1 /* bnx2x_sp.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2011-2013 Broadcom Corporation
4  *
5  * Unless you and Broadcom execute a separate written software license
6  * agreement governing use of this software, this software is licensed to you
7  * under the terms of the GNU General Public License version 2, available
8  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9  *
10  * Notwithstanding the above, under no circumstances may you combine this
11  * software in any way with any other Broadcom software provided under a
12  * license other than the GPL, without Broadcom's express prior written
13  * consent.
14  *
15  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
16  * Written by: Vladislav Zolotarov
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/crc32.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/crc32c.h>
27 #include "bnx2x.h"
28 #include "bnx2x_cmn.h"
29 #include "bnx2x_sp.h"
30 
31 #define BNX2X_MAX_EMUL_MULTI		16
32 
33 /**** Exe Queue interfaces ****/
34 
35 /**
36  * bnx2x_exe_queue_init - init the Exe Queue object
37  *
38  * @o:		pointer to the object
39  * @exe_len:	length
40  * @owner:	pointer to the owner
41  * @validate:	validate function pointer
42  * @optimize:	optimize function pointer
43  * @exec:	execute function pointer
44  * @get:	get function pointer
45  */
46 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
47 					struct bnx2x_exe_queue_obj *o,
48 					int exe_len,
49 					union bnx2x_qable_obj *owner,
50 					exe_q_validate validate,
51 					exe_q_remove remove,
52 					exe_q_optimize optimize,
53 					exe_q_execute exec,
54 					exe_q_get get)
55 {
56 	memset(o, 0, sizeof(*o));
57 
58 	INIT_LIST_HEAD(&o->exe_queue);
59 	INIT_LIST_HEAD(&o->pending_comp);
60 
61 	spin_lock_init(&o->lock);
62 
63 	o->exe_chunk_len = exe_len;
64 	o->owner         = owner;
65 
66 	/* Owner specific callbacks */
67 	o->validate      = validate;
68 	o->remove        = remove;
69 	o->optimize      = optimize;
70 	o->execute       = exec;
71 	o->get           = get;
72 
73 	DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
74 	   exe_len);
75 }
76 
77 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
78 					     struct bnx2x_exeq_elem *elem)
79 {
80 	DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
81 	kfree(elem);
82 }
83 
84 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
85 {
86 	struct bnx2x_exeq_elem *elem;
87 	int cnt = 0;
88 
89 	spin_lock_bh(&o->lock);
90 
91 	list_for_each_entry(elem, &o->exe_queue, link)
92 		cnt++;
93 
94 	spin_unlock_bh(&o->lock);
95 
96 	return cnt;
97 }
98 
99 /**
100  * bnx2x_exe_queue_add - add a new element to the execution queue
101  *
102  * @bp:		driver handle
103  * @o:		queue
104  * @cmd:	new command to add
105  * @restore:	true - do not optimize the command
106  *
107  * If the element is optimized or is illegal, frees it.
108  */
109 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
110 				      struct bnx2x_exe_queue_obj *o,
111 				      struct bnx2x_exeq_elem *elem,
112 				      bool restore)
113 {
114 	int rc;
115 
116 	spin_lock_bh(&o->lock);
117 
118 	if (!restore) {
119 		/* Try to cancel this element queue */
120 		rc = o->optimize(bp, o->owner, elem);
121 		if (rc)
122 			goto free_and_exit;
123 
124 		/* Check if this request is ok */
125 		rc = o->validate(bp, o->owner, elem);
126 		if (rc) {
127 			DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
128 			goto free_and_exit;
129 		}
130 	}
131 
132 	/* If so, add it to the execution queue */
133 	list_add_tail(&elem->link, &o->exe_queue);
134 
135 	spin_unlock_bh(&o->lock);
136 
137 	return 0;
138 
139 free_and_exit:
140 	bnx2x_exe_queue_free_elem(bp, elem);
141 
142 	spin_unlock_bh(&o->lock);
143 
144 	return rc;
145 }
146 
147 static inline void __bnx2x_exe_queue_reset_pending(
148 	struct bnx2x *bp,
149 	struct bnx2x_exe_queue_obj *o)
150 {
151 	struct bnx2x_exeq_elem *elem;
152 
153 	while (!list_empty(&o->pending_comp)) {
154 		elem = list_first_entry(&o->pending_comp,
155 					struct bnx2x_exeq_elem, link);
156 
157 		list_del(&elem->link);
158 		bnx2x_exe_queue_free_elem(bp, elem);
159 	}
160 }
161 
162 /**
163  * bnx2x_exe_queue_step - execute one execution chunk atomically
164  *
165  * @bp:			driver handle
166  * @o:			queue
167  * @ramrod_flags:	flags
168  *
169  * (Should be called while holding the exe_queue->lock).
170  */
171 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
172 				       struct bnx2x_exe_queue_obj *o,
173 				       unsigned long *ramrod_flags)
174 {
175 	struct bnx2x_exeq_elem *elem, spacer;
176 	int cur_len = 0, rc;
177 
178 	memset(&spacer, 0, sizeof(spacer));
179 
180 	/* Next step should not be performed until the current is finished,
181 	 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
182 	 * properly clear object internals without sending any command to the FW
183 	 * which also implies there won't be any completion to clear the
184 	 * 'pending' list.
185 	 */
186 	if (!list_empty(&o->pending_comp)) {
187 		if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
188 			DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
189 			__bnx2x_exe_queue_reset_pending(bp, o);
190 		} else {
191 			return 1;
192 		}
193 	}
194 
195 	/* Run through the pending commands list and create a next
196 	 * execution chunk.
197 	 */
198 	while (!list_empty(&o->exe_queue)) {
199 		elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
200 					link);
201 		WARN_ON(!elem->cmd_len);
202 
203 		if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
204 			cur_len += elem->cmd_len;
205 			/* Prevent from both lists being empty when moving an
206 			 * element. This will allow the call of
207 			 * bnx2x_exe_queue_empty() without locking.
208 			 */
209 			list_add_tail(&spacer.link, &o->pending_comp);
210 			mb();
211 			list_move_tail(&elem->link, &o->pending_comp);
212 			list_del(&spacer.link);
213 		} else
214 			break;
215 	}
216 
217 	/* Sanity check */
218 	if (!cur_len)
219 		return 0;
220 
221 	rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
222 	if (rc < 0)
223 		/* In case of an error return the commands back to the queue
224 		 * and reset the pending_comp.
225 		 */
226 		list_splice_init(&o->pending_comp, &o->exe_queue);
227 	else if (!rc)
228 		/* If zero is returned, means there are no outstanding pending
229 		 * completions and we may dismiss the pending list.
230 		 */
231 		__bnx2x_exe_queue_reset_pending(bp, o);
232 
233 	return rc;
234 }
235 
236 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
237 {
238 	bool empty = list_empty(&o->exe_queue);
239 
240 	/* Don't reorder!!! */
241 	mb();
242 
243 	return empty && list_empty(&o->pending_comp);
244 }
245 
246 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
247 	struct bnx2x *bp)
248 {
249 	DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
250 	return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
251 }
252 
253 /************************ raw_obj functions ***********************************/
254 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
255 {
256 	return !!test_bit(o->state, o->pstate);
257 }
258 
259 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
260 {
261 	smp_mb__before_clear_bit();
262 	clear_bit(o->state, o->pstate);
263 	smp_mb__after_clear_bit();
264 }
265 
266 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
267 {
268 	smp_mb__before_clear_bit();
269 	set_bit(o->state, o->pstate);
270 	smp_mb__after_clear_bit();
271 }
272 
273 /**
274  * bnx2x_state_wait - wait until the given bit(state) is cleared
275  *
276  * @bp:		device handle
277  * @state:	state which is to be cleared
278  * @state_p:	state buffer
279  *
280  */
281 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
282 				   unsigned long *pstate)
283 {
284 	/* can take a while if any port is running */
285 	int cnt = 5000;
286 
287 	if (CHIP_REV_IS_EMUL(bp))
288 		cnt *= 20;
289 
290 	DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
291 
292 	might_sleep();
293 	while (cnt--) {
294 		if (!test_bit(state, pstate)) {
295 #ifdef BNX2X_STOP_ON_ERROR
296 			DP(BNX2X_MSG_SP, "exit  (cnt %d)\n", 5000 - cnt);
297 #endif
298 			return 0;
299 		}
300 
301 		usleep_range(1000, 2000);
302 
303 		if (bp->panic)
304 			return -EIO;
305 	}
306 
307 	/* timeout! */
308 	BNX2X_ERR("timeout waiting for state %d\n", state);
309 #ifdef BNX2X_STOP_ON_ERROR
310 	bnx2x_panic();
311 #endif
312 
313 	return -EBUSY;
314 }
315 
316 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
317 {
318 	return bnx2x_state_wait(bp, raw->state, raw->pstate);
319 }
320 
321 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
322 /* credit handling callbacks */
323 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
324 {
325 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
326 
327 	WARN_ON(!mp);
328 
329 	return mp->get_entry(mp, offset);
330 }
331 
332 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
333 {
334 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
335 
336 	WARN_ON(!mp);
337 
338 	return mp->get(mp, 1);
339 }
340 
341 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
342 {
343 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
344 
345 	WARN_ON(!vp);
346 
347 	return vp->get_entry(vp, offset);
348 }
349 
350 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
351 {
352 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
353 
354 	WARN_ON(!vp);
355 
356 	return vp->get(vp, 1);
357 }
358 
359 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
360 {
361 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
362 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
363 
364 	if (!mp->get(mp, 1))
365 		return false;
366 
367 	if (!vp->get(vp, 1)) {
368 		mp->put(mp, 1);
369 		return false;
370 	}
371 
372 	return true;
373 }
374 
375 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
376 {
377 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
378 
379 	return mp->put_entry(mp, offset);
380 }
381 
382 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
383 {
384 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
385 
386 	return mp->put(mp, 1);
387 }
388 
389 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
390 {
391 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
392 
393 	return vp->put_entry(vp, offset);
394 }
395 
396 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
397 {
398 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
399 
400 	return vp->put(vp, 1);
401 }
402 
403 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
404 {
405 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
406 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
407 
408 	if (!mp->put(mp, 1))
409 		return false;
410 
411 	if (!vp->put(vp, 1)) {
412 		mp->get(mp, 1);
413 		return false;
414 	}
415 
416 	return true;
417 }
418 
419 /**
420  * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
421  *
422  * @bp:		device handle
423  * @o:		vlan_mac object
424  *
425  * @details: Non-blocking implementation; should be called under execution
426  *           queue lock.
427  */
428 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
429 					    struct bnx2x_vlan_mac_obj *o)
430 {
431 	if (o->head_reader) {
432 		DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
433 		return -EBUSY;
434 	}
435 
436 	DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
437 	return 0;
438 }
439 
440 /**
441  * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
442  *
443  * @bp:		device handle
444  * @o:		vlan_mac object
445  *
446  * @details Should be called under execution queue lock; notice it might release
447  *          and reclaim it during its run.
448  */
449 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
450 					    struct bnx2x_vlan_mac_obj *o)
451 {
452 	int rc;
453 	unsigned long ramrod_flags = o->saved_ramrod_flags;
454 
455 	DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
456 	   ramrod_flags);
457 	o->head_exe_request = false;
458 	o->saved_ramrod_flags = 0;
459 	rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
460 	if (rc != 0) {
461 		BNX2X_ERR("execution of pending commands failed with rc %d\n",
462 			  rc);
463 #ifdef BNX2X_STOP_ON_ERROR
464 		bnx2x_panic();
465 #endif
466 	}
467 }
468 
469 /**
470  * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
471  *
472  * @bp:			device handle
473  * @o:			vlan_mac object
474  * @ramrod_flags:	ramrod flags of missed execution
475  *
476  * @details Should be called under execution queue lock.
477  */
478 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
479 				    struct bnx2x_vlan_mac_obj *o,
480 				    unsigned long ramrod_flags)
481 {
482 	o->head_exe_request = true;
483 	o->saved_ramrod_flags = ramrod_flags;
484 	DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
485 	   ramrod_flags);
486 }
487 
488 /**
489  * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
490  *
491  * @bp:			device handle
492  * @o:			vlan_mac object
493  *
494  * @details Should be called under execution queue lock. Notice if a pending
495  *          execution exists, it would perform it - possibly releasing and
496  *          reclaiming the execution queue lock.
497  */
498 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
499 					    struct bnx2x_vlan_mac_obj *o)
500 {
501 	/* It's possible a new pending execution was added since this writer
502 	 * executed. If so, execute again. [Ad infinitum]
503 	 */
504 	while (o->head_exe_request) {
505 		DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
506 		__bnx2x_vlan_mac_h_exec_pending(bp, o);
507 	}
508 }
509 
510 /**
511  * bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
512  *
513  * @bp:			device handle
514  * @o:			vlan_mac object
515  *
516  * @details Notice if a pending execution exists, it would perform it -
517  *          possibly releasing and reclaiming the execution queue lock.
518  */
519 void bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
520 				   struct bnx2x_vlan_mac_obj *o)
521 {
522 	spin_lock_bh(&o->exe_queue.lock);
523 	__bnx2x_vlan_mac_h_write_unlock(bp, o);
524 	spin_unlock_bh(&o->exe_queue.lock);
525 }
526 
527 /**
528  * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
529  *
530  * @bp:			device handle
531  * @o:			vlan_mac object
532  *
533  * @details Should be called under the execution queue lock. May sleep. May
534  *          release and reclaim execution queue lock during its run.
535  */
536 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
537 					struct bnx2x_vlan_mac_obj *o)
538 {
539 	/* If we got here, we're holding lock --> no WRITER exists */
540 	o->head_reader++;
541 	DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
542 	   o->head_reader);
543 
544 	return 0;
545 }
546 
547 /**
548  * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
549  *
550  * @bp:			device handle
551  * @o:			vlan_mac object
552  *
553  * @details May sleep. Claims and releases execution queue lock during its run.
554  */
555 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
556 			       struct bnx2x_vlan_mac_obj *o)
557 {
558 	int rc;
559 
560 	spin_lock_bh(&o->exe_queue.lock);
561 	rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
562 	spin_unlock_bh(&o->exe_queue.lock);
563 
564 	return rc;
565 }
566 
567 /**
568  * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
569  *
570  * @bp:			device handle
571  * @o:			vlan_mac object
572  *
573  * @details Should be called under execution queue lock. Notice if a pending
574  *          execution exists, it would be performed if this was the last
575  *          reader. possibly releasing and reclaiming the execution queue lock.
576  */
577 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
578 					  struct bnx2x_vlan_mac_obj *o)
579 {
580 	if (!o->head_reader) {
581 		BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
582 #ifdef BNX2X_STOP_ON_ERROR
583 		bnx2x_panic();
584 #endif
585 	} else {
586 		o->head_reader--;
587 		DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
588 		   o->head_reader);
589 	}
590 
591 	/* It's possible a new pending execution was added, and that this reader
592 	 * was last - if so we need to execute the command.
593 	 */
594 	if (!o->head_reader && o->head_exe_request) {
595 		DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
596 
597 		/* Writer release will do the trick */
598 		__bnx2x_vlan_mac_h_write_unlock(bp, o);
599 	}
600 }
601 
602 /**
603  * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
604  *
605  * @bp:			device handle
606  * @o:			vlan_mac object
607  *
608  * @details Notice if a pending execution exists, it would be performed if this
609  *          was the last reader. Claims and releases the execution queue lock
610  *          during its run.
611  */
612 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
613 				  struct bnx2x_vlan_mac_obj *o)
614 {
615 	spin_lock_bh(&o->exe_queue.lock);
616 	__bnx2x_vlan_mac_h_read_unlock(bp, o);
617 	spin_unlock_bh(&o->exe_queue.lock);
618 }
619 
620 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
621 				int n, u8 *base, u8 stride, u8 size)
622 {
623 	struct bnx2x_vlan_mac_registry_elem *pos;
624 	u8 *next = base;
625 	int counter = 0;
626 	int read_lock;
627 
628 	DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
629 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
630 	if (read_lock != 0)
631 		BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
632 
633 	/* traverse list */
634 	list_for_each_entry(pos, &o->head, link) {
635 		if (counter < n) {
636 			memcpy(next, &pos->u, size);
637 			counter++;
638 			DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
639 			   counter, next);
640 			next += stride + size;
641 		}
642 	}
643 
644 	if (read_lock == 0) {
645 		DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
646 		bnx2x_vlan_mac_h_read_unlock(bp, o);
647 	}
648 
649 	return counter * ETH_ALEN;
650 }
651 
652 /* check_add() callbacks */
653 static int bnx2x_check_mac_add(struct bnx2x *bp,
654 			       struct bnx2x_vlan_mac_obj *o,
655 			       union bnx2x_classification_ramrod_data *data)
656 {
657 	struct bnx2x_vlan_mac_registry_elem *pos;
658 
659 	DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
660 
661 	if (!is_valid_ether_addr(data->mac.mac))
662 		return -EINVAL;
663 
664 	/* Check if a requested MAC already exists */
665 	list_for_each_entry(pos, &o->head, link)
666 		if (!memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN) &&
667 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
668 			return -EEXIST;
669 
670 	return 0;
671 }
672 
673 static int bnx2x_check_vlan_add(struct bnx2x *bp,
674 				struct bnx2x_vlan_mac_obj *o,
675 				union bnx2x_classification_ramrod_data *data)
676 {
677 	struct bnx2x_vlan_mac_registry_elem *pos;
678 
679 	DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
680 
681 	list_for_each_entry(pos, &o->head, link)
682 		if (data->vlan.vlan == pos->u.vlan.vlan)
683 			return -EEXIST;
684 
685 	return 0;
686 }
687 
688 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
689 				    struct bnx2x_vlan_mac_obj *o,
690 				   union bnx2x_classification_ramrod_data *data)
691 {
692 	struct bnx2x_vlan_mac_registry_elem *pos;
693 
694 	DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
695 	   data->vlan_mac.mac, data->vlan_mac.vlan);
696 
697 	list_for_each_entry(pos, &o->head, link)
698 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
699 		    (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
700 				  ETH_ALEN)) &&
701 		    (data->vlan_mac.is_inner_mac ==
702 		     pos->u.vlan_mac.is_inner_mac))
703 			return -EEXIST;
704 
705 	return 0;
706 }
707 
708 /* check_del() callbacks */
709 static struct bnx2x_vlan_mac_registry_elem *
710 	bnx2x_check_mac_del(struct bnx2x *bp,
711 			    struct bnx2x_vlan_mac_obj *o,
712 			    union bnx2x_classification_ramrod_data *data)
713 {
714 	struct bnx2x_vlan_mac_registry_elem *pos;
715 
716 	DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
717 
718 	list_for_each_entry(pos, &o->head, link)
719 		if ((!memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN)) &&
720 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
721 			return pos;
722 
723 	return NULL;
724 }
725 
726 static struct bnx2x_vlan_mac_registry_elem *
727 	bnx2x_check_vlan_del(struct bnx2x *bp,
728 			     struct bnx2x_vlan_mac_obj *o,
729 			     union bnx2x_classification_ramrod_data *data)
730 {
731 	struct bnx2x_vlan_mac_registry_elem *pos;
732 
733 	DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
734 
735 	list_for_each_entry(pos, &o->head, link)
736 		if (data->vlan.vlan == pos->u.vlan.vlan)
737 			return pos;
738 
739 	return NULL;
740 }
741 
742 static struct bnx2x_vlan_mac_registry_elem *
743 	bnx2x_check_vlan_mac_del(struct bnx2x *bp,
744 				 struct bnx2x_vlan_mac_obj *o,
745 				 union bnx2x_classification_ramrod_data *data)
746 {
747 	struct bnx2x_vlan_mac_registry_elem *pos;
748 
749 	DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
750 	   data->vlan_mac.mac, data->vlan_mac.vlan);
751 
752 	list_for_each_entry(pos, &o->head, link)
753 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
754 		    (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
755 			     ETH_ALEN)) &&
756 		    (data->vlan_mac.is_inner_mac ==
757 		     pos->u.vlan_mac.is_inner_mac))
758 			return pos;
759 
760 	return NULL;
761 }
762 
763 /* check_move() callback */
764 static bool bnx2x_check_move(struct bnx2x *bp,
765 			     struct bnx2x_vlan_mac_obj *src_o,
766 			     struct bnx2x_vlan_mac_obj *dst_o,
767 			     union bnx2x_classification_ramrod_data *data)
768 {
769 	struct bnx2x_vlan_mac_registry_elem *pos;
770 	int rc;
771 
772 	/* Check if we can delete the requested configuration from the first
773 	 * object.
774 	 */
775 	pos = src_o->check_del(bp, src_o, data);
776 
777 	/*  check if configuration can be added */
778 	rc = dst_o->check_add(bp, dst_o, data);
779 
780 	/* If this classification can not be added (is already set)
781 	 * or can't be deleted - return an error.
782 	 */
783 	if (rc || !pos)
784 		return false;
785 
786 	return true;
787 }
788 
789 static bool bnx2x_check_move_always_err(
790 	struct bnx2x *bp,
791 	struct bnx2x_vlan_mac_obj *src_o,
792 	struct bnx2x_vlan_mac_obj *dst_o,
793 	union bnx2x_classification_ramrod_data *data)
794 {
795 	return false;
796 }
797 
798 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
799 {
800 	struct bnx2x_raw_obj *raw = &o->raw;
801 	u8 rx_tx_flag = 0;
802 
803 	if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
804 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
805 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
806 
807 	if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
808 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
809 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
810 
811 	return rx_tx_flag;
812 }
813 
814 void bnx2x_set_mac_in_nig(struct bnx2x *bp,
815 			  bool add, unsigned char *dev_addr, int index)
816 {
817 	u32 wb_data[2];
818 	u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
819 			 NIG_REG_LLH0_FUNC_MEM;
820 
821 	if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
822 		return;
823 
824 	if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
825 		return;
826 
827 	DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
828 			 (add ? "ADD" : "DELETE"), index);
829 
830 	if (add) {
831 		/* LLH_FUNC_MEM is a u64 WB register */
832 		reg_offset += 8*index;
833 
834 		wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
835 			      (dev_addr[4] <<  8) |  dev_addr[5]);
836 		wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
837 
838 		REG_WR_DMAE(bp, reg_offset, wb_data, 2);
839 	}
840 
841 	REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
842 				  NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
843 }
844 
845 /**
846  * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
847  *
848  * @bp:		device handle
849  * @o:		queue for which we want to configure this rule
850  * @add:	if true the command is an ADD command, DEL otherwise
851  * @opcode:	CLASSIFY_RULE_OPCODE_XXX
852  * @hdr:	pointer to a header to setup
853  *
854  */
855 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
856 	struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
857 	struct eth_classify_cmd_header *hdr)
858 {
859 	struct bnx2x_raw_obj *raw = &o->raw;
860 
861 	hdr->client_id = raw->cl_id;
862 	hdr->func_id = raw->func_id;
863 
864 	/* Rx or/and Tx (internal switching) configuration ? */
865 	hdr->cmd_general_data |=
866 		bnx2x_vlan_mac_get_rx_tx_flag(o);
867 
868 	if (add)
869 		hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
870 
871 	hdr->cmd_general_data |=
872 		(opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
873 }
874 
875 /**
876  * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
877  *
878  * @cid:	connection id
879  * @type:	BNX2X_FILTER_XXX_PENDING
880  * @hdr:	pointer to header to setup
881  * @rule_cnt:
882  *
883  * currently we always configure one rule and echo field to contain a CID and an
884  * opcode type.
885  */
886 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
887 				struct eth_classify_header *hdr, int rule_cnt)
888 {
889 	hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
890 				(type << BNX2X_SWCID_SHIFT));
891 	hdr->rule_cnt = (u8)rule_cnt;
892 }
893 
894 /* hw_config() callbacks */
895 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
896 				 struct bnx2x_vlan_mac_obj *o,
897 				 struct bnx2x_exeq_elem *elem, int rule_idx,
898 				 int cam_offset)
899 {
900 	struct bnx2x_raw_obj *raw = &o->raw;
901 	struct eth_classify_rules_ramrod_data *data =
902 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
903 	int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
904 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
905 	bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
906 	unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
907 	u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
908 
909 	/* Set LLH CAM entry: currently only iSCSI and ETH macs are
910 	 * relevant. In addition, current implementation is tuned for a
911 	 * single ETH MAC.
912 	 *
913 	 * When multiple unicast ETH MACs PF configuration in switch
914 	 * independent mode is required (NetQ, multiple netdev MACs,
915 	 * etc.), consider better utilisation of 8 per function MAC
916 	 * entries in the LLH register. There is also
917 	 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
918 	 * total number of CAM entries to 16.
919 	 *
920 	 * Currently we won't configure NIG for MACs other than a primary ETH
921 	 * MAC and iSCSI L2 MAC.
922 	 *
923 	 * If this MAC is moving from one Queue to another, no need to change
924 	 * NIG configuration.
925 	 */
926 	if (cmd != BNX2X_VLAN_MAC_MOVE) {
927 		if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
928 			bnx2x_set_mac_in_nig(bp, add, mac,
929 					     BNX2X_LLH_CAM_ISCSI_ETH_LINE);
930 		else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
931 			bnx2x_set_mac_in_nig(bp, add, mac,
932 					     BNX2X_LLH_CAM_ETH_LINE);
933 	}
934 
935 	/* Reset the ramrod data buffer for the first rule */
936 	if (rule_idx == 0)
937 		memset(data, 0, sizeof(*data));
938 
939 	/* Setup a command header */
940 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
941 				      &rule_entry->mac.header);
942 
943 	DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
944 	   (add ? "add" : "delete"), mac, raw->cl_id);
945 
946 	/* Set a MAC itself */
947 	bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
948 			      &rule_entry->mac.mac_mid,
949 			      &rule_entry->mac.mac_lsb, mac);
950 	rule_entry->mac.inner_mac =
951 		cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
952 
953 	/* MOVE: Add a rule that will add this MAC to the target Queue */
954 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
955 		rule_entry++;
956 		rule_cnt++;
957 
958 		/* Setup ramrod data */
959 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
960 					elem->cmd_data.vlan_mac.target_obj,
961 					      true, CLASSIFY_RULE_OPCODE_MAC,
962 					      &rule_entry->mac.header);
963 
964 		/* Set a MAC itself */
965 		bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
966 				      &rule_entry->mac.mac_mid,
967 				      &rule_entry->mac.mac_lsb, mac);
968 		rule_entry->mac.inner_mac =
969 			cpu_to_le16(elem->cmd_data.vlan_mac.
970 						u.mac.is_inner_mac);
971 	}
972 
973 	/* Set the ramrod data header */
974 	/* TODO: take this to the higher level in order to prevent multiple
975 		 writing */
976 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
977 					rule_cnt);
978 }
979 
980 /**
981  * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
982  *
983  * @bp:		device handle
984  * @o:		queue
985  * @type:
986  * @cam_offset:	offset in cam memory
987  * @hdr:	pointer to a header to setup
988  *
989  * E1/E1H
990  */
991 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
992 	struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
993 	struct mac_configuration_hdr *hdr)
994 {
995 	struct bnx2x_raw_obj *r = &o->raw;
996 
997 	hdr->length = 1;
998 	hdr->offset = (u8)cam_offset;
999 	hdr->client_id = cpu_to_le16(0xff);
1000 	hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
1001 				(type << BNX2X_SWCID_SHIFT));
1002 }
1003 
1004 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
1005 	struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
1006 	u16 vlan_id, struct mac_configuration_entry *cfg_entry)
1007 {
1008 	struct bnx2x_raw_obj *r = &o->raw;
1009 	u32 cl_bit_vec = (1 << r->cl_id);
1010 
1011 	cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
1012 	cfg_entry->pf_id = r->func_id;
1013 	cfg_entry->vlan_id = cpu_to_le16(vlan_id);
1014 
1015 	if (add) {
1016 		SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1017 			 T_ETH_MAC_COMMAND_SET);
1018 		SET_FLAG(cfg_entry->flags,
1019 			 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
1020 
1021 		/* Set a MAC in a ramrod data */
1022 		bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1023 				      &cfg_entry->middle_mac_addr,
1024 				      &cfg_entry->lsb_mac_addr, mac);
1025 	} else
1026 		SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1027 			 T_ETH_MAC_COMMAND_INVALIDATE);
1028 }
1029 
1030 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
1031 	struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
1032 	u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1033 {
1034 	struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1035 	struct bnx2x_raw_obj *raw = &o->raw;
1036 
1037 	bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
1038 					 &config->hdr);
1039 	bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
1040 					 cfg_entry);
1041 
1042 	DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
1043 			 (add ? "setting" : "clearing"),
1044 			 mac, raw->cl_id, cam_offset);
1045 }
1046 
1047 /**
1048  * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1049  *
1050  * @bp:		device handle
1051  * @o:		bnx2x_vlan_mac_obj
1052  * @elem:	bnx2x_exeq_elem
1053  * @rule_idx:	rule_idx
1054  * @cam_offset: cam_offset
1055  */
1056 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
1057 				  struct bnx2x_vlan_mac_obj *o,
1058 				  struct bnx2x_exeq_elem *elem, int rule_idx,
1059 				  int cam_offset)
1060 {
1061 	struct bnx2x_raw_obj *raw = &o->raw;
1062 	struct mac_configuration_cmd *config =
1063 		(struct mac_configuration_cmd *)(raw->rdata);
1064 	/* 57710 and 57711 do not support MOVE command,
1065 	 * so it's either ADD or DEL
1066 	 */
1067 	bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1068 		true : false;
1069 
1070 	/* Reset the ramrod data buffer */
1071 	memset(config, 0, sizeof(*config));
1072 
1073 	bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
1074 				     cam_offset, add,
1075 				     elem->cmd_data.vlan_mac.u.mac.mac, 0,
1076 				     ETH_VLAN_FILTER_ANY_VLAN, config);
1077 }
1078 
1079 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
1080 				  struct bnx2x_vlan_mac_obj *o,
1081 				  struct bnx2x_exeq_elem *elem, int rule_idx,
1082 				  int cam_offset)
1083 {
1084 	struct bnx2x_raw_obj *raw = &o->raw;
1085 	struct eth_classify_rules_ramrod_data *data =
1086 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1087 	int rule_cnt = rule_idx + 1;
1088 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1089 	enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1090 	bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1091 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1092 
1093 	/* Reset the ramrod data buffer for the first rule */
1094 	if (rule_idx == 0)
1095 		memset(data, 0, sizeof(*data));
1096 
1097 	/* Set a rule header */
1098 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1099 				      &rule_entry->vlan.header);
1100 
1101 	DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1102 			 vlan);
1103 
1104 	/* Set a VLAN itself */
1105 	rule_entry->vlan.vlan = cpu_to_le16(vlan);
1106 
1107 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1108 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
1109 		rule_entry++;
1110 		rule_cnt++;
1111 
1112 		/* Setup ramrod data */
1113 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1114 					elem->cmd_data.vlan_mac.target_obj,
1115 					      true, CLASSIFY_RULE_OPCODE_VLAN,
1116 					      &rule_entry->vlan.header);
1117 
1118 		/* Set a VLAN itself */
1119 		rule_entry->vlan.vlan = cpu_to_le16(vlan);
1120 	}
1121 
1122 	/* Set the ramrod data header */
1123 	/* TODO: take this to the higher level in order to prevent multiple
1124 		 writing */
1125 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1126 					rule_cnt);
1127 }
1128 
1129 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
1130 				      struct bnx2x_vlan_mac_obj *o,
1131 				      struct bnx2x_exeq_elem *elem,
1132 				      int rule_idx, int cam_offset)
1133 {
1134 	struct bnx2x_raw_obj *raw = &o->raw;
1135 	struct eth_classify_rules_ramrod_data *data =
1136 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1137 	int rule_cnt = rule_idx + 1;
1138 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1139 	enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1140 	bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1141 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1142 	u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1143 
1144 	/* Reset the ramrod data buffer for the first rule */
1145 	if (rule_idx == 0)
1146 		memset(data, 0, sizeof(*data));
1147 
1148 	/* Set a rule header */
1149 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1150 				      &rule_entry->pair.header);
1151 
1152 	/* Set VLAN and MAC themselves */
1153 	rule_entry->pair.vlan = cpu_to_le16(vlan);
1154 	bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1155 			      &rule_entry->pair.mac_mid,
1156 			      &rule_entry->pair.mac_lsb, mac);
1157 	rule_entry->pair.inner_mac =
1158 		cpu_to_le16(elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac);
1159 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1160 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
1161 		rule_entry++;
1162 		rule_cnt++;
1163 
1164 		/* Setup ramrod data */
1165 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1166 					elem->cmd_data.vlan_mac.target_obj,
1167 					      true, CLASSIFY_RULE_OPCODE_PAIR,
1168 					      &rule_entry->pair.header);
1169 
1170 		/* Set a VLAN itself */
1171 		rule_entry->pair.vlan = cpu_to_le16(vlan);
1172 		bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1173 				      &rule_entry->pair.mac_mid,
1174 				      &rule_entry->pair.mac_lsb, mac);
1175 		rule_entry->pair.inner_mac =
1176 			cpu_to_le16(elem->cmd_data.vlan_mac.u.
1177 						vlan_mac.is_inner_mac);
1178 	}
1179 
1180 	/* Set the ramrod data header */
1181 	/* TODO: take this to the higher level in order to prevent multiple
1182 		 writing */
1183 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1184 					rule_cnt);
1185 }
1186 
1187 /**
1188  * bnx2x_set_one_vlan_mac_e1h -
1189  *
1190  * @bp:		device handle
1191  * @o:		bnx2x_vlan_mac_obj
1192  * @elem:	bnx2x_exeq_elem
1193  * @rule_idx:	rule_idx
1194  * @cam_offset:	cam_offset
1195  */
1196 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1197 				       struct bnx2x_vlan_mac_obj *o,
1198 				       struct bnx2x_exeq_elem *elem,
1199 				       int rule_idx, int cam_offset)
1200 {
1201 	struct bnx2x_raw_obj *raw = &o->raw;
1202 	struct mac_configuration_cmd *config =
1203 		(struct mac_configuration_cmd *)(raw->rdata);
1204 	/* 57710 and 57711 do not support MOVE command,
1205 	 * so it's either ADD or DEL
1206 	 */
1207 	bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1208 		true : false;
1209 
1210 	/* Reset the ramrod data buffer */
1211 	memset(config, 0, sizeof(*config));
1212 
1213 	bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1214 				     cam_offset, add,
1215 				     elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1216 				     elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1217 				     ETH_VLAN_FILTER_CLASSIFY, config);
1218 }
1219 
1220 #define list_next_entry(pos, member) \
1221 	list_entry((pos)->member.next, typeof(*(pos)), member)
1222 
1223 /**
1224  * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1225  *
1226  * @bp:		device handle
1227  * @p:		command parameters
1228  * @ppos:	pointer to the cookie
1229  *
1230  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1231  * previously configured elements list.
1232  *
1233  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is	taken
1234  * into an account
1235  *
1236  * pointer to the cookie  - that should be given back in the next call to make
1237  * function handle the next element. If *ppos is set to NULL it will restart the
1238  * iterator. If returned *ppos == NULL this means that the last element has been
1239  * handled.
1240  *
1241  */
1242 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1243 			   struct bnx2x_vlan_mac_ramrod_params *p,
1244 			   struct bnx2x_vlan_mac_registry_elem **ppos)
1245 {
1246 	struct bnx2x_vlan_mac_registry_elem *pos;
1247 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1248 
1249 	/* If list is empty - there is nothing to do here */
1250 	if (list_empty(&o->head)) {
1251 		*ppos = NULL;
1252 		return 0;
1253 	}
1254 
1255 	/* make a step... */
1256 	if (*ppos == NULL)
1257 		*ppos = list_first_entry(&o->head,
1258 					 struct bnx2x_vlan_mac_registry_elem,
1259 					 link);
1260 	else
1261 		*ppos = list_next_entry(*ppos, link);
1262 
1263 	pos = *ppos;
1264 
1265 	/* If it's the last step - return NULL */
1266 	if (list_is_last(&pos->link, &o->head))
1267 		*ppos = NULL;
1268 
1269 	/* Prepare a 'user_req' */
1270 	memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1271 
1272 	/* Set the command */
1273 	p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1274 
1275 	/* Set vlan_mac_flags */
1276 	p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1277 
1278 	/* Set a restore bit */
1279 	__set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1280 
1281 	return bnx2x_config_vlan_mac(bp, p);
1282 }
1283 
1284 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1285  * pointer to an element with a specific criteria and NULL if such an element
1286  * hasn't been found.
1287  */
1288 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1289 	struct bnx2x_exe_queue_obj *o,
1290 	struct bnx2x_exeq_elem *elem)
1291 {
1292 	struct bnx2x_exeq_elem *pos;
1293 	struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1294 
1295 	/* Check pending for execution commands */
1296 	list_for_each_entry(pos, &o->exe_queue, link)
1297 		if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1298 			      sizeof(*data)) &&
1299 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1300 			return pos;
1301 
1302 	return NULL;
1303 }
1304 
1305 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1306 	struct bnx2x_exe_queue_obj *o,
1307 	struct bnx2x_exeq_elem *elem)
1308 {
1309 	struct bnx2x_exeq_elem *pos;
1310 	struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1311 
1312 	/* Check pending for execution commands */
1313 	list_for_each_entry(pos, &o->exe_queue, link)
1314 		if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1315 			      sizeof(*data)) &&
1316 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1317 			return pos;
1318 
1319 	return NULL;
1320 }
1321 
1322 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1323 	struct bnx2x_exe_queue_obj *o,
1324 	struct bnx2x_exeq_elem *elem)
1325 {
1326 	struct bnx2x_exeq_elem *pos;
1327 	struct bnx2x_vlan_mac_ramrod_data *data =
1328 		&elem->cmd_data.vlan_mac.u.vlan_mac;
1329 
1330 	/* Check pending for execution commands */
1331 	list_for_each_entry(pos, &o->exe_queue, link)
1332 		if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1333 			      sizeof(*data)) &&
1334 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1335 			return pos;
1336 
1337 	return NULL;
1338 }
1339 
1340 /**
1341  * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1342  *
1343  * @bp:		device handle
1344  * @qo:		bnx2x_qable_obj
1345  * @elem:	bnx2x_exeq_elem
1346  *
1347  * Checks that the requested configuration can be added. If yes and if
1348  * requested, consume CAM credit.
1349  *
1350  * The 'validate' is run after the 'optimize'.
1351  *
1352  */
1353 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1354 					      union bnx2x_qable_obj *qo,
1355 					      struct bnx2x_exeq_elem *elem)
1356 {
1357 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1358 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1359 	int rc;
1360 
1361 	/* Check the registry */
1362 	rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1363 	if (rc) {
1364 		DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1365 		return rc;
1366 	}
1367 
1368 	/* Check if there is a pending ADD command for this
1369 	 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1370 	 */
1371 	if (exeq->get(exeq, elem)) {
1372 		DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1373 		return -EEXIST;
1374 	}
1375 
1376 	/* TODO: Check the pending MOVE from other objects where this
1377 	 * object is a destination object.
1378 	 */
1379 
1380 	/* Consume the credit if not requested not to */
1381 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1382 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1383 	    o->get_credit(o)))
1384 		return -EINVAL;
1385 
1386 	return 0;
1387 }
1388 
1389 /**
1390  * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1391  *
1392  * @bp:		device handle
1393  * @qo:		quable object to check
1394  * @elem:	element that needs to be deleted
1395  *
1396  * Checks that the requested configuration can be deleted. If yes and if
1397  * requested, returns a CAM credit.
1398  *
1399  * The 'validate' is run after the 'optimize'.
1400  */
1401 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1402 					      union bnx2x_qable_obj *qo,
1403 					      struct bnx2x_exeq_elem *elem)
1404 {
1405 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1406 	struct bnx2x_vlan_mac_registry_elem *pos;
1407 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1408 	struct bnx2x_exeq_elem query_elem;
1409 
1410 	/* If this classification can not be deleted (doesn't exist)
1411 	 * - return a BNX2X_EXIST.
1412 	 */
1413 	pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1414 	if (!pos) {
1415 		DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1416 		return -EEXIST;
1417 	}
1418 
1419 	/* Check if there are pending DEL or MOVE commands for this
1420 	 * MAC/VLAN/VLAN-MAC. Return an error if so.
1421 	 */
1422 	memcpy(&query_elem, elem, sizeof(query_elem));
1423 
1424 	/* Check for MOVE commands */
1425 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1426 	if (exeq->get(exeq, &query_elem)) {
1427 		BNX2X_ERR("There is a pending MOVE command already\n");
1428 		return -EINVAL;
1429 	}
1430 
1431 	/* Check for DEL commands */
1432 	if (exeq->get(exeq, elem)) {
1433 		DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1434 		return -EEXIST;
1435 	}
1436 
1437 	/* Return the credit to the credit pool if not requested not to */
1438 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1439 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1440 	    o->put_credit(o))) {
1441 		BNX2X_ERR("Failed to return a credit\n");
1442 		return -EINVAL;
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 /**
1449  * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1450  *
1451  * @bp:		device handle
1452  * @qo:		quable object to check (source)
1453  * @elem:	element that needs to be moved
1454  *
1455  * Checks that the requested configuration can be moved. If yes and if
1456  * requested, returns a CAM credit.
1457  *
1458  * The 'validate' is run after the 'optimize'.
1459  */
1460 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1461 					       union bnx2x_qable_obj *qo,
1462 					       struct bnx2x_exeq_elem *elem)
1463 {
1464 	struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1465 	struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1466 	struct bnx2x_exeq_elem query_elem;
1467 	struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1468 	struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1469 
1470 	/* Check if we can perform this operation based on the current registry
1471 	 * state.
1472 	 */
1473 	if (!src_o->check_move(bp, src_o, dest_o,
1474 			       &elem->cmd_data.vlan_mac.u)) {
1475 		DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1476 		return -EINVAL;
1477 	}
1478 
1479 	/* Check if there is an already pending DEL or MOVE command for the
1480 	 * source object or ADD command for a destination object. Return an
1481 	 * error if so.
1482 	 */
1483 	memcpy(&query_elem, elem, sizeof(query_elem));
1484 
1485 	/* Check DEL on source */
1486 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1487 	if (src_exeq->get(src_exeq, &query_elem)) {
1488 		BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1489 		return -EINVAL;
1490 	}
1491 
1492 	/* Check MOVE on source */
1493 	if (src_exeq->get(src_exeq, elem)) {
1494 		DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1495 		return -EEXIST;
1496 	}
1497 
1498 	/* Check ADD on destination */
1499 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1500 	if (dest_exeq->get(dest_exeq, &query_elem)) {
1501 		BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1502 		return -EINVAL;
1503 	}
1504 
1505 	/* Consume the credit if not requested not to */
1506 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1507 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1508 	    dest_o->get_credit(dest_o)))
1509 		return -EINVAL;
1510 
1511 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1512 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1513 	    src_o->put_credit(src_o))) {
1514 		/* return the credit taken from dest... */
1515 		dest_o->put_credit(dest_o);
1516 		return -EINVAL;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1523 				   union bnx2x_qable_obj *qo,
1524 				   struct bnx2x_exeq_elem *elem)
1525 {
1526 	switch (elem->cmd_data.vlan_mac.cmd) {
1527 	case BNX2X_VLAN_MAC_ADD:
1528 		return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1529 	case BNX2X_VLAN_MAC_DEL:
1530 		return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1531 	case BNX2X_VLAN_MAC_MOVE:
1532 		return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1533 	default:
1534 		return -EINVAL;
1535 	}
1536 }
1537 
1538 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1539 				  union bnx2x_qable_obj *qo,
1540 				  struct bnx2x_exeq_elem *elem)
1541 {
1542 	int rc = 0;
1543 
1544 	/* If consumption wasn't required, nothing to do */
1545 	if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1546 		     &elem->cmd_data.vlan_mac.vlan_mac_flags))
1547 		return 0;
1548 
1549 	switch (elem->cmd_data.vlan_mac.cmd) {
1550 	case BNX2X_VLAN_MAC_ADD:
1551 	case BNX2X_VLAN_MAC_MOVE:
1552 		rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1553 		break;
1554 	case BNX2X_VLAN_MAC_DEL:
1555 		rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1556 		break;
1557 	default:
1558 		return -EINVAL;
1559 	}
1560 
1561 	if (rc != true)
1562 		return -EINVAL;
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1569  *
1570  * @bp:		device handle
1571  * @o:		bnx2x_vlan_mac_obj
1572  *
1573  */
1574 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1575 			       struct bnx2x_vlan_mac_obj *o)
1576 {
1577 	int cnt = 5000, rc;
1578 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1579 	struct bnx2x_raw_obj *raw = &o->raw;
1580 
1581 	while (cnt--) {
1582 		/* Wait for the current command to complete */
1583 		rc = raw->wait_comp(bp, raw);
1584 		if (rc)
1585 			return rc;
1586 
1587 		/* Wait until there are no pending commands */
1588 		if (!bnx2x_exe_queue_empty(exeq))
1589 			usleep_range(1000, 2000);
1590 		else
1591 			return 0;
1592 	}
1593 
1594 	return -EBUSY;
1595 }
1596 
1597 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1598 					 struct bnx2x_vlan_mac_obj *o,
1599 					 unsigned long *ramrod_flags)
1600 {
1601 	int rc = 0;
1602 
1603 	spin_lock_bh(&o->exe_queue.lock);
1604 
1605 	DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1606 	rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1607 
1608 	if (rc != 0) {
1609 		__bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1610 
1611 		/* Calling function should not diffrentiate between this case
1612 		 * and the case in which there is already a pending ramrod
1613 		 */
1614 		rc = 1;
1615 	} else {
1616 		rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1617 	}
1618 	spin_unlock_bh(&o->exe_queue.lock);
1619 
1620 	return rc;
1621 }
1622 
1623 /**
1624  * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1625  *
1626  * @bp:		device handle
1627  * @o:		bnx2x_vlan_mac_obj
1628  * @cqe:
1629  * @cont:	if true schedule next execution chunk
1630  *
1631  */
1632 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1633 				   struct bnx2x_vlan_mac_obj *o,
1634 				   union event_ring_elem *cqe,
1635 				   unsigned long *ramrod_flags)
1636 {
1637 	struct bnx2x_raw_obj *r = &o->raw;
1638 	int rc;
1639 
1640 	/* Clearing the pending list & raw state should be made
1641 	 * atomically (as execution flow assumes they represent the same).
1642 	 */
1643 	spin_lock_bh(&o->exe_queue.lock);
1644 
1645 	/* Reset pending list */
1646 	__bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1647 
1648 	/* Clear pending */
1649 	r->clear_pending(r);
1650 
1651 	spin_unlock_bh(&o->exe_queue.lock);
1652 
1653 	/* If ramrod failed this is most likely a SW bug */
1654 	if (cqe->message.error)
1655 		return -EINVAL;
1656 
1657 	/* Run the next bulk of pending commands if requested */
1658 	if (test_bit(RAMROD_CONT, ramrod_flags)) {
1659 		rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1660 
1661 		if (rc < 0)
1662 			return rc;
1663 	}
1664 
1665 	/* If there is more work to do return PENDING */
1666 	if (!bnx2x_exe_queue_empty(&o->exe_queue))
1667 		return 1;
1668 
1669 	return 0;
1670 }
1671 
1672 /**
1673  * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1674  *
1675  * @bp:		device handle
1676  * @o:		bnx2x_qable_obj
1677  * @elem:	bnx2x_exeq_elem
1678  */
1679 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1680 				   union bnx2x_qable_obj *qo,
1681 				   struct bnx2x_exeq_elem *elem)
1682 {
1683 	struct bnx2x_exeq_elem query, *pos;
1684 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1685 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1686 
1687 	memcpy(&query, elem, sizeof(query));
1688 
1689 	switch (elem->cmd_data.vlan_mac.cmd) {
1690 	case BNX2X_VLAN_MAC_ADD:
1691 		query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1692 		break;
1693 	case BNX2X_VLAN_MAC_DEL:
1694 		query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1695 		break;
1696 	default:
1697 		/* Don't handle anything other than ADD or DEL */
1698 		return 0;
1699 	}
1700 
1701 	/* If we found the appropriate element - delete it */
1702 	pos = exeq->get(exeq, &query);
1703 	if (pos) {
1704 
1705 		/* Return the credit of the optimized command */
1706 		if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1707 			      &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1708 			if ((query.cmd_data.vlan_mac.cmd ==
1709 			     BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1710 				BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1711 				return -EINVAL;
1712 			} else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1713 				BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1714 				return -EINVAL;
1715 			}
1716 		}
1717 
1718 		DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1719 			   (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1720 			   "ADD" : "DEL");
1721 
1722 		list_del(&pos->link);
1723 		bnx2x_exe_queue_free_elem(bp, pos);
1724 		return 1;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 /**
1731  * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1732  *
1733  * @bp:	  device handle
1734  * @o:
1735  * @elem:
1736  * @restore:
1737  * @re:
1738  *
1739  * prepare a registry element according to the current command request.
1740  */
1741 static inline int bnx2x_vlan_mac_get_registry_elem(
1742 	struct bnx2x *bp,
1743 	struct bnx2x_vlan_mac_obj *o,
1744 	struct bnx2x_exeq_elem *elem,
1745 	bool restore,
1746 	struct bnx2x_vlan_mac_registry_elem **re)
1747 {
1748 	enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1749 	struct bnx2x_vlan_mac_registry_elem *reg_elem;
1750 
1751 	/* Allocate a new registry element if needed. */
1752 	if (!restore &&
1753 	    ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1754 		reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1755 		if (!reg_elem)
1756 			return -ENOMEM;
1757 
1758 		/* Get a new CAM offset */
1759 		if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1760 			/* This shall never happen, because we have checked the
1761 			 * CAM availability in the 'validate'.
1762 			 */
1763 			WARN_ON(1);
1764 			kfree(reg_elem);
1765 			return -EINVAL;
1766 		}
1767 
1768 		DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1769 
1770 		/* Set a VLAN-MAC data */
1771 		memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1772 			  sizeof(reg_elem->u));
1773 
1774 		/* Copy the flags (needed for DEL and RESTORE flows) */
1775 		reg_elem->vlan_mac_flags =
1776 			elem->cmd_data.vlan_mac.vlan_mac_flags;
1777 	} else /* DEL, RESTORE */
1778 		reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1779 
1780 	*re = reg_elem;
1781 	return 0;
1782 }
1783 
1784 /**
1785  * bnx2x_execute_vlan_mac - execute vlan mac command
1786  *
1787  * @bp:			device handle
1788  * @qo:
1789  * @exe_chunk:
1790  * @ramrod_flags:
1791  *
1792  * go and send a ramrod!
1793  */
1794 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1795 				  union bnx2x_qable_obj *qo,
1796 				  struct list_head *exe_chunk,
1797 				  unsigned long *ramrod_flags)
1798 {
1799 	struct bnx2x_exeq_elem *elem;
1800 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1801 	struct bnx2x_raw_obj *r = &o->raw;
1802 	int rc, idx = 0;
1803 	bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1804 	bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1805 	struct bnx2x_vlan_mac_registry_elem *reg_elem;
1806 	enum bnx2x_vlan_mac_cmd cmd;
1807 
1808 	/* If DRIVER_ONLY execution is requested, cleanup a registry
1809 	 * and exit. Otherwise send a ramrod to FW.
1810 	 */
1811 	if (!drv_only) {
1812 		WARN_ON(r->check_pending(r));
1813 
1814 		/* Set pending */
1815 		r->set_pending(r);
1816 
1817 		/* Fill the ramrod data */
1818 		list_for_each_entry(elem, exe_chunk, link) {
1819 			cmd = elem->cmd_data.vlan_mac.cmd;
1820 			/* We will add to the target object in MOVE command, so
1821 			 * change the object for a CAM search.
1822 			 */
1823 			if (cmd == BNX2X_VLAN_MAC_MOVE)
1824 				cam_obj = elem->cmd_data.vlan_mac.target_obj;
1825 			else
1826 				cam_obj = o;
1827 
1828 			rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1829 							      elem, restore,
1830 							      &reg_elem);
1831 			if (rc)
1832 				goto error_exit;
1833 
1834 			WARN_ON(!reg_elem);
1835 
1836 			/* Push a new entry into the registry */
1837 			if (!restore &&
1838 			    ((cmd == BNX2X_VLAN_MAC_ADD) ||
1839 			    (cmd == BNX2X_VLAN_MAC_MOVE)))
1840 				list_add(&reg_elem->link, &cam_obj->head);
1841 
1842 			/* Configure a single command in a ramrod data buffer */
1843 			o->set_one_rule(bp, o, elem, idx,
1844 					reg_elem->cam_offset);
1845 
1846 			/* MOVE command consumes 2 entries in the ramrod data */
1847 			if (cmd == BNX2X_VLAN_MAC_MOVE)
1848 				idx += 2;
1849 			else
1850 				idx++;
1851 		}
1852 
1853 		/* No need for an explicit memory barrier here as long we would
1854 		 * need to ensure the ordering of writing to the SPQ element
1855 		 * and updating of the SPQ producer which involves a memory
1856 		 * read and we will have to put a full memory barrier there
1857 		 * (inside bnx2x_sp_post()).
1858 		 */
1859 
1860 		rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1861 				   U64_HI(r->rdata_mapping),
1862 				   U64_LO(r->rdata_mapping),
1863 				   ETH_CONNECTION_TYPE);
1864 		if (rc)
1865 			goto error_exit;
1866 	}
1867 
1868 	/* Now, when we are done with the ramrod - clean up the registry */
1869 	list_for_each_entry(elem, exe_chunk, link) {
1870 		cmd = elem->cmd_data.vlan_mac.cmd;
1871 		if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1872 		    (cmd == BNX2X_VLAN_MAC_MOVE)) {
1873 			reg_elem = o->check_del(bp, o,
1874 						&elem->cmd_data.vlan_mac.u);
1875 
1876 			WARN_ON(!reg_elem);
1877 
1878 			o->put_cam_offset(o, reg_elem->cam_offset);
1879 			list_del(&reg_elem->link);
1880 			kfree(reg_elem);
1881 		}
1882 	}
1883 
1884 	if (!drv_only)
1885 		return 1;
1886 	else
1887 		return 0;
1888 
1889 error_exit:
1890 	r->clear_pending(r);
1891 
1892 	/* Cleanup a registry in case of a failure */
1893 	list_for_each_entry(elem, exe_chunk, link) {
1894 		cmd = elem->cmd_data.vlan_mac.cmd;
1895 
1896 		if (cmd == BNX2X_VLAN_MAC_MOVE)
1897 			cam_obj = elem->cmd_data.vlan_mac.target_obj;
1898 		else
1899 			cam_obj = o;
1900 
1901 		/* Delete all newly added above entries */
1902 		if (!restore &&
1903 		    ((cmd == BNX2X_VLAN_MAC_ADD) ||
1904 		    (cmd == BNX2X_VLAN_MAC_MOVE))) {
1905 			reg_elem = o->check_del(bp, cam_obj,
1906 						&elem->cmd_data.vlan_mac.u);
1907 			if (reg_elem) {
1908 				list_del(&reg_elem->link);
1909 				kfree(reg_elem);
1910 			}
1911 		}
1912 	}
1913 
1914 	return rc;
1915 }
1916 
1917 static inline int bnx2x_vlan_mac_push_new_cmd(
1918 	struct bnx2x *bp,
1919 	struct bnx2x_vlan_mac_ramrod_params *p)
1920 {
1921 	struct bnx2x_exeq_elem *elem;
1922 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1923 	bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1924 
1925 	/* Allocate the execution queue element */
1926 	elem = bnx2x_exe_queue_alloc_elem(bp);
1927 	if (!elem)
1928 		return -ENOMEM;
1929 
1930 	/* Set the command 'length' */
1931 	switch (p->user_req.cmd) {
1932 	case BNX2X_VLAN_MAC_MOVE:
1933 		elem->cmd_len = 2;
1934 		break;
1935 	default:
1936 		elem->cmd_len = 1;
1937 	}
1938 
1939 	/* Fill the object specific info */
1940 	memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1941 
1942 	/* Try to add a new command to the pending list */
1943 	return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1944 }
1945 
1946 /**
1947  * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1948  *
1949  * @bp:	  device handle
1950  * @p:
1951  *
1952  */
1953 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1954 			   struct bnx2x_vlan_mac_ramrod_params *p)
1955 {
1956 	int rc = 0;
1957 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1958 	unsigned long *ramrod_flags = &p->ramrod_flags;
1959 	bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1960 	struct bnx2x_raw_obj *raw = &o->raw;
1961 
1962 	/*
1963 	 * Add new elements to the execution list for commands that require it.
1964 	 */
1965 	if (!cont) {
1966 		rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1967 		if (rc)
1968 			return rc;
1969 	}
1970 
1971 	/* If nothing will be executed further in this iteration we want to
1972 	 * return PENDING if there are pending commands
1973 	 */
1974 	if (!bnx2x_exe_queue_empty(&o->exe_queue))
1975 		rc = 1;
1976 
1977 	if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
1978 		DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1979 		raw->clear_pending(raw);
1980 	}
1981 
1982 	/* Execute commands if required */
1983 	if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1984 	    test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1985 		rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1986 						   &p->ramrod_flags);
1987 		if (rc < 0)
1988 			return rc;
1989 	}
1990 
1991 	/* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1992 	 * then user want to wait until the last command is done.
1993 	 */
1994 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1995 		/* Wait maximum for the current exe_queue length iterations plus
1996 		 * one (for the current pending command).
1997 		 */
1998 		int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1999 
2000 		while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
2001 		       max_iterations--) {
2002 
2003 			/* Wait for the current command to complete */
2004 			rc = raw->wait_comp(bp, raw);
2005 			if (rc)
2006 				return rc;
2007 
2008 			/* Make a next step */
2009 			rc = __bnx2x_vlan_mac_execute_step(bp,
2010 							   p->vlan_mac_obj,
2011 							   &p->ramrod_flags);
2012 			if (rc < 0)
2013 				return rc;
2014 		}
2015 
2016 		return 0;
2017 	}
2018 
2019 	return rc;
2020 }
2021 
2022 /**
2023  * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2024  *
2025  * @bp:			device handle
2026  * @o:
2027  * @vlan_mac_flags:
2028  * @ramrod_flags:	execution flags to be used for this deletion
2029  *
2030  * if the last operation has completed successfully and there are no
2031  * more elements left, positive value if the last operation has completed
2032  * successfully and there are more previously configured elements, negative
2033  * value is current operation has failed.
2034  */
2035 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
2036 				  struct bnx2x_vlan_mac_obj *o,
2037 				  unsigned long *vlan_mac_flags,
2038 				  unsigned long *ramrod_flags)
2039 {
2040 	struct bnx2x_vlan_mac_registry_elem *pos = NULL;
2041 	struct bnx2x_vlan_mac_ramrod_params p;
2042 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
2043 	struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
2044 	int read_lock;
2045 	int rc = 0;
2046 
2047 	/* Clear pending commands first */
2048 
2049 	spin_lock_bh(&exeq->lock);
2050 
2051 	list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
2052 		if (exeq_pos->cmd_data.vlan_mac.vlan_mac_flags ==
2053 		    *vlan_mac_flags) {
2054 			rc = exeq->remove(bp, exeq->owner, exeq_pos);
2055 			if (rc) {
2056 				BNX2X_ERR("Failed to remove command\n");
2057 				spin_unlock_bh(&exeq->lock);
2058 				return rc;
2059 			}
2060 			list_del(&exeq_pos->link);
2061 			bnx2x_exe_queue_free_elem(bp, exeq_pos);
2062 		}
2063 	}
2064 
2065 	spin_unlock_bh(&exeq->lock);
2066 
2067 	/* Prepare a command request */
2068 	memset(&p, 0, sizeof(p));
2069 	p.vlan_mac_obj = o;
2070 	p.ramrod_flags = *ramrod_flags;
2071 	p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
2072 
2073 	/* Add all but the last VLAN-MAC to the execution queue without actually
2074 	 * execution anything.
2075 	 */
2076 	__clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
2077 	__clear_bit(RAMROD_EXEC, &p.ramrod_flags);
2078 	__clear_bit(RAMROD_CONT, &p.ramrod_flags);
2079 
2080 	DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2081 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
2082 	if (read_lock != 0)
2083 		return read_lock;
2084 
2085 	list_for_each_entry(pos, &o->head, link) {
2086 		if (pos->vlan_mac_flags == *vlan_mac_flags) {
2087 			p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2088 			memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2089 			rc = bnx2x_config_vlan_mac(bp, &p);
2090 			if (rc < 0) {
2091 				BNX2X_ERR("Failed to add a new DEL command\n");
2092 				bnx2x_vlan_mac_h_read_unlock(bp, o);
2093 				return rc;
2094 			}
2095 		}
2096 	}
2097 
2098 	DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2099 	bnx2x_vlan_mac_h_read_unlock(bp, o);
2100 
2101 	p.ramrod_flags = *ramrod_flags;
2102 	__set_bit(RAMROD_CONT, &p.ramrod_flags);
2103 
2104 	return bnx2x_config_vlan_mac(bp, &p);
2105 }
2106 
2107 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
2108 	u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
2109 	unsigned long *pstate, bnx2x_obj_type type)
2110 {
2111 	raw->func_id = func_id;
2112 	raw->cid = cid;
2113 	raw->cl_id = cl_id;
2114 	raw->rdata = rdata;
2115 	raw->rdata_mapping = rdata_mapping;
2116 	raw->state = state;
2117 	raw->pstate = pstate;
2118 	raw->obj_type = type;
2119 	raw->check_pending = bnx2x_raw_check_pending;
2120 	raw->clear_pending = bnx2x_raw_clear_pending;
2121 	raw->set_pending = bnx2x_raw_set_pending;
2122 	raw->wait_comp = bnx2x_raw_wait;
2123 }
2124 
2125 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
2126 	u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
2127 	int state, unsigned long *pstate, bnx2x_obj_type type,
2128 	struct bnx2x_credit_pool_obj *macs_pool,
2129 	struct bnx2x_credit_pool_obj *vlans_pool)
2130 {
2131 	INIT_LIST_HEAD(&o->head);
2132 	o->head_reader = 0;
2133 	o->head_exe_request = false;
2134 	o->saved_ramrod_flags = 0;
2135 
2136 	o->macs_pool = macs_pool;
2137 	o->vlans_pool = vlans_pool;
2138 
2139 	o->delete_all = bnx2x_vlan_mac_del_all;
2140 	o->restore = bnx2x_vlan_mac_restore;
2141 	o->complete = bnx2x_complete_vlan_mac;
2142 	o->wait = bnx2x_wait_vlan_mac;
2143 
2144 	bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2145 			   state, pstate, type);
2146 }
2147 
2148 void bnx2x_init_mac_obj(struct bnx2x *bp,
2149 			struct bnx2x_vlan_mac_obj *mac_obj,
2150 			u8 cl_id, u32 cid, u8 func_id, void *rdata,
2151 			dma_addr_t rdata_mapping, int state,
2152 			unsigned long *pstate, bnx2x_obj_type type,
2153 			struct bnx2x_credit_pool_obj *macs_pool)
2154 {
2155 	union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
2156 
2157 	bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2158 				   rdata_mapping, state, pstate, type,
2159 				   macs_pool, NULL);
2160 
2161 	/* CAM credit pool handling */
2162 	mac_obj->get_credit = bnx2x_get_credit_mac;
2163 	mac_obj->put_credit = bnx2x_put_credit_mac;
2164 	mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2165 	mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2166 
2167 	if (CHIP_IS_E1x(bp)) {
2168 		mac_obj->set_one_rule      = bnx2x_set_one_mac_e1x;
2169 		mac_obj->check_del         = bnx2x_check_mac_del;
2170 		mac_obj->check_add         = bnx2x_check_mac_add;
2171 		mac_obj->check_move        = bnx2x_check_move_always_err;
2172 		mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2173 
2174 		/* Exe Queue */
2175 		bnx2x_exe_queue_init(bp,
2176 				     &mac_obj->exe_queue, 1, qable_obj,
2177 				     bnx2x_validate_vlan_mac,
2178 				     bnx2x_remove_vlan_mac,
2179 				     bnx2x_optimize_vlan_mac,
2180 				     bnx2x_execute_vlan_mac,
2181 				     bnx2x_exeq_get_mac);
2182 	} else {
2183 		mac_obj->set_one_rule      = bnx2x_set_one_mac_e2;
2184 		mac_obj->check_del         = bnx2x_check_mac_del;
2185 		mac_obj->check_add         = bnx2x_check_mac_add;
2186 		mac_obj->check_move        = bnx2x_check_move;
2187 		mac_obj->ramrod_cmd        =
2188 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2189 		mac_obj->get_n_elements    = bnx2x_get_n_elements;
2190 
2191 		/* Exe Queue */
2192 		bnx2x_exe_queue_init(bp,
2193 				     &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2194 				     qable_obj, bnx2x_validate_vlan_mac,
2195 				     bnx2x_remove_vlan_mac,
2196 				     bnx2x_optimize_vlan_mac,
2197 				     bnx2x_execute_vlan_mac,
2198 				     bnx2x_exeq_get_mac);
2199 	}
2200 }
2201 
2202 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2203 			 struct bnx2x_vlan_mac_obj *vlan_obj,
2204 			 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2205 			 dma_addr_t rdata_mapping, int state,
2206 			 unsigned long *pstate, bnx2x_obj_type type,
2207 			 struct bnx2x_credit_pool_obj *vlans_pool)
2208 {
2209 	union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2210 
2211 	bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2212 				   rdata_mapping, state, pstate, type, NULL,
2213 				   vlans_pool);
2214 
2215 	vlan_obj->get_credit = bnx2x_get_credit_vlan;
2216 	vlan_obj->put_credit = bnx2x_put_credit_vlan;
2217 	vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2218 	vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2219 
2220 	if (CHIP_IS_E1x(bp)) {
2221 		BNX2X_ERR("Do not support chips others than E2 and newer\n");
2222 		BUG();
2223 	} else {
2224 		vlan_obj->set_one_rule      = bnx2x_set_one_vlan_e2;
2225 		vlan_obj->check_del         = bnx2x_check_vlan_del;
2226 		vlan_obj->check_add         = bnx2x_check_vlan_add;
2227 		vlan_obj->check_move        = bnx2x_check_move;
2228 		vlan_obj->ramrod_cmd        =
2229 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2230 		vlan_obj->get_n_elements    = bnx2x_get_n_elements;
2231 
2232 		/* Exe Queue */
2233 		bnx2x_exe_queue_init(bp,
2234 				     &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2235 				     qable_obj, bnx2x_validate_vlan_mac,
2236 				     bnx2x_remove_vlan_mac,
2237 				     bnx2x_optimize_vlan_mac,
2238 				     bnx2x_execute_vlan_mac,
2239 				     bnx2x_exeq_get_vlan);
2240 	}
2241 }
2242 
2243 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2244 			     struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2245 			     u8 cl_id, u32 cid, u8 func_id, void *rdata,
2246 			     dma_addr_t rdata_mapping, int state,
2247 			     unsigned long *pstate, bnx2x_obj_type type,
2248 			     struct bnx2x_credit_pool_obj *macs_pool,
2249 			     struct bnx2x_credit_pool_obj *vlans_pool)
2250 {
2251 	union bnx2x_qable_obj *qable_obj =
2252 		(union bnx2x_qable_obj *)vlan_mac_obj;
2253 
2254 	bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2255 				   rdata_mapping, state, pstate, type,
2256 				   macs_pool, vlans_pool);
2257 
2258 	/* CAM pool handling */
2259 	vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2260 	vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2261 	/* CAM offset is relevant for 57710 and 57711 chips only which have a
2262 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2263 	 * will be taken from MACs' pool object only.
2264 	 */
2265 	vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2266 	vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2267 
2268 	if (CHIP_IS_E1(bp)) {
2269 		BNX2X_ERR("Do not support chips others than E2\n");
2270 		BUG();
2271 	} else if (CHIP_IS_E1H(bp)) {
2272 		vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e1h;
2273 		vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2274 		vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2275 		vlan_mac_obj->check_move        = bnx2x_check_move_always_err;
2276 		vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2277 
2278 		/* Exe Queue */
2279 		bnx2x_exe_queue_init(bp,
2280 				     &vlan_mac_obj->exe_queue, 1, qable_obj,
2281 				     bnx2x_validate_vlan_mac,
2282 				     bnx2x_remove_vlan_mac,
2283 				     bnx2x_optimize_vlan_mac,
2284 				     bnx2x_execute_vlan_mac,
2285 				     bnx2x_exeq_get_vlan_mac);
2286 	} else {
2287 		vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e2;
2288 		vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2289 		vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2290 		vlan_mac_obj->check_move        = bnx2x_check_move;
2291 		vlan_mac_obj->ramrod_cmd        =
2292 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2293 
2294 		/* Exe Queue */
2295 		bnx2x_exe_queue_init(bp,
2296 				     &vlan_mac_obj->exe_queue,
2297 				     CLASSIFY_RULES_COUNT,
2298 				     qable_obj, bnx2x_validate_vlan_mac,
2299 				     bnx2x_remove_vlan_mac,
2300 				     bnx2x_optimize_vlan_mac,
2301 				     bnx2x_execute_vlan_mac,
2302 				     bnx2x_exeq_get_vlan_mac);
2303 	}
2304 }
2305 
2306 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2307 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2308 			struct tstorm_eth_mac_filter_config *mac_filters,
2309 			u16 pf_id)
2310 {
2311 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2312 
2313 	u32 addr = BAR_TSTRORM_INTMEM +
2314 			TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2315 
2316 	__storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2317 }
2318 
2319 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2320 				 struct bnx2x_rx_mode_ramrod_params *p)
2321 {
2322 	/* update the bp MAC filter structure */
2323 	u32 mask = (1 << p->cl_id);
2324 
2325 	struct tstorm_eth_mac_filter_config *mac_filters =
2326 		(struct tstorm_eth_mac_filter_config *)p->rdata;
2327 
2328 	/* initial setting is drop-all */
2329 	u8 drop_all_ucast = 1, drop_all_mcast = 1;
2330 	u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2331 	u8 unmatched_unicast = 0;
2332 
2333     /* In e1x there we only take into account rx accept flag since tx switching
2334      * isn't enabled. */
2335 	if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2336 		/* accept matched ucast */
2337 		drop_all_ucast = 0;
2338 
2339 	if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2340 		/* accept matched mcast */
2341 		drop_all_mcast = 0;
2342 
2343 	if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2344 		/* accept all mcast */
2345 		drop_all_ucast = 0;
2346 		accp_all_ucast = 1;
2347 	}
2348 	if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2349 		/* accept all mcast */
2350 		drop_all_mcast = 0;
2351 		accp_all_mcast = 1;
2352 	}
2353 	if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2354 		/* accept (all) bcast */
2355 		accp_all_bcast = 1;
2356 	if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2357 		/* accept unmatched unicasts */
2358 		unmatched_unicast = 1;
2359 
2360 	mac_filters->ucast_drop_all = drop_all_ucast ?
2361 		mac_filters->ucast_drop_all | mask :
2362 		mac_filters->ucast_drop_all & ~mask;
2363 
2364 	mac_filters->mcast_drop_all = drop_all_mcast ?
2365 		mac_filters->mcast_drop_all | mask :
2366 		mac_filters->mcast_drop_all & ~mask;
2367 
2368 	mac_filters->ucast_accept_all = accp_all_ucast ?
2369 		mac_filters->ucast_accept_all | mask :
2370 		mac_filters->ucast_accept_all & ~mask;
2371 
2372 	mac_filters->mcast_accept_all = accp_all_mcast ?
2373 		mac_filters->mcast_accept_all | mask :
2374 		mac_filters->mcast_accept_all & ~mask;
2375 
2376 	mac_filters->bcast_accept_all = accp_all_bcast ?
2377 		mac_filters->bcast_accept_all | mask :
2378 		mac_filters->bcast_accept_all & ~mask;
2379 
2380 	mac_filters->unmatched_unicast = unmatched_unicast ?
2381 		mac_filters->unmatched_unicast | mask :
2382 		mac_filters->unmatched_unicast & ~mask;
2383 
2384 	DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2385 			 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2386 	   mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2387 	   mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2388 	   mac_filters->bcast_accept_all);
2389 
2390 	/* write the MAC filter structure*/
2391 	__storm_memset_mac_filters(bp, mac_filters, p->func_id);
2392 
2393 	/* The operation is completed */
2394 	clear_bit(p->state, p->pstate);
2395 	smp_mb__after_clear_bit();
2396 
2397 	return 0;
2398 }
2399 
2400 /* Setup ramrod data */
2401 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2402 				struct eth_classify_header *hdr,
2403 				u8 rule_cnt)
2404 {
2405 	hdr->echo = cpu_to_le32(cid);
2406 	hdr->rule_cnt = rule_cnt;
2407 }
2408 
2409 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2410 				unsigned long *accept_flags,
2411 				struct eth_filter_rules_cmd *cmd,
2412 				bool clear_accept_all)
2413 {
2414 	u16 state;
2415 
2416 	/* start with 'drop-all' */
2417 	state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2418 		ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2419 
2420 	if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2421 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2422 
2423 	if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2424 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2425 
2426 	if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2427 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2428 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2429 	}
2430 
2431 	if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2432 		state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2433 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2434 	}
2435 
2436 	if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2437 		state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2438 
2439 	if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2440 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2441 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2442 	}
2443 
2444 	if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2445 		state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2446 
2447 	/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2448 	if (clear_accept_all) {
2449 		state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2450 		state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2451 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2452 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2453 	}
2454 
2455 	cmd->state = cpu_to_le16(state);
2456 }
2457 
2458 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2459 				struct bnx2x_rx_mode_ramrod_params *p)
2460 {
2461 	struct eth_filter_rules_ramrod_data *data = p->rdata;
2462 	int rc;
2463 	u8 rule_idx = 0;
2464 
2465 	/* Reset the ramrod data buffer */
2466 	memset(data, 0, sizeof(*data));
2467 
2468 	/* Setup ramrod data */
2469 
2470 	/* Tx (internal switching) */
2471 	if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2472 		data->rules[rule_idx].client_id = p->cl_id;
2473 		data->rules[rule_idx].func_id = p->func_id;
2474 
2475 		data->rules[rule_idx].cmd_general_data =
2476 			ETH_FILTER_RULES_CMD_TX_CMD;
2477 
2478 		bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2479 					       &(data->rules[rule_idx++]),
2480 					       false);
2481 	}
2482 
2483 	/* Rx */
2484 	if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2485 		data->rules[rule_idx].client_id = p->cl_id;
2486 		data->rules[rule_idx].func_id = p->func_id;
2487 
2488 		data->rules[rule_idx].cmd_general_data =
2489 			ETH_FILTER_RULES_CMD_RX_CMD;
2490 
2491 		bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2492 					       &(data->rules[rule_idx++]),
2493 					       false);
2494 	}
2495 
2496 	/* If FCoE Queue configuration has been requested configure the Rx and
2497 	 * internal switching modes for this queue in separate rules.
2498 	 *
2499 	 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2500 	 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2501 	 */
2502 	if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2503 		/*  Tx (internal switching) */
2504 		if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2505 			data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2506 			data->rules[rule_idx].func_id = p->func_id;
2507 
2508 			data->rules[rule_idx].cmd_general_data =
2509 						ETH_FILTER_RULES_CMD_TX_CMD;
2510 
2511 			bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2512 						       &(data->rules[rule_idx]),
2513 						       true);
2514 			rule_idx++;
2515 		}
2516 
2517 		/* Rx */
2518 		if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2519 			data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2520 			data->rules[rule_idx].func_id = p->func_id;
2521 
2522 			data->rules[rule_idx].cmd_general_data =
2523 						ETH_FILTER_RULES_CMD_RX_CMD;
2524 
2525 			bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2526 						       &(data->rules[rule_idx]),
2527 						       true);
2528 			rule_idx++;
2529 		}
2530 	}
2531 
2532 	/* Set the ramrod header (most importantly - number of rules to
2533 	 * configure).
2534 	 */
2535 	bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2536 
2537 	DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2538 			 data->header.rule_cnt, p->rx_accept_flags,
2539 			 p->tx_accept_flags);
2540 
2541 	/* No need for an explicit memory barrier here as long we would
2542 	 * need to ensure the ordering of writing to the SPQ element
2543 	 * and updating of the SPQ producer which involves a memory
2544 	 * read and we will have to put a full memory barrier there
2545 	 * (inside bnx2x_sp_post()).
2546 	 */
2547 
2548 	/* Send a ramrod */
2549 	rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2550 			   U64_HI(p->rdata_mapping),
2551 			   U64_LO(p->rdata_mapping),
2552 			   ETH_CONNECTION_TYPE);
2553 	if (rc)
2554 		return rc;
2555 
2556 	/* Ramrod completion is pending */
2557 	return 1;
2558 }
2559 
2560 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2561 				      struct bnx2x_rx_mode_ramrod_params *p)
2562 {
2563 	return bnx2x_state_wait(bp, p->state, p->pstate);
2564 }
2565 
2566 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2567 				    struct bnx2x_rx_mode_ramrod_params *p)
2568 {
2569 	/* Do nothing */
2570 	return 0;
2571 }
2572 
2573 int bnx2x_config_rx_mode(struct bnx2x *bp,
2574 			 struct bnx2x_rx_mode_ramrod_params *p)
2575 {
2576 	int rc;
2577 
2578 	/* Configure the new classification in the chip */
2579 	rc = p->rx_mode_obj->config_rx_mode(bp, p);
2580 	if (rc < 0)
2581 		return rc;
2582 
2583 	/* Wait for a ramrod completion if was requested */
2584 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2585 		rc = p->rx_mode_obj->wait_comp(bp, p);
2586 		if (rc)
2587 			return rc;
2588 	}
2589 
2590 	return rc;
2591 }
2592 
2593 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2594 			    struct bnx2x_rx_mode_obj *o)
2595 {
2596 	if (CHIP_IS_E1x(bp)) {
2597 		o->wait_comp      = bnx2x_empty_rx_mode_wait;
2598 		o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2599 	} else {
2600 		o->wait_comp      = bnx2x_wait_rx_mode_comp_e2;
2601 		o->config_rx_mode = bnx2x_set_rx_mode_e2;
2602 	}
2603 }
2604 
2605 /********************* Multicast verbs: SET, CLEAR ****************************/
2606 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2607 {
2608 	return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2609 }
2610 
2611 struct bnx2x_mcast_mac_elem {
2612 	struct list_head link;
2613 	u8 mac[ETH_ALEN];
2614 	u8 pad[2]; /* For a natural alignment of the following buffer */
2615 };
2616 
2617 struct bnx2x_pending_mcast_cmd {
2618 	struct list_head link;
2619 	int type; /* BNX2X_MCAST_CMD_X */
2620 	union {
2621 		struct list_head macs_head;
2622 		u32 macs_num; /* Needed for DEL command */
2623 		int next_bin; /* Needed for RESTORE flow with aprox match */
2624 	} data;
2625 
2626 	bool done; /* set to true, when the command has been handled,
2627 		    * practically used in 57712 handling only, where one pending
2628 		    * command may be handled in a few operations. As long as for
2629 		    * other chips every operation handling is completed in a
2630 		    * single ramrod, there is no need to utilize this field.
2631 		    */
2632 };
2633 
2634 static int bnx2x_mcast_wait(struct bnx2x *bp,
2635 			    struct bnx2x_mcast_obj *o)
2636 {
2637 	if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2638 			o->raw.wait_comp(bp, &o->raw))
2639 		return -EBUSY;
2640 
2641 	return 0;
2642 }
2643 
2644 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2645 				   struct bnx2x_mcast_obj *o,
2646 				   struct bnx2x_mcast_ramrod_params *p,
2647 				   enum bnx2x_mcast_cmd cmd)
2648 {
2649 	int total_sz;
2650 	struct bnx2x_pending_mcast_cmd *new_cmd;
2651 	struct bnx2x_mcast_mac_elem *cur_mac = NULL;
2652 	struct bnx2x_mcast_list_elem *pos;
2653 	int macs_list_len = ((cmd == BNX2X_MCAST_CMD_ADD) ?
2654 			     p->mcast_list_len : 0);
2655 
2656 	/* If the command is empty ("handle pending commands only"), break */
2657 	if (!p->mcast_list_len)
2658 		return 0;
2659 
2660 	total_sz = sizeof(*new_cmd) +
2661 		macs_list_len * sizeof(struct bnx2x_mcast_mac_elem);
2662 
2663 	/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2664 	new_cmd = kzalloc(total_sz, GFP_ATOMIC);
2665 
2666 	if (!new_cmd)
2667 		return -ENOMEM;
2668 
2669 	DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2670 	   cmd, macs_list_len);
2671 
2672 	INIT_LIST_HEAD(&new_cmd->data.macs_head);
2673 
2674 	new_cmd->type = cmd;
2675 	new_cmd->done = false;
2676 
2677 	switch (cmd) {
2678 	case BNX2X_MCAST_CMD_ADD:
2679 		cur_mac = (struct bnx2x_mcast_mac_elem *)
2680 			  ((u8 *)new_cmd + sizeof(*new_cmd));
2681 
2682 		/* Push the MACs of the current command into the pending command
2683 		 * MACs list: FIFO
2684 		 */
2685 		list_for_each_entry(pos, &p->mcast_list, link) {
2686 			memcpy(cur_mac->mac, pos->mac, ETH_ALEN);
2687 			list_add_tail(&cur_mac->link, &new_cmd->data.macs_head);
2688 			cur_mac++;
2689 		}
2690 
2691 		break;
2692 
2693 	case BNX2X_MCAST_CMD_DEL:
2694 		new_cmd->data.macs_num = p->mcast_list_len;
2695 		break;
2696 
2697 	case BNX2X_MCAST_CMD_RESTORE:
2698 		new_cmd->data.next_bin = 0;
2699 		break;
2700 
2701 	default:
2702 		kfree(new_cmd);
2703 		BNX2X_ERR("Unknown command: %d\n", cmd);
2704 		return -EINVAL;
2705 	}
2706 
2707 	/* Push the new pending command to the tail of the pending list: FIFO */
2708 	list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2709 
2710 	o->set_sched(o);
2711 
2712 	return 1;
2713 }
2714 
2715 /**
2716  * bnx2x_mcast_get_next_bin - get the next set bin (index)
2717  *
2718  * @o:
2719  * @last:	index to start looking from (including)
2720  *
2721  * returns the next found (set) bin or a negative value if none is found.
2722  */
2723 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2724 {
2725 	int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2726 
2727 	for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2728 		if (o->registry.aprox_match.vec[i])
2729 			for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2730 				int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2731 				if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2732 						       vec, cur_bit)) {
2733 					return cur_bit;
2734 				}
2735 			}
2736 		inner_start = 0;
2737 	}
2738 
2739 	/* None found */
2740 	return -1;
2741 }
2742 
2743 /**
2744  * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2745  *
2746  * @o:
2747  *
2748  * returns the index of the found bin or -1 if none is found
2749  */
2750 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2751 {
2752 	int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2753 
2754 	if (cur_bit >= 0)
2755 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2756 
2757 	return cur_bit;
2758 }
2759 
2760 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2761 {
2762 	struct bnx2x_raw_obj *raw = &o->raw;
2763 	u8 rx_tx_flag = 0;
2764 
2765 	if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2766 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2767 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2768 
2769 	if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2770 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2771 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2772 
2773 	return rx_tx_flag;
2774 }
2775 
2776 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2777 					struct bnx2x_mcast_obj *o, int idx,
2778 					union bnx2x_mcast_config_data *cfg_data,
2779 					enum bnx2x_mcast_cmd cmd)
2780 {
2781 	struct bnx2x_raw_obj *r = &o->raw;
2782 	struct eth_multicast_rules_ramrod_data *data =
2783 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
2784 	u8 func_id = r->func_id;
2785 	u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2786 	int bin;
2787 
2788 	if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE))
2789 		rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2790 
2791 	data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2792 
2793 	/* Get a bin and update a bins' vector */
2794 	switch (cmd) {
2795 	case BNX2X_MCAST_CMD_ADD:
2796 		bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2797 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2798 		break;
2799 
2800 	case BNX2X_MCAST_CMD_DEL:
2801 		/* If there were no more bins to clear
2802 		 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2803 		 * clear any (0xff) bin.
2804 		 * See bnx2x_mcast_validate_e2() for explanation when it may
2805 		 * happen.
2806 		 */
2807 		bin = bnx2x_mcast_clear_first_bin(o);
2808 		break;
2809 
2810 	case BNX2X_MCAST_CMD_RESTORE:
2811 		bin = cfg_data->bin;
2812 		break;
2813 
2814 	default:
2815 		BNX2X_ERR("Unknown command: %d\n", cmd);
2816 		return;
2817 	}
2818 
2819 	DP(BNX2X_MSG_SP, "%s bin %d\n",
2820 			 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2821 			 "Setting"  : "Clearing"), bin);
2822 
2823 	data->rules[idx].bin_id    = (u8)bin;
2824 	data->rules[idx].func_id   = func_id;
2825 	data->rules[idx].engine_id = o->engine_id;
2826 }
2827 
2828 /**
2829  * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2830  *
2831  * @bp:		device handle
2832  * @o:
2833  * @start_bin:	index in the registry to start from (including)
2834  * @rdata_idx:	index in the ramrod data to start from
2835  *
2836  * returns last handled bin index or -1 if all bins have been handled
2837  */
2838 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2839 	struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2840 	int *rdata_idx)
2841 {
2842 	int cur_bin, cnt = *rdata_idx;
2843 	union bnx2x_mcast_config_data cfg_data = {NULL};
2844 
2845 	/* go through the registry and configure the bins from it */
2846 	for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2847 	    cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2848 
2849 		cfg_data.bin = (u8)cur_bin;
2850 		o->set_one_rule(bp, o, cnt, &cfg_data,
2851 				BNX2X_MCAST_CMD_RESTORE);
2852 
2853 		cnt++;
2854 
2855 		DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2856 
2857 		/* Break if we reached the maximum number
2858 		 * of rules.
2859 		 */
2860 		if (cnt >= o->max_cmd_len)
2861 			break;
2862 	}
2863 
2864 	*rdata_idx = cnt;
2865 
2866 	return cur_bin;
2867 }
2868 
2869 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2870 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2871 	int *line_idx)
2872 {
2873 	struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2874 	int cnt = *line_idx;
2875 	union bnx2x_mcast_config_data cfg_data = {NULL};
2876 
2877 	list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2878 				 link) {
2879 
2880 		cfg_data.mac = &pmac_pos->mac[0];
2881 		o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2882 
2883 		cnt++;
2884 
2885 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2886 		   pmac_pos->mac);
2887 
2888 		list_del(&pmac_pos->link);
2889 
2890 		/* Break if we reached the maximum number
2891 		 * of rules.
2892 		 */
2893 		if (cnt >= o->max_cmd_len)
2894 			break;
2895 	}
2896 
2897 	*line_idx = cnt;
2898 
2899 	/* if no more MACs to configure - we are done */
2900 	if (list_empty(&cmd_pos->data.macs_head))
2901 		cmd_pos->done = true;
2902 }
2903 
2904 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2905 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2906 	int *line_idx)
2907 {
2908 	int cnt = *line_idx;
2909 
2910 	while (cmd_pos->data.macs_num) {
2911 		o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2912 
2913 		cnt++;
2914 
2915 		cmd_pos->data.macs_num--;
2916 
2917 		  DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2918 				   cmd_pos->data.macs_num, cnt);
2919 
2920 		/* Break if we reached the maximum
2921 		 * number of rules.
2922 		 */
2923 		if (cnt >= o->max_cmd_len)
2924 			break;
2925 	}
2926 
2927 	*line_idx = cnt;
2928 
2929 	/* If we cleared all bins - we are done */
2930 	if (!cmd_pos->data.macs_num)
2931 		cmd_pos->done = true;
2932 }
2933 
2934 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
2935 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2936 	int *line_idx)
2937 {
2938 	cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
2939 						line_idx);
2940 
2941 	if (cmd_pos->data.next_bin < 0)
2942 		/* If o->set_restore returned -1 we are done */
2943 		cmd_pos->done = true;
2944 	else
2945 		/* Start from the next bin next time */
2946 		cmd_pos->data.next_bin++;
2947 }
2948 
2949 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
2950 				struct bnx2x_mcast_ramrod_params *p)
2951 {
2952 	struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
2953 	int cnt = 0;
2954 	struct bnx2x_mcast_obj *o = p->mcast_obj;
2955 
2956 	list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
2957 				 link) {
2958 		switch (cmd_pos->type) {
2959 		case BNX2X_MCAST_CMD_ADD:
2960 			bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
2961 			break;
2962 
2963 		case BNX2X_MCAST_CMD_DEL:
2964 			bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
2965 			break;
2966 
2967 		case BNX2X_MCAST_CMD_RESTORE:
2968 			bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
2969 							   &cnt);
2970 			break;
2971 
2972 		default:
2973 			BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
2974 			return -EINVAL;
2975 		}
2976 
2977 		/* If the command has been completed - remove it from the list
2978 		 * and free the memory
2979 		 */
2980 		if (cmd_pos->done) {
2981 			list_del(&cmd_pos->link);
2982 			kfree(cmd_pos);
2983 		}
2984 
2985 		/* Break if we reached the maximum number of rules */
2986 		if (cnt >= o->max_cmd_len)
2987 			break;
2988 	}
2989 
2990 	return cnt;
2991 }
2992 
2993 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
2994 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
2995 	int *line_idx)
2996 {
2997 	struct bnx2x_mcast_list_elem *mlist_pos;
2998 	union bnx2x_mcast_config_data cfg_data = {NULL};
2999 	int cnt = *line_idx;
3000 
3001 	list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3002 		cfg_data.mac = mlist_pos->mac;
3003 		o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
3004 
3005 		cnt++;
3006 
3007 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3008 		   mlist_pos->mac);
3009 	}
3010 
3011 	*line_idx = cnt;
3012 }
3013 
3014 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
3015 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3016 	int *line_idx)
3017 {
3018 	int cnt = *line_idx, i;
3019 
3020 	for (i = 0; i < p->mcast_list_len; i++) {
3021 		o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
3022 
3023 		cnt++;
3024 
3025 		DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
3026 				 p->mcast_list_len - i - 1);
3027 	}
3028 
3029 	*line_idx = cnt;
3030 }
3031 
3032 /**
3033  * bnx2x_mcast_handle_current_cmd -
3034  *
3035  * @bp:		device handle
3036  * @p:
3037  * @cmd:
3038  * @start_cnt:	first line in the ramrod data that may be used
3039  *
3040  * This function is called iff there is enough place for the current command in
3041  * the ramrod data.
3042  * Returns number of lines filled in the ramrod data in total.
3043  */
3044 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
3045 			struct bnx2x_mcast_ramrod_params *p,
3046 			enum bnx2x_mcast_cmd cmd,
3047 			int start_cnt)
3048 {
3049 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3050 	int cnt = start_cnt;
3051 
3052 	DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3053 
3054 	switch (cmd) {
3055 	case BNX2X_MCAST_CMD_ADD:
3056 		bnx2x_mcast_hdl_add(bp, o, p, &cnt);
3057 		break;
3058 
3059 	case BNX2X_MCAST_CMD_DEL:
3060 		bnx2x_mcast_hdl_del(bp, o, p, &cnt);
3061 		break;
3062 
3063 	case BNX2X_MCAST_CMD_RESTORE:
3064 		o->hdl_restore(bp, o, 0, &cnt);
3065 		break;
3066 
3067 	default:
3068 		BNX2X_ERR("Unknown command: %d\n", cmd);
3069 		return -EINVAL;
3070 	}
3071 
3072 	/* The current command has been handled */
3073 	p->mcast_list_len = 0;
3074 
3075 	return cnt;
3076 }
3077 
3078 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
3079 				   struct bnx2x_mcast_ramrod_params *p,
3080 				   enum bnx2x_mcast_cmd cmd)
3081 {
3082 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3083 	int reg_sz = o->get_registry_size(o);
3084 
3085 	switch (cmd) {
3086 	/* DEL command deletes all currently configured MACs */
3087 	case BNX2X_MCAST_CMD_DEL:
3088 		o->set_registry_size(o, 0);
3089 		/* Don't break */
3090 
3091 	/* RESTORE command will restore the entire multicast configuration */
3092 	case BNX2X_MCAST_CMD_RESTORE:
3093 		/* Here we set the approximate amount of work to do, which in
3094 		 * fact may be only less as some MACs in postponed ADD
3095 		 * command(s) scheduled before this command may fall into
3096 		 * the same bin and the actual number of bins set in the
3097 		 * registry would be less than we estimated here. See
3098 		 * bnx2x_mcast_set_one_rule_e2() for further details.
3099 		 */
3100 		p->mcast_list_len = reg_sz;
3101 		break;
3102 
3103 	case BNX2X_MCAST_CMD_ADD:
3104 	case BNX2X_MCAST_CMD_CONT:
3105 		/* Here we assume that all new MACs will fall into new bins.
3106 		 * However we will correct the real registry size after we
3107 		 * handle all pending commands.
3108 		 */
3109 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
3110 		break;
3111 
3112 	default:
3113 		BNX2X_ERR("Unknown command: %d\n", cmd);
3114 		return -EINVAL;
3115 	}
3116 
3117 	/* Increase the total number of MACs pending to be configured */
3118 	o->total_pending_num += p->mcast_list_len;
3119 
3120 	return 0;
3121 }
3122 
3123 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
3124 				      struct bnx2x_mcast_ramrod_params *p,
3125 				      int old_num_bins)
3126 {
3127 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3128 
3129 	o->set_registry_size(o, old_num_bins);
3130 	o->total_pending_num -= p->mcast_list_len;
3131 }
3132 
3133 /**
3134  * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3135  *
3136  * @bp:		device handle
3137  * @p:
3138  * @len:	number of rules to handle
3139  */
3140 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
3141 					struct bnx2x_mcast_ramrod_params *p,
3142 					u8 len)
3143 {
3144 	struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3145 	struct eth_multicast_rules_ramrod_data *data =
3146 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3147 
3148 	data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3149 					(BNX2X_FILTER_MCAST_PENDING <<
3150 					 BNX2X_SWCID_SHIFT));
3151 	data->header.rule_cnt = len;
3152 }
3153 
3154 /**
3155  * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3156  *
3157  * @bp:		device handle
3158  * @o:
3159  *
3160  * Recalculate the actual number of set bins in the registry using Brian
3161  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3162  *
3163  * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3164  */
3165 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
3166 						  struct bnx2x_mcast_obj *o)
3167 {
3168 	int i, cnt = 0;
3169 	u64 elem;
3170 
3171 	for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
3172 		elem = o->registry.aprox_match.vec[i];
3173 		for (; elem; cnt++)
3174 			elem &= elem - 1;
3175 	}
3176 
3177 	o->set_registry_size(o, cnt);
3178 
3179 	return 0;
3180 }
3181 
3182 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
3183 				struct bnx2x_mcast_ramrod_params *p,
3184 				enum bnx2x_mcast_cmd cmd)
3185 {
3186 	struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
3187 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3188 	struct eth_multicast_rules_ramrod_data *data =
3189 		(struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3190 	int cnt = 0, rc;
3191 
3192 	/* Reset the ramrod data buffer */
3193 	memset(data, 0, sizeof(*data));
3194 
3195 	cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
3196 
3197 	/* If there are no more pending commands - clear SCHEDULED state */
3198 	if (list_empty(&o->pending_cmds_head))
3199 		o->clear_sched(o);
3200 
3201 	/* The below may be true iff there was enough room in ramrod
3202 	 * data for all pending commands and for the current
3203 	 * command. Otherwise the current command would have been added
3204 	 * to the pending commands and p->mcast_list_len would have been
3205 	 * zeroed.
3206 	 */
3207 	if (p->mcast_list_len > 0)
3208 		cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
3209 
3210 	/* We've pulled out some MACs - update the total number of
3211 	 * outstanding.
3212 	 */
3213 	o->total_pending_num -= cnt;
3214 
3215 	/* send a ramrod */
3216 	WARN_ON(o->total_pending_num < 0);
3217 	WARN_ON(cnt > o->max_cmd_len);
3218 
3219 	bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3220 
3221 	/* Update a registry size if there are no more pending operations.
3222 	 *
3223 	 * We don't want to change the value of the registry size if there are
3224 	 * pending operations because we want it to always be equal to the
3225 	 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3226 	 * set bins after the last requested operation in order to properly
3227 	 * evaluate the size of the next DEL/RESTORE operation.
3228 	 *
3229 	 * Note that we update the registry itself during command(s) handling
3230 	 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3231 	 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3232 	 * with a limited amount of update commands (per MAC/bin) and we don't
3233 	 * know in this scope what the actual state of bins configuration is
3234 	 * going to be after this ramrod.
3235 	 */
3236 	if (!o->total_pending_num)
3237 		bnx2x_mcast_refresh_registry_e2(bp, o);
3238 
3239 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3240 	 * RAMROD_PENDING status immediately.
3241 	 */
3242 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3243 		raw->clear_pending(raw);
3244 		return 0;
3245 	} else {
3246 		/* No need for an explicit memory barrier here as long we would
3247 		 * need to ensure the ordering of writing to the SPQ element
3248 		 * and updating of the SPQ producer which involves a memory
3249 		 * read and we will have to put a full memory barrier there
3250 		 * (inside bnx2x_sp_post()).
3251 		 */
3252 
3253 		/* Send a ramrod */
3254 		rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3255 				   raw->cid, U64_HI(raw->rdata_mapping),
3256 				   U64_LO(raw->rdata_mapping),
3257 				   ETH_CONNECTION_TYPE);
3258 		if (rc)
3259 			return rc;
3260 
3261 		/* Ramrod completion is pending */
3262 		return 1;
3263 	}
3264 }
3265 
3266 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3267 				    struct bnx2x_mcast_ramrod_params *p,
3268 				    enum bnx2x_mcast_cmd cmd)
3269 {
3270 	/* Mark, that there is a work to do */
3271 	if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3272 		p->mcast_list_len = 1;
3273 
3274 	return 0;
3275 }
3276 
3277 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3278 				       struct bnx2x_mcast_ramrod_params *p,
3279 				       int old_num_bins)
3280 {
3281 	/* Do nothing */
3282 }
3283 
3284 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3285 do { \
3286 	(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3287 } while (0)
3288 
3289 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3290 					   struct bnx2x_mcast_obj *o,
3291 					   struct bnx2x_mcast_ramrod_params *p,
3292 					   u32 *mc_filter)
3293 {
3294 	struct bnx2x_mcast_list_elem *mlist_pos;
3295 	int bit;
3296 
3297 	list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3298 		bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3299 		BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3300 
3301 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3302 		   mlist_pos->mac, bit);
3303 
3304 		/* bookkeeping... */
3305 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3306 				  bit);
3307 	}
3308 }
3309 
3310 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3311 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3312 	u32 *mc_filter)
3313 {
3314 	int bit;
3315 
3316 	for (bit = bnx2x_mcast_get_next_bin(o, 0);
3317 	     bit >= 0;
3318 	     bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3319 		BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3320 		DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3321 	}
3322 }
3323 
3324 /* On 57711 we write the multicast MACs' approximate match
3325  * table by directly into the TSTORM's internal RAM. So we don't
3326  * really need to handle any tricks to make it work.
3327  */
3328 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3329 				 struct bnx2x_mcast_ramrod_params *p,
3330 				 enum bnx2x_mcast_cmd cmd)
3331 {
3332 	int i;
3333 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3334 	struct bnx2x_raw_obj *r = &o->raw;
3335 
3336 	/* If CLEAR_ONLY has been requested - clear the registry
3337 	 * and clear a pending bit.
3338 	 */
3339 	if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3340 		u32 mc_filter[MC_HASH_SIZE] = {0};
3341 
3342 		/* Set the multicast filter bits before writing it into
3343 		 * the internal memory.
3344 		 */
3345 		switch (cmd) {
3346 		case BNX2X_MCAST_CMD_ADD:
3347 			bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3348 			break;
3349 
3350 		case BNX2X_MCAST_CMD_DEL:
3351 			DP(BNX2X_MSG_SP,
3352 			   "Invalidating multicast MACs configuration\n");
3353 
3354 			/* clear the registry */
3355 			memset(o->registry.aprox_match.vec, 0,
3356 			       sizeof(o->registry.aprox_match.vec));
3357 			break;
3358 
3359 		case BNX2X_MCAST_CMD_RESTORE:
3360 			bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3361 			break;
3362 
3363 		default:
3364 			BNX2X_ERR("Unknown command: %d\n", cmd);
3365 			return -EINVAL;
3366 		}
3367 
3368 		/* Set the mcast filter in the internal memory */
3369 		for (i = 0; i < MC_HASH_SIZE; i++)
3370 			REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3371 	} else
3372 		/* clear the registry */
3373 		memset(o->registry.aprox_match.vec, 0,
3374 		       sizeof(o->registry.aprox_match.vec));
3375 
3376 	/* We are done */
3377 	r->clear_pending(r);
3378 
3379 	return 0;
3380 }
3381 
3382 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3383 				   struct bnx2x_mcast_ramrod_params *p,
3384 				   enum bnx2x_mcast_cmd cmd)
3385 {
3386 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3387 	int reg_sz = o->get_registry_size(o);
3388 
3389 	switch (cmd) {
3390 	/* DEL command deletes all currently configured MACs */
3391 	case BNX2X_MCAST_CMD_DEL:
3392 		o->set_registry_size(o, 0);
3393 		/* Don't break */
3394 
3395 	/* RESTORE command will restore the entire multicast configuration */
3396 	case BNX2X_MCAST_CMD_RESTORE:
3397 		p->mcast_list_len = reg_sz;
3398 		  DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3399 				   cmd, p->mcast_list_len);
3400 		break;
3401 
3402 	case BNX2X_MCAST_CMD_ADD:
3403 	case BNX2X_MCAST_CMD_CONT:
3404 		/* Multicast MACs on 57710 are configured as unicast MACs and
3405 		 * there is only a limited number of CAM entries for that
3406 		 * matter.
3407 		 */
3408 		if (p->mcast_list_len > o->max_cmd_len) {
3409 			BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3410 				  o->max_cmd_len);
3411 			return -EINVAL;
3412 		}
3413 		/* Every configured MAC should be cleared if DEL command is
3414 		 * called. Only the last ADD command is relevant as long as
3415 		 * every ADD commands overrides the previous configuration.
3416 		 */
3417 		DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3418 		if (p->mcast_list_len > 0)
3419 			o->set_registry_size(o, p->mcast_list_len);
3420 
3421 		break;
3422 
3423 	default:
3424 		BNX2X_ERR("Unknown command: %d\n", cmd);
3425 		return -EINVAL;
3426 	}
3427 
3428 	/* We want to ensure that commands are executed one by one for 57710.
3429 	 * Therefore each none-empty command will consume o->max_cmd_len.
3430 	 */
3431 	if (p->mcast_list_len)
3432 		o->total_pending_num += o->max_cmd_len;
3433 
3434 	return 0;
3435 }
3436 
3437 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3438 				      struct bnx2x_mcast_ramrod_params *p,
3439 				      int old_num_macs)
3440 {
3441 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3442 
3443 	o->set_registry_size(o, old_num_macs);
3444 
3445 	/* If current command hasn't been handled yet and we are
3446 	 * here means that it's meant to be dropped and we have to
3447 	 * update the number of outstanding MACs accordingly.
3448 	 */
3449 	if (p->mcast_list_len)
3450 		o->total_pending_num -= o->max_cmd_len;
3451 }
3452 
3453 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3454 					struct bnx2x_mcast_obj *o, int idx,
3455 					union bnx2x_mcast_config_data *cfg_data,
3456 					enum bnx2x_mcast_cmd cmd)
3457 {
3458 	struct bnx2x_raw_obj *r = &o->raw;
3459 	struct mac_configuration_cmd *data =
3460 		(struct mac_configuration_cmd *)(r->rdata);
3461 
3462 	/* copy mac */
3463 	if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3464 		bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3465 				      &data->config_table[idx].middle_mac_addr,
3466 				      &data->config_table[idx].lsb_mac_addr,
3467 				      cfg_data->mac);
3468 
3469 		data->config_table[idx].vlan_id = 0;
3470 		data->config_table[idx].pf_id = r->func_id;
3471 		data->config_table[idx].clients_bit_vector =
3472 			cpu_to_le32(1 << r->cl_id);
3473 
3474 		SET_FLAG(data->config_table[idx].flags,
3475 			 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3476 			 T_ETH_MAC_COMMAND_SET);
3477 	}
3478 }
3479 
3480 /**
3481  * bnx2x_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3482  *
3483  * @bp:		device handle
3484  * @p:
3485  * @len:	number of rules to handle
3486  */
3487 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3488 					struct bnx2x_mcast_ramrod_params *p,
3489 					u8 len)
3490 {
3491 	struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3492 	struct mac_configuration_cmd *data =
3493 		(struct mac_configuration_cmd *)(r->rdata);
3494 
3495 	u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3496 		     BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3497 		     BNX2X_MAX_MULTICAST*(1 + r->func_id));
3498 
3499 	data->hdr.offset = offset;
3500 	data->hdr.client_id = cpu_to_le16(0xff);
3501 	data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3502 				     (BNX2X_FILTER_MCAST_PENDING <<
3503 				      BNX2X_SWCID_SHIFT));
3504 	data->hdr.length = len;
3505 }
3506 
3507 /**
3508  * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3509  *
3510  * @bp:		device handle
3511  * @o:
3512  * @start_idx:	index in the registry to start from
3513  * @rdata_idx:	index in the ramrod data to start from
3514  *
3515  * restore command for 57710 is like all other commands - always a stand alone
3516  * command - start_idx and rdata_idx will always be 0. This function will always
3517  * succeed.
3518  * returns -1 to comply with 57712 variant.
3519  */
3520 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3521 	struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3522 	int *rdata_idx)
3523 {
3524 	struct bnx2x_mcast_mac_elem *elem;
3525 	int i = 0;
3526 	union bnx2x_mcast_config_data cfg_data = {NULL};
3527 
3528 	/* go through the registry and configure the MACs from it. */
3529 	list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3530 		cfg_data.mac = &elem->mac[0];
3531 		o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3532 
3533 		i++;
3534 
3535 		  DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3536 		     cfg_data.mac);
3537 	}
3538 
3539 	*rdata_idx = i;
3540 
3541 	return -1;
3542 }
3543 
3544 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3545 	struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3546 {
3547 	struct bnx2x_pending_mcast_cmd *cmd_pos;
3548 	struct bnx2x_mcast_mac_elem *pmac_pos;
3549 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3550 	union bnx2x_mcast_config_data cfg_data = {NULL};
3551 	int cnt = 0;
3552 
3553 	/* If nothing to be done - return */
3554 	if (list_empty(&o->pending_cmds_head))
3555 		return 0;
3556 
3557 	/* Handle the first command */
3558 	cmd_pos = list_first_entry(&o->pending_cmds_head,
3559 				   struct bnx2x_pending_mcast_cmd, link);
3560 
3561 	switch (cmd_pos->type) {
3562 	case BNX2X_MCAST_CMD_ADD:
3563 		list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3564 			cfg_data.mac = &pmac_pos->mac[0];
3565 			o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3566 
3567 			cnt++;
3568 
3569 			DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3570 			   pmac_pos->mac);
3571 		}
3572 		break;
3573 
3574 	case BNX2X_MCAST_CMD_DEL:
3575 		cnt = cmd_pos->data.macs_num;
3576 		DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3577 		break;
3578 
3579 	case BNX2X_MCAST_CMD_RESTORE:
3580 		o->hdl_restore(bp, o, 0, &cnt);
3581 		break;
3582 
3583 	default:
3584 		BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3585 		return -EINVAL;
3586 	}
3587 
3588 	list_del(&cmd_pos->link);
3589 	kfree(cmd_pos);
3590 
3591 	return cnt;
3592 }
3593 
3594 /**
3595  * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3596  *
3597  * @fw_hi:
3598  * @fw_mid:
3599  * @fw_lo:
3600  * @mac:
3601  */
3602 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3603 					 __le16 *fw_lo, u8 *mac)
3604 {
3605 	mac[1] = ((u8 *)fw_hi)[0];
3606 	mac[0] = ((u8 *)fw_hi)[1];
3607 	mac[3] = ((u8 *)fw_mid)[0];
3608 	mac[2] = ((u8 *)fw_mid)[1];
3609 	mac[5] = ((u8 *)fw_lo)[0];
3610 	mac[4] = ((u8 *)fw_lo)[1];
3611 }
3612 
3613 /**
3614  * bnx2x_mcast_refresh_registry_e1 -
3615  *
3616  * @bp:		device handle
3617  * @cnt:
3618  *
3619  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3620  * and update the registry correspondingly: if ADD - allocate a memory and add
3621  * the entries to the registry (list), if DELETE - clear the registry and free
3622  * the memory.
3623  */
3624 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3625 						  struct bnx2x_mcast_obj *o)
3626 {
3627 	struct bnx2x_raw_obj *raw = &o->raw;
3628 	struct bnx2x_mcast_mac_elem *elem;
3629 	struct mac_configuration_cmd *data =
3630 			(struct mac_configuration_cmd *)(raw->rdata);
3631 
3632 	/* If first entry contains a SET bit - the command was ADD,
3633 	 * otherwise - DEL_ALL
3634 	 */
3635 	if (GET_FLAG(data->config_table[0].flags,
3636 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3637 		int i, len = data->hdr.length;
3638 
3639 		/* Break if it was a RESTORE command */
3640 		if (!list_empty(&o->registry.exact_match.macs))
3641 			return 0;
3642 
3643 		elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3644 		if (!elem) {
3645 			BNX2X_ERR("Failed to allocate registry memory\n");
3646 			return -ENOMEM;
3647 		}
3648 
3649 		for (i = 0; i < len; i++, elem++) {
3650 			bnx2x_get_fw_mac_addr(
3651 				&data->config_table[i].msb_mac_addr,
3652 				&data->config_table[i].middle_mac_addr,
3653 				&data->config_table[i].lsb_mac_addr,
3654 				elem->mac);
3655 			DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3656 			   elem->mac);
3657 			list_add_tail(&elem->link,
3658 				      &o->registry.exact_match.macs);
3659 		}
3660 	} else {
3661 		elem = list_first_entry(&o->registry.exact_match.macs,
3662 					struct bnx2x_mcast_mac_elem, link);
3663 		DP(BNX2X_MSG_SP, "Deleting a registry\n");
3664 		kfree(elem);
3665 		INIT_LIST_HEAD(&o->registry.exact_match.macs);
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3672 				struct bnx2x_mcast_ramrod_params *p,
3673 				enum bnx2x_mcast_cmd cmd)
3674 {
3675 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3676 	struct bnx2x_raw_obj *raw = &o->raw;
3677 	struct mac_configuration_cmd *data =
3678 		(struct mac_configuration_cmd *)(raw->rdata);
3679 	int cnt = 0, i, rc;
3680 
3681 	/* Reset the ramrod data buffer */
3682 	memset(data, 0, sizeof(*data));
3683 
3684 	/* First set all entries as invalid */
3685 	for (i = 0; i < o->max_cmd_len ; i++)
3686 		SET_FLAG(data->config_table[i].flags,
3687 			 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3688 			 T_ETH_MAC_COMMAND_INVALIDATE);
3689 
3690 	/* Handle pending commands first */
3691 	cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3692 
3693 	/* If there are no more pending commands - clear SCHEDULED state */
3694 	if (list_empty(&o->pending_cmds_head))
3695 		o->clear_sched(o);
3696 
3697 	/* The below may be true iff there were no pending commands */
3698 	if (!cnt)
3699 		cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3700 
3701 	/* For 57710 every command has o->max_cmd_len length to ensure that
3702 	 * commands are done one at a time.
3703 	 */
3704 	o->total_pending_num -= o->max_cmd_len;
3705 
3706 	/* send a ramrod */
3707 
3708 	WARN_ON(cnt > o->max_cmd_len);
3709 
3710 	/* Set ramrod header (in particular, a number of entries to update) */
3711 	bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3712 
3713 	/* update a registry: we need the registry contents to be always up
3714 	 * to date in order to be able to execute a RESTORE opcode. Here
3715 	 * we use the fact that for 57710 we sent one command at a time
3716 	 * hence we may take the registry update out of the command handling
3717 	 * and do it in a simpler way here.
3718 	 */
3719 	rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3720 	if (rc)
3721 		return rc;
3722 
3723 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3724 	 * RAMROD_PENDING status immediately.
3725 	 */
3726 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3727 		raw->clear_pending(raw);
3728 		return 0;
3729 	} else {
3730 		/* No need for an explicit memory barrier here as long we would
3731 		 * need to ensure the ordering of writing to the SPQ element
3732 		 * and updating of the SPQ producer which involves a memory
3733 		 * read and we will have to put a full memory barrier there
3734 		 * (inside bnx2x_sp_post()).
3735 		 */
3736 
3737 		/* Send a ramrod */
3738 		rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3739 				   U64_HI(raw->rdata_mapping),
3740 				   U64_LO(raw->rdata_mapping),
3741 				   ETH_CONNECTION_TYPE);
3742 		if (rc)
3743 			return rc;
3744 
3745 		/* Ramrod completion is pending */
3746 		return 1;
3747 	}
3748 }
3749 
3750 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3751 {
3752 	return o->registry.exact_match.num_macs_set;
3753 }
3754 
3755 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3756 {
3757 	return o->registry.aprox_match.num_bins_set;
3758 }
3759 
3760 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3761 						int n)
3762 {
3763 	o->registry.exact_match.num_macs_set = n;
3764 }
3765 
3766 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3767 						int n)
3768 {
3769 	o->registry.aprox_match.num_bins_set = n;
3770 }
3771 
3772 int bnx2x_config_mcast(struct bnx2x *bp,
3773 		       struct bnx2x_mcast_ramrod_params *p,
3774 		       enum bnx2x_mcast_cmd cmd)
3775 {
3776 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3777 	struct bnx2x_raw_obj *r = &o->raw;
3778 	int rc = 0, old_reg_size;
3779 
3780 	/* This is needed to recover number of currently configured mcast macs
3781 	 * in case of failure.
3782 	 */
3783 	old_reg_size = o->get_registry_size(o);
3784 
3785 	/* Do some calculations and checks */
3786 	rc = o->validate(bp, p, cmd);
3787 	if (rc)
3788 		return rc;
3789 
3790 	/* Return if there is no work to do */
3791 	if ((!p->mcast_list_len) && (!o->check_sched(o)))
3792 		return 0;
3793 
3794 	DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3795 	   o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
3796 
3797 	/* Enqueue the current command to the pending list if we can't complete
3798 	 * it in the current iteration
3799 	 */
3800 	if (r->check_pending(r) ||
3801 	    ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
3802 		rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
3803 		if (rc < 0)
3804 			goto error_exit1;
3805 
3806 		/* As long as the current command is in a command list we
3807 		 * don't need to handle it separately.
3808 		 */
3809 		p->mcast_list_len = 0;
3810 	}
3811 
3812 	if (!r->check_pending(r)) {
3813 
3814 		/* Set 'pending' state */
3815 		r->set_pending(r);
3816 
3817 		/* Configure the new classification in the chip */
3818 		rc = o->config_mcast(bp, p, cmd);
3819 		if (rc < 0)
3820 			goto error_exit2;
3821 
3822 		/* Wait for a ramrod completion if was requested */
3823 		if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
3824 			rc = o->wait_comp(bp, o);
3825 	}
3826 
3827 	return rc;
3828 
3829 error_exit2:
3830 	r->clear_pending(r);
3831 
3832 error_exit1:
3833 	o->revert(bp, p, old_reg_size);
3834 
3835 	return rc;
3836 }
3837 
3838 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
3839 {
3840 	smp_mb__before_clear_bit();
3841 	clear_bit(o->sched_state, o->raw.pstate);
3842 	smp_mb__after_clear_bit();
3843 }
3844 
3845 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
3846 {
3847 	smp_mb__before_clear_bit();
3848 	set_bit(o->sched_state, o->raw.pstate);
3849 	smp_mb__after_clear_bit();
3850 }
3851 
3852 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
3853 {
3854 	return !!test_bit(o->sched_state, o->raw.pstate);
3855 }
3856 
3857 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
3858 {
3859 	return o->raw.check_pending(&o->raw) || o->check_sched(o);
3860 }
3861 
3862 void bnx2x_init_mcast_obj(struct bnx2x *bp,
3863 			  struct bnx2x_mcast_obj *mcast_obj,
3864 			  u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
3865 			  u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
3866 			  int state, unsigned long *pstate, bnx2x_obj_type type)
3867 {
3868 	memset(mcast_obj, 0, sizeof(*mcast_obj));
3869 
3870 	bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
3871 			   rdata, rdata_mapping, state, pstate, type);
3872 
3873 	mcast_obj->engine_id = engine_id;
3874 
3875 	INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
3876 
3877 	mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
3878 	mcast_obj->check_sched = bnx2x_mcast_check_sched;
3879 	mcast_obj->set_sched = bnx2x_mcast_set_sched;
3880 	mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
3881 
3882 	if (CHIP_IS_E1(bp)) {
3883 		mcast_obj->config_mcast      = bnx2x_mcast_setup_e1;
3884 		mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
3885 		mcast_obj->hdl_restore       =
3886 			bnx2x_mcast_handle_restore_cmd_e1;
3887 		mcast_obj->check_pending     = bnx2x_mcast_check_pending;
3888 
3889 		if (CHIP_REV_IS_SLOW(bp))
3890 			mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
3891 		else
3892 			mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
3893 
3894 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
3895 		mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e1;
3896 		mcast_obj->validate          = bnx2x_mcast_validate_e1;
3897 		mcast_obj->revert            = bnx2x_mcast_revert_e1;
3898 		mcast_obj->get_registry_size =
3899 			bnx2x_mcast_get_registry_size_exact;
3900 		mcast_obj->set_registry_size =
3901 			bnx2x_mcast_set_registry_size_exact;
3902 
3903 		/* 57710 is the only chip that uses the exact match for mcast
3904 		 * at the moment.
3905 		 */
3906 		INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
3907 
3908 	} else if (CHIP_IS_E1H(bp)) {
3909 		mcast_obj->config_mcast  = bnx2x_mcast_setup_e1h;
3910 		mcast_obj->enqueue_cmd   = NULL;
3911 		mcast_obj->hdl_restore   = NULL;
3912 		mcast_obj->check_pending = bnx2x_mcast_check_pending;
3913 
3914 		/* 57711 doesn't send a ramrod, so it has unlimited credit
3915 		 * for one command.
3916 		 */
3917 		mcast_obj->max_cmd_len       = -1;
3918 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
3919 		mcast_obj->set_one_rule      = NULL;
3920 		mcast_obj->validate          = bnx2x_mcast_validate_e1h;
3921 		mcast_obj->revert            = bnx2x_mcast_revert_e1h;
3922 		mcast_obj->get_registry_size =
3923 			bnx2x_mcast_get_registry_size_aprox;
3924 		mcast_obj->set_registry_size =
3925 			bnx2x_mcast_set_registry_size_aprox;
3926 	} else {
3927 		mcast_obj->config_mcast      = bnx2x_mcast_setup_e2;
3928 		mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
3929 		mcast_obj->hdl_restore       =
3930 			bnx2x_mcast_handle_restore_cmd_e2;
3931 		mcast_obj->check_pending     = bnx2x_mcast_check_pending;
3932 		/* TODO: There should be a proper HSI define for this number!!!
3933 		 */
3934 		mcast_obj->max_cmd_len       = 16;
3935 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
3936 		mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e2;
3937 		mcast_obj->validate          = bnx2x_mcast_validate_e2;
3938 		mcast_obj->revert            = bnx2x_mcast_revert_e2;
3939 		mcast_obj->get_registry_size =
3940 			bnx2x_mcast_get_registry_size_aprox;
3941 		mcast_obj->set_registry_size =
3942 			bnx2x_mcast_set_registry_size_aprox;
3943 	}
3944 }
3945 
3946 /*************************** Credit handling **********************************/
3947 
3948 /**
3949  * atomic_add_ifless - add if the result is less than a given value.
3950  *
3951  * @v:	pointer of type atomic_t
3952  * @a:	the amount to add to v...
3953  * @u:	...if (v + a) is less than u.
3954  *
3955  * returns true if (v + a) was less than u, and false otherwise.
3956  *
3957  */
3958 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
3959 {
3960 	int c, old;
3961 
3962 	c = atomic_read(v);
3963 	for (;;) {
3964 		if (unlikely(c + a >= u))
3965 			return false;
3966 
3967 		old = atomic_cmpxchg((v), c, c + a);
3968 		if (likely(old == c))
3969 			break;
3970 		c = old;
3971 	}
3972 
3973 	return true;
3974 }
3975 
3976 /**
3977  * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
3978  *
3979  * @v:	pointer of type atomic_t
3980  * @a:	the amount to dec from v...
3981  * @u:	...if (v - a) is more or equal than u.
3982  *
3983  * returns true if (v - a) was more or equal than u, and false
3984  * otherwise.
3985  */
3986 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
3987 {
3988 	int c, old;
3989 
3990 	c = atomic_read(v);
3991 	for (;;) {
3992 		if (unlikely(c - a < u))
3993 			return false;
3994 
3995 		old = atomic_cmpxchg((v), c, c - a);
3996 		if (likely(old == c))
3997 			break;
3998 		c = old;
3999 	}
4000 
4001 	return true;
4002 }
4003 
4004 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
4005 {
4006 	bool rc;
4007 
4008 	smp_mb();
4009 	rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4010 	smp_mb();
4011 
4012 	return rc;
4013 }
4014 
4015 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
4016 {
4017 	bool rc;
4018 
4019 	smp_mb();
4020 
4021 	/* Don't let to refill if credit + cnt > pool_sz */
4022 	rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4023 
4024 	smp_mb();
4025 
4026 	return rc;
4027 }
4028 
4029 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
4030 {
4031 	int cur_credit;
4032 
4033 	smp_mb();
4034 	cur_credit = atomic_read(&o->credit);
4035 
4036 	return cur_credit;
4037 }
4038 
4039 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
4040 					  int cnt)
4041 {
4042 	return true;
4043 }
4044 
4045 static bool bnx2x_credit_pool_get_entry(
4046 	struct bnx2x_credit_pool_obj *o,
4047 	int *offset)
4048 {
4049 	int idx, vec, i;
4050 
4051 	*offset = -1;
4052 
4053 	/* Find "internal cam-offset" then add to base for this object... */
4054 	for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
4055 
4056 		/* Skip the current vector if there are no free entries in it */
4057 		if (!o->pool_mirror[vec])
4058 			continue;
4059 
4060 		/* If we've got here we are going to find a free entry */
4061 		for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4062 		      i < BIT_VEC64_ELEM_SZ; idx++, i++)
4063 
4064 			if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4065 				/* Got one!! */
4066 				BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4067 				*offset = o->base_pool_offset + idx;
4068 				return true;
4069 			}
4070 	}
4071 
4072 	return false;
4073 }
4074 
4075 static bool bnx2x_credit_pool_put_entry(
4076 	struct bnx2x_credit_pool_obj *o,
4077 	int offset)
4078 {
4079 	if (offset < o->base_pool_offset)
4080 		return false;
4081 
4082 	offset -= o->base_pool_offset;
4083 
4084 	if (offset >= o->pool_sz)
4085 		return false;
4086 
4087 	/* Return the entry to the pool */
4088 	BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4089 
4090 	return true;
4091 }
4092 
4093 static bool bnx2x_credit_pool_put_entry_always_true(
4094 	struct bnx2x_credit_pool_obj *o,
4095 	int offset)
4096 {
4097 	return true;
4098 }
4099 
4100 static bool bnx2x_credit_pool_get_entry_always_true(
4101 	struct bnx2x_credit_pool_obj *o,
4102 	int *offset)
4103 {
4104 	*offset = -1;
4105 	return true;
4106 }
4107 /**
4108  * bnx2x_init_credit_pool - initialize credit pool internals.
4109  *
4110  * @p:
4111  * @base:	Base entry in the CAM to use.
4112  * @credit:	pool size.
4113  *
4114  * If base is negative no CAM entries handling will be performed.
4115  * If credit is negative pool operations will always succeed (unlimited pool).
4116  *
4117  */
4118 static inline void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
4119 					  int base, int credit)
4120 {
4121 	/* Zero the object first */
4122 	memset(p, 0, sizeof(*p));
4123 
4124 	/* Set the table to all 1s */
4125 	memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4126 
4127 	/* Init a pool as full */
4128 	atomic_set(&p->credit, credit);
4129 
4130 	/* The total poll size */
4131 	p->pool_sz = credit;
4132 
4133 	p->base_pool_offset = base;
4134 
4135 	/* Commit the change */
4136 	smp_mb();
4137 
4138 	p->check = bnx2x_credit_pool_check;
4139 
4140 	/* if pool credit is negative - disable the checks */
4141 	if (credit >= 0) {
4142 		p->put      = bnx2x_credit_pool_put;
4143 		p->get      = bnx2x_credit_pool_get;
4144 		p->put_entry = bnx2x_credit_pool_put_entry;
4145 		p->get_entry = bnx2x_credit_pool_get_entry;
4146 	} else {
4147 		p->put      = bnx2x_credit_pool_always_true;
4148 		p->get      = bnx2x_credit_pool_always_true;
4149 		p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4150 		p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4151 	}
4152 
4153 	/* If base is negative - disable entries handling */
4154 	if (base < 0) {
4155 		p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4156 		p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4157 	}
4158 }
4159 
4160 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
4161 				struct bnx2x_credit_pool_obj *p, u8 func_id,
4162 				u8 func_num)
4163 {
4164 /* TODO: this will be defined in consts as well... */
4165 #define BNX2X_CAM_SIZE_EMUL 5
4166 
4167 	int cam_sz;
4168 
4169 	if (CHIP_IS_E1(bp)) {
4170 		/* In E1, Multicast is saved in cam... */
4171 		if (!CHIP_REV_IS_SLOW(bp))
4172 			cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
4173 		else
4174 			cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
4175 
4176 		bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4177 
4178 	} else if (CHIP_IS_E1H(bp)) {
4179 		/* CAM credit is equaly divided between all active functions
4180 		 * on the PORT!.
4181 		 */
4182 		if ((func_num > 0)) {
4183 			if (!CHIP_REV_IS_SLOW(bp))
4184 				cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4185 			else
4186 				cam_sz = BNX2X_CAM_SIZE_EMUL;
4187 			bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4188 		} else {
4189 			/* this should never happen! Block MAC operations. */
4190 			bnx2x_init_credit_pool(p, 0, 0);
4191 		}
4192 
4193 	} else {
4194 
4195 		/* CAM credit is equaly divided between all active functions
4196 		 * on the PATH.
4197 		 */
4198 		if ((func_num > 0)) {
4199 			if (!CHIP_REV_IS_SLOW(bp))
4200 				cam_sz = (MAX_MAC_CREDIT_E2 / func_num);
4201 			else
4202 				cam_sz = BNX2X_CAM_SIZE_EMUL;
4203 
4204 			/* No need for CAM entries handling for 57712 and
4205 			 * newer.
4206 			 */
4207 			bnx2x_init_credit_pool(p, -1, cam_sz);
4208 		} else {
4209 			/* this should never happen! Block MAC operations. */
4210 			bnx2x_init_credit_pool(p, 0, 0);
4211 		}
4212 	}
4213 }
4214 
4215 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4216 				 struct bnx2x_credit_pool_obj *p,
4217 				 u8 func_id,
4218 				 u8 func_num)
4219 {
4220 	if (CHIP_IS_E1x(bp)) {
4221 		/* There is no VLAN credit in HW on 57710 and 57711 only
4222 		 * MAC / MAC-VLAN can be set
4223 		 */
4224 		bnx2x_init_credit_pool(p, 0, -1);
4225 	} else {
4226 		/* CAM credit is equally divided between all active functions
4227 		 * on the PATH.
4228 		 */
4229 		if (func_num > 0) {
4230 			int credit = MAX_VLAN_CREDIT_E2 / func_num;
4231 			bnx2x_init_credit_pool(p, func_id * credit, credit);
4232 		} else
4233 			/* this should never happen! Block VLAN operations. */
4234 			bnx2x_init_credit_pool(p, 0, 0);
4235 	}
4236 }
4237 
4238 /****************** RSS Configuration ******************/
4239 /**
4240  * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4241  *
4242  * @bp:		driver handle
4243  * @p:		pointer to rss configuration
4244  *
4245  * Prints it when NETIF_MSG_IFUP debug level is configured.
4246  */
4247 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4248 					struct bnx2x_config_rss_params *p)
4249 {
4250 	int i;
4251 
4252 	DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4253 	DP(BNX2X_MSG_SP, "0x0000: ");
4254 	for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4255 		DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4256 
4257 		/* Print 4 bytes in a line */
4258 		if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4259 		    (((i + 1) & 0x3) == 0)) {
4260 			DP_CONT(BNX2X_MSG_SP, "\n");
4261 			DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4262 		}
4263 	}
4264 
4265 	DP_CONT(BNX2X_MSG_SP, "\n");
4266 }
4267 
4268 /**
4269  * bnx2x_setup_rss - configure RSS
4270  *
4271  * @bp:		device handle
4272  * @p:		rss configuration
4273  *
4274  * sends on UPDATE ramrod for that matter.
4275  */
4276 static int bnx2x_setup_rss(struct bnx2x *bp,
4277 			   struct bnx2x_config_rss_params *p)
4278 {
4279 	struct bnx2x_rss_config_obj *o = p->rss_obj;
4280 	struct bnx2x_raw_obj *r = &o->raw;
4281 	struct eth_rss_update_ramrod_data *data =
4282 		(struct eth_rss_update_ramrod_data *)(r->rdata);
4283 	u8 rss_mode = 0;
4284 	int rc;
4285 
4286 	memset(data, 0, sizeof(*data));
4287 
4288 	DP(BNX2X_MSG_SP, "Configuring RSS\n");
4289 
4290 	/* Set an echo field */
4291 	data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4292 				 (r->state << BNX2X_SWCID_SHIFT));
4293 
4294 	/* RSS mode */
4295 	if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4296 		rss_mode = ETH_RSS_MODE_DISABLED;
4297 	else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4298 		rss_mode = ETH_RSS_MODE_REGULAR;
4299 
4300 	data->rss_mode = rss_mode;
4301 
4302 	DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4303 
4304 	/* RSS capabilities */
4305 	if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4306 		data->capabilities |=
4307 			ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4308 
4309 	if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4310 		data->capabilities |=
4311 			ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4312 
4313 	if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4314 		data->capabilities |=
4315 			ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4316 
4317 	if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4318 		data->capabilities |=
4319 			ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4320 
4321 	if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4322 		data->capabilities |=
4323 			ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4324 
4325 	if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4326 		data->capabilities |=
4327 			ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4328 
4329 	/* Hashing mask */
4330 	data->rss_result_mask = p->rss_result_mask;
4331 
4332 	/* RSS engine ID */
4333 	data->rss_engine_id = o->engine_id;
4334 
4335 	DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4336 
4337 	/* Indirection table */
4338 	memcpy(data->indirection_table, p->ind_table,
4339 		  T_ETH_INDIRECTION_TABLE_SIZE);
4340 
4341 	/* Remember the last configuration */
4342 	memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4343 
4344 	/* Print the indirection table */
4345 	if (netif_msg_ifup(bp))
4346 		bnx2x_debug_print_ind_table(bp, p);
4347 
4348 	/* RSS keys */
4349 	if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4350 		memcpy(&data->rss_key[0], &p->rss_key[0],
4351 		       sizeof(data->rss_key));
4352 		data->capabilities |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4353 	}
4354 
4355 	/* No need for an explicit memory barrier here as long we would
4356 	 * need to ensure the ordering of writing to the SPQ element
4357 	 * and updating of the SPQ producer which involves a memory
4358 	 * read and we will have to put a full memory barrier there
4359 	 * (inside bnx2x_sp_post()).
4360 	 */
4361 
4362 	/* Send a ramrod */
4363 	rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4364 			   U64_HI(r->rdata_mapping),
4365 			   U64_LO(r->rdata_mapping),
4366 			   ETH_CONNECTION_TYPE);
4367 
4368 	if (rc < 0)
4369 		return rc;
4370 
4371 	return 1;
4372 }
4373 
4374 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4375 			     u8 *ind_table)
4376 {
4377 	memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4378 }
4379 
4380 int bnx2x_config_rss(struct bnx2x *bp,
4381 		     struct bnx2x_config_rss_params *p)
4382 {
4383 	int rc;
4384 	struct bnx2x_rss_config_obj *o = p->rss_obj;
4385 	struct bnx2x_raw_obj *r = &o->raw;
4386 
4387 	/* Do nothing if only driver cleanup was requested */
4388 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags))
4389 		return 0;
4390 
4391 	r->set_pending(r);
4392 
4393 	rc = o->config_rss(bp, p);
4394 	if (rc < 0) {
4395 		r->clear_pending(r);
4396 		return rc;
4397 	}
4398 
4399 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4400 		rc = r->wait_comp(bp, r);
4401 
4402 	return rc;
4403 }
4404 
4405 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4406 			       struct bnx2x_rss_config_obj *rss_obj,
4407 			       u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4408 			       void *rdata, dma_addr_t rdata_mapping,
4409 			       int state, unsigned long *pstate,
4410 			       bnx2x_obj_type type)
4411 {
4412 	bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4413 			   rdata_mapping, state, pstate, type);
4414 
4415 	rss_obj->engine_id  = engine_id;
4416 	rss_obj->config_rss = bnx2x_setup_rss;
4417 }
4418 
4419 int validate_vlan_mac(struct bnx2x *bp,
4420 		      struct bnx2x_vlan_mac_obj *vlan_mac)
4421 {
4422 	if (!vlan_mac->get_n_elements) {
4423 		BNX2X_ERR("vlan mac object was not intialized\n");
4424 		return -EINVAL;
4425 	}
4426 	return 0;
4427 }
4428 
4429 /********************** Queue state object ***********************************/
4430 
4431 /**
4432  * bnx2x_queue_state_change - perform Queue state change transition
4433  *
4434  * @bp:		device handle
4435  * @params:	parameters to perform the transition
4436  *
4437  * returns 0 in case of successfully completed transition, negative error
4438  * code in case of failure, positive (EBUSY) value if there is a completion
4439  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4440  * not set in params->ramrod_flags for asynchronous commands).
4441  *
4442  */
4443 int bnx2x_queue_state_change(struct bnx2x *bp,
4444 			     struct bnx2x_queue_state_params *params)
4445 {
4446 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4447 	int rc, pending_bit;
4448 	unsigned long *pending = &o->pending;
4449 
4450 	/* Check that the requested transition is legal */
4451 	rc = o->check_transition(bp, o, params);
4452 	if (rc) {
4453 		BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4454 		return -EINVAL;
4455 	}
4456 
4457 	/* Set "pending" bit */
4458 	DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4459 	pending_bit = o->set_pending(o, params);
4460 	DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4461 
4462 	/* Don't send a command if only driver cleanup was requested */
4463 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4464 		o->complete_cmd(bp, o, pending_bit);
4465 	else {
4466 		/* Send a ramrod */
4467 		rc = o->send_cmd(bp, params);
4468 		if (rc) {
4469 			o->next_state = BNX2X_Q_STATE_MAX;
4470 			clear_bit(pending_bit, pending);
4471 			smp_mb__after_clear_bit();
4472 			return rc;
4473 		}
4474 
4475 		if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4476 			rc = o->wait_comp(bp, o, pending_bit);
4477 			if (rc)
4478 				return rc;
4479 
4480 			return 0;
4481 		}
4482 	}
4483 
4484 	return !!test_bit(pending_bit, pending);
4485 }
4486 
4487 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4488 				   struct bnx2x_queue_state_params *params)
4489 {
4490 	enum bnx2x_queue_cmd cmd = params->cmd, bit;
4491 
4492 	/* ACTIVATE and DEACTIVATE commands are implemented on top of
4493 	 * UPDATE command.
4494 	 */
4495 	if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4496 	    (cmd == BNX2X_Q_CMD_DEACTIVATE))
4497 		bit = BNX2X_Q_CMD_UPDATE;
4498 	else
4499 		bit = cmd;
4500 
4501 	set_bit(bit, &obj->pending);
4502 	return bit;
4503 }
4504 
4505 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4506 				 struct bnx2x_queue_sp_obj *o,
4507 				 enum bnx2x_queue_cmd cmd)
4508 {
4509 	return bnx2x_state_wait(bp, cmd, &o->pending);
4510 }
4511 
4512 /**
4513  * bnx2x_queue_comp_cmd - complete the state change command.
4514  *
4515  * @bp:		device handle
4516  * @o:
4517  * @cmd:
4518  *
4519  * Checks that the arrived completion is expected.
4520  */
4521 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4522 				struct bnx2x_queue_sp_obj *o,
4523 				enum bnx2x_queue_cmd cmd)
4524 {
4525 	unsigned long cur_pending = o->pending;
4526 
4527 	if (!test_and_clear_bit(cmd, &cur_pending)) {
4528 		BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4529 			  cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4530 			  o->state, cur_pending, o->next_state);
4531 		return -EINVAL;
4532 	}
4533 
4534 	if (o->next_tx_only >= o->max_cos)
4535 		/* >= because tx only must always be smaller than cos since the
4536 		 * primary connection supports COS 0
4537 		 */
4538 		BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4539 			   o->next_tx_only, o->max_cos);
4540 
4541 	DP(BNX2X_MSG_SP,
4542 	   "Completing command %d for queue %d, setting state to %d\n",
4543 	   cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4544 
4545 	if (o->next_tx_only)  /* print num tx-only if any exist */
4546 		DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4547 		   o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4548 
4549 	o->state = o->next_state;
4550 	o->num_tx_only = o->next_tx_only;
4551 	o->next_state = BNX2X_Q_STATE_MAX;
4552 
4553 	/* It's important that o->state and o->next_state are
4554 	 * updated before o->pending.
4555 	 */
4556 	wmb();
4557 
4558 	clear_bit(cmd, &o->pending);
4559 	smp_mb__after_clear_bit();
4560 
4561 	return 0;
4562 }
4563 
4564 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4565 				struct bnx2x_queue_state_params *cmd_params,
4566 				struct client_init_ramrod_data *data)
4567 {
4568 	struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4569 
4570 	/* Rx data */
4571 
4572 	/* IPv6 TPA supported for E2 and above only */
4573 	data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4574 				CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4575 }
4576 
4577 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4578 				struct bnx2x_queue_sp_obj *o,
4579 				struct bnx2x_general_setup_params *params,
4580 				struct client_init_general_data *gen_data,
4581 				unsigned long *flags)
4582 {
4583 	gen_data->client_id = o->cl_id;
4584 
4585 	if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4586 		gen_data->statistics_counter_id =
4587 					params->stat_id;
4588 		gen_data->statistics_en_flg = 1;
4589 		gen_data->statistics_zero_flg =
4590 			test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4591 	} else
4592 		gen_data->statistics_counter_id =
4593 					DISABLE_STATISTIC_COUNTER_ID_VALUE;
4594 
4595 	gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4596 	gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4597 	gen_data->sp_client_id = params->spcl_id;
4598 	gen_data->mtu = cpu_to_le16(params->mtu);
4599 	gen_data->func_id = o->func_id;
4600 
4601 	gen_data->cos = params->cos;
4602 
4603 	gen_data->traffic_type =
4604 		test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4605 		LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4606 
4607 	DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4608 	   gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4609 }
4610 
4611 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4612 				struct bnx2x_txq_setup_params *params,
4613 				struct client_init_tx_data *tx_data,
4614 				unsigned long *flags)
4615 {
4616 	tx_data->enforce_security_flg =
4617 		test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4618 	tx_data->default_vlan =
4619 		cpu_to_le16(params->default_vlan);
4620 	tx_data->default_vlan_flg =
4621 		test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4622 	tx_data->tx_switching_flg =
4623 		test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4624 	tx_data->anti_spoofing_flg =
4625 		test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4626 	tx_data->force_default_pri_flg =
4627 		test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4628 
4629 	tx_data->tunnel_lso_inc_ip_id =
4630 		test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4631 	tx_data->tunnel_non_lso_pcsum_location =
4632 		test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? PCSUM_ON_PKT :
4633 								  PCSUM_ON_BD;
4634 
4635 	tx_data->tx_status_block_id = params->fw_sb_id;
4636 	tx_data->tx_sb_index_number = params->sb_cq_index;
4637 	tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4638 
4639 	tx_data->tx_bd_page_base.lo =
4640 		cpu_to_le32(U64_LO(params->dscr_map));
4641 	tx_data->tx_bd_page_base.hi =
4642 		cpu_to_le32(U64_HI(params->dscr_map));
4643 
4644 	/* Don't configure any Tx switching mode during queue SETUP */
4645 	tx_data->state = 0;
4646 }
4647 
4648 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4649 				struct rxq_pause_params *params,
4650 				struct client_init_rx_data *rx_data)
4651 {
4652 	/* flow control data */
4653 	rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4654 	rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4655 	rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4656 	rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4657 	rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4658 	rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4659 	rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4660 }
4661 
4662 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4663 				struct bnx2x_rxq_setup_params *params,
4664 				struct client_init_rx_data *rx_data,
4665 				unsigned long *flags)
4666 {
4667 	rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4668 				CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4669 	rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4670 				CLIENT_INIT_RX_DATA_TPA_MODE;
4671 	rx_data->vmqueue_mode_en_flg = 0;
4672 
4673 	rx_data->cache_line_alignment_log_size =
4674 		params->cache_line_log;
4675 	rx_data->enable_dynamic_hc =
4676 		test_bit(BNX2X_Q_FLG_DHC, flags);
4677 	rx_data->max_sges_for_packet = params->max_sges_pkt;
4678 	rx_data->client_qzone_id = params->cl_qzone_id;
4679 	rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4680 
4681 	/* Always start in DROP_ALL mode */
4682 	rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4683 				     CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4684 
4685 	/* We don't set drop flags */
4686 	rx_data->drop_ip_cs_err_flg = 0;
4687 	rx_data->drop_tcp_cs_err_flg = 0;
4688 	rx_data->drop_ttl0_flg = 0;
4689 	rx_data->drop_udp_cs_err_flg = 0;
4690 	rx_data->inner_vlan_removal_enable_flg =
4691 		test_bit(BNX2X_Q_FLG_VLAN, flags);
4692 	rx_data->outer_vlan_removal_enable_flg =
4693 		test_bit(BNX2X_Q_FLG_OV, flags);
4694 	rx_data->status_block_id = params->fw_sb_id;
4695 	rx_data->rx_sb_index_number = params->sb_cq_index;
4696 	rx_data->max_tpa_queues = params->max_tpa_queues;
4697 	rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4698 	rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4699 	rx_data->bd_page_base.lo =
4700 		cpu_to_le32(U64_LO(params->dscr_map));
4701 	rx_data->bd_page_base.hi =
4702 		cpu_to_le32(U64_HI(params->dscr_map));
4703 	rx_data->sge_page_base.lo =
4704 		cpu_to_le32(U64_LO(params->sge_map));
4705 	rx_data->sge_page_base.hi =
4706 		cpu_to_le32(U64_HI(params->sge_map));
4707 	rx_data->cqe_page_base.lo =
4708 		cpu_to_le32(U64_LO(params->rcq_map));
4709 	rx_data->cqe_page_base.hi =
4710 		cpu_to_le32(U64_HI(params->rcq_map));
4711 	rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4712 
4713 	if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4714 		rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4715 		rx_data->is_approx_mcast = 1;
4716 	}
4717 
4718 	rx_data->rss_engine_id = params->rss_engine_id;
4719 
4720 	/* silent vlan removal */
4721 	rx_data->silent_vlan_removal_flg =
4722 		test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4723 	rx_data->silent_vlan_value =
4724 		cpu_to_le16(params->silent_removal_value);
4725 	rx_data->silent_vlan_mask =
4726 		cpu_to_le16(params->silent_removal_mask);
4727 }
4728 
4729 /* initialize the general, tx and rx parts of a queue object */
4730 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4731 				struct bnx2x_queue_state_params *cmd_params,
4732 				struct client_init_ramrod_data *data)
4733 {
4734 	bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4735 				       &cmd_params->params.setup.gen_params,
4736 				       &data->general,
4737 				       &cmd_params->params.setup.flags);
4738 
4739 	bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4740 				  &cmd_params->params.setup.txq_params,
4741 				  &data->tx,
4742 				  &cmd_params->params.setup.flags);
4743 
4744 	bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4745 				  &cmd_params->params.setup.rxq_params,
4746 				  &data->rx,
4747 				  &cmd_params->params.setup.flags);
4748 
4749 	bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4750 				     &cmd_params->params.setup.pause_params,
4751 				     &data->rx);
4752 }
4753 
4754 /* initialize the general and tx parts of a tx-only queue object */
4755 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4756 				struct bnx2x_queue_state_params *cmd_params,
4757 				struct tx_queue_init_ramrod_data *data)
4758 {
4759 	bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4760 				       &cmd_params->params.tx_only.gen_params,
4761 				       &data->general,
4762 				       &cmd_params->params.tx_only.flags);
4763 
4764 	bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4765 				  &cmd_params->params.tx_only.txq_params,
4766 				  &data->tx,
4767 				  &cmd_params->params.tx_only.flags);
4768 
4769 	DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4770 			 cmd_params->q_obj->cids[0],
4771 			 data->tx.tx_bd_page_base.lo,
4772 			 data->tx.tx_bd_page_base.hi);
4773 }
4774 
4775 /**
4776  * bnx2x_q_init - init HW/FW queue
4777  *
4778  * @bp:		device handle
4779  * @params:
4780  *
4781  * HW/FW initial Queue configuration:
4782  *      - HC: Rx and Tx
4783  *      - CDU context validation
4784  *
4785  */
4786 static inline int bnx2x_q_init(struct bnx2x *bp,
4787 			       struct bnx2x_queue_state_params *params)
4788 {
4789 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4790 	struct bnx2x_queue_init_params *init = &params->params.init;
4791 	u16 hc_usec;
4792 	u8 cos;
4793 
4794 	/* Tx HC configuration */
4795 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
4796 	    test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
4797 		hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
4798 
4799 		bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
4800 			init->tx.sb_cq_index,
4801 			!test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
4802 			hc_usec);
4803 	}
4804 
4805 	/* Rx HC configuration */
4806 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
4807 	    test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
4808 		hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
4809 
4810 		bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
4811 			init->rx.sb_cq_index,
4812 			!test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
4813 			hc_usec);
4814 	}
4815 
4816 	/* Set CDU context validation values */
4817 	for (cos = 0; cos < o->max_cos; cos++) {
4818 		DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
4819 				 o->cids[cos], cos);
4820 		DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
4821 		bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
4822 	}
4823 
4824 	/* As no ramrod is sent, complete the command immediately  */
4825 	o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
4826 
4827 	mmiowb();
4828 	smp_mb();
4829 
4830 	return 0;
4831 }
4832 
4833 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
4834 					struct bnx2x_queue_state_params *params)
4835 {
4836 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4837 	struct client_init_ramrod_data *rdata =
4838 		(struct client_init_ramrod_data *)o->rdata;
4839 	dma_addr_t data_mapping = o->rdata_mapping;
4840 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4841 
4842 	/* Clear the ramrod data */
4843 	memset(rdata, 0, sizeof(*rdata));
4844 
4845 	/* Fill the ramrod data */
4846 	bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4847 
4848 	/* No need for an explicit memory barrier here as long we would
4849 	 * need to ensure the ordering of writing to the SPQ element
4850 	 * and updating of the SPQ producer which involves a memory
4851 	 * read and we will have to put a full memory barrier there
4852 	 * (inside bnx2x_sp_post()).
4853 	 */
4854 
4855 	return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4856 			     U64_HI(data_mapping),
4857 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4858 }
4859 
4860 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
4861 					struct bnx2x_queue_state_params *params)
4862 {
4863 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4864 	struct client_init_ramrod_data *rdata =
4865 		(struct client_init_ramrod_data *)o->rdata;
4866 	dma_addr_t data_mapping = o->rdata_mapping;
4867 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4868 
4869 	/* Clear the ramrod data */
4870 	memset(rdata, 0, sizeof(*rdata));
4871 
4872 	/* Fill the ramrod data */
4873 	bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4874 	bnx2x_q_fill_setup_data_e2(bp, params, rdata);
4875 
4876 	/* No need for an explicit memory barrier here as long we would
4877 	 * need to ensure the ordering of writing to the SPQ element
4878 	 * and updating of the SPQ producer which involves a memory
4879 	 * read and we will have to put a full memory barrier there
4880 	 * (inside bnx2x_sp_post()).
4881 	 */
4882 
4883 	return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4884 			     U64_HI(data_mapping),
4885 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4886 }
4887 
4888 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
4889 				  struct bnx2x_queue_state_params *params)
4890 {
4891 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4892 	struct tx_queue_init_ramrod_data *rdata =
4893 		(struct tx_queue_init_ramrod_data *)o->rdata;
4894 	dma_addr_t data_mapping = o->rdata_mapping;
4895 	int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
4896 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
4897 		&params->params.tx_only;
4898 	u8 cid_index = tx_only_params->cid_index;
4899 
4900 	if (cid_index >= o->max_cos) {
4901 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4902 			  o->cl_id, cid_index);
4903 		return -EINVAL;
4904 	}
4905 
4906 	DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
4907 			 tx_only_params->gen_params.cos,
4908 			 tx_only_params->gen_params.spcl_id);
4909 
4910 	/* Clear the ramrod data */
4911 	memset(rdata, 0, sizeof(*rdata));
4912 
4913 	/* Fill the ramrod data */
4914 	bnx2x_q_fill_setup_tx_only(bp, params, rdata);
4915 
4916 	DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
4917 			 o->cids[cid_index], rdata->general.client_id,
4918 			 rdata->general.sp_client_id, rdata->general.cos);
4919 
4920 	/* No need for an explicit memory barrier here as long we would
4921 	 * need to ensure the ordering of writing to the SPQ element
4922 	 * and updating of the SPQ producer which involves a memory
4923 	 * read and we will have to put a full memory barrier there
4924 	 * (inside bnx2x_sp_post()).
4925 	 */
4926 
4927 	return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
4928 			     U64_HI(data_mapping),
4929 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4930 }
4931 
4932 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
4933 				     struct bnx2x_queue_sp_obj *obj,
4934 				     struct bnx2x_queue_update_params *params,
4935 				     struct client_update_ramrod_data *data)
4936 {
4937 	/* Client ID of the client to update */
4938 	data->client_id = obj->cl_id;
4939 
4940 	/* Function ID of the client to update */
4941 	data->func_id = obj->func_id;
4942 
4943 	/* Default VLAN value */
4944 	data->default_vlan = cpu_to_le16(params->def_vlan);
4945 
4946 	/* Inner VLAN stripping */
4947 	data->inner_vlan_removal_enable_flg =
4948 		test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
4949 	data->inner_vlan_removal_change_flg =
4950 		test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
4951 			 &params->update_flags);
4952 
4953 	/* Outer VLAN stripping */
4954 	data->outer_vlan_removal_enable_flg =
4955 		test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
4956 	data->outer_vlan_removal_change_flg =
4957 		test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
4958 			 &params->update_flags);
4959 
4960 	/* Drop packets that have source MAC that doesn't belong to this
4961 	 * Queue.
4962 	 */
4963 	data->anti_spoofing_enable_flg =
4964 		test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
4965 	data->anti_spoofing_change_flg =
4966 		test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
4967 
4968 	/* Activate/Deactivate */
4969 	data->activate_flg =
4970 		test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
4971 	data->activate_change_flg =
4972 		test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
4973 
4974 	/* Enable default VLAN */
4975 	data->default_vlan_enable_flg =
4976 		test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
4977 	data->default_vlan_change_flg =
4978 		test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
4979 			 &params->update_flags);
4980 
4981 	/* silent vlan removal */
4982 	data->silent_vlan_change_flg =
4983 		test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4984 			 &params->update_flags);
4985 	data->silent_vlan_removal_flg =
4986 		test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
4987 	data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
4988 	data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
4989 }
4990 
4991 static inline int bnx2x_q_send_update(struct bnx2x *bp,
4992 				      struct bnx2x_queue_state_params *params)
4993 {
4994 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4995 	struct client_update_ramrod_data *rdata =
4996 		(struct client_update_ramrod_data *)o->rdata;
4997 	dma_addr_t data_mapping = o->rdata_mapping;
4998 	struct bnx2x_queue_update_params *update_params =
4999 		&params->params.update;
5000 	u8 cid_index = update_params->cid_index;
5001 
5002 	if (cid_index >= o->max_cos) {
5003 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5004 			  o->cl_id, cid_index);
5005 		return -EINVAL;
5006 	}
5007 
5008 	/* Clear the ramrod data */
5009 	memset(rdata, 0, sizeof(*rdata));
5010 
5011 	/* Fill the ramrod data */
5012 	bnx2x_q_fill_update_data(bp, o, update_params, rdata);
5013 
5014 	/* No need for an explicit memory barrier here as long we would
5015 	 * need to ensure the ordering of writing to the SPQ element
5016 	 * and updating of the SPQ producer which involves a memory
5017 	 * read and we will have to put a full memory barrier there
5018 	 * (inside bnx2x_sp_post()).
5019 	 */
5020 
5021 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5022 			     o->cids[cid_index], U64_HI(data_mapping),
5023 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5024 }
5025 
5026 /**
5027  * bnx2x_q_send_deactivate - send DEACTIVATE command
5028  *
5029  * @bp:		device handle
5030  * @params:
5031  *
5032  * implemented using the UPDATE command.
5033  */
5034 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
5035 					struct bnx2x_queue_state_params *params)
5036 {
5037 	struct bnx2x_queue_update_params *update = &params->params.update;
5038 
5039 	memset(update, 0, sizeof(*update));
5040 
5041 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5042 
5043 	return bnx2x_q_send_update(bp, params);
5044 }
5045 
5046 /**
5047  * bnx2x_q_send_activate - send ACTIVATE command
5048  *
5049  * @bp:		device handle
5050  * @params:
5051  *
5052  * implemented using the UPDATE command.
5053  */
5054 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
5055 					struct bnx2x_queue_state_params *params)
5056 {
5057 	struct bnx2x_queue_update_params *update = &params->params.update;
5058 
5059 	memset(update, 0, sizeof(*update));
5060 
5061 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
5062 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5063 
5064 	return bnx2x_q_send_update(bp, params);
5065 }
5066 
5067 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
5068 					struct bnx2x_queue_state_params *params)
5069 {
5070 	/* TODO: Not implemented yet. */
5071 	return -1;
5072 }
5073 
5074 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
5075 				    struct bnx2x_queue_state_params *params)
5076 {
5077 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5078 
5079 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
5080 			     o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
5081 			     ETH_CONNECTION_TYPE);
5082 }
5083 
5084 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
5085 				       struct bnx2x_queue_state_params *params)
5086 {
5087 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5088 	u8 cid_idx = params->params.cfc_del.cid_index;
5089 
5090 	if (cid_idx >= o->max_cos) {
5091 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5092 			  o->cl_id, cid_idx);
5093 		return -EINVAL;
5094 	}
5095 
5096 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
5097 			     o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
5098 }
5099 
5100 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
5101 					struct bnx2x_queue_state_params *params)
5102 {
5103 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5104 	u8 cid_index = params->params.terminate.cid_index;
5105 
5106 	if (cid_index >= o->max_cos) {
5107 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5108 			  o->cl_id, cid_index);
5109 		return -EINVAL;
5110 	}
5111 
5112 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
5113 			     o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
5114 }
5115 
5116 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
5117 				     struct bnx2x_queue_state_params *params)
5118 {
5119 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5120 
5121 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
5122 			     o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
5123 			     ETH_CONNECTION_TYPE);
5124 }
5125 
5126 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
5127 					struct bnx2x_queue_state_params *params)
5128 {
5129 	switch (params->cmd) {
5130 	case BNX2X_Q_CMD_INIT:
5131 		return bnx2x_q_init(bp, params);
5132 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
5133 		return bnx2x_q_send_setup_tx_only(bp, params);
5134 	case BNX2X_Q_CMD_DEACTIVATE:
5135 		return bnx2x_q_send_deactivate(bp, params);
5136 	case BNX2X_Q_CMD_ACTIVATE:
5137 		return bnx2x_q_send_activate(bp, params);
5138 	case BNX2X_Q_CMD_UPDATE:
5139 		return bnx2x_q_send_update(bp, params);
5140 	case BNX2X_Q_CMD_UPDATE_TPA:
5141 		return bnx2x_q_send_update_tpa(bp, params);
5142 	case BNX2X_Q_CMD_HALT:
5143 		return bnx2x_q_send_halt(bp, params);
5144 	case BNX2X_Q_CMD_CFC_DEL:
5145 		return bnx2x_q_send_cfc_del(bp, params);
5146 	case BNX2X_Q_CMD_TERMINATE:
5147 		return bnx2x_q_send_terminate(bp, params);
5148 	case BNX2X_Q_CMD_EMPTY:
5149 		return bnx2x_q_send_empty(bp, params);
5150 	default:
5151 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5152 		return -EINVAL;
5153 	}
5154 }
5155 
5156 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
5157 				    struct bnx2x_queue_state_params *params)
5158 {
5159 	switch (params->cmd) {
5160 	case BNX2X_Q_CMD_SETUP:
5161 		return bnx2x_q_send_setup_e1x(bp, params);
5162 	case BNX2X_Q_CMD_INIT:
5163 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
5164 	case BNX2X_Q_CMD_DEACTIVATE:
5165 	case BNX2X_Q_CMD_ACTIVATE:
5166 	case BNX2X_Q_CMD_UPDATE:
5167 	case BNX2X_Q_CMD_UPDATE_TPA:
5168 	case BNX2X_Q_CMD_HALT:
5169 	case BNX2X_Q_CMD_CFC_DEL:
5170 	case BNX2X_Q_CMD_TERMINATE:
5171 	case BNX2X_Q_CMD_EMPTY:
5172 		return bnx2x_queue_send_cmd_cmn(bp, params);
5173 	default:
5174 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5175 		return -EINVAL;
5176 	}
5177 }
5178 
5179 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
5180 				   struct bnx2x_queue_state_params *params)
5181 {
5182 	switch (params->cmd) {
5183 	case BNX2X_Q_CMD_SETUP:
5184 		return bnx2x_q_send_setup_e2(bp, params);
5185 	case BNX2X_Q_CMD_INIT:
5186 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
5187 	case BNX2X_Q_CMD_DEACTIVATE:
5188 	case BNX2X_Q_CMD_ACTIVATE:
5189 	case BNX2X_Q_CMD_UPDATE:
5190 	case BNX2X_Q_CMD_UPDATE_TPA:
5191 	case BNX2X_Q_CMD_HALT:
5192 	case BNX2X_Q_CMD_CFC_DEL:
5193 	case BNX2X_Q_CMD_TERMINATE:
5194 	case BNX2X_Q_CMD_EMPTY:
5195 		return bnx2x_queue_send_cmd_cmn(bp, params);
5196 	default:
5197 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5198 		return -EINVAL;
5199 	}
5200 }
5201 
5202 /**
5203  * bnx2x_queue_chk_transition - check state machine of a regular Queue
5204  *
5205  * @bp:		device handle
5206  * @o:
5207  * @params:
5208  *
5209  * (not Forwarding)
5210  * It both checks if the requested command is legal in a current
5211  * state and, if it's legal, sets a `next_state' in the object
5212  * that will be used in the completion flow to set the `state'
5213  * of the object.
5214  *
5215  * returns 0 if a requested command is a legal transition,
5216  *         -EINVAL otherwise.
5217  */
5218 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5219 				      struct bnx2x_queue_sp_obj *o,
5220 				      struct bnx2x_queue_state_params *params)
5221 {
5222 	enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5223 	enum bnx2x_queue_cmd cmd = params->cmd;
5224 	struct bnx2x_queue_update_params *update_params =
5225 		 &params->params.update;
5226 	u8 next_tx_only = o->num_tx_only;
5227 
5228 	/* Forget all pending for completion commands if a driver only state
5229 	 * transition has been requested.
5230 	 */
5231 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5232 		o->pending = 0;
5233 		o->next_state = BNX2X_Q_STATE_MAX;
5234 	}
5235 
5236 	/* Don't allow a next state transition if we are in the middle of
5237 	 * the previous one.
5238 	 */
5239 	if (o->pending) {
5240 		BNX2X_ERR("Blocking transition since pending was %lx\n",
5241 			  o->pending);
5242 		return -EBUSY;
5243 	}
5244 
5245 	switch (state) {
5246 	case BNX2X_Q_STATE_RESET:
5247 		if (cmd == BNX2X_Q_CMD_INIT)
5248 			next_state = BNX2X_Q_STATE_INITIALIZED;
5249 
5250 		break;
5251 	case BNX2X_Q_STATE_INITIALIZED:
5252 		if (cmd == BNX2X_Q_CMD_SETUP) {
5253 			if (test_bit(BNX2X_Q_FLG_ACTIVE,
5254 				     &params->params.setup.flags))
5255 				next_state = BNX2X_Q_STATE_ACTIVE;
5256 			else
5257 				next_state = BNX2X_Q_STATE_INACTIVE;
5258 		}
5259 
5260 		break;
5261 	case BNX2X_Q_STATE_ACTIVE:
5262 		if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5263 			next_state = BNX2X_Q_STATE_INACTIVE;
5264 
5265 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5266 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5267 			next_state = BNX2X_Q_STATE_ACTIVE;
5268 
5269 		else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5270 			next_state = BNX2X_Q_STATE_MULTI_COS;
5271 			next_tx_only = 1;
5272 		}
5273 
5274 		else if (cmd == BNX2X_Q_CMD_HALT)
5275 			next_state = BNX2X_Q_STATE_STOPPED;
5276 
5277 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5278 			/* If "active" state change is requested, update the
5279 			 *  state accordingly.
5280 			 */
5281 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5282 				     &update_params->update_flags) &&
5283 			    !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5284 				      &update_params->update_flags))
5285 				next_state = BNX2X_Q_STATE_INACTIVE;
5286 			else
5287 				next_state = BNX2X_Q_STATE_ACTIVE;
5288 		}
5289 
5290 		break;
5291 	case BNX2X_Q_STATE_MULTI_COS:
5292 		if (cmd == BNX2X_Q_CMD_TERMINATE)
5293 			next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5294 
5295 		else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5296 			next_state = BNX2X_Q_STATE_MULTI_COS;
5297 			next_tx_only = o->num_tx_only + 1;
5298 		}
5299 
5300 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5301 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5302 			next_state = BNX2X_Q_STATE_MULTI_COS;
5303 
5304 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5305 			/* If "active" state change is requested, update the
5306 			 *  state accordingly.
5307 			 */
5308 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5309 				     &update_params->update_flags) &&
5310 			    !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5311 				      &update_params->update_flags))
5312 				next_state = BNX2X_Q_STATE_INACTIVE;
5313 			else
5314 				next_state = BNX2X_Q_STATE_MULTI_COS;
5315 		}
5316 
5317 		break;
5318 	case BNX2X_Q_STATE_MCOS_TERMINATED:
5319 		if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5320 			next_tx_only = o->num_tx_only - 1;
5321 			if (next_tx_only == 0)
5322 				next_state = BNX2X_Q_STATE_ACTIVE;
5323 			else
5324 				next_state = BNX2X_Q_STATE_MULTI_COS;
5325 		}
5326 
5327 		break;
5328 	case BNX2X_Q_STATE_INACTIVE:
5329 		if (cmd == BNX2X_Q_CMD_ACTIVATE)
5330 			next_state = BNX2X_Q_STATE_ACTIVE;
5331 
5332 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5333 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5334 			next_state = BNX2X_Q_STATE_INACTIVE;
5335 
5336 		else if (cmd == BNX2X_Q_CMD_HALT)
5337 			next_state = BNX2X_Q_STATE_STOPPED;
5338 
5339 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5340 			/* If "active" state change is requested, update the
5341 			 * state accordingly.
5342 			 */
5343 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5344 				     &update_params->update_flags) &&
5345 			    test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5346 				     &update_params->update_flags)){
5347 				if (o->num_tx_only == 0)
5348 					next_state = BNX2X_Q_STATE_ACTIVE;
5349 				else /* tx only queues exist for this queue */
5350 					next_state = BNX2X_Q_STATE_MULTI_COS;
5351 			} else
5352 				next_state = BNX2X_Q_STATE_INACTIVE;
5353 		}
5354 
5355 		break;
5356 	case BNX2X_Q_STATE_STOPPED:
5357 		if (cmd == BNX2X_Q_CMD_TERMINATE)
5358 			next_state = BNX2X_Q_STATE_TERMINATED;
5359 
5360 		break;
5361 	case BNX2X_Q_STATE_TERMINATED:
5362 		if (cmd == BNX2X_Q_CMD_CFC_DEL)
5363 			next_state = BNX2X_Q_STATE_RESET;
5364 
5365 		break;
5366 	default:
5367 		BNX2X_ERR("Illegal state: %d\n", state);
5368 	}
5369 
5370 	/* Transition is assured */
5371 	if (next_state != BNX2X_Q_STATE_MAX) {
5372 		DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5373 				 state, cmd, next_state);
5374 		o->next_state = next_state;
5375 		o->next_tx_only = next_tx_only;
5376 		return 0;
5377 	}
5378 
5379 	DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5380 
5381 	return -EINVAL;
5382 }
5383 
5384 void bnx2x_init_queue_obj(struct bnx2x *bp,
5385 			  struct bnx2x_queue_sp_obj *obj,
5386 			  u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5387 			  void *rdata,
5388 			  dma_addr_t rdata_mapping, unsigned long type)
5389 {
5390 	memset(obj, 0, sizeof(*obj));
5391 
5392 	/* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5393 	BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5394 
5395 	memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5396 	obj->max_cos = cid_cnt;
5397 	obj->cl_id = cl_id;
5398 	obj->func_id = func_id;
5399 	obj->rdata = rdata;
5400 	obj->rdata_mapping = rdata_mapping;
5401 	obj->type = type;
5402 	obj->next_state = BNX2X_Q_STATE_MAX;
5403 
5404 	if (CHIP_IS_E1x(bp))
5405 		obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5406 	else
5407 		obj->send_cmd = bnx2x_queue_send_cmd_e2;
5408 
5409 	obj->check_transition = bnx2x_queue_chk_transition;
5410 
5411 	obj->complete_cmd = bnx2x_queue_comp_cmd;
5412 	obj->wait_comp = bnx2x_queue_wait_comp;
5413 	obj->set_pending = bnx2x_queue_set_pending;
5414 }
5415 
5416 /* return a queue object's logical state*/
5417 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5418 			       struct bnx2x_queue_sp_obj *obj)
5419 {
5420 	switch (obj->state) {
5421 	case BNX2X_Q_STATE_ACTIVE:
5422 	case BNX2X_Q_STATE_MULTI_COS:
5423 		return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5424 	case BNX2X_Q_STATE_RESET:
5425 	case BNX2X_Q_STATE_INITIALIZED:
5426 	case BNX2X_Q_STATE_MCOS_TERMINATED:
5427 	case BNX2X_Q_STATE_INACTIVE:
5428 	case BNX2X_Q_STATE_STOPPED:
5429 	case BNX2X_Q_STATE_TERMINATED:
5430 	case BNX2X_Q_STATE_FLRED:
5431 		return BNX2X_Q_LOGICAL_STATE_STOPPED;
5432 	default:
5433 		return -EINVAL;
5434 	}
5435 }
5436 
5437 /********************** Function state object *********************************/
5438 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5439 					   struct bnx2x_func_sp_obj *o)
5440 {
5441 	/* in the middle of transaction - return INVALID state */
5442 	if (o->pending)
5443 		return BNX2X_F_STATE_MAX;
5444 
5445 	/* unsure the order of reading of o->pending and o->state
5446 	 * o->pending should be read first
5447 	 */
5448 	rmb();
5449 
5450 	return o->state;
5451 }
5452 
5453 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5454 				struct bnx2x_func_sp_obj *o,
5455 				enum bnx2x_func_cmd cmd)
5456 {
5457 	return bnx2x_state_wait(bp, cmd, &o->pending);
5458 }
5459 
5460 /**
5461  * bnx2x_func_state_change_comp - complete the state machine transition
5462  *
5463  * @bp:		device handle
5464  * @o:
5465  * @cmd:
5466  *
5467  * Called on state change transition. Completes the state
5468  * machine transition only - no HW interaction.
5469  */
5470 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5471 					       struct bnx2x_func_sp_obj *o,
5472 					       enum bnx2x_func_cmd cmd)
5473 {
5474 	unsigned long cur_pending = o->pending;
5475 
5476 	if (!test_and_clear_bit(cmd, &cur_pending)) {
5477 		BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5478 			  cmd, BP_FUNC(bp), o->state,
5479 			  cur_pending, o->next_state);
5480 		return -EINVAL;
5481 	}
5482 
5483 	DP(BNX2X_MSG_SP,
5484 	   "Completing command %d for func %d, setting state to %d\n",
5485 	   cmd, BP_FUNC(bp), o->next_state);
5486 
5487 	o->state = o->next_state;
5488 	o->next_state = BNX2X_F_STATE_MAX;
5489 
5490 	/* It's important that o->state and o->next_state are
5491 	 * updated before o->pending.
5492 	 */
5493 	wmb();
5494 
5495 	clear_bit(cmd, &o->pending);
5496 	smp_mb__after_clear_bit();
5497 
5498 	return 0;
5499 }
5500 
5501 /**
5502  * bnx2x_func_comp_cmd - complete the state change command
5503  *
5504  * @bp:		device handle
5505  * @o:
5506  * @cmd:
5507  *
5508  * Checks that the arrived completion is expected.
5509  */
5510 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5511 			       struct bnx2x_func_sp_obj *o,
5512 			       enum bnx2x_func_cmd cmd)
5513 {
5514 	/* Complete the state machine part first, check if it's a
5515 	 * legal completion.
5516 	 */
5517 	int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5518 	return rc;
5519 }
5520 
5521 /**
5522  * bnx2x_func_chk_transition - perform function state machine transition
5523  *
5524  * @bp:		device handle
5525  * @o:
5526  * @params:
5527  *
5528  * It both checks if the requested command is legal in a current
5529  * state and, if it's legal, sets a `next_state' in the object
5530  * that will be used in the completion flow to set the `state'
5531  * of the object.
5532  *
5533  * returns 0 if a requested command is a legal transition,
5534  *         -EINVAL otherwise.
5535  */
5536 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5537 				     struct bnx2x_func_sp_obj *o,
5538 				     struct bnx2x_func_state_params *params)
5539 {
5540 	enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5541 	enum bnx2x_func_cmd cmd = params->cmd;
5542 
5543 	/* Forget all pending for completion commands if a driver only state
5544 	 * transition has been requested.
5545 	 */
5546 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5547 		o->pending = 0;
5548 		o->next_state = BNX2X_F_STATE_MAX;
5549 	}
5550 
5551 	/* Don't allow a next state transition if we are in the middle of
5552 	 * the previous one.
5553 	 */
5554 	if (o->pending)
5555 		return -EBUSY;
5556 
5557 	switch (state) {
5558 	case BNX2X_F_STATE_RESET:
5559 		if (cmd == BNX2X_F_CMD_HW_INIT)
5560 			next_state = BNX2X_F_STATE_INITIALIZED;
5561 
5562 		break;
5563 	case BNX2X_F_STATE_INITIALIZED:
5564 		if (cmd == BNX2X_F_CMD_START)
5565 			next_state = BNX2X_F_STATE_STARTED;
5566 
5567 		else if (cmd == BNX2X_F_CMD_HW_RESET)
5568 			next_state = BNX2X_F_STATE_RESET;
5569 
5570 		break;
5571 	case BNX2X_F_STATE_STARTED:
5572 		if (cmd == BNX2X_F_CMD_STOP)
5573 			next_state = BNX2X_F_STATE_INITIALIZED;
5574 		/* afex ramrods can be sent only in started mode, and only
5575 		 * if not pending for function_stop ramrod completion
5576 		 * for these events - next state remained STARTED.
5577 		 */
5578 		else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5579 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5580 			next_state = BNX2X_F_STATE_STARTED;
5581 
5582 		else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5583 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5584 			next_state = BNX2X_F_STATE_STARTED;
5585 
5586 		/* Switch_update ramrod can be sent in either started or
5587 		 * tx_stopped state, and it doesn't change the state.
5588 		 */
5589 		else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5590 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5591 			next_state = BNX2X_F_STATE_STARTED;
5592 
5593 		else if (cmd == BNX2X_F_CMD_TX_STOP)
5594 			next_state = BNX2X_F_STATE_TX_STOPPED;
5595 
5596 		break;
5597 	case BNX2X_F_STATE_TX_STOPPED:
5598 		if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5599 		    (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5600 			next_state = BNX2X_F_STATE_TX_STOPPED;
5601 
5602 		else if (cmd == BNX2X_F_CMD_TX_START)
5603 			next_state = BNX2X_F_STATE_STARTED;
5604 
5605 		break;
5606 	default:
5607 		BNX2X_ERR("Unknown state: %d\n", state);
5608 	}
5609 
5610 	/* Transition is assured */
5611 	if (next_state != BNX2X_F_STATE_MAX) {
5612 		DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5613 				 state, cmd, next_state);
5614 		o->next_state = next_state;
5615 		return 0;
5616 	}
5617 
5618 	DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5619 			 state, cmd);
5620 
5621 	return -EINVAL;
5622 }
5623 
5624 /**
5625  * bnx2x_func_init_func - performs HW init at function stage
5626  *
5627  * @bp:		device handle
5628  * @drv:
5629  *
5630  * Init HW when the current phase is
5631  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5632  * HW blocks.
5633  */
5634 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5635 				       const struct bnx2x_func_sp_drv_ops *drv)
5636 {
5637 	return drv->init_hw_func(bp);
5638 }
5639 
5640 /**
5641  * bnx2x_func_init_port - performs HW init at port stage
5642  *
5643  * @bp:		device handle
5644  * @drv:
5645  *
5646  * Init HW when the current phase is
5647  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5648  * FUNCTION-only HW blocks.
5649  *
5650  */
5651 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5652 				       const struct bnx2x_func_sp_drv_ops *drv)
5653 {
5654 	int rc = drv->init_hw_port(bp);
5655 	if (rc)
5656 		return rc;
5657 
5658 	return bnx2x_func_init_func(bp, drv);
5659 }
5660 
5661 /**
5662  * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5663  *
5664  * @bp:		device handle
5665  * @drv:
5666  *
5667  * Init HW when the current phase is
5668  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5669  * PORT-only and FUNCTION-only HW blocks.
5670  */
5671 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5672 					const struct bnx2x_func_sp_drv_ops *drv)
5673 {
5674 	int rc = drv->init_hw_cmn_chip(bp);
5675 	if (rc)
5676 		return rc;
5677 
5678 	return bnx2x_func_init_port(bp, drv);
5679 }
5680 
5681 /**
5682  * bnx2x_func_init_cmn - performs HW init at common stage
5683  *
5684  * @bp:		device handle
5685  * @drv:
5686  *
5687  * Init HW when the current phase is
5688  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5689  * PORT-only and FUNCTION-only HW blocks.
5690  */
5691 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5692 				      const struct bnx2x_func_sp_drv_ops *drv)
5693 {
5694 	int rc = drv->init_hw_cmn(bp);
5695 	if (rc)
5696 		return rc;
5697 
5698 	return bnx2x_func_init_port(bp, drv);
5699 }
5700 
5701 static int bnx2x_func_hw_init(struct bnx2x *bp,
5702 			      struct bnx2x_func_state_params *params)
5703 {
5704 	u32 load_code = params->params.hw_init.load_phase;
5705 	struct bnx2x_func_sp_obj *o = params->f_obj;
5706 	const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5707 	int rc = 0;
5708 
5709 	DP(BNX2X_MSG_SP, "function %d  load_code %x\n",
5710 			 BP_ABS_FUNC(bp), load_code);
5711 
5712 	/* Prepare buffers for unzipping the FW */
5713 	rc = drv->gunzip_init(bp);
5714 	if (rc)
5715 		return rc;
5716 
5717 	/* Prepare FW */
5718 	rc = drv->init_fw(bp);
5719 	if (rc) {
5720 		BNX2X_ERR("Error loading firmware\n");
5721 		goto init_err;
5722 	}
5723 
5724 	/* Handle the beginning of COMMON_XXX pases separately... */
5725 	switch (load_code) {
5726 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5727 		rc = bnx2x_func_init_cmn_chip(bp, drv);
5728 		if (rc)
5729 			goto init_err;
5730 
5731 		break;
5732 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5733 		rc = bnx2x_func_init_cmn(bp, drv);
5734 		if (rc)
5735 			goto init_err;
5736 
5737 		break;
5738 	case FW_MSG_CODE_DRV_LOAD_PORT:
5739 		rc = bnx2x_func_init_port(bp, drv);
5740 		if (rc)
5741 			goto init_err;
5742 
5743 		break;
5744 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5745 		rc = bnx2x_func_init_func(bp, drv);
5746 		if (rc)
5747 			goto init_err;
5748 
5749 		break;
5750 	default:
5751 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5752 		rc = -EINVAL;
5753 	}
5754 
5755 init_err:
5756 	drv->gunzip_end(bp);
5757 
5758 	/* In case of success, complete the command immediately: no ramrods
5759 	 * have been sent.
5760 	 */
5761 	if (!rc)
5762 		o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
5763 
5764 	return rc;
5765 }
5766 
5767 /**
5768  * bnx2x_func_reset_func - reset HW at function stage
5769  *
5770  * @bp:		device handle
5771  * @drv:
5772  *
5773  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
5774  * FUNCTION-only HW blocks.
5775  */
5776 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
5777 					const struct bnx2x_func_sp_drv_ops *drv)
5778 {
5779 	drv->reset_hw_func(bp);
5780 }
5781 
5782 /**
5783  * bnx2x_func_reset_port - reset HW at port stage
5784  *
5785  * @bp:		device handle
5786  * @drv:
5787  *
5788  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
5789  * FUNCTION-only and PORT-only HW blocks.
5790  *
5791  *                 !!!IMPORTANT!!!
5792  *
5793  * It's important to call reset_port before reset_func() as the last thing
5794  * reset_func does is pf_disable() thus disabling PGLUE_B, which
5795  * makes impossible any DMAE transactions.
5796  */
5797 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
5798 					const struct bnx2x_func_sp_drv_ops *drv)
5799 {
5800 	drv->reset_hw_port(bp);
5801 	bnx2x_func_reset_func(bp, drv);
5802 }
5803 
5804 /**
5805  * bnx2x_func_reset_cmn - reset HW at common stage
5806  *
5807  * @bp:		device handle
5808  * @drv:
5809  *
5810  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
5811  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
5812  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
5813  */
5814 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
5815 					const struct bnx2x_func_sp_drv_ops *drv)
5816 {
5817 	bnx2x_func_reset_port(bp, drv);
5818 	drv->reset_hw_cmn(bp);
5819 }
5820 
5821 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
5822 				      struct bnx2x_func_state_params *params)
5823 {
5824 	u32 reset_phase = params->params.hw_reset.reset_phase;
5825 	struct bnx2x_func_sp_obj *o = params->f_obj;
5826 	const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5827 
5828 	DP(BNX2X_MSG_SP, "function %d  reset_phase %x\n", BP_ABS_FUNC(bp),
5829 			 reset_phase);
5830 
5831 	switch (reset_phase) {
5832 	case FW_MSG_CODE_DRV_UNLOAD_COMMON:
5833 		bnx2x_func_reset_cmn(bp, drv);
5834 		break;
5835 	case FW_MSG_CODE_DRV_UNLOAD_PORT:
5836 		bnx2x_func_reset_port(bp, drv);
5837 		break;
5838 	case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
5839 		bnx2x_func_reset_func(bp, drv);
5840 		break;
5841 	default:
5842 		BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
5843 			   reset_phase);
5844 		break;
5845 	}
5846 
5847 	/* Complete the command immediately: no ramrods have been sent. */
5848 	o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
5849 
5850 	return 0;
5851 }
5852 
5853 static inline int bnx2x_func_send_start(struct bnx2x *bp,
5854 					struct bnx2x_func_state_params *params)
5855 {
5856 	struct bnx2x_func_sp_obj *o = params->f_obj;
5857 	struct function_start_data *rdata =
5858 		(struct function_start_data *)o->rdata;
5859 	dma_addr_t data_mapping = o->rdata_mapping;
5860 	struct bnx2x_func_start_params *start_params = &params->params.start;
5861 
5862 	memset(rdata, 0, sizeof(*rdata));
5863 
5864 	/* Fill the ramrod data with provided parameters */
5865 	rdata->function_mode	= (u8)start_params->mf_mode;
5866 	rdata->sd_vlan_tag	= cpu_to_le16(start_params->sd_vlan_tag);
5867 	rdata->path_id		= BP_PATH(bp);
5868 	rdata->network_cos_mode	= start_params->network_cos_mode;
5869 	rdata->gre_tunnel_mode	= start_params->gre_tunnel_mode;
5870 	rdata->gre_tunnel_rss	= start_params->gre_tunnel_rss;
5871 
5872 	/* No need for an explicit memory barrier here as long we would
5873 	 * need to ensure the ordering of writing to the SPQ element
5874 	 * and updating of the SPQ producer which involves a memory
5875 	 * read and we will have to put a full memory barrier there
5876 	 * (inside bnx2x_sp_post()).
5877 	 */
5878 
5879 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
5880 			     U64_HI(data_mapping),
5881 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5882 }
5883 
5884 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
5885 					struct bnx2x_func_state_params *params)
5886 {
5887 	struct bnx2x_func_sp_obj *o = params->f_obj;
5888 	struct function_update_data *rdata =
5889 		(struct function_update_data *)o->rdata;
5890 	dma_addr_t data_mapping = o->rdata_mapping;
5891 	struct bnx2x_func_switch_update_params *switch_update_params =
5892 		&params->params.switch_update;
5893 
5894 	memset(rdata, 0, sizeof(*rdata));
5895 
5896 	/* Fill the ramrod data with provided parameters */
5897 	rdata->tx_switch_suspend_change_flg = 1;
5898 	rdata->tx_switch_suspend = switch_update_params->suspend;
5899 	rdata->echo = SWITCH_UPDATE;
5900 
5901 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
5902 			     U64_HI(data_mapping),
5903 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5904 }
5905 
5906 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
5907 					 struct bnx2x_func_state_params *params)
5908 {
5909 	struct bnx2x_func_sp_obj *o = params->f_obj;
5910 	struct function_update_data *rdata =
5911 		(struct function_update_data *)o->afex_rdata;
5912 	dma_addr_t data_mapping = o->afex_rdata_mapping;
5913 	struct bnx2x_func_afex_update_params *afex_update_params =
5914 		&params->params.afex_update;
5915 
5916 	memset(rdata, 0, sizeof(*rdata));
5917 
5918 	/* Fill the ramrod data with provided parameters */
5919 	rdata->vif_id_change_flg = 1;
5920 	rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
5921 	rdata->afex_default_vlan_change_flg = 1;
5922 	rdata->afex_default_vlan =
5923 		cpu_to_le16(afex_update_params->afex_default_vlan);
5924 	rdata->allowed_priorities_change_flg = 1;
5925 	rdata->allowed_priorities = afex_update_params->allowed_priorities;
5926 	rdata->echo = AFEX_UPDATE;
5927 
5928 	/*  No need for an explicit memory barrier here as long we would
5929 	 *  need to ensure the ordering of writing to the SPQ element
5930 	 *  and updating of the SPQ producer which involves a memory
5931 	 *  read and we will have to put a full memory barrier there
5932 	 *  (inside bnx2x_sp_post()).
5933 	 */
5934 	DP(BNX2X_MSG_SP,
5935 	   "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
5936 	   rdata->vif_id,
5937 	   rdata->afex_default_vlan, rdata->allowed_priorities);
5938 
5939 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
5940 			     U64_HI(data_mapping),
5941 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5942 }
5943 
5944 static
5945 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
5946 					 struct bnx2x_func_state_params *params)
5947 {
5948 	struct bnx2x_func_sp_obj *o = params->f_obj;
5949 	struct afex_vif_list_ramrod_data *rdata =
5950 		(struct afex_vif_list_ramrod_data *)o->afex_rdata;
5951 	struct bnx2x_func_afex_viflists_params *afex_vif_params =
5952 		&params->params.afex_viflists;
5953 	u64 *p_rdata = (u64 *)rdata;
5954 
5955 	memset(rdata, 0, sizeof(*rdata));
5956 
5957 	/* Fill the ramrod data with provided parameters */
5958 	rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
5959 	rdata->func_bit_map          = afex_vif_params->func_bit_map;
5960 	rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
5961 	rdata->func_to_clear         = afex_vif_params->func_to_clear;
5962 
5963 	/* send in echo type of sub command */
5964 	rdata->echo = afex_vif_params->afex_vif_list_command;
5965 
5966 	/*  No need for an explicit memory barrier here as long we would
5967 	 *  need to ensure the ordering of writing to the SPQ element
5968 	 *  and updating of the SPQ producer which involves a memory
5969 	 *  read and we will have to put a full memory barrier there
5970 	 *  (inside bnx2x_sp_post()).
5971 	 */
5972 
5973 	DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
5974 	   rdata->afex_vif_list_command, rdata->vif_list_index,
5975 	   rdata->func_bit_map, rdata->func_to_clear);
5976 
5977 	/* this ramrod sends data directly and not through DMA mapping */
5978 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
5979 			     U64_HI(*p_rdata), U64_LO(*p_rdata),
5980 			     NONE_CONNECTION_TYPE);
5981 }
5982 
5983 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
5984 				       struct bnx2x_func_state_params *params)
5985 {
5986 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
5987 			     NONE_CONNECTION_TYPE);
5988 }
5989 
5990 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
5991 				       struct bnx2x_func_state_params *params)
5992 {
5993 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
5994 			     NONE_CONNECTION_TYPE);
5995 }
5996 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
5997 				       struct bnx2x_func_state_params *params)
5998 {
5999 	struct bnx2x_func_sp_obj *o = params->f_obj;
6000 	struct flow_control_configuration *rdata =
6001 		(struct flow_control_configuration *)o->rdata;
6002 	dma_addr_t data_mapping = o->rdata_mapping;
6003 	struct bnx2x_func_tx_start_params *tx_start_params =
6004 		&params->params.tx_start;
6005 	int i;
6006 
6007 	memset(rdata, 0, sizeof(*rdata));
6008 
6009 	rdata->dcb_enabled = tx_start_params->dcb_enabled;
6010 	rdata->dcb_version = tx_start_params->dcb_version;
6011 	rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6012 
6013 	for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6014 		rdata->traffic_type_to_priority_cos[i] =
6015 			tx_start_params->traffic_type_to_priority_cos[i];
6016 
6017 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6018 			     U64_HI(data_mapping),
6019 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6020 }
6021 
6022 static int bnx2x_func_send_cmd(struct bnx2x *bp,
6023 			       struct bnx2x_func_state_params *params)
6024 {
6025 	switch (params->cmd) {
6026 	case BNX2X_F_CMD_HW_INIT:
6027 		return bnx2x_func_hw_init(bp, params);
6028 	case BNX2X_F_CMD_START:
6029 		return bnx2x_func_send_start(bp, params);
6030 	case BNX2X_F_CMD_STOP:
6031 		return bnx2x_func_send_stop(bp, params);
6032 	case BNX2X_F_CMD_HW_RESET:
6033 		return bnx2x_func_hw_reset(bp, params);
6034 	case BNX2X_F_CMD_AFEX_UPDATE:
6035 		return bnx2x_func_send_afex_update(bp, params);
6036 	case BNX2X_F_CMD_AFEX_VIFLISTS:
6037 		return bnx2x_func_send_afex_viflists(bp, params);
6038 	case BNX2X_F_CMD_TX_STOP:
6039 		return bnx2x_func_send_tx_stop(bp, params);
6040 	case BNX2X_F_CMD_TX_START:
6041 		return bnx2x_func_send_tx_start(bp, params);
6042 	case BNX2X_F_CMD_SWITCH_UPDATE:
6043 		return bnx2x_func_send_switch_update(bp, params);
6044 	default:
6045 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
6046 		return -EINVAL;
6047 	}
6048 }
6049 
6050 void bnx2x_init_func_obj(struct bnx2x *bp,
6051 			 struct bnx2x_func_sp_obj *obj,
6052 			 void *rdata, dma_addr_t rdata_mapping,
6053 			 void *afex_rdata, dma_addr_t afex_rdata_mapping,
6054 			 struct bnx2x_func_sp_drv_ops *drv_iface)
6055 {
6056 	memset(obj, 0, sizeof(*obj));
6057 
6058 	mutex_init(&obj->one_pending_mutex);
6059 
6060 	obj->rdata = rdata;
6061 	obj->rdata_mapping = rdata_mapping;
6062 	obj->afex_rdata = afex_rdata;
6063 	obj->afex_rdata_mapping = afex_rdata_mapping;
6064 	obj->send_cmd = bnx2x_func_send_cmd;
6065 	obj->check_transition = bnx2x_func_chk_transition;
6066 	obj->complete_cmd = bnx2x_func_comp_cmd;
6067 	obj->wait_comp = bnx2x_func_wait_comp;
6068 
6069 	obj->drv = drv_iface;
6070 }
6071 
6072 /**
6073  * bnx2x_func_state_change - perform Function state change transition
6074  *
6075  * @bp:		device handle
6076  * @params:	parameters to perform the transaction
6077  *
6078  * returns 0 in case of successfully completed transition,
6079  *         negative error code in case of failure, positive
6080  *         (EBUSY) value if there is a completion to that is
6081  *         still pending (possible only if RAMROD_COMP_WAIT is
6082  *         not set in params->ramrod_flags for asynchronous
6083  *         commands).
6084  */
6085 int bnx2x_func_state_change(struct bnx2x *bp,
6086 			    struct bnx2x_func_state_params *params)
6087 {
6088 	struct bnx2x_func_sp_obj *o = params->f_obj;
6089 	int rc, cnt = 300;
6090 	enum bnx2x_func_cmd cmd = params->cmd;
6091 	unsigned long *pending = &o->pending;
6092 
6093 	mutex_lock(&o->one_pending_mutex);
6094 
6095 	/* Check that the requested transition is legal */
6096 	rc = o->check_transition(bp, o, params);
6097 	if ((rc == -EBUSY) &&
6098 	    (test_bit(RAMROD_RETRY, &params->ramrod_flags))) {
6099 		while ((rc == -EBUSY) && (--cnt > 0)) {
6100 			mutex_unlock(&o->one_pending_mutex);
6101 			msleep(10);
6102 			mutex_lock(&o->one_pending_mutex);
6103 			rc = o->check_transition(bp, o, params);
6104 		}
6105 		if (rc == -EBUSY) {
6106 			mutex_unlock(&o->one_pending_mutex);
6107 			BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6108 			return rc;
6109 		}
6110 	} else if (rc) {
6111 		mutex_unlock(&o->one_pending_mutex);
6112 		return rc;
6113 	}
6114 
6115 	/* Set "pending" bit */
6116 	set_bit(cmd, pending);
6117 
6118 	/* Don't send a command if only driver cleanup was requested */
6119 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6120 		bnx2x_func_state_change_comp(bp, o, cmd);
6121 		mutex_unlock(&o->one_pending_mutex);
6122 	} else {
6123 		/* Send a ramrod */
6124 		rc = o->send_cmd(bp, params);
6125 
6126 		mutex_unlock(&o->one_pending_mutex);
6127 
6128 		if (rc) {
6129 			o->next_state = BNX2X_F_STATE_MAX;
6130 			clear_bit(cmd, pending);
6131 			smp_mb__after_clear_bit();
6132 			return rc;
6133 		}
6134 
6135 		if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6136 			rc = o->wait_comp(bp, o, cmd);
6137 			if (rc)
6138 				return rc;
6139 
6140 			return 0;
6141 		}
6142 	}
6143 
6144 	return !!test_bit(cmd, pending);
6145 }
6146