bnxt_vpd_read_info(bp); 12547 12548 rc = bnxt_alloc_hwrm_resources(bp); 12549 if (rc) 12550 goto init_err_pci_clean; 12551 12552 mutex_init(&bp->hwrm_cmd_lock); 12553 mutex_init(&bp->link_lock); 12554 12555 rc = bnxt_fw_init_one_p1(bp); 12556 if (rc) 12557 goto init_err_pci_clean; 12558 12559 if (BNXT_CHIP_P5(bp)) { 12560 bp->flags |= BNXT_FLAG_CHIP_P5; 12561 if (BNXT_CHIP_SR2(bp)) 12562 bp->flags |= BNXT_FLAG_CHIP_SR2; 12563 } 12564 12565 rc = bnxt_alloc_rss_indir_tbl(bp); 12566 if (rc) 12567 goto init_err_pci_clean; 12568 12569 rc = bnxt_fw_init_one_p2(bp); 12570 if (rc) 12571 goto init_err_pci_clean; 12572 12573 rc = bnxt_map_db_bar(bp); 12574 if (rc) { 12575 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 12576 rc); 12577 goto init_err_pci_clean; 12578 } 12579 12580 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 12581 NETIF_F_TSO | NETIF_F_TSO6 | 12582 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 12583 NETIF_F_GSO_IPXIP4 | 12584 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 12585 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 12586 NETIF_F_RXCSUM | NETIF_F_GRO; 12587 12588 if (BNXT_SUPPORTS_TPA(bp)) 12589 dev->hw_features |= NETIF_F_LRO; 12590 12591 dev->hw_enc_features = 12592 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 12593 NETIF_F_TSO | NETIF_F_TSO6 | 12594 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 12595 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 12596 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 12597 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 12598 12599 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 12600 NETIF_F_GSO_GRE_CSUM; 12601 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 12602 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 12603 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 12604 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 12605 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 12606 if (BNXT_SUPPORTS_TPA(bp)) 12607 dev->hw_features |= NETIF_F_GRO_HW; 12608 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 12609 if (dev->features & NETIF_F_GRO_HW) 12610 dev->features &= ~NETIF_F_LRO; 12611 dev->priv_flags |= IFF_UNICAST_FLT; 12612 12613 #ifdef CONFIG_BNXT_SRIOV 12614 init_waitqueue_head(&bp->sriov_cfg_wait); 12615 mutex_init(&bp->sriov_lock); 12616 #endif 12617 if (BNXT_SUPPORTS_TPA(bp)) { 12618 bp->gro_func = bnxt_gro_func_5730x; 12619 if (BNXT_CHIP_P4(bp)) 12620 bp->gro_func = bnxt_gro_func_5731x; 12621 else if (BNXT_CHIP_P5(bp)) 12622 bp->gro_func = bnxt_gro_func_5750x; 12623 } 12624 if (!BNXT_CHIP_P4_PLUS(bp)) 12625 bp->flags |= BNXT_FLAG_DOUBLE_DB; 12626 12627 bp->ulp_probe = bnxt_ulp_probe; 12628 12629 rc = bnxt_init_mac_addr(bp); 12630 if (rc) { 12631 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 12632 rc = -EADDRNOTAVAIL; 12633 goto init_err_pci_clean; 12634 } 12635 12636 if (BNXT_PF(bp)) { 12637 /* Read the adapter's DSN to use as the eswitch switch_id */ 12638 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 12639 } 12640 12641 /* MTU range: 60 - FW defined max */ 12642 dev->min_mtu = ETH_ZLEN; 12643 dev->max_mtu = bp->max_mtu; 12644 12645 rc = bnxt_probe_phy(bp, true); 12646 if (rc) 12647 goto init_err_pci_clean; 12648 12649 bnxt_set_rx_skb_mode(bp, false); 12650 bnxt_set_tpa_flags(bp); 12651 bnxt_set_ring_params(bp); 12652 rc = bnxt_set_dflt_rings(bp, true); 12653 if (rc) { 12654 netdev_err(bp->dev, "Not enough rings available.\n"); 12655 rc = -ENOMEM; 12656 goto init_err_pci_clean; 12657 } 12658 12659 bnxt_fw_init_one_p3(bp); 12660 12661 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12662 bp->flags |= BNXT_FLAG_STRIP_VLAN; 12663 12664 rc = bnxt_init_int_mode(bp); 12665 if (rc) 12666 goto init_err_pci_clean; 12667 12668 /* No TC has been set yet and rings may have been trimmed due to 12669 * limited MSIX, so we re-initialize the TX rings per TC. 12670 */ 12671 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 12672 12673 if (BNXT_PF(bp)) { 12674 if (!bnxt_pf_wq) { 12675 bnxt_pf_wq = 12676 create_singlethread_workqueue("bnxt_pf_wq"); 12677 if (!bnxt_pf_wq) { 12678 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 12679 goto init_err_pci_clean; 12680 } 12681 } 12682 rc = bnxt_init_tc(bp); 12683 if (rc) 12684 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 12685 rc); 12686 } 12687 12688 bnxt_dl_register(bp); 12689 12690 rc = register_netdev(dev); 12691 if (rc) 12692 goto init_err_cleanup; 12693 12694 if (BNXT_PF(bp)) 12695 devlink_port_type_eth_set(&bp->dl_port, bp->dev); 12696 bnxt_dl_fw_reporters_create(bp); 12697 12698 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 12699 board_info[ent->driver_data].name, 12700 (long)pci_resource_start(pdev, 0), dev->dev_addr); 12701 pcie_print_link_status(pdev); 12702 12703 pci_save_state(pdev); 12704 return 0; 12705 12706 init_err_cleanup: 12707 bnxt_dl_unregister(bp); 12708 bnxt_shutdown_tc(bp); 12709 bnxt_clear_int_mode(bp); 12710 12711 init_err_pci_clean: 12712 bnxt_hwrm_func_drv_unrgtr(bp); 12713 bnxt_free_hwrm_short_cmd_req(bp); 12714 bnxt_free_hwrm_resources(bp); 12715 kfree(bp->fw_health); 12716 bp->fw_health = NULL; 12717 bnxt_cleanup_pci(bp); 12718 bnxt_free_ctx_mem(bp); 12719 kfree(bp->ctx); 12720 bp->ctx = NULL; 12721 kfree(bp->rss_indir_tbl); 12722 bp->rss_indir_tbl = NULL; 12723 12724 init_err_free: 12725 free_netdev(dev); 12726 return rc; 12727 } 12728 12729 static void bnxt_shutdown(struct pci_dev *pdev) 12730 { 12731 struct net_device *dev = pci_get_drvdata(pdev); 12732 struct bnxt *bp; 12733 12734 if (!dev) 12735 return; 12736 12737 rtnl_lock(); 12738 bp = netdev_priv(dev); 12739 if (!bp) 12740 goto shutdown_exit; 12741 12742 if (netif_running(dev)) 12743 dev_close(dev); 12744 12745 bnxt_ulp_shutdown(bp); 12746 bnxt_clear_int_mode(bp); 12747 pci_disable_device(pdev); 12748 12749 if (system_state == SYSTEM_POWER_OFF) { 12750 pci_wake_from_d3(pdev, bp->wol); 12751 pci_set_power_state(pdev, PCI_D3hot); 12752 } 12753 12754 shutdown_exit: 12755 rtnl_unlock(); 12756 } 12757 12758 #ifdef CONFIG_PM_SLEEP 12759 static int bnxt_suspend(struct device *device) 12760 { 12761 struct net_device *dev = dev_get_drvdata(device); 12762 struct bnxt *bp = netdev_priv(dev); 12763 int rc = 0; 12764 12765 rtnl_lock(); 12766 bnxt_ulp_stop(bp); 12767 if (netif_running(dev)) { 12768 netif_device_detach(dev); 12769 rc = bnxt_close(dev); 12770 } 12771 bnxt_hwrm_func_drv_unrgtr(bp); 12772 pci_disable_device(bp->pdev); 12773 bnxt_free_ctx_mem(bp); 12774 kfree(bp->ctx); 12775 bp->ctx = NULL; 12776 rtnl_unlock(); 12777 return rc; 12778 } 12779 12780 static int bnxt_resume(struct device *device) 12781 { 12782 struct net_device *dev = dev_get_drvdata(device); 12783 struct bnxt *bp = netdev_priv(dev); 12784 int rc = 0; 12785 12786 rtnl_lock(); 12787 rc = pci_enable_device(bp->pdev); 12788 if (rc) { 12789 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 12790 rc); 12791 goto resume_exit; 12792 } 12793 pci_set_master(bp->pdev); 12794 if (bnxt_hwrm_ver_get(bp)) { 12795 rc = -ENODEV; 12796 goto resume_exit; 12797 } 12798 rc = bnxt_hwrm_func_reset(bp); 12799 if (rc) { 12800 rc = -EBUSY; 12801 goto resume_exit; 12802 } 12803 12804 rc = bnxt_hwrm_func_qcaps(bp); 12805 if (rc) 12806 goto resume_exit; 12807 12808 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 12809 rc = -ENODEV; 12810 goto resume_exit; 12811 } 12812 12813 bnxt_get_wol_settings(bp); 12814 if (netif_running(dev)) { 12815 rc = bnxt_open(dev); 12816 if (!rc) 12817 netif_device_attach(dev); 12818 } 12819 12820 resume_exit: 12821 bnxt_ulp_start(bp, rc); 12822 if (!rc) 12823 bnxt_reenable_sriov(bp); 12824 rtnl_unlock(); 12825 return rc; 12826 } 12827 12828 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 12829 #define BNXT_PM_OPS (&bnxt_pm_ops) 12830 12831 #else 12832 12833 #define BNXT_PM_OPS NULL 12834 12835 #endif /* CONFIG_PM_SLEEP */ 12836 12837 /** 12838 * bnxt_io_error_detected - called when PCI error is detected 12839 * @pdev: Pointer to PCI device 12840 * @state: The current pci connection state 12841 * 12842 * This function is called after a PCI bus error affecting 12843 * this device has been detected. 12844 */ 12845 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 12846 pci_channel_state_t state) 12847 { 12848 struct net_device *netdev = pci_get_drvdata(pdev); 12849 struct bnxt *bp = netdev_priv(netdev); 12850 12851 netdev_info(netdev, "PCI I/O error detected\n"); 12852 12853 rtnl_lock(); 12854 netif_device_detach(netdev); 12855 12856 bnxt_ulp_stop(bp); 12857 12858 if (state == pci_channel_io_perm_failure) { 12859 rtnl_unlock(); 12860 return PCI_ERS_RESULT_DISCONNECT; 12861 } 12862 12863 if (netif_running(netdev)) 12864 bnxt_close(netdev); 12865 12866 pci_disable_device(pdev); 12867 bnxt_free_ctx_mem(bp); 12868 kfree(bp->ctx); 12869 bp->ctx = NULL; 12870 rtnl_unlock(); 12871 12872 /* Request a slot slot reset. */ 12873 return PCI_ERS_RESULT_NEED_RESET; 12874 } 12875 12876 /** 12877 * bnxt_io_slot_reset - called after the pci bus has been reset. 12878 * @pdev: Pointer to PCI device 12879 * 12880 * Restart the card from scratch, as if from a cold-boot. 12881 * At this point, the card has exprienced a hard reset, 12882 * followed by fixups by BIOS, and has its config space 12883 * set up identically to what it was at cold boot. 12884 */ 12885 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 12886 { 12887 struct net_device *netdev = pci_get_drvdata(pdev); 12888 struct bnxt *bp = netdev_priv(netdev); 12889 int err = 0; 12890 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 12891 12892 netdev_info(bp->dev, "PCI Slot Reset\n"); 12893 12894 rtnl_lock(); 12895 12896 if (pci_enable_device(pdev)) { 12897 dev_err(&pdev->dev, 12898 "Cannot re-enable PCI device after reset.\n"); 12899 } else { 12900 pci_set_master(pdev); 12901 pci_restore_state(pdev); 12902 pci_save_state(pdev); 12903 12904 err = bnxt_hwrm_func_reset(bp); 12905 if (!err) { 12906 err = bnxt_hwrm_func_qcaps(bp); 12907 if (!err && netif_running(netdev)) 12908 err = bnxt_open(netdev); 12909 } 12910 bnxt_ulp_start(bp, err); 12911 if (!err) { 12912 bnxt_reenable_sriov(bp); 12913 result = PCI_ERS_RESULT_RECOVERED; 12914 } 12915 } 12916 12917 if (result != PCI_ERS_RESULT_RECOVERED) { 12918 if (netif_running(netdev)) 12919 dev_close(netdev); 12920 pci_disable_device(pdev); 12921 } 12922 12923 rtnl_unlock(); 12924 12925 return result; 12926 } 12927 12928 /** 12929 * bnxt_io_resume - called when traffic can start flowing again. 12930 * @pdev: Pointer to PCI device 12931 * 12932 * This callback is called when the error recovery driver tells 12933 * us that its OK to resume normal operation. 12934 */ 12935 static void bnxt_io_resume(struct pci_dev *pdev) 12936 { 12937 struct net_device *netdev = pci_get_drvdata(pdev); 12938 12939 rtnl_lock(); 12940 12941 netif_device_attach(netdev); 12942 12943 rtnl_unlock(); 12944 } 12945 12946 static const struct pci_error_handlers bnxt_err_handler = { 12947 .error_detected = bnxt_io_error_detected, 12948 .slot_reset = bnxt_io_slot_reset, 12949 .resume = bnxt_io_resume 12950 }; 12951 12952 static struct pci_driver bnxt_pci_driver = { 12953 .name = DRV_MODULE_NAME, 12954 .id_table = bnxt_pci_tbl, 12955 .probe = bnxt_init_one, 12956 .remove = bnxt_remove_one, 12957 .shutdown = bnxt_shutdown, 12958 .driver.pm = BNXT_PM_OPS, 12959 .err_handler = &bnxt_err_handler, 12960 #if defined(CONFIG_BNXT_SRIOV) 12961 .sriov_configure = bnxt_sriov_configure, 12962 #endif 12963 }; 12964 12965 static int __init bnxt_init(void) 12966 { 12967 bnxt_debug_init(); 12968 return pci_register_driver(&bnxt_pci_driver); 12969 } 12970 12971 static void __exit bnxt_exit(void) 12972 { 12973 pci_unregister_driver(&bnxt_pci_driver); 12974 if (bnxt_pf_wq) 12975 destroy_workqueue(bnxt_pf_wq); 12976 bnxt_debug_exit(); 12977 } 12978 12979 module_init(bnxt_init); 12980 module_exit(bnxt_exit); 12981