1 /* bnx2x_sp.c: Qlogic Everest network driver.
2  *
3  * Copyright 2011-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and Qlogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other Qlogic software provided under a
14  * license other than the GPL, without Qlogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Vladislav Zolotarov
19  *
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/module.h>
25 #include <linux/crc32.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/crc32c.h>
29 #include "bnx2x.h"
30 #include "bnx2x_cmn.h"
31 #include "bnx2x_sp.h"
32 
33 #define BNX2X_MAX_EMUL_MULTI		16
34 
35 /**** Exe Queue interfaces ****/
36 
37 /**
38  * bnx2x_exe_queue_init - init the Exe Queue object
39  *
40  * @bp:		driver handle
41  * @o:		pointer to the object
42  * @exe_len:	length
43  * @owner:	pointer to the owner
44  * @validate:	validate function pointer
45  * @remove:	remove function pointer
46  * @optimize:	optimize function pointer
47  * @exec:	execute function pointer
48  * @get:	get function pointer
49  */
50 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
51 					struct bnx2x_exe_queue_obj *o,
52 					int exe_len,
53 					union bnx2x_qable_obj *owner,
54 					exe_q_validate validate,
55 					exe_q_remove remove,
56 					exe_q_optimize optimize,
57 					exe_q_execute exec,
58 					exe_q_get get)
59 {
60 	memset(o, 0, sizeof(*o));
61 
62 	INIT_LIST_HEAD(&o->exe_queue);
63 	INIT_LIST_HEAD(&o->pending_comp);
64 
65 	spin_lock_init(&o->lock);
66 
67 	o->exe_chunk_len = exe_len;
68 	o->owner         = owner;
69 
70 	/* Owner specific callbacks */
71 	o->validate      = validate;
72 	o->remove        = remove;
73 	o->optimize      = optimize;
74 	o->execute       = exec;
75 	o->get           = get;
76 
77 	DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
78 	   exe_len);
79 }
80 
81 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
82 					     struct bnx2x_exeq_elem *elem)
83 {
84 	DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
85 	kfree(elem);
86 }
87 
88 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
89 {
90 	struct bnx2x_exeq_elem *elem;
91 	int cnt = 0;
92 
93 	spin_lock_bh(&o->lock);
94 
95 	list_for_each_entry(elem, &o->exe_queue, link)
96 		cnt++;
97 
98 	spin_unlock_bh(&o->lock);
99 
100 	return cnt;
101 }
102 
103 /**
104  * bnx2x_exe_queue_add - add a new element to the execution queue
105  *
106  * @bp:		driver handle
107  * @o:		queue
108  * @elem:	new command to add
109  * @restore:	true - do not optimize the command
110  *
111  * If the element is optimized or is illegal, frees it.
112  */
113 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
114 				      struct bnx2x_exe_queue_obj *o,
115 				      struct bnx2x_exeq_elem *elem,
116 				      bool restore)
117 {
118 	int rc;
119 
120 	spin_lock_bh(&o->lock);
121 
122 	if (!restore) {
123 		/* Try to cancel this element queue */
124 		rc = o->optimize(bp, o->owner, elem);
125 		if (rc)
126 			goto free_and_exit;
127 
128 		/* Check if this request is ok */
129 		rc = o->validate(bp, o->owner, elem);
130 		if (rc) {
131 			DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
132 			goto free_and_exit;
133 		}
134 	}
135 
136 	/* If so, add it to the execution queue */
137 	list_add_tail(&elem->link, &o->exe_queue);
138 
139 	spin_unlock_bh(&o->lock);
140 
141 	return 0;
142 
143 free_and_exit:
144 	bnx2x_exe_queue_free_elem(bp, elem);
145 
146 	spin_unlock_bh(&o->lock);
147 
148 	return rc;
149 }
150 
151 static inline void __bnx2x_exe_queue_reset_pending(
152 	struct bnx2x *bp,
153 	struct bnx2x_exe_queue_obj *o)
154 {
155 	struct bnx2x_exeq_elem *elem;
156 
157 	while (!list_empty(&o->pending_comp)) {
158 		elem = list_first_entry(&o->pending_comp,
159 					struct bnx2x_exeq_elem, link);
160 
161 		list_del(&elem->link);
162 		bnx2x_exe_queue_free_elem(bp, elem);
163 	}
164 }
165 
166 /**
167  * bnx2x_exe_queue_step - execute one execution chunk atomically
168  *
169  * @bp:			driver handle
170  * @o:			queue
171  * @ramrod_flags:	flags
172  *
173  * (Should be called while holding the exe_queue->lock).
174  */
175 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
176 				       struct bnx2x_exe_queue_obj *o,
177 				       unsigned long *ramrod_flags)
178 {
179 	struct bnx2x_exeq_elem *elem, spacer;
180 	int cur_len = 0, rc;
181 
182 	memset(&spacer, 0, sizeof(spacer));
183 
184 	/* Next step should not be performed until the current is finished,
185 	 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
186 	 * properly clear object internals without sending any command to the FW
187 	 * which also implies there won't be any completion to clear the
188 	 * 'pending' list.
189 	 */
190 	if (!list_empty(&o->pending_comp)) {
191 		if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
192 			DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
193 			__bnx2x_exe_queue_reset_pending(bp, o);
194 		} else {
195 			return 1;
196 		}
197 	}
198 
199 	/* Run through the pending commands list and create a next
200 	 * execution chunk.
201 	 */
202 	while (!list_empty(&o->exe_queue)) {
203 		elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
204 					link);
205 		WARN_ON(!elem->cmd_len);
206 
207 		if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
208 			cur_len += elem->cmd_len;
209 			/* Prevent from both lists being empty when moving an
210 			 * element. This will allow the call of
211 			 * bnx2x_exe_queue_empty() without locking.
212 			 */
213 			list_add_tail(&spacer.link, &o->pending_comp);
214 			mb();
215 			list_move_tail(&elem->link, &o->pending_comp);
216 			list_del(&spacer.link);
217 		} else
218 			break;
219 	}
220 
221 	/* Sanity check */
222 	if (!cur_len)
223 		return 0;
224 
225 	rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
226 	if (rc < 0)
227 		/* In case of an error return the commands back to the queue
228 		 * and reset the pending_comp.
229 		 */
230 		list_splice_init(&o->pending_comp, &o->exe_queue);
231 	else if (!rc)
232 		/* If zero is returned, means there are no outstanding pending
233 		 * completions and we may dismiss the pending list.
234 		 */
235 		__bnx2x_exe_queue_reset_pending(bp, o);
236 
237 	return rc;
238 }
239 
240 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
241 {
242 	bool empty = list_empty(&o->exe_queue);
243 
244 	/* Don't reorder!!! */
245 	mb();
246 
247 	return empty && list_empty(&o->pending_comp);
248 }
249 
250 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
251 	struct bnx2x *bp)
252 {
253 	DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
254 	return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
255 }
256 
257 /************************ raw_obj functions ***********************************/
258 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
259 {
260 	return !!test_bit(o->state, o->pstate);
261 }
262 
263 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
264 {
265 	smp_mb__before_atomic();
266 	clear_bit(o->state, o->pstate);
267 	smp_mb__after_atomic();
268 }
269 
270 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
271 {
272 	smp_mb__before_atomic();
273 	set_bit(o->state, o->pstate);
274 	smp_mb__after_atomic();
275 }
276 
277 /**
278  * bnx2x_state_wait - wait until the given bit(state) is cleared
279  *
280  * @bp:		device handle
281  * @state:	state which is to be cleared
282  * @pstate:	state buffer
283  *
284  */
285 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
286 				   unsigned long *pstate)
287 {
288 	/* can take a while if any port is running */
289 	int cnt = 5000;
290 
291 	if (CHIP_REV_IS_EMUL(bp))
292 		cnt *= 20;
293 
294 	DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
295 
296 	might_sleep();
297 	while (cnt--) {
298 		if (!test_bit(state, pstate)) {
299 #ifdef BNX2X_STOP_ON_ERROR
300 			DP(BNX2X_MSG_SP, "exit  (cnt %d)\n", 5000 - cnt);
301 #endif
302 			return 0;
303 		}
304 
305 		usleep_range(1000, 2000);
306 
307 		if (bp->panic)
308 			return -EIO;
309 	}
310 
311 	/* timeout! */
312 	BNX2X_ERR("timeout waiting for state %d\n", state);
313 #ifdef BNX2X_STOP_ON_ERROR
314 	bnx2x_panic();
315 #endif
316 
317 	return -EBUSY;
318 }
319 
320 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
321 {
322 	return bnx2x_state_wait(bp, raw->state, raw->pstate);
323 }
324 
325 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
326 /* credit handling callbacks */
327 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
328 {
329 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
330 
331 	WARN_ON(!mp);
332 
333 	return mp->get_entry(mp, offset);
334 }
335 
336 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
337 {
338 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
339 
340 	WARN_ON(!mp);
341 
342 	return mp->get(mp, 1);
343 }
344 
345 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
346 {
347 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
348 
349 	WARN_ON(!vp);
350 
351 	return vp->get_entry(vp, offset);
352 }
353 
354 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
355 {
356 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
357 
358 	WARN_ON(!vp);
359 
360 	return vp->get(vp, 1);
361 }
362 
363 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
364 {
365 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
366 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
367 
368 	if (!mp->get(mp, 1))
369 		return false;
370 
371 	if (!vp->get(vp, 1)) {
372 		mp->put(mp, 1);
373 		return false;
374 	}
375 
376 	return true;
377 }
378 
379 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
380 {
381 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
382 
383 	return mp->put_entry(mp, offset);
384 }
385 
386 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
387 {
388 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
389 
390 	return mp->put(mp, 1);
391 }
392 
393 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
394 {
395 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
396 
397 	return vp->put_entry(vp, offset);
398 }
399 
400 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
401 {
402 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
403 
404 	return vp->put(vp, 1);
405 }
406 
407 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
408 {
409 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
410 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
411 
412 	if (!mp->put(mp, 1))
413 		return false;
414 
415 	if (!vp->put(vp, 1)) {
416 		mp->get(mp, 1);
417 		return false;
418 	}
419 
420 	return true;
421 }
422 
423 /**
424  * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
425  *
426  * @bp:		device handle
427  * @o:		vlan_mac object
428  *
429  * Context: Non-blocking implementation; should be called under execution
430  *          queue lock.
431  */
432 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
433 					    struct bnx2x_vlan_mac_obj *o)
434 {
435 	if (o->head_reader) {
436 		DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
437 		return -EBUSY;
438 	}
439 
440 	DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
441 	return 0;
442 }
443 
444 /**
445  * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
446  *
447  * @bp:		device handle
448  * @o:		vlan_mac object
449  *
450  * details Should be called under execution queue lock; notice it might release
451  *          and reclaim it during its run.
452  */
453 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
454 					    struct bnx2x_vlan_mac_obj *o)
455 {
456 	int rc;
457 	unsigned long ramrod_flags = o->saved_ramrod_flags;
458 
459 	DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
460 	   ramrod_flags);
461 	o->head_exe_request = false;
462 	o->saved_ramrod_flags = 0;
463 	rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
464 	if ((rc != 0) && (rc != 1)) {
465 		BNX2X_ERR("execution of pending commands failed with rc %d\n",
466 			  rc);
467 #ifdef BNX2X_STOP_ON_ERROR
468 		bnx2x_panic();
469 #endif
470 	}
471 }
472 
473 /**
474  * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
475  *
476  * @bp:			device handle
477  * @o:			vlan_mac object
478  * @ramrod_flags:	ramrod flags of missed execution
479  *
480  * Context: Should be called under execution queue lock.
481  */
482 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
483 				    struct bnx2x_vlan_mac_obj *o,
484 				    unsigned long ramrod_flags)
485 {
486 	o->head_exe_request = true;
487 	o->saved_ramrod_flags = ramrod_flags;
488 	DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
489 	   ramrod_flags);
490 }
491 
492 /**
493  * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
494  *
495  * @bp:			device handle
496  * @o:			vlan_mac object
497  *
498  * Context: Should be called under execution queue lock. Notice if a pending
499  *          execution exists, it would perform it - possibly releasing and
500  *          reclaiming the execution queue lock.
501  */
502 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
503 					    struct bnx2x_vlan_mac_obj *o)
504 {
505 	/* It's possible a new pending execution was added since this writer
506 	 * executed. If so, execute again. [Ad infinitum]
507 	 */
508 	while (o->head_exe_request) {
509 		DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
510 		__bnx2x_vlan_mac_h_exec_pending(bp, o);
511 	}
512 }
513 
514 
515 /**
516  * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
517  *
518  * @bp:			device handle
519  * @o:			vlan_mac object
520  *
521  * Context: Should be called under the execution queue lock. May sleep. May
522  *          release and reclaim execution queue lock during its run.
523  */
524 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
525 					struct bnx2x_vlan_mac_obj *o)
526 {
527 	/* If we got here, we're holding lock --> no WRITER exists */
528 	o->head_reader++;
529 	DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
530 	   o->head_reader);
531 
532 	return 0;
533 }
534 
535 /**
536  * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
537  *
538  * @bp:			device handle
539  * @o:			vlan_mac object
540  *
541  * Context: May sleep. Claims and releases execution queue lock during its run.
542  */
543 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
544 			       struct bnx2x_vlan_mac_obj *o)
545 {
546 	int rc;
547 
548 	spin_lock_bh(&o->exe_queue.lock);
549 	rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
550 	spin_unlock_bh(&o->exe_queue.lock);
551 
552 	return rc;
553 }
554 
555 /**
556  * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
557  *
558  * @bp:			device handle
559  * @o:			vlan_mac object
560  *
561  * Context: Should be called under execution queue lock. Notice if a pending
562  *          execution exists, it would be performed if this was the last
563  *          reader. possibly releasing and reclaiming the execution queue lock.
564  */
565 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
566 					  struct bnx2x_vlan_mac_obj *o)
567 {
568 	if (!o->head_reader) {
569 		BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
570 #ifdef BNX2X_STOP_ON_ERROR
571 		bnx2x_panic();
572 #endif
573 	} else {
574 		o->head_reader--;
575 		DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
576 		   o->head_reader);
577 	}
578 
579 	/* It's possible a new pending execution was added, and that this reader
580 	 * was last - if so we need to execute the command.
581 	 */
582 	if (!o->head_reader && o->head_exe_request) {
583 		DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
584 
585 		/* Writer release will do the trick */
586 		__bnx2x_vlan_mac_h_write_unlock(bp, o);
587 	}
588 }
589 
590 /**
591  * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
592  *
593  * @bp:			device handle
594  * @o:			vlan_mac object
595  *
596  * Context: Notice if a pending execution exists, it would be performed if this
597  *          was the last reader. Claims and releases the execution queue lock
598  *          during its run.
599  */
600 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
601 				  struct bnx2x_vlan_mac_obj *o)
602 {
603 	spin_lock_bh(&o->exe_queue.lock);
604 	__bnx2x_vlan_mac_h_read_unlock(bp, o);
605 	spin_unlock_bh(&o->exe_queue.lock);
606 }
607 
608 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
609 				int n, u8 *base, u8 stride, u8 size)
610 {
611 	struct bnx2x_vlan_mac_registry_elem *pos;
612 	u8 *next = base;
613 	int counter = 0;
614 	int read_lock;
615 
616 	DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
617 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
618 	if (read_lock != 0)
619 		BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
620 
621 	/* traverse list */
622 	list_for_each_entry(pos, &o->head, link) {
623 		if (counter < n) {
624 			memcpy(next, &pos->u, size);
625 			counter++;
626 			DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
627 			   counter, next);
628 			next += stride + size;
629 		}
630 	}
631 
632 	if (read_lock == 0) {
633 		DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
634 		bnx2x_vlan_mac_h_read_unlock(bp, o);
635 	}
636 
637 	return counter * ETH_ALEN;
638 }
639 
640 /* check_add() callbacks */
641 static int bnx2x_check_mac_add(struct bnx2x *bp,
642 			       struct bnx2x_vlan_mac_obj *o,
643 			       union bnx2x_classification_ramrod_data *data)
644 {
645 	struct bnx2x_vlan_mac_registry_elem *pos;
646 
647 	DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
648 
649 	if (!is_valid_ether_addr(data->mac.mac))
650 		return -EINVAL;
651 
652 	/* Check if a requested MAC already exists */
653 	list_for_each_entry(pos, &o->head, link)
654 		if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
655 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
656 			return -EEXIST;
657 
658 	return 0;
659 }
660 
661 static int bnx2x_check_vlan_add(struct bnx2x *bp,
662 				struct bnx2x_vlan_mac_obj *o,
663 				union bnx2x_classification_ramrod_data *data)
664 {
665 	struct bnx2x_vlan_mac_registry_elem *pos;
666 
667 	DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
668 
669 	list_for_each_entry(pos, &o->head, link)
670 		if (data->vlan.vlan == pos->u.vlan.vlan)
671 			return -EEXIST;
672 
673 	return 0;
674 }
675 
676 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
677 				    struct bnx2x_vlan_mac_obj *o,
678 				   union bnx2x_classification_ramrod_data *data)
679 {
680 	struct bnx2x_vlan_mac_registry_elem *pos;
681 
682 	DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
683 	   data->vlan_mac.mac, data->vlan_mac.vlan);
684 
685 	list_for_each_entry(pos, &o->head, link)
686 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
687 		    (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
688 				  ETH_ALEN)) &&
689 		    (data->vlan_mac.is_inner_mac ==
690 		     pos->u.vlan_mac.is_inner_mac))
691 			return -EEXIST;
692 
693 	return 0;
694 }
695 
696 /* check_del() callbacks */
697 static struct bnx2x_vlan_mac_registry_elem *
698 	bnx2x_check_mac_del(struct bnx2x *bp,
699 			    struct bnx2x_vlan_mac_obj *o,
700 			    union bnx2x_classification_ramrod_data *data)
701 {
702 	struct bnx2x_vlan_mac_registry_elem *pos;
703 
704 	DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
705 
706 	list_for_each_entry(pos, &o->head, link)
707 		if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
708 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
709 			return pos;
710 
711 	return NULL;
712 }
713 
714 static struct bnx2x_vlan_mac_registry_elem *
715 	bnx2x_check_vlan_del(struct bnx2x *bp,
716 			     struct bnx2x_vlan_mac_obj *o,
717 			     union bnx2x_classification_ramrod_data *data)
718 {
719 	struct bnx2x_vlan_mac_registry_elem *pos;
720 
721 	DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
722 
723 	list_for_each_entry(pos, &o->head, link)
724 		if (data->vlan.vlan == pos->u.vlan.vlan)
725 			return pos;
726 
727 	return NULL;
728 }
729 
730 static struct bnx2x_vlan_mac_registry_elem *
731 	bnx2x_check_vlan_mac_del(struct bnx2x *bp,
732 				 struct bnx2x_vlan_mac_obj *o,
733 				 union bnx2x_classification_ramrod_data *data)
734 {
735 	struct bnx2x_vlan_mac_registry_elem *pos;
736 
737 	DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
738 	   data->vlan_mac.mac, data->vlan_mac.vlan);
739 
740 	list_for_each_entry(pos, &o->head, link)
741 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
742 		    (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
743 			     ETH_ALEN)) &&
744 		    (data->vlan_mac.is_inner_mac ==
745 		     pos->u.vlan_mac.is_inner_mac))
746 			return pos;
747 
748 	return NULL;
749 }
750 
751 /* check_move() callback */
752 static bool bnx2x_check_move(struct bnx2x *bp,
753 			     struct bnx2x_vlan_mac_obj *src_o,
754 			     struct bnx2x_vlan_mac_obj *dst_o,
755 			     union bnx2x_classification_ramrod_data *data)
756 {
757 	struct bnx2x_vlan_mac_registry_elem *pos;
758 	int rc;
759 
760 	/* Check if we can delete the requested configuration from the first
761 	 * object.
762 	 */
763 	pos = src_o->check_del(bp, src_o, data);
764 
765 	/*  check if configuration can be added */
766 	rc = dst_o->check_add(bp, dst_o, data);
767 
768 	/* If this classification can not be added (is already set)
769 	 * or can't be deleted - return an error.
770 	 */
771 	if (rc || !pos)
772 		return false;
773 
774 	return true;
775 }
776 
777 static bool bnx2x_check_move_always_err(
778 	struct bnx2x *bp,
779 	struct bnx2x_vlan_mac_obj *src_o,
780 	struct bnx2x_vlan_mac_obj *dst_o,
781 	union bnx2x_classification_ramrod_data *data)
782 {
783 	return false;
784 }
785 
786 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
787 {
788 	struct bnx2x_raw_obj *raw = &o->raw;
789 	u8 rx_tx_flag = 0;
790 
791 	if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
792 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
793 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
794 
795 	if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
796 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
797 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
798 
799 	return rx_tx_flag;
800 }
801 
802 static void bnx2x_set_mac_in_nig(struct bnx2x *bp,
803 				 bool add, unsigned char *dev_addr, int index)
804 {
805 	u32 wb_data[2];
806 	u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
807 			 NIG_REG_LLH0_FUNC_MEM;
808 
809 	if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
810 		return;
811 
812 	if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
813 		return;
814 
815 	DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
816 			 (add ? "ADD" : "DELETE"), index);
817 
818 	if (add) {
819 		/* LLH_FUNC_MEM is a u64 WB register */
820 		reg_offset += 8*index;
821 
822 		wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
823 			      (dev_addr[4] <<  8) |  dev_addr[5]);
824 		wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
825 
826 		REG_WR_DMAE(bp, reg_offset, wb_data, 2);
827 	}
828 
829 	REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
830 				  NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
831 }
832 
833 /**
834  * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
835  *
836  * @bp:		device handle
837  * @o:		queue for which we want to configure this rule
838  * @add:	if true the command is an ADD command, DEL otherwise
839  * @opcode:	CLASSIFY_RULE_OPCODE_XXX
840  * @hdr:	pointer to a header to setup
841  *
842  */
843 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
844 	struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
845 	struct eth_classify_cmd_header *hdr)
846 {
847 	struct bnx2x_raw_obj *raw = &o->raw;
848 
849 	hdr->client_id = raw->cl_id;
850 	hdr->func_id = raw->func_id;
851 
852 	/* Rx or/and Tx (internal switching) configuration ? */
853 	hdr->cmd_general_data |=
854 		bnx2x_vlan_mac_get_rx_tx_flag(o);
855 
856 	if (add)
857 		hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
858 
859 	hdr->cmd_general_data |=
860 		(opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
861 }
862 
863 /**
864  * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
865  *
866  * @cid:	connection id
867  * @type:	BNX2X_FILTER_XXX_PENDING
868  * @hdr:	pointer to header to setup
869  * @rule_cnt:
870  *
871  * currently we always configure one rule and echo field to contain a CID and an
872  * opcode type.
873  */
874 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
875 				struct eth_classify_header *hdr, int rule_cnt)
876 {
877 	hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
878 				(type << BNX2X_SWCID_SHIFT));
879 	hdr->rule_cnt = (u8)rule_cnt;
880 }
881 
882 /* hw_config() callbacks */
883 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
884 				 struct bnx2x_vlan_mac_obj *o,
885 				 struct bnx2x_exeq_elem *elem, int rule_idx,
886 				 int cam_offset)
887 {
888 	struct bnx2x_raw_obj *raw = &o->raw;
889 	struct eth_classify_rules_ramrod_data *data =
890 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
891 	int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
892 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
893 	bool add = cmd == BNX2X_VLAN_MAC_ADD;
894 	unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
895 	u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
896 
897 	/* Set LLH CAM entry: currently only iSCSI and ETH macs are
898 	 * relevant. In addition, current implementation is tuned for a
899 	 * single ETH MAC.
900 	 *
901 	 * When multiple unicast ETH MACs PF configuration in switch
902 	 * independent mode is required (NetQ, multiple netdev MACs,
903 	 * etc.), consider better utilisation of 8 per function MAC
904 	 * entries in the LLH register. There is also
905 	 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
906 	 * total number of CAM entries to 16.
907 	 *
908 	 * Currently we won't configure NIG for MACs other than a primary ETH
909 	 * MAC and iSCSI L2 MAC.
910 	 *
911 	 * If this MAC is moving from one Queue to another, no need to change
912 	 * NIG configuration.
913 	 */
914 	if (cmd != BNX2X_VLAN_MAC_MOVE) {
915 		if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
916 			bnx2x_set_mac_in_nig(bp, add, mac,
917 					     BNX2X_LLH_CAM_ISCSI_ETH_LINE);
918 		else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
919 			bnx2x_set_mac_in_nig(bp, add, mac,
920 					     BNX2X_LLH_CAM_ETH_LINE);
921 	}
922 
923 	/* Reset the ramrod data buffer for the first rule */
924 	if (rule_idx == 0)
925 		memset(data, 0, sizeof(*data));
926 
927 	/* Setup a command header */
928 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
929 				      &rule_entry->mac.header);
930 
931 	DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
932 	   (add ? "add" : "delete"), mac, raw->cl_id);
933 
934 	/* Set a MAC itself */
935 	bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
936 			      &rule_entry->mac.mac_mid,
937 			      &rule_entry->mac.mac_lsb, mac);
938 	rule_entry->mac.inner_mac =
939 		cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
940 
941 	/* MOVE: Add a rule that will add this MAC to the target Queue */
942 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
943 		rule_entry++;
944 		rule_cnt++;
945 
946 		/* Setup ramrod data */
947 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
948 					elem->cmd_data.vlan_mac.target_obj,
949 					      true, CLASSIFY_RULE_OPCODE_MAC,
950 					      &rule_entry->mac.header);
951 
952 		/* Set a MAC itself */
953 		bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
954 				      &rule_entry->mac.mac_mid,
955 				      &rule_entry->mac.mac_lsb, mac);
956 		rule_entry->mac.inner_mac =
957 			cpu_to_le16(elem->cmd_data.vlan_mac.
958 						u.mac.is_inner_mac);
959 	}
960 
961 	/* Set the ramrod data header */
962 	/* TODO: take this to the higher level in order to prevent multiple
963 		 writing */
964 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
965 					rule_cnt);
966 }
967 
968 /**
969  * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
970  *
971  * @bp:		device handle
972  * @o:		queue
973  * @type:	the type of echo
974  * @cam_offset:	offset in cam memory
975  * @hdr:	pointer to a header to setup
976  *
977  * E1/E1H
978  */
979 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
980 	struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
981 	struct mac_configuration_hdr *hdr)
982 {
983 	struct bnx2x_raw_obj *r = &o->raw;
984 
985 	hdr->length = 1;
986 	hdr->offset = (u8)cam_offset;
987 	hdr->client_id = cpu_to_le16(0xff);
988 	hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
989 				(type << BNX2X_SWCID_SHIFT));
990 }
991 
992 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
993 	struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
994 	u16 vlan_id, struct mac_configuration_entry *cfg_entry)
995 {
996 	struct bnx2x_raw_obj *r = &o->raw;
997 	u32 cl_bit_vec = (1 << r->cl_id);
998 
999 	cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
1000 	cfg_entry->pf_id = r->func_id;
1001 	cfg_entry->vlan_id = cpu_to_le16(vlan_id);
1002 
1003 	if (add) {
1004 		SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1005 			 T_ETH_MAC_COMMAND_SET);
1006 		SET_FLAG(cfg_entry->flags,
1007 			 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
1008 
1009 		/* Set a MAC in a ramrod data */
1010 		bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1011 				      &cfg_entry->middle_mac_addr,
1012 				      &cfg_entry->lsb_mac_addr, mac);
1013 	} else
1014 		SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1015 			 T_ETH_MAC_COMMAND_INVALIDATE);
1016 }
1017 
1018 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
1019 	struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
1020 	u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1021 {
1022 	struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1023 	struct bnx2x_raw_obj *raw = &o->raw;
1024 
1025 	bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
1026 					 &config->hdr);
1027 	bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
1028 					 cfg_entry);
1029 
1030 	DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
1031 			 (add ? "setting" : "clearing"),
1032 			 mac, raw->cl_id, cam_offset);
1033 }
1034 
1035 /**
1036  * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1037  *
1038  * @bp:		device handle
1039  * @o:		bnx2x_vlan_mac_obj
1040  * @elem:	bnx2x_exeq_elem
1041  * @rule_idx:	rule_idx
1042  * @cam_offset: cam_offset
1043  */
1044 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
1045 				  struct bnx2x_vlan_mac_obj *o,
1046 				  struct bnx2x_exeq_elem *elem, int rule_idx,
1047 				  int cam_offset)
1048 {
1049 	struct bnx2x_raw_obj *raw = &o->raw;
1050 	struct mac_configuration_cmd *config =
1051 		(struct mac_configuration_cmd *)(raw->rdata);
1052 	/* 57710 and 57711 do not support MOVE command,
1053 	 * so it's either ADD or DEL
1054 	 */
1055 	bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1056 		true : false;
1057 
1058 	/* Reset the ramrod data buffer */
1059 	memset(config, 0, sizeof(*config));
1060 
1061 	bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
1062 				     cam_offset, add,
1063 				     elem->cmd_data.vlan_mac.u.mac.mac, 0,
1064 				     ETH_VLAN_FILTER_ANY_VLAN, config);
1065 }
1066 
1067 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
1068 				  struct bnx2x_vlan_mac_obj *o,
1069 				  struct bnx2x_exeq_elem *elem, int rule_idx,
1070 				  int cam_offset)
1071 {
1072 	struct bnx2x_raw_obj *raw = &o->raw;
1073 	struct eth_classify_rules_ramrod_data *data =
1074 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1075 	int rule_cnt = rule_idx + 1;
1076 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1077 	enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1078 	bool add = cmd == BNX2X_VLAN_MAC_ADD;
1079 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1080 
1081 	/* Reset the ramrod data buffer for the first rule */
1082 	if (rule_idx == 0)
1083 		memset(data, 0, sizeof(*data));
1084 
1085 	/* Set a rule header */
1086 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1087 				      &rule_entry->vlan.header);
1088 
1089 	DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1090 			 vlan);
1091 
1092 	/* Set a VLAN itself */
1093 	rule_entry->vlan.vlan = cpu_to_le16(vlan);
1094 
1095 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1096 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
1097 		rule_entry++;
1098 		rule_cnt++;
1099 
1100 		/* Setup ramrod data */
1101 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1102 					elem->cmd_data.vlan_mac.target_obj,
1103 					      true, CLASSIFY_RULE_OPCODE_VLAN,
1104 					      &rule_entry->vlan.header);
1105 
1106 		/* Set a VLAN itself */
1107 		rule_entry->vlan.vlan = cpu_to_le16(vlan);
1108 	}
1109 
1110 	/* Set the ramrod data header */
1111 	/* TODO: take this to the higher level in order to prevent multiple
1112 		 writing */
1113 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1114 					rule_cnt);
1115 }
1116 
1117 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
1118 				      struct bnx2x_vlan_mac_obj *o,
1119 				      struct bnx2x_exeq_elem *elem,
1120 				      int rule_idx, int cam_offset)
1121 {
1122 	struct bnx2x_raw_obj *raw = &o->raw;
1123 	struct eth_classify_rules_ramrod_data *data =
1124 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1125 	int rule_cnt = rule_idx + 1;
1126 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1127 	enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1128 	bool add = cmd == BNX2X_VLAN_MAC_ADD;
1129 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1130 	u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1131 	u16 inner_mac;
1132 
1133 	/* Reset the ramrod data buffer for the first rule */
1134 	if (rule_idx == 0)
1135 		memset(data, 0, sizeof(*data));
1136 
1137 	/* Set a rule header */
1138 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1139 				      &rule_entry->pair.header);
1140 
1141 	/* Set VLAN and MAC themselves */
1142 	rule_entry->pair.vlan = cpu_to_le16(vlan);
1143 	bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1144 			      &rule_entry->pair.mac_mid,
1145 			      &rule_entry->pair.mac_lsb, mac);
1146 	inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1147 	rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1148 	/* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */
1149 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
1150 		struct bnx2x_vlan_mac_obj *target_obj;
1151 
1152 		rule_entry++;
1153 		rule_cnt++;
1154 
1155 		/* Setup ramrod data */
1156 		target_obj = elem->cmd_data.vlan_mac.target_obj;
1157 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj,
1158 					      true, CLASSIFY_RULE_OPCODE_PAIR,
1159 					      &rule_entry->pair.header);
1160 
1161 		/* Set a VLAN itself */
1162 		rule_entry->pair.vlan = cpu_to_le16(vlan);
1163 		bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1164 				      &rule_entry->pair.mac_mid,
1165 				      &rule_entry->pair.mac_lsb, mac);
1166 		rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1167 	}
1168 
1169 	/* Set the ramrod data header */
1170 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1171 					rule_cnt);
1172 }
1173 
1174 /**
1175  * bnx2x_set_one_vlan_mac_e1h -
1176  *
1177  * @bp:		device handle
1178  * @o:		bnx2x_vlan_mac_obj
1179  * @elem:	bnx2x_exeq_elem
1180  * @rule_idx:	rule_idx
1181  * @cam_offset:	cam_offset
1182  */
1183 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1184 				       struct bnx2x_vlan_mac_obj *o,
1185 				       struct bnx2x_exeq_elem *elem,
1186 				       int rule_idx, int cam_offset)
1187 {
1188 	struct bnx2x_raw_obj *raw = &o->raw;
1189 	struct mac_configuration_cmd *config =
1190 		(struct mac_configuration_cmd *)(raw->rdata);
1191 	/* 57710 and 57711 do not support MOVE command,
1192 	 * so it's either ADD or DEL
1193 	 */
1194 	bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1195 		true : false;
1196 
1197 	/* Reset the ramrod data buffer */
1198 	memset(config, 0, sizeof(*config));
1199 
1200 	bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1201 				     cam_offset, add,
1202 				     elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1203 				     elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1204 				     ETH_VLAN_FILTER_CLASSIFY, config);
1205 }
1206 
1207 /**
1208  * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1209  *
1210  * @bp:		device handle
1211  * @p:		command parameters
1212  * @ppos:	pointer to the cookie
1213  *
1214  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1215  * previously configured elements list.
1216  *
1217  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is	taken
1218  * into an account
1219  *
1220  * pointer to the cookie  - that should be given back in the next call to make
1221  * function handle the next element. If *ppos is set to NULL it will restart the
1222  * iterator. If returned *ppos == NULL this means that the last element has been
1223  * handled.
1224  *
1225  */
1226 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1227 			   struct bnx2x_vlan_mac_ramrod_params *p,
1228 			   struct bnx2x_vlan_mac_registry_elem **ppos)
1229 {
1230 	struct bnx2x_vlan_mac_registry_elem *pos;
1231 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1232 
1233 	/* If list is empty - there is nothing to do here */
1234 	if (list_empty(&o->head)) {
1235 		*ppos = NULL;
1236 		return 0;
1237 	}
1238 
1239 	/* make a step... */
1240 	if (*ppos == NULL)
1241 		*ppos = list_first_entry(&o->head,
1242 					 struct bnx2x_vlan_mac_registry_elem,
1243 					 link);
1244 	else
1245 		*ppos = list_next_entry(*ppos, link);
1246 
1247 	pos = *ppos;
1248 
1249 	/* If it's the last step - return NULL */
1250 	if (list_is_last(&pos->link, &o->head))
1251 		*ppos = NULL;
1252 
1253 	/* Prepare a 'user_req' */
1254 	memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1255 
1256 	/* Set the command */
1257 	p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1258 
1259 	/* Set vlan_mac_flags */
1260 	p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1261 
1262 	/* Set a restore bit */
1263 	__set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1264 
1265 	return bnx2x_config_vlan_mac(bp, p);
1266 }
1267 
1268 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1269  * pointer to an element with a specific criteria and NULL if such an element
1270  * hasn't been found.
1271  */
1272 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1273 	struct bnx2x_exe_queue_obj *o,
1274 	struct bnx2x_exeq_elem *elem)
1275 {
1276 	struct bnx2x_exeq_elem *pos;
1277 	struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1278 
1279 	/* Check pending for execution commands */
1280 	list_for_each_entry(pos, &o->exe_queue, link)
1281 		if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1282 			      sizeof(*data)) &&
1283 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1284 			return pos;
1285 
1286 	return NULL;
1287 }
1288 
1289 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1290 	struct bnx2x_exe_queue_obj *o,
1291 	struct bnx2x_exeq_elem *elem)
1292 {
1293 	struct bnx2x_exeq_elem *pos;
1294 	struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1295 
1296 	/* Check pending for execution commands */
1297 	list_for_each_entry(pos, &o->exe_queue, link)
1298 		if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1299 			      sizeof(*data)) &&
1300 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1301 			return pos;
1302 
1303 	return NULL;
1304 }
1305 
1306 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1307 	struct bnx2x_exe_queue_obj *o,
1308 	struct bnx2x_exeq_elem *elem)
1309 {
1310 	struct bnx2x_exeq_elem *pos;
1311 	struct bnx2x_vlan_mac_ramrod_data *data =
1312 		&elem->cmd_data.vlan_mac.u.vlan_mac;
1313 
1314 	/* Check pending for execution commands */
1315 	list_for_each_entry(pos, &o->exe_queue, link)
1316 		if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1317 			    sizeof(*data)) &&
1318 		    (pos->cmd_data.vlan_mac.cmd ==
1319 		     elem->cmd_data.vlan_mac.cmd))
1320 			return pos;
1321 
1322 	return NULL;
1323 }
1324 
1325 /**
1326  * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1327  *
1328  * @bp:		device handle
1329  * @qo:		bnx2x_qable_obj
1330  * @elem:	bnx2x_exeq_elem
1331  *
1332  * Checks that the requested configuration can be added. If yes and if
1333  * requested, consume CAM credit.
1334  *
1335  * The 'validate' is run after the 'optimize'.
1336  *
1337  */
1338 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1339 					      union bnx2x_qable_obj *qo,
1340 					      struct bnx2x_exeq_elem *elem)
1341 {
1342 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1343 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1344 	int rc;
1345 
1346 	/* Check the registry */
1347 	rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1348 	if (rc) {
1349 		DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1350 		return rc;
1351 	}
1352 
1353 	/* Check if there is a pending ADD command for this
1354 	 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1355 	 */
1356 	if (exeq->get(exeq, elem)) {
1357 		DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1358 		return -EEXIST;
1359 	}
1360 
1361 	/* TODO: Check the pending MOVE from other objects where this
1362 	 * object is a destination object.
1363 	 */
1364 
1365 	/* Consume the credit if not requested not to */
1366 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1367 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1368 	    o->get_credit(o)))
1369 		return -EINVAL;
1370 
1371 	return 0;
1372 }
1373 
1374 /**
1375  * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1376  *
1377  * @bp:		device handle
1378  * @qo:		quable object to check
1379  * @elem:	element that needs to be deleted
1380  *
1381  * Checks that the requested configuration can be deleted. If yes and if
1382  * requested, returns a CAM credit.
1383  *
1384  * The 'validate' is run after the 'optimize'.
1385  */
1386 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1387 					      union bnx2x_qable_obj *qo,
1388 					      struct bnx2x_exeq_elem *elem)
1389 {
1390 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1391 	struct bnx2x_vlan_mac_registry_elem *pos;
1392 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1393 	struct bnx2x_exeq_elem query_elem;
1394 
1395 	/* If this classification can not be deleted (doesn't exist)
1396 	 * - return a BNX2X_EXIST.
1397 	 */
1398 	pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1399 	if (!pos) {
1400 		DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1401 		return -EEXIST;
1402 	}
1403 
1404 	/* Check if there are pending DEL or MOVE commands for this
1405 	 * MAC/VLAN/VLAN-MAC. Return an error if so.
1406 	 */
1407 	memcpy(&query_elem, elem, sizeof(query_elem));
1408 
1409 	/* Check for MOVE commands */
1410 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1411 	if (exeq->get(exeq, &query_elem)) {
1412 		BNX2X_ERR("There is a pending MOVE command already\n");
1413 		return -EINVAL;
1414 	}
1415 
1416 	/* Check for DEL commands */
1417 	if (exeq->get(exeq, elem)) {
1418 		DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1419 		return -EEXIST;
1420 	}
1421 
1422 	/* Return the credit to the credit pool if not requested not to */
1423 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1424 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1425 	    o->put_credit(o))) {
1426 		BNX2X_ERR("Failed to return a credit\n");
1427 		return -EINVAL;
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /**
1434  * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1435  *
1436  * @bp:		device handle
1437  * @qo:		quable object to check (source)
1438  * @elem:	element that needs to be moved
1439  *
1440  * Checks that the requested configuration can be moved. If yes and if
1441  * requested, returns a CAM credit.
1442  *
1443  * The 'validate' is run after the 'optimize'.
1444  */
1445 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1446 					       union bnx2x_qable_obj *qo,
1447 					       struct bnx2x_exeq_elem *elem)
1448 {
1449 	struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1450 	struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1451 	struct bnx2x_exeq_elem query_elem;
1452 	struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1453 	struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1454 
1455 	/* Check if we can perform this operation based on the current registry
1456 	 * state.
1457 	 */
1458 	if (!src_o->check_move(bp, src_o, dest_o,
1459 			       &elem->cmd_data.vlan_mac.u)) {
1460 		DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1461 		return -EINVAL;
1462 	}
1463 
1464 	/* Check if there is an already pending DEL or MOVE command for the
1465 	 * source object or ADD command for a destination object. Return an
1466 	 * error if so.
1467 	 */
1468 	memcpy(&query_elem, elem, sizeof(query_elem));
1469 
1470 	/* Check DEL on source */
1471 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1472 	if (src_exeq->get(src_exeq, &query_elem)) {
1473 		BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1474 		return -EINVAL;
1475 	}
1476 
1477 	/* Check MOVE on source */
1478 	if (src_exeq->get(src_exeq, elem)) {
1479 		DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1480 		return -EEXIST;
1481 	}
1482 
1483 	/* Check ADD on destination */
1484 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1485 	if (dest_exeq->get(dest_exeq, &query_elem)) {
1486 		BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1487 		return -EINVAL;
1488 	}
1489 
1490 	/* Consume the credit if not requested not to */
1491 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1492 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1493 	    dest_o->get_credit(dest_o)))
1494 		return -EINVAL;
1495 
1496 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1497 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1498 	    src_o->put_credit(src_o))) {
1499 		/* return the credit taken from dest... */
1500 		dest_o->put_credit(dest_o);
1501 		return -EINVAL;
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1508 				   union bnx2x_qable_obj *qo,
1509 				   struct bnx2x_exeq_elem *elem)
1510 {
1511 	switch (elem->cmd_data.vlan_mac.cmd) {
1512 	case BNX2X_VLAN_MAC_ADD:
1513 		return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1514 	case BNX2X_VLAN_MAC_DEL:
1515 		return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1516 	case BNX2X_VLAN_MAC_MOVE:
1517 		return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1518 	default:
1519 		return -EINVAL;
1520 	}
1521 }
1522 
1523 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1524 				  union bnx2x_qable_obj *qo,
1525 				  struct bnx2x_exeq_elem *elem)
1526 {
1527 	int rc = 0;
1528 
1529 	/* If consumption wasn't required, nothing to do */
1530 	if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1531 		     &elem->cmd_data.vlan_mac.vlan_mac_flags))
1532 		return 0;
1533 
1534 	switch (elem->cmd_data.vlan_mac.cmd) {
1535 	case BNX2X_VLAN_MAC_ADD:
1536 	case BNX2X_VLAN_MAC_MOVE:
1537 		rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1538 		break;
1539 	case BNX2X_VLAN_MAC_DEL:
1540 		rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1541 		break;
1542 	default:
1543 		return -EINVAL;
1544 	}
1545 
1546 	if (rc != true)
1547 		return -EINVAL;
1548 
1549 	return 0;
1550 }
1551 
1552 /**
1553  * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1554  *
1555  * @bp:		device handle
1556  * @o:		bnx2x_vlan_mac_obj
1557  *
1558  */
1559 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1560 			       struct bnx2x_vlan_mac_obj *o)
1561 {
1562 	int cnt = 5000, rc;
1563 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1564 	struct bnx2x_raw_obj *raw = &o->raw;
1565 
1566 	while (cnt--) {
1567 		/* Wait for the current command to complete */
1568 		rc = raw->wait_comp(bp, raw);
1569 		if (rc)
1570 			return rc;
1571 
1572 		/* Wait until there are no pending commands */
1573 		if (!bnx2x_exe_queue_empty(exeq))
1574 			usleep_range(1000, 2000);
1575 		else
1576 			return 0;
1577 	}
1578 
1579 	return -EBUSY;
1580 }
1581 
1582 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1583 					 struct bnx2x_vlan_mac_obj *o,
1584 					 unsigned long *ramrod_flags)
1585 {
1586 	int rc = 0;
1587 
1588 	spin_lock_bh(&o->exe_queue.lock);
1589 
1590 	DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1591 	rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1592 
1593 	if (rc != 0) {
1594 		__bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1595 
1596 		/* Calling function should not differentiate between this case
1597 		 * and the case in which there is already a pending ramrod
1598 		 */
1599 		rc = 1;
1600 	} else {
1601 		rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1602 	}
1603 	spin_unlock_bh(&o->exe_queue.lock);
1604 
1605 	return rc;
1606 }
1607 
1608 /**
1609  * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1610  *
1611  * @bp:		device handle
1612  * @o:		bnx2x_vlan_mac_obj
1613  * @cqe:	completion element
1614  * @ramrod_flags: if set schedule next execution chunk
1615  *
1616  */
1617 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1618 				   struct bnx2x_vlan_mac_obj *o,
1619 				   union event_ring_elem *cqe,
1620 				   unsigned long *ramrod_flags)
1621 {
1622 	struct bnx2x_raw_obj *r = &o->raw;
1623 	int rc;
1624 
1625 	/* Clearing the pending list & raw state should be made
1626 	 * atomically (as execution flow assumes they represent the same).
1627 	 */
1628 	spin_lock_bh(&o->exe_queue.lock);
1629 
1630 	/* Reset pending list */
1631 	__bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1632 
1633 	/* Clear pending */
1634 	r->clear_pending(r);
1635 
1636 	spin_unlock_bh(&o->exe_queue.lock);
1637 
1638 	/* If ramrod failed this is most likely a SW bug */
1639 	if (cqe->message.error)
1640 		return -EINVAL;
1641 
1642 	/* Run the next bulk of pending commands if requested */
1643 	if (test_bit(RAMROD_CONT, ramrod_flags)) {
1644 		rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1645 
1646 		if (rc < 0)
1647 			return rc;
1648 	}
1649 
1650 	/* If there is more work to do return PENDING */
1651 	if (!bnx2x_exe_queue_empty(&o->exe_queue))
1652 		return 1;
1653 
1654 	return 0;
1655 }
1656 
1657 /**
1658  * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1659  *
1660  * @bp:		device handle
1661  * @qo:		bnx2x_qable_obj
1662  * @elem:	bnx2x_exeq_elem
1663  */
1664 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1665 				   union bnx2x_qable_obj *qo,
1666 				   struct bnx2x_exeq_elem *elem)
1667 {
1668 	struct bnx2x_exeq_elem query, *pos;
1669 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1670 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1671 
1672 	memcpy(&query, elem, sizeof(query));
1673 
1674 	switch (elem->cmd_data.vlan_mac.cmd) {
1675 	case BNX2X_VLAN_MAC_ADD:
1676 		query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1677 		break;
1678 	case BNX2X_VLAN_MAC_DEL:
1679 		query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1680 		break;
1681 	default:
1682 		/* Don't handle anything other than ADD or DEL */
1683 		return 0;
1684 	}
1685 
1686 	/* If we found the appropriate element - delete it */
1687 	pos = exeq->get(exeq, &query);
1688 	if (pos) {
1689 
1690 		/* Return the credit of the optimized command */
1691 		if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1692 			      &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1693 			if ((query.cmd_data.vlan_mac.cmd ==
1694 			     BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1695 				BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1696 				return -EINVAL;
1697 			} else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1698 				BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1699 				return -EINVAL;
1700 			}
1701 		}
1702 
1703 		DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1704 			   (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1705 			   "ADD" : "DEL");
1706 
1707 		list_del(&pos->link);
1708 		bnx2x_exe_queue_free_elem(bp, pos);
1709 		return 1;
1710 	}
1711 
1712 	return 0;
1713 }
1714 
1715 /**
1716  * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1717  *
1718  * @bp:	  device handle
1719  * @o:	vlan object
1720  * @elem: element
1721  * @restore: to restore or not
1722  * @re: registry
1723  *
1724  * prepare a registry element according to the current command request.
1725  */
1726 static inline int bnx2x_vlan_mac_get_registry_elem(
1727 	struct bnx2x *bp,
1728 	struct bnx2x_vlan_mac_obj *o,
1729 	struct bnx2x_exeq_elem *elem,
1730 	bool restore,
1731 	struct bnx2x_vlan_mac_registry_elem **re)
1732 {
1733 	enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1734 	struct bnx2x_vlan_mac_registry_elem *reg_elem;
1735 
1736 	/* Allocate a new registry element if needed. */
1737 	if (!restore &&
1738 	    ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1739 		reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1740 		if (!reg_elem)
1741 			return -ENOMEM;
1742 
1743 		/* Get a new CAM offset */
1744 		if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1745 			/* This shall never happen, because we have checked the
1746 			 * CAM availability in the 'validate'.
1747 			 */
1748 			WARN_ON(1);
1749 			kfree(reg_elem);
1750 			return -EINVAL;
1751 		}
1752 
1753 		DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1754 
1755 		/* Set a VLAN-MAC data */
1756 		memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1757 			  sizeof(reg_elem->u));
1758 
1759 		/* Copy the flags (needed for DEL and RESTORE flows) */
1760 		reg_elem->vlan_mac_flags =
1761 			elem->cmd_data.vlan_mac.vlan_mac_flags;
1762 	} else /* DEL, RESTORE */
1763 		reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1764 
1765 	*re = reg_elem;
1766 	return 0;
1767 }
1768 
1769 /**
1770  * bnx2x_execute_vlan_mac - execute vlan mac command
1771  *
1772  * @bp:			device handle
1773  * @qo:			bnx2x_qable_obj pointer
1774  * @exe_chunk:		chunk
1775  * @ramrod_flags:	flags
1776  *
1777  * go and send a ramrod!
1778  */
1779 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1780 				  union bnx2x_qable_obj *qo,
1781 				  struct list_head *exe_chunk,
1782 				  unsigned long *ramrod_flags)
1783 {
1784 	struct bnx2x_exeq_elem *elem;
1785 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1786 	struct bnx2x_raw_obj *r = &o->raw;
1787 	int rc, idx = 0;
1788 	bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1789 	bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1790 	struct bnx2x_vlan_mac_registry_elem *reg_elem;
1791 	enum bnx2x_vlan_mac_cmd cmd;
1792 
1793 	/* If DRIVER_ONLY execution is requested, cleanup a registry
1794 	 * and exit. Otherwise send a ramrod to FW.
1795 	 */
1796 	if (!drv_only) {
1797 		WARN_ON(r->check_pending(r));
1798 
1799 		/* Set pending */
1800 		r->set_pending(r);
1801 
1802 		/* Fill the ramrod data */
1803 		list_for_each_entry(elem, exe_chunk, link) {
1804 			cmd = elem->cmd_data.vlan_mac.cmd;
1805 			/* We will add to the target object in MOVE command, so
1806 			 * change the object for a CAM search.
1807 			 */
1808 			if (cmd == BNX2X_VLAN_MAC_MOVE)
1809 				cam_obj = elem->cmd_data.vlan_mac.target_obj;
1810 			else
1811 				cam_obj = o;
1812 
1813 			rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1814 							      elem, restore,
1815 							      &reg_elem);
1816 			if (rc)
1817 				goto error_exit;
1818 
1819 			WARN_ON(!reg_elem);
1820 
1821 			/* Push a new entry into the registry */
1822 			if (!restore &&
1823 			    ((cmd == BNX2X_VLAN_MAC_ADD) ||
1824 			    (cmd == BNX2X_VLAN_MAC_MOVE)))
1825 				list_add(&reg_elem->link, &cam_obj->head);
1826 
1827 			/* Configure a single command in a ramrod data buffer */
1828 			o->set_one_rule(bp, o, elem, idx,
1829 					reg_elem->cam_offset);
1830 
1831 			/* MOVE command consumes 2 entries in the ramrod data */
1832 			if (cmd == BNX2X_VLAN_MAC_MOVE)
1833 				idx += 2;
1834 			else
1835 				idx++;
1836 		}
1837 
1838 		/* No need for an explicit memory barrier here as long we would
1839 		 * need to ensure the ordering of writing to the SPQ element
1840 		 * and updating of the SPQ producer which involves a memory
1841 		 * read and we will have to put a full memory barrier there
1842 		 * (inside bnx2x_sp_post()).
1843 		 */
1844 
1845 		rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1846 				   U64_HI(r->rdata_mapping),
1847 				   U64_LO(r->rdata_mapping),
1848 				   ETH_CONNECTION_TYPE);
1849 		if (rc)
1850 			goto error_exit;
1851 	}
1852 
1853 	/* Now, when we are done with the ramrod - clean up the registry */
1854 	list_for_each_entry(elem, exe_chunk, link) {
1855 		cmd = elem->cmd_data.vlan_mac.cmd;
1856 		if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1857 		    (cmd == BNX2X_VLAN_MAC_MOVE)) {
1858 			reg_elem = o->check_del(bp, o,
1859 						&elem->cmd_data.vlan_mac.u);
1860 
1861 			WARN_ON(!reg_elem);
1862 
1863 			o->put_cam_offset(o, reg_elem->cam_offset);
1864 			list_del(&reg_elem->link);
1865 			kfree(reg_elem);
1866 		}
1867 	}
1868 
1869 	if (!drv_only)
1870 		return 1;
1871 	else
1872 		return 0;
1873 
1874 error_exit:
1875 	r->clear_pending(r);
1876 
1877 	/* Cleanup a registry in case of a failure */
1878 	list_for_each_entry(elem, exe_chunk, link) {
1879 		cmd = elem->cmd_data.vlan_mac.cmd;
1880 
1881 		if (cmd == BNX2X_VLAN_MAC_MOVE)
1882 			cam_obj = elem->cmd_data.vlan_mac.target_obj;
1883 		else
1884 			cam_obj = o;
1885 
1886 		/* Delete all newly added above entries */
1887 		if (!restore &&
1888 		    ((cmd == BNX2X_VLAN_MAC_ADD) ||
1889 		    (cmd == BNX2X_VLAN_MAC_MOVE))) {
1890 			reg_elem = o->check_del(bp, cam_obj,
1891 						&elem->cmd_data.vlan_mac.u);
1892 			if (reg_elem) {
1893 				list_del(&reg_elem->link);
1894 				kfree(reg_elem);
1895 			}
1896 		}
1897 	}
1898 
1899 	return rc;
1900 }
1901 
1902 static inline int bnx2x_vlan_mac_push_new_cmd(
1903 	struct bnx2x *bp,
1904 	struct bnx2x_vlan_mac_ramrod_params *p)
1905 {
1906 	struct bnx2x_exeq_elem *elem;
1907 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1908 	bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1909 
1910 	/* Allocate the execution queue element */
1911 	elem = bnx2x_exe_queue_alloc_elem(bp);
1912 	if (!elem)
1913 		return -ENOMEM;
1914 
1915 	/* Set the command 'length' */
1916 	switch (p->user_req.cmd) {
1917 	case BNX2X_VLAN_MAC_MOVE:
1918 		elem->cmd_len = 2;
1919 		break;
1920 	default:
1921 		elem->cmd_len = 1;
1922 	}
1923 
1924 	/* Fill the object specific info */
1925 	memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1926 
1927 	/* Try to add a new command to the pending list */
1928 	return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1929 }
1930 
1931 /**
1932  * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1933  *
1934  * @bp:	  device handle
1935  * @p:
1936  *
1937  */
1938 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1939 			   struct bnx2x_vlan_mac_ramrod_params *p)
1940 {
1941 	int rc = 0;
1942 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1943 	unsigned long *ramrod_flags = &p->ramrod_flags;
1944 	bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1945 	struct bnx2x_raw_obj *raw = &o->raw;
1946 
1947 	/*
1948 	 * Add new elements to the execution list for commands that require it.
1949 	 */
1950 	if (!cont) {
1951 		rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1952 		if (rc)
1953 			return rc;
1954 	}
1955 
1956 	/* If nothing will be executed further in this iteration we want to
1957 	 * return PENDING if there are pending commands
1958 	 */
1959 	if (!bnx2x_exe_queue_empty(&o->exe_queue))
1960 		rc = 1;
1961 
1962 	if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
1963 		DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1964 		raw->clear_pending(raw);
1965 	}
1966 
1967 	/* Execute commands if required */
1968 	if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1969 	    test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1970 		rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1971 						   &p->ramrod_flags);
1972 		if (rc < 0)
1973 			return rc;
1974 	}
1975 
1976 	/* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1977 	 * then user want to wait until the last command is done.
1978 	 */
1979 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1980 		/* Wait maximum for the current exe_queue length iterations plus
1981 		 * one (for the current pending command).
1982 		 */
1983 		int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1984 
1985 		while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1986 		       max_iterations--) {
1987 
1988 			/* Wait for the current command to complete */
1989 			rc = raw->wait_comp(bp, raw);
1990 			if (rc)
1991 				return rc;
1992 
1993 			/* Make a next step */
1994 			rc = __bnx2x_vlan_mac_execute_step(bp,
1995 							   p->vlan_mac_obj,
1996 							   &p->ramrod_flags);
1997 			if (rc < 0)
1998 				return rc;
1999 		}
2000 
2001 		return 0;
2002 	}
2003 
2004 	return rc;
2005 }
2006 
2007 /**
2008  * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2009  *
2010  * @bp:			device handle
2011  * @o:			vlan object info
2012  * @vlan_mac_flags:	vlan flags
2013  * @ramrod_flags:	execution flags to be used for this deletion
2014  *
2015  * if the last operation has completed successfully and there are no
2016  * more elements left, positive value if the last operation has completed
2017  * successfully and there are more previously configured elements, negative
2018  * value is current operation has failed.
2019  */
2020 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
2021 				  struct bnx2x_vlan_mac_obj *o,
2022 				  unsigned long *vlan_mac_flags,
2023 				  unsigned long *ramrod_flags)
2024 {
2025 	struct bnx2x_vlan_mac_registry_elem *pos = NULL;
2026 	struct bnx2x_vlan_mac_ramrod_params p;
2027 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
2028 	struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
2029 	unsigned long flags;
2030 	int read_lock;
2031 	int rc = 0;
2032 
2033 	/* Clear pending commands first */
2034 
2035 	spin_lock_bh(&exeq->lock);
2036 
2037 	list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
2038 		flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2039 		if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2040 		    BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2041 			rc = exeq->remove(bp, exeq->owner, exeq_pos);
2042 			if (rc) {
2043 				BNX2X_ERR("Failed to remove command\n");
2044 				spin_unlock_bh(&exeq->lock);
2045 				return rc;
2046 			}
2047 			list_del(&exeq_pos->link);
2048 			bnx2x_exe_queue_free_elem(bp, exeq_pos);
2049 		}
2050 	}
2051 
2052 	spin_unlock_bh(&exeq->lock);
2053 
2054 	/* Prepare a command request */
2055 	memset(&p, 0, sizeof(p));
2056 	p.vlan_mac_obj = o;
2057 	p.ramrod_flags = *ramrod_flags;
2058 	p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
2059 
2060 	/* Add all but the last VLAN-MAC to the execution queue without actually
2061 	 * execution anything.
2062 	 */
2063 	__clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
2064 	__clear_bit(RAMROD_EXEC, &p.ramrod_flags);
2065 	__clear_bit(RAMROD_CONT, &p.ramrod_flags);
2066 
2067 	DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2068 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
2069 	if (read_lock != 0)
2070 		return read_lock;
2071 
2072 	list_for_each_entry(pos, &o->head, link) {
2073 		flags = pos->vlan_mac_flags;
2074 		if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2075 		    BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2076 			p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2077 			memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2078 			rc = bnx2x_config_vlan_mac(bp, &p);
2079 			if (rc < 0) {
2080 				BNX2X_ERR("Failed to add a new DEL command\n");
2081 				bnx2x_vlan_mac_h_read_unlock(bp, o);
2082 				return rc;
2083 			}
2084 		}
2085 	}
2086 
2087 	DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2088 	bnx2x_vlan_mac_h_read_unlock(bp, o);
2089 
2090 	p.ramrod_flags = *ramrod_flags;
2091 	__set_bit(RAMROD_CONT, &p.ramrod_flags);
2092 
2093 	return bnx2x_config_vlan_mac(bp, &p);
2094 }
2095 
2096 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
2097 	u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
2098 	unsigned long *pstate, bnx2x_obj_type type)
2099 {
2100 	raw->func_id = func_id;
2101 	raw->cid = cid;
2102 	raw->cl_id = cl_id;
2103 	raw->rdata = rdata;
2104 	raw->rdata_mapping = rdata_mapping;
2105 	raw->state = state;
2106 	raw->pstate = pstate;
2107 	raw->obj_type = type;
2108 	raw->check_pending = bnx2x_raw_check_pending;
2109 	raw->clear_pending = bnx2x_raw_clear_pending;
2110 	raw->set_pending = bnx2x_raw_set_pending;
2111 	raw->wait_comp = bnx2x_raw_wait;
2112 }
2113 
2114 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
2115 	u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
2116 	int state, unsigned long *pstate, bnx2x_obj_type type,
2117 	struct bnx2x_credit_pool_obj *macs_pool,
2118 	struct bnx2x_credit_pool_obj *vlans_pool)
2119 {
2120 	INIT_LIST_HEAD(&o->head);
2121 	o->head_reader = 0;
2122 	o->head_exe_request = false;
2123 	o->saved_ramrod_flags = 0;
2124 
2125 	o->macs_pool = macs_pool;
2126 	o->vlans_pool = vlans_pool;
2127 
2128 	o->delete_all = bnx2x_vlan_mac_del_all;
2129 	o->restore = bnx2x_vlan_mac_restore;
2130 	o->complete = bnx2x_complete_vlan_mac;
2131 	o->wait = bnx2x_wait_vlan_mac;
2132 
2133 	bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2134 			   state, pstate, type);
2135 }
2136 
2137 void bnx2x_init_mac_obj(struct bnx2x *bp,
2138 			struct bnx2x_vlan_mac_obj *mac_obj,
2139 			u8 cl_id, u32 cid, u8 func_id, void *rdata,
2140 			dma_addr_t rdata_mapping, int state,
2141 			unsigned long *pstate, bnx2x_obj_type type,
2142 			struct bnx2x_credit_pool_obj *macs_pool)
2143 {
2144 	union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
2145 
2146 	bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2147 				   rdata_mapping, state, pstate, type,
2148 				   macs_pool, NULL);
2149 
2150 	/* CAM credit pool handling */
2151 	mac_obj->get_credit = bnx2x_get_credit_mac;
2152 	mac_obj->put_credit = bnx2x_put_credit_mac;
2153 	mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2154 	mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2155 
2156 	if (CHIP_IS_E1x(bp)) {
2157 		mac_obj->set_one_rule      = bnx2x_set_one_mac_e1x;
2158 		mac_obj->check_del         = bnx2x_check_mac_del;
2159 		mac_obj->check_add         = bnx2x_check_mac_add;
2160 		mac_obj->check_move        = bnx2x_check_move_always_err;
2161 		mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2162 
2163 		/* Exe Queue */
2164 		bnx2x_exe_queue_init(bp,
2165 				     &mac_obj->exe_queue, 1, qable_obj,
2166 				     bnx2x_validate_vlan_mac,
2167 				     bnx2x_remove_vlan_mac,
2168 				     bnx2x_optimize_vlan_mac,
2169 				     bnx2x_execute_vlan_mac,
2170 				     bnx2x_exeq_get_mac);
2171 	} else {
2172 		mac_obj->set_one_rule      = bnx2x_set_one_mac_e2;
2173 		mac_obj->check_del         = bnx2x_check_mac_del;
2174 		mac_obj->check_add         = bnx2x_check_mac_add;
2175 		mac_obj->check_move        = bnx2x_check_move;
2176 		mac_obj->ramrod_cmd        =
2177 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2178 		mac_obj->get_n_elements    = bnx2x_get_n_elements;
2179 
2180 		/* Exe Queue */
2181 		bnx2x_exe_queue_init(bp,
2182 				     &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2183 				     qable_obj, bnx2x_validate_vlan_mac,
2184 				     bnx2x_remove_vlan_mac,
2185 				     bnx2x_optimize_vlan_mac,
2186 				     bnx2x_execute_vlan_mac,
2187 				     bnx2x_exeq_get_mac);
2188 	}
2189 }
2190 
2191 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2192 			 struct bnx2x_vlan_mac_obj *vlan_obj,
2193 			 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2194 			 dma_addr_t rdata_mapping, int state,
2195 			 unsigned long *pstate, bnx2x_obj_type type,
2196 			 struct bnx2x_credit_pool_obj *vlans_pool)
2197 {
2198 	union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2199 
2200 	bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2201 				   rdata_mapping, state, pstate, type, NULL,
2202 				   vlans_pool);
2203 
2204 	vlan_obj->get_credit = bnx2x_get_credit_vlan;
2205 	vlan_obj->put_credit = bnx2x_put_credit_vlan;
2206 	vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2207 	vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2208 
2209 	if (CHIP_IS_E1x(bp)) {
2210 		BNX2X_ERR("Do not support chips others than E2 and newer\n");
2211 		BUG();
2212 	} else {
2213 		vlan_obj->set_one_rule      = bnx2x_set_one_vlan_e2;
2214 		vlan_obj->check_del         = bnx2x_check_vlan_del;
2215 		vlan_obj->check_add         = bnx2x_check_vlan_add;
2216 		vlan_obj->check_move        = bnx2x_check_move;
2217 		vlan_obj->ramrod_cmd        =
2218 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2219 		vlan_obj->get_n_elements    = bnx2x_get_n_elements;
2220 
2221 		/* Exe Queue */
2222 		bnx2x_exe_queue_init(bp,
2223 				     &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2224 				     qable_obj, bnx2x_validate_vlan_mac,
2225 				     bnx2x_remove_vlan_mac,
2226 				     bnx2x_optimize_vlan_mac,
2227 				     bnx2x_execute_vlan_mac,
2228 				     bnx2x_exeq_get_vlan);
2229 	}
2230 }
2231 
2232 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2233 			     struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2234 			     u8 cl_id, u32 cid, u8 func_id, void *rdata,
2235 			     dma_addr_t rdata_mapping, int state,
2236 			     unsigned long *pstate, bnx2x_obj_type type,
2237 			     struct bnx2x_credit_pool_obj *macs_pool,
2238 			     struct bnx2x_credit_pool_obj *vlans_pool)
2239 {
2240 	union bnx2x_qable_obj *qable_obj =
2241 		(union bnx2x_qable_obj *)vlan_mac_obj;
2242 
2243 	bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2244 				   rdata_mapping, state, pstate, type,
2245 				   macs_pool, vlans_pool);
2246 
2247 	/* CAM pool handling */
2248 	vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2249 	vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2250 	/* CAM offset is relevant for 57710 and 57711 chips only which have a
2251 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2252 	 * will be taken from MACs' pool object only.
2253 	 */
2254 	vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2255 	vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2256 
2257 	if (CHIP_IS_E1(bp)) {
2258 		BNX2X_ERR("Do not support chips others than E2\n");
2259 		BUG();
2260 	} else if (CHIP_IS_E1H(bp)) {
2261 		vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e1h;
2262 		vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2263 		vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2264 		vlan_mac_obj->check_move        = bnx2x_check_move_always_err;
2265 		vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2266 
2267 		/* Exe Queue */
2268 		bnx2x_exe_queue_init(bp,
2269 				     &vlan_mac_obj->exe_queue, 1, qable_obj,
2270 				     bnx2x_validate_vlan_mac,
2271 				     bnx2x_remove_vlan_mac,
2272 				     bnx2x_optimize_vlan_mac,
2273 				     bnx2x_execute_vlan_mac,
2274 				     bnx2x_exeq_get_vlan_mac);
2275 	} else {
2276 		vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e2;
2277 		vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2278 		vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2279 		vlan_mac_obj->check_move        = bnx2x_check_move;
2280 		vlan_mac_obj->ramrod_cmd        =
2281 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2282 
2283 		/* Exe Queue */
2284 		bnx2x_exe_queue_init(bp,
2285 				     &vlan_mac_obj->exe_queue,
2286 				     CLASSIFY_RULES_COUNT,
2287 				     qable_obj, bnx2x_validate_vlan_mac,
2288 				     bnx2x_remove_vlan_mac,
2289 				     bnx2x_optimize_vlan_mac,
2290 				     bnx2x_execute_vlan_mac,
2291 				     bnx2x_exeq_get_vlan_mac);
2292 	}
2293 }
2294 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2295 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2296 			struct tstorm_eth_mac_filter_config *mac_filters,
2297 			u16 pf_id)
2298 {
2299 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2300 
2301 	u32 addr = BAR_TSTRORM_INTMEM +
2302 			TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2303 
2304 	__storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2305 }
2306 
2307 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2308 				 struct bnx2x_rx_mode_ramrod_params *p)
2309 {
2310 	/* update the bp MAC filter structure */
2311 	u32 mask = (1 << p->cl_id);
2312 
2313 	struct tstorm_eth_mac_filter_config *mac_filters =
2314 		(struct tstorm_eth_mac_filter_config *)p->rdata;
2315 
2316 	/* initial setting is drop-all */
2317 	u8 drop_all_ucast = 1, drop_all_mcast = 1;
2318 	u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2319 	u8 unmatched_unicast = 0;
2320 
2321     /* In e1x there we only take into account rx accept flag since tx switching
2322      * isn't enabled. */
2323 	if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2324 		/* accept matched ucast */
2325 		drop_all_ucast = 0;
2326 
2327 	if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2328 		/* accept matched mcast */
2329 		drop_all_mcast = 0;
2330 
2331 	if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2332 		/* accept all mcast */
2333 		drop_all_ucast = 0;
2334 		accp_all_ucast = 1;
2335 	}
2336 	if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2337 		/* accept all mcast */
2338 		drop_all_mcast = 0;
2339 		accp_all_mcast = 1;
2340 	}
2341 	if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2342 		/* accept (all) bcast */
2343 		accp_all_bcast = 1;
2344 	if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2345 		/* accept unmatched unicasts */
2346 		unmatched_unicast = 1;
2347 
2348 	mac_filters->ucast_drop_all = drop_all_ucast ?
2349 		mac_filters->ucast_drop_all | mask :
2350 		mac_filters->ucast_drop_all & ~mask;
2351 
2352 	mac_filters->mcast_drop_all = drop_all_mcast ?
2353 		mac_filters->mcast_drop_all | mask :
2354 		mac_filters->mcast_drop_all & ~mask;
2355 
2356 	mac_filters->ucast_accept_all = accp_all_ucast ?
2357 		mac_filters->ucast_accept_all | mask :
2358 		mac_filters->ucast_accept_all & ~mask;
2359 
2360 	mac_filters->mcast_accept_all = accp_all_mcast ?
2361 		mac_filters->mcast_accept_all | mask :
2362 		mac_filters->mcast_accept_all & ~mask;
2363 
2364 	mac_filters->bcast_accept_all = accp_all_bcast ?
2365 		mac_filters->bcast_accept_all | mask :
2366 		mac_filters->bcast_accept_all & ~mask;
2367 
2368 	mac_filters->unmatched_unicast = unmatched_unicast ?
2369 		mac_filters->unmatched_unicast | mask :
2370 		mac_filters->unmatched_unicast & ~mask;
2371 
2372 	DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2373 			 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2374 	   mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2375 	   mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2376 	   mac_filters->bcast_accept_all);
2377 
2378 	/* write the MAC filter structure*/
2379 	__storm_memset_mac_filters(bp, mac_filters, p->func_id);
2380 
2381 	/* The operation is completed */
2382 	clear_bit(p->state, p->pstate);
2383 	smp_mb__after_atomic();
2384 
2385 	return 0;
2386 }
2387 
2388 /* Setup ramrod data */
2389 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2390 				struct eth_classify_header *hdr,
2391 				u8 rule_cnt)
2392 {
2393 	hdr->echo = cpu_to_le32(cid);
2394 	hdr->rule_cnt = rule_cnt;
2395 }
2396 
2397 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2398 				unsigned long *accept_flags,
2399 				struct eth_filter_rules_cmd *cmd,
2400 				bool clear_accept_all)
2401 {
2402 	u16 state;
2403 
2404 	/* start with 'drop-all' */
2405 	state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2406 		ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2407 
2408 	if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2409 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2410 
2411 	if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2412 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2413 
2414 	if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2415 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2416 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2417 	}
2418 
2419 	if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2420 		state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2421 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2422 	}
2423 
2424 	if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2425 		state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2426 
2427 	if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2428 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2429 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2430 	}
2431 
2432 	if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2433 		state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2434 
2435 	/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2436 	if (clear_accept_all) {
2437 		state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2438 		state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2439 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2440 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2441 	}
2442 
2443 	cmd->state = cpu_to_le16(state);
2444 }
2445 
2446 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2447 				struct bnx2x_rx_mode_ramrod_params *p)
2448 {
2449 	struct eth_filter_rules_ramrod_data *data = p->rdata;
2450 	int rc;
2451 	u8 rule_idx = 0;
2452 
2453 	/* Reset the ramrod data buffer */
2454 	memset(data, 0, sizeof(*data));
2455 
2456 	/* Setup ramrod data */
2457 
2458 	/* Tx (internal switching) */
2459 	if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2460 		data->rules[rule_idx].client_id = p->cl_id;
2461 		data->rules[rule_idx].func_id = p->func_id;
2462 
2463 		data->rules[rule_idx].cmd_general_data =
2464 			ETH_FILTER_RULES_CMD_TX_CMD;
2465 
2466 		bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2467 					       &(data->rules[rule_idx++]),
2468 					       false);
2469 	}
2470 
2471 	/* Rx */
2472 	if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2473 		data->rules[rule_idx].client_id = p->cl_id;
2474 		data->rules[rule_idx].func_id = p->func_id;
2475 
2476 		data->rules[rule_idx].cmd_general_data =
2477 			ETH_FILTER_RULES_CMD_RX_CMD;
2478 
2479 		bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2480 					       &(data->rules[rule_idx++]),
2481 					       false);
2482 	}
2483 
2484 	/* If FCoE Queue configuration has been requested configure the Rx and
2485 	 * internal switching modes for this queue in separate rules.
2486 	 *
2487 	 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2488 	 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2489 	 */
2490 	if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2491 		/*  Tx (internal switching) */
2492 		if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2493 			data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2494 			data->rules[rule_idx].func_id = p->func_id;
2495 
2496 			data->rules[rule_idx].cmd_general_data =
2497 						ETH_FILTER_RULES_CMD_TX_CMD;
2498 
2499 			bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2500 						       &(data->rules[rule_idx]),
2501 						       true);
2502 			rule_idx++;
2503 		}
2504 
2505 		/* Rx */
2506 		if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2507 			data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2508 			data->rules[rule_idx].func_id = p->func_id;
2509 
2510 			data->rules[rule_idx].cmd_general_data =
2511 						ETH_FILTER_RULES_CMD_RX_CMD;
2512 
2513 			bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2514 						       &(data->rules[rule_idx]),
2515 						       true);
2516 			rule_idx++;
2517 		}
2518 	}
2519 
2520 	/* Set the ramrod header (most importantly - number of rules to
2521 	 * configure).
2522 	 */
2523 	bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2524 
2525 	DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2526 			 data->header.rule_cnt, p->rx_accept_flags,
2527 			 p->tx_accept_flags);
2528 
2529 	/* No need for an explicit memory barrier here as long as we
2530 	 * ensure the ordering of writing to the SPQ element
2531 	 * and updating of the SPQ producer which involves a memory
2532 	 * read. If the memory read is removed we will have to put a
2533 	 * full memory barrier there (inside bnx2x_sp_post()).
2534 	 */
2535 
2536 	/* Send a ramrod */
2537 	rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2538 			   U64_HI(p->rdata_mapping),
2539 			   U64_LO(p->rdata_mapping),
2540 			   ETH_CONNECTION_TYPE);
2541 	if (rc)
2542 		return rc;
2543 
2544 	/* Ramrod completion is pending */
2545 	return 1;
2546 }
2547 
2548 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2549 				      struct bnx2x_rx_mode_ramrod_params *p)
2550 {
2551 	return bnx2x_state_wait(bp, p->state, p->pstate);
2552 }
2553 
2554 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2555 				    struct bnx2x_rx_mode_ramrod_params *p)
2556 {
2557 	/* Do nothing */
2558 	return 0;
2559 }
2560 
2561 int bnx2x_config_rx_mode(struct bnx2x *bp,
2562 			 struct bnx2x_rx_mode_ramrod_params *p)
2563 {
2564 	int rc;
2565 
2566 	/* Configure the new classification in the chip */
2567 	rc = p->rx_mode_obj->config_rx_mode(bp, p);
2568 	if (rc < 0)
2569 		return rc;
2570 
2571 	/* Wait for a ramrod completion if was requested */
2572 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2573 		rc = p->rx_mode_obj->wait_comp(bp, p);
2574 		if (rc)
2575 			return rc;
2576 	}
2577 
2578 	return rc;
2579 }
2580 
2581 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2582 			    struct bnx2x_rx_mode_obj *o)
2583 {
2584 	if (CHIP_IS_E1x(bp)) {
2585 		o->wait_comp      = bnx2x_empty_rx_mode_wait;
2586 		o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2587 	} else {
2588 		o->wait_comp      = bnx2x_wait_rx_mode_comp_e2;
2589 		o->config_rx_mode = bnx2x_set_rx_mode_e2;
2590 	}
2591 }
2592 
2593 /********************* Multicast verbs: SET, CLEAR ****************************/
2594 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2595 {
2596 	return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2597 }
2598 
2599 struct bnx2x_mcast_mac_elem {
2600 	struct list_head link;
2601 	u8 mac[ETH_ALEN];
2602 	u8 pad[2]; /* For a natural alignment of the following buffer */
2603 };
2604 
2605 struct bnx2x_mcast_bin_elem {
2606 	struct list_head link;
2607 	int bin;
2608 	int type; /* BNX2X_MCAST_CMD_SET_{ADD, DEL} */
2609 };
2610 
2611 union bnx2x_mcast_elem {
2612 	struct bnx2x_mcast_bin_elem bin_elem;
2613 	struct bnx2x_mcast_mac_elem mac_elem;
2614 };
2615 
2616 struct bnx2x_mcast_elem_group {
2617 	struct list_head mcast_group_link;
2618 	union bnx2x_mcast_elem mcast_elems[];
2619 };
2620 
2621 #define MCAST_MAC_ELEMS_PER_PG \
2622 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_elem_group)) / \
2623 	sizeof(union bnx2x_mcast_elem))
2624 
2625 struct bnx2x_pending_mcast_cmd {
2626 	struct list_head link;
2627 	struct list_head group_head;
2628 	int type; /* BNX2X_MCAST_CMD_X */
2629 	union {
2630 		struct list_head macs_head;
2631 		u32 macs_num; /* Needed for DEL command */
2632 		int next_bin; /* Needed for RESTORE flow with aprox match */
2633 	} data;
2634 
2635 	bool set_convert; /* in case type == BNX2X_MCAST_CMD_SET, this is set
2636 			   * when macs_head had been converted to a list of
2637 			   * bnx2x_mcast_bin_elem.
2638 			   */
2639 
2640 	bool done; /* set to true, when the command has been handled,
2641 		    * practically used in 57712 handling only, where one pending
2642 		    * command may be handled in a few operations. As long as for
2643 		    * other chips every operation handling is completed in a
2644 		    * single ramrod, there is no need to utilize this field.
2645 		    */
2646 };
2647 
2648 static int bnx2x_mcast_wait(struct bnx2x *bp,
2649 			    struct bnx2x_mcast_obj *o)
2650 {
2651 	if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2652 			o->raw.wait_comp(bp, &o->raw))
2653 		return -EBUSY;
2654 
2655 	return 0;
2656 }
2657 
2658 static void bnx2x_free_groups(struct list_head *mcast_group_list)
2659 {
2660 	struct bnx2x_mcast_elem_group *current_mcast_group;
2661 
2662 	while (!list_empty(mcast_group_list)) {
2663 		current_mcast_group = list_first_entry(mcast_group_list,
2664 				      struct bnx2x_mcast_elem_group,
2665 				      mcast_group_link);
2666 		list_del(&current_mcast_group->mcast_group_link);
2667 		free_page((unsigned long)current_mcast_group);
2668 	}
2669 }
2670 
2671 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2672 				   struct bnx2x_mcast_obj *o,
2673 				   struct bnx2x_mcast_ramrod_params *p,
2674 				   enum bnx2x_mcast_cmd cmd)
2675 {
2676 	struct bnx2x_pending_mcast_cmd *new_cmd;
2677 	struct bnx2x_mcast_list_elem *pos;
2678 	struct bnx2x_mcast_elem_group *elem_group;
2679 	struct bnx2x_mcast_mac_elem *mac_elem;
2680 	int total_elems = 0, macs_list_len = 0, offset = 0;
2681 
2682 	/* When adding MACs we'll need to store their values */
2683 	if (cmd == BNX2X_MCAST_CMD_ADD || cmd == BNX2X_MCAST_CMD_SET)
2684 		macs_list_len = p->mcast_list_len;
2685 
2686 	/* If the command is empty ("handle pending commands only"), break */
2687 	if (!p->mcast_list_len)
2688 		return 0;
2689 
2690 	/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2691 	new_cmd = kzalloc(sizeof(*new_cmd), GFP_ATOMIC);
2692 	if (!new_cmd)
2693 		return -ENOMEM;
2694 
2695 	INIT_LIST_HEAD(&new_cmd->data.macs_head);
2696 	INIT_LIST_HEAD(&new_cmd->group_head);
2697 	new_cmd->type = cmd;
2698 	new_cmd->done = false;
2699 
2700 	DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2701 	   cmd, macs_list_len);
2702 
2703 	switch (cmd) {
2704 	case BNX2X_MCAST_CMD_ADD:
2705 	case BNX2X_MCAST_CMD_SET:
2706 		/* For a set command, we need to allocate sufficient memory for
2707 		 * all the bins, since we can't analyze at this point how much
2708 		 * memory would be required.
2709 		 */
2710 		total_elems = macs_list_len;
2711 		if (cmd == BNX2X_MCAST_CMD_SET) {
2712 			if (total_elems < BNX2X_MCAST_BINS_NUM)
2713 				total_elems = BNX2X_MCAST_BINS_NUM;
2714 		}
2715 		while (total_elems > 0) {
2716 			elem_group = (struct bnx2x_mcast_elem_group *)
2717 				     __get_free_page(GFP_ATOMIC | __GFP_ZERO);
2718 			if (!elem_group) {
2719 				bnx2x_free_groups(&new_cmd->group_head);
2720 				kfree(new_cmd);
2721 				return -ENOMEM;
2722 			}
2723 			total_elems -= MCAST_MAC_ELEMS_PER_PG;
2724 			list_add_tail(&elem_group->mcast_group_link,
2725 				      &new_cmd->group_head);
2726 		}
2727 		elem_group = list_first_entry(&new_cmd->group_head,
2728 					      struct bnx2x_mcast_elem_group,
2729 					      mcast_group_link);
2730 		list_for_each_entry(pos, &p->mcast_list, link) {
2731 			mac_elem = &elem_group->mcast_elems[offset].mac_elem;
2732 			memcpy(mac_elem->mac, pos->mac, ETH_ALEN);
2733 			/* Push the MACs of the current command into the pending
2734 			 * command MACs list: FIFO
2735 			 */
2736 			list_add_tail(&mac_elem->link,
2737 				      &new_cmd->data.macs_head);
2738 			offset++;
2739 			if (offset == MCAST_MAC_ELEMS_PER_PG) {
2740 				offset = 0;
2741 				elem_group = list_next_entry(elem_group,
2742 							     mcast_group_link);
2743 			}
2744 		}
2745 		break;
2746 
2747 	case BNX2X_MCAST_CMD_DEL:
2748 		new_cmd->data.macs_num = p->mcast_list_len;
2749 		break;
2750 
2751 	case BNX2X_MCAST_CMD_RESTORE:
2752 		new_cmd->data.next_bin = 0;
2753 		break;
2754 
2755 	default:
2756 		kfree(new_cmd);
2757 		BNX2X_ERR("Unknown command: %d\n", cmd);
2758 		return -EINVAL;
2759 	}
2760 
2761 	/* Push the new pending command to the tail of the pending list: FIFO */
2762 	list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2763 
2764 	o->set_sched(o);
2765 
2766 	return 1;
2767 }
2768 
2769 /**
2770  * bnx2x_mcast_get_next_bin - get the next set bin (index)
2771  *
2772  * @o:		multicast object info
2773  * @last:	index to start looking from (including)
2774  *
2775  * returns the next found (set) bin or a negative value if none is found.
2776  */
2777 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2778 {
2779 	int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2780 
2781 	for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2782 		if (o->registry.aprox_match.vec[i])
2783 			for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2784 				int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2785 				if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2786 						       vec, cur_bit)) {
2787 					return cur_bit;
2788 				}
2789 			}
2790 		inner_start = 0;
2791 	}
2792 
2793 	/* None found */
2794 	return -1;
2795 }
2796 
2797 /**
2798  * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2799  *
2800  * @o:
2801  *
2802  * returns the index of the found bin or -1 if none is found
2803  */
2804 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2805 {
2806 	int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2807 
2808 	if (cur_bit >= 0)
2809 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2810 
2811 	return cur_bit;
2812 }
2813 
2814 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2815 {
2816 	struct bnx2x_raw_obj *raw = &o->raw;
2817 	u8 rx_tx_flag = 0;
2818 
2819 	if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2820 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2821 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2822 
2823 	if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2824 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2825 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2826 
2827 	return rx_tx_flag;
2828 }
2829 
2830 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2831 					struct bnx2x_mcast_obj *o, int idx,
2832 					union bnx2x_mcast_config_data *cfg_data,
2833 					enum bnx2x_mcast_cmd cmd)
2834 {
2835 	struct bnx2x_raw_obj *r = &o->raw;
2836 	struct eth_multicast_rules_ramrod_data *data =
2837 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
2838 	u8 func_id = r->func_id;
2839 	u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2840 	int bin;
2841 
2842 	if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE) ||
2843 	    (cmd == BNX2X_MCAST_CMD_SET_ADD))
2844 		rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2845 
2846 	data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2847 
2848 	/* Get a bin and update a bins' vector */
2849 	switch (cmd) {
2850 	case BNX2X_MCAST_CMD_ADD:
2851 		bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2852 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2853 		break;
2854 
2855 	case BNX2X_MCAST_CMD_DEL:
2856 		/* If there were no more bins to clear
2857 		 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2858 		 * clear any (0xff) bin.
2859 		 * See bnx2x_mcast_validate_e2() for explanation when it may
2860 		 * happen.
2861 		 */
2862 		bin = bnx2x_mcast_clear_first_bin(o);
2863 		break;
2864 
2865 	case BNX2X_MCAST_CMD_RESTORE:
2866 		bin = cfg_data->bin;
2867 		break;
2868 
2869 	case BNX2X_MCAST_CMD_SET_ADD:
2870 		bin = cfg_data->bin;
2871 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2872 		break;
2873 
2874 	case BNX2X_MCAST_CMD_SET_DEL:
2875 		bin = cfg_data->bin;
2876 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, bin);
2877 		break;
2878 
2879 	default:
2880 		BNX2X_ERR("Unknown command: %d\n", cmd);
2881 		return;
2882 	}
2883 
2884 	DP(BNX2X_MSG_SP, "%s bin %d\n",
2885 			 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2886 			 "Setting"  : "Clearing"), bin);
2887 
2888 	data->rules[idx].bin_id    = (u8)bin;
2889 	data->rules[idx].func_id   = func_id;
2890 	data->rules[idx].engine_id = o->engine_id;
2891 }
2892 
2893 /**
2894  * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2895  *
2896  * @bp:		device handle
2897  * @o:		multicast object info
2898  * @start_bin:	index in the registry to start from (including)
2899  * @rdata_idx:	index in the ramrod data to start from
2900  *
2901  * returns last handled bin index or -1 if all bins have been handled
2902  */
2903 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2904 	struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2905 	int *rdata_idx)
2906 {
2907 	int cur_bin, cnt = *rdata_idx;
2908 	union bnx2x_mcast_config_data cfg_data = {NULL};
2909 
2910 	/* go through the registry and configure the bins from it */
2911 	for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2912 	    cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2913 
2914 		cfg_data.bin = (u8)cur_bin;
2915 		o->set_one_rule(bp, o, cnt, &cfg_data,
2916 				BNX2X_MCAST_CMD_RESTORE);
2917 
2918 		cnt++;
2919 
2920 		DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2921 
2922 		/* Break if we reached the maximum number
2923 		 * of rules.
2924 		 */
2925 		if (cnt >= o->max_cmd_len)
2926 			break;
2927 	}
2928 
2929 	*rdata_idx = cnt;
2930 
2931 	return cur_bin;
2932 }
2933 
2934 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2935 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2936 	int *line_idx)
2937 {
2938 	struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2939 	int cnt = *line_idx;
2940 	union bnx2x_mcast_config_data cfg_data = {NULL};
2941 
2942 	list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2943 				 link) {
2944 
2945 		cfg_data.mac = &pmac_pos->mac[0];
2946 		o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2947 
2948 		cnt++;
2949 
2950 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2951 		   pmac_pos->mac);
2952 
2953 		list_del(&pmac_pos->link);
2954 
2955 		/* Break if we reached the maximum number
2956 		 * of rules.
2957 		 */
2958 		if (cnt >= o->max_cmd_len)
2959 			break;
2960 	}
2961 
2962 	*line_idx = cnt;
2963 
2964 	/* if no more MACs to configure - we are done */
2965 	if (list_empty(&cmd_pos->data.macs_head))
2966 		cmd_pos->done = true;
2967 }
2968 
2969 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2970 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2971 	int *line_idx)
2972 {
2973 	int cnt = *line_idx;
2974 
2975 	while (cmd_pos->data.macs_num) {
2976 		o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2977 
2978 		cnt++;
2979 
2980 		cmd_pos->data.macs_num--;
2981 
2982 		DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2983 		   cmd_pos->data.macs_num, cnt);
2984 
2985 		/* Break if we reached the maximum
2986 		 * number of rules.
2987 		 */
2988 		if (cnt >= o->max_cmd_len)
2989 			break;
2990 	}
2991 
2992 	*line_idx = cnt;
2993 
2994 	/* If we cleared all bins - we are done */
2995 	if (!cmd_pos->data.macs_num)
2996 		cmd_pos->done = true;
2997 }
2998 
2999 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
3000 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
3001 	int *line_idx)
3002 {
3003 	cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
3004 						line_idx);
3005 
3006 	if (cmd_pos->data.next_bin < 0)
3007 		/* If o->set_restore returned -1 we are done */
3008 		cmd_pos->done = true;
3009 	else
3010 		/* Start from the next bin next time */
3011 		cmd_pos->data.next_bin++;
3012 }
3013 
3014 static void
3015 bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x *bp,
3016 				       struct bnx2x_mcast_obj *o,
3017 				       struct bnx2x_pending_mcast_cmd *cmd_pos)
3018 {
3019 	u64 cur[BNX2X_MCAST_VEC_SZ], req[BNX2X_MCAST_VEC_SZ];
3020 	struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3021 	struct bnx2x_mcast_bin_elem *p_item;
3022 	struct bnx2x_mcast_elem_group *elem_group;
3023 	int cnt = 0, mac_cnt = 0, offset = 0, i;
3024 
3025 	memset(req, 0, sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3026 	memcpy(cur, o->registry.aprox_match.vec,
3027 	       sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3028 
3029 	/* Fill `current' with the required set of bins to configure */
3030 	list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
3031 				 link) {
3032 		int bin = bnx2x_mcast_bin_from_mac(pmac_pos->mac);
3033 
3034 		DP(BNX2X_MSG_SP, "Set contains %pM mcast MAC\n",
3035 		   pmac_pos->mac);
3036 
3037 		BIT_VEC64_SET_BIT(req, bin);
3038 		list_del(&pmac_pos->link);
3039 		mac_cnt++;
3040 	}
3041 
3042 	/* We no longer have use for the MACs; Need to re-use memory for
3043 	 * a list that will be used to configure bins.
3044 	 */
3045 	cmd_pos->set_convert = true;
3046 	INIT_LIST_HEAD(&cmd_pos->data.macs_head);
3047 	elem_group = list_first_entry(&cmd_pos->group_head,
3048 				      struct bnx2x_mcast_elem_group,
3049 				      mcast_group_link);
3050 	for (i = 0; i < BNX2X_MCAST_BINS_NUM; i++) {
3051 		bool b_current = !!BIT_VEC64_TEST_BIT(cur, i);
3052 		bool b_required = !!BIT_VEC64_TEST_BIT(req, i);
3053 
3054 		if (b_current == b_required)
3055 			continue;
3056 
3057 		p_item = &elem_group->mcast_elems[offset].bin_elem;
3058 		p_item->bin = i;
3059 		p_item->type = b_required ? BNX2X_MCAST_CMD_SET_ADD
3060 					  : BNX2X_MCAST_CMD_SET_DEL;
3061 		list_add_tail(&p_item->link , &cmd_pos->data.macs_head);
3062 		cnt++;
3063 		offset++;
3064 		if (offset == MCAST_MAC_ELEMS_PER_PG) {
3065 			offset = 0;
3066 			elem_group = list_next_entry(elem_group,
3067 						     mcast_group_link);
3068 		}
3069 	}
3070 
3071 	/* We now definitely know how many commands are hiding here.
3072 	 * Also need to correct the disruption we've added to guarantee this
3073 	 * would be enqueued.
3074 	 */
3075 	o->total_pending_num -= (o->max_cmd_len + mac_cnt);
3076 	o->total_pending_num += cnt;
3077 
3078 	DP(BNX2X_MSG_SP, "o->total_pending_num=%d\n", o->total_pending_num);
3079 }
3080 
3081 static void
3082 bnx2x_mcast_hdl_pending_set_e2(struct bnx2x *bp,
3083 			       struct bnx2x_mcast_obj *o,
3084 			       struct bnx2x_pending_mcast_cmd *cmd_pos,
3085 			       int *cnt)
3086 {
3087 	union bnx2x_mcast_config_data cfg_data = {NULL};
3088 	struct bnx2x_mcast_bin_elem *p_item, *p_item_n;
3089 
3090 	/* This is actually a 2-part scheme - it starts by converting the MACs
3091 	 * into a list of bins to be added/removed, and correcting the numbers
3092 	 * on the object. this is now allowed, as we're now sure that all
3093 	 * previous configured requests have already applied.
3094 	 * The second part is actually adding rules for the newly introduced
3095 	 * entries [like all the rest of the hdl_pending functions].
3096 	 */
3097 	if (!cmd_pos->set_convert)
3098 		bnx2x_mcast_hdl_pending_set_e2_convert(bp, o, cmd_pos);
3099 
3100 	list_for_each_entry_safe(p_item, p_item_n, &cmd_pos->data.macs_head,
3101 				 link) {
3102 		cfg_data.bin = (u8)p_item->bin;
3103 		o->set_one_rule(bp, o, *cnt, &cfg_data, p_item->type);
3104 		(*cnt)++;
3105 
3106 		list_del(&p_item->link);
3107 
3108 		/* Break if we reached the maximum number of rules. */
3109 		if (*cnt >= o->max_cmd_len)
3110 			break;
3111 	}
3112 
3113 	/* if no more MACs to configure - we are done */
3114 	if (list_empty(&cmd_pos->data.macs_head))
3115 		cmd_pos->done = true;
3116 }
3117 
3118 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
3119 				struct bnx2x_mcast_ramrod_params *p)
3120 {
3121 	struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3122 	int cnt = 0;
3123 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3124 
3125 	list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
3126 				 link) {
3127 		switch (cmd_pos->type) {
3128 		case BNX2X_MCAST_CMD_ADD:
3129 			bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
3130 			break;
3131 
3132 		case BNX2X_MCAST_CMD_DEL:
3133 			bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
3134 			break;
3135 
3136 		case BNX2X_MCAST_CMD_RESTORE:
3137 			bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
3138 							   &cnt);
3139 			break;
3140 
3141 		case BNX2X_MCAST_CMD_SET:
3142 			bnx2x_mcast_hdl_pending_set_e2(bp, o, cmd_pos, &cnt);
3143 			break;
3144 
3145 		default:
3146 			BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3147 			return -EINVAL;
3148 		}
3149 
3150 		/* If the command has been completed - remove it from the list
3151 		 * and free the memory
3152 		 */
3153 		if (cmd_pos->done) {
3154 			list_del(&cmd_pos->link);
3155 			bnx2x_free_groups(&cmd_pos->group_head);
3156 			kfree(cmd_pos);
3157 		}
3158 
3159 		/* Break if we reached the maximum number of rules */
3160 		if (cnt >= o->max_cmd_len)
3161 			break;
3162 	}
3163 
3164 	return cnt;
3165 }
3166 
3167 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
3168 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3169 	int *line_idx)
3170 {
3171 	struct bnx2x_mcast_list_elem *mlist_pos;
3172 	union bnx2x_mcast_config_data cfg_data = {NULL};
3173 	int cnt = *line_idx;
3174 
3175 	list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3176 		cfg_data.mac = mlist_pos->mac;
3177 		o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
3178 
3179 		cnt++;
3180 
3181 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3182 		   mlist_pos->mac);
3183 	}
3184 
3185 	*line_idx = cnt;
3186 }
3187 
3188 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
3189 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3190 	int *line_idx)
3191 {
3192 	int cnt = *line_idx, i;
3193 
3194 	for (i = 0; i < p->mcast_list_len; i++) {
3195 		o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
3196 
3197 		cnt++;
3198 
3199 		DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
3200 				 p->mcast_list_len - i - 1);
3201 	}
3202 
3203 	*line_idx = cnt;
3204 }
3205 
3206 /**
3207  * bnx2x_mcast_handle_current_cmd - send command if room
3208  *
3209  * @bp:		device handle
3210  * @p:		ramrod mcast info
3211  * @cmd:	command
3212  * @start_cnt:	first line in the ramrod data that may be used
3213  *
3214  * This function is called iff there is enough place for the current command in
3215  * the ramrod data.
3216  * Returns number of lines filled in the ramrod data in total.
3217  */
3218 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
3219 			struct bnx2x_mcast_ramrod_params *p,
3220 			enum bnx2x_mcast_cmd cmd,
3221 			int start_cnt)
3222 {
3223 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3224 	int cnt = start_cnt;
3225 
3226 	DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3227 
3228 	switch (cmd) {
3229 	case BNX2X_MCAST_CMD_ADD:
3230 		bnx2x_mcast_hdl_add(bp, o, p, &cnt);
3231 		break;
3232 
3233 	case BNX2X_MCAST_CMD_DEL:
3234 		bnx2x_mcast_hdl_del(bp, o, p, &cnt);
3235 		break;
3236 
3237 	case BNX2X_MCAST_CMD_RESTORE:
3238 		o->hdl_restore(bp, o, 0, &cnt);
3239 		break;
3240 
3241 	default:
3242 		BNX2X_ERR("Unknown command: %d\n", cmd);
3243 		return -EINVAL;
3244 	}
3245 
3246 	/* The current command has been handled */
3247 	p->mcast_list_len = 0;
3248 
3249 	return cnt;
3250 }
3251 
3252 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
3253 				   struct bnx2x_mcast_ramrod_params *p,
3254 				   enum bnx2x_mcast_cmd cmd)
3255 {
3256 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3257 	int reg_sz = o->get_registry_size(o);
3258 
3259 	switch (cmd) {
3260 	/* DEL command deletes all currently configured MACs */
3261 	case BNX2X_MCAST_CMD_DEL:
3262 		o->set_registry_size(o, 0);
3263 		fallthrough;
3264 
3265 	/* RESTORE command will restore the entire multicast configuration */
3266 	case BNX2X_MCAST_CMD_RESTORE:
3267 		/* Here we set the approximate amount of work to do, which in
3268 		 * fact may be only less as some MACs in postponed ADD
3269 		 * command(s) scheduled before this command may fall into
3270 		 * the same bin and the actual number of bins set in the
3271 		 * registry would be less than we estimated here. See
3272 		 * bnx2x_mcast_set_one_rule_e2() for further details.
3273 		 */
3274 		p->mcast_list_len = reg_sz;
3275 		break;
3276 
3277 	case BNX2X_MCAST_CMD_ADD:
3278 	case BNX2X_MCAST_CMD_CONT:
3279 		/* Here we assume that all new MACs will fall into new bins.
3280 		 * However we will correct the real registry size after we
3281 		 * handle all pending commands.
3282 		 */
3283 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
3284 		break;
3285 
3286 	case BNX2X_MCAST_CMD_SET:
3287 		/* We can only learn how many commands would actually be used
3288 		 * when this is being configured. So for now, simply guarantee
3289 		 * the command will be enqueued [to refrain from adding logic
3290 		 * that handles this and THEN learns it needs several ramrods].
3291 		 * Just like for ADD/Cont, the mcast_list_len might be an over
3292 		 * estimation; or even more so, since we don't take into
3293 		 * account the possibility of removal of existing bins.
3294 		 */
3295 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
3296 		o->total_pending_num += o->max_cmd_len;
3297 		break;
3298 
3299 	default:
3300 		BNX2X_ERR("Unknown command: %d\n", cmd);
3301 		return -EINVAL;
3302 	}
3303 
3304 	/* Increase the total number of MACs pending to be configured */
3305 	o->total_pending_num += p->mcast_list_len;
3306 
3307 	return 0;
3308 }
3309 
3310 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
3311 				      struct bnx2x_mcast_ramrod_params *p,
3312 				  int old_num_bins,
3313 				  enum bnx2x_mcast_cmd cmd)
3314 {
3315 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3316 
3317 	o->set_registry_size(o, old_num_bins);
3318 	o->total_pending_num -= p->mcast_list_len;
3319 
3320 	if (cmd == BNX2X_MCAST_CMD_SET)
3321 		o->total_pending_num -= o->max_cmd_len;
3322 }
3323 
3324 /**
3325  * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3326  *
3327  * @bp:		device handle
3328  * @p:		ramrod parameters
3329  * @len:	number of rules to handle
3330  */
3331 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
3332 					struct bnx2x_mcast_ramrod_params *p,
3333 					u8 len)
3334 {
3335 	struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3336 	struct eth_multicast_rules_ramrod_data *data =
3337 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3338 
3339 	data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3340 					(BNX2X_FILTER_MCAST_PENDING <<
3341 					 BNX2X_SWCID_SHIFT));
3342 	data->header.rule_cnt = len;
3343 }
3344 
3345 /**
3346  * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3347  *
3348  * @bp:		device handle
3349  * @o:
3350  *
3351  * Recalculate the actual number of set bins in the registry using Brian
3352  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3353  *
3354  * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3355  */
3356 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
3357 						  struct bnx2x_mcast_obj *o)
3358 {
3359 	int i, cnt = 0;
3360 	u64 elem;
3361 
3362 	for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
3363 		elem = o->registry.aprox_match.vec[i];
3364 		for (; elem; cnt++)
3365 			elem &= elem - 1;
3366 	}
3367 
3368 	o->set_registry_size(o, cnt);
3369 
3370 	return 0;
3371 }
3372 
3373 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
3374 				struct bnx2x_mcast_ramrod_params *p,
3375 				enum bnx2x_mcast_cmd cmd)
3376 {
3377 	struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
3378 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3379 	struct eth_multicast_rules_ramrod_data *data =
3380 		(struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3381 	int cnt = 0, rc;
3382 
3383 	/* Reset the ramrod data buffer */
3384 	memset(data, 0, sizeof(*data));
3385 
3386 	cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
3387 
3388 	/* If there are no more pending commands - clear SCHEDULED state */
3389 	if (list_empty(&o->pending_cmds_head))
3390 		o->clear_sched(o);
3391 
3392 	/* The below may be true iff there was enough room in ramrod
3393 	 * data for all pending commands and for the current
3394 	 * command. Otherwise the current command would have been added
3395 	 * to the pending commands and p->mcast_list_len would have been
3396 	 * zeroed.
3397 	 */
3398 	if (p->mcast_list_len > 0)
3399 		cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
3400 
3401 	/* We've pulled out some MACs - update the total number of
3402 	 * outstanding.
3403 	 */
3404 	o->total_pending_num -= cnt;
3405 
3406 	/* send a ramrod */
3407 	WARN_ON(o->total_pending_num < 0);
3408 	WARN_ON(cnt > o->max_cmd_len);
3409 
3410 	bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3411 
3412 	/* Update a registry size if there are no more pending operations.
3413 	 *
3414 	 * We don't want to change the value of the registry size if there are
3415 	 * pending operations because we want it to always be equal to the
3416 	 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3417 	 * set bins after the last requested operation in order to properly
3418 	 * evaluate the size of the next DEL/RESTORE operation.
3419 	 *
3420 	 * Note that we update the registry itself during command(s) handling
3421 	 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3422 	 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3423 	 * with a limited amount of update commands (per MAC/bin) and we don't
3424 	 * know in this scope what the actual state of bins configuration is
3425 	 * going to be after this ramrod.
3426 	 */
3427 	if (!o->total_pending_num)
3428 		bnx2x_mcast_refresh_registry_e2(bp, o);
3429 
3430 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3431 	 * RAMROD_PENDING status immediately. due to the SET option, it's also
3432 	 * possible that after evaluating the differences there's no need for
3433 	 * a ramrod. In that case, we can skip it as well.
3434 	 */
3435 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags) || !cnt) {
3436 		raw->clear_pending(raw);
3437 		return 0;
3438 	} else {
3439 		/* No need for an explicit memory barrier here as long as we
3440 		 * ensure the ordering of writing to the SPQ element
3441 		 * and updating of the SPQ producer which involves a memory
3442 		 * read. If the memory read is removed we will have to put a
3443 		 * full memory barrier there (inside bnx2x_sp_post()).
3444 		 */
3445 
3446 		/* Send a ramrod */
3447 		rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3448 				   raw->cid, U64_HI(raw->rdata_mapping),
3449 				   U64_LO(raw->rdata_mapping),
3450 				   ETH_CONNECTION_TYPE);
3451 		if (rc)
3452 			return rc;
3453 
3454 		/* Ramrod completion is pending */
3455 		return 1;
3456 	}
3457 }
3458 
3459 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3460 				    struct bnx2x_mcast_ramrod_params *p,
3461 				    enum bnx2x_mcast_cmd cmd)
3462 {
3463 	if (cmd == BNX2X_MCAST_CMD_SET) {
3464 		BNX2X_ERR("Can't use `set' command on e1h!\n");
3465 		return -EINVAL;
3466 	}
3467 
3468 	/* Mark, that there is a work to do */
3469 	if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3470 		p->mcast_list_len = 1;
3471 
3472 	return 0;
3473 }
3474 
3475 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3476 				       struct bnx2x_mcast_ramrod_params *p,
3477 				       int old_num_bins,
3478 				       enum bnx2x_mcast_cmd cmd)
3479 {
3480 	/* Do nothing */
3481 }
3482 
3483 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3484 do { \
3485 	(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3486 } while (0)
3487 
3488 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3489 					   struct bnx2x_mcast_obj *o,
3490 					   struct bnx2x_mcast_ramrod_params *p,
3491 					   u32 *mc_filter)
3492 {
3493 	struct bnx2x_mcast_list_elem *mlist_pos;
3494 	int bit;
3495 
3496 	list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3497 		bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3498 		BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3499 
3500 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3501 		   mlist_pos->mac, bit);
3502 
3503 		/* bookkeeping... */
3504 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3505 				  bit);
3506 	}
3507 }
3508 
3509 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3510 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3511 	u32 *mc_filter)
3512 {
3513 	int bit;
3514 
3515 	for (bit = bnx2x_mcast_get_next_bin(o, 0);
3516 	     bit >= 0;
3517 	     bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3518 		BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3519 		DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3520 	}
3521 }
3522 
3523 /* On 57711 we write the multicast MACs' approximate match
3524  * table by directly into the TSTORM's internal RAM. So we don't
3525  * really need to handle any tricks to make it work.
3526  */
3527 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3528 				 struct bnx2x_mcast_ramrod_params *p,
3529 				 enum bnx2x_mcast_cmd cmd)
3530 {
3531 	int i;
3532 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3533 	struct bnx2x_raw_obj *r = &o->raw;
3534 
3535 	/* If CLEAR_ONLY has been requested - clear the registry
3536 	 * and clear a pending bit.
3537 	 */
3538 	if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3539 		u32 mc_filter[MC_HASH_SIZE] = {0};
3540 
3541 		/* Set the multicast filter bits before writing it into
3542 		 * the internal memory.
3543 		 */
3544 		switch (cmd) {
3545 		case BNX2X_MCAST_CMD_ADD:
3546 			bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3547 			break;
3548 
3549 		case BNX2X_MCAST_CMD_DEL:
3550 			DP(BNX2X_MSG_SP,
3551 			   "Invalidating multicast MACs configuration\n");
3552 
3553 			/* clear the registry */
3554 			memset(o->registry.aprox_match.vec, 0,
3555 			       sizeof(o->registry.aprox_match.vec));
3556 			break;
3557 
3558 		case BNX2X_MCAST_CMD_RESTORE:
3559 			bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3560 			break;
3561 
3562 		default:
3563 			BNX2X_ERR("Unknown command: %d\n", cmd);
3564 			return -EINVAL;
3565 		}
3566 
3567 		/* Set the mcast filter in the internal memory */
3568 		for (i = 0; i < MC_HASH_SIZE; i++)
3569 			REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3570 	} else
3571 		/* clear the registry */
3572 		memset(o->registry.aprox_match.vec, 0,
3573 		       sizeof(o->registry.aprox_match.vec));
3574 
3575 	/* We are done */
3576 	r->clear_pending(r);
3577 
3578 	return 0;
3579 }
3580 
3581 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3582 				   struct bnx2x_mcast_ramrod_params *p,
3583 				   enum bnx2x_mcast_cmd cmd)
3584 {
3585 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3586 	int reg_sz = o->get_registry_size(o);
3587 
3588 	if (cmd == BNX2X_MCAST_CMD_SET) {
3589 		BNX2X_ERR("Can't use `set' command on e1!\n");
3590 		return -EINVAL;
3591 	}
3592 
3593 	switch (cmd) {
3594 	/* DEL command deletes all currently configured MACs */
3595 	case BNX2X_MCAST_CMD_DEL:
3596 		o->set_registry_size(o, 0);
3597 		fallthrough;
3598 
3599 	/* RESTORE command will restore the entire multicast configuration */
3600 	case BNX2X_MCAST_CMD_RESTORE:
3601 		p->mcast_list_len = reg_sz;
3602 		DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3603 		   cmd, p->mcast_list_len);
3604 		break;
3605 
3606 	case BNX2X_MCAST_CMD_ADD:
3607 	case BNX2X_MCAST_CMD_CONT:
3608 		/* Multicast MACs on 57710 are configured as unicast MACs and
3609 		 * there is only a limited number of CAM entries for that
3610 		 * matter.
3611 		 */
3612 		if (p->mcast_list_len > o->max_cmd_len) {
3613 			BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3614 				  o->max_cmd_len);
3615 			return -EINVAL;
3616 		}
3617 		/* Every configured MAC should be cleared if DEL command is
3618 		 * called. Only the last ADD command is relevant as long as
3619 		 * every ADD commands overrides the previous configuration.
3620 		 */
3621 		DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3622 		if (p->mcast_list_len > 0)
3623 			o->set_registry_size(o, p->mcast_list_len);
3624 
3625 		break;
3626 
3627 	default:
3628 		BNX2X_ERR("Unknown command: %d\n", cmd);
3629 		return -EINVAL;
3630 	}
3631 
3632 	/* We want to ensure that commands are executed one by one for 57710.
3633 	 * Therefore each none-empty command will consume o->max_cmd_len.
3634 	 */
3635 	if (p->mcast_list_len)
3636 		o->total_pending_num += o->max_cmd_len;
3637 
3638 	return 0;
3639 }
3640 
3641 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3642 				      struct bnx2x_mcast_ramrod_params *p,
3643 				   int old_num_macs,
3644 				   enum bnx2x_mcast_cmd cmd)
3645 {
3646 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3647 
3648 	o->set_registry_size(o, old_num_macs);
3649 
3650 	/* If current command hasn't been handled yet and we are
3651 	 * here means that it's meant to be dropped and we have to
3652 	 * update the number of outstanding MACs accordingly.
3653 	 */
3654 	if (p->mcast_list_len)
3655 		o->total_pending_num -= o->max_cmd_len;
3656 }
3657 
3658 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3659 					struct bnx2x_mcast_obj *o, int idx,
3660 					union bnx2x_mcast_config_data *cfg_data,
3661 					enum bnx2x_mcast_cmd cmd)
3662 {
3663 	struct bnx2x_raw_obj *r = &o->raw;
3664 	struct mac_configuration_cmd *data =
3665 		(struct mac_configuration_cmd *)(r->rdata);
3666 
3667 	/* copy mac */
3668 	if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3669 		bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3670 				      &data->config_table[idx].middle_mac_addr,
3671 				      &data->config_table[idx].lsb_mac_addr,
3672 				      cfg_data->mac);
3673 
3674 		data->config_table[idx].vlan_id = 0;
3675 		data->config_table[idx].pf_id = r->func_id;
3676 		data->config_table[idx].clients_bit_vector =
3677 			cpu_to_le32(1 << r->cl_id);
3678 
3679 		SET_FLAG(data->config_table[idx].flags,
3680 			 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3681 			 T_ETH_MAC_COMMAND_SET);
3682 	}
3683 }
3684 
3685 /**
3686  * bnx2x_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3687  *
3688  * @bp:		device handle
3689  * @p:		ramrod parameters
3690  * @len:	number of rules to handle
3691  */
3692 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3693 					struct bnx2x_mcast_ramrod_params *p,
3694 					u8 len)
3695 {
3696 	struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3697 	struct mac_configuration_cmd *data =
3698 		(struct mac_configuration_cmd *)(r->rdata);
3699 
3700 	u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3701 		     BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3702 		     BNX2X_MAX_MULTICAST*(1 + r->func_id));
3703 
3704 	data->hdr.offset = offset;
3705 	data->hdr.client_id = cpu_to_le16(0xff);
3706 	data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3707 				     (BNX2X_FILTER_MCAST_PENDING <<
3708 				      BNX2X_SWCID_SHIFT));
3709 	data->hdr.length = len;
3710 }
3711 
3712 /**
3713  * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3714  *
3715  * @bp:		device handle
3716  * @o:		multicast info
3717  * @start_idx:	index in the registry to start from
3718  * @rdata_idx:	index in the ramrod data to start from
3719  *
3720  * restore command for 57710 is like all other commands - always a stand alone
3721  * command - start_idx and rdata_idx will always be 0. This function will always
3722  * succeed.
3723  * returns -1 to comply with 57712 variant.
3724  */
3725 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3726 	struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3727 	int *rdata_idx)
3728 {
3729 	struct bnx2x_mcast_mac_elem *elem;
3730 	int i = 0;
3731 	union bnx2x_mcast_config_data cfg_data = {NULL};
3732 
3733 	/* go through the registry and configure the MACs from it. */
3734 	list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3735 		cfg_data.mac = &elem->mac[0];
3736 		o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3737 
3738 		i++;
3739 
3740 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3741 		   cfg_data.mac);
3742 	}
3743 
3744 	*rdata_idx = i;
3745 
3746 	return -1;
3747 }
3748 
3749 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3750 	struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3751 {
3752 	struct bnx2x_pending_mcast_cmd *cmd_pos;
3753 	struct bnx2x_mcast_mac_elem *pmac_pos;
3754 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3755 	union bnx2x_mcast_config_data cfg_data = {NULL};
3756 	int cnt = 0;
3757 
3758 	/* If nothing to be done - return */
3759 	if (list_empty(&o->pending_cmds_head))
3760 		return 0;
3761 
3762 	/* Handle the first command */
3763 	cmd_pos = list_first_entry(&o->pending_cmds_head,
3764 				   struct bnx2x_pending_mcast_cmd, link);
3765 
3766 	switch (cmd_pos->type) {
3767 	case BNX2X_MCAST_CMD_ADD:
3768 		list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3769 			cfg_data.mac = &pmac_pos->mac[0];
3770 			o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3771 
3772 			cnt++;
3773 
3774 			DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3775 			   pmac_pos->mac);
3776 		}
3777 		break;
3778 
3779 	case BNX2X_MCAST_CMD_DEL:
3780 		cnt = cmd_pos->data.macs_num;
3781 		DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3782 		break;
3783 
3784 	case BNX2X_MCAST_CMD_RESTORE:
3785 		o->hdl_restore(bp, o, 0, &cnt);
3786 		break;
3787 
3788 	default:
3789 		BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3790 		return -EINVAL;
3791 	}
3792 
3793 	list_del(&cmd_pos->link);
3794 	bnx2x_free_groups(&cmd_pos->group_head);
3795 	kfree(cmd_pos);
3796 
3797 	return cnt;
3798 }
3799 
3800 /**
3801  * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3802  *
3803  * @fw_hi: address
3804  * @fw_mid: address
3805  * @fw_lo: address
3806  * @mac: mac address
3807  */
3808 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3809 					 __le16 *fw_lo, u8 *mac)
3810 {
3811 	mac[1] = ((u8 *)fw_hi)[0];
3812 	mac[0] = ((u8 *)fw_hi)[1];
3813 	mac[3] = ((u8 *)fw_mid)[0];
3814 	mac[2] = ((u8 *)fw_mid)[1];
3815 	mac[5] = ((u8 *)fw_lo)[0];
3816 	mac[4] = ((u8 *)fw_lo)[1];
3817 }
3818 
3819 /**
3820  * bnx2x_mcast_refresh_registry_e1 -
3821  *
3822  * @bp:		device handle
3823  * @o:		multicast info
3824  *
3825  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3826  * and update the registry correspondingly: if ADD - allocate a memory and add
3827  * the entries to the registry (list), if DELETE - clear the registry and free
3828  * the memory.
3829  */
3830 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3831 						  struct bnx2x_mcast_obj *o)
3832 {
3833 	struct bnx2x_raw_obj *raw = &o->raw;
3834 	struct bnx2x_mcast_mac_elem *elem;
3835 	struct mac_configuration_cmd *data =
3836 			(struct mac_configuration_cmd *)(raw->rdata);
3837 
3838 	/* If first entry contains a SET bit - the command was ADD,
3839 	 * otherwise - DEL_ALL
3840 	 */
3841 	if (GET_FLAG(data->config_table[0].flags,
3842 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3843 		int i, len = data->hdr.length;
3844 
3845 		/* Break if it was a RESTORE command */
3846 		if (!list_empty(&o->registry.exact_match.macs))
3847 			return 0;
3848 
3849 		elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3850 		if (!elem) {
3851 			BNX2X_ERR("Failed to allocate registry memory\n");
3852 			return -ENOMEM;
3853 		}
3854 
3855 		for (i = 0; i < len; i++, elem++) {
3856 			bnx2x_get_fw_mac_addr(
3857 				&data->config_table[i].msb_mac_addr,
3858 				&data->config_table[i].middle_mac_addr,
3859 				&data->config_table[i].lsb_mac_addr,
3860 				elem->mac);
3861 			DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3862 			   elem->mac);
3863 			list_add_tail(&elem->link,
3864 				      &o->registry.exact_match.macs);
3865 		}
3866 	} else {
3867 		elem = list_first_entry(&o->registry.exact_match.macs,
3868 					struct bnx2x_mcast_mac_elem, link);
3869 		DP(BNX2X_MSG_SP, "Deleting a registry\n");
3870 		kfree(elem);
3871 		INIT_LIST_HEAD(&o->registry.exact_match.macs);
3872 	}
3873 
3874 	return 0;
3875 }
3876 
3877 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3878 				struct bnx2x_mcast_ramrod_params *p,
3879 				enum bnx2x_mcast_cmd cmd)
3880 {
3881 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3882 	struct bnx2x_raw_obj *raw = &o->raw;
3883 	struct mac_configuration_cmd *data =
3884 		(struct mac_configuration_cmd *)(raw->rdata);
3885 	int cnt = 0, i, rc;
3886 
3887 	/* Reset the ramrod data buffer */
3888 	memset(data, 0, sizeof(*data));
3889 
3890 	/* First set all entries as invalid */
3891 	for (i = 0; i < o->max_cmd_len ; i++)
3892 		SET_FLAG(data->config_table[i].flags,
3893 			 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3894 			 T_ETH_MAC_COMMAND_INVALIDATE);
3895 
3896 	/* Handle pending commands first */
3897 	cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3898 
3899 	/* If there are no more pending commands - clear SCHEDULED state */
3900 	if (list_empty(&o->pending_cmds_head))
3901 		o->clear_sched(o);
3902 
3903 	/* The below may be true iff there were no pending commands */
3904 	if (!cnt)
3905 		cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3906 
3907 	/* For 57710 every command has o->max_cmd_len length to ensure that
3908 	 * commands are done one at a time.
3909 	 */
3910 	o->total_pending_num -= o->max_cmd_len;
3911 
3912 	/* send a ramrod */
3913 
3914 	WARN_ON(cnt > o->max_cmd_len);
3915 
3916 	/* Set ramrod header (in particular, a number of entries to update) */
3917 	bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3918 
3919 	/* update a registry: we need the registry contents to be always up
3920 	 * to date in order to be able to execute a RESTORE opcode. Here
3921 	 * we use the fact that for 57710 we sent one command at a time
3922 	 * hence we may take the registry update out of the command handling
3923 	 * and do it in a simpler way here.
3924 	 */
3925 	rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3926 	if (rc)
3927 		return rc;
3928 
3929 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3930 	 * RAMROD_PENDING status immediately.
3931 	 */
3932 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3933 		raw->clear_pending(raw);
3934 		return 0;
3935 	} else {
3936 		/* No need for an explicit memory barrier here as long as we
3937 		 * ensure the ordering of writing to the SPQ element
3938 		 * and updating of the SPQ producer which involves a memory
3939 		 * read. If the memory read is removed we will have to put a
3940 		 * full memory barrier there (inside bnx2x_sp_post()).
3941 		 */
3942 
3943 		/* Send a ramrod */
3944 		rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3945 				   U64_HI(raw->rdata_mapping),
3946 				   U64_LO(raw->rdata_mapping),
3947 				   ETH_CONNECTION_TYPE);
3948 		if (rc)
3949 			return rc;
3950 
3951 		/* Ramrod completion is pending */
3952 		return 1;
3953 	}
3954 }
3955 
3956 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3957 {
3958 	return o->registry.exact_match.num_macs_set;
3959 }
3960 
3961 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3962 {
3963 	return o->registry.aprox_match.num_bins_set;
3964 }
3965 
3966 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3967 						int n)
3968 {
3969 	o->registry.exact_match.num_macs_set = n;
3970 }
3971 
3972 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3973 						int n)
3974 {
3975 	o->registry.aprox_match.num_bins_set = n;
3976 }
3977 
3978 int bnx2x_config_mcast(struct bnx2x *bp,
3979 		       struct bnx2x_mcast_ramrod_params *p,
3980 		       enum bnx2x_mcast_cmd cmd)
3981 {
3982 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3983 	struct bnx2x_raw_obj *r = &o->raw;
3984 	int rc = 0, old_reg_size;
3985 
3986 	/* This is needed to recover number of currently configured mcast macs
3987 	 * in case of failure.
3988 	 */
3989 	old_reg_size = o->get_registry_size(o);
3990 
3991 	/* Do some calculations and checks */
3992 	rc = o->validate(bp, p, cmd);
3993 	if (rc)
3994 		return rc;
3995 
3996 	/* Return if there is no work to do */
3997 	if ((!p->mcast_list_len) && (!o->check_sched(o)))
3998 		return 0;
3999 
4000 	DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
4001 	   o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4002 
4003 	/* Enqueue the current command to the pending list if we can't complete
4004 	 * it in the current iteration
4005 	 */
4006 	if (r->check_pending(r) ||
4007 	    ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4008 		rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
4009 		if (rc < 0)
4010 			goto error_exit1;
4011 
4012 		/* As long as the current command is in a command list we
4013 		 * don't need to handle it separately.
4014 		 */
4015 		p->mcast_list_len = 0;
4016 	}
4017 
4018 	if (!r->check_pending(r)) {
4019 
4020 		/* Set 'pending' state */
4021 		r->set_pending(r);
4022 
4023 		/* Configure the new classification in the chip */
4024 		rc = o->config_mcast(bp, p, cmd);
4025 		if (rc < 0)
4026 			goto error_exit2;
4027 
4028 		/* Wait for a ramrod completion if was requested */
4029 		if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4030 			rc = o->wait_comp(bp, o);
4031 	}
4032 
4033 	return rc;
4034 
4035 error_exit2:
4036 	r->clear_pending(r);
4037 
4038 error_exit1:
4039 	o->revert(bp, p, old_reg_size, cmd);
4040 
4041 	return rc;
4042 }
4043 
4044 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
4045 {
4046 	smp_mb__before_atomic();
4047 	clear_bit(o->sched_state, o->raw.pstate);
4048 	smp_mb__after_atomic();
4049 }
4050 
4051 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
4052 {
4053 	smp_mb__before_atomic();
4054 	set_bit(o->sched_state, o->raw.pstate);
4055 	smp_mb__after_atomic();
4056 }
4057 
4058 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
4059 {
4060 	return !!test_bit(o->sched_state, o->raw.pstate);
4061 }
4062 
4063 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
4064 {
4065 	return o->raw.check_pending(&o->raw) || o->check_sched(o);
4066 }
4067 
4068 void bnx2x_init_mcast_obj(struct bnx2x *bp,
4069 			  struct bnx2x_mcast_obj *mcast_obj,
4070 			  u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
4071 			  u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
4072 			  int state, unsigned long *pstate, bnx2x_obj_type type)
4073 {
4074 	memset(mcast_obj, 0, sizeof(*mcast_obj));
4075 
4076 	bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4077 			   rdata, rdata_mapping, state, pstate, type);
4078 
4079 	mcast_obj->engine_id = engine_id;
4080 
4081 	INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
4082 
4083 	mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
4084 	mcast_obj->check_sched = bnx2x_mcast_check_sched;
4085 	mcast_obj->set_sched = bnx2x_mcast_set_sched;
4086 	mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
4087 
4088 	if (CHIP_IS_E1(bp)) {
4089 		mcast_obj->config_mcast      = bnx2x_mcast_setup_e1;
4090 		mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
4091 		mcast_obj->hdl_restore       =
4092 			bnx2x_mcast_handle_restore_cmd_e1;
4093 		mcast_obj->check_pending     = bnx2x_mcast_check_pending;
4094 
4095 		if (CHIP_REV_IS_SLOW(bp))
4096 			mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
4097 		else
4098 			mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
4099 
4100 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
4101 		mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e1;
4102 		mcast_obj->validate          = bnx2x_mcast_validate_e1;
4103 		mcast_obj->revert            = bnx2x_mcast_revert_e1;
4104 		mcast_obj->get_registry_size =
4105 			bnx2x_mcast_get_registry_size_exact;
4106 		mcast_obj->set_registry_size =
4107 			bnx2x_mcast_set_registry_size_exact;
4108 
4109 		/* 57710 is the only chip that uses the exact match for mcast
4110 		 * at the moment.
4111 		 */
4112 		INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
4113 
4114 	} else if (CHIP_IS_E1H(bp)) {
4115 		mcast_obj->config_mcast  = bnx2x_mcast_setup_e1h;
4116 		mcast_obj->enqueue_cmd   = NULL;
4117 		mcast_obj->hdl_restore   = NULL;
4118 		mcast_obj->check_pending = bnx2x_mcast_check_pending;
4119 
4120 		/* 57711 doesn't send a ramrod, so it has unlimited credit
4121 		 * for one command.
4122 		 */
4123 		mcast_obj->max_cmd_len       = -1;
4124 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
4125 		mcast_obj->set_one_rule      = NULL;
4126 		mcast_obj->validate          = bnx2x_mcast_validate_e1h;
4127 		mcast_obj->revert            = bnx2x_mcast_revert_e1h;
4128 		mcast_obj->get_registry_size =
4129 			bnx2x_mcast_get_registry_size_aprox;
4130 		mcast_obj->set_registry_size =
4131 			bnx2x_mcast_set_registry_size_aprox;
4132 	} else {
4133 		mcast_obj->config_mcast      = bnx2x_mcast_setup_e2;
4134 		mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
4135 		mcast_obj->hdl_restore       =
4136 			bnx2x_mcast_handle_restore_cmd_e2;
4137 		mcast_obj->check_pending     = bnx2x_mcast_check_pending;
4138 		/* TODO: There should be a proper HSI define for this number!!!
4139 		 */
4140 		mcast_obj->max_cmd_len       = 16;
4141 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
4142 		mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e2;
4143 		mcast_obj->validate          = bnx2x_mcast_validate_e2;
4144 		mcast_obj->revert            = bnx2x_mcast_revert_e2;
4145 		mcast_obj->get_registry_size =
4146 			bnx2x_mcast_get_registry_size_aprox;
4147 		mcast_obj->set_registry_size =
4148 			bnx2x_mcast_set_registry_size_aprox;
4149 	}
4150 }
4151 
4152 /*************************** Credit handling **********************************/
4153 
4154 /**
4155  * __atomic_add_ifless - add if the result is less than a given value.
4156  *
4157  * @v:	pointer of type atomic_t
4158  * @a:	the amount to add to v...
4159  * @u:	...if (v + a) is less than u.
4160  *
4161  * returns true if (v + a) was less than u, and false otherwise.
4162  *
4163  */
4164 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
4165 {
4166 	int c, old;
4167 
4168 	c = atomic_read(v);
4169 	for (;;) {
4170 		if (unlikely(c + a >= u))
4171 			return false;
4172 
4173 		old = atomic_cmpxchg((v), c, c + a);
4174 		if (likely(old == c))
4175 			break;
4176 		c = old;
4177 	}
4178 
4179 	return true;
4180 }
4181 
4182 /**
4183  * __atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4184  *
4185  * @v:	pointer of type atomic_t
4186  * @a:	the amount to dec from v...
4187  * @u:	...if (v - a) is more or equal than u.
4188  *
4189  * returns true if (v - a) was more or equal than u, and false
4190  * otherwise.
4191  */
4192 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
4193 {
4194 	int c, old;
4195 
4196 	c = atomic_read(v);
4197 	for (;;) {
4198 		if (unlikely(c - a < u))
4199 			return false;
4200 
4201 		old = atomic_cmpxchg((v), c, c - a);
4202 		if (likely(old == c))
4203 			break;
4204 		c = old;
4205 	}
4206 
4207 	return true;
4208 }
4209 
4210 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
4211 {
4212 	bool rc;
4213 
4214 	smp_mb();
4215 	rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4216 	smp_mb();
4217 
4218 	return rc;
4219 }
4220 
4221 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
4222 {
4223 	bool rc;
4224 
4225 	smp_mb();
4226 
4227 	/* Don't let to refill if credit + cnt > pool_sz */
4228 	rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4229 
4230 	smp_mb();
4231 
4232 	return rc;
4233 }
4234 
4235 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
4236 {
4237 	int cur_credit;
4238 
4239 	smp_mb();
4240 	cur_credit = atomic_read(&o->credit);
4241 
4242 	return cur_credit;
4243 }
4244 
4245 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
4246 					  int cnt)
4247 {
4248 	return true;
4249 }
4250 
4251 static bool bnx2x_credit_pool_get_entry(
4252 	struct bnx2x_credit_pool_obj *o,
4253 	int *offset)
4254 {
4255 	int idx, vec, i;
4256 
4257 	*offset = -1;
4258 
4259 	/* Find "internal cam-offset" then add to base for this object... */
4260 	for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
4261 
4262 		/* Skip the current vector if there are no free entries in it */
4263 		if (!o->pool_mirror[vec])
4264 			continue;
4265 
4266 		/* If we've got here we are going to find a free entry */
4267 		for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4268 		      i < BIT_VEC64_ELEM_SZ; idx++, i++)
4269 
4270 			if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4271 				/* Got one!! */
4272 				BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4273 				*offset = o->base_pool_offset + idx;
4274 				return true;
4275 			}
4276 	}
4277 
4278 	return false;
4279 }
4280 
4281 static bool bnx2x_credit_pool_put_entry(
4282 	struct bnx2x_credit_pool_obj *o,
4283 	int offset)
4284 {
4285 	if (offset < o->base_pool_offset)
4286 		return false;
4287 
4288 	offset -= o->base_pool_offset;
4289 
4290 	if (offset >= o->pool_sz)
4291 		return false;
4292 
4293 	/* Return the entry to the pool */
4294 	BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4295 
4296 	return true;
4297 }
4298 
4299 static bool bnx2x_credit_pool_put_entry_always_true(
4300 	struct bnx2x_credit_pool_obj *o,
4301 	int offset)
4302 {
4303 	return true;
4304 }
4305 
4306 static bool bnx2x_credit_pool_get_entry_always_true(
4307 	struct bnx2x_credit_pool_obj *o,
4308 	int *offset)
4309 {
4310 	*offset = -1;
4311 	return true;
4312 }
4313 /**
4314  * bnx2x_init_credit_pool - initialize credit pool internals.
4315  *
4316  * @p:		credit pool
4317  * @base:	Base entry in the CAM to use.
4318  * @credit:	pool size.
4319  *
4320  * If base is negative no CAM entries handling will be performed.
4321  * If credit is negative pool operations will always succeed (unlimited pool).
4322  *
4323  */
4324 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
4325 			    int base, int credit)
4326 {
4327 	/* Zero the object first */
4328 	memset(p, 0, sizeof(*p));
4329 
4330 	/* Set the table to all 1s */
4331 	memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4332 
4333 	/* Init a pool as full */
4334 	atomic_set(&p->credit, credit);
4335 
4336 	/* The total poll size */
4337 	p->pool_sz = credit;
4338 
4339 	p->base_pool_offset = base;
4340 
4341 	/* Commit the change */
4342 	smp_mb();
4343 
4344 	p->check = bnx2x_credit_pool_check;
4345 
4346 	/* if pool credit is negative - disable the checks */
4347 	if (credit >= 0) {
4348 		p->put      = bnx2x_credit_pool_put;
4349 		p->get      = bnx2x_credit_pool_get;
4350 		p->put_entry = bnx2x_credit_pool_put_entry;
4351 		p->get_entry = bnx2x_credit_pool_get_entry;
4352 	} else {
4353 		p->put      = bnx2x_credit_pool_always_true;
4354 		p->get      = bnx2x_credit_pool_always_true;
4355 		p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4356 		p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4357 	}
4358 
4359 	/* If base is negative - disable entries handling */
4360 	if (base < 0) {
4361 		p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4362 		p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4363 	}
4364 }
4365 
4366 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
4367 				struct bnx2x_credit_pool_obj *p, u8 func_id,
4368 				u8 func_num)
4369 {
4370 /* TODO: this will be defined in consts as well... */
4371 #define BNX2X_CAM_SIZE_EMUL 5
4372 
4373 	int cam_sz;
4374 
4375 	if (CHIP_IS_E1(bp)) {
4376 		/* In E1, Multicast is saved in cam... */
4377 		if (!CHIP_REV_IS_SLOW(bp))
4378 			cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
4379 		else
4380 			cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
4381 
4382 		bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4383 
4384 	} else if (CHIP_IS_E1H(bp)) {
4385 		/* CAM credit is equaly divided between all active functions
4386 		 * on the PORT!.
4387 		 */
4388 		if ((func_num > 0)) {
4389 			if (!CHIP_REV_IS_SLOW(bp))
4390 				cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4391 			else
4392 				cam_sz = BNX2X_CAM_SIZE_EMUL;
4393 			bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4394 		} else {
4395 			/* this should never happen! Block MAC operations. */
4396 			bnx2x_init_credit_pool(p, 0, 0);
4397 		}
4398 
4399 	} else {
4400 
4401 		/* CAM credit is equaly divided between all active functions
4402 		 * on the PATH.
4403 		 */
4404 		if (func_num > 0) {
4405 			if (!CHIP_REV_IS_SLOW(bp))
4406 				cam_sz = PF_MAC_CREDIT_E2(bp, func_num);
4407 			else
4408 				cam_sz = BNX2X_CAM_SIZE_EMUL;
4409 
4410 			/* No need for CAM entries handling for 57712 and
4411 			 * newer.
4412 			 */
4413 			bnx2x_init_credit_pool(p, -1, cam_sz);
4414 		} else {
4415 			/* this should never happen! Block MAC operations. */
4416 			bnx2x_init_credit_pool(p, 0, 0);
4417 		}
4418 	}
4419 }
4420 
4421 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4422 				 struct bnx2x_credit_pool_obj *p,
4423 				 u8 func_id,
4424 				 u8 func_num)
4425 {
4426 	if (CHIP_IS_E1x(bp)) {
4427 		/* There is no VLAN credit in HW on 57710 and 57711 only
4428 		 * MAC / MAC-VLAN can be set
4429 		 */
4430 		bnx2x_init_credit_pool(p, 0, -1);
4431 	} else {
4432 		/* CAM credit is equally divided between all active functions
4433 		 * on the PATH.
4434 		 */
4435 		if (func_num > 0) {
4436 			int credit = PF_VLAN_CREDIT_E2(bp, func_num);
4437 
4438 			bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit);
4439 		} else
4440 			/* this should never happen! Block VLAN operations. */
4441 			bnx2x_init_credit_pool(p, 0, 0);
4442 	}
4443 }
4444 
4445 /****************** RSS Configuration ******************/
4446 /**
4447  * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4448  *
4449  * @bp:		driver handle
4450  * @p:		pointer to rss configuration
4451  *
4452  * Prints it when NETIF_MSG_IFUP debug level is configured.
4453  */
4454 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4455 					struct bnx2x_config_rss_params *p)
4456 {
4457 	int i;
4458 
4459 	DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4460 	DP(BNX2X_MSG_SP, "0x0000: ");
4461 	for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4462 		DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4463 
4464 		/* Print 4 bytes in a line */
4465 		if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4466 		    (((i + 1) & 0x3) == 0)) {
4467 			DP_CONT(BNX2X_MSG_SP, "\n");
4468 			DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4469 		}
4470 	}
4471 
4472 	DP_CONT(BNX2X_MSG_SP, "\n");
4473 }
4474 
4475 /**
4476  * bnx2x_setup_rss - configure RSS
4477  *
4478  * @bp:		device handle
4479  * @p:		rss configuration
4480  *
4481  * sends on UPDATE ramrod for that matter.
4482  */
4483 static int bnx2x_setup_rss(struct bnx2x *bp,
4484 			   struct bnx2x_config_rss_params *p)
4485 {
4486 	struct bnx2x_rss_config_obj *o = p->rss_obj;
4487 	struct bnx2x_raw_obj *r = &o->raw;
4488 	struct eth_rss_update_ramrod_data *data =
4489 		(struct eth_rss_update_ramrod_data *)(r->rdata);
4490 	u16 caps = 0;
4491 	u8 rss_mode = 0;
4492 	int rc;
4493 
4494 	memset(data, 0, sizeof(*data));
4495 
4496 	DP(BNX2X_MSG_SP, "Configuring RSS\n");
4497 
4498 	/* Set an echo field */
4499 	data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4500 				 (r->state << BNX2X_SWCID_SHIFT));
4501 
4502 	/* RSS mode */
4503 	if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4504 		rss_mode = ETH_RSS_MODE_DISABLED;
4505 	else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4506 		rss_mode = ETH_RSS_MODE_REGULAR;
4507 
4508 	data->rss_mode = rss_mode;
4509 
4510 	DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4511 
4512 	/* RSS capabilities */
4513 	if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4514 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4515 
4516 	if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4517 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4518 
4519 	if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4520 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4521 
4522 	if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4523 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4524 
4525 	if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4526 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4527 
4528 	if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4529 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4530 
4531 	if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags))
4532 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4533 
4534 	if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags))
4535 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4536 
4537 	if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4538 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4539 
4540 	/* RSS keys */
4541 	if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4542 		u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key);
4543 		const u8 *src = (const u8 *)p->rss_key;
4544 		int i;
4545 
4546 		/* Apparently, bnx2x reads this array in reverse order
4547 		 * We need to byte swap rss_key to comply with Toeplitz specs.
4548 		 */
4549 		for (i = 0; i < sizeof(data->rss_key); i++)
4550 			*--dst = *src++;
4551 
4552 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4553 	}
4554 
4555 	data->capabilities = cpu_to_le16(caps);
4556 
4557 	/* Hashing mask */
4558 	data->rss_result_mask = p->rss_result_mask;
4559 
4560 	/* RSS engine ID */
4561 	data->rss_engine_id = o->engine_id;
4562 
4563 	DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4564 
4565 	/* Indirection table */
4566 	memcpy(data->indirection_table, p->ind_table,
4567 		  T_ETH_INDIRECTION_TABLE_SIZE);
4568 
4569 	/* Remember the last configuration */
4570 	memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4571 
4572 	/* Print the indirection table */
4573 	if (netif_msg_ifup(bp))
4574 		bnx2x_debug_print_ind_table(bp, p);
4575 
4576 	/* No need for an explicit memory barrier here as long as we
4577 	 * ensure the ordering of writing to the SPQ element
4578 	 * and updating of the SPQ producer which involves a memory
4579 	 * read. If the memory read is removed we will have to put a
4580 	 * full memory barrier there (inside bnx2x_sp_post()).
4581 	 */
4582 
4583 	/* Send a ramrod */
4584 	rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4585 			   U64_HI(r->rdata_mapping),
4586 			   U64_LO(r->rdata_mapping),
4587 			   ETH_CONNECTION_TYPE);
4588 
4589 	if (rc < 0)
4590 		return rc;
4591 
4592 	return 1;
4593 }
4594 
4595 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4596 			     u8 *ind_table)
4597 {
4598 	memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4599 }
4600 
4601 int bnx2x_config_rss(struct bnx2x *bp,
4602 		     struct bnx2x_config_rss_params *p)
4603 {
4604 	int rc;
4605 	struct bnx2x_rss_config_obj *o = p->rss_obj;
4606 	struct bnx2x_raw_obj *r = &o->raw;
4607 
4608 	/* Do nothing if only driver cleanup was requested */
4609 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4610 		DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n",
4611 		   p->ramrod_flags);
4612 		return 0;
4613 	}
4614 
4615 	r->set_pending(r);
4616 
4617 	rc = o->config_rss(bp, p);
4618 	if (rc < 0) {
4619 		r->clear_pending(r);
4620 		return rc;
4621 	}
4622 
4623 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4624 		rc = r->wait_comp(bp, r);
4625 
4626 	return rc;
4627 }
4628 
4629 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4630 			       struct bnx2x_rss_config_obj *rss_obj,
4631 			       u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4632 			       void *rdata, dma_addr_t rdata_mapping,
4633 			       int state, unsigned long *pstate,
4634 			       bnx2x_obj_type type)
4635 {
4636 	bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4637 			   rdata_mapping, state, pstate, type);
4638 
4639 	rss_obj->engine_id  = engine_id;
4640 	rss_obj->config_rss = bnx2x_setup_rss;
4641 }
4642 
4643 /********************** Queue state object ***********************************/
4644 
4645 /**
4646  * bnx2x_queue_state_change - perform Queue state change transition
4647  *
4648  * @bp:		device handle
4649  * @params:	parameters to perform the transition
4650  *
4651  * returns 0 in case of successfully completed transition, negative error
4652  * code in case of failure, positive (EBUSY) value if there is a completion
4653  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4654  * not set in params->ramrod_flags for asynchronous commands).
4655  *
4656  */
4657 int bnx2x_queue_state_change(struct bnx2x *bp,
4658 			     struct bnx2x_queue_state_params *params)
4659 {
4660 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4661 	int rc, pending_bit;
4662 	unsigned long *pending = &o->pending;
4663 
4664 	/* Check that the requested transition is legal */
4665 	rc = o->check_transition(bp, o, params);
4666 	if (rc) {
4667 		BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4668 		return -EINVAL;
4669 	}
4670 
4671 	/* Set "pending" bit */
4672 	DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4673 	pending_bit = o->set_pending(o, params);
4674 	DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4675 
4676 	/* Don't send a command if only driver cleanup was requested */
4677 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4678 		o->complete_cmd(bp, o, pending_bit);
4679 	else {
4680 		/* Send a ramrod */
4681 		rc = o->send_cmd(bp, params);
4682 		if (rc) {
4683 			o->next_state = BNX2X_Q_STATE_MAX;
4684 			clear_bit(pending_bit, pending);
4685 			smp_mb__after_atomic();
4686 			return rc;
4687 		}
4688 
4689 		if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4690 			rc = o->wait_comp(bp, o, pending_bit);
4691 			if (rc)
4692 				return rc;
4693 
4694 			return 0;
4695 		}
4696 	}
4697 
4698 	return !!test_bit(pending_bit, pending);
4699 }
4700 
4701 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4702 				   struct bnx2x_queue_state_params *params)
4703 {
4704 	enum bnx2x_queue_cmd cmd = params->cmd, bit;
4705 
4706 	/* ACTIVATE and DEACTIVATE commands are implemented on top of
4707 	 * UPDATE command.
4708 	 */
4709 	if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4710 	    (cmd == BNX2X_Q_CMD_DEACTIVATE))
4711 		bit = BNX2X_Q_CMD_UPDATE;
4712 	else
4713 		bit = cmd;
4714 
4715 	set_bit(bit, &obj->pending);
4716 	return bit;
4717 }
4718 
4719 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4720 				 struct bnx2x_queue_sp_obj *o,
4721 				 enum bnx2x_queue_cmd cmd)
4722 {
4723 	return bnx2x_state_wait(bp, cmd, &o->pending);
4724 }
4725 
4726 /**
4727  * bnx2x_queue_comp_cmd - complete the state change command.
4728  *
4729  * @bp:		device handle
4730  * @o:		queue info
4731  * @cmd:	command to exec
4732  *
4733  * Checks that the arrived completion is expected.
4734  */
4735 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4736 				struct bnx2x_queue_sp_obj *o,
4737 				enum bnx2x_queue_cmd cmd)
4738 {
4739 	unsigned long cur_pending = o->pending;
4740 
4741 	if (!test_and_clear_bit(cmd, &cur_pending)) {
4742 		BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4743 			  cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4744 			  o->state, cur_pending, o->next_state);
4745 		return -EINVAL;
4746 	}
4747 
4748 	if (o->next_tx_only >= o->max_cos)
4749 		/* >= because tx only must always be smaller than cos since the
4750 		 * primary connection supports COS 0
4751 		 */
4752 		BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4753 			   o->next_tx_only, o->max_cos);
4754 
4755 	DP(BNX2X_MSG_SP,
4756 	   "Completing command %d for queue %d, setting state to %d\n",
4757 	   cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4758 
4759 	if (o->next_tx_only)  /* print num tx-only if any exist */
4760 		DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4761 		   o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4762 
4763 	o->state = o->next_state;
4764 	o->num_tx_only = o->next_tx_only;
4765 	o->next_state = BNX2X_Q_STATE_MAX;
4766 
4767 	/* It's important that o->state and o->next_state are
4768 	 * updated before o->pending.
4769 	 */
4770 	wmb();
4771 
4772 	clear_bit(cmd, &o->pending);
4773 	smp_mb__after_atomic();
4774 
4775 	return 0;
4776 }
4777 
4778 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4779 				struct bnx2x_queue_state_params *cmd_params,
4780 				struct client_init_ramrod_data *data)
4781 {
4782 	struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4783 
4784 	/* Rx data */
4785 
4786 	/* IPv6 TPA supported for E2 and above only */
4787 	data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4788 				CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4789 }
4790 
4791 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4792 				struct bnx2x_queue_sp_obj *o,
4793 				struct bnx2x_general_setup_params *params,
4794 				struct client_init_general_data *gen_data,
4795 				unsigned long *flags)
4796 {
4797 	gen_data->client_id = o->cl_id;
4798 
4799 	if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4800 		gen_data->statistics_counter_id =
4801 					params->stat_id;
4802 		gen_data->statistics_en_flg = 1;
4803 		gen_data->statistics_zero_flg =
4804 			test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4805 	} else
4806 		gen_data->statistics_counter_id =
4807 					DISABLE_STATISTIC_COUNTER_ID_VALUE;
4808 
4809 	gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4810 	gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4811 	gen_data->sp_client_id = params->spcl_id;
4812 	gen_data->mtu = cpu_to_le16(params->mtu);
4813 	gen_data->func_id = o->func_id;
4814 
4815 	gen_data->cos = params->cos;
4816 
4817 	gen_data->traffic_type =
4818 		test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4819 		LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4820 
4821 	gen_data->fp_hsi_ver = params->fp_hsi;
4822 
4823 	DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4824 	   gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4825 }
4826 
4827 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4828 				struct bnx2x_txq_setup_params *params,
4829 				struct client_init_tx_data *tx_data,
4830 				unsigned long *flags)
4831 {
4832 	tx_data->enforce_security_flg =
4833 		test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4834 	tx_data->default_vlan =
4835 		cpu_to_le16(params->default_vlan);
4836 	tx_data->default_vlan_flg =
4837 		test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4838 	tx_data->tx_switching_flg =
4839 		test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4840 	tx_data->anti_spoofing_flg =
4841 		test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4842 	tx_data->force_default_pri_flg =
4843 		test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4844 	tx_data->refuse_outband_vlan_flg =
4845 		test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4846 	tx_data->tunnel_lso_inc_ip_id =
4847 		test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4848 	tx_data->tunnel_non_lso_pcsum_location =
4849 		test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4850 							    CSUM_ON_BD;
4851 
4852 	tx_data->tx_status_block_id = params->fw_sb_id;
4853 	tx_data->tx_sb_index_number = params->sb_cq_index;
4854 	tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4855 
4856 	tx_data->tx_bd_page_base.lo =
4857 		cpu_to_le32(U64_LO(params->dscr_map));
4858 	tx_data->tx_bd_page_base.hi =
4859 		cpu_to_le32(U64_HI(params->dscr_map));
4860 
4861 	/* Don't configure any Tx switching mode during queue SETUP */
4862 	tx_data->state = 0;
4863 }
4864 
4865 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4866 				struct rxq_pause_params *params,
4867 				struct client_init_rx_data *rx_data)
4868 {
4869 	/* flow control data */
4870 	rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4871 	rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4872 	rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4873 	rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4874 	rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4875 	rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4876 	rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4877 }
4878 
4879 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4880 				struct bnx2x_rxq_setup_params *params,
4881 				struct client_init_rx_data *rx_data,
4882 				unsigned long *flags)
4883 {
4884 	rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4885 				CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4886 	rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4887 				CLIENT_INIT_RX_DATA_TPA_MODE;
4888 	rx_data->vmqueue_mode_en_flg = 0;
4889 
4890 	rx_data->cache_line_alignment_log_size =
4891 		params->cache_line_log;
4892 	rx_data->enable_dynamic_hc =
4893 		test_bit(BNX2X_Q_FLG_DHC, flags);
4894 	rx_data->max_sges_for_packet = params->max_sges_pkt;
4895 	rx_data->client_qzone_id = params->cl_qzone_id;
4896 	rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4897 
4898 	/* Always start in DROP_ALL mode */
4899 	rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4900 				     CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4901 
4902 	/* We don't set drop flags */
4903 	rx_data->drop_ip_cs_err_flg = 0;
4904 	rx_data->drop_tcp_cs_err_flg = 0;
4905 	rx_data->drop_ttl0_flg = 0;
4906 	rx_data->drop_udp_cs_err_flg = 0;
4907 	rx_data->inner_vlan_removal_enable_flg =
4908 		test_bit(BNX2X_Q_FLG_VLAN, flags);
4909 	rx_data->outer_vlan_removal_enable_flg =
4910 		test_bit(BNX2X_Q_FLG_OV, flags);
4911 	rx_data->status_block_id = params->fw_sb_id;
4912 	rx_data->rx_sb_index_number = params->sb_cq_index;
4913 	rx_data->max_tpa_queues = params->max_tpa_queues;
4914 	rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4915 	rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4916 	rx_data->bd_page_base.lo =
4917 		cpu_to_le32(U64_LO(params->dscr_map));
4918 	rx_data->bd_page_base.hi =
4919 		cpu_to_le32(U64_HI(params->dscr_map));
4920 	rx_data->sge_page_base.lo =
4921 		cpu_to_le32(U64_LO(params->sge_map));
4922 	rx_data->sge_page_base.hi =
4923 		cpu_to_le32(U64_HI(params->sge_map));
4924 	rx_data->cqe_page_base.lo =
4925 		cpu_to_le32(U64_LO(params->rcq_map));
4926 	rx_data->cqe_page_base.hi =
4927 		cpu_to_le32(U64_HI(params->rcq_map));
4928 	rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4929 
4930 	if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4931 		rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4932 		rx_data->is_approx_mcast = 1;
4933 	}
4934 
4935 	rx_data->rss_engine_id = params->rss_engine_id;
4936 
4937 	/* silent vlan removal */
4938 	rx_data->silent_vlan_removal_flg =
4939 		test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4940 	rx_data->silent_vlan_value =
4941 		cpu_to_le16(params->silent_removal_value);
4942 	rx_data->silent_vlan_mask =
4943 		cpu_to_le16(params->silent_removal_mask);
4944 }
4945 
4946 /* initialize the general, tx and rx parts of a queue object */
4947 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4948 				struct bnx2x_queue_state_params *cmd_params,
4949 				struct client_init_ramrod_data *data)
4950 {
4951 	bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4952 				       &cmd_params->params.setup.gen_params,
4953 				       &data->general,
4954 				       &cmd_params->params.setup.flags);
4955 
4956 	bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4957 				  &cmd_params->params.setup.txq_params,
4958 				  &data->tx,
4959 				  &cmd_params->params.setup.flags);
4960 
4961 	bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4962 				  &cmd_params->params.setup.rxq_params,
4963 				  &data->rx,
4964 				  &cmd_params->params.setup.flags);
4965 
4966 	bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4967 				     &cmd_params->params.setup.pause_params,
4968 				     &data->rx);
4969 }
4970 
4971 /* initialize the general and tx parts of a tx-only queue object */
4972 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4973 				struct bnx2x_queue_state_params *cmd_params,
4974 				struct tx_queue_init_ramrod_data *data)
4975 {
4976 	bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4977 				       &cmd_params->params.tx_only.gen_params,
4978 				       &data->general,
4979 				       &cmd_params->params.tx_only.flags);
4980 
4981 	bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4982 				  &cmd_params->params.tx_only.txq_params,
4983 				  &data->tx,
4984 				  &cmd_params->params.tx_only.flags);
4985 
4986 	DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4987 			 cmd_params->q_obj->cids[0],
4988 			 data->tx.tx_bd_page_base.lo,
4989 			 data->tx.tx_bd_page_base.hi);
4990 }
4991 
4992 /**
4993  * bnx2x_q_init - init HW/FW queue
4994  *
4995  * @bp:		device handle
4996  * @params:
4997  *
4998  * HW/FW initial Queue configuration:
4999  *      - HC: Rx and Tx
5000  *      - CDU context validation
5001  *
5002  */
5003 static inline int bnx2x_q_init(struct bnx2x *bp,
5004 			       struct bnx2x_queue_state_params *params)
5005 {
5006 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5007 	struct bnx2x_queue_init_params *init = &params->params.init;
5008 	u16 hc_usec;
5009 	u8 cos;
5010 
5011 	/* Tx HC configuration */
5012 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
5013 	    test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
5014 		hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5015 
5016 		bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
5017 			init->tx.sb_cq_index,
5018 			!test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
5019 			hc_usec);
5020 	}
5021 
5022 	/* Rx HC configuration */
5023 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
5024 	    test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
5025 		hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5026 
5027 		bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
5028 			init->rx.sb_cq_index,
5029 			!test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
5030 			hc_usec);
5031 	}
5032 
5033 	/* Set CDU context validation values */
5034 	for (cos = 0; cos < o->max_cos; cos++) {
5035 		DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
5036 				 o->cids[cos], cos);
5037 		DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
5038 		bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
5039 	}
5040 
5041 	/* As no ramrod is sent, complete the command immediately  */
5042 	o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
5043 
5044 	smp_mb();
5045 
5046 	return 0;
5047 }
5048 
5049 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
5050 					struct bnx2x_queue_state_params *params)
5051 {
5052 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5053 	struct client_init_ramrod_data *rdata =
5054 		(struct client_init_ramrod_data *)o->rdata;
5055 	dma_addr_t data_mapping = o->rdata_mapping;
5056 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5057 
5058 	/* Clear the ramrod data */
5059 	memset(rdata, 0, sizeof(*rdata));
5060 
5061 	/* Fill the ramrod data */
5062 	bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5063 
5064 	/* No need for an explicit memory barrier here as long as we
5065 	 * ensure the ordering of writing to the SPQ element
5066 	 * and updating of the SPQ producer which involves a memory
5067 	 * read. If the memory read is removed we will have to put a
5068 	 * full memory barrier there (inside bnx2x_sp_post()).
5069 	 */
5070 	return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5071 			     U64_HI(data_mapping),
5072 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5073 }
5074 
5075 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
5076 					struct bnx2x_queue_state_params *params)
5077 {
5078 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5079 	struct client_init_ramrod_data *rdata =
5080 		(struct client_init_ramrod_data *)o->rdata;
5081 	dma_addr_t data_mapping = o->rdata_mapping;
5082 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5083 
5084 	/* Clear the ramrod data */
5085 	memset(rdata, 0, sizeof(*rdata));
5086 
5087 	/* Fill the ramrod data */
5088 	bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5089 	bnx2x_q_fill_setup_data_e2(bp, params, rdata);
5090 
5091 	/* No need for an explicit memory barrier here as long as we
5092 	 * ensure the ordering of writing to the SPQ element
5093 	 * and updating of the SPQ producer which involves a memory
5094 	 * read. If the memory read is removed we will have to put a
5095 	 * full memory barrier there (inside bnx2x_sp_post()).
5096 	 */
5097 	return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5098 			     U64_HI(data_mapping),
5099 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5100 }
5101 
5102 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
5103 				  struct bnx2x_queue_state_params *params)
5104 {
5105 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5106 	struct tx_queue_init_ramrod_data *rdata =
5107 		(struct tx_queue_init_ramrod_data *)o->rdata;
5108 	dma_addr_t data_mapping = o->rdata_mapping;
5109 	int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5110 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
5111 		&params->params.tx_only;
5112 	u8 cid_index = tx_only_params->cid_index;
5113 
5114 	if (cid_index >= o->max_cos) {
5115 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5116 			  o->cl_id, cid_index);
5117 		return -EINVAL;
5118 	}
5119 
5120 	DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
5121 			 tx_only_params->gen_params.cos,
5122 			 tx_only_params->gen_params.spcl_id);
5123 
5124 	/* Clear the ramrod data */
5125 	memset(rdata, 0, sizeof(*rdata));
5126 
5127 	/* Fill the ramrod data */
5128 	bnx2x_q_fill_setup_tx_only(bp, params, rdata);
5129 
5130 	DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5131 			 o->cids[cid_index], rdata->general.client_id,
5132 			 rdata->general.sp_client_id, rdata->general.cos);
5133 
5134 	/* No need for an explicit memory barrier here as long as we
5135 	 * ensure the ordering of writing to the SPQ element
5136 	 * and updating of the SPQ producer which involves a memory
5137 	 * read. If the memory read is removed we will have to put a
5138 	 * full memory barrier there (inside bnx2x_sp_post()).
5139 	 */
5140 	return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
5141 			     U64_HI(data_mapping),
5142 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5143 }
5144 
5145 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
5146 				     struct bnx2x_queue_sp_obj *obj,
5147 				     struct bnx2x_queue_update_params *params,
5148 				     struct client_update_ramrod_data *data)
5149 {
5150 	/* Client ID of the client to update */
5151 	data->client_id = obj->cl_id;
5152 
5153 	/* Function ID of the client to update */
5154 	data->func_id = obj->func_id;
5155 
5156 	/* Default VLAN value */
5157 	data->default_vlan = cpu_to_le16(params->def_vlan);
5158 
5159 	/* Inner VLAN stripping */
5160 	data->inner_vlan_removal_enable_flg =
5161 		test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
5162 	data->inner_vlan_removal_change_flg =
5163 		test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
5164 			 &params->update_flags);
5165 
5166 	/* Outer VLAN stripping */
5167 	data->outer_vlan_removal_enable_flg =
5168 		test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
5169 	data->outer_vlan_removal_change_flg =
5170 		test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
5171 			 &params->update_flags);
5172 
5173 	/* Drop packets that have source MAC that doesn't belong to this
5174 	 * Queue.
5175 	 */
5176 	data->anti_spoofing_enable_flg =
5177 		test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
5178 	data->anti_spoofing_change_flg =
5179 		test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
5180 
5181 	/* Activate/Deactivate */
5182 	data->activate_flg =
5183 		test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
5184 	data->activate_change_flg =
5185 		test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
5186 
5187 	/* Enable default VLAN */
5188 	data->default_vlan_enable_flg =
5189 		test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
5190 	data->default_vlan_change_flg =
5191 		test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
5192 			 &params->update_flags);
5193 
5194 	/* silent vlan removal */
5195 	data->silent_vlan_change_flg =
5196 		test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5197 			 &params->update_flags);
5198 	data->silent_vlan_removal_flg =
5199 		test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
5200 	data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
5201 	data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
5202 
5203 	/* tx switching */
5204 	data->tx_switching_flg =
5205 		test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &params->update_flags);
5206 	data->tx_switching_change_flg =
5207 		test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
5208 			 &params->update_flags);
5209 
5210 	/* PTP */
5211 	data->handle_ptp_pkts_flg =
5212 		test_bit(BNX2X_Q_UPDATE_PTP_PKTS, &params->update_flags);
5213 	data->handle_ptp_pkts_change_flg =
5214 		test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, &params->update_flags);
5215 }
5216 
5217 static inline int bnx2x_q_send_update(struct bnx2x *bp,
5218 				      struct bnx2x_queue_state_params *params)
5219 {
5220 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5221 	struct client_update_ramrod_data *rdata =
5222 		(struct client_update_ramrod_data *)o->rdata;
5223 	dma_addr_t data_mapping = o->rdata_mapping;
5224 	struct bnx2x_queue_update_params *update_params =
5225 		&params->params.update;
5226 	u8 cid_index = update_params->cid_index;
5227 
5228 	if (cid_index >= o->max_cos) {
5229 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5230 			  o->cl_id, cid_index);
5231 		return -EINVAL;
5232 	}
5233 
5234 	/* Clear the ramrod data */
5235 	memset(rdata, 0, sizeof(*rdata));
5236 
5237 	/* Fill the ramrod data */
5238 	bnx2x_q_fill_update_data(bp, o, update_params, rdata);
5239 
5240 	/* No need for an explicit memory barrier here as long as we
5241 	 * ensure the ordering of writing to the SPQ element
5242 	 * and updating of the SPQ producer which involves a memory
5243 	 * read. If the memory read is removed we will have to put a
5244 	 * full memory barrier there (inside bnx2x_sp_post()).
5245 	 */
5246 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5247 			     o->cids[cid_index], U64_HI(data_mapping),
5248 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5249 }
5250 
5251 /**
5252  * bnx2x_q_send_deactivate - send DEACTIVATE command
5253  *
5254  * @bp:		device handle
5255  * @params:
5256  *
5257  * implemented using the UPDATE command.
5258  */
5259 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
5260 					struct bnx2x_queue_state_params *params)
5261 {
5262 	struct bnx2x_queue_update_params *update = &params->params.update;
5263 
5264 	memset(update, 0, sizeof(*update));
5265 
5266 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5267 
5268 	return bnx2x_q_send_update(bp, params);
5269 }
5270 
5271 /**
5272  * bnx2x_q_send_activate - send ACTIVATE command
5273  *
5274  * @bp:		device handle
5275  * @params:
5276  *
5277  * implemented using the UPDATE command.
5278  */
5279 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
5280 					struct bnx2x_queue_state_params *params)
5281 {
5282 	struct bnx2x_queue_update_params *update = &params->params.update;
5283 
5284 	memset(update, 0, sizeof(*update));
5285 
5286 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
5287 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5288 
5289 	return bnx2x_q_send_update(bp, params);
5290 }
5291 
5292 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp,
5293 				struct bnx2x_queue_sp_obj *obj,
5294 				struct bnx2x_queue_update_tpa_params *params,
5295 				struct tpa_update_ramrod_data *data)
5296 {
5297 	data->client_id = obj->cl_id;
5298 	data->complete_on_both_clients = params->complete_on_both_clients;
5299 	data->dont_verify_rings_pause_thr_flg =
5300 		params->dont_verify_thr;
5301 	data->max_agg_size = cpu_to_le16(params->max_agg_sz);
5302 	data->max_sges_for_packet = params->max_sges_pkt;
5303 	data->max_tpa_queues = params->max_tpa_queues;
5304 	data->sge_buff_size = cpu_to_le16(params->sge_buff_sz);
5305 	data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map));
5306 	data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map));
5307 	data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high);
5308 	data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low);
5309 	data->tpa_mode = params->tpa_mode;
5310 	data->update_ipv4 = params->update_ipv4;
5311 	data->update_ipv6 = params->update_ipv6;
5312 }
5313 
5314 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
5315 					struct bnx2x_queue_state_params *params)
5316 {
5317 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5318 	struct tpa_update_ramrod_data *rdata =
5319 		(struct tpa_update_ramrod_data *)o->rdata;
5320 	dma_addr_t data_mapping = o->rdata_mapping;
5321 	struct bnx2x_queue_update_tpa_params *update_tpa_params =
5322 		&params->params.update_tpa;
5323 	u16 type;
5324 
5325 	/* Clear the ramrod data */
5326 	memset(rdata, 0, sizeof(*rdata));
5327 
5328 	/* Fill the ramrod data */
5329 	bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata);
5330 
5331 	/* Add the function id inside the type, so that sp post function
5332 	 * doesn't automatically add the PF func-id, this is required
5333 	 * for operations done by PFs on behalf of their VFs
5334 	 */
5335 	type = ETH_CONNECTION_TYPE |
5336 		((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5337 
5338 	/* No need for an explicit memory barrier here as long as we
5339 	 * ensure the ordering of writing to the SPQ element
5340 	 * and updating of the SPQ producer which involves a memory
5341 	 * read. If the memory read is removed we will have to put a
5342 	 * full memory barrier there (inside bnx2x_sp_post()).
5343 	 */
5344 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5345 			     o->cids[BNX2X_PRIMARY_CID_INDEX],
5346 			     U64_HI(data_mapping),
5347 			     U64_LO(data_mapping), type);
5348 }
5349 
5350 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
5351 				    struct bnx2x_queue_state_params *params)
5352 {
5353 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5354 
5355 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
5356 			     o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
5357 			     ETH_CONNECTION_TYPE);
5358 }
5359 
5360 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
5361 				       struct bnx2x_queue_state_params *params)
5362 {
5363 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5364 	u8 cid_idx = params->params.cfc_del.cid_index;
5365 
5366 	if (cid_idx >= o->max_cos) {
5367 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5368 			  o->cl_id, cid_idx);
5369 		return -EINVAL;
5370 	}
5371 
5372 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
5373 			     o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
5374 }
5375 
5376 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
5377 					struct bnx2x_queue_state_params *params)
5378 {
5379 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5380 	u8 cid_index = params->params.terminate.cid_index;
5381 
5382 	if (cid_index >= o->max_cos) {
5383 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5384 			  o->cl_id, cid_index);
5385 		return -EINVAL;
5386 	}
5387 
5388 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
5389 			     o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
5390 }
5391 
5392 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
5393 				     struct bnx2x_queue_state_params *params)
5394 {
5395 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5396 
5397 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
5398 			     o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
5399 			     ETH_CONNECTION_TYPE);
5400 }
5401 
5402 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
5403 					struct bnx2x_queue_state_params *params)
5404 {
5405 	switch (params->cmd) {
5406 	case BNX2X_Q_CMD_INIT:
5407 		return bnx2x_q_init(bp, params);
5408 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
5409 		return bnx2x_q_send_setup_tx_only(bp, params);
5410 	case BNX2X_Q_CMD_DEACTIVATE:
5411 		return bnx2x_q_send_deactivate(bp, params);
5412 	case BNX2X_Q_CMD_ACTIVATE:
5413 		return bnx2x_q_send_activate(bp, params);
5414 	case BNX2X_Q_CMD_UPDATE:
5415 		return bnx2x_q_send_update(bp, params);
5416 	case BNX2X_Q_CMD_UPDATE_TPA:
5417 		return bnx2x_q_send_update_tpa(bp, params);
5418 	case BNX2X_Q_CMD_HALT:
5419 		return bnx2x_q_send_halt(bp, params);
5420 	case BNX2X_Q_CMD_CFC_DEL:
5421 		return bnx2x_q_send_cfc_del(bp, params);
5422 	case BNX2X_Q_CMD_TERMINATE:
5423 		return bnx2x_q_send_terminate(bp, params);
5424 	case BNX2X_Q_CMD_EMPTY:
5425 		return bnx2x_q_send_empty(bp, params);
5426 	default:
5427 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5428 		return -EINVAL;
5429 	}
5430 }
5431 
5432 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
5433 				    struct bnx2x_queue_state_params *params)
5434 {
5435 	switch (params->cmd) {
5436 	case BNX2X_Q_CMD_SETUP:
5437 		return bnx2x_q_send_setup_e1x(bp, params);
5438 	case BNX2X_Q_CMD_INIT:
5439 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
5440 	case BNX2X_Q_CMD_DEACTIVATE:
5441 	case BNX2X_Q_CMD_ACTIVATE:
5442 	case BNX2X_Q_CMD_UPDATE:
5443 	case BNX2X_Q_CMD_UPDATE_TPA:
5444 	case BNX2X_Q_CMD_HALT:
5445 	case BNX2X_Q_CMD_CFC_DEL:
5446 	case BNX2X_Q_CMD_TERMINATE:
5447 	case BNX2X_Q_CMD_EMPTY:
5448 		return bnx2x_queue_send_cmd_cmn(bp, params);
5449 	default:
5450 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5451 		return -EINVAL;
5452 	}
5453 }
5454 
5455 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
5456 				   struct bnx2x_queue_state_params *params)
5457 {
5458 	switch (params->cmd) {
5459 	case BNX2X_Q_CMD_SETUP:
5460 		return bnx2x_q_send_setup_e2(bp, params);
5461 	case BNX2X_Q_CMD_INIT:
5462 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
5463 	case BNX2X_Q_CMD_DEACTIVATE:
5464 	case BNX2X_Q_CMD_ACTIVATE:
5465 	case BNX2X_Q_CMD_UPDATE:
5466 	case BNX2X_Q_CMD_UPDATE_TPA:
5467 	case BNX2X_Q_CMD_HALT:
5468 	case BNX2X_Q_CMD_CFC_DEL:
5469 	case BNX2X_Q_CMD_TERMINATE:
5470 	case BNX2X_Q_CMD_EMPTY:
5471 		return bnx2x_queue_send_cmd_cmn(bp, params);
5472 	default:
5473 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5474 		return -EINVAL;
5475 	}
5476 }
5477 
5478 /**
5479  * bnx2x_queue_chk_transition - check state machine of a regular Queue
5480  *
5481  * @bp:		device handle
5482  * @o:		queue info
5483  * @params:	queue state
5484  *
5485  * (not Forwarding)
5486  * It both checks if the requested command is legal in a current
5487  * state and, if it's legal, sets a `next_state' in the object
5488  * that will be used in the completion flow to set the `state'
5489  * of the object.
5490  *
5491  * returns 0 if a requested command is a legal transition,
5492  *         -EINVAL otherwise.
5493  */
5494 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5495 				      struct bnx2x_queue_sp_obj *o,
5496 				      struct bnx2x_queue_state_params *params)
5497 {
5498 	enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5499 	enum bnx2x_queue_cmd cmd = params->cmd;
5500 	struct bnx2x_queue_update_params *update_params =
5501 		 &params->params.update;
5502 	u8 next_tx_only = o->num_tx_only;
5503 
5504 	/* Forget all pending for completion commands if a driver only state
5505 	 * transition has been requested.
5506 	 */
5507 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5508 		o->pending = 0;
5509 		o->next_state = BNX2X_Q_STATE_MAX;
5510 	}
5511 
5512 	/* Don't allow a next state transition if we are in the middle of
5513 	 * the previous one.
5514 	 */
5515 	if (o->pending) {
5516 		BNX2X_ERR("Blocking transition since pending was %lx\n",
5517 			  o->pending);
5518 		return -EBUSY;
5519 	}
5520 
5521 	switch (state) {
5522 	case BNX2X_Q_STATE_RESET:
5523 		if (cmd == BNX2X_Q_CMD_INIT)
5524 			next_state = BNX2X_Q_STATE_INITIALIZED;
5525 
5526 		break;
5527 	case BNX2X_Q_STATE_INITIALIZED:
5528 		if (cmd == BNX2X_Q_CMD_SETUP) {
5529 			if (test_bit(BNX2X_Q_FLG_ACTIVE,
5530 				     &params->params.setup.flags))
5531 				next_state = BNX2X_Q_STATE_ACTIVE;
5532 			else
5533 				next_state = BNX2X_Q_STATE_INACTIVE;
5534 		}
5535 
5536 		break;
5537 	case BNX2X_Q_STATE_ACTIVE:
5538 		if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5539 			next_state = BNX2X_Q_STATE_INACTIVE;
5540 
5541 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5542 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5543 			next_state = BNX2X_Q_STATE_ACTIVE;
5544 
5545 		else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5546 			next_state = BNX2X_Q_STATE_MULTI_COS;
5547 			next_tx_only = 1;
5548 		}
5549 
5550 		else if (cmd == BNX2X_Q_CMD_HALT)
5551 			next_state = BNX2X_Q_STATE_STOPPED;
5552 
5553 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5554 			/* If "active" state change is requested, update the
5555 			 *  state accordingly.
5556 			 */
5557 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5558 				     &update_params->update_flags) &&
5559 			    !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5560 				      &update_params->update_flags))
5561 				next_state = BNX2X_Q_STATE_INACTIVE;
5562 			else
5563 				next_state = BNX2X_Q_STATE_ACTIVE;
5564 		}
5565 
5566 		break;
5567 	case BNX2X_Q_STATE_MULTI_COS:
5568 		if (cmd == BNX2X_Q_CMD_TERMINATE)
5569 			next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5570 
5571 		else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5572 			next_state = BNX2X_Q_STATE_MULTI_COS;
5573 			next_tx_only = o->num_tx_only + 1;
5574 		}
5575 
5576 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5577 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5578 			next_state = BNX2X_Q_STATE_MULTI_COS;
5579 
5580 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5581 			/* If "active" state change is requested, update the
5582 			 *  state accordingly.
5583 			 */
5584 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5585 				     &update_params->update_flags) &&
5586 			    !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5587 				      &update_params->update_flags))
5588 				next_state = BNX2X_Q_STATE_INACTIVE;
5589 			else
5590 				next_state = BNX2X_Q_STATE_MULTI_COS;
5591 		}
5592 
5593 		break;
5594 	case BNX2X_Q_STATE_MCOS_TERMINATED:
5595 		if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5596 			next_tx_only = o->num_tx_only - 1;
5597 			if (next_tx_only == 0)
5598 				next_state = BNX2X_Q_STATE_ACTIVE;
5599 			else
5600 				next_state = BNX2X_Q_STATE_MULTI_COS;
5601 		}
5602 
5603 		break;
5604 	case BNX2X_Q_STATE_INACTIVE:
5605 		if (cmd == BNX2X_Q_CMD_ACTIVATE)
5606 			next_state = BNX2X_Q_STATE_ACTIVE;
5607 
5608 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5609 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5610 			next_state = BNX2X_Q_STATE_INACTIVE;
5611 
5612 		else if (cmd == BNX2X_Q_CMD_HALT)
5613 			next_state = BNX2X_Q_STATE_STOPPED;
5614 
5615 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5616 			/* If "active" state change is requested, update the
5617 			 * state accordingly.
5618 			 */
5619 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5620 				     &update_params->update_flags) &&
5621 			    test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5622 				     &update_params->update_flags)){
5623 				if (o->num_tx_only == 0)
5624 					next_state = BNX2X_Q_STATE_ACTIVE;
5625 				else /* tx only queues exist for this queue */
5626 					next_state = BNX2X_Q_STATE_MULTI_COS;
5627 			} else
5628 				next_state = BNX2X_Q_STATE_INACTIVE;
5629 		}
5630 
5631 		break;
5632 	case BNX2X_Q_STATE_STOPPED:
5633 		if (cmd == BNX2X_Q_CMD_TERMINATE)
5634 			next_state = BNX2X_Q_STATE_TERMINATED;
5635 
5636 		break;
5637 	case BNX2X_Q_STATE_TERMINATED:
5638 		if (cmd == BNX2X_Q_CMD_CFC_DEL)
5639 			next_state = BNX2X_Q_STATE_RESET;
5640 
5641 		break;
5642 	default:
5643 		BNX2X_ERR("Illegal state: %d\n", state);
5644 	}
5645 
5646 	/* Transition is assured */
5647 	if (next_state != BNX2X_Q_STATE_MAX) {
5648 		DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5649 				 state, cmd, next_state);
5650 		o->next_state = next_state;
5651 		o->next_tx_only = next_tx_only;
5652 		return 0;
5653 	}
5654 
5655 	DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5656 
5657 	return -EINVAL;
5658 }
5659 
5660 void bnx2x_init_queue_obj(struct bnx2x *bp,
5661 			  struct bnx2x_queue_sp_obj *obj,
5662 			  u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5663 			  void *rdata,
5664 			  dma_addr_t rdata_mapping, unsigned long type)
5665 {
5666 	memset(obj, 0, sizeof(*obj));
5667 
5668 	/* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5669 	BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5670 
5671 	memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5672 	obj->max_cos = cid_cnt;
5673 	obj->cl_id = cl_id;
5674 	obj->func_id = func_id;
5675 	obj->rdata = rdata;
5676 	obj->rdata_mapping = rdata_mapping;
5677 	obj->type = type;
5678 	obj->next_state = BNX2X_Q_STATE_MAX;
5679 
5680 	if (CHIP_IS_E1x(bp))
5681 		obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5682 	else
5683 		obj->send_cmd = bnx2x_queue_send_cmd_e2;
5684 
5685 	obj->check_transition = bnx2x_queue_chk_transition;
5686 
5687 	obj->complete_cmd = bnx2x_queue_comp_cmd;
5688 	obj->wait_comp = bnx2x_queue_wait_comp;
5689 	obj->set_pending = bnx2x_queue_set_pending;
5690 }
5691 
5692 /* return a queue object's logical state*/
5693 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5694 			       struct bnx2x_queue_sp_obj *obj)
5695 {
5696 	switch (obj->state) {
5697 	case BNX2X_Q_STATE_ACTIVE:
5698 	case BNX2X_Q_STATE_MULTI_COS:
5699 		return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5700 	case BNX2X_Q_STATE_RESET:
5701 	case BNX2X_Q_STATE_INITIALIZED:
5702 	case BNX2X_Q_STATE_MCOS_TERMINATED:
5703 	case BNX2X_Q_STATE_INACTIVE:
5704 	case BNX2X_Q_STATE_STOPPED:
5705 	case BNX2X_Q_STATE_TERMINATED:
5706 	case BNX2X_Q_STATE_FLRED:
5707 		return BNX2X_Q_LOGICAL_STATE_STOPPED;
5708 	default:
5709 		return -EINVAL;
5710 	}
5711 }
5712 
5713 /********************** Function state object *********************************/
5714 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5715 					   struct bnx2x_func_sp_obj *o)
5716 {
5717 	/* in the middle of transaction - return INVALID state */
5718 	if (o->pending)
5719 		return BNX2X_F_STATE_MAX;
5720 
5721 	/* unsure the order of reading of o->pending and o->state
5722 	 * o->pending should be read first
5723 	 */
5724 	rmb();
5725 
5726 	return o->state;
5727 }
5728 
5729 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5730 				struct bnx2x_func_sp_obj *o,
5731 				enum bnx2x_func_cmd cmd)
5732 {
5733 	return bnx2x_state_wait(bp, cmd, &o->pending);
5734 }
5735 
5736 /**
5737  * bnx2x_func_state_change_comp - complete the state machine transition
5738  *
5739  * @bp:		device handle
5740  * @o:		function info
5741  * @cmd:	more info
5742  *
5743  * Called on state change transition. Completes the state
5744  * machine transition only - no HW interaction.
5745  */
5746 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5747 					       struct bnx2x_func_sp_obj *o,
5748 					       enum bnx2x_func_cmd cmd)
5749 {
5750 	unsigned long cur_pending = o->pending;
5751 
5752 	if (!test_and_clear_bit(cmd, &cur_pending)) {
5753 		BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5754 			  cmd, BP_FUNC(bp), o->state,
5755 			  cur_pending, o->next_state);
5756 		return -EINVAL;
5757 	}
5758 
5759 	DP(BNX2X_MSG_SP,
5760 	   "Completing command %d for func %d, setting state to %d\n",
5761 	   cmd, BP_FUNC(bp), o->next_state);
5762 
5763 	o->state = o->next_state;
5764 	o->next_state = BNX2X_F_STATE_MAX;
5765 
5766 	/* It's important that o->state and o->next_state are
5767 	 * updated before o->pending.
5768 	 */
5769 	wmb();
5770 
5771 	clear_bit(cmd, &o->pending);
5772 	smp_mb__after_atomic();
5773 
5774 	return 0;
5775 }
5776 
5777 /**
5778  * bnx2x_func_comp_cmd - complete the state change command
5779  *
5780  * @bp:		device handle
5781  * @o:		function info
5782  * @cmd:	more info
5783  *
5784  * Checks that the arrived completion is expected.
5785  */
5786 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5787 			       struct bnx2x_func_sp_obj *o,
5788 			       enum bnx2x_func_cmd cmd)
5789 {
5790 	/* Complete the state machine part first, check if it's a
5791 	 * legal completion.
5792 	 */
5793 	int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5794 	return rc;
5795 }
5796 
5797 /**
5798  * bnx2x_func_chk_transition - perform function state machine transition
5799  *
5800  * @bp:		device handle
5801  * @o:		function info
5802  * @params:	state parameters
5803  *
5804  * It both checks if the requested command is legal in a current
5805  * state and, if it's legal, sets a `next_state' in the object
5806  * that will be used in the completion flow to set the `state'
5807  * of the object.
5808  *
5809  * returns 0 if a requested command is a legal transition,
5810  *         -EINVAL otherwise.
5811  */
5812 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5813 				     struct bnx2x_func_sp_obj *o,
5814 				     struct bnx2x_func_state_params *params)
5815 {
5816 	enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5817 	enum bnx2x_func_cmd cmd = params->cmd;
5818 
5819 	/* Forget all pending for completion commands if a driver only state
5820 	 * transition has been requested.
5821 	 */
5822 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5823 		o->pending = 0;
5824 		o->next_state = BNX2X_F_STATE_MAX;
5825 	}
5826 
5827 	/* Don't allow a next state transition if we are in the middle of
5828 	 * the previous one.
5829 	 */
5830 	if (o->pending)
5831 		return -EBUSY;
5832 
5833 	switch (state) {
5834 	case BNX2X_F_STATE_RESET:
5835 		if (cmd == BNX2X_F_CMD_HW_INIT)
5836 			next_state = BNX2X_F_STATE_INITIALIZED;
5837 
5838 		break;
5839 	case BNX2X_F_STATE_INITIALIZED:
5840 		if (cmd == BNX2X_F_CMD_START)
5841 			next_state = BNX2X_F_STATE_STARTED;
5842 
5843 		else if (cmd == BNX2X_F_CMD_HW_RESET)
5844 			next_state = BNX2X_F_STATE_RESET;
5845 
5846 		break;
5847 	case BNX2X_F_STATE_STARTED:
5848 		if (cmd == BNX2X_F_CMD_STOP)
5849 			next_state = BNX2X_F_STATE_INITIALIZED;
5850 		/* afex ramrods can be sent only in started mode, and only
5851 		 * if not pending for function_stop ramrod completion
5852 		 * for these events - next state remained STARTED.
5853 		 */
5854 		else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5855 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5856 			next_state = BNX2X_F_STATE_STARTED;
5857 
5858 		else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5859 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5860 			next_state = BNX2X_F_STATE_STARTED;
5861 
5862 		/* Switch_update ramrod can be sent in either started or
5863 		 * tx_stopped state, and it doesn't change the state.
5864 		 */
5865 		else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5866 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5867 			next_state = BNX2X_F_STATE_STARTED;
5868 
5869 		else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5870 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5871 			next_state = BNX2X_F_STATE_STARTED;
5872 
5873 		else if (cmd == BNX2X_F_CMD_TX_STOP)
5874 			next_state = BNX2X_F_STATE_TX_STOPPED;
5875 
5876 		break;
5877 	case BNX2X_F_STATE_TX_STOPPED:
5878 		if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5879 		    (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5880 			next_state = BNX2X_F_STATE_TX_STOPPED;
5881 
5882 		else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5883 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5884 			next_state = BNX2X_F_STATE_TX_STOPPED;
5885 
5886 		else if (cmd == BNX2X_F_CMD_TX_START)
5887 			next_state = BNX2X_F_STATE_STARTED;
5888 
5889 		break;
5890 	default:
5891 		BNX2X_ERR("Unknown state: %d\n", state);
5892 	}
5893 
5894 	/* Transition is assured */
5895 	if (next_state != BNX2X_F_STATE_MAX) {
5896 		DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5897 				 state, cmd, next_state);
5898 		o->next_state = next_state;
5899 		return 0;
5900 	}
5901 
5902 	DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5903 			 state, cmd);
5904 
5905 	return -EINVAL;
5906 }
5907 
5908 /**
5909  * bnx2x_func_init_func - performs HW init at function stage
5910  *
5911  * @bp:		device handle
5912  * @drv:
5913  *
5914  * Init HW when the current phase is
5915  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5916  * HW blocks.
5917  */
5918 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5919 				       const struct bnx2x_func_sp_drv_ops *drv)
5920 {
5921 	return drv->init_hw_func(bp);
5922 }
5923 
5924 /**
5925  * bnx2x_func_init_port - performs HW init at port stage
5926  *
5927  * @bp:		device handle
5928  * @drv:
5929  *
5930  * Init HW when the current phase is
5931  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5932  * FUNCTION-only HW blocks.
5933  *
5934  */
5935 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5936 				       const struct bnx2x_func_sp_drv_ops *drv)
5937 {
5938 	int rc = drv->init_hw_port(bp);
5939 	if (rc)
5940 		return rc;
5941 
5942 	return bnx2x_func_init_func(bp, drv);
5943 }
5944 
5945 /**
5946  * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5947  *
5948  * @bp:		device handle
5949  * @drv:
5950  *
5951  * Init HW when the current phase is
5952  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5953  * PORT-only and FUNCTION-only HW blocks.
5954  */
5955 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5956 					const struct bnx2x_func_sp_drv_ops *drv)
5957 {
5958 	int rc = drv->init_hw_cmn_chip(bp);
5959 	if (rc)
5960 		return rc;
5961 
5962 	return bnx2x_func_init_port(bp, drv);
5963 }
5964 
5965 /**
5966  * bnx2x_func_init_cmn - performs HW init at common stage
5967  *
5968  * @bp:		device handle
5969  * @drv:
5970  *
5971  * Init HW when the current phase is
5972  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5973  * PORT-only and FUNCTION-only HW blocks.
5974  */
5975 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5976 				      const struct bnx2x_func_sp_drv_ops *drv)
5977 {
5978 	int rc = drv->init_hw_cmn(bp);
5979 	if (rc)
5980 		return rc;
5981 
5982 	return bnx2x_func_init_port(bp, drv);
5983 }
5984 
5985 static int bnx2x_func_hw_init(struct bnx2x *bp,
5986 			      struct bnx2x_func_state_params *params)
5987 {
5988 	u32 load_code = params->params.hw_init.load_phase;
5989 	struct bnx2x_func_sp_obj *o = params->f_obj;
5990 	const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5991 	int rc = 0;
5992 
5993 	DP(BNX2X_MSG_SP, "function %d  load_code %x\n",
5994 			 BP_ABS_FUNC(bp), load_code);
5995 
5996 	/* Prepare buffers for unzipping the FW */
5997 	rc = drv->gunzip_init(bp);
5998 	if (rc)
5999 		return rc;
6000 
6001 	/* Prepare FW */
6002 	rc = drv->init_fw(bp);
6003 	if (rc) {
6004 		BNX2X_ERR("Error loading firmware\n");
6005 		goto init_err;
6006 	}
6007 
6008 	/* Handle the beginning of COMMON_XXX pases separately... */
6009 	switch (load_code) {
6010 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6011 		rc = bnx2x_func_init_cmn_chip(bp, drv);
6012 		if (rc)
6013 			goto init_err;
6014 
6015 		break;
6016 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6017 		rc = bnx2x_func_init_cmn(bp, drv);
6018 		if (rc)
6019 			goto init_err;
6020 
6021 		break;
6022 	case FW_MSG_CODE_DRV_LOAD_PORT:
6023 		rc = bnx2x_func_init_port(bp, drv);
6024 		if (rc)
6025 			goto init_err;
6026 
6027 		break;
6028 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6029 		rc = bnx2x_func_init_func(bp, drv);
6030 		if (rc)
6031 			goto init_err;
6032 
6033 		break;
6034 	default:
6035 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6036 		rc = -EINVAL;
6037 	}
6038 
6039 init_err:
6040 	drv->gunzip_end(bp);
6041 
6042 	/* In case of success, complete the command immediately: no ramrods
6043 	 * have been sent.
6044 	 */
6045 	if (!rc)
6046 		o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
6047 
6048 	return rc;
6049 }
6050 
6051 /**
6052  * bnx2x_func_reset_func - reset HW at function stage
6053  *
6054  * @bp:		device handle
6055  * @drv:
6056  *
6057  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6058  * FUNCTION-only HW blocks.
6059  */
6060 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
6061 					const struct bnx2x_func_sp_drv_ops *drv)
6062 {
6063 	drv->reset_hw_func(bp);
6064 }
6065 
6066 /**
6067  * bnx2x_func_reset_port - reset HW at port stage
6068  *
6069  * @bp:		device handle
6070  * @drv:
6071  *
6072  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6073  * FUNCTION-only and PORT-only HW blocks.
6074  *
6075  *                 !!!IMPORTANT!!!
6076  *
6077  * It's important to call reset_port before reset_func() as the last thing
6078  * reset_func does is pf_disable() thus disabling PGLUE_B, which
6079  * makes impossible any DMAE transactions.
6080  */
6081 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
6082 					const struct bnx2x_func_sp_drv_ops *drv)
6083 {
6084 	drv->reset_hw_port(bp);
6085 	bnx2x_func_reset_func(bp, drv);
6086 }
6087 
6088 /**
6089  * bnx2x_func_reset_cmn - reset HW at common stage
6090  *
6091  * @bp:		device handle
6092  * @drv:
6093  *
6094  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6095  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6096  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6097  */
6098 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
6099 					const struct bnx2x_func_sp_drv_ops *drv)
6100 {
6101 	bnx2x_func_reset_port(bp, drv);
6102 	drv->reset_hw_cmn(bp);
6103 }
6104 
6105 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
6106 				      struct bnx2x_func_state_params *params)
6107 {
6108 	u32 reset_phase = params->params.hw_reset.reset_phase;
6109 	struct bnx2x_func_sp_obj *o = params->f_obj;
6110 	const struct bnx2x_func_sp_drv_ops *drv = o->drv;
6111 
6112 	DP(BNX2X_MSG_SP, "function %d  reset_phase %x\n", BP_ABS_FUNC(bp),
6113 			 reset_phase);
6114 
6115 	switch (reset_phase) {
6116 	case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6117 		bnx2x_func_reset_cmn(bp, drv);
6118 		break;
6119 	case FW_MSG_CODE_DRV_UNLOAD_PORT:
6120 		bnx2x_func_reset_port(bp, drv);
6121 		break;
6122 	case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6123 		bnx2x_func_reset_func(bp, drv);
6124 		break;
6125 	default:
6126 		BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
6127 			   reset_phase);
6128 		break;
6129 	}
6130 
6131 	/* Complete the command immediately: no ramrods have been sent. */
6132 	o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
6133 
6134 	return 0;
6135 }
6136 
6137 static inline int bnx2x_func_send_start(struct bnx2x *bp,
6138 					struct bnx2x_func_state_params *params)
6139 {
6140 	struct bnx2x_func_sp_obj *o = params->f_obj;
6141 	struct function_start_data *rdata =
6142 		(struct function_start_data *)o->rdata;
6143 	dma_addr_t data_mapping = o->rdata_mapping;
6144 	struct bnx2x_func_start_params *start_params = &params->params.start;
6145 
6146 	memset(rdata, 0, sizeof(*rdata));
6147 
6148 	/* Fill the ramrod data with provided parameters */
6149 	rdata->function_mode	= (u8)start_params->mf_mode;
6150 	rdata->sd_vlan_tag	= cpu_to_le16(start_params->sd_vlan_tag);
6151 	rdata->path_id		= BP_PATH(bp);
6152 	rdata->network_cos_mode	= start_params->network_cos_mode;
6153 	rdata->dmae_cmd_id	= BNX2X_FW_DMAE_C;
6154 
6155 	rdata->vxlan_dst_port	= cpu_to_le16(start_params->vxlan_dst_port);
6156 	rdata->geneve_dst_port	= cpu_to_le16(start_params->geneve_dst_port);
6157 	rdata->inner_clss_l2gre	= start_params->inner_clss_l2gre;
6158 	rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6159 	rdata->inner_clss_vxlan	= start_params->inner_clss_vxlan;
6160 	rdata->inner_rss	= start_params->inner_rss;
6161 
6162 	rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6163 	if (start_params->class_fail_ethtype) {
6164 		rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6165 		rdata->sd_accept_mf_clss_fail_ethtype =
6166 			cpu_to_le16(start_params->class_fail_ethtype);
6167 	}
6168 
6169 	rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6170 	rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6171 	if (start_params->sd_vlan_eth_type)
6172 		rdata->sd_vlan_eth_type =
6173 			cpu_to_le16(start_params->sd_vlan_eth_type);
6174 	else
6175 		rdata->sd_vlan_eth_type =
6176 			cpu_to_le16(0x8100);
6177 
6178 	rdata->no_added_tags = start_params->no_added_tags;
6179 
6180 	rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6181 	if (rdata->c2s_pri_tt_valid) {
6182 		memcpy(rdata->c2s_pri_trans_table.val,
6183 		       start_params->c2s_pri,
6184 		       MAX_VLAN_PRIORITIES);
6185 		rdata->c2s_pri_default = start_params->c2s_pri_default;
6186 	}
6187 	/* No need for an explicit memory barrier here as long we would
6188 	 * need to ensure the ordering of writing to the SPQ element
6189 	 * and updating of the SPQ producer which involves a memory
6190 	 * read and we will have to put a full memory barrier there
6191 	 * (inside bnx2x_sp_post()).
6192 	 */
6193 
6194 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6195 			     U64_HI(data_mapping),
6196 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6197 }
6198 
6199 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
6200 					struct bnx2x_func_state_params *params)
6201 {
6202 	struct bnx2x_func_sp_obj *o = params->f_obj;
6203 	struct function_update_data *rdata =
6204 		(struct function_update_data *)o->rdata;
6205 	dma_addr_t data_mapping = o->rdata_mapping;
6206 	struct bnx2x_func_switch_update_params *switch_update_params =
6207 		&params->params.switch_update;
6208 
6209 	memset(rdata, 0, sizeof(*rdata));
6210 
6211 	/* Fill the ramrod data with provided parameters */
6212 	if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6213 		     &switch_update_params->changes)) {
6214 		rdata->tx_switch_suspend_change_flg = 1;
6215 		rdata->tx_switch_suspend =
6216 			test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
6217 				 &switch_update_params->changes);
6218 	}
6219 
6220 	if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
6221 		     &switch_update_params->changes)) {
6222 		rdata->sd_vlan_tag_change_flg = 1;
6223 		rdata->sd_vlan_tag =
6224 			cpu_to_le16(switch_update_params->vlan);
6225 	}
6226 
6227 	if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6228 		     &switch_update_params->changes)) {
6229 		rdata->sd_vlan_eth_type_change_flg = 1;
6230 		rdata->sd_vlan_eth_type =
6231 			cpu_to_le16(switch_update_params->vlan_eth_type);
6232 	}
6233 
6234 	if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6235 		     &switch_update_params->changes)) {
6236 		rdata->sd_vlan_force_pri_change_flg = 1;
6237 		if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6238 			     &switch_update_params->changes))
6239 			rdata->sd_vlan_force_pri_flg = 1;
6240 		rdata->sd_vlan_force_pri_flg =
6241 			switch_update_params->vlan_force_prio;
6242 	}
6243 
6244 	if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
6245 		     &switch_update_params->changes)) {
6246 		rdata->update_tunn_cfg_flg = 1;
6247 		if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6248 			     &switch_update_params->changes))
6249 			rdata->inner_clss_l2gre = 1;
6250 		if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6251 			     &switch_update_params->changes))
6252 			rdata->inner_clss_vxlan = 1;
6253 		if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6254 			     &switch_update_params->changes))
6255 			rdata->inner_clss_l2geneve = 1;
6256 		if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
6257 			     &switch_update_params->changes))
6258 			rdata->inner_rss = 1;
6259 		rdata->vxlan_dst_port =
6260 			cpu_to_le16(switch_update_params->vxlan_dst_port);
6261 		rdata->geneve_dst_port =
6262 			cpu_to_le16(switch_update_params->geneve_dst_port);
6263 	}
6264 
6265 	rdata->echo = SWITCH_UPDATE;
6266 
6267 	/* No need for an explicit memory barrier here as long as we
6268 	 * ensure the ordering of writing to the SPQ element
6269 	 * and updating of the SPQ producer which involves a memory
6270 	 * read. If the memory read is removed we will have to put a
6271 	 * full memory barrier there (inside bnx2x_sp_post()).
6272 	 */
6273 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6274 			     U64_HI(data_mapping),
6275 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6276 }
6277 
6278 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
6279 					 struct bnx2x_func_state_params *params)
6280 {
6281 	struct bnx2x_func_sp_obj *o = params->f_obj;
6282 	struct function_update_data *rdata =
6283 		(struct function_update_data *)o->afex_rdata;
6284 	dma_addr_t data_mapping = o->afex_rdata_mapping;
6285 	struct bnx2x_func_afex_update_params *afex_update_params =
6286 		&params->params.afex_update;
6287 
6288 	memset(rdata, 0, sizeof(*rdata));
6289 
6290 	/* Fill the ramrod data with provided parameters */
6291 	rdata->vif_id_change_flg = 1;
6292 	rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
6293 	rdata->afex_default_vlan_change_flg = 1;
6294 	rdata->afex_default_vlan =
6295 		cpu_to_le16(afex_update_params->afex_default_vlan);
6296 	rdata->allowed_priorities_change_flg = 1;
6297 	rdata->allowed_priorities = afex_update_params->allowed_priorities;
6298 	rdata->echo = AFEX_UPDATE;
6299 
6300 	/* No need for an explicit memory barrier here as long as we
6301 	 * ensure the ordering of writing to the SPQ element
6302 	 * and updating of the SPQ producer which involves a memory
6303 	 * read. If the memory read is removed we will have to put a
6304 	 * full memory barrier there (inside bnx2x_sp_post()).
6305 	 */
6306 	DP(BNX2X_MSG_SP,
6307 	   "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6308 	   rdata->vif_id,
6309 	   rdata->afex_default_vlan, rdata->allowed_priorities);
6310 
6311 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6312 			     U64_HI(data_mapping),
6313 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6314 }
6315 
6316 static
6317 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
6318 					 struct bnx2x_func_state_params *params)
6319 {
6320 	struct bnx2x_func_sp_obj *o = params->f_obj;
6321 	struct afex_vif_list_ramrod_data *rdata =
6322 		(struct afex_vif_list_ramrod_data *)o->afex_rdata;
6323 	struct bnx2x_func_afex_viflists_params *afex_vif_params =
6324 		&params->params.afex_viflists;
6325 	u64 *p_rdata = (u64 *)rdata;
6326 
6327 	memset(rdata, 0, sizeof(*rdata));
6328 
6329 	/* Fill the ramrod data with provided parameters */
6330 	rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
6331 	rdata->func_bit_map          = afex_vif_params->func_bit_map;
6332 	rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6333 	rdata->func_to_clear         = afex_vif_params->func_to_clear;
6334 
6335 	/* send in echo type of sub command */
6336 	rdata->echo = afex_vif_params->afex_vif_list_command;
6337 
6338 	/*  No need for an explicit memory barrier here as long we would
6339 	 *  need to ensure the ordering of writing to the SPQ element
6340 	 *  and updating of the SPQ producer which involves a memory
6341 	 *  read and we will have to put a full memory barrier there
6342 	 *  (inside bnx2x_sp_post()).
6343 	 */
6344 
6345 	DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6346 	   rdata->afex_vif_list_command, rdata->vif_list_index,
6347 	   rdata->func_bit_map, rdata->func_to_clear);
6348 
6349 	/* this ramrod sends data directly and not through DMA mapping */
6350 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6351 			     U64_HI(*p_rdata), U64_LO(*p_rdata),
6352 			     NONE_CONNECTION_TYPE);
6353 }
6354 
6355 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
6356 				       struct bnx2x_func_state_params *params)
6357 {
6358 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
6359 			     NONE_CONNECTION_TYPE);
6360 }
6361 
6362 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
6363 				       struct bnx2x_func_state_params *params)
6364 {
6365 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
6366 			     NONE_CONNECTION_TYPE);
6367 }
6368 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
6369 				       struct bnx2x_func_state_params *params)
6370 {
6371 	struct bnx2x_func_sp_obj *o = params->f_obj;
6372 	struct flow_control_configuration *rdata =
6373 		(struct flow_control_configuration *)o->rdata;
6374 	dma_addr_t data_mapping = o->rdata_mapping;
6375 	struct bnx2x_func_tx_start_params *tx_start_params =
6376 		&params->params.tx_start;
6377 	int i;
6378 
6379 	memset(rdata, 0, sizeof(*rdata));
6380 
6381 	rdata->dcb_enabled = tx_start_params->dcb_enabled;
6382 	rdata->dcb_version = tx_start_params->dcb_version;
6383 	rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6384 
6385 	for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6386 		rdata->traffic_type_to_priority_cos[i] =
6387 			tx_start_params->traffic_type_to_priority_cos[i];
6388 
6389 	for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6390 		rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6391 	/* No need for an explicit memory barrier here as long as we
6392 	 * ensure the ordering of writing to the SPQ element
6393 	 * and updating of the SPQ producer which involves a memory
6394 	 * read. If the memory read is removed we will have to put a
6395 	 * full memory barrier there (inside bnx2x_sp_post()).
6396 	 */
6397 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6398 			     U64_HI(data_mapping),
6399 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6400 }
6401 
6402 static inline
6403 int bnx2x_func_send_set_timesync(struct bnx2x *bp,
6404 				 struct bnx2x_func_state_params *params)
6405 {
6406 	struct bnx2x_func_sp_obj *o = params->f_obj;
6407 	struct set_timesync_ramrod_data *rdata =
6408 		(struct set_timesync_ramrod_data *)o->rdata;
6409 	dma_addr_t data_mapping = o->rdata_mapping;
6410 	struct bnx2x_func_set_timesync_params *set_timesync_params =
6411 		&params->params.set_timesync;
6412 
6413 	memset(rdata, 0, sizeof(*rdata));
6414 
6415 	/* Fill the ramrod data with provided parameters */
6416 	rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6417 	rdata->offset_cmd = set_timesync_params->offset_cmd;
6418 	rdata->add_sub_drift_adjust_value =
6419 		set_timesync_params->add_sub_drift_adjust_value;
6420 	rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6421 	rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6422 	rdata->offset_delta.lo =
6423 		cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6424 	rdata->offset_delta.hi =
6425 		cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6426 
6427 	DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6428 	   rdata->drift_adjust_cmd, rdata->offset_cmd,
6429 	   rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6430 	   rdata->drift_adjust_period, rdata->offset_delta.lo,
6431 	   rdata->offset_delta.hi);
6432 
6433 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6434 			     U64_HI(data_mapping),
6435 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6436 }
6437 
6438 static int bnx2x_func_send_cmd(struct bnx2x *bp,
6439 			       struct bnx2x_func_state_params *params)
6440 {
6441 	switch (params->cmd) {
6442 	case BNX2X_F_CMD_HW_INIT:
6443 		return bnx2x_func_hw_init(bp, params);
6444 	case BNX2X_F_CMD_START:
6445 		return bnx2x_func_send_start(bp, params);
6446 	case BNX2X_F_CMD_STOP:
6447 		return bnx2x_func_send_stop(bp, params);
6448 	case BNX2X_F_CMD_HW_RESET:
6449 		return bnx2x_func_hw_reset(bp, params);
6450 	case BNX2X_F_CMD_AFEX_UPDATE:
6451 		return bnx2x_func_send_afex_update(bp, params);
6452 	case BNX2X_F_CMD_AFEX_VIFLISTS:
6453 		return bnx2x_func_send_afex_viflists(bp, params);
6454 	case BNX2X_F_CMD_TX_STOP:
6455 		return bnx2x_func_send_tx_stop(bp, params);
6456 	case BNX2X_F_CMD_TX_START:
6457 		return bnx2x_func_send_tx_start(bp, params);
6458 	case BNX2X_F_CMD_SWITCH_UPDATE:
6459 		return bnx2x_func_send_switch_update(bp, params);
6460 	case BNX2X_F_CMD_SET_TIMESYNC:
6461 		return bnx2x_func_send_set_timesync(bp, params);
6462 	default:
6463 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
6464 		return -EINVAL;
6465 	}
6466 }
6467 
6468 void bnx2x_init_func_obj(struct bnx2x *bp,
6469 			 struct bnx2x_func_sp_obj *obj,
6470 			 void *rdata, dma_addr_t rdata_mapping,
6471 			 void *afex_rdata, dma_addr_t afex_rdata_mapping,
6472 			 struct bnx2x_func_sp_drv_ops *drv_iface)
6473 {
6474 	memset(obj, 0, sizeof(*obj));
6475 
6476 	mutex_init(&obj->one_pending_mutex);
6477 
6478 	obj->rdata = rdata;
6479 	obj->rdata_mapping = rdata_mapping;
6480 	obj->afex_rdata = afex_rdata;
6481 	obj->afex_rdata_mapping = afex_rdata_mapping;
6482 	obj->send_cmd = bnx2x_func_send_cmd;
6483 	obj->check_transition = bnx2x_func_chk_transition;
6484 	obj->complete_cmd = bnx2x_func_comp_cmd;
6485 	obj->wait_comp = bnx2x_func_wait_comp;
6486 
6487 	obj->drv = drv_iface;
6488 }
6489 
6490 /**
6491  * bnx2x_func_state_change - perform Function state change transition
6492  *
6493  * @bp:		device handle
6494  * @params:	parameters to perform the transaction
6495  *
6496  * returns 0 in case of successfully completed transition,
6497  *         negative error code in case of failure, positive
6498  *         (EBUSY) value if there is a completion to that is
6499  *         still pending (possible only if RAMROD_COMP_WAIT is
6500  *         not set in params->ramrod_flags for asynchronous
6501  *         commands).
6502  */
6503 int bnx2x_func_state_change(struct bnx2x *bp,
6504 			    struct bnx2x_func_state_params *params)
6505 {
6506 	struct bnx2x_func_sp_obj *o = params->f_obj;
6507 	int rc, cnt = 300;
6508 	enum bnx2x_func_cmd cmd = params->cmd;
6509 	unsigned long *pending = &o->pending;
6510 
6511 	mutex_lock(&o->one_pending_mutex);
6512 
6513 	/* Check that the requested transition is legal */
6514 	rc = o->check_transition(bp, o, params);
6515 	if ((rc == -EBUSY) &&
6516 	    (test_bit(RAMROD_RETRY, &params->ramrod_flags))) {
6517 		while ((rc == -EBUSY) && (--cnt > 0)) {
6518 			mutex_unlock(&o->one_pending_mutex);
6519 			msleep(10);
6520 			mutex_lock(&o->one_pending_mutex);
6521 			rc = o->check_transition(bp, o, params);
6522 		}
6523 		if (rc == -EBUSY) {
6524 			mutex_unlock(&o->one_pending_mutex);
6525 			BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6526 			return rc;
6527 		}
6528 	} else if (rc) {
6529 		mutex_unlock(&o->one_pending_mutex);
6530 		return rc;
6531 	}
6532 
6533 	/* Set "pending" bit */
6534 	set_bit(cmd, pending);
6535 
6536 	/* Don't send a command if only driver cleanup was requested */
6537 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6538 		bnx2x_func_state_change_comp(bp, o, cmd);
6539 		mutex_unlock(&o->one_pending_mutex);
6540 	} else {
6541 		/* Send a ramrod */
6542 		rc = o->send_cmd(bp, params);
6543 
6544 		mutex_unlock(&o->one_pending_mutex);
6545 
6546 		if (rc) {
6547 			o->next_state = BNX2X_F_STATE_MAX;
6548 			clear_bit(cmd, pending);
6549 			smp_mb__after_atomic();
6550 			return rc;
6551 		}
6552 
6553 		if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6554 			rc = o->wait_comp(bp, o, cmd);
6555 			if (rc)
6556 				return rc;
6557 
6558 			return 0;
6559 		}
6560 	}
6561 
6562 	return !!test_bit(cmd, pending);
6563 }
6564