1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2015 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 */ 9 10 #include <linux/module.h> 11 12 #include <linux/stringify.h> 13 #include <linux/kernel.h> 14 #include <linux/timer.h> 15 #include <linux/errno.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/vmalloc.h> 19 #include <linux/interrupt.h> 20 #include <linux/pci.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/skbuff.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/bitops.h> 26 #include <linux/io.h> 27 #include <linux/irq.h> 28 #include <linux/delay.h> 29 #include <asm/byteorder.h> 30 #include <asm/page.h> 31 #include <linux/time.h> 32 #include <linux/mii.h> 33 #include <linux/if.h> 34 #include <linux/if_vlan.h> 35 #include <net/ip.h> 36 #include <net/tcp.h> 37 #include <net/udp.h> 38 #include <net/checksum.h> 39 #include <net/ip6_checksum.h> 40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE) 41 #include <net/vxlan.h> 42 #endif 43 #ifdef CONFIG_NET_RX_BUSY_POLL 44 #include <net/busy_poll.h> 45 #endif 46 #include <linux/workqueue.h> 47 #include <linux/prefetch.h> 48 #include <linux/cache.h> 49 #include <linux/log2.h> 50 #include <linux/aer.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 54 #include "bnxt_hsi.h" 55 #include "bnxt.h" 56 #include "bnxt_sriov.h" 57 #include "bnxt_ethtool.h" 58 59 #define BNXT_TX_TIMEOUT (5 * HZ) 60 61 static const char version[] = 62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n"; 63 64 MODULE_LICENSE("GPL"); 65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver"); 66 MODULE_VERSION(DRV_MODULE_VERSION); 67 68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 70 #define BNXT_RX_COPY_THRESH 256 71 72 #define BNXT_TX_PUSH_THRESH 92 73 74 enum board_idx { 75 BCM57302, 76 BCM57304, 77 BCM57404, 78 BCM57406, 79 BCM57304_VF, 80 BCM57404_VF, 81 }; 82 83 /* indexed by enum above */ 84 static const struct { 85 char *name; 86 } board_info[] = { 87 { "Broadcom BCM57302 NetXtreme-C Single-port 10Gb/25Gb/40Gb/50Gb Ethernet" }, 88 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" }, 89 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" }, 90 { "Broadcom BCM57406 NetXtreme-E Dual-port 10Gb Ethernet" }, 91 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" }, 92 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" }, 93 }; 94 95 static const struct pci_device_id bnxt_pci_tbl[] = { 96 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 97 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 98 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 99 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 100 #ifdef CONFIG_BNXT_SRIOV 101 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF }, 102 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF }, 103 #endif 104 { 0 } 105 }; 106 107 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 108 109 static const u16 bnxt_vf_req_snif[] = { 110 HWRM_FUNC_CFG, 111 HWRM_PORT_PHY_QCFG, 112 HWRM_CFA_L2_FILTER_ALLOC, 113 }; 114 115 static bool bnxt_vf_pciid(enum board_idx idx) 116 { 117 return (idx == BCM57304_VF || idx == BCM57404_VF); 118 } 119 120 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 121 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 122 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 123 124 #define BNXT_CP_DB_REARM(db, raw_cons) \ 125 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db) 126 127 #define BNXT_CP_DB(db, raw_cons) \ 128 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db) 129 130 #define BNXT_CP_DB_IRQ_DIS(db) \ 131 writel(DB_CP_IRQ_DIS_FLAGS, db) 132 133 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 134 { 135 /* Tell compiler to fetch tx indices from memory. */ 136 barrier(); 137 138 return bp->tx_ring_size - 139 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask); 140 } 141 142 static const u16 bnxt_lhint_arr[] = { 143 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 144 TX_BD_FLAGS_LHINT_512_TO_1023, 145 TX_BD_FLAGS_LHINT_1024_TO_2047, 146 TX_BD_FLAGS_LHINT_1024_TO_2047, 147 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 148 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 149 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 150 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 151 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 152 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 153 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 154 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 155 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 156 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 157 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 158 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 159 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 160 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 161 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 162 }; 163 164 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 165 { 166 struct bnxt *bp = netdev_priv(dev); 167 struct tx_bd *txbd; 168 struct tx_bd_ext *txbd1; 169 struct netdev_queue *txq; 170 int i; 171 dma_addr_t mapping; 172 unsigned int length, pad = 0; 173 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 174 u16 prod, last_frag; 175 struct pci_dev *pdev = bp->pdev; 176 struct bnxt_napi *bnapi; 177 struct bnxt_tx_ring_info *txr; 178 struct bnxt_sw_tx_bd *tx_buf; 179 180 i = skb_get_queue_mapping(skb); 181 if (unlikely(i >= bp->tx_nr_rings)) { 182 dev_kfree_skb_any(skb); 183 return NETDEV_TX_OK; 184 } 185 186 bnapi = bp->bnapi[i]; 187 txr = &bnapi->tx_ring; 188 txq = netdev_get_tx_queue(dev, i); 189 prod = txr->tx_prod; 190 191 free_size = bnxt_tx_avail(bp, txr); 192 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 193 netif_tx_stop_queue(txq); 194 return NETDEV_TX_BUSY; 195 } 196 197 length = skb->len; 198 len = skb_headlen(skb); 199 last_frag = skb_shinfo(skb)->nr_frags; 200 201 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 202 203 txbd->tx_bd_opaque = prod; 204 205 tx_buf = &txr->tx_buf_ring[prod]; 206 tx_buf->skb = skb; 207 tx_buf->nr_frags = last_frag; 208 209 vlan_tag_flags = 0; 210 cfa_action = 0; 211 if (skb_vlan_tag_present(skb)) { 212 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 213 skb_vlan_tag_get(skb); 214 /* Currently supports 8021Q, 8021AD vlan offloads 215 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 216 */ 217 if (skb->vlan_proto == htons(ETH_P_8021Q)) 218 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 219 } 220 221 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) { 222 struct tx_push_bd *push = txr->tx_push; 223 struct tx_bd *tx_push = &push->txbd1; 224 struct tx_bd_ext *tx_push1 = &push->txbd2; 225 void *pdata = tx_push1 + 1; 226 int j; 227 228 /* Set COAL_NOW to be ready quickly for the next push */ 229 tx_push->tx_bd_len_flags_type = 230 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 231 TX_BD_TYPE_LONG_TX_BD | 232 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 233 TX_BD_FLAGS_COAL_NOW | 234 TX_BD_FLAGS_PACKET_END | 235 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 236 237 if (skb->ip_summed == CHECKSUM_PARTIAL) 238 tx_push1->tx_bd_hsize_lflags = 239 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 240 else 241 tx_push1->tx_bd_hsize_lflags = 0; 242 243 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 244 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action); 245 246 skb_copy_from_linear_data(skb, pdata, len); 247 pdata += len; 248 for (j = 0; j < last_frag; j++) { 249 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 250 void *fptr; 251 252 fptr = skb_frag_address_safe(frag); 253 if (!fptr) 254 goto normal_tx; 255 256 memcpy(pdata, fptr, skb_frag_size(frag)); 257 pdata += skb_frag_size(frag); 258 } 259 260 memcpy(txbd, tx_push, sizeof(*txbd)); 261 prod = NEXT_TX(prod); 262 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 263 memcpy(txbd, tx_push1, sizeof(*txbd)); 264 prod = NEXT_TX(prod); 265 push->doorbell = 266 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod); 267 txr->tx_prod = prod; 268 269 netdev_tx_sent_queue(txq, skb->len); 270 271 __iowrite64_copy(txr->tx_doorbell, push, 272 (length + sizeof(*push) + 8) / 8); 273 274 tx_buf->is_push = 1; 275 276 goto tx_done; 277 } 278 279 normal_tx: 280 if (length < BNXT_MIN_PKT_SIZE) { 281 pad = BNXT_MIN_PKT_SIZE - length; 282 if (skb_pad(skb, pad)) { 283 /* SKB already freed. */ 284 tx_buf->skb = NULL; 285 return NETDEV_TX_OK; 286 } 287 length = BNXT_MIN_PKT_SIZE; 288 } 289 290 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 291 292 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { 293 dev_kfree_skb_any(skb); 294 tx_buf->skb = NULL; 295 return NETDEV_TX_OK; 296 } 297 298 dma_unmap_addr_set(tx_buf, mapping, mapping); 299 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 300 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 301 302 txbd->tx_bd_haddr = cpu_to_le64(mapping); 303 304 prod = NEXT_TX(prod); 305 txbd1 = (struct tx_bd_ext *) 306 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 307 308 txbd1->tx_bd_hsize_lflags = 0; 309 if (skb_is_gso(skb)) { 310 u32 hdr_len; 311 312 if (skb->encapsulation) 313 hdr_len = skb_inner_network_offset(skb) + 314 skb_inner_network_header_len(skb) + 315 inner_tcp_hdrlen(skb); 316 else 317 hdr_len = skb_transport_offset(skb) + 318 tcp_hdrlen(skb); 319 320 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO | 321 TX_BD_FLAGS_T_IPID | 322 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 323 length = skb_shinfo(skb)->gso_size; 324 txbd1->tx_bd_mss = cpu_to_le32(length); 325 length += hdr_len; 326 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 327 txbd1->tx_bd_hsize_lflags = 328 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 329 txbd1->tx_bd_mss = 0; 330 } 331 332 length >>= 9; 333 flags |= bnxt_lhint_arr[length]; 334 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 335 336 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 337 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action); 338 for (i = 0; i < last_frag; i++) { 339 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 340 341 prod = NEXT_TX(prod); 342 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)]; 343 344 len = skb_frag_size(frag); 345 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 346 DMA_TO_DEVICE); 347 348 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 349 goto tx_dma_error; 350 351 tx_buf = &txr->tx_buf_ring[prod]; 352 dma_unmap_addr_set(tx_buf, mapping, mapping); 353 354 txbd->tx_bd_haddr = cpu_to_le64(mapping); 355 356 flags = len << TX_BD_LEN_SHIFT; 357 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 358 } 359 360 flags &= ~TX_BD_LEN; 361 txbd->tx_bd_len_flags_type = 362 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 363 TX_BD_FLAGS_PACKET_END); 364 365 netdev_tx_sent_queue(txq, skb->len); 366 367 /* Sync BD data before updating doorbell */ 368 wmb(); 369 370 prod = NEXT_TX(prod); 371 txr->tx_prod = prod; 372 373 writel(DB_KEY_TX | prod, txr->tx_doorbell); 374 writel(DB_KEY_TX | prod, txr->tx_doorbell); 375 376 tx_done: 377 378 mmiowb(); 379 380 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 381 netif_tx_stop_queue(txq); 382 383 /* netif_tx_stop_queue() must be done before checking 384 * tx index in bnxt_tx_avail() below, because in 385 * bnxt_tx_int(), we update tx index before checking for 386 * netif_tx_queue_stopped(). 387 */ 388 smp_mb(); 389 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh) 390 netif_tx_wake_queue(txq); 391 } 392 return NETDEV_TX_OK; 393 394 tx_dma_error: 395 last_frag = i; 396 397 /* start back at beginning and unmap skb */ 398 prod = txr->tx_prod; 399 tx_buf = &txr->tx_buf_ring[prod]; 400 tx_buf->skb = NULL; 401 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 402 skb_headlen(skb), PCI_DMA_TODEVICE); 403 prod = NEXT_TX(prod); 404 405 /* unmap remaining mapped pages */ 406 for (i = 0; i < last_frag; i++) { 407 prod = NEXT_TX(prod); 408 tx_buf = &txr->tx_buf_ring[prod]; 409 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 410 skb_frag_size(&skb_shinfo(skb)->frags[i]), 411 PCI_DMA_TODEVICE); 412 } 413 414 dev_kfree_skb_any(skb); 415 return NETDEV_TX_OK; 416 } 417 418 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts) 419 { 420 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring; 421 int index = bnapi->index; 422 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index); 423 u16 cons = txr->tx_cons; 424 struct pci_dev *pdev = bp->pdev; 425 int i; 426 unsigned int tx_bytes = 0; 427 428 for (i = 0; i < nr_pkts; i++) { 429 struct bnxt_sw_tx_bd *tx_buf; 430 struct sk_buff *skb; 431 int j, last; 432 433 tx_buf = &txr->tx_buf_ring[cons]; 434 cons = NEXT_TX(cons); 435 skb = tx_buf->skb; 436 tx_buf->skb = NULL; 437 438 if (tx_buf->is_push) { 439 tx_buf->is_push = 0; 440 goto next_tx_int; 441 } 442 443 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 444 skb_headlen(skb), PCI_DMA_TODEVICE); 445 last = tx_buf->nr_frags; 446 447 for (j = 0; j < last; j++) { 448 cons = NEXT_TX(cons); 449 tx_buf = &txr->tx_buf_ring[cons]; 450 dma_unmap_page( 451 &pdev->dev, 452 dma_unmap_addr(tx_buf, mapping), 453 skb_frag_size(&skb_shinfo(skb)->frags[j]), 454 PCI_DMA_TODEVICE); 455 } 456 457 next_tx_int: 458 cons = NEXT_TX(cons); 459 460 tx_bytes += skb->len; 461 dev_kfree_skb_any(skb); 462 } 463 464 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes); 465 txr->tx_cons = cons; 466 467 /* Need to make the tx_cons update visible to bnxt_start_xmit() 468 * before checking for netif_tx_queue_stopped(). Without the 469 * memory barrier, there is a small possibility that bnxt_start_xmit() 470 * will miss it and cause the queue to be stopped forever. 471 */ 472 smp_mb(); 473 474 if (unlikely(netif_tx_queue_stopped(txq)) && 475 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) { 476 __netif_tx_lock(txq, smp_processor_id()); 477 if (netif_tx_queue_stopped(txq) && 478 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh && 479 txr->dev_state != BNXT_DEV_STATE_CLOSING) 480 netif_tx_wake_queue(txq); 481 __netif_tx_unlock(txq); 482 } 483 } 484 485 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping, 486 gfp_t gfp) 487 { 488 u8 *data; 489 struct pci_dev *pdev = bp->pdev; 490 491 data = kmalloc(bp->rx_buf_size, gfp); 492 if (!data) 493 return NULL; 494 495 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET, 496 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); 497 498 if (dma_mapping_error(&pdev->dev, *mapping)) { 499 kfree(data); 500 data = NULL; 501 } 502 return data; 503 } 504 505 static inline int bnxt_alloc_rx_data(struct bnxt *bp, 506 struct bnxt_rx_ring_info *rxr, 507 u16 prod, gfp_t gfp) 508 { 509 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 510 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod]; 511 u8 *data; 512 dma_addr_t mapping; 513 514 data = __bnxt_alloc_rx_data(bp, &mapping, gfp); 515 if (!data) 516 return -ENOMEM; 517 518 rx_buf->data = data; 519 dma_unmap_addr_set(rx_buf, mapping, mapping); 520 521 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 522 523 return 0; 524 } 525 526 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, 527 u8 *data) 528 { 529 u16 prod = rxr->rx_prod; 530 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 531 struct rx_bd *cons_bd, *prod_bd; 532 533 prod_rx_buf = &rxr->rx_buf_ring[prod]; 534 cons_rx_buf = &rxr->rx_buf_ring[cons]; 535 536 prod_rx_buf->data = data; 537 538 dma_unmap_addr_set(prod_rx_buf, mapping, 539 dma_unmap_addr(cons_rx_buf, mapping)); 540 541 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 542 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; 543 544 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 545 } 546 547 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 548 { 549 u16 next, max = rxr->rx_agg_bmap_size; 550 551 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 552 if (next >= max) 553 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 554 return next; 555 } 556 557 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 558 struct bnxt_rx_ring_info *rxr, 559 u16 prod, gfp_t gfp) 560 { 561 struct rx_bd *rxbd = 562 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 563 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 564 struct pci_dev *pdev = bp->pdev; 565 struct page *page; 566 dma_addr_t mapping; 567 u16 sw_prod = rxr->rx_sw_agg_prod; 568 569 page = alloc_page(gfp); 570 if (!page) 571 return -ENOMEM; 572 573 mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE, 574 PCI_DMA_FROMDEVICE); 575 if (dma_mapping_error(&pdev->dev, mapping)) { 576 __free_page(page); 577 return -EIO; 578 } 579 580 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 581 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 582 583 __set_bit(sw_prod, rxr->rx_agg_bmap); 584 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 585 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod); 586 587 rx_agg_buf->page = page; 588 rx_agg_buf->mapping = mapping; 589 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 590 rxbd->rx_bd_opaque = sw_prod; 591 return 0; 592 } 593 594 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons, 595 u32 agg_bufs) 596 { 597 struct bnxt *bp = bnapi->bp; 598 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 599 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 600 u16 prod = rxr->rx_agg_prod; 601 u16 sw_prod = rxr->rx_sw_agg_prod; 602 u32 i; 603 604 for (i = 0; i < agg_bufs; i++) { 605 u16 cons; 606 struct rx_agg_cmp *agg; 607 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 608 struct rx_bd *prod_bd; 609 struct page *page; 610 611 agg = (struct rx_agg_cmp *) 612 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 613 cons = agg->rx_agg_cmp_opaque; 614 __clear_bit(cons, rxr->rx_agg_bmap); 615 616 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 617 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 618 619 __set_bit(sw_prod, rxr->rx_agg_bmap); 620 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 621 cons_rx_buf = &rxr->rx_agg_ring[cons]; 622 623 /* It is possible for sw_prod to be equal to cons, so 624 * set cons_rx_buf->page to NULL first. 625 */ 626 page = cons_rx_buf->page; 627 cons_rx_buf->page = NULL; 628 prod_rx_buf->page = page; 629 630 prod_rx_buf->mapping = cons_rx_buf->mapping; 631 632 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 633 634 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 635 prod_bd->rx_bd_opaque = sw_prod; 636 637 prod = NEXT_RX_AGG(prod); 638 sw_prod = NEXT_RX_AGG(sw_prod); 639 cp_cons = NEXT_CMP(cp_cons); 640 } 641 rxr->rx_agg_prod = prod; 642 rxr->rx_sw_agg_prod = sw_prod; 643 } 644 645 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 646 struct bnxt_rx_ring_info *rxr, u16 cons, 647 u16 prod, u8 *data, dma_addr_t dma_addr, 648 unsigned int len) 649 { 650 int err; 651 struct sk_buff *skb; 652 653 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 654 if (unlikely(err)) { 655 bnxt_reuse_rx_data(rxr, cons, data); 656 return NULL; 657 } 658 659 skb = build_skb(data, 0); 660 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 661 PCI_DMA_FROMDEVICE); 662 if (!skb) { 663 kfree(data); 664 return NULL; 665 } 666 667 skb_reserve(skb, BNXT_RX_OFFSET); 668 skb_put(skb, len); 669 return skb; 670 } 671 672 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi, 673 struct sk_buff *skb, u16 cp_cons, 674 u32 agg_bufs) 675 { 676 struct pci_dev *pdev = bp->pdev; 677 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 678 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 679 u16 prod = rxr->rx_agg_prod; 680 u32 i; 681 682 for (i = 0; i < agg_bufs; i++) { 683 u16 cons, frag_len; 684 struct rx_agg_cmp *agg; 685 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 686 struct page *page; 687 dma_addr_t mapping; 688 689 agg = (struct rx_agg_cmp *) 690 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 691 cons = agg->rx_agg_cmp_opaque; 692 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 693 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 694 695 cons_rx_buf = &rxr->rx_agg_ring[cons]; 696 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len); 697 __clear_bit(cons, rxr->rx_agg_bmap); 698 699 /* It is possible for bnxt_alloc_rx_page() to allocate 700 * a sw_prod index that equals the cons index, so we 701 * need to clear the cons entry now. 702 */ 703 mapping = dma_unmap_addr(cons_rx_buf, mapping); 704 page = cons_rx_buf->page; 705 cons_rx_buf->page = NULL; 706 707 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 708 struct skb_shared_info *shinfo; 709 unsigned int nr_frags; 710 711 shinfo = skb_shinfo(skb); 712 nr_frags = --shinfo->nr_frags; 713 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL); 714 715 dev_kfree_skb(skb); 716 717 cons_rx_buf->page = page; 718 719 /* Update prod since possibly some pages have been 720 * allocated already. 721 */ 722 rxr->rx_agg_prod = prod; 723 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i); 724 return NULL; 725 } 726 727 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE, 728 PCI_DMA_FROMDEVICE); 729 730 skb->data_len += frag_len; 731 skb->len += frag_len; 732 skb->truesize += PAGE_SIZE; 733 734 prod = NEXT_RX_AGG(prod); 735 cp_cons = NEXT_CMP(cp_cons); 736 } 737 rxr->rx_agg_prod = prod; 738 return skb; 739 } 740 741 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 742 u8 agg_bufs, u32 *raw_cons) 743 { 744 u16 last; 745 struct rx_agg_cmp *agg; 746 747 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 748 last = RING_CMP(*raw_cons); 749 agg = (struct rx_agg_cmp *) 750 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 751 return RX_AGG_CMP_VALID(agg, *raw_cons); 752 } 753 754 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 755 unsigned int len, 756 dma_addr_t mapping) 757 { 758 struct bnxt *bp = bnapi->bp; 759 struct pci_dev *pdev = bp->pdev; 760 struct sk_buff *skb; 761 762 skb = napi_alloc_skb(&bnapi->napi, len); 763 if (!skb) 764 return NULL; 765 766 dma_sync_single_for_cpu(&pdev->dev, mapping, 767 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE); 768 769 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET); 770 771 dma_sync_single_for_device(&pdev->dev, mapping, 772 bp->rx_copy_thresh, 773 PCI_DMA_FROMDEVICE); 774 775 skb_put(skb, len); 776 return skb; 777 } 778 779 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 780 struct rx_tpa_start_cmp *tpa_start, 781 struct rx_tpa_start_cmp_ext *tpa_start1) 782 { 783 u8 agg_id = TPA_START_AGG_ID(tpa_start); 784 u16 cons, prod; 785 struct bnxt_tpa_info *tpa_info; 786 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 787 struct rx_bd *prod_bd; 788 dma_addr_t mapping; 789 790 cons = tpa_start->rx_tpa_start_cmp_opaque; 791 prod = rxr->rx_prod; 792 cons_rx_buf = &rxr->rx_buf_ring[cons]; 793 prod_rx_buf = &rxr->rx_buf_ring[prod]; 794 tpa_info = &rxr->rx_tpa[agg_id]; 795 796 prod_rx_buf->data = tpa_info->data; 797 798 mapping = tpa_info->mapping; 799 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 800 801 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; 802 803 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 804 805 tpa_info->data = cons_rx_buf->data; 806 cons_rx_buf->data = NULL; 807 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping); 808 809 tpa_info->len = 810 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 811 RX_TPA_START_CMP_LEN_SHIFT; 812 if (likely(TPA_START_HASH_VALID(tpa_start))) { 813 u32 hash_type = TPA_START_HASH_TYPE(tpa_start); 814 815 tpa_info->hash_type = PKT_HASH_TYPE_L4; 816 tpa_info->gso_type = SKB_GSO_TCPV4; 817 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 818 if (hash_type == 3) 819 tpa_info->gso_type = SKB_GSO_TCPV6; 820 tpa_info->rss_hash = 821 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 822 } else { 823 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 824 tpa_info->gso_type = 0; 825 if (netif_msg_rx_err(bp)) 826 netdev_warn(bp->dev, "TPA packet without valid hash\n"); 827 } 828 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 829 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 830 831 rxr->rx_prod = NEXT_RX(prod); 832 cons = NEXT_RX(cons); 833 cons_rx_buf = &rxr->rx_buf_ring[cons]; 834 835 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 836 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 837 cons_rx_buf->data = NULL; 838 } 839 840 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi, 841 u16 cp_cons, u32 agg_bufs) 842 { 843 if (agg_bufs) 844 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); 845 } 846 847 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 848 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 849 850 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info, 851 struct rx_tpa_end_cmp *tpa_end, 852 struct rx_tpa_end_cmp_ext *tpa_end1, 853 struct sk_buff *skb) 854 { 855 #ifdef CONFIG_INET 856 struct tcphdr *th; 857 int payload_off, tcp_opt_len = 0; 858 int len, nw_off; 859 860 NAPI_GRO_CB(skb)->count = TPA_END_TPA_SEGS(tpa_end); 861 skb_shinfo(skb)->gso_size = 862 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 863 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 864 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 865 RX_TPA_END_CMP_PAYLOAD_OFFSET) >> 866 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT; 867 if (TPA_END_GRO_TS(tpa_end)) 868 tcp_opt_len = 12; 869 870 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 871 struct iphdr *iph; 872 873 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 874 ETH_HLEN; 875 skb_set_network_header(skb, nw_off); 876 iph = ip_hdr(skb); 877 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 878 len = skb->len - skb_transport_offset(skb); 879 th = tcp_hdr(skb); 880 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 881 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 882 struct ipv6hdr *iph; 883 884 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 885 ETH_HLEN; 886 skb_set_network_header(skb, nw_off); 887 iph = ipv6_hdr(skb); 888 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 889 len = skb->len - skb_transport_offset(skb); 890 th = tcp_hdr(skb); 891 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 892 } else { 893 dev_kfree_skb_any(skb); 894 return NULL; 895 } 896 tcp_gro_complete(skb); 897 898 if (nw_off) { /* tunnel */ 899 struct udphdr *uh = NULL; 900 901 if (skb->protocol == htons(ETH_P_IP)) { 902 struct iphdr *iph = (struct iphdr *)skb->data; 903 904 if (iph->protocol == IPPROTO_UDP) 905 uh = (struct udphdr *)(iph + 1); 906 } else { 907 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 908 909 if (iph->nexthdr == IPPROTO_UDP) 910 uh = (struct udphdr *)(iph + 1); 911 } 912 if (uh) { 913 if (uh->check) 914 skb_shinfo(skb)->gso_type |= 915 SKB_GSO_UDP_TUNNEL_CSUM; 916 else 917 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 918 } 919 } 920 #endif 921 return skb; 922 } 923 924 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 925 struct bnxt_napi *bnapi, 926 u32 *raw_cons, 927 struct rx_tpa_end_cmp *tpa_end, 928 struct rx_tpa_end_cmp_ext *tpa_end1, 929 bool *agg_event) 930 { 931 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 932 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 933 u8 agg_id = TPA_END_AGG_ID(tpa_end); 934 u8 *data, agg_bufs; 935 u16 cp_cons = RING_CMP(*raw_cons); 936 unsigned int len; 937 struct bnxt_tpa_info *tpa_info; 938 dma_addr_t mapping; 939 struct sk_buff *skb; 940 941 tpa_info = &rxr->rx_tpa[agg_id]; 942 data = tpa_info->data; 943 prefetch(data); 944 len = tpa_info->len; 945 mapping = tpa_info->mapping; 946 947 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) & 948 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT; 949 950 if (agg_bufs) { 951 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 952 return ERR_PTR(-EBUSY); 953 954 *agg_event = true; 955 cp_cons = NEXT_CMP(cp_cons); 956 } 957 958 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) { 959 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 960 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 961 agg_bufs, (int)MAX_SKB_FRAGS); 962 return NULL; 963 } 964 965 if (len <= bp->rx_copy_thresh) { 966 skb = bnxt_copy_skb(bnapi, data, len, mapping); 967 if (!skb) { 968 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 969 return NULL; 970 } 971 } else { 972 u8 *new_data; 973 dma_addr_t new_mapping; 974 975 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC); 976 if (!new_data) { 977 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 978 return NULL; 979 } 980 981 tpa_info->data = new_data; 982 tpa_info->mapping = new_mapping; 983 984 skb = build_skb(data, 0); 985 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size, 986 PCI_DMA_FROMDEVICE); 987 988 if (!skb) { 989 kfree(data); 990 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs); 991 return NULL; 992 } 993 skb_reserve(skb, BNXT_RX_OFFSET); 994 skb_put(skb, len); 995 } 996 997 if (agg_bufs) { 998 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); 999 if (!skb) { 1000 /* Page reuse already handled by bnxt_rx_pages(). */ 1001 return NULL; 1002 } 1003 } 1004 skb->protocol = eth_type_trans(skb, bp->dev); 1005 1006 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1007 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1008 1009 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1010 netdev_features_t features = skb->dev->features; 1011 u16 vlan_proto = tpa_info->metadata >> 1012 RX_CMP_FLAGS2_METADATA_TPID_SFT; 1013 1014 if (((features & NETIF_F_HW_VLAN_CTAG_RX) && 1015 vlan_proto == ETH_P_8021Q) || 1016 ((features & NETIF_F_HW_VLAN_STAG_RX) && 1017 vlan_proto == ETH_P_8021AD)) { 1018 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), 1019 tpa_info->metadata & 1020 RX_CMP_FLAGS2_METADATA_VID_MASK); 1021 } 1022 } 1023 1024 skb_checksum_none_assert(skb); 1025 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1026 skb->ip_summed = CHECKSUM_UNNECESSARY; 1027 skb->csum_level = 1028 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1029 } 1030 1031 if (TPA_END_GRO(tpa_end)) 1032 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb); 1033 1034 return skb; 1035 } 1036 1037 /* returns the following: 1038 * 1 - 1 packet successfully received 1039 * 0 - successful TPA_START, packet not completed yet 1040 * -EBUSY - completion ring does not have all the agg buffers yet 1041 * -ENOMEM - packet aborted due to out of memory 1042 * -EIO - packet aborted due to hw error indicated in BD 1043 */ 1044 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons, 1045 bool *agg_event) 1046 { 1047 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1048 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 1049 struct net_device *dev = bp->dev; 1050 struct rx_cmp *rxcmp; 1051 struct rx_cmp_ext *rxcmp1; 1052 u32 tmp_raw_cons = *raw_cons; 1053 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 1054 struct bnxt_sw_rx_bd *rx_buf; 1055 unsigned int len; 1056 u8 *data, agg_bufs, cmp_type; 1057 dma_addr_t dma_addr; 1058 struct sk_buff *skb; 1059 int rc = 0; 1060 1061 rxcmp = (struct rx_cmp *) 1062 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1063 1064 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 1065 cp_cons = RING_CMP(tmp_raw_cons); 1066 rxcmp1 = (struct rx_cmp_ext *) 1067 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1068 1069 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 1070 return -EBUSY; 1071 1072 cmp_type = RX_CMP_TYPE(rxcmp); 1073 1074 prod = rxr->rx_prod; 1075 1076 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) { 1077 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp, 1078 (struct rx_tpa_start_cmp_ext *)rxcmp1); 1079 1080 goto next_rx_no_prod; 1081 1082 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1083 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons, 1084 (struct rx_tpa_end_cmp *)rxcmp, 1085 (struct rx_tpa_end_cmp_ext *)rxcmp1, 1086 agg_event); 1087 1088 if (unlikely(IS_ERR(skb))) 1089 return -EBUSY; 1090 1091 rc = -ENOMEM; 1092 if (likely(skb)) { 1093 skb_record_rx_queue(skb, bnapi->index); 1094 skb_mark_napi_id(skb, &bnapi->napi); 1095 if (bnxt_busy_polling(bnapi)) 1096 netif_receive_skb(skb); 1097 else 1098 napi_gro_receive(&bnapi->napi, skb); 1099 rc = 1; 1100 } 1101 goto next_rx_no_prod; 1102 } 1103 1104 cons = rxcmp->rx_cmp_opaque; 1105 rx_buf = &rxr->rx_buf_ring[cons]; 1106 data = rx_buf->data; 1107 prefetch(data); 1108 1109 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >> 1110 RX_CMP_AGG_BUFS_SHIFT; 1111 1112 if (agg_bufs) { 1113 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1114 return -EBUSY; 1115 1116 cp_cons = NEXT_CMP(cp_cons); 1117 *agg_event = true; 1118 } 1119 1120 rx_buf->data = NULL; 1121 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 1122 bnxt_reuse_rx_data(rxr, cons, data); 1123 if (agg_bufs) 1124 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs); 1125 1126 rc = -EIO; 1127 goto next_rx; 1128 } 1129 1130 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT; 1131 dma_addr = dma_unmap_addr(rx_buf, mapping); 1132 1133 if (len <= bp->rx_copy_thresh) { 1134 skb = bnxt_copy_skb(bnapi, data, len, dma_addr); 1135 bnxt_reuse_rx_data(rxr, cons, data); 1136 if (!skb) { 1137 rc = -ENOMEM; 1138 goto next_rx; 1139 } 1140 } else { 1141 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len); 1142 if (!skb) { 1143 rc = -ENOMEM; 1144 goto next_rx; 1145 } 1146 } 1147 1148 if (agg_bufs) { 1149 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs); 1150 if (!skb) { 1151 rc = -ENOMEM; 1152 goto next_rx; 1153 } 1154 } 1155 1156 if (RX_CMP_HASH_VALID(rxcmp)) { 1157 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 1158 enum pkt_hash_types type = PKT_HASH_TYPE_L4; 1159 1160 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1161 if (hash_type != 1 && hash_type != 3) 1162 type = PKT_HASH_TYPE_L3; 1163 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 1164 } 1165 1166 skb->protocol = eth_type_trans(skb, dev); 1167 1168 if (rxcmp1->rx_cmp_flags2 & 1169 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) { 1170 netdev_features_t features = skb->dev->features; 1171 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1172 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT; 1173 1174 if (((features & NETIF_F_HW_VLAN_CTAG_RX) && 1175 vlan_proto == ETH_P_8021Q) || 1176 ((features & NETIF_F_HW_VLAN_STAG_RX) && 1177 vlan_proto == ETH_P_8021AD)) 1178 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), 1179 meta_data & 1180 RX_CMP_FLAGS2_METADATA_VID_MASK); 1181 } 1182 1183 skb_checksum_none_assert(skb); 1184 if (RX_CMP_L4_CS_OK(rxcmp1)) { 1185 if (dev->features & NETIF_F_RXCSUM) { 1186 skb->ip_summed = CHECKSUM_UNNECESSARY; 1187 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 1188 } 1189 } else { 1190 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) 1191 cpr->rx_l4_csum_errors++; 1192 } 1193 1194 skb_record_rx_queue(skb, bnapi->index); 1195 skb_mark_napi_id(skb, &bnapi->napi); 1196 if (bnxt_busy_polling(bnapi)) 1197 netif_receive_skb(skb); 1198 else 1199 napi_gro_receive(&bnapi->napi, skb); 1200 rc = 1; 1201 1202 next_rx: 1203 rxr->rx_prod = NEXT_RX(prod); 1204 1205 next_rx_no_prod: 1206 *raw_cons = tmp_raw_cons; 1207 1208 return rc; 1209 } 1210 1211 static int bnxt_async_event_process(struct bnxt *bp, 1212 struct hwrm_async_event_cmpl *cmpl) 1213 { 1214 u16 event_id = le16_to_cpu(cmpl->event_id); 1215 1216 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 1217 switch (event_id) { 1218 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 1219 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 1220 schedule_work(&bp->sp_task); 1221 break; 1222 default: 1223 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n", 1224 event_id); 1225 break; 1226 } 1227 return 0; 1228 } 1229 1230 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 1231 { 1232 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 1233 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 1234 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 1235 (struct hwrm_fwd_req_cmpl *)txcmp; 1236 1237 switch (cmpl_type) { 1238 case CMPL_BASE_TYPE_HWRM_DONE: 1239 seq_id = le16_to_cpu(h_cmpl->sequence_id); 1240 if (seq_id == bp->hwrm_intr_seq_id) 1241 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID; 1242 else 1243 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); 1244 break; 1245 1246 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 1247 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 1248 1249 if ((vf_id < bp->pf.first_vf_id) || 1250 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 1251 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 1252 vf_id); 1253 return -EINVAL; 1254 } 1255 1256 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 1257 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event); 1258 schedule_work(&bp->sp_task); 1259 break; 1260 1261 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 1262 bnxt_async_event_process(bp, 1263 (struct hwrm_async_event_cmpl *)txcmp); 1264 1265 default: 1266 break; 1267 } 1268 1269 return 0; 1270 } 1271 1272 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 1273 { 1274 struct bnxt_napi *bnapi = dev_instance; 1275 struct bnxt *bp = bnapi->bp; 1276 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1277 u32 cons = RING_CMP(cpr->cp_raw_cons); 1278 1279 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 1280 napi_schedule(&bnapi->napi); 1281 return IRQ_HANDLED; 1282 } 1283 1284 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 1285 { 1286 u32 raw_cons = cpr->cp_raw_cons; 1287 u16 cons = RING_CMP(raw_cons); 1288 struct tx_cmp *txcmp; 1289 1290 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 1291 1292 return TX_CMP_VALID(txcmp, raw_cons); 1293 } 1294 1295 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 1296 { 1297 struct bnxt_napi *bnapi = dev_instance; 1298 struct bnxt *bp = bnapi->bp; 1299 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1300 u32 cons = RING_CMP(cpr->cp_raw_cons); 1301 u32 int_status; 1302 1303 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 1304 1305 if (!bnxt_has_work(bp, cpr)) { 1306 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 1307 /* return if erroneous interrupt */ 1308 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 1309 return IRQ_NONE; 1310 } 1311 1312 /* disable ring IRQ */ 1313 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell); 1314 1315 /* Return here if interrupt is shared and is disabled. */ 1316 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 1317 return IRQ_HANDLED; 1318 1319 napi_schedule(&bnapi->napi); 1320 return IRQ_HANDLED; 1321 } 1322 1323 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 1324 { 1325 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1326 u32 raw_cons = cpr->cp_raw_cons; 1327 u32 cons; 1328 int tx_pkts = 0; 1329 int rx_pkts = 0; 1330 bool rx_event = false; 1331 bool agg_event = false; 1332 struct tx_cmp *txcmp; 1333 1334 while (1) { 1335 int rc; 1336 1337 cons = RING_CMP(raw_cons); 1338 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 1339 1340 if (!TX_CMP_VALID(txcmp, raw_cons)) 1341 break; 1342 1343 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) { 1344 tx_pkts++; 1345 /* return full budget so NAPI will complete. */ 1346 if (unlikely(tx_pkts > bp->tx_wake_thresh)) 1347 rx_pkts = budget; 1348 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 1349 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event); 1350 if (likely(rc >= 0)) 1351 rx_pkts += rc; 1352 else if (rc == -EBUSY) /* partial completion */ 1353 break; 1354 rx_event = true; 1355 } else if (unlikely((TX_CMP_TYPE(txcmp) == 1356 CMPL_BASE_TYPE_HWRM_DONE) || 1357 (TX_CMP_TYPE(txcmp) == 1358 CMPL_BASE_TYPE_HWRM_FWD_REQ) || 1359 (TX_CMP_TYPE(txcmp) == 1360 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) { 1361 bnxt_hwrm_handler(bp, txcmp); 1362 } 1363 raw_cons = NEXT_RAW_CMP(raw_cons); 1364 1365 if (rx_pkts == budget) 1366 break; 1367 } 1368 1369 cpr->cp_raw_cons = raw_cons; 1370 /* ACK completion ring before freeing tx ring and producing new 1371 * buffers in rx/agg rings to prevent overflowing the completion 1372 * ring. 1373 */ 1374 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 1375 1376 if (tx_pkts) 1377 bnxt_tx_int(bp, bnapi, tx_pkts); 1378 1379 if (rx_event) { 1380 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 1381 1382 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 1383 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 1384 if (agg_event) { 1385 writel(DB_KEY_RX | rxr->rx_agg_prod, 1386 rxr->rx_agg_doorbell); 1387 writel(DB_KEY_RX | rxr->rx_agg_prod, 1388 rxr->rx_agg_doorbell); 1389 } 1390 } 1391 return rx_pkts; 1392 } 1393 1394 static int bnxt_poll(struct napi_struct *napi, int budget) 1395 { 1396 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 1397 struct bnxt *bp = bnapi->bp; 1398 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1399 int work_done = 0; 1400 1401 if (!bnxt_lock_napi(bnapi)) 1402 return budget; 1403 1404 while (1) { 1405 work_done += bnxt_poll_work(bp, bnapi, budget - work_done); 1406 1407 if (work_done >= budget) 1408 break; 1409 1410 if (!bnxt_has_work(bp, cpr)) { 1411 napi_complete(napi); 1412 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 1413 break; 1414 } 1415 } 1416 mmiowb(); 1417 bnxt_unlock_napi(bnapi); 1418 return work_done; 1419 } 1420 1421 #ifdef CONFIG_NET_RX_BUSY_POLL 1422 static int bnxt_busy_poll(struct napi_struct *napi) 1423 { 1424 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 1425 struct bnxt *bp = bnapi->bp; 1426 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 1427 int rx_work, budget = 4; 1428 1429 if (atomic_read(&bp->intr_sem) != 0) 1430 return LL_FLUSH_FAILED; 1431 1432 if (!bnxt_lock_poll(bnapi)) 1433 return LL_FLUSH_BUSY; 1434 1435 rx_work = bnxt_poll_work(bp, bnapi, budget); 1436 1437 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 1438 1439 bnxt_unlock_poll(bnapi); 1440 return rx_work; 1441 } 1442 #endif 1443 1444 static void bnxt_free_tx_skbs(struct bnxt *bp) 1445 { 1446 int i, max_idx; 1447 struct pci_dev *pdev = bp->pdev; 1448 1449 if (!bp->bnapi) 1450 return; 1451 1452 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 1453 for (i = 0; i < bp->tx_nr_rings; i++) { 1454 struct bnxt_napi *bnapi = bp->bnapi[i]; 1455 struct bnxt_tx_ring_info *txr; 1456 int j; 1457 1458 if (!bnapi) 1459 continue; 1460 1461 txr = &bnapi->tx_ring; 1462 for (j = 0; j < max_idx;) { 1463 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 1464 struct sk_buff *skb = tx_buf->skb; 1465 int k, last; 1466 1467 if (!skb) { 1468 j++; 1469 continue; 1470 } 1471 1472 tx_buf->skb = NULL; 1473 1474 if (tx_buf->is_push) { 1475 dev_kfree_skb(skb); 1476 j += 2; 1477 continue; 1478 } 1479 1480 dma_unmap_single(&pdev->dev, 1481 dma_unmap_addr(tx_buf, mapping), 1482 skb_headlen(skb), 1483 PCI_DMA_TODEVICE); 1484 1485 last = tx_buf->nr_frags; 1486 j += 2; 1487 for (k = 0; k < last; k++, j = NEXT_TX(j)) { 1488 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 1489 1490 tx_buf = &txr->tx_buf_ring[j]; 1491 dma_unmap_page( 1492 &pdev->dev, 1493 dma_unmap_addr(tx_buf, mapping), 1494 skb_frag_size(frag), PCI_DMA_TODEVICE); 1495 } 1496 dev_kfree_skb(skb); 1497 } 1498 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 1499 } 1500 } 1501 1502 static void bnxt_free_rx_skbs(struct bnxt *bp) 1503 { 1504 int i, max_idx, max_agg_idx; 1505 struct pci_dev *pdev = bp->pdev; 1506 1507 if (!bp->bnapi) 1508 return; 1509 1510 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 1511 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 1512 for (i = 0; i < bp->rx_nr_rings; i++) { 1513 struct bnxt_napi *bnapi = bp->bnapi[i]; 1514 struct bnxt_rx_ring_info *rxr; 1515 int j; 1516 1517 if (!bnapi) 1518 continue; 1519 1520 rxr = &bnapi->rx_ring; 1521 1522 if (rxr->rx_tpa) { 1523 for (j = 0; j < MAX_TPA; j++) { 1524 struct bnxt_tpa_info *tpa_info = 1525 &rxr->rx_tpa[j]; 1526 u8 *data = tpa_info->data; 1527 1528 if (!data) 1529 continue; 1530 1531 dma_unmap_single( 1532 &pdev->dev, 1533 dma_unmap_addr(tpa_info, mapping), 1534 bp->rx_buf_use_size, 1535 PCI_DMA_FROMDEVICE); 1536 1537 tpa_info->data = NULL; 1538 1539 kfree(data); 1540 } 1541 } 1542 1543 for (j = 0; j < max_idx; j++) { 1544 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j]; 1545 u8 *data = rx_buf->data; 1546 1547 if (!data) 1548 continue; 1549 1550 dma_unmap_single(&pdev->dev, 1551 dma_unmap_addr(rx_buf, mapping), 1552 bp->rx_buf_use_size, 1553 PCI_DMA_FROMDEVICE); 1554 1555 rx_buf->data = NULL; 1556 1557 kfree(data); 1558 } 1559 1560 for (j = 0; j < max_agg_idx; j++) { 1561 struct bnxt_sw_rx_agg_bd *rx_agg_buf = 1562 &rxr->rx_agg_ring[j]; 1563 struct page *page = rx_agg_buf->page; 1564 1565 if (!page) 1566 continue; 1567 1568 dma_unmap_page(&pdev->dev, 1569 dma_unmap_addr(rx_agg_buf, mapping), 1570 PAGE_SIZE, PCI_DMA_FROMDEVICE); 1571 1572 rx_agg_buf->page = NULL; 1573 __clear_bit(j, rxr->rx_agg_bmap); 1574 1575 __free_page(page); 1576 } 1577 } 1578 } 1579 1580 static void bnxt_free_skbs(struct bnxt *bp) 1581 { 1582 bnxt_free_tx_skbs(bp); 1583 bnxt_free_rx_skbs(bp); 1584 } 1585 1586 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) 1587 { 1588 struct pci_dev *pdev = bp->pdev; 1589 int i; 1590 1591 for (i = 0; i < ring->nr_pages; i++) { 1592 if (!ring->pg_arr[i]) 1593 continue; 1594 1595 dma_free_coherent(&pdev->dev, ring->page_size, 1596 ring->pg_arr[i], ring->dma_arr[i]); 1597 1598 ring->pg_arr[i] = NULL; 1599 } 1600 if (ring->pg_tbl) { 1601 dma_free_coherent(&pdev->dev, ring->nr_pages * 8, 1602 ring->pg_tbl, ring->pg_tbl_map); 1603 ring->pg_tbl = NULL; 1604 } 1605 if (ring->vmem_size && *ring->vmem) { 1606 vfree(*ring->vmem); 1607 *ring->vmem = NULL; 1608 } 1609 } 1610 1611 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring) 1612 { 1613 int i; 1614 struct pci_dev *pdev = bp->pdev; 1615 1616 if (ring->nr_pages > 1) { 1617 ring->pg_tbl = dma_alloc_coherent(&pdev->dev, 1618 ring->nr_pages * 8, 1619 &ring->pg_tbl_map, 1620 GFP_KERNEL); 1621 if (!ring->pg_tbl) 1622 return -ENOMEM; 1623 } 1624 1625 for (i = 0; i < ring->nr_pages; i++) { 1626 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 1627 ring->page_size, 1628 &ring->dma_arr[i], 1629 GFP_KERNEL); 1630 if (!ring->pg_arr[i]) 1631 return -ENOMEM; 1632 1633 if (ring->nr_pages > 1) 1634 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]); 1635 } 1636 1637 if (ring->vmem_size) { 1638 *ring->vmem = vzalloc(ring->vmem_size); 1639 if (!(*ring->vmem)) 1640 return -ENOMEM; 1641 } 1642 return 0; 1643 } 1644 1645 static void bnxt_free_rx_rings(struct bnxt *bp) 1646 { 1647 int i; 1648 1649 if (!bp->bnapi) 1650 return; 1651 1652 for (i = 0; i < bp->rx_nr_rings; i++) { 1653 struct bnxt_napi *bnapi = bp->bnapi[i]; 1654 struct bnxt_rx_ring_info *rxr; 1655 struct bnxt_ring_struct *ring; 1656 1657 if (!bnapi) 1658 continue; 1659 1660 rxr = &bnapi->rx_ring; 1661 1662 kfree(rxr->rx_tpa); 1663 rxr->rx_tpa = NULL; 1664 1665 kfree(rxr->rx_agg_bmap); 1666 rxr->rx_agg_bmap = NULL; 1667 1668 ring = &rxr->rx_ring_struct; 1669 bnxt_free_ring(bp, ring); 1670 1671 ring = &rxr->rx_agg_ring_struct; 1672 bnxt_free_ring(bp, ring); 1673 } 1674 } 1675 1676 static int bnxt_alloc_rx_rings(struct bnxt *bp) 1677 { 1678 int i, rc, agg_rings = 0, tpa_rings = 0; 1679 1680 if (bp->flags & BNXT_FLAG_AGG_RINGS) 1681 agg_rings = 1; 1682 1683 if (bp->flags & BNXT_FLAG_TPA) 1684 tpa_rings = 1; 1685 1686 for (i = 0; i < bp->rx_nr_rings; i++) { 1687 struct bnxt_napi *bnapi = bp->bnapi[i]; 1688 struct bnxt_rx_ring_info *rxr; 1689 struct bnxt_ring_struct *ring; 1690 1691 if (!bnapi) 1692 continue; 1693 1694 rxr = &bnapi->rx_ring; 1695 ring = &rxr->rx_ring_struct; 1696 1697 rc = bnxt_alloc_ring(bp, ring); 1698 if (rc) 1699 return rc; 1700 1701 if (agg_rings) { 1702 u16 mem_size; 1703 1704 ring = &rxr->rx_agg_ring_struct; 1705 rc = bnxt_alloc_ring(bp, ring); 1706 if (rc) 1707 return rc; 1708 1709 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 1710 mem_size = rxr->rx_agg_bmap_size / 8; 1711 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 1712 if (!rxr->rx_agg_bmap) 1713 return -ENOMEM; 1714 1715 if (tpa_rings) { 1716 rxr->rx_tpa = kcalloc(MAX_TPA, 1717 sizeof(struct bnxt_tpa_info), 1718 GFP_KERNEL); 1719 if (!rxr->rx_tpa) 1720 return -ENOMEM; 1721 } 1722 } 1723 } 1724 return 0; 1725 } 1726 1727 static void bnxt_free_tx_rings(struct bnxt *bp) 1728 { 1729 int i; 1730 struct pci_dev *pdev = bp->pdev; 1731 1732 if (!bp->bnapi) 1733 return; 1734 1735 for (i = 0; i < bp->tx_nr_rings; i++) { 1736 struct bnxt_napi *bnapi = bp->bnapi[i]; 1737 struct bnxt_tx_ring_info *txr; 1738 struct bnxt_ring_struct *ring; 1739 1740 if (!bnapi) 1741 continue; 1742 1743 txr = &bnapi->tx_ring; 1744 1745 if (txr->tx_push) { 1746 dma_free_coherent(&pdev->dev, bp->tx_push_size, 1747 txr->tx_push, txr->tx_push_mapping); 1748 txr->tx_push = NULL; 1749 } 1750 1751 ring = &txr->tx_ring_struct; 1752 1753 bnxt_free_ring(bp, ring); 1754 } 1755 } 1756 1757 static int bnxt_alloc_tx_rings(struct bnxt *bp) 1758 { 1759 int i, j, rc; 1760 struct pci_dev *pdev = bp->pdev; 1761 1762 bp->tx_push_size = 0; 1763 if (bp->tx_push_thresh) { 1764 int push_size; 1765 1766 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 1767 bp->tx_push_thresh); 1768 1769 if (push_size > 128) { 1770 push_size = 0; 1771 bp->tx_push_thresh = 0; 1772 } 1773 1774 bp->tx_push_size = push_size; 1775 } 1776 1777 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 1778 struct bnxt_napi *bnapi = bp->bnapi[i]; 1779 struct bnxt_tx_ring_info *txr; 1780 struct bnxt_ring_struct *ring; 1781 1782 if (!bnapi) 1783 continue; 1784 1785 txr = &bnapi->tx_ring; 1786 ring = &txr->tx_ring_struct; 1787 1788 rc = bnxt_alloc_ring(bp, ring); 1789 if (rc) 1790 return rc; 1791 1792 if (bp->tx_push_size) { 1793 struct tx_bd *txbd; 1794 dma_addr_t mapping; 1795 1796 /* One pre-allocated DMA buffer to backup 1797 * TX push operation 1798 */ 1799 txr->tx_push = dma_alloc_coherent(&pdev->dev, 1800 bp->tx_push_size, 1801 &txr->tx_push_mapping, 1802 GFP_KERNEL); 1803 1804 if (!txr->tx_push) 1805 return -ENOMEM; 1806 1807 txbd = &txr->tx_push->txbd1; 1808 1809 mapping = txr->tx_push_mapping + 1810 sizeof(struct tx_push_bd); 1811 txbd->tx_bd_haddr = cpu_to_le64(mapping); 1812 1813 memset(txbd + 1, 0, sizeof(struct tx_bd_ext)); 1814 } 1815 ring->queue_id = bp->q_info[j].queue_id; 1816 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1)) 1817 j++; 1818 } 1819 return 0; 1820 } 1821 1822 static void bnxt_free_cp_rings(struct bnxt *bp) 1823 { 1824 int i; 1825 1826 if (!bp->bnapi) 1827 return; 1828 1829 for (i = 0; i < bp->cp_nr_rings; i++) { 1830 struct bnxt_napi *bnapi = bp->bnapi[i]; 1831 struct bnxt_cp_ring_info *cpr; 1832 struct bnxt_ring_struct *ring; 1833 1834 if (!bnapi) 1835 continue; 1836 1837 cpr = &bnapi->cp_ring; 1838 ring = &cpr->cp_ring_struct; 1839 1840 bnxt_free_ring(bp, ring); 1841 } 1842 } 1843 1844 static int bnxt_alloc_cp_rings(struct bnxt *bp) 1845 { 1846 int i, rc; 1847 1848 for (i = 0; i < bp->cp_nr_rings; i++) { 1849 struct bnxt_napi *bnapi = bp->bnapi[i]; 1850 struct bnxt_cp_ring_info *cpr; 1851 struct bnxt_ring_struct *ring; 1852 1853 if (!bnapi) 1854 continue; 1855 1856 cpr = &bnapi->cp_ring; 1857 ring = &cpr->cp_ring_struct; 1858 1859 rc = bnxt_alloc_ring(bp, ring); 1860 if (rc) 1861 return rc; 1862 } 1863 return 0; 1864 } 1865 1866 static void bnxt_init_ring_struct(struct bnxt *bp) 1867 { 1868 int i; 1869 1870 for (i = 0; i < bp->cp_nr_rings; i++) { 1871 struct bnxt_napi *bnapi = bp->bnapi[i]; 1872 struct bnxt_cp_ring_info *cpr; 1873 struct bnxt_rx_ring_info *rxr; 1874 struct bnxt_tx_ring_info *txr; 1875 struct bnxt_ring_struct *ring; 1876 1877 if (!bnapi) 1878 continue; 1879 1880 cpr = &bnapi->cp_ring; 1881 ring = &cpr->cp_ring_struct; 1882 ring->nr_pages = bp->cp_nr_pages; 1883 ring->page_size = HW_CMPD_RING_SIZE; 1884 ring->pg_arr = (void **)cpr->cp_desc_ring; 1885 ring->dma_arr = cpr->cp_desc_mapping; 1886 ring->vmem_size = 0; 1887 1888 rxr = &bnapi->rx_ring; 1889 ring = &rxr->rx_ring_struct; 1890 ring->nr_pages = bp->rx_nr_pages; 1891 ring->page_size = HW_RXBD_RING_SIZE; 1892 ring->pg_arr = (void **)rxr->rx_desc_ring; 1893 ring->dma_arr = rxr->rx_desc_mapping; 1894 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 1895 ring->vmem = (void **)&rxr->rx_buf_ring; 1896 1897 ring = &rxr->rx_agg_ring_struct; 1898 ring->nr_pages = bp->rx_agg_nr_pages; 1899 ring->page_size = HW_RXBD_RING_SIZE; 1900 ring->pg_arr = (void **)rxr->rx_agg_desc_ring; 1901 ring->dma_arr = rxr->rx_agg_desc_mapping; 1902 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 1903 ring->vmem = (void **)&rxr->rx_agg_ring; 1904 1905 txr = &bnapi->tx_ring; 1906 ring = &txr->tx_ring_struct; 1907 ring->nr_pages = bp->tx_nr_pages; 1908 ring->page_size = HW_RXBD_RING_SIZE; 1909 ring->pg_arr = (void **)txr->tx_desc_ring; 1910 ring->dma_arr = txr->tx_desc_mapping; 1911 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 1912 ring->vmem = (void **)&txr->tx_buf_ring; 1913 } 1914 } 1915 1916 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 1917 { 1918 int i; 1919 u32 prod; 1920 struct rx_bd **rx_buf_ring; 1921 1922 rx_buf_ring = (struct rx_bd **)ring->pg_arr; 1923 for (i = 0, prod = 0; i < ring->nr_pages; i++) { 1924 int j; 1925 struct rx_bd *rxbd; 1926 1927 rxbd = rx_buf_ring[i]; 1928 if (!rxbd) 1929 continue; 1930 1931 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 1932 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 1933 rxbd->rx_bd_opaque = prod; 1934 } 1935 } 1936 } 1937 1938 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 1939 { 1940 struct net_device *dev = bp->dev; 1941 struct bnxt_napi *bnapi = bp->bnapi[ring_nr]; 1942 struct bnxt_rx_ring_info *rxr; 1943 struct bnxt_ring_struct *ring; 1944 u32 prod, type; 1945 int i; 1946 1947 if (!bnapi) 1948 return -EINVAL; 1949 1950 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 1951 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 1952 1953 if (NET_IP_ALIGN == 2) 1954 type |= RX_BD_FLAGS_SOP; 1955 1956 rxr = &bnapi->rx_ring; 1957 ring = &rxr->rx_ring_struct; 1958 bnxt_init_rxbd_pages(ring, type); 1959 1960 prod = rxr->rx_prod; 1961 for (i = 0; i < bp->rx_ring_size; i++) { 1962 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) { 1963 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n", 1964 ring_nr, i, bp->rx_ring_size); 1965 break; 1966 } 1967 prod = NEXT_RX(prod); 1968 } 1969 rxr->rx_prod = prod; 1970 ring->fw_ring_id = INVALID_HW_RING_ID; 1971 1972 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 1973 return 0; 1974 1975 ring = &rxr->rx_agg_ring_struct; 1976 1977 type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) | 1978 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 1979 1980 bnxt_init_rxbd_pages(ring, type); 1981 1982 prod = rxr->rx_agg_prod; 1983 for (i = 0; i < bp->rx_agg_ring_size; i++) { 1984 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) { 1985 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n", 1986 ring_nr, i, bp->rx_ring_size); 1987 break; 1988 } 1989 prod = NEXT_RX_AGG(prod); 1990 } 1991 rxr->rx_agg_prod = prod; 1992 ring->fw_ring_id = INVALID_HW_RING_ID; 1993 1994 if (bp->flags & BNXT_FLAG_TPA) { 1995 if (rxr->rx_tpa) { 1996 u8 *data; 1997 dma_addr_t mapping; 1998 1999 for (i = 0; i < MAX_TPA; i++) { 2000 data = __bnxt_alloc_rx_data(bp, &mapping, 2001 GFP_KERNEL); 2002 if (!data) 2003 return -ENOMEM; 2004 2005 rxr->rx_tpa[i].data = data; 2006 rxr->rx_tpa[i].mapping = mapping; 2007 } 2008 } else { 2009 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n"); 2010 return -ENOMEM; 2011 } 2012 } 2013 2014 return 0; 2015 } 2016 2017 static int bnxt_init_rx_rings(struct bnxt *bp) 2018 { 2019 int i, rc = 0; 2020 2021 for (i = 0; i < bp->rx_nr_rings; i++) { 2022 rc = bnxt_init_one_rx_ring(bp, i); 2023 if (rc) 2024 break; 2025 } 2026 2027 return rc; 2028 } 2029 2030 static int bnxt_init_tx_rings(struct bnxt *bp) 2031 { 2032 u16 i; 2033 2034 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 2035 MAX_SKB_FRAGS + 1); 2036 2037 for (i = 0; i < bp->tx_nr_rings; i++) { 2038 struct bnxt_napi *bnapi = bp->bnapi[i]; 2039 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring; 2040 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 2041 2042 ring->fw_ring_id = INVALID_HW_RING_ID; 2043 } 2044 2045 return 0; 2046 } 2047 2048 static void bnxt_free_ring_grps(struct bnxt *bp) 2049 { 2050 kfree(bp->grp_info); 2051 bp->grp_info = NULL; 2052 } 2053 2054 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 2055 { 2056 int i; 2057 2058 if (irq_re_init) { 2059 bp->grp_info = kcalloc(bp->cp_nr_rings, 2060 sizeof(struct bnxt_ring_grp_info), 2061 GFP_KERNEL); 2062 if (!bp->grp_info) 2063 return -ENOMEM; 2064 } 2065 for (i = 0; i < bp->cp_nr_rings; i++) { 2066 if (irq_re_init) 2067 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 2068 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 2069 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 2070 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 2071 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 2072 } 2073 return 0; 2074 } 2075 2076 static void bnxt_free_vnics(struct bnxt *bp) 2077 { 2078 kfree(bp->vnic_info); 2079 bp->vnic_info = NULL; 2080 bp->nr_vnics = 0; 2081 } 2082 2083 static int bnxt_alloc_vnics(struct bnxt *bp) 2084 { 2085 int num_vnics = 1; 2086 2087 #ifdef CONFIG_RFS_ACCEL 2088 if (bp->flags & BNXT_FLAG_RFS) 2089 num_vnics += bp->rx_nr_rings; 2090 #endif 2091 2092 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 2093 GFP_KERNEL); 2094 if (!bp->vnic_info) 2095 return -ENOMEM; 2096 2097 bp->nr_vnics = num_vnics; 2098 return 0; 2099 } 2100 2101 static void bnxt_init_vnics(struct bnxt *bp) 2102 { 2103 int i; 2104 2105 for (i = 0; i < bp->nr_vnics; i++) { 2106 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 2107 2108 vnic->fw_vnic_id = INVALID_HW_RING_ID; 2109 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID; 2110 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 2111 2112 if (bp->vnic_info[i].rss_hash_key) { 2113 if (i == 0) 2114 prandom_bytes(vnic->rss_hash_key, 2115 HW_HASH_KEY_SIZE); 2116 else 2117 memcpy(vnic->rss_hash_key, 2118 bp->vnic_info[0].rss_hash_key, 2119 HW_HASH_KEY_SIZE); 2120 } 2121 } 2122 } 2123 2124 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 2125 { 2126 int pages; 2127 2128 pages = ring_size / desc_per_pg; 2129 2130 if (!pages) 2131 return 1; 2132 2133 pages++; 2134 2135 while (pages & (pages - 1)) 2136 pages++; 2137 2138 return pages; 2139 } 2140 2141 static void bnxt_set_tpa_flags(struct bnxt *bp) 2142 { 2143 bp->flags &= ~BNXT_FLAG_TPA; 2144 if (bp->dev->features & NETIF_F_LRO) 2145 bp->flags |= BNXT_FLAG_LRO; 2146 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0)) 2147 bp->flags |= BNXT_FLAG_GRO; 2148 } 2149 2150 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 2151 * be set on entry. 2152 */ 2153 void bnxt_set_ring_params(struct bnxt *bp) 2154 { 2155 u32 ring_size, rx_size, rx_space; 2156 u32 agg_factor = 0, agg_ring_size = 0; 2157 2158 /* 8 for CRC and VLAN */ 2159 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 2160 2161 rx_space = rx_size + NET_SKB_PAD + 2162 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2163 2164 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 2165 ring_size = bp->rx_ring_size; 2166 bp->rx_agg_ring_size = 0; 2167 bp->rx_agg_nr_pages = 0; 2168 2169 if (bp->flags & BNXT_FLAG_TPA) 2170 agg_factor = 4; 2171 2172 bp->flags &= ~BNXT_FLAG_JUMBO; 2173 if (rx_space > PAGE_SIZE) { 2174 u32 jumbo_factor; 2175 2176 bp->flags |= BNXT_FLAG_JUMBO; 2177 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 2178 if (jumbo_factor > agg_factor) 2179 agg_factor = jumbo_factor; 2180 } 2181 agg_ring_size = ring_size * agg_factor; 2182 2183 if (agg_ring_size) { 2184 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 2185 RX_DESC_CNT); 2186 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 2187 u32 tmp = agg_ring_size; 2188 2189 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 2190 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 2191 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 2192 tmp, agg_ring_size); 2193 } 2194 bp->rx_agg_ring_size = agg_ring_size; 2195 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 2196 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 2197 rx_space = rx_size + NET_SKB_PAD + 2198 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2199 } 2200 2201 bp->rx_buf_use_size = rx_size; 2202 bp->rx_buf_size = rx_space; 2203 2204 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 2205 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 2206 2207 ring_size = bp->tx_ring_size; 2208 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 2209 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 2210 2211 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size; 2212 bp->cp_ring_size = ring_size; 2213 2214 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 2215 if (bp->cp_nr_pages > MAX_CP_PAGES) { 2216 bp->cp_nr_pages = MAX_CP_PAGES; 2217 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 2218 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 2219 ring_size, bp->cp_ring_size); 2220 } 2221 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 2222 bp->cp_ring_mask = bp->cp_bit - 1; 2223 } 2224 2225 static void bnxt_free_vnic_attributes(struct bnxt *bp) 2226 { 2227 int i; 2228 struct bnxt_vnic_info *vnic; 2229 struct pci_dev *pdev = bp->pdev; 2230 2231 if (!bp->vnic_info) 2232 return; 2233 2234 for (i = 0; i < bp->nr_vnics; i++) { 2235 vnic = &bp->vnic_info[i]; 2236 2237 kfree(vnic->fw_grp_ids); 2238 vnic->fw_grp_ids = NULL; 2239 2240 kfree(vnic->uc_list); 2241 vnic->uc_list = NULL; 2242 2243 if (vnic->mc_list) { 2244 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 2245 vnic->mc_list, vnic->mc_list_mapping); 2246 vnic->mc_list = NULL; 2247 } 2248 2249 if (vnic->rss_table) { 2250 dma_free_coherent(&pdev->dev, PAGE_SIZE, 2251 vnic->rss_table, 2252 vnic->rss_table_dma_addr); 2253 vnic->rss_table = NULL; 2254 } 2255 2256 vnic->rss_hash_key = NULL; 2257 vnic->flags = 0; 2258 } 2259 } 2260 2261 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 2262 { 2263 int i, rc = 0, size; 2264 struct bnxt_vnic_info *vnic; 2265 struct pci_dev *pdev = bp->pdev; 2266 int max_rings; 2267 2268 for (i = 0; i < bp->nr_vnics; i++) { 2269 vnic = &bp->vnic_info[i]; 2270 2271 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 2272 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 2273 2274 if (mem_size > 0) { 2275 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 2276 if (!vnic->uc_list) { 2277 rc = -ENOMEM; 2278 goto out; 2279 } 2280 } 2281 } 2282 2283 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 2284 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 2285 vnic->mc_list = 2286 dma_alloc_coherent(&pdev->dev, 2287 vnic->mc_list_size, 2288 &vnic->mc_list_mapping, 2289 GFP_KERNEL); 2290 if (!vnic->mc_list) { 2291 rc = -ENOMEM; 2292 goto out; 2293 } 2294 } 2295 2296 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 2297 max_rings = bp->rx_nr_rings; 2298 else 2299 max_rings = 1; 2300 2301 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 2302 if (!vnic->fw_grp_ids) { 2303 rc = -ENOMEM; 2304 goto out; 2305 } 2306 2307 /* Allocate rss table and hash key */ 2308 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 2309 &vnic->rss_table_dma_addr, 2310 GFP_KERNEL); 2311 if (!vnic->rss_table) { 2312 rc = -ENOMEM; 2313 goto out; 2314 } 2315 2316 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 2317 2318 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 2319 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 2320 } 2321 return 0; 2322 2323 out: 2324 return rc; 2325 } 2326 2327 static void bnxt_free_hwrm_resources(struct bnxt *bp) 2328 { 2329 struct pci_dev *pdev = bp->pdev; 2330 2331 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr, 2332 bp->hwrm_cmd_resp_dma_addr); 2333 2334 bp->hwrm_cmd_resp_addr = NULL; 2335 if (bp->hwrm_dbg_resp_addr) { 2336 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE, 2337 bp->hwrm_dbg_resp_addr, 2338 bp->hwrm_dbg_resp_dma_addr); 2339 2340 bp->hwrm_dbg_resp_addr = NULL; 2341 } 2342 } 2343 2344 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 2345 { 2346 struct pci_dev *pdev = bp->pdev; 2347 2348 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, 2349 &bp->hwrm_cmd_resp_dma_addr, 2350 GFP_KERNEL); 2351 if (!bp->hwrm_cmd_resp_addr) 2352 return -ENOMEM; 2353 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev, 2354 HWRM_DBG_REG_BUF_SIZE, 2355 &bp->hwrm_dbg_resp_dma_addr, 2356 GFP_KERNEL); 2357 if (!bp->hwrm_dbg_resp_addr) 2358 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n"); 2359 2360 return 0; 2361 } 2362 2363 static void bnxt_free_stats(struct bnxt *bp) 2364 { 2365 u32 size, i; 2366 struct pci_dev *pdev = bp->pdev; 2367 2368 if (!bp->bnapi) 2369 return; 2370 2371 size = sizeof(struct ctx_hw_stats); 2372 2373 for (i = 0; i < bp->cp_nr_rings; i++) { 2374 struct bnxt_napi *bnapi = bp->bnapi[i]; 2375 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2376 2377 if (cpr->hw_stats) { 2378 dma_free_coherent(&pdev->dev, size, cpr->hw_stats, 2379 cpr->hw_stats_map); 2380 cpr->hw_stats = NULL; 2381 } 2382 } 2383 } 2384 2385 static int bnxt_alloc_stats(struct bnxt *bp) 2386 { 2387 u32 size, i; 2388 struct pci_dev *pdev = bp->pdev; 2389 2390 size = sizeof(struct ctx_hw_stats); 2391 2392 for (i = 0; i < bp->cp_nr_rings; i++) { 2393 struct bnxt_napi *bnapi = bp->bnapi[i]; 2394 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2395 2396 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size, 2397 &cpr->hw_stats_map, 2398 GFP_KERNEL); 2399 if (!cpr->hw_stats) 2400 return -ENOMEM; 2401 2402 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 2403 } 2404 return 0; 2405 } 2406 2407 static void bnxt_clear_ring_indices(struct bnxt *bp) 2408 { 2409 int i; 2410 2411 if (!bp->bnapi) 2412 return; 2413 2414 for (i = 0; i < bp->cp_nr_rings; i++) { 2415 struct bnxt_napi *bnapi = bp->bnapi[i]; 2416 struct bnxt_cp_ring_info *cpr; 2417 struct bnxt_rx_ring_info *rxr; 2418 struct bnxt_tx_ring_info *txr; 2419 2420 if (!bnapi) 2421 continue; 2422 2423 cpr = &bnapi->cp_ring; 2424 cpr->cp_raw_cons = 0; 2425 2426 txr = &bnapi->tx_ring; 2427 txr->tx_prod = 0; 2428 txr->tx_cons = 0; 2429 2430 rxr = &bnapi->rx_ring; 2431 rxr->rx_prod = 0; 2432 rxr->rx_agg_prod = 0; 2433 rxr->rx_sw_agg_prod = 0; 2434 } 2435 } 2436 2437 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit) 2438 { 2439 #ifdef CONFIG_RFS_ACCEL 2440 int i; 2441 2442 /* Under rtnl_lock and all our NAPIs have been disabled. It's 2443 * safe to delete the hash table. 2444 */ 2445 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 2446 struct hlist_head *head; 2447 struct hlist_node *tmp; 2448 struct bnxt_ntuple_filter *fltr; 2449 2450 head = &bp->ntp_fltr_hash_tbl[i]; 2451 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 2452 hlist_del(&fltr->hash); 2453 kfree(fltr); 2454 } 2455 } 2456 if (irq_reinit) { 2457 kfree(bp->ntp_fltr_bmap); 2458 bp->ntp_fltr_bmap = NULL; 2459 } 2460 bp->ntp_fltr_count = 0; 2461 #endif 2462 } 2463 2464 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 2465 { 2466 #ifdef CONFIG_RFS_ACCEL 2467 int i, rc = 0; 2468 2469 if (!(bp->flags & BNXT_FLAG_RFS)) 2470 return 0; 2471 2472 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 2473 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 2474 2475 bp->ntp_fltr_count = 0; 2476 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR), 2477 GFP_KERNEL); 2478 2479 if (!bp->ntp_fltr_bmap) 2480 rc = -ENOMEM; 2481 2482 return rc; 2483 #else 2484 return 0; 2485 #endif 2486 } 2487 2488 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 2489 { 2490 bnxt_free_vnic_attributes(bp); 2491 bnxt_free_tx_rings(bp); 2492 bnxt_free_rx_rings(bp); 2493 bnxt_free_cp_rings(bp); 2494 bnxt_free_ntp_fltrs(bp, irq_re_init); 2495 if (irq_re_init) { 2496 bnxt_free_stats(bp); 2497 bnxt_free_ring_grps(bp); 2498 bnxt_free_vnics(bp); 2499 kfree(bp->bnapi); 2500 bp->bnapi = NULL; 2501 } else { 2502 bnxt_clear_ring_indices(bp); 2503 } 2504 } 2505 2506 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 2507 { 2508 int i, rc, size, arr_size; 2509 void *bnapi; 2510 2511 if (irq_re_init) { 2512 /* Allocate bnapi mem pointer array and mem block for 2513 * all queues 2514 */ 2515 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 2516 bp->cp_nr_rings); 2517 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 2518 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 2519 if (!bnapi) 2520 return -ENOMEM; 2521 2522 bp->bnapi = bnapi; 2523 bnapi += arr_size; 2524 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 2525 bp->bnapi[i] = bnapi; 2526 bp->bnapi[i]->index = i; 2527 bp->bnapi[i]->bp = bp; 2528 } 2529 2530 rc = bnxt_alloc_stats(bp); 2531 if (rc) 2532 goto alloc_mem_err; 2533 2534 rc = bnxt_alloc_ntp_fltrs(bp); 2535 if (rc) 2536 goto alloc_mem_err; 2537 2538 rc = bnxt_alloc_vnics(bp); 2539 if (rc) 2540 goto alloc_mem_err; 2541 } 2542 2543 bnxt_init_ring_struct(bp); 2544 2545 rc = bnxt_alloc_rx_rings(bp); 2546 if (rc) 2547 goto alloc_mem_err; 2548 2549 rc = bnxt_alloc_tx_rings(bp); 2550 if (rc) 2551 goto alloc_mem_err; 2552 2553 rc = bnxt_alloc_cp_rings(bp); 2554 if (rc) 2555 goto alloc_mem_err; 2556 2557 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG | 2558 BNXT_VNIC_UCAST_FLAG; 2559 rc = bnxt_alloc_vnic_attributes(bp); 2560 if (rc) 2561 goto alloc_mem_err; 2562 return 0; 2563 2564 alloc_mem_err: 2565 bnxt_free_mem(bp, true); 2566 return rc; 2567 } 2568 2569 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type, 2570 u16 cmpl_ring, u16 target_id) 2571 { 2572 struct hwrm_cmd_req_hdr *req = request; 2573 2574 req->cmpl_ring_req_type = 2575 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT)); 2576 req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT); 2577 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr); 2578 } 2579 2580 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 2581 { 2582 int i, intr_process, rc; 2583 struct hwrm_cmd_req_hdr *req = msg; 2584 u32 *data = msg; 2585 __le32 *resp_len, *valid; 2586 u16 cp_ring_id, len = 0; 2587 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr; 2588 2589 req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++); 2590 memset(resp, 0, PAGE_SIZE); 2591 cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) & 2592 HWRM_CMPL_RING_MASK) >> 2593 HWRM_CMPL_RING_SFT; 2594 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1; 2595 2596 /* Write request msg to hwrm channel */ 2597 __iowrite32_copy(bp->bar0, data, msg_len / 4); 2598 2599 /* currently supports only one outstanding message */ 2600 if (intr_process) 2601 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) & 2602 HWRM_SEQ_ID_MASK; 2603 2604 /* Ring channel doorbell */ 2605 writel(1, bp->bar0 + 0x100); 2606 2607 i = 0; 2608 if (intr_process) { 2609 /* Wait until hwrm response cmpl interrupt is processed */ 2610 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID && 2611 i++ < timeout) { 2612 usleep_range(600, 800); 2613 } 2614 2615 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) { 2616 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n", 2617 req->cmpl_ring_req_type); 2618 return -1; 2619 } 2620 } else { 2621 /* Check if response len is updated */ 2622 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET; 2623 for (i = 0; i < timeout; i++) { 2624 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >> 2625 HWRM_RESP_LEN_SFT; 2626 if (len) 2627 break; 2628 usleep_range(600, 800); 2629 } 2630 2631 if (i >= timeout) { 2632 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n", 2633 timeout, req->cmpl_ring_req_type, 2634 req->target_id_seq_id, *resp_len); 2635 return -1; 2636 } 2637 2638 /* Last word of resp contains valid bit */ 2639 valid = bp->hwrm_cmd_resp_addr + len - 4; 2640 for (i = 0; i < timeout; i++) { 2641 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK) 2642 break; 2643 usleep_range(600, 800); 2644 } 2645 2646 if (i >= timeout) { 2647 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n", 2648 timeout, req->cmpl_ring_req_type, 2649 req->target_id_seq_id, len, *valid); 2650 return -1; 2651 } 2652 } 2653 2654 rc = le16_to_cpu(resp->error_code); 2655 if (rc) { 2656 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", 2657 le16_to_cpu(resp->req_type), 2658 le16_to_cpu(resp->seq_id), rc); 2659 return rc; 2660 } 2661 return 0; 2662 } 2663 2664 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout) 2665 { 2666 int rc; 2667 2668 mutex_lock(&bp->hwrm_cmd_lock); 2669 rc = _hwrm_send_message(bp, msg, msg_len, timeout); 2670 mutex_unlock(&bp->hwrm_cmd_lock); 2671 return rc; 2672 } 2673 2674 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp) 2675 { 2676 struct hwrm_func_drv_rgtr_input req = {0}; 2677 int i; 2678 2679 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1); 2680 2681 req.enables = 2682 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 2683 FUNC_DRV_RGTR_REQ_ENABLES_VER | 2684 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 2685 2686 /* TODO: current async event fwd bits are not defined and the firmware 2687 * only checks if it is non-zero to enable async event forwarding 2688 */ 2689 req.async_event_fwd[0] |= cpu_to_le32(1); 2690 req.os_type = cpu_to_le16(1); 2691 req.ver_maj = DRV_VER_MAJ; 2692 req.ver_min = DRV_VER_MIN; 2693 req.ver_upd = DRV_VER_UPD; 2694 2695 if (BNXT_PF(bp)) { 2696 DECLARE_BITMAP(vf_req_snif_bmap, 256); 2697 u32 *data = (u32 *)vf_req_snif_bmap; 2698 2699 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap)); 2700 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) 2701 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap); 2702 2703 for (i = 0; i < 8; i++) 2704 req.vf_req_fwd[i] = cpu_to_le32(data[i]); 2705 2706 req.enables |= 2707 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 2708 } 2709 2710 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2711 } 2712 2713 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 2714 { 2715 u32 rc = 0; 2716 struct hwrm_tunnel_dst_port_free_input req = {0}; 2717 2718 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1); 2719 req.tunnel_type = tunnel_type; 2720 2721 switch (tunnel_type) { 2722 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 2723 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id; 2724 break; 2725 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 2726 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id; 2727 break; 2728 default: 2729 break; 2730 } 2731 2732 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2733 if (rc) 2734 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 2735 rc); 2736 return rc; 2737 } 2738 2739 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 2740 u8 tunnel_type) 2741 { 2742 u32 rc = 0; 2743 struct hwrm_tunnel_dst_port_alloc_input req = {0}; 2744 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr; 2745 2746 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1); 2747 2748 req.tunnel_type = tunnel_type; 2749 req.tunnel_dst_port_val = port; 2750 2751 mutex_lock(&bp->hwrm_cmd_lock); 2752 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2753 if (rc) { 2754 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 2755 rc); 2756 goto err_out; 2757 } 2758 2759 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN) 2760 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id; 2761 2762 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE) 2763 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id; 2764 err_out: 2765 mutex_unlock(&bp->hwrm_cmd_lock); 2766 return rc; 2767 } 2768 2769 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 2770 { 2771 struct hwrm_cfa_l2_set_rx_mask_input req = {0}; 2772 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 2773 2774 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1); 2775 req.dflt_vnic_id = cpu_to_le32(vnic->fw_vnic_id); 2776 2777 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count); 2778 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 2779 req.mask = cpu_to_le32(vnic->rx_mask); 2780 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2781 } 2782 2783 #ifdef CONFIG_RFS_ACCEL 2784 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 2785 struct bnxt_ntuple_filter *fltr) 2786 { 2787 struct hwrm_cfa_ntuple_filter_free_input req = {0}; 2788 2789 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1); 2790 req.ntuple_filter_id = fltr->filter_id; 2791 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2792 } 2793 2794 #define BNXT_NTP_FLTR_FLAGS \ 2795 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 2796 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 2797 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \ 2798 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 2799 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 2800 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 2801 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 2802 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 2803 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 2804 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 2805 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 2806 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 2807 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 2808 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID) 2809 2810 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 2811 struct bnxt_ntuple_filter *fltr) 2812 { 2813 int rc = 0; 2814 struct hwrm_cfa_ntuple_filter_alloc_input req = {0}; 2815 struct hwrm_cfa_ntuple_filter_alloc_output *resp = 2816 bp->hwrm_cmd_resp_addr; 2817 struct flow_keys *keys = &fltr->fkeys; 2818 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1]; 2819 2820 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1); 2821 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0]; 2822 2823 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 2824 2825 req.ethertype = htons(ETH_P_IP); 2826 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN); 2827 req.ipaddr_type = 4; 2828 req.ip_protocol = keys->basic.ip_proto; 2829 2830 req.src_ipaddr[0] = keys->addrs.v4addrs.src; 2831 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 2832 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst; 2833 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff); 2834 2835 req.src_port = keys->ports.src; 2836 req.src_port_mask = cpu_to_be16(0xffff); 2837 req.dst_port = keys->ports.dst; 2838 req.dst_port_mask = cpu_to_be16(0xffff); 2839 2840 req.dst_vnic_id = cpu_to_le16(vnic->fw_vnic_id); 2841 mutex_lock(&bp->hwrm_cmd_lock); 2842 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2843 if (!rc) 2844 fltr->filter_id = resp->ntuple_filter_id; 2845 mutex_unlock(&bp->hwrm_cmd_lock); 2846 return rc; 2847 } 2848 #endif 2849 2850 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 2851 u8 *mac_addr) 2852 { 2853 u32 rc = 0; 2854 struct hwrm_cfa_l2_filter_alloc_input req = {0}; 2855 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr; 2856 2857 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1); 2858 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX | 2859 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 2860 req.dst_vnic_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id); 2861 req.enables = 2862 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 2863 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID | 2864 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 2865 memcpy(req.l2_addr, mac_addr, ETH_ALEN); 2866 req.l2_addr_mask[0] = 0xff; 2867 req.l2_addr_mask[1] = 0xff; 2868 req.l2_addr_mask[2] = 0xff; 2869 req.l2_addr_mask[3] = 0xff; 2870 req.l2_addr_mask[4] = 0xff; 2871 req.l2_addr_mask[5] = 0xff; 2872 2873 mutex_lock(&bp->hwrm_cmd_lock); 2874 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2875 if (!rc) 2876 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] = 2877 resp->l2_filter_id; 2878 mutex_unlock(&bp->hwrm_cmd_lock); 2879 return rc; 2880 } 2881 2882 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 2883 { 2884 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 2885 int rc = 0; 2886 2887 /* Any associated ntuple filters will also be cleared by firmware. */ 2888 mutex_lock(&bp->hwrm_cmd_lock); 2889 for (i = 0; i < num_of_vnics; i++) { 2890 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 2891 2892 for (j = 0; j < vnic->uc_filter_count; j++) { 2893 struct hwrm_cfa_l2_filter_free_input req = {0}; 2894 2895 bnxt_hwrm_cmd_hdr_init(bp, &req, 2896 HWRM_CFA_L2_FILTER_FREE, -1, -1); 2897 2898 req.l2_filter_id = vnic->fw_l2_filter_id[j]; 2899 2900 rc = _hwrm_send_message(bp, &req, sizeof(req), 2901 HWRM_CMD_TIMEOUT); 2902 } 2903 vnic->uc_filter_count = 0; 2904 } 2905 mutex_unlock(&bp->hwrm_cmd_lock); 2906 2907 return rc; 2908 } 2909 2910 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags) 2911 { 2912 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 2913 struct hwrm_vnic_tpa_cfg_input req = {0}; 2914 2915 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1); 2916 2917 if (tpa_flags) { 2918 u16 mss = bp->dev->mtu - 40; 2919 u32 nsegs, n, segs = 0, flags; 2920 2921 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 2922 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 2923 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 2924 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 2925 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 2926 if (tpa_flags & BNXT_FLAG_GRO) 2927 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 2928 2929 req.flags = cpu_to_le32(flags); 2930 2931 req.enables = 2932 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 2933 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS); 2934 2935 /* Number of segs are log2 units, and first packet is not 2936 * included as part of this units. 2937 */ 2938 if (mss <= PAGE_SIZE) { 2939 n = PAGE_SIZE / mss; 2940 nsegs = (MAX_SKB_FRAGS - 1) * n; 2941 } else { 2942 n = mss / PAGE_SIZE; 2943 if (mss & (PAGE_SIZE - 1)) 2944 n++; 2945 nsegs = (MAX_SKB_FRAGS - n) / n; 2946 } 2947 2948 segs = ilog2(nsegs); 2949 req.max_agg_segs = cpu_to_le16(segs); 2950 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX); 2951 } 2952 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 2953 2954 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2955 } 2956 2957 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss) 2958 { 2959 u32 i, j, max_rings; 2960 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 2961 struct hwrm_vnic_rss_cfg_input req = {0}; 2962 2963 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID) 2964 return 0; 2965 2966 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1); 2967 if (set_rss) { 2968 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 | 2969 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 | 2970 BNXT_RSS_HASH_TYPE_FLAG_IPV6 | 2971 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6; 2972 2973 req.hash_type = cpu_to_le32(vnic->hash_type); 2974 2975 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 2976 max_rings = bp->rx_nr_rings; 2977 else 2978 max_rings = 1; 2979 2980 /* Fill the RSS indirection table with ring group ids */ 2981 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) { 2982 if (j == max_rings) 2983 j = 0; 2984 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 2985 } 2986 2987 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 2988 req.hash_key_tbl_addr = 2989 cpu_to_le64(vnic->rss_hash_key_dma_addr); 2990 } 2991 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx); 2992 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 2993 } 2994 2995 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id) 2996 { 2997 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 2998 struct hwrm_vnic_plcmodes_cfg_input req = {0}; 2999 3000 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1); 3001 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT | 3002 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 3003 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 3004 req.enables = 3005 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID | 3006 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 3007 /* thresholds not implemented in firmware yet */ 3008 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 3009 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 3010 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id); 3011 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3012 } 3013 3014 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id) 3015 { 3016 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0}; 3017 3018 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1); 3019 req.rss_cos_lb_ctx_id = 3020 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx); 3021 3022 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3023 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID; 3024 } 3025 3026 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 3027 { 3028 int i; 3029 3030 for (i = 0; i < bp->nr_vnics; i++) { 3031 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 3032 3033 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID) 3034 bnxt_hwrm_vnic_ctx_free_one(bp, i); 3035 } 3036 bp->rsscos_nr_ctxs = 0; 3037 } 3038 3039 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id) 3040 { 3041 int rc; 3042 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0}; 3043 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp = 3044 bp->hwrm_cmd_resp_addr; 3045 3046 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1, 3047 -1); 3048 3049 mutex_lock(&bp->hwrm_cmd_lock); 3050 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3051 if (!rc) 3052 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = 3053 le16_to_cpu(resp->rss_cos_lb_ctx_id); 3054 mutex_unlock(&bp->hwrm_cmd_lock); 3055 3056 return rc; 3057 } 3058 3059 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id) 3060 { 3061 int grp_idx = 0; 3062 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 3063 struct hwrm_vnic_cfg_input req = {0}; 3064 3065 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1); 3066 /* Only RSS support for now TBD: COS & LB */ 3067 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP | 3068 VNIC_CFG_REQ_ENABLES_RSS_RULE); 3069 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx); 3070 req.cos_rule = cpu_to_le16(0xffff); 3071 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 3072 grp_idx = 0; 3073 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 3074 grp_idx = vnic_id - 1; 3075 3076 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id); 3077 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 3078 3079 req.lb_rule = cpu_to_le16(0xffff); 3080 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + 3081 VLAN_HLEN); 3082 3083 if (bp->flags & BNXT_FLAG_STRIP_VLAN) 3084 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 3085 3086 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3087 } 3088 3089 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id) 3090 { 3091 u32 rc = 0; 3092 3093 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) { 3094 struct hwrm_vnic_free_input req = {0}; 3095 3096 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1); 3097 req.vnic_id = 3098 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id); 3099 3100 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3101 if (rc) 3102 return rc; 3103 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID; 3104 } 3105 return rc; 3106 } 3107 3108 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 3109 { 3110 u16 i; 3111 3112 for (i = 0; i < bp->nr_vnics; i++) 3113 bnxt_hwrm_vnic_free_one(bp, i); 3114 } 3115 3116 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, u16 start_grp_id, 3117 u16 end_grp_id) 3118 { 3119 u32 rc = 0, i, j; 3120 struct hwrm_vnic_alloc_input req = {0}; 3121 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3122 3123 /* map ring groups to this vnic */ 3124 for (i = start_grp_id, j = 0; i < end_grp_id; i++, j++) { 3125 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) { 3126 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 3127 j, (end_grp_id - start_grp_id)); 3128 break; 3129 } 3130 bp->vnic_info[vnic_id].fw_grp_ids[j] = 3131 bp->grp_info[i].fw_grp_id; 3132 } 3133 3134 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID; 3135 if (vnic_id == 0) 3136 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 3137 3138 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1); 3139 3140 mutex_lock(&bp->hwrm_cmd_lock); 3141 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3142 if (!rc) 3143 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id); 3144 mutex_unlock(&bp->hwrm_cmd_lock); 3145 return rc; 3146 } 3147 3148 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 3149 { 3150 u16 i; 3151 u32 rc = 0; 3152 3153 mutex_lock(&bp->hwrm_cmd_lock); 3154 for (i = 0; i < bp->rx_nr_rings; i++) { 3155 struct hwrm_ring_grp_alloc_input req = {0}; 3156 struct hwrm_ring_grp_alloc_output *resp = 3157 bp->hwrm_cmd_resp_addr; 3158 3159 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1); 3160 3161 req.cr = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id); 3162 req.rr = cpu_to_le16(bp->grp_info[i].rx_fw_ring_id); 3163 req.ar = cpu_to_le16(bp->grp_info[i].agg_fw_ring_id); 3164 req.sc = cpu_to_le16(bp->grp_info[i].fw_stats_ctx); 3165 3166 rc = _hwrm_send_message(bp, &req, sizeof(req), 3167 HWRM_CMD_TIMEOUT); 3168 if (rc) 3169 break; 3170 3171 bp->grp_info[i].fw_grp_id = le32_to_cpu(resp->ring_group_id); 3172 } 3173 mutex_unlock(&bp->hwrm_cmd_lock); 3174 return rc; 3175 } 3176 3177 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp) 3178 { 3179 u16 i; 3180 u32 rc = 0; 3181 struct hwrm_ring_grp_free_input req = {0}; 3182 3183 if (!bp->grp_info) 3184 return 0; 3185 3186 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1); 3187 3188 mutex_lock(&bp->hwrm_cmd_lock); 3189 for (i = 0; i < bp->cp_nr_rings; i++) { 3190 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 3191 continue; 3192 req.ring_group_id = 3193 cpu_to_le32(bp->grp_info[i].fw_grp_id); 3194 3195 rc = _hwrm_send_message(bp, &req, sizeof(req), 3196 HWRM_CMD_TIMEOUT); 3197 if (rc) 3198 break; 3199 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 3200 } 3201 mutex_unlock(&bp->hwrm_cmd_lock); 3202 return rc; 3203 } 3204 3205 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 3206 struct bnxt_ring_struct *ring, 3207 u32 ring_type, u32 map_index, 3208 u32 stats_ctx_id) 3209 { 3210 int rc = 0, err = 0; 3211 struct hwrm_ring_alloc_input req = {0}; 3212 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3213 u16 ring_id; 3214 3215 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1); 3216 3217 req.enables = 0; 3218 if (ring->nr_pages > 1) { 3219 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map); 3220 /* Page size is in log2 units */ 3221 req.page_size = BNXT_PAGE_SHIFT; 3222 req.page_tbl_depth = 1; 3223 } else { 3224 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]); 3225 } 3226 req.fbo = 0; 3227 /* Association of ring index with doorbell index and MSIX number */ 3228 req.logical_id = cpu_to_le16(map_index); 3229 3230 switch (ring_type) { 3231 case HWRM_RING_ALLOC_TX: 3232 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 3233 /* Association of transmit ring with completion ring */ 3234 req.cmpl_ring_id = 3235 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id); 3236 req.length = cpu_to_le32(bp->tx_ring_mask + 1); 3237 req.stat_ctx_id = cpu_to_le32(stats_ctx_id); 3238 req.queue_id = cpu_to_le16(ring->queue_id); 3239 break; 3240 case HWRM_RING_ALLOC_RX: 3241 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 3242 req.length = cpu_to_le32(bp->rx_ring_mask + 1); 3243 break; 3244 case HWRM_RING_ALLOC_AGG: 3245 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 3246 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 3247 break; 3248 case HWRM_RING_ALLOC_CMPL: 3249 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL; 3250 req.length = cpu_to_le32(bp->cp_ring_mask + 1); 3251 if (bp->flags & BNXT_FLAG_USING_MSIX) 3252 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 3253 break; 3254 default: 3255 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 3256 ring_type); 3257 return -1; 3258 } 3259 3260 mutex_lock(&bp->hwrm_cmd_lock); 3261 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3262 err = le16_to_cpu(resp->error_code); 3263 ring_id = le16_to_cpu(resp->ring_id); 3264 mutex_unlock(&bp->hwrm_cmd_lock); 3265 3266 if (rc || err) { 3267 switch (ring_type) { 3268 case RING_FREE_REQ_RING_TYPE_CMPL: 3269 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n", 3270 rc, err); 3271 return -1; 3272 3273 case RING_FREE_REQ_RING_TYPE_RX: 3274 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n", 3275 rc, err); 3276 return -1; 3277 3278 case RING_FREE_REQ_RING_TYPE_TX: 3279 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n", 3280 rc, err); 3281 return -1; 3282 3283 default: 3284 netdev_err(bp->dev, "Invalid ring\n"); 3285 return -1; 3286 } 3287 } 3288 ring->fw_ring_id = ring_id; 3289 return rc; 3290 } 3291 3292 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 3293 { 3294 int i, rc = 0; 3295 3296 if (bp->cp_nr_rings) { 3297 for (i = 0; i < bp->cp_nr_rings; i++) { 3298 struct bnxt_napi *bnapi = bp->bnapi[i]; 3299 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3300 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3301 3302 rc = hwrm_ring_alloc_send_msg(bp, ring, 3303 HWRM_RING_ALLOC_CMPL, i, 3304 INVALID_STATS_CTX_ID); 3305 if (rc) 3306 goto err_out; 3307 cpr->cp_doorbell = bp->bar1 + i * 0x80; 3308 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 3309 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 3310 } 3311 } 3312 3313 if (bp->tx_nr_rings) { 3314 for (i = 0; i < bp->tx_nr_rings; i++) { 3315 struct bnxt_napi *bnapi = bp->bnapi[i]; 3316 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring; 3317 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3318 u16 fw_stats_ctx = bp->grp_info[i].fw_stats_ctx; 3319 3320 rc = hwrm_ring_alloc_send_msg(bp, ring, 3321 HWRM_RING_ALLOC_TX, i, 3322 fw_stats_ctx); 3323 if (rc) 3324 goto err_out; 3325 txr->tx_doorbell = bp->bar1 + i * 0x80; 3326 } 3327 } 3328 3329 if (bp->rx_nr_rings) { 3330 for (i = 0; i < bp->rx_nr_rings; i++) { 3331 struct bnxt_napi *bnapi = bp->bnapi[i]; 3332 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 3333 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 3334 3335 rc = hwrm_ring_alloc_send_msg(bp, ring, 3336 HWRM_RING_ALLOC_RX, i, 3337 INVALID_STATS_CTX_ID); 3338 if (rc) 3339 goto err_out; 3340 rxr->rx_doorbell = bp->bar1 + i * 0x80; 3341 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell); 3342 bp->grp_info[i].rx_fw_ring_id = ring->fw_ring_id; 3343 } 3344 } 3345 3346 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 3347 for (i = 0; i < bp->rx_nr_rings; i++) { 3348 struct bnxt_napi *bnapi = bp->bnapi[i]; 3349 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 3350 struct bnxt_ring_struct *ring = 3351 &rxr->rx_agg_ring_struct; 3352 3353 rc = hwrm_ring_alloc_send_msg(bp, ring, 3354 HWRM_RING_ALLOC_AGG, 3355 bp->rx_nr_rings + i, 3356 INVALID_STATS_CTX_ID); 3357 if (rc) 3358 goto err_out; 3359 3360 rxr->rx_agg_doorbell = 3361 bp->bar1 + (bp->rx_nr_rings + i) * 0x80; 3362 writel(DB_KEY_RX | rxr->rx_agg_prod, 3363 rxr->rx_agg_doorbell); 3364 bp->grp_info[i].agg_fw_ring_id = ring->fw_ring_id; 3365 } 3366 } 3367 err_out: 3368 return rc; 3369 } 3370 3371 static int hwrm_ring_free_send_msg(struct bnxt *bp, 3372 struct bnxt_ring_struct *ring, 3373 u32 ring_type, int cmpl_ring_id) 3374 { 3375 int rc; 3376 struct hwrm_ring_free_input req = {0}; 3377 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr; 3378 u16 error_code; 3379 3380 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, -1, -1); 3381 req.ring_type = ring_type; 3382 req.ring_id = cpu_to_le16(ring->fw_ring_id); 3383 3384 mutex_lock(&bp->hwrm_cmd_lock); 3385 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3386 error_code = le16_to_cpu(resp->error_code); 3387 mutex_unlock(&bp->hwrm_cmd_lock); 3388 3389 if (rc || error_code) { 3390 switch (ring_type) { 3391 case RING_FREE_REQ_RING_TYPE_CMPL: 3392 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n", 3393 rc); 3394 return rc; 3395 case RING_FREE_REQ_RING_TYPE_RX: 3396 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n", 3397 rc); 3398 return rc; 3399 case RING_FREE_REQ_RING_TYPE_TX: 3400 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n", 3401 rc); 3402 return rc; 3403 default: 3404 netdev_err(bp->dev, "Invalid ring\n"); 3405 return -1; 3406 } 3407 } 3408 return 0; 3409 } 3410 3411 static int bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 3412 { 3413 int i, rc = 0; 3414 3415 if (!bp->bnapi) 3416 return 0; 3417 3418 if (bp->tx_nr_rings) { 3419 for (i = 0; i < bp->tx_nr_rings; i++) { 3420 struct bnxt_napi *bnapi = bp->bnapi[i]; 3421 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring; 3422 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 3423 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id; 3424 3425 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3426 hwrm_ring_free_send_msg( 3427 bp, ring, 3428 RING_FREE_REQ_RING_TYPE_TX, 3429 close_path ? cmpl_ring_id : 3430 INVALID_HW_RING_ID); 3431 ring->fw_ring_id = INVALID_HW_RING_ID; 3432 } 3433 } 3434 } 3435 3436 if (bp->rx_nr_rings) { 3437 for (i = 0; i < bp->rx_nr_rings; i++) { 3438 struct bnxt_napi *bnapi = bp->bnapi[i]; 3439 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 3440 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 3441 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id; 3442 3443 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3444 hwrm_ring_free_send_msg( 3445 bp, ring, 3446 RING_FREE_REQ_RING_TYPE_RX, 3447 close_path ? cmpl_ring_id : 3448 INVALID_HW_RING_ID); 3449 ring->fw_ring_id = INVALID_HW_RING_ID; 3450 bp->grp_info[i].rx_fw_ring_id = 3451 INVALID_HW_RING_ID; 3452 } 3453 } 3454 } 3455 3456 if (bp->rx_agg_nr_pages) { 3457 for (i = 0; i < bp->rx_nr_rings; i++) { 3458 struct bnxt_napi *bnapi = bp->bnapi[i]; 3459 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring; 3460 struct bnxt_ring_struct *ring = 3461 &rxr->rx_agg_ring_struct; 3462 u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id; 3463 3464 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3465 hwrm_ring_free_send_msg( 3466 bp, ring, 3467 RING_FREE_REQ_RING_TYPE_RX, 3468 close_path ? cmpl_ring_id : 3469 INVALID_HW_RING_ID); 3470 ring->fw_ring_id = INVALID_HW_RING_ID; 3471 bp->grp_info[i].agg_fw_ring_id = 3472 INVALID_HW_RING_ID; 3473 } 3474 } 3475 } 3476 3477 if (bp->cp_nr_rings) { 3478 for (i = 0; i < bp->cp_nr_rings; i++) { 3479 struct bnxt_napi *bnapi = bp->bnapi[i]; 3480 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3481 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3482 3483 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 3484 hwrm_ring_free_send_msg( 3485 bp, ring, 3486 RING_FREE_REQ_RING_TYPE_CMPL, 3487 INVALID_HW_RING_ID); 3488 ring->fw_ring_id = INVALID_HW_RING_ID; 3489 bp->grp_info[i].cp_fw_ring_id = 3490 INVALID_HW_RING_ID; 3491 } 3492 } 3493 } 3494 3495 return rc; 3496 } 3497 3498 int bnxt_hwrm_set_coal(struct bnxt *bp) 3499 { 3500 int i, rc = 0; 3501 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0}; 3502 u16 max_buf, max_buf_irq; 3503 u16 buf_tmr, buf_tmr_irq; 3504 u32 flags; 3505 3506 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, 3507 -1, -1); 3508 3509 /* Each rx completion (2 records) should be DMAed immediately */ 3510 max_buf = min_t(u16, bp->coal_bufs / 4, 2); 3511 /* max_buf must not be zero */ 3512 max_buf = clamp_t(u16, max_buf, 1, 63); 3513 max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63); 3514 buf_tmr = max_t(u16, bp->coal_ticks / 4, 1); 3515 buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1); 3516 3517 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 3518 3519 /* RING_IDLE generates more IRQs for lower latency. Enable it only 3520 * if coal_ticks is less than 25 us. 3521 */ 3522 if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25) 3523 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 3524 3525 req.flags = cpu_to_le16(flags); 3526 req.num_cmpl_dma_aggr = cpu_to_le16(max_buf); 3527 req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq); 3528 req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr); 3529 req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq); 3530 req.int_lat_tmr_min = cpu_to_le16(buf_tmr); 3531 req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks); 3532 req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs); 3533 3534 mutex_lock(&bp->hwrm_cmd_lock); 3535 for (i = 0; i < bp->cp_nr_rings; i++) { 3536 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id); 3537 3538 rc = _hwrm_send_message(bp, &req, sizeof(req), 3539 HWRM_CMD_TIMEOUT); 3540 if (rc) 3541 break; 3542 } 3543 mutex_unlock(&bp->hwrm_cmd_lock); 3544 return rc; 3545 } 3546 3547 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 3548 { 3549 int rc = 0, i; 3550 struct hwrm_stat_ctx_free_input req = {0}; 3551 3552 if (!bp->bnapi) 3553 return 0; 3554 3555 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1); 3556 3557 mutex_lock(&bp->hwrm_cmd_lock); 3558 for (i = 0; i < bp->cp_nr_rings; i++) { 3559 struct bnxt_napi *bnapi = bp->bnapi[i]; 3560 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3561 3562 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 3563 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 3564 3565 rc = _hwrm_send_message(bp, &req, sizeof(req), 3566 HWRM_CMD_TIMEOUT); 3567 if (rc) 3568 break; 3569 3570 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 3571 } 3572 } 3573 mutex_unlock(&bp->hwrm_cmd_lock); 3574 return rc; 3575 } 3576 3577 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 3578 { 3579 int rc = 0, i; 3580 struct hwrm_stat_ctx_alloc_input req = {0}; 3581 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr; 3582 3583 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1); 3584 3585 req.update_period_ms = cpu_to_le32(1000); 3586 3587 mutex_lock(&bp->hwrm_cmd_lock); 3588 for (i = 0; i < bp->cp_nr_rings; i++) { 3589 struct bnxt_napi *bnapi = bp->bnapi[i]; 3590 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3591 3592 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map); 3593 3594 rc = _hwrm_send_message(bp, &req, sizeof(req), 3595 HWRM_CMD_TIMEOUT); 3596 if (rc) 3597 break; 3598 3599 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 3600 3601 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 3602 } 3603 mutex_unlock(&bp->hwrm_cmd_lock); 3604 return 0; 3605 } 3606 3607 static int bnxt_hwrm_func_qcaps(struct bnxt *bp) 3608 { 3609 int rc = 0; 3610 struct hwrm_func_qcaps_input req = {0}; 3611 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 3612 3613 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 3614 req.fid = cpu_to_le16(0xffff); 3615 3616 mutex_lock(&bp->hwrm_cmd_lock); 3617 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3618 if (rc) 3619 goto hwrm_func_qcaps_exit; 3620 3621 if (BNXT_PF(bp)) { 3622 struct bnxt_pf_info *pf = &bp->pf; 3623 3624 pf->fw_fid = le16_to_cpu(resp->fid); 3625 pf->port_id = le16_to_cpu(resp->port_id); 3626 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN); 3627 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN); 3628 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 3629 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 3630 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 3631 pf->max_pf_tx_rings = pf->max_tx_rings; 3632 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 3633 pf->max_pf_rx_rings = pf->max_rx_rings; 3634 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 3635 pf->max_vnics = le16_to_cpu(resp->max_vnics); 3636 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 3637 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 3638 pf->max_vfs = le16_to_cpu(resp->max_vfs); 3639 pf->max_encap_records = le32_to_cpu(resp->max_encap_records); 3640 pf->max_decap_records = le32_to_cpu(resp->max_decap_records); 3641 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 3642 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 3643 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 3644 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 3645 } else { 3646 #ifdef CONFIG_BNXT_SRIOV 3647 struct bnxt_vf_info *vf = &bp->vf; 3648 3649 vf->fw_fid = le16_to_cpu(resp->fid); 3650 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN); 3651 if (is_valid_ether_addr(vf->mac_addr)) 3652 /* overwrite netdev dev_adr with admin VF MAC */ 3653 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN); 3654 else 3655 random_ether_addr(bp->dev->dev_addr); 3656 3657 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 3658 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 3659 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 3660 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 3661 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 3662 vf->max_vnics = le16_to_cpu(resp->max_vnics); 3663 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 3664 #endif 3665 } 3666 3667 bp->tx_push_thresh = 0; 3668 if (resp->flags & 3669 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)) 3670 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 3671 3672 hwrm_func_qcaps_exit: 3673 mutex_unlock(&bp->hwrm_cmd_lock); 3674 return rc; 3675 } 3676 3677 static int bnxt_hwrm_func_reset(struct bnxt *bp) 3678 { 3679 struct hwrm_func_reset_input req = {0}; 3680 3681 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1); 3682 req.enables = 0; 3683 3684 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT); 3685 } 3686 3687 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 3688 { 3689 int rc = 0; 3690 struct hwrm_queue_qportcfg_input req = {0}; 3691 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr; 3692 u8 i, *qptr; 3693 3694 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1); 3695 3696 mutex_lock(&bp->hwrm_cmd_lock); 3697 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3698 if (rc) 3699 goto qportcfg_exit; 3700 3701 if (!resp->max_configurable_queues) { 3702 rc = -EINVAL; 3703 goto qportcfg_exit; 3704 } 3705 bp->max_tc = resp->max_configurable_queues; 3706 if (bp->max_tc > BNXT_MAX_QUEUE) 3707 bp->max_tc = BNXT_MAX_QUEUE; 3708 3709 qptr = &resp->queue_id0; 3710 for (i = 0; i < bp->max_tc; i++) { 3711 bp->q_info[i].queue_id = *qptr++; 3712 bp->q_info[i].queue_profile = *qptr++; 3713 } 3714 3715 qportcfg_exit: 3716 mutex_unlock(&bp->hwrm_cmd_lock); 3717 return rc; 3718 } 3719 3720 static int bnxt_hwrm_ver_get(struct bnxt *bp) 3721 { 3722 int rc; 3723 struct hwrm_ver_get_input req = {0}; 3724 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr; 3725 3726 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1); 3727 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 3728 req.hwrm_intf_min = HWRM_VERSION_MINOR; 3729 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 3730 mutex_lock(&bp->hwrm_cmd_lock); 3731 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 3732 if (rc) 3733 goto hwrm_ver_get_exit; 3734 3735 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 3736 3737 if (req.hwrm_intf_maj != resp->hwrm_intf_maj || 3738 req.hwrm_intf_min != resp->hwrm_intf_min || 3739 req.hwrm_intf_upd != resp->hwrm_intf_upd) { 3740 netdev_warn(bp->dev, "HWRM interface %d.%d.%d does not match driver interface %d.%d.%d.\n", 3741 resp->hwrm_intf_maj, resp->hwrm_intf_min, 3742 resp->hwrm_intf_upd, req.hwrm_intf_maj, 3743 req.hwrm_intf_min, req.hwrm_intf_upd); 3744 netdev_warn(bp->dev, "Please update driver or firmware with matching interface versions.\n"); 3745 } 3746 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d", 3747 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld, 3748 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd); 3749 3750 hwrm_ver_get_exit: 3751 mutex_unlock(&bp->hwrm_cmd_lock); 3752 return rc; 3753 } 3754 3755 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 3756 { 3757 if (bp->vxlan_port_cnt) { 3758 bnxt_hwrm_tunnel_dst_port_free( 3759 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 3760 } 3761 bp->vxlan_port_cnt = 0; 3762 if (bp->nge_port_cnt) { 3763 bnxt_hwrm_tunnel_dst_port_free( 3764 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 3765 } 3766 bp->nge_port_cnt = 0; 3767 } 3768 3769 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 3770 { 3771 int rc, i; 3772 u32 tpa_flags = 0; 3773 3774 if (set_tpa) 3775 tpa_flags = bp->flags & BNXT_FLAG_TPA; 3776 for (i = 0; i < bp->nr_vnics; i++) { 3777 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags); 3778 if (rc) { 3779 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 3780 rc, i); 3781 return rc; 3782 } 3783 } 3784 return 0; 3785 } 3786 3787 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 3788 { 3789 int i; 3790 3791 for (i = 0; i < bp->nr_vnics; i++) 3792 bnxt_hwrm_vnic_set_rss(bp, i, false); 3793 } 3794 3795 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 3796 bool irq_re_init) 3797 { 3798 if (bp->vnic_info) { 3799 bnxt_hwrm_clear_vnic_filter(bp); 3800 /* clear all RSS setting before free vnic ctx */ 3801 bnxt_hwrm_clear_vnic_rss(bp); 3802 bnxt_hwrm_vnic_ctx_free(bp); 3803 /* before free the vnic, undo the vnic tpa settings */ 3804 if (bp->flags & BNXT_FLAG_TPA) 3805 bnxt_set_tpa(bp, false); 3806 bnxt_hwrm_vnic_free(bp); 3807 } 3808 bnxt_hwrm_ring_free(bp, close_path); 3809 bnxt_hwrm_ring_grp_free(bp); 3810 if (irq_re_init) { 3811 bnxt_hwrm_stat_ctx_free(bp); 3812 bnxt_hwrm_free_tunnel_ports(bp); 3813 } 3814 } 3815 3816 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id) 3817 { 3818 int rc; 3819 3820 /* allocate context for vnic */ 3821 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id); 3822 if (rc) { 3823 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 3824 vnic_id, rc); 3825 goto vnic_setup_err; 3826 } 3827 bp->rsscos_nr_ctxs++; 3828 3829 /* configure default vnic, ring grp */ 3830 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id); 3831 if (rc) { 3832 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 3833 vnic_id, rc); 3834 goto vnic_setup_err; 3835 } 3836 3837 /* Enable RSS hashing on vnic */ 3838 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true); 3839 if (rc) { 3840 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 3841 vnic_id, rc); 3842 goto vnic_setup_err; 3843 } 3844 3845 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 3846 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id); 3847 if (rc) { 3848 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 3849 vnic_id, rc); 3850 } 3851 } 3852 3853 vnic_setup_err: 3854 return rc; 3855 } 3856 3857 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 3858 { 3859 #ifdef CONFIG_RFS_ACCEL 3860 int i, rc = 0; 3861 3862 for (i = 0; i < bp->rx_nr_rings; i++) { 3863 u16 vnic_id = i + 1; 3864 u16 ring_id = i; 3865 3866 if (vnic_id >= bp->nr_vnics) 3867 break; 3868 3869 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG; 3870 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, ring_id + 1); 3871 if (rc) { 3872 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 3873 vnic_id, rc); 3874 break; 3875 } 3876 rc = bnxt_setup_vnic(bp, vnic_id); 3877 if (rc) 3878 break; 3879 } 3880 return rc; 3881 #else 3882 return 0; 3883 #endif 3884 } 3885 3886 static int bnxt_cfg_rx_mode(struct bnxt *); 3887 3888 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 3889 { 3890 int rc = 0; 3891 3892 if (irq_re_init) { 3893 rc = bnxt_hwrm_stat_ctx_alloc(bp); 3894 if (rc) { 3895 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 3896 rc); 3897 goto err_out; 3898 } 3899 } 3900 3901 rc = bnxt_hwrm_ring_alloc(bp); 3902 if (rc) { 3903 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 3904 goto err_out; 3905 } 3906 3907 rc = bnxt_hwrm_ring_grp_alloc(bp); 3908 if (rc) { 3909 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 3910 goto err_out; 3911 } 3912 3913 /* default vnic 0 */ 3914 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings); 3915 if (rc) { 3916 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 3917 goto err_out; 3918 } 3919 3920 rc = bnxt_setup_vnic(bp, 0); 3921 if (rc) 3922 goto err_out; 3923 3924 if (bp->flags & BNXT_FLAG_RFS) { 3925 rc = bnxt_alloc_rfs_vnics(bp); 3926 if (rc) 3927 goto err_out; 3928 } 3929 3930 if (bp->flags & BNXT_FLAG_TPA) { 3931 rc = bnxt_set_tpa(bp, true); 3932 if (rc) 3933 goto err_out; 3934 } 3935 3936 if (BNXT_VF(bp)) 3937 bnxt_update_vf_mac(bp); 3938 3939 /* Filter for default vnic 0 */ 3940 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 3941 if (rc) { 3942 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 3943 goto err_out; 3944 } 3945 bp->vnic_info[0].uc_filter_count = 1; 3946 3947 bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_UNICAST | 3948 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 3949 3950 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp)) 3951 bp->vnic_info[0].rx_mask |= 3952 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 3953 3954 rc = bnxt_cfg_rx_mode(bp); 3955 if (rc) 3956 goto err_out; 3957 3958 rc = bnxt_hwrm_set_coal(bp); 3959 if (rc) 3960 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 3961 rc); 3962 3963 return 0; 3964 3965 err_out: 3966 bnxt_hwrm_resource_free(bp, 0, true); 3967 3968 return rc; 3969 } 3970 3971 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 3972 { 3973 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 3974 return 0; 3975 } 3976 3977 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 3978 { 3979 bnxt_init_rx_rings(bp); 3980 bnxt_init_tx_rings(bp); 3981 bnxt_init_ring_grps(bp, irq_re_init); 3982 bnxt_init_vnics(bp); 3983 3984 return bnxt_init_chip(bp, irq_re_init); 3985 } 3986 3987 static void bnxt_disable_int(struct bnxt *bp) 3988 { 3989 int i; 3990 3991 if (!bp->bnapi) 3992 return; 3993 3994 for (i = 0; i < bp->cp_nr_rings; i++) { 3995 struct bnxt_napi *bnapi = bp->bnapi[i]; 3996 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3997 3998 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons); 3999 } 4000 } 4001 4002 static void bnxt_enable_int(struct bnxt *bp) 4003 { 4004 int i; 4005 4006 atomic_set(&bp->intr_sem, 0); 4007 for (i = 0; i < bp->cp_nr_rings; i++) { 4008 struct bnxt_napi *bnapi = bp->bnapi[i]; 4009 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4010 4011 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons); 4012 } 4013 } 4014 4015 static int bnxt_set_real_num_queues(struct bnxt *bp) 4016 { 4017 int rc; 4018 struct net_device *dev = bp->dev; 4019 4020 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings); 4021 if (rc) 4022 return rc; 4023 4024 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 4025 if (rc) 4026 return rc; 4027 4028 #ifdef CONFIG_RFS_ACCEL 4029 if (bp->rx_nr_rings) 4030 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 4031 if (!dev->rx_cpu_rmap) 4032 rc = -ENOMEM; 4033 #endif 4034 4035 return rc; 4036 } 4037 4038 static int bnxt_setup_msix(struct bnxt *bp) 4039 { 4040 struct msix_entry *msix_ent; 4041 struct net_device *dev = bp->dev; 4042 int i, total_vecs, rc = 0; 4043 const int len = sizeof(bp->irq_tbl[0].name); 4044 4045 bp->flags &= ~BNXT_FLAG_USING_MSIX; 4046 total_vecs = bp->cp_nr_rings; 4047 4048 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 4049 if (!msix_ent) 4050 return -ENOMEM; 4051 4052 for (i = 0; i < total_vecs; i++) { 4053 msix_ent[i].entry = i; 4054 msix_ent[i].vector = 0; 4055 } 4056 4057 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, 1, total_vecs); 4058 if (total_vecs < 0) { 4059 rc = -ENODEV; 4060 goto msix_setup_exit; 4061 } 4062 4063 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 4064 if (bp->irq_tbl) { 4065 int tcs; 4066 4067 /* Trim rings based upon num of vectors allocated */ 4068 bp->rx_nr_rings = min_t(int, total_vecs, bp->rx_nr_rings); 4069 bp->tx_nr_rings = min_t(int, total_vecs, bp->tx_nr_rings); 4070 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 4071 tcs = netdev_get_num_tc(dev); 4072 if (tcs > 1) { 4073 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs; 4074 if (bp->tx_nr_rings_per_tc == 0) { 4075 netdev_reset_tc(dev); 4076 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 4077 } else { 4078 int i, off, count; 4079 4080 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs; 4081 for (i = 0; i < tcs; i++) { 4082 count = bp->tx_nr_rings_per_tc; 4083 off = i * count; 4084 netdev_set_tc_queue(dev, i, count, off); 4085 } 4086 } 4087 } 4088 bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings); 4089 4090 for (i = 0; i < bp->cp_nr_rings; i++) { 4091 bp->irq_tbl[i].vector = msix_ent[i].vector; 4092 snprintf(bp->irq_tbl[i].name, len, 4093 "%s-%s-%d", dev->name, "TxRx", i); 4094 bp->irq_tbl[i].handler = bnxt_msix; 4095 } 4096 rc = bnxt_set_real_num_queues(bp); 4097 if (rc) 4098 goto msix_setup_exit; 4099 } else { 4100 rc = -ENOMEM; 4101 goto msix_setup_exit; 4102 } 4103 bp->flags |= BNXT_FLAG_USING_MSIX; 4104 kfree(msix_ent); 4105 return 0; 4106 4107 msix_setup_exit: 4108 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc); 4109 pci_disable_msix(bp->pdev); 4110 kfree(msix_ent); 4111 return rc; 4112 } 4113 4114 static int bnxt_setup_inta(struct bnxt *bp) 4115 { 4116 int rc; 4117 const int len = sizeof(bp->irq_tbl[0].name); 4118 4119 if (netdev_get_num_tc(bp->dev)) 4120 netdev_reset_tc(bp->dev); 4121 4122 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL); 4123 if (!bp->irq_tbl) { 4124 rc = -ENOMEM; 4125 return rc; 4126 } 4127 bp->rx_nr_rings = 1; 4128 bp->tx_nr_rings = 1; 4129 bp->cp_nr_rings = 1; 4130 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 4131 bp->irq_tbl[0].vector = bp->pdev->irq; 4132 snprintf(bp->irq_tbl[0].name, len, 4133 "%s-%s-%d", bp->dev->name, "TxRx", 0); 4134 bp->irq_tbl[0].handler = bnxt_inta; 4135 rc = bnxt_set_real_num_queues(bp); 4136 return rc; 4137 } 4138 4139 static int bnxt_setup_int_mode(struct bnxt *bp) 4140 { 4141 int rc = 0; 4142 4143 if (bp->flags & BNXT_FLAG_MSIX_CAP) 4144 rc = bnxt_setup_msix(bp); 4145 4146 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 4147 /* fallback to INTA */ 4148 rc = bnxt_setup_inta(bp); 4149 } 4150 return rc; 4151 } 4152 4153 static void bnxt_free_irq(struct bnxt *bp) 4154 { 4155 struct bnxt_irq *irq; 4156 int i; 4157 4158 #ifdef CONFIG_RFS_ACCEL 4159 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 4160 bp->dev->rx_cpu_rmap = NULL; 4161 #endif 4162 if (!bp->irq_tbl) 4163 return; 4164 4165 for (i = 0; i < bp->cp_nr_rings; i++) { 4166 irq = &bp->irq_tbl[i]; 4167 if (irq->requested) 4168 free_irq(irq->vector, bp->bnapi[i]); 4169 irq->requested = 0; 4170 } 4171 if (bp->flags & BNXT_FLAG_USING_MSIX) 4172 pci_disable_msix(bp->pdev); 4173 kfree(bp->irq_tbl); 4174 bp->irq_tbl = NULL; 4175 } 4176 4177 static int bnxt_request_irq(struct bnxt *bp) 4178 { 4179 int i, rc = 0; 4180 unsigned long flags = 0; 4181 #ifdef CONFIG_RFS_ACCEL 4182 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap; 4183 #endif 4184 4185 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 4186 flags = IRQF_SHARED; 4187 4188 for (i = 0; i < bp->cp_nr_rings; i++) { 4189 struct bnxt_irq *irq = &bp->irq_tbl[i]; 4190 #ifdef CONFIG_RFS_ACCEL 4191 if (rmap && (i < bp->rx_nr_rings)) { 4192 rc = irq_cpu_rmap_add(rmap, irq->vector); 4193 if (rc) 4194 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 4195 i); 4196 } 4197 #endif 4198 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 4199 bp->bnapi[i]); 4200 if (rc) 4201 break; 4202 4203 irq->requested = 1; 4204 } 4205 return rc; 4206 } 4207 4208 static void bnxt_del_napi(struct bnxt *bp) 4209 { 4210 int i; 4211 4212 if (!bp->bnapi) 4213 return; 4214 4215 for (i = 0; i < bp->cp_nr_rings; i++) { 4216 struct bnxt_napi *bnapi = bp->bnapi[i]; 4217 4218 napi_hash_del(&bnapi->napi); 4219 netif_napi_del(&bnapi->napi); 4220 } 4221 } 4222 4223 static void bnxt_init_napi(struct bnxt *bp) 4224 { 4225 int i; 4226 struct bnxt_napi *bnapi; 4227 4228 if (bp->flags & BNXT_FLAG_USING_MSIX) { 4229 for (i = 0; i < bp->cp_nr_rings; i++) { 4230 bnapi = bp->bnapi[i]; 4231 netif_napi_add(bp->dev, &bnapi->napi, 4232 bnxt_poll, 64); 4233 napi_hash_add(&bnapi->napi); 4234 } 4235 } else { 4236 bnapi = bp->bnapi[0]; 4237 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64); 4238 napi_hash_add(&bnapi->napi); 4239 } 4240 } 4241 4242 static void bnxt_disable_napi(struct bnxt *bp) 4243 { 4244 int i; 4245 4246 if (!bp->bnapi) 4247 return; 4248 4249 for (i = 0; i < bp->cp_nr_rings; i++) { 4250 napi_disable(&bp->bnapi[i]->napi); 4251 bnxt_disable_poll(bp->bnapi[i]); 4252 } 4253 } 4254 4255 static void bnxt_enable_napi(struct bnxt *bp) 4256 { 4257 int i; 4258 4259 for (i = 0; i < bp->cp_nr_rings; i++) { 4260 bnxt_enable_poll(bp->bnapi[i]); 4261 napi_enable(&bp->bnapi[i]->napi); 4262 } 4263 } 4264 4265 static void bnxt_tx_disable(struct bnxt *bp) 4266 { 4267 int i; 4268 struct bnxt_napi *bnapi; 4269 struct bnxt_tx_ring_info *txr; 4270 struct netdev_queue *txq; 4271 4272 if (bp->bnapi) { 4273 for (i = 0; i < bp->tx_nr_rings; i++) { 4274 bnapi = bp->bnapi[i]; 4275 txr = &bnapi->tx_ring; 4276 txq = netdev_get_tx_queue(bp->dev, i); 4277 __netif_tx_lock(txq, smp_processor_id()); 4278 txr->dev_state = BNXT_DEV_STATE_CLOSING; 4279 __netif_tx_unlock(txq); 4280 } 4281 } 4282 /* Stop all TX queues */ 4283 netif_tx_disable(bp->dev); 4284 netif_carrier_off(bp->dev); 4285 } 4286 4287 static void bnxt_tx_enable(struct bnxt *bp) 4288 { 4289 int i; 4290 struct bnxt_napi *bnapi; 4291 struct bnxt_tx_ring_info *txr; 4292 struct netdev_queue *txq; 4293 4294 for (i = 0; i < bp->tx_nr_rings; i++) { 4295 bnapi = bp->bnapi[i]; 4296 txr = &bnapi->tx_ring; 4297 txq = netdev_get_tx_queue(bp->dev, i); 4298 txr->dev_state = 0; 4299 } 4300 netif_tx_wake_all_queues(bp->dev); 4301 if (bp->link_info.link_up) 4302 netif_carrier_on(bp->dev); 4303 } 4304 4305 static void bnxt_report_link(struct bnxt *bp) 4306 { 4307 if (bp->link_info.link_up) { 4308 const char *duplex; 4309 const char *flow_ctrl; 4310 u16 speed; 4311 4312 netif_carrier_on(bp->dev); 4313 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 4314 duplex = "full"; 4315 else 4316 duplex = "half"; 4317 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 4318 flow_ctrl = "ON - receive & transmit"; 4319 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 4320 flow_ctrl = "ON - transmit"; 4321 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 4322 flow_ctrl = "ON - receive"; 4323 else 4324 flow_ctrl = "none"; 4325 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 4326 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 4327 speed, duplex, flow_ctrl); 4328 } else { 4329 netif_carrier_off(bp->dev); 4330 netdev_err(bp->dev, "NIC Link is Down\n"); 4331 } 4332 } 4333 4334 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 4335 { 4336 int rc = 0; 4337 struct bnxt_link_info *link_info = &bp->link_info; 4338 struct hwrm_port_phy_qcfg_input req = {0}; 4339 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 4340 u8 link_up = link_info->link_up; 4341 4342 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1); 4343 4344 mutex_lock(&bp->hwrm_cmd_lock); 4345 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4346 if (rc) { 4347 mutex_unlock(&bp->hwrm_cmd_lock); 4348 return rc; 4349 } 4350 4351 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 4352 link_info->phy_link_status = resp->link; 4353 link_info->duplex = resp->duplex; 4354 link_info->pause = resp->pause; 4355 link_info->auto_mode = resp->auto_mode; 4356 link_info->auto_pause_setting = resp->auto_pause; 4357 link_info->force_pause_setting = resp->force_pause; 4358 link_info->duplex_setting = resp->duplex_setting; 4359 if (link_info->phy_link_status == BNXT_LINK_LINK) 4360 link_info->link_speed = le16_to_cpu(resp->link_speed); 4361 else 4362 link_info->link_speed = 0; 4363 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 4364 link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed); 4365 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 4366 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 4367 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 4368 link_info->phy_ver[0] = resp->phy_maj; 4369 link_info->phy_ver[1] = resp->phy_min; 4370 link_info->phy_ver[2] = resp->phy_bld; 4371 link_info->media_type = resp->media_type; 4372 link_info->transceiver = resp->transceiver_type; 4373 link_info->phy_addr = resp->phy_addr; 4374 4375 /* TODO: need to add more logic to report VF link */ 4376 if (chng_link_state) { 4377 if (link_info->phy_link_status == BNXT_LINK_LINK) 4378 link_info->link_up = 1; 4379 else 4380 link_info->link_up = 0; 4381 if (link_up != link_info->link_up) 4382 bnxt_report_link(bp); 4383 } else { 4384 /* alwasy link down if not require to update link state */ 4385 link_info->link_up = 0; 4386 } 4387 mutex_unlock(&bp->hwrm_cmd_lock); 4388 return 0; 4389 } 4390 4391 static void 4392 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 4393 { 4394 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 4395 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 4396 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 4397 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 4398 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 4399 req->enables |= 4400 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 4401 } else { 4402 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 4403 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 4404 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 4405 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 4406 req->enables |= 4407 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 4408 } 4409 } 4410 4411 static void bnxt_hwrm_set_link_common(struct bnxt *bp, 4412 struct hwrm_port_phy_cfg_input *req) 4413 { 4414 u8 autoneg = bp->link_info.autoneg; 4415 u16 fw_link_speed = bp->link_info.req_link_speed; 4416 u32 advertising = bp->link_info.advertising; 4417 4418 if (autoneg & BNXT_AUTONEG_SPEED) { 4419 req->auto_mode |= 4420 PORT_PHY_CFG_REQ_AUTO_MODE_MASK; 4421 4422 req->enables |= cpu_to_le32( 4423 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 4424 req->auto_link_speed_mask = cpu_to_le16(advertising); 4425 4426 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 4427 req->flags |= 4428 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 4429 } else { 4430 req->force_link_speed = cpu_to_le16(fw_link_speed); 4431 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 4432 } 4433 4434 /* currently don't support half duplex */ 4435 req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL; 4436 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX); 4437 /* tell chimp that the setting takes effect immediately */ 4438 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 4439 } 4440 4441 int bnxt_hwrm_set_pause(struct bnxt *bp) 4442 { 4443 struct hwrm_port_phy_cfg_input req = {0}; 4444 int rc; 4445 4446 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 4447 bnxt_hwrm_set_pause_common(bp, &req); 4448 4449 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 4450 bp->link_info.force_link_chng) 4451 bnxt_hwrm_set_link_common(bp, &req); 4452 4453 mutex_lock(&bp->hwrm_cmd_lock); 4454 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4455 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 4456 /* since changing of pause setting doesn't trigger any link 4457 * change event, the driver needs to update the current pause 4458 * result upon successfully return of the phy_cfg command 4459 */ 4460 bp->link_info.pause = 4461 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 4462 bp->link_info.auto_pause_setting = 0; 4463 if (!bp->link_info.force_link_chng) 4464 bnxt_report_link(bp); 4465 } 4466 bp->link_info.force_link_chng = false; 4467 mutex_unlock(&bp->hwrm_cmd_lock); 4468 return rc; 4469 } 4470 4471 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause) 4472 { 4473 struct hwrm_port_phy_cfg_input req = {0}; 4474 4475 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1); 4476 if (set_pause) 4477 bnxt_hwrm_set_pause_common(bp, &req); 4478 4479 bnxt_hwrm_set_link_common(bp, &req); 4480 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 4481 } 4482 4483 static int bnxt_update_phy_setting(struct bnxt *bp) 4484 { 4485 int rc; 4486 bool update_link = false; 4487 bool update_pause = false; 4488 struct bnxt_link_info *link_info = &bp->link_info; 4489 4490 rc = bnxt_update_link(bp, true); 4491 if (rc) { 4492 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 4493 rc); 4494 return rc; 4495 } 4496 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 4497 link_info->auto_pause_setting != link_info->req_flow_ctrl) 4498 update_pause = true; 4499 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 4500 link_info->force_pause_setting != link_info->req_flow_ctrl) 4501 update_pause = true; 4502 if (link_info->req_duplex != link_info->duplex_setting) 4503 update_link = true; 4504 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 4505 if (BNXT_AUTO_MODE(link_info->auto_mode)) 4506 update_link = true; 4507 if (link_info->req_link_speed != link_info->force_link_speed) 4508 update_link = true; 4509 } else { 4510 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 4511 update_link = true; 4512 if (link_info->advertising != link_info->auto_link_speeds) 4513 update_link = true; 4514 if (link_info->req_link_speed != link_info->auto_link_speed) 4515 update_link = true; 4516 } 4517 4518 if (update_link) 4519 rc = bnxt_hwrm_set_link_setting(bp, update_pause); 4520 else if (update_pause) 4521 rc = bnxt_hwrm_set_pause(bp); 4522 if (rc) { 4523 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 4524 rc); 4525 return rc; 4526 } 4527 4528 return rc; 4529 } 4530 4531 /* Common routine to pre-map certain register block to different GRC window. 4532 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 4533 * in PF and 3 windows in VF that can be customized to map in different 4534 * register blocks. 4535 */ 4536 static void bnxt_preset_reg_win(struct bnxt *bp) 4537 { 4538 if (BNXT_PF(bp)) { 4539 /* CAG registers map to GRC window #4 */ 4540 writel(BNXT_CAG_REG_BASE, 4541 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 4542 } 4543 } 4544 4545 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 4546 { 4547 int rc = 0; 4548 4549 bnxt_preset_reg_win(bp); 4550 netif_carrier_off(bp->dev); 4551 if (irq_re_init) { 4552 rc = bnxt_setup_int_mode(bp); 4553 if (rc) { 4554 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 4555 rc); 4556 return rc; 4557 } 4558 } 4559 if ((bp->flags & BNXT_FLAG_RFS) && 4560 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 4561 /* disable RFS if falling back to INTA */ 4562 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 4563 bp->flags &= ~BNXT_FLAG_RFS; 4564 } 4565 4566 rc = bnxt_alloc_mem(bp, irq_re_init); 4567 if (rc) { 4568 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 4569 goto open_err_free_mem; 4570 } 4571 4572 if (irq_re_init) { 4573 bnxt_init_napi(bp); 4574 rc = bnxt_request_irq(bp); 4575 if (rc) { 4576 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 4577 goto open_err; 4578 } 4579 } 4580 4581 bnxt_enable_napi(bp); 4582 4583 rc = bnxt_init_nic(bp, irq_re_init); 4584 if (rc) { 4585 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 4586 goto open_err; 4587 } 4588 4589 if (link_re_init) { 4590 rc = bnxt_update_phy_setting(bp); 4591 if (rc) 4592 goto open_err; 4593 } 4594 4595 if (irq_re_init) { 4596 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE) 4597 vxlan_get_rx_port(bp->dev); 4598 #endif 4599 if (!bnxt_hwrm_tunnel_dst_port_alloc( 4600 bp, htons(0x17c1), 4601 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE)) 4602 bp->nge_port_cnt = 1; 4603 } 4604 4605 set_bit(BNXT_STATE_OPEN, &bp->state); 4606 bnxt_enable_int(bp); 4607 /* Enable TX queues */ 4608 bnxt_tx_enable(bp); 4609 mod_timer(&bp->timer, jiffies + bp->current_interval); 4610 4611 return 0; 4612 4613 open_err: 4614 bnxt_disable_napi(bp); 4615 bnxt_del_napi(bp); 4616 4617 open_err_free_mem: 4618 bnxt_free_skbs(bp); 4619 bnxt_free_irq(bp); 4620 bnxt_free_mem(bp, true); 4621 return rc; 4622 } 4623 4624 /* rtnl_lock held */ 4625 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 4626 { 4627 int rc = 0; 4628 4629 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 4630 if (rc) { 4631 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 4632 dev_close(bp->dev); 4633 } 4634 return rc; 4635 } 4636 4637 static int bnxt_open(struct net_device *dev) 4638 { 4639 struct bnxt *bp = netdev_priv(dev); 4640 int rc = 0; 4641 4642 rc = bnxt_hwrm_func_reset(bp); 4643 if (rc) { 4644 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n", 4645 rc); 4646 rc = -1; 4647 return rc; 4648 } 4649 return __bnxt_open_nic(bp, true, true); 4650 } 4651 4652 static void bnxt_disable_int_sync(struct bnxt *bp) 4653 { 4654 int i; 4655 4656 atomic_inc(&bp->intr_sem); 4657 if (!netif_running(bp->dev)) 4658 return; 4659 4660 bnxt_disable_int(bp); 4661 for (i = 0; i < bp->cp_nr_rings; i++) 4662 synchronize_irq(bp->irq_tbl[i].vector); 4663 } 4664 4665 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 4666 { 4667 int rc = 0; 4668 4669 #ifdef CONFIG_BNXT_SRIOV 4670 if (bp->sriov_cfg) { 4671 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 4672 !bp->sriov_cfg, 4673 BNXT_SRIOV_CFG_WAIT_TMO); 4674 if (rc) 4675 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n"); 4676 } 4677 #endif 4678 /* Change device state to avoid TX queue wake up's */ 4679 bnxt_tx_disable(bp); 4680 4681 clear_bit(BNXT_STATE_OPEN, &bp->state); 4682 smp_mb__after_atomic(); 4683 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state)) 4684 msleep(20); 4685 4686 /* Flush rings before disabling interrupts */ 4687 bnxt_shutdown_nic(bp, irq_re_init); 4688 4689 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 4690 4691 bnxt_disable_napi(bp); 4692 bnxt_disable_int_sync(bp); 4693 del_timer_sync(&bp->timer); 4694 bnxt_free_skbs(bp); 4695 4696 if (irq_re_init) { 4697 bnxt_free_irq(bp); 4698 bnxt_del_napi(bp); 4699 } 4700 bnxt_free_mem(bp, irq_re_init); 4701 return rc; 4702 } 4703 4704 static int bnxt_close(struct net_device *dev) 4705 { 4706 struct bnxt *bp = netdev_priv(dev); 4707 4708 bnxt_close_nic(bp, true, true); 4709 return 0; 4710 } 4711 4712 /* rtnl_lock held */ 4713 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4714 { 4715 switch (cmd) { 4716 case SIOCGMIIPHY: 4717 /* fallthru */ 4718 case SIOCGMIIREG: { 4719 if (!netif_running(dev)) 4720 return -EAGAIN; 4721 4722 return 0; 4723 } 4724 4725 case SIOCSMIIREG: 4726 if (!netif_running(dev)) 4727 return -EAGAIN; 4728 4729 return 0; 4730 4731 default: 4732 /* do nothing */ 4733 break; 4734 } 4735 return -EOPNOTSUPP; 4736 } 4737 4738 static struct rtnl_link_stats64 * 4739 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 4740 { 4741 u32 i; 4742 struct bnxt *bp = netdev_priv(dev); 4743 4744 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 4745 4746 if (!bp->bnapi) 4747 return stats; 4748 4749 /* TODO check if we need to synchronize with bnxt_close path */ 4750 for (i = 0; i < bp->cp_nr_rings; i++) { 4751 struct bnxt_napi *bnapi = bp->bnapi[i]; 4752 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4753 struct ctx_hw_stats *hw_stats = cpr->hw_stats; 4754 4755 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts); 4756 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts); 4757 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts); 4758 4759 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts); 4760 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts); 4761 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts); 4762 4763 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes); 4764 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes); 4765 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes); 4766 4767 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes); 4768 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes); 4769 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes); 4770 4771 stats->rx_missed_errors += 4772 le64_to_cpu(hw_stats->rx_discard_pkts); 4773 4774 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts); 4775 4776 stats->rx_dropped += le64_to_cpu(hw_stats->rx_drop_pkts); 4777 4778 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts); 4779 } 4780 4781 return stats; 4782 } 4783 4784 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 4785 { 4786 struct net_device *dev = bp->dev; 4787 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 4788 struct netdev_hw_addr *ha; 4789 u8 *haddr; 4790 int mc_count = 0; 4791 bool update = false; 4792 int off = 0; 4793 4794 netdev_for_each_mc_addr(ha, dev) { 4795 if (mc_count >= BNXT_MAX_MC_ADDRS) { 4796 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 4797 vnic->mc_list_count = 0; 4798 return false; 4799 } 4800 haddr = ha->addr; 4801 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 4802 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 4803 update = true; 4804 } 4805 off += ETH_ALEN; 4806 mc_count++; 4807 } 4808 if (mc_count) 4809 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 4810 4811 if (mc_count != vnic->mc_list_count) { 4812 vnic->mc_list_count = mc_count; 4813 update = true; 4814 } 4815 return update; 4816 } 4817 4818 static bool bnxt_uc_list_updated(struct bnxt *bp) 4819 { 4820 struct net_device *dev = bp->dev; 4821 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 4822 struct netdev_hw_addr *ha; 4823 int off = 0; 4824 4825 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 4826 return true; 4827 4828 netdev_for_each_uc_addr(ha, dev) { 4829 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 4830 return true; 4831 4832 off += ETH_ALEN; 4833 } 4834 return false; 4835 } 4836 4837 static void bnxt_set_rx_mode(struct net_device *dev) 4838 { 4839 struct bnxt *bp = netdev_priv(dev); 4840 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 4841 u32 mask = vnic->rx_mask; 4842 bool mc_update = false; 4843 bool uc_update; 4844 4845 if (!netif_running(dev)) 4846 return; 4847 4848 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 4849 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 4850 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST); 4851 4852 /* Only allow PF to be in promiscuous mode */ 4853 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp)) 4854 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 4855 4856 uc_update = bnxt_uc_list_updated(bp); 4857 4858 if (dev->flags & IFF_ALLMULTI) { 4859 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 4860 vnic->mc_list_count = 0; 4861 } else { 4862 mc_update = bnxt_mc_list_updated(bp, &mask); 4863 } 4864 4865 if (mask != vnic->rx_mask || uc_update || mc_update) { 4866 vnic->rx_mask = mask; 4867 4868 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event); 4869 schedule_work(&bp->sp_task); 4870 } 4871 } 4872 4873 static int bnxt_cfg_rx_mode(struct bnxt *bp) 4874 { 4875 struct net_device *dev = bp->dev; 4876 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 4877 struct netdev_hw_addr *ha; 4878 int i, off = 0, rc; 4879 bool uc_update; 4880 4881 netif_addr_lock_bh(dev); 4882 uc_update = bnxt_uc_list_updated(bp); 4883 netif_addr_unlock_bh(dev); 4884 4885 if (!uc_update) 4886 goto skip_uc; 4887 4888 mutex_lock(&bp->hwrm_cmd_lock); 4889 for (i = 1; i < vnic->uc_filter_count; i++) { 4890 struct hwrm_cfa_l2_filter_free_input req = {0}; 4891 4892 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1, 4893 -1); 4894 4895 req.l2_filter_id = vnic->fw_l2_filter_id[i]; 4896 4897 rc = _hwrm_send_message(bp, &req, sizeof(req), 4898 HWRM_CMD_TIMEOUT); 4899 } 4900 mutex_unlock(&bp->hwrm_cmd_lock); 4901 4902 vnic->uc_filter_count = 1; 4903 4904 netif_addr_lock_bh(dev); 4905 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 4906 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 4907 } else { 4908 netdev_for_each_uc_addr(ha, dev) { 4909 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 4910 off += ETH_ALEN; 4911 vnic->uc_filter_count++; 4912 } 4913 } 4914 netif_addr_unlock_bh(dev); 4915 4916 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 4917 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 4918 if (rc) { 4919 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", 4920 rc); 4921 vnic->uc_filter_count = i; 4922 return rc; 4923 } 4924 } 4925 4926 skip_uc: 4927 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 4928 if (rc) 4929 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n", 4930 rc); 4931 4932 return rc; 4933 } 4934 4935 static netdev_features_t bnxt_fix_features(struct net_device *dev, 4936 netdev_features_t features) 4937 { 4938 return features; 4939 } 4940 4941 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 4942 { 4943 struct bnxt *bp = netdev_priv(dev); 4944 u32 flags = bp->flags; 4945 u32 changes; 4946 int rc = 0; 4947 bool re_init = false; 4948 bool update_tpa = false; 4949 4950 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 4951 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0)) 4952 flags |= BNXT_FLAG_GRO; 4953 if (features & NETIF_F_LRO) 4954 flags |= BNXT_FLAG_LRO; 4955 4956 if (features & NETIF_F_HW_VLAN_CTAG_RX) 4957 flags |= BNXT_FLAG_STRIP_VLAN; 4958 4959 if (features & NETIF_F_NTUPLE) 4960 flags |= BNXT_FLAG_RFS; 4961 4962 changes = flags ^ bp->flags; 4963 if (changes & BNXT_FLAG_TPA) { 4964 update_tpa = true; 4965 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 4966 (flags & BNXT_FLAG_TPA) == 0) 4967 re_init = true; 4968 } 4969 4970 if (changes & ~BNXT_FLAG_TPA) 4971 re_init = true; 4972 4973 if (flags != bp->flags) { 4974 u32 old_flags = bp->flags; 4975 4976 bp->flags = flags; 4977 4978 if (!netif_running(dev)) { 4979 if (update_tpa) 4980 bnxt_set_ring_params(bp); 4981 return rc; 4982 } 4983 4984 if (re_init) { 4985 bnxt_close_nic(bp, false, false); 4986 if (update_tpa) 4987 bnxt_set_ring_params(bp); 4988 4989 return bnxt_open_nic(bp, false, false); 4990 } 4991 if (update_tpa) { 4992 rc = bnxt_set_tpa(bp, 4993 (flags & BNXT_FLAG_TPA) ? 4994 true : false); 4995 if (rc) 4996 bp->flags = old_flags; 4997 } 4998 } 4999 return rc; 5000 } 5001 5002 static void bnxt_dbg_dump_states(struct bnxt *bp) 5003 { 5004 int i; 5005 struct bnxt_napi *bnapi; 5006 struct bnxt_tx_ring_info *txr; 5007 struct bnxt_rx_ring_info *rxr; 5008 struct bnxt_cp_ring_info *cpr; 5009 5010 for (i = 0; i < bp->cp_nr_rings; i++) { 5011 bnapi = bp->bnapi[i]; 5012 txr = &bnapi->tx_ring; 5013 rxr = &bnapi->rx_ring; 5014 cpr = &bnapi->cp_ring; 5015 if (netif_msg_drv(bp)) { 5016 netdev_info(bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 5017 i, txr->tx_ring_struct.fw_ring_id, 5018 txr->tx_prod, txr->tx_cons); 5019 netdev_info(bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 5020 i, rxr->rx_ring_struct.fw_ring_id, 5021 rxr->rx_prod, 5022 rxr->rx_agg_ring_struct.fw_ring_id, 5023 rxr->rx_agg_prod, rxr->rx_sw_agg_prod); 5024 netdev_info(bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 5025 i, cpr->cp_ring_struct.fw_ring_id, 5026 cpr->cp_raw_cons); 5027 } 5028 } 5029 } 5030 5031 static void bnxt_reset_task(struct bnxt *bp) 5032 { 5033 bnxt_dbg_dump_states(bp); 5034 if (netif_running(bp->dev)) { 5035 bnxt_close_nic(bp, false, false); 5036 bnxt_open_nic(bp, false, false); 5037 } 5038 } 5039 5040 static void bnxt_tx_timeout(struct net_device *dev) 5041 { 5042 struct bnxt *bp = netdev_priv(dev); 5043 5044 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 5045 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 5046 schedule_work(&bp->sp_task); 5047 } 5048 5049 #ifdef CONFIG_NET_POLL_CONTROLLER 5050 static void bnxt_poll_controller(struct net_device *dev) 5051 { 5052 struct bnxt *bp = netdev_priv(dev); 5053 int i; 5054 5055 for (i = 0; i < bp->cp_nr_rings; i++) { 5056 struct bnxt_irq *irq = &bp->irq_tbl[i]; 5057 5058 disable_irq(irq->vector); 5059 irq->handler(irq->vector, bp->bnapi[i]); 5060 enable_irq(irq->vector); 5061 } 5062 } 5063 #endif 5064 5065 static void bnxt_timer(unsigned long data) 5066 { 5067 struct bnxt *bp = (struct bnxt *)data; 5068 struct net_device *dev = bp->dev; 5069 5070 if (!netif_running(dev)) 5071 return; 5072 5073 if (atomic_read(&bp->intr_sem) != 0) 5074 goto bnxt_restart_timer; 5075 5076 bnxt_restart_timer: 5077 mod_timer(&bp->timer, jiffies + bp->current_interval); 5078 } 5079 5080 static void bnxt_cfg_ntp_filters(struct bnxt *); 5081 5082 static void bnxt_sp_task(struct work_struct *work) 5083 { 5084 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 5085 int rc; 5086 5087 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5088 smp_mb__after_atomic(); 5089 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 5090 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5091 return; 5092 } 5093 5094 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 5095 bnxt_cfg_rx_mode(bp); 5096 5097 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 5098 bnxt_cfg_ntp_filters(bp); 5099 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 5100 rc = bnxt_update_link(bp, true); 5101 if (rc) 5102 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 5103 rc); 5104 } 5105 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 5106 bnxt_hwrm_exec_fwd_req(bp); 5107 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) { 5108 bnxt_hwrm_tunnel_dst_port_alloc( 5109 bp, bp->vxlan_port, 5110 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 5111 } 5112 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) { 5113 bnxt_hwrm_tunnel_dst_port_free( 5114 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 5115 } 5116 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) { 5117 /* bnxt_reset_task() calls bnxt_close_nic() which waits 5118 * for BNXT_STATE_IN_SP_TASK to clear. 5119 */ 5120 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5121 rtnl_lock(); 5122 bnxt_reset_task(bp); 5123 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5124 rtnl_unlock(); 5125 } 5126 5127 smp_mb__before_atomic(); 5128 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 5129 } 5130 5131 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 5132 { 5133 int rc; 5134 struct bnxt *bp = netdev_priv(dev); 5135 5136 SET_NETDEV_DEV(dev, &pdev->dev); 5137 5138 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 5139 rc = pci_enable_device(pdev); 5140 if (rc) { 5141 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 5142 goto init_err; 5143 } 5144 5145 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 5146 dev_err(&pdev->dev, 5147 "Cannot find PCI device base address, aborting\n"); 5148 rc = -ENODEV; 5149 goto init_err_disable; 5150 } 5151 5152 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 5153 if (rc) { 5154 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 5155 goto init_err_disable; 5156 } 5157 5158 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 5159 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 5160 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 5161 goto init_err_disable; 5162 } 5163 5164 pci_set_master(pdev); 5165 5166 bp->dev = dev; 5167 bp->pdev = pdev; 5168 5169 bp->bar0 = pci_ioremap_bar(pdev, 0); 5170 if (!bp->bar0) { 5171 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 5172 rc = -ENOMEM; 5173 goto init_err_release; 5174 } 5175 5176 bp->bar1 = pci_ioremap_bar(pdev, 2); 5177 if (!bp->bar1) { 5178 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n"); 5179 rc = -ENOMEM; 5180 goto init_err_release; 5181 } 5182 5183 bp->bar2 = pci_ioremap_bar(pdev, 4); 5184 if (!bp->bar2) { 5185 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 5186 rc = -ENOMEM; 5187 goto init_err_release; 5188 } 5189 5190 INIT_WORK(&bp->sp_task, bnxt_sp_task); 5191 5192 spin_lock_init(&bp->ntp_fltr_lock); 5193 5194 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 5195 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 5196 5197 bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4); 5198 bp->coal_bufs = 20; 5199 bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1); 5200 bp->coal_bufs_irq = 2; 5201 5202 init_timer(&bp->timer); 5203 bp->timer.data = (unsigned long)bp; 5204 bp->timer.function = bnxt_timer; 5205 bp->current_interval = BNXT_TIMER_INTERVAL; 5206 5207 clear_bit(BNXT_STATE_OPEN, &bp->state); 5208 5209 return 0; 5210 5211 init_err_release: 5212 if (bp->bar2) { 5213 pci_iounmap(pdev, bp->bar2); 5214 bp->bar2 = NULL; 5215 } 5216 5217 if (bp->bar1) { 5218 pci_iounmap(pdev, bp->bar1); 5219 bp->bar1 = NULL; 5220 } 5221 5222 if (bp->bar0) { 5223 pci_iounmap(pdev, bp->bar0); 5224 bp->bar0 = NULL; 5225 } 5226 5227 pci_release_regions(pdev); 5228 5229 init_err_disable: 5230 pci_disable_device(pdev); 5231 5232 init_err: 5233 return rc; 5234 } 5235 5236 /* rtnl_lock held */ 5237 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 5238 { 5239 struct sockaddr *addr = p; 5240 struct bnxt *bp = netdev_priv(dev); 5241 int rc = 0; 5242 5243 if (!is_valid_ether_addr(addr->sa_data)) 5244 return -EADDRNOTAVAIL; 5245 5246 #ifdef CONFIG_BNXT_SRIOV 5247 if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr)) 5248 return -EADDRNOTAVAIL; 5249 #endif 5250 5251 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 5252 return 0; 5253 5254 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 5255 if (netif_running(dev)) { 5256 bnxt_close_nic(bp, false, false); 5257 rc = bnxt_open_nic(bp, false, false); 5258 } 5259 5260 return rc; 5261 } 5262 5263 /* rtnl_lock held */ 5264 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 5265 { 5266 struct bnxt *bp = netdev_priv(dev); 5267 5268 if (new_mtu < 60 || new_mtu > 9000) 5269 return -EINVAL; 5270 5271 if (netif_running(dev)) 5272 bnxt_close_nic(bp, false, false); 5273 5274 dev->mtu = new_mtu; 5275 bnxt_set_ring_params(bp); 5276 5277 if (netif_running(dev)) 5278 return bnxt_open_nic(bp, false, false); 5279 5280 return 0; 5281 } 5282 5283 static int bnxt_setup_tc(struct net_device *dev, u8 tc) 5284 { 5285 struct bnxt *bp = netdev_priv(dev); 5286 5287 if (tc > bp->max_tc) { 5288 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n", 5289 tc, bp->max_tc); 5290 return -EINVAL; 5291 } 5292 5293 if (netdev_get_num_tc(dev) == tc) 5294 return 0; 5295 5296 if (tc) { 5297 int max_rx_rings, max_tx_rings; 5298 5299 bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings); 5300 if (bp->tx_nr_rings_per_tc * tc > max_tx_rings) 5301 return -ENOMEM; 5302 } 5303 5304 /* Needs to close the device and do hw resource re-allocations */ 5305 if (netif_running(bp->dev)) 5306 bnxt_close_nic(bp, true, false); 5307 5308 if (tc) { 5309 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 5310 netdev_set_num_tc(dev, tc); 5311 } else { 5312 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 5313 netdev_reset_tc(dev); 5314 } 5315 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings); 5316 bp->num_stat_ctxs = bp->cp_nr_rings; 5317 5318 if (netif_running(bp->dev)) 5319 return bnxt_open_nic(bp, true, false); 5320 5321 return 0; 5322 } 5323 5324 #ifdef CONFIG_RFS_ACCEL 5325 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 5326 struct bnxt_ntuple_filter *f2) 5327 { 5328 struct flow_keys *keys1 = &f1->fkeys; 5329 struct flow_keys *keys2 = &f2->fkeys; 5330 5331 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src && 5332 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst && 5333 keys1->ports.ports == keys2->ports.ports && 5334 keys1->basic.ip_proto == keys2->basic.ip_proto && 5335 keys1->basic.n_proto == keys2->basic.n_proto && 5336 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr)) 5337 return true; 5338 5339 return false; 5340 } 5341 5342 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 5343 u16 rxq_index, u32 flow_id) 5344 { 5345 struct bnxt *bp = netdev_priv(dev); 5346 struct bnxt_ntuple_filter *fltr, *new_fltr; 5347 struct flow_keys *fkeys; 5348 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 5349 int rc = 0, idx, bit_id; 5350 struct hlist_head *head; 5351 5352 if (skb->encapsulation) 5353 return -EPROTONOSUPPORT; 5354 5355 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 5356 if (!new_fltr) 5357 return -ENOMEM; 5358 5359 fkeys = &new_fltr->fkeys; 5360 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 5361 rc = -EPROTONOSUPPORT; 5362 goto err_free; 5363 } 5364 5365 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) || 5366 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 5367 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 5368 rc = -EPROTONOSUPPORT; 5369 goto err_free; 5370 } 5371 5372 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN); 5373 5374 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 5375 head = &bp->ntp_fltr_hash_tbl[idx]; 5376 rcu_read_lock(); 5377 hlist_for_each_entry_rcu(fltr, head, hash) { 5378 if (bnxt_fltr_match(fltr, new_fltr)) { 5379 rcu_read_unlock(); 5380 rc = 0; 5381 goto err_free; 5382 } 5383 } 5384 rcu_read_unlock(); 5385 5386 spin_lock_bh(&bp->ntp_fltr_lock); 5387 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5388 BNXT_NTP_FLTR_MAX_FLTR, 0); 5389 if (bit_id < 0) { 5390 spin_unlock_bh(&bp->ntp_fltr_lock); 5391 rc = -ENOMEM; 5392 goto err_free; 5393 } 5394 5395 new_fltr->sw_id = (u16)bit_id; 5396 new_fltr->flow_id = flow_id; 5397 new_fltr->rxq = rxq_index; 5398 hlist_add_head_rcu(&new_fltr->hash, head); 5399 bp->ntp_fltr_count++; 5400 spin_unlock_bh(&bp->ntp_fltr_lock); 5401 5402 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event); 5403 schedule_work(&bp->sp_task); 5404 5405 return new_fltr->sw_id; 5406 5407 err_free: 5408 kfree(new_fltr); 5409 return rc; 5410 } 5411 5412 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 5413 { 5414 int i; 5415 5416 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5417 struct hlist_head *head; 5418 struct hlist_node *tmp; 5419 struct bnxt_ntuple_filter *fltr; 5420 int rc; 5421 5422 head = &bp->ntp_fltr_hash_tbl[i]; 5423 hlist_for_each_entry_safe(fltr, tmp, head, hash) { 5424 bool del = false; 5425 5426 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) { 5427 if (rps_may_expire_flow(bp->dev, fltr->rxq, 5428 fltr->flow_id, 5429 fltr->sw_id)) { 5430 bnxt_hwrm_cfa_ntuple_filter_free(bp, 5431 fltr); 5432 del = true; 5433 } 5434 } else { 5435 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 5436 fltr); 5437 if (rc) 5438 del = true; 5439 else 5440 set_bit(BNXT_FLTR_VALID, &fltr->state); 5441 } 5442 5443 if (del) { 5444 spin_lock_bh(&bp->ntp_fltr_lock); 5445 hlist_del_rcu(&fltr->hash); 5446 bp->ntp_fltr_count--; 5447 spin_unlock_bh(&bp->ntp_fltr_lock); 5448 synchronize_rcu(); 5449 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5450 kfree(fltr); 5451 } 5452 } 5453 } 5454 } 5455 5456 #else 5457 5458 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 5459 { 5460 } 5461 5462 #endif /* CONFIG_RFS_ACCEL */ 5463 5464 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family, 5465 __be16 port) 5466 { 5467 struct bnxt *bp = netdev_priv(dev); 5468 5469 if (!netif_running(dev)) 5470 return; 5471 5472 if (sa_family != AF_INET6 && sa_family != AF_INET) 5473 return; 5474 5475 if (bp->vxlan_port_cnt && bp->vxlan_port != port) 5476 return; 5477 5478 bp->vxlan_port_cnt++; 5479 if (bp->vxlan_port_cnt == 1) { 5480 bp->vxlan_port = port; 5481 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event); 5482 schedule_work(&bp->sp_task); 5483 } 5484 } 5485 5486 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family, 5487 __be16 port) 5488 { 5489 struct bnxt *bp = netdev_priv(dev); 5490 5491 if (!netif_running(dev)) 5492 return; 5493 5494 if (sa_family != AF_INET6 && sa_family != AF_INET) 5495 return; 5496 5497 if (bp->vxlan_port_cnt && bp->vxlan_port == port) { 5498 bp->vxlan_port_cnt--; 5499 5500 if (bp->vxlan_port_cnt == 0) { 5501 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event); 5502 schedule_work(&bp->sp_task); 5503 } 5504 } 5505 } 5506 5507 static const struct net_device_ops bnxt_netdev_ops = { 5508 .ndo_open = bnxt_open, 5509 .ndo_start_xmit = bnxt_start_xmit, 5510 .ndo_stop = bnxt_close, 5511 .ndo_get_stats64 = bnxt_get_stats64, 5512 .ndo_set_rx_mode = bnxt_set_rx_mode, 5513 .ndo_do_ioctl = bnxt_ioctl, 5514 .ndo_validate_addr = eth_validate_addr, 5515 .ndo_set_mac_address = bnxt_change_mac_addr, 5516 .ndo_change_mtu = bnxt_change_mtu, 5517 .ndo_fix_features = bnxt_fix_features, 5518 .ndo_set_features = bnxt_set_features, 5519 .ndo_tx_timeout = bnxt_tx_timeout, 5520 #ifdef CONFIG_BNXT_SRIOV 5521 .ndo_get_vf_config = bnxt_get_vf_config, 5522 .ndo_set_vf_mac = bnxt_set_vf_mac, 5523 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 5524 .ndo_set_vf_rate = bnxt_set_vf_bw, 5525 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 5526 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 5527 #endif 5528 #ifdef CONFIG_NET_POLL_CONTROLLER 5529 .ndo_poll_controller = bnxt_poll_controller, 5530 #endif 5531 .ndo_setup_tc = bnxt_setup_tc, 5532 #ifdef CONFIG_RFS_ACCEL 5533 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 5534 #endif 5535 .ndo_add_vxlan_port = bnxt_add_vxlan_port, 5536 .ndo_del_vxlan_port = bnxt_del_vxlan_port, 5537 #ifdef CONFIG_NET_RX_BUSY_POLL 5538 .ndo_busy_poll = bnxt_busy_poll, 5539 #endif 5540 }; 5541 5542 static void bnxt_remove_one(struct pci_dev *pdev) 5543 { 5544 struct net_device *dev = pci_get_drvdata(pdev); 5545 struct bnxt *bp = netdev_priv(dev); 5546 5547 if (BNXT_PF(bp)) 5548 bnxt_sriov_disable(bp); 5549 5550 unregister_netdev(dev); 5551 cancel_work_sync(&bp->sp_task); 5552 bp->sp_event = 0; 5553 5554 bnxt_free_hwrm_resources(bp); 5555 pci_iounmap(pdev, bp->bar2); 5556 pci_iounmap(pdev, bp->bar1); 5557 pci_iounmap(pdev, bp->bar0); 5558 free_netdev(dev); 5559 5560 pci_release_regions(pdev); 5561 pci_disable_device(pdev); 5562 } 5563 5564 static int bnxt_probe_phy(struct bnxt *bp) 5565 { 5566 int rc = 0; 5567 struct bnxt_link_info *link_info = &bp->link_info; 5568 char phy_ver[PHY_VER_STR_LEN]; 5569 5570 rc = bnxt_update_link(bp, false); 5571 if (rc) { 5572 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 5573 rc); 5574 return rc; 5575 } 5576 5577 /*initialize the ethool setting copy with NVM settings */ 5578 if (BNXT_AUTO_MODE(link_info->auto_mode)) 5579 link_info->autoneg |= BNXT_AUTONEG_SPEED; 5580 5581 if (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) { 5582 if (link_info->auto_pause_setting == BNXT_LINK_PAUSE_BOTH) 5583 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 5584 link_info->req_flow_ctrl = link_info->auto_pause_setting; 5585 } else if (link_info->force_pause_setting & BNXT_LINK_PAUSE_BOTH) { 5586 link_info->req_flow_ctrl = link_info->force_pause_setting; 5587 } 5588 link_info->req_duplex = link_info->duplex_setting; 5589 if (link_info->autoneg & BNXT_AUTONEG_SPEED) 5590 link_info->req_link_speed = link_info->auto_link_speed; 5591 else 5592 link_info->req_link_speed = link_info->force_link_speed; 5593 link_info->advertising = link_info->auto_link_speeds; 5594 snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d", 5595 link_info->phy_ver[0], 5596 link_info->phy_ver[1], 5597 link_info->phy_ver[2]); 5598 strcat(bp->fw_ver_str, phy_ver); 5599 return rc; 5600 } 5601 5602 static int bnxt_get_max_irq(struct pci_dev *pdev) 5603 { 5604 u16 ctrl; 5605 5606 if (!pdev->msix_cap) 5607 return 1; 5608 5609 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 5610 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 5611 } 5612 5613 void bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx) 5614 { 5615 int max_rings = 0; 5616 5617 if (BNXT_PF(bp)) { 5618 *max_tx = bp->pf.max_pf_tx_rings; 5619 *max_rx = bp->pf.max_pf_rx_rings; 5620 max_rings = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings); 5621 max_rings = min_t(int, max_rings, bp->pf.max_stat_ctxs); 5622 } else { 5623 #ifdef CONFIG_BNXT_SRIOV 5624 *max_tx = bp->vf.max_tx_rings; 5625 *max_rx = bp->vf.max_rx_rings; 5626 max_rings = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings); 5627 max_rings = min_t(int, max_rings, bp->vf.max_stat_ctxs); 5628 #endif 5629 } 5630 if (bp->flags & BNXT_FLAG_AGG_RINGS) 5631 *max_rx >>= 1; 5632 5633 *max_rx = min_t(int, *max_rx, max_rings); 5634 *max_tx = min_t(int, *max_tx, max_rings); 5635 } 5636 5637 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5638 { 5639 static int version_printed; 5640 struct net_device *dev; 5641 struct bnxt *bp; 5642 int rc, max_rx_rings, max_tx_rings, max_irqs, dflt_rings; 5643 5644 if (version_printed++ == 0) 5645 pr_info("%s", version); 5646 5647 max_irqs = bnxt_get_max_irq(pdev); 5648 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs); 5649 if (!dev) 5650 return -ENOMEM; 5651 5652 bp = netdev_priv(dev); 5653 5654 if (bnxt_vf_pciid(ent->driver_data)) 5655 bp->flags |= BNXT_FLAG_VF; 5656 5657 if (pdev->msix_cap) { 5658 bp->flags |= BNXT_FLAG_MSIX_CAP; 5659 if (BNXT_PF(bp)) 5660 bp->flags |= BNXT_FLAG_RFS; 5661 } 5662 5663 rc = bnxt_init_board(pdev, dev); 5664 if (rc < 0) 5665 goto init_err_free; 5666 5667 dev->netdev_ops = &bnxt_netdev_ops; 5668 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 5669 dev->ethtool_ops = &bnxt_ethtool_ops; 5670 5671 pci_set_drvdata(pdev, dev); 5672 5673 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 5674 NETIF_F_TSO | NETIF_F_TSO6 | 5675 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 5676 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT | 5677 NETIF_F_RXHASH | 5678 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO; 5679 5680 if (bp->flags & BNXT_FLAG_RFS) 5681 dev->hw_features |= NETIF_F_NTUPLE; 5682 5683 dev->hw_enc_features = 5684 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 5685 NETIF_F_TSO | NETIF_F_TSO6 | 5686 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 5687 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT; 5688 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 5689 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 5690 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX; 5691 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 5692 dev->priv_flags |= IFF_UNICAST_FLT; 5693 5694 #ifdef CONFIG_BNXT_SRIOV 5695 init_waitqueue_head(&bp->sriov_cfg_wait); 5696 #endif 5697 rc = bnxt_alloc_hwrm_resources(bp); 5698 if (rc) 5699 goto init_err; 5700 5701 mutex_init(&bp->hwrm_cmd_lock); 5702 bnxt_hwrm_ver_get(bp); 5703 5704 rc = bnxt_hwrm_func_drv_rgtr(bp); 5705 if (rc) 5706 goto init_err; 5707 5708 /* Get the MAX capabilities for this function */ 5709 rc = bnxt_hwrm_func_qcaps(bp); 5710 if (rc) { 5711 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 5712 rc); 5713 rc = -1; 5714 goto init_err; 5715 } 5716 5717 rc = bnxt_hwrm_queue_qportcfg(bp); 5718 if (rc) { 5719 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n", 5720 rc); 5721 rc = -1; 5722 goto init_err; 5723 } 5724 5725 bnxt_set_tpa_flags(bp); 5726 bnxt_set_ring_params(bp); 5727 dflt_rings = netif_get_num_default_rss_queues(); 5728 if (BNXT_PF(bp)) 5729 bp->pf.max_irqs = max_irqs; 5730 #if defined(CONFIG_BNXT_SRIOV) 5731 else 5732 bp->vf.max_irqs = max_irqs; 5733 #endif 5734 bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings); 5735 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 5736 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 5737 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 5738 bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings); 5739 bp->num_stat_ctxs = bp->cp_nr_rings; 5740 5741 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX) 5742 bp->flags |= BNXT_FLAG_STRIP_VLAN; 5743 5744 rc = bnxt_probe_phy(bp); 5745 if (rc) 5746 goto init_err; 5747 5748 rc = register_netdev(dev); 5749 if (rc) 5750 goto init_err; 5751 5752 netdev_info(dev, "%s found at mem %lx, node addr %pM\n", 5753 board_info[ent->driver_data].name, 5754 (long)pci_resource_start(pdev, 0), dev->dev_addr); 5755 5756 return 0; 5757 5758 init_err: 5759 pci_iounmap(pdev, bp->bar0); 5760 pci_release_regions(pdev); 5761 pci_disable_device(pdev); 5762 5763 init_err_free: 5764 free_netdev(dev); 5765 return rc; 5766 } 5767 5768 static struct pci_driver bnxt_pci_driver = { 5769 .name = DRV_MODULE_NAME, 5770 .id_table = bnxt_pci_tbl, 5771 .probe = bnxt_init_one, 5772 .remove = bnxt_remove_one, 5773 #if defined(CONFIG_BNXT_SRIOV) 5774 .sriov_configure = bnxt_sriov_configure, 5775 #endif 5776 }; 5777 5778 module_pci_driver(bnxt_pci_driver); 5779