xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 
58 #include "bnxt_hsi.h"
59 #include "bnxt.h"
60 #include "bnxt_ulp.h"
61 #include "bnxt_sriov.h"
62 #include "bnxt_ethtool.h"
63 #include "bnxt_dcb.h"
64 #include "bnxt_xdp.h"
65 #include "bnxt_vfr.h"
66 #include "bnxt_tc.h"
67 #include "bnxt_devlink.h"
68 #include "bnxt_debugfs.h"
69 
70 #define BNXT_TX_TIMEOUT		(5 * HZ)
71 
72 static const char version[] =
73 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
74 
75 MODULE_LICENSE("GPL");
76 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
77 MODULE_VERSION(DRV_MODULE_VERSION);
78 
79 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
80 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
81 #define BNXT_RX_COPY_THRESH 256
82 
83 #define BNXT_TX_PUSH_THRESH 164
84 
85 enum board_idx {
86 	BCM57301,
87 	BCM57302,
88 	BCM57304,
89 	BCM57417_NPAR,
90 	BCM58700,
91 	BCM57311,
92 	BCM57312,
93 	BCM57402,
94 	BCM57404,
95 	BCM57406,
96 	BCM57402_NPAR,
97 	BCM57407,
98 	BCM57412,
99 	BCM57414,
100 	BCM57416,
101 	BCM57417,
102 	BCM57412_NPAR,
103 	BCM57314,
104 	BCM57417_SFP,
105 	BCM57416_SFP,
106 	BCM57404_NPAR,
107 	BCM57406_NPAR,
108 	BCM57407_SFP,
109 	BCM57407_NPAR,
110 	BCM57414_NPAR,
111 	BCM57416_NPAR,
112 	BCM57452,
113 	BCM57454,
114 	BCM5745x_NPAR,
115 	BCM57508,
116 	BCM57504,
117 	BCM58802,
118 	BCM58804,
119 	BCM58808,
120 	NETXTREME_E_VF,
121 	NETXTREME_C_VF,
122 	NETXTREME_S_VF,
123 	NETXTREME_E_P5_VF,
124 };
125 
126 /* indexed by enum above */
127 static const struct {
128 	char *name;
129 } board_info[] = {
130 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
131 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
132 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
133 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
134 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
135 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
136 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
137 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
138 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
139 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
140 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
141 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
142 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
143 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
144 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
145 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
146 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
147 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
148 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
149 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
150 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
151 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
152 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
153 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
154 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
155 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
156 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
157 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
158 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
159 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
160 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
161 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
162 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
163 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
164 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
165 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
166 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
167 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
168 };
169 
170 static const struct pci_device_id bnxt_pci_tbl[] = {
171 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
173 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
174 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
175 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
176 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
177 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
178 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
180 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
181 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
182 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
183 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
184 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
185 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
186 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
187 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
188 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
189 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
190 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
191 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
192 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
193 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
194 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
195 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
196 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
197 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
198 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
199 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
200 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
201 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
202 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
203 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
204 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
205 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
206 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
207 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
208 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
209 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
210 #ifdef CONFIG_BNXT_SRIOV
211 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
212 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
213 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
214 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
215 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
216 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
217 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
218 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
219 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
220 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
221 #endif
222 	{ 0 }
223 };
224 
225 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
226 
227 static const u16 bnxt_vf_req_snif[] = {
228 	HWRM_FUNC_CFG,
229 	HWRM_FUNC_VF_CFG,
230 	HWRM_PORT_PHY_QCFG,
231 	HWRM_CFA_L2_FILTER_ALLOC,
232 };
233 
234 static const u16 bnxt_async_events_arr[] = {
235 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
236 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
237 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
238 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
239 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
240 };
241 
242 static struct workqueue_struct *bnxt_pf_wq;
243 
244 static bool bnxt_vf_pciid(enum board_idx idx)
245 {
246 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
247 		idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
248 }
249 
250 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
251 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
252 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
253 
254 #define BNXT_CP_DB_IRQ_DIS(db)						\
255 		writel(DB_CP_IRQ_DIS_FLAGS, db)
256 
257 #define BNXT_DB_CQ(db, idx)						\
258 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
259 
260 #define BNXT_DB_NQ_P5(db, idx)						\
261 	writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
262 
263 #define BNXT_DB_CQ_ARM(db, idx)						\
264 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
265 
266 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
267 	writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
268 
269 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
270 {
271 	if (bp->flags & BNXT_FLAG_CHIP_P5)
272 		BNXT_DB_NQ_P5(db, idx);
273 	else
274 		BNXT_DB_CQ(db, idx);
275 }
276 
277 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
278 {
279 	if (bp->flags & BNXT_FLAG_CHIP_P5)
280 		BNXT_DB_NQ_ARM_P5(db, idx);
281 	else
282 		BNXT_DB_CQ_ARM(db, idx);
283 }
284 
285 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
286 {
287 	if (bp->flags & BNXT_FLAG_CHIP_P5)
288 		writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
289 		       db->doorbell);
290 	else
291 		BNXT_DB_CQ(db, idx);
292 }
293 
294 const u16 bnxt_lhint_arr[] = {
295 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
296 	TX_BD_FLAGS_LHINT_512_TO_1023,
297 	TX_BD_FLAGS_LHINT_1024_TO_2047,
298 	TX_BD_FLAGS_LHINT_1024_TO_2047,
299 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
300 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 };
315 
316 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
317 {
318 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
319 
320 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
321 		return 0;
322 
323 	return md_dst->u.port_info.port_id;
324 }
325 
326 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
327 {
328 	struct bnxt *bp = netdev_priv(dev);
329 	struct tx_bd *txbd;
330 	struct tx_bd_ext *txbd1;
331 	struct netdev_queue *txq;
332 	int i;
333 	dma_addr_t mapping;
334 	unsigned int length, pad = 0;
335 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
336 	u16 prod, last_frag;
337 	struct pci_dev *pdev = bp->pdev;
338 	struct bnxt_tx_ring_info *txr;
339 	struct bnxt_sw_tx_bd *tx_buf;
340 
341 	i = skb_get_queue_mapping(skb);
342 	if (unlikely(i >= bp->tx_nr_rings)) {
343 		dev_kfree_skb_any(skb);
344 		return NETDEV_TX_OK;
345 	}
346 
347 	txq = netdev_get_tx_queue(dev, i);
348 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
349 	prod = txr->tx_prod;
350 
351 	free_size = bnxt_tx_avail(bp, txr);
352 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
353 		netif_tx_stop_queue(txq);
354 		return NETDEV_TX_BUSY;
355 	}
356 
357 	length = skb->len;
358 	len = skb_headlen(skb);
359 	last_frag = skb_shinfo(skb)->nr_frags;
360 
361 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
362 
363 	txbd->tx_bd_opaque = prod;
364 
365 	tx_buf = &txr->tx_buf_ring[prod];
366 	tx_buf->skb = skb;
367 	tx_buf->nr_frags = last_frag;
368 
369 	vlan_tag_flags = 0;
370 	cfa_action = bnxt_xmit_get_cfa_action(skb);
371 	if (skb_vlan_tag_present(skb)) {
372 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
373 				 skb_vlan_tag_get(skb);
374 		/* Currently supports 8021Q, 8021AD vlan offloads
375 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
376 		 */
377 		if (skb->vlan_proto == htons(ETH_P_8021Q))
378 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
379 	}
380 
381 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
382 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
383 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
384 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
385 		void __iomem *db = txr->tx_db.doorbell;
386 		void *pdata = tx_push_buf->data;
387 		u64 *end;
388 		int j, push_len;
389 
390 		/* Set COAL_NOW to be ready quickly for the next push */
391 		tx_push->tx_bd_len_flags_type =
392 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
393 					TX_BD_TYPE_LONG_TX_BD |
394 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
395 					TX_BD_FLAGS_COAL_NOW |
396 					TX_BD_FLAGS_PACKET_END |
397 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
398 
399 		if (skb->ip_summed == CHECKSUM_PARTIAL)
400 			tx_push1->tx_bd_hsize_lflags =
401 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
402 		else
403 			tx_push1->tx_bd_hsize_lflags = 0;
404 
405 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
406 		tx_push1->tx_bd_cfa_action =
407 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
408 
409 		end = pdata + length;
410 		end = PTR_ALIGN(end, 8) - 1;
411 		*end = 0;
412 
413 		skb_copy_from_linear_data(skb, pdata, len);
414 		pdata += len;
415 		for (j = 0; j < last_frag; j++) {
416 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
417 			void *fptr;
418 
419 			fptr = skb_frag_address_safe(frag);
420 			if (!fptr)
421 				goto normal_tx;
422 
423 			memcpy(pdata, fptr, skb_frag_size(frag));
424 			pdata += skb_frag_size(frag);
425 		}
426 
427 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
428 		txbd->tx_bd_haddr = txr->data_mapping;
429 		prod = NEXT_TX(prod);
430 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
431 		memcpy(txbd, tx_push1, sizeof(*txbd));
432 		prod = NEXT_TX(prod);
433 		tx_push->doorbell =
434 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
435 		txr->tx_prod = prod;
436 
437 		tx_buf->is_push = 1;
438 		netdev_tx_sent_queue(txq, skb->len);
439 		wmb();	/* Sync is_push and byte queue before pushing data */
440 
441 		push_len = (length + sizeof(*tx_push) + 7) / 8;
442 		if (push_len > 16) {
443 			__iowrite64_copy(db, tx_push_buf, 16);
444 			__iowrite32_copy(db + 4, tx_push_buf + 1,
445 					 (push_len - 16) << 1);
446 		} else {
447 			__iowrite64_copy(db, tx_push_buf, push_len);
448 		}
449 
450 		goto tx_done;
451 	}
452 
453 normal_tx:
454 	if (length < BNXT_MIN_PKT_SIZE) {
455 		pad = BNXT_MIN_PKT_SIZE - length;
456 		if (skb_pad(skb, pad)) {
457 			/* SKB already freed. */
458 			tx_buf->skb = NULL;
459 			return NETDEV_TX_OK;
460 		}
461 		length = BNXT_MIN_PKT_SIZE;
462 	}
463 
464 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
465 
466 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
467 		dev_kfree_skb_any(skb);
468 		tx_buf->skb = NULL;
469 		return NETDEV_TX_OK;
470 	}
471 
472 	dma_unmap_addr_set(tx_buf, mapping, mapping);
473 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
474 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
475 
476 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
477 
478 	prod = NEXT_TX(prod);
479 	txbd1 = (struct tx_bd_ext *)
480 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
481 
482 	txbd1->tx_bd_hsize_lflags = 0;
483 	if (skb_is_gso(skb)) {
484 		u32 hdr_len;
485 
486 		if (skb->encapsulation)
487 			hdr_len = skb_inner_network_offset(skb) +
488 				skb_inner_network_header_len(skb) +
489 				inner_tcp_hdrlen(skb);
490 		else
491 			hdr_len = skb_transport_offset(skb) +
492 				tcp_hdrlen(skb);
493 
494 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
495 					TX_BD_FLAGS_T_IPID |
496 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
497 		length = skb_shinfo(skb)->gso_size;
498 		txbd1->tx_bd_mss = cpu_to_le32(length);
499 		length += hdr_len;
500 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
501 		txbd1->tx_bd_hsize_lflags =
502 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
503 		txbd1->tx_bd_mss = 0;
504 	}
505 
506 	length >>= 9;
507 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
508 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
509 				     skb->len);
510 		i = 0;
511 		goto tx_dma_error;
512 	}
513 	flags |= bnxt_lhint_arr[length];
514 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
515 
516 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
517 	txbd1->tx_bd_cfa_action =
518 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
519 	for (i = 0; i < last_frag; i++) {
520 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
521 
522 		prod = NEXT_TX(prod);
523 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
524 
525 		len = skb_frag_size(frag);
526 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
527 					   DMA_TO_DEVICE);
528 
529 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
530 			goto tx_dma_error;
531 
532 		tx_buf = &txr->tx_buf_ring[prod];
533 		dma_unmap_addr_set(tx_buf, mapping, mapping);
534 
535 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
536 
537 		flags = len << TX_BD_LEN_SHIFT;
538 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
539 	}
540 
541 	flags &= ~TX_BD_LEN;
542 	txbd->tx_bd_len_flags_type =
543 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
544 			    TX_BD_FLAGS_PACKET_END);
545 
546 	netdev_tx_sent_queue(txq, skb->len);
547 
548 	/* Sync BD data before updating doorbell */
549 	wmb();
550 
551 	prod = NEXT_TX(prod);
552 	txr->tx_prod = prod;
553 
554 	if (!skb->xmit_more || netif_xmit_stopped(txq))
555 		bnxt_db_write(bp, &txr->tx_db, prod);
556 
557 tx_done:
558 
559 	mmiowb();
560 
561 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
562 		if (skb->xmit_more && !tx_buf->is_push)
563 			bnxt_db_write(bp, &txr->tx_db, prod);
564 
565 		netif_tx_stop_queue(txq);
566 
567 		/* netif_tx_stop_queue() must be done before checking
568 		 * tx index in bnxt_tx_avail() below, because in
569 		 * bnxt_tx_int(), we update tx index before checking for
570 		 * netif_tx_queue_stopped().
571 		 */
572 		smp_mb();
573 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
574 			netif_tx_wake_queue(txq);
575 	}
576 	return NETDEV_TX_OK;
577 
578 tx_dma_error:
579 	last_frag = i;
580 
581 	/* start back at beginning and unmap skb */
582 	prod = txr->tx_prod;
583 	tx_buf = &txr->tx_buf_ring[prod];
584 	tx_buf->skb = NULL;
585 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
586 			 skb_headlen(skb), PCI_DMA_TODEVICE);
587 	prod = NEXT_TX(prod);
588 
589 	/* unmap remaining mapped pages */
590 	for (i = 0; i < last_frag; i++) {
591 		prod = NEXT_TX(prod);
592 		tx_buf = &txr->tx_buf_ring[prod];
593 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
594 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
595 			       PCI_DMA_TODEVICE);
596 	}
597 
598 	dev_kfree_skb_any(skb);
599 	return NETDEV_TX_OK;
600 }
601 
602 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
603 {
604 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
605 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
606 	u16 cons = txr->tx_cons;
607 	struct pci_dev *pdev = bp->pdev;
608 	int i;
609 	unsigned int tx_bytes = 0;
610 
611 	for (i = 0; i < nr_pkts; i++) {
612 		struct bnxt_sw_tx_bd *tx_buf;
613 		struct sk_buff *skb;
614 		int j, last;
615 
616 		tx_buf = &txr->tx_buf_ring[cons];
617 		cons = NEXT_TX(cons);
618 		skb = tx_buf->skb;
619 		tx_buf->skb = NULL;
620 
621 		if (tx_buf->is_push) {
622 			tx_buf->is_push = 0;
623 			goto next_tx_int;
624 		}
625 
626 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
627 				 skb_headlen(skb), PCI_DMA_TODEVICE);
628 		last = tx_buf->nr_frags;
629 
630 		for (j = 0; j < last; j++) {
631 			cons = NEXT_TX(cons);
632 			tx_buf = &txr->tx_buf_ring[cons];
633 			dma_unmap_page(
634 				&pdev->dev,
635 				dma_unmap_addr(tx_buf, mapping),
636 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
637 				PCI_DMA_TODEVICE);
638 		}
639 
640 next_tx_int:
641 		cons = NEXT_TX(cons);
642 
643 		tx_bytes += skb->len;
644 		dev_kfree_skb_any(skb);
645 	}
646 
647 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
648 	txr->tx_cons = cons;
649 
650 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
651 	 * before checking for netif_tx_queue_stopped().  Without the
652 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
653 	 * will miss it and cause the queue to be stopped forever.
654 	 */
655 	smp_mb();
656 
657 	if (unlikely(netif_tx_queue_stopped(txq)) &&
658 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
659 		__netif_tx_lock(txq, smp_processor_id());
660 		if (netif_tx_queue_stopped(txq) &&
661 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
662 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
663 			netif_tx_wake_queue(txq);
664 		__netif_tx_unlock(txq);
665 	}
666 }
667 
668 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
669 					 gfp_t gfp)
670 {
671 	struct device *dev = &bp->pdev->dev;
672 	struct page *page;
673 
674 	page = alloc_page(gfp);
675 	if (!page)
676 		return NULL;
677 
678 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
679 				      DMA_ATTR_WEAK_ORDERING);
680 	if (dma_mapping_error(dev, *mapping)) {
681 		__free_page(page);
682 		return NULL;
683 	}
684 	*mapping += bp->rx_dma_offset;
685 	return page;
686 }
687 
688 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
689 				       gfp_t gfp)
690 {
691 	u8 *data;
692 	struct pci_dev *pdev = bp->pdev;
693 
694 	data = kmalloc(bp->rx_buf_size, gfp);
695 	if (!data)
696 		return NULL;
697 
698 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
699 					bp->rx_buf_use_size, bp->rx_dir,
700 					DMA_ATTR_WEAK_ORDERING);
701 
702 	if (dma_mapping_error(&pdev->dev, *mapping)) {
703 		kfree(data);
704 		data = NULL;
705 	}
706 	return data;
707 }
708 
709 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
710 		       u16 prod, gfp_t gfp)
711 {
712 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
713 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
714 	dma_addr_t mapping;
715 
716 	if (BNXT_RX_PAGE_MODE(bp)) {
717 		struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
718 
719 		if (!page)
720 			return -ENOMEM;
721 
722 		rx_buf->data = page;
723 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
724 	} else {
725 		u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
726 
727 		if (!data)
728 			return -ENOMEM;
729 
730 		rx_buf->data = data;
731 		rx_buf->data_ptr = data + bp->rx_offset;
732 	}
733 	rx_buf->mapping = mapping;
734 
735 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
736 	return 0;
737 }
738 
739 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
740 {
741 	u16 prod = rxr->rx_prod;
742 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
743 	struct rx_bd *cons_bd, *prod_bd;
744 
745 	prod_rx_buf = &rxr->rx_buf_ring[prod];
746 	cons_rx_buf = &rxr->rx_buf_ring[cons];
747 
748 	prod_rx_buf->data = data;
749 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
750 
751 	prod_rx_buf->mapping = cons_rx_buf->mapping;
752 
753 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
754 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
755 
756 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
757 }
758 
759 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
760 {
761 	u16 next, max = rxr->rx_agg_bmap_size;
762 
763 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
764 	if (next >= max)
765 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
766 	return next;
767 }
768 
769 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
770 				     struct bnxt_rx_ring_info *rxr,
771 				     u16 prod, gfp_t gfp)
772 {
773 	struct rx_bd *rxbd =
774 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
775 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
776 	struct pci_dev *pdev = bp->pdev;
777 	struct page *page;
778 	dma_addr_t mapping;
779 	u16 sw_prod = rxr->rx_sw_agg_prod;
780 	unsigned int offset = 0;
781 
782 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
783 		page = rxr->rx_page;
784 		if (!page) {
785 			page = alloc_page(gfp);
786 			if (!page)
787 				return -ENOMEM;
788 			rxr->rx_page = page;
789 			rxr->rx_page_offset = 0;
790 		}
791 		offset = rxr->rx_page_offset;
792 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
793 		if (rxr->rx_page_offset == PAGE_SIZE)
794 			rxr->rx_page = NULL;
795 		else
796 			get_page(page);
797 	} else {
798 		page = alloc_page(gfp);
799 		if (!page)
800 			return -ENOMEM;
801 	}
802 
803 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
804 				     BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
805 				     DMA_ATTR_WEAK_ORDERING);
806 	if (dma_mapping_error(&pdev->dev, mapping)) {
807 		__free_page(page);
808 		return -EIO;
809 	}
810 
811 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
812 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
813 
814 	__set_bit(sw_prod, rxr->rx_agg_bmap);
815 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
816 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
817 
818 	rx_agg_buf->page = page;
819 	rx_agg_buf->offset = offset;
820 	rx_agg_buf->mapping = mapping;
821 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
822 	rxbd->rx_bd_opaque = sw_prod;
823 	return 0;
824 }
825 
826 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
827 				   u32 agg_bufs)
828 {
829 	struct bnxt_napi *bnapi = cpr->bnapi;
830 	struct bnxt *bp = bnapi->bp;
831 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
832 	u16 prod = rxr->rx_agg_prod;
833 	u16 sw_prod = rxr->rx_sw_agg_prod;
834 	u32 i;
835 
836 	for (i = 0; i < agg_bufs; i++) {
837 		u16 cons;
838 		struct rx_agg_cmp *agg;
839 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
840 		struct rx_bd *prod_bd;
841 		struct page *page;
842 
843 		agg = (struct rx_agg_cmp *)
844 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
845 		cons = agg->rx_agg_cmp_opaque;
846 		__clear_bit(cons, rxr->rx_agg_bmap);
847 
848 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
849 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
850 
851 		__set_bit(sw_prod, rxr->rx_agg_bmap);
852 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
853 		cons_rx_buf = &rxr->rx_agg_ring[cons];
854 
855 		/* It is possible for sw_prod to be equal to cons, so
856 		 * set cons_rx_buf->page to NULL first.
857 		 */
858 		page = cons_rx_buf->page;
859 		cons_rx_buf->page = NULL;
860 		prod_rx_buf->page = page;
861 		prod_rx_buf->offset = cons_rx_buf->offset;
862 
863 		prod_rx_buf->mapping = cons_rx_buf->mapping;
864 
865 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
866 
867 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
868 		prod_bd->rx_bd_opaque = sw_prod;
869 
870 		prod = NEXT_RX_AGG(prod);
871 		sw_prod = NEXT_RX_AGG(sw_prod);
872 		cp_cons = NEXT_CMP(cp_cons);
873 	}
874 	rxr->rx_agg_prod = prod;
875 	rxr->rx_sw_agg_prod = sw_prod;
876 }
877 
878 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
879 					struct bnxt_rx_ring_info *rxr,
880 					u16 cons, void *data, u8 *data_ptr,
881 					dma_addr_t dma_addr,
882 					unsigned int offset_and_len)
883 {
884 	unsigned int payload = offset_and_len >> 16;
885 	unsigned int len = offset_and_len & 0xffff;
886 	struct skb_frag_struct *frag;
887 	struct page *page = data;
888 	u16 prod = rxr->rx_prod;
889 	struct sk_buff *skb;
890 	int off, err;
891 
892 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
893 	if (unlikely(err)) {
894 		bnxt_reuse_rx_data(rxr, cons, data);
895 		return NULL;
896 	}
897 	dma_addr -= bp->rx_dma_offset;
898 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
899 			     DMA_ATTR_WEAK_ORDERING);
900 
901 	if (unlikely(!payload))
902 		payload = eth_get_headlen(data_ptr, len);
903 
904 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
905 	if (!skb) {
906 		__free_page(page);
907 		return NULL;
908 	}
909 
910 	off = (void *)data_ptr - page_address(page);
911 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
912 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
913 	       payload + NET_IP_ALIGN);
914 
915 	frag = &skb_shinfo(skb)->frags[0];
916 	skb_frag_size_sub(frag, payload);
917 	frag->page_offset += payload;
918 	skb->data_len -= payload;
919 	skb->tail += payload;
920 
921 	return skb;
922 }
923 
924 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
925 				   struct bnxt_rx_ring_info *rxr, u16 cons,
926 				   void *data, u8 *data_ptr,
927 				   dma_addr_t dma_addr,
928 				   unsigned int offset_and_len)
929 {
930 	u16 prod = rxr->rx_prod;
931 	struct sk_buff *skb;
932 	int err;
933 
934 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
935 	if (unlikely(err)) {
936 		bnxt_reuse_rx_data(rxr, cons, data);
937 		return NULL;
938 	}
939 
940 	skb = build_skb(data, 0);
941 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
942 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
943 	if (!skb) {
944 		kfree(data);
945 		return NULL;
946 	}
947 
948 	skb_reserve(skb, bp->rx_offset);
949 	skb_put(skb, offset_and_len & 0xffff);
950 	return skb;
951 }
952 
953 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
954 				     struct bnxt_cp_ring_info *cpr,
955 				     struct sk_buff *skb, u16 cp_cons,
956 				     u32 agg_bufs)
957 {
958 	struct bnxt_napi *bnapi = cpr->bnapi;
959 	struct pci_dev *pdev = bp->pdev;
960 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
961 	u16 prod = rxr->rx_agg_prod;
962 	u32 i;
963 
964 	for (i = 0; i < agg_bufs; i++) {
965 		u16 cons, frag_len;
966 		struct rx_agg_cmp *agg;
967 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
968 		struct page *page;
969 		dma_addr_t mapping;
970 
971 		agg = (struct rx_agg_cmp *)
972 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
973 		cons = agg->rx_agg_cmp_opaque;
974 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
975 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
976 
977 		cons_rx_buf = &rxr->rx_agg_ring[cons];
978 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
979 				   cons_rx_buf->offset, frag_len);
980 		__clear_bit(cons, rxr->rx_agg_bmap);
981 
982 		/* It is possible for bnxt_alloc_rx_page() to allocate
983 		 * a sw_prod index that equals the cons index, so we
984 		 * need to clear the cons entry now.
985 		 */
986 		mapping = cons_rx_buf->mapping;
987 		page = cons_rx_buf->page;
988 		cons_rx_buf->page = NULL;
989 
990 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
991 			struct skb_shared_info *shinfo;
992 			unsigned int nr_frags;
993 
994 			shinfo = skb_shinfo(skb);
995 			nr_frags = --shinfo->nr_frags;
996 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
997 
998 			dev_kfree_skb(skb);
999 
1000 			cons_rx_buf->page = page;
1001 
1002 			/* Update prod since possibly some pages have been
1003 			 * allocated already.
1004 			 */
1005 			rxr->rx_agg_prod = prod;
1006 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs - i);
1007 			return NULL;
1008 		}
1009 
1010 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1011 				     PCI_DMA_FROMDEVICE,
1012 				     DMA_ATTR_WEAK_ORDERING);
1013 
1014 		skb->data_len += frag_len;
1015 		skb->len += frag_len;
1016 		skb->truesize += PAGE_SIZE;
1017 
1018 		prod = NEXT_RX_AGG(prod);
1019 		cp_cons = NEXT_CMP(cp_cons);
1020 	}
1021 	rxr->rx_agg_prod = prod;
1022 	return skb;
1023 }
1024 
1025 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1026 			       u8 agg_bufs, u32 *raw_cons)
1027 {
1028 	u16 last;
1029 	struct rx_agg_cmp *agg;
1030 
1031 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1032 	last = RING_CMP(*raw_cons);
1033 	agg = (struct rx_agg_cmp *)
1034 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1035 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1036 }
1037 
1038 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1039 					    unsigned int len,
1040 					    dma_addr_t mapping)
1041 {
1042 	struct bnxt *bp = bnapi->bp;
1043 	struct pci_dev *pdev = bp->pdev;
1044 	struct sk_buff *skb;
1045 
1046 	skb = napi_alloc_skb(&bnapi->napi, len);
1047 	if (!skb)
1048 		return NULL;
1049 
1050 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1051 				bp->rx_dir);
1052 
1053 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1054 	       len + NET_IP_ALIGN);
1055 
1056 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1057 				   bp->rx_dir);
1058 
1059 	skb_put(skb, len);
1060 	return skb;
1061 }
1062 
1063 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1064 			   u32 *raw_cons, void *cmp)
1065 {
1066 	struct rx_cmp *rxcmp = cmp;
1067 	u32 tmp_raw_cons = *raw_cons;
1068 	u8 cmp_type, agg_bufs = 0;
1069 
1070 	cmp_type = RX_CMP_TYPE(rxcmp);
1071 
1072 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1073 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1074 			    RX_CMP_AGG_BUFS) >>
1075 			   RX_CMP_AGG_BUFS_SHIFT;
1076 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1077 		struct rx_tpa_end_cmp *tpa_end = cmp;
1078 
1079 		agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1080 			    RX_TPA_END_CMP_AGG_BUFS) >>
1081 			   RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1082 	}
1083 
1084 	if (agg_bufs) {
1085 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1086 			return -EBUSY;
1087 	}
1088 	*raw_cons = tmp_raw_cons;
1089 	return 0;
1090 }
1091 
1092 static void bnxt_queue_sp_work(struct bnxt *bp)
1093 {
1094 	if (BNXT_PF(bp))
1095 		queue_work(bnxt_pf_wq, &bp->sp_task);
1096 	else
1097 		schedule_work(&bp->sp_task);
1098 }
1099 
1100 static void bnxt_cancel_sp_work(struct bnxt *bp)
1101 {
1102 	if (BNXT_PF(bp))
1103 		flush_workqueue(bnxt_pf_wq);
1104 	else
1105 		cancel_work_sync(&bp->sp_task);
1106 }
1107 
1108 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1109 {
1110 	if (!rxr->bnapi->in_reset) {
1111 		rxr->bnapi->in_reset = true;
1112 		set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1113 		bnxt_queue_sp_work(bp);
1114 	}
1115 	rxr->rx_next_cons = 0xffff;
1116 }
1117 
1118 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1119 			   struct rx_tpa_start_cmp *tpa_start,
1120 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1121 {
1122 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
1123 	u16 cons, prod;
1124 	struct bnxt_tpa_info *tpa_info;
1125 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1126 	struct rx_bd *prod_bd;
1127 	dma_addr_t mapping;
1128 
1129 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1130 	prod = rxr->rx_prod;
1131 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1132 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1133 	tpa_info = &rxr->rx_tpa[agg_id];
1134 
1135 	if (unlikely(cons != rxr->rx_next_cons)) {
1136 		bnxt_sched_reset(bp, rxr);
1137 		return;
1138 	}
1139 	/* Store cfa_code in tpa_info to use in tpa_end
1140 	 * completion processing.
1141 	 */
1142 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1143 	prod_rx_buf->data = tpa_info->data;
1144 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1145 
1146 	mapping = tpa_info->mapping;
1147 	prod_rx_buf->mapping = mapping;
1148 
1149 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1150 
1151 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1152 
1153 	tpa_info->data = cons_rx_buf->data;
1154 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1155 	cons_rx_buf->data = NULL;
1156 	tpa_info->mapping = cons_rx_buf->mapping;
1157 
1158 	tpa_info->len =
1159 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1160 				RX_TPA_START_CMP_LEN_SHIFT;
1161 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1162 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1163 
1164 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1165 		tpa_info->gso_type = SKB_GSO_TCPV4;
1166 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1167 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1168 			tpa_info->gso_type = SKB_GSO_TCPV6;
1169 		tpa_info->rss_hash =
1170 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1171 	} else {
1172 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1173 		tpa_info->gso_type = 0;
1174 		if (netif_msg_rx_err(bp))
1175 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
1176 	}
1177 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1178 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1179 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1180 
1181 	rxr->rx_prod = NEXT_RX(prod);
1182 	cons = NEXT_RX(cons);
1183 	rxr->rx_next_cons = NEXT_RX(cons);
1184 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1185 
1186 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1187 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1188 	cons_rx_buf->data = NULL;
1189 }
1190 
1191 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 cp_cons,
1192 			   u32 agg_bufs)
1193 {
1194 	if (agg_bufs)
1195 		bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1196 }
1197 
1198 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1199 					   int payload_off, int tcp_ts,
1200 					   struct sk_buff *skb)
1201 {
1202 #ifdef CONFIG_INET
1203 	struct tcphdr *th;
1204 	int len, nw_off;
1205 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1206 	u32 hdr_info = tpa_info->hdr_info;
1207 	bool loopback = false;
1208 
1209 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1210 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1211 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1212 
1213 	/* If the packet is an internal loopback packet, the offsets will
1214 	 * have an extra 4 bytes.
1215 	 */
1216 	if (inner_mac_off == 4) {
1217 		loopback = true;
1218 	} else if (inner_mac_off > 4) {
1219 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1220 					    ETH_HLEN - 2));
1221 
1222 		/* We only support inner iPv4/ipv6.  If we don't see the
1223 		 * correct protocol ID, it must be a loopback packet where
1224 		 * the offsets are off by 4.
1225 		 */
1226 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1227 			loopback = true;
1228 	}
1229 	if (loopback) {
1230 		/* internal loopback packet, subtract all offsets by 4 */
1231 		inner_ip_off -= 4;
1232 		inner_mac_off -= 4;
1233 		outer_ip_off -= 4;
1234 	}
1235 
1236 	nw_off = inner_ip_off - ETH_HLEN;
1237 	skb_set_network_header(skb, nw_off);
1238 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1239 		struct ipv6hdr *iph = ipv6_hdr(skb);
1240 
1241 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1242 		len = skb->len - skb_transport_offset(skb);
1243 		th = tcp_hdr(skb);
1244 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1245 	} else {
1246 		struct iphdr *iph = ip_hdr(skb);
1247 
1248 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1249 		len = skb->len - skb_transport_offset(skb);
1250 		th = tcp_hdr(skb);
1251 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1252 	}
1253 
1254 	if (inner_mac_off) { /* tunnel */
1255 		struct udphdr *uh = NULL;
1256 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1257 					    ETH_HLEN - 2));
1258 
1259 		if (proto == htons(ETH_P_IP)) {
1260 			struct iphdr *iph = (struct iphdr *)skb->data;
1261 
1262 			if (iph->protocol == IPPROTO_UDP)
1263 				uh = (struct udphdr *)(iph + 1);
1264 		} else {
1265 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1266 
1267 			if (iph->nexthdr == IPPROTO_UDP)
1268 				uh = (struct udphdr *)(iph + 1);
1269 		}
1270 		if (uh) {
1271 			if (uh->check)
1272 				skb_shinfo(skb)->gso_type |=
1273 					SKB_GSO_UDP_TUNNEL_CSUM;
1274 			else
1275 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1276 		}
1277 	}
1278 #endif
1279 	return skb;
1280 }
1281 
1282 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1283 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1284 
1285 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1286 					   int payload_off, int tcp_ts,
1287 					   struct sk_buff *skb)
1288 {
1289 #ifdef CONFIG_INET
1290 	struct tcphdr *th;
1291 	int len, nw_off, tcp_opt_len = 0;
1292 
1293 	if (tcp_ts)
1294 		tcp_opt_len = 12;
1295 
1296 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1297 		struct iphdr *iph;
1298 
1299 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1300 			 ETH_HLEN;
1301 		skb_set_network_header(skb, nw_off);
1302 		iph = ip_hdr(skb);
1303 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1304 		len = skb->len - skb_transport_offset(skb);
1305 		th = tcp_hdr(skb);
1306 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1307 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1308 		struct ipv6hdr *iph;
1309 
1310 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1311 			 ETH_HLEN;
1312 		skb_set_network_header(skb, nw_off);
1313 		iph = ipv6_hdr(skb);
1314 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1315 		len = skb->len - skb_transport_offset(skb);
1316 		th = tcp_hdr(skb);
1317 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1318 	} else {
1319 		dev_kfree_skb_any(skb);
1320 		return NULL;
1321 	}
1322 
1323 	if (nw_off) { /* tunnel */
1324 		struct udphdr *uh = NULL;
1325 
1326 		if (skb->protocol == htons(ETH_P_IP)) {
1327 			struct iphdr *iph = (struct iphdr *)skb->data;
1328 
1329 			if (iph->protocol == IPPROTO_UDP)
1330 				uh = (struct udphdr *)(iph + 1);
1331 		} else {
1332 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1333 
1334 			if (iph->nexthdr == IPPROTO_UDP)
1335 				uh = (struct udphdr *)(iph + 1);
1336 		}
1337 		if (uh) {
1338 			if (uh->check)
1339 				skb_shinfo(skb)->gso_type |=
1340 					SKB_GSO_UDP_TUNNEL_CSUM;
1341 			else
1342 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1343 		}
1344 	}
1345 #endif
1346 	return skb;
1347 }
1348 
1349 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1350 					   struct bnxt_tpa_info *tpa_info,
1351 					   struct rx_tpa_end_cmp *tpa_end,
1352 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1353 					   struct sk_buff *skb)
1354 {
1355 #ifdef CONFIG_INET
1356 	int payload_off;
1357 	u16 segs;
1358 
1359 	segs = TPA_END_TPA_SEGS(tpa_end);
1360 	if (segs == 1)
1361 		return skb;
1362 
1363 	NAPI_GRO_CB(skb)->count = segs;
1364 	skb_shinfo(skb)->gso_size =
1365 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1366 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1367 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1368 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1369 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1370 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1371 	if (likely(skb))
1372 		tcp_gro_complete(skb);
1373 #endif
1374 	return skb;
1375 }
1376 
1377 /* Given the cfa_code of a received packet determine which
1378  * netdev (vf-rep or PF) the packet is destined to.
1379  */
1380 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1381 {
1382 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1383 
1384 	/* if vf-rep dev is NULL, the must belongs to the PF */
1385 	return dev ? dev : bp->dev;
1386 }
1387 
1388 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1389 					   struct bnxt_cp_ring_info *cpr,
1390 					   u32 *raw_cons,
1391 					   struct rx_tpa_end_cmp *tpa_end,
1392 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1393 					   u8 *event)
1394 {
1395 	struct bnxt_napi *bnapi = cpr->bnapi;
1396 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1397 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
1398 	u8 *data_ptr, agg_bufs;
1399 	u16 cp_cons = RING_CMP(*raw_cons);
1400 	unsigned int len;
1401 	struct bnxt_tpa_info *tpa_info;
1402 	dma_addr_t mapping;
1403 	struct sk_buff *skb;
1404 	void *data;
1405 
1406 	if (unlikely(bnapi->in_reset)) {
1407 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1408 
1409 		if (rc < 0)
1410 			return ERR_PTR(-EBUSY);
1411 		return NULL;
1412 	}
1413 
1414 	tpa_info = &rxr->rx_tpa[agg_id];
1415 	data = tpa_info->data;
1416 	data_ptr = tpa_info->data_ptr;
1417 	prefetch(data_ptr);
1418 	len = tpa_info->len;
1419 	mapping = tpa_info->mapping;
1420 
1421 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1422 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1423 
1424 	if (agg_bufs) {
1425 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1426 			return ERR_PTR(-EBUSY);
1427 
1428 		*event |= BNXT_AGG_EVENT;
1429 		cp_cons = NEXT_CMP(cp_cons);
1430 	}
1431 
1432 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1433 		bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1434 		if (agg_bufs > MAX_SKB_FRAGS)
1435 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1436 				    agg_bufs, (int)MAX_SKB_FRAGS);
1437 		return NULL;
1438 	}
1439 
1440 	if (len <= bp->rx_copy_thresh) {
1441 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1442 		if (!skb) {
1443 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1444 			return NULL;
1445 		}
1446 	} else {
1447 		u8 *new_data;
1448 		dma_addr_t new_mapping;
1449 
1450 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1451 		if (!new_data) {
1452 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1453 			return NULL;
1454 		}
1455 
1456 		tpa_info->data = new_data;
1457 		tpa_info->data_ptr = new_data + bp->rx_offset;
1458 		tpa_info->mapping = new_mapping;
1459 
1460 		skb = build_skb(data, 0);
1461 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1462 				       bp->rx_buf_use_size, bp->rx_dir,
1463 				       DMA_ATTR_WEAK_ORDERING);
1464 
1465 		if (!skb) {
1466 			kfree(data);
1467 			bnxt_abort_tpa(cpr, cp_cons, agg_bufs);
1468 			return NULL;
1469 		}
1470 		skb_reserve(skb, bp->rx_offset);
1471 		skb_put(skb, len);
1472 	}
1473 
1474 	if (agg_bufs) {
1475 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1476 		if (!skb) {
1477 			/* Page reuse already handled by bnxt_rx_pages(). */
1478 			return NULL;
1479 		}
1480 	}
1481 
1482 	skb->protocol =
1483 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1484 
1485 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1486 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1487 
1488 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1489 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1490 		u16 vlan_proto = tpa_info->metadata >>
1491 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1492 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1493 
1494 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1495 	}
1496 
1497 	skb_checksum_none_assert(skb);
1498 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1499 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1500 		skb->csum_level =
1501 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1502 	}
1503 
1504 	if (TPA_END_GRO(tpa_end))
1505 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1506 
1507 	return skb;
1508 }
1509 
1510 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1511 			     struct sk_buff *skb)
1512 {
1513 	if (skb->dev != bp->dev) {
1514 		/* this packet belongs to a vf-rep */
1515 		bnxt_vf_rep_rx(bp, skb);
1516 		return;
1517 	}
1518 	skb_record_rx_queue(skb, bnapi->index);
1519 	napi_gro_receive(&bnapi->napi, skb);
1520 }
1521 
1522 /* returns the following:
1523  * 1       - 1 packet successfully received
1524  * 0       - successful TPA_START, packet not completed yet
1525  * -EBUSY  - completion ring does not have all the agg buffers yet
1526  * -ENOMEM - packet aborted due to out of memory
1527  * -EIO    - packet aborted due to hw error indicated in BD
1528  */
1529 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1530 		       u32 *raw_cons, u8 *event)
1531 {
1532 	struct bnxt_napi *bnapi = cpr->bnapi;
1533 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1534 	struct net_device *dev = bp->dev;
1535 	struct rx_cmp *rxcmp;
1536 	struct rx_cmp_ext *rxcmp1;
1537 	u32 tmp_raw_cons = *raw_cons;
1538 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1539 	struct bnxt_sw_rx_bd *rx_buf;
1540 	unsigned int len;
1541 	u8 *data_ptr, agg_bufs, cmp_type;
1542 	dma_addr_t dma_addr;
1543 	struct sk_buff *skb;
1544 	void *data;
1545 	int rc = 0;
1546 	u32 misc;
1547 
1548 	rxcmp = (struct rx_cmp *)
1549 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1550 
1551 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1552 	cp_cons = RING_CMP(tmp_raw_cons);
1553 	rxcmp1 = (struct rx_cmp_ext *)
1554 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1555 
1556 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1557 		return -EBUSY;
1558 
1559 	cmp_type = RX_CMP_TYPE(rxcmp);
1560 
1561 	prod = rxr->rx_prod;
1562 
1563 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1564 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1565 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1566 
1567 		*event |= BNXT_RX_EVENT;
1568 		goto next_rx_no_prod_no_len;
1569 
1570 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1571 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1572 				   (struct rx_tpa_end_cmp *)rxcmp,
1573 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1574 
1575 		if (IS_ERR(skb))
1576 			return -EBUSY;
1577 
1578 		rc = -ENOMEM;
1579 		if (likely(skb)) {
1580 			bnxt_deliver_skb(bp, bnapi, skb);
1581 			rc = 1;
1582 		}
1583 		*event |= BNXT_RX_EVENT;
1584 		goto next_rx_no_prod_no_len;
1585 	}
1586 
1587 	cons = rxcmp->rx_cmp_opaque;
1588 	rx_buf = &rxr->rx_buf_ring[cons];
1589 	data = rx_buf->data;
1590 	data_ptr = rx_buf->data_ptr;
1591 	if (unlikely(cons != rxr->rx_next_cons)) {
1592 		int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1593 
1594 		bnxt_sched_reset(bp, rxr);
1595 		return rc1;
1596 	}
1597 	prefetch(data_ptr);
1598 
1599 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1600 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1601 
1602 	if (agg_bufs) {
1603 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1604 			return -EBUSY;
1605 
1606 		cp_cons = NEXT_CMP(cp_cons);
1607 		*event |= BNXT_AGG_EVENT;
1608 	}
1609 	*event |= BNXT_RX_EVENT;
1610 
1611 	rx_buf->data = NULL;
1612 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1613 		bnxt_reuse_rx_data(rxr, cons, data);
1614 		if (agg_bufs)
1615 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, agg_bufs);
1616 
1617 		rc = -EIO;
1618 		goto next_rx;
1619 	}
1620 
1621 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1622 	dma_addr = rx_buf->mapping;
1623 
1624 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1625 		rc = 1;
1626 		goto next_rx;
1627 	}
1628 
1629 	if (len <= bp->rx_copy_thresh) {
1630 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1631 		bnxt_reuse_rx_data(rxr, cons, data);
1632 		if (!skb) {
1633 			rc = -ENOMEM;
1634 			goto next_rx;
1635 		}
1636 	} else {
1637 		u32 payload;
1638 
1639 		if (rx_buf->data_ptr == data_ptr)
1640 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1641 		else
1642 			payload = 0;
1643 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1644 				      payload | len);
1645 		if (!skb) {
1646 			rc = -ENOMEM;
1647 			goto next_rx;
1648 		}
1649 	}
1650 
1651 	if (agg_bufs) {
1652 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs);
1653 		if (!skb) {
1654 			rc = -ENOMEM;
1655 			goto next_rx;
1656 		}
1657 	}
1658 
1659 	if (RX_CMP_HASH_VALID(rxcmp)) {
1660 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1661 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1662 
1663 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1664 		if (hash_type != 1 && hash_type != 3)
1665 			type = PKT_HASH_TYPE_L3;
1666 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1667 	}
1668 
1669 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1670 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1671 
1672 	if ((rxcmp1->rx_cmp_flags2 &
1673 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1674 	    (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1675 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1676 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1677 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1678 
1679 		__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1680 	}
1681 
1682 	skb_checksum_none_assert(skb);
1683 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1684 		if (dev->features & NETIF_F_RXCSUM) {
1685 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1686 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1687 		}
1688 	} else {
1689 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1690 			if (dev->features & NETIF_F_RXCSUM)
1691 				bnapi->cp_ring.rx_l4_csum_errors++;
1692 		}
1693 	}
1694 
1695 	bnxt_deliver_skb(bp, bnapi, skb);
1696 	rc = 1;
1697 
1698 next_rx:
1699 	rxr->rx_prod = NEXT_RX(prod);
1700 	rxr->rx_next_cons = NEXT_RX(cons);
1701 
1702 	cpr->rx_packets += 1;
1703 	cpr->rx_bytes += len;
1704 
1705 next_rx_no_prod_no_len:
1706 	*raw_cons = tmp_raw_cons;
1707 
1708 	return rc;
1709 }
1710 
1711 /* In netpoll mode, if we are using a combined completion ring, we need to
1712  * discard the rx packets and recycle the buffers.
1713  */
1714 static int bnxt_force_rx_discard(struct bnxt *bp,
1715 				 struct bnxt_cp_ring_info *cpr,
1716 				 u32 *raw_cons, u8 *event)
1717 {
1718 	u32 tmp_raw_cons = *raw_cons;
1719 	struct rx_cmp_ext *rxcmp1;
1720 	struct rx_cmp *rxcmp;
1721 	u16 cp_cons;
1722 	u8 cmp_type;
1723 
1724 	cp_cons = RING_CMP(tmp_raw_cons);
1725 	rxcmp = (struct rx_cmp *)
1726 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1727 
1728 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1729 	cp_cons = RING_CMP(tmp_raw_cons);
1730 	rxcmp1 = (struct rx_cmp_ext *)
1731 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1732 
1733 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1734 		return -EBUSY;
1735 
1736 	cmp_type = RX_CMP_TYPE(rxcmp);
1737 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1738 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1739 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1740 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1741 		struct rx_tpa_end_cmp_ext *tpa_end1;
1742 
1743 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1744 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1745 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1746 	}
1747 	return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1748 }
1749 
1750 #define BNXT_GET_EVENT_PORT(data)	\
1751 	((data) &			\
1752 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1753 
1754 static int bnxt_async_event_process(struct bnxt *bp,
1755 				    struct hwrm_async_event_cmpl *cmpl)
1756 {
1757 	u16 event_id = le16_to_cpu(cmpl->event_id);
1758 
1759 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1760 	switch (event_id) {
1761 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1762 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1763 		struct bnxt_link_info *link_info = &bp->link_info;
1764 
1765 		if (BNXT_VF(bp))
1766 			goto async_event_process_exit;
1767 
1768 		/* print unsupported speed warning in forced speed mode only */
1769 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1770 		    (data1 & 0x20000)) {
1771 			u16 fw_speed = link_info->force_link_speed;
1772 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1773 
1774 			if (speed != SPEED_UNKNOWN)
1775 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1776 					    speed);
1777 		}
1778 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1779 	}
1780 	/* fall through */
1781 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1782 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1783 		break;
1784 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1785 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1786 		break;
1787 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1788 		u32 data1 = le32_to_cpu(cmpl->event_data1);
1789 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
1790 
1791 		if (BNXT_VF(bp))
1792 			break;
1793 
1794 		if (bp->pf.port_id != port_id)
1795 			break;
1796 
1797 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1798 		break;
1799 	}
1800 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1801 		if (BNXT_PF(bp))
1802 			goto async_event_process_exit;
1803 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1804 		break;
1805 	default:
1806 		goto async_event_process_exit;
1807 	}
1808 	bnxt_queue_sp_work(bp);
1809 async_event_process_exit:
1810 	bnxt_ulp_async_events(bp, cmpl);
1811 	return 0;
1812 }
1813 
1814 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1815 {
1816 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1817 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1818 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1819 				(struct hwrm_fwd_req_cmpl *)txcmp;
1820 
1821 	switch (cmpl_type) {
1822 	case CMPL_BASE_TYPE_HWRM_DONE:
1823 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1824 		if (seq_id == bp->hwrm_intr_seq_id)
1825 			bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
1826 		else
1827 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1828 		break;
1829 
1830 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1831 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1832 
1833 		if ((vf_id < bp->pf.first_vf_id) ||
1834 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1835 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1836 				   vf_id);
1837 			return -EINVAL;
1838 		}
1839 
1840 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1841 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1842 		bnxt_queue_sp_work(bp);
1843 		break;
1844 
1845 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1846 		bnxt_async_event_process(bp,
1847 					 (struct hwrm_async_event_cmpl *)txcmp);
1848 
1849 	default:
1850 		break;
1851 	}
1852 
1853 	return 0;
1854 }
1855 
1856 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1857 {
1858 	struct bnxt_napi *bnapi = dev_instance;
1859 	struct bnxt *bp = bnapi->bp;
1860 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1861 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1862 
1863 	cpr->event_ctr++;
1864 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1865 	napi_schedule(&bnapi->napi);
1866 	return IRQ_HANDLED;
1867 }
1868 
1869 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1870 {
1871 	u32 raw_cons = cpr->cp_raw_cons;
1872 	u16 cons = RING_CMP(raw_cons);
1873 	struct tx_cmp *txcmp;
1874 
1875 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1876 
1877 	return TX_CMP_VALID(txcmp, raw_cons);
1878 }
1879 
1880 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1881 {
1882 	struct bnxt_napi *bnapi = dev_instance;
1883 	struct bnxt *bp = bnapi->bp;
1884 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1885 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1886 	u32 int_status;
1887 
1888 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1889 
1890 	if (!bnxt_has_work(bp, cpr)) {
1891 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1892 		/* return if erroneous interrupt */
1893 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1894 			return IRQ_NONE;
1895 	}
1896 
1897 	/* disable ring IRQ */
1898 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
1899 
1900 	/* Return here if interrupt is shared and is disabled. */
1901 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1902 		return IRQ_HANDLED;
1903 
1904 	napi_schedule(&bnapi->napi);
1905 	return IRQ_HANDLED;
1906 }
1907 
1908 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1909 			    int budget)
1910 {
1911 	struct bnxt_napi *bnapi = cpr->bnapi;
1912 	u32 raw_cons = cpr->cp_raw_cons;
1913 	u32 cons;
1914 	int tx_pkts = 0;
1915 	int rx_pkts = 0;
1916 	u8 event = 0;
1917 	struct tx_cmp *txcmp;
1918 
1919 	cpr->has_more_work = 0;
1920 	while (1) {
1921 		int rc;
1922 
1923 		cons = RING_CMP(raw_cons);
1924 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1925 
1926 		if (!TX_CMP_VALID(txcmp, raw_cons))
1927 			break;
1928 
1929 		/* The valid test of the entry must be done first before
1930 		 * reading any further.
1931 		 */
1932 		dma_rmb();
1933 		cpr->had_work_done = 1;
1934 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1935 			tx_pkts++;
1936 			/* return full budget so NAPI will complete. */
1937 			if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
1938 				rx_pkts = budget;
1939 				raw_cons = NEXT_RAW_CMP(raw_cons);
1940 				if (budget)
1941 					cpr->has_more_work = 1;
1942 				break;
1943 			}
1944 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1945 			if (likely(budget))
1946 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
1947 			else
1948 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
1949 							   &event);
1950 			if (likely(rc >= 0))
1951 				rx_pkts += rc;
1952 			/* Increment rx_pkts when rc is -ENOMEM to count towards
1953 			 * the NAPI budget.  Otherwise, we may potentially loop
1954 			 * here forever if we consistently cannot allocate
1955 			 * buffers.
1956 			 */
1957 			else if (rc == -ENOMEM && budget)
1958 				rx_pkts++;
1959 			else if (rc == -EBUSY)	/* partial completion */
1960 				break;
1961 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1962 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1963 				    (TX_CMP_TYPE(txcmp) ==
1964 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1965 				    (TX_CMP_TYPE(txcmp) ==
1966 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1967 			bnxt_hwrm_handler(bp, txcmp);
1968 		}
1969 		raw_cons = NEXT_RAW_CMP(raw_cons);
1970 
1971 		if (rx_pkts && rx_pkts == budget) {
1972 			cpr->has_more_work = 1;
1973 			break;
1974 		}
1975 	}
1976 
1977 	if (event & BNXT_TX_EVENT) {
1978 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1979 		u16 prod = txr->tx_prod;
1980 
1981 		/* Sync BD data before updating doorbell */
1982 		wmb();
1983 
1984 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
1985 	}
1986 
1987 	cpr->cp_raw_cons = raw_cons;
1988 	bnapi->tx_pkts += tx_pkts;
1989 	bnapi->events |= event;
1990 	return rx_pkts;
1991 }
1992 
1993 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
1994 {
1995 	if (bnapi->tx_pkts) {
1996 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
1997 		bnapi->tx_pkts = 0;
1998 	}
1999 
2000 	if (bnapi->events & BNXT_RX_EVENT) {
2001 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2002 
2003 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2004 		if (bnapi->events & BNXT_AGG_EVENT)
2005 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2006 	}
2007 	bnapi->events = 0;
2008 }
2009 
2010 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2011 			  int budget)
2012 {
2013 	struct bnxt_napi *bnapi = cpr->bnapi;
2014 	int rx_pkts;
2015 
2016 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2017 
2018 	/* ACK completion ring before freeing tx ring and producing new
2019 	 * buffers in rx/agg rings to prevent overflowing the completion
2020 	 * ring.
2021 	 */
2022 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2023 
2024 	__bnxt_poll_work_done(bp, bnapi);
2025 	return rx_pkts;
2026 }
2027 
2028 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2029 {
2030 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2031 	struct bnxt *bp = bnapi->bp;
2032 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2033 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2034 	struct tx_cmp *txcmp;
2035 	struct rx_cmp_ext *rxcmp1;
2036 	u32 cp_cons, tmp_raw_cons;
2037 	u32 raw_cons = cpr->cp_raw_cons;
2038 	u32 rx_pkts = 0;
2039 	u8 event = 0;
2040 
2041 	while (1) {
2042 		int rc;
2043 
2044 		cp_cons = RING_CMP(raw_cons);
2045 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2046 
2047 		if (!TX_CMP_VALID(txcmp, raw_cons))
2048 			break;
2049 
2050 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2051 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2052 			cp_cons = RING_CMP(tmp_raw_cons);
2053 			rxcmp1 = (struct rx_cmp_ext *)
2054 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2055 
2056 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2057 				break;
2058 
2059 			/* force an error to recycle the buffer */
2060 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2061 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2062 
2063 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2064 			if (likely(rc == -EIO) && budget)
2065 				rx_pkts++;
2066 			else if (rc == -EBUSY)	/* partial completion */
2067 				break;
2068 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2069 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2070 			bnxt_hwrm_handler(bp, txcmp);
2071 		} else {
2072 			netdev_err(bp->dev,
2073 				   "Invalid completion received on special ring\n");
2074 		}
2075 		raw_cons = NEXT_RAW_CMP(raw_cons);
2076 
2077 		if (rx_pkts == budget)
2078 			break;
2079 	}
2080 
2081 	cpr->cp_raw_cons = raw_cons;
2082 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2083 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2084 
2085 	if (event & BNXT_AGG_EVENT)
2086 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2087 
2088 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2089 		napi_complete_done(napi, rx_pkts);
2090 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2091 	}
2092 	return rx_pkts;
2093 }
2094 
2095 static int bnxt_poll(struct napi_struct *napi, int budget)
2096 {
2097 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2098 	struct bnxt *bp = bnapi->bp;
2099 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2100 	int work_done = 0;
2101 
2102 	while (1) {
2103 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2104 
2105 		if (work_done >= budget) {
2106 			if (!budget)
2107 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2108 			break;
2109 		}
2110 
2111 		if (!bnxt_has_work(bp, cpr)) {
2112 			if (napi_complete_done(napi, work_done))
2113 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2114 			break;
2115 		}
2116 	}
2117 	if (bp->flags & BNXT_FLAG_DIM) {
2118 		struct net_dim_sample dim_sample;
2119 
2120 		net_dim_sample(cpr->event_ctr,
2121 			       cpr->rx_packets,
2122 			       cpr->rx_bytes,
2123 			       &dim_sample);
2124 		net_dim(&cpr->dim, dim_sample);
2125 	}
2126 	mmiowb();
2127 	return work_done;
2128 }
2129 
2130 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2131 {
2132 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2133 	int i, work_done = 0;
2134 
2135 	for (i = 0; i < 2; i++) {
2136 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2137 
2138 		if (cpr2) {
2139 			work_done += __bnxt_poll_work(bp, cpr2,
2140 						      budget - work_done);
2141 			cpr->has_more_work |= cpr2->has_more_work;
2142 		}
2143 	}
2144 	return work_done;
2145 }
2146 
2147 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2148 				 u64 dbr_type, bool all)
2149 {
2150 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2151 	int i;
2152 
2153 	for (i = 0; i < 2; i++) {
2154 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2155 		struct bnxt_db_info *db;
2156 
2157 		if (cpr2 && (all || cpr2->had_work_done)) {
2158 			db = &cpr2->cp_db;
2159 			writeq(db->db_key64 | dbr_type |
2160 			       RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2161 			cpr2->had_work_done = 0;
2162 		}
2163 	}
2164 	__bnxt_poll_work_done(bp, bnapi);
2165 }
2166 
2167 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2168 {
2169 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2170 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2171 	u32 raw_cons = cpr->cp_raw_cons;
2172 	struct bnxt *bp = bnapi->bp;
2173 	struct nqe_cn *nqcmp;
2174 	int work_done = 0;
2175 	u32 cons;
2176 
2177 	if (cpr->has_more_work) {
2178 		cpr->has_more_work = 0;
2179 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2180 		if (cpr->has_more_work) {
2181 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, false);
2182 			return work_done;
2183 		}
2184 		__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, true);
2185 		if (napi_complete_done(napi, work_done))
2186 			BNXT_DB_NQ_ARM_P5(&cpr->cp_db, cpr->cp_raw_cons);
2187 		return work_done;
2188 	}
2189 	while (1) {
2190 		cons = RING_CMP(raw_cons);
2191 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2192 
2193 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2194 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
2195 					     false);
2196 			cpr->cp_raw_cons = raw_cons;
2197 			if (napi_complete_done(napi, work_done))
2198 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2199 						  cpr->cp_raw_cons);
2200 			return work_done;
2201 		}
2202 
2203 		/* The valid test of the entry must be done first before
2204 		 * reading any further.
2205 		 */
2206 		dma_rmb();
2207 
2208 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2209 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2210 			struct bnxt_cp_ring_info *cpr2;
2211 
2212 			cpr2 = cpr->cp_ring_arr[idx];
2213 			work_done += __bnxt_poll_work(bp, cpr2,
2214 						      budget - work_done);
2215 			cpr->has_more_work = cpr2->has_more_work;
2216 		} else {
2217 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2218 		}
2219 		raw_cons = NEXT_RAW_CMP(raw_cons);
2220 		if (cpr->has_more_work)
2221 			break;
2222 	}
2223 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, true);
2224 	cpr->cp_raw_cons = raw_cons;
2225 	return work_done;
2226 }
2227 
2228 static void bnxt_free_tx_skbs(struct bnxt *bp)
2229 {
2230 	int i, max_idx;
2231 	struct pci_dev *pdev = bp->pdev;
2232 
2233 	if (!bp->tx_ring)
2234 		return;
2235 
2236 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2237 	for (i = 0; i < bp->tx_nr_rings; i++) {
2238 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2239 		int j;
2240 
2241 		for (j = 0; j < max_idx;) {
2242 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2243 			struct sk_buff *skb = tx_buf->skb;
2244 			int k, last;
2245 
2246 			if (!skb) {
2247 				j++;
2248 				continue;
2249 			}
2250 
2251 			tx_buf->skb = NULL;
2252 
2253 			if (tx_buf->is_push) {
2254 				dev_kfree_skb(skb);
2255 				j += 2;
2256 				continue;
2257 			}
2258 
2259 			dma_unmap_single(&pdev->dev,
2260 					 dma_unmap_addr(tx_buf, mapping),
2261 					 skb_headlen(skb),
2262 					 PCI_DMA_TODEVICE);
2263 
2264 			last = tx_buf->nr_frags;
2265 			j += 2;
2266 			for (k = 0; k < last; k++, j++) {
2267 				int ring_idx = j & bp->tx_ring_mask;
2268 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2269 
2270 				tx_buf = &txr->tx_buf_ring[ring_idx];
2271 				dma_unmap_page(
2272 					&pdev->dev,
2273 					dma_unmap_addr(tx_buf, mapping),
2274 					skb_frag_size(frag), PCI_DMA_TODEVICE);
2275 			}
2276 			dev_kfree_skb(skb);
2277 		}
2278 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2279 	}
2280 }
2281 
2282 static void bnxt_free_rx_skbs(struct bnxt *bp)
2283 {
2284 	int i, max_idx, max_agg_idx;
2285 	struct pci_dev *pdev = bp->pdev;
2286 
2287 	if (!bp->rx_ring)
2288 		return;
2289 
2290 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2291 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2292 	for (i = 0; i < bp->rx_nr_rings; i++) {
2293 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2294 		int j;
2295 
2296 		if (rxr->rx_tpa) {
2297 			for (j = 0; j < MAX_TPA; j++) {
2298 				struct bnxt_tpa_info *tpa_info =
2299 							&rxr->rx_tpa[j];
2300 				u8 *data = tpa_info->data;
2301 
2302 				if (!data)
2303 					continue;
2304 
2305 				dma_unmap_single_attrs(&pdev->dev,
2306 						       tpa_info->mapping,
2307 						       bp->rx_buf_use_size,
2308 						       bp->rx_dir,
2309 						       DMA_ATTR_WEAK_ORDERING);
2310 
2311 				tpa_info->data = NULL;
2312 
2313 				kfree(data);
2314 			}
2315 		}
2316 
2317 		for (j = 0; j < max_idx; j++) {
2318 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2319 			dma_addr_t mapping = rx_buf->mapping;
2320 			void *data = rx_buf->data;
2321 
2322 			if (!data)
2323 				continue;
2324 
2325 			rx_buf->data = NULL;
2326 
2327 			if (BNXT_RX_PAGE_MODE(bp)) {
2328 				mapping -= bp->rx_dma_offset;
2329 				dma_unmap_page_attrs(&pdev->dev, mapping,
2330 						     PAGE_SIZE, bp->rx_dir,
2331 						     DMA_ATTR_WEAK_ORDERING);
2332 				__free_page(data);
2333 			} else {
2334 				dma_unmap_single_attrs(&pdev->dev, mapping,
2335 						       bp->rx_buf_use_size,
2336 						       bp->rx_dir,
2337 						       DMA_ATTR_WEAK_ORDERING);
2338 				kfree(data);
2339 			}
2340 		}
2341 
2342 		for (j = 0; j < max_agg_idx; j++) {
2343 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2344 				&rxr->rx_agg_ring[j];
2345 			struct page *page = rx_agg_buf->page;
2346 
2347 			if (!page)
2348 				continue;
2349 
2350 			dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2351 					     BNXT_RX_PAGE_SIZE,
2352 					     PCI_DMA_FROMDEVICE,
2353 					     DMA_ATTR_WEAK_ORDERING);
2354 
2355 			rx_agg_buf->page = NULL;
2356 			__clear_bit(j, rxr->rx_agg_bmap);
2357 
2358 			__free_page(page);
2359 		}
2360 		if (rxr->rx_page) {
2361 			__free_page(rxr->rx_page);
2362 			rxr->rx_page = NULL;
2363 		}
2364 	}
2365 }
2366 
2367 static void bnxt_free_skbs(struct bnxt *bp)
2368 {
2369 	bnxt_free_tx_skbs(bp);
2370 	bnxt_free_rx_skbs(bp);
2371 }
2372 
2373 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2374 {
2375 	struct pci_dev *pdev = bp->pdev;
2376 	int i;
2377 
2378 	for (i = 0; i < rmem->nr_pages; i++) {
2379 		if (!rmem->pg_arr[i])
2380 			continue;
2381 
2382 		dma_free_coherent(&pdev->dev, rmem->page_size,
2383 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2384 
2385 		rmem->pg_arr[i] = NULL;
2386 	}
2387 	if (rmem->pg_tbl) {
2388 		size_t pg_tbl_size = rmem->nr_pages * 8;
2389 
2390 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2391 			pg_tbl_size = rmem->page_size;
2392 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2393 				  rmem->pg_tbl, rmem->pg_tbl_map);
2394 		rmem->pg_tbl = NULL;
2395 	}
2396 	if (rmem->vmem_size && *rmem->vmem) {
2397 		vfree(*rmem->vmem);
2398 		*rmem->vmem = NULL;
2399 	}
2400 }
2401 
2402 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2403 {
2404 	struct pci_dev *pdev = bp->pdev;
2405 	u64 valid_bit = 0;
2406 	int i;
2407 
2408 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2409 		valid_bit = PTU_PTE_VALID;
2410 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2411 		size_t pg_tbl_size = rmem->nr_pages * 8;
2412 
2413 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2414 			pg_tbl_size = rmem->page_size;
2415 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2416 						  &rmem->pg_tbl_map,
2417 						  GFP_KERNEL);
2418 		if (!rmem->pg_tbl)
2419 			return -ENOMEM;
2420 	}
2421 
2422 	for (i = 0; i < rmem->nr_pages; i++) {
2423 		u64 extra_bits = valid_bit;
2424 
2425 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2426 						     rmem->page_size,
2427 						     &rmem->dma_arr[i],
2428 						     GFP_KERNEL);
2429 		if (!rmem->pg_arr[i])
2430 			return -ENOMEM;
2431 
2432 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2433 			if (i == rmem->nr_pages - 2 &&
2434 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2435 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2436 			else if (i == rmem->nr_pages - 1 &&
2437 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2438 				extra_bits |= PTU_PTE_LAST;
2439 			rmem->pg_tbl[i] =
2440 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2441 		}
2442 	}
2443 
2444 	if (rmem->vmem_size) {
2445 		*rmem->vmem = vzalloc(rmem->vmem_size);
2446 		if (!(*rmem->vmem))
2447 			return -ENOMEM;
2448 	}
2449 	return 0;
2450 }
2451 
2452 static void bnxt_free_rx_rings(struct bnxt *bp)
2453 {
2454 	int i;
2455 
2456 	if (!bp->rx_ring)
2457 		return;
2458 
2459 	for (i = 0; i < bp->rx_nr_rings; i++) {
2460 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2461 		struct bnxt_ring_struct *ring;
2462 
2463 		if (rxr->xdp_prog)
2464 			bpf_prog_put(rxr->xdp_prog);
2465 
2466 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2467 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
2468 
2469 		kfree(rxr->rx_tpa);
2470 		rxr->rx_tpa = NULL;
2471 
2472 		kfree(rxr->rx_agg_bmap);
2473 		rxr->rx_agg_bmap = NULL;
2474 
2475 		ring = &rxr->rx_ring_struct;
2476 		bnxt_free_ring(bp, &ring->ring_mem);
2477 
2478 		ring = &rxr->rx_agg_ring_struct;
2479 		bnxt_free_ring(bp, &ring->ring_mem);
2480 	}
2481 }
2482 
2483 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2484 {
2485 	int i, rc, agg_rings = 0, tpa_rings = 0;
2486 
2487 	if (!bp->rx_ring)
2488 		return -ENOMEM;
2489 
2490 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
2491 		agg_rings = 1;
2492 
2493 	if (bp->flags & BNXT_FLAG_TPA)
2494 		tpa_rings = 1;
2495 
2496 	for (i = 0; i < bp->rx_nr_rings; i++) {
2497 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2498 		struct bnxt_ring_struct *ring;
2499 
2500 		ring = &rxr->rx_ring_struct;
2501 
2502 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2503 		if (rc < 0)
2504 			return rc;
2505 
2506 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2507 		if (rc)
2508 			return rc;
2509 
2510 		ring->grp_idx = i;
2511 		if (agg_rings) {
2512 			u16 mem_size;
2513 
2514 			ring = &rxr->rx_agg_ring_struct;
2515 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2516 			if (rc)
2517 				return rc;
2518 
2519 			ring->grp_idx = i;
2520 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2521 			mem_size = rxr->rx_agg_bmap_size / 8;
2522 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2523 			if (!rxr->rx_agg_bmap)
2524 				return -ENOMEM;
2525 
2526 			if (tpa_rings) {
2527 				rxr->rx_tpa = kcalloc(MAX_TPA,
2528 						sizeof(struct bnxt_tpa_info),
2529 						GFP_KERNEL);
2530 				if (!rxr->rx_tpa)
2531 					return -ENOMEM;
2532 			}
2533 		}
2534 	}
2535 	return 0;
2536 }
2537 
2538 static void bnxt_free_tx_rings(struct bnxt *bp)
2539 {
2540 	int i;
2541 	struct pci_dev *pdev = bp->pdev;
2542 
2543 	if (!bp->tx_ring)
2544 		return;
2545 
2546 	for (i = 0; i < bp->tx_nr_rings; i++) {
2547 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2548 		struct bnxt_ring_struct *ring;
2549 
2550 		if (txr->tx_push) {
2551 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
2552 					  txr->tx_push, txr->tx_push_mapping);
2553 			txr->tx_push = NULL;
2554 		}
2555 
2556 		ring = &txr->tx_ring_struct;
2557 
2558 		bnxt_free_ring(bp, &ring->ring_mem);
2559 	}
2560 }
2561 
2562 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2563 {
2564 	int i, j, rc;
2565 	struct pci_dev *pdev = bp->pdev;
2566 
2567 	bp->tx_push_size = 0;
2568 	if (bp->tx_push_thresh) {
2569 		int push_size;
2570 
2571 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2572 					bp->tx_push_thresh);
2573 
2574 		if (push_size > 256) {
2575 			push_size = 0;
2576 			bp->tx_push_thresh = 0;
2577 		}
2578 
2579 		bp->tx_push_size = push_size;
2580 	}
2581 
2582 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2583 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2584 		struct bnxt_ring_struct *ring;
2585 		u8 qidx;
2586 
2587 		ring = &txr->tx_ring_struct;
2588 
2589 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2590 		if (rc)
2591 			return rc;
2592 
2593 		ring->grp_idx = txr->bnapi->index;
2594 		if (bp->tx_push_size) {
2595 			dma_addr_t mapping;
2596 
2597 			/* One pre-allocated DMA buffer to backup
2598 			 * TX push operation
2599 			 */
2600 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
2601 						bp->tx_push_size,
2602 						&txr->tx_push_mapping,
2603 						GFP_KERNEL);
2604 
2605 			if (!txr->tx_push)
2606 				return -ENOMEM;
2607 
2608 			mapping = txr->tx_push_mapping +
2609 				sizeof(struct tx_push_bd);
2610 			txr->data_mapping = cpu_to_le64(mapping);
2611 
2612 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2613 		}
2614 		qidx = bp->tc_to_qidx[j];
2615 		ring->queue_id = bp->q_info[qidx].queue_id;
2616 		if (i < bp->tx_nr_rings_xdp)
2617 			continue;
2618 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2619 			j++;
2620 	}
2621 	return 0;
2622 }
2623 
2624 static void bnxt_free_cp_rings(struct bnxt *bp)
2625 {
2626 	int i;
2627 
2628 	if (!bp->bnapi)
2629 		return;
2630 
2631 	for (i = 0; i < bp->cp_nr_rings; i++) {
2632 		struct bnxt_napi *bnapi = bp->bnapi[i];
2633 		struct bnxt_cp_ring_info *cpr;
2634 		struct bnxt_ring_struct *ring;
2635 		int j;
2636 
2637 		if (!bnapi)
2638 			continue;
2639 
2640 		cpr = &bnapi->cp_ring;
2641 		ring = &cpr->cp_ring_struct;
2642 
2643 		bnxt_free_ring(bp, &ring->ring_mem);
2644 
2645 		for (j = 0; j < 2; j++) {
2646 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2647 
2648 			if (cpr2) {
2649 				ring = &cpr2->cp_ring_struct;
2650 				bnxt_free_ring(bp, &ring->ring_mem);
2651 				kfree(cpr2);
2652 				cpr->cp_ring_arr[j] = NULL;
2653 			}
2654 		}
2655 	}
2656 }
2657 
2658 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2659 {
2660 	struct bnxt_ring_mem_info *rmem;
2661 	struct bnxt_ring_struct *ring;
2662 	struct bnxt_cp_ring_info *cpr;
2663 	int rc;
2664 
2665 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
2666 	if (!cpr)
2667 		return NULL;
2668 
2669 	ring = &cpr->cp_ring_struct;
2670 	rmem = &ring->ring_mem;
2671 	rmem->nr_pages = bp->cp_nr_pages;
2672 	rmem->page_size = HW_CMPD_RING_SIZE;
2673 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
2674 	rmem->dma_arr = cpr->cp_desc_mapping;
2675 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
2676 	rc = bnxt_alloc_ring(bp, rmem);
2677 	if (rc) {
2678 		bnxt_free_ring(bp, rmem);
2679 		kfree(cpr);
2680 		cpr = NULL;
2681 	}
2682 	return cpr;
2683 }
2684 
2685 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2686 {
2687 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
2688 	int i, rc, ulp_base_vec, ulp_msix;
2689 
2690 	ulp_msix = bnxt_get_ulp_msix_num(bp);
2691 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2692 	for (i = 0; i < bp->cp_nr_rings; i++) {
2693 		struct bnxt_napi *bnapi = bp->bnapi[i];
2694 		struct bnxt_cp_ring_info *cpr;
2695 		struct bnxt_ring_struct *ring;
2696 
2697 		if (!bnapi)
2698 			continue;
2699 
2700 		cpr = &bnapi->cp_ring;
2701 		cpr->bnapi = bnapi;
2702 		ring = &cpr->cp_ring_struct;
2703 
2704 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2705 		if (rc)
2706 			return rc;
2707 
2708 		if (ulp_msix && i >= ulp_base_vec)
2709 			ring->map_idx = i + ulp_msix;
2710 		else
2711 			ring->map_idx = i;
2712 
2713 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2714 			continue;
2715 
2716 		if (i < bp->rx_nr_rings) {
2717 			struct bnxt_cp_ring_info *cpr2 =
2718 				bnxt_alloc_cp_sub_ring(bp);
2719 
2720 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
2721 			if (!cpr2)
2722 				return -ENOMEM;
2723 			cpr2->bnapi = bnapi;
2724 		}
2725 		if ((sh && i < bp->tx_nr_rings) ||
2726 		    (!sh && i >= bp->rx_nr_rings)) {
2727 			struct bnxt_cp_ring_info *cpr2 =
2728 				bnxt_alloc_cp_sub_ring(bp);
2729 
2730 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
2731 			if (!cpr2)
2732 				return -ENOMEM;
2733 			cpr2->bnapi = bnapi;
2734 		}
2735 	}
2736 	return 0;
2737 }
2738 
2739 static void bnxt_init_ring_struct(struct bnxt *bp)
2740 {
2741 	int i;
2742 
2743 	for (i = 0; i < bp->cp_nr_rings; i++) {
2744 		struct bnxt_napi *bnapi = bp->bnapi[i];
2745 		struct bnxt_ring_mem_info *rmem;
2746 		struct bnxt_cp_ring_info *cpr;
2747 		struct bnxt_rx_ring_info *rxr;
2748 		struct bnxt_tx_ring_info *txr;
2749 		struct bnxt_ring_struct *ring;
2750 
2751 		if (!bnapi)
2752 			continue;
2753 
2754 		cpr = &bnapi->cp_ring;
2755 		ring = &cpr->cp_ring_struct;
2756 		rmem = &ring->ring_mem;
2757 		rmem->nr_pages = bp->cp_nr_pages;
2758 		rmem->page_size = HW_CMPD_RING_SIZE;
2759 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
2760 		rmem->dma_arr = cpr->cp_desc_mapping;
2761 		rmem->vmem_size = 0;
2762 
2763 		rxr = bnapi->rx_ring;
2764 		if (!rxr)
2765 			goto skip_rx;
2766 
2767 		ring = &rxr->rx_ring_struct;
2768 		rmem = &ring->ring_mem;
2769 		rmem->nr_pages = bp->rx_nr_pages;
2770 		rmem->page_size = HW_RXBD_RING_SIZE;
2771 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
2772 		rmem->dma_arr = rxr->rx_desc_mapping;
2773 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2774 		rmem->vmem = (void **)&rxr->rx_buf_ring;
2775 
2776 		ring = &rxr->rx_agg_ring_struct;
2777 		rmem = &ring->ring_mem;
2778 		rmem->nr_pages = bp->rx_agg_nr_pages;
2779 		rmem->page_size = HW_RXBD_RING_SIZE;
2780 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
2781 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
2782 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2783 		rmem->vmem = (void **)&rxr->rx_agg_ring;
2784 
2785 skip_rx:
2786 		txr = bnapi->tx_ring;
2787 		if (!txr)
2788 			continue;
2789 
2790 		ring = &txr->tx_ring_struct;
2791 		rmem = &ring->ring_mem;
2792 		rmem->nr_pages = bp->tx_nr_pages;
2793 		rmem->page_size = HW_RXBD_RING_SIZE;
2794 		rmem->pg_arr = (void **)txr->tx_desc_ring;
2795 		rmem->dma_arr = txr->tx_desc_mapping;
2796 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2797 		rmem->vmem = (void **)&txr->tx_buf_ring;
2798 	}
2799 }
2800 
2801 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2802 {
2803 	int i;
2804 	u32 prod;
2805 	struct rx_bd **rx_buf_ring;
2806 
2807 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
2808 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
2809 		int j;
2810 		struct rx_bd *rxbd;
2811 
2812 		rxbd = rx_buf_ring[i];
2813 		if (!rxbd)
2814 			continue;
2815 
2816 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2817 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2818 			rxbd->rx_bd_opaque = prod;
2819 		}
2820 	}
2821 }
2822 
2823 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2824 {
2825 	struct net_device *dev = bp->dev;
2826 	struct bnxt_rx_ring_info *rxr;
2827 	struct bnxt_ring_struct *ring;
2828 	u32 prod, type;
2829 	int i;
2830 
2831 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2832 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2833 
2834 	if (NET_IP_ALIGN == 2)
2835 		type |= RX_BD_FLAGS_SOP;
2836 
2837 	rxr = &bp->rx_ring[ring_nr];
2838 	ring = &rxr->rx_ring_struct;
2839 	bnxt_init_rxbd_pages(ring, type);
2840 
2841 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2842 		rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2843 		if (IS_ERR(rxr->xdp_prog)) {
2844 			int rc = PTR_ERR(rxr->xdp_prog);
2845 
2846 			rxr->xdp_prog = NULL;
2847 			return rc;
2848 		}
2849 	}
2850 	prod = rxr->rx_prod;
2851 	for (i = 0; i < bp->rx_ring_size; i++) {
2852 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2853 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2854 				    ring_nr, i, bp->rx_ring_size);
2855 			break;
2856 		}
2857 		prod = NEXT_RX(prod);
2858 	}
2859 	rxr->rx_prod = prod;
2860 	ring->fw_ring_id = INVALID_HW_RING_ID;
2861 
2862 	ring = &rxr->rx_agg_ring_struct;
2863 	ring->fw_ring_id = INVALID_HW_RING_ID;
2864 
2865 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2866 		return 0;
2867 
2868 	type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2869 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2870 
2871 	bnxt_init_rxbd_pages(ring, type);
2872 
2873 	prod = rxr->rx_agg_prod;
2874 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
2875 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2876 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2877 				    ring_nr, i, bp->rx_ring_size);
2878 			break;
2879 		}
2880 		prod = NEXT_RX_AGG(prod);
2881 	}
2882 	rxr->rx_agg_prod = prod;
2883 
2884 	if (bp->flags & BNXT_FLAG_TPA) {
2885 		if (rxr->rx_tpa) {
2886 			u8 *data;
2887 			dma_addr_t mapping;
2888 
2889 			for (i = 0; i < MAX_TPA; i++) {
2890 				data = __bnxt_alloc_rx_data(bp, &mapping,
2891 							    GFP_KERNEL);
2892 				if (!data)
2893 					return -ENOMEM;
2894 
2895 				rxr->rx_tpa[i].data = data;
2896 				rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2897 				rxr->rx_tpa[i].mapping = mapping;
2898 			}
2899 		} else {
2900 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2901 			return -ENOMEM;
2902 		}
2903 	}
2904 
2905 	return 0;
2906 }
2907 
2908 static void bnxt_init_cp_rings(struct bnxt *bp)
2909 {
2910 	int i, j;
2911 
2912 	for (i = 0; i < bp->cp_nr_rings; i++) {
2913 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2914 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2915 
2916 		ring->fw_ring_id = INVALID_HW_RING_ID;
2917 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2918 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2919 		for (j = 0; j < 2; j++) {
2920 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2921 
2922 			if (!cpr2)
2923 				continue;
2924 
2925 			ring = &cpr2->cp_ring_struct;
2926 			ring->fw_ring_id = INVALID_HW_RING_ID;
2927 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2928 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2929 		}
2930 	}
2931 }
2932 
2933 static int bnxt_init_rx_rings(struct bnxt *bp)
2934 {
2935 	int i, rc = 0;
2936 
2937 	if (BNXT_RX_PAGE_MODE(bp)) {
2938 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2939 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2940 	} else {
2941 		bp->rx_offset = BNXT_RX_OFFSET;
2942 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2943 	}
2944 
2945 	for (i = 0; i < bp->rx_nr_rings; i++) {
2946 		rc = bnxt_init_one_rx_ring(bp, i);
2947 		if (rc)
2948 			break;
2949 	}
2950 
2951 	return rc;
2952 }
2953 
2954 static int bnxt_init_tx_rings(struct bnxt *bp)
2955 {
2956 	u16 i;
2957 
2958 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2959 				   MAX_SKB_FRAGS + 1);
2960 
2961 	for (i = 0; i < bp->tx_nr_rings; i++) {
2962 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2963 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2964 
2965 		ring->fw_ring_id = INVALID_HW_RING_ID;
2966 	}
2967 
2968 	return 0;
2969 }
2970 
2971 static void bnxt_free_ring_grps(struct bnxt *bp)
2972 {
2973 	kfree(bp->grp_info);
2974 	bp->grp_info = NULL;
2975 }
2976 
2977 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2978 {
2979 	int i;
2980 
2981 	if (irq_re_init) {
2982 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2983 				       sizeof(struct bnxt_ring_grp_info),
2984 				       GFP_KERNEL);
2985 		if (!bp->grp_info)
2986 			return -ENOMEM;
2987 	}
2988 	for (i = 0; i < bp->cp_nr_rings; i++) {
2989 		if (irq_re_init)
2990 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2991 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2992 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2993 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2994 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2995 	}
2996 	return 0;
2997 }
2998 
2999 static void bnxt_free_vnics(struct bnxt *bp)
3000 {
3001 	kfree(bp->vnic_info);
3002 	bp->vnic_info = NULL;
3003 	bp->nr_vnics = 0;
3004 }
3005 
3006 static int bnxt_alloc_vnics(struct bnxt *bp)
3007 {
3008 	int num_vnics = 1;
3009 
3010 #ifdef CONFIG_RFS_ACCEL
3011 	if (bp->flags & BNXT_FLAG_RFS)
3012 		num_vnics += bp->rx_nr_rings;
3013 #endif
3014 
3015 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3016 		num_vnics++;
3017 
3018 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3019 				GFP_KERNEL);
3020 	if (!bp->vnic_info)
3021 		return -ENOMEM;
3022 
3023 	bp->nr_vnics = num_vnics;
3024 	return 0;
3025 }
3026 
3027 static void bnxt_init_vnics(struct bnxt *bp)
3028 {
3029 	int i;
3030 
3031 	for (i = 0; i < bp->nr_vnics; i++) {
3032 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3033 		int j;
3034 
3035 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3036 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3037 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3038 
3039 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3040 
3041 		if (bp->vnic_info[i].rss_hash_key) {
3042 			if (i == 0)
3043 				prandom_bytes(vnic->rss_hash_key,
3044 					      HW_HASH_KEY_SIZE);
3045 			else
3046 				memcpy(vnic->rss_hash_key,
3047 				       bp->vnic_info[0].rss_hash_key,
3048 				       HW_HASH_KEY_SIZE);
3049 		}
3050 	}
3051 }
3052 
3053 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3054 {
3055 	int pages;
3056 
3057 	pages = ring_size / desc_per_pg;
3058 
3059 	if (!pages)
3060 		return 1;
3061 
3062 	pages++;
3063 
3064 	while (pages & (pages - 1))
3065 		pages++;
3066 
3067 	return pages;
3068 }
3069 
3070 void bnxt_set_tpa_flags(struct bnxt *bp)
3071 {
3072 	bp->flags &= ~BNXT_FLAG_TPA;
3073 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3074 		return;
3075 	if (bp->dev->features & NETIF_F_LRO)
3076 		bp->flags |= BNXT_FLAG_LRO;
3077 	else if (bp->dev->features & NETIF_F_GRO_HW)
3078 		bp->flags |= BNXT_FLAG_GRO;
3079 }
3080 
3081 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3082  * be set on entry.
3083  */
3084 void bnxt_set_ring_params(struct bnxt *bp)
3085 {
3086 	u32 ring_size, rx_size, rx_space;
3087 	u32 agg_factor = 0, agg_ring_size = 0;
3088 
3089 	/* 8 for CRC and VLAN */
3090 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3091 
3092 	rx_space = rx_size + NET_SKB_PAD +
3093 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3094 
3095 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3096 	ring_size = bp->rx_ring_size;
3097 	bp->rx_agg_ring_size = 0;
3098 	bp->rx_agg_nr_pages = 0;
3099 
3100 	if (bp->flags & BNXT_FLAG_TPA)
3101 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3102 
3103 	bp->flags &= ~BNXT_FLAG_JUMBO;
3104 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3105 		u32 jumbo_factor;
3106 
3107 		bp->flags |= BNXT_FLAG_JUMBO;
3108 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3109 		if (jumbo_factor > agg_factor)
3110 			agg_factor = jumbo_factor;
3111 	}
3112 	agg_ring_size = ring_size * agg_factor;
3113 
3114 	if (agg_ring_size) {
3115 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3116 							RX_DESC_CNT);
3117 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3118 			u32 tmp = agg_ring_size;
3119 
3120 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3121 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3122 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3123 				    tmp, agg_ring_size);
3124 		}
3125 		bp->rx_agg_ring_size = agg_ring_size;
3126 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3127 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3128 		rx_space = rx_size + NET_SKB_PAD +
3129 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3130 	}
3131 
3132 	bp->rx_buf_use_size = rx_size;
3133 	bp->rx_buf_size = rx_space;
3134 
3135 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3136 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3137 
3138 	ring_size = bp->tx_ring_size;
3139 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3140 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3141 
3142 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
3143 	bp->cp_ring_size = ring_size;
3144 
3145 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3146 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3147 		bp->cp_nr_pages = MAX_CP_PAGES;
3148 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3149 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3150 			    ring_size, bp->cp_ring_size);
3151 	}
3152 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3153 	bp->cp_ring_mask = bp->cp_bit - 1;
3154 }
3155 
3156 /* Changing allocation mode of RX rings.
3157  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3158  */
3159 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3160 {
3161 	if (page_mode) {
3162 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3163 			return -EOPNOTSUPP;
3164 		bp->dev->max_mtu =
3165 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3166 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3167 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3168 		bp->rx_dir = DMA_BIDIRECTIONAL;
3169 		bp->rx_skb_func = bnxt_rx_page_skb;
3170 		/* Disable LRO or GRO_HW */
3171 		netdev_update_features(bp->dev);
3172 	} else {
3173 		bp->dev->max_mtu = bp->max_mtu;
3174 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3175 		bp->rx_dir = DMA_FROM_DEVICE;
3176 		bp->rx_skb_func = bnxt_rx_skb;
3177 	}
3178 	return 0;
3179 }
3180 
3181 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3182 {
3183 	int i;
3184 	struct bnxt_vnic_info *vnic;
3185 	struct pci_dev *pdev = bp->pdev;
3186 
3187 	if (!bp->vnic_info)
3188 		return;
3189 
3190 	for (i = 0; i < bp->nr_vnics; i++) {
3191 		vnic = &bp->vnic_info[i];
3192 
3193 		kfree(vnic->fw_grp_ids);
3194 		vnic->fw_grp_ids = NULL;
3195 
3196 		kfree(vnic->uc_list);
3197 		vnic->uc_list = NULL;
3198 
3199 		if (vnic->mc_list) {
3200 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3201 					  vnic->mc_list, vnic->mc_list_mapping);
3202 			vnic->mc_list = NULL;
3203 		}
3204 
3205 		if (vnic->rss_table) {
3206 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
3207 					  vnic->rss_table,
3208 					  vnic->rss_table_dma_addr);
3209 			vnic->rss_table = NULL;
3210 		}
3211 
3212 		vnic->rss_hash_key = NULL;
3213 		vnic->flags = 0;
3214 	}
3215 }
3216 
3217 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3218 {
3219 	int i, rc = 0, size;
3220 	struct bnxt_vnic_info *vnic;
3221 	struct pci_dev *pdev = bp->pdev;
3222 	int max_rings;
3223 
3224 	for (i = 0; i < bp->nr_vnics; i++) {
3225 		vnic = &bp->vnic_info[i];
3226 
3227 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3228 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3229 
3230 			if (mem_size > 0) {
3231 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3232 				if (!vnic->uc_list) {
3233 					rc = -ENOMEM;
3234 					goto out;
3235 				}
3236 			}
3237 		}
3238 
3239 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3240 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3241 			vnic->mc_list =
3242 				dma_alloc_coherent(&pdev->dev,
3243 						   vnic->mc_list_size,
3244 						   &vnic->mc_list_mapping,
3245 						   GFP_KERNEL);
3246 			if (!vnic->mc_list) {
3247 				rc = -ENOMEM;
3248 				goto out;
3249 			}
3250 		}
3251 
3252 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3253 			goto vnic_skip_grps;
3254 
3255 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3256 			max_rings = bp->rx_nr_rings;
3257 		else
3258 			max_rings = 1;
3259 
3260 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3261 		if (!vnic->fw_grp_ids) {
3262 			rc = -ENOMEM;
3263 			goto out;
3264 		}
3265 vnic_skip_grps:
3266 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3267 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3268 			continue;
3269 
3270 		/* Allocate rss table and hash key */
3271 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3272 						     &vnic->rss_table_dma_addr,
3273 						     GFP_KERNEL);
3274 		if (!vnic->rss_table) {
3275 			rc = -ENOMEM;
3276 			goto out;
3277 		}
3278 
3279 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3280 
3281 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3282 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3283 	}
3284 	return 0;
3285 
3286 out:
3287 	return rc;
3288 }
3289 
3290 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3291 {
3292 	struct pci_dev *pdev = bp->pdev;
3293 
3294 	if (bp->hwrm_cmd_resp_addr) {
3295 		dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3296 				  bp->hwrm_cmd_resp_dma_addr);
3297 		bp->hwrm_cmd_resp_addr = NULL;
3298 	}
3299 
3300 	if (bp->hwrm_cmd_kong_resp_addr) {
3301 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
3302 				  bp->hwrm_cmd_kong_resp_addr,
3303 				  bp->hwrm_cmd_kong_resp_dma_addr);
3304 		bp->hwrm_cmd_kong_resp_addr = NULL;
3305 	}
3306 }
3307 
3308 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3309 {
3310 	struct pci_dev *pdev = bp->pdev;
3311 
3312 	bp->hwrm_cmd_kong_resp_addr =
3313 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3314 				   &bp->hwrm_cmd_kong_resp_dma_addr,
3315 				   GFP_KERNEL);
3316 	if (!bp->hwrm_cmd_kong_resp_addr)
3317 		return -ENOMEM;
3318 
3319 	return 0;
3320 }
3321 
3322 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3323 {
3324 	struct pci_dev *pdev = bp->pdev;
3325 
3326 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3327 						   &bp->hwrm_cmd_resp_dma_addr,
3328 						   GFP_KERNEL);
3329 	if (!bp->hwrm_cmd_resp_addr)
3330 		return -ENOMEM;
3331 
3332 	return 0;
3333 }
3334 
3335 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3336 {
3337 	if (bp->hwrm_short_cmd_req_addr) {
3338 		struct pci_dev *pdev = bp->pdev;
3339 
3340 		dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3341 				  bp->hwrm_short_cmd_req_addr,
3342 				  bp->hwrm_short_cmd_req_dma_addr);
3343 		bp->hwrm_short_cmd_req_addr = NULL;
3344 	}
3345 }
3346 
3347 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3348 {
3349 	struct pci_dev *pdev = bp->pdev;
3350 
3351 	bp->hwrm_short_cmd_req_addr =
3352 		dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3353 				   &bp->hwrm_short_cmd_req_dma_addr,
3354 				   GFP_KERNEL);
3355 	if (!bp->hwrm_short_cmd_req_addr)
3356 		return -ENOMEM;
3357 
3358 	return 0;
3359 }
3360 
3361 static void bnxt_free_port_stats(struct bnxt *bp)
3362 {
3363 	struct pci_dev *pdev = bp->pdev;
3364 
3365 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
3366 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3367 
3368 	if (bp->hw_rx_port_stats) {
3369 		dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3370 				  bp->hw_rx_port_stats,
3371 				  bp->hw_rx_port_stats_map);
3372 		bp->hw_rx_port_stats = NULL;
3373 	}
3374 
3375 	if (bp->hw_tx_port_stats_ext) {
3376 		dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3377 				  bp->hw_tx_port_stats_ext,
3378 				  bp->hw_tx_port_stats_ext_map);
3379 		bp->hw_tx_port_stats_ext = NULL;
3380 	}
3381 
3382 	if (bp->hw_rx_port_stats_ext) {
3383 		dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3384 				  bp->hw_rx_port_stats_ext,
3385 				  bp->hw_rx_port_stats_ext_map);
3386 		bp->hw_rx_port_stats_ext = NULL;
3387 	}
3388 }
3389 
3390 static void bnxt_free_ring_stats(struct bnxt *bp)
3391 {
3392 	struct pci_dev *pdev = bp->pdev;
3393 	int size, i;
3394 
3395 	if (!bp->bnapi)
3396 		return;
3397 
3398 	size = sizeof(struct ctx_hw_stats);
3399 
3400 	for (i = 0; i < bp->cp_nr_rings; i++) {
3401 		struct bnxt_napi *bnapi = bp->bnapi[i];
3402 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3403 
3404 		if (cpr->hw_stats) {
3405 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3406 					  cpr->hw_stats_map);
3407 			cpr->hw_stats = NULL;
3408 		}
3409 	}
3410 }
3411 
3412 static int bnxt_alloc_stats(struct bnxt *bp)
3413 {
3414 	u32 size, i;
3415 	struct pci_dev *pdev = bp->pdev;
3416 
3417 	size = sizeof(struct ctx_hw_stats);
3418 
3419 	for (i = 0; i < bp->cp_nr_rings; i++) {
3420 		struct bnxt_napi *bnapi = bp->bnapi[i];
3421 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3422 
3423 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3424 						   &cpr->hw_stats_map,
3425 						   GFP_KERNEL);
3426 		if (!cpr->hw_stats)
3427 			return -ENOMEM;
3428 
3429 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3430 	}
3431 
3432 	if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3433 		if (bp->hw_rx_port_stats)
3434 			goto alloc_ext_stats;
3435 
3436 		bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3437 					 sizeof(struct tx_port_stats) + 1024;
3438 
3439 		bp->hw_rx_port_stats =
3440 			dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3441 					   &bp->hw_rx_port_stats_map,
3442 					   GFP_KERNEL);
3443 		if (!bp->hw_rx_port_stats)
3444 			return -ENOMEM;
3445 
3446 		bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3447 				       512;
3448 		bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3449 					   sizeof(struct rx_port_stats) + 512;
3450 		bp->flags |= BNXT_FLAG_PORT_STATS;
3451 
3452 alloc_ext_stats:
3453 		/* Display extended statistics only if FW supports it */
3454 		if (bp->hwrm_spec_code < 0x10804 ||
3455 		    bp->hwrm_spec_code == 0x10900)
3456 			return 0;
3457 
3458 		if (bp->hw_rx_port_stats_ext)
3459 			goto alloc_tx_ext_stats;
3460 
3461 		bp->hw_rx_port_stats_ext =
3462 			dma_alloc_coherent(&pdev->dev,
3463 					   sizeof(struct rx_port_stats_ext),
3464 					   &bp->hw_rx_port_stats_ext_map,
3465 					   GFP_KERNEL);
3466 		if (!bp->hw_rx_port_stats_ext)
3467 			return 0;
3468 
3469 alloc_tx_ext_stats:
3470 		if (bp->hw_tx_port_stats_ext)
3471 			return 0;
3472 
3473 		if (bp->hwrm_spec_code >= 0x10902) {
3474 			bp->hw_tx_port_stats_ext =
3475 				dma_alloc_coherent(&pdev->dev,
3476 						   sizeof(struct tx_port_stats_ext),
3477 						   &bp->hw_tx_port_stats_ext_map,
3478 						   GFP_KERNEL);
3479 		}
3480 		bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3481 	}
3482 	return 0;
3483 }
3484 
3485 static void bnxt_clear_ring_indices(struct bnxt *bp)
3486 {
3487 	int i;
3488 
3489 	if (!bp->bnapi)
3490 		return;
3491 
3492 	for (i = 0; i < bp->cp_nr_rings; i++) {
3493 		struct bnxt_napi *bnapi = bp->bnapi[i];
3494 		struct bnxt_cp_ring_info *cpr;
3495 		struct bnxt_rx_ring_info *rxr;
3496 		struct bnxt_tx_ring_info *txr;
3497 
3498 		if (!bnapi)
3499 			continue;
3500 
3501 		cpr = &bnapi->cp_ring;
3502 		cpr->cp_raw_cons = 0;
3503 
3504 		txr = bnapi->tx_ring;
3505 		if (txr) {
3506 			txr->tx_prod = 0;
3507 			txr->tx_cons = 0;
3508 		}
3509 
3510 		rxr = bnapi->rx_ring;
3511 		if (rxr) {
3512 			rxr->rx_prod = 0;
3513 			rxr->rx_agg_prod = 0;
3514 			rxr->rx_sw_agg_prod = 0;
3515 			rxr->rx_next_cons = 0;
3516 		}
3517 	}
3518 }
3519 
3520 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3521 {
3522 #ifdef CONFIG_RFS_ACCEL
3523 	int i;
3524 
3525 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
3526 	 * safe to delete the hash table.
3527 	 */
3528 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3529 		struct hlist_head *head;
3530 		struct hlist_node *tmp;
3531 		struct bnxt_ntuple_filter *fltr;
3532 
3533 		head = &bp->ntp_fltr_hash_tbl[i];
3534 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3535 			hlist_del(&fltr->hash);
3536 			kfree(fltr);
3537 		}
3538 	}
3539 	if (irq_reinit) {
3540 		kfree(bp->ntp_fltr_bmap);
3541 		bp->ntp_fltr_bmap = NULL;
3542 	}
3543 	bp->ntp_fltr_count = 0;
3544 #endif
3545 }
3546 
3547 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3548 {
3549 #ifdef CONFIG_RFS_ACCEL
3550 	int i, rc = 0;
3551 
3552 	if (!(bp->flags & BNXT_FLAG_RFS))
3553 		return 0;
3554 
3555 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3556 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3557 
3558 	bp->ntp_fltr_count = 0;
3559 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3560 				    sizeof(long),
3561 				    GFP_KERNEL);
3562 
3563 	if (!bp->ntp_fltr_bmap)
3564 		rc = -ENOMEM;
3565 
3566 	return rc;
3567 #else
3568 	return 0;
3569 #endif
3570 }
3571 
3572 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3573 {
3574 	bnxt_free_vnic_attributes(bp);
3575 	bnxt_free_tx_rings(bp);
3576 	bnxt_free_rx_rings(bp);
3577 	bnxt_free_cp_rings(bp);
3578 	bnxt_free_ntp_fltrs(bp, irq_re_init);
3579 	if (irq_re_init) {
3580 		bnxt_free_ring_stats(bp);
3581 		bnxt_free_ring_grps(bp);
3582 		bnxt_free_vnics(bp);
3583 		kfree(bp->tx_ring_map);
3584 		bp->tx_ring_map = NULL;
3585 		kfree(bp->tx_ring);
3586 		bp->tx_ring = NULL;
3587 		kfree(bp->rx_ring);
3588 		bp->rx_ring = NULL;
3589 		kfree(bp->bnapi);
3590 		bp->bnapi = NULL;
3591 	} else {
3592 		bnxt_clear_ring_indices(bp);
3593 	}
3594 }
3595 
3596 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3597 {
3598 	int i, j, rc, size, arr_size;
3599 	void *bnapi;
3600 
3601 	if (irq_re_init) {
3602 		/* Allocate bnapi mem pointer array and mem block for
3603 		 * all queues
3604 		 */
3605 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3606 				bp->cp_nr_rings);
3607 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3608 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3609 		if (!bnapi)
3610 			return -ENOMEM;
3611 
3612 		bp->bnapi = bnapi;
3613 		bnapi += arr_size;
3614 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3615 			bp->bnapi[i] = bnapi;
3616 			bp->bnapi[i]->index = i;
3617 			bp->bnapi[i]->bp = bp;
3618 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3619 				struct bnxt_cp_ring_info *cpr =
3620 					&bp->bnapi[i]->cp_ring;
3621 
3622 				cpr->cp_ring_struct.ring_mem.flags =
3623 					BNXT_RMEM_RING_PTE_FLAG;
3624 			}
3625 		}
3626 
3627 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
3628 				      sizeof(struct bnxt_rx_ring_info),
3629 				      GFP_KERNEL);
3630 		if (!bp->rx_ring)
3631 			return -ENOMEM;
3632 
3633 		for (i = 0; i < bp->rx_nr_rings; i++) {
3634 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3635 
3636 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
3637 				rxr->rx_ring_struct.ring_mem.flags =
3638 					BNXT_RMEM_RING_PTE_FLAG;
3639 				rxr->rx_agg_ring_struct.ring_mem.flags =
3640 					BNXT_RMEM_RING_PTE_FLAG;
3641 			}
3642 			rxr->bnapi = bp->bnapi[i];
3643 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3644 		}
3645 
3646 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
3647 				      sizeof(struct bnxt_tx_ring_info),
3648 				      GFP_KERNEL);
3649 		if (!bp->tx_ring)
3650 			return -ENOMEM;
3651 
3652 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3653 					  GFP_KERNEL);
3654 
3655 		if (!bp->tx_ring_map)
3656 			return -ENOMEM;
3657 
3658 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3659 			j = 0;
3660 		else
3661 			j = bp->rx_nr_rings;
3662 
3663 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3664 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3665 
3666 			if (bp->flags & BNXT_FLAG_CHIP_P5)
3667 				txr->tx_ring_struct.ring_mem.flags =
3668 					BNXT_RMEM_RING_PTE_FLAG;
3669 			txr->bnapi = bp->bnapi[j];
3670 			bp->bnapi[j]->tx_ring = txr;
3671 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3672 			if (i >= bp->tx_nr_rings_xdp) {
3673 				txr->txq_index = i - bp->tx_nr_rings_xdp;
3674 				bp->bnapi[j]->tx_int = bnxt_tx_int;
3675 			} else {
3676 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3677 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3678 			}
3679 		}
3680 
3681 		rc = bnxt_alloc_stats(bp);
3682 		if (rc)
3683 			goto alloc_mem_err;
3684 
3685 		rc = bnxt_alloc_ntp_fltrs(bp);
3686 		if (rc)
3687 			goto alloc_mem_err;
3688 
3689 		rc = bnxt_alloc_vnics(bp);
3690 		if (rc)
3691 			goto alloc_mem_err;
3692 	}
3693 
3694 	bnxt_init_ring_struct(bp);
3695 
3696 	rc = bnxt_alloc_rx_rings(bp);
3697 	if (rc)
3698 		goto alloc_mem_err;
3699 
3700 	rc = bnxt_alloc_tx_rings(bp);
3701 	if (rc)
3702 		goto alloc_mem_err;
3703 
3704 	rc = bnxt_alloc_cp_rings(bp);
3705 	if (rc)
3706 		goto alloc_mem_err;
3707 
3708 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3709 				  BNXT_VNIC_UCAST_FLAG;
3710 	rc = bnxt_alloc_vnic_attributes(bp);
3711 	if (rc)
3712 		goto alloc_mem_err;
3713 	return 0;
3714 
3715 alloc_mem_err:
3716 	bnxt_free_mem(bp, true);
3717 	return rc;
3718 }
3719 
3720 static void bnxt_disable_int(struct bnxt *bp)
3721 {
3722 	int i;
3723 
3724 	if (!bp->bnapi)
3725 		return;
3726 
3727 	for (i = 0; i < bp->cp_nr_rings; i++) {
3728 		struct bnxt_napi *bnapi = bp->bnapi[i];
3729 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3730 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3731 
3732 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
3733 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
3734 	}
3735 }
3736 
3737 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3738 {
3739 	struct bnxt_napi *bnapi = bp->bnapi[n];
3740 	struct bnxt_cp_ring_info *cpr;
3741 
3742 	cpr = &bnapi->cp_ring;
3743 	return cpr->cp_ring_struct.map_idx;
3744 }
3745 
3746 static void bnxt_disable_int_sync(struct bnxt *bp)
3747 {
3748 	int i;
3749 
3750 	atomic_inc(&bp->intr_sem);
3751 
3752 	bnxt_disable_int(bp);
3753 	for (i = 0; i < bp->cp_nr_rings; i++) {
3754 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3755 
3756 		synchronize_irq(bp->irq_tbl[map_idx].vector);
3757 	}
3758 }
3759 
3760 static void bnxt_enable_int(struct bnxt *bp)
3761 {
3762 	int i;
3763 
3764 	atomic_set(&bp->intr_sem, 0);
3765 	for (i = 0; i < bp->cp_nr_rings; i++) {
3766 		struct bnxt_napi *bnapi = bp->bnapi[i];
3767 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3768 
3769 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
3770 	}
3771 }
3772 
3773 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3774 			    u16 cmpl_ring, u16 target_id)
3775 {
3776 	struct input *req = request;
3777 
3778 	req->req_type = cpu_to_le16(req_type);
3779 	req->cmpl_ring = cpu_to_le16(cmpl_ring);
3780 	req->target_id = cpu_to_le16(target_id);
3781 	if (bnxt_kong_hwrm_message(bp, req))
3782 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
3783 	else
3784 		req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3785 }
3786 
3787 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3788 				 int timeout, bool silent)
3789 {
3790 	int i, intr_process, rc, tmo_count;
3791 	struct input *req = msg;
3792 	u32 *data = msg;
3793 	__le32 *resp_len;
3794 	u8 *valid;
3795 	u16 cp_ring_id, len = 0;
3796 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3797 	u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3798 	struct hwrm_short_input short_input = {0};
3799 	u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
3800 	u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
3801 	u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
3802 	u16 dst = BNXT_HWRM_CHNL_CHIMP;
3803 
3804 	if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3805 		if (msg_len > bp->hwrm_max_ext_req_len ||
3806 		    !bp->hwrm_short_cmd_req_addr)
3807 			return -EINVAL;
3808 	}
3809 
3810 	if (bnxt_hwrm_kong_chnl(bp, req)) {
3811 		dst = BNXT_HWRM_CHNL_KONG;
3812 		bar_offset = BNXT_GRCPF_REG_KONG_COMM;
3813 		doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
3814 		resp = bp->hwrm_cmd_kong_resp_addr;
3815 		resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
3816 	}
3817 
3818 	memset(resp, 0, PAGE_SIZE);
3819 	cp_ring_id = le16_to_cpu(req->cmpl_ring);
3820 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3821 
3822 	req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
3823 	/* currently supports only one outstanding message */
3824 	if (intr_process)
3825 		bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3826 
3827 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
3828 	    msg_len > BNXT_HWRM_MAX_REQ_LEN) {
3829 		void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3830 		u16 max_msg_len;
3831 
3832 		/* Set boundary for maximum extended request length for short
3833 		 * cmd format. If passed up from device use the max supported
3834 		 * internal req length.
3835 		 */
3836 		max_msg_len = bp->hwrm_max_ext_req_len;
3837 
3838 		memcpy(short_cmd_req, req, msg_len);
3839 		if (msg_len < max_msg_len)
3840 			memset(short_cmd_req + msg_len, 0,
3841 			       max_msg_len - msg_len);
3842 
3843 		short_input.req_type = req->req_type;
3844 		short_input.signature =
3845 				cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3846 		short_input.size = cpu_to_le16(msg_len);
3847 		short_input.req_addr =
3848 			cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3849 
3850 		data = (u32 *)&short_input;
3851 		msg_len = sizeof(short_input);
3852 
3853 		/* Sync memory write before updating doorbell */
3854 		wmb();
3855 
3856 		max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3857 	}
3858 
3859 	/* Write request msg to hwrm channel */
3860 	__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
3861 
3862 	for (i = msg_len; i < max_req_len; i += 4)
3863 		writel(0, bp->bar0 + bar_offset + i);
3864 
3865 	/* Ring channel doorbell */
3866 	writel(1, bp->bar0 + doorbell_offset);
3867 
3868 	if (!timeout)
3869 		timeout = DFLT_HWRM_CMD_TIMEOUT;
3870 	/* convert timeout to usec */
3871 	timeout *= 1000;
3872 
3873 	i = 0;
3874 	/* Short timeout for the first few iterations:
3875 	 * number of loops = number of loops for short timeout +
3876 	 * number of loops for standard timeout.
3877 	 */
3878 	tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3879 	timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3880 	tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3881 	resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
3882 
3883 	if (intr_process) {
3884 		u16 seq_id = bp->hwrm_intr_seq_id;
3885 
3886 		/* Wait until hwrm response cmpl interrupt is processed */
3887 		while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
3888 		       i++ < tmo_count) {
3889 			/* on first few passes, just barely sleep */
3890 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3891 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3892 					     HWRM_SHORT_MAX_TIMEOUT);
3893 			else
3894 				usleep_range(HWRM_MIN_TIMEOUT,
3895 					     HWRM_MAX_TIMEOUT);
3896 		}
3897 
3898 		if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
3899 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3900 				   le16_to_cpu(req->req_type));
3901 			return -1;
3902 		}
3903 		len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3904 		      HWRM_RESP_LEN_SFT;
3905 		valid = resp_addr + len - 1;
3906 	} else {
3907 		int j;
3908 
3909 		/* Check if response len is updated */
3910 		for (i = 0; i < tmo_count; i++) {
3911 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3912 			      HWRM_RESP_LEN_SFT;
3913 			if (len)
3914 				break;
3915 			/* on first few passes, just barely sleep */
3916 			if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3917 				usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3918 					     HWRM_SHORT_MAX_TIMEOUT);
3919 			else
3920 				usleep_range(HWRM_MIN_TIMEOUT,
3921 					     HWRM_MAX_TIMEOUT);
3922 		}
3923 
3924 		if (i >= tmo_count) {
3925 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3926 				   HWRM_TOTAL_TIMEOUT(i),
3927 				   le16_to_cpu(req->req_type),
3928 				   le16_to_cpu(req->seq_id), len);
3929 			return -1;
3930 		}
3931 
3932 		/* Last byte of resp contains valid bit */
3933 		valid = resp_addr + len - 1;
3934 		for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
3935 			/* make sure we read from updated DMA memory */
3936 			dma_rmb();
3937 			if (*valid)
3938 				break;
3939 			usleep_range(1, 5);
3940 		}
3941 
3942 		if (j >= HWRM_VALID_BIT_DELAY_USEC) {
3943 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3944 				   HWRM_TOTAL_TIMEOUT(i),
3945 				   le16_to_cpu(req->req_type),
3946 				   le16_to_cpu(req->seq_id), len, *valid);
3947 			return -1;
3948 		}
3949 	}
3950 
3951 	/* Zero valid bit for compatibility.  Valid bit in an older spec
3952 	 * may become a new field in a newer spec.  We must make sure that
3953 	 * a new field not implemented by old spec will read zero.
3954 	 */
3955 	*valid = 0;
3956 	rc = le16_to_cpu(resp->error_code);
3957 	if (rc && !silent)
3958 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3959 			   le16_to_cpu(resp->req_type),
3960 			   le16_to_cpu(resp->seq_id), rc);
3961 	return rc;
3962 }
3963 
3964 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3965 {
3966 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3967 }
3968 
3969 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3970 			      int timeout)
3971 {
3972 	return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3973 }
3974 
3975 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3976 {
3977 	int rc;
3978 
3979 	mutex_lock(&bp->hwrm_cmd_lock);
3980 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3981 	mutex_unlock(&bp->hwrm_cmd_lock);
3982 	return rc;
3983 }
3984 
3985 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3986 			     int timeout)
3987 {
3988 	int rc;
3989 
3990 	mutex_lock(&bp->hwrm_cmd_lock);
3991 	rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3992 	mutex_unlock(&bp->hwrm_cmd_lock);
3993 	return rc;
3994 }
3995 
3996 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3997 				     int bmap_size)
3998 {
3999 	struct hwrm_func_drv_rgtr_input req = {0};
4000 	DECLARE_BITMAP(async_events_bmap, 256);
4001 	u32 *events = (u32 *)async_events_bmap;
4002 	int i;
4003 
4004 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4005 
4006 	req.enables =
4007 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4008 
4009 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4010 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
4011 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4012 
4013 	if (bmap && bmap_size) {
4014 		for (i = 0; i < bmap_size; i++) {
4015 			if (test_bit(i, bmap))
4016 				__set_bit(i, async_events_bmap);
4017 		}
4018 	}
4019 
4020 	for (i = 0; i < 8; i++)
4021 		req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4022 
4023 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4024 }
4025 
4026 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
4027 {
4028 	struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4029 	struct hwrm_func_drv_rgtr_input req = {0};
4030 	int rc;
4031 
4032 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4033 
4034 	req.enables =
4035 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4036 			    FUNC_DRV_RGTR_REQ_ENABLES_VER);
4037 
4038 	req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4039 	req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
4040 	req.ver_maj_8b = DRV_VER_MAJ;
4041 	req.ver_min_8b = DRV_VER_MIN;
4042 	req.ver_upd_8b = DRV_VER_UPD;
4043 	req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4044 	req.ver_min = cpu_to_le16(DRV_VER_MIN);
4045 	req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4046 
4047 	if (BNXT_PF(bp)) {
4048 		u32 data[8];
4049 		int i;
4050 
4051 		memset(data, 0, sizeof(data));
4052 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4053 			u16 cmd = bnxt_vf_req_snif[i];
4054 			unsigned int bit, idx;
4055 
4056 			idx = cmd / 32;
4057 			bit = cmd % 32;
4058 			data[idx] |= 1 << bit;
4059 		}
4060 
4061 		for (i = 0; i < 8; i++)
4062 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4063 
4064 		req.enables |=
4065 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4066 	}
4067 
4068 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4069 		req.flags |= cpu_to_le32(
4070 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4071 
4072 	mutex_lock(&bp->hwrm_cmd_lock);
4073 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4074 	if (rc)
4075 		rc = -EIO;
4076 	else if (resp->flags &
4077 		 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4078 		bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4079 	mutex_unlock(&bp->hwrm_cmd_lock);
4080 	return rc;
4081 }
4082 
4083 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4084 {
4085 	struct hwrm_func_drv_unrgtr_input req = {0};
4086 
4087 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4088 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4089 }
4090 
4091 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4092 {
4093 	u32 rc = 0;
4094 	struct hwrm_tunnel_dst_port_free_input req = {0};
4095 
4096 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4097 	req.tunnel_type = tunnel_type;
4098 
4099 	switch (tunnel_type) {
4100 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4101 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4102 		break;
4103 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4104 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4105 		break;
4106 	default:
4107 		break;
4108 	}
4109 
4110 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4111 	if (rc)
4112 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4113 			   rc);
4114 	return rc;
4115 }
4116 
4117 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4118 					   u8 tunnel_type)
4119 {
4120 	u32 rc = 0;
4121 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
4122 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4123 
4124 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4125 
4126 	req.tunnel_type = tunnel_type;
4127 	req.tunnel_dst_port_val = port;
4128 
4129 	mutex_lock(&bp->hwrm_cmd_lock);
4130 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4131 	if (rc) {
4132 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4133 			   rc);
4134 		goto err_out;
4135 	}
4136 
4137 	switch (tunnel_type) {
4138 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4139 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4140 		break;
4141 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4142 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4143 		break;
4144 	default:
4145 		break;
4146 	}
4147 
4148 err_out:
4149 	mutex_unlock(&bp->hwrm_cmd_lock);
4150 	return rc;
4151 }
4152 
4153 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4154 {
4155 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4156 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4157 
4158 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4159 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4160 
4161 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4162 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4163 	req.mask = cpu_to_le32(vnic->rx_mask);
4164 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4165 }
4166 
4167 #ifdef CONFIG_RFS_ACCEL
4168 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4169 					    struct bnxt_ntuple_filter *fltr)
4170 {
4171 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
4172 
4173 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4174 	req.ntuple_filter_id = fltr->filter_id;
4175 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4176 }
4177 
4178 #define BNXT_NTP_FLTR_FLAGS					\
4179 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4180 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4181 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4182 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4183 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4184 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4185 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4186 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4187 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4188 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4189 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4190 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4191 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4192 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4193 
4194 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4195 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4196 
4197 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4198 					     struct bnxt_ntuple_filter *fltr)
4199 {
4200 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
4201 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4202 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4203 	struct flow_keys *keys = &fltr->fkeys;
4204 	int rc = 0;
4205 
4206 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4207 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4208 
4209 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4210 
4211 	req.ethertype = htons(ETH_P_IP);
4212 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4213 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4214 	req.ip_protocol = keys->basic.ip_proto;
4215 
4216 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4217 		int i;
4218 
4219 		req.ethertype = htons(ETH_P_IPV6);
4220 		req.ip_addr_type =
4221 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4222 		*(struct in6_addr *)&req.src_ipaddr[0] =
4223 			keys->addrs.v6addrs.src;
4224 		*(struct in6_addr *)&req.dst_ipaddr[0] =
4225 			keys->addrs.v6addrs.dst;
4226 		for (i = 0; i < 4; i++) {
4227 			req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4228 			req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4229 		}
4230 	} else {
4231 		req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4232 		req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4233 		req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4234 		req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4235 	}
4236 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4237 		req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4238 		req.tunnel_type =
4239 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4240 	}
4241 
4242 	req.src_port = keys->ports.src;
4243 	req.src_port_mask = cpu_to_be16(0xffff);
4244 	req.dst_port = keys->ports.dst;
4245 	req.dst_port_mask = cpu_to_be16(0xffff);
4246 
4247 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4248 	mutex_lock(&bp->hwrm_cmd_lock);
4249 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4250 	if (!rc) {
4251 		resp = bnxt_get_hwrm_resp_addr(bp, &req);
4252 		fltr->filter_id = resp->ntuple_filter_id;
4253 	}
4254 	mutex_unlock(&bp->hwrm_cmd_lock);
4255 	return rc;
4256 }
4257 #endif
4258 
4259 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4260 				     u8 *mac_addr)
4261 {
4262 	u32 rc = 0;
4263 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
4264 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4265 
4266 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4267 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4268 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4269 		req.flags |=
4270 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4271 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4272 	req.enables =
4273 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4274 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4275 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4276 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4277 	req.l2_addr_mask[0] = 0xff;
4278 	req.l2_addr_mask[1] = 0xff;
4279 	req.l2_addr_mask[2] = 0xff;
4280 	req.l2_addr_mask[3] = 0xff;
4281 	req.l2_addr_mask[4] = 0xff;
4282 	req.l2_addr_mask[5] = 0xff;
4283 
4284 	mutex_lock(&bp->hwrm_cmd_lock);
4285 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4286 	if (!rc)
4287 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4288 							resp->l2_filter_id;
4289 	mutex_unlock(&bp->hwrm_cmd_lock);
4290 	return rc;
4291 }
4292 
4293 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4294 {
4295 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4296 	int rc = 0;
4297 
4298 	/* Any associated ntuple filters will also be cleared by firmware. */
4299 	mutex_lock(&bp->hwrm_cmd_lock);
4300 	for (i = 0; i < num_of_vnics; i++) {
4301 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4302 
4303 		for (j = 0; j < vnic->uc_filter_count; j++) {
4304 			struct hwrm_cfa_l2_filter_free_input req = {0};
4305 
4306 			bnxt_hwrm_cmd_hdr_init(bp, &req,
4307 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
4308 
4309 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
4310 
4311 			rc = _hwrm_send_message(bp, &req, sizeof(req),
4312 						HWRM_CMD_TIMEOUT);
4313 		}
4314 		vnic->uc_filter_count = 0;
4315 	}
4316 	mutex_unlock(&bp->hwrm_cmd_lock);
4317 
4318 	return rc;
4319 }
4320 
4321 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4322 {
4323 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4324 	struct hwrm_vnic_tpa_cfg_input req = {0};
4325 
4326 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4327 		return 0;
4328 
4329 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4330 
4331 	if (tpa_flags) {
4332 		u16 mss = bp->dev->mtu - 40;
4333 		u32 nsegs, n, segs = 0, flags;
4334 
4335 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4336 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4337 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4338 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4339 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4340 		if (tpa_flags & BNXT_FLAG_GRO)
4341 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4342 
4343 		req.flags = cpu_to_le32(flags);
4344 
4345 		req.enables =
4346 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4347 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4348 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4349 
4350 		/* Number of segs are log2 units, and first packet is not
4351 		 * included as part of this units.
4352 		 */
4353 		if (mss <= BNXT_RX_PAGE_SIZE) {
4354 			n = BNXT_RX_PAGE_SIZE / mss;
4355 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4356 		} else {
4357 			n = mss / BNXT_RX_PAGE_SIZE;
4358 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4359 				n++;
4360 			nsegs = (MAX_SKB_FRAGS - n) / n;
4361 		}
4362 
4363 		segs = ilog2(nsegs);
4364 		req.max_agg_segs = cpu_to_le16(segs);
4365 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
4366 
4367 		req.min_agg_len = cpu_to_le32(512);
4368 	}
4369 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4370 
4371 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4372 }
4373 
4374 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4375 {
4376 	struct bnxt_ring_grp_info *grp_info;
4377 
4378 	grp_info = &bp->grp_info[ring->grp_idx];
4379 	return grp_info->cp_fw_ring_id;
4380 }
4381 
4382 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4383 {
4384 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4385 		struct bnxt_napi *bnapi = rxr->bnapi;
4386 		struct bnxt_cp_ring_info *cpr;
4387 
4388 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4389 		return cpr->cp_ring_struct.fw_ring_id;
4390 	} else {
4391 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4392 	}
4393 }
4394 
4395 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4396 {
4397 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4398 		struct bnxt_napi *bnapi = txr->bnapi;
4399 		struct bnxt_cp_ring_info *cpr;
4400 
4401 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4402 		return cpr->cp_ring_struct.fw_ring_id;
4403 	} else {
4404 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4405 	}
4406 }
4407 
4408 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4409 {
4410 	u32 i, j, max_rings;
4411 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4412 	struct hwrm_vnic_rss_cfg_input req = {0};
4413 
4414 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4415 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4416 		return 0;
4417 
4418 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4419 	if (set_rss) {
4420 		req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4421 		req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4422 		if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4423 			if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4424 				max_rings = bp->rx_nr_rings - 1;
4425 			else
4426 				max_rings = bp->rx_nr_rings;
4427 		} else {
4428 			max_rings = 1;
4429 		}
4430 
4431 		/* Fill the RSS indirection table with ring group ids */
4432 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4433 			if (j == max_rings)
4434 				j = 0;
4435 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4436 		}
4437 
4438 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4439 		req.hash_key_tbl_addr =
4440 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
4441 	}
4442 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4443 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4444 }
4445 
4446 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4447 {
4448 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4449 	u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4450 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4451 	struct hwrm_vnic_rss_cfg_input req = {0};
4452 
4453 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4454 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4455 	if (!set_rss) {
4456 		hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4457 		return 0;
4458 	}
4459 	req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4460 	req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4461 	req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4462 	req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4463 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4464 	for (i = 0, k = 0; i < nr_ctxs; i++) {
4465 		__le16 *ring_tbl = vnic->rss_table;
4466 		int rc;
4467 
4468 		req.ring_table_pair_index = i;
4469 		req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4470 		for (j = 0; j < 64; j++) {
4471 			u16 ring_id;
4472 
4473 			ring_id = rxr->rx_ring_struct.fw_ring_id;
4474 			*ring_tbl++ = cpu_to_le16(ring_id);
4475 			ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4476 			*ring_tbl++ = cpu_to_le16(ring_id);
4477 			rxr++;
4478 			k++;
4479 			if (k == max_rings) {
4480 				k = 0;
4481 				rxr = &bp->rx_ring[0];
4482 			}
4483 		}
4484 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4485 		if (rc)
4486 			return -EIO;
4487 	}
4488 	return 0;
4489 }
4490 
4491 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4492 {
4493 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4494 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
4495 
4496 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4497 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4498 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4499 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4500 	req.enables =
4501 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4502 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4503 	/* thresholds not implemented in firmware yet */
4504 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4505 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4506 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4507 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4508 }
4509 
4510 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4511 					u16 ctx_idx)
4512 {
4513 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4514 
4515 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4516 	req.rss_cos_lb_ctx_id =
4517 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4518 
4519 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4520 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4521 }
4522 
4523 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4524 {
4525 	int i, j;
4526 
4527 	for (i = 0; i < bp->nr_vnics; i++) {
4528 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4529 
4530 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4531 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4532 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4533 		}
4534 	}
4535 	bp->rsscos_nr_ctxs = 0;
4536 }
4537 
4538 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4539 {
4540 	int rc;
4541 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4542 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4543 						bp->hwrm_cmd_resp_addr;
4544 
4545 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4546 			       -1);
4547 
4548 	mutex_lock(&bp->hwrm_cmd_lock);
4549 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4550 	if (!rc)
4551 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4552 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
4553 	mutex_unlock(&bp->hwrm_cmd_lock);
4554 
4555 	return rc;
4556 }
4557 
4558 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4559 {
4560 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4561 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4562 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4563 }
4564 
4565 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4566 {
4567 	unsigned int ring = 0, grp_idx;
4568 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4569 	struct hwrm_vnic_cfg_input req = {0};
4570 	u16 def_vlan = 0;
4571 
4572 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4573 
4574 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4575 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4576 
4577 		req.default_rx_ring_id =
4578 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
4579 		req.default_cmpl_ring_id =
4580 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
4581 		req.enables =
4582 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
4583 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
4584 		goto vnic_mru;
4585 	}
4586 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4587 	/* Only RSS support for now TBD: COS & LB */
4588 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4589 		req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4590 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4591 					   VNIC_CFG_REQ_ENABLES_MRU);
4592 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4593 		req.rss_rule =
4594 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4595 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4596 					   VNIC_CFG_REQ_ENABLES_MRU);
4597 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4598 	} else {
4599 		req.rss_rule = cpu_to_le16(0xffff);
4600 	}
4601 
4602 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4603 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4604 		req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4605 		req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4606 	} else {
4607 		req.cos_rule = cpu_to_le16(0xffff);
4608 	}
4609 
4610 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4611 		ring = 0;
4612 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4613 		ring = vnic_id - 1;
4614 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4615 		ring = bp->rx_nr_rings - 1;
4616 
4617 	grp_idx = bp->rx_ring[ring].bnapi->index;
4618 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4619 	req.lb_rule = cpu_to_le16(0xffff);
4620 vnic_mru:
4621 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4622 			      VLAN_HLEN);
4623 
4624 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4625 #ifdef CONFIG_BNXT_SRIOV
4626 	if (BNXT_VF(bp))
4627 		def_vlan = bp->vf.vlan;
4628 #endif
4629 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4630 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4631 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4632 		req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4633 
4634 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4635 }
4636 
4637 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4638 {
4639 	u32 rc = 0;
4640 
4641 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4642 		struct hwrm_vnic_free_input req = {0};
4643 
4644 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4645 		req.vnic_id =
4646 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4647 
4648 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4649 		if (rc)
4650 			return rc;
4651 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4652 	}
4653 	return rc;
4654 }
4655 
4656 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4657 {
4658 	u16 i;
4659 
4660 	for (i = 0; i < bp->nr_vnics; i++)
4661 		bnxt_hwrm_vnic_free_one(bp, i);
4662 }
4663 
4664 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4665 				unsigned int start_rx_ring_idx,
4666 				unsigned int nr_rings)
4667 {
4668 	int rc = 0;
4669 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4670 	struct hwrm_vnic_alloc_input req = {0};
4671 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4672 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4673 
4674 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4675 		goto vnic_no_ring_grps;
4676 
4677 	/* map ring groups to this vnic */
4678 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4679 		grp_idx = bp->rx_ring[i].bnapi->index;
4680 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4681 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4682 				   j, nr_rings);
4683 			break;
4684 		}
4685 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
4686 	}
4687 
4688 vnic_no_ring_grps:
4689 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
4690 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
4691 	if (vnic_id == 0)
4692 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4693 
4694 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4695 
4696 	mutex_lock(&bp->hwrm_cmd_lock);
4697 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4698 	if (!rc)
4699 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
4700 	mutex_unlock(&bp->hwrm_cmd_lock);
4701 	return rc;
4702 }
4703 
4704 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4705 {
4706 	struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4707 	struct hwrm_vnic_qcaps_input req = {0};
4708 	int rc;
4709 
4710 	if (bp->hwrm_spec_code < 0x10600)
4711 		return 0;
4712 
4713 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4714 	mutex_lock(&bp->hwrm_cmd_lock);
4715 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4716 	if (!rc) {
4717 		u32 flags = le32_to_cpu(resp->flags);
4718 
4719 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
4720 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
4721 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4722 		if (flags &
4723 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4724 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4725 	}
4726 	mutex_unlock(&bp->hwrm_cmd_lock);
4727 	return rc;
4728 }
4729 
4730 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4731 {
4732 	u16 i;
4733 	u32 rc = 0;
4734 
4735 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4736 		return 0;
4737 
4738 	mutex_lock(&bp->hwrm_cmd_lock);
4739 	for (i = 0; i < bp->rx_nr_rings; i++) {
4740 		struct hwrm_ring_grp_alloc_input req = {0};
4741 		struct hwrm_ring_grp_alloc_output *resp =
4742 					bp->hwrm_cmd_resp_addr;
4743 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4744 
4745 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4746 
4747 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4748 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4749 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4750 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4751 
4752 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4753 					HWRM_CMD_TIMEOUT);
4754 		if (rc)
4755 			break;
4756 
4757 		bp->grp_info[grp_idx].fw_grp_id =
4758 			le32_to_cpu(resp->ring_group_id);
4759 	}
4760 	mutex_unlock(&bp->hwrm_cmd_lock);
4761 	return rc;
4762 }
4763 
4764 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4765 {
4766 	u16 i;
4767 	u32 rc = 0;
4768 	struct hwrm_ring_grp_free_input req = {0};
4769 
4770 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
4771 		return 0;
4772 
4773 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4774 
4775 	mutex_lock(&bp->hwrm_cmd_lock);
4776 	for (i = 0; i < bp->cp_nr_rings; i++) {
4777 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4778 			continue;
4779 		req.ring_group_id =
4780 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
4781 
4782 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4783 					HWRM_CMD_TIMEOUT);
4784 		if (rc)
4785 			break;
4786 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4787 	}
4788 	mutex_unlock(&bp->hwrm_cmd_lock);
4789 	return rc;
4790 }
4791 
4792 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4793 				    struct bnxt_ring_struct *ring,
4794 				    u32 ring_type, u32 map_index)
4795 {
4796 	int rc = 0, err = 0;
4797 	struct hwrm_ring_alloc_input req = {0};
4798 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4799 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
4800 	struct bnxt_ring_grp_info *grp_info;
4801 	u16 ring_id;
4802 
4803 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4804 
4805 	req.enables = 0;
4806 	if (rmem->nr_pages > 1) {
4807 		req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
4808 		/* Page size is in log2 units */
4809 		req.page_size = BNXT_PAGE_SHIFT;
4810 		req.page_tbl_depth = 1;
4811 	} else {
4812 		req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
4813 	}
4814 	req.fbo = 0;
4815 	/* Association of ring index with doorbell index and MSIX number */
4816 	req.logical_id = cpu_to_le16(map_index);
4817 
4818 	switch (ring_type) {
4819 	case HWRM_RING_ALLOC_TX: {
4820 		struct bnxt_tx_ring_info *txr;
4821 
4822 		txr = container_of(ring, struct bnxt_tx_ring_info,
4823 				   tx_ring_struct);
4824 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4825 		/* Association of transmit ring with completion ring */
4826 		grp_info = &bp->grp_info[ring->grp_idx];
4827 		req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
4828 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4829 		req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4830 		req.queue_id = cpu_to_le16(ring->queue_id);
4831 		break;
4832 	}
4833 	case HWRM_RING_ALLOC_RX:
4834 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4835 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4836 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4837 			u16 flags = 0;
4838 
4839 			/* Association of rx ring with stats context */
4840 			grp_info = &bp->grp_info[ring->grp_idx];
4841 			req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
4842 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4843 			req.enables |= cpu_to_le32(
4844 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4845 			if (NET_IP_ALIGN == 2)
4846 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
4847 			req.flags = cpu_to_le16(flags);
4848 		}
4849 		break;
4850 	case HWRM_RING_ALLOC_AGG:
4851 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4852 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
4853 			/* Association of agg ring with rx ring */
4854 			grp_info = &bp->grp_info[ring->grp_idx];
4855 			req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
4856 			req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
4857 			req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4858 			req.enables |= cpu_to_le32(
4859 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
4860 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
4861 		} else {
4862 			req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4863 		}
4864 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4865 		break;
4866 	case HWRM_RING_ALLOC_CMPL:
4867 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4868 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4869 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4870 			/* Association of cp ring with nq */
4871 			grp_info = &bp->grp_info[map_index];
4872 			req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4873 			req.cq_handle = cpu_to_le64(ring->handle);
4874 			req.enables |= cpu_to_le32(
4875 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
4876 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
4877 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4878 		}
4879 		break;
4880 	case HWRM_RING_ALLOC_NQ:
4881 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
4882 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4883 		if (bp->flags & BNXT_FLAG_USING_MSIX)
4884 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4885 		break;
4886 	default:
4887 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4888 			   ring_type);
4889 		return -1;
4890 	}
4891 
4892 	mutex_lock(&bp->hwrm_cmd_lock);
4893 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4894 	err = le16_to_cpu(resp->error_code);
4895 	ring_id = le16_to_cpu(resp->ring_id);
4896 	mutex_unlock(&bp->hwrm_cmd_lock);
4897 
4898 	if (rc || err) {
4899 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4900 			   ring_type, rc, err);
4901 		return -EIO;
4902 	}
4903 	ring->fw_ring_id = ring_id;
4904 	return rc;
4905 }
4906 
4907 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4908 {
4909 	int rc;
4910 
4911 	if (BNXT_PF(bp)) {
4912 		struct hwrm_func_cfg_input req = {0};
4913 
4914 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4915 		req.fid = cpu_to_le16(0xffff);
4916 		req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4917 		req.async_event_cr = cpu_to_le16(idx);
4918 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4919 	} else {
4920 		struct hwrm_func_vf_cfg_input req = {0};
4921 
4922 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4923 		req.enables =
4924 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4925 		req.async_event_cr = cpu_to_le16(idx);
4926 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4927 	}
4928 	return rc;
4929 }
4930 
4931 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
4932 			u32 map_idx, u32 xid)
4933 {
4934 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4935 		if (BNXT_PF(bp))
4936 			db->doorbell = bp->bar1 + 0x10000;
4937 		else
4938 			db->doorbell = bp->bar1 + 0x4000;
4939 		switch (ring_type) {
4940 		case HWRM_RING_ALLOC_TX:
4941 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
4942 			break;
4943 		case HWRM_RING_ALLOC_RX:
4944 		case HWRM_RING_ALLOC_AGG:
4945 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
4946 			break;
4947 		case HWRM_RING_ALLOC_CMPL:
4948 			db->db_key64 = DBR_PATH_L2;
4949 			break;
4950 		case HWRM_RING_ALLOC_NQ:
4951 			db->db_key64 = DBR_PATH_L2;
4952 			break;
4953 		}
4954 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
4955 	} else {
4956 		db->doorbell = bp->bar1 + map_idx * 0x80;
4957 		switch (ring_type) {
4958 		case HWRM_RING_ALLOC_TX:
4959 			db->db_key32 = DB_KEY_TX;
4960 			break;
4961 		case HWRM_RING_ALLOC_RX:
4962 		case HWRM_RING_ALLOC_AGG:
4963 			db->db_key32 = DB_KEY_RX;
4964 			break;
4965 		case HWRM_RING_ALLOC_CMPL:
4966 			db->db_key32 = DB_KEY_CP;
4967 			break;
4968 		}
4969 	}
4970 }
4971 
4972 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4973 {
4974 	int i, rc = 0;
4975 	u32 type;
4976 
4977 	if (bp->flags & BNXT_FLAG_CHIP_P5)
4978 		type = HWRM_RING_ALLOC_NQ;
4979 	else
4980 		type = HWRM_RING_ALLOC_CMPL;
4981 	for (i = 0; i < bp->cp_nr_rings; i++) {
4982 		struct bnxt_napi *bnapi = bp->bnapi[i];
4983 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4984 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4985 		u32 map_idx = ring->map_idx;
4986 		unsigned int vector;
4987 
4988 		vector = bp->irq_tbl[map_idx].vector;
4989 		disable_irq_nosync(vector);
4990 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
4991 		if (rc) {
4992 			enable_irq(vector);
4993 			goto err_out;
4994 		}
4995 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
4996 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4997 		enable_irq(vector);
4998 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4999 
5000 		if (!i) {
5001 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5002 			if (rc)
5003 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5004 		}
5005 	}
5006 
5007 	type = HWRM_RING_ALLOC_TX;
5008 	for (i = 0; i < bp->tx_nr_rings; i++) {
5009 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5010 		struct bnxt_ring_struct *ring;
5011 		u32 map_idx;
5012 
5013 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5014 			struct bnxt_napi *bnapi = txr->bnapi;
5015 			struct bnxt_cp_ring_info *cpr, *cpr2;
5016 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5017 
5018 			cpr = &bnapi->cp_ring;
5019 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5020 			ring = &cpr2->cp_ring_struct;
5021 			ring->handle = BNXT_TX_HDL;
5022 			map_idx = bnapi->index;
5023 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5024 			if (rc)
5025 				goto err_out;
5026 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5027 				    ring->fw_ring_id);
5028 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5029 		}
5030 		ring = &txr->tx_ring_struct;
5031 		map_idx = i;
5032 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5033 		if (rc)
5034 			goto err_out;
5035 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5036 	}
5037 
5038 	type = HWRM_RING_ALLOC_RX;
5039 	for (i = 0; i < bp->rx_nr_rings; i++) {
5040 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5041 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5042 		struct bnxt_napi *bnapi = rxr->bnapi;
5043 		u32 map_idx = bnapi->index;
5044 
5045 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5046 		if (rc)
5047 			goto err_out;
5048 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5049 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5050 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5051 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5052 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5053 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5054 			struct bnxt_cp_ring_info *cpr2;
5055 
5056 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5057 			ring = &cpr2->cp_ring_struct;
5058 			ring->handle = BNXT_RX_HDL;
5059 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5060 			if (rc)
5061 				goto err_out;
5062 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5063 				    ring->fw_ring_id);
5064 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5065 		}
5066 	}
5067 
5068 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5069 		type = HWRM_RING_ALLOC_AGG;
5070 		for (i = 0; i < bp->rx_nr_rings; i++) {
5071 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5072 			struct bnxt_ring_struct *ring =
5073 						&rxr->rx_agg_ring_struct;
5074 			u32 grp_idx = ring->grp_idx;
5075 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5076 
5077 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5078 			if (rc)
5079 				goto err_out;
5080 
5081 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5082 				    ring->fw_ring_id);
5083 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5084 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5085 		}
5086 	}
5087 err_out:
5088 	return rc;
5089 }
5090 
5091 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5092 				   struct bnxt_ring_struct *ring,
5093 				   u32 ring_type, int cmpl_ring_id)
5094 {
5095 	int rc;
5096 	struct hwrm_ring_free_input req = {0};
5097 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5098 	u16 error_code;
5099 
5100 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5101 	req.ring_type = ring_type;
5102 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
5103 
5104 	mutex_lock(&bp->hwrm_cmd_lock);
5105 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5106 	error_code = le16_to_cpu(resp->error_code);
5107 	mutex_unlock(&bp->hwrm_cmd_lock);
5108 
5109 	if (rc || error_code) {
5110 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5111 			   ring_type, rc, error_code);
5112 		return -EIO;
5113 	}
5114 	return 0;
5115 }
5116 
5117 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5118 {
5119 	u32 type;
5120 	int i;
5121 
5122 	if (!bp->bnapi)
5123 		return;
5124 
5125 	for (i = 0; i < bp->tx_nr_rings; i++) {
5126 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5127 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5128 		u32 cmpl_ring_id;
5129 
5130 		cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5131 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5132 			hwrm_ring_free_send_msg(bp, ring,
5133 						RING_FREE_REQ_RING_TYPE_TX,
5134 						close_path ? cmpl_ring_id :
5135 						INVALID_HW_RING_ID);
5136 			ring->fw_ring_id = INVALID_HW_RING_ID;
5137 		}
5138 	}
5139 
5140 	for (i = 0; i < bp->rx_nr_rings; i++) {
5141 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5142 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5143 		u32 grp_idx = rxr->bnapi->index;
5144 		u32 cmpl_ring_id;
5145 
5146 		cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5147 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5148 			hwrm_ring_free_send_msg(bp, ring,
5149 						RING_FREE_REQ_RING_TYPE_RX,
5150 						close_path ? cmpl_ring_id :
5151 						INVALID_HW_RING_ID);
5152 			ring->fw_ring_id = INVALID_HW_RING_ID;
5153 			bp->grp_info[grp_idx].rx_fw_ring_id =
5154 				INVALID_HW_RING_ID;
5155 		}
5156 	}
5157 
5158 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5159 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5160 	else
5161 		type = RING_FREE_REQ_RING_TYPE_RX;
5162 	for (i = 0; i < bp->rx_nr_rings; i++) {
5163 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5164 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5165 		u32 grp_idx = rxr->bnapi->index;
5166 		u32 cmpl_ring_id;
5167 
5168 		cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5169 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5170 			hwrm_ring_free_send_msg(bp, ring, type,
5171 						close_path ? cmpl_ring_id :
5172 						INVALID_HW_RING_ID);
5173 			ring->fw_ring_id = INVALID_HW_RING_ID;
5174 			bp->grp_info[grp_idx].agg_fw_ring_id =
5175 				INVALID_HW_RING_ID;
5176 		}
5177 	}
5178 
5179 	/* The completion rings are about to be freed.  After that the
5180 	 * IRQ doorbell will not work anymore.  So we need to disable
5181 	 * IRQ here.
5182 	 */
5183 	bnxt_disable_int_sync(bp);
5184 
5185 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5186 		type = RING_FREE_REQ_RING_TYPE_NQ;
5187 	else
5188 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5189 	for (i = 0; i < bp->cp_nr_rings; i++) {
5190 		struct bnxt_napi *bnapi = bp->bnapi[i];
5191 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5192 		struct bnxt_ring_struct *ring;
5193 		int j;
5194 
5195 		for (j = 0; j < 2; j++) {
5196 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5197 
5198 			if (cpr2) {
5199 				ring = &cpr2->cp_ring_struct;
5200 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5201 					continue;
5202 				hwrm_ring_free_send_msg(bp, ring,
5203 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5204 					INVALID_HW_RING_ID);
5205 				ring->fw_ring_id = INVALID_HW_RING_ID;
5206 			}
5207 		}
5208 		ring = &cpr->cp_ring_struct;
5209 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5210 			hwrm_ring_free_send_msg(bp, ring, type,
5211 						INVALID_HW_RING_ID);
5212 			ring->fw_ring_id = INVALID_HW_RING_ID;
5213 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5214 		}
5215 	}
5216 }
5217 
5218 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5219 			   bool shared);
5220 
5221 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5222 {
5223 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5224 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5225 	struct hwrm_func_qcfg_input req = {0};
5226 	int rc;
5227 
5228 	if (bp->hwrm_spec_code < 0x10601)
5229 		return 0;
5230 
5231 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5232 	req.fid = cpu_to_le16(0xffff);
5233 	mutex_lock(&bp->hwrm_cmd_lock);
5234 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5235 	if (rc) {
5236 		mutex_unlock(&bp->hwrm_cmd_lock);
5237 		return -EIO;
5238 	}
5239 
5240 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5241 	if (BNXT_NEW_RM(bp)) {
5242 		u16 cp, stats;
5243 
5244 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5245 		hw_resc->resv_hw_ring_grps =
5246 			le32_to_cpu(resp->alloc_hw_ring_grps);
5247 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5248 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5249 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5250 		hw_resc->resv_irqs = cp;
5251 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5252 			int rx = hw_resc->resv_rx_rings;
5253 			int tx = hw_resc->resv_tx_rings;
5254 
5255 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5256 				rx >>= 1;
5257 			if (cp < (rx + tx)) {
5258 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
5259 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
5260 					rx <<= 1;
5261 				hw_resc->resv_rx_rings = rx;
5262 				hw_resc->resv_tx_rings = tx;
5263 			}
5264 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5265 			hw_resc->resv_hw_ring_grps = rx;
5266 		}
5267 		hw_resc->resv_cp_rings = cp;
5268 		hw_resc->resv_stat_ctxs = stats;
5269 	}
5270 	mutex_unlock(&bp->hwrm_cmd_lock);
5271 	return 0;
5272 }
5273 
5274 /* Caller must hold bp->hwrm_cmd_lock */
5275 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5276 {
5277 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5278 	struct hwrm_func_qcfg_input req = {0};
5279 	int rc;
5280 
5281 	if (bp->hwrm_spec_code < 0x10601)
5282 		return 0;
5283 
5284 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5285 	req.fid = cpu_to_le16(fid);
5286 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5287 	if (!rc)
5288 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5289 
5290 	return rc;
5291 }
5292 
5293 static bool bnxt_rfs_supported(struct bnxt *bp);
5294 
5295 static void
5296 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5297 			     int tx_rings, int rx_rings, int ring_grps,
5298 			     int cp_rings, int stats, int vnics)
5299 {
5300 	u32 enables = 0;
5301 
5302 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5303 	req->fid = cpu_to_le16(0xffff);
5304 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5305 	req->num_tx_rings = cpu_to_le16(tx_rings);
5306 	if (BNXT_NEW_RM(bp)) {
5307 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5308 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5309 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5310 			enables |= tx_rings + ring_grps ?
5311 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
5312 				   FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5313 			enables |= rx_rings ?
5314 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5315 		} else {
5316 			enables |= cp_rings ?
5317 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
5318 				   FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5319 			enables |= ring_grps ?
5320 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5321 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5322 		}
5323 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5324 
5325 		req->num_rx_rings = cpu_to_le16(rx_rings);
5326 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5327 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5328 			req->num_msix = cpu_to_le16(cp_rings);
5329 			req->num_rsscos_ctxs =
5330 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5331 		} else {
5332 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
5333 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5334 			req->num_rsscos_ctxs = cpu_to_le16(1);
5335 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5336 			    bnxt_rfs_supported(bp))
5337 				req->num_rsscos_ctxs =
5338 					cpu_to_le16(ring_grps + 1);
5339 		}
5340 		req->num_stat_ctxs = cpu_to_le16(stats);
5341 		req->num_vnics = cpu_to_le16(vnics);
5342 	}
5343 	req->enables = cpu_to_le32(enables);
5344 }
5345 
5346 static void
5347 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5348 			     struct hwrm_func_vf_cfg_input *req, int tx_rings,
5349 			     int rx_rings, int ring_grps, int cp_rings,
5350 			     int stats, int vnics)
5351 {
5352 	u32 enables = 0;
5353 
5354 	bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5355 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5356 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5357 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5358 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5359 		enables |= tx_rings + ring_grps ?
5360 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
5361 			   FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5362 	} else {
5363 		enables |= cp_rings ?
5364 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
5365 			   FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5366 		enables |= ring_grps ?
5367 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5368 	}
5369 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5370 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5371 
5372 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5373 	req->num_tx_rings = cpu_to_le16(tx_rings);
5374 	req->num_rx_rings = cpu_to_le16(rx_rings);
5375 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5376 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5377 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5378 	} else {
5379 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
5380 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5381 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5382 	}
5383 	req->num_stat_ctxs = cpu_to_le16(stats);
5384 	req->num_vnics = cpu_to_le16(vnics);
5385 
5386 	req->enables = cpu_to_le32(enables);
5387 }
5388 
5389 static int
5390 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5391 			   int ring_grps, int cp_rings, int stats, int vnics)
5392 {
5393 	struct hwrm_func_cfg_input req = {0};
5394 	int rc;
5395 
5396 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5397 				     cp_rings, stats, vnics);
5398 	if (!req.enables)
5399 		return 0;
5400 
5401 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5402 	if (rc)
5403 		return -ENOMEM;
5404 
5405 	if (bp->hwrm_spec_code < 0x10601)
5406 		bp->hw_resc.resv_tx_rings = tx_rings;
5407 
5408 	rc = bnxt_hwrm_get_rings(bp);
5409 	return rc;
5410 }
5411 
5412 static int
5413 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5414 			   int ring_grps, int cp_rings, int stats, int vnics)
5415 {
5416 	struct hwrm_func_vf_cfg_input req = {0};
5417 	int rc;
5418 
5419 	if (!BNXT_NEW_RM(bp)) {
5420 		bp->hw_resc.resv_tx_rings = tx_rings;
5421 		return 0;
5422 	}
5423 
5424 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5425 				     cp_rings, stats, vnics);
5426 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5427 	if (rc)
5428 		return -ENOMEM;
5429 
5430 	rc = bnxt_hwrm_get_rings(bp);
5431 	return rc;
5432 }
5433 
5434 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5435 				   int cp, int stat, int vnic)
5436 {
5437 	if (BNXT_PF(bp))
5438 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5439 						  vnic);
5440 	else
5441 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5442 						  vnic);
5443 }
5444 
5445 int bnxt_nq_rings_in_use(struct bnxt *bp)
5446 {
5447 	int cp = bp->cp_nr_rings;
5448 	int ulp_msix, ulp_base;
5449 
5450 	ulp_msix = bnxt_get_ulp_msix_num(bp);
5451 	if (ulp_msix) {
5452 		ulp_base = bnxt_get_ulp_msix_base(bp);
5453 		cp += ulp_msix;
5454 		if ((ulp_base + ulp_msix) > cp)
5455 			cp = ulp_base + ulp_msix;
5456 	}
5457 	return cp;
5458 }
5459 
5460 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5461 {
5462 	int cp;
5463 
5464 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5465 		return bnxt_nq_rings_in_use(bp);
5466 
5467 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
5468 	return cp;
5469 }
5470 
5471 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5472 {
5473 	return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp);
5474 }
5475 
5476 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5477 {
5478 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5479 	int cp = bnxt_cp_rings_in_use(bp);
5480 	int nq = bnxt_nq_rings_in_use(bp);
5481 	int rx = bp->rx_nr_rings, stat;
5482 	int vnic = 1, grp = rx;
5483 
5484 	if (bp->hwrm_spec_code < 0x10601)
5485 		return false;
5486 
5487 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5488 		return true;
5489 
5490 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5491 		vnic = rx + 1;
5492 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5493 		rx <<= 1;
5494 	stat = bnxt_get_func_stat_ctxs(bp);
5495 	if (BNXT_NEW_RM(bp) &&
5496 	    (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5497 	     hw_resc->resv_irqs < nq || hw_resc->resv_vnics != vnic ||
5498 	     hw_resc->resv_stat_ctxs != stat ||
5499 	     (hw_resc->resv_hw_ring_grps != grp &&
5500 	      !(bp->flags & BNXT_FLAG_CHIP_P5))))
5501 		return true;
5502 	return false;
5503 }
5504 
5505 static int __bnxt_reserve_rings(struct bnxt *bp)
5506 {
5507 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5508 	int cp = bnxt_nq_rings_in_use(bp);
5509 	int tx = bp->tx_nr_rings;
5510 	int rx = bp->rx_nr_rings;
5511 	int grp, rx_rings, rc;
5512 	int vnic = 1, stat;
5513 	bool sh = false;
5514 
5515 	if (!bnxt_need_reserve_rings(bp))
5516 		return 0;
5517 
5518 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5519 		sh = true;
5520 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5521 		vnic = rx + 1;
5522 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5523 		rx <<= 1;
5524 	grp = bp->rx_nr_rings;
5525 	stat = bnxt_get_func_stat_ctxs(bp);
5526 
5527 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5528 	if (rc)
5529 		return rc;
5530 
5531 	tx = hw_resc->resv_tx_rings;
5532 	if (BNXT_NEW_RM(bp)) {
5533 		rx = hw_resc->resv_rx_rings;
5534 		cp = hw_resc->resv_irqs;
5535 		grp = hw_resc->resv_hw_ring_grps;
5536 		vnic = hw_resc->resv_vnics;
5537 		stat = hw_resc->resv_stat_ctxs;
5538 	}
5539 
5540 	rx_rings = rx;
5541 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5542 		if (rx >= 2) {
5543 			rx_rings = rx >> 1;
5544 		} else {
5545 			if (netif_running(bp->dev))
5546 				return -ENOMEM;
5547 
5548 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5549 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5550 			bp->dev->hw_features &= ~NETIF_F_LRO;
5551 			bp->dev->features &= ~NETIF_F_LRO;
5552 			bnxt_set_ring_params(bp);
5553 		}
5554 	}
5555 	rx_rings = min_t(int, rx_rings, grp);
5556 	cp = min_t(int, cp, bp->cp_nr_rings);
5557 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
5558 		stat -= bnxt_get_ulp_stat_ctxs(bp);
5559 	cp = min_t(int, cp, stat);
5560 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5561 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5562 		rx = rx_rings << 1;
5563 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
5564 	bp->tx_nr_rings = tx;
5565 	bp->rx_nr_rings = rx_rings;
5566 	bp->cp_nr_rings = cp;
5567 
5568 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
5569 		return -ENOMEM;
5570 
5571 	return rc;
5572 }
5573 
5574 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5575 				    int ring_grps, int cp_rings, int stats,
5576 				    int vnics)
5577 {
5578 	struct hwrm_func_vf_cfg_input req = {0};
5579 	u32 flags;
5580 	int rc;
5581 
5582 	if (!BNXT_NEW_RM(bp))
5583 		return 0;
5584 
5585 	__bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5586 				     cp_rings, stats, vnics);
5587 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
5588 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5589 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5590 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5591 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
5592 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
5593 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5594 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5595 
5596 	req.flags = cpu_to_le32(flags);
5597 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5598 	if (rc)
5599 		return -ENOMEM;
5600 	return 0;
5601 }
5602 
5603 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5604 				    int ring_grps, int cp_rings, int stats,
5605 				    int vnics)
5606 {
5607 	struct hwrm_func_cfg_input req = {0};
5608 	u32 flags;
5609 	int rc;
5610 
5611 	__bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5612 				     cp_rings, stats, vnics);
5613 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
5614 	if (BNXT_NEW_RM(bp)) {
5615 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
5616 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
5617 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
5618 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
5619 		if (bp->flags & BNXT_FLAG_CHIP_P5)
5620 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
5621 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
5622 		else
5623 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
5624 	}
5625 
5626 	req.flags = cpu_to_le32(flags);
5627 	rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5628 	if (rc)
5629 		return -ENOMEM;
5630 	return 0;
5631 }
5632 
5633 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5634 				 int ring_grps, int cp_rings, int stats,
5635 				 int vnics)
5636 {
5637 	if (bp->hwrm_spec_code < 0x10801)
5638 		return 0;
5639 
5640 	if (BNXT_PF(bp))
5641 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
5642 						ring_grps, cp_rings, stats,
5643 						vnics);
5644 
5645 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
5646 					cp_rings, stats, vnics);
5647 }
5648 
5649 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
5650 {
5651 	struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5652 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5653 	struct hwrm_ring_aggint_qcaps_input req = {0};
5654 	int rc;
5655 
5656 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
5657 	coal_cap->num_cmpl_dma_aggr_max = 63;
5658 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
5659 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
5660 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
5661 	coal_cap->int_lat_tmr_min_max = 65535;
5662 	coal_cap->int_lat_tmr_max_max = 65535;
5663 	coal_cap->num_cmpl_aggr_int_max = 65535;
5664 	coal_cap->timer_units = 80;
5665 
5666 	if (bp->hwrm_spec_code < 0x10902)
5667 		return;
5668 
5669 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
5670 	mutex_lock(&bp->hwrm_cmd_lock);
5671 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5672 	if (!rc) {
5673 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
5674 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
5675 		coal_cap->num_cmpl_dma_aggr_max =
5676 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
5677 		coal_cap->num_cmpl_dma_aggr_during_int_max =
5678 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
5679 		coal_cap->cmpl_aggr_dma_tmr_max =
5680 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
5681 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
5682 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
5683 		coal_cap->int_lat_tmr_min_max =
5684 			le16_to_cpu(resp->int_lat_tmr_min_max);
5685 		coal_cap->int_lat_tmr_max_max =
5686 			le16_to_cpu(resp->int_lat_tmr_max_max);
5687 		coal_cap->num_cmpl_aggr_int_max =
5688 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
5689 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
5690 	}
5691 	mutex_unlock(&bp->hwrm_cmd_lock);
5692 }
5693 
5694 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
5695 {
5696 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5697 
5698 	return usec * 1000 / coal_cap->timer_units;
5699 }
5700 
5701 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
5702 	struct bnxt_coal *hw_coal,
5703 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
5704 {
5705 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5706 	u32 cmpl_params = coal_cap->cmpl_params;
5707 	u16 val, tmr, max, flags = 0;
5708 
5709 	max = hw_coal->bufs_per_record * 128;
5710 	if (hw_coal->budget)
5711 		max = hw_coal->bufs_per_record * hw_coal->budget;
5712 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
5713 
5714 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
5715 	req->num_cmpl_aggr_int = cpu_to_le16(val);
5716 
5717 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
5718 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
5719 
5720 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
5721 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
5722 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
5723 
5724 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
5725 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
5726 	req->int_lat_tmr_max = cpu_to_le16(tmr);
5727 
5728 	/* min timer set to 1/2 of interrupt timer */
5729 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
5730 		val = tmr / 2;
5731 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
5732 		req->int_lat_tmr_min = cpu_to_le16(val);
5733 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5734 	}
5735 
5736 	/* buf timer set to 1/4 of interrupt timer */
5737 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
5738 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
5739 
5740 	if (cmpl_params &
5741 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
5742 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
5743 		val = clamp_t(u16, tmr, 1,
5744 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
5745 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
5746 		req->enables |=
5747 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
5748 	}
5749 
5750 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
5751 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
5752 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
5753 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
5754 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
5755 	req->flags = cpu_to_le16(flags);
5756 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
5757 }
5758 
5759 /* Caller holds bp->hwrm_cmd_lock */
5760 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
5761 				   struct bnxt_coal *hw_coal)
5762 {
5763 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
5764 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5765 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
5766 	u32 nq_params = coal_cap->nq_params;
5767 	u16 tmr;
5768 
5769 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
5770 		return 0;
5771 
5772 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
5773 			       -1, -1);
5774 	req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
5775 	req.flags =
5776 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
5777 
5778 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
5779 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
5780 	req.int_lat_tmr_min = cpu_to_le16(tmr);
5781 	req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
5782 	return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5783 }
5784 
5785 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
5786 {
5787 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
5788 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5789 	struct bnxt_coal coal;
5790 
5791 	/* Tick values in micro seconds.
5792 	 * 1 coal_buf x bufs_per_record = 1 completion record.
5793 	 */
5794 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
5795 
5796 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
5797 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
5798 
5799 	if (!bnapi->rx_ring)
5800 		return -ENODEV;
5801 
5802 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5803 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5804 
5805 	bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
5806 
5807 	req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
5808 
5809 	return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
5810 				 HWRM_CMD_TIMEOUT);
5811 }
5812 
5813 int bnxt_hwrm_set_coal(struct bnxt *bp)
5814 {
5815 	int i, rc = 0;
5816 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
5817 							   req_tx = {0}, *req;
5818 
5819 	bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
5820 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5821 	bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
5822 			       HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
5823 
5824 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
5825 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
5826 
5827 	mutex_lock(&bp->hwrm_cmd_lock);
5828 	for (i = 0; i < bp->cp_nr_rings; i++) {
5829 		struct bnxt_napi *bnapi = bp->bnapi[i];
5830 		struct bnxt_coal *hw_coal;
5831 		u16 ring_id;
5832 
5833 		req = &req_rx;
5834 		if (!bnapi->rx_ring) {
5835 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5836 			req = &req_tx;
5837 		} else {
5838 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
5839 		}
5840 		req->ring_id = cpu_to_le16(ring_id);
5841 
5842 		rc = _hwrm_send_message(bp, req, sizeof(*req),
5843 					HWRM_CMD_TIMEOUT);
5844 		if (rc)
5845 			break;
5846 
5847 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5848 			continue;
5849 
5850 		if (bnapi->rx_ring && bnapi->tx_ring) {
5851 			req = &req_tx;
5852 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
5853 			req->ring_id = cpu_to_le16(ring_id);
5854 			rc = _hwrm_send_message(bp, req, sizeof(*req),
5855 						HWRM_CMD_TIMEOUT);
5856 			if (rc)
5857 				break;
5858 		}
5859 		if (bnapi->rx_ring)
5860 			hw_coal = &bp->rx_coal;
5861 		else
5862 			hw_coal = &bp->tx_coal;
5863 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
5864 	}
5865 	mutex_unlock(&bp->hwrm_cmd_lock);
5866 	return rc;
5867 }
5868 
5869 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5870 {
5871 	int rc = 0, i;
5872 	struct hwrm_stat_ctx_free_input req = {0};
5873 
5874 	if (!bp->bnapi)
5875 		return 0;
5876 
5877 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5878 		return 0;
5879 
5880 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5881 
5882 	mutex_lock(&bp->hwrm_cmd_lock);
5883 	for (i = 0; i < bp->cp_nr_rings; i++) {
5884 		struct bnxt_napi *bnapi = bp->bnapi[i];
5885 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5886 
5887 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5888 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5889 
5890 			rc = _hwrm_send_message(bp, &req, sizeof(req),
5891 						HWRM_CMD_TIMEOUT);
5892 			if (rc)
5893 				break;
5894 
5895 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5896 		}
5897 	}
5898 	mutex_unlock(&bp->hwrm_cmd_lock);
5899 	return rc;
5900 }
5901 
5902 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
5903 {
5904 	int rc = 0, i;
5905 	struct hwrm_stat_ctx_alloc_input req = {0};
5906 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5907 
5908 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5909 		return 0;
5910 
5911 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
5912 
5913 	req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
5914 
5915 	mutex_lock(&bp->hwrm_cmd_lock);
5916 	for (i = 0; i < bp->cp_nr_rings; i++) {
5917 		struct bnxt_napi *bnapi = bp->bnapi[i];
5918 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5919 
5920 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
5921 
5922 		rc = _hwrm_send_message(bp, &req, sizeof(req),
5923 					HWRM_CMD_TIMEOUT);
5924 		if (rc)
5925 			break;
5926 
5927 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5928 
5929 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5930 	}
5931 	mutex_unlock(&bp->hwrm_cmd_lock);
5932 	return rc;
5933 }
5934 
5935 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5936 {
5937 	struct hwrm_func_qcfg_input req = {0};
5938 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5939 	u16 flags;
5940 	int rc;
5941 
5942 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5943 	req.fid = cpu_to_le16(0xffff);
5944 	mutex_lock(&bp->hwrm_cmd_lock);
5945 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5946 	if (rc)
5947 		goto func_qcfg_exit;
5948 
5949 #ifdef CONFIG_BNXT_SRIOV
5950 	if (BNXT_VF(bp)) {
5951 		struct bnxt_vf_info *vf = &bp->vf;
5952 
5953 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5954 	}
5955 #endif
5956 	flags = le16_to_cpu(resp->flags);
5957 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5958 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5959 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
5960 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5961 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
5962 	}
5963 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
5964 		bp->flags |= BNXT_FLAG_MULTI_HOST;
5965 
5966 	switch (resp->port_partition_type) {
5967 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
5968 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
5969 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
5970 		bp->port_partition_type = resp->port_partition_type;
5971 		break;
5972 	}
5973 	if (bp->hwrm_spec_code < 0x10707 ||
5974 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
5975 		bp->br_mode = BRIDGE_MODE_VEB;
5976 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
5977 		bp->br_mode = BRIDGE_MODE_VEPA;
5978 	else
5979 		bp->br_mode = BRIDGE_MODE_UNDEF;
5980 
5981 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
5982 	if (!bp->max_mtu)
5983 		bp->max_mtu = BNXT_MAX_MTU;
5984 
5985 func_qcfg_exit:
5986 	mutex_unlock(&bp->hwrm_cmd_lock);
5987 	return rc;
5988 }
5989 
5990 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
5991 {
5992 	struct hwrm_func_backing_store_qcaps_input req = {0};
5993 	struct hwrm_func_backing_store_qcaps_output *resp =
5994 		bp->hwrm_cmd_resp_addr;
5995 	int rc;
5996 
5997 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
5998 		return 0;
5999 
6000 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6001 	mutex_lock(&bp->hwrm_cmd_lock);
6002 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6003 	if (!rc) {
6004 		struct bnxt_ctx_pg_info *ctx_pg;
6005 		struct bnxt_ctx_mem_info *ctx;
6006 		int i;
6007 
6008 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6009 		if (!ctx) {
6010 			rc = -ENOMEM;
6011 			goto ctx_err;
6012 		}
6013 		ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
6014 		if (!ctx_pg) {
6015 			kfree(ctx);
6016 			rc = -ENOMEM;
6017 			goto ctx_err;
6018 		}
6019 		for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
6020 			ctx->tqm_mem[i] = ctx_pg;
6021 
6022 		bp->ctx = ctx;
6023 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6024 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6025 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6026 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6027 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6028 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6029 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6030 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6031 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6032 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6033 		ctx->vnic_max_vnic_entries =
6034 			le16_to_cpu(resp->vnic_max_vnic_entries);
6035 		ctx->vnic_max_ring_table_entries =
6036 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6037 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6038 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6039 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6040 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6041 		ctx->tqm_min_entries_per_ring =
6042 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6043 		ctx->tqm_max_entries_per_ring =
6044 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6045 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6046 		if (!ctx->tqm_entries_multiple)
6047 			ctx->tqm_entries_multiple = 1;
6048 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6049 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6050 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6051 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6052 	} else {
6053 		rc = 0;
6054 	}
6055 ctx_err:
6056 	mutex_unlock(&bp->hwrm_cmd_lock);
6057 	return rc;
6058 }
6059 
6060 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6061 				  __le64 *pg_dir)
6062 {
6063 	u8 pg_size = 0;
6064 
6065 	if (BNXT_PAGE_SHIFT == 13)
6066 		pg_size = 1 << 4;
6067 	else if (BNXT_PAGE_SIZE == 16)
6068 		pg_size = 2 << 4;
6069 
6070 	*pg_attr = pg_size;
6071 	if (rmem->depth >= 1) {
6072 		if (rmem->depth == 2)
6073 			*pg_attr |= 2;
6074 		else
6075 			*pg_attr |= 1;
6076 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6077 	} else {
6078 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6079 	}
6080 }
6081 
6082 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6083 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6084 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6085 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6086 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6087 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6088 
6089 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6090 {
6091 	struct hwrm_func_backing_store_cfg_input req = {0};
6092 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6093 	struct bnxt_ctx_pg_info *ctx_pg;
6094 	__le32 *num_entries;
6095 	__le64 *pg_dir;
6096 	u8 *pg_attr;
6097 	int i, rc;
6098 	u32 ena;
6099 
6100 	if (!ctx)
6101 		return 0;
6102 
6103 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6104 	req.enables = cpu_to_le32(enables);
6105 
6106 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6107 		ctx_pg = &ctx->qp_mem;
6108 		req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6109 		req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6110 		req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6111 		req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6112 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6113 				      &req.qpc_pg_size_qpc_lvl,
6114 				      &req.qpc_page_dir);
6115 	}
6116 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6117 		ctx_pg = &ctx->srq_mem;
6118 		req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6119 		req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6120 		req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6121 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6122 				      &req.srq_pg_size_srq_lvl,
6123 				      &req.srq_page_dir);
6124 	}
6125 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6126 		ctx_pg = &ctx->cq_mem;
6127 		req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6128 		req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6129 		req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6130 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6131 				      &req.cq_page_dir);
6132 	}
6133 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6134 		ctx_pg = &ctx->vnic_mem;
6135 		req.vnic_num_vnic_entries =
6136 			cpu_to_le16(ctx->vnic_max_vnic_entries);
6137 		req.vnic_num_ring_table_entries =
6138 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
6139 		req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6140 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6141 				      &req.vnic_pg_size_vnic_lvl,
6142 				      &req.vnic_page_dir);
6143 	}
6144 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6145 		ctx_pg = &ctx->stat_mem;
6146 		req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6147 		req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6148 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6149 				      &req.stat_pg_size_stat_lvl,
6150 				      &req.stat_page_dir);
6151 	}
6152 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6153 		ctx_pg = &ctx->mrav_mem;
6154 		req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6155 		req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6156 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6157 				      &req.mrav_pg_size_mrav_lvl,
6158 				      &req.mrav_page_dir);
6159 	}
6160 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6161 		ctx_pg = &ctx->tim_mem;
6162 		req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6163 		req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6164 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6165 				      &req.tim_pg_size_tim_lvl,
6166 				      &req.tim_page_dir);
6167 	}
6168 	for (i = 0, num_entries = &req.tqm_sp_num_entries,
6169 	     pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6170 	     pg_dir = &req.tqm_sp_page_dir,
6171 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6172 	     i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6173 		if (!(enables & ena))
6174 			continue;
6175 
6176 		req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6177 		ctx_pg = ctx->tqm_mem[i];
6178 		*num_entries = cpu_to_le32(ctx_pg->entries);
6179 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6180 	}
6181 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6182 	if (rc)
6183 		rc = -EIO;
6184 	return rc;
6185 }
6186 
6187 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6188 				  struct bnxt_ctx_pg_info *ctx_pg)
6189 {
6190 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6191 
6192 	rmem->page_size = BNXT_PAGE_SIZE;
6193 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
6194 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
6195 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6196 	if (rmem->depth >= 1)
6197 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6198 	return bnxt_alloc_ring(bp, rmem);
6199 }
6200 
6201 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6202 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6203 				  u8 depth)
6204 {
6205 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6206 	int rc;
6207 
6208 	if (!mem_size)
6209 		return 0;
6210 
6211 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6212 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6213 		ctx_pg->nr_pages = 0;
6214 		return -EINVAL;
6215 	}
6216 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6217 		int nr_tbls, i;
6218 
6219 		rmem->depth = 2;
6220 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6221 					     GFP_KERNEL);
6222 		if (!ctx_pg->ctx_pg_tbl)
6223 			return -ENOMEM;
6224 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6225 		rmem->nr_pages = nr_tbls;
6226 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6227 		if (rc)
6228 			return rc;
6229 		for (i = 0; i < nr_tbls; i++) {
6230 			struct bnxt_ctx_pg_info *pg_tbl;
6231 
6232 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6233 			if (!pg_tbl)
6234 				return -ENOMEM;
6235 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6236 			rmem = &pg_tbl->ring_mem;
6237 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6238 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6239 			rmem->depth = 1;
6240 			rmem->nr_pages = MAX_CTX_PAGES;
6241 			if (i == (nr_tbls - 1)) {
6242 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6243 
6244 				if (rem)
6245 					rmem->nr_pages = rem;
6246 			}
6247 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6248 			if (rc)
6249 				break;
6250 		}
6251 	} else {
6252 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6253 		if (rmem->nr_pages > 1 || depth)
6254 			rmem->depth = 1;
6255 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6256 	}
6257 	return rc;
6258 }
6259 
6260 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6261 				  struct bnxt_ctx_pg_info *ctx_pg)
6262 {
6263 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6264 
6265 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6266 	    ctx_pg->ctx_pg_tbl) {
6267 		int i, nr_tbls = rmem->nr_pages;
6268 
6269 		for (i = 0; i < nr_tbls; i++) {
6270 			struct bnxt_ctx_pg_info *pg_tbl;
6271 			struct bnxt_ring_mem_info *rmem2;
6272 
6273 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
6274 			if (!pg_tbl)
6275 				continue;
6276 			rmem2 = &pg_tbl->ring_mem;
6277 			bnxt_free_ring(bp, rmem2);
6278 			ctx_pg->ctx_pg_arr[i] = NULL;
6279 			kfree(pg_tbl);
6280 			ctx_pg->ctx_pg_tbl[i] = NULL;
6281 		}
6282 		kfree(ctx_pg->ctx_pg_tbl);
6283 		ctx_pg->ctx_pg_tbl = NULL;
6284 	}
6285 	bnxt_free_ring(bp, rmem);
6286 	ctx_pg->nr_pages = 0;
6287 }
6288 
6289 static void bnxt_free_ctx_mem(struct bnxt *bp)
6290 {
6291 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6292 	int i;
6293 
6294 	if (!ctx)
6295 		return;
6296 
6297 	if (ctx->tqm_mem[0]) {
6298 		for (i = 0; i < bp->max_q + 1; i++)
6299 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6300 		kfree(ctx->tqm_mem[0]);
6301 		ctx->tqm_mem[0] = NULL;
6302 	}
6303 
6304 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6305 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6306 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6307 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6308 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6309 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6310 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6311 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6312 }
6313 
6314 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6315 {
6316 	struct bnxt_ctx_pg_info *ctx_pg;
6317 	struct bnxt_ctx_mem_info *ctx;
6318 	u32 mem_size, ena, entries;
6319 	u32 extra_srqs = 0;
6320 	u32 extra_qps = 0;
6321 	u8 pg_lvl = 1;
6322 	int i, rc;
6323 
6324 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6325 	if (rc) {
6326 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6327 			   rc);
6328 		return rc;
6329 	}
6330 	ctx = bp->ctx;
6331 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6332 		return 0;
6333 
6334 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
6335 		pg_lvl = 2;
6336 		extra_qps = 65536;
6337 		extra_srqs = 8192;
6338 	}
6339 
6340 	ctx_pg = &ctx->qp_mem;
6341 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6342 			  extra_qps;
6343 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
6344 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6345 	if (rc)
6346 		return rc;
6347 
6348 	ctx_pg = &ctx->srq_mem;
6349 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6350 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
6351 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6352 	if (rc)
6353 		return rc;
6354 
6355 	ctx_pg = &ctx->cq_mem;
6356 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6357 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
6358 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6359 	if (rc)
6360 		return rc;
6361 
6362 	ctx_pg = &ctx->vnic_mem;
6363 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
6364 			  ctx->vnic_max_ring_table_entries;
6365 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6366 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6367 	if (rc)
6368 		return rc;
6369 
6370 	ctx_pg = &ctx->stat_mem;
6371 	ctx_pg->entries = ctx->stat_max_entries;
6372 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
6373 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6374 	if (rc)
6375 		return rc;
6376 
6377 	ena = 0;
6378 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6379 		goto skip_rdma;
6380 
6381 	ctx_pg = &ctx->mrav_mem;
6382 	ctx_pg->entries = extra_qps * 4;
6383 	mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6384 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2);
6385 	if (rc)
6386 		return rc;
6387 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6388 
6389 	ctx_pg = &ctx->tim_mem;
6390 	ctx_pg->entries = ctx->qp_mem.entries;
6391 	mem_size = ctx->tim_entry_size * ctx_pg->entries;
6392 	rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6393 	if (rc)
6394 		return rc;
6395 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6396 
6397 skip_rdma:
6398 	entries = ctx->qp_max_l2_entries + extra_qps;
6399 	entries = roundup(entries, ctx->tqm_entries_multiple);
6400 	entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
6401 			  ctx->tqm_max_entries_per_ring);
6402 	for (i = 0; i < bp->max_q + 1; i++) {
6403 		ctx_pg = ctx->tqm_mem[i];
6404 		ctx_pg->entries = entries;
6405 		mem_size = ctx->tqm_entry_size * entries;
6406 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6407 		if (rc)
6408 			return rc;
6409 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6410 	}
6411 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6412 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6413 	if (rc)
6414 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6415 			   rc);
6416 	else
6417 		ctx->flags |= BNXT_CTX_FLAG_INITED;
6418 
6419 	return 0;
6420 }
6421 
6422 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6423 {
6424 	struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6425 	struct hwrm_func_resource_qcaps_input req = {0};
6426 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6427 	int rc;
6428 
6429 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6430 	req.fid = cpu_to_le16(0xffff);
6431 
6432 	mutex_lock(&bp->hwrm_cmd_lock);
6433 	rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6434 				       HWRM_CMD_TIMEOUT);
6435 	if (rc) {
6436 		rc = -EIO;
6437 		goto hwrm_func_resc_qcaps_exit;
6438 	}
6439 
6440 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6441 	if (!all)
6442 		goto hwrm_func_resc_qcaps_exit;
6443 
6444 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6445 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6446 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6447 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6448 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6449 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6450 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6451 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6452 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6453 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6454 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6455 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6456 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6457 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6458 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6459 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6460 
6461 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6462 		u16 max_msix = le16_to_cpu(resp->max_msix);
6463 
6464 		hw_resc->max_nqs = max_msix;
6465 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6466 	}
6467 
6468 	if (BNXT_PF(bp)) {
6469 		struct bnxt_pf_info *pf = &bp->pf;
6470 
6471 		pf->vf_resv_strategy =
6472 			le16_to_cpu(resp->vf_reservation_strategy);
6473 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6474 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6475 	}
6476 hwrm_func_resc_qcaps_exit:
6477 	mutex_unlock(&bp->hwrm_cmd_lock);
6478 	return rc;
6479 }
6480 
6481 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6482 {
6483 	int rc = 0;
6484 	struct hwrm_func_qcaps_input req = {0};
6485 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6486 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6487 	u32 flags;
6488 
6489 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6490 	req.fid = cpu_to_le16(0xffff);
6491 
6492 	mutex_lock(&bp->hwrm_cmd_lock);
6493 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6494 	if (rc)
6495 		goto hwrm_func_qcaps_exit;
6496 
6497 	flags = le32_to_cpu(resp->flags);
6498 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6499 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6500 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6501 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6502 
6503 	bp->tx_push_thresh = 0;
6504 	if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
6505 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6506 
6507 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6508 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6509 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6510 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6511 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
6512 	if (!hw_resc->max_hw_ring_grps)
6513 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
6514 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6515 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6516 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6517 
6518 	if (BNXT_PF(bp)) {
6519 		struct bnxt_pf_info *pf = &bp->pf;
6520 
6521 		pf->fw_fid = le16_to_cpu(resp->fid);
6522 		pf->port_id = le16_to_cpu(resp->port_id);
6523 		bp->dev->dev_port = pf->port_id;
6524 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
6525 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
6526 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
6527 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
6528 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
6529 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
6530 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
6531 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
6532 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
6533 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
6534 			bp->flags |= BNXT_FLAG_WOL_CAP;
6535 	} else {
6536 #ifdef CONFIG_BNXT_SRIOV
6537 		struct bnxt_vf_info *vf = &bp->vf;
6538 
6539 		vf->fw_fid = le16_to_cpu(resp->fid);
6540 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
6541 #endif
6542 	}
6543 
6544 hwrm_func_qcaps_exit:
6545 	mutex_unlock(&bp->hwrm_cmd_lock);
6546 	return rc;
6547 }
6548 
6549 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
6550 
6551 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
6552 {
6553 	int rc;
6554 
6555 	rc = __bnxt_hwrm_func_qcaps(bp);
6556 	if (rc)
6557 		return rc;
6558 	rc = bnxt_hwrm_queue_qportcfg(bp);
6559 	if (rc) {
6560 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
6561 		return rc;
6562 	}
6563 	if (bp->hwrm_spec_code >= 0x10803) {
6564 		rc = bnxt_alloc_ctx_mem(bp);
6565 		if (rc)
6566 			return rc;
6567 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
6568 		if (!rc)
6569 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
6570 	}
6571 	return 0;
6572 }
6573 
6574 static int bnxt_hwrm_func_reset(struct bnxt *bp)
6575 {
6576 	struct hwrm_func_reset_input req = {0};
6577 
6578 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
6579 	req.enables = 0;
6580 
6581 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
6582 }
6583 
6584 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
6585 {
6586 	int rc = 0;
6587 	struct hwrm_queue_qportcfg_input req = {0};
6588 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
6589 	u8 i, j, *qptr;
6590 	bool no_rdma;
6591 
6592 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
6593 
6594 	mutex_lock(&bp->hwrm_cmd_lock);
6595 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6596 	if (rc)
6597 		goto qportcfg_exit;
6598 
6599 	if (!resp->max_configurable_queues) {
6600 		rc = -EINVAL;
6601 		goto qportcfg_exit;
6602 	}
6603 	bp->max_tc = resp->max_configurable_queues;
6604 	bp->max_lltc = resp->max_configurable_lossless_queues;
6605 	if (bp->max_tc > BNXT_MAX_QUEUE)
6606 		bp->max_tc = BNXT_MAX_QUEUE;
6607 
6608 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
6609 	qptr = &resp->queue_id0;
6610 	for (i = 0, j = 0; i < bp->max_tc; i++) {
6611 		bp->q_info[j].queue_id = *qptr;
6612 		bp->q_ids[i] = *qptr++;
6613 		bp->q_info[j].queue_profile = *qptr++;
6614 		bp->tc_to_qidx[j] = j;
6615 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
6616 		    (no_rdma && BNXT_PF(bp)))
6617 			j++;
6618 	}
6619 	bp->max_q = bp->max_tc;
6620 	bp->max_tc = max_t(u8, j, 1);
6621 
6622 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
6623 		bp->max_tc = 1;
6624 
6625 	if (bp->max_lltc > bp->max_tc)
6626 		bp->max_lltc = bp->max_tc;
6627 
6628 qportcfg_exit:
6629 	mutex_unlock(&bp->hwrm_cmd_lock);
6630 	return rc;
6631 }
6632 
6633 static int bnxt_hwrm_ver_get(struct bnxt *bp)
6634 {
6635 	int rc;
6636 	struct hwrm_ver_get_input req = {0};
6637 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
6638 	u32 dev_caps_cfg;
6639 
6640 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
6641 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
6642 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
6643 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
6644 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
6645 	mutex_lock(&bp->hwrm_cmd_lock);
6646 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6647 	if (rc)
6648 		goto hwrm_ver_get_exit;
6649 
6650 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
6651 
6652 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
6653 			     resp->hwrm_intf_min_8b << 8 |
6654 			     resp->hwrm_intf_upd_8b;
6655 	if (resp->hwrm_intf_maj_8b < 1) {
6656 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
6657 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
6658 			    resp->hwrm_intf_upd_8b);
6659 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
6660 	}
6661 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
6662 		 resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
6663 		 resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
6664 
6665 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
6666 	if (!bp->hwrm_cmd_timeout)
6667 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
6668 
6669 	if (resp->hwrm_intf_maj_8b >= 1) {
6670 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
6671 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
6672 	}
6673 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
6674 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
6675 
6676 	bp->chip_num = le16_to_cpu(resp->chip_num);
6677 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
6678 	    !resp->chip_metal)
6679 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
6680 
6681 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
6682 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
6683 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
6684 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
6685 
6686 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
6687 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
6688 
6689 	if (dev_caps_cfg &
6690 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
6691 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
6692 
6693 	if (dev_caps_cfg &
6694 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
6695 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
6696 
6697 hwrm_ver_get_exit:
6698 	mutex_unlock(&bp->hwrm_cmd_lock);
6699 	return rc;
6700 }
6701 
6702 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
6703 {
6704 	struct hwrm_fw_set_time_input req = {0};
6705 	struct tm tm;
6706 	time64_t now = ktime_get_real_seconds();
6707 
6708 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
6709 	    bp->hwrm_spec_code < 0x10400)
6710 		return -EOPNOTSUPP;
6711 
6712 	time64_to_tm(now, 0, &tm);
6713 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
6714 	req.year = cpu_to_le16(1900 + tm.tm_year);
6715 	req.month = 1 + tm.tm_mon;
6716 	req.day = tm.tm_mday;
6717 	req.hour = tm.tm_hour;
6718 	req.minute = tm.tm_min;
6719 	req.second = tm.tm_sec;
6720 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6721 }
6722 
6723 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
6724 {
6725 	int rc;
6726 	struct bnxt_pf_info *pf = &bp->pf;
6727 	struct hwrm_port_qstats_input req = {0};
6728 
6729 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
6730 		return 0;
6731 
6732 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
6733 	req.port_id = cpu_to_le16(pf->port_id);
6734 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
6735 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
6736 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6737 	return rc;
6738 }
6739 
6740 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
6741 {
6742 	struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
6743 	struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
6744 	struct hwrm_port_qstats_ext_input req = {0};
6745 	struct bnxt_pf_info *pf = &bp->pf;
6746 	int rc;
6747 
6748 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
6749 		return 0;
6750 
6751 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
6752 	req.port_id = cpu_to_le16(pf->port_id);
6753 	req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
6754 	req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
6755 	req.tx_stat_size = cpu_to_le16(sizeof(struct tx_port_stats_ext));
6756 	req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
6757 	mutex_lock(&bp->hwrm_cmd_lock);
6758 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6759 	if (!rc) {
6760 		bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
6761 		bp->fw_tx_stats_ext_size = le16_to_cpu(resp->tx_stat_size) / 8;
6762 	} else {
6763 		bp->fw_rx_stats_ext_size = 0;
6764 		bp->fw_tx_stats_ext_size = 0;
6765 	}
6766 	if (bp->fw_tx_stats_ext_size <=
6767 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
6768 		mutex_unlock(&bp->hwrm_cmd_lock);
6769 		bp->pri2cos_valid = 0;
6770 		return rc;
6771 	}
6772 
6773 	bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
6774 	req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
6775 
6776 	rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
6777 	if (!rc) {
6778 		struct hwrm_queue_pri2cos_qcfg_output *resp2;
6779 		u8 *pri2cos;
6780 		int i, j;
6781 
6782 		resp2 = bp->hwrm_cmd_resp_addr;
6783 		pri2cos = &resp2->pri0_cos_queue_id;
6784 		for (i = 0; i < 8; i++) {
6785 			u8 queue_id = pri2cos[i];
6786 
6787 			for (j = 0; j < bp->max_q; j++) {
6788 				if (bp->q_ids[j] == queue_id)
6789 					bp->pri2cos[i] = j;
6790 			}
6791 		}
6792 		bp->pri2cos_valid = 1;
6793 	}
6794 	mutex_unlock(&bp->hwrm_cmd_lock);
6795 	return rc;
6796 }
6797 
6798 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
6799 {
6800 	if (bp->vxlan_port_cnt) {
6801 		bnxt_hwrm_tunnel_dst_port_free(
6802 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6803 	}
6804 	bp->vxlan_port_cnt = 0;
6805 	if (bp->nge_port_cnt) {
6806 		bnxt_hwrm_tunnel_dst_port_free(
6807 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6808 	}
6809 	bp->nge_port_cnt = 0;
6810 }
6811 
6812 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
6813 {
6814 	int rc, i;
6815 	u32 tpa_flags = 0;
6816 
6817 	if (set_tpa)
6818 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
6819 	for (i = 0; i < bp->nr_vnics; i++) {
6820 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
6821 		if (rc) {
6822 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
6823 				   i, rc);
6824 			return rc;
6825 		}
6826 	}
6827 	return 0;
6828 }
6829 
6830 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
6831 {
6832 	int i;
6833 
6834 	for (i = 0; i < bp->nr_vnics; i++)
6835 		bnxt_hwrm_vnic_set_rss(bp, i, false);
6836 }
6837 
6838 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
6839 				    bool irq_re_init)
6840 {
6841 	if (bp->vnic_info) {
6842 		bnxt_hwrm_clear_vnic_filter(bp);
6843 		/* clear all RSS setting before free vnic ctx */
6844 		bnxt_hwrm_clear_vnic_rss(bp);
6845 		bnxt_hwrm_vnic_ctx_free(bp);
6846 		/* before free the vnic, undo the vnic tpa settings */
6847 		if (bp->flags & BNXT_FLAG_TPA)
6848 			bnxt_set_tpa(bp, false);
6849 		bnxt_hwrm_vnic_free(bp);
6850 	}
6851 	bnxt_hwrm_ring_free(bp, close_path);
6852 	bnxt_hwrm_ring_grp_free(bp);
6853 	if (irq_re_init) {
6854 		bnxt_hwrm_stat_ctx_free(bp);
6855 		bnxt_hwrm_free_tunnel_ports(bp);
6856 	}
6857 }
6858 
6859 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
6860 {
6861 	struct hwrm_func_cfg_input req = {0};
6862 	int rc;
6863 
6864 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
6865 	req.fid = cpu_to_le16(0xffff);
6866 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
6867 	if (br_mode == BRIDGE_MODE_VEB)
6868 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
6869 	else if (br_mode == BRIDGE_MODE_VEPA)
6870 		req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
6871 	else
6872 		return -EINVAL;
6873 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6874 	if (rc)
6875 		rc = -EIO;
6876 	return rc;
6877 }
6878 
6879 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
6880 {
6881 	struct hwrm_func_cfg_input req = {0};
6882 	int rc;
6883 
6884 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
6885 		return 0;
6886 
6887 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
6888 	req.fid = cpu_to_le16(0xffff);
6889 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
6890 	req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
6891 	if (size == 128)
6892 		req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
6893 
6894 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6895 	if (rc)
6896 		rc = -EIO;
6897 	return rc;
6898 }
6899 
6900 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
6901 {
6902 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
6903 	int rc;
6904 
6905 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
6906 		goto skip_rss_ctx;
6907 
6908 	/* allocate context for vnic */
6909 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
6910 	if (rc) {
6911 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
6912 			   vnic_id, rc);
6913 		goto vnic_setup_err;
6914 	}
6915 	bp->rsscos_nr_ctxs++;
6916 
6917 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6918 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
6919 		if (rc) {
6920 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
6921 				   vnic_id, rc);
6922 			goto vnic_setup_err;
6923 		}
6924 		bp->rsscos_nr_ctxs++;
6925 	}
6926 
6927 skip_rss_ctx:
6928 	/* configure default vnic, ring grp */
6929 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
6930 	if (rc) {
6931 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
6932 			   vnic_id, rc);
6933 		goto vnic_setup_err;
6934 	}
6935 
6936 	/* Enable RSS hashing on vnic */
6937 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
6938 	if (rc) {
6939 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
6940 			   vnic_id, rc);
6941 		goto vnic_setup_err;
6942 	}
6943 
6944 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6945 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
6946 		if (rc) {
6947 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
6948 				   vnic_id, rc);
6949 		}
6950 	}
6951 
6952 vnic_setup_err:
6953 	return rc;
6954 }
6955 
6956 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
6957 {
6958 	int rc, i, nr_ctxs;
6959 
6960 	nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
6961 	for (i = 0; i < nr_ctxs; i++) {
6962 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
6963 		if (rc) {
6964 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
6965 				   vnic_id, i, rc);
6966 			break;
6967 		}
6968 		bp->rsscos_nr_ctxs++;
6969 	}
6970 	if (i < nr_ctxs)
6971 		return -ENOMEM;
6972 
6973 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
6974 	if (rc) {
6975 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
6976 			   vnic_id, rc);
6977 		return rc;
6978 	}
6979 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
6980 	if (rc) {
6981 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
6982 			   vnic_id, rc);
6983 		return rc;
6984 	}
6985 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6986 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
6987 		if (rc) {
6988 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
6989 				   vnic_id, rc);
6990 		}
6991 	}
6992 	return rc;
6993 }
6994 
6995 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
6996 {
6997 	if (bp->flags & BNXT_FLAG_CHIP_P5)
6998 		return __bnxt_setup_vnic_p5(bp, vnic_id);
6999 	else
7000 		return __bnxt_setup_vnic(bp, vnic_id);
7001 }
7002 
7003 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7004 {
7005 #ifdef CONFIG_RFS_ACCEL
7006 	int i, rc = 0;
7007 
7008 	for (i = 0; i < bp->rx_nr_rings; i++) {
7009 		struct bnxt_vnic_info *vnic;
7010 		u16 vnic_id = i + 1;
7011 		u16 ring_id = i;
7012 
7013 		if (vnic_id >= bp->nr_vnics)
7014 			break;
7015 
7016 		vnic = &bp->vnic_info[vnic_id];
7017 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
7018 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7019 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7020 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7021 		if (rc) {
7022 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7023 				   vnic_id, rc);
7024 			break;
7025 		}
7026 		rc = bnxt_setup_vnic(bp, vnic_id);
7027 		if (rc)
7028 			break;
7029 	}
7030 	return rc;
7031 #else
7032 	return 0;
7033 #endif
7034 }
7035 
7036 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7037 static bool bnxt_promisc_ok(struct bnxt *bp)
7038 {
7039 #ifdef CONFIG_BNXT_SRIOV
7040 	if (BNXT_VF(bp) && !bp->vf.vlan)
7041 		return false;
7042 #endif
7043 	return true;
7044 }
7045 
7046 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7047 {
7048 	unsigned int rc = 0;
7049 
7050 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7051 	if (rc) {
7052 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7053 			   rc);
7054 		return rc;
7055 	}
7056 
7057 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
7058 	if (rc) {
7059 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7060 			   rc);
7061 		return rc;
7062 	}
7063 	return rc;
7064 }
7065 
7066 static int bnxt_cfg_rx_mode(struct bnxt *);
7067 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7068 
7069 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7070 {
7071 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7072 	int rc = 0;
7073 	unsigned int rx_nr_rings = bp->rx_nr_rings;
7074 
7075 	if (irq_re_init) {
7076 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
7077 		if (rc) {
7078 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7079 				   rc);
7080 			goto err_out;
7081 		}
7082 	}
7083 
7084 	rc = bnxt_hwrm_ring_alloc(bp);
7085 	if (rc) {
7086 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7087 		goto err_out;
7088 	}
7089 
7090 	rc = bnxt_hwrm_ring_grp_alloc(bp);
7091 	if (rc) {
7092 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7093 		goto err_out;
7094 	}
7095 
7096 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7097 		rx_nr_rings--;
7098 
7099 	/* default vnic 0 */
7100 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7101 	if (rc) {
7102 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7103 		goto err_out;
7104 	}
7105 
7106 	rc = bnxt_setup_vnic(bp, 0);
7107 	if (rc)
7108 		goto err_out;
7109 
7110 	if (bp->flags & BNXT_FLAG_RFS) {
7111 		rc = bnxt_alloc_rfs_vnics(bp);
7112 		if (rc)
7113 			goto err_out;
7114 	}
7115 
7116 	if (bp->flags & BNXT_FLAG_TPA) {
7117 		rc = bnxt_set_tpa(bp, true);
7118 		if (rc)
7119 			goto err_out;
7120 	}
7121 
7122 	if (BNXT_VF(bp))
7123 		bnxt_update_vf_mac(bp);
7124 
7125 	/* Filter for default vnic 0 */
7126 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7127 	if (rc) {
7128 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7129 		goto err_out;
7130 	}
7131 	vnic->uc_filter_count = 1;
7132 
7133 	vnic->rx_mask = 0;
7134 	if (bp->dev->flags & IFF_BROADCAST)
7135 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7136 
7137 	if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7138 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7139 
7140 	if (bp->dev->flags & IFF_ALLMULTI) {
7141 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7142 		vnic->mc_list_count = 0;
7143 	} else {
7144 		u32 mask = 0;
7145 
7146 		bnxt_mc_list_updated(bp, &mask);
7147 		vnic->rx_mask |= mask;
7148 	}
7149 
7150 	rc = bnxt_cfg_rx_mode(bp);
7151 	if (rc)
7152 		goto err_out;
7153 
7154 	rc = bnxt_hwrm_set_coal(bp);
7155 	if (rc)
7156 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7157 				rc);
7158 
7159 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7160 		rc = bnxt_setup_nitroa0_vnic(bp);
7161 		if (rc)
7162 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7163 				   rc);
7164 	}
7165 
7166 	if (BNXT_VF(bp)) {
7167 		bnxt_hwrm_func_qcfg(bp);
7168 		netdev_update_features(bp->dev);
7169 	}
7170 
7171 	return 0;
7172 
7173 err_out:
7174 	bnxt_hwrm_resource_free(bp, 0, true);
7175 
7176 	return rc;
7177 }
7178 
7179 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7180 {
7181 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7182 	return 0;
7183 }
7184 
7185 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7186 {
7187 	bnxt_init_cp_rings(bp);
7188 	bnxt_init_rx_rings(bp);
7189 	bnxt_init_tx_rings(bp);
7190 	bnxt_init_ring_grps(bp, irq_re_init);
7191 	bnxt_init_vnics(bp);
7192 
7193 	return bnxt_init_chip(bp, irq_re_init);
7194 }
7195 
7196 static int bnxt_set_real_num_queues(struct bnxt *bp)
7197 {
7198 	int rc;
7199 	struct net_device *dev = bp->dev;
7200 
7201 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7202 					  bp->tx_nr_rings_xdp);
7203 	if (rc)
7204 		return rc;
7205 
7206 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7207 	if (rc)
7208 		return rc;
7209 
7210 #ifdef CONFIG_RFS_ACCEL
7211 	if (bp->flags & BNXT_FLAG_RFS)
7212 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7213 #endif
7214 
7215 	return rc;
7216 }
7217 
7218 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7219 			   bool shared)
7220 {
7221 	int _rx = *rx, _tx = *tx;
7222 
7223 	if (shared) {
7224 		*rx = min_t(int, _rx, max);
7225 		*tx = min_t(int, _tx, max);
7226 	} else {
7227 		if (max < 2)
7228 			return -ENOMEM;
7229 
7230 		while (_rx + _tx > max) {
7231 			if (_rx > _tx && _rx > 1)
7232 				_rx--;
7233 			else if (_tx > 1)
7234 				_tx--;
7235 		}
7236 		*rx = _rx;
7237 		*tx = _tx;
7238 	}
7239 	return 0;
7240 }
7241 
7242 static void bnxt_setup_msix(struct bnxt *bp)
7243 {
7244 	const int len = sizeof(bp->irq_tbl[0].name);
7245 	struct net_device *dev = bp->dev;
7246 	int tcs, i;
7247 
7248 	tcs = netdev_get_num_tc(dev);
7249 	if (tcs > 1) {
7250 		int i, off, count;
7251 
7252 		for (i = 0; i < tcs; i++) {
7253 			count = bp->tx_nr_rings_per_tc;
7254 			off = i * count;
7255 			netdev_set_tc_queue(dev, i, count, off);
7256 		}
7257 	}
7258 
7259 	for (i = 0; i < bp->cp_nr_rings; i++) {
7260 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7261 		char *attr;
7262 
7263 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7264 			attr = "TxRx";
7265 		else if (i < bp->rx_nr_rings)
7266 			attr = "rx";
7267 		else
7268 			attr = "tx";
7269 
7270 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7271 			 attr, i);
7272 		bp->irq_tbl[map_idx].handler = bnxt_msix;
7273 	}
7274 }
7275 
7276 static void bnxt_setup_inta(struct bnxt *bp)
7277 {
7278 	const int len = sizeof(bp->irq_tbl[0].name);
7279 
7280 	if (netdev_get_num_tc(bp->dev))
7281 		netdev_reset_tc(bp->dev);
7282 
7283 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7284 		 0);
7285 	bp->irq_tbl[0].handler = bnxt_inta;
7286 }
7287 
7288 static int bnxt_setup_int_mode(struct bnxt *bp)
7289 {
7290 	int rc;
7291 
7292 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7293 		bnxt_setup_msix(bp);
7294 	else
7295 		bnxt_setup_inta(bp);
7296 
7297 	rc = bnxt_set_real_num_queues(bp);
7298 	return rc;
7299 }
7300 
7301 #ifdef CONFIG_RFS_ACCEL
7302 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7303 {
7304 	return bp->hw_resc.max_rsscos_ctxs;
7305 }
7306 
7307 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7308 {
7309 	return bp->hw_resc.max_vnics;
7310 }
7311 #endif
7312 
7313 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
7314 {
7315 	return bp->hw_resc.max_stat_ctxs;
7316 }
7317 
7318 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
7319 {
7320 	return bp->hw_resc.max_cp_rings;
7321 }
7322 
7323 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
7324 {
7325 	unsigned int cp = bp->hw_resc.max_cp_rings;
7326 
7327 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7328 		cp -= bnxt_get_ulp_msix_num(bp);
7329 
7330 	return cp;
7331 }
7332 
7333 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
7334 {
7335 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7336 
7337 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7338 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
7339 
7340 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
7341 }
7342 
7343 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
7344 {
7345 	bp->hw_resc.max_irqs = max_irqs;
7346 }
7347 
7348 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
7349 {
7350 	unsigned int cp;
7351 
7352 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
7353 	if (bp->flags & BNXT_FLAG_CHIP_P5)
7354 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
7355 	else
7356 		return cp - bp->cp_nr_rings;
7357 }
7358 
7359 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
7360 {
7361 	unsigned int stat;
7362 
7363 	stat = bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_ulp_stat_ctxs(bp);
7364 	stat -= bp->cp_nr_rings;
7365 	return stat;
7366 }
7367 
7368 int bnxt_get_avail_msix(struct bnxt *bp, int num)
7369 {
7370 	int max_cp = bnxt_get_max_func_cp_rings(bp);
7371 	int max_irq = bnxt_get_max_func_irqs(bp);
7372 	int total_req = bp->cp_nr_rings + num;
7373 	int max_idx, avail_msix;
7374 
7375 	max_idx = bp->total_irqs;
7376 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7377 		max_idx = min_t(int, bp->total_irqs, max_cp);
7378 	avail_msix = max_idx - bp->cp_nr_rings;
7379 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
7380 		return avail_msix;
7381 
7382 	if (max_irq < total_req) {
7383 		num = max_irq - bp->cp_nr_rings;
7384 		if (num <= 0)
7385 			return 0;
7386 	}
7387 	return num;
7388 }
7389 
7390 static int bnxt_get_num_msix(struct bnxt *bp)
7391 {
7392 	if (!BNXT_NEW_RM(bp))
7393 		return bnxt_get_max_func_irqs(bp);
7394 
7395 	return bnxt_nq_rings_in_use(bp);
7396 }
7397 
7398 static int bnxt_init_msix(struct bnxt *bp)
7399 {
7400 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
7401 	struct msix_entry *msix_ent;
7402 
7403 	total_vecs = bnxt_get_num_msix(bp);
7404 	max = bnxt_get_max_func_irqs(bp);
7405 	if (total_vecs > max)
7406 		total_vecs = max;
7407 
7408 	if (!total_vecs)
7409 		return 0;
7410 
7411 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
7412 	if (!msix_ent)
7413 		return -ENOMEM;
7414 
7415 	for (i = 0; i < total_vecs; i++) {
7416 		msix_ent[i].entry = i;
7417 		msix_ent[i].vector = 0;
7418 	}
7419 
7420 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
7421 		min = 2;
7422 
7423 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
7424 	ulp_msix = bnxt_get_ulp_msix_num(bp);
7425 	if (total_vecs < 0 || total_vecs < ulp_msix) {
7426 		rc = -ENODEV;
7427 		goto msix_setup_exit;
7428 	}
7429 
7430 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
7431 	if (bp->irq_tbl) {
7432 		for (i = 0; i < total_vecs; i++)
7433 			bp->irq_tbl[i].vector = msix_ent[i].vector;
7434 
7435 		bp->total_irqs = total_vecs;
7436 		/* Trim rings based upon num of vectors allocated */
7437 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
7438 				     total_vecs - ulp_msix, min == 1);
7439 		if (rc)
7440 			goto msix_setup_exit;
7441 
7442 		bp->cp_nr_rings = (min == 1) ?
7443 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7444 				  bp->tx_nr_rings + bp->rx_nr_rings;
7445 
7446 	} else {
7447 		rc = -ENOMEM;
7448 		goto msix_setup_exit;
7449 	}
7450 	bp->flags |= BNXT_FLAG_USING_MSIX;
7451 	kfree(msix_ent);
7452 	return 0;
7453 
7454 msix_setup_exit:
7455 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
7456 	kfree(bp->irq_tbl);
7457 	bp->irq_tbl = NULL;
7458 	pci_disable_msix(bp->pdev);
7459 	kfree(msix_ent);
7460 	return rc;
7461 }
7462 
7463 static int bnxt_init_inta(struct bnxt *bp)
7464 {
7465 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
7466 	if (!bp->irq_tbl)
7467 		return -ENOMEM;
7468 
7469 	bp->total_irqs = 1;
7470 	bp->rx_nr_rings = 1;
7471 	bp->tx_nr_rings = 1;
7472 	bp->cp_nr_rings = 1;
7473 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
7474 	bp->irq_tbl[0].vector = bp->pdev->irq;
7475 	return 0;
7476 }
7477 
7478 static int bnxt_init_int_mode(struct bnxt *bp)
7479 {
7480 	int rc = 0;
7481 
7482 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
7483 		rc = bnxt_init_msix(bp);
7484 
7485 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
7486 		/* fallback to INTA */
7487 		rc = bnxt_init_inta(bp);
7488 	}
7489 	return rc;
7490 }
7491 
7492 static void bnxt_clear_int_mode(struct bnxt *bp)
7493 {
7494 	if (bp->flags & BNXT_FLAG_USING_MSIX)
7495 		pci_disable_msix(bp->pdev);
7496 
7497 	kfree(bp->irq_tbl);
7498 	bp->irq_tbl = NULL;
7499 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
7500 }
7501 
7502 int bnxt_reserve_rings(struct bnxt *bp)
7503 {
7504 	int tcs = netdev_get_num_tc(bp->dev);
7505 	bool reinit_irq = false;
7506 	int rc;
7507 
7508 	if (!bnxt_need_reserve_rings(bp))
7509 		return 0;
7510 
7511 	if (BNXT_NEW_RM(bp) && (bnxt_get_num_msix(bp) != bp->total_irqs)) {
7512 		bnxt_ulp_irq_stop(bp);
7513 		bnxt_clear_int_mode(bp);
7514 		reinit_irq = true;
7515 	}
7516 	rc = __bnxt_reserve_rings(bp);
7517 	if (reinit_irq) {
7518 		if (!rc)
7519 			rc = bnxt_init_int_mode(bp);
7520 		bnxt_ulp_irq_restart(bp, rc);
7521 	}
7522 	if (rc) {
7523 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
7524 		return rc;
7525 	}
7526 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
7527 		netdev_err(bp->dev, "tx ring reservation failure\n");
7528 		netdev_reset_tc(bp->dev);
7529 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
7530 		return -ENOMEM;
7531 	}
7532 	return 0;
7533 }
7534 
7535 static void bnxt_free_irq(struct bnxt *bp)
7536 {
7537 	struct bnxt_irq *irq;
7538 	int i;
7539 
7540 #ifdef CONFIG_RFS_ACCEL
7541 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
7542 	bp->dev->rx_cpu_rmap = NULL;
7543 #endif
7544 	if (!bp->irq_tbl || !bp->bnapi)
7545 		return;
7546 
7547 	for (i = 0; i < bp->cp_nr_rings; i++) {
7548 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7549 
7550 		irq = &bp->irq_tbl[map_idx];
7551 		if (irq->requested) {
7552 			if (irq->have_cpumask) {
7553 				irq_set_affinity_hint(irq->vector, NULL);
7554 				free_cpumask_var(irq->cpu_mask);
7555 				irq->have_cpumask = 0;
7556 			}
7557 			free_irq(irq->vector, bp->bnapi[i]);
7558 		}
7559 
7560 		irq->requested = 0;
7561 	}
7562 }
7563 
7564 static int bnxt_request_irq(struct bnxt *bp)
7565 {
7566 	int i, j, rc = 0;
7567 	unsigned long flags = 0;
7568 #ifdef CONFIG_RFS_ACCEL
7569 	struct cpu_rmap *rmap;
7570 #endif
7571 
7572 	rc = bnxt_setup_int_mode(bp);
7573 	if (rc) {
7574 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
7575 			   rc);
7576 		return rc;
7577 	}
7578 #ifdef CONFIG_RFS_ACCEL
7579 	rmap = bp->dev->rx_cpu_rmap;
7580 #endif
7581 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
7582 		flags = IRQF_SHARED;
7583 
7584 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
7585 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7586 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
7587 
7588 #ifdef CONFIG_RFS_ACCEL
7589 		if (rmap && bp->bnapi[i]->rx_ring) {
7590 			rc = irq_cpu_rmap_add(rmap, irq->vector);
7591 			if (rc)
7592 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
7593 					    j);
7594 			j++;
7595 		}
7596 #endif
7597 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
7598 				 bp->bnapi[i]);
7599 		if (rc)
7600 			break;
7601 
7602 		irq->requested = 1;
7603 
7604 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
7605 			int numa_node = dev_to_node(&bp->pdev->dev);
7606 
7607 			irq->have_cpumask = 1;
7608 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
7609 					irq->cpu_mask);
7610 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
7611 			if (rc) {
7612 				netdev_warn(bp->dev,
7613 					    "Set affinity failed, IRQ = %d\n",
7614 					    irq->vector);
7615 				break;
7616 			}
7617 		}
7618 	}
7619 	return rc;
7620 }
7621 
7622 static void bnxt_del_napi(struct bnxt *bp)
7623 {
7624 	int i;
7625 
7626 	if (!bp->bnapi)
7627 		return;
7628 
7629 	for (i = 0; i < bp->cp_nr_rings; i++) {
7630 		struct bnxt_napi *bnapi = bp->bnapi[i];
7631 
7632 		napi_hash_del(&bnapi->napi);
7633 		netif_napi_del(&bnapi->napi);
7634 	}
7635 	/* We called napi_hash_del() before netif_napi_del(), we need
7636 	 * to respect an RCU grace period before freeing napi structures.
7637 	 */
7638 	synchronize_net();
7639 }
7640 
7641 static void bnxt_init_napi(struct bnxt *bp)
7642 {
7643 	int i;
7644 	unsigned int cp_nr_rings = bp->cp_nr_rings;
7645 	struct bnxt_napi *bnapi;
7646 
7647 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
7648 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
7649 
7650 		if (bp->flags & BNXT_FLAG_CHIP_P5)
7651 			poll_fn = bnxt_poll_p5;
7652 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7653 			cp_nr_rings--;
7654 		for (i = 0; i < cp_nr_rings; i++) {
7655 			bnapi = bp->bnapi[i];
7656 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
7657 		}
7658 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7659 			bnapi = bp->bnapi[cp_nr_rings];
7660 			netif_napi_add(bp->dev, &bnapi->napi,
7661 				       bnxt_poll_nitroa0, 64);
7662 		}
7663 	} else {
7664 		bnapi = bp->bnapi[0];
7665 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
7666 	}
7667 }
7668 
7669 static void bnxt_disable_napi(struct bnxt *bp)
7670 {
7671 	int i;
7672 
7673 	if (!bp->bnapi)
7674 		return;
7675 
7676 	for (i = 0; i < bp->cp_nr_rings; i++) {
7677 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7678 
7679 		if (bp->bnapi[i]->rx_ring)
7680 			cancel_work_sync(&cpr->dim.work);
7681 
7682 		napi_disable(&bp->bnapi[i]->napi);
7683 	}
7684 }
7685 
7686 static void bnxt_enable_napi(struct bnxt *bp)
7687 {
7688 	int i;
7689 
7690 	for (i = 0; i < bp->cp_nr_rings; i++) {
7691 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
7692 		bp->bnapi[i]->in_reset = false;
7693 
7694 		if (bp->bnapi[i]->rx_ring) {
7695 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
7696 			cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
7697 		}
7698 		napi_enable(&bp->bnapi[i]->napi);
7699 	}
7700 }
7701 
7702 void bnxt_tx_disable(struct bnxt *bp)
7703 {
7704 	int i;
7705 	struct bnxt_tx_ring_info *txr;
7706 
7707 	if (bp->tx_ring) {
7708 		for (i = 0; i < bp->tx_nr_rings; i++) {
7709 			txr = &bp->tx_ring[i];
7710 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
7711 		}
7712 	}
7713 	/* Stop all TX queues */
7714 	netif_tx_disable(bp->dev);
7715 	netif_carrier_off(bp->dev);
7716 }
7717 
7718 void bnxt_tx_enable(struct bnxt *bp)
7719 {
7720 	int i;
7721 	struct bnxt_tx_ring_info *txr;
7722 
7723 	for (i = 0; i < bp->tx_nr_rings; i++) {
7724 		txr = &bp->tx_ring[i];
7725 		txr->dev_state = 0;
7726 	}
7727 	netif_tx_wake_all_queues(bp->dev);
7728 	if (bp->link_info.link_up)
7729 		netif_carrier_on(bp->dev);
7730 }
7731 
7732 static void bnxt_report_link(struct bnxt *bp)
7733 {
7734 	if (bp->link_info.link_up) {
7735 		const char *duplex;
7736 		const char *flow_ctrl;
7737 		u32 speed;
7738 		u16 fec;
7739 
7740 		netif_carrier_on(bp->dev);
7741 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
7742 			duplex = "full";
7743 		else
7744 			duplex = "half";
7745 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
7746 			flow_ctrl = "ON - receive & transmit";
7747 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
7748 			flow_ctrl = "ON - transmit";
7749 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
7750 			flow_ctrl = "ON - receive";
7751 		else
7752 			flow_ctrl = "none";
7753 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
7754 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
7755 			    speed, duplex, flow_ctrl);
7756 		if (bp->flags & BNXT_FLAG_EEE_CAP)
7757 			netdev_info(bp->dev, "EEE is %s\n",
7758 				    bp->eee.eee_active ? "active" :
7759 							 "not active");
7760 		fec = bp->link_info.fec_cfg;
7761 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
7762 			netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
7763 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
7764 				    (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
7765 				     (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
7766 	} else {
7767 		netif_carrier_off(bp->dev);
7768 		netdev_err(bp->dev, "NIC Link is Down\n");
7769 	}
7770 }
7771 
7772 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
7773 {
7774 	int rc = 0;
7775 	struct hwrm_port_phy_qcaps_input req = {0};
7776 	struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
7777 	struct bnxt_link_info *link_info = &bp->link_info;
7778 
7779 	if (bp->hwrm_spec_code < 0x10201)
7780 		return 0;
7781 
7782 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
7783 
7784 	mutex_lock(&bp->hwrm_cmd_lock);
7785 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7786 	if (rc)
7787 		goto hwrm_phy_qcaps_exit;
7788 
7789 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
7790 		struct ethtool_eee *eee = &bp->eee;
7791 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
7792 
7793 		bp->flags |= BNXT_FLAG_EEE_CAP;
7794 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7795 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
7796 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
7797 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
7798 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
7799 	}
7800 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
7801 		if (bp->test_info)
7802 			bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
7803 	}
7804 	if (resp->supported_speeds_auto_mode)
7805 		link_info->support_auto_speeds =
7806 			le16_to_cpu(resp->supported_speeds_auto_mode);
7807 
7808 	bp->port_count = resp->port_cnt;
7809 
7810 hwrm_phy_qcaps_exit:
7811 	mutex_unlock(&bp->hwrm_cmd_lock);
7812 	return rc;
7813 }
7814 
7815 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
7816 {
7817 	int rc = 0;
7818 	struct bnxt_link_info *link_info = &bp->link_info;
7819 	struct hwrm_port_phy_qcfg_input req = {0};
7820 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7821 	u8 link_up = link_info->link_up;
7822 	u16 diff;
7823 
7824 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
7825 
7826 	mutex_lock(&bp->hwrm_cmd_lock);
7827 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7828 	if (rc) {
7829 		mutex_unlock(&bp->hwrm_cmd_lock);
7830 		return rc;
7831 	}
7832 
7833 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
7834 	link_info->phy_link_status = resp->link;
7835 	link_info->duplex = resp->duplex_cfg;
7836 	if (bp->hwrm_spec_code >= 0x10800)
7837 		link_info->duplex = resp->duplex_state;
7838 	link_info->pause = resp->pause;
7839 	link_info->auto_mode = resp->auto_mode;
7840 	link_info->auto_pause_setting = resp->auto_pause;
7841 	link_info->lp_pause = resp->link_partner_adv_pause;
7842 	link_info->force_pause_setting = resp->force_pause;
7843 	link_info->duplex_setting = resp->duplex_cfg;
7844 	if (link_info->phy_link_status == BNXT_LINK_LINK)
7845 		link_info->link_speed = le16_to_cpu(resp->link_speed);
7846 	else
7847 		link_info->link_speed = 0;
7848 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
7849 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
7850 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
7851 	link_info->lp_auto_link_speeds =
7852 		le16_to_cpu(resp->link_partner_adv_speeds);
7853 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
7854 	link_info->phy_ver[0] = resp->phy_maj;
7855 	link_info->phy_ver[1] = resp->phy_min;
7856 	link_info->phy_ver[2] = resp->phy_bld;
7857 	link_info->media_type = resp->media_type;
7858 	link_info->phy_type = resp->phy_type;
7859 	link_info->transceiver = resp->xcvr_pkg_type;
7860 	link_info->phy_addr = resp->eee_config_phy_addr &
7861 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
7862 	link_info->module_status = resp->module_status;
7863 
7864 	if (bp->flags & BNXT_FLAG_EEE_CAP) {
7865 		struct ethtool_eee *eee = &bp->eee;
7866 		u16 fw_speeds;
7867 
7868 		eee->eee_active = 0;
7869 		if (resp->eee_config_phy_addr &
7870 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
7871 			eee->eee_active = 1;
7872 			fw_speeds = le16_to_cpu(
7873 				resp->link_partner_adv_eee_link_speed_mask);
7874 			eee->lp_advertised =
7875 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7876 		}
7877 
7878 		/* Pull initial EEE config */
7879 		if (!chng_link_state) {
7880 			if (resp->eee_config_phy_addr &
7881 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
7882 				eee->eee_enabled = 1;
7883 
7884 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
7885 			eee->advertised =
7886 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
7887 
7888 			if (resp->eee_config_phy_addr &
7889 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
7890 				__le32 tmr;
7891 
7892 				eee->tx_lpi_enabled = 1;
7893 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
7894 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
7895 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
7896 			}
7897 		}
7898 	}
7899 
7900 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
7901 	if (bp->hwrm_spec_code >= 0x10504)
7902 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
7903 
7904 	/* TODO: need to add more logic to report VF link */
7905 	if (chng_link_state) {
7906 		if (link_info->phy_link_status == BNXT_LINK_LINK)
7907 			link_info->link_up = 1;
7908 		else
7909 			link_info->link_up = 0;
7910 		if (link_up != link_info->link_up)
7911 			bnxt_report_link(bp);
7912 	} else {
7913 		/* alwasy link down if not require to update link state */
7914 		link_info->link_up = 0;
7915 	}
7916 	mutex_unlock(&bp->hwrm_cmd_lock);
7917 
7918 	if (!BNXT_SINGLE_PF(bp))
7919 		return 0;
7920 
7921 	diff = link_info->support_auto_speeds ^ link_info->advertising;
7922 	if ((link_info->support_auto_speeds | diff) !=
7923 	    link_info->support_auto_speeds) {
7924 		/* An advertised speed is no longer supported, so we need to
7925 		 * update the advertisement settings.  Caller holds RTNL
7926 		 * so we can modify link settings.
7927 		 */
7928 		link_info->advertising = link_info->support_auto_speeds;
7929 		if (link_info->autoneg & BNXT_AUTONEG_SPEED)
7930 			bnxt_hwrm_set_link_setting(bp, true, false);
7931 	}
7932 	return 0;
7933 }
7934 
7935 static void bnxt_get_port_module_status(struct bnxt *bp)
7936 {
7937 	struct bnxt_link_info *link_info = &bp->link_info;
7938 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
7939 	u8 module_status;
7940 
7941 	if (bnxt_update_link(bp, true))
7942 		return;
7943 
7944 	module_status = link_info->module_status;
7945 	switch (module_status) {
7946 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
7947 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
7948 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
7949 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
7950 			    bp->pf.port_id);
7951 		if (bp->hwrm_spec_code >= 0x10201) {
7952 			netdev_warn(bp->dev, "Module part number %s\n",
7953 				    resp->phy_vendor_partnumber);
7954 		}
7955 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
7956 			netdev_warn(bp->dev, "TX is disabled\n");
7957 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
7958 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
7959 	}
7960 }
7961 
7962 static void
7963 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
7964 {
7965 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
7966 		if (bp->hwrm_spec_code >= 0x10201)
7967 			req->auto_pause =
7968 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
7969 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
7970 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
7971 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
7972 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
7973 		req->enables |=
7974 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
7975 	} else {
7976 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
7977 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
7978 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
7979 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
7980 		req->enables |=
7981 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
7982 		if (bp->hwrm_spec_code >= 0x10201) {
7983 			req->auto_pause = req->force_pause;
7984 			req->enables |= cpu_to_le32(
7985 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
7986 		}
7987 	}
7988 }
7989 
7990 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
7991 				      struct hwrm_port_phy_cfg_input *req)
7992 {
7993 	u8 autoneg = bp->link_info.autoneg;
7994 	u16 fw_link_speed = bp->link_info.req_link_speed;
7995 	u16 advertising = bp->link_info.advertising;
7996 
7997 	if (autoneg & BNXT_AUTONEG_SPEED) {
7998 		req->auto_mode |=
7999 			PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8000 
8001 		req->enables |= cpu_to_le32(
8002 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8003 		req->auto_link_speed_mask = cpu_to_le16(advertising);
8004 
8005 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8006 		req->flags |=
8007 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8008 	} else {
8009 		req->force_link_speed = cpu_to_le16(fw_link_speed);
8010 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8011 	}
8012 
8013 	/* tell chimp that the setting takes effect immediately */
8014 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8015 }
8016 
8017 int bnxt_hwrm_set_pause(struct bnxt *bp)
8018 {
8019 	struct hwrm_port_phy_cfg_input req = {0};
8020 	int rc;
8021 
8022 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8023 	bnxt_hwrm_set_pause_common(bp, &req);
8024 
8025 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8026 	    bp->link_info.force_link_chng)
8027 		bnxt_hwrm_set_link_common(bp, &req);
8028 
8029 	mutex_lock(&bp->hwrm_cmd_lock);
8030 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8031 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8032 		/* since changing of pause setting doesn't trigger any link
8033 		 * change event, the driver needs to update the current pause
8034 		 * result upon successfully return of the phy_cfg command
8035 		 */
8036 		bp->link_info.pause =
8037 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8038 		bp->link_info.auto_pause_setting = 0;
8039 		if (!bp->link_info.force_link_chng)
8040 			bnxt_report_link(bp);
8041 	}
8042 	bp->link_info.force_link_chng = false;
8043 	mutex_unlock(&bp->hwrm_cmd_lock);
8044 	return rc;
8045 }
8046 
8047 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8048 			      struct hwrm_port_phy_cfg_input *req)
8049 {
8050 	struct ethtool_eee *eee = &bp->eee;
8051 
8052 	if (eee->eee_enabled) {
8053 		u16 eee_speeds;
8054 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8055 
8056 		if (eee->tx_lpi_enabled)
8057 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8058 		else
8059 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8060 
8061 		req->flags |= cpu_to_le32(flags);
8062 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8063 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8064 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8065 	} else {
8066 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8067 	}
8068 }
8069 
8070 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8071 {
8072 	struct hwrm_port_phy_cfg_input req = {0};
8073 
8074 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8075 	if (set_pause)
8076 		bnxt_hwrm_set_pause_common(bp, &req);
8077 
8078 	bnxt_hwrm_set_link_common(bp, &req);
8079 
8080 	if (set_eee)
8081 		bnxt_hwrm_set_eee(bp, &req);
8082 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8083 }
8084 
8085 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8086 {
8087 	struct hwrm_port_phy_cfg_input req = {0};
8088 
8089 	if (!BNXT_SINGLE_PF(bp))
8090 		return 0;
8091 
8092 	if (pci_num_vf(bp->pdev))
8093 		return 0;
8094 
8095 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8096 	req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8097 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8098 }
8099 
8100 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8101 {
8102 	struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8103 	struct hwrm_func_drv_if_change_input req = {0};
8104 	bool resc_reinit = false;
8105 	int rc;
8106 
8107 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8108 		return 0;
8109 
8110 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8111 	if (up)
8112 		req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8113 	mutex_lock(&bp->hwrm_cmd_lock);
8114 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8115 	if (!rc && (resp->flags &
8116 		    cpu_to_le32(FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)))
8117 		resc_reinit = true;
8118 	mutex_unlock(&bp->hwrm_cmd_lock);
8119 
8120 	if (up && resc_reinit && BNXT_NEW_RM(bp)) {
8121 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8122 
8123 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8124 		hw_resc->resv_cp_rings = 0;
8125 		hw_resc->resv_stat_ctxs = 0;
8126 		hw_resc->resv_irqs = 0;
8127 		hw_resc->resv_tx_rings = 0;
8128 		hw_resc->resv_rx_rings = 0;
8129 		hw_resc->resv_hw_ring_grps = 0;
8130 		hw_resc->resv_vnics = 0;
8131 		bp->tx_nr_rings = 0;
8132 		bp->rx_nr_rings = 0;
8133 	}
8134 	return rc;
8135 }
8136 
8137 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8138 {
8139 	struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8140 	struct hwrm_port_led_qcaps_input req = {0};
8141 	struct bnxt_pf_info *pf = &bp->pf;
8142 	int rc;
8143 
8144 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8145 		return 0;
8146 
8147 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8148 	req.port_id = cpu_to_le16(pf->port_id);
8149 	mutex_lock(&bp->hwrm_cmd_lock);
8150 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8151 	if (rc) {
8152 		mutex_unlock(&bp->hwrm_cmd_lock);
8153 		return rc;
8154 	}
8155 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8156 		int i;
8157 
8158 		bp->num_leds = resp->num_leds;
8159 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8160 						 bp->num_leds);
8161 		for (i = 0; i < bp->num_leds; i++) {
8162 			struct bnxt_led_info *led = &bp->leds[i];
8163 			__le16 caps = led->led_state_caps;
8164 
8165 			if (!led->led_group_id ||
8166 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
8167 				bp->num_leds = 0;
8168 				break;
8169 			}
8170 		}
8171 	}
8172 	mutex_unlock(&bp->hwrm_cmd_lock);
8173 	return 0;
8174 }
8175 
8176 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8177 {
8178 	struct hwrm_wol_filter_alloc_input req = {0};
8179 	struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8180 	int rc;
8181 
8182 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8183 	req.port_id = cpu_to_le16(bp->pf.port_id);
8184 	req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8185 	req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8186 	memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8187 	mutex_lock(&bp->hwrm_cmd_lock);
8188 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8189 	if (!rc)
8190 		bp->wol_filter_id = resp->wol_filter_id;
8191 	mutex_unlock(&bp->hwrm_cmd_lock);
8192 	return rc;
8193 }
8194 
8195 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8196 {
8197 	struct hwrm_wol_filter_free_input req = {0};
8198 	int rc;
8199 
8200 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8201 	req.port_id = cpu_to_le16(bp->pf.port_id);
8202 	req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8203 	req.wol_filter_id = bp->wol_filter_id;
8204 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8205 	return rc;
8206 }
8207 
8208 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8209 {
8210 	struct hwrm_wol_filter_qcfg_input req = {0};
8211 	struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8212 	u16 next_handle = 0;
8213 	int rc;
8214 
8215 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8216 	req.port_id = cpu_to_le16(bp->pf.port_id);
8217 	req.handle = cpu_to_le16(handle);
8218 	mutex_lock(&bp->hwrm_cmd_lock);
8219 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8220 	if (!rc) {
8221 		next_handle = le16_to_cpu(resp->next_handle);
8222 		if (next_handle != 0) {
8223 			if (resp->wol_type ==
8224 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8225 				bp->wol = 1;
8226 				bp->wol_filter_id = resp->wol_filter_id;
8227 			}
8228 		}
8229 	}
8230 	mutex_unlock(&bp->hwrm_cmd_lock);
8231 	return next_handle;
8232 }
8233 
8234 static void bnxt_get_wol_settings(struct bnxt *bp)
8235 {
8236 	u16 handle = 0;
8237 
8238 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8239 		return;
8240 
8241 	do {
8242 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8243 	} while (handle && handle != 0xffff);
8244 }
8245 
8246 #ifdef CONFIG_BNXT_HWMON
8247 static ssize_t bnxt_show_temp(struct device *dev,
8248 			      struct device_attribute *devattr, char *buf)
8249 {
8250 	struct hwrm_temp_monitor_query_input req = {0};
8251 	struct hwrm_temp_monitor_query_output *resp;
8252 	struct bnxt *bp = dev_get_drvdata(dev);
8253 	u32 temp = 0;
8254 
8255 	resp = bp->hwrm_cmd_resp_addr;
8256 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8257 	mutex_lock(&bp->hwrm_cmd_lock);
8258 	if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8259 		temp = resp->temp * 1000; /* display millidegree */
8260 	mutex_unlock(&bp->hwrm_cmd_lock);
8261 
8262 	return sprintf(buf, "%u\n", temp);
8263 }
8264 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
8265 
8266 static struct attribute *bnxt_attrs[] = {
8267 	&sensor_dev_attr_temp1_input.dev_attr.attr,
8268 	NULL
8269 };
8270 ATTRIBUTE_GROUPS(bnxt);
8271 
8272 static void bnxt_hwmon_close(struct bnxt *bp)
8273 {
8274 	if (bp->hwmon_dev) {
8275 		hwmon_device_unregister(bp->hwmon_dev);
8276 		bp->hwmon_dev = NULL;
8277 	}
8278 }
8279 
8280 static void bnxt_hwmon_open(struct bnxt *bp)
8281 {
8282 	struct pci_dev *pdev = bp->pdev;
8283 
8284 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
8285 							  DRV_MODULE_NAME, bp,
8286 							  bnxt_groups);
8287 	if (IS_ERR(bp->hwmon_dev)) {
8288 		bp->hwmon_dev = NULL;
8289 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
8290 	}
8291 }
8292 #else
8293 static void bnxt_hwmon_close(struct bnxt *bp)
8294 {
8295 }
8296 
8297 static void bnxt_hwmon_open(struct bnxt *bp)
8298 {
8299 }
8300 #endif
8301 
8302 static bool bnxt_eee_config_ok(struct bnxt *bp)
8303 {
8304 	struct ethtool_eee *eee = &bp->eee;
8305 	struct bnxt_link_info *link_info = &bp->link_info;
8306 
8307 	if (!(bp->flags & BNXT_FLAG_EEE_CAP))
8308 		return true;
8309 
8310 	if (eee->eee_enabled) {
8311 		u32 advertising =
8312 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
8313 
8314 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8315 			eee->eee_enabled = 0;
8316 			return false;
8317 		}
8318 		if (eee->advertised & ~advertising) {
8319 			eee->advertised = advertising & eee->supported;
8320 			return false;
8321 		}
8322 	}
8323 	return true;
8324 }
8325 
8326 static int bnxt_update_phy_setting(struct bnxt *bp)
8327 {
8328 	int rc;
8329 	bool update_link = false;
8330 	bool update_pause = false;
8331 	bool update_eee = false;
8332 	struct bnxt_link_info *link_info = &bp->link_info;
8333 
8334 	rc = bnxt_update_link(bp, true);
8335 	if (rc) {
8336 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
8337 			   rc);
8338 		return rc;
8339 	}
8340 	if (!BNXT_SINGLE_PF(bp))
8341 		return 0;
8342 
8343 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8344 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
8345 	    link_info->req_flow_ctrl)
8346 		update_pause = true;
8347 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
8348 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
8349 		update_pause = true;
8350 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8351 		if (BNXT_AUTO_MODE(link_info->auto_mode))
8352 			update_link = true;
8353 		if (link_info->req_link_speed != link_info->force_link_speed)
8354 			update_link = true;
8355 		if (link_info->req_duplex != link_info->duplex_setting)
8356 			update_link = true;
8357 	} else {
8358 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
8359 			update_link = true;
8360 		if (link_info->advertising != link_info->auto_link_speeds)
8361 			update_link = true;
8362 	}
8363 
8364 	/* The last close may have shutdown the link, so need to call
8365 	 * PHY_CFG to bring it back up.
8366 	 */
8367 	if (!netif_carrier_ok(bp->dev))
8368 		update_link = true;
8369 
8370 	if (!bnxt_eee_config_ok(bp))
8371 		update_eee = true;
8372 
8373 	if (update_link)
8374 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
8375 	else if (update_pause)
8376 		rc = bnxt_hwrm_set_pause(bp);
8377 	if (rc) {
8378 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
8379 			   rc);
8380 		return rc;
8381 	}
8382 
8383 	return rc;
8384 }
8385 
8386 /* Common routine to pre-map certain register block to different GRC window.
8387  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
8388  * in PF and 3 windows in VF that can be customized to map in different
8389  * register blocks.
8390  */
8391 static void bnxt_preset_reg_win(struct bnxt *bp)
8392 {
8393 	if (BNXT_PF(bp)) {
8394 		/* CAG registers map to GRC window #4 */
8395 		writel(BNXT_CAG_REG_BASE,
8396 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
8397 	}
8398 }
8399 
8400 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
8401 
8402 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8403 {
8404 	int rc = 0;
8405 
8406 	bnxt_preset_reg_win(bp);
8407 	netif_carrier_off(bp->dev);
8408 	if (irq_re_init) {
8409 		/* Reserve rings now if none were reserved at driver probe. */
8410 		rc = bnxt_init_dflt_ring_mode(bp);
8411 		if (rc) {
8412 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
8413 			return rc;
8414 		}
8415 	}
8416 	rc = bnxt_reserve_rings(bp);
8417 	if (rc)
8418 		return rc;
8419 	if ((bp->flags & BNXT_FLAG_RFS) &&
8420 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
8421 		/* disable RFS if falling back to INTA */
8422 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
8423 		bp->flags &= ~BNXT_FLAG_RFS;
8424 	}
8425 
8426 	rc = bnxt_alloc_mem(bp, irq_re_init);
8427 	if (rc) {
8428 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8429 		goto open_err_free_mem;
8430 	}
8431 
8432 	if (irq_re_init) {
8433 		bnxt_init_napi(bp);
8434 		rc = bnxt_request_irq(bp);
8435 		if (rc) {
8436 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
8437 			goto open_err_irq;
8438 		}
8439 	}
8440 
8441 	bnxt_enable_napi(bp);
8442 	bnxt_debug_dev_init(bp);
8443 
8444 	rc = bnxt_init_nic(bp, irq_re_init);
8445 	if (rc) {
8446 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8447 		goto open_err;
8448 	}
8449 
8450 	if (link_re_init) {
8451 		mutex_lock(&bp->link_lock);
8452 		rc = bnxt_update_phy_setting(bp);
8453 		mutex_unlock(&bp->link_lock);
8454 		if (rc) {
8455 			netdev_warn(bp->dev, "failed to update phy settings\n");
8456 			if (BNXT_SINGLE_PF(bp)) {
8457 				bp->link_info.phy_retry = true;
8458 				bp->link_info.phy_retry_expires =
8459 					jiffies + 5 * HZ;
8460 			}
8461 		}
8462 	}
8463 
8464 	if (irq_re_init)
8465 		udp_tunnel_get_rx_info(bp->dev);
8466 
8467 	set_bit(BNXT_STATE_OPEN, &bp->state);
8468 	bnxt_enable_int(bp);
8469 	/* Enable TX queues */
8470 	bnxt_tx_enable(bp);
8471 	mod_timer(&bp->timer, jiffies + bp->current_interval);
8472 	/* Poll link status and check for SFP+ module status */
8473 	bnxt_get_port_module_status(bp);
8474 
8475 	/* VF-reps may need to be re-opened after the PF is re-opened */
8476 	if (BNXT_PF(bp))
8477 		bnxt_vf_reps_open(bp);
8478 	return 0;
8479 
8480 open_err:
8481 	bnxt_debug_dev_exit(bp);
8482 	bnxt_disable_napi(bp);
8483 
8484 open_err_irq:
8485 	bnxt_del_napi(bp);
8486 
8487 open_err_free_mem:
8488 	bnxt_free_skbs(bp);
8489 	bnxt_free_irq(bp);
8490 	bnxt_free_mem(bp, true);
8491 	return rc;
8492 }
8493 
8494 /* rtnl_lock held */
8495 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8496 {
8497 	int rc = 0;
8498 
8499 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
8500 	if (rc) {
8501 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
8502 		dev_close(bp->dev);
8503 	}
8504 	return rc;
8505 }
8506 
8507 /* rtnl_lock held, open the NIC half way by allocating all resources, but
8508  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
8509  * self tests.
8510  */
8511 int bnxt_half_open_nic(struct bnxt *bp)
8512 {
8513 	int rc = 0;
8514 
8515 	rc = bnxt_alloc_mem(bp, false);
8516 	if (rc) {
8517 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
8518 		goto half_open_err;
8519 	}
8520 	rc = bnxt_init_nic(bp, false);
8521 	if (rc) {
8522 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
8523 		goto half_open_err;
8524 	}
8525 	return 0;
8526 
8527 half_open_err:
8528 	bnxt_free_skbs(bp);
8529 	bnxt_free_mem(bp, false);
8530 	dev_close(bp->dev);
8531 	return rc;
8532 }
8533 
8534 /* rtnl_lock held, this call can only be made after a previous successful
8535  * call to bnxt_half_open_nic().
8536  */
8537 void bnxt_half_close_nic(struct bnxt *bp)
8538 {
8539 	bnxt_hwrm_resource_free(bp, false, false);
8540 	bnxt_free_skbs(bp);
8541 	bnxt_free_mem(bp, false);
8542 }
8543 
8544 static int bnxt_open(struct net_device *dev)
8545 {
8546 	struct bnxt *bp = netdev_priv(dev);
8547 	int rc;
8548 
8549 	bnxt_hwrm_if_change(bp, true);
8550 	rc = __bnxt_open_nic(bp, true, true);
8551 	if (rc)
8552 		bnxt_hwrm_if_change(bp, false);
8553 
8554 	bnxt_hwmon_open(bp);
8555 
8556 	return rc;
8557 }
8558 
8559 static bool bnxt_drv_busy(struct bnxt *bp)
8560 {
8561 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
8562 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
8563 }
8564 
8565 static void bnxt_get_ring_stats(struct bnxt *bp,
8566 				struct rtnl_link_stats64 *stats);
8567 
8568 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
8569 			     bool link_re_init)
8570 {
8571 	/* Close the VF-reps before closing PF */
8572 	if (BNXT_PF(bp))
8573 		bnxt_vf_reps_close(bp);
8574 
8575 	/* Change device state to avoid TX queue wake up's */
8576 	bnxt_tx_disable(bp);
8577 
8578 	clear_bit(BNXT_STATE_OPEN, &bp->state);
8579 	smp_mb__after_atomic();
8580 	while (bnxt_drv_busy(bp))
8581 		msleep(20);
8582 
8583 	/* Flush rings and and disable interrupts */
8584 	bnxt_shutdown_nic(bp, irq_re_init);
8585 
8586 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
8587 
8588 	bnxt_debug_dev_exit(bp);
8589 	bnxt_disable_napi(bp);
8590 	del_timer_sync(&bp->timer);
8591 	bnxt_free_skbs(bp);
8592 
8593 	/* Save ring stats before shutdown */
8594 	if (bp->bnapi)
8595 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
8596 	if (irq_re_init) {
8597 		bnxt_free_irq(bp);
8598 		bnxt_del_napi(bp);
8599 	}
8600 	bnxt_free_mem(bp, irq_re_init);
8601 }
8602 
8603 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
8604 {
8605 	int rc = 0;
8606 
8607 #ifdef CONFIG_BNXT_SRIOV
8608 	if (bp->sriov_cfg) {
8609 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
8610 						      !bp->sriov_cfg,
8611 						      BNXT_SRIOV_CFG_WAIT_TMO);
8612 		if (rc)
8613 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
8614 	}
8615 #endif
8616 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
8617 	return rc;
8618 }
8619 
8620 static int bnxt_close(struct net_device *dev)
8621 {
8622 	struct bnxt *bp = netdev_priv(dev);
8623 
8624 	bnxt_hwmon_close(bp);
8625 	bnxt_close_nic(bp, true, true);
8626 	bnxt_hwrm_shutdown_link(bp);
8627 	bnxt_hwrm_if_change(bp, false);
8628 	return 0;
8629 }
8630 
8631 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
8632 				   u16 *val)
8633 {
8634 	struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
8635 	struct hwrm_port_phy_mdio_read_input req = {0};
8636 	int rc;
8637 
8638 	if (bp->hwrm_spec_code < 0x10a00)
8639 		return -EOPNOTSUPP;
8640 
8641 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
8642 	req.port_id = cpu_to_le16(bp->pf.port_id);
8643 	req.phy_addr = phy_addr;
8644 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8645 	if (bp->link_info.support_speeds & BNXT_LINK_SPEED_MSK_10GB) {
8646 		req.cl45_mdio = 1;
8647 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8648 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8649 		req.reg_addr = cpu_to_le16(reg);
8650 	}
8651 
8652 	mutex_lock(&bp->hwrm_cmd_lock);
8653 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8654 	if (!rc)
8655 		*val = le16_to_cpu(resp->reg_data);
8656 	mutex_unlock(&bp->hwrm_cmd_lock);
8657 	return rc;
8658 }
8659 
8660 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
8661 				    u16 val)
8662 {
8663 	struct hwrm_port_phy_mdio_write_input req = {0};
8664 
8665 	if (bp->hwrm_spec_code < 0x10a00)
8666 		return -EOPNOTSUPP;
8667 
8668 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
8669 	req.port_id = cpu_to_le16(bp->pf.port_id);
8670 	req.phy_addr = phy_addr;
8671 	req.reg_addr = cpu_to_le16(reg & 0x1f);
8672 	if (bp->link_info.support_speeds & BNXT_LINK_SPEED_MSK_10GB) {
8673 		req.cl45_mdio = 1;
8674 		req.phy_addr = mdio_phy_id_prtad(phy_addr);
8675 		req.dev_addr = mdio_phy_id_devad(phy_addr);
8676 		req.reg_addr = cpu_to_le16(reg);
8677 	}
8678 	req.reg_data = cpu_to_le16(val);
8679 
8680 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8681 }
8682 
8683 /* rtnl_lock held */
8684 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
8685 {
8686 	struct mii_ioctl_data *mdio = if_mii(ifr);
8687 	struct bnxt *bp = netdev_priv(dev);
8688 	int rc;
8689 
8690 	switch (cmd) {
8691 	case SIOCGMIIPHY:
8692 		mdio->phy_id = bp->link_info.phy_addr;
8693 
8694 		/* fallthru */
8695 	case SIOCGMIIREG: {
8696 		u16 mii_regval = 0;
8697 
8698 		if (!netif_running(dev))
8699 			return -EAGAIN;
8700 
8701 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
8702 					     &mii_regval);
8703 		mdio->val_out = mii_regval;
8704 		return rc;
8705 	}
8706 
8707 	case SIOCSMIIREG:
8708 		if (!netif_running(dev))
8709 			return -EAGAIN;
8710 
8711 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
8712 						mdio->val_in);
8713 
8714 	default:
8715 		/* do nothing */
8716 		break;
8717 	}
8718 	return -EOPNOTSUPP;
8719 }
8720 
8721 static void bnxt_get_ring_stats(struct bnxt *bp,
8722 				struct rtnl_link_stats64 *stats)
8723 {
8724 	int i;
8725 
8726 
8727 	for (i = 0; i < bp->cp_nr_rings; i++) {
8728 		struct bnxt_napi *bnapi = bp->bnapi[i];
8729 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
8730 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
8731 
8732 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
8733 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
8734 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
8735 
8736 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
8737 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
8738 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
8739 
8740 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
8741 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
8742 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
8743 
8744 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
8745 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
8746 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
8747 
8748 		stats->rx_missed_errors +=
8749 			le64_to_cpu(hw_stats->rx_discard_pkts);
8750 
8751 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
8752 
8753 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
8754 	}
8755 }
8756 
8757 static void bnxt_add_prev_stats(struct bnxt *bp,
8758 				struct rtnl_link_stats64 *stats)
8759 {
8760 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
8761 
8762 	stats->rx_packets += prev_stats->rx_packets;
8763 	stats->tx_packets += prev_stats->tx_packets;
8764 	stats->rx_bytes += prev_stats->rx_bytes;
8765 	stats->tx_bytes += prev_stats->tx_bytes;
8766 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
8767 	stats->multicast += prev_stats->multicast;
8768 	stats->tx_dropped += prev_stats->tx_dropped;
8769 }
8770 
8771 static void
8772 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
8773 {
8774 	struct bnxt *bp = netdev_priv(dev);
8775 
8776 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
8777 	/* Make sure bnxt_close_nic() sees that we are reading stats before
8778 	 * we check the BNXT_STATE_OPEN flag.
8779 	 */
8780 	smp_mb__after_atomic();
8781 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
8782 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8783 		*stats = bp->net_stats_prev;
8784 		return;
8785 	}
8786 
8787 	bnxt_get_ring_stats(bp, stats);
8788 	bnxt_add_prev_stats(bp, stats);
8789 
8790 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8791 		struct rx_port_stats *rx = bp->hw_rx_port_stats;
8792 		struct tx_port_stats *tx = bp->hw_tx_port_stats;
8793 
8794 		stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
8795 		stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
8796 		stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
8797 					  le64_to_cpu(rx->rx_ovrsz_frames) +
8798 					  le64_to_cpu(rx->rx_runt_frames);
8799 		stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
8800 				   le64_to_cpu(rx->rx_jbr_frames);
8801 		stats->collisions = le64_to_cpu(tx->tx_total_collisions);
8802 		stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
8803 		stats->tx_errors = le64_to_cpu(tx->tx_err);
8804 	}
8805 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
8806 }
8807 
8808 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
8809 {
8810 	struct net_device *dev = bp->dev;
8811 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8812 	struct netdev_hw_addr *ha;
8813 	u8 *haddr;
8814 	int mc_count = 0;
8815 	bool update = false;
8816 	int off = 0;
8817 
8818 	netdev_for_each_mc_addr(ha, dev) {
8819 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
8820 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8821 			vnic->mc_list_count = 0;
8822 			return false;
8823 		}
8824 		haddr = ha->addr;
8825 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
8826 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
8827 			update = true;
8828 		}
8829 		off += ETH_ALEN;
8830 		mc_count++;
8831 	}
8832 	if (mc_count)
8833 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
8834 
8835 	if (mc_count != vnic->mc_list_count) {
8836 		vnic->mc_list_count = mc_count;
8837 		update = true;
8838 	}
8839 	return update;
8840 }
8841 
8842 static bool bnxt_uc_list_updated(struct bnxt *bp)
8843 {
8844 	struct net_device *dev = bp->dev;
8845 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8846 	struct netdev_hw_addr *ha;
8847 	int off = 0;
8848 
8849 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
8850 		return true;
8851 
8852 	netdev_for_each_uc_addr(ha, dev) {
8853 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
8854 			return true;
8855 
8856 		off += ETH_ALEN;
8857 	}
8858 	return false;
8859 }
8860 
8861 static void bnxt_set_rx_mode(struct net_device *dev)
8862 {
8863 	struct bnxt *bp = netdev_priv(dev);
8864 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8865 	u32 mask = vnic->rx_mask;
8866 	bool mc_update = false;
8867 	bool uc_update;
8868 
8869 	if (!netif_running(dev))
8870 		return;
8871 
8872 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
8873 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
8874 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
8875 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
8876 
8877 	if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
8878 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8879 
8880 	uc_update = bnxt_uc_list_updated(bp);
8881 
8882 	if (dev->flags & IFF_BROADCAST)
8883 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8884 	if (dev->flags & IFF_ALLMULTI) {
8885 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8886 		vnic->mc_list_count = 0;
8887 	} else {
8888 		mc_update = bnxt_mc_list_updated(bp, &mask);
8889 	}
8890 
8891 	if (mask != vnic->rx_mask || uc_update || mc_update) {
8892 		vnic->rx_mask = mask;
8893 
8894 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
8895 		bnxt_queue_sp_work(bp);
8896 	}
8897 }
8898 
8899 static int bnxt_cfg_rx_mode(struct bnxt *bp)
8900 {
8901 	struct net_device *dev = bp->dev;
8902 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8903 	struct netdev_hw_addr *ha;
8904 	int i, off = 0, rc;
8905 	bool uc_update;
8906 
8907 	netif_addr_lock_bh(dev);
8908 	uc_update = bnxt_uc_list_updated(bp);
8909 	netif_addr_unlock_bh(dev);
8910 
8911 	if (!uc_update)
8912 		goto skip_uc;
8913 
8914 	mutex_lock(&bp->hwrm_cmd_lock);
8915 	for (i = 1; i < vnic->uc_filter_count; i++) {
8916 		struct hwrm_cfa_l2_filter_free_input req = {0};
8917 
8918 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
8919 				       -1);
8920 
8921 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
8922 
8923 		rc = _hwrm_send_message(bp, &req, sizeof(req),
8924 					HWRM_CMD_TIMEOUT);
8925 	}
8926 	mutex_unlock(&bp->hwrm_cmd_lock);
8927 
8928 	vnic->uc_filter_count = 1;
8929 
8930 	netif_addr_lock_bh(dev);
8931 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
8932 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8933 	} else {
8934 		netdev_for_each_uc_addr(ha, dev) {
8935 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
8936 			off += ETH_ALEN;
8937 			vnic->uc_filter_count++;
8938 		}
8939 	}
8940 	netif_addr_unlock_bh(dev);
8941 
8942 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
8943 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
8944 		if (rc) {
8945 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
8946 				   rc);
8947 			vnic->uc_filter_count = i;
8948 			return rc;
8949 		}
8950 	}
8951 
8952 skip_uc:
8953 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
8954 	if (rc)
8955 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
8956 			   rc);
8957 
8958 	return rc;
8959 }
8960 
8961 static bool bnxt_can_reserve_rings(struct bnxt *bp)
8962 {
8963 #ifdef CONFIG_BNXT_SRIOV
8964 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
8965 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8966 
8967 		/* No minimum rings were provisioned by the PF.  Don't
8968 		 * reserve rings by default when device is down.
8969 		 */
8970 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
8971 			return true;
8972 
8973 		if (!netif_running(bp->dev))
8974 			return false;
8975 	}
8976 #endif
8977 	return true;
8978 }
8979 
8980 /* If the chip and firmware supports RFS */
8981 static bool bnxt_rfs_supported(struct bnxt *bp)
8982 {
8983 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8984 		return false;
8985 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
8986 		return true;
8987 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8988 		return true;
8989 	return false;
8990 }
8991 
8992 /* If runtime conditions support RFS */
8993 static bool bnxt_rfs_capable(struct bnxt *bp)
8994 {
8995 #ifdef CONFIG_RFS_ACCEL
8996 	int vnics, max_vnics, max_rss_ctxs;
8997 
8998 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8999 		return false;
9000 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9001 		return false;
9002 
9003 	vnics = 1 + bp->rx_nr_rings;
9004 	max_vnics = bnxt_get_max_func_vnics(bp);
9005 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9006 
9007 	/* RSS contexts not a limiting factor */
9008 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9009 		max_rss_ctxs = max_vnics;
9010 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
9011 		if (bp->rx_nr_rings > 1)
9012 			netdev_warn(bp->dev,
9013 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9014 				    min(max_rss_ctxs - 1, max_vnics - 1));
9015 		return false;
9016 	}
9017 
9018 	if (!BNXT_NEW_RM(bp))
9019 		return true;
9020 
9021 	if (vnics == bp->hw_resc.resv_vnics)
9022 		return true;
9023 
9024 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9025 	if (vnics <= bp->hw_resc.resv_vnics)
9026 		return true;
9027 
9028 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9029 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9030 	return false;
9031 #else
9032 	return false;
9033 #endif
9034 }
9035 
9036 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9037 					   netdev_features_t features)
9038 {
9039 	struct bnxt *bp = netdev_priv(dev);
9040 
9041 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9042 		features &= ~NETIF_F_NTUPLE;
9043 
9044 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9045 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9046 
9047 	if (!(features & NETIF_F_GRO))
9048 		features &= ~NETIF_F_GRO_HW;
9049 
9050 	if (features & NETIF_F_GRO_HW)
9051 		features &= ~NETIF_F_LRO;
9052 
9053 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
9054 	 * turned on or off together.
9055 	 */
9056 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
9057 	    (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
9058 		if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9059 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9060 				      NETIF_F_HW_VLAN_STAG_RX);
9061 		else
9062 			features |= NETIF_F_HW_VLAN_CTAG_RX |
9063 				    NETIF_F_HW_VLAN_STAG_RX;
9064 	}
9065 #ifdef CONFIG_BNXT_SRIOV
9066 	if (BNXT_VF(bp)) {
9067 		if (bp->vf.vlan) {
9068 			features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9069 				      NETIF_F_HW_VLAN_STAG_RX);
9070 		}
9071 	}
9072 #endif
9073 	return features;
9074 }
9075 
9076 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9077 {
9078 	struct bnxt *bp = netdev_priv(dev);
9079 	u32 flags = bp->flags;
9080 	u32 changes;
9081 	int rc = 0;
9082 	bool re_init = false;
9083 	bool update_tpa = false;
9084 
9085 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9086 	if (features & NETIF_F_GRO_HW)
9087 		flags |= BNXT_FLAG_GRO;
9088 	else if (features & NETIF_F_LRO)
9089 		flags |= BNXT_FLAG_LRO;
9090 
9091 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9092 		flags &= ~BNXT_FLAG_TPA;
9093 
9094 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
9095 		flags |= BNXT_FLAG_STRIP_VLAN;
9096 
9097 	if (features & NETIF_F_NTUPLE)
9098 		flags |= BNXT_FLAG_RFS;
9099 
9100 	changes = flags ^ bp->flags;
9101 	if (changes & BNXT_FLAG_TPA) {
9102 		update_tpa = true;
9103 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9104 		    (flags & BNXT_FLAG_TPA) == 0)
9105 			re_init = true;
9106 	}
9107 
9108 	if (changes & ~BNXT_FLAG_TPA)
9109 		re_init = true;
9110 
9111 	if (flags != bp->flags) {
9112 		u32 old_flags = bp->flags;
9113 
9114 		bp->flags = flags;
9115 
9116 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9117 			if (update_tpa)
9118 				bnxt_set_ring_params(bp);
9119 			return rc;
9120 		}
9121 
9122 		if (re_init) {
9123 			bnxt_close_nic(bp, false, false);
9124 			if (update_tpa)
9125 				bnxt_set_ring_params(bp);
9126 
9127 			return bnxt_open_nic(bp, false, false);
9128 		}
9129 		if (update_tpa) {
9130 			rc = bnxt_set_tpa(bp,
9131 					  (flags & BNXT_FLAG_TPA) ?
9132 					  true : false);
9133 			if (rc)
9134 				bp->flags = old_flags;
9135 		}
9136 	}
9137 	return rc;
9138 }
9139 
9140 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9141 				       u32 ring_id, u32 *prod, u32 *cons)
9142 {
9143 	struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9144 	struct hwrm_dbg_ring_info_get_input req = {0};
9145 	int rc;
9146 
9147 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9148 	req.ring_type = ring_type;
9149 	req.fw_ring_id = cpu_to_le32(ring_id);
9150 	mutex_lock(&bp->hwrm_cmd_lock);
9151 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9152 	if (!rc) {
9153 		*prod = le32_to_cpu(resp->producer_index);
9154 		*cons = le32_to_cpu(resp->consumer_index);
9155 	}
9156 	mutex_unlock(&bp->hwrm_cmd_lock);
9157 	return rc;
9158 }
9159 
9160 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9161 {
9162 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9163 	int i = bnapi->index;
9164 
9165 	if (!txr)
9166 		return;
9167 
9168 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9169 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9170 		    txr->tx_cons);
9171 }
9172 
9173 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9174 {
9175 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9176 	int i = bnapi->index;
9177 
9178 	if (!rxr)
9179 		return;
9180 
9181 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9182 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9183 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9184 		    rxr->rx_sw_agg_prod);
9185 }
9186 
9187 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9188 {
9189 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9190 	int i = bnapi->index;
9191 
9192 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9193 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9194 }
9195 
9196 static void bnxt_dbg_dump_states(struct bnxt *bp)
9197 {
9198 	int i;
9199 	struct bnxt_napi *bnapi;
9200 
9201 	for (i = 0; i < bp->cp_nr_rings; i++) {
9202 		bnapi = bp->bnapi[i];
9203 		if (netif_msg_drv(bp)) {
9204 			bnxt_dump_tx_sw_state(bnapi);
9205 			bnxt_dump_rx_sw_state(bnapi);
9206 			bnxt_dump_cp_sw_state(bnapi);
9207 		}
9208 	}
9209 }
9210 
9211 static void bnxt_reset_task(struct bnxt *bp, bool silent)
9212 {
9213 	if (!silent)
9214 		bnxt_dbg_dump_states(bp);
9215 	if (netif_running(bp->dev)) {
9216 		int rc;
9217 
9218 		if (!silent)
9219 			bnxt_ulp_stop(bp);
9220 		bnxt_close_nic(bp, false, false);
9221 		rc = bnxt_open_nic(bp, false, false);
9222 		if (!silent && !rc)
9223 			bnxt_ulp_start(bp);
9224 	}
9225 }
9226 
9227 static void bnxt_tx_timeout(struct net_device *dev)
9228 {
9229 	struct bnxt *bp = netdev_priv(dev);
9230 
9231 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
9232 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
9233 	bnxt_queue_sp_work(bp);
9234 }
9235 
9236 static void bnxt_timer(struct timer_list *t)
9237 {
9238 	struct bnxt *bp = from_timer(bp, t, timer);
9239 	struct net_device *dev = bp->dev;
9240 
9241 	if (!netif_running(dev))
9242 		return;
9243 
9244 	if (atomic_read(&bp->intr_sem) != 0)
9245 		goto bnxt_restart_timer;
9246 
9247 	if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
9248 	    bp->stats_coal_ticks) {
9249 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
9250 		bnxt_queue_sp_work(bp);
9251 	}
9252 
9253 	if (bnxt_tc_flower_enabled(bp)) {
9254 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
9255 		bnxt_queue_sp_work(bp);
9256 	}
9257 
9258 	if (bp->link_info.phy_retry) {
9259 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
9260 			bp->link_info.phy_retry = 0;
9261 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
9262 		} else {
9263 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
9264 			bnxt_queue_sp_work(bp);
9265 		}
9266 	}
9267 
9268 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && netif_carrier_ok(dev)) {
9269 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
9270 		bnxt_queue_sp_work(bp);
9271 	}
9272 bnxt_restart_timer:
9273 	mod_timer(&bp->timer, jiffies + bp->current_interval);
9274 }
9275 
9276 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
9277 {
9278 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
9279 	 * set.  If the device is being closed, bnxt_close() may be holding
9280 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
9281 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
9282 	 */
9283 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9284 	rtnl_lock();
9285 }
9286 
9287 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
9288 {
9289 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9290 	rtnl_unlock();
9291 }
9292 
9293 /* Only called from bnxt_sp_task() */
9294 static void bnxt_reset(struct bnxt *bp, bool silent)
9295 {
9296 	bnxt_rtnl_lock_sp(bp);
9297 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
9298 		bnxt_reset_task(bp, silent);
9299 	bnxt_rtnl_unlock_sp(bp);
9300 }
9301 
9302 static void bnxt_chk_missed_irq(struct bnxt *bp)
9303 {
9304 	int i;
9305 
9306 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
9307 		return;
9308 
9309 	for (i = 0; i < bp->cp_nr_rings; i++) {
9310 		struct bnxt_napi *bnapi = bp->bnapi[i];
9311 		struct bnxt_cp_ring_info *cpr;
9312 		u32 fw_ring_id;
9313 		int j;
9314 
9315 		if (!bnapi)
9316 			continue;
9317 
9318 		cpr = &bnapi->cp_ring;
9319 		for (j = 0; j < 2; j++) {
9320 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
9321 			u32 val[2];
9322 
9323 			if (!cpr2 || cpr2->has_more_work ||
9324 			    !bnxt_has_work(bp, cpr2))
9325 				continue;
9326 
9327 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
9328 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
9329 				continue;
9330 			}
9331 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
9332 			bnxt_dbg_hwrm_ring_info_get(bp,
9333 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
9334 				fw_ring_id, &val[0], &val[1]);
9335 			cpr->missed_irqs++;
9336 		}
9337 	}
9338 }
9339 
9340 static void bnxt_cfg_ntp_filters(struct bnxt *);
9341 
9342 static void bnxt_sp_task(struct work_struct *work)
9343 {
9344 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
9345 
9346 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9347 	smp_mb__after_atomic();
9348 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9349 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9350 		return;
9351 	}
9352 
9353 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
9354 		bnxt_cfg_rx_mode(bp);
9355 
9356 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
9357 		bnxt_cfg_ntp_filters(bp);
9358 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
9359 		bnxt_hwrm_exec_fwd_req(bp);
9360 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9361 		bnxt_hwrm_tunnel_dst_port_alloc(
9362 			bp, bp->vxlan_port,
9363 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9364 	}
9365 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9366 		bnxt_hwrm_tunnel_dst_port_free(
9367 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
9368 	}
9369 	if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
9370 		bnxt_hwrm_tunnel_dst_port_alloc(
9371 			bp, bp->nge_port,
9372 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9373 	}
9374 	if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
9375 		bnxt_hwrm_tunnel_dst_port_free(
9376 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
9377 	}
9378 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
9379 		bnxt_hwrm_port_qstats(bp);
9380 		bnxt_hwrm_port_qstats_ext(bp);
9381 	}
9382 
9383 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
9384 		int rc;
9385 
9386 		mutex_lock(&bp->link_lock);
9387 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
9388 				       &bp->sp_event))
9389 			bnxt_hwrm_phy_qcaps(bp);
9390 
9391 		rc = bnxt_update_link(bp, true);
9392 		mutex_unlock(&bp->link_lock);
9393 		if (rc)
9394 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
9395 				   rc);
9396 	}
9397 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
9398 		int rc;
9399 
9400 		mutex_lock(&bp->link_lock);
9401 		rc = bnxt_update_phy_setting(bp);
9402 		mutex_unlock(&bp->link_lock);
9403 		if (rc) {
9404 			netdev_warn(bp->dev, "update phy settings retry failed\n");
9405 		} else {
9406 			bp->link_info.phy_retry = false;
9407 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
9408 		}
9409 	}
9410 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
9411 		mutex_lock(&bp->link_lock);
9412 		bnxt_get_port_module_status(bp);
9413 		mutex_unlock(&bp->link_lock);
9414 	}
9415 
9416 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
9417 		bnxt_tc_flow_stats_work(bp);
9418 
9419 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
9420 		bnxt_chk_missed_irq(bp);
9421 
9422 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
9423 	 * must be the last functions to be called before exiting.
9424 	 */
9425 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
9426 		bnxt_reset(bp, false);
9427 
9428 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
9429 		bnxt_reset(bp, true);
9430 
9431 	smp_mb__before_atomic();
9432 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
9433 }
9434 
9435 /* Under rtnl_lock */
9436 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
9437 		     int tx_xdp)
9438 {
9439 	int max_rx, max_tx, tx_sets = 1;
9440 	int tx_rings_needed, stats;
9441 	int rx_rings = rx;
9442 	int cp, vnics, rc;
9443 
9444 	if (tcs)
9445 		tx_sets = tcs;
9446 
9447 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
9448 	if (rc)
9449 		return rc;
9450 
9451 	if (max_rx < rx)
9452 		return -ENOMEM;
9453 
9454 	tx_rings_needed = tx * tx_sets + tx_xdp;
9455 	if (max_tx < tx_rings_needed)
9456 		return -ENOMEM;
9457 
9458 	vnics = 1;
9459 	if (bp->flags & BNXT_FLAG_RFS)
9460 		vnics += rx_rings;
9461 
9462 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
9463 		rx_rings <<= 1;
9464 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
9465 	stats = cp;
9466 	if (BNXT_NEW_RM(bp)) {
9467 		cp += bnxt_get_ulp_msix_num(bp);
9468 		stats += bnxt_get_ulp_stat_ctxs(bp);
9469 	}
9470 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
9471 				     stats, vnics);
9472 }
9473 
9474 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
9475 {
9476 	if (bp->bar2) {
9477 		pci_iounmap(pdev, bp->bar2);
9478 		bp->bar2 = NULL;
9479 	}
9480 
9481 	if (bp->bar1) {
9482 		pci_iounmap(pdev, bp->bar1);
9483 		bp->bar1 = NULL;
9484 	}
9485 
9486 	if (bp->bar0) {
9487 		pci_iounmap(pdev, bp->bar0);
9488 		bp->bar0 = NULL;
9489 	}
9490 }
9491 
9492 static void bnxt_cleanup_pci(struct bnxt *bp)
9493 {
9494 	bnxt_unmap_bars(bp, bp->pdev);
9495 	pci_release_regions(bp->pdev);
9496 	pci_disable_device(bp->pdev);
9497 }
9498 
9499 static void bnxt_init_dflt_coal(struct bnxt *bp)
9500 {
9501 	struct bnxt_coal *coal;
9502 
9503 	/* Tick values in micro seconds.
9504 	 * 1 coal_buf x bufs_per_record = 1 completion record.
9505 	 */
9506 	coal = &bp->rx_coal;
9507 	coal->coal_ticks = 10;
9508 	coal->coal_bufs = 30;
9509 	coal->coal_ticks_irq = 1;
9510 	coal->coal_bufs_irq = 2;
9511 	coal->idle_thresh = 50;
9512 	coal->bufs_per_record = 2;
9513 	coal->budget = 64;		/* NAPI budget */
9514 
9515 	coal = &bp->tx_coal;
9516 	coal->coal_ticks = 28;
9517 	coal->coal_bufs = 30;
9518 	coal->coal_ticks_irq = 2;
9519 	coal->coal_bufs_irq = 2;
9520 	coal->bufs_per_record = 1;
9521 
9522 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
9523 }
9524 
9525 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
9526 {
9527 	int rc;
9528 	struct bnxt *bp = netdev_priv(dev);
9529 
9530 	SET_NETDEV_DEV(dev, &pdev->dev);
9531 
9532 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
9533 	rc = pci_enable_device(pdev);
9534 	if (rc) {
9535 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
9536 		goto init_err;
9537 	}
9538 
9539 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
9540 		dev_err(&pdev->dev,
9541 			"Cannot find PCI device base address, aborting\n");
9542 		rc = -ENODEV;
9543 		goto init_err_disable;
9544 	}
9545 
9546 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
9547 	if (rc) {
9548 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
9549 		goto init_err_disable;
9550 	}
9551 
9552 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
9553 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
9554 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
9555 		goto init_err_disable;
9556 	}
9557 
9558 	pci_set_master(pdev);
9559 
9560 	bp->dev = dev;
9561 	bp->pdev = pdev;
9562 
9563 	bp->bar0 = pci_ioremap_bar(pdev, 0);
9564 	if (!bp->bar0) {
9565 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
9566 		rc = -ENOMEM;
9567 		goto init_err_release;
9568 	}
9569 
9570 	bp->bar1 = pci_ioremap_bar(pdev, 2);
9571 	if (!bp->bar1) {
9572 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
9573 		rc = -ENOMEM;
9574 		goto init_err_release;
9575 	}
9576 
9577 	bp->bar2 = pci_ioremap_bar(pdev, 4);
9578 	if (!bp->bar2) {
9579 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
9580 		rc = -ENOMEM;
9581 		goto init_err_release;
9582 	}
9583 
9584 	pci_enable_pcie_error_reporting(pdev);
9585 
9586 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
9587 
9588 	spin_lock_init(&bp->ntp_fltr_lock);
9589 #if BITS_PER_LONG == 32
9590 	spin_lock_init(&bp->db_lock);
9591 #endif
9592 
9593 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
9594 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
9595 
9596 	bnxt_init_dflt_coal(bp);
9597 
9598 	timer_setup(&bp->timer, bnxt_timer, 0);
9599 	bp->current_interval = BNXT_TIMER_INTERVAL;
9600 
9601 	clear_bit(BNXT_STATE_OPEN, &bp->state);
9602 	return 0;
9603 
9604 init_err_release:
9605 	bnxt_unmap_bars(bp, pdev);
9606 	pci_release_regions(pdev);
9607 
9608 init_err_disable:
9609 	pci_disable_device(pdev);
9610 
9611 init_err:
9612 	return rc;
9613 }
9614 
9615 /* rtnl_lock held */
9616 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
9617 {
9618 	struct sockaddr *addr = p;
9619 	struct bnxt *bp = netdev_priv(dev);
9620 	int rc = 0;
9621 
9622 	if (!is_valid_ether_addr(addr->sa_data))
9623 		return -EADDRNOTAVAIL;
9624 
9625 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
9626 		return 0;
9627 
9628 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
9629 	if (rc)
9630 		return rc;
9631 
9632 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
9633 	if (netif_running(dev)) {
9634 		bnxt_close_nic(bp, false, false);
9635 		rc = bnxt_open_nic(bp, false, false);
9636 	}
9637 
9638 	return rc;
9639 }
9640 
9641 /* rtnl_lock held */
9642 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
9643 {
9644 	struct bnxt *bp = netdev_priv(dev);
9645 
9646 	if (netif_running(dev))
9647 		bnxt_close_nic(bp, false, false);
9648 
9649 	dev->mtu = new_mtu;
9650 	bnxt_set_ring_params(bp);
9651 
9652 	if (netif_running(dev))
9653 		return bnxt_open_nic(bp, false, false);
9654 
9655 	return 0;
9656 }
9657 
9658 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
9659 {
9660 	struct bnxt *bp = netdev_priv(dev);
9661 	bool sh = false;
9662 	int rc;
9663 
9664 	if (tc > bp->max_tc) {
9665 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
9666 			   tc, bp->max_tc);
9667 		return -EINVAL;
9668 	}
9669 
9670 	if (netdev_get_num_tc(dev) == tc)
9671 		return 0;
9672 
9673 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
9674 		sh = true;
9675 
9676 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
9677 			      sh, tc, bp->tx_nr_rings_xdp);
9678 	if (rc)
9679 		return rc;
9680 
9681 	/* Needs to close the device and do hw resource re-allocations */
9682 	if (netif_running(bp->dev))
9683 		bnxt_close_nic(bp, true, false);
9684 
9685 	if (tc) {
9686 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
9687 		netdev_set_num_tc(dev, tc);
9688 	} else {
9689 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
9690 		netdev_reset_tc(dev);
9691 	}
9692 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
9693 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
9694 			       bp->tx_nr_rings + bp->rx_nr_rings;
9695 
9696 	if (netif_running(bp->dev))
9697 		return bnxt_open_nic(bp, true, false);
9698 
9699 	return 0;
9700 }
9701 
9702 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
9703 				  void *cb_priv)
9704 {
9705 	struct bnxt *bp = cb_priv;
9706 
9707 	if (!bnxt_tc_flower_enabled(bp) ||
9708 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
9709 		return -EOPNOTSUPP;
9710 
9711 	switch (type) {
9712 	case TC_SETUP_CLSFLOWER:
9713 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
9714 	default:
9715 		return -EOPNOTSUPP;
9716 	}
9717 }
9718 
9719 static int bnxt_setup_tc_block(struct net_device *dev,
9720 			       struct tc_block_offload *f)
9721 {
9722 	struct bnxt *bp = netdev_priv(dev);
9723 
9724 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9725 		return -EOPNOTSUPP;
9726 
9727 	switch (f->command) {
9728 	case TC_BLOCK_BIND:
9729 		return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
9730 					     bp, bp, f->extack);
9731 	case TC_BLOCK_UNBIND:
9732 		tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
9733 		return 0;
9734 	default:
9735 		return -EOPNOTSUPP;
9736 	}
9737 }
9738 
9739 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
9740 			 void *type_data)
9741 {
9742 	switch (type) {
9743 	case TC_SETUP_BLOCK:
9744 		return bnxt_setup_tc_block(dev, type_data);
9745 	case TC_SETUP_QDISC_MQPRIO: {
9746 		struct tc_mqprio_qopt *mqprio = type_data;
9747 
9748 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
9749 
9750 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
9751 	}
9752 	default:
9753 		return -EOPNOTSUPP;
9754 	}
9755 }
9756 
9757 #ifdef CONFIG_RFS_ACCEL
9758 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
9759 			    struct bnxt_ntuple_filter *f2)
9760 {
9761 	struct flow_keys *keys1 = &f1->fkeys;
9762 	struct flow_keys *keys2 = &f2->fkeys;
9763 
9764 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
9765 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
9766 	    keys1->ports.ports == keys2->ports.ports &&
9767 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
9768 	    keys1->basic.n_proto == keys2->basic.n_proto &&
9769 	    keys1->control.flags == keys2->control.flags &&
9770 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
9771 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
9772 		return true;
9773 
9774 	return false;
9775 }
9776 
9777 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
9778 			      u16 rxq_index, u32 flow_id)
9779 {
9780 	struct bnxt *bp = netdev_priv(dev);
9781 	struct bnxt_ntuple_filter *fltr, *new_fltr;
9782 	struct flow_keys *fkeys;
9783 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
9784 	int rc = 0, idx, bit_id, l2_idx = 0;
9785 	struct hlist_head *head;
9786 
9787 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
9788 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9789 		int off = 0, j;
9790 
9791 		netif_addr_lock_bh(dev);
9792 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
9793 			if (ether_addr_equal(eth->h_dest,
9794 					     vnic->uc_list + off)) {
9795 				l2_idx = j + 1;
9796 				break;
9797 			}
9798 		}
9799 		netif_addr_unlock_bh(dev);
9800 		if (!l2_idx)
9801 			return -EINVAL;
9802 	}
9803 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
9804 	if (!new_fltr)
9805 		return -ENOMEM;
9806 
9807 	fkeys = &new_fltr->fkeys;
9808 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
9809 		rc = -EPROTONOSUPPORT;
9810 		goto err_free;
9811 	}
9812 
9813 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
9814 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
9815 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
9816 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
9817 		rc = -EPROTONOSUPPORT;
9818 		goto err_free;
9819 	}
9820 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
9821 	    bp->hwrm_spec_code < 0x10601) {
9822 		rc = -EPROTONOSUPPORT;
9823 		goto err_free;
9824 	}
9825 	if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
9826 	    bp->hwrm_spec_code < 0x10601) {
9827 		rc = -EPROTONOSUPPORT;
9828 		goto err_free;
9829 	}
9830 
9831 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
9832 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
9833 
9834 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
9835 	head = &bp->ntp_fltr_hash_tbl[idx];
9836 	rcu_read_lock();
9837 	hlist_for_each_entry_rcu(fltr, head, hash) {
9838 		if (bnxt_fltr_match(fltr, new_fltr)) {
9839 			rcu_read_unlock();
9840 			rc = 0;
9841 			goto err_free;
9842 		}
9843 	}
9844 	rcu_read_unlock();
9845 
9846 	spin_lock_bh(&bp->ntp_fltr_lock);
9847 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
9848 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
9849 	if (bit_id < 0) {
9850 		spin_unlock_bh(&bp->ntp_fltr_lock);
9851 		rc = -ENOMEM;
9852 		goto err_free;
9853 	}
9854 
9855 	new_fltr->sw_id = (u16)bit_id;
9856 	new_fltr->flow_id = flow_id;
9857 	new_fltr->l2_fltr_idx = l2_idx;
9858 	new_fltr->rxq = rxq_index;
9859 	hlist_add_head_rcu(&new_fltr->hash, head);
9860 	bp->ntp_fltr_count++;
9861 	spin_unlock_bh(&bp->ntp_fltr_lock);
9862 
9863 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
9864 	bnxt_queue_sp_work(bp);
9865 
9866 	return new_fltr->sw_id;
9867 
9868 err_free:
9869 	kfree(new_fltr);
9870 	return rc;
9871 }
9872 
9873 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
9874 {
9875 	int i;
9876 
9877 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
9878 		struct hlist_head *head;
9879 		struct hlist_node *tmp;
9880 		struct bnxt_ntuple_filter *fltr;
9881 		int rc;
9882 
9883 		head = &bp->ntp_fltr_hash_tbl[i];
9884 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
9885 			bool del = false;
9886 
9887 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
9888 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
9889 							fltr->flow_id,
9890 							fltr->sw_id)) {
9891 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
9892 									 fltr);
9893 					del = true;
9894 				}
9895 			} else {
9896 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
9897 								       fltr);
9898 				if (rc)
9899 					del = true;
9900 				else
9901 					set_bit(BNXT_FLTR_VALID, &fltr->state);
9902 			}
9903 
9904 			if (del) {
9905 				spin_lock_bh(&bp->ntp_fltr_lock);
9906 				hlist_del_rcu(&fltr->hash);
9907 				bp->ntp_fltr_count--;
9908 				spin_unlock_bh(&bp->ntp_fltr_lock);
9909 				synchronize_rcu();
9910 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
9911 				kfree(fltr);
9912 			}
9913 		}
9914 	}
9915 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
9916 		netdev_info(bp->dev, "Receive PF driver unload event!");
9917 }
9918 
9919 #else
9920 
9921 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
9922 {
9923 }
9924 
9925 #endif /* CONFIG_RFS_ACCEL */
9926 
9927 static void bnxt_udp_tunnel_add(struct net_device *dev,
9928 				struct udp_tunnel_info *ti)
9929 {
9930 	struct bnxt *bp = netdev_priv(dev);
9931 
9932 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
9933 		return;
9934 
9935 	if (!netif_running(dev))
9936 		return;
9937 
9938 	switch (ti->type) {
9939 	case UDP_TUNNEL_TYPE_VXLAN:
9940 		if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
9941 			return;
9942 
9943 		bp->vxlan_port_cnt++;
9944 		if (bp->vxlan_port_cnt == 1) {
9945 			bp->vxlan_port = ti->port;
9946 			set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
9947 			bnxt_queue_sp_work(bp);
9948 		}
9949 		break;
9950 	case UDP_TUNNEL_TYPE_GENEVE:
9951 		if (bp->nge_port_cnt && bp->nge_port != ti->port)
9952 			return;
9953 
9954 		bp->nge_port_cnt++;
9955 		if (bp->nge_port_cnt == 1) {
9956 			bp->nge_port = ti->port;
9957 			set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
9958 		}
9959 		break;
9960 	default:
9961 		return;
9962 	}
9963 
9964 	bnxt_queue_sp_work(bp);
9965 }
9966 
9967 static void bnxt_udp_tunnel_del(struct net_device *dev,
9968 				struct udp_tunnel_info *ti)
9969 {
9970 	struct bnxt *bp = netdev_priv(dev);
9971 
9972 	if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
9973 		return;
9974 
9975 	if (!netif_running(dev))
9976 		return;
9977 
9978 	switch (ti->type) {
9979 	case UDP_TUNNEL_TYPE_VXLAN:
9980 		if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
9981 			return;
9982 		bp->vxlan_port_cnt--;
9983 
9984 		if (bp->vxlan_port_cnt != 0)
9985 			return;
9986 
9987 		set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
9988 		break;
9989 	case UDP_TUNNEL_TYPE_GENEVE:
9990 		if (!bp->nge_port_cnt || bp->nge_port != ti->port)
9991 			return;
9992 		bp->nge_port_cnt--;
9993 
9994 		if (bp->nge_port_cnt != 0)
9995 			return;
9996 
9997 		set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
9998 		break;
9999 	default:
10000 		return;
10001 	}
10002 
10003 	bnxt_queue_sp_work(bp);
10004 }
10005 
10006 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
10007 			       struct net_device *dev, u32 filter_mask,
10008 			       int nlflags)
10009 {
10010 	struct bnxt *bp = netdev_priv(dev);
10011 
10012 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
10013 				       nlflags, filter_mask, NULL);
10014 }
10015 
10016 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
10017 			       u16 flags, struct netlink_ext_ack *extack)
10018 {
10019 	struct bnxt *bp = netdev_priv(dev);
10020 	struct nlattr *attr, *br_spec;
10021 	int rem, rc = 0;
10022 
10023 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
10024 		return -EOPNOTSUPP;
10025 
10026 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
10027 	if (!br_spec)
10028 		return -EINVAL;
10029 
10030 	nla_for_each_nested(attr, br_spec, rem) {
10031 		u16 mode;
10032 
10033 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
10034 			continue;
10035 
10036 		if (nla_len(attr) < sizeof(mode))
10037 			return -EINVAL;
10038 
10039 		mode = nla_get_u16(attr);
10040 		if (mode == bp->br_mode)
10041 			break;
10042 
10043 		rc = bnxt_hwrm_set_br_mode(bp, mode);
10044 		if (!rc)
10045 			bp->br_mode = mode;
10046 		break;
10047 	}
10048 	return rc;
10049 }
10050 
10051 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
10052 				   size_t len)
10053 {
10054 	struct bnxt *bp = netdev_priv(dev);
10055 	int rc;
10056 
10057 	/* The PF and it's VF-reps only support the switchdev framework */
10058 	if (!BNXT_PF(bp))
10059 		return -EOPNOTSUPP;
10060 
10061 	rc = snprintf(buf, len, "p%d", bp->pf.port_id);
10062 
10063 	if (rc >= len)
10064 		return -EOPNOTSUPP;
10065 	return 0;
10066 }
10067 
10068 int bnxt_get_port_parent_id(struct net_device *dev,
10069 			    struct netdev_phys_item_id *ppid)
10070 {
10071 	struct bnxt *bp = netdev_priv(dev);
10072 
10073 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
10074 		return -EOPNOTSUPP;
10075 
10076 	/* The PF and it's VF-reps only support the switchdev framework */
10077 	if (!BNXT_PF(bp))
10078 		return -EOPNOTSUPP;
10079 
10080 	ppid->id_len = sizeof(bp->switch_id);
10081 	memcpy(ppid->id, bp->switch_id, ppid->id_len);
10082 
10083 	return 0;
10084 }
10085 
10086 static const struct net_device_ops bnxt_netdev_ops = {
10087 	.ndo_open		= bnxt_open,
10088 	.ndo_start_xmit		= bnxt_start_xmit,
10089 	.ndo_stop		= bnxt_close,
10090 	.ndo_get_stats64	= bnxt_get_stats64,
10091 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
10092 	.ndo_do_ioctl		= bnxt_ioctl,
10093 	.ndo_validate_addr	= eth_validate_addr,
10094 	.ndo_set_mac_address	= bnxt_change_mac_addr,
10095 	.ndo_change_mtu		= bnxt_change_mtu,
10096 	.ndo_fix_features	= bnxt_fix_features,
10097 	.ndo_set_features	= bnxt_set_features,
10098 	.ndo_tx_timeout		= bnxt_tx_timeout,
10099 #ifdef CONFIG_BNXT_SRIOV
10100 	.ndo_get_vf_config	= bnxt_get_vf_config,
10101 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
10102 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
10103 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
10104 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
10105 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
10106 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
10107 #endif
10108 	.ndo_setup_tc           = bnxt_setup_tc,
10109 #ifdef CONFIG_RFS_ACCEL
10110 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
10111 #endif
10112 	.ndo_udp_tunnel_add	= bnxt_udp_tunnel_add,
10113 	.ndo_udp_tunnel_del	= bnxt_udp_tunnel_del,
10114 	.ndo_bpf		= bnxt_xdp,
10115 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
10116 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
10117 	.ndo_get_port_parent_id	= bnxt_get_port_parent_id,
10118 	.ndo_get_phys_port_name = bnxt_get_phys_port_name
10119 };
10120 
10121 static void bnxt_remove_one(struct pci_dev *pdev)
10122 {
10123 	struct net_device *dev = pci_get_drvdata(pdev);
10124 	struct bnxt *bp = netdev_priv(dev);
10125 
10126 	if (BNXT_PF(bp)) {
10127 		bnxt_sriov_disable(bp);
10128 		bnxt_dl_unregister(bp);
10129 	}
10130 
10131 	pci_disable_pcie_error_reporting(pdev);
10132 	unregister_netdev(dev);
10133 	bnxt_shutdown_tc(bp);
10134 	bnxt_cancel_sp_work(bp);
10135 	bp->sp_event = 0;
10136 
10137 	bnxt_clear_int_mode(bp);
10138 	bnxt_hwrm_func_drv_unrgtr(bp);
10139 	bnxt_free_hwrm_resources(bp);
10140 	bnxt_free_hwrm_short_cmd_req(bp);
10141 	bnxt_ethtool_free(bp);
10142 	bnxt_dcb_free(bp);
10143 	kfree(bp->edev);
10144 	bp->edev = NULL;
10145 	bnxt_free_ctx_mem(bp);
10146 	kfree(bp->ctx);
10147 	bp->ctx = NULL;
10148 	bnxt_cleanup_pci(bp);
10149 	bnxt_free_port_stats(bp);
10150 	free_netdev(dev);
10151 }
10152 
10153 static int bnxt_probe_phy(struct bnxt *bp)
10154 {
10155 	int rc = 0;
10156 	struct bnxt_link_info *link_info = &bp->link_info;
10157 
10158 	rc = bnxt_hwrm_phy_qcaps(bp);
10159 	if (rc) {
10160 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
10161 			   rc);
10162 		return rc;
10163 	}
10164 	mutex_init(&bp->link_lock);
10165 
10166 	rc = bnxt_update_link(bp, false);
10167 	if (rc) {
10168 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
10169 			   rc);
10170 		return rc;
10171 	}
10172 
10173 	/* Older firmware does not have supported_auto_speeds, so assume
10174 	 * that all supported speeds can be autonegotiated.
10175 	 */
10176 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
10177 		link_info->support_auto_speeds = link_info->support_speeds;
10178 
10179 	/*initialize the ethool setting copy with NVM settings */
10180 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
10181 		link_info->autoneg = BNXT_AUTONEG_SPEED;
10182 		if (bp->hwrm_spec_code >= 0x10201) {
10183 			if (link_info->auto_pause_setting &
10184 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
10185 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10186 		} else {
10187 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
10188 		}
10189 		link_info->advertising = link_info->auto_link_speeds;
10190 	} else {
10191 		link_info->req_link_speed = link_info->force_link_speed;
10192 		link_info->req_duplex = link_info->duplex_setting;
10193 	}
10194 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
10195 		link_info->req_flow_ctrl =
10196 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
10197 	else
10198 		link_info->req_flow_ctrl = link_info->force_pause_setting;
10199 	return rc;
10200 }
10201 
10202 static int bnxt_get_max_irq(struct pci_dev *pdev)
10203 {
10204 	u16 ctrl;
10205 
10206 	if (!pdev->msix_cap)
10207 		return 1;
10208 
10209 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
10210 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
10211 }
10212 
10213 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10214 				int *max_cp)
10215 {
10216 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10217 	int max_ring_grps = 0, max_irq;
10218 
10219 	*max_tx = hw_resc->max_tx_rings;
10220 	*max_rx = hw_resc->max_rx_rings;
10221 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
10222 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
10223 			bnxt_get_ulp_msix_num(bp),
10224 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
10225 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10226 		*max_cp = min_t(int, *max_cp, max_irq);
10227 	max_ring_grps = hw_resc->max_hw_ring_grps;
10228 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
10229 		*max_cp -= 1;
10230 		*max_rx -= 2;
10231 	}
10232 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
10233 		*max_rx >>= 1;
10234 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10235 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
10236 		/* On P5 chips, max_cp output param should be available NQs */
10237 		*max_cp = max_irq;
10238 	}
10239 	*max_rx = min_t(int, *max_rx, max_ring_grps);
10240 }
10241 
10242 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
10243 {
10244 	int rx, tx, cp;
10245 
10246 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
10247 	*max_rx = rx;
10248 	*max_tx = tx;
10249 	if (!rx || !tx || !cp)
10250 		return -ENOMEM;
10251 
10252 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
10253 }
10254 
10255 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
10256 			       bool shared)
10257 {
10258 	int rc;
10259 
10260 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10261 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
10262 		/* Not enough rings, try disabling agg rings. */
10263 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
10264 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
10265 		if (rc) {
10266 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
10267 			bp->flags |= BNXT_FLAG_AGG_RINGS;
10268 			return rc;
10269 		}
10270 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
10271 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10272 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10273 		bnxt_set_ring_params(bp);
10274 	}
10275 
10276 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
10277 		int max_cp, max_stat, max_irq;
10278 
10279 		/* Reserve minimum resources for RoCE */
10280 		max_cp = bnxt_get_max_func_cp_rings(bp);
10281 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
10282 		max_irq = bnxt_get_max_func_irqs(bp);
10283 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
10284 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
10285 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
10286 			return 0;
10287 
10288 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
10289 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
10290 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
10291 		max_cp = min_t(int, max_cp, max_irq);
10292 		max_cp = min_t(int, max_cp, max_stat);
10293 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
10294 		if (rc)
10295 			rc = 0;
10296 	}
10297 	return rc;
10298 }
10299 
10300 /* In initial default shared ring setting, each shared ring must have a
10301  * RX/TX ring pair.
10302  */
10303 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
10304 {
10305 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
10306 	bp->rx_nr_rings = bp->cp_nr_rings;
10307 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
10308 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10309 }
10310 
10311 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
10312 {
10313 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
10314 
10315 	if (!bnxt_can_reserve_rings(bp))
10316 		return 0;
10317 
10318 	if (sh)
10319 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
10320 	dflt_rings = netif_get_num_default_rss_queues();
10321 	/* Reduce default rings on multi-port cards so that total default
10322 	 * rings do not exceed CPU count.
10323 	 */
10324 	if (bp->port_count > 1) {
10325 		int max_rings =
10326 			max_t(int, num_online_cpus() / bp->port_count, 1);
10327 
10328 		dflt_rings = min_t(int, dflt_rings, max_rings);
10329 	}
10330 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
10331 	if (rc)
10332 		return rc;
10333 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
10334 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
10335 	if (sh)
10336 		bnxt_trim_dflt_sh_rings(bp);
10337 	else
10338 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
10339 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10340 
10341 	rc = __bnxt_reserve_rings(bp);
10342 	if (rc)
10343 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
10344 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10345 	if (sh)
10346 		bnxt_trim_dflt_sh_rings(bp);
10347 
10348 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
10349 	if (bnxt_need_reserve_rings(bp)) {
10350 		rc = __bnxt_reserve_rings(bp);
10351 		if (rc)
10352 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
10353 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10354 	}
10355 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
10356 		bp->rx_nr_rings++;
10357 		bp->cp_nr_rings++;
10358 	}
10359 	return rc;
10360 }
10361 
10362 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
10363 {
10364 	int rc;
10365 
10366 	if (bp->tx_nr_rings)
10367 		return 0;
10368 
10369 	bnxt_ulp_irq_stop(bp);
10370 	bnxt_clear_int_mode(bp);
10371 	rc = bnxt_set_dflt_rings(bp, true);
10372 	if (rc) {
10373 		netdev_err(bp->dev, "Not enough rings available.\n");
10374 		goto init_dflt_ring_err;
10375 	}
10376 	rc = bnxt_init_int_mode(bp);
10377 	if (rc)
10378 		goto init_dflt_ring_err;
10379 
10380 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10381 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
10382 		bp->flags |= BNXT_FLAG_RFS;
10383 		bp->dev->features |= NETIF_F_NTUPLE;
10384 	}
10385 init_dflt_ring_err:
10386 	bnxt_ulp_irq_restart(bp, rc);
10387 	return rc;
10388 }
10389 
10390 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
10391 {
10392 	int rc;
10393 
10394 	ASSERT_RTNL();
10395 	bnxt_hwrm_func_qcaps(bp);
10396 
10397 	if (netif_running(bp->dev))
10398 		__bnxt_close_nic(bp, true, false);
10399 
10400 	bnxt_ulp_irq_stop(bp);
10401 	bnxt_clear_int_mode(bp);
10402 	rc = bnxt_init_int_mode(bp);
10403 	bnxt_ulp_irq_restart(bp, rc);
10404 
10405 	if (netif_running(bp->dev)) {
10406 		if (rc)
10407 			dev_close(bp->dev);
10408 		else
10409 			rc = bnxt_open_nic(bp, true, false);
10410 	}
10411 
10412 	return rc;
10413 }
10414 
10415 static int bnxt_init_mac_addr(struct bnxt *bp)
10416 {
10417 	int rc = 0;
10418 
10419 	if (BNXT_PF(bp)) {
10420 		memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
10421 	} else {
10422 #ifdef CONFIG_BNXT_SRIOV
10423 		struct bnxt_vf_info *vf = &bp->vf;
10424 		bool strict_approval = true;
10425 
10426 		if (is_valid_ether_addr(vf->mac_addr)) {
10427 			/* overwrite netdev dev_addr with admin VF MAC */
10428 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
10429 			/* Older PF driver or firmware may not approve this
10430 			 * correctly.
10431 			 */
10432 			strict_approval = false;
10433 		} else {
10434 			eth_hw_addr_random(bp->dev);
10435 		}
10436 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
10437 #endif
10438 	}
10439 	return rc;
10440 }
10441 
10442 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
10443 {
10444 	static int version_printed;
10445 	struct net_device *dev;
10446 	struct bnxt *bp;
10447 	int rc, max_irqs;
10448 
10449 	if (pci_is_bridge(pdev))
10450 		return -ENODEV;
10451 
10452 	if (version_printed++ == 0)
10453 		pr_info("%s", version);
10454 
10455 	max_irqs = bnxt_get_max_irq(pdev);
10456 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
10457 	if (!dev)
10458 		return -ENOMEM;
10459 
10460 	bp = netdev_priv(dev);
10461 	bnxt_set_max_func_irqs(bp, max_irqs);
10462 
10463 	if (bnxt_vf_pciid(ent->driver_data))
10464 		bp->flags |= BNXT_FLAG_VF;
10465 
10466 	if (pdev->msix_cap)
10467 		bp->flags |= BNXT_FLAG_MSIX_CAP;
10468 
10469 	rc = bnxt_init_board(pdev, dev);
10470 	if (rc < 0)
10471 		goto init_err_free;
10472 
10473 	dev->netdev_ops = &bnxt_netdev_ops;
10474 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
10475 	dev->ethtool_ops = &bnxt_ethtool_ops;
10476 	pci_set_drvdata(pdev, dev);
10477 
10478 	rc = bnxt_alloc_hwrm_resources(bp);
10479 	if (rc)
10480 		goto init_err_pci_clean;
10481 
10482 	mutex_init(&bp->hwrm_cmd_lock);
10483 	rc = bnxt_hwrm_ver_get(bp);
10484 	if (rc)
10485 		goto init_err_pci_clean;
10486 
10487 	if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10488 		rc = bnxt_alloc_kong_hwrm_resources(bp);
10489 		if (rc)
10490 			bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10491 	}
10492 
10493 	if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10494 	    bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10495 		rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10496 		if (rc)
10497 			goto init_err_pci_clean;
10498 	}
10499 
10500 	if (BNXT_CHIP_P5(bp))
10501 		bp->flags |= BNXT_FLAG_CHIP_P5;
10502 
10503 	rc = bnxt_hwrm_func_reset(bp);
10504 	if (rc)
10505 		goto init_err_pci_clean;
10506 
10507 	bnxt_hwrm_fw_set_time(bp);
10508 
10509 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10510 			   NETIF_F_TSO | NETIF_F_TSO6 |
10511 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10512 			   NETIF_F_GSO_IPXIP4 |
10513 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10514 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
10515 			   NETIF_F_RXCSUM | NETIF_F_GRO;
10516 
10517 	if (BNXT_SUPPORTS_TPA(bp))
10518 		dev->hw_features |= NETIF_F_LRO;
10519 
10520 	dev->hw_enc_features =
10521 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
10522 			NETIF_F_TSO | NETIF_F_TSO6 |
10523 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
10524 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
10525 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
10526 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
10527 				    NETIF_F_GSO_GRE_CSUM;
10528 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
10529 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
10530 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
10531 	if (BNXT_SUPPORTS_TPA(bp))
10532 		dev->hw_features |= NETIF_F_GRO_HW;
10533 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
10534 	if (dev->features & NETIF_F_GRO_HW)
10535 		dev->features &= ~NETIF_F_LRO;
10536 	dev->priv_flags |= IFF_UNICAST_FLT;
10537 
10538 #ifdef CONFIG_BNXT_SRIOV
10539 	init_waitqueue_head(&bp->sriov_cfg_wait);
10540 	mutex_init(&bp->sriov_lock);
10541 #endif
10542 	if (BNXT_SUPPORTS_TPA(bp)) {
10543 		bp->gro_func = bnxt_gro_func_5730x;
10544 		if (BNXT_CHIP_P4(bp))
10545 			bp->gro_func = bnxt_gro_func_5731x;
10546 	}
10547 	if (!BNXT_CHIP_P4_PLUS(bp))
10548 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
10549 
10550 	rc = bnxt_hwrm_func_drv_rgtr(bp);
10551 	if (rc)
10552 		goto init_err_pci_clean;
10553 
10554 	rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
10555 	if (rc)
10556 		goto init_err_pci_clean;
10557 
10558 	bp->ulp_probe = bnxt_ulp_probe;
10559 
10560 	rc = bnxt_hwrm_queue_qportcfg(bp);
10561 	if (rc) {
10562 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
10563 			   rc);
10564 		rc = -1;
10565 		goto init_err_pci_clean;
10566 	}
10567 	/* Get the MAX capabilities for this function */
10568 	rc = bnxt_hwrm_func_qcaps(bp);
10569 	if (rc) {
10570 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10571 			   rc);
10572 		rc = -1;
10573 		goto init_err_pci_clean;
10574 	}
10575 	rc = bnxt_init_mac_addr(bp);
10576 	if (rc) {
10577 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
10578 		rc = -EADDRNOTAVAIL;
10579 		goto init_err_pci_clean;
10580 	}
10581 
10582 	bnxt_hwrm_func_qcfg(bp);
10583 	bnxt_hwrm_vnic_qcaps(bp);
10584 	bnxt_hwrm_port_led_qcaps(bp);
10585 	bnxt_ethtool_init(bp);
10586 	bnxt_dcb_init(bp);
10587 
10588 	/* MTU range: 60 - FW defined max */
10589 	dev->min_mtu = ETH_ZLEN;
10590 	dev->max_mtu = bp->max_mtu;
10591 
10592 	rc = bnxt_probe_phy(bp);
10593 	if (rc)
10594 		goto init_err_pci_clean;
10595 
10596 	bnxt_set_rx_skb_mode(bp, false);
10597 	bnxt_set_tpa_flags(bp);
10598 	bnxt_set_ring_params(bp);
10599 	rc = bnxt_set_dflt_rings(bp, true);
10600 	if (rc) {
10601 		netdev_err(bp->dev, "Not enough rings available.\n");
10602 		rc = -ENOMEM;
10603 		goto init_err_pci_clean;
10604 	}
10605 
10606 	/* Default RSS hash cfg. */
10607 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10608 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10609 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10610 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10611 	if (BNXT_CHIP_P4(bp) && bp->hwrm_spec_code >= 0x10501) {
10612 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10613 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10614 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10615 	}
10616 
10617 	if (bnxt_rfs_supported(bp)) {
10618 		dev->hw_features |= NETIF_F_NTUPLE;
10619 		if (bnxt_rfs_capable(bp)) {
10620 			bp->flags |= BNXT_FLAG_RFS;
10621 			dev->features |= NETIF_F_NTUPLE;
10622 		}
10623 	}
10624 
10625 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
10626 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
10627 
10628 	rc = bnxt_init_int_mode(bp);
10629 	if (rc)
10630 		goto init_err_pci_clean;
10631 
10632 	/* No TC has been set yet and rings may have been trimmed due to
10633 	 * limited MSIX, so we re-initialize the TX rings per TC.
10634 	 */
10635 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
10636 
10637 	bnxt_get_wol_settings(bp);
10638 	if (bp->flags & BNXT_FLAG_WOL_CAP)
10639 		device_set_wakeup_enable(&pdev->dev, bp->wol);
10640 	else
10641 		device_set_wakeup_capable(&pdev->dev, false);
10642 
10643 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10644 
10645 	bnxt_hwrm_coal_params_qcaps(bp);
10646 
10647 	if (BNXT_PF(bp)) {
10648 		if (!bnxt_pf_wq) {
10649 			bnxt_pf_wq =
10650 				create_singlethread_workqueue("bnxt_pf_wq");
10651 			if (!bnxt_pf_wq) {
10652 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
10653 				goto init_err_pci_clean;
10654 			}
10655 		}
10656 		bnxt_init_tc(bp);
10657 	}
10658 
10659 	rc = register_netdev(dev);
10660 	if (rc)
10661 		goto init_err_cleanup_tc;
10662 
10663 	if (BNXT_PF(bp))
10664 		bnxt_dl_register(bp);
10665 
10666 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
10667 		    board_info[ent->driver_data].name,
10668 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
10669 	pcie_print_link_status(pdev);
10670 
10671 	return 0;
10672 
10673 init_err_cleanup_tc:
10674 	bnxt_shutdown_tc(bp);
10675 	bnxt_clear_int_mode(bp);
10676 
10677 init_err_pci_clean:
10678 	bnxt_free_hwrm_resources(bp);
10679 	bnxt_free_ctx_mem(bp);
10680 	kfree(bp->ctx);
10681 	bp->ctx = NULL;
10682 	bnxt_cleanup_pci(bp);
10683 
10684 init_err_free:
10685 	free_netdev(dev);
10686 	return rc;
10687 }
10688 
10689 static void bnxt_shutdown(struct pci_dev *pdev)
10690 {
10691 	struct net_device *dev = pci_get_drvdata(pdev);
10692 	struct bnxt *bp;
10693 
10694 	if (!dev)
10695 		return;
10696 
10697 	rtnl_lock();
10698 	bp = netdev_priv(dev);
10699 	if (!bp)
10700 		goto shutdown_exit;
10701 
10702 	if (netif_running(dev))
10703 		dev_close(dev);
10704 
10705 	bnxt_ulp_shutdown(bp);
10706 
10707 	if (system_state == SYSTEM_POWER_OFF) {
10708 		bnxt_clear_int_mode(bp);
10709 		pci_wake_from_d3(pdev, bp->wol);
10710 		pci_set_power_state(pdev, PCI_D3hot);
10711 	}
10712 
10713 shutdown_exit:
10714 	rtnl_unlock();
10715 }
10716 
10717 #ifdef CONFIG_PM_SLEEP
10718 static int bnxt_suspend(struct device *device)
10719 {
10720 	struct pci_dev *pdev = to_pci_dev(device);
10721 	struct net_device *dev = pci_get_drvdata(pdev);
10722 	struct bnxt *bp = netdev_priv(dev);
10723 	int rc = 0;
10724 
10725 	rtnl_lock();
10726 	if (netif_running(dev)) {
10727 		netif_device_detach(dev);
10728 		rc = bnxt_close(dev);
10729 	}
10730 	bnxt_hwrm_func_drv_unrgtr(bp);
10731 	rtnl_unlock();
10732 	return rc;
10733 }
10734 
10735 static int bnxt_resume(struct device *device)
10736 {
10737 	struct pci_dev *pdev = to_pci_dev(device);
10738 	struct net_device *dev = pci_get_drvdata(pdev);
10739 	struct bnxt *bp = netdev_priv(dev);
10740 	int rc = 0;
10741 
10742 	rtnl_lock();
10743 	if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
10744 		rc = -ENODEV;
10745 		goto resume_exit;
10746 	}
10747 	rc = bnxt_hwrm_func_reset(bp);
10748 	if (rc) {
10749 		rc = -EBUSY;
10750 		goto resume_exit;
10751 	}
10752 	bnxt_get_wol_settings(bp);
10753 	if (netif_running(dev)) {
10754 		rc = bnxt_open(dev);
10755 		if (!rc)
10756 			netif_device_attach(dev);
10757 	}
10758 
10759 resume_exit:
10760 	rtnl_unlock();
10761 	return rc;
10762 }
10763 
10764 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
10765 #define BNXT_PM_OPS (&bnxt_pm_ops)
10766 
10767 #else
10768 
10769 #define BNXT_PM_OPS NULL
10770 
10771 #endif /* CONFIG_PM_SLEEP */
10772 
10773 /**
10774  * bnxt_io_error_detected - called when PCI error is detected
10775  * @pdev: Pointer to PCI device
10776  * @state: The current pci connection state
10777  *
10778  * This function is called after a PCI bus error affecting
10779  * this device has been detected.
10780  */
10781 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
10782 					       pci_channel_state_t state)
10783 {
10784 	struct net_device *netdev = pci_get_drvdata(pdev);
10785 	struct bnxt *bp = netdev_priv(netdev);
10786 
10787 	netdev_info(netdev, "PCI I/O error detected\n");
10788 
10789 	rtnl_lock();
10790 	netif_device_detach(netdev);
10791 
10792 	bnxt_ulp_stop(bp);
10793 
10794 	if (state == pci_channel_io_perm_failure) {
10795 		rtnl_unlock();
10796 		return PCI_ERS_RESULT_DISCONNECT;
10797 	}
10798 
10799 	if (netif_running(netdev))
10800 		bnxt_close(netdev);
10801 
10802 	pci_disable_device(pdev);
10803 	rtnl_unlock();
10804 
10805 	/* Request a slot slot reset. */
10806 	return PCI_ERS_RESULT_NEED_RESET;
10807 }
10808 
10809 /**
10810  * bnxt_io_slot_reset - called after the pci bus has been reset.
10811  * @pdev: Pointer to PCI device
10812  *
10813  * Restart the card from scratch, as if from a cold-boot.
10814  * At this point, the card has exprienced a hard reset,
10815  * followed by fixups by BIOS, and has its config space
10816  * set up identically to what it was at cold boot.
10817  */
10818 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
10819 {
10820 	struct net_device *netdev = pci_get_drvdata(pdev);
10821 	struct bnxt *bp = netdev_priv(netdev);
10822 	int err = 0;
10823 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
10824 
10825 	netdev_info(bp->dev, "PCI Slot Reset\n");
10826 
10827 	rtnl_lock();
10828 
10829 	if (pci_enable_device(pdev)) {
10830 		dev_err(&pdev->dev,
10831 			"Cannot re-enable PCI device after reset.\n");
10832 	} else {
10833 		pci_set_master(pdev);
10834 
10835 		err = bnxt_hwrm_func_reset(bp);
10836 		if (!err && netif_running(netdev))
10837 			err = bnxt_open(netdev);
10838 
10839 		if (!err) {
10840 			result = PCI_ERS_RESULT_RECOVERED;
10841 			bnxt_ulp_start(bp);
10842 		}
10843 	}
10844 
10845 	if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
10846 		dev_close(netdev);
10847 
10848 	rtnl_unlock();
10849 
10850 	return PCI_ERS_RESULT_RECOVERED;
10851 }
10852 
10853 /**
10854  * bnxt_io_resume - called when traffic can start flowing again.
10855  * @pdev: Pointer to PCI device
10856  *
10857  * This callback is called when the error recovery driver tells
10858  * us that its OK to resume normal operation.
10859  */
10860 static void bnxt_io_resume(struct pci_dev *pdev)
10861 {
10862 	struct net_device *netdev = pci_get_drvdata(pdev);
10863 
10864 	rtnl_lock();
10865 
10866 	netif_device_attach(netdev);
10867 
10868 	rtnl_unlock();
10869 }
10870 
10871 static const struct pci_error_handlers bnxt_err_handler = {
10872 	.error_detected	= bnxt_io_error_detected,
10873 	.slot_reset	= bnxt_io_slot_reset,
10874 	.resume		= bnxt_io_resume
10875 };
10876 
10877 static struct pci_driver bnxt_pci_driver = {
10878 	.name		= DRV_MODULE_NAME,
10879 	.id_table	= bnxt_pci_tbl,
10880 	.probe		= bnxt_init_one,
10881 	.remove		= bnxt_remove_one,
10882 	.shutdown	= bnxt_shutdown,
10883 	.driver.pm	= BNXT_PM_OPS,
10884 	.err_handler	= &bnxt_err_handler,
10885 #if defined(CONFIG_BNXT_SRIOV)
10886 	.sriov_configure = bnxt_sriov_configure,
10887 #endif
10888 };
10889 
10890 static int __init bnxt_init(void)
10891 {
10892 	bnxt_debug_init();
10893 	return pci_register_driver(&bnxt_pci_driver);
10894 }
10895 
10896 static void __exit bnxt_exit(void)
10897 {
10898 	pci_unregister_driver(&bnxt_pci_driver);
10899 	if (bnxt_pf_wq)
10900 		destroy_workqueue(bnxt_pf_wq);
10901 	bnxt_debug_exit();
10902 }
10903 
10904 module_init(bnxt_init);
10905 module_exit(bnxt_exit);
10906