1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58 
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70 
71 #define BNXT_TX_TIMEOUT		(5 * HZ)
72 
73 static const char version[] =
74 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
75 
76 MODULE_LICENSE("GPL");
77 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
78 MODULE_VERSION(DRV_MODULE_VERSION);
79 
80 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
81 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
82 #define BNXT_RX_COPY_THRESH 256
83 
84 #define BNXT_TX_PUSH_THRESH 164
85 
86 enum board_idx {
87 	BCM57301,
88 	BCM57302,
89 	BCM57304,
90 	BCM57417_NPAR,
91 	BCM58700,
92 	BCM57311,
93 	BCM57312,
94 	BCM57402,
95 	BCM57404,
96 	BCM57406,
97 	BCM57402_NPAR,
98 	BCM57407,
99 	BCM57412,
100 	BCM57414,
101 	BCM57416,
102 	BCM57417,
103 	BCM57412_NPAR,
104 	BCM57314,
105 	BCM57417_SFP,
106 	BCM57416_SFP,
107 	BCM57404_NPAR,
108 	BCM57406_NPAR,
109 	BCM57407_SFP,
110 	BCM57407_NPAR,
111 	BCM57414_NPAR,
112 	BCM57416_NPAR,
113 	BCM57452,
114 	BCM57454,
115 	BCM5745x_NPAR,
116 	BCM57508,
117 	BCM57504,
118 	BCM57502,
119 	BCM58802,
120 	BCM58804,
121 	BCM58808,
122 	NETXTREME_E_VF,
123 	NETXTREME_C_VF,
124 	NETXTREME_S_VF,
125 	NETXTREME_E_P5_VF,
126 };
127 
128 /* indexed by enum above */
129 static const struct {
130 	char *name;
131 } board_info[] = {
132 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
133 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
134 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
135 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
136 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
137 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
138 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
139 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
140 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
141 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
142 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
143 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
144 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
145 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
146 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
147 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
148 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
149 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
150 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
151 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
152 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
153 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
154 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
155 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
156 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
157 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
158 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
159 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
160 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
161 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
162 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
163 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
164 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
165 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
166 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
167 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
168 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
169 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
170 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
171 };
172 
173 static const struct pci_device_id bnxt_pci_tbl[] = {
174 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
176 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
179 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
185 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
186 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
192 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
194 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
195 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
196 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
197 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
198 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
201 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
205 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
206 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
207 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
208 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
209 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
210 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
211 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
212 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
213 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
214 #ifdef CONFIG_BNXT_SRIOV
215 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
216 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
217 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
218 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
219 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
220 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
221 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
222 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
223 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
224 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
225 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
226 #endif
227 	{ 0 }
228 };
229 
230 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
231 
232 static const u16 bnxt_vf_req_snif[] = {
233 	HWRM_FUNC_CFG,
234 	HWRM_FUNC_VF_CFG,
235 	HWRM_PORT_PHY_QCFG,
236 	HWRM_CFA_L2_FILTER_ALLOC,
237 };
238 
239 static const u16 bnxt_async_events_arr[] = {
240 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
241 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
242 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
243 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
244 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
245 };
246 
247 static struct workqueue_struct *bnxt_pf_wq;
248 
249 static bool bnxt_vf_pciid(enum board_idx idx)
250 {
251 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
252 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
253 }
254 
255 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
256 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
257 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
258 
259 #define BNXT_CP_DB_IRQ_DIS(db)						\
260 		writel(DB_CP_IRQ_DIS_FLAGS, db)
261 
262 #define BNXT_DB_CQ(db, idx)						\
263 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
264 
265 #define BNXT_DB_NQ_P5(db, idx)						\
266 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
267 
268 #define BNXT_DB_CQ_ARM(db, idx)						\
269 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
270 
271 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
272 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
273 
274 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
275 {
276 	if (bp->flags & BNXT_FLAG_CHIP_P5)
277 		BNXT_DB_NQ_P5(db, idx);
278 	else
279 		BNXT_DB_CQ(db, idx);
280 }
281 
282 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
283 {
284 	if (bp->flags & BNXT_FLAG_CHIP_P5)
285 		BNXT_DB_NQ_ARM_P5(db, idx);
286 	else
287 		BNXT_DB_CQ_ARM(db, idx);
288 }
289 
290 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
291 {
292 	if (bp->flags & BNXT_FLAG_CHIP_P5)
293 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
294 		       db->doorbell);
295 	else
296 		BNXT_DB_CQ(db, idx);
297 }
298 
299 const u16 bnxt_lhint_arr[] = {
300 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
301 	TX_BD_FLAGS_LHINT_512_TO_1023,
302 	TX_BD_FLAGS_LHINT_1024_TO_2047,
303 	TX_BD_FLAGS_LHINT_1024_TO_2047,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
315 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
316 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
317 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
318 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319 };
320 
321 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
322 {
323 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
324 
325 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
326 		return 0;
327 
328 	return md_dst->u.port_info.port_id;
329 }
330 
331 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
332 {
333 	struct bnxt *bp = netdev_priv(dev);
334 	struct tx_bd *txbd;
335 	struct tx_bd_ext *txbd1;
336 	struct netdev_queue *txq;
337 	int i;
338 	dma_addr_t mapping;
339 	unsigned int length, pad = 0;
340 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
341 	u16 prod, last_frag;
342 	struct pci_dev *pdev = bp->pdev;
343 	struct bnxt_tx_ring_info *txr;
344 	struct bnxt_sw_tx_bd *tx_buf;
345 
346 	i = skb_get_queue_mapping(skb);
347 	if (unlikely(i >= bp->tx_nr_rings)) {
348 		dev_kfree_skb_any(skb);
349 		return NETDEV_TX_OK;
350 	}
351 
352 	txq = netdev_get_tx_queue(dev, i);
353 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
354 	prod = txr->tx_prod;
355 
356 	free_size = bnxt_tx_avail(bp, txr);
357 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
358 		netif_tx_stop_queue(txq);
359 		return NETDEV_TX_BUSY;
360 	}
361 
362 	length = skb->len;
363 	len = skb_headlen(skb);
364 	last_frag = skb_shinfo(skb)->nr_frags;
365 
366 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
367 
368 	txbd->tx_bd_opaque = prod;
369 
370 	tx_buf = &txr->tx_buf_ring[prod];
371 	tx_buf->skb = skb;
372 	tx_buf->nr_frags = last_frag;
373 
374 	vlan_tag_flags = 0;
375 	cfa_action = bnxt_xmit_get_cfa_action(skb);
376 	if (skb_vlan_tag_present(skb)) {
377 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
378 				 skb_vlan_tag_get(skb);
379 		/* Currently supports 8021Q, 8021AD vlan offloads
380 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
381 		 */
382 		if (skb->vlan_proto == htons(ETH_P_8021Q))
383 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
384 	}
385 
386 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
387 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
388 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
389 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
390 		void __iomem *db = txr->tx_db.doorbell;
391 		void *pdata = tx_push_buf->data;
392 		u64 *end;
393 		int j, push_len;
394 
395 		/* Set COAL_NOW to be ready quickly for the next push */
396 		tx_push->tx_bd_len_flags_type =
397 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
398 					TX_BD_TYPE_LONG_TX_BD |
399 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
400 					TX_BD_FLAGS_COAL_NOW |
401 					TX_BD_FLAGS_PACKET_END |
402 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
403 
404 		if (skb->ip_summed == CHECKSUM_PARTIAL)
405 			tx_push1->tx_bd_hsize_lflags =
406 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
407 		else
408 			tx_push1->tx_bd_hsize_lflags = 0;
409 
410 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
411 		tx_push1->tx_bd_cfa_action =
412 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
413 
414 		end = pdata + length;
415 		end = PTR_ALIGN(end, 8) - 1;
416 		*end = 0;
417 
418 		skb_copy_from_linear_data(skb, pdata, len);
419 		pdata += len;
420 		for (j = 0; j < last_frag; j++) {
421 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
422 			void *fptr;
423 
424 			fptr = skb_frag_address_safe(frag);
425 			if (!fptr)
426 				goto normal_tx;
427 
428 			memcpy(pdata, fptr, skb_frag_size(frag));
429 			pdata += skb_frag_size(frag);
430 		}
431 
432 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
433 		txbd->tx_bd_haddr = txr->data_mapping;
434 		prod = NEXT_TX(prod);
435 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
436 		memcpy(txbd, tx_push1, sizeof(*txbd));
437 		prod = NEXT_TX(prod);
438 		tx_push->doorbell =
439 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
440 		txr->tx_prod = prod;
441 
442 		tx_buf->is_push = 1;
443 		netdev_tx_sent_queue(txq, skb->len);
444 		wmb();	/* Sync is_push and byte queue before pushing data */
445 
446 		push_len = (length + sizeof(*tx_push) + 7) / 8;
447 		if (push_len > 16) {
448 			__iowrite64_copy(db, tx_push_buf, 16);
449 			__iowrite32_copy(db + 4, tx_push_buf + 1,
450 					 (push_len - 16) << 1);
451 		} else {
452 			__iowrite64_copy(db, tx_push_buf, push_len);
453 		}
454 
455 		goto tx_done;
456 	}
457 
458 normal_tx:
459 	if (length < BNXT_MIN_PKT_SIZE) {
460 		pad = BNXT_MIN_PKT_SIZE - length;
461 		if (skb_pad(skb, pad)) {
462 			/* SKB already freed. */
463 			tx_buf->skb = NULL;
464 			return NETDEV_TX_OK;
465 		}
466 		length = BNXT_MIN_PKT_SIZE;
467 	}
468 
469 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
470 
471 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
472 		dev_kfree_skb_any(skb);
473 		tx_buf->skb = NULL;
474 		return NETDEV_TX_OK;
475 	}
476 
477 	dma_unmap_addr_set(tx_buf, mapping, mapping);
478 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
479 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
480 
481 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
482 
483 	prod = NEXT_TX(prod);
484 	txbd1 = (struct tx_bd_ext *)
485 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
486 
487 	txbd1->tx_bd_hsize_lflags = 0;
488 	if (skb_is_gso(skb)) {
489 		u32 hdr_len;
490 
491 		if (skb->encapsulation)
492 			hdr_len = skb_inner_network_offset(skb) +
493 				skb_inner_network_header_len(skb) +
494 				inner_tcp_hdrlen(skb);
495 		else
496 			hdr_len = skb_transport_offset(skb) +
497 				tcp_hdrlen(skb);
498 
499 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
500 					TX_BD_FLAGS_T_IPID |
501 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
502 		length = skb_shinfo(skb)->gso_size;
503 		txbd1->tx_bd_mss = cpu_to_le32(length);
504 		length += hdr_len;
505 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
506 		txbd1->tx_bd_hsize_lflags =
507 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
508 		txbd1->tx_bd_mss = 0;
509 	}
510 
511 	length >>= 9;
512 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
513 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
514 				     skb->len);
515 		i = 0;
516 		goto tx_dma_error;
517 	}
518 	flags |= bnxt_lhint_arr[length];
519 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
520 
521 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
522 	txbd1->tx_bd_cfa_action =
523 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
524 	for (i = 0; i < last_frag; i++) {
525 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
526 
527 		prod = NEXT_TX(prod);
528 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
529 
530 		len = skb_frag_size(frag);
531 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
532 					   DMA_TO_DEVICE);
533 
534 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
535 			goto tx_dma_error;
536 
537 		tx_buf = &txr->tx_buf_ring[prod];
538 		dma_unmap_addr_set(tx_buf, mapping, mapping);
539 
540 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
541 
542 		flags = len << TX_BD_LEN_SHIFT;
543 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
544 	}
545 
546 	flags &= ~TX_BD_LEN;
547 	txbd->tx_bd_len_flags_type =
548 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
549 			    TX_BD_FLAGS_PACKET_END);
550 
551 	netdev_tx_sent_queue(txq, skb->len);
552 
553 	/* Sync BD data before updating doorbell */
554 	wmb();
555 
556 	prod = NEXT_TX(prod);
557 	txr->tx_prod = prod;
558 
559 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
560 		bnxt_db_write(bp, &txr->tx_db, prod);
561 
562 tx_done:
563 
564 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
565 		if (netdev_xmit_more() && !tx_buf->is_push)
566 			bnxt_db_write(bp, &txr->tx_db, prod);
567 
568 		netif_tx_stop_queue(txq);
569 
570 		/* netif_tx_stop_queue() must be done before checking
571 		 * tx index in bnxt_tx_avail() below, because in
572 		 * bnxt_tx_int(), we update tx index before checking for
573 		 * netif_tx_queue_stopped().
574 		 */
575 		smp_mb();
576 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
577 			netif_tx_wake_queue(txq);
578 	}
579 	return NETDEV_TX_OK;
580 
581 tx_dma_error:
582 	last_frag = i;
583 
584 	/* start back at beginning and unmap skb */
585 	prod = txr->tx_prod;
586 	tx_buf = &txr->tx_buf_ring[prod];
587 	tx_buf->skb = NULL;
588 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
589 			 skb_headlen(skb), PCI_DMA_TODEVICE);
590 	prod = NEXT_TX(prod);
591 
592 	/* unmap remaining mapped pages */
593 	for (i = 0; i < last_frag; i++) {
594 		prod = NEXT_TX(prod);
595 		tx_buf = &txr->tx_buf_ring[prod];
596 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
597 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
598 			       PCI_DMA_TODEVICE);
599 	}
600 
601 	dev_kfree_skb_any(skb);
602 	return NETDEV_TX_OK;
603 }
604 
605 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
606 {
607 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
608 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
609 	u16 cons = txr->tx_cons;
610 	struct pci_dev *pdev = bp->pdev;
611 	int i;
612 	unsigned int tx_bytes = 0;
613 
614 	for (i = 0; i < nr_pkts; i++) {
615 		struct bnxt_sw_tx_bd *tx_buf;
616 		struct sk_buff *skb;
617 		int j, last;
618 
619 		tx_buf = &txr->tx_buf_ring[cons];
620 		cons = NEXT_TX(cons);
621 		skb = tx_buf->skb;
622 		tx_buf->skb = NULL;
623 
624 		if (tx_buf->is_push) {
625 			tx_buf->is_push = 0;
626 			goto next_tx_int;
627 		}
628 
629 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
630 				 skb_headlen(skb), PCI_DMA_TODEVICE);
631 		last = tx_buf->nr_frags;
632 
633 		for (j = 0; j < last; j++) {
634 			cons = NEXT_TX(cons);
635 			tx_buf = &txr->tx_buf_ring[cons];
636 			dma_unmap_page(
637 				&pdev->dev,
638 				dma_unmap_addr(tx_buf, mapping),
639 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
640 				PCI_DMA_TODEVICE);
641 		}
642 
643 next_tx_int:
644 		cons = NEXT_TX(cons);
645 
646 		tx_bytes += skb->len;
647 		dev_kfree_skb_any(skb);
648 	}
649 
650 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
651 	txr->tx_cons = cons;
652 
653 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
654 	 * before checking for netif_tx_queue_stopped().  Without the
655 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
656 	 * will miss it and cause the queue to be stopped forever.
657 	 */
658 	smp_mb();
659 
660 	if (unlikely(netif_tx_queue_stopped(txq)) &&
661 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
662 		__netif_tx_lock(txq, smp_processor_id());
663 		if (netif_tx_queue_stopped(txq) &&
664 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
665 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
666 			netif_tx_wake_queue(txq);
667 		__netif_tx_unlock(txq);
668 	}
669 }
670 
671 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
672 					 struct bnxt_rx_ring_info *rxr,
673 					 gfp_t gfp)
674 {
675 	struct device *dev = &bp->pdev->dev;
676 	struct page *page;
677 
678 	page = page_pool_dev_alloc_pages(rxr->page_pool);
679 	if (!page)
680 		return NULL;
681 
682 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
683 				      DMA_ATTR_WEAK_ORDERING);
684 	if (dma_mapping_error(dev, *mapping)) {
685 		page_pool_recycle_direct(rxr->page_pool, page);
686 		return NULL;
687 	}
688 	*mapping += bp->rx_dma_offset;
689 	return page;
690 }
691 
692 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
693 				       gfp_t gfp)
694 {
695 	u8 *data;
696 	struct pci_dev *pdev = bp->pdev;
697 
698 	data = kmalloc(bp->rx_buf_size, gfp);
699 	if (!data)
700 		return NULL;
701 
702 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
703 					bp->rx_buf_use_size, bp->rx_dir,
704 					DMA_ATTR_WEAK_ORDERING);
705 
706 	if (dma_mapping_error(&pdev->dev, *mapping)) {
707 		kfree(data);
708 		data = NULL;
709 	}
710 	return data;
711 }
712 
713 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
714 		       u16 prod, gfp_t gfp)
715 {
716 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
717 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
718 	dma_addr_t mapping;
719 
720 	if (BNXT_RX_PAGE_MODE(bp)) {
721 		struct page *page =
722 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
723 
724 		if (!page)
725 			return -ENOMEM;
726 
727 		rx_buf->data = page;
728 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
729 	} else {
730 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
731 
732 		if (!data)
733 			return -ENOMEM;
734 
735 		rx_buf->data = data;
736 		rx_buf->data_ptr = data + bp->rx_offset;
737 	}
738 	rx_buf->mapping = mapping;
739 
740 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
741 	return 0;
742 }
743 
744 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
745 {
746 	u16 prod = rxr->rx_prod;
747 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
748 	struct rx_bd *cons_bd, *prod_bd;
749 
750 	prod_rx_buf = &rxr->rx_buf_ring[prod];
751 	cons_rx_buf = &rxr->rx_buf_ring[cons];
752 
753 	prod_rx_buf->data = data;
754 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
755 
756 	prod_rx_buf->mapping = cons_rx_buf->mapping;
757 
758 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
759 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
760 
761 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
762 }
763 
764 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
765 {
766 	u16 next, max = rxr->rx_agg_bmap_size;
767 
768 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
769 	if (next >= max)
770 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
771 	return next;
772 }
773 
774 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
775 				     struct bnxt_rx_ring_info *rxr,
776 				     u16 prod, gfp_t gfp)
777 {
778 	struct rx_bd *rxbd =
779 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
780 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
781 	struct pci_dev *pdev = bp->pdev;
782 	struct page *page;
783 	dma_addr_t mapping;
784 	u16 sw_prod = rxr->rx_sw_agg_prod;
785 	unsigned int offset = 0;
786 
787 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
788 		page = rxr->rx_page;
789 		if (!page) {
790 			page = alloc_page(gfp);
791 			if (!page)
792 				return -ENOMEM;
793 			rxr->rx_page = page;
794 			rxr->rx_page_offset = 0;
795 		}
796 		offset = rxr->rx_page_offset;
797 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
798 		if (rxr->rx_page_offset == PAGE_SIZE)
799 			rxr->rx_page = NULL;
800 		else
801 			get_page(page);
802 	} else {
803 		page = alloc_page(gfp);
804 		if (!page)
805 			return -ENOMEM;
806 	}
807 
808 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
809 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
810 				     DMA_ATTR_WEAK_ORDERING);
811 	if (dma_mapping_error(&pdev->dev, mapping)) {
812 		__free_page(page);
813 		return -EIO;
814 	}
815 
816 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
817 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
818 
819 	__set_bit(sw_prod, rxr->rx_agg_bmap);
820 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
821 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
822 
823 	rx_agg_buf->page = page;
824 	rx_agg_buf->offset = offset;
825 	rx_agg_buf->mapping = mapping;
826 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
827 	rxbd->rx_bd_opaque = sw_prod;
828 	return 0;
829 }
830 
831 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
832 				   u32 agg_bufs)
833 {
834 	struct bnxt_napi *bnapi = cpr->bnapi;
835 	struct bnxt *bp = bnapi->bp;
836 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
837 	u16 prod = rxr->rx_agg_prod;
838 	u16 sw_prod = rxr->rx_sw_agg_prod;
839 	u32 i;
840 
841 	for (i = 0; i < agg_bufs; i++) {
842 		u16 cons;
843 		struct rx_agg_cmp *agg;
844 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
845 		struct rx_bd *prod_bd;
846 		struct page *page;
847 
848 		agg = (struct rx_agg_cmp *)
849 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
850 		cons = agg->rx_agg_cmp_opaque;
851 		__clear_bit(cons, rxr->rx_agg_bmap);
852 
853 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
854 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
855 
856 		__set_bit(sw_prod, rxr->rx_agg_bmap);
857 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
858 		cons_rx_buf = &rxr->rx_agg_ring[cons];
859 
860 		/* It is possible for sw_prod to be equal to cons, so
861 		 * set cons_rx_buf->page to NULL first.
862 		 */
863 		page = cons_rx_buf->page;
864 		cons_rx_buf->page = NULL;
865 		prod_rx_buf->page = page;
866 		prod_rx_buf->offset = cons_rx_buf->offset;
867 
868 		prod_rx_buf->mapping = cons_rx_buf->mapping;
869 
870 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
871 
872 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
873 		prod_bd->rx_bd_opaque = sw_prod;
874 
875 		prod = NEXT_RX_AGG(prod);
876 		sw_prod = NEXT_RX_AGG(sw_prod);
877 		cp_cons = NEXT_CMP(cp_cons);
878 	}
879 	rxr->rx_agg_prod = prod;
880 	rxr->rx_sw_agg_prod = sw_prod;
881 }
882 
883 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
884 					struct bnxt_rx_ring_info *rxr,
885 					u16 cons, void *data, u8 *data_ptr,
886 					dma_addr_t dma_addr,
887 					unsigned int offset_and_len)
888 {
889 	unsigned int payload = offset_and_len >> 16;
890 	unsigned int len = offset_and_len & 0xffff;
891 	struct skb_frag_struct *frag;
892 	struct page *page = data;
893 	u16 prod = rxr->rx_prod;
894 	struct sk_buff *skb;
895 	int off, err;
896 
897 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
898 	if (unlikely(err)) {
899 		bnxt_reuse_rx_data(rxr, cons, data);
900 		return NULL;
901 	}
902 	dma_addr -= bp->rx_dma_offset;
903 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
904 			     DMA_ATTR_WEAK_ORDERING);
905 
906 	if (unlikely(!payload))
907 		payload = eth_get_headlen(bp->dev, data_ptr, len);
908 
909 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
910 	if (!skb) {
911 		__free_page(page);
912 		return NULL;
913 	}
914 
915 	off = (void *)data_ptr - page_address(page);
916 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
917 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
918 	       payload + NET_IP_ALIGN);
919 
920 	frag = &skb_shinfo(skb)->frags[0];
921 	skb_frag_size_sub(frag, payload);
922 	frag->page_offset += payload;
923 	skb->data_len -= payload;
924 	skb->tail += payload;
925 
926 	return skb;
927 }
928 
929 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
930 				   struct bnxt_rx_ring_info *rxr, u16 cons,
931 				   void *data, u8 *data_ptr,
932 				   dma_addr_t dma_addr,
933 				   unsigned int offset_and_len)
934 {
935 	u16 prod = rxr->rx_prod;
936 	struct sk_buff *skb;
937 	int err;
938 
939 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
940 	if (unlikely(err)) {
941 		bnxt_reuse_rx_data(rxr, cons, data);
942 		return NULL;
943 	}
944 
945 	skb = build_skb(data, 0);
946 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
947 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
948 	if (!skb) {
949 		kfree(data);
950 		return NULL;
951 	}
952 
953 	skb_reserve(skb, bp->rx_offset);
954 	skb_put(skb, offset_and_len & 0xffff);
955 	return skb;
956 }
957 
958 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
959 				     struct bnxt_cp_ring_info *cpr,
960 				     struct sk_buff *skb, u16 cp_cons,
961 				     u32 agg_bufs)
962 {
963 	struct bnxt_napi *bnapi = cpr->bnapi;
964 	struct pci_dev *pdev = bp->pdev;
965 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
966 	u16 prod = rxr->rx_agg_prod;
967 	u32 i;
968 
969 	for (i = 0; i < agg_bufs; i++) {
970 		u16 cons, frag_len;
971 		struct rx_agg_cmp *agg;
972 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
973 		struct page *page;
974 		dma_addr_t mapping;
975 
976 		agg = (struct rx_agg_cmp *)
977 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
978 		cons = agg->rx_agg_cmp_opaque;
979 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
980 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
981 
982 		cons_rx_buf = &rxr->rx_agg_ring[cons];
983 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
984 				   cons_rx_buf->offset, frag_len);
985 		__clear_bit(cons, rxr->rx_agg_bmap);
986 
987 		/* It is possible for bnxt_alloc_rx_page() to allocate
988 		 * a sw_prod index that equals the cons index, so we
989 		 * need to clear the cons entry now.
990 		 */
991 		mapping = cons_rx_buf->mapping;
992 		page = cons_rx_buf->page;
993 		cons_rx_buf->page = NULL;
994 
995 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
996 			struct skb_shared_info *shinfo;
997 			unsigned int nr_frags;
998 
999 			shinfo = skb_shinfo(skb);
1000 			nr_frags = --shinfo->nr_frags;
1001 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1002 
1003 			dev_kfree_skb(skb);
1004 
1005 			cons_rx_buf->page = page;
1006 
1007 			/* Update prod since possibly some pages have been
1008 			 * allocated already.
1009 			 */
1010 			rxr->rx_agg_prod = prod;
1011 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs - i);
1012 			return NULL;
1013 		}
1014 
1015 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1016 				     PCI_DMA_FROMDEVICE,
1017 				     DMA_ATTR_WEAK_ORDERING);
1018 
1019 		skb->data_len += frag_len;
1020 		skb->len += frag_len;
1021 		skb->truesize += PAGE_SIZE;
1022 
1023 		prod = NEXT_RX_AGG(prod);
1024 		cp_cons = NEXT_CMP(cp_cons);
1025 	}
1026 	rxr->rx_agg_prod = prod;
1027 	return skb;
1028 }
1029 
1030 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1031 			       u8 agg_bufs, u32 *raw_cons)
1032 {
1033 	u16 last;
1034 	struct rx_agg_cmp *agg;
1035 
1036 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1037 	last = RING_CMP(*raw_cons);
1038 	agg = (struct rx_agg_cmp *)
1039 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1040 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1041 }
1042 
1043 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1044 					    unsigned int len,
1045 					    dma_addr_t mapping)
1046 {
1047 	struct bnxt *bp = bnapi->bp;
1048 	struct pci_dev *pdev = bp->pdev;
1049 	struct sk_buff *skb;
1050 
1051 	skb = napi_alloc_skb(&bnapi->napi, len);
1052 	if (!skb)
1053 		return NULL;
1054 
1055 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1056 				bp->rx_dir);
1057 
1058 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1059 	       len + NET_IP_ALIGN);
1060 
1061 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1062 				   bp->rx_dir);
1063 
1064 	skb_put(skb, len);
1065 	return skb;
1066 }
1067 
1068 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1069 			   u32 *raw_cons, void *cmp)
1070 {
1071 	struct rx_cmp *rxcmp = cmp;
1072 	u32 tmp_raw_cons = *raw_cons;
1073 	u8 cmp_type, agg_bufs = 0;
1074 
1075 	cmp_type = RX_CMP_TYPE(rxcmp);
1076 
1077 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1078 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1079 			    RX_CMP_AGG_BUFS) >>
1080 			   RX_CMP_AGG_BUFS_SHIFT;
1081 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1082 		struct rx_tpa_end_cmp *tpa_end = cmp;
1083 
1084 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1085 			    RX_TPA_END_CMP_AGG_BUFS) >>
1086 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1087 	}
1088 
1089 	if (agg_bufs) {
1090 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1091 			return -EBUSY;
1092 	}
1093 	*raw_cons = tmp_raw_cons;
1094 	return 0;
1095 }
1096 
1097 static void bnxt_queue_sp_work(struct bnxt *bp)
1098 {
1099 	if (BNXT_PF(bp))
1100 		queue_work(bnxt_pf_wq, &bp->sp_task);
1101 	else
1102 		schedule_work(&bp->sp_task);
1103 }
1104 
1105 static void bnxt_cancel_sp_work(struct bnxt *bp)
1106 {
1107 	if (BNXT_PF(bp))
1108 		flush_workqueue(bnxt_pf_wq);
1109 	else
1110 		cancel_work_sync(&bp->sp_task);
1111 }
1112 
1113 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1114 {
1115 	if (!rxr->bnapi->in_reset) {
1116 		rxr->bnapi->in_reset = true;
1117 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1118 		bnxt_queue_sp_work(bp);
1119 	}
1120 	rxr->rx_next_cons = 0xffff;
1121 }
1122 
1123 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1124 			   struct rx_tpa_start_cmp *tpa_start,
1125 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1126 {
1127 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1128 	u16 cons, prod;
1129 	struct bnxt_tpa_info *tpa_info;
1130 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1131 	struct rx_bd *prod_bd;
1132 	dma_addr_t mapping;
1133 
1134 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1135 	prod = rxr->rx_prod;
1136 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1137 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1138 	tpa_info = &rxr->rx_tpa[agg_id];
1139 
1140 	if (unlikely(cons != rxr->rx_next_cons)) {
1141 		netdev_warn(bp->dev, "TPA cons %x != expected cons %x\n",
1142 			    cons, rxr->rx_next_cons);
1143 		bnxt_sched_reset(bp, rxr);
1144 		return;
1145 	}
1146 	/* Store cfa_code in tpa_info to use in tpa_end
1147 	 * completion processing.
1148 	 */
1149 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1150 	prod_rx_buf->data = tpa_info->data;
1151 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1152 
1153 	mapping = tpa_info->mapping;
1154 	prod_rx_buf->mapping = mapping;
1155 
1156 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1157 
1158 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1159 
1160 	tpa_info->data = cons_rx_buf->data;
1161 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1162 	cons_rx_buf->data = NULL;
1163 	tpa_info->mapping = cons_rx_buf->mapping;
1164 
1165 	tpa_info->len =
1166 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1167 				RX_TPA_START_CMP_LEN_SHIFT;
1168 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1169 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1170 
1171 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1172 		tpa_info->gso_type = SKB_GSO_TCPV4;
1173 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1174 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1175 			tpa_info->gso_type = SKB_GSO_TCPV6;
1176 		tpa_info->rss_hash =
1177 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1178 	} else {
1179 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1180 		tpa_info->gso_type = 0;
1181 		if (netif_msg_rx_err(bp))
1182 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1183 	}
1184 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1185 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1186 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1187 
1188 	rxr->rx_prod = NEXT_RX(prod);
1189 	cons = NEXT_RX(cons);
1190 	rxr->rx_next_cons = NEXT_RX(cons);
1191 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1192 
1193 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1194 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1195 	cons_rx_buf->data = NULL;
1196 }
1197 
1198 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
1199 			   u32 agg_bufs)
1200 {
1201 	if (agg_bufs)
1202 		bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1203 }
1204 
1205 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1206 					   int payload_off, int tcp_ts,
1207 					   struct sk_buff *skb)
1208 {
1209 #ifdef CONFIG_INET
1210 	struct tcphdr *th;
1211 	int len, nw_off;
1212 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1213 	u32 hdr_info = tpa_info->hdr_info;
1214 	bool loopback = false;
1215 
1216 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1217 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1218 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1219 
1220 	/* If the packet is an internal loopback packet, the offsets will
1221 	 * have an extra 4 bytes.
1222 	 */
1223 	if (inner_mac_off == 4) {
1224 		loopback = true;
1225 	} else if (inner_mac_off > 4) {
1226 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1227 					    ETH_HLEN - 2));
1228 
1229 		/* We only support inner iPv4/ipv6.  If we don't see the
1230 		 * correct protocol ID, it must be a loopback packet where
1231 		 * the offsets are off by 4.
1232 		 */
1233 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1234 			loopback = true;
1235 	}
1236 	if (loopback) {
1237 		/* internal loopback packet, subtract all offsets by 4 */
1238 		inner_ip_off -= 4;
1239 		inner_mac_off -= 4;
1240 		outer_ip_off -= 4;
1241 	}
1242 
1243 	nw_off = inner_ip_off - ETH_HLEN;
1244 	skb_set_network_header(skb, nw_off);
1245 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1246 		struct ipv6hdr *iph = ipv6_hdr(skb);
1247 
1248 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1249 		len = skb->len - skb_transport_offset(skb);
1250 		th = tcp_hdr(skb);
1251 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1252 	} else {
1253 		struct iphdr *iph = ip_hdr(skb);
1254 
1255 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1256 		len = skb->len - skb_transport_offset(skb);
1257 		th = tcp_hdr(skb);
1258 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1259 	}
1260 
1261 	if (inner_mac_off) { /* tunnel */
1262 		struct udphdr *uh = NULL;
1263 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1264 					    ETH_HLEN - 2));
1265 
1266 		if (proto == htons(ETH_P_IP)) {
1267 			struct iphdr *iph = (struct iphdr *)skb->data;
1268 
1269 			if (iph->protocol == IPPROTO_UDP)
1270 				uh = (struct udphdr *)(iph + 1);
1271 		} else {
1272 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1273 
1274 			if (iph->nexthdr == IPPROTO_UDP)
1275 				uh = (struct udphdr *)(iph + 1);
1276 		}
1277 		if (uh) {
1278 			if (uh->check)
1279 				skb_shinfo(skb)->gso_type |=
1280 					SKB_GSO_UDP_TUNNEL_CSUM;
1281 			else
1282 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1283 		}
1284 	}
1285 #endif
1286 	return skb;
1287 }
1288 
1289 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1290 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1291 
1292 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1293 					   int payload_off, int tcp_ts,
1294 					   struct sk_buff *skb)
1295 {
1296 #ifdef CONFIG_INET
1297 	struct tcphdr *th;
1298 	int len, nw_off, tcp_opt_len = 0;
1299 
1300 	if (tcp_ts)
1301 		tcp_opt_len = 12;
1302 
1303 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1304 		struct iphdr *iph;
1305 
1306 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1307 			 ETH_HLEN;
1308 		skb_set_network_header(skb, nw_off);
1309 		iph = ip_hdr(skb);
1310 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1311 		len = skb->len - skb_transport_offset(skb);
1312 		th = tcp_hdr(skb);
1313 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1314 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1315 		struct ipv6hdr *iph;
1316 
1317 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1318 			 ETH_HLEN;
1319 		skb_set_network_header(skb, nw_off);
1320 		iph = ipv6_hdr(skb);
1321 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1322 		len = skb->len - skb_transport_offset(skb);
1323 		th = tcp_hdr(skb);
1324 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1325 	} else {
1326 		dev_kfree_skb_any(skb);
1327 		return NULL;
1328 	}
1329 
1330 	if (nw_off) { /* tunnel */
1331 		struct udphdr *uh = NULL;
1332 
1333 		if (skb->protocol == htons(ETH_P_IP)) {
1334 			struct iphdr *iph = (struct iphdr *)skb->data;
1335 
1336 			if (iph->protocol == IPPROTO_UDP)
1337 				uh = (struct udphdr *)(iph + 1);
1338 		} else {
1339 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1340 
1341 			if (iph->nexthdr == IPPROTO_UDP)
1342 				uh = (struct udphdr *)(iph + 1);
1343 		}
1344 		if (uh) {
1345 			if (uh->check)
1346 				skb_shinfo(skb)->gso_type |=
1347 					SKB_GSO_UDP_TUNNEL_CSUM;
1348 			else
1349 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1350 		}
1351 	}
1352 #endif
1353 	return skb;
1354 }
1355 
1356 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1357 					   struct bnxt_tpa_info *tpa_info,
1358 					   struct rx_tpa_end_cmp *tpa_end,
1359 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1360 					   struct sk_buff *skb)
1361 {
1362 #ifdef CONFIG_INET
1363 	int payload_off;
1364 	u16 segs;
1365 
1366 	segs = TPA_END_TPA_SEGS(tpa_end);
1367 	if (segs == 1)
1368 		return skb;
1369 
1370 	NAPI_GRO_CB(skb)->count = segs;
1371 	skb_shinfo(skb)->gso_size =
1372 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1373 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1374 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1375 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1376 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1377 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1378 	if (likely(skb))
1379 		tcp_gro_complete(skb);
1380 #endif
1381 	return skb;
1382 }
1383 
1384 /* Given the cfa_code of a received packet determine which
1385  * netdev (vf-rep or PF) the packet is destined to.
1386  */
1387 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1388 {
1389 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1390 
1391 	/* if vf-rep dev is NULL, the must belongs to the PF */
1392 	return dev ? dev : bp->dev;
1393 }
1394 
1395 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1396 					   struct bnxt_cp_ring_info *cpr,
1397 					   u32 *raw_cons,
1398 					   struct rx_tpa_end_cmp *tpa_end,
1399 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1400 					   u8 *event)
1401 {
1402 	struct bnxt_napi *bnapi = cpr->bnapi;
1403 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1404 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1405 	u8 *data_ptr, agg_bufs;
1406 	u16 cp_cons = RING_CMP(*raw_cons);
1407 	unsigned int len;
1408 	struct bnxt_tpa_info *tpa_info;
1409 	dma_addr_t mapping;
1410 	struct sk_buff *skb;
1411 	void *data;
1412 
1413 	if (unlikely(bnapi->in_reset)) {
1414 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1415 
1416 		if (rc < 0)
1417 			return ERR_PTR(-EBUSY);
1418 		return NULL;
1419 	}
1420 
1421 	tpa_info = &rxr->rx_tpa[agg_id];
1422 	data = tpa_info->data;
1423 	data_ptr = tpa_info->data_ptr;
1424 	prefetch(data_ptr);
1425 	len = tpa_info->len;
1426 	mapping = tpa_info->mapping;
1427 
1428 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1429 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1430 
1431 	if (agg_bufs) {
1432 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1433 			return ERR_PTR(-EBUSY);
1434 
1435 		*event |= BNXT_AGG_EVENT;
1436 		cp_cons = NEXT_CMP(cp_cons);
1437 	}
1438 
1439 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1440 		bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1441 		if (agg_bufs > MAX_SKB_FRAGS)
1442 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1443 				    agg_bufs, (int)MAX_SKB_FRAGS);
1444 		return NULL;
1445 	}
1446 
1447 	if (len <= bp->rx_copy_thresh) {
1448 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1449 		if (!skb) {
1450 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1451 			return NULL;
1452 		}
1453 	} else {
1454 		u8 *new_data;
1455 		dma_addr_t new_mapping;
1456 
1457 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1458 		if (!new_data) {
1459 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1460 			return NULL;
1461 		}
1462 
1463 		tpa_info->data = new_data;
1464 		tpa_info->data_ptr = new_data + bp->rx_offset;
1465 		tpa_info->mapping = new_mapping;
1466 
1467 		skb = build_skb(data, 0);
1468 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1469 				       bp->rx_buf_use_size, bp->rx_dir,
1470 				       DMA_ATTR_WEAK_ORDERING);
1471 
1472 		if (!skb) {
1473 			kfree(data);
1474 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1475 			return NULL;
1476 		}
1477 		skb_reserve(skb, bp->rx_offset);
1478 		skb_put(skb, len);
1479 	}
1480 
1481 	if (agg_bufs) {
1482 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1483 		if (!skb) {
1484 			/* Page reuse already handled by bnxt_rx_pages(). */
1485 			return NULL;
1486 		}
1487 	}
1488 
1489 	skb->protocol =
1490 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1491 
1492 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1493 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1494 
1495 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1496 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1497 		u16 vlan_proto = tpa_info->metadata >>
1498 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1499 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1500 
1501 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1502 	}
1503 
1504 	skb_checksum_none_assert(skb);
1505 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1506 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1507 		skb->csum_level =
1508 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1509 	}
1510 
1511 	if (TPA_END_GRO(tpa_end))
1512 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1513 
1514 	return skb;
1515 }
1516 
1517 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1518 			     struct sk_buff *skb)
1519 {
1520 	if (skb->dev != bp->dev) {
1521 		/* this packet belongs to a vf-rep */
1522 		bnxt_vf_rep_rx(bp, skb);
1523 		return;
1524 	}
1525 	skb_record_rx_queue(skb, bnapi->index);
1526 	napi_gro_receive(&bnapi->napi, skb);
1527 }
1528 
1529 /* returns the following:
1530  * 1       - 1 packet successfully received
1531  * 0       - successful TPA_START, packet not completed yet
1532  * -EBUSY  - completion ring does not have all the agg buffers yet
1533  * -ENOMEM - packet aborted due to out of memory
1534  * -EIO    - packet aborted due to hw error indicated in BD
1535  */
1536 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1537 		       u32 *raw_cons, u8 *event)
1538 {
1539 	struct bnxt_napi *bnapi = cpr->bnapi;
1540 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1541 	struct net_device *dev = bp->dev;
1542 	struct rx_cmp *rxcmp;
1543 	struct rx_cmp_ext *rxcmp1;
1544 	u32 tmp_raw_cons = *raw_cons;
1545 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1546 	struct bnxt_sw_rx_bd *rx_buf;
1547 	unsigned int len;
1548 	u8 *data_ptr, agg_bufs, cmp_type;
1549 	dma_addr_t dma_addr;
1550 	struct sk_buff *skb;
1551 	void *data;
1552 	int rc = 0;
1553 	u32 misc;
1554 
1555 	rxcmp = (struct rx_cmp *)
1556 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1557 
1558 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1559 	cp_cons = RING_CMP(tmp_raw_cons);
1560 	rxcmp1 = (struct rx_cmp_ext *)
1561 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1562 
1563 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1564 		return -EBUSY;
1565 
1566 	cmp_type = RX_CMP_TYPE(rxcmp);
1567 
1568 	prod = rxr->rx_prod;
1569 
1570 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1571 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1572 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1573 
1574 		*event |= BNXT_RX_EVENT;
1575 		goto next_rx_no_prod_no_len;
1576 
1577 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1578 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1579 				   (struct rx_tpa_end_cmp *)rxcmp,
1580 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1581 
1582 		if (IS_ERR(skb))
1583 			return -EBUSY;
1584 
1585 		rc = -ENOMEM;
1586 		if (likely(skb)) {
1587 			bnxt_deliver_skb(bp, bnapi, skb);
1588 			rc = 1;
1589 		}
1590 		*event |= BNXT_RX_EVENT;
1591 		goto next_rx_no_prod_no_len;
1592 	}
1593 
1594 	cons = rxcmp->rx_cmp_opaque;
1595 	if (unlikely(cons != rxr->rx_next_cons)) {
1596 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1597 
1598 		netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1599 			    cons, rxr->rx_next_cons);
1600 		bnxt_sched_reset(bp, rxr);
1601 		return rc1;
1602 	}
1603 	rx_buf = &rxr->rx_buf_ring[cons];
1604 	data = rx_buf->data;
1605 	data_ptr = rx_buf->data_ptr;
1606 	prefetch(data_ptr);
1607 
1608 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1609 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1610 
1611 	if (agg_bufs) {
1612 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1613 			return -EBUSY;
1614 
1615 		cp_cons = NEXT_CMP(cp_cons);
1616 		*event |= BNXT_AGG_EVENT;
1617 	}
1618 	*event |= BNXT_RX_EVENT;
1619 
1620 	rx_buf->data = NULL;
1621 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1622 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1623 
1624 		bnxt_reuse_rx_data(rxr, cons, data);
1625 		if (agg_bufs)
1626 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1627 
1628 		rc = -EIO;
1629 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1630 			netdev_warn(bp->dev, "RX buffer error %x\n", rx_err);
1631 			bnxt_sched_reset(bp, rxr);
1632 		}
1633 		goto next_rx_no_len;
1634 	}
1635 
1636 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1637 	dma_addr = rx_buf->mapping;
1638 
1639 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1640 		rc = 1;
1641 		goto next_rx;
1642 	}
1643 
1644 	if (len <= bp->rx_copy_thresh) {
1645 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1646 		bnxt_reuse_rx_data(rxr, cons, data);
1647 		if (!skb) {
1648 			if (agg_bufs)
1649 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1650 			rc = -ENOMEM;
1651 			goto next_rx;
1652 		}
1653 	} else {
1654 		u32 payload;
1655 
1656 		if (rx_buf->data_ptr == data_ptr)
1657 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1658 		else
1659 			payload = 0;
1660 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1661 				      payload | len);
1662 		if (!skb) {
1663 			rc = -ENOMEM;
1664 			goto next_rx;
1665 		}
1666 	}
1667 
1668 	if (agg_bufs) {
1669 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1670 		if (!skb) {
1671 			rc = -ENOMEM;
1672 			goto next_rx;
1673 		}
1674 	}
1675 
1676 	if (RX_CMP_HASH_VALID(rxcmp)) {
1677 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1678 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1679 
1680 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1681 		if (hash_type != 1 && hash_type != 3)
1682 			type = PKT_HASH_TYPE_L3;
1683 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1684 	}
1685 
1686 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1687 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1688 
1689 	if ((rxcmp1->rx_cmp_flags2 &
1690 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1691 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1692 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1693 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1694 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1695 
1696 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1697 	}
1698 
1699 	skb_checksum_none_assert(skb);
1700 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1701 		if (dev->features & NETIF_F_RXCSUM) {
1702 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1703 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1704 		}
1705 	} else {
1706 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1707 			if (dev->features & NETIF_F_RXCSUM)
1708 				bnapi->cp_ring.rx_l4_csum_errors++;
1709 		}
1710 	}
1711 
1712 	bnxt_deliver_skb(bp, bnapi, skb);
1713 	rc = 1;
1714 
1715 next_rx:
1716 	cpr->rx_packets += 1;
1717 	cpr->rx_bytes += len;
1718 
1719 next_rx_no_len:
1720 	rxr->rx_prod = NEXT_RX(prod);
1721 	rxr->rx_next_cons = NEXT_RX(cons);
1722 
1723 next_rx_no_prod_no_len:
1724 	*raw_cons = tmp_raw_cons;
1725 
1726 	return rc;
1727 }
1728 
1729 /* In netpoll mode, if we are using a combined completion ring, we need to
1730  * discard the rx packets and recycle the buffers.
1731  */
1732 static int bnxt_force_rx_discard(struct bnxt *bp,
1733 				 struct bnxt_cp_ring_info *cpr,
1734 				 u32 *raw_cons, u8 *event)
1735 {
1736 	u32 tmp_raw_cons = *raw_cons;
1737 	struct rx_cmp_ext *rxcmp1;
1738 	struct rx_cmp *rxcmp;
1739 	u16 cp_cons;
1740 	u8 cmp_type;
1741 
1742 	cp_cons = RING_CMP(tmp_raw_cons);
1743 	rxcmp = (struct rx_cmp *)
1744 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1745 
1746 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1747 	cp_cons = RING_CMP(tmp_raw_cons);
1748 	rxcmp1 = (struct rx_cmp_ext *)
1749 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1750 
1751 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1752 		return -EBUSY;
1753 
1754 	cmp_type = RX_CMP_TYPE(rxcmp);
1755 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1756 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1757 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1758 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1759 		struct rx_tpa_end_cmp_ext *tpa_end1;
1760 
1761 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1762 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1763 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1764 	}
1765 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1766 }
1767 
1768 #define BNXT_GET_EVENT_PORT(data)	\
1769 	((data) &			\
1770 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1771 
1772 static int bnxt_async_event_process(struct bnxt *bp,
1773 				    struct hwrm_async_event_cmpl *cmpl)
1774 {
1775 	u16 event_id = le16_to_cpu(cmpl->event_id);
1776 
1777 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1778 	switch (event_id) {
1779 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1780 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1781 		struct bnxt_link_info *link_info = &bp->link_info;
1782 
1783 		if (BNXT_VF(bp))
1784 			goto async_event_process_exit;
1785 
1786 		/* print unsupported speed warning in forced speed mode only */
1787 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1788 		    (data1 & 0x20000)) {
1789 			u16 fw_speed = link_info->force_link_speed;
1790 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1791 
1792 			if (speed != SPEED_UNKNOWN)
1793 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1794 					    speed);
1795 		}
1796 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1797 	}
1798 	/* fall through */
1799 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1800 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1801 		break;
1802 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1803 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1804 		break;
1805 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1806 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1807 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1808 
1809 		if (BNXT_VF(bp))
1810 			break;
1811 
1812 		if (bp->pf.port_id != port_id)
1813 			break;
1814 
1815 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1816 		break;
1817 	}
1818 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1819 		if (BNXT_PF(bp))
1820 			goto async_event_process_exit;
1821 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1822 		break;
1823 	default:
1824 		goto async_event_process_exit;
1825 	}
1826 	bnxt_queue_sp_work(bp);
1827 async_event_process_exit:
1828 	bnxt_ulp_async_events(bp, cmpl);
1829 	return 0;
1830 }
1831 
1832 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1833 {
1834 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1835 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1836 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1837 				(struct hwrm_fwd_req_cmpl *)txcmp;
1838 
1839 	switch (cmpl_type) {
1840 	case CMPL_BASE_TYPE_HWRM_DONE:
1841 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1842 		if (seq_id == bp->hwrm_intr_seq_id)
1843 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
1844 		else
1845 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1846 		break;
1847 
1848 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1849 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1850 
1851 		if ((vf_id < bp->pf.first_vf_id) ||
1852 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1853 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1854 				   vf_id);
1855 			return -EINVAL;
1856 		}
1857 
1858 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1859 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1860 		bnxt_queue_sp_work(bp);
1861 		break;
1862 
1863 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1864 		bnxt_async_event_process(bp,
1865 					 (struct hwrm_async_event_cmpl *)txcmp);
1866 
1867 	default:
1868 		break;
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1875 {
1876 	struct bnxt_napi *bnapi = dev_instance;
1877 	struct bnxt *bp = bnapi->bp;
1878 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1879 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1880 
1881 	cpr->event_ctr++;
1882 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1883 	napi_schedule(&bnapi->napi);
1884 	return IRQ_HANDLED;
1885 }
1886 
1887 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1888 {
1889 	u32 raw_cons = cpr->cp_raw_cons;
1890 	u16 cons = RING_CMP(raw_cons);
1891 	struct tx_cmp *txcmp;
1892 
1893 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1894 
1895 	return TX_CMP_VALID(txcmp, raw_cons);
1896 }
1897 
1898 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1899 {
1900 	struct bnxt_napi *bnapi = dev_instance;
1901 	struct bnxt *bp = bnapi->bp;
1902 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1903 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1904 	u32 int_status;
1905 
1906 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1907 
1908 	if (!bnxt_has_work(bp, cpr)) {
1909 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1910 		/* return if erroneous interrupt */
1911 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1912 			return IRQ_NONE;
1913 	}
1914 
1915 	/* disable ring IRQ */
1916 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
1917 
1918 	/* Return here if interrupt is shared and is disabled. */
1919 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1920 		return IRQ_HANDLED;
1921 
1922 	napi_schedule(&bnapi->napi);
1923 	return IRQ_HANDLED;
1924 }
1925 
1926 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1927 			    int budget)
1928 {
1929 	struct bnxt_napi *bnapi = cpr->bnapi;
1930 	u32 raw_cons = cpr->cp_raw_cons;
1931 	u32 cons;
1932 	int tx_pkts = 0;
1933 	int rx_pkts = 0;
1934 	u8 event = 0;
1935 	struct tx_cmp *txcmp;
1936 
1937 	cpr->has_more_work = 0;
1938 	while (1) {
1939 		int rc;
1940 
1941 		cons = RING_CMP(raw_cons);
1942 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1943 
1944 		if (!TX_CMP_VALID(txcmp, raw_cons))
1945 			break;
1946 
1947 		/* The valid test of the entry must be done first before
1948 		 * reading any further.
1949 		 */
1950 		dma_rmb();
1951 		cpr->had_work_done = 1;
1952 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1953 			tx_pkts++;
1954 			/* return full budget so NAPI will complete. */
1955 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
1956 				rx_pkts = budget;
1957 				raw_cons = NEXT_RAW_CMP(raw_cons);
1958 				if (budget)
1959 					cpr->has_more_work = 1;
1960 				break;
1961 			}
1962 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1963 			if (likely(budget))
1964 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
1965 			else
1966 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
1967 							   &event);
1968 			if (likely(rc >= 0))
1969 				rx_pkts += rc;
1970 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1971 			 * the NAPI budget.  Otherwise, we may potentially loop
1972 			 * here forever if we consistently cannot allocate
1973 			 * buffers.
1974 			 */
1975 			else if (rc == -ENOMEM && budget)
1976 				rx_pkts++;
1977 			else if (rc == -EBUSY)	/* partial completion */
1978 				break;
1979 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1980 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1981 				    (TX_CMP_TYPE(txcmp) ==
1982 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1983 				    (TX_CMP_TYPE(txcmp) ==
1984 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1985 			bnxt_hwrm_handler(bp, txcmp);
1986 		}
1987 		raw_cons = NEXT_RAW_CMP(raw_cons);
1988 
1989 		if (rx_pkts && rx_pkts == budget) {
1990 			cpr->has_more_work = 1;
1991 			break;
1992 		}
1993 	}
1994 
1995 	if (event & BNXT_REDIRECT_EVENT)
1996 		xdp_do_flush_map();
1997 
1998 	if (event & BNXT_TX_EVENT) {
1999 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2000 		u16 prod = txr->tx_prod;
2001 
2002 		/* Sync BD data before updating doorbell */
2003 		wmb();
2004 
2005 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2006 	}
2007 
2008 	cpr->cp_raw_cons = raw_cons;
2009 	bnapi->tx_pkts += tx_pkts;
2010 	bnapi->events |= event;
2011 	return rx_pkts;
2012 }
2013 
2014 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2015 {
2016 	if (bnapi->tx_pkts) {
2017 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2018 		bnapi->tx_pkts = 0;
2019 	}
2020 
2021 	if (bnapi->events & BNXT_RX_EVENT) {
2022 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2023 
2024 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2025 		if (bnapi->events & BNXT_AGG_EVENT)
2026 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2027 	}
2028 	bnapi->events = 0;
2029 }
2030 
2031 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2032 			  int budget)
2033 {
2034 	struct bnxt_napi *bnapi = cpr->bnapi;
2035 	int rx_pkts;
2036 
2037 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2038 
2039 	/* ACK completion ring before freeing tx ring and producing new
2040 	 * buffers in rx/agg rings to prevent overflowing the completion
2041 	 * ring.
2042 	 */
2043 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2044 
2045 	__bnxt_poll_work_done(bp, bnapi);
2046 	return rx_pkts;
2047 }
2048 
2049 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2050 {
2051 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2052 	struct bnxt *bp = bnapi->bp;
2053 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2054 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2055 	struct tx_cmp *txcmp;
2056 	struct rx_cmp_ext *rxcmp1;
2057 	u32 cp_cons, tmp_raw_cons;
2058 	u32 raw_cons = cpr->cp_raw_cons;
2059 	u32 rx_pkts = 0;
2060 	u8 event = 0;
2061 
2062 	while (1) {
2063 		int rc;
2064 
2065 		cp_cons = RING_CMP(raw_cons);
2066 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2067 
2068 		if (!TX_CMP_VALID(txcmp, raw_cons))
2069 			break;
2070 
2071 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2072 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2073 			cp_cons = RING_CMP(tmp_raw_cons);
2074 			rxcmp1 = (struct rx_cmp_ext *)
2075 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2076 
2077 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2078 				break;
2079 
2080 			/* force an error to recycle the buffer */
2081 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2082 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2083 
2084 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2085 			if (likely(rc == -EIO) && budget)
2086 				rx_pkts++;
2087 			else if (rc == -EBUSY)	/* partial completion */
2088 				break;
2089 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2090 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2091 			bnxt_hwrm_handler(bp, txcmp);
2092 		} else {
2093 			netdev_err(bp->dev,
2094 				   "Invalid completion received on special ring\n");
2095 		}
2096 		raw_cons = NEXT_RAW_CMP(raw_cons);
2097 
2098 		if (rx_pkts == budget)
2099 			break;
2100 	}
2101 
2102 	cpr->cp_raw_cons = raw_cons;
2103 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2104 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2105 
2106 	if (event & BNXT_AGG_EVENT)
2107 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2108 
2109 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2110 		napi_complete_done(napi, rx_pkts);
2111 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2112 	}
2113 	return rx_pkts;
2114 }
2115 
2116 static int bnxt_poll(struct napi_struct *napi, int budget)
2117 {
2118 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2119 	struct bnxt *bp = bnapi->bp;
2120 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2121 	int work_done = 0;
2122 
2123 	while (1) {
2124 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2125 
2126 		if (work_done >= budget) {
2127 			if (!budget)
2128 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2129 			break;
2130 		}
2131 
2132 		if (!bnxt_has_work(bp, cpr)) {
2133 			if (napi_complete_done(napi, work_done))
2134 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2135 			break;
2136 		}
2137 	}
2138 	if (bp->flags & BNXT_FLAG_DIM) {
2139 		struct dim_sample dim_sample;
2140 
2141 		dim_update_sample(cpr->event_ctr,
2142 				  cpr->rx_packets,
2143 				  cpr->rx_bytes,
2144 				  &dim_sample);
2145 		net_dim(&cpr->dim, dim_sample);
2146 	}
2147 	return work_done;
2148 }
2149 
2150 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2151 {
2152 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2153 	int i, work_done = 0;
2154 
2155 	for (i = 0; i < 2; i++) {
2156 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2157 
2158 		if (cpr2) {
2159 			work_done += __bnxt_poll_work(bp, cpr2,
2160 						      budget - work_done);
2161 			cpr->has_more_work |= cpr2->has_more_work;
2162 		}
2163 	}
2164 	return work_done;
2165 }
2166 
2167 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2168 				 u64 dbr_type, bool all)
2169 {
2170 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2171 	int i;
2172 
2173 	for (i = 0; i < 2; i++) {
2174 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2175 		struct bnxt_db_info *db;
2176 
2177 		if (cpr2 && (all || cpr2->had_work_done)) {
2178 			db = &cpr2->cp_db;
2179 			writeq(db->db_key64 | dbr_type |
2180 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2181 			cpr2->had_work_done = 0;
2182 		}
2183 	}
2184 	__bnxt_poll_work_done(bp, bnapi);
2185 }
2186 
2187 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2188 {
2189 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2190 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2191 	u32 raw_cons = cpr->cp_raw_cons;
2192 	struct bnxt *bp = bnapi->bp;
2193 	struct nqe_cn *nqcmp;
2194 	int work_done = 0;
2195 	u32 cons;
2196 
2197 	if (cpr->has_more_work) {
2198 		cpr->has_more_work = 0;
2199 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2200 		if (cpr->has_more_work) {
2201 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, false);
2202 			return work_done;
2203 		}
2204 		__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, true);
2205 		if (napi_complete_done(napi, work_done))
2206 			BNXT_DB_NQ_ARM_P5(&cpr->cp_db, cpr->cp_raw_cons);
2207 		return work_done;
2208 	}
2209 	while (1) {
2210 		cons = RING_CMP(raw_cons);
2211 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2212 
2213 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2214 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
2215 					     false);
2216 			cpr->cp_raw_cons = raw_cons;
2217 			if (napi_complete_done(napi, work_done))
2218 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2219 						  cpr->cp_raw_cons);
2220 			return work_done;
2221 		}
2222 
2223 		/* The valid test of the entry must be done first before
2224 		 * reading any further.
2225 		 */
2226 		dma_rmb();
2227 
2228 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2229 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2230 			struct bnxt_cp_ring_info *cpr2;
2231 
2232 			cpr2 = cpr->cp_ring_arr[idx];
2233 			work_done += __bnxt_poll_work(bp, cpr2,
2234 						      budget - work_done);
2235 			cpr->has_more_work = cpr2->has_more_work;
2236 		} else {
2237 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2238 		}
2239 		raw_cons = NEXT_RAW_CMP(raw_cons);
2240 		if (cpr->has_more_work)
2241 			break;
2242 	}
2243 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, true);
2244 	cpr->cp_raw_cons = raw_cons;
2245 	return work_done;
2246 }
2247 
2248 static void bnxt_free_tx_skbs(struct bnxt *bp)
2249 {
2250 	int i, max_idx;
2251 	struct pci_dev *pdev = bp->pdev;
2252 
2253 	if (!bp->tx_ring)
2254 		return;
2255 
2256 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2257 	for (i = 0; i < bp->tx_nr_rings; i++) {
2258 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2259 		int j;
2260 
2261 		for (j = 0; j < max_idx;) {
2262 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2263 			struct sk_buff *skb;
2264 			int k, last;
2265 
2266 			if (i < bp->tx_nr_rings_xdp &&
2267 			    tx_buf->action == XDP_REDIRECT) {
2268 				dma_unmap_single(&pdev->dev,
2269 					dma_unmap_addr(tx_buf, mapping),
2270 					dma_unmap_len(tx_buf, len),
2271 					PCI_DMA_TODEVICE);
2272 				xdp_return_frame(tx_buf->xdpf);
2273 				tx_buf->action = 0;
2274 				tx_buf->xdpf = NULL;
2275 				j++;
2276 				continue;
2277 			}
2278 
2279 			skb = tx_buf->skb;
2280 			if (!skb) {
2281 				j++;
2282 				continue;
2283 			}
2284 
2285 			tx_buf->skb = NULL;
2286 
2287 			if (tx_buf->is_push) {
2288 				dev_kfree_skb(skb);
2289 				j += 2;
2290 				continue;
2291 			}
2292 
2293 			dma_unmap_single(&pdev->dev,
2294 					 dma_unmap_addr(tx_buf, mapping),
2295 					 skb_headlen(skb),
2296 					 PCI_DMA_TODEVICE);
2297 
2298 			last = tx_buf->nr_frags;
2299 			j += 2;
2300 			for (k = 0; k < last; k++, j++) {
2301 				int ring_idx = j & bp->tx_ring_mask;
2302 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2303 
2304 				tx_buf = &txr->tx_buf_ring[ring_idx];
2305 				dma_unmap_page(
2306 					&pdev->dev,
2307 					dma_unmap_addr(tx_buf, mapping),
2308 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2309 			}
2310 			dev_kfree_skb(skb);
2311 		}
2312 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2313 	}
2314 }
2315 
2316 static void bnxt_free_rx_skbs(struct bnxt *bp)
2317 {
2318 	int i, max_idx, max_agg_idx;
2319 	struct pci_dev *pdev = bp->pdev;
2320 
2321 	if (!bp->rx_ring)
2322 		return;
2323 
2324 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2325 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2326 	for (i = 0; i < bp->rx_nr_rings; i++) {
2327 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2328 		int j;
2329 
2330 		if (rxr->rx_tpa) {
2331 			for (j = 0; j < MAX_TPA; j++) {
2332 				struct bnxt_tpa_info *tpa_info =
2333 							&rxr->rx_tpa[j];
2334 				u8 *data = tpa_info->data;
2335 
2336 				if (!data)
2337 					continue;
2338 
2339 				dma_unmap_single_attrs(&pdev->dev,
2340 						       tpa_info->mapping,
2341 						       bp->rx_buf_use_size,
2342 						       bp->rx_dir,
2343 						       DMA_ATTR_WEAK_ORDERING);
2344 
2345 				tpa_info->data = NULL;
2346 
2347 				kfree(data);
2348 			}
2349 		}
2350 
2351 		for (j = 0; j < max_idx; j++) {
2352 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2353 			dma_addr_t mapping = rx_buf->mapping;
2354 			void *data = rx_buf->data;
2355 
2356 			if (!data)
2357 				continue;
2358 
2359 			rx_buf->data = NULL;
2360 
2361 			if (BNXT_RX_PAGE_MODE(bp)) {
2362 				mapping -= bp->rx_dma_offset;
2363 				dma_unmap_page_attrs(&pdev->dev, mapping,
2364 						     PAGE_SIZE, bp->rx_dir,
2365 						     DMA_ATTR_WEAK_ORDERING);
2366 				page_pool_recycle_direct(rxr->page_pool, data);
2367 			} else {
2368 				dma_unmap_single_attrs(&pdev->dev, mapping,
2369 						       bp->rx_buf_use_size,
2370 						       bp->rx_dir,
2371 						       DMA_ATTR_WEAK_ORDERING);
2372 				kfree(data);
2373 			}
2374 		}
2375 
2376 		for (j = 0; j < max_agg_idx; j++) {
2377 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2378 				&rxr->rx_agg_ring[j];
2379 			struct page *page = rx_agg_buf->page;
2380 
2381 			if (!page)
2382 				continue;
2383 
2384 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2385 					     BNXT_RX_PAGE_SIZE,
2386 					     PCI_DMA_FROMDEVICE,
2387 					     DMA_ATTR_WEAK_ORDERING);
2388 
2389 			rx_agg_buf->page = NULL;
2390 			__clear_bit(j, rxr->rx_agg_bmap);
2391 
2392 			__free_page(page);
2393 		}
2394 		if (rxr->rx_page) {
2395 			__free_page(rxr->rx_page);
2396 			rxr->rx_page = NULL;
2397 		}
2398 	}
2399 }
2400 
2401 static void bnxt_free_skbs(struct bnxt *bp)
2402 {
2403 	bnxt_free_tx_skbs(bp);
2404 	bnxt_free_rx_skbs(bp);
2405 }
2406 
2407 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2408 {
2409 	struct pci_dev *pdev = bp->pdev;
2410 	int i;
2411 
2412 	for (i = 0; i < rmem->nr_pages; i++) {
2413 		if (!rmem->pg_arr[i])
2414 			continue;
2415 
2416 		dma_free_coherent(&pdev->dev, rmem->page_size,
2417 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2418 
2419 		rmem->pg_arr[i] = NULL;
2420 	}
2421 	if (rmem->pg_tbl) {
2422 		size_t pg_tbl_size = rmem->nr_pages * 8;
2423 
2424 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2425 			pg_tbl_size = rmem->page_size;
2426 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2427 				  rmem->pg_tbl, rmem->pg_tbl_map);
2428 		rmem->pg_tbl = NULL;
2429 	}
2430 	if (rmem->vmem_size && *rmem->vmem) {
2431 		vfree(*rmem->vmem);
2432 		*rmem->vmem = NULL;
2433 	}
2434 }
2435 
2436 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2437 {
2438 	struct pci_dev *pdev = bp->pdev;
2439 	u64 valid_bit = 0;
2440 	int i;
2441 
2442 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2443 		valid_bit = PTU_PTE_VALID;
2444 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2445 		size_t pg_tbl_size = rmem->nr_pages * 8;
2446 
2447 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2448 			pg_tbl_size = rmem->page_size;
2449 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2450 						  &rmem->pg_tbl_map,
2451 						  GFP_KERNEL);
2452 		if (!rmem->pg_tbl)
2453 			return -ENOMEM;
2454 	}
2455 
2456 	for (i = 0; i < rmem->nr_pages; i++) {
2457 		u64 extra_bits = valid_bit;
2458 
2459 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2460 						     rmem->page_size,
2461 						     &rmem->dma_arr[i],
2462 						     GFP_KERNEL);
2463 		if (!rmem->pg_arr[i])
2464 			return -ENOMEM;
2465 
2466 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2467 			if (i == rmem->nr_pages - 2 &&
2468 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2469 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2470 			else if (i == rmem->nr_pages - 1 &&
2471 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2472 				extra_bits |= PTU_PTE_LAST;
2473 			rmem->pg_tbl[i] =
2474 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2475 		}
2476 	}
2477 
2478 	if (rmem->vmem_size) {
2479 		*rmem->vmem = vzalloc(rmem->vmem_size);
2480 		if (!(*rmem->vmem))
2481 			return -ENOMEM;
2482 	}
2483 	return 0;
2484 }
2485 
2486 static void bnxt_free_rx_rings(struct bnxt *bp)
2487 {
2488 	int i;
2489 
2490 	if (!bp->rx_ring)
2491 		return;
2492 
2493 	for (i = 0; i < bp->rx_nr_rings; i++) {
2494 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2495 		struct bnxt_ring_struct *ring;
2496 
2497 		if (rxr->xdp_prog)
2498 			bpf_prog_put(rxr->xdp_prog);
2499 
2500 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2501 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2502 
2503 		page_pool_destroy(rxr->page_pool);
2504 		rxr->page_pool = NULL;
2505 
2506 		kfree(rxr->rx_tpa);
2507 		rxr->rx_tpa = NULL;
2508 
2509 		kfree(rxr->rx_agg_bmap);
2510 		rxr->rx_agg_bmap = NULL;
2511 
2512 		ring = &rxr->rx_ring_struct;
2513 		bnxt_free_ring(bp, &ring->ring_mem);
2514 
2515 		ring = &rxr->rx_agg_ring_struct;
2516 		bnxt_free_ring(bp, &ring->ring_mem);
2517 	}
2518 }
2519 
2520 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2521 				   struct bnxt_rx_ring_info *rxr)
2522 {
2523 	struct page_pool_params pp = { 0 };
2524 
2525 	pp.pool_size = bp->rx_ring_size;
2526 	pp.nid = dev_to_node(&bp->pdev->dev);
2527 	pp.dev = &bp->pdev->dev;
2528 	pp.dma_dir = DMA_BIDIRECTIONAL;
2529 
2530 	rxr->page_pool = page_pool_create(&pp);
2531 	if (IS_ERR(rxr->page_pool)) {
2532 		int err = PTR_ERR(rxr->page_pool);
2533 
2534 		rxr->page_pool = NULL;
2535 		return err;
2536 	}
2537 	return 0;
2538 }
2539 
2540 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2541 {
2542 	int i, rc, agg_rings = 0, tpa_rings = 0;
2543 
2544 	if (!bp->rx_ring)
2545 		return -ENOMEM;
2546 
2547 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2548 		agg_rings = 1;
2549 
2550 	if (bp->flags & BNXT_FLAG_TPA)
2551 		tpa_rings = 1;
2552 
2553 	for (i = 0; i < bp->rx_nr_rings; i++) {
2554 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2555 		struct bnxt_ring_struct *ring;
2556 
2557 		ring = &rxr->rx_ring_struct;
2558 
2559 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
2560 		if (rc)
2561 			return rc;
2562 
2563 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2564 		if (rc < 0)
2565 			return rc;
2566 
2567 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2568 						MEM_TYPE_PAGE_POOL,
2569 						rxr->page_pool);
2570 		if (rc) {
2571 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2572 			return rc;
2573 		}
2574 
2575 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2576 		if (rc)
2577 			return rc;
2578 
2579 		ring->grp_idx = i;
2580 		if (agg_rings) {
2581 			u16 mem_size;
2582 
2583 			ring = &rxr->rx_agg_ring_struct;
2584 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2585 			if (rc)
2586 				return rc;
2587 
2588 			ring->grp_idx = i;
2589 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2590 			mem_size = rxr->rx_agg_bmap_size / 8;
2591 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2592 			if (!rxr->rx_agg_bmap)
2593 				return -ENOMEM;
2594 
2595 			if (tpa_rings) {
2596 				rxr->rx_tpa = kcalloc(MAX_TPA,
2597 						sizeof(struct bnxt_tpa_info),
2598 						GFP_KERNEL);
2599 				if (!rxr->rx_tpa)
2600 					return -ENOMEM;
2601 			}
2602 		}
2603 	}
2604 	return 0;
2605 }
2606 
2607 static void bnxt_free_tx_rings(struct bnxt *bp)
2608 {
2609 	int i;
2610 	struct pci_dev *pdev = bp->pdev;
2611 
2612 	if (!bp->tx_ring)
2613 		return;
2614 
2615 	for (i = 0; i < bp->tx_nr_rings; i++) {
2616 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2617 		struct bnxt_ring_struct *ring;
2618 
2619 		if (txr->tx_push) {
2620 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2621 					  txr->tx_push, txr->tx_push_mapping);
2622 			txr->tx_push = NULL;
2623 		}
2624 
2625 		ring = &txr->tx_ring_struct;
2626 
2627 		bnxt_free_ring(bp, &ring->ring_mem);
2628 	}
2629 }
2630 
2631 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2632 {
2633 	int i, j, rc;
2634 	struct pci_dev *pdev = bp->pdev;
2635 
2636 	bp->tx_push_size = 0;
2637 	if (bp->tx_push_thresh) {
2638 		int push_size;
2639 
2640 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2641 					bp->tx_push_thresh);
2642 
2643 		if (push_size > 256) {
2644 			push_size = 0;
2645 			bp->tx_push_thresh = 0;
2646 		}
2647 
2648 		bp->tx_push_size = push_size;
2649 	}
2650 
2651 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2652 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2653 		struct bnxt_ring_struct *ring;
2654 		u8 qidx;
2655 
2656 		ring = &txr->tx_ring_struct;
2657 
2658 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2659 		if (rc)
2660 			return rc;
2661 
2662 		ring->grp_idx = txr->bnapi->index;
2663 		if (bp->tx_push_size) {
2664 			dma_addr_t mapping;
2665 
2666 			/* One pre-allocated DMA buffer to backup
2667 			 * TX push operation
2668 			 */
2669 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2670 						bp->tx_push_size,
2671 						&txr->tx_push_mapping,
2672 						GFP_KERNEL);
2673 
2674 			if (!txr->tx_push)
2675 				return -ENOMEM;
2676 
2677 			mapping = txr->tx_push_mapping +
2678 				sizeof(struct tx_push_bd);
2679 			txr->data_mapping = cpu_to_le64(mapping);
2680 
2681 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2682 		}
2683 		qidx = bp->tc_to_qidx[j];
2684 		ring->queue_id = bp->q_info[qidx].queue_id;
2685 		if (i < bp->tx_nr_rings_xdp)
2686 			continue;
2687 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2688 			j++;
2689 	}
2690 	return 0;
2691 }
2692 
2693 static void bnxt_free_cp_rings(struct bnxt *bp)
2694 {
2695 	int i;
2696 
2697 	if (!bp->bnapi)
2698 		return;
2699 
2700 	for (i = 0; i < bp->cp_nr_rings; i++) {
2701 		struct bnxt_napi *bnapi = bp->bnapi[i];
2702 		struct bnxt_cp_ring_info *cpr;
2703 		struct bnxt_ring_struct *ring;
2704 		int j;
2705 
2706 		if (!bnapi)
2707 			continue;
2708 
2709 		cpr = &bnapi->cp_ring;
2710 		ring = &cpr->cp_ring_struct;
2711 
2712 		bnxt_free_ring(bp, &ring->ring_mem);
2713 
2714 		for (j = 0; j < 2; j++) {
2715 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2716 
2717 			if (cpr2) {
2718 				ring = &cpr2->cp_ring_struct;
2719 				bnxt_free_ring(bp, &ring->ring_mem);
2720 				kfree(cpr2);
2721 				cpr->cp_ring_arr[j] = NULL;
2722 			}
2723 		}
2724 	}
2725 }
2726 
2727 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2728 {
2729 	struct bnxt_ring_mem_info *rmem;
2730 	struct bnxt_ring_struct *ring;
2731 	struct bnxt_cp_ring_info *cpr;
2732 	int rc;
2733 
2734 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
2735 	if (!cpr)
2736 		return NULL;
2737 
2738 	ring = &cpr->cp_ring_struct;
2739 	rmem = &ring->ring_mem;
2740 	rmem->nr_pages = bp->cp_nr_pages;
2741 	rmem->page_size = HW_CMPD_RING_SIZE;
2742 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
2743 	rmem->dma_arr = cpr->cp_desc_mapping;
2744 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
2745 	rc = bnxt_alloc_ring(bp, rmem);
2746 	if (rc) {
2747 		bnxt_free_ring(bp, rmem);
2748 		kfree(cpr);
2749 		cpr = NULL;
2750 	}
2751 	return cpr;
2752 }
2753 
2754 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2755 {
2756 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
2757 	int i, rc, ulp_base_vec, ulp_msix;
2758 
2759 	ulp_msix = bnxt_get_ulp_msix_num(bp);
2760 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2761 	for (i = 0; i < bp->cp_nr_rings; i++) {
2762 		struct bnxt_napi *bnapi = bp->bnapi[i];
2763 		struct bnxt_cp_ring_info *cpr;
2764 		struct bnxt_ring_struct *ring;
2765 
2766 		if (!bnapi)
2767 			continue;
2768 
2769 		cpr = &bnapi->cp_ring;
2770 		cpr->bnapi = bnapi;
2771 		ring = &cpr->cp_ring_struct;
2772 
2773 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2774 		if (rc)
2775 			return rc;
2776 
2777 		if (ulp_msix && i >= ulp_base_vec)
2778 			ring->map_idx = i + ulp_msix;
2779 		else
2780 			ring->map_idx = i;
2781 
2782 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2783 			continue;
2784 
2785 		if (i < bp->rx_nr_rings) {
2786 			struct bnxt_cp_ring_info *cpr2 =
2787 				bnxt_alloc_cp_sub_ring(bp);
2788 
2789 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
2790 			if (!cpr2)
2791 				return -ENOMEM;
2792 			cpr2->bnapi = bnapi;
2793 		}
2794 		if ((sh && i < bp->tx_nr_rings) ||
2795 		    (!sh && i >= bp->rx_nr_rings)) {
2796 			struct bnxt_cp_ring_info *cpr2 =
2797 				bnxt_alloc_cp_sub_ring(bp);
2798 
2799 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
2800 			if (!cpr2)
2801 				return -ENOMEM;
2802 			cpr2->bnapi = bnapi;
2803 		}
2804 	}
2805 	return 0;
2806 }
2807 
2808 static void bnxt_init_ring_struct(struct bnxt *bp)
2809 {
2810 	int i;
2811 
2812 	for (i = 0; i < bp->cp_nr_rings; i++) {
2813 		struct bnxt_napi *bnapi = bp->bnapi[i];
2814 		struct bnxt_ring_mem_info *rmem;
2815 		struct bnxt_cp_ring_info *cpr;
2816 		struct bnxt_rx_ring_info *rxr;
2817 		struct bnxt_tx_ring_info *txr;
2818 		struct bnxt_ring_struct *ring;
2819 
2820 		if (!bnapi)
2821 			continue;
2822 
2823 		cpr = &bnapi->cp_ring;
2824 		ring = &cpr->cp_ring_struct;
2825 		rmem = &ring->ring_mem;
2826 		rmem->nr_pages = bp->cp_nr_pages;
2827 		rmem->page_size = HW_CMPD_RING_SIZE;
2828 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
2829 		rmem->dma_arr = cpr->cp_desc_mapping;
2830 		rmem->vmem_size = 0;
2831 
2832 		rxr = bnapi->rx_ring;
2833 		if (!rxr)
2834 			goto skip_rx;
2835 
2836 		ring = &rxr->rx_ring_struct;
2837 		rmem = &ring->ring_mem;
2838 		rmem->nr_pages = bp->rx_nr_pages;
2839 		rmem->page_size = HW_RXBD_RING_SIZE;
2840 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
2841 		rmem->dma_arr = rxr->rx_desc_mapping;
2842 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2843 		rmem->vmem = (void **)&rxr->rx_buf_ring;
2844 
2845 		ring = &rxr->rx_agg_ring_struct;
2846 		rmem = &ring->ring_mem;
2847 		rmem->nr_pages = bp->rx_agg_nr_pages;
2848 		rmem->page_size = HW_RXBD_RING_SIZE;
2849 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
2850 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
2851 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2852 		rmem->vmem = (void **)&rxr->rx_agg_ring;
2853 
2854 skip_rx:
2855 		txr = bnapi->tx_ring;
2856 		if (!txr)
2857 			continue;
2858 
2859 		ring = &txr->tx_ring_struct;
2860 		rmem = &ring->ring_mem;
2861 		rmem->nr_pages = bp->tx_nr_pages;
2862 		rmem->page_size = HW_RXBD_RING_SIZE;
2863 		rmem->pg_arr = (void **)txr->tx_desc_ring;
2864 		rmem->dma_arr = txr->tx_desc_mapping;
2865 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2866 		rmem->vmem = (void **)&txr->tx_buf_ring;
2867 	}
2868 }
2869 
2870 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2871 {
2872 	int i;
2873 	u32 prod;
2874 	struct rx_bd **rx_buf_ring;
2875 
2876 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
2877 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
2878 		int j;
2879 		struct rx_bd *rxbd;
2880 
2881 		rxbd = rx_buf_ring[i];
2882 		if (!rxbd)
2883 			continue;
2884 
2885 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2886 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2887 			rxbd->rx_bd_opaque = prod;
2888 		}
2889 	}
2890 }
2891 
2892 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2893 {
2894 	struct net_device *dev = bp->dev;
2895 	struct bnxt_rx_ring_info *rxr;
2896 	struct bnxt_ring_struct *ring;
2897 	u32 prod, type;
2898 	int i;
2899 
2900 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2901 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2902 
2903 	if (NET_IP_ALIGN == 2)
2904 		type |= RX_BD_FLAGS_SOP;
2905 
2906 	rxr = &bp->rx_ring[ring_nr];
2907 	ring = &rxr->rx_ring_struct;
2908 	bnxt_init_rxbd_pages(ring, type);
2909 
2910 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2911 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2912 		if (IS_ERR(rxr->xdp_prog)) {
2913 			int rc = PTR_ERR(rxr->xdp_prog);
2914 
2915 			rxr->xdp_prog = NULL;
2916 			return rc;
2917 		}
2918 	}
2919 	prod = rxr->rx_prod;
2920 	for (i = 0; i < bp->rx_ring_size; i++) {
2921 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2922 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2923 				    ring_nr, i, bp->rx_ring_size);
2924 			break;
2925 		}
2926 		prod = NEXT_RX(prod);
2927 	}
2928 	rxr->rx_prod = prod;
2929 	ring->fw_ring_id = INVALID_HW_RING_ID;
2930 
2931 	ring = &rxr->rx_agg_ring_struct;
2932 	ring->fw_ring_id = INVALID_HW_RING_ID;
2933 
2934 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2935 		return 0;
2936 
2937 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2938 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2939 
2940 	bnxt_init_rxbd_pages(ring, type);
2941 
2942 	prod = rxr->rx_agg_prod;
2943 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2944 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2945 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2946 				    ring_nr, i, bp->rx_ring_size);
2947 			break;
2948 		}
2949 		prod = NEXT_RX_AGG(prod);
2950 	}
2951 	rxr->rx_agg_prod = prod;
2952 
2953 	if (bp->flags & BNXT_FLAG_TPA) {
2954 		if (rxr->rx_tpa) {
2955 			u8 *data;
2956 			dma_addr_t mapping;
2957 
2958 			for (i = 0; i < MAX_TPA; i++) {
2959 				data = __bnxt_alloc_rx_data(bp, &mapping,
2960 							    GFP_KERNEL);
2961 				if (!data)
2962 					return -ENOMEM;
2963 
2964 				rxr->rx_tpa[i].data = data;
2965 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2966 				rxr->rx_tpa[i].mapping = mapping;
2967 			}
2968 		} else {
2969 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2970 			return -ENOMEM;
2971 		}
2972 	}
2973 
2974 	return 0;
2975 }
2976 
2977 static void bnxt_init_cp_rings(struct bnxt *bp)
2978 {
2979 	int i, j;
2980 
2981 	for (i = 0; i < bp->cp_nr_rings; i++) {
2982 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2983 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2984 
2985 		ring->fw_ring_id = INVALID_HW_RING_ID;
2986 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2987 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2988 		for (j = 0; j < 2; j++) {
2989 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2990 
2991 			if (!cpr2)
2992 				continue;
2993 
2994 			ring = &cpr2->cp_ring_struct;
2995 			ring->fw_ring_id = INVALID_HW_RING_ID;
2996 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2997 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2998 		}
2999 	}
3000 }
3001 
3002 static int bnxt_init_rx_rings(struct bnxt *bp)
3003 {
3004 	int i, rc = 0;
3005 
3006 	if (BNXT_RX_PAGE_MODE(bp)) {
3007 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3008 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3009 	} else {
3010 		bp->rx_offset = BNXT_RX_OFFSET;
3011 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3012 	}
3013 
3014 	for (i = 0; i < bp->rx_nr_rings; i++) {
3015 		rc = bnxt_init_one_rx_ring(bp, i);
3016 		if (rc)
3017 			break;
3018 	}
3019 
3020 	return rc;
3021 }
3022 
3023 static int bnxt_init_tx_rings(struct bnxt *bp)
3024 {
3025 	u16 i;
3026 
3027 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3028 				   MAX_SKB_FRAGS + 1);
3029 
3030 	for (i = 0; i < bp->tx_nr_rings; i++) {
3031 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3032 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3033 
3034 		ring->fw_ring_id = INVALID_HW_RING_ID;
3035 	}
3036 
3037 	return 0;
3038 }
3039 
3040 static void bnxt_free_ring_grps(struct bnxt *bp)
3041 {
3042 	kfree(bp->grp_info);
3043 	bp->grp_info = NULL;
3044 }
3045 
3046 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3047 {
3048 	int i;
3049 
3050 	if (irq_re_init) {
3051 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3052 				       sizeof(struct bnxt_ring_grp_info),
3053 				       GFP_KERNEL);
3054 		if (!bp->grp_info)
3055 			return -ENOMEM;
3056 	}
3057 	for (i = 0; i < bp->cp_nr_rings; i++) {
3058 		if (irq_re_init)
3059 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3060 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3061 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3062 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3063 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3064 	}
3065 	return 0;
3066 }
3067 
3068 static void bnxt_free_vnics(struct bnxt *bp)
3069 {
3070 	kfree(bp->vnic_info);
3071 	bp->vnic_info = NULL;
3072 	bp->nr_vnics = 0;
3073 }
3074 
3075 static int bnxt_alloc_vnics(struct bnxt *bp)
3076 {
3077 	int num_vnics = 1;
3078 
3079 #ifdef CONFIG_RFS_ACCEL
3080 	if (bp->flags & BNXT_FLAG_RFS)
3081 		num_vnics += bp->rx_nr_rings;
3082 #endif
3083 
3084 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3085 		num_vnics++;
3086 
3087 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3088 				GFP_KERNEL);
3089 	if (!bp->vnic_info)
3090 		return -ENOMEM;
3091 
3092 	bp->nr_vnics = num_vnics;
3093 	return 0;
3094 }
3095 
3096 static void bnxt_init_vnics(struct bnxt *bp)
3097 {
3098 	int i;
3099 
3100 	for (i = 0; i < bp->nr_vnics; i++) {
3101 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3102 		int j;
3103 
3104 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3105 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3106 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3107 
3108 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3109 
3110 		if (bp->vnic_info[i].rss_hash_key) {
3111 			if (i == 0)
3112 				prandom_bytes(vnic->rss_hash_key,
3113 					      HW_HASH_KEY_SIZE);
3114 			else
3115 				memcpy(vnic->rss_hash_key,
3116 				       bp->vnic_info[0].rss_hash_key,
3117 				       HW_HASH_KEY_SIZE);
3118 		}
3119 	}
3120 }
3121 
3122 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3123 {
3124 	int pages;
3125 
3126 	pages = ring_size / desc_per_pg;
3127 
3128 	if (!pages)
3129 		return 1;
3130 
3131 	pages++;
3132 
3133 	while (pages & (pages - 1))
3134 		pages++;
3135 
3136 	return pages;
3137 }
3138 
3139 void bnxt_set_tpa_flags(struct bnxt *bp)
3140 {
3141 	bp->flags &= ~BNXT_FLAG_TPA;
3142 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3143 		return;
3144 	if (bp->dev->features & NETIF_F_LRO)
3145 		bp->flags |= BNXT_FLAG_LRO;
3146 	else if (bp->dev->features & NETIF_F_GRO_HW)
3147 		bp->flags |= BNXT_FLAG_GRO;
3148 }
3149 
3150 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3151  * be set on entry.
3152  */
3153 void bnxt_set_ring_params(struct bnxt *bp)
3154 {
3155 	u32 ring_size, rx_size, rx_space;
3156 	u32 agg_factor = 0, agg_ring_size = 0;
3157 
3158 	/* 8 for CRC and VLAN */
3159 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3160 
3161 	rx_space = rx_size + NET_SKB_PAD +
3162 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3163 
3164 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3165 	ring_size = bp->rx_ring_size;
3166 	bp->rx_agg_ring_size = 0;
3167 	bp->rx_agg_nr_pages = 0;
3168 
3169 	if (bp->flags & BNXT_FLAG_TPA)
3170 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3171 
3172 	bp->flags &= ~BNXT_FLAG_JUMBO;
3173 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3174 		u32 jumbo_factor;
3175 
3176 		bp->flags |= BNXT_FLAG_JUMBO;
3177 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3178 		if (jumbo_factor > agg_factor)
3179 			agg_factor = jumbo_factor;
3180 	}
3181 	agg_ring_size = ring_size * agg_factor;
3182 
3183 	if (agg_ring_size) {
3184 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3185 							RX_DESC_CNT);
3186 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3187 			u32 tmp = agg_ring_size;
3188 
3189 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3190 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3191 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3192 				    tmp, agg_ring_size);
3193 		}
3194 		bp->rx_agg_ring_size = agg_ring_size;
3195 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3196 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3197 		rx_space = rx_size + NET_SKB_PAD +
3198 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3199 	}
3200 
3201 	bp->rx_buf_use_size = rx_size;
3202 	bp->rx_buf_size = rx_space;
3203 
3204 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3205 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3206 
3207 	ring_size = bp->tx_ring_size;
3208 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3209 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3210 
3211 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
3212 	bp->cp_ring_size = ring_size;
3213 
3214 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3215 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3216 		bp->cp_nr_pages = MAX_CP_PAGES;
3217 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3218 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3219 			    ring_size, bp->cp_ring_size);
3220 	}
3221 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3222 	bp->cp_ring_mask = bp->cp_bit - 1;
3223 }
3224 
3225 /* Changing allocation mode of RX rings.
3226  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3227  */
3228 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3229 {
3230 	if (page_mode) {
3231 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3232 			return -EOPNOTSUPP;
3233 		bp->dev->max_mtu =
3234 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3235 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3236 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3237 		bp->rx_dir = DMA_BIDIRECTIONAL;
3238 		bp->rx_skb_func = bnxt_rx_page_skb;
3239 		/* Disable LRO or GRO_HW */
3240 		netdev_update_features(bp->dev);
3241 	} else {
3242 		bp->dev->max_mtu = bp->max_mtu;
3243 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3244 		bp->rx_dir = DMA_FROM_DEVICE;
3245 		bp->rx_skb_func = bnxt_rx_skb;
3246 	}
3247 	return 0;
3248 }
3249 
3250 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3251 {
3252 	int i;
3253 	struct bnxt_vnic_info *vnic;
3254 	struct pci_dev *pdev = bp->pdev;
3255 
3256 	if (!bp->vnic_info)
3257 		return;
3258 
3259 	for (i = 0; i < bp->nr_vnics; i++) {
3260 		vnic = &bp->vnic_info[i];
3261 
3262 		kfree(vnic->fw_grp_ids);
3263 		vnic->fw_grp_ids = NULL;
3264 
3265 		kfree(vnic->uc_list);
3266 		vnic->uc_list = NULL;
3267 
3268 		if (vnic->mc_list) {
3269 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3270 					  vnic->mc_list, vnic->mc_list_mapping);
3271 			vnic->mc_list = NULL;
3272 		}
3273 
3274 		if (vnic->rss_table) {
3275 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
3276 					  vnic->rss_table,
3277 					  vnic->rss_table_dma_addr);
3278 			vnic->rss_table = NULL;
3279 		}
3280 
3281 		vnic->rss_hash_key = NULL;
3282 		vnic->flags = 0;
3283 	}
3284 }
3285 
3286 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3287 {
3288 	int i, rc = 0, size;
3289 	struct bnxt_vnic_info *vnic;
3290 	struct pci_dev *pdev = bp->pdev;
3291 	int max_rings;
3292 
3293 	for (i = 0; i < bp->nr_vnics; i++) {
3294 		vnic = &bp->vnic_info[i];
3295 
3296 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3297 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3298 
3299 			if (mem_size > 0) {
3300 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3301 				if (!vnic->uc_list) {
3302 					rc = -ENOMEM;
3303 					goto out;
3304 				}
3305 			}
3306 		}
3307 
3308 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3309 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3310 			vnic->mc_list =
3311 				dma_alloc_coherent(&pdev->dev,
3312 						   vnic->mc_list_size,
3313 						   &vnic->mc_list_mapping,
3314 						   GFP_KERNEL);
3315 			if (!vnic->mc_list) {
3316 				rc = -ENOMEM;
3317 				goto out;
3318 			}
3319 		}
3320 
3321 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3322 			goto vnic_skip_grps;
3323 
3324 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3325 			max_rings = bp->rx_nr_rings;
3326 		else
3327 			max_rings = 1;
3328 
3329 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3330 		if (!vnic->fw_grp_ids) {
3331 			rc = -ENOMEM;
3332 			goto out;
3333 		}
3334 vnic_skip_grps:
3335 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3336 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3337 			continue;
3338 
3339 		/* Allocate rss table and hash key */
3340 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3341 						     &vnic->rss_table_dma_addr,
3342 						     GFP_KERNEL);
3343 		if (!vnic->rss_table) {
3344 			rc = -ENOMEM;
3345 			goto out;
3346 		}
3347 
3348 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3349 
3350 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3351 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3352 	}
3353 	return 0;
3354 
3355 out:
3356 	return rc;
3357 }
3358 
3359 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3360 {
3361 	struct pci_dev *pdev = bp->pdev;
3362 
3363 	if (bp->hwrm_cmd_resp_addr) {
3364 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3365 				  bp->hwrm_cmd_resp_dma_addr);
3366 		bp->hwrm_cmd_resp_addr = NULL;
3367 	}
3368 
3369 	if (bp->hwrm_cmd_kong_resp_addr) {
3370 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3371 				  bp->hwrm_cmd_kong_resp_addr,
3372 				  bp->hwrm_cmd_kong_resp_dma_addr);
3373 		bp->hwrm_cmd_kong_resp_addr = NULL;
3374 	}
3375 }
3376 
3377 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3378 {
3379 	struct pci_dev *pdev = bp->pdev;
3380 
3381 	bp->hwrm_cmd_kong_resp_addr =
3382 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3383 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3384 				   GFP_KERNEL);
3385 	if (!bp->hwrm_cmd_kong_resp_addr)
3386 		return -ENOMEM;
3387 
3388 	return 0;
3389 }
3390 
3391 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3392 {
3393 	struct pci_dev *pdev = bp->pdev;
3394 
3395 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3396 						   &bp->hwrm_cmd_resp_dma_addr,
3397 						   GFP_KERNEL);
3398 	if (!bp->hwrm_cmd_resp_addr)
3399 		return -ENOMEM;
3400 
3401 	return 0;
3402 }
3403 
3404 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3405 {
3406 	if (bp->hwrm_short_cmd_req_addr) {
3407 		struct pci_dev *pdev = bp->pdev;
3408 
3409 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3410 				  bp->hwrm_short_cmd_req_addr,
3411 				  bp->hwrm_short_cmd_req_dma_addr);
3412 		bp->hwrm_short_cmd_req_addr = NULL;
3413 	}
3414 }
3415 
3416 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3417 {
3418 	struct pci_dev *pdev = bp->pdev;
3419 
3420 	bp->hwrm_short_cmd_req_addr =
3421 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3422 				   &bp->hwrm_short_cmd_req_dma_addr,
3423 				   GFP_KERNEL);
3424 	if (!bp->hwrm_short_cmd_req_addr)
3425 		return -ENOMEM;
3426 
3427 	return 0;
3428 }
3429 
3430 static void bnxt_free_port_stats(struct bnxt *bp)
3431 {
3432 	struct pci_dev *pdev = bp->pdev;
3433 
3434 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3435 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3436 
3437 	if (bp->hw_rx_port_stats) {
3438 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3439 				  bp->hw_rx_port_stats,
3440 				  bp->hw_rx_port_stats_map);
3441 		bp->hw_rx_port_stats = NULL;
3442 	}
3443 
3444 	if (bp->hw_tx_port_stats_ext) {
3445 		dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3446 				  bp->hw_tx_port_stats_ext,
3447 				  bp->hw_tx_port_stats_ext_map);
3448 		bp->hw_tx_port_stats_ext = NULL;
3449 	}
3450 
3451 	if (bp->hw_rx_port_stats_ext) {
3452 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3453 				  bp->hw_rx_port_stats_ext,
3454 				  bp->hw_rx_port_stats_ext_map);
3455 		bp->hw_rx_port_stats_ext = NULL;
3456 	}
3457 
3458 	if (bp->hw_pcie_stats) {
3459 		dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3460 				  bp->hw_pcie_stats, bp->hw_pcie_stats_map);
3461 		bp->hw_pcie_stats = NULL;
3462 	}
3463 }
3464 
3465 static void bnxt_free_ring_stats(struct bnxt *bp)
3466 {
3467 	struct pci_dev *pdev = bp->pdev;
3468 	int size, i;
3469 
3470 	if (!bp->bnapi)
3471 		return;
3472 
3473 	size = sizeof(struct ctx_hw_stats);
3474 
3475 	for (i = 0; i < bp->cp_nr_rings; i++) {
3476 		struct bnxt_napi *bnapi = bp->bnapi[i];
3477 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3478 
3479 		if (cpr->hw_stats) {
3480 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3481 					  cpr->hw_stats_map);
3482 			cpr->hw_stats = NULL;
3483 		}
3484 	}
3485 }
3486 
3487 static int bnxt_alloc_stats(struct bnxt *bp)
3488 {
3489 	u32 size, i;
3490 	struct pci_dev *pdev = bp->pdev;
3491 
3492 	size = sizeof(struct ctx_hw_stats);
3493 
3494 	for (i = 0; i < bp->cp_nr_rings; i++) {
3495 		struct bnxt_napi *bnapi = bp->bnapi[i];
3496 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3497 
3498 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3499 						   &cpr->hw_stats_map,
3500 						   GFP_KERNEL);
3501 		if (!cpr->hw_stats)
3502 			return -ENOMEM;
3503 
3504 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3505 	}
3506 
3507 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3508 		return 0;
3509 
3510 	if (bp->hw_rx_port_stats)
3511 		goto alloc_ext_stats;
3512 
3513 	bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3514 				 sizeof(struct tx_port_stats) + 1024;
3515 
3516 	bp->hw_rx_port_stats =
3517 		dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3518 				   &bp->hw_rx_port_stats_map,
3519 				   GFP_KERNEL);
3520 	if (!bp->hw_rx_port_stats)
3521 		return -ENOMEM;
3522 
3523 	bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512;
3524 	bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3525 				   sizeof(struct rx_port_stats) + 512;
3526 	bp->flags |= BNXT_FLAG_PORT_STATS;
3527 
3528 alloc_ext_stats:
3529 	/* Display extended statistics only if FW supports it */
3530 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3531 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3532 			return 0;
3533 
3534 	if (bp->hw_rx_port_stats_ext)
3535 		goto alloc_tx_ext_stats;
3536 
3537 	bp->hw_rx_port_stats_ext =
3538 		dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3539 				   &bp->hw_rx_port_stats_ext_map, GFP_KERNEL);
3540 	if (!bp->hw_rx_port_stats_ext)
3541 		return 0;
3542 
3543 alloc_tx_ext_stats:
3544 	if (bp->hw_tx_port_stats_ext)
3545 		goto alloc_pcie_stats;
3546 
3547 	if (bp->hwrm_spec_code >= 0x10902 ||
3548 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3549 		bp->hw_tx_port_stats_ext =
3550 			dma_alloc_coherent(&pdev->dev,
3551 					   sizeof(struct tx_port_stats_ext),
3552 					   &bp->hw_tx_port_stats_ext_map,
3553 					   GFP_KERNEL);
3554 	}
3555 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3556 
3557 alloc_pcie_stats:
3558 	if (bp->hw_pcie_stats ||
3559 	    !(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED))
3560 		return 0;
3561 
3562 	bp->hw_pcie_stats =
3563 		dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3564 				   &bp->hw_pcie_stats_map, GFP_KERNEL);
3565 	if (!bp->hw_pcie_stats)
3566 		return 0;
3567 
3568 	bp->flags |= BNXT_FLAG_PCIE_STATS;
3569 	return 0;
3570 }
3571 
3572 static void bnxt_clear_ring_indices(struct bnxt *bp)
3573 {
3574 	int i;
3575 
3576 	if (!bp->bnapi)
3577 		return;
3578 
3579 	for (i = 0; i < bp->cp_nr_rings; i++) {
3580 		struct bnxt_napi *bnapi = bp->bnapi[i];
3581 		struct bnxt_cp_ring_info *cpr;
3582 		struct bnxt_rx_ring_info *rxr;
3583 		struct bnxt_tx_ring_info *txr;
3584 
3585 		if (!bnapi)
3586 			continue;
3587 
3588 		cpr = &bnapi->cp_ring;
3589 		cpr->cp_raw_cons = 0;
3590 
3591 		txr = bnapi->tx_ring;
3592 		if (txr) {
3593 			txr->tx_prod = 0;
3594 			txr->tx_cons = 0;
3595 		}
3596 
3597 		rxr = bnapi->rx_ring;
3598 		if (rxr) {
3599 			rxr->rx_prod = 0;
3600 			rxr->rx_agg_prod = 0;
3601 			rxr->rx_sw_agg_prod = 0;
3602 			rxr->rx_next_cons = 0;
3603 		}
3604 	}
3605 }
3606 
3607 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3608 {
3609 #ifdef CONFIG_RFS_ACCEL
3610 	int i;
3611 
3612 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3613 	 * safe to delete the hash table.
3614 	 */
3615 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3616 		struct hlist_head *head;
3617 		struct hlist_node *tmp;
3618 		struct bnxt_ntuple_filter *fltr;
3619 
3620 		head = &bp->ntp_fltr_hash_tbl[i];
3621 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3622 			hlist_del(&fltr->hash);
3623 			kfree(fltr);
3624 		}
3625 	}
3626 	if (irq_reinit) {
3627 		kfree(bp->ntp_fltr_bmap);
3628 		bp->ntp_fltr_bmap = NULL;
3629 	}
3630 	bp->ntp_fltr_count = 0;
3631 #endif
3632 }
3633 
3634 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3635 {
3636 #ifdef CONFIG_RFS_ACCEL
3637 	int i, rc = 0;
3638 
3639 	if (!(bp->flags & BNXT_FLAG_RFS))
3640 		return 0;
3641 
3642 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3643 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3644 
3645 	bp->ntp_fltr_count = 0;
3646 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3647 				    sizeof(long),
3648 				    GFP_KERNEL);
3649 
3650 	if (!bp->ntp_fltr_bmap)
3651 		rc = -ENOMEM;
3652 
3653 	return rc;
3654 #else
3655 	return 0;
3656 #endif
3657 }
3658 
3659 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3660 {
3661 	bnxt_free_vnic_attributes(bp);
3662 	bnxt_free_tx_rings(bp);
3663 	bnxt_free_rx_rings(bp);
3664 	bnxt_free_cp_rings(bp);
3665 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3666 	if (irq_re_init) {
3667 		bnxt_free_ring_stats(bp);
3668 		bnxt_free_ring_grps(bp);
3669 		bnxt_free_vnics(bp);
3670 		kfree(bp->tx_ring_map);
3671 		bp->tx_ring_map = NULL;
3672 		kfree(bp->tx_ring);
3673 		bp->tx_ring = NULL;
3674 		kfree(bp->rx_ring);
3675 		bp->rx_ring = NULL;
3676 		kfree(bp->bnapi);
3677 		bp->bnapi = NULL;
3678 	} else {
3679 		bnxt_clear_ring_indices(bp);
3680 	}
3681 }
3682 
3683 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3684 {
3685 	int i, j, rc, size, arr_size;
3686 	void *bnapi;
3687 
3688 	if (irq_re_init) {
3689 		/* Allocate bnapi mem pointer array and mem block for
3690 		 * all queues
3691 		 */
3692 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3693 				bp->cp_nr_rings);
3694 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3695 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3696 		if (!bnapi)
3697 			return -ENOMEM;
3698 
3699 		bp->bnapi = bnapi;
3700 		bnapi += arr_size;
3701 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3702 			bp->bnapi[i] = bnapi;
3703 			bp->bnapi[i]->index = i;
3704 			bp->bnapi[i]->bp = bp;
3705 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3706 				struct bnxt_cp_ring_info *cpr =
3707 					&bp->bnapi[i]->cp_ring;
3708 
3709 				cpr->cp_ring_struct.ring_mem.flags =
3710 					BNXT_RMEM_RING_PTE_FLAG;
3711 			}
3712 		}
3713 
3714 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3715 				      sizeof(struct bnxt_rx_ring_info),
3716 				      GFP_KERNEL);
3717 		if (!bp->rx_ring)
3718 			return -ENOMEM;
3719 
3720 		for (i = 0; i < bp->rx_nr_rings; i++) {
3721 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3722 
3723 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3724 				rxr->rx_ring_struct.ring_mem.flags =
3725 					BNXT_RMEM_RING_PTE_FLAG;
3726 				rxr->rx_agg_ring_struct.ring_mem.flags =
3727 					BNXT_RMEM_RING_PTE_FLAG;
3728 			}
3729 			rxr->bnapi = bp->bnapi[i];
3730 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3731 		}
3732 
3733 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3734 				      sizeof(struct bnxt_tx_ring_info),
3735 				      GFP_KERNEL);
3736 		if (!bp->tx_ring)
3737 			return -ENOMEM;
3738 
3739 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3740 					  GFP_KERNEL);
3741 
3742 		if (!bp->tx_ring_map)
3743 			return -ENOMEM;
3744 
3745 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3746 			j = 0;
3747 		else
3748 			j = bp->rx_nr_rings;
3749 
3750 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3751 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3752 
3753 			if (bp->flags & BNXT_FLAG_CHIP_P5)
3754 				txr->tx_ring_struct.ring_mem.flags =
3755 					BNXT_RMEM_RING_PTE_FLAG;
3756 			txr->bnapi = bp->bnapi[j];
3757 			bp->bnapi[j]->tx_ring = txr;
3758 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3759 			if (i >= bp->tx_nr_rings_xdp) {
3760 				txr->txq_index = i - bp->tx_nr_rings_xdp;
3761 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3762 			} else {
3763 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3764 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3765 			}
3766 		}
3767 
3768 		rc = bnxt_alloc_stats(bp);
3769 		if (rc)
3770 			goto alloc_mem_err;
3771 
3772 		rc = bnxt_alloc_ntp_fltrs(bp);
3773 		if (rc)
3774 			goto alloc_mem_err;
3775 
3776 		rc = bnxt_alloc_vnics(bp);
3777 		if (rc)
3778 			goto alloc_mem_err;
3779 	}
3780 
3781 	bnxt_init_ring_struct(bp);
3782 
3783 	rc = bnxt_alloc_rx_rings(bp);
3784 	if (rc)
3785 		goto alloc_mem_err;
3786 
3787 	rc = bnxt_alloc_tx_rings(bp);
3788 	if (rc)
3789 		goto alloc_mem_err;
3790 
3791 	rc = bnxt_alloc_cp_rings(bp);
3792 	if (rc)
3793 		goto alloc_mem_err;
3794 
3795 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3796 				  BNXT_VNIC_UCAST_FLAG;
3797 	rc = bnxt_alloc_vnic_attributes(bp);
3798 	if (rc)
3799 		goto alloc_mem_err;
3800 	return 0;
3801 
3802 alloc_mem_err:
3803 	bnxt_free_mem(bp, true);
3804 	return rc;
3805 }
3806 
3807 static void bnxt_disable_int(struct bnxt *bp)
3808 {
3809 	int i;
3810 
3811 	if (!bp->bnapi)
3812 		return;
3813 
3814 	for (i = 0; i < bp->cp_nr_rings; i++) {
3815 		struct bnxt_napi *bnapi = bp->bnapi[i];
3816 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3817 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3818 
3819 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3820 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
3821 	}
3822 }
3823 
3824 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3825 {
3826 	struct bnxt_napi *bnapi = bp->bnapi[n];
3827 	struct bnxt_cp_ring_info *cpr;
3828 
3829 	cpr = &bnapi->cp_ring;
3830 	return cpr->cp_ring_struct.map_idx;
3831 }
3832 
3833 static void bnxt_disable_int_sync(struct bnxt *bp)
3834 {
3835 	int i;
3836 
3837 	atomic_inc(&bp->intr_sem);
3838 
3839 	bnxt_disable_int(bp);
3840 	for (i = 0; i < bp->cp_nr_rings; i++) {
3841 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3842 
3843 		synchronize_irq(bp->irq_tbl[map_idx].vector);
3844 	}
3845 }
3846 
3847 static void bnxt_enable_int(struct bnxt *bp)
3848 {
3849 	int i;
3850 
3851 	atomic_set(&bp->intr_sem, 0);
3852 	for (i = 0; i < bp->cp_nr_rings; i++) {
3853 		struct bnxt_napi *bnapi = bp->bnapi[i];
3854 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3855 
3856 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
3857 	}
3858 }
3859 
3860 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3861 			    u16 cmpl_ring, u16 target_id)
3862 {
3863 	struct input *req = request;
3864 
3865 	req->req_type = cpu_to_le16(req_type);
3866 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3867 	req->target_id = cpu_to_le16(target_id);
3868 	if (bnxt_kong_hwrm_message(bp, req))
3869 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
3870 	else
3871 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3872 }
3873 
3874 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3875 				 int timeout, bool silent)
3876 {
3877 	int i, intr_process, rc, tmo_count;
3878 	struct input *req = msg;
3879 	u32 *data = msg;
3880 	__le32 *resp_len;
3881 	u8 *valid;
3882 	u16 cp_ring_id, len = 0;
3883 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3884 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3885 	struct hwrm_short_input short_input = {0};
3886 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
3887 	u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
3888 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
3889 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
3890 
3891 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3892 		if (msg_len > bp->hwrm_max_ext_req_len ||
3893 		    !bp->hwrm_short_cmd_req_addr)
3894 			return -EINVAL;
3895 	}
3896 
3897 	if (bnxt_hwrm_kong_chnl(bp, req)) {
3898 		dst = BNXT_HWRM_CHNL_KONG;
3899 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
3900 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
3901 		resp = bp->hwrm_cmd_kong_resp_addr;
3902 		resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
3903 	}
3904 
3905 	memset(resp, 0, PAGE_SIZE);
3906 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3907 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3908 
3909 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
3910 	/* currently supports only one outstanding message */
3911 	if (intr_process)
3912 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3913 
3914 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
3915 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3916 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3917 		u16 max_msg_len;
3918 
3919 		/* Set boundary for maximum extended request length for short
3920 		 * cmd format. If passed up from device use the max supported
3921 		 * internal req length.
3922 		 */
3923 		max_msg_len = bp->hwrm_max_ext_req_len;
3924 
3925 		memcpy(short_cmd_req, req, msg_len);
3926 		if (msg_len < max_msg_len)
3927 			memset(short_cmd_req + msg_len, 0,
3928 			       max_msg_len - msg_len);
3929 
3930 		short_input.req_type = req->req_type;
3931 		short_input.signature =
3932 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3933 		short_input.size = cpu_to_le16(msg_len);
3934 		short_input.req_addr =
3935 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3936 
3937 		data = (u32 *)&short_input;
3938 		msg_len = sizeof(short_input);
3939 
3940 		/* Sync memory write before updating doorbell */
3941 		wmb();
3942 
3943 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3944 	}
3945 
3946 	/* Write request msg to hwrm channel */
3947 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
3948 
3949 	for (i = msg_len; i < max_req_len; i += 4)
3950 		writel(0, bp->bar0 + bar_offset + i);
3951 
3952 	/* Ring channel doorbell */
3953 	writel(1, bp->bar0 + doorbell_offset);
3954 
3955 	if (!timeout)
3956 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3957 	/* convert timeout to usec */
3958 	timeout *= 1000;
3959 
3960 	i = 0;
3961 	/* Short timeout for the first few iterations:
3962 	 * number of loops = number of loops for short timeout +
3963 	 * number of loops for standard timeout.
3964 	 */
3965 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3966 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3967 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3968 	resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
3969 
3970 	if (intr_process) {
3971 		u16 seq_id = bp->hwrm_intr_seq_id;
3972 
3973 		/* Wait until hwrm response cmpl interrupt is processed */
3974 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
3975 		       i++ < tmo_count) {
3976 			/* on first few passes, just barely sleep */
3977 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3978 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3979 					     HWRM_SHORT_MAX_TIMEOUT);
3980 			else
3981 				usleep_range(HWRM_MIN_TIMEOUT,
3982 					     HWRM_MAX_TIMEOUT);
3983 		}
3984 
3985 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
3986 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3987 				   le16_to_cpu(req->req_type));
3988 			return -1;
3989 		}
3990 		len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3991 		      HWRM_RESP_LEN_SFT;
3992 		valid = resp_addr + len - 1;
3993 	} else {
3994 		int j;
3995 
3996 		/* Check if response len is updated */
3997 		for (i = 0; i < tmo_count; i++) {
3998 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3999 			      HWRM_RESP_LEN_SFT;
4000 			if (len)
4001 				break;
4002 			/* on first few passes, just barely sleep */
4003 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4004 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4005 					     HWRM_SHORT_MAX_TIMEOUT);
4006 			else
4007 				usleep_range(HWRM_MIN_TIMEOUT,
4008 					     HWRM_MAX_TIMEOUT);
4009 		}
4010 
4011 		if (i >= tmo_count) {
4012 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4013 				   HWRM_TOTAL_TIMEOUT(i),
4014 				   le16_to_cpu(req->req_type),
4015 				   le16_to_cpu(req->seq_id), len);
4016 			return -1;
4017 		}
4018 
4019 		/* Last byte of resp contains valid bit */
4020 		valid = resp_addr + len - 1;
4021 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4022 			/* make sure we read from updated DMA memory */
4023 			dma_rmb();
4024 			if (*valid)
4025 				break;
4026 			usleep_range(1, 5);
4027 		}
4028 
4029 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4030 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4031 				   HWRM_TOTAL_TIMEOUT(i),
4032 				   le16_to_cpu(req->req_type),
4033 				   le16_to_cpu(req->seq_id), len, *valid);
4034 			return -1;
4035 		}
4036 	}
4037 
4038 	/* Zero valid bit for compatibility.  Valid bit in an older spec
4039 	 * may become a new field in a newer spec.  We must make sure that
4040 	 * a new field not implemented by old spec will read zero.
4041 	 */
4042 	*valid = 0;
4043 	rc = le16_to_cpu(resp->error_code);
4044 	if (rc && !silent)
4045 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4046 			   le16_to_cpu(resp->req_type),
4047 			   le16_to_cpu(resp->seq_id), rc);
4048 	return rc;
4049 }
4050 
4051 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4052 {
4053 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4054 }
4055 
4056 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4057 			      int timeout)
4058 {
4059 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4060 }
4061 
4062 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4063 {
4064 	int rc;
4065 
4066 	mutex_lock(&bp->hwrm_cmd_lock);
4067 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4068 	mutex_unlock(&bp->hwrm_cmd_lock);
4069 	return rc;
4070 }
4071 
4072 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4073 			     int timeout)
4074 {
4075 	int rc;
4076 
4077 	mutex_lock(&bp->hwrm_cmd_lock);
4078 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4079 	mutex_unlock(&bp->hwrm_cmd_lock);
4080 	return rc;
4081 }
4082 
4083 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
4084 				     int bmap_size)
4085 {
4086 	struct hwrm_func_drv_rgtr_input req = {0};
4087 	DECLARE_BITMAP(async_events_bmap, 256);
4088 	u32 *events = (u32 *)async_events_bmap;
4089 	int i;
4090 
4091 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4092 
4093 	req.enables =
4094 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4095 
4096 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4097 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
4098 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4099 
4100 	if (bmap && bmap_size) {
4101 		for (i = 0; i < bmap_size; i++) {
4102 			if (test_bit(i, bmap))
4103 				__set_bit(i, async_events_bmap);
4104 		}
4105 	}
4106 
4107 	for (i = 0; i < 8; i++)
4108 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4109 
4110 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4111 }
4112 
4113 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
4114 {
4115 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4116 	struct hwrm_func_drv_rgtr_input req = {0};
4117 	int rc;
4118 
4119 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4120 
4121 	req.enables =
4122 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4123 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
4124 
4125 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4126 	req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
4127 	req.ver_maj_8b = DRV_VER_MAJ;
4128 	req.ver_min_8b = DRV_VER_MIN;
4129 	req.ver_upd_8b = DRV_VER_UPD;
4130 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4131 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4132 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4133 
4134 	if (BNXT_PF(bp)) {
4135 		u32 data[8];
4136 		int i;
4137 
4138 		memset(data, 0, sizeof(data));
4139 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4140 			u16 cmd = bnxt_vf_req_snif[i];
4141 			unsigned int bit, idx;
4142 
4143 			idx = cmd / 32;
4144 			bit = cmd % 32;
4145 			data[idx] |= 1 << bit;
4146 		}
4147 
4148 		for (i = 0; i < 8; i++)
4149 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4150 
4151 		req.enables |=
4152 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4153 	}
4154 
4155 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4156 		req.flags |= cpu_to_le32(
4157 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4158 
4159 	mutex_lock(&bp->hwrm_cmd_lock);
4160 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4161 	if (rc)
4162 		rc = -EIO;
4163 	else if (resp->flags &
4164 		 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4165 		bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4166 	mutex_unlock(&bp->hwrm_cmd_lock);
4167 	return rc;
4168 }
4169 
4170 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4171 {
4172 	struct hwrm_func_drv_unrgtr_input req = {0};
4173 
4174 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4175 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4176 }
4177 
4178 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4179 {
4180 	u32 rc = 0;
4181 	struct hwrm_tunnel_dst_port_free_input req = {0};
4182 
4183 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4184 	req.tunnel_type = tunnel_type;
4185 
4186 	switch (tunnel_type) {
4187 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4188 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4189 		break;
4190 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4191 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4192 		break;
4193 	default:
4194 		break;
4195 	}
4196 
4197 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4198 	if (rc)
4199 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4200 			   rc);
4201 	return rc;
4202 }
4203 
4204 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4205 					   u8 tunnel_type)
4206 {
4207 	u32 rc = 0;
4208 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4209 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4210 
4211 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4212 
4213 	req.tunnel_type = tunnel_type;
4214 	req.tunnel_dst_port_val = port;
4215 
4216 	mutex_lock(&bp->hwrm_cmd_lock);
4217 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4218 	if (rc) {
4219 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4220 			   rc);
4221 		goto err_out;
4222 	}
4223 
4224 	switch (tunnel_type) {
4225 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4226 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4227 		break;
4228 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4229 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4230 		break;
4231 	default:
4232 		break;
4233 	}
4234 
4235 err_out:
4236 	mutex_unlock(&bp->hwrm_cmd_lock);
4237 	return rc;
4238 }
4239 
4240 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4241 {
4242 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4243 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4244 
4245 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4246 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4247 
4248 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4249 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4250 	req.mask = cpu_to_le32(vnic->rx_mask);
4251 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4252 }
4253 
4254 #ifdef CONFIG_RFS_ACCEL
4255 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4256 					    struct bnxt_ntuple_filter *fltr)
4257 {
4258 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4259 
4260 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4261 	req.ntuple_filter_id = fltr->filter_id;
4262 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4263 }
4264 
4265 #define BNXT_NTP_FLTR_FLAGS					\
4266 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4267 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4268 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4269 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4270 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4271 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4272 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4273 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4274 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4275 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4276 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4277 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4278 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4279 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4280 
4281 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4282 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4283 
4284 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4285 					     struct bnxt_ntuple_filter *fltr)
4286 {
4287 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4288 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4289 	struct flow_keys *keys = &fltr->fkeys;
4290 	struct bnxt_vnic_info *vnic;
4291 	u32 dst_ena = 0;
4292 	int rc = 0;
4293 
4294 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4295 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4296 
4297 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX) {
4298 		dst_ena = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
4299 		req.rfs_ring_tbl_idx = cpu_to_le16(fltr->rxq);
4300 		vnic = &bp->vnic_info[0];
4301 	} else {
4302 		vnic = &bp->vnic_info[fltr->rxq + 1];
4303 	}
4304 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4305 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS | dst_ena);
4306 
4307 	req.ethertype = htons(ETH_P_IP);
4308 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4309 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4310 	req.ip_protocol = keys->basic.ip_proto;
4311 
4312 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4313 		int i;
4314 
4315 		req.ethertype = htons(ETH_P_IPV6);
4316 		req.ip_addr_type =
4317 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4318 		*(struct in6_addr *)&req.src_ipaddr[0] =
4319 			keys->addrs.v6addrs.src;
4320 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4321 			keys->addrs.v6addrs.dst;
4322 		for (i = 0; i < 4; i++) {
4323 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4324 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4325 		}
4326 	} else {
4327 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4328 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4329 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4330 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4331 	}
4332 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4333 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4334 		req.tunnel_type =
4335 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4336 	}
4337 
4338 	req.src_port = keys->ports.src;
4339 	req.src_port_mask = cpu_to_be16(0xffff);
4340 	req.dst_port = keys->ports.dst;
4341 	req.dst_port_mask = cpu_to_be16(0xffff);
4342 
4343 	mutex_lock(&bp->hwrm_cmd_lock);
4344 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4345 	if (!rc) {
4346 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4347 		fltr->filter_id = resp->ntuple_filter_id;
4348 	}
4349 	mutex_unlock(&bp->hwrm_cmd_lock);
4350 	return rc;
4351 }
4352 #endif
4353 
4354 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4355 				     u8 *mac_addr)
4356 {
4357 	u32 rc = 0;
4358 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4359 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4360 
4361 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4362 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4363 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4364 		req.flags |=
4365 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4366 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4367 	req.enables =
4368 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4369 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4370 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4371 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4372 	req.l2_addr_mask[0] = 0xff;
4373 	req.l2_addr_mask[1] = 0xff;
4374 	req.l2_addr_mask[2] = 0xff;
4375 	req.l2_addr_mask[3] = 0xff;
4376 	req.l2_addr_mask[4] = 0xff;
4377 	req.l2_addr_mask[5] = 0xff;
4378 
4379 	mutex_lock(&bp->hwrm_cmd_lock);
4380 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4381 	if (!rc)
4382 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4383 							resp->l2_filter_id;
4384 	mutex_unlock(&bp->hwrm_cmd_lock);
4385 	return rc;
4386 }
4387 
4388 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4389 {
4390 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4391 	int rc = 0;
4392 
4393 	/* Any associated ntuple filters will also be cleared by firmware. */
4394 	mutex_lock(&bp->hwrm_cmd_lock);
4395 	for (i = 0; i < num_of_vnics; i++) {
4396 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4397 
4398 		for (j = 0; j < vnic->uc_filter_count; j++) {
4399 			struct hwrm_cfa_l2_filter_free_input req = {0};
4400 
4401 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4402 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4403 
4404 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4405 
4406 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4407 						HWRM_CMD_TIMEOUT);
4408 		}
4409 		vnic->uc_filter_count = 0;
4410 	}
4411 	mutex_unlock(&bp->hwrm_cmd_lock);
4412 
4413 	return rc;
4414 }
4415 
4416 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4417 {
4418 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4419 	struct hwrm_vnic_tpa_cfg_input req = {0};
4420 
4421 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4422 		return 0;
4423 
4424 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4425 
4426 	if (tpa_flags) {
4427 		u16 mss = bp->dev->mtu - 40;
4428 		u32 nsegs, n, segs = 0, flags;
4429 
4430 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4431 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4432 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4433 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4434 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4435 		if (tpa_flags & BNXT_FLAG_GRO)
4436 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4437 
4438 		req.flags = cpu_to_le32(flags);
4439 
4440 		req.enables =
4441 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4442 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4443 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4444 
4445 		/* Number of segs are log2 units, and first packet is not
4446 		 * included as part of this units.
4447 		 */
4448 		if (mss <= BNXT_RX_PAGE_SIZE) {
4449 			n = BNXT_RX_PAGE_SIZE / mss;
4450 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4451 		} else {
4452 			n = mss / BNXT_RX_PAGE_SIZE;
4453 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4454 				n++;
4455 			nsegs = (MAX_SKB_FRAGS - n) / n;
4456 		}
4457 
4458 		segs = ilog2(nsegs);
4459 		req.max_agg_segs = cpu_to_le16(segs);
4460 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
4461 
4462 		req.min_agg_len = cpu_to_le32(512);
4463 	}
4464 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4465 
4466 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4467 }
4468 
4469 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4470 {
4471 	struct bnxt_ring_grp_info *grp_info;
4472 
4473 	grp_info = &bp->grp_info[ring->grp_idx];
4474 	return grp_info->cp_fw_ring_id;
4475 }
4476 
4477 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4478 {
4479 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4480 		struct bnxt_napi *bnapi = rxr->bnapi;
4481 		struct bnxt_cp_ring_info *cpr;
4482 
4483 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4484 		return cpr->cp_ring_struct.fw_ring_id;
4485 	} else {
4486 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4487 	}
4488 }
4489 
4490 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4491 {
4492 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4493 		struct bnxt_napi *bnapi = txr->bnapi;
4494 		struct bnxt_cp_ring_info *cpr;
4495 
4496 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4497 		return cpr->cp_ring_struct.fw_ring_id;
4498 	} else {
4499 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4500 	}
4501 }
4502 
4503 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4504 {
4505 	u32 i, j, max_rings;
4506 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4507 	struct hwrm_vnic_rss_cfg_input req = {0};
4508 
4509 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4510 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4511 		return 0;
4512 
4513 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4514 	if (set_rss) {
4515 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4516 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4517 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4518 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4519 				max_rings = bp->rx_nr_rings - 1;
4520 			else
4521 				max_rings = bp->rx_nr_rings;
4522 		} else {
4523 			max_rings = 1;
4524 		}
4525 
4526 		/* Fill the RSS indirection table with ring group ids */
4527 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4528 			if (j == max_rings)
4529 				j = 0;
4530 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4531 		}
4532 
4533 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4534 		req.hash_key_tbl_addr =
4535 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
4536 	}
4537 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4538 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4539 }
4540 
4541 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4542 {
4543 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4544 	u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4545 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4546 	struct hwrm_vnic_rss_cfg_input req = {0};
4547 
4548 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4549 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4550 	if (!set_rss) {
4551 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4552 		return 0;
4553 	}
4554 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4555 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4556 	req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4557 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4558 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4559 	for (i = 0, k = 0; i < nr_ctxs; i++) {
4560 		__le16 *ring_tbl = vnic->rss_table;
4561 		int rc;
4562 
4563 		req.ring_table_pair_index = i;
4564 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4565 		for (j = 0; j < 64; j++) {
4566 			u16 ring_id;
4567 
4568 			ring_id = rxr->rx_ring_struct.fw_ring_id;
4569 			*ring_tbl++ = cpu_to_le16(ring_id);
4570 			ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4571 			*ring_tbl++ = cpu_to_le16(ring_id);
4572 			rxr++;
4573 			k++;
4574 			if (k == max_rings) {
4575 				k = 0;
4576 				rxr = &bp->rx_ring[0];
4577 			}
4578 		}
4579 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4580 		if (rc)
4581 			return -EIO;
4582 	}
4583 	return 0;
4584 }
4585 
4586 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4587 {
4588 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4589 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
4590 
4591 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4592 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4593 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4594 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4595 	req.enables =
4596 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4597 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4598 	/* thresholds not implemented in firmware yet */
4599 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4600 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4601 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4602 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4603 }
4604 
4605 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4606 					u16 ctx_idx)
4607 {
4608 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4609 
4610 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4611 	req.rss_cos_lb_ctx_id =
4612 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4613 
4614 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4615 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4616 }
4617 
4618 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4619 {
4620 	int i, j;
4621 
4622 	for (i = 0; i < bp->nr_vnics; i++) {
4623 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4624 
4625 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4626 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4627 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4628 		}
4629 	}
4630 	bp->rsscos_nr_ctxs = 0;
4631 }
4632 
4633 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4634 {
4635 	int rc;
4636 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4637 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4638 						bp->hwrm_cmd_resp_addr;
4639 
4640 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4641 			       -1);
4642 
4643 	mutex_lock(&bp->hwrm_cmd_lock);
4644 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4645 	if (!rc)
4646 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4647 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4648 	mutex_unlock(&bp->hwrm_cmd_lock);
4649 
4650 	return rc;
4651 }
4652 
4653 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4654 {
4655 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4656 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4657 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4658 }
4659 
4660 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4661 {
4662 	unsigned int ring = 0, grp_idx;
4663 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4664 	struct hwrm_vnic_cfg_input req = {0};
4665 	u16 def_vlan = 0;
4666 
4667 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4668 
4669 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4670 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4671 
4672 		req.default_rx_ring_id =
4673 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
4674 		req.default_cmpl_ring_id =
4675 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
4676 		req.enables =
4677 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
4678 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
4679 		goto vnic_mru;
4680 	}
4681 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4682 	/* Only RSS support for now TBD: COS & LB */
4683 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4684 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4685 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4686 					   VNIC_CFG_REQ_ENABLES_MRU);
4687 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4688 		req.rss_rule =
4689 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4690 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4691 					   VNIC_CFG_REQ_ENABLES_MRU);
4692 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4693 	} else {
4694 		req.rss_rule = cpu_to_le16(0xffff);
4695 	}
4696 
4697 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4698 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4699 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4700 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4701 	} else {
4702 		req.cos_rule = cpu_to_le16(0xffff);
4703 	}
4704 
4705 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4706 		ring = 0;
4707 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4708 		ring = vnic_id - 1;
4709 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4710 		ring = bp->rx_nr_rings - 1;
4711 
4712 	grp_idx = bp->rx_ring[ring].bnapi->index;
4713 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4714 	req.lb_rule = cpu_to_le16(0xffff);
4715 vnic_mru:
4716 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4717 			      VLAN_HLEN);
4718 
4719 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4720 #ifdef CONFIG_BNXT_SRIOV
4721 	if (BNXT_VF(bp))
4722 		def_vlan = bp->vf.vlan;
4723 #endif
4724 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4725 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4726 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4727 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4728 
4729 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4730 }
4731 
4732 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4733 {
4734 	u32 rc = 0;
4735 
4736 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4737 		struct hwrm_vnic_free_input req = {0};
4738 
4739 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4740 		req.vnic_id =
4741 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4742 
4743 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4744 		if (rc)
4745 			return rc;
4746 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4747 	}
4748 	return rc;
4749 }
4750 
4751 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4752 {
4753 	u16 i;
4754 
4755 	for (i = 0; i < bp->nr_vnics; i++)
4756 		bnxt_hwrm_vnic_free_one(bp, i);
4757 }
4758 
4759 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4760 				unsigned int start_rx_ring_idx,
4761 				unsigned int nr_rings)
4762 {
4763 	int rc = 0;
4764 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4765 	struct hwrm_vnic_alloc_input req = {0};
4766 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4767 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4768 
4769 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4770 		goto vnic_no_ring_grps;
4771 
4772 	/* map ring groups to this vnic */
4773 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4774 		grp_idx = bp->rx_ring[i].bnapi->index;
4775 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4776 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4777 				   j, nr_rings);
4778 			break;
4779 		}
4780 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
4781 	}
4782 
4783 vnic_no_ring_grps:
4784 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
4785 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
4786 	if (vnic_id == 0)
4787 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4788 
4789 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4790 
4791 	mutex_lock(&bp->hwrm_cmd_lock);
4792 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4793 	if (!rc)
4794 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
4795 	mutex_unlock(&bp->hwrm_cmd_lock);
4796 	return rc;
4797 }
4798 
4799 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4800 {
4801 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4802 	struct hwrm_vnic_qcaps_input req = {0};
4803 	int rc;
4804 
4805 	if (bp->hwrm_spec_code < 0x10600)
4806 		return 0;
4807 
4808 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4809 	mutex_lock(&bp->hwrm_cmd_lock);
4810 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4811 	if (!rc) {
4812 		u32 flags = le32_to_cpu(resp->flags);
4813 
4814 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
4815 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4816 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4817 		if (flags &
4818 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4819 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4820 	}
4821 	mutex_unlock(&bp->hwrm_cmd_lock);
4822 	return rc;
4823 }
4824 
4825 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4826 {
4827 	u16 i;
4828 	u32 rc = 0;
4829 
4830 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4831 		return 0;
4832 
4833 	mutex_lock(&bp->hwrm_cmd_lock);
4834 	for (i = 0; i < bp->rx_nr_rings; i++) {
4835 		struct hwrm_ring_grp_alloc_input req = {0};
4836 		struct hwrm_ring_grp_alloc_output *resp =
4837 					bp->hwrm_cmd_resp_addr;
4838 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4839 
4840 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4841 
4842 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4843 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4844 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4845 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4846 
4847 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4848 					HWRM_CMD_TIMEOUT);
4849 		if (rc)
4850 			break;
4851 
4852 		bp->grp_info[grp_idx].fw_grp_id =
4853 			le32_to_cpu(resp->ring_group_id);
4854 	}
4855 	mutex_unlock(&bp->hwrm_cmd_lock);
4856 	return rc;
4857 }
4858 
4859 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4860 {
4861 	u16 i;
4862 	u32 rc = 0;
4863 	struct hwrm_ring_grp_free_input req = {0};
4864 
4865 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
4866 		return 0;
4867 
4868 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4869 
4870 	mutex_lock(&bp->hwrm_cmd_lock);
4871 	for (i = 0; i < bp->cp_nr_rings; i++) {
4872 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4873 			continue;
4874 		req.ring_group_id =
4875 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4876 
4877 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4878 					HWRM_CMD_TIMEOUT);
4879 		if (rc)
4880 			break;
4881 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4882 	}
4883 	mutex_unlock(&bp->hwrm_cmd_lock);
4884 	return rc;
4885 }
4886 
4887 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4888 				    struct bnxt_ring_struct *ring,
4889 				    u32 ring_type, u32 map_index)
4890 {
4891 	int rc = 0, err = 0;
4892 	struct hwrm_ring_alloc_input req = {0};
4893 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4894 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
4895 	struct bnxt_ring_grp_info *grp_info;
4896 	u16 ring_id;
4897 
4898 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4899 
4900 	req.enables = 0;
4901 	if (rmem->nr_pages > 1) {
4902 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
4903 		/* Page size is in log2 units */
4904 		req.page_size = BNXT_PAGE_SHIFT;
4905 		req.page_tbl_depth = 1;
4906 	} else {
4907 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
4908 	}
4909 	req.fbo = 0;
4910 	/* Association of ring index with doorbell index and MSIX number */
4911 	req.logical_id = cpu_to_le16(map_index);
4912 
4913 	switch (ring_type) {
4914 	case HWRM_RING_ALLOC_TX: {
4915 		struct bnxt_tx_ring_info *txr;
4916 
4917 		txr = container_of(ring, struct bnxt_tx_ring_info,
4918 				   tx_ring_struct);
4919 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4920 		/* Association of transmit ring with completion ring */
4921 		grp_info = &bp->grp_info[ring->grp_idx];
4922 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
4923 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4924 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4925 		req.queue_id = cpu_to_le16(ring->queue_id);
4926 		break;
4927 	}
4928 	case HWRM_RING_ALLOC_RX:
4929 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4930 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4931 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4932 			u16 flags = 0;
4933 
4934 			/* Association of rx ring with stats context */
4935 			grp_info = &bp->grp_info[ring->grp_idx];
4936 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
4937 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4938 			req.enables |= cpu_to_le32(
4939 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4940 			if (NET_IP_ALIGN == 2)
4941 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
4942 			req.flags = cpu_to_le16(flags);
4943 		}
4944 		break;
4945 	case HWRM_RING_ALLOC_AGG:
4946 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4947 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
4948 			/* Association of agg ring with rx ring */
4949 			grp_info = &bp->grp_info[ring->grp_idx];
4950 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
4951 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
4952 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4953 			req.enables |= cpu_to_le32(
4954 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
4955 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4956 		} else {
4957 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4958 		}
4959 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4960 		break;
4961 	case HWRM_RING_ALLOC_CMPL:
4962 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4963 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4964 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4965 			/* Association of cp ring with nq */
4966 			grp_info = &bp->grp_info[map_index];
4967 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4968 			req.cq_handle = cpu_to_le64(ring->handle);
4969 			req.enables |= cpu_to_le32(
4970 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
4971 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
4972 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4973 		}
4974 		break;
4975 	case HWRM_RING_ALLOC_NQ:
4976 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
4977 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4978 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4979 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4980 		break;
4981 	default:
4982 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4983 			   ring_type);
4984 		return -1;
4985 	}
4986 
4987 	mutex_lock(&bp->hwrm_cmd_lock);
4988 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4989 	err = le16_to_cpu(resp->error_code);
4990 	ring_id = le16_to_cpu(resp->ring_id);
4991 	mutex_unlock(&bp->hwrm_cmd_lock);
4992 
4993 	if (rc || err) {
4994 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4995 			   ring_type, rc, err);
4996 		return -EIO;
4997 	}
4998 	ring->fw_ring_id = ring_id;
4999 	return rc;
5000 }
5001 
5002 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5003 {
5004 	int rc;
5005 
5006 	if (BNXT_PF(bp)) {
5007 		struct hwrm_func_cfg_input req = {0};
5008 
5009 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5010 		req.fid = cpu_to_le16(0xffff);
5011 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5012 		req.async_event_cr = cpu_to_le16(idx);
5013 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5014 	} else {
5015 		struct hwrm_func_vf_cfg_input req = {0};
5016 
5017 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5018 		req.enables =
5019 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5020 		req.async_event_cr = cpu_to_le16(idx);
5021 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5022 	}
5023 	return rc;
5024 }
5025 
5026 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5027 			u32 map_idx, u32 xid)
5028 {
5029 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5030 		if (BNXT_PF(bp))
5031 			db->doorbell = bp->bar1 + 0x10000;
5032 		else
5033 			db->doorbell = bp->bar1 + 0x4000;
5034 		switch (ring_type) {
5035 		case HWRM_RING_ALLOC_TX:
5036 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5037 			break;
5038 		case HWRM_RING_ALLOC_RX:
5039 		case HWRM_RING_ALLOC_AGG:
5040 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5041 			break;
5042 		case HWRM_RING_ALLOC_CMPL:
5043 			db->db_key64 = DBR_PATH_L2;
5044 			break;
5045 		case HWRM_RING_ALLOC_NQ:
5046 			db->db_key64 = DBR_PATH_L2;
5047 			break;
5048 		}
5049 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5050 	} else {
5051 		db->doorbell = bp->bar1 + map_idx * 0x80;
5052 		switch (ring_type) {
5053 		case HWRM_RING_ALLOC_TX:
5054 			db->db_key32 = DB_KEY_TX;
5055 			break;
5056 		case HWRM_RING_ALLOC_RX:
5057 		case HWRM_RING_ALLOC_AGG:
5058 			db->db_key32 = DB_KEY_RX;
5059 			break;
5060 		case HWRM_RING_ALLOC_CMPL:
5061 			db->db_key32 = DB_KEY_CP;
5062 			break;
5063 		}
5064 	}
5065 }
5066 
5067 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5068 {
5069 	int i, rc = 0;
5070 	u32 type;
5071 
5072 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5073 		type = HWRM_RING_ALLOC_NQ;
5074 	else
5075 		type = HWRM_RING_ALLOC_CMPL;
5076 	for (i = 0; i < bp->cp_nr_rings; i++) {
5077 		struct bnxt_napi *bnapi = bp->bnapi[i];
5078 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5079 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5080 		u32 map_idx = ring->map_idx;
5081 		unsigned int vector;
5082 
5083 		vector = bp->irq_tbl[map_idx].vector;
5084 		disable_irq_nosync(vector);
5085 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5086 		if (rc) {
5087 			enable_irq(vector);
5088 			goto err_out;
5089 		}
5090 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5091 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5092 		enable_irq(vector);
5093 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5094 
5095 		if (!i) {
5096 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5097 			if (rc)
5098 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5099 		}
5100 	}
5101 
5102 	type = HWRM_RING_ALLOC_TX;
5103 	for (i = 0; i < bp->tx_nr_rings; i++) {
5104 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5105 		struct bnxt_ring_struct *ring;
5106 		u32 map_idx;
5107 
5108 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5109 			struct bnxt_napi *bnapi = txr->bnapi;
5110 			struct bnxt_cp_ring_info *cpr, *cpr2;
5111 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5112 
5113 			cpr = &bnapi->cp_ring;
5114 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5115 			ring = &cpr2->cp_ring_struct;
5116 			ring->handle = BNXT_TX_HDL;
5117 			map_idx = bnapi->index;
5118 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5119 			if (rc)
5120 				goto err_out;
5121 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5122 				    ring->fw_ring_id);
5123 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5124 		}
5125 		ring = &txr->tx_ring_struct;
5126 		map_idx = i;
5127 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5128 		if (rc)
5129 			goto err_out;
5130 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5131 	}
5132 
5133 	type = HWRM_RING_ALLOC_RX;
5134 	for (i = 0; i < bp->rx_nr_rings; i++) {
5135 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5136 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5137 		struct bnxt_napi *bnapi = rxr->bnapi;
5138 		u32 map_idx = bnapi->index;
5139 
5140 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5141 		if (rc)
5142 			goto err_out;
5143 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5144 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5145 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5146 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5147 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5148 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5149 			struct bnxt_cp_ring_info *cpr2;
5150 
5151 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5152 			ring = &cpr2->cp_ring_struct;
5153 			ring->handle = BNXT_RX_HDL;
5154 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5155 			if (rc)
5156 				goto err_out;
5157 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5158 				    ring->fw_ring_id);
5159 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5160 		}
5161 	}
5162 
5163 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5164 		type = HWRM_RING_ALLOC_AGG;
5165 		for (i = 0; i < bp->rx_nr_rings; i++) {
5166 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5167 			struct bnxt_ring_struct *ring =
5168 						&rxr->rx_agg_ring_struct;
5169 			u32 grp_idx = ring->grp_idx;
5170 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5171 
5172 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5173 			if (rc)
5174 				goto err_out;
5175 
5176 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5177 				    ring->fw_ring_id);
5178 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5179 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5180 		}
5181 	}
5182 err_out:
5183 	return rc;
5184 }
5185 
5186 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5187 				   struct bnxt_ring_struct *ring,
5188 				   u32 ring_type, int cmpl_ring_id)
5189 {
5190 	int rc;
5191 	struct hwrm_ring_free_input req = {0};
5192 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5193 	u16 error_code;
5194 
5195 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5196 	req.ring_type = ring_type;
5197 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5198 
5199 	mutex_lock(&bp->hwrm_cmd_lock);
5200 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5201 	error_code = le16_to_cpu(resp->error_code);
5202 	mutex_unlock(&bp->hwrm_cmd_lock);
5203 
5204 	if (rc || error_code) {
5205 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5206 			   ring_type, rc, error_code);
5207 		return -EIO;
5208 	}
5209 	return 0;
5210 }
5211 
5212 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5213 {
5214 	u32 type;
5215 	int i;
5216 
5217 	if (!bp->bnapi)
5218 		return;
5219 
5220 	for (i = 0; i < bp->tx_nr_rings; i++) {
5221 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5222 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5223 
5224 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5225 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5226 
5227 			hwrm_ring_free_send_msg(bp, ring,
5228 						RING_FREE_REQ_RING_TYPE_TX,
5229 						close_path ? cmpl_ring_id :
5230 						INVALID_HW_RING_ID);
5231 			ring->fw_ring_id = INVALID_HW_RING_ID;
5232 		}
5233 	}
5234 
5235 	for (i = 0; i < bp->rx_nr_rings; i++) {
5236 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5237 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5238 		u32 grp_idx = rxr->bnapi->index;
5239 
5240 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5241 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5242 
5243 			hwrm_ring_free_send_msg(bp, ring,
5244 						RING_FREE_REQ_RING_TYPE_RX,
5245 						close_path ? cmpl_ring_id :
5246 						INVALID_HW_RING_ID);
5247 			ring->fw_ring_id = INVALID_HW_RING_ID;
5248 			bp->grp_info[grp_idx].rx_fw_ring_id =
5249 				INVALID_HW_RING_ID;
5250 		}
5251 	}
5252 
5253 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5254 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5255 	else
5256 		type = RING_FREE_REQ_RING_TYPE_RX;
5257 	for (i = 0; i < bp->rx_nr_rings; i++) {
5258 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5259 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5260 		u32 grp_idx = rxr->bnapi->index;
5261 
5262 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5263 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5264 
5265 			hwrm_ring_free_send_msg(bp, ring, type,
5266 						close_path ? cmpl_ring_id :
5267 						INVALID_HW_RING_ID);
5268 			ring->fw_ring_id = INVALID_HW_RING_ID;
5269 			bp->grp_info[grp_idx].agg_fw_ring_id =
5270 				INVALID_HW_RING_ID;
5271 		}
5272 	}
5273 
5274 	/* The completion rings are about to be freed.  After that the
5275 	 * IRQ doorbell will not work anymore.  So we need to disable
5276 	 * IRQ here.
5277 	 */
5278 	bnxt_disable_int_sync(bp);
5279 
5280 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5281 		type = RING_FREE_REQ_RING_TYPE_NQ;
5282 	else
5283 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5284 	for (i = 0; i < bp->cp_nr_rings; i++) {
5285 		struct bnxt_napi *bnapi = bp->bnapi[i];
5286 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5287 		struct bnxt_ring_struct *ring;
5288 		int j;
5289 
5290 		for (j = 0; j < 2; j++) {
5291 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5292 
5293 			if (cpr2) {
5294 				ring = &cpr2->cp_ring_struct;
5295 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5296 					continue;
5297 				hwrm_ring_free_send_msg(bp, ring,
5298 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5299 					INVALID_HW_RING_ID);
5300 				ring->fw_ring_id = INVALID_HW_RING_ID;
5301 			}
5302 		}
5303 		ring = &cpr->cp_ring_struct;
5304 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5305 			hwrm_ring_free_send_msg(bp, ring, type,
5306 						INVALID_HW_RING_ID);
5307 			ring->fw_ring_id = INVALID_HW_RING_ID;
5308 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5309 		}
5310 	}
5311 }
5312 
5313 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5314 			   bool shared);
5315 
5316 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5317 {
5318 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5319 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5320 	struct hwrm_func_qcfg_input req = {0};
5321 	int rc;
5322 
5323 	if (bp->hwrm_spec_code < 0x10601)
5324 		return 0;
5325 
5326 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5327 	req.fid = cpu_to_le16(0xffff);
5328 	mutex_lock(&bp->hwrm_cmd_lock);
5329 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5330 	if (rc) {
5331 		mutex_unlock(&bp->hwrm_cmd_lock);
5332 		return -EIO;
5333 	}
5334 
5335 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5336 	if (BNXT_NEW_RM(bp)) {
5337 		u16 cp, stats;
5338 
5339 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5340 		hw_resc->resv_hw_ring_grps =
5341 			le32_to_cpu(resp->alloc_hw_ring_grps);
5342 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5343 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5344 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5345 		hw_resc->resv_irqs = cp;
5346 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5347 			int rx = hw_resc->resv_rx_rings;
5348 			int tx = hw_resc->resv_tx_rings;
5349 
5350 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5351 				rx >>= 1;
5352 			if (cp < (rx + tx)) {
5353 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5354 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5355 					rx <<= 1;
5356 				hw_resc->resv_rx_rings = rx;
5357 				hw_resc->resv_tx_rings = tx;
5358 			}
5359 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5360 			hw_resc->resv_hw_ring_grps = rx;
5361 		}
5362 		hw_resc->resv_cp_rings = cp;
5363 		hw_resc->resv_stat_ctxs = stats;
5364 	}
5365 	mutex_unlock(&bp->hwrm_cmd_lock);
5366 	return 0;
5367 }
5368 
5369 /* Caller must hold bp->hwrm_cmd_lock */
5370 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5371 {
5372 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5373 	struct hwrm_func_qcfg_input req = {0};
5374 	int rc;
5375 
5376 	if (bp->hwrm_spec_code < 0x10601)
5377 		return 0;
5378 
5379 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5380 	req.fid = cpu_to_le16(fid);
5381 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5382 	if (!rc)
5383 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5384 
5385 	return rc;
5386 }
5387 
5388 static bool bnxt_rfs_supported(struct bnxt *bp);
5389 
5390 static void
5391 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5392 			     int tx_rings, int rx_rings, int ring_grps,
5393 			     int cp_rings, int stats, int vnics)
5394 {
5395 	u32 enables = 0;
5396 
5397 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5398 	req->fid = cpu_to_le16(0xffff);
5399 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5400 	req->num_tx_rings = cpu_to_le16(tx_rings);
5401 	if (BNXT_NEW_RM(bp)) {
5402 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5403 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5404 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5405 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5406 			enables |= tx_rings + ring_grps ?
5407 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5408 			enables |= rx_rings ?
5409 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5410 		} else {
5411 			enables |= cp_rings ?
5412 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5413 			enables |= ring_grps ?
5414 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5415 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5416 		}
5417 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5418 
5419 		req->num_rx_rings = cpu_to_le16(rx_rings);
5420 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5421 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5422 			req->num_msix = cpu_to_le16(cp_rings);
5423 			req->num_rsscos_ctxs =
5424 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5425 		} else {
5426 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
5427 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5428 			req->num_rsscos_ctxs = cpu_to_le16(1);
5429 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5430 			    bnxt_rfs_supported(bp))
5431 				req->num_rsscos_ctxs =
5432 					cpu_to_le16(ring_grps + 1);
5433 		}
5434 		req->num_stat_ctxs = cpu_to_le16(stats);
5435 		req->num_vnics = cpu_to_le16(vnics);
5436 	}
5437 	req->enables = cpu_to_le32(enables);
5438 }
5439 
5440 static void
5441 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5442 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
5443 			     int rx_rings, int ring_grps, int cp_rings,
5444 			     int stats, int vnics)
5445 {
5446 	u32 enables = 0;
5447 
5448 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5449 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5450 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5451 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5452 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5453 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5454 		enables |= tx_rings + ring_grps ?
5455 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5456 	} else {
5457 		enables |= cp_rings ?
5458 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5459 		enables |= ring_grps ?
5460 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5461 	}
5462 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5463 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5464 
5465 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5466 	req->num_tx_rings = cpu_to_le16(tx_rings);
5467 	req->num_rx_rings = cpu_to_le16(rx_rings);
5468 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5469 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5470 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5471 	} else {
5472 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
5473 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5474 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5475 	}
5476 	req->num_stat_ctxs = cpu_to_le16(stats);
5477 	req->num_vnics = cpu_to_le16(vnics);
5478 
5479 	req->enables = cpu_to_le32(enables);
5480 }
5481 
5482 static int
5483 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5484 			   int ring_grps, int cp_rings, int stats, int vnics)
5485 {
5486 	struct hwrm_func_cfg_input req = {0};
5487 	int rc;
5488 
5489 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5490 				     cp_rings, stats, vnics);
5491 	if (!req.enables)
5492 		return 0;
5493 
5494 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5495 	if (rc)
5496 		return -ENOMEM;
5497 
5498 	if (bp->hwrm_spec_code < 0x10601)
5499 		bp->hw_resc.resv_tx_rings = tx_rings;
5500 
5501 	rc = bnxt_hwrm_get_rings(bp);
5502 	return rc;
5503 }
5504 
5505 static int
5506 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5507 			   int ring_grps, int cp_rings, int stats, int vnics)
5508 {
5509 	struct hwrm_func_vf_cfg_input req = {0};
5510 	int rc;
5511 
5512 	if (!BNXT_NEW_RM(bp)) {
5513 		bp->hw_resc.resv_tx_rings = tx_rings;
5514 		return 0;
5515 	}
5516 
5517 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5518 				     cp_rings, stats, vnics);
5519 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5520 	if (rc)
5521 		return -ENOMEM;
5522 
5523 	rc = bnxt_hwrm_get_rings(bp);
5524 	return rc;
5525 }
5526 
5527 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5528 				   int cp, int stat, int vnic)
5529 {
5530 	if (BNXT_PF(bp))
5531 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5532 						  vnic);
5533 	else
5534 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5535 						  vnic);
5536 }
5537 
5538 int bnxt_nq_rings_in_use(struct bnxt *bp)
5539 {
5540 	int cp = bp->cp_nr_rings;
5541 	int ulp_msix, ulp_base;
5542 
5543 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5544 	if (ulp_msix) {
5545 		ulp_base = bnxt_get_ulp_msix_base(bp);
5546 		cp += ulp_msix;
5547 		if ((ulp_base + ulp_msix) > cp)
5548 			cp = ulp_base + ulp_msix;
5549 	}
5550 	return cp;
5551 }
5552 
5553 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5554 {
5555 	int cp;
5556 
5557 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5558 		return bnxt_nq_rings_in_use(bp);
5559 
5560 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
5561 	return cp;
5562 }
5563 
5564 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5565 {
5566 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
5567 	int cp = bp->cp_nr_rings;
5568 
5569 	if (!ulp_stat)
5570 		return cp;
5571 
5572 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
5573 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
5574 
5575 	return cp + ulp_stat;
5576 }
5577 
5578 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5579 {
5580 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5581 	int cp = bnxt_cp_rings_in_use(bp);
5582 	int nq = bnxt_nq_rings_in_use(bp);
5583 	int rx = bp->rx_nr_rings, stat;
5584 	int vnic = 1, grp = rx;
5585 
5586 	if (bp->hwrm_spec_code < 0x10601)
5587 		return false;
5588 
5589 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5590 		return true;
5591 
5592 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5593 		vnic = rx + 1;
5594 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5595 		rx <<= 1;
5596 	stat = bnxt_get_func_stat_ctxs(bp);
5597 	if (BNXT_NEW_RM(bp) &&
5598 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5599 	     hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
5600 	     (hw_resc->resv_hw_ring_grps != grp &&
5601 	      !(bp->flags & BNXT_FLAG_CHIP_P5))))
5602 		return true;
5603 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
5604 	    hw_resc->resv_irqs != nq)
5605 		return true;
5606 	return false;
5607 }
5608 
5609 static int __bnxt_reserve_rings(struct bnxt *bp)
5610 {
5611 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5612 	int cp = bnxt_nq_rings_in_use(bp);
5613 	int tx = bp->tx_nr_rings;
5614 	int rx = bp->rx_nr_rings;
5615 	int grp, rx_rings, rc;
5616 	int vnic = 1, stat;
5617 	bool sh = false;
5618 
5619 	if (!bnxt_need_reserve_rings(bp))
5620 		return 0;
5621 
5622 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5623 		sh = true;
5624 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5625 		vnic = rx + 1;
5626 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5627 		rx <<= 1;
5628 	grp = bp->rx_nr_rings;
5629 	stat = bnxt_get_func_stat_ctxs(bp);
5630 
5631 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5632 	if (rc)
5633 		return rc;
5634 
5635 	tx = hw_resc->resv_tx_rings;
5636 	if (BNXT_NEW_RM(bp)) {
5637 		rx = hw_resc->resv_rx_rings;
5638 		cp = hw_resc->resv_irqs;
5639 		grp = hw_resc->resv_hw_ring_grps;
5640 		vnic = hw_resc->resv_vnics;
5641 		stat = hw_resc->resv_stat_ctxs;
5642 	}
5643 
5644 	rx_rings = rx;
5645 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5646 		if (rx >= 2) {
5647 			rx_rings = rx >> 1;
5648 		} else {
5649 			if (netif_running(bp->dev))
5650 				return -ENOMEM;
5651 
5652 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5653 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5654 			bp->dev->hw_features &= ~NETIF_F_LRO;
5655 			bp->dev->features &= ~NETIF_F_LRO;
5656 			bnxt_set_ring_params(bp);
5657 		}
5658 	}
5659 	rx_rings = min_t(int, rx_rings, grp);
5660 	cp = min_t(int, cp, bp->cp_nr_rings);
5661 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
5662 		stat -= bnxt_get_ulp_stat_ctxs(bp);
5663 	cp = min_t(int, cp, stat);
5664 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5665 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5666 		rx = rx_rings << 1;
5667 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
5668 	bp->tx_nr_rings = tx;
5669 	bp->rx_nr_rings = rx_rings;
5670 	bp->cp_nr_rings = cp;
5671 
5672 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
5673 		return -ENOMEM;
5674 
5675 	return rc;
5676 }
5677 
5678 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5679 				    int ring_grps, int cp_rings, int stats,
5680 				    int vnics)
5681 {
5682 	struct hwrm_func_vf_cfg_input req = {0};
5683 	u32 flags;
5684 	int rc;
5685 
5686 	if (!BNXT_NEW_RM(bp))
5687 		return 0;
5688 
5689 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5690 				     cp_rings, stats, vnics);
5691 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
5692 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5693 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5694 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5695 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
5696 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
5697 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5698 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5699 
5700 	req.flags = cpu_to_le32(flags);
5701 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5702 	if (rc)
5703 		return -ENOMEM;
5704 	return 0;
5705 }
5706 
5707 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5708 				    int ring_grps, int cp_rings, int stats,
5709 				    int vnics)
5710 {
5711 	struct hwrm_func_cfg_input req = {0};
5712 	u32 flags;
5713 	int rc;
5714 
5715 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5716 				     cp_rings, stats, vnics);
5717 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
5718 	if (BNXT_NEW_RM(bp)) {
5719 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5720 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5721 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5722 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
5723 		if (bp->flags & BNXT_FLAG_CHIP_P5)
5724 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
5725 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
5726 		else
5727 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5728 	}
5729 
5730 	req.flags = cpu_to_le32(flags);
5731 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5732 	if (rc)
5733 		return -ENOMEM;
5734 	return 0;
5735 }
5736 
5737 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5738 				 int ring_grps, int cp_rings, int stats,
5739 				 int vnics)
5740 {
5741 	if (bp->hwrm_spec_code < 0x10801)
5742 		return 0;
5743 
5744 	if (BNXT_PF(bp))
5745 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
5746 						ring_grps, cp_rings, stats,
5747 						vnics);
5748 
5749 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
5750 					cp_rings, stats, vnics);
5751 }
5752 
5753 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
5754 {
5755 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5756 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5757 	struct hwrm_ring_aggint_qcaps_input req = {0};
5758 	int rc;
5759 
5760 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
5761 	coal_cap->num_cmpl_dma_aggr_max = 63;
5762 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
5763 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
5764 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
5765 	coal_cap->int_lat_tmr_min_max = 65535;
5766 	coal_cap->int_lat_tmr_max_max = 65535;
5767 	coal_cap->num_cmpl_aggr_int_max = 65535;
5768 	coal_cap->timer_units = 80;
5769 
5770 	if (bp->hwrm_spec_code < 0x10902)
5771 		return;
5772 
5773 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
5774 	mutex_lock(&bp->hwrm_cmd_lock);
5775 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5776 	if (!rc) {
5777 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
5778 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
5779 		coal_cap->num_cmpl_dma_aggr_max =
5780 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
5781 		coal_cap->num_cmpl_dma_aggr_during_int_max =
5782 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
5783 		coal_cap->cmpl_aggr_dma_tmr_max =
5784 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
5785 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
5786 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
5787 		coal_cap->int_lat_tmr_min_max =
5788 			le16_to_cpu(resp->int_lat_tmr_min_max);
5789 		coal_cap->int_lat_tmr_max_max =
5790 			le16_to_cpu(resp->int_lat_tmr_max_max);
5791 		coal_cap->num_cmpl_aggr_int_max =
5792 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
5793 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
5794 	}
5795 	mutex_unlock(&bp->hwrm_cmd_lock);
5796 }
5797 
5798 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
5799 {
5800 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5801 
5802 	return usec * 1000 / coal_cap->timer_units;
5803 }
5804 
5805 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
5806 	struct bnxt_coal *hw_coal,
5807 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
5808 {
5809 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5810 	u32 cmpl_params = coal_cap->cmpl_params;
5811 	u16 val, tmr, max, flags = 0;
5812 
5813 	max = hw_coal->bufs_per_record * 128;
5814 	if (hw_coal->budget)
5815 		max = hw_coal->bufs_per_record * hw_coal->budget;
5816 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
5817 
5818 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
5819 	req->num_cmpl_aggr_int = cpu_to_le16(val);
5820 
5821 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
5822 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
5823 
5824 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
5825 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
5826 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
5827 
5828 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
5829 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
5830 	req->int_lat_tmr_max = cpu_to_le16(tmr);
5831 
5832 	/* min timer set to 1/2 of interrupt timer */
5833 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
5834 		val = tmr / 2;
5835 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
5836 		req->int_lat_tmr_min = cpu_to_le16(val);
5837 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5838 	}
5839 
5840 	/* buf timer set to 1/4 of interrupt timer */
5841 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
5842 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
5843 
5844 	if (cmpl_params &
5845 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
5846 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
5847 		val = clamp_t(u16, tmr, 1,
5848 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
5849 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
5850 		req->enables |=
5851 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
5852 	}
5853 
5854 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
5855 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
5856 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
5857 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
5858 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
5859 	req->flags = cpu_to_le16(flags);
5860 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
5861 }
5862 
5863 /* Caller holds bp->hwrm_cmd_lock */
5864 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
5865 				   struct bnxt_coal *hw_coal)
5866 {
5867 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
5868 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5869 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5870 	u32 nq_params = coal_cap->nq_params;
5871 	u16 tmr;
5872 
5873 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
5874 		return 0;
5875 
5876 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
5877 			       -1, -1);
5878 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
5879 	req.flags =
5880 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
5881 
5882 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
5883 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
5884 	req.int_lat_tmr_min = cpu_to_le16(tmr);
5885 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5886 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5887 }
5888 
5889 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
5890 {
5891 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
5892 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5893 	struct bnxt_coal coal;
5894 
5895 	/* Tick values in micro seconds.
5896 	 * 1 coal_buf x bufs_per_record = 1 completion record.
5897 	 */
5898 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
5899 
5900 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
5901 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
5902 
5903 	if (!bnapi->rx_ring)
5904 		return -ENODEV;
5905 
5906 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5907 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5908 
5909 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
5910 
5911 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
5912 
5913 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
5914 				 HWRM_CMD_TIMEOUT);
5915 }
5916 
5917 int bnxt_hwrm_set_coal(struct bnxt *bp)
5918 {
5919 	int i, rc = 0;
5920 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
5921 							   req_tx = {0}, *req;
5922 
5923 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5924 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5925 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
5926 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5927 
5928 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
5929 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
5930 
5931 	mutex_lock(&bp->hwrm_cmd_lock);
5932 	for (i = 0; i < bp->cp_nr_rings; i++) {
5933 		struct bnxt_napi *bnapi = bp->bnapi[i];
5934 		struct bnxt_coal *hw_coal;
5935 		u16 ring_id;
5936 
5937 		req = &req_rx;
5938 		if (!bnapi->rx_ring) {
5939 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5940 			req = &req_tx;
5941 		} else {
5942 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
5943 		}
5944 		req->ring_id = cpu_to_le16(ring_id);
5945 
5946 		rc = _hwrm_send_message(bp, req, sizeof(*req),
5947 					HWRM_CMD_TIMEOUT);
5948 		if (rc)
5949 			break;
5950 
5951 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5952 			continue;
5953 
5954 		if (bnapi->rx_ring && bnapi->tx_ring) {
5955 			req = &req_tx;
5956 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5957 			req->ring_id = cpu_to_le16(ring_id);
5958 			rc = _hwrm_send_message(bp, req, sizeof(*req),
5959 						HWRM_CMD_TIMEOUT);
5960 			if (rc)
5961 				break;
5962 		}
5963 		if (bnapi->rx_ring)
5964 			hw_coal = &bp->rx_coal;
5965 		else
5966 			hw_coal = &bp->tx_coal;
5967 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
5968 	}
5969 	mutex_unlock(&bp->hwrm_cmd_lock);
5970 	return rc;
5971 }
5972 
5973 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5974 {
5975 	int rc = 0, i;
5976 	struct hwrm_stat_ctx_free_input req = {0};
5977 
5978 	if (!bp->bnapi)
5979 		return 0;
5980 
5981 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5982 		return 0;
5983 
5984 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5985 
5986 	mutex_lock(&bp->hwrm_cmd_lock);
5987 	for (i = 0; i < bp->cp_nr_rings; i++) {
5988 		struct bnxt_napi *bnapi = bp->bnapi[i];
5989 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5990 
5991 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5992 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5993 
5994 			rc = _hwrm_send_message(bp, &req, sizeof(req),
5995 						HWRM_CMD_TIMEOUT);
5996 			if (rc)
5997 				break;
5998 
5999 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6000 		}
6001 	}
6002 	mutex_unlock(&bp->hwrm_cmd_lock);
6003 	return rc;
6004 }
6005 
6006 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6007 {
6008 	int rc = 0, i;
6009 	struct hwrm_stat_ctx_alloc_input req = {0};
6010 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6011 
6012 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6013 		return 0;
6014 
6015 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6016 
6017 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6018 
6019 	mutex_lock(&bp->hwrm_cmd_lock);
6020 	for (i = 0; i < bp->cp_nr_rings; i++) {
6021 		struct bnxt_napi *bnapi = bp->bnapi[i];
6022 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6023 
6024 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
6025 
6026 		rc = _hwrm_send_message(bp, &req, sizeof(req),
6027 					HWRM_CMD_TIMEOUT);
6028 		if (rc)
6029 			break;
6030 
6031 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6032 
6033 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6034 	}
6035 	mutex_unlock(&bp->hwrm_cmd_lock);
6036 	return rc;
6037 }
6038 
6039 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6040 {
6041 	struct hwrm_func_qcfg_input req = {0};
6042 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6043 	u16 flags;
6044 	int rc;
6045 
6046 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6047 	req.fid = cpu_to_le16(0xffff);
6048 	mutex_lock(&bp->hwrm_cmd_lock);
6049 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6050 	if (rc)
6051 		goto func_qcfg_exit;
6052 
6053 #ifdef CONFIG_BNXT_SRIOV
6054 	if (BNXT_VF(bp)) {
6055 		struct bnxt_vf_info *vf = &bp->vf;
6056 
6057 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6058 	}
6059 #endif
6060 	flags = le16_to_cpu(resp->flags);
6061 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6062 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6063 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6064 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6065 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6066 	}
6067 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6068 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6069 
6070 	switch (resp->port_partition_type) {
6071 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6072 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6073 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6074 		bp->port_partition_type = resp->port_partition_type;
6075 		break;
6076 	}
6077 	if (bp->hwrm_spec_code < 0x10707 ||
6078 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6079 		bp->br_mode = BRIDGE_MODE_VEB;
6080 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6081 		bp->br_mode = BRIDGE_MODE_VEPA;
6082 	else
6083 		bp->br_mode = BRIDGE_MODE_UNDEF;
6084 
6085 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6086 	if (!bp->max_mtu)
6087 		bp->max_mtu = BNXT_MAX_MTU;
6088 
6089 func_qcfg_exit:
6090 	mutex_unlock(&bp->hwrm_cmd_lock);
6091 	return rc;
6092 }
6093 
6094 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6095 {
6096 	struct hwrm_func_backing_store_qcaps_input req = {0};
6097 	struct hwrm_func_backing_store_qcaps_output *resp =
6098 		bp->hwrm_cmd_resp_addr;
6099 	int rc;
6100 
6101 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6102 		return 0;
6103 
6104 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6105 	mutex_lock(&bp->hwrm_cmd_lock);
6106 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6107 	if (!rc) {
6108 		struct bnxt_ctx_pg_info *ctx_pg;
6109 		struct bnxt_ctx_mem_info *ctx;
6110 		int i;
6111 
6112 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6113 		if (!ctx) {
6114 			rc = -ENOMEM;
6115 			goto ctx_err;
6116 		}
6117 		ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
6118 		if (!ctx_pg) {
6119 			kfree(ctx);
6120 			rc = -ENOMEM;
6121 			goto ctx_err;
6122 		}
6123 		for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
6124 			ctx->tqm_mem[i] = ctx_pg;
6125 
6126 		bp->ctx = ctx;
6127 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6128 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6129 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6130 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6131 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6132 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6133 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6134 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6135 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6136 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6137 		ctx->vnic_max_vnic_entries =
6138 			le16_to_cpu(resp->vnic_max_vnic_entries);
6139 		ctx->vnic_max_ring_table_entries =
6140 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6141 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6142 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6143 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6144 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6145 		ctx->tqm_min_entries_per_ring =
6146 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6147 		ctx->tqm_max_entries_per_ring =
6148 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6149 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6150 		if (!ctx->tqm_entries_multiple)
6151 			ctx->tqm_entries_multiple = 1;
6152 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6153 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6154 		ctx->mrav_num_entries_units =
6155 			le16_to_cpu(resp->mrav_num_entries_units);
6156 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6157 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6158 	} else {
6159 		rc = 0;
6160 	}
6161 ctx_err:
6162 	mutex_unlock(&bp->hwrm_cmd_lock);
6163 	return rc;
6164 }
6165 
6166 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6167 				  __le64 *pg_dir)
6168 {
6169 	u8 pg_size = 0;
6170 
6171 	if (BNXT_PAGE_SHIFT == 13)
6172 		pg_size = 1 << 4;
6173 	else if (BNXT_PAGE_SIZE == 16)
6174 		pg_size = 2 << 4;
6175 
6176 	*pg_attr = pg_size;
6177 	if (rmem->depth >= 1) {
6178 		if (rmem->depth == 2)
6179 			*pg_attr |= 2;
6180 		else
6181 			*pg_attr |= 1;
6182 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6183 	} else {
6184 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6185 	}
6186 }
6187 
6188 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6189 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6190 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6191 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6192 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6193 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6194 
6195 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6196 {
6197 	struct hwrm_func_backing_store_cfg_input req = {0};
6198 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6199 	struct bnxt_ctx_pg_info *ctx_pg;
6200 	__le32 *num_entries;
6201 	__le64 *pg_dir;
6202 	u32 flags = 0;
6203 	u8 *pg_attr;
6204 	int i, rc;
6205 	u32 ena;
6206 
6207 	if (!ctx)
6208 		return 0;
6209 
6210 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6211 	req.enables = cpu_to_le32(enables);
6212 
6213 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6214 		ctx_pg = &ctx->qp_mem;
6215 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6216 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6217 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6218 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6219 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6220 				      &req.qpc_pg_size_qpc_lvl,
6221 				      &req.qpc_page_dir);
6222 	}
6223 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6224 		ctx_pg = &ctx->srq_mem;
6225 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6226 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6227 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6228 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6229 				      &req.srq_pg_size_srq_lvl,
6230 				      &req.srq_page_dir);
6231 	}
6232 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6233 		ctx_pg = &ctx->cq_mem;
6234 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6235 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6236 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6237 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6238 				      &req.cq_page_dir);
6239 	}
6240 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6241 		ctx_pg = &ctx->vnic_mem;
6242 		req.vnic_num_vnic_entries =
6243 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6244 		req.vnic_num_ring_table_entries =
6245 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6246 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6247 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6248 				      &req.vnic_pg_size_vnic_lvl,
6249 				      &req.vnic_page_dir);
6250 	}
6251 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6252 		ctx_pg = &ctx->stat_mem;
6253 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6254 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6255 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6256 				      &req.stat_pg_size_stat_lvl,
6257 				      &req.stat_page_dir);
6258 	}
6259 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6260 		ctx_pg = &ctx->mrav_mem;
6261 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6262 		if (ctx->mrav_num_entries_units)
6263 			flags |=
6264 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6265 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6266 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6267 				      &req.mrav_pg_size_mrav_lvl,
6268 				      &req.mrav_page_dir);
6269 	}
6270 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6271 		ctx_pg = &ctx->tim_mem;
6272 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6273 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6274 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6275 				      &req.tim_pg_size_tim_lvl,
6276 				      &req.tim_page_dir);
6277 	}
6278 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6279 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6280 	     pg_dir = &req.tqm_sp_page_dir,
6281 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6282 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6283 		if (!(enables & ena))
6284 			continue;
6285 
6286 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6287 		ctx_pg = ctx->tqm_mem[i];
6288 		*num_entries = cpu_to_le32(ctx_pg->entries);
6289 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6290 	}
6291 	req.flags = cpu_to_le32(flags);
6292 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6293 	if (rc)
6294 		rc = -EIO;
6295 	return rc;
6296 }
6297 
6298 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6299 				  struct bnxt_ctx_pg_info *ctx_pg)
6300 {
6301 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6302 
6303 	rmem->page_size = BNXT_PAGE_SIZE;
6304 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6305 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6306 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6307 	if (rmem->depth >= 1)
6308 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6309 	return bnxt_alloc_ring(bp, rmem);
6310 }
6311 
6312 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6313 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6314 				  u8 depth)
6315 {
6316 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6317 	int rc;
6318 
6319 	if (!mem_size)
6320 		return 0;
6321 
6322 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6323 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6324 		ctx_pg->nr_pages = 0;
6325 		return -EINVAL;
6326 	}
6327 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6328 		int nr_tbls, i;
6329 
6330 		rmem->depth = 2;
6331 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6332 					     GFP_KERNEL);
6333 		if (!ctx_pg->ctx_pg_tbl)
6334 			return -ENOMEM;
6335 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6336 		rmem->nr_pages = nr_tbls;
6337 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6338 		if (rc)
6339 			return rc;
6340 		for (i = 0; i < nr_tbls; i++) {
6341 			struct bnxt_ctx_pg_info *pg_tbl;
6342 
6343 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6344 			if (!pg_tbl)
6345 				return -ENOMEM;
6346 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6347 			rmem = &pg_tbl->ring_mem;
6348 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6349 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6350 			rmem->depth = 1;
6351 			rmem->nr_pages = MAX_CTX_PAGES;
6352 			if (i == (nr_tbls - 1)) {
6353 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6354 
6355 				if (rem)
6356 					rmem->nr_pages = rem;
6357 			}
6358 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6359 			if (rc)
6360 				break;
6361 		}
6362 	} else {
6363 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6364 		if (rmem->nr_pages > 1 || depth)
6365 			rmem->depth = 1;
6366 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6367 	}
6368 	return rc;
6369 }
6370 
6371 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6372 				  struct bnxt_ctx_pg_info *ctx_pg)
6373 {
6374 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6375 
6376 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6377 	    ctx_pg->ctx_pg_tbl) {
6378 		int i, nr_tbls = rmem->nr_pages;
6379 
6380 		for (i = 0; i < nr_tbls; i++) {
6381 			struct bnxt_ctx_pg_info *pg_tbl;
6382 			struct bnxt_ring_mem_info *rmem2;
6383 
6384 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
6385 			if (!pg_tbl)
6386 				continue;
6387 			rmem2 = &pg_tbl->ring_mem;
6388 			bnxt_free_ring(bp, rmem2);
6389 			ctx_pg->ctx_pg_arr[i] = NULL;
6390 			kfree(pg_tbl);
6391 			ctx_pg->ctx_pg_tbl[i] = NULL;
6392 		}
6393 		kfree(ctx_pg->ctx_pg_tbl);
6394 		ctx_pg->ctx_pg_tbl = NULL;
6395 	}
6396 	bnxt_free_ring(bp, rmem);
6397 	ctx_pg->nr_pages = 0;
6398 }
6399 
6400 static void bnxt_free_ctx_mem(struct bnxt *bp)
6401 {
6402 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6403 	int i;
6404 
6405 	if (!ctx)
6406 		return;
6407 
6408 	if (ctx->tqm_mem[0]) {
6409 		for (i = 0; i < bp->max_q + 1; i++)
6410 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6411 		kfree(ctx->tqm_mem[0]);
6412 		ctx->tqm_mem[0] = NULL;
6413 	}
6414 
6415 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6416 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6417 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6418 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6419 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6420 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6421 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6422 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6423 }
6424 
6425 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6426 {
6427 	struct bnxt_ctx_pg_info *ctx_pg;
6428 	struct bnxt_ctx_mem_info *ctx;
6429 	u32 mem_size, ena, entries;
6430 	u32 num_mr, num_ah;
6431 	u32 extra_srqs = 0;
6432 	u32 extra_qps = 0;
6433 	u8 pg_lvl = 1;
6434 	int i, rc;
6435 
6436 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6437 	if (rc) {
6438 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6439 			   rc);
6440 		return rc;
6441 	}
6442 	ctx = bp->ctx;
6443 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6444 		return 0;
6445 
6446 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
6447 		pg_lvl = 2;
6448 		extra_qps = 65536;
6449 		extra_srqs = 8192;
6450 	}
6451 
6452 	ctx_pg = &ctx->qp_mem;
6453 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6454 			  extra_qps;
6455 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
6456 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6457 	if (rc)
6458 		return rc;
6459 
6460 	ctx_pg = &ctx->srq_mem;
6461 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6462 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
6463 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6464 	if (rc)
6465 		return rc;
6466 
6467 	ctx_pg = &ctx->cq_mem;
6468 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6469 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
6470 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6471 	if (rc)
6472 		return rc;
6473 
6474 	ctx_pg = &ctx->vnic_mem;
6475 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
6476 			  ctx->vnic_max_ring_table_entries;
6477 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6478 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6479 	if (rc)
6480 		return rc;
6481 
6482 	ctx_pg = &ctx->stat_mem;
6483 	ctx_pg->entries = ctx->stat_max_entries;
6484 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
6485 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6486 	if (rc)
6487 		return rc;
6488 
6489 	ena = 0;
6490 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6491 		goto skip_rdma;
6492 
6493 	ctx_pg = &ctx->mrav_mem;
6494 	/* 128K extra is needed to accommodate static AH context
6495 	 * allocation by f/w.
6496 	 */
6497 	num_mr = 1024 * 256;
6498 	num_ah = 1024 * 128;
6499 	ctx_pg->entries = num_mr + num_ah;
6500 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6501 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2);
6502 	if (rc)
6503 		return rc;
6504 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6505 	if (ctx->mrav_num_entries_units)
6506 		ctx_pg->entries =
6507 			((num_mr / ctx->mrav_num_entries_units) << 16) |
6508 			 (num_ah / ctx->mrav_num_entries_units);
6509 
6510 	ctx_pg = &ctx->tim_mem;
6511 	ctx_pg->entries = ctx->qp_mem.entries;
6512 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
6513 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6514 	if (rc)
6515 		return rc;
6516 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6517 
6518 skip_rdma:
6519 	entries = ctx->qp_max_l2_entries + extra_qps;
6520 	entries = roundup(entries, ctx->tqm_entries_multiple);
6521 	entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
6522 			  ctx->tqm_max_entries_per_ring);
6523 	for (i = 0; i < bp->max_q + 1; i++) {
6524 		ctx_pg = ctx->tqm_mem[i];
6525 		ctx_pg->entries = entries;
6526 		mem_size = ctx->tqm_entry_size * entries;
6527 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6528 		if (rc)
6529 			return rc;
6530 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6531 	}
6532 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6533 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6534 	if (rc)
6535 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6536 			   rc);
6537 	else
6538 		ctx->flags |= BNXT_CTX_FLAG_INITED;
6539 
6540 	return 0;
6541 }
6542 
6543 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6544 {
6545 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6546 	struct hwrm_func_resource_qcaps_input req = {0};
6547 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6548 	int rc;
6549 
6550 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6551 	req.fid = cpu_to_le16(0xffff);
6552 
6553 	mutex_lock(&bp->hwrm_cmd_lock);
6554 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6555 				       HWRM_CMD_TIMEOUT);
6556 	if (rc) {
6557 		rc = -EIO;
6558 		goto hwrm_func_resc_qcaps_exit;
6559 	}
6560 
6561 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6562 	if (!all)
6563 		goto hwrm_func_resc_qcaps_exit;
6564 
6565 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6566 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6567 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6568 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6569 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6570 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6571 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6572 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6573 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6574 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6575 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6576 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6577 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6578 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6579 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6580 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6581 
6582 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6583 		u16 max_msix = le16_to_cpu(resp->max_msix);
6584 
6585 		hw_resc->max_nqs = max_msix;
6586 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6587 	}
6588 
6589 	if (BNXT_PF(bp)) {
6590 		struct bnxt_pf_info *pf = &bp->pf;
6591 
6592 		pf->vf_resv_strategy =
6593 			le16_to_cpu(resp->vf_reservation_strategy);
6594 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6595 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6596 	}
6597 hwrm_func_resc_qcaps_exit:
6598 	mutex_unlock(&bp->hwrm_cmd_lock);
6599 	return rc;
6600 }
6601 
6602 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6603 {
6604 	int rc = 0;
6605 	struct hwrm_func_qcaps_input req = {0};
6606 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6607 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6608 	u32 flags;
6609 
6610 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6611 	req.fid = cpu_to_le16(0xffff);
6612 
6613 	mutex_lock(&bp->hwrm_cmd_lock);
6614 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6615 	if (rc)
6616 		goto hwrm_func_qcaps_exit;
6617 
6618 	flags = le32_to_cpu(resp->flags);
6619 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6620 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6621 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6622 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6623 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
6624 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
6625 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
6626 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
6627 
6628 	bp->tx_push_thresh = 0;
6629 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
6630 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6631 
6632 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6633 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6634 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6635 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6636 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
6637 	if (!hw_resc->max_hw_ring_grps)
6638 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
6639 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6640 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6641 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6642 
6643 	if (BNXT_PF(bp)) {
6644 		struct bnxt_pf_info *pf = &bp->pf;
6645 
6646 		pf->fw_fid = le16_to_cpu(resp->fid);
6647 		pf->port_id = le16_to_cpu(resp->port_id);
6648 		bp->dev->dev_port = pf->port_id;
6649 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
6650 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
6651 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
6652 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
6653 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
6654 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
6655 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
6656 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
6657 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
6658 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
6659 			bp->flags |= BNXT_FLAG_WOL_CAP;
6660 	} else {
6661 #ifdef CONFIG_BNXT_SRIOV
6662 		struct bnxt_vf_info *vf = &bp->vf;
6663 
6664 		vf->fw_fid = le16_to_cpu(resp->fid);
6665 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
6666 #endif
6667 	}
6668 
6669 hwrm_func_qcaps_exit:
6670 	mutex_unlock(&bp->hwrm_cmd_lock);
6671 	return rc;
6672 }
6673 
6674 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
6675 
6676 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
6677 {
6678 	int rc;
6679 
6680 	rc = __bnxt_hwrm_func_qcaps(bp);
6681 	if (rc)
6682 		return rc;
6683 	rc = bnxt_hwrm_queue_qportcfg(bp);
6684 	if (rc) {
6685 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
6686 		return rc;
6687 	}
6688 	if (bp->hwrm_spec_code >= 0x10803) {
6689 		rc = bnxt_alloc_ctx_mem(bp);
6690 		if (rc)
6691 			return rc;
6692 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
6693 		if (!rc)
6694 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
6695 	}
6696 	return 0;
6697 }
6698 
6699 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
6700 {
6701 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
6702 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
6703 	int rc = 0;
6704 	u32 flags;
6705 
6706 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
6707 		return 0;
6708 
6709 	resp = bp->hwrm_cmd_resp_addr;
6710 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
6711 
6712 	mutex_lock(&bp->hwrm_cmd_lock);
6713 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6714 	if (rc)
6715 		goto hwrm_cfa_adv_qcaps_exit;
6716 
6717 	flags = le32_to_cpu(resp->flags);
6718 	if (flags &
6719 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_SUPPORTED)
6720 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX;
6721 
6722 hwrm_cfa_adv_qcaps_exit:
6723 	mutex_unlock(&bp->hwrm_cmd_lock);
6724 	return rc;
6725 }
6726 
6727 static int bnxt_hwrm_func_reset(struct bnxt *bp)
6728 {
6729 	struct hwrm_func_reset_input req = {0};
6730 
6731 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
6732 	req.enables = 0;
6733 
6734 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
6735 }
6736 
6737 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
6738 {
6739 	int rc = 0;
6740 	struct hwrm_queue_qportcfg_input req = {0};
6741 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
6742 	u8 i, j, *qptr;
6743 	bool no_rdma;
6744 
6745 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
6746 
6747 	mutex_lock(&bp->hwrm_cmd_lock);
6748 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6749 	if (rc)
6750 		goto qportcfg_exit;
6751 
6752 	if (!resp->max_configurable_queues) {
6753 		rc = -EINVAL;
6754 		goto qportcfg_exit;
6755 	}
6756 	bp->max_tc = resp->max_configurable_queues;
6757 	bp->max_lltc = resp->max_configurable_lossless_queues;
6758 	if (bp->max_tc > BNXT_MAX_QUEUE)
6759 		bp->max_tc = BNXT_MAX_QUEUE;
6760 
6761 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
6762 	qptr = &resp->queue_id0;
6763 	for (i = 0, j = 0; i < bp->max_tc; i++) {
6764 		bp->q_info[j].queue_id = *qptr;
6765 		bp->q_ids[i] = *qptr++;
6766 		bp->q_info[j].queue_profile = *qptr++;
6767 		bp->tc_to_qidx[j] = j;
6768 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
6769 		    (no_rdma && BNXT_PF(bp)))
6770 			j++;
6771 	}
6772 	bp->max_q = bp->max_tc;
6773 	bp->max_tc = max_t(u8, j, 1);
6774 
6775 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
6776 		bp->max_tc = 1;
6777 
6778 	if (bp->max_lltc > bp->max_tc)
6779 		bp->max_lltc = bp->max_tc;
6780 
6781 qportcfg_exit:
6782 	mutex_unlock(&bp->hwrm_cmd_lock);
6783 	return rc;
6784 }
6785 
6786 static int bnxt_hwrm_ver_get(struct bnxt *bp)
6787 {
6788 	int rc;
6789 	struct hwrm_ver_get_input req = {0};
6790 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
6791 	u32 dev_caps_cfg;
6792 
6793 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
6794 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
6795 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
6796 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
6797 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
6798 	mutex_lock(&bp->hwrm_cmd_lock);
6799 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6800 	if (rc)
6801 		goto hwrm_ver_get_exit;
6802 
6803 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
6804 
6805 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
6806 			     resp->hwrm_intf_min_8b << 8 |
6807 			     resp->hwrm_intf_upd_8b;
6808 	if (resp->hwrm_intf_maj_8b < 1) {
6809 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
6810 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
6811 			    resp->hwrm_intf_upd_8b);
6812 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
6813 	}
6814 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
6815 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
6816 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
6817 
6818 	if (strlen(resp->active_pkg_name)) {
6819 		int fw_ver_len = strlen(bp->fw_ver_str);
6820 
6821 		snprintf(bp->fw_ver_str + fw_ver_len,
6822 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
6823 			 resp->active_pkg_name);
6824 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
6825 	}
6826 
6827 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
6828 	if (!bp->hwrm_cmd_timeout)
6829 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
6830 
6831 	if (resp->hwrm_intf_maj_8b >= 1) {
6832 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
6833 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
6834 	}
6835 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
6836 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
6837 
6838 	bp->chip_num = le16_to_cpu(resp->chip_num);
6839 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
6840 	    !resp->chip_metal)
6841 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
6842 
6843 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
6844 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
6845 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
6846 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
6847 
6848 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
6849 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
6850 
6851 	if (dev_caps_cfg &
6852 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
6853 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
6854 
6855 	if (dev_caps_cfg &
6856 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
6857 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
6858 
6859 	if (dev_caps_cfg &
6860 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
6861 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
6862 
6863 hwrm_ver_get_exit:
6864 	mutex_unlock(&bp->hwrm_cmd_lock);
6865 	return rc;
6866 }
6867 
6868 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
6869 {
6870 	struct hwrm_fw_set_time_input req = {0};
6871 	struct tm tm;
6872 	time64_t now = ktime_get_real_seconds();
6873 
6874 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
6875 	    bp->hwrm_spec_code < 0x10400)
6876 		return -EOPNOTSUPP;
6877 
6878 	time64_to_tm(now, 0, &tm);
6879 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
6880 	req.year = cpu_to_le16(1900 + tm.tm_year);
6881 	req.month = 1 + tm.tm_mon;
6882 	req.day = tm.tm_mday;
6883 	req.hour = tm.tm_hour;
6884 	req.minute = tm.tm_min;
6885 	req.second = tm.tm_sec;
6886 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6887 }
6888 
6889 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
6890 {
6891 	int rc;
6892 	struct bnxt_pf_info *pf = &bp->pf;
6893 	struct hwrm_port_qstats_input req = {0};
6894 
6895 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
6896 		return 0;
6897 
6898 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
6899 	req.port_id = cpu_to_le16(pf->port_id);
6900 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
6901 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
6902 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6903 	return rc;
6904 }
6905 
6906 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
6907 {
6908 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
6909 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
6910 	struct hwrm_port_qstats_ext_input req = {0};
6911 	struct bnxt_pf_info *pf = &bp->pf;
6912 	u32 tx_stat_size;
6913 	int rc;
6914 
6915 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
6916 		return 0;
6917 
6918 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
6919 	req.port_id = cpu_to_le16(pf->port_id);
6920 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
6921 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
6922 	tx_stat_size = bp->hw_tx_port_stats_ext ?
6923 		       sizeof(*bp->hw_tx_port_stats_ext) : 0;
6924 	req.tx_stat_size = cpu_to_le16(tx_stat_size);
6925 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
6926 	mutex_lock(&bp->hwrm_cmd_lock);
6927 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6928 	if (!rc) {
6929 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
6930 		bp->fw_tx_stats_ext_size = tx_stat_size ?
6931 			le16_to_cpu(resp->tx_stat_size) / 8 : 0;
6932 	} else {
6933 		bp->fw_rx_stats_ext_size = 0;
6934 		bp->fw_tx_stats_ext_size = 0;
6935 	}
6936 	if (bp->fw_tx_stats_ext_size <=
6937 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
6938 		mutex_unlock(&bp->hwrm_cmd_lock);
6939 		bp->pri2cos_valid = 0;
6940 		return rc;
6941 	}
6942 
6943 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
6944 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
6945 
6946 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
6947 	if (!rc) {
6948 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
6949 		u8 *pri2cos;
6950 		int i, j;
6951 
6952 		resp2 = bp->hwrm_cmd_resp_addr;
6953 		pri2cos = &resp2->pri0_cos_queue_id;
6954 		for (i = 0; i < 8; i++) {
6955 			u8 queue_id = pri2cos[i];
6956 
6957 			for (j = 0; j < bp->max_q; j++) {
6958 				if (bp->q_ids[j] == queue_id)
6959 					bp->pri2cos[i] = j;
6960 			}
6961 		}
6962 		bp->pri2cos_valid = 1;
6963 	}
6964 	mutex_unlock(&bp->hwrm_cmd_lock);
6965 	return rc;
6966 }
6967 
6968 static int bnxt_hwrm_pcie_qstats(struct bnxt *bp)
6969 {
6970 	struct hwrm_pcie_qstats_input req = {0};
6971 
6972 	if (!(bp->flags & BNXT_FLAG_PCIE_STATS))
6973 		return 0;
6974 
6975 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1);
6976 	req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats));
6977 	req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map);
6978 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6979 }
6980 
6981 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
6982 {
6983 	if (bp->vxlan_port_cnt) {
6984 		bnxt_hwrm_tunnel_dst_port_free(
6985 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6986 	}
6987 	bp->vxlan_port_cnt = 0;
6988 	if (bp->nge_port_cnt) {
6989 		bnxt_hwrm_tunnel_dst_port_free(
6990 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6991 	}
6992 	bp->nge_port_cnt = 0;
6993 }
6994 
6995 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
6996 {
6997 	int rc, i;
6998 	u32 tpa_flags = 0;
6999 
7000 	if (set_tpa)
7001 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
7002 	for (i = 0; i < bp->nr_vnics; i++) {
7003 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7004 		if (rc) {
7005 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7006 				   i, rc);
7007 			return rc;
7008 		}
7009 	}
7010 	return 0;
7011 }
7012 
7013 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7014 {
7015 	int i;
7016 
7017 	for (i = 0; i < bp->nr_vnics; i++)
7018 		bnxt_hwrm_vnic_set_rss(bp, i, false);
7019 }
7020 
7021 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7022 				    bool irq_re_init)
7023 {
7024 	if (bp->vnic_info) {
7025 		bnxt_hwrm_clear_vnic_filter(bp);
7026 		/* clear all RSS setting before free vnic ctx */
7027 		bnxt_hwrm_clear_vnic_rss(bp);
7028 		bnxt_hwrm_vnic_ctx_free(bp);
7029 		/* before free the vnic, undo the vnic tpa settings */
7030 		if (bp->flags & BNXT_FLAG_TPA)
7031 			bnxt_set_tpa(bp, false);
7032 		bnxt_hwrm_vnic_free(bp);
7033 	}
7034 	bnxt_hwrm_ring_free(bp, close_path);
7035 	bnxt_hwrm_ring_grp_free(bp);
7036 	if (irq_re_init) {
7037 		bnxt_hwrm_stat_ctx_free(bp);
7038 		bnxt_hwrm_free_tunnel_ports(bp);
7039 	}
7040 }
7041 
7042 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
7043 {
7044 	struct hwrm_func_cfg_input req = {0};
7045 	int rc;
7046 
7047 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7048 	req.fid = cpu_to_le16(0xffff);
7049 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
7050 	if (br_mode == BRIDGE_MODE_VEB)
7051 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
7052 	else if (br_mode == BRIDGE_MODE_VEPA)
7053 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
7054 	else
7055 		return -EINVAL;
7056 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7057 	if (rc)
7058 		rc = -EIO;
7059 	return rc;
7060 }
7061 
7062 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
7063 {
7064 	struct hwrm_func_cfg_input req = {0};
7065 	int rc;
7066 
7067 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7068 		return 0;
7069 
7070 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7071 	req.fid = cpu_to_le16(0xffff);
7072 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7073 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7074 	if (size == 128)
7075 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7076 
7077 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7078 	if (rc)
7079 		rc = -EIO;
7080 	return rc;
7081 }
7082 
7083 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7084 {
7085 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7086 	int rc;
7087 
7088 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7089 		goto skip_rss_ctx;
7090 
7091 	/* allocate context for vnic */
7092 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7093 	if (rc) {
7094 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7095 			   vnic_id, rc);
7096 		goto vnic_setup_err;
7097 	}
7098 	bp->rsscos_nr_ctxs++;
7099 
7100 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7101 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7102 		if (rc) {
7103 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7104 				   vnic_id, rc);
7105 			goto vnic_setup_err;
7106 		}
7107 		bp->rsscos_nr_ctxs++;
7108 	}
7109 
7110 skip_rss_ctx:
7111 	/* configure default vnic, ring grp */
7112 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7113 	if (rc) {
7114 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7115 			   vnic_id, rc);
7116 		goto vnic_setup_err;
7117 	}
7118 
7119 	/* Enable RSS hashing on vnic */
7120 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7121 	if (rc) {
7122 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7123 			   vnic_id, rc);
7124 		goto vnic_setup_err;
7125 	}
7126 
7127 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7128 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7129 		if (rc) {
7130 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7131 				   vnic_id, rc);
7132 		}
7133 	}
7134 
7135 vnic_setup_err:
7136 	return rc;
7137 }
7138 
7139 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7140 {
7141 	int rc, i, nr_ctxs;
7142 
7143 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
7144 	for (i = 0; i < nr_ctxs; i++) {
7145 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7146 		if (rc) {
7147 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7148 				   vnic_id, i, rc);
7149 			break;
7150 		}
7151 		bp->rsscos_nr_ctxs++;
7152 	}
7153 	if (i < nr_ctxs)
7154 		return -ENOMEM;
7155 
7156 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7157 	if (rc) {
7158 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7159 			   vnic_id, rc);
7160 		return rc;
7161 	}
7162 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7163 	if (rc) {
7164 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7165 			   vnic_id, rc);
7166 		return rc;
7167 	}
7168 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7169 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7170 		if (rc) {
7171 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7172 				   vnic_id, rc);
7173 		}
7174 	}
7175 	return rc;
7176 }
7177 
7178 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7179 {
7180 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7181 		return __bnxt_setup_vnic_p5(bp, vnic_id);
7182 	else
7183 		return __bnxt_setup_vnic(bp, vnic_id);
7184 }
7185 
7186 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7187 {
7188 #ifdef CONFIG_RFS_ACCEL
7189 	int i, rc = 0;
7190 
7191 	for (i = 0; i < bp->rx_nr_rings; i++) {
7192 		struct bnxt_vnic_info *vnic;
7193 		u16 vnic_id = i + 1;
7194 		u16 ring_id = i;
7195 
7196 		if (vnic_id >= bp->nr_vnics)
7197 			break;
7198 
7199 		vnic = &bp->vnic_info[vnic_id];
7200 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
7201 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7202 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7203 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7204 		if (rc) {
7205 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7206 				   vnic_id, rc);
7207 			break;
7208 		}
7209 		rc = bnxt_setup_vnic(bp, vnic_id);
7210 		if (rc)
7211 			break;
7212 	}
7213 	return rc;
7214 #else
7215 	return 0;
7216 #endif
7217 }
7218 
7219 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7220 static bool bnxt_promisc_ok(struct bnxt *bp)
7221 {
7222 #ifdef CONFIG_BNXT_SRIOV
7223 	if (BNXT_VF(bp) && !bp->vf.vlan)
7224 		return false;
7225 #endif
7226 	return true;
7227 }
7228 
7229 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7230 {
7231 	unsigned int rc = 0;
7232 
7233 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7234 	if (rc) {
7235 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7236 			   rc);
7237 		return rc;
7238 	}
7239 
7240 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
7241 	if (rc) {
7242 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7243 			   rc);
7244 		return rc;
7245 	}
7246 	return rc;
7247 }
7248 
7249 static int bnxt_cfg_rx_mode(struct bnxt *);
7250 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7251 
7252 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7253 {
7254 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7255 	int rc = 0;
7256 	unsigned int rx_nr_rings = bp->rx_nr_rings;
7257 
7258 	if (irq_re_init) {
7259 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
7260 		if (rc) {
7261 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7262 				   rc);
7263 			goto err_out;
7264 		}
7265 	}
7266 
7267 	rc = bnxt_hwrm_ring_alloc(bp);
7268 	if (rc) {
7269 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7270 		goto err_out;
7271 	}
7272 
7273 	rc = bnxt_hwrm_ring_grp_alloc(bp);
7274 	if (rc) {
7275 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7276 		goto err_out;
7277 	}
7278 
7279 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7280 		rx_nr_rings--;
7281 
7282 	/* default vnic 0 */
7283 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7284 	if (rc) {
7285 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7286 		goto err_out;
7287 	}
7288 
7289 	rc = bnxt_setup_vnic(bp, 0);
7290 	if (rc)
7291 		goto err_out;
7292 
7293 	if (bp->flags & BNXT_FLAG_RFS) {
7294 		rc = bnxt_alloc_rfs_vnics(bp);
7295 		if (rc)
7296 			goto err_out;
7297 	}
7298 
7299 	if (bp->flags & BNXT_FLAG_TPA) {
7300 		rc = bnxt_set_tpa(bp, true);
7301 		if (rc)
7302 			goto err_out;
7303 	}
7304 
7305 	if (BNXT_VF(bp))
7306 		bnxt_update_vf_mac(bp);
7307 
7308 	/* Filter for default vnic 0 */
7309 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7310 	if (rc) {
7311 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7312 		goto err_out;
7313 	}
7314 	vnic->uc_filter_count = 1;
7315 
7316 	vnic->rx_mask = 0;
7317 	if (bp->dev->flags & IFF_BROADCAST)
7318 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7319 
7320 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7321 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7322 
7323 	if (bp->dev->flags & IFF_ALLMULTI) {
7324 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7325 		vnic->mc_list_count = 0;
7326 	} else {
7327 		u32 mask = 0;
7328 
7329 		bnxt_mc_list_updated(bp, &mask);
7330 		vnic->rx_mask |= mask;
7331 	}
7332 
7333 	rc = bnxt_cfg_rx_mode(bp);
7334 	if (rc)
7335 		goto err_out;
7336 
7337 	rc = bnxt_hwrm_set_coal(bp);
7338 	if (rc)
7339 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7340 				rc);
7341 
7342 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7343 		rc = bnxt_setup_nitroa0_vnic(bp);
7344 		if (rc)
7345 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7346 				   rc);
7347 	}
7348 
7349 	if (BNXT_VF(bp)) {
7350 		bnxt_hwrm_func_qcfg(bp);
7351 		netdev_update_features(bp->dev);
7352 	}
7353 
7354 	return 0;
7355 
7356 err_out:
7357 	bnxt_hwrm_resource_free(bp, 0, true);
7358 
7359 	return rc;
7360 }
7361 
7362 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7363 {
7364 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7365 	return 0;
7366 }
7367 
7368 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7369 {
7370 	bnxt_init_cp_rings(bp);
7371 	bnxt_init_rx_rings(bp);
7372 	bnxt_init_tx_rings(bp);
7373 	bnxt_init_ring_grps(bp, irq_re_init);
7374 	bnxt_init_vnics(bp);
7375 
7376 	return bnxt_init_chip(bp, irq_re_init);
7377 }
7378 
7379 static int bnxt_set_real_num_queues(struct bnxt *bp)
7380 {
7381 	int rc;
7382 	struct net_device *dev = bp->dev;
7383 
7384 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7385 					  bp->tx_nr_rings_xdp);
7386 	if (rc)
7387 		return rc;
7388 
7389 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7390 	if (rc)
7391 		return rc;
7392 
7393 #ifdef CONFIG_RFS_ACCEL
7394 	if (bp->flags & BNXT_FLAG_RFS)
7395 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7396 #endif
7397 
7398 	return rc;
7399 }
7400 
7401 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7402 			   bool shared)
7403 {
7404 	int _rx = *rx, _tx = *tx;
7405 
7406 	if (shared) {
7407 		*rx = min_t(int, _rx, max);
7408 		*tx = min_t(int, _tx, max);
7409 	} else {
7410 		if (max < 2)
7411 			return -ENOMEM;
7412 
7413 		while (_rx + _tx > max) {
7414 			if (_rx > _tx && _rx > 1)
7415 				_rx--;
7416 			else if (_tx > 1)
7417 				_tx--;
7418 		}
7419 		*rx = _rx;
7420 		*tx = _tx;
7421 	}
7422 	return 0;
7423 }
7424 
7425 static void bnxt_setup_msix(struct bnxt *bp)
7426 {
7427 	const int len = sizeof(bp->irq_tbl[0].name);
7428 	struct net_device *dev = bp->dev;
7429 	int tcs, i;
7430 
7431 	tcs = netdev_get_num_tc(dev);
7432 	if (tcs > 1) {
7433 		int i, off, count;
7434 
7435 		for (i = 0; i < tcs; i++) {
7436 			count = bp->tx_nr_rings_per_tc;
7437 			off = i * count;
7438 			netdev_set_tc_queue(dev, i, count, off);
7439 		}
7440 	}
7441 
7442 	for (i = 0; i < bp->cp_nr_rings; i++) {
7443 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7444 		char *attr;
7445 
7446 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7447 			attr = "TxRx";
7448 		else if (i < bp->rx_nr_rings)
7449 			attr = "rx";
7450 		else
7451 			attr = "tx";
7452 
7453 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7454 			 attr, i);
7455 		bp->irq_tbl[map_idx].handler = bnxt_msix;
7456 	}
7457 }
7458 
7459 static void bnxt_setup_inta(struct bnxt *bp)
7460 {
7461 	const int len = sizeof(bp->irq_tbl[0].name);
7462 
7463 	if (netdev_get_num_tc(bp->dev))
7464 		netdev_reset_tc(bp->dev);
7465 
7466 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7467 		 0);
7468 	bp->irq_tbl[0].handler = bnxt_inta;
7469 }
7470 
7471 static int bnxt_setup_int_mode(struct bnxt *bp)
7472 {
7473 	int rc;
7474 
7475 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7476 		bnxt_setup_msix(bp);
7477 	else
7478 		bnxt_setup_inta(bp);
7479 
7480 	rc = bnxt_set_real_num_queues(bp);
7481 	return rc;
7482 }
7483 
7484 #ifdef CONFIG_RFS_ACCEL
7485 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7486 {
7487 	return bp->hw_resc.max_rsscos_ctxs;
7488 }
7489 
7490 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7491 {
7492 	return bp->hw_resc.max_vnics;
7493 }
7494 #endif
7495 
7496 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
7497 {
7498 	return bp->hw_resc.max_stat_ctxs;
7499 }
7500 
7501 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
7502 {
7503 	return bp->hw_resc.max_cp_rings;
7504 }
7505 
7506 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
7507 {
7508 	unsigned int cp = bp->hw_resc.max_cp_rings;
7509 
7510 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7511 		cp -= bnxt_get_ulp_msix_num(bp);
7512 
7513 	return cp;
7514 }
7515 
7516 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
7517 {
7518 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7519 
7520 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7521 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
7522 
7523 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
7524 }
7525 
7526 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
7527 {
7528 	bp->hw_resc.max_irqs = max_irqs;
7529 }
7530 
7531 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
7532 {
7533 	unsigned int cp;
7534 
7535 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
7536 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7537 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
7538 	else
7539 		return cp - bp->cp_nr_rings;
7540 }
7541 
7542 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
7543 {
7544 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
7545 }
7546 
7547 int bnxt_get_avail_msix(struct bnxt *bp, int num)
7548 {
7549 	int max_cp = bnxt_get_max_func_cp_rings(bp);
7550 	int max_irq = bnxt_get_max_func_irqs(bp);
7551 	int total_req = bp->cp_nr_rings + num;
7552 	int max_idx, avail_msix;
7553 
7554 	max_idx = bp->total_irqs;
7555 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7556 		max_idx = min_t(int, bp->total_irqs, max_cp);
7557 	avail_msix = max_idx - bp->cp_nr_rings;
7558 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
7559 		return avail_msix;
7560 
7561 	if (max_irq < total_req) {
7562 		num = max_irq - bp->cp_nr_rings;
7563 		if (num <= 0)
7564 			return 0;
7565 	}
7566 	return num;
7567 }
7568 
7569 static int bnxt_get_num_msix(struct bnxt *bp)
7570 {
7571 	if (!BNXT_NEW_RM(bp))
7572 		return bnxt_get_max_func_irqs(bp);
7573 
7574 	return bnxt_nq_rings_in_use(bp);
7575 }
7576 
7577 static int bnxt_init_msix(struct bnxt *bp)
7578 {
7579 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
7580 	struct msix_entry *msix_ent;
7581 
7582 	total_vecs = bnxt_get_num_msix(bp);
7583 	max = bnxt_get_max_func_irqs(bp);
7584 	if (total_vecs > max)
7585 		total_vecs = max;
7586 
7587 	if (!total_vecs)
7588 		return 0;
7589 
7590 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
7591 	if (!msix_ent)
7592 		return -ENOMEM;
7593 
7594 	for (i = 0; i < total_vecs; i++) {
7595 		msix_ent[i].entry = i;
7596 		msix_ent[i].vector = 0;
7597 	}
7598 
7599 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
7600 		min = 2;
7601 
7602 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
7603 	ulp_msix = bnxt_get_ulp_msix_num(bp);
7604 	if (total_vecs < 0 || total_vecs < ulp_msix) {
7605 		rc = -ENODEV;
7606 		goto msix_setup_exit;
7607 	}
7608 
7609 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
7610 	if (bp->irq_tbl) {
7611 		for (i = 0; i < total_vecs; i++)
7612 			bp->irq_tbl[i].vector = msix_ent[i].vector;
7613 
7614 		bp->total_irqs = total_vecs;
7615 		/* Trim rings based upon num of vectors allocated */
7616 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
7617 				     total_vecs - ulp_msix, min == 1);
7618 		if (rc)
7619 			goto msix_setup_exit;
7620 
7621 		bp->cp_nr_rings = (min == 1) ?
7622 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7623 				  bp->tx_nr_rings + bp->rx_nr_rings;
7624 
7625 	} else {
7626 		rc = -ENOMEM;
7627 		goto msix_setup_exit;
7628 	}
7629 	bp->flags |= BNXT_FLAG_USING_MSIX;
7630 	kfree(msix_ent);
7631 	return 0;
7632 
7633 msix_setup_exit:
7634 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
7635 	kfree(bp->irq_tbl);
7636 	bp->irq_tbl = NULL;
7637 	pci_disable_msix(bp->pdev);
7638 	kfree(msix_ent);
7639 	return rc;
7640 }
7641 
7642 static int bnxt_init_inta(struct bnxt *bp)
7643 {
7644 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
7645 	if (!bp->irq_tbl)
7646 		return -ENOMEM;
7647 
7648 	bp->total_irqs = 1;
7649 	bp->rx_nr_rings = 1;
7650 	bp->tx_nr_rings = 1;
7651 	bp->cp_nr_rings = 1;
7652 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
7653 	bp->irq_tbl[0].vector = bp->pdev->irq;
7654 	return 0;
7655 }
7656 
7657 static int bnxt_init_int_mode(struct bnxt *bp)
7658 {
7659 	int rc = 0;
7660 
7661 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
7662 		rc = bnxt_init_msix(bp);
7663 
7664 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
7665 		/* fallback to INTA */
7666 		rc = bnxt_init_inta(bp);
7667 	}
7668 	return rc;
7669 }
7670 
7671 static void bnxt_clear_int_mode(struct bnxt *bp)
7672 {
7673 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7674 		pci_disable_msix(bp->pdev);
7675 
7676 	kfree(bp->irq_tbl);
7677 	bp->irq_tbl = NULL;
7678 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
7679 }
7680 
7681 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
7682 {
7683 	int tcs = netdev_get_num_tc(bp->dev);
7684 	bool irq_cleared = false;
7685 	int rc;
7686 
7687 	if (!bnxt_need_reserve_rings(bp))
7688 		return 0;
7689 
7690 	if (irq_re_init && BNXT_NEW_RM(bp) &&
7691 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
7692 		bnxt_ulp_irq_stop(bp);
7693 		bnxt_clear_int_mode(bp);
7694 		irq_cleared = true;
7695 	}
7696 	rc = __bnxt_reserve_rings(bp);
7697 	if (irq_cleared) {
7698 		if (!rc)
7699 			rc = bnxt_init_int_mode(bp);
7700 		bnxt_ulp_irq_restart(bp, rc);
7701 	}
7702 	if (rc) {
7703 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
7704 		return rc;
7705 	}
7706 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
7707 		netdev_err(bp->dev, "tx ring reservation failure\n");
7708 		netdev_reset_tc(bp->dev);
7709 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
7710 		return -ENOMEM;
7711 	}
7712 	return 0;
7713 }
7714 
7715 static void bnxt_free_irq(struct bnxt *bp)
7716 {
7717 	struct bnxt_irq *irq;
7718 	int i;
7719 
7720 #ifdef CONFIG_RFS_ACCEL
7721 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
7722 	bp->dev->rx_cpu_rmap = NULL;
7723 #endif
7724 	if (!bp->irq_tbl || !bp->bnapi)
7725 		return;
7726 
7727 	for (i = 0; i < bp->cp_nr_rings; i++) {
7728 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7729 
7730 		irq = &bp->irq_tbl[map_idx];
7731 		if (irq->requested) {
7732 			if (irq->have_cpumask) {
7733 				irq_set_affinity_hint(irq->vector, NULL);
7734 				free_cpumask_var(irq->cpu_mask);
7735 				irq->have_cpumask = 0;
7736 			}
7737 			free_irq(irq->vector, bp->bnapi[i]);
7738 		}
7739 
7740 		irq->requested = 0;
7741 	}
7742 }
7743 
7744 static int bnxt_request_irq(struct bnxt *bp)
7745 {
7746 	int i, j, rc = 0;
7747 	unsigned long flags = 0;
7748 #ifdef CONFIG_RFS_ACCEL
7749 	struct cpu_rmap *rmap;
7750 #endif
7751 
7752 	rc = bnxt_setup_int_mode(bp);
7753 	if (rc) {
7754 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
7755 			   rc);
7756 		return rc;
7757 	}
7758 #ifdef CONFIG_RFS_ACCEL
7759 	rmap = bp->dev->rx_cpu_rmap;
7760 #endif
7761 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
7762 		flags = IRQF_SHARED;
7763 
7764 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
7765 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7766 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
7767 
7768 #ifdef CONFIG_RFS_ACCEL
7769 		if (rmap && bp->bnapi[i]->rx_ring) {
7770 			rc = irq_cpu_rmap_add(rmap, irq->vector);
7771 			if (rc)
7772 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
7773 					    j);
7774 			j++;
7775 		}
7776 #endif
7777 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
7778 				 bp->bnapi[i]);
7779 		if (rc)
7780 			break;
7781 
7782 		irq->requested = 1;
7783 
7784 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
7785 			int numa_node = dev_to_node(&bp->pdev->dev);
7786 
7787 			irq->have_cpumask = 1;
7788 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
7789 					irq->cpu_mask);
7790 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
7791 			if (rc) {
7792 				netdev_warn(bp->dev,
7793 					    "Set affinity failed, IRQ = %d\n",
7794 					    irq->vector);
7795 				break;
7796 			}
7797 		}
7798 	}
7799 	return rc;
7800 }
7801 
7802 static void bnxt_del_napi(struct bnxt *bp)
7803 {
7804 	int i;
7805 
7806 	if (!bp->bnapi)
7807 		return;
7808 
7809 	for (i = 0; i < bp->cp_nr_rings; i++) {
7810 		struct bnxt_napi *bnapi = bp->bnapi[i];
7811 
7812 		napi_hash_del(&bnapi->napi);
7813 		netif_napi_del(&bnapi->napi);
7814 	}
7815 	/* We called napi_hash_del() before netif_napi_del(), we need
7816 	 * to respect an RCU grace period before freeing napi structures.
7817 	 */
7818 	synchronize_net();
7819 }
7820 
7821 static void bnxt_init_napi(struct bnxt *bp)
7822 {
7823 	int i;
7824 	unsigned int cp_nr_rings = bp->cp_nr_rings;
7825 	struct bnxt_napi *bnapi;
7826 
7827 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
7828 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
7829 
7830 		if (bp->flags & BNXT_FLAG_CHIP_P5)
7831 			poll_fn = bnxt_poll_p5;
7832 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7833 			cp_nr_rings--;
7834 		for (i = 0; i < cp_nr_rings; i++) {
7835 			bnapi = bp->bnapi[i];
7836 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
7837 		}
7838 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7839 			bnapi = bp->bnapi[cp_nr_rings];
7840 			netif_napi_add(bp->dev, &bnapi->napi,
7841 				       bnxt_poll_nitroa0, 64);
7842 		}
7843 	} else {
7844 		bnapi = bp->bnapi[0];
7845 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
7846 	}
7847 }
7848 
7849 static void bnxt_disable_napi(struct bnxt *bp)
7850 {
7851 	int i;
7852 
7853 	if (!bp->bnapi)
7854 		return;
7855 
7856 	for (i = 0; i < bp->cp_nr_rings; i++) {
7857 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7858 
7859 		if (bp->bnapi[i]->rx_ring)
7860 			cancel_work_sync(&cpr->dim.work);
7861 
7862 		napi_disable(&bp->bnapi[i]->napi);
7863 	}
7864 }
7865 
7866 static void bnxt_enable_napi(struct bnxt *bp)
7867 {
7868 	int i;
7869 
7870 	for (i = 0; i < bp->cp_nr_rings; i++) {
7871 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7872 		bp->bnapi[i]->in_reset = false;
7873 
7874 		if (bp->bnapi[i]->rx_ring) {
7875 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
7876 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
7877 		}
7878 		napi_enable(&bp->bnapi[i]->napi);
7879 	}
7880 }
7881 
7882 void bnxt_tx_disable(struct bnxt *bp)
7883 {
7884 	int i;
7885 	struct bnxt_tx_ring_info *txr;
7886 
7887 	if (bp->tx_ring) {
7888 		for (i = 0; i < bp->tx_nr_rings; i++) {
7889 			txr = &bp->tx_ring[i];
7890 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
7891 		}
7892 	}
7893 	/* Stop all TX queues */
7894 	netif_tx_disable(bp->dev);
7895 	netif_carrier_off(bp->dev);
7896 }
7897 
7898 void bnxt_tx_enable(struct bnxt *bp)
7899 {
7900 	int i;
7901 	struct bnxt_tx_ring_info *txr;
7902 
7903 	for (i = 0; i < bp->tx_nr_rings; i++) {
7904 		txr = &bp->tx_ring[i];
7905 		txr->dev_state = 0;
7906 	}
7907 	netif_tx_wake_all_queues(bp->dev);
7908 	if (bp->link_info.link_up)
7909 		netif_carrier_on(bp->dev);
7910 }
7911 
7912 static void bnxt_report_link(struct bnxt *bp)
7913 {
7914 	if (bp->link_info.link_up) {
7915 		const char *duplex;
7916 		const char *flow_ctrl;
7917 		u32 speed;
7918 		u16 fec;
7919 
7920 		netif_carrier_on(bp->dev);
7921 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
7922 			duplex = "full";
7923 		else
7924 			duplex = "half";
7925 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
7926 			flow_ctrl = "ON - receive & transmit";
7927 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
7928 			flow_ctrl = "ON - transmit";
7929 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
7930 			flow_ctrl = "ON - receive";
7931 		else
7932 			flow_ctrl = "none";
7933 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
7934 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
7935 			    speed, duplex, flow_ctrl);
7936 		if (bp->flags & BNXT_FLAG_EEE_CAP)
7937 			netdev_info(bp->dev, "EEE is %s\n",
7938 				    bp->eee.eee_active ? "active" :
7939 							 "not active");
7940 		fec = bp->link_info.fec_cfg;
7941 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
7942 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
7943 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
7944 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
7945 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
7946 	} else {
7947 		netif_carrier_off(bp->dev);
7948 		netdev_err(bp->dev, "NIC Link is Down\n");
7949 	}
7950 }
7951 
7952 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
7953 {
7954 	int rc = 0;
7955 	struct hwrm_port_phy_qcaps_input req = {0};
7956 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7957 	struct bnxt_link_info *link_info = &bp->link_info;
7958 
7959 	if (bp->hwrm_spec_code < 0x10201)
7960 		return 0;
7961 
7962 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
7963 
7964 	mutex_lock(&bp->hwrm_cmd_lock);
7965 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7966 	if (rc)
7967 		goto hwrm_phy_qcaps_exit;
7968 
7969 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
7970 		struct ethtool_eee *eee = &bp->eee;
7971 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
7972 
7973 		bp->flags |= BNXT_FLAG_EEE_CAP;
7974 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7975 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
7976 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
7977 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
7978 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
7979 	}
7980 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
7981 		if (bp->test_info)
7982 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
7983 	}
7984 	if (resp->supported_speeds_auto_mode)
7985 		link_info->support_auto_speeds =
7986 			le16_to_cpu(resp->supported_speeds_auto_mode);
7987 
7988 	bp->port_count = resp->port_cnt;
7989 
7990 hwrm_phy_qcaps_exit:
7991 	mutex_unlock(&bp->hwrm_cmd_lock);
7992 	return rc;
7993 }
7994 
7995 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
7996 {
7997 	int rc = 0;
7998 	struct bnxt_link_info *link_info = &bp->link_info;
7999 	struct hwrm_port_phy_qcfg_input req = {0};
8000 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8001 	u8 link_up = link_info->link_up;
8002 	u16 diff;
8003 
8004 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
8005 
8006 	mutex_lock(&bp->hwrm_cmd_lock);
8007 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8008 	if (rc) {
8009 		mutex_unlock(&bp->hwrm_cmd_lock);
8010 		return rc;
8011 	}
8012 
8013 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
8014 	link_info->phy_link_status = resp->link;
8015 	link_info->duplex = resp->duplex_cfg;
8016 	if (bp->hwrm_spec_code >= 0x10800)
8017 		link_info->duplex = resp->duplex_state;
8018 	link_info->pause = resp->pause;
8019 	link_info->auto_mode = resp->auto_mode;
8020 	link_info->auto_pause_setting = resp->auto_pause;
8021 	link_info->lp_pause = resp->link_partner_adv_pause;
8022 	link_info->force_pause_setting = resp->force_pause;
8023 	link_info->duplex_setting = resp->duplex_cfg;
8024 	if (link_info->phy_link_status == BNXT_LINK_LINK)
8025 		link_info->link_speed = le16_to_cpu(resp->link_speed);
8026 	else
8027 		link_info->link_speed = 0;
8028 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
8029 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
8030 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
8031 	link_info->lp_auto_link_speeds =
8032 		le16_to_cpu(resp->link_partner_adv_speeds);
8033 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
8034 	link_info->phy_ver[0] = resp->phy_maj;
8035 	link_info->phy_ver[1] = resp->phy_min;
8036 	link_info->phy_ver[2] = resp->phy_bld;
8037 	link_info->media_type = resp->media_type;
8038 	link_info->phy_type = resp->phy_type;
8039 	link_info->transceiver = resp->xcvr_pkg_type;
8040 	link_info->phy_addr = resp->eee_config_phy_addr &
8041 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
8042 	link_info->module_status = resp->module_status;
8043 
8044 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
8045 		struct ethtool_eee *eee = &bp->eee;
8046 		u16 fw_speeds;
8047 
8048 		eee->eee_active = 0;
8049 		if (resp->eee_config_phy_addr &
8050 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
8051 			eee->eee_active = 1;
8052 			fw_speeds = le16_to_cpu(
8053 				resp->link_partner_adv_eee_link_speed_mask);
8054 			eee->lp_advertised =
8055 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8056 		}
8057 
8058 		/* Pull initial EEE config */
8059 		if (!chng_link_state) {
8060 			if (resp->eee_config_phy_addr &
8061 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
8062 				eee->eee_enabled = 1;
8063 
8064 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8065 			eee->advertised =
8066 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8067 
8068 			if (resp->eee_config_phy_addr &
8069 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8070 				__le32 tmr;
8071 
8072 				eee->tx_lpi_enabled = 1;
8073 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8074 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
8075 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8076 			}
8077 		}
8078 	}
8079 
8080 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8081 	if (bp->hwrm_spec_code >= 0x10504)
8082 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8083 
8084 	/* TODO: need to add more logic to report VF link */
8085 	if (chng_link_state) {
8086 		if (link_info->phy_link_status == BNXT_LINK_LINK)
8087 			link_info->link_up = 1;
8088 		else
8089 			link_info->link_up = 0;
8090 		if (link_up != link_info->link_up)
8091 			bnxt_report_link(bp);
8092 	} else {
8093 		/* alwasy link down if not require to update link state */
8094 		link_info->link_up = 0;
8095 	}
8096 	mutex_unlock(&bp->hwrm_cmd_lock);
8097 
8098 	if (!BNXT_SINGLE_PF(bp))
8099 		return 0;
8100 
8101 	diff = link_info->support_auto_speeds ^ link_info->advertising;
8102 	if ((link_info->support_auto_speeds | diff) !=
8103 	    link_info->support_auto_speeds) {
8104 		/* An advertised speed is no longer supported, so we need to
8105 		 * update the advertisement settings.  Caller holds RTNL
8106 		 * so we can modify link settings.
8107 		 */
8108 		link_info->advertising = link_info->support_auto_speeds;
8109 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8110 			bnxt_hwrm_set_link_setting(bp, true, false);
8111 	}
8112 	return 0;
8113 }
8114 
8115 static void bnxt_get_port_module_status(struct bnxt *bp)
8116 {
8117 	struct bnxt_link_info *link_info = &bp->link_info;
8118 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8119 	u8 module_status;
8120 
8121 	if (bnxt_update_link(bp, true))
8122 		return;
8123 
8124 	module_status = link_info->module_status;
8125 	switch (module_status) {
8126 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8127 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8128 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8129 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8130 			    bp->pf.port_id);
8131 		if (bp->hwrm_spec_code >= 0x10201) {
8132 			netdev_warn(bp->dev, "Module part number %s\n",
8133 				    resp->phy_vendor_partnumber);
8134 		}
8135 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8136 			netdev_warn(bp->dev, "TX is disabled\n");
8137 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8138 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8139 	}
8140 }
8141 
8142 static void
8143 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8144 {
8145 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8146 		if (bp->hwrm_spec_code >= 0x10201)
8147 			req->auto_pause =
8148 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8149 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8150 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8151 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8152 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8153 		req->enables |=
8154 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8155 	} else {
8156 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8157 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8158 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8159 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
8160 		req->enables |=
8161 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
8162 		if (bp->hwrm_spec_code >= 0x10201) {
8163 			req->auto_pause = req->force_pause;
8164 			req->enables |= cpu_to_le32(
8165 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8166 		}
8167 	}
8168 }
8169 
8170 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8171 				      struct hwrm_port_phy_cfg_input *req)
8172 {
8173 	u8 autoneg = bp->link_info.autoneg;
8174 	u16 fw_link_speed = bp->link_info.req_link_speed;
8175 	u16 advertising = bp->link_info.advertising;
8176 
8177 	if (autoneg & BNXT_AUTONEG_SPEED) {
8178 		req->auto_mode |=
8179 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8180 
8181 		req->enables |= cpu_to_le32(
8182 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8183 		req->auto_link_speed_mask = cpu_to_le16(advertising);
8184 
8185 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8186 		req->flags |=
8187 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8188 	} else {
8189 		req->force_link_speed = cpu_to_le16(fw_link_speed);
8190 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8191 	}
8192 
8193 	/* tell chimp that the setting takes effect immediately */
8194 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8195 }
8196 
8197 int bnxt_hwrm_set_pause(struct bnxt *bp)
8198 {
8199 	struct hwrm_port_phy_cfg_input req = {0};
8200 	int rc;
8201 
8202 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8203 	bnxt_hwrm_set_pause_common(bp, &req);
8204 
8205 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8206 	    bp->link_info.force_link_chng)
8207 		bnxt_hwrm_set_link_common(bp, &req);
8208 
8209 	mutex_lock(&bp->hwrm_cmd_lock);
8210 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8211 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8212 		/* since changing of pause setting doesn't trigger any link
8213 		 * change event, the driver needs to update the current pause
8214 		 * result upon successfully return of the phy_cfg command
8215 		 */
8216 		bp->link_info.pause =
8217 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8218 		bp->link_info.auto_pause_setting = 0;
8219 		if (!bp->link_info.force_link_chng)
8220 			bnxt_report_link(bp);
8221 	}
8222 	bp->link_info.force_link_chng = false;
8223 	mutex_unlock(&bp->hwrm_cmd_lock);
8224 	return rc;
8225 }
8226 
8227 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8228 			      struct hwrm_port_phy_cfg_input *req)
8229 {
8230 	struct ethtool_eee *eee = &bp->eee;
8231 
8232 	if (eee->eee_enabled) {
8233 		u16 eee_speeds;
8234 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8235 
8236 		if (eee->tx_lpi_enabled)
8237 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8238 		else
8239 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8240 
8241 		req->flags |= cpu_to_le32(flags);
8242 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8243 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8244 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8245 	} else {
8246 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8247 	}
8248 }
8249 
8250 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8251 {
8252 	struct hwrm_port_phy_cfg_input req = {0};
8253 
8254 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8255 	if (set_pause)
8256 		bnxt_hwrm_set_pause_common(bp, &req);
8257 
8258 	bnxt_hwrm_set_link_common(bp, &req);
8259 
8260 	if (set_eee)
8261 		bnxt_hwrm_set_eee(bp, &req);
8262 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8263 }
8264 
8265 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8266 {
8267 	struct hwrm_port_phy_cfg_input req = {0};
8268 
8269 	if (!BNXT_SINGLE_PF(bp))
8270 		return 0;
8271 
8272 	if (pci_num_vf(bp->pdev))
8273 		return 0;
8274 
8275 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8276 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8277 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8278 }
8279 
8280 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8281 {
8282 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8283 	struct hwrm_func_drv_if_change_input req = {0};
8284 	bool resc_reinit = false;
8285 	int rc;
8286 
8287 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8288 		return 0;
8289 
8290 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8291 	if (up)
8292 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8293 	mutex_lock(&bp->hwrm_cmd_lock);
8294 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8295 	if (!rc && (resp->flags &
8296 		    cpu_to_le32(FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)))
8297 		resc_reinit = true;
8298 	mutex_unlock(&bp->hwrm_cmd_lock);
8299 
8300 	if (up && resc_reinit && BNXT_NEW_RM(bp)) {
8301 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8302 
8303 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8304 		hw_resc->resv_cp_rings = 0;
8305 		hw_resc->resv_stat_ctxs = 0;
8306 		hw_resc->resv_irqs = 0;
8307 		hw_resc->resv_tx_rings = 0;
8308 		hw_resc->resv_rx_rings = 0;
8309 		hw_resc->resv_hw_ring_grps = 0;
8310 		hw_resc->resv_vnics = 0;
8311 		bp->tx_nr_rings = 0;
8312 		bp->rx_nr_rings = 0;
8313 	}
8314 	return rc;
8315 }
8316 
8317 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8318 {
8319 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8320 	struct hwrm_port_led_qcaps_input req = {0};
8321 	struct bnxt_pf_info *pf = &bp->pf;
8322 	int rc;
8323 
8324 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8325 		return 0;
8326 
8327 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8328 	req.port_id = cpu_to_le16(pf->port_id);
8329 	mutex_lock(&bp->hwrm_cmd_lock);
8330 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8331 	if (rc) {
8332 		mutex_unlock(&bp->hwrm_cmd_lock);
8333 		return rc;
8334 	}
8335 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8336 		int i;
8337 
8338 		bp->num_leds = resp->num_leds;
8339 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8340 						 bp->num_leds);
8341 		for (i = 0; i < bp->num_leds; i++) {
8342 			struct bnxt_led_info *led = &bp->leds[i];
8343 			__le16 caps = led->led_state_caps;
8344 
8345 			if (!led->led_group_id ||
8346 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
8347 				bp->num_leds = 0;
8348 				break;
8349 			}
8350 		}
8351 	}
8352 	mutex_unlock(&bp->hwrm_cmd_lock);
8353 	return 0;
8354 }
8355 
8356 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8357 {
8358 	struct hwrm_wol_filter_alloc_input req = {0};
8359 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8360 	int rc;
8361 
8362 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8363 	req.port_id = cpu_to_le16(bp->pf.port_id);
8364 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8365 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8366 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8367 	mutex_lock(&bp->hwrm_cmd_lock);
8368 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8369 	if (!rc)
8370 		bp->wol_filter_id = resp->wol_filter_id;
8371 	mutex_unlock(&bp->hwrm_cmd_lock);
8372 	return rc;
8373 }
8374 
8375 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8376 {
8377 	struct hwrm_wol_filter_free_input req = {0};
8378 	int rc;
8379 
8380 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8381 	req.port_id = cpu_to_le16(bp->pf.port_id);
8382 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8383 	req.wol_filter_id = bp->wol_filter_id;
8384 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8385 	return rc;
8386 }
8387 
8388 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8389 {
8390 	struct hwrm_wol_filter_qcfg_input req = {0};
8391 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8392 	u16 next_handle = 0;
8393 	int rc;
8394 
8395 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8396 	req.port_id = cpu_to_le16(bp->pf.port_id);
8397 	req.handle = cpu_to_le16(handle);
8398 	mutex_lock(&bp->hwrm_cmd_lock);
8399 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8400 	if (!rc) {
8401 		next_handle = le16_to_cpu(resp->next_handle);
8402 		if (next_handle != 0) {
8403 			if (resp->wol_type ==
8404 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8405 				bp->wol = 1;
8406 				bp->wol_filter_id = resp->wol_filter_id;
8407 			}
8408 		}
8409 	}
8410 	mutex_unlock(&bp->hwrm_cmd_lock);
8411 	return next_handle;
8412 }
8413 
8414 static void bnxt_get_wol_settings(struct bnxt *bp)
8415 {
8416 	u16 handle = 0;
8417 
8418 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8419 		return;
8420 
8421 	do {
8422 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8423 	} while (handle && handle != 0xffff);
8424 }
8425 
8426 #ifdef CONFIG_BNXT_HWMON
8427 static ssize_t bnxt_show_temp(struct device *dev,
8428 			      struct device_attribute *devattr, char *buf)
8429 {
8430 	struct hwrm_temp_monitor_query_input req = {0};
8431 	struct hwrm_temp_monitor_query_output *resp;
8432 	struct bnxt *bp = dev_get_drvdata(dev);
8433 	u32 temp = 0;
8434 
8435 	resp = bp->hwrm_cmd_resp_addr;
8436 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8437 	mutex_lock(&bp->hwrm_cmd_lock);
8438 	if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8439 		temp = resp->temp * 1000; /* display millidegree */
8440 	mutex_unlock(&bp->hwrm_cmd_lock);
8441 
8442 	return sprintf(buf, "%u\n", temp);
8443 }
8444 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
8445 
8446 static struct attribute *bnxt_attrs[] = {
8447 	&sensor_dev_attr_temp1_input.dev_attr.attr,
8448 	NULL
8449 };
8450 ATTRIBUTE_GROUPS(bnxt);
8451 
8452 static void bnxt_hwmon_close(struct bnxt *bp)
8453 {
8454 	if (bp->hwmon_dev) {
8455 		hwmon_device_unregister(bp->hwmon_dev);
8456 		bp->hwmon_dev = NULL;
8457 	}
8458 }
8459 
8460 static void bnxt_hwmon_open(struct bnxt *bp)
8461 {
8462 	struct pci_dev *pdev = bp->pdev;
8463 
8464 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
8465 							  DRV_MODULE_NAME, bp,
8466 							  bnxt_groups);
8467 	if (IS_ERR(bp->hwmon_dev)) {
8468 		bp->hwmon_dev = NULL;
8469 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
8470 	}
8471 }
8472 #else
8473 static void bnxt_hwmon_close(struct bnxt *bp)
8474 {
8475 }
8476 
8477 static void bnxt_hwmon_open(struct bnxt *bp)
8478 {
8479 }
8480 #endif
8481 
8482 static bool bnxt_eee_config_ok(struct bnxt *bp)
8483 {
8484 	struct ethtool_eee *eee = &bp->eee;
8485 	struct bnxt_link_info *link_info = &bp->link_info;
8486 
8487 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
8488 		return true;
8489 
8490 	if (eee->eee_enabled) {
8491 		u32 advertising =
8492 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
8493 
8494 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8495 			eee->eee_enabled = 0;
8496 			return false;
8497 		}
8498 		if (eee->advertised & ~advertising) {
8499 			eee->advertised = advertising & eee->supported;
8500 			return false;
8501 		}
8502 	}
8503 	return true;
8504 }
8505 
8506 static int bnxt_update_phy_setting(struct bnxt *bp)
8507 {
8508 	int rc;
8509 	bool update_link = false;
8510 	bool update_pause = false;
8511 	bool update_eee = false;
8512 	struct bnxt_link_info *link_info = &bp->link_info;
8513 
8514 	rc = bnxt_update_link(bp, true);
8515 	if (rc) {
8516 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
8517 			   rc);
8518 		return rc;
8519 	}
8520 	if (!BNXT_SINGLE_PF(bp))
8521 		return 0;
8522 
8523 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8524 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
8525 	    link_info->req_flow_ctrl)
8526 		update_pause = true;
8527 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8528 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
8529 		update_pause = true;
8530 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8531 		if (BNXT_AUTO_MODE(link_info->auto_mode))
8532 			update_link = true;
8533 		if (link_info->req_link_speed != link_info->force_link_speed)
8534 			update_link = true;
8535 		if (link_info->req_duplex != link_info->duplex_setting)
8536 			update_link = true;
8537 	} else {
8538 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
8539 			update_link = true;
8540 		if (link_info->advertising != link_info->auto_link_speeds)
8541 			update_link = true;
8542 	}
8543 
8544 	/* The last close may have shutdown the link, so need to call
8545 	 * PHY_CFG to bring it back up.
8546 	 */
8547 	if (!netif_carrier_ok(bp->dev))
8548 		update_link = true;
8549 
8550 	if (!bnxt_eee_config_ok(bp))
8551 		update_eee = true;
8552 
8553 	if (update_link)
8554 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
8555 	else if (update_pause)
8556 		rc = bnxt_hwrm_set_pause(bp);
8557 	if (rc) {
8558 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
8559 			   rc);
8560 		return rc;
8561 	}
8562 
8563 	return rc;
8564 }
8565 
8566 /* Common routine to pre-map certain register block to different GRC window.
8567  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
8568  * in PF and 3 windows in VF that can be customized to map in different
8569  * register blocks.
8570  */
8571 static void bnxt_preset_reg_win(struct bnxt *bp)
8572 {
8573 	if (BNXT_PF(bp)) {
8574 		/* CAG registers map to GRC window #4 */
8575 		writel(BNXT_CAG_REG_BASE,
8576 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
8577 	}
8578 }
8579 
8580 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
8581 
8582 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8583 {
8584 	int rc = 0;
8585 
8586 	bnxt_preset_reg_win(bp);
8587 	netif_carrier_off(bp->dev);
8588 	if (irq_re_init) {
8589 		/* Reserve rings now if none were reserved at driver probe. */
8590 		rc = bnxt_init_dflt_ring_mode(bp);
8591 		if (rc) {
8592 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
8593 			return rc;
8594 		}
8595 	}
8596 	rc = bnxt_reserve_rings(bp, irq_re_init);
8597 	if (rc)
8598 		return rc;
8599 	if ((bp->flags & BNXT_FLAG_RFS) &&
8600 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
8601 		/* disable RFS if falling back to INTA */
8602 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
8603 		bp->flags &= ~BNXT_FLAG_RFS;
8604 	}
8605 
8606 	rc = bnxt_alloc_mem(bp, irq_re_init);
8607 	if (rc) {
8608 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8609 		goto open_err_free_mem;
8610 	}
8611 
8612 	if (irq_re_init) {
8613 		bnxt_init_napi(bp);
8614 		rc = bnxt_request_irq(bp);
8615 		if (rc) {
8616 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
8617 			goto open_err_irq;
8618 		}
8619 	}
8620 
8621 	bnxt_enable_napi(bp);
8622 	bnxt_debug_dev_init(bp);
8623 
8624 	rc = bnxt_init_nic(bp, irq_re_init);
8625 	if (rc) {
8626 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8627 		goto open_err;
8628 	}
8629 
8630 	if (link_re_init) {
8631 		mutex_lock(&bp->link_lock);
8632 		rc = bnxt_update_phy_setting(bp);
8633 		mutex_unlock(&bp->link_lock);
8634 		if (rc) {
8635 			netdev_warn(bp->dev, "failed to update phy settings\n");
8636 			if (BNXT_SINGLE_PF(bp)) {
8637 				bp->link_info.phy_retry = true;
8638 				bp->link_info.phy_retry_expires =
8639 					jiffies + 5 * HZ;
8640 			}
8641 		}
8642 	}
8643 
8644 	if (irq_re_init)
8645 		udp_tunnel_get_rx_info(bp->dev);
8646 
8647 	set_bit(BNXT_STATE_OPEN, &bp->state);
8648 	bnxt_enable_int(bp);
8649 	/* Enable TX queues */
8650 	bnxt_tx_enable(bp);
8651 	mod_timer(&bp->timer, jiffies + bp->current_interval);
8652 	/* Poll link status and check for SFP+ module status */
8653 	bnxt_get_port_module_status(bp);
8654 
8655 	/* VF-reps may need to be re-opened after the PF is re-opened */
8656 	if (BNXT_PF(bp))
8657 		bnxt_vf_reps_open(bp);
8658 	return 0;
8659 
8660 open_err:
8661 	bnxt_debug_dev_exit(bp);
8662 	bnxt_disable_napi(bp);
8663 
8664 open_err_irq:
8665 	bnxt_del_napi(bp);
8666 
8667 open_err_free_mem:
8668 	bnxt_free_skbs(bp);
8669 	bnxt_free_irq(bp);
8670 	bnxt_free_mem(bp, true);
8671 	return rc;
8672 }
8673 
8674 /* rtnl_lock held */
8675 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8676 {
8677 	int rc = 0;
8678 
8679 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
8680 	if (rc) {
8681 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
8682 		dev_close(bp->dev);
8683 	}
8684 	return rc;
8685 }
8686 
8687 /* rtnl_lock held, open the NIC half way by allocating all resources, but
8688  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
8689  * self tests.
8690  */
8691 int bnxt_half_open_nic(struct bnxt *bp)
8692 {
8693 	int rc = 0;
8694 
8695 	rc = bnxt_alloc_mem(bp, false);
8696 	if (rc) {
8697 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8698 		goto half_open_err;
8699 	}
8700 	rc = bnxt_init_nic(bp, false);
8701 	if (rc) {
8702 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8703 		goto half_open_err;
8704 	}
8705 	return 0;
8706 
8707 half_open_err:
8708 	bnxt_free_skbs(bp);
8709 	bnxt_free_mem(bp, false);
8710 	dev_close(bp->dev);
8711 	return rc;
8712 }
8713 
8714 /* rtnl_lock held, this call can only be made after a previous successful
8715  * call to bnxt_half_open_nic().
8716  */
8717 void bnxt_half_close_nic(struct bnxt *bp)
8718 {
8719 	bnxt_hwrm_resource_free(bp, false, false);
8720 	bnxt_free_skbs(bp);
8721 	bnxt_free_mem(bp, false);
8722 }
8723 
8724 static int bnxt_open(struct net_device *dev)
8725 {
8726 	struct bnxt *bp = netdev_priv(dev);
8727 	int rc;
8728 
8729 	bnxt_hwrm_if_change(bp, true);
8730 	rc = __bnxt_open_nic(bp, true, true);
8731 	if (rc)
8732 		bnxt_hwrm_if_change(bp, false);
8733 
8734 	bnxt_hwmon_open(bp);
8735 
8736 	return rc;
8737 }
8738 
8739 static bool bnxt_drv_busy(struct bnxt *bp)
8740 {
8741 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
8742 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
8743 }
8744 
8745 static void bnxt_get_ring_stats(struct bnxt *bp,
8746 				struct rtnl_link_stats64 *stats);
8747 
8748 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
8749 			     bool link_re_init)
8750 {
8751 	/* Close the VF-reps before closing PF */
8752 	if (BNXT_PF(bp))
8753 		bnxt_vf_reps_close(bp);
8754 
8755 	/* Change device state to avoid TX queue wake up's */
8756 	bnxt_tx_disable(bp);
8757 
8758 	clear_bit(BNXT_STATE_OPEN, &bp->state);
8759 	smp_mb__after_atomic();
8760 	while (bnxt_drv_busy(bp))
8761 		msleep(20);
8762 
8763 	/* Flush rings and and disable interrupts */
8764 	bnxt_shutdown_nic(bp, irq_re_init);
8765 
8766 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
8767 
8768 	bnxt_debug_dev_exit(bp);
8769 	bnxt_disable_napi(bp);
8770 	del_timer_sync(&bp->timer);
8771 	bnxt_free_skbs(bp);
8772 
8773 	/* Save ring stats before shutdown */
8774 	if (bp->bnapi)
8775 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
8776 	if (irq_re_init) {
8777 		bnxt_free_irq(bp);
8778 		bnxt_del_napi(bp);
8779 	}
8780 	bnxt_free_mem(bp, irq_re_init);
8781 }
8782 
8783 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8784 {
8785 	int rc = 0;
8786 
8787 #ifdef CONFIG_BNXT_SRIOV
8788 	if (bp->sriov_cfg) {
8789 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
8790 						      !bp->sriov_cfg,
8791 						      BNXT_SRIOV_CFG_WAIT_TMO);
8792 		if (rc)
8793 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
8794 	}
8795 #endif
8796 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
8797 	return rc;
8798 }
8799 
8800 static int bnxt_close(struct net_device *dev)
8801 {
8802 	struct bnxt *bp = netdev_priv(dev);
8803 
8804 	bnxt_hwmon_close(bp);
8805 	bnxt_close_nic(bp, true, true);
8806 	bnxt_hwrm_shutdown_link(bp);
8807 	bnxt_hwrm_if_change(bp, false);
8808 	return 0;
8809 }
8810 
8811 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
8812 				   u16 *val)
8813 {
8814 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
8815 	struct hwrm_port_phy_mdio_read_input req = {0};
8816 	int rc;
8817 
8818 	if (bp->hwrm_spec_code < 0x10a00)
8819 		return -EOPNOTSUPP;
8820 
8821 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
8822 	req.port_id = cpu_to_le16(bp->pf.port_id);
8823 	req.phy_addr = phy_addr;
8824 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8825 	if (mdio_phy_id_is_c45(phy_addr)) {
8826 		req.cl45_mdio = 1;
8827 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8828 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8829 		req.reg_addr = cpu_to_le16(reg);
8830 	}
8831 
8832 	mutex_lock(&bp->hwrm_cmd_lock);
8833 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8834 	if (!rc)
8835 		*val = le16_to_cpu(resp->reg_data);
8836 	mutex_unlock(&bp->hwrm_cmd_lock);
8837 	return rc;
8838 }
8839 
8840 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
8841 				    u16 val)
8842 {
8843 	struct hwrm_port_phy_mdio_write_input req = {0};
8844 
8845 	if (bp->hwrm_spec_code < 0x10a00)
8846 		return -EOPNOTSUPP;
8847 
8848 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
8849 	req.port_id = cpu_to_le16(bp->pf.port_id);
8850 	req.phy_addr = phy_addr;
8851 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8852 	if (mdio_phy_id_is_c45(phy_addr)) {
8853 		req.cl45_mdio = 1;
8854 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8855 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8856 		req.reg_addr = cpu_to_le16(reg);
8857 	}
8858 	req.reg_data = cpu_to_le16(val);
8859 
8860 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8861 }
8862 
8863 /* rtnl_lock held */
8864 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
8865 {
8866 	struct mii_ioctl_data *mdio = if_mii(ifr);
8867 	struct bnxt *bp = netdev_priv(dev);
8868 	int rc;
8869 
8870 	switch (cmd) {
8871 	case SIOCGMIIPHY:
8872 		mdio->phy_id = bp->link_info.phy_addr;
8873 
8874 		/* fallthru */
8875 	case SIOCGMIIREG: {
8876 		u16 mii_regval = 0;
8877 
8878 		if (!netif_running(dev))
8879 			return -EAGAIN;
8880 
8881 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
8882 					     &mii_regval);
8883 		mdio->val_out = mii_regval;
8884 		return rc;
8885 	}
8886 
8887 	case SIOCSMIIREG:
8888 		if (!netif_running(dev))
8889 			return -EAGAIN;
8890 
8891 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
8892 						mdio->val_in);
8893 
8894 	default:
8895 		/* do nothing */
8896 		break;
8897 	}
8898 	return -EOPNOTSUPP;
8899 }
8900 
8901 static void bnxt_get_ring_stats(struct bnxt *bp,
8902 				struct rtnl_link_stats64 *stats)
8903 {
8904 	int i;
8905 
8906 
8907 	for (i = 0; i < bp->cp_nr_rings; i++) {
8908 		struct bnxt_napi *bnapi = bp->bnapi[i];
8909 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8910 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
8911 
8912 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
8913 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
8914 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
8915 
8916 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
8917 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
8918 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
8919 
8920 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
8921 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
8922 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
8923 
8924 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
8925 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
8926 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
8927 
8928 		stats->rx_missed_errors +=
8929 			le64_to_cpu(hw_stats->rx_discard_pkts);
8930 
8931 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
8932 
8933 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
8934 	}
8935 }
8936 
8937 static void bnxt_add_prev_stats(struct bnxt *bp,
8938 				struct rtnl_link_stats64 *stats)
8939 {
8940 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
8941 
8942 	stats->rx_packets += prev_stats->rx_packets;
8943 	stats->tx_packets += prev_stats->tx_packets;
8944 	stats->rx_bytes += prev_stats->rx_bytes;
8945 	stats->tx_bytes += prev_stats->tx_bytes;
8946 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
8947 	stats->multicast += prev_stats->multicast;
8948 	stats->tx_dropped += prev_stats->tx_dropped;
8949 }
8950 
8951 static void
8952 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
8953 {
8954 	struct bnxt *bp = netdev_priv(dev);
8955 
8956 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
8957 	/* Make sure bnxt_close_nic() sees that we are reading stats before
8958 	 * we check the BNXT_STATE_OPEN flag.
8959 	 */
8960 	smp_mb__after_atomic();
8961 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
8962 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8963 		*stats = bp->net_stats_prev;
8964 		return;
8965 	}
8966 
8967 	bnxt_get_ring_stats(bp, stats);
8968 	bnxt_add_prev_stats(bp, stats);
8969 
8970 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8971 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
8972 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
8973 
8974 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
8975 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
8976 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
8977 					  le64_to_cpu(rx->rx_ovrsz_frames) +
8978 					  le64_to_cpu(rx->rx_runt_frames);
8979 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
8980 				   le64_to_cpu(rx->rx_jbr_frames);
8981 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
8982 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
8983 		stats->tx_errors = le64_to_cpu(tx->tx_err);
8984 	}
8985 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8986 }
8987 
8988 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
8989 {
8990 	struct net_device *dev = bp->dev;
8991 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8992 	struct netdev_hw_addr *ha;
8993 	u8 *haddr;
8994 	int mc_count = 0;
8995 	bool update = false;
8996 	int off = 0;
8997 
8998 	netdev_for_each_mc_addr(ha, dev) {
8999 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
9000 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9001 			vnic->mc_list_count = 0;
9002 			return false;
9003 		}
9004 		haddr = ha->addr;
9005 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
9006 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
9007 			update = true;
9008 		}
9009 		off += ETH_ALEN;
9010 		mc_count++;
9011 	}
9012 	if (mc_count)
9013 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
9014 
9015 	if (mc_count != vnic->mc_list_count) {
9016 		vnic->mc_list_count = mc_count;
9017 		update = true;
9018 	}
9019 	return update;
9020 }
9021 
9022 static bool bnxt_uc_list_updated(struct bnxt *bp)
9023 {
9024 	struct net_device *dev = bp->dev;
9025 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9026 	struct netdev_hw_addr *ha;
9027 	int off = 0;
9028 
9029 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
9030 		return true;
9031 
9032 	netdev_for_each_uc_addr(ha, dev) {
9033 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
9034 			return true;
9035 
9036 		off += ETH_ALEN;
9037 	}
9038 	return false;
9039 }
9040 
9041 static void bnxt_set_rx_mode(struct net_device *dev)
9042 {
9043 	struct bnxt *bp = netdev_priv(dev);
9044 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9045 	u32 mask = vnic->rx_mask;
9046 	bool mc_update = false;
9047 	bool uc_update;
9048 
9049 	if (!netif_running(dev))
9050 		return;
9051 
9052 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
9053 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
9054 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
9055 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
9056 
9057 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
9058 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9059 
9060 	uc_update = bnxt_uc_list_updated(bp);
9061 
9062 	if (dev->flags & IFF_BROADCAST)
9063 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9064 	if (dev->flags & IFF_ALLMULTI) {
9065 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9066 		vnic->mc_list_count = 0;
9067 	} else {
9068 		mc_update = bnxt_mc_list_updated(bp, &mask);
9069 	}
9070 
9071 	if (mask != vnic->rx_mask || uc_update || mc_update) {
9072 		vnic->rx_mask = mask;
9073 
9074 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
9075 		bnxt_queue_sp_work(bp);
9076 	}
9077 }
9078 
9079 static int bnxt_cfg_rx_mode(struct bnxt *bp)
9080 {
9081 	struct net_device *dev = bp->dev;
9082 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9083 	struct netdev_hw_addr *ha;
9084 	int i, off = 0, rc;
9085 	bool uc_update;
9086 
9087 	netif_addr_lock_bh(dev);
9088 	uc_update = bnxt_uc_list_updated(bp);
9089 	netif_addr_unlock_bh(dev);
9090 
9091 	if (!uc_update)
9092 		goto skip_uc;
9093 
9094 	mutex_lock(&bp->hwrm_cmd_lock);
9095 	for (i = 1; i < vnic->uc_filter_count; i++) {
9096 		struct hwrm_cfa_l2_filter_free_input req = {0};
9097 
9098 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
9099 				       -1);
9100 
9101 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
9102 
9103 		rc = _hwrm_send_message(bp, &req, sizeof(req),
9104 					HWRM_CMD_TIMEOUT);
9105 	}
9106 	mutex_unlock(&bp->hwrm_cmd_lock);
9107 
9108 	vnic->uc_filter_count = 1;
9109 
9110 	netif_addr_lock_bh(dev);
9111 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
9112 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9113 	} else {
9114 		netdev_for_each_uc_addr(ha, dev) {
9115 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
9116 			off += ETH_ALEN;
9117 			vnic->uc_filter_count++;
9118 		}
9119 	}
9120 	netif_addr_unlock_bh(dev);
9121 
9122 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
9123 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
9124 		if (rc) {
9125 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
9126 				   rc);
9127 			vnic->uc_filter_count = i;
9128 			return rc;
9129 		}
9130 	}
9131 
9132 skip_uc:
9133 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9134 	if (rc && vnic->mc_list_count) {
9135 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
9136 			    rc);
9137 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9138 		vnic->mc_list_count = 0;
9139 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9140 	}
9141 	if (rc)
9142 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
9143 			   rc);
9144 
9145 	return rc;
9146 }
9147 
9148 static bool bnxt_can_reserve_rings(struct bnxt *bp)
9149 {
9150 #ifdef CONFIG_BNXT_SRIOV
9151 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
9152 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9153 
9154 		/* No minimum rings were provisioned by the PF.  Don't
9155 		 * reserve rings by default when device is down.
9156 		 */
9157 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
9158 			return true;
9159 
9160 		if (!netif_running(bp->dev))
9161 			return false;
9162 	}
9163 #endif
9164 	return true;
9165 }
9166 
9167 /* If the chip and firmware supports RFS */
9168 static bool bnxt_rfs_supported(struct bnxt *bp)
9169 {
9170 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
9171 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX)
9172 			return true;
9173 		return false;
9174 	}
9175 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
9176 		return true;
9177 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9178 		return true;
9179 	return false;
9180 }
9181 
9182 /* If runtime conditions support RFS */
9183 static bool bnxt_rfs_capable(struct bnxt *bp)
9184 {
9185 #ifdef CONFIG_RFS_ACCEL
9186 	int vnics, max_vnics, max_rss_ctxs;
9187 
9188 	if (bp->flags & BNXT_FLAG_CHIP_P5)
9189 		return bnxt_rfs_supported(bp);
9190 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9191 		return false;
9192 
9193 	vnics = 1 + bp->rx_nr_rings;
9194 	max_vnics = bnxt_get_max_func_vnics(bp);
9195 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9196 
9197 	/* RSS contexts not a limiting factor */
9198 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9199 		max_rss_ctxs = max_vnics;
9200 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
9201 		if (bp->rx_nr_rings > 1)
9202 			netdev_warn(bp->dev,
9203 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9204 				    min(max_rss_ctxs - 1, max_vnics - 1));
9205 		return false;
9206 	}
9207 
9208 	if (!BNXT_NEW_RM(bp))
9209 		return true;
9210 
9211 	if (vnics == bp->hw_resc.resv_vnics)
9212 		return true;
9213 
9214 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9215 	if (vnics <= bp->hw_resc.resv_vnics)
9216 		return true;
9217 
9218 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9219 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9220 	return false;
9221 #else
9222 	return false;
9223 #endif
9224 }
9225 
9226 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9227 					   netdev_features_t features)
9228 {
9229 	struct bnxt *bp = netdev_priv(dev);
9230 
9231 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9232 		features &= ~NETIF_F_NTUPLE;
9233 
9234 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9235 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9236 
9237 	if (!(features & NETIF_F_GRO))
9238 		features &= ~NETIF_F_GRO_HW;
9239 
9240 	if (features & NETIF_F_GRO_HW)
9241 		features &= ~NETIF_F_LRO;
9242 
9243 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
9244 	 * turned on or off together.
9245 	 */
9246 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
9247 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
9248 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9249 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9250 				      NETIF_F_HW_VLAN_STAG_RX);
9251 		else
9252 			features |= NETIF_F_HW_VLAN_CTAG_RX |
9253 				    NETIF_F_HW_VLAN_STAG_RX;
9254 	}
9255 #ifdef CONFIG_BNXT_SRIOV
9256 	if (BNXT_VF(bp)) {
9257 		if (bp->vf.vlan) {
9258 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9259 				      NETIF_F_HW_VLAN_STAG_RX);
9260 		}
9261 	}
9262 #endif
9263 	return features;
9264 }
9265 
9266 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9267 {
9268 	struct bnxt *bp = netdev_priv(dev);
9269 	u32 flags = bp->flags;
9270 	u32 changes;
9271 	int rc = 0;
9272 	bool re_init = false;
9273 	bool update_tpa = false;
9274 
9275 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9276 	if (features & NETIF_F_GRO_HW)
9277 		flags |= BNXT_FLAG_GRO;
9278 	else if (features & NETIF_F_LRO)
9279 		flags |= BNXT_FLAG_LRO;
9280 
9281 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9282 		flags &= ~BNXT_FLAG_TPA;
9283 
9284 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
9285 		flags |= BNXT_FLAG_STRIP_VLAN;
9286 
9287 	if (features & NETIF_F_NTUPLE)
9288 		flags |= BNXT_FLAG_RFS;
9289 
9290 	changes = flags ^ bp->flags;
9291 	if (changes & BNXT_FLAG_TPA) {
9292 		update_tpa = true;
9293 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9294 		    (flags & BNXT_FLAG_TPA) == 0)
9295 			re_init = true;
9296 	}
9297 
9298 	if (changes & ~BNXT_FLAG_TPA)
9299 		re_init = true;
9300 
9301 	if (flags != bp->flags) {
9302 		u32 old_flags = bp->flags;
9303 
9304 		bp->flags = flags;
9305 
9306 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9307 			if (update_tpa)
9308 				bnxt_set_ring_params(bp);
9309 			return rc;
9310 		}
9311 
9312 		if (re_init) {
9313 			bnxt_close_nic(bp, false, false);
9314 			if (update_tpa)
9315 				bnxt_set_ring_params(bp);
9316 
9317 			return bnxt_open_nic(bp, false, false);
9318 		}
9319 		if (update_tpa) {
9320 			rc = bnxt_set_tpa(bp,
9321 					  (flags & BNXT_FLAG_TPA) ?
9322 					  true : false);
9323 			if (rc)
9324 				bp->flags = old_flags;
9325 		}
9326 	}
9327 	return rc;
9328 }
9329 
9330 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9331 				       u32 ring_id, u32 *prod, u32 *cons)
9332 {
9333 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9334 	struct hwrm_dbg_ring_info_get_input req = {0};
9335 	int rc;
9336 
9337 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9338 	req.ring_type = ring_type;
9339 	req.fw_ring_id = cpu_to_le32(ring_id);
9340 	mutex_lock(&bp->hwrm_cmd_lock);
9341 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9342 	if (!rc) {
9343 		*prod = le32_to_cpu(resp->producer_index);
9344 		*cons = le32_to_cpu(resp->consumer_index);
9345 	}
9346 	mutex_unlock(&bp->hwrm_cmd_lock);
9347 	return rc;
9348 }
9349 
9350 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9351 {
9352 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9353 	int i = bnapi->index;
9354 
9355 	if (!txr)
9356 		return;
9357 
9358 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9359 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9360 		    txr->tx_cons);
9361 }
9362 
9363 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9364 {
9365 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9366 	int i = bnapi->index;
9367 
9368 	if (!rxr)
9369 		return;
9370 
9371 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9372 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9373 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9374 		    rxr->rx_sw_agg_prod);
9375 }
9376 
9377 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9378 {
9379 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9380 	int i = bnapi->index;
9381 
9382 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9383 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9384 }
9385 
9386 static void bnxt_dbg_dump_states(struct bnxt *bp)
9387 {
9388 	int i;
9389 	struct bnxt_napi *bnapi;
9390 
9391 	for (i = 0; i < bp->cp_nr_rings; i++) {
9392 		bnapi = bp->bnapi[i];
9393 		if (netif_msg_drv(bp)) {
9394 			bnxt_dump_tx_sw_state(bnapi);
9395 			bnxt_dump_rx_sw_state(bnapi);
9396 			bnxt_dump_cp_sw_state(bnapi);
9397 		}
9398 	}
9399 }
9400 
9401 static void bnxt_reset_task(struct bnxt *bp, bool silent)
9402 {
9403 	if (!silent)
9404 		bnxt_dbg_dump_states(bp);
9405 	if (netif_running(bp->dev)) {
9406 		int rc;
9407 
9408 		if (!silent)
9409 			bnxt_ulp_stop(bp);
9410 		bnxt_close_nic(bp, false, false);
9411 		rc = bnxt_open_nic(bp, false, false);
9412 		if (!silent && !rc)
9413 			bnxt_ulp_start(bp);
9414 	}
9415 }
9416 
9417 static void bnxt_tx_timeout(struct net_device *dev)
9418 {
9419 	struct bnxt *bp = netdev_priv(dev);
9420 
9421 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
9422 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
9423 	bnxt_queue_sp_work(bp);
9424 }
9425 
9426 static void bnxt_timer(struct timer_list *t)
9427 {
9428 	struct bnxt *bp = from_timer(bp, t, timer);
9429 	struct net_device *dev = bp->dev;
9430 
9431 	if (!netif_running(dev))
9432 		return;
9433 
9434 	if (atomic_read(&bp->intr_sem) != 0)
9435 		goto bnxt_restart_timer;
9436 
9437 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
9438 	    bp->stats_coal_ticks) {
9439 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
9440 		bnxt_queue_sp_work(bp);
9441 	}
9442 
9443 	if (bnxt_tc_flower_enabled(bp)) {
9444 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
9445 		bnxt_queue_sp_work(bp);
9446 	}
9447 
9448 	if (bp->link_info.phy_retry) {
9449 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
9450 			bp->link_info.phy_retry = 0;
9451 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
9452 		} else {
9453 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
9454 			bnxt_queue_sp_work(bp);
9455 		}
9456 	}
9457 
9458 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && netif_carrier_ok(dev)) {
9459 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
9460 		bnxt_queue_sp_work(bp);
9461 	}
9462 bnxt_restart_timer:
9463 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9464 }
9465 
9466 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
9467 {
9468 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
9469 	 * set.  If the device is being closed, bnxt_close() may be holding
9470 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
9471 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
9472 	 */
9473 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9474 	rtnl_lock();
9475 }
9476 
9477 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
9478 {
9479 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9480 	rtnl_unlock();
9481 }
9482 
9483 /* Only called from bnxt_sp_task() */
9484 static void bnxt_reset(struct bnxt *bp, bool silent)
9485 {
9486 	bnxt_rtnl_lock_sp(bp);
9487 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
9488 		bnxt_reset_task(bp, silent);
9489 	bnxt_rtnl_unlock_sp(bp);
9490 }
9491 
9492 static void bnxt_chk_missed_irq(struct bnxt *bp)
9493 {
9494 	int i;
9495 
9496 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9497 		return;
9498 
9499 	for (i = 0; i < bp->cp_nr_rings; i++) {
9500 		struct bnxt_napi *bnapi = bp->bnapi[i];
9501 		struct bnxt_cp_ring_info *cpr;
9502 		u32 fw_ring_id;
9503 		int j;
9504 
9505 		if (!bnapi)
9506 			continue;
9507 
9508 		cpr = &bnapi->cp_ring;
9509 		for (j = 0; j < 2; j++) {
9510 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
9511 			u32 val[2];
9512 
9513 			if (!cpr2 || cpr2->has_more_work ||
9514 			    !bnxt_has_work(bp, cpr2))
9515 				continue;
9516 
9517 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
9518 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
9519 				continue;
9520 			}
9521 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
9522 			bnxt_dbg_hwrm_ring_info_get(bp,
9523 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
9524 				fw_ring_id, &val[0], &val[1]);
9525 			cpr->missed_irqs++;
9526 		}
9527 	}
9528 }
9529 
9530 static void bnxt_cfg_ntp_filters(struct bnxt *);
9531 
9532 static void bnxt_sp_task(struct work_struct *work)
9533 {
9534 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
9535 
9536 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9537 	smp_mb__after_atomic();
9538 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9539 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9540 		return;
9541 	}
9542 
9543 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
9544 		bnxt_cfg_rx_mode(bp);
9545 
9546 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
9547 		bnxt_cfg_ntp_filters(bp);
9548 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
9549 		bnxt_hwrm_exec_fwd_req(bp);
9550 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9551 		bnxt_hwrm_tunnel_dst_port_alloc(
9552 			bp, bp->vxlan_port,
9553 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9554 	}
9555 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9556 		bnxt_hwrm_tunnel_dst_port_free(
9557 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9558 	}
9559 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9560 		bnxt_hwrm_tunnel_dst_port_alloc(
9561 			bp, bp->nge_port,
9562 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9563 	}
9564 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9565 		bnxt_hwrm_tunnel_dst_port_free(
9566 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9567 	}
9568 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
9569 		bnxt_hwrm_port_qstats(bp);
9570 		bnxt_hwrm_port_qstats_ext(bp);
9571 		bnxt_hwrm_pcie_qstats(bp);
9572 	}
9573 
9574 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
9575 		int rc;
9576 
9577 		mutex_lock(&bp->link_lock);
9578 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
9579 				       &bp->sp_event))
9580 			bnxt_hwrm_phy_qcaps(bp);
9581 
9582 		rc = bnxt_update_link(bp, true);
9583 		mutex_unlock(&bp->link_lock);
9584 		if (rc)
9585 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
9586 				   rc);
9587 	}
9588 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
9589 		int rc;
9590 
9591 		mutex_lock(&bp->link_lock);
9592 		rc = bnxt_update_phy_setting(bp);
9593 		mutex_unlock(&bp->link_lock);
9594 		if (rc) {
9595 			netdev_warn(bp->dev, "update phy settings retry failed\n");
9596 		} else {
9597 			bp->link_info.phy_retry = false;
9598 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
9599 		}
9600 	}
9601 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
9602 		mutex_lock(&bp->link_lock);
9603 		bnxt_get_port_module_status(bp);
9604 		mutex_unlock(&bp->link_lock);
9605 	}
9606 
9607 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
9608 		bnxt_tc_flow_stats_work(bp);
9609 
9610 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
9611 		bnxt_chk_missed_irq(bp);
9612 
9613 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
9614 	 * must be the last functions to be called before exiting.
9615 	 */
9616 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
9617 		bnxt_reset(bp, false);
9618 
9619 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
9620 		bnxt_reset(bp, true);
9621 
9622 	smp_mb__before_atomic();
9623 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9624 }
9625 
9626 /* Under rtnl_lock */
9627 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
9628 		     int tx_xdp)
9629 {
9630 	int max_rx, max_tx, tx_sets = 1;
9631 	int tx_rings_needed, stats;
9632 	int rx_rings = rx;
9633 	int cp, vnics, rc;
9634 
9635 	if (tcs)
9636 		tx_sets = tcs;
9637 
9638 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
9639 	if (rc)
9640 		return rc;
9641 
9642 	if (max_rx < rx)
9643 		return -ENOMEM;
9644 
9645 	tx_rings_needed = tx * tx_sets + tx_xdp;
9646 	if (max_tx < tx_rings_needed)
9647 		return -ENOMEM;
9648 
9649 	vnics = 1;
9650 	if (bp->flags & BNXT_FLAG_RFS)
9651 		vnics += rx_rings;
9652 
9653 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
9654 		rx_rings <<= 1;
9655 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
9656 	stats = cp;
9657 	if (BNXT_NEW_RM(bp)) {
9658 		cp += bnxt_get_ulp_msix_num(bp);
9659 		stats += bnxt_get_ulp_stat_ctxs(bp);
9660 	}
9661 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
9662 				     stats, vnics);
9663 }
9664 
9665 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
9666 {
9667 	if (bp->bar2) {
9668 		pci_iounmap(pdev, bp->bar2);
9669 		bp->bar2 = NULL;
9670 	}
9671 
9672 	if (bp->bar1) {
9673 		pci_iounmap(pdev, bp->bar1);
9674 		bp->bar1 = NULL;
9675 	}
9676 
9677 	if (bp->bar0) {
9678 		pci_iounmap(pdev, bp->bar0);
9679 		bp->bar0 = NULL;
9680 	}
9681 }
9682 
9683 static void bnxt_cleanup_pci(struct bnxt *bp)
9684 {
9685 	bnxt_unmap_bars(bp, bp->pdev);
9686 	pci_release_regions(bp->pdev);
9687 	pci_disable_device(bp->pdev);
9688 }
9689 
9690 static void bnxt_init_dflt_coal(struct bnxt *bp)
9691 {
9692 	struct bnxt_coal *coal;
9693 
9694 	/* Tick values in micro seconds.
9695 	 * 1 coal_buf x bufs_per_record = 1 completion record.
9696 	 */
9697 	coal = &bp->rx_coal;
9698 	coal->coal_ticks = 10;
9699 	coal->coal_bufs = 30;
9700 	coal->coal_ticks_irq = 1;
9701 	coal->coal_bufs_irq = 2;
9702 	coal->idle_thresh = 50;
9703 	coal->bufs_per_record = 2;
9704 	coal->budget = 64;		/* NAPI budget */
9705 
9706 	coal = &bp->tx_coal;
9707 	coal->coal_ticks = 28;
9708 	coal->coal_bufs = 30;
9709 	coal->coal_ticks_irq = 2;
9710 	coal->coal_bufs_irq = 2;
9711 	coal->bufs_per_record = 1;
9712 
9713 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
9714 }
9715 
9716 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
9717 {
9718 	int rc;
9719 	struct bnxt *bp = netdev_priv(dev);
9720 
9721 	SET_NETDEV_DEV(dev, &pdev->dev);
9722 
9723 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
9724 	rc = pci_enable_device(pdev);
9725 	if (rc) {
9726 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
9727 		goto init_err;
9728 	}
9729 
9730 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
9731 		dev_err(&pdev->dev,
9732 			"Cannot find PCI device base address, aborting\n");
9733 		rc = -ENODEV;
9734 		goto init_err_disable;
9735 	}
9736 
9737 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
9738 	if (rc) {
9739 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
9740 		goto init_err_disable;
9741 	}
9742 
9743 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
9744 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
9745 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
9746 		goto init_err_disable;
9747 	}
9748 
9749 	pci_set_master(pdev);
9750 
9751 	bp->dev = dev;
9752 	bp->pdev = pdev;
9753 
9754 	bp->bar0 = pci_ioremap_bar(pdev, 0);
9755 	if (!bp->bar0) {
9756 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
9757 		rc = -ENOMEM;
9758 		goto init_err_release;
9759 	}
9760 
9761 	bp->bar1 = pci_ioremap_bar(pdev, 2);
9762 	if (!bp->bar1) {
9763 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
9764 		rc = -ENOMEM;
9765 		goto init_err_release;
9766 	}
9767 
9768 	bp->bar2 = pci_ioremap_bar(pdev, 4);
9769 	if (!bp->bar2) {
9770 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
9771 		rc = -ENOMEM;
9772 		goto init_err_release;
9773 	}
9774 
9775 	pci_enable_pcie_error_reporting(pdev);
9776 
9777 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
9778 
9779 	spin_lock_init(&bp->ntp_fltr_lock);
9780 #if BITS_PER_LONG == 32
9781 	spin_lock_init(&bp->db_lock);
9782 #endif
9783 
9784 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
9785 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
9786 
9787 	bnxt_init_dflt_coal(bp);
9788 
9789 	timer_setup(&bp->timer, bnxt_timer, 0);
9790 	bp->current_interval = BNXT_TIMER_INTERVAL;
9791 
9792 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9793 	return 0;
9794 
9795 init_err_release:
9796 	bnxt_unmap_bars(bp, pdev);
9797 	pci_release_regions(pdev);
9798 
9799 init_err_disable:
9800 	pci_disable_device(pdev);
9801 
9802 init_err:
9803 	return rc;
9804 }
9805 
9806 /* rtnl_lock held */
9807 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
9808 {
9809 	struct sockaddr *addr = p;
9810 	struct bnxt *bp = netdev_priv(dev);
9811 	int rc = 0;
9812 
9813 	if (!is_valid_ether_addr(addr->sa_data))
9814 		return -EADDRNOTAVAIL;
9815 
9816 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
9817 		return 0;
9818 
9819 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
9820 	if (rc)
9821 		return rc;
9822 
9823 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
9824 	if (netif_running(dev)) {
9825 		bnxt_close_nic(bp, false, false);
9826 		rc = bnxt_open_nic(bp, false, false);
9827 	}
9828 
9829 	return rc;
9830 }
9831 
9832 /* rtnl_lock held */
9833 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
9834 {
9835 	struct bnxt *bp = netdev_priv(dev);
9836 
9837 	if (netif_running(dev))
9838 		bnxt_close_nic(bp, false, false);
9839 
9840 	dev->mtu = new_mtu;
9841 	bnxt_set_ring_params(bp);
9842 
9843 	if (netif_running(dev))
9844 		return bnxt_open_nic(bp, false, false);
9845 
9846 	return 0;
9847 }
9848 
9849 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
9850 {
9851 	struct bnxt *bp = netdev_priv(dev);
9852 	bool sh = false;
9853 	int rc;
9854 
9855 	if (tc > bp->max_tc) {
9856 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
9857 			   tc, bp->max_tc);
9858 		return -EINVAL;
9859 	}
9860 
9861 	if (netdev_get_num_tc(dev) == tc)
9862 		return 0;
9863 
9864 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9865 		sh = true;
9866 
9867 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
9868 			      sh, tc, bp->tx_nr_rings_xdp);
9869 	if (rc)
9870 		return rc;
9871 
9872 	/* Needs to close the device and do hw resource re-allocations */
9873 	if (netif_running(bp->dev))
9874 		bnxt_close_nic(bp, true, false);
9875 
9876 	if (tc) {
9877 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
9878 		netdev_set_num_tc(dev, tc);
9879 	} else {
9880 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
9881 		netdev_reset_tc(dev);
9882 	}
9883 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
9884 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9885 			       bp->tx_nr_rings + bp->rx_nr_rings;
9886 
9887 	if (netif_running(bp->dev))
9888 		return bnxt_open_nic(bp, true, false);
9889 
9890 	return 0;
9891 }
9892 
9893 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
9894 				  void *cb_priv)
9895 {
9896 	struct bnxt *bp = cb_priv;
9897 
9898 	if (!bnxt_tc_flower_enabled(bp) ||
9899 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
9900 		return -EOPNOTSUPP;
9901 
9902 	switch (type) {
9903 	case TC_SETUP_CLSFLOWER:
9904 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
9905 	default:
9906 		return -EOPNOTSUPP;
9907 	}
9908 }
9909 
9910 static LIST_HEAD(bnxt_block_cb_list);
9911 
9912 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
9913 			 void *type_data)
9914 {
9915 	struct bnxt *bp = netdev_priv(dev);
9916 
9917 	switch (type) {
9918 	case TC_SETUP_BLOCK:
9919 		return flow_block_cb_setup_simple(type_data,
9920 						  &bnxt_block_cb_list,
9921 						  bnxt_setup_tc_block_cb,
9922 						  bp, bp, true);
9923 	case TC_SETUP_QDISC_MQPRIO: {
9924 		struct tc_mqprio_qopt *mqprio = type_data;
9925 
9926 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
9927 
9928 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
9929 	}
9930 	default:
9931 		return -EOPNOTSUPP;
9932 	}
9933 }
9934 
9935 #ifdef CONFIG_RFS_ACCEL
9936 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
9937 			    struct bnxt_ntuple_filter *f2)
9938 {
9939 	struct flow_keys *keys1 = &f1->fkeys;
9940 	struct flow_keys *keys2 = &f2->fkeys;
9941 
9942 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
9943 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
9944 	    keys1->ports.ports == keys2->ports.ports &&
9945 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
9946 	    keys1->basic.n_proto == keys2->basic.n_proto &&
9947 	    keys1->control.flags == keys2->control.flags &&
9948 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
9949 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
9950 		return true;
9951 
9952 	return false;
9953 }
9954 
9955 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
9956 			      u16 rxq_index, u32 flow_id)
9957 {
9958 	struct bnxt *bp = netdev_priv(dev);
9959 	struct bnxt_ntuple_filter *fltr, *new_fltr;
9960 	struct flow_keys *fkeys;
9961 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
9962 	int rc = 0, idx, bit_id, l2_idx = 0;
9963 	struct hlist_head *head;
9964 
9965 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
9966 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9967 		int off = 0, j;
9968 
9969 		netif_addr_lock_bh(dev);
9970 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
9971 			if (ether_addr_equal(eth->h_dest,
9972 					     vnic->uc_list + off)) {
9973 				l2_idx = j + 1;
9974 				break;
9975 			}
9976 		}
9977 		netif_addr_unlock_bh(dev);
9978 		if (!l2_idx)
9979 			return -EINVAL;
9980 	}
9981 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
9982 	if (!new_fltr)
9983 		return -ENOMEM;
9984 
9985 	fkeys = &new_fltr->fkeys;
9986 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
9987 		rc = -EPROTONOSUPPORT;
9988 		goto err_free;
9989 	}
9990 
9991 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
9992 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
9993 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
9994 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
9995 		rc = -EPROTONOSUPPORT;
9996 		goto err_free;
9997 	}
9998 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
9999 	    bp->hwrm_spec_code < 0x10601) {
10000 		rc = -EPROTONOSUPPORT;
10001 		goto err_free;
10002 	}
10003 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
10004 	    bp->hwrm_spec_code < 0x10601) {
10005 		rc = -EPROTONOSUPPORT;
10006 		goto err_free;
10007 	}
10008 
10009 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
10010 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
10011 
10012 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
10013 	head = &bp->ntp_fltr_hash_tbl[idx];
10014 	rcu_read_lock();
10015 	hlist_for_each_entry_rcu(fltr, head, hash) {
10016 		if (bnxt_fltr_match(fltr, new_fltr)) {
10017 			rcu_read_unlock();
10018 			rc = 0;
10019 			goto err_free;
10020 		}
10021 	}
10022 	rcu_read_unlock();
10023 
10024 	spin_lock_bh(&bp->ntp_fltr_lock);
10025 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
10026 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
10027 	if (bit_id < 0) {
10028 		spin_unlock_bh(&bp->ntp_fltr_lock);
10029 		rc = -ENOMEM;
10030 		goto err_free;
10031 	}
10032 
10033 	new_fltr->sw_id = (u16)bit_id;
10034 	new_fltr->flow_id = flow_id;
10035 	new_fltr->l2_fltr_idx = l2_idx;
10036 	new_fltr->rxq = rxq_index;
10037 	hlist_add_head_rcu(&new_fltr->hash, head);
10038 	bp->ntp_fltr_count++;
10039 	spin_unlock_bh(&bp->ntp_fltr_lock);
10040 
10041 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
10042 	bnxt_queue_sp_work(bp);
10043 
10044 	return new_fltr->sw_id;
10045 
10046 err_free:
10047 	kfree(new_fltr);
10048 	return rc;
10049 }
10050 
10051 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
10052 {
10053 	int i;
10054 
10055 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
10056 		struct hlist_head *head;
10057 		struct hlist_node *tmp;
10058 		struct bnxt_ntuple_filter *fltr;
10059 		int rc;
10060 
10061 		head = &bp->ntp_fltr_hash_tbl[i];
10062 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
10063 			bool del = false;
10064 
10065 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
10066 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
10067 							fltr->flow_id,
10068 							fltr->sw_id)) {
10069 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
10070 									 fltr);
10071 					del = true;
10072 				}
10073 			} else {
10074 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
10075 								       fltr);
10076 				if (rc)
10077 					del = true;
10078 				else
10079 					set_bit(BNXT_FLTR_VALID, &fltr->state);
10080 			}
10081 
10082 			if (del) {
10083 				spin_lock_bh(&bp->ntp_fltr_lock);
10084 				hlist_del_rcu(&fltr->hash);
10085 				bp->ntp_fltr_count--;
10086 				spin_unlock_bh(&bp->ntp_fltr_lock);
10087 				synchronize_rcu();
10088 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
10089 				kfree(fltr);
10090 			}
10091 		}
10092 	}
10093 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
10094 		netdev_info(bp->dev, "Receive PF driver unload event!");
10095 }
10096 
10097 #else
10098 
10099 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
10100 {
10101 }
10102 
10103 #endif /* CONFIG_RFS_ACCEL */
10104 
10105 static void bnxt_udp_tunnel_add(struct net_device *dev,
10106 				struct udp_tunnel_info *ti)
10107 {
10108 	struct bnxt *bp = netdev_priv(dev);
10109 
10110 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
10111 		return;
10112 
10113 	if (!netif_running(dev))
10114 		return;
10115 
10116 	switch (ti->type) {
10117 	case UDP_TUNNEL_TYPE_VXLAN:
10118 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
10119 			return;
10120 
10121 		bp->vxlan_port_cnt++;
10122 		if (bp->vxlan_port_cnt == 1) {
10123 			bp->vxlan_port = ti->port;
10124 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
10125 			bnxt_queue_sp_work(bp);
10126 		}
10127 		break;
10128 	case UDP_TUNNEL_TYPE_GENEVE:
10129 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
10130 			return;
10131 
10132 		bp->nge_port_cnt++;
10133 		if (bp->nge_port_cnt == 1) {
10134 			bp->nge_port = ti->port;
10135 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
10136 		}
10137 		break;
10138 	default:
10139 		return;
10140 	}
10141 
10142 	bnxt_queue_sp_work(bp);
10143 }
10144 
10145 static void bnxt_udp_tunnel_del(struct net_device *dev,
10146 				struct udp_tunnel_info *ti)
10147 {
10148 	struct bnxt *bp = netdev_priv(dev);
10149 
10150 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
10151 		return;
10152 
10153 	if (!netif_running(dev))
10154 		return;
10155 
10156 	switch (ti->type) {
10157 	case UDP_TUNNEL_TYPE_VXLAN:
10158 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
10159 			return;
10160 		bp->vxlan_port_cnt--;
10161 
10162 		if (bp->vxlan_port_cnt != 0)
10163 			return;
10164 
10165 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
10166 		break;
10167 	case UDP_TUNNEL_TYPE_GENEVE:
10168 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
10169 			return;
10170 		bp->nge_port_cnt--;
10171 
10172 		if (bp->nge_port_cnt != 0)
10173 			return;
10174 
10175 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
10176 		break;
10177 	default:
10178 		return;
10179 	}
10180 
10181 	bnxt_queue_sp_work(bp);
10182 }
10183 
10184 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
10185 			       struct net_device *dev, u32 filter_mask,
10186 			       int nlflags)
10187 {
10188 	struct bnxt *bp = netdev_priv(dev);
10189 
10190 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
10191 				       nlflags, filter_mask, NULL);
10192 }
10193 
10194 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
10195 			       u16 flags, struct netlink_ext_ack *extack)
10196 {
10197 	struct bnxt *bp = netdev_priv(dev);
10198 	struct nlattr *attr, *br_spec;
10199 	int rem, rc = 0;
10200 
10201 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
10202 		return -EOPNOTSUPP;
10203 
10204 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
10205 	if (!br_spec)
10206 		return -EINVAL;
10207 
10208 	nla_for_each_nested(attr, br_spec, rem) {
10209 		u16 mode;
10210 
10211 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
10212 			continue;
10213 
10214 		if (nla_len(attr) < sizeof(mode))
10215 			return -EINVAL;
10216 
10217 		mode = nla_get_u16(attr);
10218 		if (mode == bp->br_mode)
10219 			break;
10220 
10221 		rc = bnxt_hwrm_set_br_mode(bp, mode);
10222 		if (!rc)
10223 			bp->br_mode = mode;
10224 		break;
10225 	}
10226 	return rc;
10227 }
10228 
10229 int bnxt_get_port_parent_id(struct net_device *dev,
10230 			    struct netdev_phys_item_id *ppid)
10231 {
10232 	struct bnxt *bp = netdev_priv(dev);
10233 
10234 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
10235 		return -EOPNOTSUPP;
10236 
10237 	/* The PF and it's VF-reps only support the switchdev framework */
10238 	if (!BNXT_PF(bp))
10239 		return -EOPNOTSUPP;
10240 
10241 	ppid->id_len = sizeof(bp->switch_id);
10242 	memcpy(ppid->id, bp->switch_id, ppid->id_len);
10243 
10244 	return 0;
10245 }
10246 
10247 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
10248 {
10249 	struct bnxt *bp = netdev_priv(dev);
10250 
10251 	return &bp->dl_port;
10252 }
10253 
10254 static const struct net_device_ops bnxt_netdev_ops = {
10255 	.ndo_open		= bnxt_open,
10256 	.ndo_start_xmit		= bnxt_start_xmit,
10257 	.ndo_stop		= bnxt_close,
10258 	.ndo_get_stats64	= bnxt_get_stats64,
10259 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
10260 	.ndo_do_ioctl		= bnxt_ioctl,
10261 	.ndo_validate_addr	= eth_validate_addr,
10262 	.ndo_set_mac_address	= bnxt_change_mac_addr,
10263 	.ndo_change_mtu		= bnxt_change_mtu,
10264 	.ndo_fix_features	= bnxt_fix_features,
10265 	.ndo_set_features	= bnxt_set_features,
10266 	.ndo_tx_timeout		= bnxt_tx_timeout,
10267 #ifdef CONFIG_BNXT_SRIOV
10268 	.ndo_get_vf_config	= bnxt_get_vf_config,
10269 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
10270 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
10271 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
10272 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
10273 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
10274 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
10275 #endif
10276 	.ndo_setup_tc           = bnxt_setup_tc,
10277 #ifdef CONFIG_RFS_ACCEL
10278 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
10279 #endif
10280 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
10281 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
10282 	.ndo_bpf		= bnxt_xdp,
10283 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
10284 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
10285 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
10286 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
10287 };
10288 
10289 static void bnxt_remove_one(struct pci_dev *pdev)
10290 {
10291 	struct net_device *dev = pci_get_drvdata(pdev);
10292 	struct bnxt *bp = netdev_priv(dev);
10293 
10294 	if (BNXT_PF(bp)) {
10295 		bnxt_sriov_disable(bp);
10296 		bnxt_dl_unregister(bp);
10297 	}
10298 
10299 	pci_disable_pcie_error_reporting(pdev);
10300 	unregister_netdev(dev);
10301 	bnxt_shutdown_tc(bp);
10302 	bnxt_cancel_sp_work(bp);
10303 	bp->sp_event = 0;
10304 
10305 	bnxt_clear_int_mode(bp);
10306 	bnxt_hwrm_func_drv_unrgtr(bp);
10307 	bnxt_free_hwrm_resources(bp);
10308 	bnxt_free_hwrm_short_cmd_req(bp);
10309 	bnxt_ethtool_free(bp);
10310 	bnxt_dcb_free(bp);
10311 	kfree(bp->edev);
10312 	bp->edev = NULL;
10313 	bnxt_cleanup_pci(bp);
10314 	bnxt_free_ctx_mem(bp);
10315 	kfree(bp->ctx);
10316 	bp->ctx = NULL;
10317 	bnxt_free_port_stats(bp);
10318 	free_netdev(dev);
10319 }
10320 
10321 static int bnxt_probe_phy(struct bnxt *bp)
10322 {
10323 	int rc = 0;
10324 	struct bnxt_link_info *link_info = &bp->link_info;
10325 
10326 	rc = bnxt_hwrm_phy_qcaps(bp);
10327 	if (rc) {
10328 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
10329 			   rc);
10330 		return rc;
10331 	}
10332 	mutex_init(&bp->link_lock);
10333 
10334 	rc = bnxt_update_link(bp, false);
10335 	if (rc) {
10336 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
10337 			   rc);
10338 		return rc;
10339 	}
10340 
10341 	/* Older firmware does not have supported_auto_speeds, so assume
10342 	 * that all supported speeds can be autonegotiated.
10343 	 */
10344 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
10345 		link_info->support_auto_speeds = link_info->support_speeds;
10346 
10347 	/*initialize the ethool setting copy with NVM settings */
10348 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10349 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10350 		if (bp->hwrm_spec_code >= 0x10201) {
10351 			if (link_info->auto_pause_setting &
10352 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10353 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10354 		} else {
10355 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10356 		}
10357 		link_info->advertising = link_info->auto_link_speeds;
10358 	} else {
10359 		link_info->req_link_speed = link_info->force_link_speed;
10360 		link_info->req_duplex = link_info->duplex_setting;
10361 	}
10362 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10363 		link_info->req_flow_ctrl =
10364 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10365 	else
10366 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10367 	return rc;
10368 }
10369 
10370 static int bnxt_get_max_irq(struct pci_dev *pdev)
10371 {
10372 	u16 ctrl;
10373 
10374 	if (!pdev->msix_cap)
10375 		return 1;
10376 
10377 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
10378 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
10379 }
10380 
10381 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10382 				int *max_cp)
10383 {
10384 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10385 	int max_ring_grps = 0, max_irq;
10386 
10387 	*max_tx = hw_resc->max_tx_rings;
10388 	*max_rx = hw_resc->max_rx_rings;
10389 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
10390 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
10391 			bnxt_get_ulp_msix_num(bp),
10392 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
10393 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10394 		*max_cp = min_t(int, *max_cp, max_irq);
10395 	max_ring_grps = hw_resc->max_hw_ring_grps;
10396 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
10397 		*max_cp -= 1;
10398 		*max_rx -= 2;
10399 	}
10400 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
10401 		*max_rx >>= 1;
10402 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10403 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
10404 		/* On P5 chips, max_cp output param should be available NQs */
10405 		*max_cp = max_irq;
10406 	}
10407 	*max_rx = min_t(int, *max_rx, max_ring_grps);
10408 }
10409 
10410 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
10411 {
10412 	int rx, tx, cp;
10413 
10414 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
10415 	*max_rx = rx;
10416 	*max_tx = tx;
10417 	if (!rx || !tx || !cp)
10418 		return -ENOMEM;
10419 
10420 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
10421 }
10422 
10423 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10424 			       bool shared)
10425 {
10426 	int rc;
10427 
10428 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10429 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
10430 		/* Not enough rings, try disabling agg rings. */
10431 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
10432 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10433 		if (rc) {
10434 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
10435 			bp->flags |= BNXT_FLAG_AGG_RINGS;
10436 			return rc;
10437 		}
10438 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
10439 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10440 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10441 		bnxt_set_ring_params(bp);
10442 	}
10443 
10444 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
10445 		int max_cp, max_stat, max_irq;
10446 
10447 		/* Reserve minimum resources for RoCE */
10448 		max_cp = bnxt_get_max_func_cp_rings(bp);
10449 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
10450 		max_irq = bnxt_get_max_func_irqs(bp);
10451 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
10452 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
10453 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
10454 			return 0;
10455 
10456 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
10457 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
10458 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
10459 		max_cp = min_t(int, max_cp, max_irq);
10460 		max_cp = min_t(int, max_cp, max_stat);
10461 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
10462 		if (rc)
10463 			rc = 0;
10464 	}
10465 	return rc;
10466 }
10467 
10468 /* In initial default shared ring setting, each shared ring must have a
10469  * RX/TX ring pair.
10470  */
10471 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
10472 {
10473 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
10474 	bp->rx_nr_rings = bp->cp_nr_rings;
10475 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
10476 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10477 }
10478 
10479 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
10480 {
10481 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
10482 
10483 	if (!bnxt_can_reserve_rings(bp))
10484 		return 0;
10485 
10486 	if (sh)
10487 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
10488 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
10489 	/* Reduce default rings on multi-port cards so that total default
10490 	 * rings do not exceed CPU count.
10491 	 */
10492 	if (bp->port_count > 1) {
10493 		int max_rings =
10494 			max_t(int, num_online_cpus() / bp->port_count, 1);
10495 
10496 		dflt_rings = min_t(int, dflt_rings, max_rings);
10497 	}
10498 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
10499 	if (rc)
10500 		return rc;
10501 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
10502 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
10503 	if (sh)
10504 		bnxt_trim_dflt_sh_rings(bp);
10505 	else
10506 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
10507 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10508 
10509 	rc = __bnxt_reserve_rings(bp);
10510 	if (rc)
10511 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
10512 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10513 	if (sh)
10514 		bnxt_trim_dflt_sh_rings(bp);
10515 
10516 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
10517 	if (bnxt_need_reserve_rings(bp)) {
10518 		rc = __bnxt_reserve_rings(bp);
10519 		if (rc)
10520 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
10521 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10522 	}
10523 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10524 		bp->rx_nr_rings++;
10525 		bp->cp_nr_rings++;
10526 	}
10527 	return rc;
10528 }
10529 
10530 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
10531 {
10532 	int rc;
10533 
10534 	if (bp->tx_nr_rings)
10535 		return 0;
10536 
10537 	bnxt_ulp_irq_stop(bp);
10538 	bnxt_clear_int_mode(bp);
10539 	rc = bnxt_set_dflt_rings(bp, true);
10540 	if (rc) {
10541 		netdev_err(bp->dev, "Not enough rings available.\n");
10542 		goto init_dflt_ring_err;
10543 	}
10544 	rc = bnxt_init_int_mode(bp);
10545 	if (rc)
10546 		goto init_dflt_ring_err;
10547 
10548 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10549 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
10550 		bp->flags |= BNXT_FLAG_RFS;
10551 		bp->dev->features |= NETIF_F_NTUPLE;
10552 	}
10553 init_dflt_ring_err:
10554 	bnxt_ulp_irq_restart(bp, rc);
10555 	return rc;
10556 }
10557 
10558 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
10559 {
10560 	int rc;
10561 
10562 	ASSERT_RTNL();
10563 	bnxt_hwrm_func_qcaps(bp);
10564 
10565 	if (netif_running(bp->dev))
10566 		__bnxt_close_nic(bp, true, false);
10567 
10568 	bnxt_ulp_irq_stop(bp);
10569 	bnxt_clear_int_mode(bp);
10570 	rc = bnxt_init_int_mode(bp);
10571 	bnxt_ulp_irq_restart(bp, rc);
10572 
10573 	if (netif_running(bp->dev)) {
10574 		if (rc)
10575 			dev_close(bp->dev);
10576 		else
10577 			rc = bnxt_open_nic(bp, true, false);
10578 	}
10579 
10580 	return rc;
10581 }
10582 
10583 static int bnxt_init_mac_addr(struct bnxt *bp)
10584 {
10585 	int rc = 0;
10586 
10587 	if (BNXT_PF(bp)) {
10588 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
10589 	} else {
10590 #ifdef CONFIG_BNXT_SRIOV
10591 		struct bnxt_vf_info *vf = &bp->vf;
10592 		bool strict_approval = true;
10593 
10594 		if (is_valid_ether_addr(vf->mac_addr)) {
10595 			/* overwrite netdev dev_addr with admin VF MAC */
10596 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
10597 			/* Older PF driver or firmware may not approve this
10598 			 * correctly.
10599 			 */
10600 			strict_approval = false;
10601 		} else {
10602 			eth_hw_addr_random(bp->dev);
10603 		}
10604 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
10605 #endif
10606 	}
10607 	return rc;
10608 }
10609 
10610 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
10611 {
10612 	struct pci_dev *pdev = bp->pdev;
10613 	int pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
10614 	u32 dw;
10615 
10616 	if (!pos) {
10617 		netdev_info(bp->dev, "Unable do read adapter's DSN");
10618 		return -EOPNOTSUPP;
10619 	}
10620 
10621 	/* DSN (two dw) is at an offset of 4 from the cap pos */
10622 	pos += 4;
10623 	pci_read_config_dword(pdev, pos, &dw);
10624 	put_unaligned_le32(dw, &dsn[0]);
10625 	pci_read_config_dword(pdev, pos + 4, &dw);
10626 	put_unaligned_le32(dw, &dsn[4]);
10627 	return 0;
10628 }
10629 
10630 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
10631 {
10632 	static int version_printed;
10633 	struct net_device *dev;
10634 	struct bnxt *bp;
10635 	int rc, max_irqs;
10636 
10637 	if (pci_is_bridge(pdev))
10638 		return -ENODEV;
10639 
10640 	if (version_printed++ == 0)
10641 		pr_info("%s", version);
10642 
10643 	max_irqs = bnxt_get_max_irq(pdev);
10644 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
10645 	if (!dev)
10646 		return -ENOMEM;
10647 
10648 	bp = netdev_priv(dev);
10649 	bnxt_set_max_func_irqs(bp, max_irqs);
10650 
10651 	if (bnxt_vf_pciid(ent->driver_data))
10652 		bp->flags |= BNXT_FLAG_VF;
10653 
10654 	if (pdev->msix_cap)
10655 		bp->flags |= BNXT_FLAG_MSIX_CAP;
10656 
10657 	rc = bnxt_init_board(pdev, dev);
10658 	if (rc < 0)
10659 		goto init_err_free;
10660 
10661 	dev->netdev_ops = &bnxt_netdev_ops;
10662 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
10663 	dev->ethtool_ops = &bnxt_ethtool_ops;
10664 	pci_set_drvdata(pdev, dev);
10665 
10666 	rc = bnxt_alloc_hwrm_resources(bp);
10667 	if (rc)
10668 		goto init_err_pci_clean;
10669 
10670 	mutex_init(&bp->hwrm_cmd_lock);
10671 	rc = bnxt_hwrm_ver_get(bp);
10672 	if (rc)
10673 		goto init_err_pci_clean;
10674 
10675 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10676 		rc = bnxt_alloc_kong_hwrm_resources(bp);
10677 		if (rc)
10678 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10679 	}
10680 
10681 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10682 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10683 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10684 		if (rc)
10685 			goto init_err_pci_clean;
10686 	}
10687 
10688 	if (BNXT_CHIP_P5(bp))
10689 		bp->flags |= BNXT_FLAG_CHIP_P5;
10690 
10691 	rc = bnxt_hwrm_func_reset(bp);
10692 	if (rc)
10693 		goto init_err_pci_clean;
10694 
10695 	bnxt_hwrm_fw_set_time(bp);
10696 
10697 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10698 			   NETIF_F_TSO | NETIF_F_TSO6 |
10699 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10700 			   NETIF_F_GSO_IPXIP4 |
10701 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10702 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
10703 			   NETIF_F_RXCSUM | NETIF_F_GRO;
10704 
10705 	if (BNXT_SUPPORTS_TPA(bp))
10706 		dev->hw_features |= NETIF_F_LRO;
10707 
10708 	dev->hw_enc_features =
10709 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10710 			NETIF_F_TSO | NETIF_F_TSO6 |
10711 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10712 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10713 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
10714 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
10715 				    NETIF_F_GSO_GRE_CSUM;
10716 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
10717 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
10718 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
10719 	if (BNXT_SUPPORTS_TPA(bp))
10720 		dev->hw_features |= NETIF_F_GRO_HW;
10721 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
10722 	if (dev->features & NETIF_F_GRO_HW)
10723 		dev->features &= ~NETIF_F_LRO;
10724 	dev->priv_flags |= IFF_UNICAST_FLT;
10725 
10726 #ifdef CONFIG_BNXT_SRIOV
10727 	init_waitqueue_head(&bp->sriov_cfg_wait);
10728 	mutex_init(&bp->sriov_lock);
10729 #endif
10730 	if (BNXT_SUPPORTS_TPA(bp)) {
10731 		bp->gro_func = bnxt_gro_func_5730x;
10732 		if (BNXT_CHIP_P4(bp))
10733 			bp->gro_func = bnxt_gro_func_5731x;
10734 	}
10735 	if (!BNXT_CHIP_P4_PLUS(bp))
10736 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
10737 
10738 	rc = bnxt_hwrm_func_drv_rgtr(bp);
10739 	if (rc)
10740 		goto init_err_pci_clean;
10741 
10742 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
10743 	if (rc)
10744 		goto init_err_pci_clean;
10745 
10746 	bp->ulp_probe = bnxt_ulp_probe;
10747 
10748 	rc = bnxt_hwrm_queue_qportcfg(bp);
10749 	if (rc) {
10750 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
10751 			   rc);
10752 		rc = -1;
10753 		goto init_err_pci_clean;
10754 	}
10755 	/* Get the MAX capabilities for this function */
10756 	rc = bnxt_hwrm_func_qcaps(bp);
10757 	if (rc) {
10758 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10759 			   rc);
10760 		rc = -1;
10761 		goto init_err_pci_clean;
10762 	}
10763 
10764 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10765 	if (rc)
10766 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10767 			    rc);
10768 
10769 	rc = bnxt_init_mac_addr(bp);
10770 	if (rc) {
10771 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
10772 		rc = -EADDRNOTAVAIL;
10773 		goto init_err_pci_clean;
10774 	}
10775 
10776 	if (BNXT_PF(bp)) {
10777 		/* Read the adapter's DSN to use as the eswitch switch_id */
10778 		rc = bnxt_pcie_dsn_get(bp, bp->switch_id);
10779 		if (rc)
10780 			goto init_err_pci_clean;
10781 	}
10782 	bnxt_hwrm_func_qcfg(bp);
10783 	bnxt_hwrm_vnic_qcaps(bp);
10784 	bnxt_hwrm_port_led_qcaps(bp);
10785 	bnxt_ethtool_init(bp);
10786 	bnxt_dcb_init(bp);
10787 
10788 	/* MTU range: 60 - FW defined max */
10789 	dev->min_mtu = ETH_ZLEN;
10790 	dev->max_mtu = bp->max_mtu;
10791 
10792 	rc = bnxt_probe_phy(bp);
10793 	if (rc)
10794 		goto init_err_pci_clean;
10795 
10796 	bnxt_set_rx_skb_mode(bp, false);
10797 	bnxt_set_tpa_flags(bp);
10798 	bnxt_set_ring_params(bp);
10799 	rc = bnxt_set_dflt_rings(bp, true);
10800 	if (rc) {
10801 		netdev_err(bp->dev, "Not enough rings available.\n");
10802 		rc = -ENOMEM;
10803 		goto init_err_pci_clean;
10804 	}
10805 
10806 	/* Default RSS hash cfg. */
10807 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10808 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10809 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10810 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10811 	if (BNXT_CHIP_P4(bp) && bp->hwrm_spec_code >= 0x10501) {
10812 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10813 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10814 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10815 	}
10816 
10817 	if (bnxt_rfs_supported(bp)) {
10818 		dev->hw_features |= NETIF_F_NTUPLE;
10819 		if (bnxt_rfs_capable(bp)) {
10820 			bp->flags |= BNXT_FLAG_RFS;
10821 			dev->features |= NETIF_F_NTUPLE;
10822 		}
10823 	}
10824 
10825 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
10826 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
10827 
10828 	rc = bnxt_init_int_mode(bp);
10829 	if (rc)
10830 		goto init_err_pci_clean;
10831 
10832 	/* No TC has been set yet and rings may have been trimmed due to
10833 	 * limited MSIX, so we re-initialize the TX rings per TC.
10834 	 */
10835 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10836 
10837 	bnxt_get_wol_settings(bp);
10838 	if (bp->flags & BNXT_FLAG_WOL_CAP)
10839 		device_set_wakeup_enable(&pdev->dev, bp->wol);
10840 	else
10841 		device_set_wakeup_capable(&pdev->dev, false);
10842 
10843 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10844 
10845 	bnxt_hwrm_coal_params_qcaps(bp);
10846 
10847 	if (BNXT_PF(bp)) {
10848 		if (!bnxt_pf_wq) {
10849 			bnxt_pf_wq =
10850 				create_singlethread_workqueue("bnxt_pf_wq");
10851 			if (!bnxt_pf_wq) {
10852 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
10853 				goto init_err_pci_clean;
10854 			}
10855 		}
10856 		bnxt_init_tc(bp);
10857 	}
10858 
10859 	rc = register_netdev(dev);
10860 	if (rc)
10861 		goto init_err_cleanup_tc;
10862 
10863 	if (BNXT_PF(bp))
10864 		bnxt_dl_register(bp);
10865 
10866 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
10867 		    board_info[ent->driver_data].name,
10868 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
10869 	pcie_print_link_status(pdev);
10870 
10871 	return 0;
10872 
10873 init_err_cleanup_tc:
10874 	bnxt_shutdown_tc(bp);
10875 	bnxt_clear_int_mode(bp);
10876 
10877 init_err_pci_clean:
10878 	bnxt_free_hwrm_short_cmd_req(bp);
10879 	bnxt_free_hwrm_resources(bp);
10880 	bnxt_free_ctx_mem(bp);
10881 	kfree(bp->ctx);
10882 	bp->ctx = NULL;
10883 	bnxt_cleanup_pci(bp);
10884 
10885 init_err_free:
10886 	free_netdev(dev);
10887 	return rc;
10888 }
10889 
10890 static void bnxt_shutdown(struct pci_dev *pdev)
10891 {
10892 	struct net_device *dev = pci_get_drvdata(pdev);
10893 	struct bnxt *bp;
10894 
10895 	if (!dev)
10896 		return;
10897 
10898 	rtnl_lock();
10899 	bp = netdev_priv(dev);
10900 	if (!bp)
10901 		goto shutdown_exit;
10902 
10903 	if (netif_running(dev))
10904 		dev_close(dev);
10905 
10906 	bnxt_ulp_shutdown(bp);
10907 
10908 	if (system_state == SYSTEM_POWER_OFF) {
10909 		bnxt_clear_int_mode(bp);
10910 		pci_disable_device(pdev);
10911 		pci_wake_from_d3(pdev, bp->wol);
10912 		pci_set_power_state(pdev, PCI_D3hot);
10913 	}
10914 
10915 shutdown_exit:
10916 	rtnl_unlock();
10917 }
10918 
10919 #ifdef CONFIG_PM_SLEEP
10920 static int bnxt_suspend(struct device *device)
10921 {
10922 	struct pci_dev *pdev = to_pci_dev(device);
10923 	struct net_device *dev = pci_get_drvdata(pdev);
10924 	struct bnxt *bp = netdev_priv(dev);
10925 	int rc = 0;
10926 
10927 	rtnl_lock();
10928 	if (netif_running(dev)) {
10929 		netif_device_detach(dev);
10930 		rc = bnxt_close(dev);
10931 	}
10932 	bnxt_hwrm_func_drv_unrgtr(bp);
10933 	rtnl_unlock();
10934 	return rc;
10935 }
10936 
10937 static int bnxt_resume(struct device *device)
10938 {
10939 	struct pci_dev *pdev = to_pci_dev(device);
10940 	struct net_device *dev = pci_get_drvdata(pdev);
10941 	struct bnxt *bp = netdev_priv(dev);
10942 	int rc = 0;
10943 
10944 	rtnl_lock();
10945 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
10946 		rc = -ENODEV;
10947 		goto resume_exit;
10948 	}
10949 	rc = bnxt_hwrm_func_reset(bp);
10950 	if (rc) {
10951 		rc = -EBUSY;
10952 		goto resume_exit;
10953 	}
10954 	bnxt_get_wol_settings(bp);
10955 	if (netif_running(dev)) {
10956 		rc = bnxt_open(dev);
10957 		if (!rc)
10958 			netif_device_attach(dev);
10959 	}
10960 
10961 resume_exit:
10962 	rtnl_unlock();
10963 	return rc;
10964 }
10965 
10966 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
10967 #define BNXT_PM_OPS (&bnxt_pm_ops)
10968 
10969 #else
10970 
10971 #define BNXT_PM_OPS NULL
10972 
10973 #endif /* CONFIG_PM_SLEEP */
10974 
10975 /**
10976  * bnxt_io_error_detected - called when PCI error is detected
10977  * @pdev: Pointer to PCI device
10978  * @state: The current pci connection state
10979  *
10980  * This function is called after a PCI bus error affecting
10981  * this device has been detected.
10982  */
10983 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
10984 					       pci_channel_state_t state)
10985 {
10986 	struct net_device *netdev = pci_get_drvdata(pdev);
10987 	struct bnxt *bp = netdev_priv(netdev);
10988 
10989 	netdev_info(netdev, "PCI I/O error detected\n");
10990 
10991 	rtnl_lock();
10992 	netif_device_detach(netdev);
10993 
10994 	bnxt_ulp_stop(bp);
10995 
10996 	if (state == pci_channel_io_perm_failure) {
10997 		rtnl_unlock();
10998 		return PCI_ERS_RESULT_DISCONNECT;
10999 	}
11000 
11001 	if (netif_running(netdev))
11002 		bnxt_close(netdev);
11003 
11004 	pci_disable_device(pdev);
11005 	rtnl_unlock();
11006 
11007 	/* Request a slot slot reset. */
11008 	return PCI_ERS_RESULT_NEED_RESET;
11009 }
11010 
11011 /**
11012  * bnxt_io_slot_reset - called after the pci bus has been reset.
11013  * @pdev: Pointer to PCI device
11014  *
11015  * Restart the card from scratch, as if from a cold-boot.
11016  * At this point, the card has exprienced a hard reset,
11017  * followed by fixups by BIOS, and has its config space
11018  * set up identically to what it was at cold boot.
11019  */
11020 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
11021 {
11022 	struct net_device *netdev = pci_get_drvdata(pdev);
11023 	struct bnxt *bp = netdev_priv(netdev);
11024 	int err = 0;
11025 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
11026 
11027 	netdev_info(bp->dev, "PCI Slot Reset\n");
11028 
11029 	rtnl_lock();
11030 
11031 	if (pci_enable_device(pdev)) {
11032 		dev_err(&pdev->dev,
11033 			"Cannot re-enable PCI device after reset.\n");
11034 	} else {
11035 		pci_set_master(pdev);
11036 
11037 		err = bnxt_hwrm_func_reset(bp);
11038 		if (!err && netif_running(netdev))
11039 			err = bnxt_open(netdev);
11040 
11041 		if (!err) {
11042 			result = PCI_ERS_RESULT_RECOVERED;
11043 			bnxt_ulp_start(bp);
11044 		}
11045 	}
11046 
11047 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
11048 		dev_close(netdev);
11049 
11050 	rtnl_unlock();
11051 
11052 	return PCI_ERS_RESULT_RECOVERED;
11053 }
11054 
11055 /**
11056  * bnxt_io_resume - called when traffic can start flowing again.
11057  * @pdev: Pointer to PCI device
11058  *
11059  * This callback is called when the error recovery driver tells
11060  * us that its OK to resume normal operation.
11061  */
11062 static void bnxt_io_resume(struct pci_dev *pdev)
11063 {
11064 	struct net_device *netdev = pci_get_drvdata(pdev);
11065 
11066 	rtnl_lock();
11067 
11068 	netif_device_attach(netdev);
11069 
11070 	rtnl_unlock();
11071 }
11072 
11073 static const struct pci_error_handlers bnxt_err_handler = {
11074 	.error_detected	= bnxt_io_error_detected,
11075 	.slot_reset	= bnxt_io_slot_reset,
11076 	.resume		= bnxt_io_resume
11077 };
11078 
11079 static struct pci_driver bnxt_pci_driver = {
11080 	.name		= DRV_MODULE_NAME,
11081 	.id_table	= bnxt_pci_tbl,
11082 	.probe		= bnxt_init_one,
11083 	.remove		= bnxt_remove_one,
11084 	.shutdown	= bnxt_shutdown,
11085 	.driver.pm	= BNXT_PM_OPS,
11086 	.err_handler	= &bnxt_err_handler,
11087 #if defined(CONFIG_BNXT_SRIOV)
11088 	.sriov_configure = bnxt_sriov_configure,
11089 #endif
11090 };
11091 
11092 static int __init bnxt_init(void)
11093 {
11094 	bnxt_debug_init();
11095 	return pci_register_driver(&bnxt_pci_driver);
11096 }
11097 
11098 static void __exit bnxt_exit(void)
11099 {
11100 	pci_unregister_driver(&bnxt_pci_driver);
11101 	if (bnxt_pf_wq)
11102 		destroy_workqueue(bnxt_pf_wq);
11103 	bnxt_debug_exit();
11104 }
11105 
11106 module_init(bnxt_init);
11107 module_exit(bnxt_exit);
11108