1 /* bnx2x_sp.c: Qlogic Everest network driver. 2 * 3 * Copyright 2011-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * Unless you and Qlogic execute a separate written software license 8 * agreement governing use of this software, this software is licensed to you 9 * under the terms of the GNU General Public License version 2, available 10 * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL"). 11 * 12 * Notwithstanding the above, under no circumstances may you combine this 13 * software in any way with any other Qlogic software provided under a 14 * license other than the GPL, without Qlogic's express prior written 15 * consent. 16 * 17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 18 * Written by: Vladislav Zolotarov 19 * 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/module.h> 25 #include <linux/crc32.h> 26 #include <linux/netdevice.h> 27 #include <linux/etherdevice.h> 28 #include <linux/crc32c.h> 29 #include "bnx2x.h" 30 #include "bnx2x_cmn.h" 31 #include "bnx2x_sp.h" 32 33 #define BNX2X_MAX_EMUL_MULTI 16 34 35 /**** Exe Queue interfaces ****/ 36 37 /** 38 * bnx2x_exe_queue_init - init the Exe Queue object 39 * 40 * @o: pointer to the object 41 * @exe_len: length 42 * @owner: pointer to the owner 43 * @validate: validate function pointer 44 * @optimize: optimize function pointer 45 * @exec: execute function pointer 46 * @get: get function pointer 47 */ 48 static inline void bnx2x_exe_queue_init(struct bnx2x *bp, 49 struct bnx2x_exe_queue_obj *o, 50 int exe_len, 51 union bnx2x_qable_obj *owner, 52 exe_q_validate validate, 53 exe_q_remove remove, 54 exe_q_optimize optimize, 55 exe_q_execute exec, 56 exe_q_get get) 57 { 58 memset(o, 0, sizeof(*o)); 59 60 INIT_LIST_HEAD(&o->exe_queue); 61 INIT_LIST_HEAD(&o->pending_comp); 62 63 spin_lock_init(&o->lock); 64 65 o->exe_chunk_len = exe_len; 66 o->owner = owner; 67 68 /* Owner specific callbacks */ 69 o->validate = validate; 70 o->remove = remove; 71 o->optimize = optimize; 72 o->execute = exec; 73 o->get = get; 74 75 DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n", 76 exe_len); 77 } 78 79 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp, 80 struct bnx2x_exeq_elem *elem) 81 { 82 DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n"); 83 kfree(elem); 84 } 85 86 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o) 87 { 88 struct bnx2x_exeq_elem *elem; 89 int cnt = 0; 90 91 spin_lock_bh(&o->lock); 92 93 list_for_each_entry(elem, &o->exe_queue, link) 94 cnt++; 95 96 spin_unlock_bh(&o->lock); 97 98 return cnt; 99 } 100 101 /** 102 * bnx2x_exe_queue_add - add a new element to the execution queue 103 * 104 * @bp: driver handle 105 * @o: queue 106 * @cmd: new command to add 107 * @restore: true - do not optimize the command 108 * 109 * If the element is optimized or is illegal, frees it. 110 */ 111 static inline int bnx2x_exe_queue_add(struct bnx2x *bp, 112 struct bnx2x_exe_queue_obj *o, 113 struct bnx2x_exeq_elem *elem, 114 bool restore) 115 { 116 int rc; 117 118 spin_lock_bh(&o->lock); 119 120 if (!restore) { 121 /* Try to cancel this element queue */ 122 rc = o->optimize(bp, o->owner, elem); 123 if (rc) 124 goto free_and_exit; 125 126 /* Check if this request is ok */ 127 rc = o->validate(bp, o->owner, elem); 128 if (rc) { 129 DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc); 130 goto free_and_exit; 131 } 132 } 133 134 /* If so, add it to the execution queue */ 135 list_add_tail(&elem->link, &o->exe_queue); 136 137 spin_unlock_bh(&o->lock); 138 139 return 0; 140 141 free_and_exit: 142 bnx2x_exe_queue_free_elem(bp, elem); 143 144 spin_unlock_bh(&o->lock); 145 146 return rc; 147 } 148 149 static inline void __bnx2x_exe_queue_reset_pending( 150 struct bnx2x *bp, 151 struct bnx2x_exe_queue_obj *o) 152 { 153 struct bnx2x_exeq_elem *elem; 154 155 while (!list_empty(&o->pending_comp)) { 156 elem = list_first_entry(&o->pending_comp, 157 struct bnx2x_exeq_elem, link); 158 159 list_del(&elem->link); 160 bnx2x_exe_queue_free_elem(bp, elem); 161 } 162 } 163 164 /** 165 * bnx2x_exe_queue_step - execute one execution chunk atomically 166 * 167 * @bp: driver handle 168 * @o: queue 169 * @ramrod_flags: flags 170 * 171 * (Should be called while holding the exe_queue->lock). 172 */ 173 static inline int bnx2x_exe_queue_step(struct bnx2x *bp, 174 struct bnx2x_exe_queue_obj *o, 175 unsigned long *ramrod_flags) 176 { 177 struct bnx2x_exeq_elem *elem, spacer; 178 int cur_len = 0, rc; 179 180 memset(&spacer, 0, sizeof(spacer)); 181 182 /* Next step should not be performed until the current is finished, 183 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to 184 * properly clear object internals without sending any command to the FW 185 * which also implies there won't be any completion to clear the 186 * 'pending' list. 187 */ 188 if (!list_empty(&o->pending_comp)) { 189 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) { 190 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n"); 191 __bnx2x_exe_queue_reset_pending(bp, o); 192 } else { 193 return 1; 194 } 195 } 196 197 /* Run through the pending commands list and create a next 198 * execution chunk. 199 */ 200 while (!list_empty(&o->exe_queue)) { 201 elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem, 202 link); 203 WARN_ON(!elem->cmd_len); 204 205 if (cur_len + elem->cmd_len <= o->exe_chunk_len) { 206 cur_len += elem->cmd_len; 207 /* Prevent from both lists being empty when moving an 208 * element. This will allow the call of 209 * bnx2x_exe_queue_empty() without locking. 210 */ 211 list_add_tail(&spacer.link, &o->pending_comp); 212 mb(); 213 list_move_tail(&elem->link, &o->pending_comp); 214 list_del(&spacer.link); 215 } else 216 break; 217 } 218 219 /* Sanity check */ 220 if (!cur_len) 221 return 0; 222 223 rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags); 224 if (rc < 0) 225 /* In case of an error return the commands back to the queue 226 * and reset the pending_comp. 227 */ 228 list_splice_init(&o->pending_comp, &o->exe_queue); 229 else if (!rc) 230 /* If zero is returned, means there are no outstanding pending 231 * completions and we may dismiss the pending list. 232 */ 233 __bnx2x_exe_queue_reset_pending(bp, o); 234 235 return rc; 236 } 237 238 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o) 239 { 240 bool empty = list_empty(&o->exe_queue); 241 242 /* Don't reorder!!! */ 243 mb(); 244 245 return empty && list_empty(&o->pending_comp); 246 } 247 248 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem( 249 struct bnx2x *bp) 250 { 251 DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n"); 252 return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC); 253 } 254 255 /************************ raw_obj functions ***********************************/ 256 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o) 257 { 258 return !!test_bit(o->state, o->pstate); 259 } 260 261 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o) 262 { 263 smp_mb__before_atomic(); 264 clear_bit(o->state, o->pstate); 265 smp_mb__after_atomic(); 266 } 267 268 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o) 269 { 270 smp_mb__before_atomic(); 271 set_bit(o->state, o->pstate); 272 smp_mb__after_atomic(); 273 } 274 275 /** 276 * bnx2x_state_wait - wait until the given bit(state) is cleared 277 * 278 * @bp: device handle 279 * @state: state which is to be cleared 280 * @state_p: state buffer 281 * 282 */ 283 static inline int bnx2x_state_wait(struct bnx2x *bp, int state, 284 unsigned long *pstate) 285 { 286 /* can take a while if any port is running */ 287 int cnt = 5000; 288 289 if (CHIP_REV_IS_EMUL(bp)) 290 cnt *= 20; 291 292 DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state); 293 294 might_sleep(); 295 while (cnt--) { 296 if (!test_bit(state, pstate)) { 297 #ifdef BNX2X_STOP_ON_ERROR 298 DP(BNX2X_MSG_SP, "exit (cnt %d)\n", 5000 - cnt); 299 #endif 300 return 0; 301 } 302 303 usleep_range(1000, 2000); 304 305 if (bp->panic) 306 return -EIO; 307 } 308 309 /* timeout! */ 310 BNX2X_ERR("timeout waiting for state %d\n", state); 311 #ifdef BNX2X_STOP_ON_ERROR 312 bnx2x_panic(); 313 #endif 314 315 return -EBUSY; 316 } 317 318 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw) 319 { 320 return bnx2x_state_wait(bp, raw->state, raw->pstate); 321 } 322 323 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/ 324 /* credit handling callbacks */ 325 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset) 326 { 327 struct bnx2x_credit_pool_obj *mp = o->macs_pool; 328 329 WARN_ON(!mp); 330 331 return mp->get_entry(mp, offset); 332 } 333 334 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o) 335 { 336 struct bnx2x_credit_pool_obj *mp = o->macs_pool; 337 338 WARN_ON(!mp); 339 340 return mp->get(mp, 1); 341 } 342 343 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset) 344 { 345 struct bnx2x_credit_pool_obj *vp = o->vlans_pool; 346 347 WARN_ON(!vp); 348 349 return vp->get_entry(vp, offset); 350 } 351 352 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o) 353 { 354 struct bnx2x_credit_pool_obj *vp = o->vlans_pool; 355 356 WARN_ON(!vp); 357 358 return vp->get(vp, 1); 359 } 360 361 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o) 362 { 363 struct bnx2x_credit_pool_obj *mp = o->macs_pool; 364 struct bnx2x_credit_pool_obj *vp = o->vlans_pool; 365 366 if (!mp->get(mp, 1)) 367 return false; 368 369 if (!vp->get(vp, 1)) { 370 mp->put(mp, 1); 371 return false; 372 } 373 374 return true; 375 } 376 377 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset) 378 { 379 struct bnx2x_credit_pool_obj *mp = o->macs_pool; 380 381 return mp->put_entry(mp, offset); 382 } 383 384 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o) 385 { 386 struct bnx2x_credit_pool_obj *mp = o->macs_pool; 387 388 return mp->put(mp, 1); 389 } 390 391 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset) 392 { 393 struct bnx2x_credit_pool_obj *vp = o->vlans_pool; 394 395 return vp->put_entry(vp, offset); 396 } 397 398 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o) 399 { 400 struct bnx2x_credit_pool_obj *vp = o->vlans_pool; 401 402 return vp->put(vp, 1); 403 } 404 405 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o) 406 { 407 struct bnx2x_credit_pool_obj *mp = o->macs_pool; 408 struct bnx2x_credit_pool_obj *vp = o->vlans_pool; 409 410 if (!mp->put(mp, 1)) 411 return false; 412 413 if (!vp->put(vp, 1)) { 414 mp->get(mp, 1); 415 return false; 416 } 417 418 return true; 419 } 420 421 /** 422 * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock 423 * 424 * @bp: device handle 425 * @o: vlan_mac object 426 * 427 * @details: Non-blocking implementation; should be called under execution 428 * queue lock. 429 */ 430 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp, 431 struct bnx2x_vlan_mac_obj *o) 432 { 433 if (o->head_reader) { 434 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n"); 435 return -EBUSY; 436 } 437 438 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n"); 439 return 0; 440 } 441 442 /** 443 * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step 444 * 445 * @bp: device handle 446 * @o: vlan_mac object 447 * 448 * @details Should be called under execution queue lock; notice it might release 449 * and reclaim it during its run. 450 */ 451 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp, 452 struct bnx2x_vlan_mac_obj *o) 453 { 454 int rc; 455 unsigned long ramrod_flags = o->saved_ramrod_flags; 456 457 DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n", 458 ramrod_flags); 459 o->head_exe_request = false; 460 o->saved_ramrod_flags = 0; 461 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags); 462 if ((rc != 0) && (rc != 1)) { 463 BNX2X_ERR("execution of pending commands failed with rc %d\n", 464 rc); 465 #ifdef BNX2X_STOP_ON_ERROR 466 bnx2x_panic(); 467 #endif 468 } 469 } 470 471 /** 472 * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run 473 * 474 * @bp: device handle 475 * @o: vlan_mac object 476 * @ramrod_flags: ramrod flags of missed execution 477 * 478 * @details Should be called under execution queue lock. 479 */ 480 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp, 481 struct bnx2x_vlan_mac_obj *o, 482 unsigned long ramrod_flags) 483 { 484 o->head_exe_request = true; 485 o->saved_ramrod_flags = ramrod_flags; 486 DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n", 487 ramrod_flags); 488 } 489 490 /** 491 * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock 492 * 493 * @bp: device handle 494 * @o: vlan_mac object 495 * 496 * @details Should be called under execution queue lock. Notice if a pending 497 * execution exists, it would perform it - possibly releasing and 498 * reclaiming the execution queue lock. 499 */ 500 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp, 501 struct bnx2x_vlan_mac_obj *o) 502 { 503 /* It's possible a new pending execution was added since this writer 504 * executed. If so, execute again. [Ad infinitum] 505 */ 506 while (o->head_exe_request) { 507 DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n"); 508 __bnx2x_vlan_mac_h_exec_pending(bp, o); 509 } 510 } 511 512 513 /** 514 * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock 515 * 516 * @bp: device handle 517 * @o: vlan_mac object 518 * 519 * @details Should be called under the execution queue lock. May sleep. May 520 * release and reclaim execution queue lock during its run. 521 */ 522 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp, 523 struct bnx2x_vlan_mac_obj *o) 524 { 525 /* If we got here, we're holding lock --> no WRITER exists */ 526 o->head_reader++; 527 DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n", 528 o->head_reader); 529 530 return 0; 531 } 532 533 /** 534 * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock 535 * 536 * @bp: device handle 537 * @o: vlan_mac object 538 * 539 * @details May sleep. Claims and releases execution queue lock during its run. 540 */ 541 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp, 542 struct bnx2x_vlan_mac_obj *o) 543 { 544 int rc; 545 546 spin_lock_bh(&o->exe_queue.lock); 547 rc = __bnx2x_vlan_mac_h_read_lock(bp, o); 548 spin_unlock_bh(&o->exe_queue.lock); 549 550 return rc; 551 } 552 553 /** 554 * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock 555 * 556 * @bp: device handle 557 * @o: vlan_mac object 558 * 559 * @details Should be called under execution queue lock. Notice if a pending 560 * execution exists, it would be performed if this was the last 561 * reader. possibly releasing and reclaiming the execution queue lock. 562 */ 563 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp, 564 struct bnx2x_vlan_mac_obj *o) 565 { 566 if (!o->head_reader) { 567 BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n"); 568 #ifdef BNX2X_STOP_ON_ERROR 569 bnx2x_panic(); 570 #endif 571 } else { 572 o->head_reader--; 573 DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n", 574 o->head_reader); 575 } 576 577 /* It's possible a new pending execution was added, and that this reader 578 * was last - if so we need to execute the command. 579 */ 580 if (!o->head_reader && o->head_exe_request) { 581 DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n"); 582 583 /* Writer release will do the trick */ 584 __bnx2x_vlan_mac_h_write_unlock(bp, o); 585 } 586 } 587 588 /** 589 * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock 590 * 591 * @bp: device handle 592 * @o: vlan_mac object 593 * 594 * @details Notice if a pending execution exists, it would be performed if this 595 * was the last reader. Claims and releases the execution queue lock 596 * during its run. 597 */ 598 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp, 599 struct bnx2x_vlan_mac_obj *o) 600 { 601 spin_lock_bh(&o->exe_queue.lock); 602 __bnx2x_vlan_mac_h_read_unlock(bp, o); 603 spin_unlock_bh(&o->exe_queue.lock); 604 } 605 606 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o, 607 int n, u8 *base, u8 stride, u8 size) 608 { 609 struct bnx2x_vlan_mac_registry_elem *pos; 610 u8 *next = base; 611 int counter = 0; 612 int read_lock; 613 614 DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n"); 615 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o); 616 if (read_lock != 0) 617 BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n"); 618 619 /* traverse list */ 620 list_for_each_entry(pos, &o->head, link) { 621 if (counter < n) { 622 memcpy(next, &pos->u, size); 623 counter++; 624 DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n", 625 counter, next); 626 next += stride + size; 627 } 628 } 629 630 if (read_lock == 0) { 631 DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n"); 632 bnx2x_vlan_mac_h_read_unlock(bp, o); 633 } 634 635 return counter * ETH_ALEN; 636 } 637 638 /* check_add() callbacks */ 639 static int bnx2x_check_mac_add(struct bnx2x *bp, 640 struct bnx2x_vlan_mac_obj *o, 641 union bnx2x_classification_ramrod_data *data) 642 { 643 struct bnx2x_vlan_mac_registry_elem *pos; 644 645 DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac); 646 647 if (!is_valid_ether_addr(data->mac.mac)) 648 return -EINVAL; 649 650 /* Check if a requested MAC already exists */ 651 list_for_each_entry(pos, &o->head, link) 652 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) && 653 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac)) 654 return -EEXIST; 655 656 return 0; 657 } 658 659 static int bnx2x_check_vlan_add(struct bnx2x *bp, 660 struct bnx2x_vlan_mac_obj *o, 661 union bnx2x_classification_ramrod_data *data) 662 { 663 struct bnx2x_vlan_mac_registry_elem *pos; 664 665 DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan); 666 667 list_for_each_entry(pos, &o->head, link) 668 if (data->vlan.vlan == pos->u.vlan.vlan) 669 return -EEXIST; 670 671 return 0; 672 } 673 674 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp, 675 struct bnx2x_vlan_mac_obj *o, 676 union bnx2x_classification_ramrod_data *data) 677 { 678 struct bnx2x_vlan_mac_registry_elem *pos; 679 680 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n", 681 data->vlan_mac.mac, data->vlan_mac.vlan); 682 683 list_for_each_entry(pos, &o->head, link) 684 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) && 685 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac, 686 ETH_ALEN)) && 687 (data->vlan_mac.is_inner_mac == 688 pos->u.vlan_mac.is_inner_mac)) 689 return -EEXIST; 690 691 return 0; 692 } 693 694 /* check_del() callbacks */ 695 static struct bnx2x_vlan_mac_registry_elem * 696 bnx2x_check_mac_del(struct bnx2x *bp, 697 struct bnx2x_vlan_mac_obj *o, 698 union bnx2x_classification_ramrod_data *data) 699 { 700 struct bnx2x_vlan_mac_registry_elem *pos; 701 702 DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac); 703 704 list_for_each_entry(pos, &o->head, link) 705 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) && 706 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac)) 707 return pos; 708 709 return NULL; 710 } 711 712 static struct bnx2x_vlan_mac_registry_elem * 713 bnx2x_check_vlan_del(struct bnx2x *bp, 714 struct bnx2x_vlan_mac_obj *o, 715 union bnx2x_classification_ramrod_data *data) 716 { 717 struct bnx2x_vlan_mac_registry_elem *pos; 718 719 DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan); 720 721 list_for_each_entry(pos, &o->head, link) 722 if (data->vlan.vlan == pos->u.vlan.vlan) 723 return pos; 724 725 return NULL; 726 } 727 728 static struct bnx2x_vlan_mac_registry_elem * 729 bnx2x_check_vlan_mac_del(struct bnx2x *bp, 730 struct bnx2x_vlan_mac_obj *o, 731 union bnx2x_classification_ramrod_data *data) 732 { 733 struct bnx2x_vlan_mac_registry_elem *pos; 734 735 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n", 736 data->vlan_mac.mac, data->vlan_mac.vlan); 737 738 list_for_each_entry(pos, &o->head, link) 739 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) && 740 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac, 741 ETH_ALEN)) && 742 (data->vlan_mac.is_inner_mac == 743 pos->u.vlan_mac.is_inner_mac)) 744 return pos; 745 746 return NULL; 747 } 748 749 /* check_move() callback */ 750 static bool bnx2x_check_move(struct bnx2x *bp, 751 struct bnx2x_vlan_mac_obj *src_o, 752 struct bnx2x_vlan_mac_obj *dst_o, 753 union bnx2x_classification_ramrod_data *data) 754 { 755 struct bnx2x_vlan_mac_registry_elem *pos; 756 int rc; 757 758 /* Check if we can delete the requested configuration from the first 759 * object. 760 */ 761 pos = src_o->check_del(bp, src_o, data); 762 763 /* check if configuration can be added */ 764 rc = dst_o->check_add(bp, dst_o, data); 765 766 /* If this classification can not be added (is already set) 767 * or can't be deleted - return an error. 768 */ 769 if (rc || !pos) 770 return false; 771 772 return true; 773 } 774 775 static bool bnx2x_check_move_always_err( 776 struct bnx2x *bp, 777 struct bnx2x_vlan_mac_obj *src_o, 778 struct bnx2x_vlan_mac_obj *dst_o, 779 union bnx2x_classification_ramrod_data *data) 780 { 781 return false; 782 } 783 784 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o) 785 { 786 struct bnx2x_raw_obj *raw = &o->raw; 787 u8 rx_tx_flag = 0; 788 789 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) || 790 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX)) 791 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD; 792 793 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) || 794 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX)) 795 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD; 796 797 return rx_tx_flag; 798 } 799 800 static void bnx2x_set_mac_in_nig(struct bnx2x *bp, 801 bool add, unsigned char *dev_addr, int index) 802 { 803 u32 wb_data[2]; 804 u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM : 805 NIG_REG_LLH0_FUNC_MEM; 806 807 if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp)) 808 return; 809 810 if (index > BNX2X_LLH_CAM_MAX_PF_LINE) 811 return; 812 813 DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n", 814 (add ? "ADD" : "DELETE"), index); 815 816 if (add) { 817 /* LLH_FUNC_MEM is a u64 WB register */ 818 reg_offset += 8*index; 819 820 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) | 821 (dev_addr[4] << 8) | dev_addr[5]); 822 wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]); 823 824 REG_WR_DMAE(bp, reg_offset, wb_data, 2); 825 } 826 827 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE : 828 NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add); 829 } 830 831 /** 832 * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod 833 * 834 * @bp: device handle 835 * @o: queue for which we want to configure this rule 836 * @add: if true the command is an ADD command, DEL otherwise 837 * @opcode: CLASSIFY_RULE_OPCODE_XXX 838 * @hdr: pointer to a header to setup 839 * 840 */ 841 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp, 842 struct bnx2x_vlan_mac_obj *o, bool add, int opcode, 843 struct eth_classify_cmd_header *hdr) 844 { 845 struct bnx2x_raw_obj *raw = &o->raw; 846 847 hdr->client_id = raw->cl_id; 848 hdr->func_id = raw->func_id; 849 850 /* Rx or/and Tx (internal switching) configuration ? */ 851 hdr->cmd_general_data |= 852 bnx2x_vlan_mac_get_rx_tx_flag(o); 853 854 if (add) 855 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD; 856 857 hdr->cmd_general_data |= 858 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT); 859 } 860 861 /** 862 * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header 863 * 864 * @cid: connection id 865 * @type: BNX2X_FILTER_XXX_PENDING 866 * @hdr: pointer to header to setup 867 * @rule_cnt: 868 * 869 * currently we always configure one rule and echo field to contain a CID and an 870 * opcode type. 871 */ 872 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type, 873 struct eth_classify_header *hdr, int rule_cnt) 874 { 875 hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) | 876 (type << BNX2X_SWCID_SHIFT)); 877 hdr->rule_cnt = (u8)rule_cnt; 878 } 879 880 /* hw_config() callbacks */ 881 static void bnx2x_set_one_mac_e2(struct bnx2x *bp, 882 struct bnx2x_vlan_mac_obj *o, 883 struct bnx2x_exeq_elem *elem, int rule_idx, 884 int cam_offset) 885 { 886 struct bnx2x_raw_obj *raw = &o->raw; 887 struct eth_classify_rules_ramrod_data *data = 888 (struct eth_classify_rules_ramrod_data *)(raw->rdata); 889 int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd; 890 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx]; 891 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false; 892 unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags; 893 u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac; 894 895 /* Set LLH CAM entry: currently only iSCSI and ETH macs are 896 * relevant. In addition, current implementation is tuned for a 897 * single ETH MAC. 898 * 899 * When multiple unicast ETH MACs PF configuration in switch 900 * independent mode is required (NetQ, multiple netdev MACs, 901 * etc.), consider better utilisation of 8 per function MAC 902 * entries in the LLH register. There is also 903 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the 904 * total number of CAM entries to 16. 905 * 906 * Currently we won't configure NIG for MACs other than a primary ETH 907 * MAC and iSCSI L2 MAC. 908 * 909 * If this MAC is moving from one Queue to another, no need to change 910 * NIG configuration. 911 */ 912 if (cmd != BNX2X_VLAN_MAC_MOVE) { 913 if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags)) 914 bnx2x_set_mac_in_nig(bp, add, mac, 915 BNX2X_LLH_CAM_ISCSI_ETH_LINE); 916 else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags)) 917 bnx2x_set_mac_in_nig(bp, add, mac, 918 BNX2X_LLH_CAM_ETH_LINE); 919 } 920 921 /* Reset the ramrod data buffer for the first rule */ 922 if (rule_idx == 0) 923 memset(data, 0, sizeof(*data)); 924 925 /* Setup a command header */ 926 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC, 927 &rule_entry->mac.header); 928 929 DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n", 930 (add ? "add" : "delete"), mac, raw->cl_id); 931 932 /* Set a MAC itself */ 933 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb, 934 &rule_entry->mac.mac_mid, 935 &rule_entry->mac.mac_lsb, mac); 936 rule_entry->mac.inner_mac = 937 cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac); 938 939 /* MOVE: Add a rule that will add this MAC to the target Queue */ 940 if (cmd == BNX2X_VLAN_MAC_MOVE) { 941 rule_entry++; 942 rule_cnt++; 943 944 /* Setup ramrod data */ 945 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, 946 elem->cmd_data.vlan_mac.target_obj, 947 true, CLASSIFY_RULE_OPCODE_MAC, 948 &rule_entry->mac.header); 949 950 /* Set a MAC itself */ 951 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb, 952 &rule_entry->mac.mac_mid, 953 &rule_entry->mac.mac_lsb, mac); 954 rule_entry->mac.inner_mac = 955 cpu_to_le16(elem->cmd_data.vlan_mac. 956 u.mac.is_inner_mac); 957 } 958 959 /* Set the ramrod data header */ 960 /* TODO: take this to the higher level in order to prevent multiple 961 writing */ 962 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header, 963 rule_cnt); 964 } 965 966 /** 967 * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod 968 * 969 * @bp: device handle 970 * @o: queue 971 * @type: 972 * @cam_offset: offset in cam memory 973 * @hdr: pointer to a header to setup 974 * 975 * E1/E1H 976 */ 977 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp, 978 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, 979 struct mac_configuration_hdr *hdr) 980 { 981 struct bnx2x_raw_obj *r = &o->raw; 982 983 hdr->length = 1; 984 hdr->offset = (u8)cam_offset; 985 hdr->client_id = cpu_to_le16(0xff); 986 hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) | 987 (type << BNX2X_SWCID_SHIFT)); 988 } 989 990 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp, 991 struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac, 992 u16 vlan_id, struct mac_configuration_entry *cfg_entry) 993 { 994 struct bnx2x_raw_obj *r = &o->raw; 995 u32 cl_bit_vec = (1 << r->cl_id); 996 997 cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec); 998 cfg_entry->pf_id = r->func_id; 999 cfg_entry->vlan_id = cpu_to_le16(vlan_id); 1000 1001 if (add) { 1002 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE, 1003 T_ETH_MAC_COMMAND_SET); 1004 SET_FLAG(cfg_entry->flags, 1005 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode); 1006 1007 /* Set a MAC in a ramrod data */ 1008 bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr, 1009 &cfg_entry->middle_mac_addr, 1010 &cfg_entry->lsb_mac_addr, mac); 1011 } else 1012 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE, 1013 T_ETH_MAC_COMMAND_INVALIDATE); 1014 } 1015 1016 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp, 1017 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add, 1018 u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config) 1019 { 1020 struct mac_configuration_entry *cfg_entry = &config->config_table[0]; 1021 struct bnx2x_raw_obj *raw = &o->raw; 1022 1023 bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset, 1024 &config->hdr); 1025 bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id, 1026 cfg_entry); 1027 1028 DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n", 1029 (add ? "setting" : "clearing"), 1030 mac, raw->cl_id, cam_offset); 1031 } 1032 1033 /** 1034 * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data 1035 * 1036 * @bp: device handle 1037 * @o: bnx2x_vlan_mac_obj 1038 * @elem: bnx2x_exeq_elem 1039 * @rule_idx: rule_idx 1040 * @cam_offset: cam_offset 1041 */ 1042 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp, 1043 struct bnx2x_vlan_mac_obj *o, 1044 struct bnx2x_exeq_elem *elem, int rule_idx, 1045 int cam_offset) 1046 { 1047 struct bnx2x_raw_obj *raw = &o->raw; 1048 struct mac_configuration_cmd *config = 1049 (struct mac_configuration_cmd *)(raw->rdata); 1050 /* 57710 and 57711 do not support MOVE command, 1051 * so it's either ADD or DEL 1052 */ 1053 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ? 1054 true : false; 1055 1056 /* Reset the ramrod data buffer */ 1057 memset(config, 0, sizeof(*config)); 1058 1059 bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state, 1060 cam_offset, add, 1061 elem->cmd_data.vlan_mac.u.mac.mac, 0, 1062 ETH_VLAN_FILTER_ANY_VLAN, config); 1063 } 1064 1065 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp, 1066 struct bnx2x_vlan_mac_obj *o, 1067 struct bnx2x_exeq_elem *elem, int rule_idx, 1068 int cam_offset) 1069 { 1070 struct bnx2x_raw_obj *raw = &o->raw; 1071 struct eth_classify_rules_ramrod_data *data = 1072 (struct eth_classify_rules_ramrod_data *)(raw->rdata); 1073 int rule_cnt = rule_idx + 1; 1074 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx]; 1075 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd; 1076 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false; 1077 u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan; 1078 1079 /* Reset the ramrod data buffer for the first rule */ 1080 if (rule_idx == 0) 1081 memset(data, 0, sizeof(*data)); 1082 1083 /* Set a rule header */ 1084 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN, 1085 &rule_entry->vlan.header); 1086 1087 DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"), 1088 vlan); 1089 1090 /* Set a VLAN itself */ 1091 rule_entry->vlan.vlan = cpu_to_le16(vlan); 1092 1093 /* MOVE: Add a rule that will add this MAC to the target Queue */ 1094 if (cmd == BNX2X_VLAN_MAC_MOVE) { 1095 rule_entry++; 1096 rule_cnt++; 1097 1098 /* Setup ramrod data */ 1099 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, 1100 elem->cmd_data.vlan_mac.target_obj, 1101 true, CLASSIFY_RULE_OPCODE_VLAN, 1102 &rule_entry->vlan.header); 1103 1104 /* Set a VLAN itself */ 1105 rule_entry->vlan.vlan = cpu_to_le16(vlan); 1106 } 1107 1108 /* Set the ramrod data header */ 1109 /* TODO: take this to the higher level in order to prevent multiple 1110 writing */ 1111 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header, 1112 rule_cnt); 1113 } 1114 1115 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp, 1116 struct bnx2x_vlan_mac_obj *o, 1117 struct bnx2x_exeq_elem *elem, 1118 int rule_idx, int cam_offset) 1119 { 1120 struct bnx2x_raw_obj *raw = &o->raw; 1121 struct eth_classify_rules_ramrod_data *data = 1122 (struct eth_classify_rules_ramrod_data *)(raw->rdata); 1123 int rule_cnt = rule_idx + 1; 1124 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx]; 1125 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd; 1126 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false; 1127 u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan; 1128 u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac; 1129 u16 inner_mac; 1130 1131 /* Reset the ramrod data buffer for the first rule */ 1132 if (rule_idx == 0) 1133 memset(data, 0, sizeof(*data)); 1134 1135 /* Set a rule header */ 1136 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR, 1137 &rule_entry->pair.header); 1138 1139 /* Set VLAN and MAC themselves */ 1140 rule_entry->pair.vlan = cpu_to_le16(vlan); 1141 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb, 1142 &rule_entry->pair.mac_mid, 1143 &rule_entry->pair.mac_lsb, mac); 1144 inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac; 1145 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac); 1146 /* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */ 1147 if (cmd == BNX2X_VLAN_MAC_MOVE) { 1148 struct bnx2x_vlan_mac_obj *target_obj; 1149 1150 rule_entry++; 1151 rule_cnt++; 1152 1153 /* Setup ramrod data */ 1154 target_obj = elem->cmd_data.vlan_mac.target_obj; 1155 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj, 1156 true, CLASSIFY_RULE_OPCODE_PAIR, 1157 &rule_entry->pair.header); 1158 1159 /* Set a VLAN itself */ 1160 rule_entry->pair.vlan = cpu_to_le16(vlan); 1161 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb, 1162 &rule_entry->pair.mac_mid, 1163 &rule_entry->pair.mac_lsb, mac); 1164 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac); 1165 } 1166 1167 /* Set the ramrod data header */ 1168 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header, 1169 rule_cnt); 1170 } 1171 1172 /** 1173 * bnx2x_set_one_vlan_mac_e1h - 1174 * 1175 * @bp: device handle 1176 * @o: bnx2x_vlan_mac_obj 1177 * @elem: bnx2x_exeq_elem 1178 * @rule_idx: rule_idx 1179 * @cam_offset: cam_offset 1180 */ 1181 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp, 1182 struct bnx2x_vlan_mac_obj *o, 1183 struct bnx2x_exeq_elem *elem, 1184 int rule_idx, int cam_offset) 1185 { 1186 struct bnx2x_raw_obj *raw = &o->raw; 1187 struct mac_configuration_cmd *config = 1188 (struct mac_configuration_cmd *)(raw->rdata); 1189 /* 57710 and 57711 do not support MOVE command, 1190 * so it's either ADD or DEL 1191 */ 1192 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ? 1193 true : false; 1194 1195 /* Reset the ramrod data buffer */ 1196 memset(config, 0, sizeof(*config)); 1197 1198 bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING, 1199 cam_offset, add, 1200 elem->cmd_data.vlan_mac.u.vlan_mac.mac, 1201 elem->cmd_data.vlan_mac.u.vlan_mac.vlan, 1202 ETH_VLAN_FILTER_CLASSIFY, config); 1203 } 1204 1205 /** 1206 * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element 1207 * 1208 * @bp: device handle 1209 * @p: command parameters 1210 * @ppos: pointer to the cookie 1211 * 1212 * reconfigure next MAC/VLAN/VLAN-MAC element from the 1213 * previously configured elements list. 1214 * 1215 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken 1216 * into an account 1217 * 1218 * pointer to the cookie - that should be given back in the next call to make 1219 * function handle the next element. If *ppos is set to NULL it will restart the 1220 * iterator. If returned *ppos == NULL this means that the last element has been 1221 * handled. 1222 * 1223 */ 1224 static int bnx2x_vlan_mac_restore(struct bnx2x *bp, 1225 struct bnx2x_vlan_mac_ramrod_params *p, 1226 struct bnx2x_vlan_mac_registry_elem **ppos) 1227 { 1228 struct bnx2x_vlan_mac_registry_elem *pos; 1229 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj; 1230 1231 /* If list is empty - there is nothing to do here */ 1232 if (list_empty(&o->head)) { 1233 *ppos = NULL; 1234 return 0; 1235 } 1236 1237 /* make a step... */ 1238 if (*ppos == NULL) 1239 *ppos = list_first_entry(&o->head, 1240 struct bnx2x_vlan_mac_registry_elem, 1241 link); 1242 else 1243 *ppos = list_next_entry(*ppos, link); 1244 1245 pos = *ppos; 1246 1247 /* If it's the last step - return NULL */ 1248 if (list_is_last(&pos->link, &o->head)) 1249 *ppos = NULL; 1250 1251 /* Prepare a 'user_req' */ 1252 memcpy(&p->user_req.u, &pos->u, sizeof(pos->u)); 1253 1254 /* Set the command */ 1255 p->user_req.cmd = BNX2X_VLAN_MAC_ADD; 1256 1257 /* Set vlan_mac_flags */ 1258 p->user_req.vlan_mac_flags = pos->vlan_mac_flags; 1259 1260 /* Set a restore bit */ 1261 __set_bit(RAMROD_RESTORE, &p->ramrod_flags); 1262 1263 return bnx2x_config_vlan_mac(bp, p); 1264 } 1265 1266 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a 1267 * pointer to an element with a specific criteria and NULL if such an element 1268 * hasn't been found. 1269 */ 1270 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac( 1271 struct bnx2x_exe_queue_obj *o, 1272 struct bnx2x_exeq_elem *elem) 1273 { 1274 struct bnx2x_exeq_elem *pos; 1275 struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac; 1276 1277 /* Check pending for execution commands */ 1278 list_for_each_entry(pos, &o->exe_queue, link) 1279 if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data, 1280 sizeof(*data)) && 1281 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd)) 1282 return pos; 1283 1284 return NULL; 1285 } 1286 1287 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan( 1288 struct bnx2x_exe_queue_obj *o, 1289 struct bnx2x_exeq_elem *elem) 1290 { 1291 struct bnx2x_exeq_elem *pos; 1292 struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan; 1293 1294 /* Check pending for execution commands */ 1295 list_for_each_entry(pos, &o->exe_queue, link) 1296 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data, 1297 sizeof(*data)) && 1298 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd)) 1299 return pos; 1300 1301 return NULL; 1302 } 1303 1304 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac( 1305 struct bnx2x_exe_queue_obj *o, 1306 struct bnx2x_exeq_elem *elem) 1307 { 1308 struct bnx2x_exeq_elem *pos; 1309 struct bnx2x_vlan_mac_ramrod_data *data = 1310 &elem->cmd_data.vlan_mac.u.vlan_mac; 1311 1312 /* Check pending for execution commands */ 1313 list_for_each_entry(pos, &o->exe_queue, link) 1314 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data, 1315 sizeof(*data)) && 1316 (pos->cmd_data.vlan_mac.cmd == 1317 elem->cmd_data.vlan_mac.cmd)) 1318 return pos; 1319 1320 return NULL; 1321 } 1322 1323 /** 1324 * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed 1325 * 1326 * @bp: device handle 1327 * @qo: bnx2x_qable_obj 1328 * @elem: bnx2x_exeq_elem 1329 * 1330 * Checks that the requested configuration can be added. If yes and if 1331 * requested, consume CAM credit. 1332 * 1333 * The 'validate' is run after the 'optimize'. 1334 * 1335 */ 1336 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp, 1337 union bnx2x_qable_obj *qo, 1338 struct bnx2x_exeq_elem *elem) 1339 { 1340 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac; 1341 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; 1342 int rc; 1343 1344 /* Check the registry */ 1345 rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u); 1346 if (rc) { 1347 DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n"); 1348 return rc; 1349 } 1350 1351 /* Check if there is a pending ADD command for this 1352 * MAC/VLAN/VLAN-MAC. Return an error if there is. 1353 */ 1354 if (exeq->get(exeq, elem)) { 1355 DP(BNX2X_MSG_SP, "There is a pending ADD command already\n"); 1356 return -EEXIST; 1357 } 1358 1359 /* TODO: Check the pending MOVE from other objects where this 1360 * object is a destination object. 1361 */ 1362 1363 /* Consume the credit if not requested not to */ 1364 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, 1365 &elem->cmd_data.vlan_mac.vlan_mac_flags) || 1366 o->get_credit(o))) 1367 return -EINVAL; 1368 1369 return 0; 1370 } 1371 1372 /** 1373 * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed 1374 * 1375 * @bp: device handle 1376 * @qo: quable object to check 1377 * @elem: element that needs to be deleted 1378 * 1379 * Checks that the requested configuration can be deleted. If yes and if 1380 * requested, returns a CAM credit. 1381 * 1382 * The 'validate' is run after the 'optimize'. 1383 */ 1384 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp, 1385 union bnx2x_qable_obj *qo, 1386 struct bnx2x_exeq_elem *elem) 1387 { 1388 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac; 1389 struct bnx2x_vlan_mac_registry_elem *pos; 1390 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; 1391 struct bnx2x_exeq_elem query_elem; 1392 1393 /* If this classification can not be deleted (doesn't exist) 1394 * - return a BNX2X_EXIST. 1395 */ 1396 pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u); 1397 if (!pos) { 1398 DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n"); 1399 return -EEXIST; 1400 } 1401 1402 /* Check if there are pending DEL or MOVE commands for this 1403 * MAC/VLAN/VLAN-MAC. Return an error if so. 1404 */ 1405 memcpy(&query_elem, elem, sizeof(query_elem)); 1406 1407 /* Check for MOVE commands */ 1408 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE; 1409 if (exeq->get(exeq, &query_elem)) { 1410 BNX2X_ERR("There is a pending MOVE command already\n"); 1411 return -EINVAL; 1412 } 1413 1414 /* Check for DEL commands */ 1415 if (exeq->get(exeq, elem)) { 1416 DP(BNX2X_MSG_SP, "There is a pending DEL command already\n"); 1417 return -EEXIST; 1418 } 1419 1420 /* Return the credit to the credit pool if not requested not to */ 1421 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, 1422 &elem->cmd_data.vlan_mac.vlan_mac_flags) || 1423 o->put_credit(o))) { 1424 BNX2X_ERR("Failed to return a credit\n"); 1425 return -EINVAL; 1426 } 1427 1428 return 0; 1429 } 1430 1431 /** 1432 * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed 1433 * 1434 * @bp: device handle 1435 * @qo: quable object to check (source) 1436 * @elem: element that needs to be moved 1437 * 1438 * Checks that the requested configuration can be moved. If yes and if 1439 * requested, returns a CAM credit. 1440 * 1441 * The 'validate' is run after the 'optimize'. 1442 */ 1443 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp, 1444 union bnx2x_qable_obj *qo, 1445 struct bnx2x_exeq_elem *elem) 1446 { 1447 struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac; 1448 struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj; 1449 struct bnx2x_exeq_elem query_elem; 1450 struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue; 1451 struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue; 1452 1453 /* Check if we can perform this operation based on the current registry 1454 * state. 1455 */ 1456 if (!src_o->check_move(bp, src_o, dest_o, 1457 &elem->cmd_data.vlan_mac.u)) { 1458 DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n"); 1459 return -EINVAL; 1460 } 1461 1462 /* Check if there is an already pending DEL or MOVE command for the 1463 * source object or ADD command for a destination object. Return an 1464 * error if so. 1465 */ 1466 memcpy(&query_elem, elem, sizeof(query_elem)); 1467 1468 /* Check DEL on source */ 1469 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL; 1470 if (src_exeq->get(src_exeq, &query_elem)) { 1471 BNX2X_ERR("There is a pending DEL command on the source queue already\n"); 1472 return -EINVAL; 1473 } 1474 1475 /* Check MOVE on source */ 1476 if (src_exeq->get(src_exeq, elem)) { 1477 DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n"); 1478 return -EEXIST; 1479 } 1480 1481 /* Check ADD on destination */ 1482 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD; 1483 if (dest_exeq->get(dest_exeq, &query_elem)) { 1484 BNX2X_ERR("There is a pending ADD command on the destination queue already\n"); 1485 return -EINVAL; 1486 } 1487 1488 /* Consume the credit if not requested not to */ 1489 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST, 1490 &elem->cmd_data.vlan_mac.vlan_mac_flags) || 1491 dest_o->get_credit(dest_o))) 1492 return -EINVAL; 1493 1494 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, 1495 &elem->cmd_data.vlan_mac.vlan_mac_flags) || 1496 src_o->put_credit(src_o))) { 1497 /* return the credit taken from dest... */ 1498 dest_o->put_credit(dest_o); 1499 return -EINVAL; 1500 } 1501 1502 return 0; 1503 } 1504 1505 static int bnx2x_validate_vlan_mac(struct bnx2x *bp, 1506 union bnx2x_qable_obj *qo, 1507 struct bnx2x_exeq_elem *elem) 1508 { 1509 switch (elem->cmd_data.vlan_mac.cmd) { 1510 case BNX2X_VLAN_MAC_ADD: 1511 return bnx2x_validate_vlan_mac_add(bp, qo, elem); 1512 case BNX2X_VLAN_MAC_DEL: 1513 return bnx2x_validate_vlan_mac_del(bp, qo, elem); 1514 case BNX2X_VLAN_MAC_MOVE: 1515 return bnx2x_validate_vlan_mac_move(bp, qo, elem); 1516 default: 1517 return -EINVAL; 1518 } 1519 } 1520 1521 static int bnx2x_remove_vlan_mac(struct bnx2x *bp, 1522 union bnx2x_qable_obj *qo, 1523 struct bnx2x_exeq_elem *elem) 1524 { 1525 int rc = 0; 1526 1527 /* If consumption wasn't required, nothing to do */ 1528 if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, 1529 &elem->cmd_data.vlan_mac.vlan_mac_flags)) 1530 return 0; 1531 1532 switch (elem->cmd_data.vlan_mac.cmd) { 1533 case BNX2X_VLAN_MAC_ADD: 1534 case BNX2X_VLAN_MAC_MOVE: 1535 rc = qo->vlan_mac.put_credit(&qo->vlan_mac); 1536 break; 1537 case BNX2X_VLAN_MAC_DEL: 1538 rc = qo->vlan_mac.get_credit(&qo->vlan_mac); 1539 break; 1540 default: 1541 return -EINVAL; 1542 } 1543 1544 if (rc != true) 1545 return -EINVAL; 1546 1547 return 0; 1548 } 1549 1550 /** 1551 * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes. 1552 * 1553 * @bp: device handle 1554 * @o: bnx2x_vlan_mac_obj 1555 * 1556 */ 1557 static int bnx2x_wait_vlan_mac(struct bnx2x *bp, 1558 struct bnx2x_vlan_mac_obj *o) 1559 { 1560 int cnt = 5000, rc; 1561 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; 1562 struct bnx2x_raw_obj *raw = &o->raw; 1563 1564 while (cnt--) { 1565 /* Wait for the current command to complete */ 1566 rc = raw->wait_comp(bp, raw); 1567 if (rc) 1568 return rc; 1569 1570 /* Wait until there are no pending commands */ 1571 if (!bnx2x_exe_queue_empty(exeq)) 1572 usleep_range(1000, 2000); 1573 else 1574 return 0; 1575 } 1576 1577 return -EBUSY; 1578 } 1579 1580 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp, 1581 struct bnx2x_vlan_mac_obj *o, 1582 unsigned long *ramrod_flags) 1583 { 1584 int rc = 0; 1585 1586 spin_lock_bh(&o->exe_queue.lock); 1587 1588 DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n"); 1589 rc = __bnx2x_vlan_mac_h_write_trylock(bp, o); 1590 1591 if (rc != 0) { 1592 __bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags); 1593 1594 /* Calling function should not diffrentiate between this case 1595 * and the case in which there is already a pending ramrod 1596 */ 1597 rc = 1; 1598 } else { 1599 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags); 1600 } 1601 spin_unlock_bh(&o->exe_queue.lock); 1602 1603 return rc; 1604 } 1605 1606 /** 1607 * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod 1608 * 1609 * @bp: device handle 1610 * @o: bnx2x_vlan_mac_obj 1611 * @cqe: 1612 * @cont: if true schedule next execution chunk 1613 * 1614 */ 1615 static int bnx2x_complete_vlan_mac(struct bnx2x *bp, 1616 struct bnx2x_vlan_mac_obj *o, 1617 union event_ring_elem *cqe, 1618 unsigned long *ramrod_flags) 1619 { 1620 struct bnx2x_raw_obj *r = &o->raw; 1621 int rc; 1622 1623 /* Clearing the pending list & raw state should be made 1624 * atomically (as execution flow assumes they represent the same). 1625 */ 1626 spin_lock_bh(&o->exe_queue.lock); 1627 1628 /* Reset pending list */ 1629 __bnx2x_exe_queue_reset_pending(bp, &o->exe_queue); 1630 1631 /* Clear pending */ 1632 r->clear_pending(r); 1633 1634 spin_unlock_bh(&o->exe_queue.lock); 1635 1636 /* If ramrod failed this is most likely a SW bug */ 1637 if (cqe->message.error) 1638 return -EINVAL; 1639 1640 /* Run the next bulk of pending commands if requested */ 1641 if (test_bit(RAMROD_CONT, ramrod_flags)) { 1642 rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags); 1643 1644 if (rc < 0) 1645 return rc; 1646 } 1647 1648 /* If there is more work to do return PENDING */ 1649 if (!bnx2x_exe_queue_empty(&o->exe_queue)) 1650 return 1; 1651 1652 return 0; 1653 } 1654 1655 /** 1656 * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands. 1657 * 1658 * @bp: device handle 1659 * @o: bnx2x_qable_obj 1660 * @elem: bnx2x_exeq_elem 1661 */ 1662 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp, 1663 union bnx2x_qable_obj *qo, 1664 struct bnx2x_exeq_elem *elem) 1665 { 1666 struct bnx2x_exeq_elem query, *pos; 1667 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac; 1668 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; 1669 1670 memcpy(&query, elem, sizeof(query)); 1671 1672 switch (elem->cmd_data.vlan_mac.cmd) { 1673 case BNX2X_VLAN_MAC_ADD: 1674 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL; 1675 break; 1676 case BNX2X_VLAN_MAC_DEL: 1677 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD; 1678 break; 1679 default: 1680 /* Don't handle anything other than ADD or DEL */ 1681 return 0; 1682 } 1683 1684 /* If we found the appropriate element - delete it */ 1685 pos = exeq->get(exeq, &query); 1686 if (pos) { 1687 1688 /* Return the credit of the optimized command */ 1689 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, 1690 &pos->cmd_data.vlan_mac.vlan_mac_flags)) { 1691 if ((query.cmd_data.vlan_mac.cmd == 1692 BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) { 1693 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n"); 1694 return -EINVAL; 1695 } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */ 1696 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n"); 1697 return -EINVAL; 1698 } 1699 } 1700 1701 DP(BNX2X_MSG_SP, "Optimizing %s command\n", 1702 (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ? 1703 "ADD" : "DEL"); 1704 1705 list_del(&pos->link); 1706 bnx2x_exe_queue_free_elem(bp, pos); 1707 return 1; 1708 } 1709 1710 return 0; 1711 } 1712 1713 /** 1714 * bnx2x_vlan_mac_get_registry_elem - prepare a registry element 1715 * 1716 * @bp: device handle 1717 * @o: 1718 * @elem: 1719 * @restore: 1720 * @re: 1721 * 1722 * prepare a registry element according to the current command request. 1723 */ 1724 static inline int bnx2x_vlan_mac_get_registry_elem( 1725 struct bnx2x *bp, 1726 struct bnx2x_vlan_mac_obj *o, 1727 struct bnx2x_exeq_elem *elem, 1728 bool restore, 1729 struct bnx2x_vlan_mac_registry_elem **re) 1730 { 1731 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd; 1732 struct bnx2x_vlan_mac_registry_elem *reg_elem; 1733 1734 /* Allocate a new registry element if needed. */ 1735 if (!restore && 1736 ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) { 1737 reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC); 1738 if (!reg_elem) 1739 return -ENOMEM; 1740 1741 /* Get a new CAM offset */ 1742 if (!o->get_cam_offset(o, ®_elem->cam_offset)) { 1743 /* This shall never happen, because we have checked the 1744 * CAM availability in the 'validate'. 1745 */ 1746 WARN_ON(1); 1747 kfree(reg_elem); 1748 return -EINVAL; 1749 } 1750 1751 DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset); 1752 1753 /* Set a VLAN-MAC data */ 1754 memcpy(®_elem->u, &elem->cmd_data.vlan_mac.u, 1755 sizeof(reg_elem->u)); 1756 1757 /* Copy the flags (needed for DEL and RESTORE flows) */ 1758 reg_elem->vlan_mac_flags = 1759 elem->cmd_data.vlan_mac.vlan_mac_flags; 1760 } else /* DEL, RESTORE */ 1761 reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u); 1762 1763 *re = reg_elem; 1764 return 0; 1765 } 1766 1767 /** 1768 * bnx2x_execute_vlan_mac - execute vlan mac command 1769 * 1770 * @bp: device handle 1771 * @qo: 1772 * @exe_chunk: 1773 * @ramrod_flags: 1774 * 1775 * go and send a ramrod! 1776 */ 1777 static int bnx2x_execute_vlan_mac(struct bnx2x *bp, 1778 union bnx2x_qable_obj *qo, 1779 struct list_head *exe_chunk, 1780 unsigned long *ramrod_flags) 1781 { 1782 struct bnx2x_exeq_elem *elem; 1783 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj; 1784 struct bnx2x_raw_obj *r = &o->raw; 1785 int rc, idx = 0; 1786 bool restore = test_bit(RAMROD_RESTORE, ramrod_flags); 1787 bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags); 1788 struct bnx2x_vlan_mac_registry_elem *reg_elem; 1789 enum bnx2x_vlan_mac_cmd cmd; 1790 1791 /* If DRIVER_ONLY execution is requested, cleanup a registry 1792 * and exit. Otherwise send a ramrod to FW. 1793 */ 1794 if (!drv_only) { 1795 WARN_ON(r->check_pending(r)); 1796 1797 /* Set pending */ 1798 r->set_pending(r); 1799 1800 /* Fill the ramrod data */ 1801 list_for_each_entry(elem, exe_chunk, link) { 1802 cmd = elem->cmd_data.vlan_mac.cmd; 1803 /* We will add to the target object in MOVE command, so 1804 * change the object for a CAM search. 1805 */ 1806 if (cmd == BNX2X_VLAN_MAC_MOVE) 1807 cam_obj = elem->cmd_data.vlan_mac.target_obj; 1808 else 1809 cam_obj = o; 1810 1811 rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj, 1812 elem, restore, 1813 ®_elem); 1814 if (rc) 1815 goto error_exit; 1816 1817 WARN_ON(!reg_elem); 1818 1819 /* Push a new entry into the registry */ 1820 if (!restore && 1821 ((cmd == BNX2X_VLAN_MAC_ADD) || 1822 (cmd == BNX2X_VLAN_MAC_MOVE))) 1823 list_add(®_elem->link, &cam_obj->head); 1824 1825 /* Configure a single command in a ramrod data buffer */ 1826 o->set_one_rule(bp, o, elem, idx, 1827 reg_elem->cam_offset); 1828 1829 /* MOVE command consumes 2 entries in the ramrod data */ 1830 if (cmd == BNX2X_VLAN_MAC_MOVE) 1831 idx += 2; 1832 else 1833 idx++; 1834 } 1835 1836 /* No need for an explicit memory barrier here as long we would 1837 * need to ensure the ordering of writing to the SPQ element 1838 * and updating of the SPQ producer which involves a memory 1839 * read and we will have to put a full memory barrier there 1840 * (inside bnx2x_sp_post()). 1841 */ 1842 1843 rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid, 1844 U64_HI(r->rdata_mapping), 1845 U64_LO(r->rdata_mapping), 1846 ETH_CONNECTION_TYPE); 1847 if (rc) 1848 goto error_exit; 1849 } 1850 1851 /* Now, when we are done with the ramrod - clean up the registry */ 1852 list_for_each_entry(elem, exe_chunk, link) { 1853 cmd = elem->cmd_data.vlan_mac.cmd; 1854 if ((cmd == BNX2X_VLAN_MAC_DEL) || 1855 (cmd == BNX2X_VLAN_MAC_MOVE)) { 1856 reg_elem = o->check_del(bp, o, 1857 &elem->cmd_data.vlan_mac.u); 1858 1859 WARN_ON(!reg_elem); 1860 1861 o->put_cam_offset(o, reg_elem->cam_offset); 1862 list_del(®_elem->link); 1863 kfree(reg_elem); 1864 } 1865 } 1866 1867 if (!drv_only) 1868 return 1; 1869 else 1870 return 0; 1871 1872 error_exit: 1873 r->clear_pending(r); 1874 1875 /* Cleanup a registry in case of a failure */ 1876 list_for_each_entry(elem, exe_chunk, link) { 1877 cmd = elem->cmd_data.vlan_mac.cmd; 1878 1879 if (cmd == BNX2X_VLAN_MAC_MOVE) 1880 cam_obj = elem->cmd_data.vlan_mac.target_obj; 1881 else 1882 cam_obj = o; 1883 1884 /* Delete all newly added above entries */ 1885 if (!restore && 1886 ((cmd == BNX2X_VLAN_MAC_ADD) || 1887 (cmd == BNX2X_VLAN_MAC_MOVE))) { 1888 reg_elem = o->check_del(bp, cam_obj, 1889 &elem->cmd_data.vlan_mac.u); 1890 if (reg_elem) { 1891 list_del(®_elem->link); 1892 kfree(reg_elem); 1893 } 1894 } 1895 } 1896 1897 return rc; 1898 } 1899 1900 static inline int bnx2x_vlan_mac_push_new_cmd( 1901 struct bnx2x *bp, 1902 struct bnx2x_vlan_mac_ramrod_params *p) 1903 { 1904 struct bnx2x_exeq_elem *elem; 1905 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj; 1906 bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags); 1907 1908 /* Allocate the execution queue element */ 1909 elem = bnx2x_exe_queue_alloc_elem(bp); 1910 if (!elem) 1911 return -ENOMEM; 1912 1913 /* Set the command 'length' */ 1914 switch (p->user_req.cmd) { 1915 case BNX2X_VLAN_MAC_MOVE: 1916 elem->cmd_len = 2; 1917 break; 1918 default: 1919 elem->cmd_len = 1; 1920 } 1921 1922 /* Fill the object specific info */ 1923 memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req)); 1924 1925 /* Try to add a new command to the pending list */ 1926 return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore); 1927 } 1928 1929 /** 1930 * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules. 1931 * 1932 * @bp: device handle 1933 * @p: 1934 * 1935 */ 1936 int bnx2x_config_vlan_mac(struct bnx2x *bp, 1937 struct bnx2x_vlan_mac_ramrod_params *p) 1938 { 1939 int rc = 0; 1940 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj; 1941 unsigned long *ramrod_flags = &p->ramrod_flags; 1942 bool cont = test_bit(RAMROD_CONT, ramrod_flags); 1943 struct bnx2x_raw_obj *raw = &o->raw; 1944 1945 /* 1946 * Add new elements to the execution list for commands that require it. 1947 */ 1948 if (!cont) { 1949 rc = bnx2x_vlan_mac_push_new_cmd(bp, p); 1950 if (rc) 1951 return rc; 1952 } 1953 1954 /* If nothing will be executed further in this iteration we want to 1955 * return PENDING if there are pending commands 1956 */ 1957 if (!bnx2x_exe_queue_empty(&o->exe_queue)) 1958 rc = 1; 1959 1960 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) { 1961 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n"); 1962 raw->clear_pending(raw); 1963 } 1964 1965 /* Execute commands if required */ 1966 if (cont || test_bit(RAMROD_EXEC, ramrod_flags) || 1967 test_bit(RAMROD_COMP_WAIT, ramrod_flags)) { 1968 rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj, 1969 &p->ramrod_flags); 1970 if (rc < 0) 1971 return rc; 1972 } 1973 1974 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set 1975 * then user want to wait until the last command is done. 1976 */ 1977 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) { 1978 /* Wait maximum for the current exe_queue length iterations plus 1979 * one (for the current pending command). 1980 */ 1981 int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1; 1982 1983 while (!bnx2x_exe_queue_empty(&o->exe_queue) && 1984 max_iterations--) { 1985 1986 /* Wait for the current command to complete */ 1987 rc = raw->wait_comp(bp, raw); 1988 if (rc) 1989 return rc; 1990 1991 /* Make a next step */ 1992 rc = __bnx2x_vlan_mac_execute_step(bp, 1993 p->vlan_mac_obj, 1994 &p->ramrod_flags); 1995 if (rc < 0) 1996 return rc; 1997 } 1998 1999 return 0; 2000 } 2001 2002 return rc; 2003 } 2004 2005 /** 2006 * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec 2007 * 2008 * @bp: device handle 2009 * @o: 2010 * @vlan_mac_flags: 2011 * @ramrod_flags: execution flags to be used for this deletion 2012 * 2013 * if the last operation has completed successfully and there are no 2014 * more elements left, positive value if the last operation has completed 2015 * successfully and there are more previously configured elements, negative 2016 * value is current operation has failed. 2017 */ 2018 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp, 2019 struct bnx2x_vlan_mac_obj *o, 2020 unsigned long *vlan_mac_flags, 2021 unsigned long *ramrod_flags) 2022 { 2023 struct bnx2x_vlan_mac_registry_elem *pos = NULL; 2024 struct bnx2x_vlan_mac_ramrod_params p; 2025 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue; 2026 struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n; 2027 unsigned long flags; 2028 int read_lock; 2029 int rc = 0; 2030 2031 /* Clear pending commands first */ 2032 2033 spin_lock_bh(&exeq->lock); 2034 2035 list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) { 2036 flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags; 2037 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) == 2038 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) { 2039 rc = exeq->remove(bp, exeq->owner, exeq_pos); 2040 if (rc) { 2041 BNX2X_ERR("Failed to remove command\n"); 2042 spin_unlock_bh(&exeq->lock); 2043 return rc; 2044 } 2045 list_del(&exeq_pos->link); 2046 bnx2x_exe_queue_free_elem(bp, exeq_pos); 2047 } 2048 } 2049 2050 spin_unlock_bh(&exeq->lock); 2051 2052 /* Prepare a command request */ 2053 memset(&p, 0, sizeof(p)); 2054 p.vlan_mac_obj = o; 2055 p.ramrod_flags = *ramrod_flags; 2056 p.user_req.cmd = BNX2X_VLAN_MAC_DEL; 2057 2058 /* Add all but the last VLAN-MAC to the execution queue without actually 2059 * execution anything. 2060 */ 2061 __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags); 2062 __clear_bit(RAMROD_EXEC, &p.ramrod_flags); 2063 __clear_bit(RAMROD_CONT, &p.ramrod_flags); 2064 2065 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n"); 2066 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o); 2067 if (read_lock != 0) 2068 return read_lock; 2069 2070 list_for_each_entry(pos, &o->head, link) { 2071 flags = pos->vlan_mac_flags; 2072 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) == 2073 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) { 2074 p.user_req.vlan_mac_flags = pos->vlan_mac_flags; 2075 memcpy(&p.user_req.u, &pos->u, sizeof(pos->u)); 2076 rc = bnx2x_config_vlan_mac(bp, &p); 2077 if (rc < 0) { 2078 BNX2X_ERR("Failed to add a new DEL command\n"); 2079 bnx2x_vlan_mac_h_read_unlock(bp, o); 2080 return rc; 2081 } 2082 } 2083 } 2084 2085 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n"); 2086 bnx2x_vlan_mac_h_read_unlock(bp, o); 2087 2088 p.ramrod_flags = *ramrod_flags; 2089 __set_bit(RAMROD_CONT, &p.ramrod_flags); 2090 2091 return bnx2x_config_vlan_mac(bp, &p); 2092 } 2093 2094 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id, 2095 u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state, 2096 unsigned long *pstate, bnx2x_obj_type type) 2097 { 2098 raw->func_id = func_id; 2099 raw->cid = cid; 2100 raw->cl_id = cl_id; 2101 raw->rdata = rdata; 2102 raw->rdata_mapping = rdata_mapping; 2103 raw->state = state; 2104 raw->pstate = pstate; 2105 raw->obj_type = type; 2106 raw->check_pending = bnx2x_raw_check_pending; 2107 raw->clear_pending = bnx2x_raw_clear_pending; 2108 raw->set_pending = bnx2x_raw_set_pending; 2109 raw->wait_comp = bnx2x_raw_wait; 2110 } 2111 2112 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o, 2113 u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, 2114 int state, unsigned long *pstate, bnx2x_obj_type type, 2115 struct bnx2x_credit_pool_obj *macs_pool, 2116 struct bnx2x_credit_pool_obj *vlans_pool) 2117 { 2118 INIT_LIST_HEAD(&o->head); 2119 o->head_reader = 0; 2120 o->head_exe_request = false; 2121 o->saved_ramrod_flags = 0; 2122 2123 o->macs_pool = macs_pool; 2124 o->vlans_pool = vlans_pool; 2125 2126 o->delete_all = bnx2x_vlan_mac_del_all; 2127 o->restore = bnx2x_vlan_mac_restore; 2128 o->complete = bnx2x_complete_vlan_mac; 2129 o->wait = bnx2x_wait_vlan_mac; 2130 2131 bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping, 2132 state, pstate, type); 2133 } 2134 2135 void bnx2x_init_mac_obj(struct bnx2x *bp, 2136 struct bnx2x_vlan_mac_obj *mac_obj, 2137 u8 cl_id, u32 cid, u8 func_id, void *rdata, 2138 dma_addr_t rdata_mapping, int state, 2139 unsigned long *pstate, bnx2x_obj_type type, 2140 struct bnx2x_credit_pool_obj *macs_pool) 2141 { 2142 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj; 2143 2144 bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata, 2145 rdata_mapping, state, pstate, type, 2146 macs_pool, NULL); 2147 2148 /* CAM credit pool handling */ 2149 mac_obj->get_credit = bnx2x_get_credit_mac; 2150 mac_obj->put_credit = bnx2x_put_credit_mac; 2151 mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac; 2152 mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac; 2153 2154 if (CHIP_IS_E1x(bp)) { 2155 mac_obj->set_one_rule = bnx2x_set_one_mac_e1x; 2156 mac_obj->check_del = bnx2x_check_mac_del; 2157 mac_obj->check_add = bnx2x_check_mac_add; 2158 mac_obj->check_move = bnx2x_check_move_always_err; 2159 mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC; 2160 2161 /* Exe Queue */ 2162 bnx2x_exe_queue_init(bp, 2163 &mac_obj->exe_queue, 1, qable_obj, 2164 bnx2x_validate_vlan_mac, 2165 bnx2x_remove_vlan_mac, 2166 bnx2x_optimize_vlan_mac, 2167 bnx2x_execute_vlan_mac, 2168 bnx2x_exeq_get_mac); 2169 } else { 2170 mac_obj->set_one_rule = bnx2x_set_one_mac_e2; 2171 mac_obj->check_del = bnx2x_check_mac_del; 2172 mac_obj->check_add = bnx2x_check_mac_add; 2173 mac_obj->check_move = bnx2x_check_move; 2174 mac_obj->ramrod_cmd = 2175 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES; 2176 mac_obj->get_n_elements = bnx2x_get_n_elements; 2177 2178 /* Exe Queue */ 2179 bnx2x_exe_queue_init(bp, 2180 &mac_obj->exe_queue, CLASSIFY_RULES_COUNT, 2181 qable_obj, bnx2x_validate_vlan_mac, 2182 bnx2x_remove_vlan_mac, 2183 bnx2x_optimize_vlan_mac, 2184 bnx2x_execute_vlan_mac, 2185 bnx2x_exeq_get_mac); 2186 } 2187 } 2188 2189 void bnx2x_init_vlan_obj(struct bnx2x *bp, 2190 struct bnx2x_vlan_mac_obj *vlan_obj, 2191 u8 cl_id, u32 cid, u8 func_id, void *rdata, 2192 dma_addr_t rdata_mapping, int state, 2193 unsigned long *pstate, bnx2x_obj_type type, 2194 struct bnx2x_credit_pool_obj *vlans_pool) 2195 { 2196 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj; 2197 2198 bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata, 2199 rdata_mapping, state, pstate, type, NULL, 2200 vlans_pool); 2201 2202 vlan_obj->get_credit = bnx2x_get_credit_vlan; 2203 vlan_obj->put_credit = bnx2x_put_credit_vlan; 2204 vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan; 2205 vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan; 2206 2207 if (CHIP_IS_E1x(bp)) { 2208 BNX2X_ERR("Do not support chips others than E2 and newer\n"); 2209 BUG(); 2210 } else { 2211 vlan_obj->set_one_rule = bnx2x_set_one_vlan_e2; 2212 vlan_obj->check_del = bnx2x_check_vlan_del; 2213 vlan_obj->check_add = bnx2x_check_vlan_add; 2214 vlan_obj->check_move = bnx2x_check_move; 2215 vlan_obj->ramrod_cmd = 2216 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES; 2217 vlan_obj->get_n_elements = bnx2x_get_n_elements; 2218 2219 /* Exe Queue */ 2220 bnx2x_exe_queue_init(bp, 2221 &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT, 2222 qable_obj, bnx2x_validate_vlan_mac, 2223 bnx2x_remove_vlan_mac, 2224 bnx2x_optimize_vlan_mac, 2225 bnx2x_execute_vlan_mac, 2226 bnx2x_exeq_get_vlan); 2227 } 2228 } 2229 2230 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp, 2231 struct bnx2x_vlan_mac_obj *vlan_mac_obj, 2232 u8 cl_id, u32 cid, u8 func_id, void *rdata, 2233 dma_addr_t rdata_mapping, int state, 2234 unsigned long *pstate, bnx2x_obj_type type, 2235 struct bnx2x_credit_pool_obj *macs_pool, 2236 struct bnx2x_credit_pool_obj *vlans_pool) 2237 { 2238 union bnx2x_qable_obj *qable_obj = 2239 (union bnx2x_qable_obj *)vlan_mac_obj; 2240 2241 bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata, 2242 rdata_mapping, state, pstate, type, 2243 macs_pool, vlans_pool); 2244 2245 /* CAM pool handling */ 2246 vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac; 2247 vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac; 2248 /* CAM offset is relevant for 57710 and 57711 chips only which have a 2249 * single CAM for both MACs and VLAN-MAC pairs. So the offset 2250 * will be taken from MACs' pool object only. 2251 */ 2252 vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac; 2253 vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac; 2254 2255 if (CHIP_IS_E1(bp)) { 2256 BNX2X_ERR("Do not support chips others than E2\n"); 2257 BUG(); 2258 } else if (CHIP_IS_E1H(bp)) { 2259 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e1h; 2260 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del; 2261 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add; 2262 vlan_mac_obj->check_move = bnx2x_check_move_always_err; 2263 vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC; 2264 2265 /* Exe Queue */ 2266 bnx2x_exe_queue_init(bp, 2267 &vlan_mac_obj->exe_queue, 1, qable_obj, 2268 bnx2x_validate_vlan_mac, 2269 bnx2x_remove_vlan_mac, 2270 bnx2x_optimize_vlan_mac, 2271 bnx2x_execute_vlan_mac, 2272 bnx2x_exeq_get_vlan_mac); 2273 } else { 2274 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e2; 2275 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del; 2276 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add; 2277 vlan_mac_obj->check_move = bnx2x_check_move; 2278 vlan_mac_obj->ramrod_cmd = 2279 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES; 2280 2281 /* Exe Queue */ 2282 bnx2x_exe_queue_init(bp, 2283 &vlan_mac_obj->exe_queue, 2284 CLASSIFY_RULES_COUNT, 2285 qable_obj, bnx2x_validate_vlan_mac, 2286 bnx2x_remove_vlan_mac, 2287 bnx2x_optimize_vlan_mac, 2288 bnx2x_execute_vlan_mac, 2289 bnx2x_exeq_get_vlan_mac); 2290 } 2291 } 2292 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */ 2293 static inline void __storm_memset_mac_filters(struct bnx2x *bp, 2294 struct tstorm_eth_mac_filter_config *mac_filters, 2295 u16 pf_id) 2296 { 2297 size_t size = sizeof(struct tstorm_eth_mac_filter_config); 2298 2299 u32 addr = BAR_TSTRORM_INTMEM + 2300 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id); 2301 2302 __storm_memset_struct(bp, addr, size, (u32 *)mac_filters); 2303 } 2304 2305 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp, 2306 struct bnx2x_rx_mode_ramrod_params *p) 2307 { 2308 /* update the bp MAC filter structure */ 2309 u32 mask = (1 << p->cl_id); 2310 2311 struct tstorm_eth_mac_filter_config *mac_filters = 2312 (struct tstorm_eth_mac_filter_config *)p->rdata; 2313 2314 /* initial setting is drop-all */ 2315 u8 drop_all_ucast = 1, drop_all_mcast = 1; 2316 u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0; 2317 u8 unmatched_unicast = 0; 2318 2319 /* In e1x there we only take into account rx accept flag since tx switching 2320 * isn't enabled. */ 2321 if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags)) 2322 /* accept matched ucast */ 2323 drop_all_ucast = 0; 2324 2325 if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags)) 2326 /* accept matched mcast */ 2327 drop_all_mcast = 0; 2328 2329 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) { 2330 /* accept all mcast */ 2331 drop_all_ucast = 0; 2332 accp_all_ucast = 1; 2333 } 2334 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) { 2335 /* accept all mcast */ 2336 drop_all_mcast = 0; 2337 accp_all_mcast = 1; 2338 } 2339 if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags)) 2340 /* accept (all) bcast */ 2341 accp_all_bcast = 1; 2342 if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags)) 2343 /* accept unmatched unicasts */ 2344 unmatched_unicast = 1; 2345 2346 mac_filters->ucast_drop_all = drop_all_ucast ? 2347 mac_filters->ucast_drop_all | mask : 2348 mac_filters->ucast_drop_all & ~mask; 2349 2350 mac_filters->mcast_drop_all = drop_all_mcast ? 2351 mac_filters->mcast_drop_all | mask : 2352 mac_filters->mcast_drop_all & ~mask; 2353 2354 mac_filters->ucast_accept_all = accp_all_ucast ? 2355 mac_filters->ucast_accept_all | mask : 2356 mac_filters->ucast_accept_all & ~mask; 2357 2358 mac_filters->mcast_accept_all = accp_all_mcast ? 2359 mac_filters->mcast_accept_all | mask : 2360 mac_filters->mcast_accept_all & ~mask; 2361 2362 mac_filters->bcast_accept_all = accp_all_bcast ? 2363 mac_filters->bcast_accept_all | mask : 2364 mac_filters->bcast_accept_all & ~mask; 2365 2366 mac_filters->unmatched_unicast = unmatched_unicast ? 2367 mac_filters->unmatched_unicast | mask : 2368 mac_filters->unmatched_unicast & ~mask; 2369 2370 DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n" 2371 "accp_mcast 0x%x\naccp_bcast 0x%x\n", 2372 mac_filters->ucast_drop_all, mac_filters->mcast_drop_all, 2373 mac_filters->ucast_accept_all, mac_filters->mcast_accept_all, 2374 mac_filters->bcast_accept_all); 2375 2376 /* write the MAC filter structure*/ 2377 __storm_memset_mac_filters(bp, mac_filters, p->func_id); 2378 2379 /* The operation is completed */ 2380 clear_bit(p->state, p->pstate); 2381 smp_mb__after_atomic(); 2382 2383 return 0; 2384 } 2385 2386 /* Setup ramrod data */ 2387 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid, 2388 struct eth_classify_header *hdr, 2389 u8 rule_cnt) 2390 { 2391 hdr->echo = cpu_to_le32(cid); 2392 hdr->rule_cnt = rule_cnt; 2393 } 2394 2395 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp, 2396 unsigned long *accept_flags, 2397 struct eth_filter_rules_cmd *cmd, 2398 bool clear_accept_all) 2399 { 2400 u16 state; 2401 2402 /* start with 'drop-all' */ 2403 state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL | 2404 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL; 2405 2406 if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags)) 2407 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL; 2408 2409 if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags)) 2410 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL; 2411 2412 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) { 2413 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL; 2414 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL; 2415 } 2416 2417 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) { 2418 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL; 2419 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL; 2420 } 2421 2422 if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags)) 2423 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL; 2424 2425 if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) { 2426 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL; 2427 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED; 2428 } 2429 2430 if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags)) 2431 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN; 2432 2433 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */ 2434 if (clear_accept_all) { 2435 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL; 2436 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL; 2437 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL; 2438 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED; 2439 } 2440 2441 cmd->state = cpu_to_le16(state); 2442 } 2443 2444 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp, 2445 struct bnx2x_rx_mode_ramrod_params *p) 2446 { 2447 struct eth_filter_rules_ramrod_data *data = p->rdata; 2448 int rc; 2449 u8 rule_idx = 0; 2450 2451 /* Reset the ramrod data buffer */ 2452 memset(data, 0, sizeof(*data)); 2453 2454 /* Setup ramrod data */ 2455 2456 /* Tx (internal switching) */ 2457 if (test_bit(RAMROD_TX, &p->ramrod_flags)) { 2458 data->rules[rule_idx].client_id = p->cl_id; 2459 data->rules[rule_idx].func_id = p->func_id; 2460 2461 data->rules[rule_idx].cmd_general_data = 2462 ETH_FILTER_RULES_CMD_TX_CMD; 2463 2464 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags, 2465 &(data->rules[rule_idx++]), 2466 false); 2467 } 2468 2469 /* Rx */ 2470 if (test_bit(RAMROD_RX, &p->ramrod_flags)) { 2471 data->rules[rule_idx].client_id = p->cl_id; 2472 data->rules[rule_idx].func_id = p->func_id; 2473 2474 data->rules[rule_idx].cmd_general_data = 2475 ETH_FILTER_RULES_CMD_RX_CMD; 2476 2477 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags, 2478 &(data->rules[rule_idx++]), 2479 false); 2480 } 2481 2482 /* If FCoE Queue configuration has been requested configure the Rx and 2483 * internal switching modes for this queue in separate rules. 2484 * 2485 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort: 2486 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED. 2487 */ 2488 if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) { 2489 /* Tx (internal switching) */ 2490 if (test_bit(RAMROD_TX, &p->ramrod_flags)) { 2491 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id); 2492 data->rules[rule_idx].func_id = p->func_id; 2493 2494 data->rules[rule_idx].cmd_general_data = 2495 ETH_FILTER_RULES_CMD_TX_CMD; 2496 2497 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags, 2498 &(data->rules[rule_idx]), 2499 true); 2500 rule_idx++; 2501 } 2502 2503 /* Rx */ 2504 if (test_bit(RAMROD_RX, &p->ramrod_flags)) { 2505 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id); 2506 data->rules[rule_idx].func_id = p->func_id; 2507 2508 data->rules[rule_idx].cmd_general_data = 2509 ETH_FILTER_RULES_CMD_RX_CMD; 2510 2511 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags, 2512 &(data->rules[rule_idx]), 2513 true); 2514 rule_idx++; 2515 } 2516 } 2517 2518 /* Set the ramrod header (most importantly - number of rules to 2519 * configure). 2520 */ 2521 bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx); 2522 2523 DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n", 2524 data->header.rule_cnt, p->rx_accept_flags, 2525 p->tx_accept_flags); 2526 2527 /* No need for an explicit memory barrier here as long as we 2528 * ensure the ordering of writing to the SPQ element 2529 * and updating of the SPQ producer which involves a memory 2530 * read. If the memory read is removed we will have to put a 2531 * full memory barrier there (inside bnx2x_sp_post()). 2532 */ 2533 2534 /* Send a ramrod */ 2535 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid, 2536 U64_HI(p->rdata_mapping), 2537 U64_LO(p->rdata_mapping), 2538 ETH_CONNECTION_TYPE); 2539 if (rc) 2540 return rc; 2541 2542 /* Ramrod completion is pending */ 2543 return 1; 2544 } 2545 2546 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp, 2547 struct bnx2x_rx_mode_ramrod_params *p) 2548 { 2549 return bnx2x_state_wait(bp, p->state, p->pstate); 2550 } 2551 2552 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp, 2553 struct bnx2x_rx_mode_ramrod_params *p) 2554 { 2555 /* Do nothing */ 2556 return 0; 2557 } 2558 2559 int bnx2x_config_rx_mode(struct bnx2x *bp, 2560 struct bnx2x_rx_mode_ramrod_params *p) 2561 { 2562 int rc; 2563 2564 /* Configure the new classification in the chip */ 2565 rc = p->rx_mode_obj->config_rx_mode(bp, p); 2566 if (rc < 0) 2567 return rc; 2568 2569 /* Wait for a ramrod completion if was requested */ 2570 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) { 2571 rc = p->rx_mode_obj->wait_comp(bp, p); 2572 if (rc) 2573 return rc; 2574 } 2575 2576 return rc; 2577 } 2578 2579 void bnx2x_init_rx_mode_obj(struct bnx2x *bp, 2580 struct bnx2x_rx_mode_obj *o) 2581 { 2582 if (CHIP_IS_E1x(bp)) { 2583 o->wait_comp = bnx2x_empty_rx_mode_wait; 2584 o->config_rx_mode = bnx2x_set_rx_mode_e1x; 2585 } else { 2586 o->wait_comp = bnx2x_wait_rx_mode_comp_e2; 2587 o->config_rx_mode = bnx2x_set_rx_mode_e2; 2588 } 2589 } 2590 2591 /********************* Multicast verbs: SET, CLEAR ****************************/ 2592 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac) 2593 { 2594 return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff; 2595 } 2596 2597 struct bnx2x_mcast_mac_elem { 2598 struct list_head link; 2599 u8 mac[ETH_ALEN]; 2600 u8 pad[2]; /* For a natural alignment of the following buffer */ 2601 }; 2602 2603 struct bnx2x_pending_mcast_cmd { 2604 struct list_head link; 2605 int type; /* BNX2X_MCAST_CMD_X */ 2606 union { 2607 struct list_head macs_head; 2608 u32 macs_num; /* Needed for DEL command */ 2609 int next_bin; /* Needed for RESTORE flow with aprox match */ 2610 } data; 2611 2612 bool done; /* set to true, when the command has been handled, 2613 * practically used in 57712 handling only, where one pending 2614 * command may be handled in a few operations. As long as for 2615 * other chips every operation handling is completed in a 2616 * single ramrod, there is no need to utilize this field. 2617 */ 2618 }; 2619 2620 static int bnx2x_mcast_wait(struct bnx2x *bp, 2621 struct bnx2x_mcast_obj *o) 2622 { 2623 if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) || 2624 o->raw.wait_comp(bp, &o->raw)) 2625 return -EBUSY; 2626 2627 return 0; 2628 } 2629 2630 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp, 2631 struct bnx2x_mcast_obj *o, 2632 struct bnx2x_mcast_ramrod_params *p, 2633 enum bnx2x_mcast_cmd cmd) 2634 { 2635 int total_sz; 2636 struct bnx2x_pending_mcast_cmd *new_cmd; 2637 struct bnx2x_mcast_mac_elem *cur_mac = NULL; 2638 struct bnx2x_mcast_list_elem *pos; 2639 int macs_list_len = ((cmd == BNX2X_MCAST_CMD_ADD) ? 2640 p->mcast_list_len : 0); 2641 2642 /* If the command is empty ("handle pending commands only"), break */ 2643 if (!p->mcast_list_len) 2644 return 0; 2645 2646 total_sz = sizeof(*new_cmd) + 2647 macs_list_len * sizeof(struct bnx2x_mcast_mac_elem); 2648 2649 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */ 2650 new_cmd = kzalloc(total_sz, GFP_ATOMIC); 2651 2652 if (!new_cmd) 2653 return -ENOMEM; 2654 2655 DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n", 2656 cmd, macs_list_len); 2657 2658 INIT_LIST_HEAD(&new_cmd->data.macs_head); 2659 2660 new_cmd->type = cmd; 2661 new_cmd->done = false; 2662 2663 switch (cmd) { 2664 case BNX2X_MCAST_CMD_ADD: 2665 cur_mac = (struct bnx2x_mcast_mac_elem *) 2666 ((u8 *)new_cmd + sizeof(*new_cmd)); 2667 2668 /* Push the MACs of the current command into the pending command 2669 * MACs list: FIFO 2670 */ 2671 list_for_each_entry(pos, &p->mcast_list, link) { 2672 memcpy(cur_mac->mac, pos->mac, ETH_ALEN); 2673 list_add_tail(&cur_mac->link, &new_cmd->data.macs_head); 2674 cur_mac++; 2675 } 2676 2677 break; 2678 2679 case BNX2X_MCAST_CMD_DEL: 2680 new_cmd->data.macs_num = p->mcast_list_len; 2681 break; 2682 2683 case BNX2X_MCAST_CMD_RESTORE: 2684 new_cmd->data.next_bin = 0; 2685 break; 2686 2687 default: 2688 kfree(new_cmd); 2689 BNX2X_ERR("Unknown command: %d\n", cmd); 2690 return -EINVAL; 2691 } 2692 2693 /* Push the new pending command to the tail of the pending list: FIFO */ 2694 list_add_tail(&new_cmd->link, &o->pending_cmds_head); 2695 2696 o->set_sched(o); 2697 2698 return 1; 2699 } 2700 2701 /** 2702 * bnx2x_mcast_get_next_bin - get the next set bin (index) 2703 * 2704 * @o: 2705 * @last: index to start looking from (including) 2706 * 2707 * returns the next found (set) bin or a negative value if none is found. 2708 */ 2709 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last) 2710 { 2711 int i, j, inner_start = last % BIT_VEC64_ELEM_SZ; 2712 2713 for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) { 2714 if (o->registry.aprox_match.vec[i]) 2715 for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) { 2716 int cur_bit = j + BIT_VEC64_ELEM_SZ * i; 2717 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match. 2718 vec, cur_bit)) { 2719 return cur_bit; 2720 } 2721 } 2722 inner_start = 0; 2723 } 2724 2725 /* None found */ 2726 return -1; 2727 } 2728 2729 /** 2730 * bnx2x_mcast_clear_first_bin - find the first set bin and clear it 2731 * 2732 * @o: 2733 * 2734 * returns the index of the found bin or -1 if none is found 2735 */ 2736 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o) 2737 { 2738 int cur_bit = bnx2x_mcast_get_next_bin(o, 0); 2739 2740 if (cur_bit >= 0) 2741 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit); 2742 2743 return cur_bit; 2744 } 2745 2746 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o) 2747 { 2748 struct bnx2x_raw_obj *raw = &o->raw; 2749 u8 rx_tx_flag = 0; 2750 2751 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) || 2752 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX)) 2753 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD; 2754 2755 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) || 2756 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX)) 2757 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD; 2758 2759 return rx_tx_flag; 2760 } 2761 2762 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp, 2763 struct bnx2x_mcast_obj *o, int idx, 2764 union bnx2x_mcast_config_data *cfg_data, 2765 enum bnx2x_mcast_cmd cmd) 2766 { 2767 struct bnx2x_raw_obj *r = &o->raw; 2768 struct eth_multicast_rules_ramrod_data *data = 2769 (struct eth_multicast_rules_ramrod_data *)(r->rdata); 2770 u8 func_id = r->func_id; 2771 u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o); 2772 int bin; 2773 2774 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) 2775 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD; 2776 2777 data->rules[idx].cmd_general_data |= rx_tx_add_flag; 2778 2779 /* Get a bin and update a bins' vector */ 2780 switch (cmd) { 2781 case BNX2X_MCAST_CMD_ADD: 2782 bin = bnx2x_mcast_bin_from_mac(cfg_data->mac); 2783 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin); 2784 break; 2785 2786 case BNX2X_MCAST_CMD_DEL: 2787 /* If there were no more bins to clear 2788 * (bnx2x_mcast_clear_first_bin() returns -1) then we would 2789 * clear any (0xff) bin. 2790 * See bnx2x_mcast_validate_e2() for explanation when it may 2791 * happen. 2792 */ 2793 bin = bnx2x_mcast_clear_first_bin(o); 2794 break; 2795 2796 case BNX2X_MCAST_CMD_RESTORE: 2797 bin = cfg_data->bin; 2798 break; 2799 2800 default: 2801 BNX2X_ERR("Unknown command: %d\n", cmd); 2802 return; 2803 } 2804 2805 DP(BNX2X_MSG_SP, "%s bin %d\n", 2806 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ? 2807 "Setting" : "Clearing"), bin); 2808 2809 data->rules[idx].bin_id = (u8)bin; 2810 data->rules[idx].func_id = func_id; 2811 data->rules[idx].engine_id = o->engine_id; 2812 } 2813 2814 /** 2815 * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry 2816 * 2817 * @bp: device handle 2818 * @o: 2819 * @start_bin: index in the registry to start from (including) 2820 * @rdata_idx: index in the ramrod data to start from 2821 * 2822 * returns last handled bin index or -1 if all bins have been handled 2823 */ 2824 static inline int bnx2x_mcast_handle_restore_cmd_e2( 2825 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin, 2826 int *rdata_idx) 2827 { 2828 int cur_bin, cnt = *rdata_idx; 2829 union bnx2x_mcast_config_data cfg_data = {NULL}; 2830 2831 /* go through the registry and configure the bins from it */ 2832 for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0; 2833 cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) { 2834 2835 cfg_data.bin = (u8)cur_bin; 2836 o->set_one_rule(bp, o, cnt, &cfg_data, 2837 BNX2X_MCAST_CMD_RESTORE); 2838 2839 cnt++; 2840 2841 DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin); 2842 2843 /* Break if we reached the maximum number 2844 * of rules. 2845 */ 2846 if (cnt >= o->max_cmd_len) 2847 break; 2848 } 2849 2850 *rdata_idx = cnt; 2851 2852 return cur_bin; 2853 } 2854 2855 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp, 2856 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos, 2857 int *line_idx) 2858 { 2859 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n; 2860 int cnt = *line_idx; 2861 union bnx2x_mcast_config_data cfg_data = {NULL}; 2862 2863 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head, 2864 link) { 2865 2866 cfg_data.mac = &pmac_pos->mac[0]; 2867 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type); 2868 2869 cnt++; 2870 2871 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n", 2872 pmac_pos->mac); 2873 2874 list_del(&pmac_pos->link); 2875 2876 /* Break if we reached the maximum number 2877 * of rules. 2878 */ 2879 if (cnt >= o->max_cmd_len) 2880 break; 2881 } 2882 2883 *line_idx = cnt; 2884 2885 /* if no more MACs to configure - we are done */ 2886 if (list_empty(&cmd_pos->data.macs_head)) 2887 cmd_pos->done = true; 2888 } 2889 2890 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp, 2891 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos, 2892 int *line_idx) 2893 { 2894 int cnt = *line_idx; 2895 2896 while (cmd_pos->data.macs_num) { 2897 o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type); 2898 2899 cnt++; 2900 2901 cmd_pos->data.macs_num--; 2902 2903 DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n", 2904 cmd_pos->data.macs_num, cnt); 2905 2906 /* Break if we reached the maximum 2907 * number of rules. 2908 */ 2909 if (cnt >= o->max_cmd_len) 2910 break; 2911 } 2912 2913 *line_idx = cnt; 2914 2915 /* If we cleared all bins - we are done */ 2916 if (!cmd_pos->data.macs_num) 2917 cmd_pos->done = true; 2918 } 2919 2920 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp, 2921 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos, 2922 int *line_idx) 2923 { 2924 cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin, 2925 line_idx); 2926 2927 if (cmd_pos->data.next_bin < 0) 2928 /* If o->set_restore returned -1 we are done */ 2929 cmd_pos->done = true; 2930 else 2931 /* Start from the next bin next time */ 2932 cmd_pos->data.next_bin++; 2933 } 2934 2935 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp, 2936 struct bnx2x_mcast_ramrod_params *p) 2937 { 2938 struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n; 2939 int cnt = 0; 2940 struct bnx2x_mcast_obj *o = p->mcast_obj; 2941 2942 list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head, 2943 link) { 2944 switch (cmd_pos->type) { 2945 case BNX2X_MCAST_CMD_ADD: 2946 bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt); 2947 break; 2948 2949 case BNX2X_MCAST_CMD_DEL: 2950 bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt); 2951 break; 2952 2953 case BNX2X_MCAST_CMD_RESTORE: 2954 bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos, 2955 &cnt); 2956 break; 2957 2958 default: 2959 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type); 2960 return -EINVAL; 2961 } 2962 2963 /* If the command has been completed - remove it from the list 2964 * and free the memory 2965 */ 2966 if (cmd_pos->done) { 2967 list_del(&cmd_pos->link); 2968 kfree(cmd_pos); 2969 } 2970 2971 /* Break if we reached the maximum number of rules */ 2972 if (cnt >= o->max_cmd_len) 2973 break; 2974 } 2975 2976 return cnt; 2977 } 2978 2979 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp, 2980 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p, 2981 int *line_idx) 2982 { 2983 struct bnx2x_mcast_list_elem *mlist_pos; 2984 union bnx2x_mcast_config_data cfg_data = {NULL}; 2985 int cnt = *line_idx; 2986 2987 list_for_each_entry(mlist_pos, &p->mcast_list, link) { 2988 cfg_data.mac = mlist_pos->mac; 2989 o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD); 2990 2991 cnt++; 2992 2993 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n", 2994 mlist_pos->mac); 2995 } 2996 2997 *line_idx = cnt; 2998 } 2999 3000 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp, 3001 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p, 3002 int *line_idx) 3003 { 3004 int cnt = *line_idx, i; 3005 3006 for (i = 0; i < p->mcast_list_len; i++) { 3007 o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL); 3008 3009 cnt++; 3010 3011 DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n", 3012 p->mcast_list_len - i - 1); 3013 } 3014 3015 *line_idx = cnt; 3016 } 3017 3018 /** 3019 * bnx2x_mcast_handle_current_cmd - 3020 * 3021 * @bp: device handle 3022 * @p: 3023 * @cmd: 3024 * @start_cnt: first line in the ramrod data that may be used 3025 * 3026 * This function is called iff there is enough place for the current command in 3027 * the ramrod data. 3028 * Returns number of lines filled in the ramrod data in total. 3029 */ 3030 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp, 3031 struct bnx2x_mcast_ramrod_params *p, 3032 enum bnx2x_mcast_cmd cmd, 3033 int start_cnt) 3034 { 3035 struct bnx2x_mcast_obj *o = p->mcast_obj; 3036 int cnt = start_cnt; 3037 3038 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len); 3039 3040 switch (cmd) { 3041 case BNX2X_MCAST_CMD_ADD: 3042 bnx2x_mcast_hdl_add(bp, o, p, &cnt); 3043 break; 3044 3045 case BNX2X_MCAST_CMD_DEL: 3046 bnx2x_mcast_hdl_del(bp, o, p, &cnt); 3047 break; 3048 3049 case BNX2X_MCAST_CMD_RESTORE: 3050 o->hdl_restore(bp, o, 0, &cnt); 3051 break; 3052 3053 default: 3054 BNX2X_ERR("Unknown command: %d\n", cmd); 3055 return -EINVAL; 3056 } 3057 3058 /* The current command has been handled */ 3059 p->mcast_list_len = 0; 3060 3061 return cnt; 3062 } 3063 3064 static int bnx2x_mcast_validate_e2(struct bnx2x *bp, 3065 struct bnx2x_mcast_ramrod_params *p, 3066 enum bnx2x_mcast_cmd cmd) 3067 { 3068 struct bnx2x_mcast_obj *o = p->mcast_obj; 3069 int reg_sz = o->get_registry_size(o); 3070 3071 switch (cmd) { 3072 /* DEL command deletes all currently configured MACs */ 3073 case BNX2X_MCAST_CMD_DEL: 3074 o->set_registry_size(o, 0); 3075 /* Don't break */ 3076 3077 /* RESTORE command will restore the entire multicast configuration */ 3078 case BNX2X_MCAST_CMD_RESTORE: 3079 /* Here we set the approximate amount of work to do, which in 3080 * fact may be only less as some MACs in postponed ADD 3081 * command(s) scheduled before this command may fall into 3082 * the same bin and the actual number of bins set in the 3083 * registry would be less than we estimated here. See 3084 * bnx2x_mcast_set_one_rule_e2() for further details. 3085 */ 3086 p->mcast_list_len = reg_sz; 3087 break; 3088 3089 case BNX2X_MCAST_CMD_ADD: 3090 case BNX2X_MCAST_CMD_CONT: 3091 /* Here we assume that all new MACs will fall into new bins. 3092 * However we will correct the real registry size after we 3093 * handle all pending commands. 3094 */ 3095 o->set_registry_size(o, reg_sz + p->mcast_list_len); 3096 break; 3097 3098 default: 3099 BNX2X_ERR("Unknown command: %d\n", cmd); 3100 return -EINVAL; 3101 } 3102 3103 /* Increase the total number of MACs pending to be configured */ 3104 o->total_pending_num += p->mcast_list_len; 3105 3106 return 0; 3107 } 3108 3109 static void bnx2x_mcast_revert_e2(struct bnx2x *bp, 3110 struct bnx2x_mcast_ramrod_params *p, 3111 int old_num_bins) 3112 { 3113 struct bnx2x_mcast_obj *o = p->mcast_obj; 3114 3115 o->set_registry_size(o, old_num_bins); 3116 o->total_pending_num -= p->mcast_list_len; 3117 } 3118 3119 /** 3120 * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values 3121 * 3122 * @bp: device handle 3123 * @p: 3124 * @len: number of rules to handle 3125 */ 3126 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp, 3127 struct bnx2x_mcast_ramrod_params *p, 3128 u8 len) 3129 { 3130 struct bnx2x_raw_obj *r = &p->mcast_obj->raw; 3131 struct eth_multicast_rules_ramrod_data *data = 3132 (struct eth_multicast_rules_ramrod_data *)(r->rdata); 3133 3134 data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) | 3135 (BNX2X_FILTER_MCAST_PENDING << 3136 BNX2X_SWCID_SHIFT)); 3137 data->header.rule_cnt = len; 3138 } 3139 3140 /** 3141 * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins 3142 * 3143 * @bp: device handle 3144 * @o: 3145 * 3146 * Recalculate the actual number of set bins in the registry using Brian 3147 * Kernighan's algorithm: it's execution complexity is as a number of set bins. 3148 * 3149 * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1(). 3150 */ 3151 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp, 3152 struct bnx2x_mcast_obj *o) 3153 { 3154 int i, cnt = 0; 3155 u64 elem; 3156 3157 for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) { 3158 elem = o->registry.aprox_match.vec[i]; 3159 for (; elem; cnt++) 3160 elem &= elem - 1; 3161 } 3162 3163 o->set_registry_size(o, cnt); 3164 3165 return 0; 3166 } 3167 3168 static int bnx2x_mcast_setup_e2(struct bnx2x *bp, 3169 struct bnx2x_mcast_ramrod_params *p, 3170 enum bnx2x_mcast_cmd cmd) 3171 { 3172 struct bnx2x_raw_obj *raw = &p->mcast_obj->raw; 3173 struct bnx2x_mcast_obj *o = p->mcast_obj; 3174 struct eth_multicast_rules_ramrod_data *data = 3175 (struct eth_multicast_rules_ramrod_data *)(raw->rdata); 3176 int cnt = 0, rc; 3177 3178 /* Reset the ramrod data buffer */ 3179 memset(data, 0, sizeof(*data)); 3180 3181 cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p); 3182 3183 /* If there are no more pending commands - clear SCHEDULED state */ 3184 if (list_empty(&o->pending_cmds_head)) 3185 o->clear_sched(o); 3186 3187 /* The below may be true iff there was enough room in ramrod 3188 * data for all pending commands and for the current 3189 * command. Otherwise the current command would have been added 3190 * to the pending commands and p->mcast_list_len would have been 3191 * zeroed. 3192 */ 3193 if (p->mcast_list_len > 0) 3194 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt); 3195 3196 /* We've pulled out some MACs - update the total number of 3197 * outstanding. 3198 */ 3199 o->total_pending_num -= cnt; 3200 3201 /* send a ramrod */ 3202 WARN_ON(o->total_pending_num < 0); 3203 WARN_ON(cnt > o->max_cmd_len); 3204 3205 bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt); 3206 3207 /* Update a registry size if there are no more pending operations. 3208 * 3209 * We don't want to change the value of the registry size if there are 3210 * pending operations because we want it to always be equal to the 3211 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of 3212 * set bins after the last requested operation in order to properly 3213 * evaluate the size of the next DEL/RESTORE operation. 3214 * 3215 * Note that we update the registry itself during command(s) handling 3216 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we 3217 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but 3218 * with a limited amount of update commands (per MAC/bin) and we don't 3219 * know in this scope what the actual state of bins configuration is 3220 * going to be after this ramrod. 3221 */ 3222 if (!o->total_pending_num) 3223 bnx2x_mcast_refresh_registry_e2(bp, o); 3224 3225 /* If CLEAR_ONLY was requested - don't send a ramrod and clear 3226 * RAMROD_PENDING status immediately. 3227 */ 3228 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) { 3229 raw->clear_pending(raw); 3230 return 0; 3231 } else { 3232 /* No need for an explicit memory barrier here as long as we 3233 * ensure the ordering of writing to the SPQ element 3234 * and updating of the SPQ producer which involves a memory 3235 * read. If the memory read is removed we will have to put a 3236 * full memory barrier there (inside bnx2x_sp_post()). 3237 */ 3238 3239 /* Send a ramrod */ 3240 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES, 3241 raw->cid, U64_HI(raw->rdata_mapping), 3242 U64_LO(raw->rdata_mapping), 3243 ETH_CONNECTION_TYPE); 3244 if (rc) 3245 return rc; 3246 3247 /* Ramrod completion is pending */ 3248 return 1; 3249 } 3250 } 3251 3252 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp, 3253 struct bnx2x_mcast_ramrod_params *p, 3254 enum bnx2x_mcast_cmd cmd) 3255 { 3256 /* Mark, that there is a work to do */ 3257 if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE)) 3258 p->mcast_list_len = 1; 3259 3260 return 0; 3261 } 3262 3263 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp, 3264 struct bnx2x_mcast_ramrod_params *p, 3265 int old_num_bins) 3266 { 3267 /* Do nothing */ 3268 } 3269 3270 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \ 3271 do { \ 3272 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \ 3273 } while (0) 3274 3275 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp, 3276 struct bnx2x_mcast_obj *o, 3277 struct bnx2x_mcast_ramrod_params *p, 3278 u32 *mc_filter) 3279 { 3280 struct bnx2x_mcast_list_elem *mlist_pos; 3281 int bit; 3282 3283 list_for_each_entry(mlist_pos, &p->mcast_list, link) { 3284 bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac); 3285 BNX2X_57711_SET_MC_FILTER(mc_filter, bit); 3286 3287 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n", 3288 mlist_pos->mac, bit); 3289 3290 /* bookkeeping... */ 3291 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, 3292 bit); 3293 } 3294 } 3295 3296 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp, 3297 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p, 3298 u32 *mc_filter) 3299 { 3300 int bit; 3301 3302 for (bit = bnx2x_mcast_get_next_bin(o, 0); 3303 bit >= 0; 3304 bit = bnx2x_mcast_get_next_bin(o, bit + 1)) { 3305 BNX2X_57711_SET_MC_FILTER(mc_filter, bit); 3306 DP(BNX2X_MSG_SP, "About to set bin %d\n", bit); 3307 } 3308 } 3309 3310 /* On 57711 we write the multicast MACs' approximate match 3311 * table by directly into the TSTORM's internal RAM. So we don't 3312 * really need to handle any tricks to make it work. 3313 */ 3314 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp, 3315 struct bnx2x_mcast_ramrod_params *p, 3316 enum bnx2x_mcast_cmd cmd) 3317 { 3318 int i; 3319 struct bnx2x_mcast_obj *o = p->mcast_obj; 3320 struct bnx2x_raw_obj *r = &o->raw; 3321 3322 /* If CLEAR_ONLY has been requested - clear the registry 3323 * and clear a pending bit. 3324 */ 3325 if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) { 3326 u32 mc_filter[MC_HASH_SIZE] = {0}; 3327 3328 /* Set the multicast filter bits before writing it into 3329 * the internal memory. 3330 */ 3331 switch (cmd) { 3332 case BNX2X_MCAST_CMD_ADD: 3333 bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter); 3334 break; 3335 3336 case BNX2X_MCAST_CMD_DEL: 3337 DP(BNX2X_MSG_SP, 3338 "Invalidating multicast MACs configuration\n"); 3339 3340 /* clear the registry */ 3341 memset(o->registry.aprox_match.vec, 0, 3342 sizeof(o->registry.aprox_match.vec)); 3343 break; 3344 3345 case BNX2X_MCAST_CMD_RESTORE: 3346 bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter); 3347 break; 3348 3349 default: 3350 BNX2X_ERR("Unknown command: %d\n", cmd); 3351 return -EINVAL; 3352 } 3353 3354 /* Set the mcast filter in the internal memory */ 3355 for (i = 0; i < MC_HASH_SIZE; i++) 3356 REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]); 3357 } else 3358 /* clear the registry */ 3359 memset(o->registry.aprox_match.vec, 0, 3360 sizeof(o->registry.aprox_match.vec)); 3361 3362 /* We are done */ 3363 r->clear_pending(r); 3364 3365 return 0; 3366 } 3367 3368 static int bnx2x_mcast_validate_e1(struct bnx2x *bp, 3369 struct bnx2x_mcast_ramrod_params *p, 3370 enum bnx2x_mcast_cmd cmd) 3371 { 3372 struct bnx2x_mcast_obj *o = p->mcast_obj; 3373 int reg_sz = o->get_registry_size(o); 3374 3375 switch (cmd) { 3376 /* DEL command deletes all currently configured MACs */ 3377 case BNX2X_MCAST_CMD_DEL: 3378 o->set_registry_size(o, 0); 3379 /* Don't break */ 3380 3381 /* RESTORE command will restore the entire multicast configuration */ 3382 case BNX2X_MCAST_CMD_RESTORE: 3383 p->mcast_list_len = reg_sz; 3384 DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n", 3385 cmd, p->mcast_list_len); 3386 break; 3387 3388 case BNX2X_MCAST_CMD_ADD: 3389 case BNX2X_MCAST_CMD_CONT: 3390 /* Multicast MACs on 57710 are configured as unicast MACs and 3391 * there is only a limited number of CAM entries for that 3392 * matter. 3393 */ 3394 if (p->mcast_list_len > o->max_cmd_len) { 3395 BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n", 3396 o->max_cmd_len); 3397 return -EINVAL; 3398 } 3399 /* Every configured MAC should be cleared if DEL command is 3400 * called. Only the last ADD command is relevant as long as 3401 * every ADD commands overrides the previous configuration. 3402 */ 3403 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len); 3404 if (p->mcast_list_len > 0) 3405 o->set_registry_size(o, p->mcast_list_len); 3406 3407 break; 3408 3409 default: 3410 BNX2X_ERR("Unknown command: %d\n", cmd); 3411 return -EINVAL; 3412 } 3413 3414 /* We want to ensure that commands are executed one by one for 57710. 3415 * Therefore each none-empty command will consume o->max_cmd_len. 3416 */ 3417 if (p->mcast_list_len) 3418 o->total_pending_num += o->max_cmd_len; 3419 3420 return 0; 3421 } 3422 3423 static void bnx2x_mcast_revert_e1(struct bnx2x *bp, 3424 struct bnx2x_mcast_ramrod_params *p, 3425 int old_num_macs) 3426 { 3427 struct bnx2x_mcast_obj *o = p->mcast_obj; 3428 3429 o->set_registry_size(o, old_num_macs); 3430 3431 /* If current command hasn't been handled yet and we are 3432 * here means that it's meant to be dropped and we have to 3433 * update the number of outstanding MACs accordingly. 3434 */ 3435 if (p->mcast_list_len) 3436 o->total_pending_num -= o->max_cmd_len; 3437 } 3438 3439 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp, 3440 struct bnx2x_mcast_obj *o, int idx, 3441 union bnx2x_mcast_config_data *cfg_data, 3442 enum bnx2x_mcast_cmd cmd) 3443 { 3444 struct bnx2x_raw_obj *r = &o->raw; 3445 struct mac_configuration_cmd *data = 3446 (struct mac_configuration_cmd *)(r->rdata); 3447 3448 /* copy mac */ 3449 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) { 3450 bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr, 3451 &data->config_table[idx].middle_mac_addr, 3452 &data->config_table[idx].lsb_mac_addr, 3453 cfg_data->mac); 3454 3455 data->config_table[idx].vlan_id = 0; 3456 data->config_table[idx].pf_id = r->func_id; 3457 data->config_table[idx].clients_bit_vector = 3458 cpu_to_le32(1 << r->cl_id); 3459 3460 SET_FLAG(data->config_table[idx].flags, 3461 MAC_CONFIGURATION_ENTRY_ACTION_TYPE, 3462 T_ETH_MAC_COMMAND_SET); 3463 } 3464 } 3465 3466 /** 3467 * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd 3468 * 3469 * @bp: device handle 3470 * @p: 3471 * @len: number of rules to handle 3472 */ 3473 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp, 3474 struct bnx2x_mcast_ramrod_params *p, 3475 u8 len) 3476 { 3477 struct bnx2x_raw_obj *r = &p->mcast_obj->raw; 3478 struct mac_configuration_cmd *data = 3479 (struct mac_configuration_cmd *)(r->rdata); 3480 3481 u8 offset = (CHIP_REV_IS_SLOW(bp) ? 3482 BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) : 3483 BNX2X_MAX_MULTICAST*(1 + r->func_id)); 3484 3485 data->hdr.offset = offset; 3486 data->hdr.client_id = cpu_to_le16(0xff); 3487 data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) | 3488 (BNX2X_FILTER_MCAST_PENDING << 3489 BNX2X_SWCID_SHIFT)); 3490 data->hdr.length = len; 3491 } 3492 3493 /** 3494 * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710 3495 * 3496 * @bp: device handle 3497 * @o: 3498 * @start_idx: index in the registry to start from 3499 * @rdata_idx: index in the ramrod data to start from 3500 * 3501 * restore command for 57710 is like all other commands - always a stand alone 3502 * command - start_idx and rdata_idx will always be 0. This function will always 3503 * succeed. 3504 * returns -1 to comply with 57712 variant. 3505 */ 3506 static inline int bnx2x_mcast_handle_restore_cmd_e1( 3507 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx, 3508 int *rdata_idx) 3509 { 3510 struct bnx2x_mcast_mac_elem *elem; 3511 int i = 0; 3512 union bnx2x_mcast_config_data cfg_data = {NULL}; 3513 3514 /* go through the registry and configure the MACs from it. */ 3515 list_for_each_entry(elem, &o->registry.exact_match.macs, link) { 3516 cfg_data.mac = &elem->mac[0]; 3517 o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE); 3518 3519 i++; 3520 3521 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n", 3522 cfg_data.mac); 3523 } 3524 3525 *rdata_idx = i; 3526 3527 return -1; 3528 } 3529 3530 static inline int bnx2x_mcast_handle_pending_cmds_e1( 3531 struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p) 3532 { 3533 struct bnx2x_pending_mcast_cmd *cmd_pos; 3534 struct bnx2x_mcast_mac_elem *pmac_pos; 3535 struct bnx2x_mcast_obj *o = p->mcast_obj; 3536 union bnx2x_mcast_config_data cfg_data = {NULL}; 3537 int cnt = 0; 3538 3539 /* If nothing to be done - return */ 3540 if (list_empty(&o->pending_cmds_head)) 3541 return 0; 3542 3543 /* Handle the first command */ 3544 cmd_pos = list_first_entry(&o->pending_cmds_head, 3545 struct bnx2x_pending_mcast_cmd, link); 3546 3547 switch (cmd_pos->type) { 3548 case BNX2X_MCAST_CMD_ADD: 3549 list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) { 3550 cfg_data.mac = &pmac_pos->mac[0]; 3551 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type); 3552 3553 cnt++; 3554 3555 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n", 3556 pmac_pos->mac); 3557 } 3558 break; 3559 3560 case BNX2X_MCAST_CMD_DEL: 3561 cnt = cmd_pos->data.macs_num; 3562 DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt); 3563 break; 3564 3565 case BNX2X_MCAST_CMD_RESTORE: 3566 o->hdl_restore(bp, o, 0, &cnt); 3567 break; 3568 3569 default: 3570 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type); 3571 return -EINVAL; 3572 } 3573 3574 list_del(&cmd_pos->link); 3575 kfree(cmd_pos); 3576 3577 return cnt; 3578 } 3579 3580 /** 3581 * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr(). 3582 * 3583 * @fw_hi: 3584 * @fw_mid: 3585 * @fw_lo: 3586 * @mac: 3587 */ 3588 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid, 3589 __le16 *fw_lo, u8 *mac) 3590 { 3591 mac[1] = ((u8 *)fw_hi)[0]; 3592 mac[0] = ((u8 *)fw_hi)[1]; 3593 mac[3] = ((u8 *)fw_mid)[0]; 3594 mac[2] = ((u8 *)fw_mid)[1]; 3595 mac[5] = ((u8 *)fw_lo)[0]; 3596 mac[4] = ((u8 *)fw_lo)[1]; 3597 } 3598 3599 /** 3600 * bnx2x_mcast_refresh_registry_e1 - 3601 * 3602 * @bp: device handle 3603 * @cnt: 3604 * 3605 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command 3606 * and update the registry correspondingly: if ADD - allocate a memory and add 3607 * the entries to the registry (list), if DELETE - clear the registry and free 3608 * the memory. 3609 */ 3610 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp, 3611 struct bnx2x_mcast_obj *o) 3612 { 3613 struct bnx2x_raw_obj *raw = &o->raw; 3614 struct bnx2x_mcast_mac_elem *elem; 3615 struct mac_configuration_cmd *data = 3616 (struct mac_configuration_cmd *)(raw->rdata); 3617 3618 /* If first entry contains a SET bit - the command was ADD, 3619 * otherwise - DEL_ALL 3620 */ 3621 if (GET_FLAG(data->config_table[0].flags, 3622 MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) { 3623 int i, len = data->hdr.length; 3624 3625 /* Break if it was a RESTORE command */ 3626 if (!list_empty(&o->registry.exact_match.macs)) 3627 return 0; 3628 3629 elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC); 3630 if (!elem) { 3631 BNX2X_ERR("Failed to allocate registry memory\n"); 3632 return -ENOMEM; 3633 } 3634 3635 for (i = 0; i < len; i++, elem++) { 3636 bnx2x_get_fw_mac_addr( 3637 &data->config_table[i].msb_mac_addr, 3638 &data->config_table[i].middle_mac_addr, 3639 &data->config_table[i].lsb_mac_addr, 3640 elem->mac); 3641 DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n", 3642 elem->mac); 3643 list_add_tail(&elem->link, 3644 &o->registry.exact_match.macs); 3645 } 3646 } else { 3647 elem = list_first_entry(&o->registry.exact_match.macs, 3648 struct bnx2x_mcast_mac_elem, link); 3649 DP(BNX2X_MSG_SP, "Deleting a registry\n"); 3650 kfree(elem); 3651 INIT_LIST_HEAD(&o->registry.exact_match.macs); 3652 } 3653 3654 return 0; 3655 } 3656 3657 static int bnx2x_mcast_setup_e1(struct bnx2x *bp, 3658 struct bnx2x_mcast_ramrod_params *p, 3659 enum bnx2x_mcast_cmd cmd) 3660 { 3661 struct bnx2x_mcast_obj *o = p->mcast_obj; 3662 struct bnx2x_raw_obj *raw = &o->raw; 3663 struct mac_configuration_cmd *data = 3664 (struct mac_configuration_cmd *)(raw->rdata); 3665 int cnt = 0, i, rc; 3666 3667 /* Reset the ramrod data buffer */ 3668 memset(data, 0, sizeof(*data)); 3669 3670 /* First set all entries as invalid */ 3671 for (i = 0; i < o->max_cmd_len ; i++) 3672 SET_FLAG(data->config_table[i].flags, 3673 MAC_CONFIGURATION_ENTRY_ACTION_TYPE, 3674 T_ETH_MAC_COMMAND_INVALIDATE); 3675 3676 /* Handle pending commands first */ 3677 cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p); 3678 3679 /* If there are no more pending commands - clear SCHEDULED state */ 3680 if (list_empty(&o->pending_cmds_head)) 3681 o->clear_sched(o); 3682 3683 /* The below may be true iff there were no pending commands */ 3684 if (!cnt) 3685 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0); 3686 3687 /* For 57710 every command has o->max_cmd_len length to ensure that 3688 * commands are done one at a time. 3689 */ 3690 o->total_pending_num -= o->max_cmd_len; 3691 3692 /* send a ramrod */ 3693 3694 WARN_ON(cnt > o->max_cmd_len); 3695 3696 /* Set ramrod header (in particular, a number of entries to update) */ 3697 bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt); 3698 3699 /* update a registry: we need the registry contents to be always up 3700 * to date in order to be able to execute a RESTORE opcode. Here 3701 * we use the fact that for 57710 we sent one command at a time 3702 * hence we may take the registry update out of the command handling 3703 * and do it in a simpler way here. 3704 */ 3705 rc = bnx2x_mcast_refresh_registry_e1(bp, o); 3706 if (rc) 3707 return rc; 3708 3709 /* If CLEAR_ONLY was requested - don't send a ramrod and clear 3710 * RAMROD_PENDING status immediately. 3711 */ 3712 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) { 3713 raw->clear_pending(raw); 3714 return 0; 3715 } else { 3716 /* No need for an explicit memory barrier here as long as we 3717 * ensure the ordering of writing to the SPQ element 3718 * and updating of the SPQ producer which involves a memory 3719 * read. If the memory read is removed we will have to put a 3720 * full memory barrier there (inside bnx2x_sp_post()). 3721 */ 3722 3723 /* Send a ramrod */ 3724 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid, 3725 U64_HI(raw->rdata_mapping), 3726 U64_LO(raw->rdata_mapping), 3727 ETH_CONNECTION_TYPE); 3728 if (rc) 3729 return rc; 3730 3731 /* Ramrod completion is pending */ 3732 return 1; 3733 } 3734 } 3735 3736 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o) 3737 { 3738 return o->registry.exact_match.num_macs_set; 3739 } 3740 3741 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o) 3742 { 3743 return o->registry.aprox_match.num_bins_set; 3744 } 3745 3746 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o, 3747 int n) 3748 { 3749 o->registry.exact_match.num_macs_set = n; 3750 } 3751 3752 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o, 3753 int n) 3754 { 3755 o->registry.aprox_match.num_bins_set = n; 3756 } 3757 3758 int bnx2x_config_mcast(struct bnx2x *bp, 3759 struct bnx2x_mcast_ramrod_params *p, 3760 enum bnx2x_mcast_cmd cmd) 3761 { 3762 struct bnx2x_mcast_obj *o = p->mcast_obj; 3763 struct bnx2x_raw_obj *r = &o->raw; 3764 int rc = 0, old_reg_size; 3765 3766 /* This is needed to recover number of currently configured mcast macs 3767 * in case of failure. 3768 */ 3769 old_reg_size = o->get_registry_size(o); 3770 3771 /* Do some calculations and checks */ 3772 rc = o->validate(bp, p, cmd); 3773 if (rc) 3774 return rc; 3775 3776 /* Return if there is no work to do */ 3777 if ((!p->mcast_list_len) && (!o->check_sched(o))) 3778 return 0; 3779 3780 DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n", 3781 o->total_pending_num, p->mcast_list_len, o->max_cmd_len); 3782 3783 /* Enqueue the current command to the pending list if we can't complete 3784 * it in the current iteration 3785 */ 3786 if (r->check_pending(r) || 3787 ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) { 3788 rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd); 3789 if (rc < 0) 3790 goto error_exit1; 3791 3792 /* As long as the current command is in a command list we 3793 * don't need to handle it separately. 3794 */ 3795 p->mcast_list_len = 0; 3796 } 3797 3798 if (!r->check_pending(r)) { 3799 3800 /* Set 'pending' state */ 3801 r->set_pending(r); 3802 3803 /* Configure the new classification in the chip */ 3804 rc = o->config_mcast(bp, p, cmd); 3805 if (rc < 0) 3806 goto error_exit2; 3807 3808 /* Wait for a ramrod completion if was requested */ 3809 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) 3810 rc = o->wait_comp(bp, o); 3811 } 3812 3813 return rc; 3814 3815 error_exit2: 3816 r->clear_pending(r); 3817 3818 error_exit1: 3819 o->revert(bp, p, old_reg_size); 3820 3821 return rc; 3822 } 3823 3824 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o) 3825 { 3826 smp_mb__before_atomic(); 3827 clear_bit(o->sched_state, o->raw.pstate); 3828 smp_mb__after_atomic(); 3829 } 3830 3831 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o) 3832 { 3833 smp_mb__before_atomic(); 3834 set_bit(o->sched_state, o->raw.pstate); 3835 smp_mb__after_atomic(); 3836 } 3837 3838 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o) 3839 { 3840 return !!test_bit(o->sched_state, o->raw.pstate); 3841 } 3842 3843 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o) 3844 { 3845 return o->raw.check_pending(&o->raw) || o->check_sched(o); 3846 } 3847 3848 void bnx2x_init_mcast_obj(struct bnx2x *bp, 3849 struct bnx2x_mcast_obj *mcast_obj, 3850 u8 mcast_cl_id, u32 mcast_cid, u8 func_id, 3851 u8 engine_id, void *rdata, dma_addr_t rdata_mapping, 3852 int state, unsigned long *pstate, bnx2x_obj_type type) 3853 { 3854 memset(mcast_obj, 0, sizeof(*mcast_obj)); 3855 3856 bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id, 3857 rdata, rdata_mapping, state, pstate, type); 3858 3859 mcast_obj->engine_id = engine_id; 3860 3861 INIT_LIST_HEAD(&mcast_obj->pending_cmds_head); 3862 3863 mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED; 3864 mcast_obj->check_sched = bnx2x_mcast_check_sched; 3865 mcast_obj->set_sched = bnx2x_mcast_set_sched; 3866 mcast_obj->clear_sched = bnx2x_mcast_clear_sched; 3867 3868 if (CHIP_IS_E1(bp)) { 3869 mcast_obj->config_mcast = bnx2x_mcast_setup_e1; 3870 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd; 3871 mcast_obj->hdl_restore = 3872 bnx2x_mcast_handle_restore_cmd_e1; 3873 mcast_obj->check_pending = bnx2x_mcast_check_pending; 3874 3875 if (CHIP_REV_IS_SLOW(bp)) 3876 mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI; 3877 else 3878 mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST; 3879 3880 mcast_obj->wait_comp = bnx2x_mcast_wait; 3881 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e1; 3882 mcast_obj->validate = bnx2x_mcast_validate_e1; 3883 mcast_obj->revert = bnx2x_mcast_revert_e1; 3884 mcast_obj->get_registry_size = 3885 bnx2x_mcast_get_registry_size_exact; 3886 mcast_obj->set_registry_size = 3887 bnx2x_mcast_set_registry_size_exact; 3888 3889 /* 57710 is the only chip that uses the exact match for mcast 3890 * at the moment. 3891 */ 3892 INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs); 3893 3894 } else if (CHIP_IS_E1H(bp)) { 3895 mcast_obj->config_mcast = bnx2x_mcast_setup_e1h; 3896 mcast_obj->enqueue_cmd = NULL; 3897 mcast_obj->hdl_restore = NULL; 3898 mcast_obj->check_pending = bnx2x_mcast_check_pending; 3899 3900 /* 57711 doesn't send a ramrod, so it has unlimited credit 3901 * for one command. 3902 */ 3903 mcast_obj->max_cmd_len = -1; 3904 mcast_obj->wait_comp = bnx2x_mcast_wait; 3905 mcast_obj->set_one_rule = NULL; 3906 mcast_obj->validate = bnx2x_mcast_validate_e1h; 3907 mcast_obj->revert = bnx2x_mcast_revert_e1h; 3908 mcast_obj->get_registry_size = 3909 bnx2x_mcast_get_registry_size_aprox; 3910 mcast_obj->set_registry_size = 3911 bnx2x_mcast_set_registry_size_aprox; 3912 } else { 3913 mcast_obj->config_mcast = bnx2x_mcast_setup_e2; 3914 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd; 3915 mcast_obj->hdl_restore = 3916 bnx2x_mcast_handle_restore_cmd_e2; 3917 mcast_obj->check_pending = bnx2x_mcast_check_pending; 3918 /* TODO: There should be a proper HSI define for this number!!! 3919 */ 3920 mcast_obj->max_cmd_len = 16; 3921 mcast_obj->wait_comp = bnx2x_mcast_wait; 3922 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e2; 3923 mcast_obj->validate = bnx2x_mcast_validate_e2; 3924 mcast_obj->revert = bnx2x_mcast_revert_e2; 3925 mcast_obj->get_registry_size = 3926 bnx2x_mcast_get_registry_size_aprox; 3927 mcast_obj->set_registry_size = 3928 bnx2x_mcast_set_registry_size_aprox; 3929 } 3930 } 3931 3932 /*************************** Credit handling **********************************/ 3933 3934 /** 3935 * atomic_add_ifless - add if the result is less than a given value. 3936 * 3937 * @v: pointer of type atomic_t 3938 * @a: the amount to add to v... 3939 * @u: ...if (v + a) is less than u. 3940 * 3941 * returns true if (v + a) was less than u, and false otherwise. 3942 * 3943 */ 3944 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u) 3945 { 3946 int c, old; 3947 3948 c = atomic_read(v); 3949 for (;;) { 3950 if (unlikely(c + a >= u)) 3951 return false; 3952 3953 old = atomic_cmpxchg((v), c, c + a); 3954 if (likely(old == c)) 3955 break; 3956 c = old; 3957 } 3958 3959 return true; 3960 } 3961 3962 /** 3963 * atomic_dec_ifmoe - dec if the result is more or equal than a given value. 3964 * 3965 * @v: pointer of type atomic_t 3966 * @a: the amount to dec from v... 3967 * @u: ...if (v - a) is more or equal than u. 3968 * 3969 * returns true if (v - a) was more or equal than u, and false 3970 * otherwise. 3971 */ 3972 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u) 3973 { 3974 int c, old; 3975 3976 c = atomic_read(v); 3977 for (;;) { 3978 if (unlikely(c - a < u)) 3979 return false; 3980 3981 old = atomic_cmpxchg((v), c, c - a); 3982 if (likely(old == c)) 3983 break; 3984 c = old; 3985 } 3986 3987 return true; 3988 } 3989 3990 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt) 3991 { 3992 bool rc; 3993 3994 smp_mb(); 3995 rc = __atomic_dec_ifmoe(&o->credit, cnt, 0); 3996 smp_mb(); 3997 3998 return rc; 3999 } 4000 4001 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt) 4002 { 4003 bool rc; 4004 4005 smp_mb(); 4006 4007 /* Don't let to refill if credit + cnt > pool_sz */ 4008 rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1); 4009 4010 smp_mb(); 4011 4012 return rc; 4013 } 4014 4015 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o) 4016 { 4017 int cur_credit; 4018 4019 smp_mb(); 4020 cur_credit = atomic_read(&o->credit); 4021 4022 return cur_credit; 4023 } 4024 4025 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o, 4026 int cnt) 4027 { 4028 return true; 4029 } 4030 4031 static bool bnx2x_credit_pool_get_entry( 4032 struct bnx2x_credit_pool_obj *o, 4033 int *offset) 4034 { 4035 int idx, vec, i; 4036 4037 *offset = -1; 4038 4039 /* Find "internal cam-offset" then add to base for this object... */ 4040 for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) { 4041 4042 /* Skip the current vector if there are no free entries in it */ 4043 if (!o->pool_mirror[vec]) 4044 continue; 4045 4046 /* If we've got here we are going to find a free entry */ 4047 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0; 4048 i < BIT_VEC64_ELEM_SZ; idx++, i++) 4049 4050 if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) { 4051 /* Got one!! */ 4052 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx); 4053 *offset = o->base_pool_offset + idx; 4054 return true; 4055 } 4056 } 4057 4058 return false; 4059 } 4060 4061 static bool bnx2x_credit_pool_put_entry( 4062 struct bnx2x_credit_pool_obj *o, 4063 int offset) 4064 { 4065 if (offset < o->base_pool_offset) 4066 return false; 4067 4068 offset -= o->base_pool_offset; 4069 4070 if (offset >= o->pool_sz) 4071 return false; 4072 4073 /* Return the entry to the pool */ 4074 BIT_VEC64_SET_BIT(o->pool_mirror, offset); 4075 4076 return true; 4077 } 4078 4079 static bool bnx2x_credit_pool_put_entry_always_true( 4080 struct bnx2x_credit_pool_obj *o, 4081 int offset) 4082 { 4083 return true; 4084 } 4085 4086 static bool bnx2x_credit_pool_get_entry_always_true( 4087 struct bnx2x_credit_pool_obj *o, 4088 int *offset) 4089 { 4090 *offset = -1; 4091 return true; 4092 } 4093 /** 4094 * bnx2x_init_credit_pool - initialize credit pool internals. 4095 * 4096 * @p: 4097 * @base: Base entry in the CAM to use. 4098 * @credit: pool size. 4099 * 4100 * If base is negative no CAM entries handling will be performed. 4101 * If credit is negative pool operations will always succeed (unlimited pool). 4102 * 4103 */ 4104 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p, 4105 int base, int credit) 4106 { 4107 /* Zero the object first */ 4108 memset(p, 0, sizeof(*p)); 4109 4110 /* Set the table to all 1s */ 4111 memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror)); 4112 4113 /* Init a pool as full */ 4114 atomic_set(&p->credit, credit); 4115 4116 /* The total poll size */ 4117 p->pool_sz = credit; 4118 4119 p->base_pool_offset = base; 4120 4121 /* Commit the change */ 4122 smp_mb(); 4123 4124 p->check = bnx2x_credit_pool_check; 4125 4126 /* if pool credit is negative - disable the checks */ 4127 if (credit >= 0) { 4128 p->put = bnx2x_credit_pool_put; 4129 p->get = bnx2x_credit_pool_get; 4130 p->put_entry = bnx2x_credit_pool_put_entry; 4131 p->get_entry = bnx2x_credit_pool_get_entry; 4132 } else { 4133 p->put = bnx2x_credit_pool_always_true; 4134 p->get = bnx2x_credit_pool_always_true; 4135 p->put_entry = bnx2x_credit_pool_put_entry_always_true; 4136 p->get_entry = bnx2x_credit_pool_get_entry_always_true; 4137 } 4138 4139 /* If base is negative - disable entries handling */ 4140 if (base < 0) { 4141 p->put_entry = bnx2x_credit_pool_put_entry_always_true; 4142 p->get_entry = bnx2x_credit_pool_get_entry_always_true; 4143 } 4144 } 4145 4146 void bnx2x_init_mac_credit_pool(struct bnx2x *bp, 4147 struct bnx2x_credit_pool_obj *p, u8 func_id, 4148 u8 func_num) 4149 { 4150 /* TODO: this will be defined in consts as well... */ 4151 #define BNX2X_CAM_SIZE_EMUL 5 4152 4153 int cam_sz; 4154 4155 if (CHIP_IS_E1(bp)) { 4156 /* In E1, Multicast is saved in cam... */ 4157 if (!CHIP_REV_IS_SLOW(bp)) 4158 cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST; 4159 else 4160 cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI; 4161 4162 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz); 4163 4164 } else if (CHIP_IS_E1H(bp)) { 4165 /* CAM credit is equaly divided between all active functions 4166 * on the PORT!. 4167 */ 4168 if ((func_num > 0)) { 4169 if (!CHIP_REV_IS_SLOW(bp)) 4170 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num)); 4171 else 4172 cam_sz = BNX2X_CAM_SIZE_EMUL; 4173 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz); 4174 } else { 4175 /* this should never happen! Block MAC operations. */ 4176 bnx2x_init_credit_pool(p, 0, 0); 4177 } 4178 4179 } else { 4180 4181 /* CAM credit is equaly divided between all active functions 4182 * on the PATH. 4183 */ 4184 if (func_num > 0) { 4185 if (!CHIP_REV_IS_SLOW(bp)) 4186 cam_sz = PF_MAC_CREDIT_E2(bp, func_num); 4187 else 4188 cam_sz = BNX2X_CAM_SIZE_EMUL; 4189 4190 /* No need for CAM entries handling for 57712 and 4191 * newer. 4192 */ 4193 bnx2x_init_credit_pool(p, -1, cam_sz); 4194 } else { 4195 /* this should never happen! Block MAC operations. */ 4196 bnx2x_init_credit_pool(p, 0, 0); 4197 } 4198 } 4199 } 4200 4201 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp, 4202 struct bnx2x_credit_pool_obj *p, 4203 u8 func_id, 4204 u8 func_num) 4205 { 4206 if (CHIP_IS_E1x(bp)) { 4207 /* There is no VLAN credit in HW on 57710 and 57711 only 4208 * MAC / MAC-VLAN can be set 4209 */ 4210 bnx2x_init_credit_pool(p, 0, -1); 4211 } else { 4212 /* CAM credit is equally divided between all active functions 4213 * on the PATH. 4214 */ 4215 if (func_num > 0) { 4216 int credit = PF_VLAN_CREDIT_E2(bp, func_num); 4217 4218 bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit); 4219 } else 4220 /* this should never happen! Block VLAN operations. */ 4221 bnx2x_init_credit_pool(p, 0, 0); 4222 } 4223 } 4224 4225 /****************** RSS Configuration ******************/ 4226 /** 4227 * bnx2x_debug_print_ind_table - prints the indirection table configuration. 4228 * 4229 * @bp: driver handle 4230 * @p: pointer to rss configuration 4231 * 4232 * Prints it when NETIF_MSG_IFUP debug level is configured. 4233 */ 4234 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp, 4235 struct bnx2x_config_rss_params *p) 4236 { 4237 int i; 4238 4239 DP(BNX2X_MSG_SP, "Setting indirection table to:\n"); 4240 DP(BNX2X_MSG_SP, "0x0000: "); 4241 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 4242 DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]); 4243 4244 /* Print 4 bytes in a line */ 4245 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 4246 (((i + 1) & 0x3) == 0)) { 4247 DP_CONT(BNX2X_MSG_SP, "\n"); 4248 DP(BNX2X_MSG_SP, "0x%04x: ", i + 1); 4249 } 4250 } 4251 4252 DP_CONT(BNX2X_MSG_SP, "\n"); 4253 } 4254 4255 /** 4256 * bnx2x_setup_rss - configure RSS 4257 * 4258 * @bp: device handle 4259 * @p: rss configuration 4260 * 4261 * sends on UPDATE ramrod for that matter. 4262 */ 4263 static int bnx2x_setup_rss(struct bnx2x *bp, 4264 struct bnx2x_config_rss_params *p) 4265 { 4266 struct bnx2x_rss_config_obj *o = p->rss_obj; 4267 struct bnx2x_raw_obj *r = &o->raw; 4268 struct eth_rss_update_ramrod_data *data = 4269 (struct eth_rss_update_ramrod_data *)(r->rdata); 4270 u16 caps = 0; 4271 u8 rss_mode = 0; 4272 int rc; 4273 4274 memset(data, 0, sizeof(*data)); 4275 4276 DP(BNX2X_MSG_SP, "Configuring RSS\n"); 4277 4278 /* Set an echo field */ 4279 data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) | 4280 (r->state << BNX2X_SWCID_SHIFT)); 4281 4282 /* RSS mode */ 4283 if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags)) 4284 rss_mode = ETH_RSS_MODE_DISABLED; 4285 else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags)) 4286 rss_mode = ETH_RSS_MODE_REGULAR; 4287 4288 data->rss_mode = rss_mode; 4289 4290 DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode); 4291 4292 /* RSS capabilities */ 4293 if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags)) 4294 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY; 4295 4296 if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags)) 4297 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY; 4298 4299 if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags)) 4300 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY; 4301 4302 if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags)) 4303 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY; 4304 4305 if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags)) 4306 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY; 4307 4308 if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags)) 4309 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY; 4310 4311 if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags)) 4312 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY; 4313 4314 if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags)) 4315 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY; 4316 4317 if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags)) 4318 caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY; 4319 4320 /* RSS keys */ 4321 if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) { 4322 u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key); 4323 const u8 *src = (const u8 *)p->rss_key; 4324 int i; 4325 4326 /* Apparently, bnx2x reads this array in reverse order 4327 * We need to byte swap rss_key to comply with Toeplitz specs. 4328 */ 4329 for (i = 0; i < sizeof(data->rss_key); i++) 4330 *--dst = *src++; 4331 4332 caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY; 4333 } 4334 4335 data->capabilities = cpu_to_le16(caps); 4336 4337 /* Hashing mask */ 4338 data->rss_result_mask = p->rss_result_mask; 4339 4340 /* RSS engine ID */ 4341 data->rss_engine_id = o->engine_id; 4342 4343 DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id); 4344 4345 /* Indirection table */ 4346 memcpy(data->indirection_table, p->ind_table, 4347 T_ETH_INDIRECTION_TABLE_SIZE); 4348 4349 /* Remember the last configuration */ 4350 memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE); 4351 4352 /* Print the indirection table */ 4353 if (netif_msg_ifup(bp)) 4354 bnx2x_debug_print_ind_table(bp, p); 4355 4356 /* No need for an explicit memory barrier here as long as we 4357 * ensure the ordering of writing to the SPQ element 4358 * and updating of the SPQ producer which involves a memory 4359 * read. If the memory read is removed we will have to put a 4360 * full memory barrier there (inside bnx2x_sp_post()). 4361 */ 4362 4363 /* Send a ramrod */ 4364 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid, 4365 U64_HI(r->rdata_mapping), 4366 U64_LO(r->rdata_mapping), 4367 ETH_CONNECTION_TYPE); 4368 4369 if (rc < 0) 4370 return rc; 4371 4372 return 1; 4373 } 4374 4375 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj, 4376 u8 *ind_table) 4377 { 4378 memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table)); 4379 } 4380 4381 int bnx2x_config_rss(struct bnx2x *bp, 4382 struct bnx2x_config_rss_params *p) 4383 { 4384 int rc; 4385 struct bnx2x_rss_config_obj *o = p->rss_obj; 4386 struct bnx2x_raw_obj *r = &o->raw; 4387 4388 /* Do nothing if only driver cleanup was requested */ 4389 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) { 4390 DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n", 4391 p->ramrod_flags); 4392 return 0; 4393 } 4394 4395 r->set_pending(r); 4396 4397 rc = o->config_rss(bp, p); 4398 if (rc < 0) { 4399 r->clear_pending(r); 4400 return rc; 4401 } 4402 4403 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) 4404 rc = r->wait_comp(bp, r); 4405 4406 return rc; 4407 } 4408 4409 void bnx2x_init_rss_config_obj(struct bnx2x *bp, 4410 struct bnx2x_rss_config_obj *rss_obj, 4411 u8 cl_id, u32 cid, u8 func_id, u8 engine_id, 4412 void *rdata, dma_addr_t rdata_mapping, 4413 int state, unsigned long *pstate, 4414 bnx2x_obj_type type) 4415 { 4416 bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata, 4417 rdata_mapping, state, pstate, type); 4418 4419 rss_obj->engine_id = engine_id; 4420 rss_obj->config_rss = bnx2x_setup_rss; 4421 } 4422 4423 /********************** Queue state object ***********************************/ 4424 4425 /** 4426 * bnx2x_queue_state_change - perform Queue state change transition 4427 * 4428 * @bp: device handle 4429 * @params: parameters to perform the transition 4430 * 4431 * returns 0 in case of successfully completed transition, negative error 4432 * code in case of failure, positive (EBUSY) value if there is a completion 4433 * to that is still pending (possible only if RAMROD_COMP_WAIT is 4434 * not set in params->ramrod_flags for asynchronous commands). 4435 * 4436 */ 4437 int bnx2x_queue_state_change(struct bnx2x *bp, 4438 struct bnx2x_queue_state_params *params) 4439 { 4440 struct bnx2x_queue_sp_obj *o = params->q_obj; 4441 int rc, pending_bit; 4442 unsigned long *pending = &o->pending; 4443 4444 /* Check that the requested transition is legal */ 4445 rc = o->check_transition(bp, o, params); 4446 if (rc) { 4447 BNX2X_ERR("check transition returned an error. rc %d\n", rc); 4448 return -EINVAL; 4449 } 4450 4451 /* Set "pending" bit */ 4452 DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending); 4453 pending_bit = o->set_pending(o, params); 4454 DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending); 4455 4456 /* Don't send a command if only driver cleanup was requested */ 4457 if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) 4458 o->complete_cmd(bp, o, pending_bit); 4459 else { 4460 /* Send a ramrod */ 4461 rc = o->send_cmd(bp, params); 4462 if (rc) { 4463 o->next_state = BNX2X_Q_STATE_MAX; 4464 clear_bit(pending_bit, pending); 4465 smp_mb__after_atomic(); 4466 return rc; 4467 } 4468 4469 if (test_bit(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) { 4470 rc = o->wait_comp(bp, o, pending_bit); 4471 if (rc) 4472 return rc; 4473 4474 return 0; 4475 } 4476 } 4477 4478 return !!test_bit(pending_bit, pending); 4479 } 4480 4481 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj, 4482 struct bnx2x_queue_state_params *params) 4483 { 4484 enum bnx2x_queue_cmd cmd = params->cmd, bit; 4485 4486 /* ACTIVATE and DEACTIVATE commands are implemented on top of 4487 * UPDATE command. 4488 */ 4489 if ((cmd == BNX2X_Q_CMD_ACTIVATE) || 4490 (cmd == BNX2X_Q_CMD_DEACTIVATE)) 4491 bit = BNX2X_Q_CMD_UPDATE; 4492 else 4493 bit = cmd; 4494 4495 set_bit(bit, &obj->pending); 4496 return bit; 4497 } 4498 4499 static int bnx2x_queue_wait_comp(struct bnx2x *bp, 4500 struct bnx2x_queue_sp_obj *o, 4501 enum bnx2x_queue_cmd cmd) 4502 { 4503 return bnx2x_state_wait(bp, cmd, &o->pending); 4504 } 4505 4506 /** 4507 * bnx2x_queue_comp_cmd - complete the state change command. 4508 * 4509 * @bp: device handle 4510 * @o: 4511 * @cmd: 4512 * 4513 * Checks that the arrived completion is expected. 4514 */ 4515 static int bnx2x_queue_comp_cmd(struct bnx2x *bp, 4516 struct bnx2x_queue_sp_obj *o, 4517 enum bnx2x_queue_cmd cmd) 4518 { 4519 unsigned long cur_pending = o->pending; 4520 4521 if (!test_and_clear_bit(cmd, &cur_pending)) { 4522 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n", 4523 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], 4524 o->state, cur_pending, o->next_state); 4525 return -EINVAL; 4526 } 4527 4528 if (o->next_tx_only >= o->max_cos) 4529 /* >= because tx only must always be smaller than cos since the 4530 * primary connection supports COS 0 4531 */ 4532 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d", 4533 o->next_tx_only, o->max_cos); 4534 4535 DP(BNX2X_MSG_SP, 4536 "Completing command %d for queue %d, setting state to %d\n", 4537 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state); 4538 4539 if (o->next_tx_only) /* print num tx-only if any exist */ 4540 DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n", 4541 o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only); 4542 4543 o->state = o->next_state; 4544 o->num_tx_only = o->next_tx_only; 4545 o->next_state = BNX2X_Q_STATE_MAX; 4546 4547 /* It's important that o->state and o->next_state are 4548 * updated before o->pending. 4549 */ 4550 wmb(); 4551 4552 clear_bit(cmd, &o->pending); 4553 smp_mb__after_atomic(); 4554 4555 return 0; 4556 } 4557 4558 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp, 4559 struct bnx2x_queue_state_params *cmd_params, 4560 struct client_init_ramrod_data *data) 4561 { 4562 struct bnx2x_queue_setup_params *params = &cmd_params->params.setup; 4563 4564 /* Rx data */ 4565 4566 /* IPv6 TPA supported for E2 and above only */ 4567 data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, ¶ms->flags) * 4568 CLIENT_INIT_RX_DATA_TPA_EN_IPV6; 4569 } 4570 4571 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp, 4572 struct bnx2x_queue_sp_obj *o, 4573 struct bnx2x_general_setup_params *params, 4574 struct client_init_general_data *gen_data, 4575 unsigned long *flags) 4576 { 4577 gen_data->client_id = o->cl_id; 4578 4579 if (test_bit(BNX2X_Q_FLG_STATS, flags)) { 4580 gen_data->statistics_counter_id = 4581 params->stat_id; 4582 gen_data->statistics_en_flg = 1; 4583 gen_data->statistics_zero_flg = 4584 test_bit(BNX2X_Q_FLG_ZERO_STATS, flags); 4585 } else 4586 gen_data->statistics_counter_id = 4587 DISABLE_STATISTIC_COUNTER_ID_VALUE; 4588 4589 gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags); 4590 gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags); 4591 gen_data->sp_client_id = params->spcl_id; 4592 gen_data->mtu = cpu_to_le16(params->mtu); 4593 gen_data->func_id = o->func_id; 4594 4595 gen_data->cos = params->cos; 4596 4597 gen_data->traffic_type = 4598 test_bit(BNX2X_Q_FLG_FCOE, flags) ? 4599 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW; 4600 4601 gen_data->fp_hsi_ver = params->fp_hsi; 4602 4603 DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n", 4604 gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg); 4605 } 4606 4607 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o, 4608 struct bnx2x_txq_setup_params *params, 4609 struct client_init_tx_data *tx_data, 4610 unsigned long *flags) 4611 { 4612 tx_data->enforce_security_flg = 4613 test_bit(BNX2X_Q_FLG_TX_SEC, flags); 4614 tx_data->default_vlan = 4615 cpu_to_le16(params->default_vlan); 4616 tx_data->default_vlan_flg = 4617 test_bit(BNX2X_Q_FLG_DEF_VLAN, flags); 4618 tx_data->tx_switching_flg = 4619 test_bit(BNX2X_Q_FLG_TX_SWITCH, flags); 4620 tx_data->anti_spoofing_flg = 4621 test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags); 4622 tx_data->force_default_pri_flg = 4623 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags); 4624 tx_data->refuse_outband_vlan_flg = 4625 test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags); 4626 tx_data->tunnel_lso_inc_ip_id = 4627 test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags); 4628 tx_data->tunnel_non_lso_pcsum_location = 4629 test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT : 4630 CSUM_ON_BD; 4631 4632 tx_data->tx_status_block_id = params->fw_sb_id; 4633 tx_data->tx_sb_index_number = params->sb_cq_index; 4634 tx_data->tss_leading_client_id = params->tss_leading_cl_id; 4635 4636 tx_data->tx_bd_page_base.lo = 4637 cpu_to_le32(U64_LO(params->dscr_map)); 4638 tx_data->tx_bd_page_base.hi = 4639 cpu_to_le32(U64_HI(params->dscr_map)); 4640 4641 /* Don't configure any Tx switching mode during queue SETUP */ 4642 tx_data->state = 0; 4643 } 4644 4645 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o, 4646 struct rxq_pause_params *params, 4647 struct client_init_rx_data *rx_data) 4648 { 4649 /* flow control data */ 4650 rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo); 4651 rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi); 4652 rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo); 4653 rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi); 4654 rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo); 4655 rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi); 4656 rx_data->rx_cos_mask = cpu_to_le16(params->pri_map); 4657 } 4658 4659 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o, 4660 struct bnx2x_rxq_setup_params *params, 4661 struct client_init_rx_data *rx_data, 4662 unsigned long *flags) 4663 { 4664 rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) * 4665 CLIENT_INIT_RX_DATA_TPA_EN_IPV4; 4666 rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) * 4667 CLIENT_INIT_RX_DATA_TPA_MODE; 4668 rx_data->vmqueue_mode_en_flg = 0; 4669 4670 rx_data->cache_line_alignment_log_size = 4671 params->cache_line_log; 4672 rx_data->enable_dynamic_hc = 4673 test_bit(BNX2X_Q_FLG_DHC, flags); 4674 rx_data->max_sges_for_packet = params->max_sges_pkt; 4675 rx_data->client_qzone_id = params->cl_qzone_id; 4676 rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz); 4677 4678 /* Always start in DROP_ALL mode */ 4679 rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL | 4680 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL); 4681 4682 /* We don't set drop flags */ 4683 rx_data->drop_ip_cs_err_flg = 0; 4684 rx_data->drop_tcp_cs_err_flg = 0; 4685 rx_data->drop_ttl0_flg = 0; 4686 rx_data->drop_udp_cs_err_flg = 0; 4687 rx_data->inner_vlan_removal_enable_flg = 4688 test_bit(BNX2X_Q_FLG_VLAN, flags); 4689 rx_data->outer_vlan_removal_enable_flg = 4690 test_bit(BNX2X_Q_FLG_OV, flags); 4691 rx_data->status_block_id = params->fw_sb_id; 4692 rx_data->rx_sb_index_number = params->sb_cq_index; 4693 rx_data->max_tpa_queues = params->max_tpa_queues; 4694 rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz); 4695 rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz); 4696 rx_data->bd_page_base.lo = 4697 cpu_to_le32(U64_LO(params->dscr_map)); 4698 rx_data->bd_page_base.hi = 4699 cpu_to_le32(U64_HI(params->dscr_map)); 4700 rx_data->sge_page_base.lo = 4701 cpu_to_le32(U64_LO(params->sge_map)); 4702 rx_data->sge_page_base.hi = 4703 cpu_to_le32(U64_HI(params->sge_map)); 4704 rx_data->cqe_page_base.lo = 4705 cpu_to_le32(U64_LO(params->rcq_map)); 4706 rx_data->cqe_page_base.hi = 4707 cpu_to_le32(U64_HI(params->rcq_map)); 4708 rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags); 4709 4710 if (test_bit(BNX2X_Q_FLG_MCAST, flags)) { 4711 rx_data->approx_mcast_engine_id = params->mcast_engine_id; 4712 rx_data->is_approx_mcast = 1; 4713 } 4714 4715 rx_data->rss_engine_id = params->rss_engine_id; 4716 4717 /* silent vlan removal */ 4718 rx_data->silent_vlan_removal_flg = 4719 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags); 4720 rx_data->silent_vlan_value = 4721 cpu_to_le16(params->silent_removal_value); 4722 rx_data->silent_vlan_mask = 4723 cpu_to_le16(params->silent_removal_mask); 4724 } 4725 4726 /* initialize the general, tx and rx parts of a queue object */ 4727 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp, 4728 struct bnx2x_queue_state_params *cmd_params, 4729 struct client_init_ramrod_data *data) 4730 { 4731 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj, 4732 &cmd_params->params.setup.gen_params, 4733 &data->general, 4734 &cmd_params->params.setup.flags); 4735 4736 bnx2x_q_fill_init_tx_data(cmd_params->q_obj, 4737 &cmd_params->params.setup.txq_params, 4738 &data->tx, 4739 &cmd_params->params.setup.flags); 4740 4741 bnx2x_q_fill_init_rx_data(cmd_params->q_obj, 4742 &cmd_params->params.setup.rxq_params, 4743 &data->rx, 4744 &cmd_params->params.setup.flags); 4745 4746 bnx2x_q_fill_init_pause_data(cmd_params->q_obj, 4747 &cmd_params->params.setup.pause_params, 4748 &data->rx); 4749 } 4750 4751 /* initialize the general and tx parts of a tx-only queue object */ 4752 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp, 4753 struct bnx2x_queue_state_params *cmd_params, 4754 struct tx_queue_init_ramrod_data *data) 4755 { 4756 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj, 4757 &cmd_params->params.tx_only.gen_params, 4758 &data->general, 4759 &cmd_params->params.tx_only.flags); 4760 4761 bnx2x_q_fill_init_tx_data(cmd_params->q_obj, 4762 &cmd_params->params.tx_only.txq_params, 4763 &data->tx, 4764 &cmd_params->params.tx_only.flags); 4765 4766 DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x", 4767 cmd_params->q_obj->cids[0], 4768 data->tx.tx_bd_page_base.lo, 4769 data->tx.tx_bd_page_base.hi); 4770 } 4771 4772 /** 4773 * bnx2x_q_init - init HW/FW queue 4774 * 4775 * @bp: device handle 4776 * @params: 4777 * 4778 * HW/FW initial Queue configuration: 4779 * - HC: Rx and Tx 4780 * - CDU context validation 4781 * 4782 */ 4783 static inline int bnx2x_q_init(struct bnx2x *bp, 4784 struct bnx2x_queue_state_params *params) 4785 { 4786 struct bnx2x_queue_sp_obj *o = params->q_obj; 4787 struct bnx2x_queue_init_params *init = ¶ms->params.init; 4788 u16 hc_usec; 4789 u8 cos; 4790 4791 /* Tx HC configuration */ 4792 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) && 4793 test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) { 4794 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0; 4795 4796 bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id, 4797 init->tx.sb_cq_index, 4798 !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags), 4799 hc_usec); 4800 } 4801 4802 /* Rx HC configuration */ 4803 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) && 4804 test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) { 4805 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0; 4806 4807 bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id, 4808 init->rx.sb_cq_index, 4809 !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags), 4810 hc_usec); 4811 } 4812 4813 /* Set CDU context validation values */ 4814 for (cos = 0; cos < o->max_cos; cos++) { 4815 DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n", 4816 o->cids[cos], cos); 4817 DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]); 4818 bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]); 4819 } 4820 4821 /* As no ramrod is sent, complete the command immediately */ 4822 o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT); 4823 4824 mmiowb(); 4825 smp_mb(); 4826 4827 return 0; 4828 } 4829 4830 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp, 4831 struct bnx2x_queue_state_params *params) 4832 { 4833 struct bnx2x_queue_sp_obj *o = params->q_obj; 4834 struct client_init_ramrod_data *rdata = 4835 (struct client_init_ramrod_data *)o->rdata; 4836 dma_addr_t data_mapping = o->rdata_mapping; 4837 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP; 4838 4839 /* Clear the ramrod data */ 4840 memset(rdata, 0, sizeof(*rdata)); 4841 4842 /* Fill the ramrod data */ 4843 bnx2x_q_fill_setup_data_cmn(bp, params, rdata); 4844 4845 /* No need for an explicit memory barrier here as long as we 4846 * ensure the ordering of writing to the SPQ element 4847 * and updating of the SPQ producer which involves a memory 4848 * read. If the memory read is removed we will have to put a 4849 * full memory barrier there (inside bnx2x_sp_post()). 4850 */ 4851 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX], 4852 U64_HI(data_mapping), 4853 U64_LO(data_mapping), ETH_CONNECTION_TYPE); 4854 } 4855 4856 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp, 4857 struct bnx2x_queue_state_params *params) 4858 { 4859 struct bnx2x_queue_sp_obj *o = params->q_obj; 4860 struct client_init_ramrod_data *rdata = 4861 (struct client_init_ramrod_data *)o->rdata; 4862 dma_addr_t data_mapping = o->rdata_mapping; 4863 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP; 4864 4865 /* Clear the ramrod data */ 4866 memset(rdata, 0, sizeof(*rdata)); 4867 4868 /* Fill the ramrod data */ 4869 bnx2x_q_fill_setup_data_cmn(bp, params, rdata); 4870 bnx2x_q_fill_setup_data_e2(bp, params, rdata); 4871 4872 /* No need for an explicit memory barrier here as long as we 4873 * ensure the ordering of writing to the SPQ element 4874 * and updating of the SPQ producer which involves a memory 4875 * read. If the memory read is removed we will have to put a 4876 * full memory barrier there (inside bnx2x_sp_post()). 4877 */ 4878 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX], 4879 U64_HI(data_mapping), 4880 U64_LO(data_mapping), ETH_CONNECTION_TYPE); 4881 } 4882 4883 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp, 4884 struct bnx2x_queue_state_params *params) 4885 { 4886 struct bnx2x_queue_sp_obj *o = params->q_obj; 4887 struct tx_queue_init_ramrod_data *rdata = 4888 (struct tx_queue_init_ramrod_data *)o->rdata; 4889 dma_addr_t data_mapping = o->rdata_mapping; 4890 int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP; 4891 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 4892 ¶ms->params.tx_only; 4893 u8 cid_index = tx_only_params->cid_index; 4894 4895 if (cid_index >= o->max_cos) { 4896 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n", 4897 o->cl_id, cid_index); 4898 return -EINVAL; 4899 } 4900 4901 DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n", 4902 tx_only_params->gen_params.cos, 4903 tx_only_params->gen_params.spcl_id); 4904 4905 /* Clear the ramrod data */ 4906 memset(rdata, 0, sizeof(*rdata)); 4907 4908 /* Fill the ramrod data */ 4909 bnx2x_q_fill_setup_tx_only(bp, params, rdata); 4910 4911 DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n", 4912 o->cids[cid_index], rdata->general.client_id, 4913 rdata->general.sp_client_id, rdata->general.cos); 4914 4915 /* No need for an explicit memory barrier here as long as we 4916 * ensure the ordering of writing to the SPQ element 4917 * and updating of the SPQ producer which involves a memory 4918 * read. If the memory read is removed we will have to put a 4919 * full memory barrier there (inside bnx2x_sp_post()). 4920 */ 4921 return bnx2x_sp_post(bp, ramrod, o->cids[cid_index], 4922 U64_HI(data_mapping), 4923 U64_LO(data_mapping), ETH_CONNECTION_TYPE); 4924 } 4925 4926 static void bnx2x_q_fill_update_data(struct bnx2x *bp, 4927 struct bnx2x_queue_sp_obj *obj, 4928 struct bnx2x_queue_update_params *params, 4929 struct client_update_ramrod_data *data) 4930 { 4931 /* Client ID of the client to update */ 4932 data->client_id = obj->cl_id; 4933 4934 /* Function ID of the client to update */ 4935 data->func_id = obj->func_id; 4936 4937 /* Default VLAN value */ 4938 data->default_vlan = cpu_to_le16(params->def_vlan); 4939 4940 /* Inner VLAN stripping */ 4941 data->inner_vlan_removal_enable_flg = 4942 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, ¶ms->update_flags); 4943 data->inner_vlan_removal_change_flg = 4944 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG, 4945 ¶ms->update_flags); 4946 4947 /* Outer VLAN stripping */ 4948 data->outer_vlan_removal_enable_flg = 4949 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, ¶ms->update_flags); 4950 data->outer_vlan_removal_change_flg = 4951 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG, 4952 ¶ms->update_flags); 4953 4954 /* Drop packets that have source MAC that doesn't belong to this 4955 * Queue. 4956 */ 4957 data->anti_spoofing_enable_flg = 4958 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, ¶ms->update_flags); 4959 data->anti_spoofing_change_flg = 4960 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, ¶ms->update_flags); 4961 4962 /* Activate/Deactivate */ 4963 data->activate_flg = 4964 test_bit(BNX2X_Q_UPDATE_ACTIVATE, ¶ms->update_flags); 4965 data->activate_change_flg = 4966 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, ¶ms->update_flags); 4967 4968 /* Enable default VLAN */ 4969 data->default_vlan_enable_flg = 4970 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, ¶ms->update_flags); 4971 data->default_vlan_change_flg = 4972 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, 4973 ¶ms->update_flags); 4974 4975 /* silent vlan removal */ 4976 data->silent_vlan_change_flg = 4977 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 4978 ¶ms->update_flags); 4979 data->silent_vlan_removal_flg = 4980 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, ¶ms->update_flags); 4981 data->silent_vlan_value = cpu_to_le16(params->silent_removal_value); 4982 data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask); 4983 4984 /* tx switching */ 4985 data->tx_switching_flg = 4986 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, ¶ms->update_flags); 4987 data->tx_switching_change_flg = 4988 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG, 4989 ¶ms->update_flags); 4990 4991 /* PTP */ 4992 data->handle_ptp_pkts_flg = 4993 test_bit(BNX2X_Q_UPDATE_PTP_PKTS, ¶ms->update_flags); 4994 data->handle_ptp_pkts_change_flg = 4995 test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, ¶ms->update_flags); 4996 } 4997 4998 static inline int bnx2x_q_send_update(struct bnx2x *bp, 4999 struct bnx2x_queue_state_params *params) 5000 { 5001 struct bnx2x_queue_sp_obj *o = params->q_obj; 5002 struct client_update_ramrod_data *rdata = 5003 (struct client_update_ramrod_data *)o->rdata; 5004 dma_addr_t data_mapping = o->rdata_mapping; 5005 struct bnx2x_queue_update_params *update_params = 5006 ¶ms->params.update; 5007 u8 cid_index = update_params->cid_index; 5008 5009 if (cid_index >= o->max_cos) { 5010 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n", 5011 o->cl_id, cid_index); 5012 return -EINVAL; 5013 } 5014 5015 /* Clear the ramrod data */ 5016 memset(rdata, 0, sizeof(*rdata)); 5017 5018 /* Fill the ramrod data */ 5019 bnx2x_q_fill_update_data(bp, o, update_params, rdata); 5020 5021 /* No need for an explicit memory barrier here as long as we 5022 * ensure the ordering of writing to the SPQ element 5023 * and updating of the SPQ producer which involves a memory 5024 * read. If the memory read is removed we will have to put a 5025 * full memory barrier there (inside bnx2x_sp_post()). 5026 */ 5027 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE, 5028 o->cids[cid_index], U64_HI(data_mapping), 5029 U64_LO(data_mapping), ETH_CONNECTION_TYPE); 5030 } 5031 5032 /** 5033 * bnx2x_q_send_deactivate - send DEACTIVATE command 5034 * 5035 * @bp: device handle 5036 * @params: 5037 * 5038 * implemented using the UPDATE command. 5039 */ 5040 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp, 5041 struct bnx2x_queue_state_params *params) 5042 { 5043 struct bnx2x_queue_update_params *update = ¶ms->params.update; 5044 5045 memset(update, 0, sizeof(*update)); 5046 5047 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags); 5048 5049 return bnx2x_q_send_update(bp, params); 5050 } 5051 5052 /** 5053 * bnx2x_q_send_activate - send ACTIVATE command 5054 * 5055 * @bp: device handle 5056 * @params: 5057 * 5058 * implemented using the UPDATE command. 5059 */ 5060 static inline int bnx2x_q_send_activate(struct bnx2x *bp, 5061 struct bnx2x_queue_state_params *params) 5062 { 5063 struct bnx2x_queue_update_params *update = ¶ms->params.update; 5064 5065 memset(update, 0, sizeof(*update)); 5066 5067 __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags); 5068 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags); 5069 5070 return bnx2x_q_send_update(bp, params); 5071 } 5072 5073 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp, 5074 struct bnx2x_queue_sp_obj *obj, 5075 struct bnx2x_queue_update_tpa_params *params, 5076 struct tpa_update_ramrod_data *data) 5077 { 5078 data->client_id = obj->cl_id; 5079 data->complete_on_both_clients = params->complete_on_both_clients; 5080 data->dont_verify_rings_pause_thr_flg = 5081 params->dont_verify_thr; 5082 data->max_agg_size = cpu_to_le16(params->max_agg_sz); 5083 data->max_sges_for_packet = params->max_sges_pkt; 5084 data->max_tpa_queues = params->max_tpa_queues; 5085 data->sge_buff_size = cpu_to_le16(params->sge_buff_sz); 5086 data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map)); 5087 data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map)); 5088 data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high); 5089 data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low); 5090 data->tpa_mode = params->tpa_mode; 5091 data->update_ipv4 = params->update_ipv4; 5092 data->update_ipv6 = params->update_ipv6; 5093 } 5094 5095 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp, 5096 struct bnx2x_queue_state_params *params) 5097 { 5098 struct bnx2x_queue_sp_obj *o = params->q_obj; 5099 struct tpa_update_ramrod_data *rdata = 5100 (struct tpa_update_ramrod_data *)o->rdata; 5101 dma_addr_t data_mapping = o->rdata_mapping; 5102 struct bnx2x_queue_update_tpa_params *update_tpa_params = 5103 ¶ms->params.update_tpa; 5104 u16 type; 5105 5106 /* Clear the ramrod data */ 5107 memset(rdata, 0, sizeof(*rdata)); 5108 5109 /* Fill the ramrod data */ 5110 bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata); 5111 5112 /* Add the function id inside the type, so that sp post function 5113 * doesn't automatically add the PF func-id, this is required 5114 * for operations done by PFs on behalf of their VFs 5115 */ 5116 type = ETH_CONNECTION_TYPE | 5117 ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT); 5118 5119 /* No need for an explicit memory barrier here as long as we 5120 * ensure the ordering of writing to the SPQ element 5121 * and updating of the SPQ producer which involves a memory 5122 * read. If the memory read is removed we will have to put a 5123 * full memory barrier there (inside bnx2x_sp_post()). 5124 */ 5125 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE, 5126 o->cids[BNX2X_PRIMARY_CID_INDEX], 5127 U64_HI(data_mapping), 5128 U64_LO(data_mapping), type); 5129 } 5130 5131 static inline int bnx2x_q_send_halt(struct bnx2x *bp, 5132 struct bnx2x_queue_state_params *params) 5133 { 5134 struct bnx2x_queue_sp_obj *o = params->q_obj; 5135 5136 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT, 5137 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id, 5138 ETH_CONNECTION_TYPE); 5139 } 5140 5141 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp, 5142 struct bnx2x_queue_state_params *params) 5143 { 5144 struct bnx2x_queue_sp_obj *o = params->q_obj; 5145 u8 cid_idx = params->params.cfc_del.cid_index; 5146 5147 if (cid_idx >= o->max_cos) { 5148 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n", 5149 o->cl_id, cid_idx); 5150 return -EINVAL; 5151 } 5152 5153 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL, 5154 o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE); 5155 } 5156 5157 static inline int bnx2x_q_send_terminate(struct bnx2x *bp, 5158 struct bnx2x_queue_state_params *params) 5159 { 5160 struct bnx2x_queue_sp_obj *o = params->q_obj; 5161 u8 cid_index = params->params.terminate.cid_index; 5162 5163 if (cid_index >= o->max_cos) { 5164 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n", 5165 o->cl_id, cid_index); 5166 return -EINVAL; 5167 } 5168 5169 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE, 5170 o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE); 5171 } 5172 5173 static inline int bnx2x_q_send_empty(struct bnx2x *bp, 5174 struct bnx2x_queue_state_params *params) 5175 { 5176 struct bnx2x_queue_sp_obj *o = params->q_obj; 5177 5178 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY, 5179 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0, 5180 ETH_CONNECTION_TYPE); 5181 } 5182 5183 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp, 5184 struct bnx2x_queue_state_params *params) 5185 { 5186 switch (params->cmd) { 5187 case BNX2X_Q_CMD_INIT: 5188 return bnx2x_q_init(bp, params); 5189 case BNX2X_Q_CMD_SETUP_TX_ONLY: 5190 return bnx2x_q_send_setup_tx_only(bp, params); 5191 case BNX2X_Q_CMD_DEACTIVATE: 5192 return bnx2x_q_send_deactivate(bp, params); 5193 case BNX2X_Q_CMD_ACTIVATE: 5194 return bnx2x_q_send_activate(bp, params); 5195 case BNX2X_Q_CMD_UPDATE: 5196 return bnx2x_q_send_update(bp, params); 5197 case BNX2X_Q_CMD_UPDATE_TPA: 5198 return bnx2x_q_send_update_tpa(bp, params); 5199 case BNX2X_Q_CMD_HALT: 5200 return bnx2x_q_send_halt(bp, params); 5201 case BNX2X_Q_CMD_CFC_DEL: 5202 return bnx2x_q_send_cfc_del(bp, params); 5203 case BNX2X_Q_CMD_TERMINATE: 5204 return bnx2x_q_send_terminate(bp, params); 5205 case BNX2X_Q_CMD_EMPTY: 5206 return bnx2x_q_send_empty(bp, params); 5207 default: 5208 BNX2X_ERR("Unknown command: %d\n", params->cmd); 5209 return -EINVAL; 5210 } 5211 } 5212 5213 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp, 5214 struct bnx2x_queue_state_params *params) 5215 { 5216 switch (params->cmd) { 5217 case BNX2X_Q_CMD_SETUP: 5218 return bnx2x_q_send_setup_e1x(bp, params); 5219 case BNX2X_Q_CMD_INIT: 5220 case BNX2X_Q_CMD_SETUP_TX_ONLY: 5221 case BNX2X_Q_CMD_DEACTIVATE: 5222 case BNX2X_Q_CMD_ACTIVATE: 5223 case BNX2X_Q_CMD_UPDATE: 5224 case BNX2X_Q_CMD_UPDATE_TPA: 5225 case BNX2X_Q_CMD_HALT: 5226 case BNX2X_Q_CMD_CFC_DEL: 5227 case BNX2X_Q_CMD_TERMINATE: 5228 case BNX2X_Q_CMD_EMPTY: 5229 return bnx2x_queue_send_cmd_cmn(bp, params); 5230 default: 5231 BNX2X_ERR("Unknown command: %d\n", params->cmd); 5232 return -EINVAL; 5233 } 5234 } 5235 5236 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp, 5237 struct bnx2x_queue_state_params *params) 5238 { 5239 switch (params->cmd) { 5240 case BNX2X_Q_CMD_SETUP: 5241 return bnx2x_q_send_setup_e2(bp, params); 5242 case BNX2X_Q_CMD_INIT: 5243 case BNX2X_Q_CMD_SETUP_TX_ONLY: 5244 case BNX2X_Q_CMD_DEACTIVATE: 5245 case BNX2X_Q_CMD_ACTIVATE: 5246 case BNX2X_Q_CMD_UPDATE: 5247 case BNX2X_Q_CMD_UPDATE_TPA: 5248 case BNX2X_Q_CMD_HALT: 5249 case BNX2X_Q_CMD_CFC_DEL: 5250 case BNX2X_Q_CMD_TERMINATE: 5251 case BNX2X_Q_CMD_EMPTY: 5252 return bnx2x_queue_send_cmd_cmn(bp, params); 5253 default: 5254 BNX2X_ERR("Unknown command: %d\n", params->cmd); 5255 return -EINVAL; 5256 } 5257 } 5258 5259 /** 5260 * bnx2x_queue_chk_transition - check state machine of a regular Queue 5261 * 5262 * @bp: device handle 5263 * @o: 5264 * @params: 5265 * 5266 * (not Forwarding) 5267 * It both checks if the requested command is legal in a current 5268 * state and, if it's legal, sets a `next_state' in the object 5269 * that will be used in the completion flow to set the `state' 5270 * of the object. 5271 * 5272 * returns 0 if a requested command is a legal transition, 5273 * -EINVAL otherwise. 5274 */ 5275 static int bnx2x_queue_chk_transition(struct bnx2x *bp, 5276 struct bnx2x_queue_sp_obj *o, 5277 struct bnx2x_queue_state_params *params) 5278 { 5279 enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX; 5280 enum bnx2x_queue_cmd cmd = params->cmd; 5281 struct bnx2x_queue_update_params *update_params = 5282 ¶ms->params.update; 5283 u8 next_tx_only = o->num_tx_only; 5284 5285 /* Forget all pending for completion commands if a driver only state 5286 * transition has been requested. 5287 */ 5288 if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) { 5289 o->pending = 0; 5290 o->next_state = BNX2X_Q_STATE_MAX; 5291 } 5292 5293 /* Don't allow a next state transition if we are in the middle of 5294 * the previous one. 5295 */ 5296 if (o->pending) { 5297 BNX2X_ERR("Blocking transition since pending was %lx\n", 5298 o->pending); 5299 return -EBUSY; 5300 } 5301 5302 switch (state) { 5303 case BNX2X_Q_STATE_RESET: 5304 if (cmd == BNX2X_Q_CMD_INIT) 5305 next_state = BNX2X_Q_STATE_INITIALIZED; 5306 5307 break; 5308 case BNX2X_Q_STATE_INITIALIZED: 5309 if (cmd == BNX2X_Q_CMD_SETUP) { 5310 if (test_bit(BNX2X_Q_FLG_ACTIVE, 5311 ¶ms->params.setup.flags)) 5312 next_state = BNX2X_Q_STATE_ACTIVE; 5313 else 5314 next_state = BNX2X_Q_STATE_INACTIVE; 5315 } 5316 5317 break; 5318 case BNX2X_Q_STATE_ACTIVE: 5319 if (cmd == BNX2X_Q_CMD_DEACTIVATE) 5320 next_state = BNX2X_Q_STATE_INACTIVE; 5321 5322 else if ((cmd == BNX2X_Q_CMD_EMPTY) || 5323 (cmd == BNX2X_Q_CMD_UPDATE_TPA)) 5324 next_state = BNX2X_Q_STATE_ACTIVE; 5325 5326 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) { 5327 next_state = BNX2X_Q_STATE_MULTI_COS; 5328 next_tx_only = 1; 5329 } 5330 5331 else if (cmd == BNX2X_Q_CMD_HALT) 5332 next_state = BNX2X_Q_STATE_STOPPED; 5333 5334 else if (cmd == BNX2X_Q_CMD_UPDATE) { 5335 /* If "active" state change is requested, update the 5336 * state accordingly. 5337 */ 5338 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, 5339 &update_params->update_flags) && 5340 !test_bit(BNX2X_Q_UPDATE_ACTIVATE, 5341 &update_params->update_flags)) 5342 next_state = BNX2X_Q_STATE_INACTIVE; 5343 else 5344 next_state = BNX2X_Q_STATE_ACTIVE; 5345 } 5346 5347 break; 5348 case BNX2X_Q_STATE_MULTI_COS: 5349 if (cmd == BNX2X_Q_CMD_TERMINATE) 5350 next_state = BNX2X_Q_STATE_MCOS_TERMINATED; 5351 5352 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) { 5353 next_state = BNX2X_Q_STATE_MULTI_COS; 5354 next_tx_only = o->num_tx_only + 1; 5355 } 5356 5357 else if ((cmd == BNX2X_Q_CMD_EMPTY) || 5358 (cmd == BNX2X_Q_CMD_UPDATE_TPA)) 5359 next_state = BNX2X_Q_STATE_MULTI_COS; 5360 5361 else if (cmd == BNX2X_Q_CMD_UPDATE) { 5362 /* If "active" state change is requested, update the 5363 * state accordingly. 5364 */ 5365 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, 5366 &update_params->update_flags) && 5367 !test_bit(BNX2X_Q_UPDATE_ACTIVATE, 5368 &update_params->update_flags)) 5369 next_state = BNX2X_Q_STATE_INACTIVE; 5370 else 5371 next_state = BNX2X_Q_STATE_MULTI_COS; 5372 } 5373 5374 break; 5375 case BNX2X_Q_STATE_MCOS_TERMINATED: 5376 if (cmd == BNX2X_Q_CMD_CFC_DEL) { 5377 next_tx_only = o->num_tx_only - 1; 5378 if (next_tx_only == 0) 5379 next_state = BNX2X_Q_STATE_ACTIVE; 5380 else 5381 next_state = BNX2X_Q_STATE_MULTI_COS; 5382 } 5383 5384 break; 5385 case BNX2X_Q_STATE_INACTIVE: 5386 if (cmd == BNX2X_Q_CMD_ACTIVATE) 5387 next_state = BNX2X_Q_STATE_ACTIVE; 5388 5389 else if ((cmd == BNX2X_Q_CMD_EMPTY) || 5390 (cmd == BNX2X_Q_CMD_UPDATE_TPA)) 5391 next_state = BNX2X_Q_STATE_INACTIVE; 5392 5393 else if (cmd == BNX2X_Q_CMD_HALT) 5394 next_state = BNX2X_Q_STATE_STOPPED; 5395 5396 else if (cmd == BNX2X_Q_CMD_UPDATE) { 5397 /* If "active" state change is requested, update the 5398 * state accordingly. 5399 */ 5400 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, 5401 &update_params->update_flags) && 5402 test_bit(BNX2X_Q_UPDATE_ACTIVATE, 5403 &update_params->update_flags)){ 5404 if (o->num_tx_only == 0) 5405 next_state = BNX2X_Q_STATE_ACTIVE; 5406 else /* tx only queues exist for this queue */ 5407 next_state = BNX2X_Q_STATE_MULTI_COS; 5408 } else 5409 next_state = BNX2X_Q_STATE_INACTIVE; 5410 } 5411 5412 break; 5413 case BNX2X_Q_STATE_STOPPED: 5414 if (cmd == BNX2X_Q_CMD_TERMINATE) 5415 next_state = BNX2X_Q_STATE_TERMINATED; 5416 5417 break; 5418 case BNX2X_Q_STATE_TERMINATED: 5419 if (cmd == BNX2X_Q_CMD_CFC_DEL) 5420 next_state = BNX2X_Q_STATE_RESET; 5421 5422 break; 5423 default: 5424 BNX2X_ERR("Illegal state: %d\n", state); 5425 } 5426 5427 /* Transition is assured */ 5428 if (next_state != BNX2X_Q_STATE_MAX) { 5429 DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n", 5430 state, cmd, next_state); 5431 o->next_state = next_state; 5432 o->next_tx_only = next_tx_only; 5433 return 0; 5434 } 5435 5436 DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd); 5437 5438 return -EINVAL; 5439 } 5440 5441 void bnx2x_init_queue_obj(struct bnx2x *bp, 5442 struct bnx2x_queue_sp_obj *obj, 5443 u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id, 5444 void *rdata, 5445 dma_addr_t rdata_mapping, unsigned long type) 5446 { 5447 memset(obj, 0, sizeof(*obj)); 5448 5449 /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */ 5450 BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt); 5451 5452 memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt); 5453 obj->max_cos = cid_cnt; 5454 obj->cl_id = cl_id; 5455 obj->func_id = func_id; 5456 obj->rdata = rdata; 5457 obj->rdata_mapping = rdata_mapping; 5458 obj->type = type; 5459 obj->next_state = BNX2X_Q_STATE_MAX; 5460 5461 if (CHIP_IS_E1x(bp)) 5462 obj->send_cmd = bnx2x_queue_send_cmd_e1x; 5463 else 5464 obj->send_cmd = bnx2x_queue_send_cmd_e2; 5465 5466 obj->check_transition = bnx2x_queue_chk_transition; 5467 5468 obj->complete_cmd = bnx2x_queue_comp_cmd; 5469 obj->wait_comp = bnx2x_queue_wait_comp; 5470 obj->set_pending = bnx2x_queue_set_pending; 5471 } 5472 5473 /* return a queue object's logical state*/ 5474 int bnx2x_get_q_logical_state(struct bnx2x *bp, 5475 struct bnx2x_queue_sp_obj *obj) 5476 { 5477 switch (obj->state) { 5478 case BNX2X_Q_STATE_ACTIVE: 5479 case BNX2X_Q_STATE_MULTI_COS: 5480 return BNX2X_Q_LOGICAL_STATE_ACTIVE; 5481 case BNX2X_Q_STATE_RESET: 5482 case BNX2X_Q_STATE_INITIALIZED: 5483 case BNX2X_Q_STATE_MCOS_TERMINATED: 5484 case BNX2X_Q_STATE_INACTIVE: 5485 case BNX2X_Q_STATE_STOPPED: 5486 case BNX2X_Q_STATE_TERMINATED: 5487 case BNX2X_Q_STATE_FLRED: 5488 return BNX2X_Q_LOGICAL_STATE_STOPPED; 5489 default: 5490 return -EINVAL; 5491 } 5492 } 5493 5494 /********************** Function state object *********************************/ 5495 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp, 5496 struct bnx2x_func_sp_obj *o) 5497 { 5498 /* in the middle of transaction - return INVALID state */ 5499 if (o->pending) 5500 return BNX2X_F_STATE_MAX; 5501 5502 /* unsure the order of reading of o->pending and o->state 5503 * o->pending should be read first 5504 */ 5505 rmb(); 5506 5507 return o->state; 5508 } 5509 5510 static int bnx2x_func_wait_comp(struct bnx2x *bp, 5511 struct bnx2x_func_sp_obj *o, 5512 enum bnx2x_func_cmd cmd) 5513 { 5514 return bnx2x_state_wait(bp, cmd, &o->pending); 5515 } 5516 5517 /** 5518 * bnx2x_func_state_change_comp - complete the state machine transition 5519 * 5520 * @bp: device handle 5521 * @o: 5522 * @cmd: 5523 * 5524 * Called on state change transition. Completes the state 5525 * machine transition only - no HW interaction. 5526 */ 5527 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp, 5528 struct bnx2x_func_sp_obj *o, 5529 enum bnx2x_func_cmd cmd) 5530 { 5531 unsigned long cur_pending = o->pending; 5532 5533 if (!test_and_clear_bit(cmd, &cur_pending)) { 5534 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n", 5535 cmd, BP_FUNC(bp), o->state, 5536 cur_pending, o->next_state); 5537 return -EINVAL; 5538 } 5539 5540 DP(BNX2X_MSG_SP, 5541 "Completing command %d for func %d, setting state to %d\n", 5542 cmd, BP_FUNC(bp), o->next_state); 5543 5544 o->state = o->next_state; 5545 o->next_state = BNX2X_F_STATE_MAX; 5546 5547 /* It's important that o->state and o->next_state are 5548 * updated before o->pending. 5549 */ 5550 wmb(); 5551 5552 clear_bit(cmd, &o->pending); 5553 smp_mb__after_atomic(); 5554 5555 return 0; 5556 } 5557 5558 /** 5559 * bnx2x_func_comp_cmd - complete the state change command 5560 * 5561 * @bp: device handle 5562 * @o: 5563 * @cmd: 5564 * 5565 * Checks that the arrived completion is expected. 5566 */ 5567 static int bnx2x_func_comp_cmd(struct bnx2x *bp, 5568 struct bnx2x_func_sp_obj *o, 5569 enum bnx2x_func_cmd cmd) 5570 { 5571 /* Complete the state machine part first, check if it's a 5572 * legal completion. 5573 */ 5574 int rc = bnx2x_func_state_change_comp(bp, o, cmd); 5575 return rc; 5576 } 5577 5578 /** 5579 * bnx2x_func_chk_transition - perform function state machine transition 5580 * 5581 * @bp: device handle 5582 * @o: 5583 * @params: 5584 * 5585 * It both checks if the requested command is legal in a current 5586 * state and, if it's legal, sets a `next_state' in the object 5587 * that will be used in the completion flow to set the `state' 5588 * of the object. 5589 * 5590 * returns 0 if a requested command is a legal transition, 5591 * -EINVAL otherwise. 5592 */ 5593 static int bnx2x_func_chk_transition(struct bnx2x *bp, 5594 struct bnx2x_func_sp_obj *o, 5595 struct bnx2x_func_state_params *params) 5596 { 5597 enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX; 5598 enum bnx2x_func_cmd cmd = params->cmd; 5599 5600 /* Forget all pending for completion commands if a driver only state 5601 * transition has been requested. 5602 */ 5603 if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) { 5604 o->pending = 0; 5605 o->next_state = BNX2X_F_STATE_MAX; 5606 } 5607 5608 /* Don't allow a next state transition if we are in the middle of 5609 * the previous one. 5610 */ 5611 if (o->pending) 5612 return -EBUSY; 5613 5614 switch (state) { 5615 case BNX2X_F_STATE_RESET: 5616 if (cmd == BNX2X_F_CMD_HW_INIT) 5617 next_state = BNX2X_F_STATE_INITIALIZED; 5618 5619 break; 5620 case BNX2X_F_STATE_INITIALIZED: 5621 if (cmd == BNX2X_F_CMD_START) 5622 next_state = BNX2X_F_STATE_STARTED; 5623 5624 else if (cmd == BNX2X_F_CMD_HW_RESET) 5625 next_state = BNX2X_F_STATE_RESET; 5626 5627 break; 5628 case BNX2X_F_STATE_STARTED: 5629 if (cmd == BNX2X_F_CMD_STOP) 5630 next_state = BNX2X_F_STATE_INITIALIZED; 5631 /* afex ramrods can be sent only in started mode, and only 5632 * if not pending for function_stop ramrod completion 5633 * for these events - next state remained STARTED. 5634 */ 5635 else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) && 5636 (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) 5637 next_state = BNX2X_F_STATE_STARTED; 5638 5639 else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) && 5640 (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) 5641 next_state = BNX2X_F_STATE_STARTED; 5642 5643 /* Switch_update ramrod can be sent in either started or 5644 * tx_stopped state, and it doesn't change the state. 5645 */ 5646 else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) && 5647 (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) 5648 next_state = BNX2X_F_STATE_STARTED; 5649 5650 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) && 5651 (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) 5652 next_state = BNX2X_F_STATE_STARTED; 5653 5654 else if (cmd == BNX2X_F_CMD_TX_STOP) 5655 next_state = BNX2X_F_STATE_TX_STOPPED; 5656 5657 break; 5658 case BNX2X_F_STATE_TX_STOPPED: 5659 if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) && 5660 (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) 5661 next_state = BNX2X_F_STATE_TX_STOPPED; 5662 5663 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) && 5664 (!test_bit(BNX2X_F_CMD_STOP, &o->pending))) 5665 next_state = BNX2X_F_STATE_TX_STOPPED; 5666 5667 else if (cmd == BNX2X_F_CMD_TX_START) 5668 next_state = BNX2X_F_STATE_STARTED; 5669 5670 break; 5671 default: 5672 BNX2X_ERR("Unknown state: %d\n", state); 5673 } 5674 5675 /* Transition is assured */ 5676 if (next_state != BNX2X_F_STATE_MAX) { 5677 DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n", 5678 state, cmd, next_state); 5679 o->next_state = next_state; 5680 return 0; 5681 } 5682 5683 DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n", 5684 state, cmd); 5685 5686 return -EINVAL; 5687 } 5688 5689 /** 5690 * bnx2x_func_init_func - performs HW init at function stage 5691 * 5692 * @bp: device handle 5693 * @drv: 5694 * 5695 * Init HW when the current phase is 5696 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only 5697 * HW blocks. 5698 */ 5699 static inline int bnx2x_func_init_func(struct bnx2x *bp, 5700 const struct bnx2x_func_sp_drv_ops *drv) 5701 { 5702 return drv->init_hw_func(bp); 5703 } 5704 5705 /** 5706 * bnx2x_func_init_port - performs HW init at port stage 5707 * 5708 * @bp: device handle 5709 * @drv: 5710 * 5711 * Init HW when the current phase is 5712 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and 5713 * FUNCTION-only HW blocks. 5714 * 5715 */ 5716 static inline int bnx2x_func_init_port(struct bnx2x *bp, 5717 const struct bnx2x_func_sp_drv_ops *drv) 5718 { 5719 int rc = drv->init_hw_port(bp); 5720 if (rc) 5721 return rc; 5722 5723 return bnx2x_func_init_func(bp, drv); 5724 } 5725 5726 /** 5727 * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage 5728 * 5729 * @bp: device handle 5730 * @drv: 5731 * 5732 * Init HW when the current phase is 5733 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP, 5734 * PORT-only and FUNCTION-only HW blocks. 5735 */ 5736 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp, 5737 const struct bnx2x_func_sp_drv_ops *drv) 5738 { 5739 int rc = drv->init_hw_cmn_chip(bp); 5740 if (rc) 5741 return rc; 5742 5743 return bnx2x_func_init_port(bp, drv); 5744 } 5745 5746 /** 5747 * bnx2x_func_init_cmn - performs HW init at common stage 5748 * 5749 * @bp: device handle 5750 * @drv: 5751 * 5752 * Init HW when the current phase is 5753 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON, 5754 * PORT-only and FUNCTION-only HW blocks. 5755 */ 5756 static inline int bnx2x_func_init_cmn(struct bnx2x *bp, 5757 const struct bnx2x_func_sp_drv_ops *drv) 5758 { 5759 int rc = drv->init_hw_cmn(bp); 5760 if (rc) 5761 return rc; 5762 5763 return bnx2x_func_init_port(bp, drv); 5764 } 5765 5766 static int bnx2x_func_hw_init(struct bnx2x *bp, 5767 struct bnx2x_func_state_params *params) 5768 { 5769 u32 load_code = params->params.hw_init.load_phase; 5770 struct bnx2x_func_sp_obj *o = params->f_obj; 5771 const struct bnx2x_func_sp_drv_ops *drv = o->drv; 5772 int rc = 0; 5773 5774 DP(BNX2X_MSG_SP, "function %d load_code %x\n", 5775 BP_ABS_FUNC(bp), load_code); 5776 5777 /* Prepare buffers for unzipping the FW */ 5778 rc = drv->gunzip_init(bp); 5779 if (rc) 5780 return rc; 5781 5782 /* Prepare FW */ 5783 rc = drv->init_fw(bp); 5784 if (rc) { 5785 BNX2X_ERR("Error loading firmware\n"); 5786 goto init_err; 5787 } 5788 5789 /* Handle the beginning of COMMON_XXX pases separately... */ 5790 switch (load_code) { 5791 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 5792 rc = bnx2x_func_init_cmn_chip(bp, drv); 5793 if (rc) 5794 goto init_err; 5795 5796 break; 5797 case FW_MSG_CODE_DRV_LOAD_COMMON: 5798 rc = bnx2x_func_init_cmn(bp, drv); 5799 if (rc) 5800 goto init_err; 5801 5802 break; 5803 case FW_MSG_CODE_DRV_LOAD_PORT: 5804 rc = bnx2x_func_init_port(bp, drv); 5805 if (rc) 5806 goto init_err; 5807 5808 break; 5809 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 5810 rc = bnx2x_func_init_func(bp, drv); 5811 if (rc) 5812 goto init_err; 5813 5814 break; 5815 default: 5816 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 5817 rc = -EINVAL; 5818 } 5819 5820 init_err: 5821 drv->gunzip_end(bp); 5822 5823 /* In case of success, complete the command immediately: no ramrods 5824 * have been sent. 5825 */ 5826 if (!rc) 5827 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT); 5828 5829 return rc; 5830 } 5831 5832 /** 5833 * bnx2x_func_reset_func - reset HW at function stage 5834 * 5835 * @bp: device handle 5836 * @drv: 5837 * 5838 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only 5839 * FUNCTION-only HW blocks. 5840 */ 5841 static inline void bnx2x_func_reset_func(struct bnx2x *bp, 5842 const struct bnx2x_func_sp_drv_ops *drv) 5843 { 5844 drv->reset_hw_func(bp); 5845 } 5846 5847 /** 5848 * bnx2x_func_reset_port - reset HW at port stage 5849 * 5850 * @bp: device handle 5851 * @drv: 5852 * 5853 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset 5854 * FUNCTION-only and PORT-only HW blocks. 5855 * 5856 * !!!IMPORTANT!!! 5857 * 5858 * It's important to call reset_port before reset_func() as the last thing 5859 * reset_func does is pf_disable() thus disabling PGLUE_B, which 5860 * makes impossible any DMAE transactions. 5861 */ 5862 static inline void bnx2x_func_reset_port(struct bnx2x *bp, 5863 const struct bnx2x_func_sp_drv_ops *drv) 5864 { 5865 drv->reset_hw_port(bp); 5866 bnx2x_func_reset_func(bp, drv); 5867 } 5868 5869 /** 5870 * bnx2x_func_reset_cmn - reset HW at common stage 5871 * 5872 * @bp: device handle 5873 * @drv: 5874 * 5875 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and 5876 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON, 5877 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks. 5878 */ 5879 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp, 5880 const struct bnx2x_func_sp_drv_ops *drv) 5881 { 5882 bnx2x_func_reset_port(bp, drv); 5883 drv->reset_hw_cmn(bp); 5884 } 5885 5886 static inline int bnx2x_func_hw_reset(struct bnx2x *bp, 5887 struct bnx2x_func_state_params *params) 5888 { 5889 u32 reset_phase = params->params.hw_reset.reset_phase; 5890 struct bnx2x_func_sp_obj *o = params->f_obj; 5891 const struct bnx2x_func_sp_drv_ops *drv = o->drv; 5892 5893 DP(BNX2X_MSG_SP, "function %d reset_phase %x\n", BP_ABS_FUNC(bp), 5894 reset_phase); 5895 5896 switch (reset_phase) { 5897 case FW_MSG_CODE_DRV_UNLOAD_COMMON: 5898 bnx2x_func_reset_cmn(bp, drv); 5899 break; 5900 case FW_MSG_CODE_DRV_UNLOAD_PORT: 5901 bnx2x_func_reset_port(bp, drv); 5902 break; 5903 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION: 5904 bnx2x_func_reset_func(bp, drv); 5905 break; 5906 default: 5907 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n", 5908 reset_phase); 5909 break; 5910 } 5911 5912 /* Complete the command immediately: no ramrods have been sent. */ 5913 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET); 5914 5915 return 0; 5916 } 5917 5918 static inline int bnx2x_func_send_start(struct bnx2x *bp, 5919 struct bnx2x_func_state_params *params) 5920 { 5921 struct bnx2x_func_sp_obj *o = params->f_obj; 5922 struct function_start_data *rdata = 5923 (struct function_start_data *)o->rdata; 5924 dma_addr_t data_mapping = o->rdata_mapping; 5925 struct bnx2x_func_start_params *start_params = ¶ms->params.start; 5926 5927 memset(rdata, 0, sizeof(*rdata)); 5928 5929 /* Fill the ramrod data with provided parameters */ 5930 rdata->function_mode = (u8)start_params->mf_mode; 5931 rdata->sd_vlan_tag = cpu_to_le16(start_params->sd_vlan_tag); 5932 rdata->path_id = BP_PATH(bp); 5933 rdata->network_cos_mode = start_params->network_cos_mode; 5934 5935 rdata->vxlan_dst_port = cpu_to_le16(start_params->vxlan_dst_port); 5936 rdata->geneve_dst_port = cpu_to_le16(start_params->geneve_dst_port); 5937 rdata->inner_clss_l2gre = start_params->inner_clss_l2gre; 5938 rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve; 5939 rdata->inner_clss_vxlan = start_params->inner_clss_vxlan; 5940 rdata->inner_rss = start_params->inner_rss; 5941 5942 rdata->sd_accept_mf_clss_fail = start_params->class_fail; 5943 if (start_params->class_fail_ethtype) { 5944 rdata->sd_accept_mf_clss_fail_match_ethtype = 1; 5945 rdata->sd_accept_mf_clss_fail_ethtype = 5946 cpu_to_le16(start_params->class_fail_ethtype); 5947 } 5948 5949 rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri; 5950 rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val; 5951 if (start_params->sd_vlan_eth_type) 5952 rdata->sd_vlan_eth_type = 5953 cpu_to_le16(start_params->sd_vlan_eth_type); 5954 else 5955 rdata->sd_vlan_eth_type = 5956 cpu_to_le16(0x8100); 5957 5958 rdata->no_added_tags = start_params->no_added_tags; 5959 5960 rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid; 5961 if (rdata->c2s_pri_tt_valid) { 5962 memcpy(rdata->c2s_pri_trans_table.val, 5963 start_params->c2s_pri, 5964 MAX_VLAN_PRIORITIES); 5965 rdata->c2s_pri_default = start_params->c2s_pri_default; 5966 } 5967 /* No need for an explicit memory barrier here as long we would 5968 * need to ensure the ordering of writing to the SPQ element 5969 * and updating of the SPQ producer which involves a memory 5970 * read and we will have to put a full memory barrier there 5971 * (inside bnx2x_sp_post()). 5972 */ 5973 5974 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0, 5975 U64_HI(data_mapping), 5976 U64_LO(data_mapping), NONE_CONNECTION_TYPE); 5977 } 5978 5979 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp, 5980 struct bnx2x_func_state_params *params) 5981 { 5982 struct bnx2x_func_sp_obj *o = params->f_obj; 5983 struct function_update_data *rdata = 5984 (struct function_update_data *)o->rdata; 5985 dma_addr_t data_mapping = o->rdata_mapping; 5986 struct bnx2x_func_switch_update_params *switch_update_params = 5987 ¶ms->params.switch_update; 5988 5989 memset(rdata, 0, sizeof(*rdata)); 5990 5991 /* Fill the ramrod data with provided parameters */ 5992 if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 5993 &switch_update_params->changes)) { 5994 rdata->tx_switch_suspend_change_flg = 1; 5995 rdata->tx_switch_suspend = 5996 test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 5997 &switch_update_params->changes); 5998 } 5999 6000 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 6001 &switch_update_params->changes)) { 6002 rdata->sd_vlan_tag_change_flg = 1; 6003 rdata->sd_vlan_tag = 6004 cpu_to_le16(switch_update_params->vlan); 6005 } 6006 6007 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG, 6008 &switch_update_params->changes)) { 6009 rdata->sd_vlan_eth_type_change_flg = 1; 6010 rdata->sd_vlan_eth_type = 6011 cpu_to_le16(switch_update_params->vlan_eth_type); 6012 } 6013 6014 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG, 6015 &switch_update_params->changes)) { 6016 rdata->sd_vlan_force_pri_change_flg = 1; 6017 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG, 6018 &switch_update_params->changes)) 6019 rdata->sd_vlan_force_pri_flg = 1; 6020 rdata->sd_vlan_force_pri_flg = 6021 switch_update_params->vlan_force_prio; 6022 } 6023 6024 if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 6025 &switch_update_params->changes)) { 6026 rdata->update_tunn_cfg_flg = 1; 6027 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE, 6028 &switch_update_params->changes)) 6029 rdata->inner_clss_l2gre = 1; 6030 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN, 6031 &switch_update_params->changes)) 6032 rdata->inner_clss_vxlan = 1; 6033 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE, 6034 &switch_update_params->changes)) 6035 rdata->inner_clss_l2geneve = 1; 6036 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS, 6037 &switch_update_params->changes)) 6038 rdata->inner_rss = 1; 6039 rdata->vxlan_dst_port = 6040 cpu_to_le16(switch_update_params->vxlan_dst_port); 6041 rdata->geneve_dst_port = 6042 cpu_to_le16(switch_update_params->geneve_dst_port); 6043 } 6044 6045 rdata->echo = SWITCH_UPDATE; 6046 6047 /* No need for an explicit memory barrier here as long as we 6048 * ensure the ordering of writing to the SPQ element 6049 * and updating of the SPQ producer which involves a memory 6050 * read. If the memory read is removed we will have to put a 6051 * full memory barrier there (inside bnx2x_sp_post()). 6052 */ 6053 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0, 6054 U64_HI(data_mapping), 6055 U64_LO(data_mapping), NONE_CONNECTION_TYPE); 6056 } 6057 6058 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp, 6059 struct bnx2x_func_state_params *params) 6060 { 6061 struct bnx2x_func_sp_obj *o = params->f_obj; 6062 struct function_update_data *rdata = 6063 (struct function_update_data *)o->afex_rdata; 6064 dma_addr_t data_mapping = o->afex_rdata_mapping; 6065 struct bnx2x_func_afex_update_params *afex_update_params = 6066 ¶ms->params.afex_update; 6067 6068 memset(rdata, 0, sizeof(*rdata)); 6069 6070 /* Fill the ramrod data with provided parameters */ 6071 rdata->vif_id_change_flg = 1; 6072 rdata->vif_id = cpu_to_le16(afex_update_params->vif_id); 6073 rdata->afex_default_vlan_change_flg = 1; 6074 rdata->afex_default_vlan = 6075 cpu_to_le16(afex_update_params->afex_default_vlan); 6076 rdata->allowed_priorities_change_flg = 1; 6077 rdata->allowed_priorities = afex_update_params->allowed_priorities; 6078 rdata->echo = AFEX_UPDATE; 6079 6080 /* No need for an explicit memory barrier here as long as we 6081 * ensure the ordering of writing to the SPQ element 6082 * and updating of the SPQ producer which involves a memory 6083 * read. If the memory read is removed we will have to put a 6084 * full memory barrier there (inside bnx2x_sp_post()). 6085 */ 6086 DP(BNX2X_MSG_SP, 6087 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n", 6088 rdata->vif_id, 6089 rdata->afex_default_vlan, rdata->allowed_priorities); 6090 6091 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0, 6092 U64_HI(data_mapping), 6093 U64_LO(data_mapping), NONE_CONNECTION_TYPE); 6094 } 6095 6096 static 6097 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp, 6098 struct bnx2x_func_state_params *params) 6099 { 6100 struct bnx2x_func_sp_obj *o = params->f_obj; 6101 struct afex_vif_list_ramrod_data *rdata = 6102 (struct afex_vif_list_ramrod_data *)o->afex_rdata; 6103 struct bnx2x_func_afex_viflists_params *afex_vif_params = 6104 ¶ms->params.afex_viflists; 6105 u64 *p_rdata = (u64 *)rdata; 6106 6107 memset(rdata, 0, sizeof(*rdata)); 6108 6109 /* Fill the ramrod data with provided parameters */ 6110 rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index); 6111 rdata->func_bit_map = afex_vif_params->func_bit_map; 6112 rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command; 6113 rdata->func_to_clear = afex_vif_params->func_to_clear; 6114 6115 /* send in echo type of sub command */ 6116 rdata->echo = afex_vif_params->afex_vif_list_command; 6117 6118 /* No need for an explicit memory barrier here as long we would 6119 * need to ensure the ordering of writing to the SPQ element 6120 * and updating of the SPQ producer which involves a memory 6121 * read and we will have to put a full memory barrier there 6122 * (inside bnx2x_sp_post()). 6123 */ 6124 6125 DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n", 6126 rdata->afex_vif_list_command, rdata->vif_list_index, 6127 rdata->func_bit_map, rdata->func_to_clear); 6128 6129 /* this ramrod sends data directly and not through DMA mapping */ 6130 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0, 6131 U64_HI(*p_rdata), U64_LO(*p_rdata), 6132 NONE_CONNECTION_TYPE); 6133 } 6134 6135 static inline int bnx2x_func_send_stop(struct bnx2x *bp, 6136 struct bnx2x_func_state_params *params) 6137 { 6138 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0, 6139 NONE_CONNECTION_TYPE); 6140 } 6141 6142 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp, 6143 struct bnx2x_func_state_params *params) 6144 { 6145 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0, 6146 NONE_CONNECTION_TYPE); 6147 } 6148 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp, 6149 struct bnx2x_func_state_params *params) 6150 { 6151 struct bnx2x_func_sp_obj *o = params->f_obj; 6152 struct flow_control_configuration *rdata = 6153 (struct flow_control_configuration *)o->rdata; 6154 dma_addr_t data_mapping = o->rdata_mapping; 6155 struct bnx2x_func_tx_start_params *tx_start_params = 6156 ¶ms->params.tx_start; 6157 int i; 6158 6159 memset(rdata, 0, sizeof(*rdata)); 6160 6161 rdata->dcb_enabled = tx_start_params->dcb_enabled; 6162 rdata->dcb_version = tx_start_params->dcb_version; 6163 rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en; 6164 6165 for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++) 6166 rdata->traffic_type_to_priority_cos[i] = 6167 tx_start_params->traffic_type_to_priority_cos[i]; 6168 6169 for (i = 0; i < MAX_TRAFFIC_TYPES; i++) 6170 rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i]; 6171 /* No need for an explicit memory barrier here as long as we 6172 * ensure the ordering of writing to the SPQ element 6173 * and updating of the SPQ producer which involves a memory 6174 * read. If the memory read is removed we will have to put a 6175 * full memory barrier there (inside bnx2x_sp_post()). 6176 */ 6177 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0, 6178 U64_HI(data_mapping), 6179 U64_LO(data_mapping), NONE_CONNECTION_TYPE); 6180 } 6181 6182 static inline 6183 int bnx2x_func_send_set_timesync(struct bnx2x *bp, 6184 struct bnx2x_func_state_params *params) 6185 { 6186 struct bnx2x_func_sp_obj *o = params->f_obj; 6187 struct set_timesync_ramrod_data *rdata = 6188 (struct set_timesync_ramrod_data *)o->rdata; 6189 dma_addr_t data_mapping = o->rdata_mapping; 6190 struct bnx2x_func_set_timesync_params *set_timesync_params = 6191 ¶ms->params.set_timesync; 6192 6193 memset(rdata, 0, sizeof(*rdata)); 6194 6195 /* Fill the ramrod data with provided parameters */ 6196 rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd; 6197 rdata->offset_cmd = set_timesync_params->offset_cmd; 6198 rdata->add_sub_drift_adjust_value = 6199 set_timesync_params->add_sub_drift_adjust_value; 6200 rdata->drift_adjust_value = set_timesync_params->drift_adjust_value; 6201 rdata->drift_adjust_period = set_timesync_params->drift_adjust_period; 6202 rdata->offset_delta.lo = 6203 cpu_to_le32(U64_LO(set_timesync_params->offset_delta)); 6204 rdata->offset_delta.hi = 6205 cpu_to_le32(U64_HI(set_timesync_params->offset_delta)); 6206 6207 DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n", 6208 rdata->drift_adjust_cmd, rdata->offset_cmd, 6209 rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value, 6210 rdata->drift_adjust_period, rdata->offset_delta.lo, 6211 rdata->offset_delta.hi); 6212 6213 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0, 6214 U64_HI(data_mapping), 6215 U64_LO(data_mapping), NONE_CONNECTION_TYPE); 6216 } 6217 6218 static int bnx2x_func_send_cmd(struct bnx2x *bp, 6219 struct bnx2x_func_state_params *params) 6220 { 6221 switch (params->cmd) { 6222 case BNX2X_F_CMD_HW_INIT: 6223 return bnx2x_func_hw_init(bp, params); 6224 case BNX2X_F_CMD_START: 6225 return bnx2x_func_send_start(bp, params); 6226 case BNX2X_F_CMD_STOP: 6227 return bnx2x_func_send_stop(bp, params); 6228 case BNX2X_F_CMD_HW_RESET: 6229 return bnx2x_func_hw_reset(bp, params); 6230 case BNX2X_F_CMD_AFEX_UPDATE: 6231 return bnx2x_func_send_afex_update(bp, params); 6232 case BNX2X_F_CMD_AFEX_VIFLISTS: 6233 return bnx2x_func_send_afex_viflists(bp, params); 6234 case BNX2X_F_CMD_TX_STOP: 6235 return bnx2x_func_send_tx_stop(bp, params); 6236 case BNX2X_F_CMD_TX_START: 6237 return bnx2x_func_send_tx_start(bp, params); 6238 case BNX2X_F_CMD_SWITCH_UPDATE: 6239 return bnx2x_func_send_switch_update(bp, params); 6240 case BNX2X_F_CMD_SET_TIMESYNC: 6241 return bnx2x_func_send_set_timesync(bp, params); 6242 default: 6243 BNX2X_ERR("Unknown command: %d\n", params->cmd); 6244 return -EINVAL; 6245 } 6246 } 6247 6248 void bnx2x_init_func_obj(struct bnx2x *bp, 6249 struct bnx2x_func_sp_obj *obj, 6250 void *rdata, dma_addr_t rdata_mapping, 6251 void *afex_rdata, dma_addr_t afex_rdata_mapping, 6252 struct bnx2x_func_sp_drv_ops *drv_iface) 6253 { 6254 memset(obj, 0, sizeof(*obj)); 6255 6256 mutex_init(&obj->one_pending_mutex); 6257 6258 obj->rdata = rdata; 6259 obj->rdata_mapping = rdata_mapping; 6260 obj->afex_rdata = afex_rdata; 6261 obj->afex_rdata_mapping = afex_rdata_mapping; 6262 obj->send_cmd = bnx2x_func_send_cmd; 6263 obj->check_transition = bnx2x_func_chk_transition; 6264 obj->complete_cmd = bnx2x_func_comp_cmd; 6265 obj->wait_comp = bnx2x_func_wait_comp; 6266 6267 obj->drv = drv_iface; 6268 } 6269 6270 /** 6271 * bnx2x_func_state_change - perform Function state change transition 6272 * 6273 * @bp: device handle 6274 * @params: parameters to perform the transaction 6275 * 6276 * returns 0 in case of successfully completed transition, 6277 * negative error code in case of failure, positive 6278 * (EBUSY) value if there is a completion to that is 6279 * still pending (possible only if RAMROD_COMP_WAIT is 6280 * not set in params->ramrod_flags for asynchronous 6281 * commands). 6282 */ 6283 int bnx2x_func_state_change(struct bnx2x *bp, 6284 struct bnx2x_func_state_params *params) 6285 { 6286 struct bnx2x_func_sp_obj *o = params->f_obj; 6287 int rc, cnt = 300; 6288 enum bnx2x_func_cmd cmd = params->cmd; 6289 unsigned long *pending = &o->pending; 6290 6291 mutex_lock(&o->one_pending_mutex); 6292 6293 /* Check that the requested transition is legal */ 6294 rc = o->check_transition(bp, o, params); 6295 if ((rc == -EBUSY) && 6296 (test_bit(RAMROD_RETRY, ¶ms->ramrod_flags))) { 6297 while ((rc == -EBUSY) && (--cnt > 0)) { 6298 mutex_unlock(&o->one_pending_mutex); 6299 msleep(10); 6300 mutex_lock(&o->one_pending_mutex); 6301 rc = o->check_transition(bp, o, params); 6302 } 6303 if (rc == -EBUSY) { 6304 mutex_unlock(&o->one_pending_mutex); 6305 BNX2X_ERR("timeout waiting for previous ramrod completion\n"); 6306 return rc; 6307 } 6308 } else if (rc) { 6309 mutex_unlock(&o->one_pending_mutex); 6310 return rc; 6311 } 6312 6313 /* Set "pending" bit */ 6314 set_bit(cmd, pending); 6315 6316 /* Don't send a command if only driver cleanup was requested */ 6317 if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) { 6318 bnx2x_func_state_change_comp(bp, o, cmd); 6319 mutex_unlock(&o->one_pending_mutex); 6320 } else { 6321 /* Send a ramrod */ 6322 rc = o->send_cmd(bp, params); 6323 6324 mutex_unlock(&o->one_pending_mutex); 6325 6326 if (rc) { 6327 o->next_state = BNX2X_F_STATE_MAX; 6328 clear_bit(cmd, pending); 6329 smp_mb__after_atomic(); 6330 return rc; 6331 } 6332 6333 if (test_bit(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) { 6334 rc = o->wait_comp(bp, o, cmd); 6335 if (rc) 6336 return rc; 6337 6338 return 0; 6339 } 6340 } 6341 6342 return !!test_bit(cmd, pending); 6343 } 6344