xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_sp.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 /* bnx2x_sp.c: Qlogic Everest network driver.
2  *
3  * Copyright 2011-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and Qlogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other Qlogic software provided under a
14  * license other than the GPL, without Qlogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Vladislav Zolotarov
19  *
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/module.h>
25 #include <linux/crc32.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/crc32c.h>
29 #include "bnx2x.h"
30 #include "bnx2x_cmn.h"
31 #include "bnx2x_sp.h"
32 
33 #define BNX2X_MAX_EMUL_MULTI		16
34 
35 /**** Exe Queue interfaces ****/
36 
37 /**
38  * bnx2x_exe_queue_init - init the Exe Queue object
39  *
40  * @o:		pointer to the object
41  * @exe_len:	length
42  * @owner:	pointer to the owner
43  * @validate:	validate function pointer
44  * @optimize:	optimize function pointer
45  * @exec:	execute function pointer
46  * @get:	get function pointer
47  */
48 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
49 					struct bnx2x_exe_queue_obj *o,
50 					int exe_len,
51 					union bnx2x_qable_obj *owner,
52 					exe_q_validate validate,
53 					exe_q_remove remove,
54 					exe_q_optimize optimize,
55 					exe_q_execute exec,
56 					exe_q_get get)
57 {
58 	memset(o, 0, sizeof(*o));
59 
60 	INIT_LIST_HEAD(&o->exe_queue);
61 	INIT_LIST_HEAD(&o->pending_comp);
62 
63 	spin_lock_init(&o->lock);
64 
65 	o->exe_chunk_len = exe_len;
66 	o->owner         = owner;
67 
68 	/* Owner specific callbacks */
69 	o->validate      = validate;
70 	o->remove        = remove;
71 	o->optimize      = optimize;
72 	o->execute       = exec;
73 	o->get           = get;
74 
75 	DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
76 	   exe_len);
77 }
78 
79 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
80 					     struct bnx2x_exeq_elem *elem)
81 {
82 	DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
83 	kfree(elem);
84 }
85 
86 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
87 {
88 	struct bnx2x_exeq_elem *elem;
89 	int cnt = 0;
90 
91 	spin_lock_bh(&o->lock);
92 
93 	list_for_each_entry(elem, &o->exe_queue, link)
94 		cnt++;
95 
96 	spin_unlock_bh(&o->lock);
97 
98 	return cnt;
99 }
100 
101 /**
102  * bnx2x_exe_queue_add - add a new element to the execution queue
103  *
104  * @bp:		driver handle
105  * @o:		queue
106  * @cmd:	new command to add
107  * @restore:	true - do not optimize the command
108  *
109  * If the element is optimized or is illegal, frees it.
110  */
111 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
112 				      struct bnx2x_exe_queue_obj *o,
113 				      struct bnx2x_exeq_elem *elem,
114 				      bool restore)
115 {
116 	int rc;
117 
118 	spin_lock_bh(&o->lock);
119 
120 	if (!restore) {
121 		/* Try to cancel this element queue */
122 		rc = o->optimize(bp, o->owner, elem);
123 		if (rc)
124 			goto free_and_exit;
125 
126 		/* Check if this request is ok */
127 		rc = o->validate(bp, o->owner, elem);
128 		if (rc) {
129 			DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
130 			goto free_and_exit;
131 		}
132 	}
133 
134 	/* If so, add it to the execution queue */
135 	list_add_tail(&elem->link, &o->exe_queue);
136 
137 	spin_unlock_bh(&o->lock);
138 
139 	return 0;
140 
141 free_and_exit:
142 	bnx2x_exe_queue_free_elem(bp, elem);
143 
144 	spin_unlock_bh(&o->lock);
145 
146 	return rc;
147 }
148 
149 static inline void __bnx2x_exe_queue_reset_pending(
150 	struct bnx2x *bp,
151 	struct bnx2x_exe_queue_obj *o)
152 {
153 	struct bnx2x_exeq_elem *elem;
154 
155 	while (!list_empty(&o->pending_comp)) {
156 		elem = list_first_entry(&o->pending_comp,
157 					struct bnx2x_exeq_elem, link);
158 
159 		list_del(&elem->link);
160 		bnx2x_exe_queue_free_elem(bp, elem);
161 	}
162 }
163 
164 /**
165  * bnx2x_exe_queue_step - execute one execution chunk atomically
166  *
167  * @bp:			driver handle
168  * @o:			queue
169  * @ramrod_flags:	flags
170  *
171  * (Should be called while holding the exe_queue->lock).
172  */
173 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
174 				       struct bnx2x_exe_queue_obj *o,
175 				       unsigned long *ramrod_flags)
176 {
177 	struct bnx2x_exeq_elem *elem, spacer;
178 	int cur_len = 0, rc;
179 
180 	memset(&spacer, 0, sizeof(spacer));
181 
182 	/* Next step should not be performed until the current is finished,
183 	 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
184 	 * properly clear object internals without sending any command to the FW
185 	 * which also implies there won't be any completion to clear the
186 	 * 'pending' list.
187 	 */
188 	if (!list_empty(&o->pending_comp)) {
189 		if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
190 			DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
191 			__bnx2x_exe_queue_reset_pending(bp, o);
192 		} else {
193 			return 1;
194 		}
195 	}
196 
197 	/* Run through the pending commands list and create a next
198 	 * execution chunk.
199 	 */
200 	while (!list_empty(&o->exe_queue)) {
201 		elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
202 					link);
203 		WARN_ON(!elem->cmd_len);
204 
205 		if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
206 			cur_len += elem->cmd_len;
207 			/* Prevent from both lists being empty when moving an
208 			 * element. This will allow the call of
209 			 * bnx2x_exe_queue_empty() without locking.
210 			 */
211 			list_add_tail(&spacer.link, &o->pending_comp);
212 			mb();
213 			list_move_tail(&elem->link, &o->pending_comp);
214 			list_del(&spacer.link);
215 		} else
216 			break;
217 	}
218 
219 	/* Sanity check */
220 	if (!cur_len)
221 		return 0;
222 
223 	rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
224 	if (rc < 0)
225 		/* In case of an error return the commands back to the queue
226 		 * and reset the pending_comp.
227 		 */
228 		list_splice_init(&o->pending_comp, &o->exe_queue);
229 	else if (!rc)
230 		/* If zero is returned, means there are no outstanding pending
231 		 * completions and we may dismiss the pending list.
232 		 */
233 		__bnx2x_exe_queue_reset_pending(bp, o);
234 
235 	return rc;
236 }
237 
238 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
239 {
240 	bool empty = list_empty(&o->exe_queue);
241 
242 	/* Don't reorder!!! */
243 	mb();
244 
245 	return empty && list_empty(&o->pending_comp);
246 }
247 
248 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
249 	struct bnx2x *bp)
250 {
251 	DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
252 	return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
253 }
254 
255 /************************ raw_obj functions ***********************************/
256 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
257 {
258 	return !!test_bit(o->state, o->pstate);
259 }
260 
261 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
262 {
263 	smp_mb__before_atomic();
264 	clear_bit(o->state, o->pstate);
265 	smp_mb__after_atomic();
266 }
267 
268 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
269 {
270 	smp_mb__before_atomic();
271 	set_bit(o->state, o->pstate);
272 	smp_mb__after_atomic();
273 }
274 
275 /**
276  * bnx2x_state_wait - wait until the given bit(state) is cleared
277  *
278  * @bp:		device handle
279  * @state:	state which is to be cleared
280  * @state_p:	state buffer
281  *
282  */
283 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
284 				   unsigned long *pstate)
285 {
286 	/* can take a while if any port is running */
287 	int cnt = 5000;
288 
289 	if (CHIP_REV_IS_EMUL(bp))
290 		cnt *= 20;
291 
292 	DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
293 
294 	might_sleep();
295 	while (cnt--) {
296 		if (!test_bit(state, pstate)) {
297 #ifdef BNX2X_STOP_ON_ERROR
298 			DP(BNX2X_MSG_SP, "exit  (cnt %d)\n", 5000 - cnt);
299 #endif
300 			return 0;
301 		}
302 
303 		usleep_range(1000, 2000);
304 
305 		if (bp->panic)
306 			return -EIO;
307 	}
308 
309 	/* timeout! */
310 	BNX2X_ERR("timeout waiting for state %d\n", state);
311 #ifdef BNX2X_STOP_ON_ERROR
312 	bnx2x_panic();
313 #endif
314 
315 	return -EBUSY;
316 }
317 
318 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
319 {
320 	return bnx2x_state_wait(bp, raw->state, raw->pstate);
321 }
322 
323 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
324 /* credit handling callbacks */
325 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
326 {
327 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
328 
329 	WARN_ON(!mp);
330 
331 	return mp->get_entry(mp, offset);
332 }
333 
334 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
335 {
336 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
337 
338 	WARN_ON(!mp);
339 
340 	return mp->get(mp, 1);
341 }
342 
343 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
344 {
345 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
346 
347 	WARN_ON(!vp);
348 
349 	return vp->get_entry(vp, offset);
350 }
351 
352 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
353 {
354 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
355 
356 	WARN_ON(!vp);
357 
358 	return vp->get(vp, 1);
359 }
360 
361 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
362 {
363 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
364 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
365 
366 	if (!mp->get(mp, 1))
367 		return false;
368 
369 	if (!vp->get(vp, 1)) {
370 		mp->put(mp, 1);
371 		return false;
372 	}
373 
374 	return true;
375 }
376 
377 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
378 {
379 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
380 
381 	return mp->put_entry(mp, offset);
382 }
383 
384 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
385 {
386 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
387 
388 	return mp->put(mp, 1);
389 }
390 
391 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
392 {
393 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
394 
395 	return vp->put_entry(vp, offset);
396 }
397 
398 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
399 {
400 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
401 
402 	return vp->put(vp, 1);
403 }
404 
405 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
406 {
407 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
408 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
409 
410 	if (!mp->put(mp, 1))
411 		return false;
412 
413 	if (!vp->put(vp, 1)) {
414 		mp->get(mp, 1);
415 		return false;
416 	}
417 
418 	return true;
419 }
420 
421 /**
422  * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
423  *
424  * @bp:		device handle
425  * @o:		vlan_mac object
426  *
427  * @details: Non-blocking implementation; should be called under execution
428  *           queue lock.
429  */
430 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
431 					    struct bnx2x_vlan_mac_obj *o)
432 {
433 	if (o->head_reader) {
434 		DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
435 		return -EBUSY;
436 	}
437 
438 	DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
439 	return 0;
440 }
441 
442 /**
443  * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
444  *
445  * @bp:		device handle
446  * @o:		vlan_mac object
447  *
448  * @details Should be called under execution queue lock; notice it might release
449  *          and reclaim it during its run.
450  */
451 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
452 					    struct bnx2x_vlan_mac_obj *o)
453 {
454 	int rc;
455 	unsigned long ramrod_flags = o->saved_ramrod_flags;
456 
457 	DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
458 	   ramrod_flags);
459 	o->head_exe_request = false;
460 	o->saved_ramrod_flags = 0;
461 	rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
462 	if ((rc != 0) && (rc != 1)) {
463 		BNX2X_ERR("execution of pending commands failed with rc %d\n",
464 			  rc);
465 #ifdef BNX2X_STOP_ON_ERROR
466 		bnx2x_panic();
467 #endif
468 	}
469 }
470 
471 /**
472  * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
473  *
474  * @bp:			device handle
475  * @o:			vlan_mac object
476  * @ramrod_flags:	ramrod flags of missed execution
477  *
478  * @details Should be called under execution queue lock.
479  */
480 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
481 				    struct bnx2x_vlan_mac_obj *o,
482 				    unsigned long ramrod_flags)
483 {
484 	o->head_exe_request = true;
485 	o->saved_ramrod_flags = ramrod_flags;
486 	DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
487 	   ramrod_flags);
488 }
489 
490 /**
491  * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
492  *
493  * @bp:			device handle
494  * @o:			vlan_mac object
495  *
496  * @details Should be called under execution queue lock. Notice if a pending
497  *          execution exists, it would perform it - possibly releasing and
498  *          reclaiming the execution queue lock.
499  */
500 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
501 					    struct bnx2x_vlan_mac_obj *o)
502 {
503 	/* It's possible a new pending execution was added since this writer
504 	 * executed. If so, execute again. [Ad infinitum]
505 	 */
506 	while (o->head_exe_request) {
507 		DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
508 		__bnx2x_vlan_mac_h_exec_pending(bp, o);
509 	}
510 }
511 
512 
513 /**
514  * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
515  *
516  * @bp:			device handle
517  * @o:			vlan_mac object
518  *
519  * @details Should be called under the execution queue lock. May sleep. May
520  *          release and reclaim execution queue lock during its run.
521  */
522 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
523 					struct bnx2x_vlan_mac_obj *o)
524 {
525 	/* If we got here, we're holding lock --> no WRITER exists */
526 	o->head_reader++;
527 	DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
528 	   o->head_reader);
529 
530 	return 0;
531 }
532 
533 /**
534  * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
535  *
536  * @bp:			device handle
537  * @o:			vlan_mac object
538  *
539  * @details May sleep. Claims and releases execution queue lock during its run.
540  */
541 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
542 			       struct bnx2x_vlan_mac_obj *o)
543 {
544 	int rc;
545 
546 	spin_lock_bh(&o->exe_queue.lock);
547 	rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
548 	spin_unlock_bh(&o->exe_queue.lock);
549 
550 	return rc;
551 }
552 
553 /**
554  * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
555  *
556  * @bp:			device handle
557  * @o:			vlan_mac object
558  *
559  * @details Should be called under execution queue lock. Notice if a pending
560  *          execution exists, it would be performed if this was the last
561  *          reader. possibly releasing and reclaiming the execution queue lock.
562  */
563 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
564 					  struct bnx2x_vlan_mac_obj *o)
565 {
566 	if (!o->head_reader) {
567 		BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
568 #ifdef BNX2X_STOP_ON_ERROR
569 		bnx2x_panic();
570 #endif
571 	} else {
572 		o->head_reader--;
573 		DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
574 		   o->head_reader);
575 	}
576 
577 	/* It's possible a new pending execution was added, and that this reader
578 	 * was last - if so we need to execute the command.
579 	 */
580 	if (!o->head_reader && o->head_exe_request) {
581 		DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
582 
583 		/* Writer release will do the trick */
584 		__bnx2x_vlan_mac_h_write_unlock(bp, o);
585 	}
586 }
587 
588 /**
589  * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
590  *
591  * @bp:			device handle
592  * @o:			vlan_mac object
593  *
594  * @details Notice if a pending execution exists, it would be performed if this
595  *          was the last reader. Claims and releases the execution queue lock
596  *          during its run.
597  */
598 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
599 				  struct bnx2x_vlan_mac_obj *o)
600 {
601 	spin_lock_bh(&o->exe_queue.lock);
602 	__bnx2x_vlan_mac_h_read_unlock(bp, o);
603 	spin_unlock_bh(&o->exe_queue.lock);
604 }
605 
606 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
607 				int n, u8 *base, u8 stride, u8 size)
608 {
609 	struct bnx2x_vlan_mac_registry_elem *pos;
610 	u8 *next = base;
611 	int counter = 0;
612 	int read_lock;
613 
614 	DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
615 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
616 	if (read_lock != 0)
617 		BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
618 
619 	/* traverse list */
620 	list_for_each_entry(pos, &o->head, link) {
621 		if (counter < n) {
622 			memcpy(next, &pos->u, size);
623 			counter++;
624 			DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
625 			   counter, next);
626 			next += stride + size;
627 		}
628 	}
629 
630 	if (read_lock == 0) {
631 		DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
632 		bnx2x_vlan_mac_h_read_unlock(bp, o);
633 	}
634 
635 	return counter * ETH_ALEN;
636 }
637 
638 /* check_add() callbacks */
639 static int bnx2x_check_mac_add(struct bnx2x *bp,
640 			       struct bnx2x_vlan_mac_obj *o,
641 			       union bnx2x_classification_ramrod_data *data)
642 {
643 	struct bnx2x_vlan_mac_registry_elem *pos;
644 
645 	DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
646 
647 	if (!is_valid_ether_addr(data->mac.mac))
648 		return -EINVAL;
649 
650 	/* Check if a requested MAC already exists */
651 	list_for_each_entry(pos, &o->head, link)
652 		if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
653 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
654 			return -EEXIST;
655 
656 	return 0;
657 }
658 
659 static int bnx2x_check_vlan_add(struct bnx2x *bp,
660 				struct bnx2x_vlan_mac_obj *o,
661 				union bnx2x_classification_ramrod_data *data)
662 {
663 	struct bnx2x_vlan_mac_registry_elem *pos;
664 
665 	DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
666 
667 	list_for_each_entry(pos, &o->head, link)
668 		if (data->vlan.vlan == pos->u.vlan.vlan)
669 			return -EEXIST;
670 
671 	return 0;
672 }
673 
674 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
675 				    struct bnx2x_vlan_mac_obj *o,
676 				   union bnx2x_classification_ramrod_data *data)
677 {
678 	struct bnx2x_vlan_mac_registry_elem *pos;
679 
680 	DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
681 	   data->vlan_mac.mac, data->vlan_mac.vlan);
682 
683 	list_for_each_entry(pos, &o->head, link)
684 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
685 		    (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
686 				  ETH_ALEN)) &&
687 		    (data->vlan_mac.is_inner_mac ==
688 		     pos->u.vlan_mac.is_inner_mac))
689 			return -EEXIST;
690 
691 	return 0;
692 }
693 
694 /* check_del() callbacks */
695 static struct bnx2x_vlan_mac_registry_elem *
696 	bnx2x_check_mac_del(struct bnx2x *bp,
697 			    struct bnx2x_vlan_mac_obj *o,
698 			    union bnx2x_classification_ramrod_data *data)
699 {
700 	struct bnx2x_vlan_mac_registry_elem *pos;
701 
702 	DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
703 
704 	list_for_each_entry(pos, &o->head, link)
705 		if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
706 		    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
707 			return pos;
708 
709 	return NULL;
710 }
711 
712 static struct bnx2x_vlan_mac_registry_elem *
713 	bnx2x_check_vlan_del(struct bnx2x *bp,
714 			     struct bnx2x_vlan_mac_obj *o,
715 			     union bnx2x_classification_ramrod_data *data)
716 {
717 	struct bnx2x_vlan_mac_registry_elem *pos;
718 
719 	DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
720 
721 	list_for_each_entry(pos, &o->head, link)
722 		if (data->vlan.vlan == pos->u.vlan.vlan)
723 			return pos;
724 
725 	return NULL;
726 }
727 
728 static struct bnx2x_vlan_mac_registry_elem *
729 	bnx2x_check_vlan_mac_del(struct bnx2x *bp,
730 				 struct bnx2x_vlan_mac_obj *o,
731 				 union bnx2x_classification_ramrod_data *data)
732 {
733 	struct bnx2x_vlan_mac_registry_elem *pos;
734 
735 	DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
736 	   data->vlan_mac.mac, data->vlan_mac.vlan);
737 
738 	list_for_each_entry(pos, &o->head, link)
739 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
740 		    (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
741 			     ETH_ALEN)) &&
742 		    (data->vlan_mac.is_inner_mac ==
743 		     pos->u.vlan_mac.is_inner_mac))
744 			return pos;
745 
746 	return NULL;
747 }
748 
749 /* check_move() callback */
750 static bool bnx2x_check_move(struct bnx2x *bp,
751 			     struct bnx2x_vlan_mac_obj *src_o,
752 			     struct bnx2x_vlan_mac_obj *dst_o,
753 			     union bnx2x_classification_ramrod_data *data)
754 {
755 	struct bnx2x_vlan_mac_registry_elem *pos;
756 	int rc;
757 
758 	/* Check if we can delete the requested configuration from the first
759 	 * object.
760 	 */
761 	pos = src_o->check_del(bp, src_o, data);
762 
763 	/*  check if configuration can be added */
764 	rc = dst_o->check_add(bp, dst_o, data);
765 
766 	/* If this classification can not be added (is already set)
767 	 * or can't be deleted - return an error.
768 	 */
769 	if (rc || !pos)
770 		return false;
771 
772 	return true;
773 }
774 
775 static bool bnx2x_check_move_always_err(
776 	struct bnx2x *bp,
777 	struct bnx2x_vlan_mac_obj *src_o,
778 	struct bnx2x_vlan_mac_obj *dst_o,
779 	union bnx2x_classification_ramrod_data *data)
780 {
781 	return false;
782 }
783 
784 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
785 {
786 	struct bnx2x_raw_obj *raw = &o->raw;
787 	u8 rx_tx_flag = 0;
788 
789 	if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
790 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
791 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
792 
793 	if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
794 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
795 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
796 
797 	return rx_tx_flag;
798 }
799 
800 static void bnx2x_set_mac_in_nig(struct bnx2x *bp,
801 				 bool add, unsigned char *dev_addr, int index)
802 {
803 	u32 wb_data[2];
804 	u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
805 			 NIG_REG_LLH0_FUNC_MEM;
806 
807 	if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
808 		return;
809 
810 	if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
811 		return;
812 
813 	DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
814 			 (add ? "ADD" : "DELETE"), index);
815 
816 	if (add) {
817 		/* LLH_FUNC_MEM is a u64 WB register */
818 		reg_offset += 8*index;
819 
820 		wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
821 			      (dev_addr[4] <<  8) |  dev_addr[5]);
822 		wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
823 
824 		REG_WR_DMAE(bp, reg_offset, wb_data, 2);
825 	}
826 
827 	REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
828 				  NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
829 }
830 
831 /**
832  * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
833  *
834  * @bp:		device handle
835  * @o:		queue for which we want to configure this rule
836  * @add:	if true the command is an ADD command, DEL otherwise
837  * @opcode:	CLASSIFY_RULE_OPCODE_XXX
838  * @hdr:	pointer to a header to setup
839  *
840  */
841 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
842 	struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
843 	struct eth_classify_cmd_header *hdr)
844 {
845 	struct bnx2x_raw_obj *raw = &o->raw;
846 
847 	hdr->client_id = raw->cl_id;
848 	hdr->func_id = raw->func_id;
849 
850 	/* Rx or/and Tx (internal switching) configuration ? */
851 	hdr->cmd_general_data |=
852 		bnx2x_vlan_mac_get_rx_tx_flag(o);
853 
854 	if (add)
855 		hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
856 
857 	hdr->cmd_general_data |=
858 		(opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
859 }
860 
861 /**
862  * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
863  *
864  * @cid:	connection id
865  * @type:	BNX2X_FILTER_XXX_PENDING
866  * @hdr:	pointer to header to setup
867  * @rule_cnt:
868  *
869  * currently we always configure one rule and echo field to contain a CID and an
870  * opcode type.
871  */
872 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
873 				struct eth_classify_header *hdr, int rule_cnt)
874 {
875 	hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
876 				(type << BNX2X_SWCID_SHIFT));
877 	hdr->rule_cnt = (u8)rule_cnt;
878 }
879 
880 /* hw_config() callbacks */
881 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
882 				 struct bnx2x_vlan_mac_obj *o,
883 				 struct bnx2x_exeq_elem *elem, int rule_idx,
884 				 int cam_offset)
885 {
886 	struct bnx2x_raw_obj *raw = &o->raw;
887 	struct eth_classify_rules_ramrod_data *data =
888 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
889 	int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
890 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
891 	bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
892 	unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
893 	u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
894 
895 	/* Set LLH CAM entry: currently only iSCSI and ETH macs are
896 	 * relevant. In addition, current implementation is tuned for a
897 	 * single ETH MAC.
898 	 *
899 	 * When multiple unicast ETH MACs PF configuration in switch
900 	 * independent mode is required (NetQ, multiple netdev MACs,
901 	 * etc.), consider better utilisation of 8 per function MAC
902 	 * entries in the LLH register. There is also
903 	 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
904 	 * total number of CAM entries to 16.
905 	 *
906 	 * Currently we won't configure NIG for MACs other than a primary ETH
907 	 * MAC and iSCSI L2 MAC.
908 	 *
909 	 * If this MAC is moving from one Queue to another, no need to change
910 	 * NIG configuration.
911 	 */
912 	if (cmd != BNX2X_VLAN_MAC_MOVE) {
913 		if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
914 			bnx2x_set_mac_in_nig(bp, add, mac,
915 					     BNX2X_LLH_CAM_ISCSI_ETH_LINE);
916 		else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
917 			bnx2x_set_mac_in_nig(bp, add, mac,
918 					     BNX2X_LLH_CAM_ETH_LINE);
919 	}
920 
921 	/* Reset the ramrod data buffer for the first rule */
922 	if (rule_idx == 0)
923 		memset(data, 0, sizeof(*data));
924 
925 	/* Setup a command header */
926 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
927 				      &rule_entry->mac.header);
928 
929 	DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
930 	   (add ? "add" : "delete"), mac, raw->cl_id);
931 
932 	/* Set a MAC itself */
933 	bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
934 			      &rule_entry->mac.mac_mid,
935 			      &rule_entry->mac.mac_lsb, mac);
936 	rule_entry->mac.inner_mac =
937 		cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
938 
939 	/* MOVE: Add a rule that will add this MAC to the target Queue */
940 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
941 		rule_entry++;
942 		rule_cnt++;
943 
944 		/* Setup ramrod data */
945 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
946 					elem->cmd_data.vlan_mac.target_obj,
947 					      true, CLASSIFY_RULE_OPCODE_MAC,
948 					      &rule_entry->mac.header);
949 
950 		/* Set a MAC itself */
951 		bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
952 				      &rule_entry->mac.mac_mid,
953 				      &rule_entry->mac.mac_lsb, mac);
954 		rule_entry->mac.inner_mac =
955 			cpu_to_le16(elem->cmd_data.vlan_mac.
956 						u.mac.is_inner_mac);
957 	}
958 
959 	/* Set the ramrod data header */
960 	/* TODO: take this to the higher level in order to prevent multiple
961 		 writing */
962 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
963 					rule_cnt);
964 }
965 
966 /**
967  * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
968  *
969  * @bp:		device handle
970  * @o:		queue
971  * @type:
972  * @cam_offset:	offset in cam memory
973  * @hdr:	pointer to a header to setup
974  *
975  * E1/E1H
976  */
977 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
978 	struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
979 	struct mac_configuration_hdr *hdr)
980 {
981 	struct bnx2x_raw_obj *r = &o->raw;
982 
983 	hdr->length = 1;
984 	hdr->offset = (u8)cam_offset;
985 	hdr->client_id = cpu_to_le16(0xff);
986 	hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
987 				(type << BNX2X_SWCID_SHIFT));
988 }
989 
990 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
991 	struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
992 	u16 vlan_id, struct mac_configuration_entry *cfg_entry)
993 {
994 	struct bnx2x_raw_obj *r = &o->raw;
995 	u32 cl_bit_vec = (1 << r->cl_id);
996 
997 	cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
998 	cfg_entry->pf_id = r->func_id;
999 	cfg_entry->vlan_id = cpu_to_le16(vlan_id);
1000 
1001 	if (add) {
1002 		SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1003 			 T_ETH_MAC_COMMAND_SET);
1004 		SET_FLAG(cfg_entry->flags,
1005 			 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
1006 
1007 		/* Set a MAC in a ramrod data */
1008 		bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1009 				      &cfg_entry->middle_mac_addr,
1010 				      &cfg_entry->lsb_mac_addr, mac);
1011 	} else
1012 		SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1013 			 T_ETH_MAC_COMMAND_INVALIDATE);
1014 }
1015 
1016 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
1017 	struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
1018 	u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1019 {
1020 	struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1021 	struct bnx2x_raw_obj *raw = &o->raw;
1022 
1023 	bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
1024 					 &config->hdr);
1025 	bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
1026 					 cfg_entry);
1027 
1028 	DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
1029 			 (add ? "setting" : "clearing"),
1030 			 mac, raw->cl_id, cam_offset);
1031 }
1032 
1033 /**
1034  * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1035  *
1036  * @bp:		device handle
1037  * @o:		bnx2x_vlan_mac_obj
1038  * @elem:	bnx2x_exeq_elem
1039  * @rule_idx:	rule_idx
1040  * @cam_offset: cam_offset
1041  */
1042 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
1043 				  struct bnx2x_vlan_mac_obj *o,
1044 				  struct bnx2x_exeq_elem *elem, int rule_idx,
1045 				  int cam_offset)
1046 {
1047 	struct bnx2x_raw_obj *raw = &o->raw;
1048 	struct mac_configuration_cmd *config =
1049 		(struct mac_configuration_cmd *)(raw->rdata);
1050 	/* 57710 and 57711 do not support MOVE command,
1051 	 * so it's either ADD or DEL
1052 	 */
1053 	bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1054 		true : false;
1055 
1056 	/* Reset the ramrod data buffer */
1057 	memset(config, 0, sizeof(*config));
1058 
1059 	bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
1060 				     cam_offset, add,
1061 				     elem->cmd_data.vlan_mac.u.mac.mac, 0,
1062 				     ETH_VLAN_FILTER_ANY_VLAN, config);
1063 }
1064 
1065 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
1066 				  struct bnx2x_vlan_mac_obj *o,
1067 				  struct bnx2x_exeq_elem *elem, int rule_idx,
1068 				  int cam_offset)
1069 {
1070 	struct bnx2x_raw_obj *raw = &o->raw;
1071 	struct eth_classify_rules_ramrod_data *data =
1072 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1073 	int rule_cnt = rule_idx + 1;
1074 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1075 	enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1076 	bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1077 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1078 
1079 	/* Reset the ramrod data buffer for the first rule */
1080 	if (rule_idx == 0)
1081 		memset(data, 0, sizeof(*data));
1082 
1083 	/* Set a rule header */
1084 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1085 				      &rule_entry->vlan.header);
1086 
1087 	DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1088 			 vlan);
1089 
1090 	/* Set a VLAN itself */
1091 	rule_entry->vlan.vlan = cpu_to_le16(vlan);
1092 
1093 	/* MOVE: Add a rule that will add this MAC to the target Queue */
1094 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
1095 		rule_entry++;
1096 		rule_cnt++;
1097 
1098 		/* Setup ramrod data */
1099 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1100 					elem->cmd_data.vlan_mac.target_obj,
1101 					      true, CLASSIFY_RULE_OPCODE_VLAN,
1102 					      &rule_entry->vlan.header);
1103 
1104 		/* Set a VLAN itself */
1105 		rule_entry->vlan.vlan = cpu_to_le16(vlan);
1106 	}
1107 
1108 	/* Set the ramrod data header */
1109 	/* TODO: take this to the higher level in order to prevent multiple
1110 		 writing */
1111 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1112 					rule_cnt);
1113 }
1114 
1115 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
1116 				      struct bnx2x_vlan_mac_obj *o,
1117 				      struct bnx2x_exeq_elem *elem,
1118 				      int rule_idx, int cam_offset)
1119 {
1120 	struct bnx2x_raw_obj *raw = &o->raw;
1121 	struct eth_classify_rules_ramrod_data *data =
1122 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
1123 	int rule_cnt = rule_idx + 1;
1124 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1125 	enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1126 	bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1127 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1128 	u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1129 	u16 inner_mac;
1130 
1131 	/* Reset the ramrod data buffer for the first rule */
1132 	if (rule_idx == 0)
1133 		memset(data, 0, sizeof(*data));
1134 
1135 	/* Set a rule header */
1136 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1137 				      &rule_entry->pair.header);
1138 
1139 	/* Set VLAN and MAC themselves */
1140 	rule_entry->pair.vlan = cpu_to_le16(vlan);
1141 	bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1142 			      &rule_entry->pair.mac_mid,
1143 			      &rule_entry->pair.mac_lsb, mac);
1144 	inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1145 	rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1146 	/* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */
1147 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
1148 		struct bnx2x_vlan_mac_obj *target_obj;
1149 
1150 		rule_entry++;
1151 		rule_cnt++;
1152 
1153 		/* Setup ramrod data */
1154 		target_obj = elem->cmd_data.vlan_mac.target_obj;
1155 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj,
1156 					      true, CLASSIFY_RULE_OPCODE_PAIR,
1157 					      &rule_entry->pair.header);
1158 
1159 		/* Set a VLAN itself */
1160 		rule_entry->pair.vlan = cpu_to_le16(vlan);
1161 		bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1162 				      &rule_entry->pair.mac_mid,
1163 				      &rule_entry->pair.mac_lsb, mac);
1164 		rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1165 	}
1166 
1167 	/* Set the ramrod data header */
1168 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1169 					rule_cnt);
1170 }
1171 
1172 /**
1173  * bnx2x_set_one_vlan_mac_e1h -
1174  *
1175  * @bp:		device handle
1176  * @o:		bnx2x_vlan_mac_obj
1177  * @elem:	bnx2x_exeq_elem
1178  * @rule_idx:	rule_idx
1179  * @cam_offset:	cam_offset
1180  */
1181 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1182 				       struct bnx2x_vlan_mac_obj *o,
1183 				       struct bnx2x_exeq_elem *elem,
1184 				       int rule_idx, int cam_offset)
1185 {
1186 	struct bnx2x_raw_obj *raw = &o->raw;
1187 	struct mac_configuration_cmd *config =
1188 		(struct mac_configuration_cmd *)(raw->rdata);
1189 	/* 57710 and 57711 do not support MOVE command,
1190 	 * so it's either ADD or DEL
1191 	 */
1192 	bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1193 		true : false;
1194 
1195 	/* Reset the ramrod data buffer */
1196 	memset(config, 0, sizeof(*config));
1197 
1198 	bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1199 				     cam_offset, add,
1200 				     elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1201 				     elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1202 				     ETH_VLAN_FILTER_CLASSIFY, config);
1203 }
1204 
1205 /**
1206  * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1207  *
1208  * @bp:		device handle
1209  * @p:		command parameters
1210  * @ppos:	pointer to the cookie
1211  *
1212  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1213  * previously configured elements list.
1214  *
1215  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is	taken
1216  * into an account
1217  *
1218  * pointer to the cookie  - that should be given back in the next call to make
1219  * function handle the next element. If *ppos is set to NULL it will restart the
1220  * iterator. If returned *ppos == NULL this means that the last element has been
1221  * handled.
1222  *
1223  */
1224 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1225 			   struct bnx2x_vlan_mac_ramrod_params *p,
1226 			   struct bnx2x_vlan_mac_registry_elem **ppos)
1227 {
1228 	struct bnx2x_vlan_mac_registry_elem *pos;
1229 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1230 
1231 	/* If list is empty - there is nothing to do here */
1232 	if (list_empty(&o->head)) {
1233 		*ppos = NULL;
1234 		return 0;
1235 	}
1236 
1237 	/* make a step... */
1238 	if (*ppos == NULL)
1239 		*ppos = list_first_entry(&o->head,
1240 					 struct bnx2x_vlan_mac_registry_elem,
1241 					 link);
1242 	else
1243 		*ppos = list_next_entry(*ppos, link);
1244 
1245 	pos = *ppos;
1246 
1247 	/* If it's the last step - return NULL */
1248 	if (list_is_last(&pos->link, &o->head))
1249 		*ppos = NULL;
1250 
1251 	/* Prepare a 'user_req' */
1252 	memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1253 
1254 	/* Set the command */
1255 	p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1256 
1257 	/* Set vlan_mac_flags */
1258 	p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1259 
1260 	/* Set a restore bit */
1261 	__set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1262 
1263 	return bnx2x_config_vlan_mac(bp, p);
1264 }
1265 
1266 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1267  * pointer to an element with a specific criteria and NULL if such an element
1268  * hasn't been found.
1269  */
1270 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1271 	struct bnx2x_exe_queue_obj *o,
1272 	struct bnx2x_exeq_elem *elem)
1273 {
1274 	struct bnx2x_exeq_elem *pos;
1275 	struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1276 
1277 	/* Check pending for execution commands */
1278 	list_for_each_entry(pos, &o->exe_queue, link)
1279 		if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1280 			      sizeof(*data)) &&
1281 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1282 			return pos;
1283 
1284 	return NULL;
1285 }
1286 
1287 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1288 	struct bnx2x_exe_queue_obj *o,
1289 	struct bnx2x_exeq_elem *elem)
1290 {
1291 	struct bnx2x_exeq_elem *pos;
1292 	struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1293 
1294 	/* Check pending for execution commands */
1295 	list_for_each_entry(pos, &o->exe_queue, link)
1296 		if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1297 			      sizeof(*data)) &&
1298 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1299 			return pos;
1300 
1301 	return NULL;
1302 }
1303 
1304 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1305 	struct bnx2x_exe_queue_obj *o,
1306 	struct bnx2x_exeq_elem *elem)
1307 {
1308 	struct bnx2x_exeq_elem *pos;
1309 	struct bnx2x_vlan_mac_ramrod_data *data =
1310 		&elem->cmd_data.vlan_mac.u.vlan_mac;
1311 
1312 	/* Check pending for execution commands */
1313 	list_for_each_entry(pos, &o->exe_queue, link)
1314 		if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1315 			    sizeof(*data)) &&
1316 		    (pos->cmd_data.vlan_mac.cmd ==
1317 		     elem->cmd_data.vlan_mac.cmd))
1318 			return pos;
1319 
1320 	return NULL;
1321 }
1322 
1323 /**
1324  * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1325  *
1326  * @bp:		device handle
1327  * @qo:		bnx2x_qable_obj
1328  * @elem:	bnx2x_exeq_elem
1329  *
1330  * Checks that the requested configuration can be added. If yes and if
1331  * requested, consume CAM credit.
1332  *
1333  * The 'validate' is run after the 'optimize'.
1334  *
1335  */
1336 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1337 					      union bnx2x_qable_obj *qo,
1338 					      struct bnx2x_exeq_elem *elem)
1339 {
1340 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1341 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1342 	int rc;
1343 
1344 	/* Check the registry */
1345 	rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1346 	if (rc) {
1347 		DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1348 		return rc;
1349 	}
1350 
1351 	/* Check if there is a pending ADD command for this
1352 	 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1353 	 */
1354 	if (exeq->get(exeq, elem)) {
1355 		DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1356 		return -EEXIST;
1357 	}
1358 
1359 	/* TODO: Check the pending MOVE from other objects where this
1360 	 * object is a destination object.
1361 	 */
1362 
1363 	/* Consume the credit if not requested not to */
1364 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1365 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1366 	    o->get_credit(o)))
1367 		return -EINVAL;
1368 
1369 	return 0;
1370 }
1371 
1372 /**
1373  * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1374  *
1375  * @bp:		device handle
1376  * @qo:		quable object to check
1377  * @elem:	element that needs to be deleted
1378  *
1379  * Checks that the requested configuration can be deleted. If yes and if
1380  * requested, returns a CAM credit.
1381  *
1382  * The 'validate' is run after the 'optimize'.
1383  */
1384 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1385 					      union bnx2x_qable_obj *qo,
1386 					      struct bnx2x_exeq_elem *elem)
1387 {
1388 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1389 	struct bnx2x_vlan_mac_registry_elem *pos;
1390 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1391 	struct bnx2x_exeq_elem query_elem;
1392 
1393 	/* If this classification can not be deleted (doesn't exist)
1394 	 * - return a BNX2X_EXIST.
1395 	 */
1396 	pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1397 	if (!pos) {
1398 		DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1399 		return -EEXIST;
1400 	}
1401 
1402 	/* Check if there are pending DEL or MOVE commands for this
1403 	 * MAC/VLAN/VLAN-MAC. Return an error if so.
1404 	 */
1405 	memcpy(&query_elem, elem, sizeof(query_elem));
1406 
1407 	/* Check for MOVE commands */
1408 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1409 	if (exeq->get(exeq, &query_elem)) {
1410 		BNX2X_ERR("There is a pending MOVE command already\n");
1411 		return -EINVAL;
1412 	}
1413 
1414 	/* Check for DEL commands */
1415 	if (exeq->get(exeq, elem)) {
1416 		DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1417 		return -EEXIST;
1418 	}
1419 
1420 	/* Return the credit to the credit pool if not requested not to */
1421 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1422 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1423 	    o->put_credit(o))) {
1424 		BNX2X_ERR("Failed to return a credit\n");
1425 		return -EINVAL;
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 /**
1432  * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1433  *
1434  * @bp:		device handle
1435  * @qo:		quable object to check (source)
1436  * @elem:	element that needs to be moved
1437  *
1438  * Checks that the requested configuration can be moved. If yes and if
1439  * requested, returns a CAM credit.
1440  *
1441  * The 'validate' is run after the 'optimize'.
1442  */
1443 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1444 					       union bnx2x_qable_obj *qo,
1445 					       struct bnx2x_exeq_elem *elem)
1446 {
1447 	struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1448 	struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1449 	struct bnx2x_exeq_elem query_elem;
1450 	struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1451 	struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1452 
1453 	/* Check if we can perform this operation based on the current registry
1454 	 * state.
1455 	 */
1456 	if (!src_o->check_move(bp, src_o, dest_o,
1457 			       &elem->cmd_data.vlan_mac.u)) {
1458 		DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1459 		return -EINVAL;
1460 	}
1461 
1462 	/* Check if there is an already pending DEL or MOVE command for the
1463 	 * source object or ADD command for a destination object. Return an
1464 	 * error if so.
1465 	 */
1466 	memcpy(&query_elem, elem, sizeof(query_elem));
1467 
1468 	/* Check DEL on source */
1469 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1470 	if (src_exeq->get(src_exeq, &query_elem)) {
1471 		BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1472 		return -EINVAL;
1473 	}
1474 
1475 	/* Check MOVE on source */
1476 	if (src_exeq->get(src_exeq, elem)) {
1477 		DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1478 		return -EEXIST;
1479 	}
1480 
1481 	/* Check ADD on destination */
1482 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1483 	if (dest_exeq->get(dest_exeq, &query_elem)) {
1484 		BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1485 		return -EINVAL;
1486 	}
1487 
1488 	/* Consume the credit if not requested not to */
1489 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1490 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1491 	    dest_o->get_credit(dest_o)))
1492 		return -EINVAL;
1493 
1494 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1495 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1496 	    src_o->put_credit(src_o))) {
1497 		/* return the credit taken from dest... */
1498 		dest_o->put_credit(dest_o);
1499 		return -EINVAL;
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1506 				   union bnx2x_qable_obj *qo,
1507 				   struct bnx2x_exeq_elem *elem)
1508 {
1509 	switch (elem->cmd_data.vlan_mac.cmd) {
1510 	case BNX2X_VLAN_MAC_ADD:
1511 		return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1512 	case BNX2X_VLAN_MAC_DEL:
1513 		return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1514 	case BNX2X_VLAN_MAC_MOVE:
1515 		return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1516 	default:
1517 		return -EINVAL;
1518 	}
1519 }
1520 
1521 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1522 				  union bnx2x_qable_obj *qo,
1523 				  struct bnx2x_exeq_elem *elem)
1524 {
1525 	int rc = 0;
1526 
1527 	/* If consumption wasn't required, nothing to do */
1528 	if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1529 		     &elem->cmd_data.vlan_mac.vlan_mac_flags))
1530 		return 0;
1531 
1532 	switch (elem->cmd_data.vlan_mac.cmd) {
1533 	case BNX2X_VLAN_MAC_ADD:
1534 	case BNX2X_VLAN_MAC_MOVE:
1535 		rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1536 		break;
1537 	case BNX2X_VLAN_MAC_DEL:
1538 		rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1539 		break;
1540 	default:
1541 		return -EINVAL;
1542 	}
1543 
1544 	if (rc != true)
1545 		return -EINVAL;
1546 
1547 	return 0;
1548 }
1549 
1550 /**
1551  * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1552  *
1553  * @bp:		device handle
1554  * @o:		bnx2x_vlan_mac_obj
1555  *
1556  */
1557 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1558 			       struct bnx2x_vlan_mac_obj *o)
1559 {
1560 	int cnt = 5000, rc;
1561 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1562 	struct bnx2x_raw_obj *raw = &o->raw;
1563 
1564 	while (cnt--) {
1565 		/* Wait for the current command to complete */
1566 		rc = raw->wait_comp(bp, raw);
1567 		if (rc)
1568 			return rc;
1569 
1570 		/* Wait until there are no pending commands */
1571 		if (!bnx2x_exe_queue_empty(exeq))
1572 			usleep_range(1000, 2000);
1573 		else
1574 			return 0;
1575 	}
1576 
1577 	return -EBUSY;
1578 }
1579 
1580 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1581 					 struct bnx2x_vlan_mac_obj *o,
1582 					 unsigned long *ramrod_flags)
1583 {
1584 	int rc = 0;
1585 
1586 	spin_lock_bh(&o->exe_queue.lock);
1587 
1588 	DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1589 	rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1590 
1591 	if (rc != 0) {
1592 		__bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1593 
1594 		/* Calling function should not differentiate between this case
1595 		 * and the case in which there is already a pending ramrod
1596 		 */
1597 		rc = 1;
1598 	} else {
1599 		rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1600 	}
1601 	spin_unlock_bh(&o->exe_queue.lock);
1602 
1603 	return rc;
1604 }
1605 
1606 /**
1607  * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1608  *
1609  * @bp:		device handle
1610  * @o:		bnx2x_vlan_mac_obj
1611  * @cqe:
1612  * @cont:	if true schedule next execution chunk
1613  *
1614  */
1615 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1616 				   struct bnx2x_vlan_mac_obj *o,
1617 				   union event_ring_elem *cqe,
1618 				   unsigned long *ramrod_flags)
1619 {
1620 	struct bnx2x_raw_obj *r = &o->raw;
1621 	int rc;
1622 
1623 	/* Clearing the pending list & raw state should be made
1624 	 * atomically (as execution flow assumes they represent the same).
1625 	 */
1626 	spin_lock_bh(&o->exe_queue.lock);
1627 
1628 	/* Reset pending list */
1629 	__bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1630 
1631 	/* Clear pending */
1632 	r->clear_pending(r);
1633 
1634 	spin_unlock_bh(&o->exe_queue.lock);
1635 
1636 	/* If ramrod failed this is most likely a SW bug */
1637 	if (cqe->message.error)
1638 		return -EINVAL;
1639 
1640 	/* Run the next bulk of pending commands if requested */
1641 	if (test_bit(RAMROD_CONT, ramrod_flags)) {
1642 		rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1643 
1644 		if (rc < 0)
1645 			return rc;
1646 	}
1647 
1648 	/* If there is more work to do return PENDING */
1649 	if (!bnx2x_exe_queue_empty(&o->exe_queue))
1650 		return 1;
1651 
1652 	return 0;
1653 }
1654 
1655 /**
1656  * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1657  *
1658  * @bp:		device handle
1659  * @o:		bnx2x_qable_obj
1660  * @elem:	bnx2x_exeq_elem
1661  */
1662 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1663 				   union bnx2x_qable_obj *qo,
1664 				   struct bnx2x_exeq_elem *elem)
1665 {
1666 	struct bnx2x_exeq_elem query, *pos;
1667 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1668 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1669 
1670 	memcpy(&query, elem, sizeof(query));
1671 
1672 	switch (elem->cmd_data.vlan_mac.cmd) {
1673 	case BNX2X_VLAN_MAC_ADD:
1674 		query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1675 		break;
1676 	case BNX2X_VLAN_MAC_DEL:
1677 		query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1678 		break;
1679 	default:
1680 		/* Don't handle anything other than ADD or DEL */
1681 		return 0;
1682 	}
1683 
1684 	/* If we found the appropriate element - delete it */
1685 	pos = exeq->get(exeq, &query);
1686 	if (pos) {
1687 
1688 		/* Return the credit of the optimized command */
1689 		if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1690 			      &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1691 			if ((query.cmd_data.vlan_mac.cmd ==
1692 			     BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1693 				BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1694 				return -EINVAL;
1695 			} else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1696 				BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1697 				return -EINVAL;
1698 			}
1699 		}
1700 
1701 		DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1702 			   (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1703 			   "ADD" : "DEL");
1704 
1705 		list_del(&pos->link);
1706 		bnx2x_exe_queue_free_elem(bp, pos);
1707 		return 1;
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 /**
1714  * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1715  *
1716  * @bp:	  device handle
1717  * @o:
1718  * @elem:
1719  * @restore:
1720  * @re:
1721  *
1722  * prepare a registry element according to the current command request.
1723  */
1724 static inline int bnx2x_vlan_mac_get_registry_elem(
1725 	struct bnx2x *bp,
1726 	struct bnx2x_vlan_mac_obj *o,
1727 	struct bnx2x_exeq_elem *elem,
1728 	bool restore,
1729 	struct bnx2x_vlan_mac_registry_elem **re)
1730 {
1731 	enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1732 	struct bnx2x_vlan_mac_registry_elem *reg_elem;
1733 
1734 	/* Allocate a new registry element if needed. */
1735 	if (!restore &&
1736 	    ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1737 		reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1738 		if (!reg_elem)
1739 			return -ENOMEM;
1740 
1741 		/* Get a new CAM offset */
1742 		if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1743 			/* This shall never happen, because we have checked the
1744 			 * CAM availability in the 'validate'.
1745 			 */
1746 			WARN_ON(1);
1747 			kfree(reg_elem);
1748 			return -EINVAL;
1749 		}
1750 
1751 		DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1752 
1753 		/* Set a VLAN-MAC data */
1754 		memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1755 			  sizeof(reg_elem->u));
1756 
1757 		/* Copy the flags (needed for DEL and RESTORE flows) */
1758 		reg_elem->vlan_mac_flags =
1759 			elem->cmd_data.vlan_mac.vlan_mac_flags;
1760 	} else /* DEL, RESTORE */
1761 		reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1762 
1763 	*re = reg_elem;
1764 	return 0;
1765 }
1766 
1767 /**
1768  * bnx2x_execute_vlan_mac - execute vlan mac command
1769  *
1770  * @bp:			device handle
1771  * @qo:
1772  * @exe_chunk:
1773  * @ramrod_flags:
1774  *
1775  * go and send a ramrod!
1776  */
1777 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1778 				  union bnx2x_qable_obj *qo,
1779 				  struct list_head *exe_chunk,
1780 				  unsigned long *ramrod_flags)
1781 {
1782 	struct bnx2x_exeq_elem *elem;
1783 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1784 	struct bnx2x_raw_obj *r = &o->raw;
1785 	int rc, idx = 0;
1786 	bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1787 	bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1788 	struct bnx2x_vlan_mac_registry_elem *reg_elem;
1789 	enum bnx2x_vlan_mac_cmd cmd;
1790 
1791 	/* If DRIVER_ONLY execution is requested, cleanup a registry
1792 	 * and exit. Otherwise send a ramrod to FW.
1793 	 */
1794 	if (!drv_only) {
1795 		WARN_ON(r->check_pending(r));
1796 
1797 		/* Set pending */
1798 		r->set_pending(r);
1799 
1800 		/* Fill the ramrod data */
1801 		list_for_each_entry(elem, exe_chunk, link) {
1802 			cmd = elem->cmd_data.vlan_mac.cmd;
1803 			/* We will add to the target object in MOVE command, so
1804 			 * change the object for a CAM search.
1805 			 */
1806 			if (cmd == BNX2X_VLAN_MAC_MOVE)
1807 				cam_obj = elem->cmd_data.vlan_mac.target_obj;
1808 			else
1809 				cam_obj = o;
1810 
1811 			rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1812 							      elem, restore,
1813 							      &reg_elem);
1814 			if (rc)
1815 				goto error_exit;
1816 
1817 			WARN_ON(!reg_elem);
1818 
1819 			/* Push a new entry into the registry */
1820 			if (!restore &&
1821 			    ((cmd == BNX2X_VLAN_MAC_ADD) ||
1822 			    (cmd == BNX2X_VLAN_MAC_MOVE)))
1823 				list_add(&reg_elem->link, &cam_obj->head);
1824 
1825 			/* Configure a single command in a ramrod data buffer */
1826 			o->set_one_rule(bp, o, elem, idx,
1827 					reg_elem->cam_offset);
1828 
1829 			/* MOVE command consumes 2 entries in the ramrod data */
1830 			if (cmd == BNX2X_VLAN_MAC_MOVE)
1831 				idx += 2;
1832 			else
1833 				idx++;
1834 		}
1835 
1836 		/* No need for an explicit memory barrier here as long we would
1837 		 * need to ensure the ordering of writing to the SPQ element
1838 		 * and updating of the SPQ producer which involves a memory
1839 		 * read and we will have to put a full memory barrier there
1840 		 * (inside bnx2x_sp_post()).
1841 		 */
1842 
1843 		rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1844 				   U64_HI(r->rdata_mapping),
1845 				   U64_LO(r->rdata_mapping),
1846 				   ETH_CONNECTION_TYPE);
1847 		if (rc)
1848 			goto error_exit;
1849 	}
1850 
1851 	/* Now, when we are done with the ramrod - clean up the registry */
1852 	list_for_each_entry(elem, exe_chunk, link) {
1853 		cmd = elem->cmd_data.vlan_mac.cmd;
1854 		if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1855 		    (cmd == BNX2X_VLAN_MAC_MOVE)) {
1856 			reg_elem = o->check_del(bp, o,
1857 						&elem->cmd_data.vlan_mac.u);
1858 
1859 			WARN_ON(!reg_elem);
1860 
1861 			o->put_cam_offset(o, reg_elem->cam_offset);
1862 			list_del(&reg_elem->link);
1863 			kfree(reg_elem);
1864 		}
1865 	}
1866 
1867 	if (!drv_only)
1868 		return 1;
1869 	else
1870 		return 0;
1871 
1872 error_exit:
1873 	r->clear_pending(r);
1874 
1875 	/* Cleanup a registry in case of a failure */
1876 	list_for_each_entry(elem, exe_chunk, link) {
1877 		cmd = elem->cmd_data.vlan_mac.cmd;
1878 
1879 		if (cmd == BNX2X_VLAN_MAC_MOVE)
1880 			cam_obj = elem->cmd_data.vlan_mac.target_obj;
1881 		else
1882 			cam_obj = o;
1883 
1884 		/* Delete all newly added above entries */
1885 		if (!restore &&
1886 		    ((cmd == BNX2X_VLAN_MAC_ADD) ||
1887 		    (cmd == BNX2X_VLAN_MAC_MOVE))) {
1888 			reg_elem = o->check_del(bp, cam_obj,
1889 						&elem->cmd_data.vlan_mac.u);
1890 			if (reg_elem) {
1891 				list_del(&reg_elem->link);
1892 				kfree(reg_elem);
1893 			}
1894 		}
1895 	}
1896 
1897 	return rc;
1898 }
1899 
1900 static inline int bnx2x_vlan_mac_push_new_cmd(
1901 	struct bnx2x *bp,
1902 	struct bnx2x_vlan_mac_ramrod_params *p)
1903 {
1904 	struct bnx2x_exeq_elem *elem;
1905 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1906 	bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1907 
1908 	/* Allocate the execution queue element */
1909 	elem = bnx2x_exe_queue_alloc_elem(bp);
1910 	if (!elem)
1911 		return -ENOMEM;
1912 
1913 	/* Set the command 'length' */
1914 	switch (p->user_req.cmd) {
1915 	case BNX2X_VLAN_MAC_MOVE:
1916 		elem->cmd_len = 2;
1917 		break;
1918 	default:
1919 		elem->cmd_len = 1;
1920 	}
1921 
1922 	/* Fill the object specific info */
1923 	memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1924 
1925 	/* Try to add a new command to the pending list */
1926 	return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1927 }
1928 
1929 /**
1930  * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1931  *
1932  * @bp:	  device handle
1933  * @p:
1934  *
1935  */
1936 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1937 			   struct bnx2x_vlan_mac_ramrod_params *p)
1938 {
1939 	int rc = 0;
1940 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1941 	unsigned long *ramrod_flags = &p->ramrod_flags;
1942 	bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1943 	struct bnx2x_raw_obj *raw = &o->raw;
1944 
1945 	/*
1946 	 * Add new elements to the execution list for commands that require it.
1947 	 */
1948 	if (!cont) {
1949 		rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1950 		if (rc)
1951 			return rc;
1952 	}
1953 
1954 	/* If nothing will be executed further in this iteration we want to
1955 	 * return PENDING if there are pending commands
1956 	 */
1957 	if (!bnx2x_exe_queue_empty(&o->exe_queue))
1958 		rc = 1;
1959 
1960 	if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
1961 		DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1962 		raw->clear_pending(raw);
1963 	}
1964 
1965 	/* Execute commands if required */
1966 	if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1967 	    test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1968 		rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1969 						   &p->ramrod_flags);
1970 		if (rc < 0)
1971 			return rc;
1972 	}
1973 
1974 	/* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1975 	 * then user want to wait until the last command is done.
1976 	 */
1977 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1978 		/* Wait maximum for the current exe_queue length iterations plus
1979 		 * one (for the current pending command).
1980 		 */
1981 		int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1982 
1983 		while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1984 		       max_iterations--) {
1985 
1986 			/* Wait for the current command to complete */
1987 			rc = raw->wait_comp(bp, raw);
1988 			if (rc)
1989 				return rc;
1990 
1991 			/* Make a next step */
1992 			rc = __bnx2x_vlan_mac_execute_step(bp,
1993 							   p->vlan_mac_obj,
1994 							   &p->ramrod_flags);
1995 			if (rc < 0)
1996 				return rc;
1997 		}
1998 
1999 		return 0;
2000 	}
2001 
2002 	return rc;
2003 }
2004 
2005 /**
2006  * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2007  *
2008  * @bp:			device handle
2009  * @o:
2010  * @vlan_mac_flags:
2011  * @ramrod_flags:	execution flags to be used for this deletion
2012  *
2013  * if the last operation has completed successfully and there are no
2014  * more elements left, positive value if the last operation has completed
2015  * successfully and there are more previously configured elements, negative
2016  * value is current operation has failed.
2017  */
2018 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
2019 				  struct bnx2x_vlan_mac_obj *o,
2020 				  unsigned long *vlan_mac_flags,
2021 				  unsigned long *ramrod_flags)
2022 {
2023 	struct bnx2x_vlan_mac_registry_elem *pos = NULL;
2024 	struct bnx2x_vlan_mac_ramrod_params p;
2025 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
2026 	struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
2027 	unsigned long flags;
2028 	int read_lock;
2029 	int rc = 0;
2030 
2031 	/* Clear pending commands first */
2032 
2033 	spin_lock_bh(&exeq->lock);
2034 
2035 	list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
2036 		flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2037 		if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2038 		    BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2039 			rc = exeq->remove(bp, exeq->owner, exeq_pos);
2040 			if (rc) {
2041 				BNX2X_ERR("Failed to remove command\n");
2042 				spin_unlock_bh(&exeq->lock);
2043 				return rc;
2044 			}
2045 			list_del(&exeq_pos->link);
2046 			bnx2x_exe_queue_free_elem(bp, exeq_pos);
2047 		}
2048 	}
2049 
2050 	spin_unlock_bh(&exeq->lock);
2051 
2052 	/* Prepare a command request */
2053 	memset(&p, 0, sizeof(p));
2054 	p.vlan_mac_obj = o;
2055 	p.ramrod_flags = *ramrod_flags;
2056 	p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
2057 
2058 	/* Add all but the last VLAN-MAC to the execution queue without actually
2059 	 * execution anything.
2060 	 */
2061 	__clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
2062 	__clear_bit(RAMROD_EXEC, &p.ramrod_flags);
2063 	__clear_bit(RAMROD_CONT, &p.ramrod_flags);
2064 
2065 	DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2066 	read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
2067 	if (read_lock != 0)
2068 		return read_lock;
2069 
2070 	list_for_each_entry(pos, &o->head, link) {
2071 		flags = pos->vlan_mac_flags;
2072 		if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2073 		    BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2074 			p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2075 			memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2076 			rc = bnx2x_config_vlan_mac(bp, &p);
2077 			if (rc < 0) {
2078 				BNX2X_ERR("Failed to add a new DEL command\n");
2079 				bnx2x_vlan_mac_h_read_unlock(bp, o);
2080 				return rc;
2081 			}
2082 		}
2083 	}
2084 
2085 	DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2086 	bnx2x_vlan_mac_h_read_unlock(bp, o);
2087 
2088 	p.ramrod_flags = *ramrod_flags;
2089 	__set_bit(RAMROD_CONT, &p.ramrod_flags);
2090 
2091 	return bnx2x_config_vlan_mac(bp, &p);
2092 }
2093 
2094 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
2095 	u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
2096 	unsigned long *pstate, bnx2x_obj_type type)
2097 {
2098 	raw->func_id = func_id;
2099 	raw->cid = cid;
2100 	raw->cl_id = cl_id;
2101 	raw->rdata = rdata;
2102 	raw->rdata_mapping = rdata_mapping;
2103 	raw->state = state;
2104 	raw->pstate = pstate;
2105 	raw->obj_type = type;
2106 	raw->check_pending = bnx2x_raw_check_pending;
2107 	raw->clear_pending = bnx2x_raw_clear_pending;
2108 	raw->set_pending = bnx2x_raw_set_pending;
2109 	raw->wait_comp = bnx2x_raw_wait;
2110 }
2111 
2112 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
2113 	u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
2114 	int state, unsigned long *pstate, bnx2x_obj_type type,
2115 	struct bnx2x_credit_pool_obj *macs_pool,
2116 	struct bnx2x_credit_pool_obj *vlans_pool)
2117 {
2118 	INIT_LIST_HEAD(&o->head);
2119 	o->head_reader = 0;
2120 	o->head_exe_request = false;
2121 	o->saved_ramrod_flags = 0;
2122 
2123 	o->macs_pool = macs_pool;
2124 	o->vlans_pool = vlans_pool;
2125 
2126 	o->delete_all = bnx2x_vlan_mac_del_all;
2127 	o->restore = bnx2x_vlan_mac_restore;
2128 	o->complete = bnx2x_complete_vlan_mac;
2129 	o->wait = bnx2x_wait_vlan_mac;
2130 
2131 	bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2132 			   state, pstate, type);
2133 }
2134 
2135 void bnx2x_init_mac_obj(struct bnx2x *bp,
2136 			struct bnx2x_vlan_mac_obj *mac_obj,
2137 			u8 cl_id, u32 cid, u8 func_id, void *rdata,
2138 			dma_addr_t rdata_mapping, int state,
2139 			unsigned long *pstate, bnx2x_obj_type type,
2140 			struct bnx2x_credit_pool_obj *macs_pool)
2141 {
2142 	union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
2143 
2144 	bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2145 				   rdata_mapping, state, pstate, type,
2146 				   macs_pool, NULL);
2147 
2148 	/* CAM credit pool handling */
2149 	mac_obj->get_credit = bnx2x_get_credit_mac;
2150 	mac_obj->put_credit = bnx2x_put_credit_mac;
2151 	mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2152 	mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2153 
2154 	if (CHIP_IS_E1x(bp)) {
2155 		mac_obj->set_one_rule      = bnx2x_set_one_mac_e1x;
2156 		mac_obj->check_del         = bnx2x_check_mac_del;
2157 		mac_obj->check_add         = bnx2x_check_mac_add;
2158 		mac_obj->check_move        = bnx2x_check_move_always_err;
2159 		mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2160 
2161 		/* Exe Queue */
2162 		bnx2x_exe_queue_init(bp,
2163 				     &mac_obj->exe_queue, 1, qable_obj,
2164 				     bnx2x_validate_vlan_mac,
2165 				     bnx2x_remove_vlan_mac,
2166 				     bnx2x_optimize_vlan_mac,
2167 				     bnx2x_execute_vlan_mac,
2168 				     bnx2x_exeq_get_mac);
2169 	} else {
2170 		mac_obj->set_one_rule      = bnx2x_set_one_mac_e2;
2171 		mac_obj->check_del         = bnx2x_check_mac_del;
2172 		mac_obj->check_add         = bnx2x_check_mac_add;
2173 		mac_obj->check_move        = bnx2x_check_move;
2174 		mac_obj->ramrod_cmd        =
2175 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2176 		mac_obj->get_n_elements    = bnx2x_get_n_elements;
2177 
2178 		/* Exe Queue */
2179 		bnx2x_exe_queue_init(bp,
2180 				     &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2181 				     qable_obj, bnx2x_validate_vlan_mac,
2182 				     bnx2x_remove_vlan_mac,
2183 				     bnx2x_optimize_vlan_mac,
2184 				     bnx2x_execute_vlan_mac,
2185 				     bnx2x_exeq_get_mac);
2186 	}
2187 }
2188 
2189 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2190 			 struct bnx2x_vlan_mac_obj *vlan_obj,
2191 			 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2192 			 dma_addr_t rdata_mapping, int state,
2193 			 unsigned long *pstate, bnx2x_obj_type type,
2194 			 struct bnx2x_credit_pool_obj *vlans_pool)
2195 {
2196 	union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2197 
2198 	bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2199 				   rdata_mapping, state, pstate, type, NULL,
2200 				   vlans_pool);
2201 
2202 	vlan_obj->get_credit = bnx2x_get_credit_vlan;
2203 	vlan_obj->put_credit = bnx2x_put_credit_vlan;
2204 	vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2205 	vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2206 
2207 	if (CHIP_IS_E1x(bp)) {
2208 		BNX2X_ERR("Do not support chips others than E2 and newer\n");
2209 		BUG();
2210 	} else {
2211 		vlan_obj->set_one_rule      = bnx2x_set_one_vlan_e2;
2212 		vlan_obj->check_del         = bnx2x_check_vlan_del;
2213 		vlan_obj->check_add         = bnx2x_check_vlan_add;
2214 		vlan_obj->check_move        = bnx2x_check_move;
2215 		vlan_obj->ramrod_cmd        =
2216 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2217 		vlan_obj->get_n_elements    = bnx2x_get_n_elements;
2218 
2219 		/* Exe Queue */
2220 		bnx2x_exe_queue_init(bp,
2221 				     &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2222 				     qable_obj, bnx2x_validate_vlan_mac,
2223 				     bnx2x_remove_vlan_mac,
2224 				     bnx2x_optimize_vlan_mac,
2225 				     bnx2x_execute_vlan_mac,
2226 				     bnx2x_exeq_get_vlan);
2227 	}
2228 }
2229 
2230 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2231 			     struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2232 			     u8 cl_id, u32 cid, u8 func_id, void *rdata,
2233 			     dma_addr_t rdata_mapping, int state,
2234 			     unsigned long *pstate, bnx2x_obj_type type,
2235 			     struct bnx2x_credit_pool_obj *macs_pool,
2236 			     struct bnx2x_credit_pool_obj *vlans_pool)
2237 {
2238 	union bnx2x_qable_obj *qable_obj =
2239 		(union bnx2x_qable_obj *)vlan_mac_obj;
2240 
2241 	bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2242 				   rdata_mapping, state, pstate, type,
2243 				   macs_pool, vlans_pool);
2244 
2245 	/* CAM pool handling */
2246 	vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2247 	vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2248 	/* CAM offset is relevant for 57710 and 57711 chips only which have a
2249 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2250 	 * will be taken from MACs' pool object only.
2251 	 */
2252 	vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2253 	vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2254 
2255 	if (CHIP_IS_E1(bp)) {
2256 		BNX2X_ERR("Do not support chips others than E2\n");
2257 		BUG();
2258 	} else if (CHIP_IS_E1H(bp)) {
2259 		vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e1h;
2260 		vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2261 		vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2262 		vlan_mac_obj->check_move        = bnx2x_check_move_always_err;
2263 		vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2264 
2265 		/* Exe Queue */
2266 		bnx2x_exe_queue_init(bp,
2267 				     &vlan_mac_obj->exe_queue, 1, qable_obj,
2268 				     bnx2x_validate_vlan_mac,
2269 				     bnx2x_remove_vlan_mac,
2270 				     bnx2x_optimize_vlan_mac,
2271 				     bnx2x_execute_vlan_mac,
2272 				     bnx2x_exeq_get_vlan_mac);
2273 	} else {
2274 		vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e2;
2275 		vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2276 		vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2277 		vlan_mac_obj->check_move        = bnx2x_check_move;
2278 		vlan_mac_obj->ramrod_cmd        =
2279 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2280 
2281 		/* Exe Queue */
2282 		bnx2x_exe_queue_init(bp,
2283 				     &vlan_mac_obj->exe_queue,
2284 				     CLASSIFY_RULES_COUNT,
2285 				     qable_obj, bnx2x_validate_vlan_mac,
2286 				     bnx2x_remove_vlan_mac,
2287 				     bnx2x_optimize_vlan_mac,
2288 				     bnx2x_execute_vlan_mac,
2289 				     bnx2x_exeq_get_vlan_mac);
2290 	}
2291 }
2292 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2293 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2294 			struct tstorm_eth_mac_filter_config *mac_filters,
2295 			u16 pf_id)
2296 {
2297 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2298 
2299 	u32 addr = BAR_TSTRORM_INTMEM +
2300 			TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2301 
2302 	__storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2303 }
2304 
2305 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2306 				 struct bnx2x_rx_mode_ramrod_params *p)
2307 {
2308 	/* update the bp MAC filter structure */
2309 	u32 mask = (1 << p->cl_id);
2310 
2311 	struct tstorm_eth_mac_filter_config *mac_filters =
2312 		(struct tstorm_eth_mac_filter_config *)p->rdata;
2313 
2314 	/* initial setting is drop-all */
2315 	u8 drop_all_ucast = 1, drop_all_mcast = 1;
2316 	u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2317 	u8 unmatched_unicast = 0;
2318 
2319     /* In e1x there we only take into account rx accept flag since tx switching
2320      * isn't enabled. */
2321 	if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2322 		/* accept matched ucast */
2323 		drop_all_ucast = 0;
2324 
2325 	if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2326 		/* accept matched mcast */
2327 		drop_all_mcast = 0;
2328 
2329 	if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2330 		/* accept all mcast */
2331 		drop_all_ucast = 0;
2332 		accp_all_ucast = 1;
2333 	}
2334 	if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2335 		/* accept all mcast */
2336 		drop_all_mcast = 0;
2337 		accp_all_mcast = 1;
2338 	}
2339 	if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2340 		/* accept (all) bcast */
2341 		accp_all_bcast = 1;
2342 	if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2343 		/* accept unmatched unicasts */
2344 		unmatched_unicast = 1;
2345 
2346 	mac_filters->ucast_drop_all = drop_all_ucast ?
2347 		mac_filters->ucast_drop_all | mask :
2348 		mac_filters->ucast_drop_all & ~mask;
2349 
2350 	mac_filters->mcast_drop_all = drop_all_mcast ?
2351 		mac_filters->mcast_drop_all | mask :
2352 		mac_filters->mcast_drop_all & ~mask;
2353 
2354 	mac_filters->ucast_accept_all = accp_all_ucast ?
2355 		mac_filters->ucast_accept_all | mask :
2356 		mac_filters->ucast_accept_all & ~mask;
2357 
2358 	mac_filters->mcast_accept_all = accp_all_mcast ?
2359 		mac_filters->mcast_accept_all | mask :
2360 		mac_filters->mcast_accept_all & ~mask;
2361 
2362 	mac_filters->bcast_accept_all = accp_all_bcast ?
2363 		mac_filters->bcast_accept_all | mask :
2364 		mac_filters->bcast_accept_all & ~mask;
2365 
2366 	mac_filters->unmatched_unicast = unmatched_unicast ?
2367 		mac_filters->unmatched_unicast | mask :
2368 		mac_filters->unmatched_unicast & ~mask;
2369 
2370 	DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2371 			 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2372 	   mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2373 	   mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2374 	   mac_filters->bcast_accept_all);
2375 
2376 	/* write the MAC filter structure*/
2377 	__storm_memset_mac_filters(bp, mac_filters, p->func_id);
2378 
2379 	/* The operation is completed */
2380 	clear_bit(p->state, p->pstate);
2381 	smp_mb__after_atomic();
2382 
2383 	return 0;
2384 }
2385 
2386 /* Setup ramrod data */
2387 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2388 				struct eth_classify_header *hdr,
2389 				u8 rule_cnt)
2390 {
2391 	hdr->echo = cpu_to_le32(cid);
2392 	hdr->rule_cnt = rule_cnt;
2393 }
2394 
2395 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2396 				unsigned long *accept_flags,
2397 				struct eth_filter_rules_cmd *cmd,
2398 				bool clear_accept_all)
2399 {
2400 	u16 state;
2401 
2402 	/* start with 'drop-all' */
2403 	state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2404 		ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2405 
2406 	if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2407 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2408 
2409 	if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2410 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2411 
2412 	if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2413 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2414 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2415 	}
2416 
2417 	if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2418 		state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2419 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2420 	}
2421 
2422 	if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2423 		state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2424 
2425 	if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2426 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2427 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2428 	}
2429 
2430 	if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2431 		state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2432 
2433 	/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2434 	if (clear_accept_all) {
2435 		state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2436 		state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2437 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2438 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2439 	}
2440 
2441 	cmd->state = cpu_to_le16(state);
2442 }
2443 
2444 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2445 				struct bnx2x_rx_mode_ramrod_params *p)
2446 {
2447 	struct eth_filter_rules_ramrod_data *data = p->rdata;
2448 	int rc;
2449 	u8 rule_idx = 0;
2450 
2451 	/* Reset the ramrod data buffer */
2452 	memset(data, 0, sizeof(*data));
2453 
2454 	/* Setup ramrod data */
2455 
2456 	/* Tx (internal switching) */
2457 	if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2458 		data->rules[rule_idx].client_id = p->cl_id;
2459 		data->rules[rule_idx].func_id = p->func_id;
2460 
2461 		data->rules[rule_idx].cmd_general_data =
2462 			ETH_FILTER_RULES_CMD_TX_CMD;
2463 
2464 		bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2465 					       &(data->rules[rule_idx++]),
2466 					       false);
2467 	}
2468 
2469 	/* Rx */
2470 	if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2471 		data->rules[rule_idx].client_id = p->cl_id;
2472 		data->rules[rule_idx].func_id = p->func_id;
2473 
2474 		data->rules[rule_idx].cmd_general_data =
2475 			ETH_FILTER_RULES_CMD_RX_CMD;
2476 
2477 		bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2478 					       &(data->rules[rule_idx++]),
2479 					       false);
2480 	}
2481 
2482 	/* If FCoE Queue configuration has been requested configure the Rx and
2483 	 * internal switching modes for this queue in separate rules.
2484 	 *
2485 	 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2486 	 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2487 	 */
2488 	if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2489 		/*  Tx (internal switching) */
2490 		if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2491 			data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2492 			data->rules[rule_idx].func_id = p->func_id;
2493 
2494 			data->rules[rule_idx].cmd_general_data =
2495 						ETH_FILTER_RULES_CMD_TX_CMD;
2496 
2497 			bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2498 						       &(data->rules[rule_idx]),
2499 						       true);
2500 			rule_idx++;
2501 		}
2502 
2503 		/* Rx */
2504 		if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2505 			data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2506 			data->rules[rule_idx].func_id = p->func_id;
2507 
2508 			data->rules[rule_idx].cmd_general_data =
2509 						ETH_FILTER_RULES_CMD_RX_CMD;
2510 
2511 			bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2512 						       &(data->rules[rule_idx]),
2513 						       true);
2514 			rule_idx++;
2515 		}
2516 	}
2517 
2518 	/* Set the ramrod header (most importantly - number of rules to
2519 	 * configure).
2520 	 */
2521 	bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2522 
2523 	DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2524 			 data->header.rule_cnt, p->rx_accept_flags,
2525 			 p->tx_accept_flags);
2526 
2527 	/* No need for an explicit memory barrier here as long as we
2528 	 * ensure the ordering of writing to the SPQ element
2529 	 * and updating of the SPQ producer which involves a memory
2530 	 * read. If the memory read is removed we will have to put a
2531 	 * full memory barrier there (inside bnx2x_sp_post()).
2532 	 */
2533 
2534 	/* Send a ramrod */
2535 	rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2536 			   U64_HI(p->rdata_mapping),
2537 			   U64_LO(p->rdata_mapping),
2538 			   ETH_CONNECTION_TYPE);
2539 	if (rc)
2540 		return rc;
2541 
2542 	/* Ramrod completion is pending */
2543 	return 1;
2544 }
2545 
2546 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2547 				      struct bnx2x_rx_mode_ramrod_params *p)
2548 {
2549 	return bnx2x_state_wait(bp, p->state, p->pstate);
2550 }
2551 
2552 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2553 				    struct bnx2x_rx_mode_ramrod_params *p)
2554 {
2555 	/* Do nothing */
2556 	return 0;
2557 }
2558 
2559 int bnx2x_config_rx_mode(struct bnx2x *bp,
2560 			 struct bnx2x_rx_mode_ramrod_params *p)
2561 {
2562 	int rc;
2563 
2564 	/* Configure the new classification in the chip */
2565 	rc = p->rx_mode_obj->config_rx_mode(bp, p);
2566 	if (rc < 0)
2567 		return rc;
2568 
2569 	/* Wait for a ramrod completion if was requested */
2570 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2571 		rc = p->rx_mode_obj->wait_comp(bp, p);
2572 		if (rc)
2573 			return rc;
2574 	}
2575 
2576 	return rc;
2577 }
2578 
2579 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2580 			    struct bnx2x_rx_mode_obj *o)
2581 {
2582 	if (CHIP_IS_E1x(bp)) {
2583 		o->wait_comp      = bnx2x_empty_rx_mode_wait;
2584 		o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2585 	} else {
2586 		o->wait_comp      = bnx2x_wait_rx_mode_comp_e2;
2587 		o->config_rx_mode = bnx2x_set_rx_mode_e2;
2588 	}
2589 }
2590 
2591 /********************* Multicast verbs: SET, CLEAR ****************************/
2592 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2593 {
2594 	return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2595 }
2596 
2597 struct bnx2x_mcast_mac_elem {
2598 	struct list_head link;
2599 	u8 mac[ETH_ALEN];
2600 	u8 pad[2]; /* For a natural alignment of the following buffer */
2601 };
2602 
2603 struct bnx2x_mcast_bin_elem {
2604 	struct list_head link;
2605 	int bin;
2606 	int type; /* BNX2X_MCAST_CMD_SET_{ADD, DEL} */
2607 };
2608 
2609 union bnx2x_mcast_elem {
2610 	struct bnx2x_mcast_bin_elem bin_elem;
2611 	struct bnx2x_mcast_mac_elem mac_elem;
2612 };
2613 
2614 struct bnx2x_mcast_elem_group {
2615 	struct list_head mcast_group_link;
2616 	union bnx2x_mcast_elem mcast_elems[];
2617 };
2618 
2619 #define MCAST_MAC_ELEMS_PER_PG \
2620 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_elem_group)) / \
2621 	sizeof(union bnx2x_mcast_elem))
2622 
2623 struct bnx2x_pending_mcast_cmd {
2624 	struct list_head link;
2625 	struct list_head group_head;
2626 	int type; /* BNX2X_MCAST_CMD_X */
2627 	union {
2628 		struct list_head macs_head;
2629 		u32 macs_num; /* Needed for DEL command */
2630 		int next_bin; /* Needed for RESTORE flow with aprox match */
2631 	} data;
2632 
2633 	bool set_convert; /* in case type == BNX2X_MCAST_CMD_SET, this is set
2634 			   * when macs_head had been converted to a list of
2635 			   * bnx2x_mcast_bin_elem.
2636 			   */
2637 
2638 	bool done; /* set to true, when the command has been handled,
2639 		    * practically used in 57712 handling only, where one pending
2640 		    * command may be handled in a few operations. As long as for
2641 		    * other chips every operation handling is completed in a
2642 		    * single ramrod, there is no need to utilize this field.
2643 		    */
2644 };
2645 
2646 static int bnx2x_mcast_wait(struct bnx2x *bp,
2647 			    struct bnx2x_mcast_obj *o)
2648 {
2649 	if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2650 			o->raw.wait_comp(bp, &o->raw))
2651 		return -EBUSY;
2652 
2653 	return 0;
2654 }
2655 
2656 static void bnx2x_free_groups(struct list_head *mcast_group_list)
2657 {
2658 	struct bnx2x_mcast_elem_group *current_mcast_group;
2659 
2660 	while (!list_empty(mcast_group_list)) {
2661 		current_mcast_group = list_first_entry(mcast_group_list,
2662 				      struct bnx2x_mcast_elem_group,
2663 				      mcast_group_link);
2664 		list_del(&current_mcast_group->mcast_group_link);
2665 		free_page((unsigned long)current_mcast_group);
2666 	}
2667 }
2668 
2669 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2670 				   struct bnx2x_mcast_obj *o,
2671 				   struct bnx2x_mcast_ramrod_params *p,
2672 				   enum bnx2x_mcast_cmd cmd)
2673 {
2674 	struct bnx2x_pending_mcast_cmd *new_cmd;
2675 	struct bnx2x_mcast_list_elem *pos;
2676 	struct bnx2x_mcast_elem_group *elem_group;
2677 	struct bnx2x_mcast_mac_elem *mac_elem;
2678 	int total_elems = 0, macs_list_len = 0, offset = 0;
2679 
2680 	/* When adding MACs we'll need to store their values */
2681 	if (cmd == BNX2X_MCAST_CMD_ADD || cmd == BNX2X_MCAST_CMD_SET)
2682 		macs_list_len = p->mcast_list_len;
2683 
2684 	/* If the command is empty ("handle pending commands only"), break */
2685 	if (!p->mcast_list_len)
2686 		return 0;
2687 
2688 	/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2689 	new_cmd = kzalloc(sizeof(*new_cmd), GFP_ATOMIC);
2690 	if (!new_cmd)
2691 		return -ENOMEM;
2692 
2693 	INIT_LIST_HEAD(&new_cmd->data.macs_head);
2694 	INIT_LIST_HEAD(&new_cmd->group_head);
2695 	new_cmd->type = cmd;
2696 	new_cmd->done = false;
2697 
2698 	DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2699 	   cmd, macs_list_len);
2700 
2701 	switch (cmd) {
2702 	case BNX2X_MCAST_CMD_ADD:
2703 	case BNX2X_MCAST_CMD_SET:
2704 		/* For a set command, we need to allocate sufficient memory for
2705 		 * all the bins, since we can't analyze at this point how much
2706 		 * memory would be required.
2707 		 */
2708 		total_elems = macs_list_len;
2709 		if (cmd == BNX2X_MCAST_CMD_SET) {
2710 			if (total_elems < BNX2X_MCAST_BINS_NUM)
2711 				total_elems = BNX2X_MCAST_BINS_NUM;
2712 		}
2713 		while (total_elems > 0) {
2714 			elem_group = (struct bnx2x_mcast_elem_group *)
2715 				     __get_free_page(GFP_ATOMIC | __GFP_ZERO);
2716 			if (!elem_group) {
2717 				bnx2x_free_groups(&new_cmd->group_head);
2718 				kfree(new_cmd);
2719 				return -ENOMEM;
2720 			}
2721 			total_elems -= MCAST_MAC_ELEMS_PER_PG;
2722 			list_add_tail(&elem_group->mcast_group_link,
2723 				      &new_cmd->group_head);
2724 		}
2725 		elem_group = list_first_entry(&new_cmd->group_head,
2726 					      struct bnx2x_mcast_elem_group,
2727 					      mcast_group_link);
2728 		list_for_each_entry(pos, &p->mcast_list, link) {
2729 			mac_elem = &elem_group->mcast_elems[offset].mac_elem;
2730 			memcpy(mac_elem->mac, pos->mac, ETH_ALEN);
2731 			/* Push the MACs of the current command into the pending
2732 			 * command MACs list: FIFO
2733 			 */
2734 			list_add_tail(&mac_elem->link,
2735 				      &new_cmd->data.macs_head);
2736 			offset++;
2737 			if (offset == MCAST_MAC_ELEMS_PER_PG) {
2738 				offset = 0;
2739 				elem_group = list_next_entry(elem_group,
2740 							     mcast_group_link);
2741 			}
2742 		}
2743 		break;
2744 
2745 	case BNX2X_MCAST_CMD_DEL:
2746 		new_cmd->data.macs_num = p->mcast_list_len;
2747 		break;
2748 
2749 	case BNX2X_MCAST_CMD_RESTORE:
2750 		new_cmd->data.next_bin = 0;
2751 		break;
2752 
2753 	default:
2754 		kfree(new_cmd);
2755 		BNX2X_ERR("Unknown command: %d\n", cmd);
2756 		return -EINVAL;
2757 	}
2758 
2759 	/* Push the new pending command to the tail of the pending list: FIFO */
2760 	list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2761 
2762 	o->set_sched(o);
2763 
2764 	return 1;
2765 }
2766 
2767 /**
2768  * bnx2x_mcast_get_next_bin - get the next set bin (index)
2769  *
2770  * @o:
2771  * @last:	index to start looking from (including)
2772  *
2773  * returns the next found (set) bin or a negative value if none is found.
2774  */
2775 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2776 {
2777 	int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2778 
2779 	for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2780 		if (o->registry.aprox_match.vec[i])
2781 			for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2782 				int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2783 				if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2784 						       vec, cur_bit)) {
2785 					return cur_bit;
2786 				}
2787 			}
2788 		inner_start = 0;
2789 	}
2790 
2791 	/* None found */
2792 	return -1;
2793 }
2794 
2795 /**
2796  * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2797  *
2798  * @o:
2799  *
2800  * returns the index of the found bin or -1 if none is found
2801  */
2802 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2803 {
2804 	int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2805 
2806 	if (cur_bit >= 0)
2807 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2808 
2809 	return cur_bit;
2810 }
2811 
2812 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2813 {
2814 	struct bnx2x_raw_obj *raw = &o->raw;
2815 	u8 rx_tx_flag = 0;
2816 
2817 	if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2818 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2819 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2820 
2821 	if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2822 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2823 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2824 
2825 	return rx_tx_flag;
2826 }
2827 
2828 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2829 					struct bnx2x_mcast_obj *o, int idx,
2830 					union bnx2x_mcast_config_data *cfg_data,
2831 					enum bnx2x_mcast_cmd cmd)
2832 {
2833 	struct bnx2x_raw_obj *r = &o->raw;
2834 	struct eth_multicast_rules_ramrod_data *data =
2835 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
2836 	u8 func_id = r->func_id;
2837 	u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2838 	int bin;
2839 
2840 	if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE) ||
2841 	    (cmd == BNX2X_MCAST_CMD_SET_ADD))
2842 		rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2843 
2844 	data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2845 
2846 	/* Get a bin and update a bins' vector */
2847 	switch (cmd) {
2848 	case BNX2X_MCAST_CMD_ADD:
2849 		bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2850 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2851 		break;
2852 
2853 	case BNX2X_MCAST_CMD_DEL:
2854 		/* If there were no more bins to clear
2855 		 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2856 		 * clear any (0xff) bin.
2857 		 * See bnx2x_mcast_validate_e2() for explanation when it may
2858 		 * happen.
2859 		 */
2860 		bin = bnx2x_mcast_clear_first_bin(o);
2861 		break;
2862 
2863 	case BNX2X_MCAST_CMD_RESTORE:
2864 		bin = cfg_data->bin;
2865 		break;
2866 
2867 	case BNX2X_MCAST_CMD_SET_ADD:
2868 		bin = cfg_data->bin;
2869 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2870 		break;
2871 
2872 	case BNX2X_MCAST_CMD_SET_DEL:
2873 		bin = cfg_data->bin;
2874 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, bin);
2875 		break;
2876 
2877 	default:
2878 		BNX2X_ERR("Unknown command: %d\n", cmd);
2879 		return;
2880 	}
2881 
2882 	DP(BNX2X_MSG_SP, "%s bin %d\n",
2883 			 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2884 			 "Setting"  : "Clearing"), bin);
2885 
2886 	data->rules[idx].bin_id    = (u8)bin;
2887 	data->rules[idx].func_id   = func_id;
2888 	data->rules[idx].engine_id = o->engine_id;
2889 }
2890 
2891 /**
2892  * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2893  *
2894  * @bp:		device handle
2895  * @o:
2896  * @start_bin:	index in the registry to start from (including)
2897  * @rdata_idx:	index in the ramrod data to start from
2898  *
2899  * returns last handled bin index or -1 if all bins have been handled
2900  */
2901 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2902 	struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2903 	int *rdata_idx)
2904 {
2905 	int cur_bin, cnt = *rdata_idx;
2906 	union bnx2x_mcast_config_data cfg_data = {NULL};
2907 
2908 	/* go through the registry and configure the bins from it */
2909 	for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2910 	    cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2911 
2912 		cfg_data.bin = (u8)cur_bin;
2913 		o->set_one_rule(bp, o, cnt, &cfg_data,
2914 				BNX2X_MCAST_CMD_RESTORE);
2915 
2916 		cnt++;
2917 
2918 		DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2919 
2920 		/* Break if we reached the maximum number
2921 		 * of rules.
2922 		 */
2923 		if (cnt >= o->max_cmd_len)
2924 			break;
2925 	}
2926 
2927 	*rdata_idx = cnt;
2928 
2929 	return cur_bin;
2930 }
2931 
2932 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2933 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2934 	int *line_idx)
2935 {
2936 	struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2937 	int cnt = *line_idx;
2938 	union bnx2x_mcast_config_data cfg_data = {NULL};
2939 
2940 	list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2941 				 link) {
2942 
2943 		cfg_data.mac = &pmac_pos->mac[0];
2944 		o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2945 
2946 		cnt++;
2947 
2948 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2949 		   pmac_pos->mac);
2950 
2951 		list_del(&pmac_pos->link);
2952 
2953 		/* Break if we reached the maximum number
2954 		 * of rules.
2955 		 */
2956 		if (cnt >= o->max_cmd_len)
2957 			break;
2958 	}
2959 
2960 	*line_idx = cnt;
2961 
2962 	/* if no more MACs to configure - we are done */
2963 	if (list_empty(&cmd_pos->data.macs_head))
2964 		cmd_pos->done = true;
2965 }
2966 
2967 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2968 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2969 	int *line_idx)
2970 {
2971 	int cnt = *line_idx;
2972 
2973 	while (cmd_pos->data.macs_num) {
2974 		o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2975 
2976 		cnt++;
2977 
2978 		cmd_pos->data.macs_num--;
2979 
2980 		DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2981 		   cmd_pos->data.macs_num, cnt);
2982 
2983 		/* Break if we reached the maximum
2984 		 * number of rules.
2985 		 */
2986 		if (cnt >= o->max_cmd_len)
2987 			break;
2988 	}
2989 
2990 	*line_idx = cnt;
2991 
2992 	/* If we cleared all bins - we are done */
2993 	if (!cmd_pos->data.macs_num)
2994 		cmd_pos->done = true;
2995 }
2996 
2997 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
2998 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2999 	int *line_idx)
3000 {
3001 	cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
3002 						line_idx);
3003 
3004 	if (cmd_pos->data.next_bin < 0)
3005 		/* If o->set_restore returned -1 we are done */
3006 		cmd_pos->done = true;
3007 	else
3008 		/* Start from the next bin next time */
3009 		cmd_pos->data.next_bin++;
3010 }
3011 
3012 static void
3013 bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x *bp,
3014 				       struct bnx2x_mcast_obj *o,
3015 				       struct bnx2x_pending_mcast_cmd *cmd_pos)
3016 {
3017 	u64 cur[BNX2X_MCAST_VEC_SZ], req[BNX2X_MCAST_VEC_SZ];
3018 	struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3019 	struct bnx2x_mcast_bin_elem *p_item;
3020 	struct bnx2x_mcast_elem_group *elem_group;
3021 	int cnt = 0, mac_cnt = 0, offset = 0, i;
3022 
3023 	memset(req, 0, sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3024 	memcpy(cur, o->registry.aprox_match.vec,
3025 	       sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3026 
3027 	/* Fill `current' with the required set of bins to configure */
3028 	list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
3029 				 link) {
3030 		int bin = bnx2x_mcast_bin_from_mac(pmac_pos->mac);
3031 
3032 		DP(BNX2X_MSG_SP, "Set contains %pM mcast MAC\n",
3033 		   pmac_pos->mac);
3034 
3035 		BIT_VEC64_SET_BIT(req, bin);
3036 		list_del(&pmac_pos->link);
3037 		mac_cnt++;
3038 	}
3039 
3040 	/* We no longer have use for the MACs; Need to re-use memory for
3041 	 * a list that will be used to configure bins.
3042 	 */
3043 	cmd_pos->set_convert = true;
3044 	INIT_LIST_HEAD(&cmd_pos->data.macs_head);
3045 	elem_group = list_first_entry(&cmd_pos->group_head,
3046 				      struct bnx2x_mcast_elem_group,
3047 				      mcast_group_link);
3048 	for (i = 0; i < BNX2X_MCAST_BINS_NUM; i++) {
3049 		bool b_current = !!BIT_VEC64_TEST_BIT(cur, i);
3050 		bool b_required = !!BIT_VEC64_TEST_BIT(req, i);
3051 
3052 		if (b_current == b_required)
3053 			continue;
3054 
3055 		p_item = &elem_group->mcast_elems[offset].bin_elem;
3056 		p_item->bin = i;
3057 		p_item->type = b_required ? BNX2X_MCAST_CMD_SET_ADD
3058 					  : BNX2X_MCAST_CMD_SET_DEL;
3059 		list_add_tail(&p_item->link , &cmd_pos->data.macs_head);
3060 		cnt++;
3061 		offset++;
3062 		if (offset == MCAST_MAC_ELEMS_PER_PG) {
3063 			offset = 0;
3064 			elem_group = list_next_entry(elem_group,
3065 						     mcast_group_link);
3066 		}
3067 	}
3068 
3069 	/* We now definitely know how many commands are hiding here.
3070 	 * Also need to correct the disruption we've added to guarantee this
3071 	 * would be enqueued.
3072 	 */
3073 	o->total_pending_num -= (o->max_cmd_len + mac_cnt);
3074 	o->total_pending_num += cnt;
3075 
3076 	DP(BNX2X_MSG_SP, "o->total_pending_num=%d\n", o->total_pending_num);
3077 }
3078 
3079 static void
3080 bnx2x_mcast_hdl_pending_set_e2(struct bnx2x *bp,
3081 			       struct bnx2x_mcast_obj *o,
3082 			       struct bnx2x_pending_mcast_cmd *cmd_pos,
3083 			       int *cnt)
3084 {
3085 	union bnx2x_mcast_config_data cfg_data = {NULL};
3086 	struct bnx2x_mcast_bin_elem *p_item, *p_item_n;
3087 
3088 	/* This is actually a 2-part scheme - it starts by converting the MACs
3089 	 * into a list of bins to be added/removed, and correcting the numbers
3090 	 * on the object. this is now allowed, as we're now sure that all
3091 	 * previous configured requests have already applied.
3092 	 * The second part is actually adding rules for the newly introduced
3093 	 * entries [like all the rest of the hdl_pending functions].
3094 	 */
3095 	if (!cmd_pos->set_convert)
3096 		bnx2x_mcast_hdl_pending_set_e2_convert(bp, o, cmd_pos);
3097 
3098 	list_for_each_entry_safe(p_item, p_item_n, &cmd_pos->data.macs_head,
3099 				 link) {
3100 		cfg_data.bin = (u8)p_item->bin;
3101 		o->set_one_rule(bp, o, *cnt, &cfg_data, p_item->type);
3102 		(*cnt)++;
3103 
3104 		list_del(&p_item->link);
3105 
3106 		/* Break if we reached the maximum number of rules. */
3107 		if (*cnt >= o->max_cmd_len)
3108 			break;
3109 	}
3110 
3111 	/* if no more MACs to configure - we are done */
3112 	if (list_empty(&cmd_pos->data.macs_head))
3113 		cmd_pos->done = true;
3114 }
3115 
3116 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
3117 				struct bnx2x_mcast_ramrod_params *p)
3118 {
3119 	struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3120 	int cnt = 0;
3121 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3122 
3123 	list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
3124 				 link) {
3125 		switch (cmd_pos->type) {
3126 		case BNX2X_MCAST_CMD_ADD:
3127 			bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
3128 			break;
3129 
3130 		case BNX2X_MCAST_CMD_DEL:
3131 			bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
3132 			break;
3133 
3134 		case BNX2X_MCAST_CMD_RESTORE:
3135 			bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
3136 							   &cnt);
3137 			break;
3138 
3139 		case BNX2X_MCAST_CMD_SET:
3140 			bnx2x_mcast_hdl_pending_set_e2(bp, o, cmd_pos, &cnt);
3141 			break;
3142 
3143 		default:
3144 			BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3145 			return -EINVAL;
3146 		}
3147 
3148 		/* If the command has been completed - remove it from the list
3149 		 * and free the memory
3150 		 */
3151 		if (cmd_pos->done) {
3152 			list_del(&cmd_pos->link);
3153 			bnx2x_free_groups(&cmd_pos->group_head);
3154 			kfree(cmd_pos);
3155 		}
3156 
3157 		/* Break if we reached the maximum number of rules */
3158 		if (cnt >= o->max_cmd_len)
3159 			break;
3160 	}
3161 
3162 	return cnt;
3163 }
3164 
3165 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
3166 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3167 	int *line_idx)
3168 {
3169 	struct bnx2x_mcast_list_elem *mlist_pos;
3170 	union bnx2x_mcast_config_data cfg_data = {NULL};
3171 	int cnt = *line_idx;
3172 
3173 	list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3174 		cfg_data.mac = mlist_pos->mac;
3175 		o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
3176 
3177 		cnt++;
3178 
3179 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3180 		   mlist_pos->mac);
3181 	}
3182 
3183 	*line_idx = cnt;
3184 }
3185 
3186 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
3187 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3188 	int *line_idx)
3189 {
3190 	int cnt = *line_idx, i;
3191 
3192 	for (i = 0; i < p->mcast_list_len; i++) {
3193 		o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
3194 
3195 		cnt++;
3196 
3197 		DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
3198 				 p->mcast_list_len - i - 1);
3199 	}
3200 
3201 	*line_idx = cnt;
3202 }
3203 
3204 /**
3205  * bnx2x_mcast_handle_current_cmd -
3206  *
3207  * @bp:		device handle
3208  * @p:
3209  * @cmd:
3210  * @start_cnt:	first line in the ramrod data that may be used
3211  *
3212  * This function is called iff there is enough place for the current command in
3213  * the ramrod data.
3214  * Returns number of lines filled in the ramrod data in total.
3215  */
3216 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
3217 			struct bnx2x_mcast_ramrod_params *p,
3218 			enum bnx2x_mcast_cmd cmd,
3219 			int start_cnt)
3220 {
3221 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3222 	int cnt = start_cnt;
3223 
3224 	DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3225 
3226 	switch (cmd) {
3227 	case BNX2X_MCAST_CMD_ADD:
3228 		bnx2x_mcast_hdl_add(bp, o, p, &cnt);
3229 		break;
3230 
3231 	case BNX2X_MCAST_CMD_DEL:
3232 		bnx2x_mcast_hdl_del(bp, o, p, &cnt);
3233 		break;
3234 
3235 	case BNX2X_MCAST_CMD_RESTORE:
3236 		o->hdl_restore(bp, o, 0, &cnt);
3237 		break;
3238 
3239 	default:
3240 		BNX2X_ERR("Unknown command: %d\n", cmd);
3241 		return -EINVAL;
3242 	}
3243 
3244 	/* The current command has been handled */
3245 	p->mcast_list_len = 0;
3246 
3247 	return cnt;
3248 }
3249 
3250 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
3251 				   struct bnx2x_mcast_ramrod_params *p,
3252 				   enum bnx2x_mcast_cmd cmd)
3253 {
3254 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3255 	int reg_sz = o->get_registry_size(o);
3256 
3257 	switch (cmd) {
3258 	/* DEL command deletes all currently configured MACs */
3259 	case BNX2X_MCAST_CMD_DEL:
3260 		o->set_registry_size(o, 0);
3261 		/* fall through */
3262 
3263 	/* RESTORE command will restore the entire multicast configuration */
3264 	case BNX2X_MCAST_CMD_RESTORE:
3265 		/* Here we set the approximate amount of work to do, which in
3266 		 * fact may be only less as some MACs in postponed ADD
3267 		 * command(s) scheduled before this command may fall into
3268 		 * the same bin and the actual number of bins set in the
3269 		 * registry would be less than we estimated here. See
3270 		 * bnx2x_mcast_set_one_rule_e2() for further details.
3271 		 */
3272 		p->mcast_list_len = reg_sz;
3273 		break;
3274 
3275 	case BNX2X_MCAST_CMD_ADD:
3276 	case BNX2X_MCAST_CMD_CONT:
3277 		/* Here we assume that all new MACs will fall into new bins.
3278 		 * However we will correct the real registry size after we
3279 		 * handle all pending commands.
3280 		 */
3281 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
3282 		break;
3283 
3284 	case BNX2X_MCAST_CMD_SET:
3285 		/* We can only learn how many commands would actually be used
3286 		 * when this is being configured. So for now, simply guarantee
3287 		 * the command will be enqueued [to refrain from adding logic
3288 		 * that handles this and THEN learns it needs several ramrods].
3289 		 * Just like for ADD/Cont, the mcast_list_len might be an over
3290 		 * estimation; or even more so, since we don't take into
3291 		 * account the possibility of removal of existing bins.
3292 		 */
3293 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
3294 		o->total_pending_num += o->max_cmd_len;
3295 		break;
3296 
3297 	default:
3298 		BNX2X_ERR("Unknown command: %d\n", cmd);
3299 		return -EINVAL;
3300 	}
3301 
3302 	/* Increase the total number of MACs pending to be configured */
3303 	o->total_pending_num += p->mcast_list_len;
3304 
3305 	return 0;
3306 }
3307 
3308 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
3309 				      struct bnx2x_mcast_ramrod_params *p,
3310 				  int old_num_bins,
3311 				  enum bnx2x_mcast_cmd cmd)
3312 {
3313 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3314 
3315 	o->set_registry_size(o, old_num_bins);
3316 	o->total_pending_num -= p->mcast_list_len;
3317 
3318 	if (cmd == BNX2X_MCAST_CMD_SET)
3319 		o->total_pending_num -= o->max_cmd_len;
3320 }
3321 
3322 /**
3323  * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3324  *
3325  * @bp:		device handle
3326  * @p:
3327  * @len:	number of rules to handle
3328  */
3329 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
3330 					struct bnx2x_mcast_ramrod_params *p,
3331 					u8 len)
3332 {
3333 	struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3334 	struct eth_multicast_rules_ramrod_data *data =
3335 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
3336 
3337 	data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3338 					(BNX2X_FILTER_MCAST_PENDING <<
3339 					 BNX2X_SWCID_SHIFT));
3340 	data->header.rule_cnt = len;
3341 }
3342 
3343 /**
3344  * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3345  *
3346  * @bp:		device handle
3347  * @o:
3348  *
3349  * Recalculate the actual number of set bins in the registry using Brian
3350  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3351  *
3352  * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3353  */
3354 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
3355 						  struct bnx2x_mcast_obj *o)
3356 {
3357 	int i, cnt = 0;
3358 	u64 elem;
3359 
3360 	for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
3361 		elem = o->registry.aprox_match.vec[i];
3362 		for (; elem; cnt++)
3363 			elem &= elem - 1;
3364 	}
3365 
3366 	o->set_registry_size(o, cnt);
3367 
3368 	return 0;
3369 }
3370 
3371 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
3372 				struct bnx2x_mcast_ramrod_params *p,
3373 				enum bnx2x_mcast_cmd cmd)
3374 {
3375 	struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
3376 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3377 	struct eth_multicast_rules_ramrod_data *data =
3378 		(struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3379 	int cnt = 0, rc;
3380 
3381 	/* Reset the ramrod data buffer */
3382 	memset(data, 0, sizeof(*data));
3383 
3384 	cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
3385 
3386 	/* If there are no more pending commands - clear SCHEDULED state */
3387 	if (list_empty(&o->pending_cmds_head))
3388 		o->clear_sched(o);
3389 
3390 	/* The below may be true iff there was enough room in ramrod
3391 	 * data for all pending commands and for the current
3392 	 * command. Otherwise the current command would have been added
3393 	 * to the pending commands and p->mcast_list_len would have been
3394 	 * zeroed.
3395 	 */
3396 	if (p->mcast_list_len > 0)
3397 		cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
3398 
3399 	/* We've pulled out some MACs - update the total number of
3400 	 * outstanding.
3401 	 */
3402 	o->total_pending_num -= cnt;
3403 
3404 	/* send a ramrod */
3405 	WARN_ON(o->total_pending_num < 0);
3406 	WARN_ON(cnt > o->max_cmd_len);
3407 
3408 	bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3409 
3410 	/* Update a registry size if there are no more pending operations.
3411 	 *
3412 	 * We don't want to change the value of the registry size if there are
3413 	 * pending operations because we want it to always be equal to the
3414 	 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3415 	 * set bins after the last requested operation in order to properly
3416 	 * evaluate the size of the next DEL/RESTORE operation.
3417 	 *
3418 	 * Note that we update the registry itself during command(s) handling
3419 	 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3420 	 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3421 	 * with a limited amount of update commands (per MAC/bin) and we don't
3422 	 * know in this scope what the actual state of bins configuration is
3423 	 * going to be after this ramrod.
3424 	 */
3425 	if (!o->total_pending_num)
3426 		bnx2x_mcast_refresh_registry_e2(bp, o);
3427 
3428 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3429 	 * RAMROD_PENDING status immediately. due to the SET option, it's also
3430 	 * possible that after evaluating the differences there's no need for
3431 	 * a ramrod. In that case, we can skip it as well.
3432 	 */
3433 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags) || !cnt) {
3434 		raw->clear_pending(raw);
3435 		return 0;
3436 	} else {
3437 		/* No need for an explicit memory barrier here as long as we
3438 		 * ensure the ordering of writing to the SPQ element
3439 		 * and updating of the SPQ producer which involves a memory
3440 		 * read. If the memory read is removed we will have to put a
3441 		 * full memory barrier there (inside bnx2x_sp_post()).
3442 		 */
3443 
3444 		/* Send a ramrod */
3445 		rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3446 				   raw->cid, U64_HI(raw->rdata_mapping),
3447 				   U64_LO(raw->rdata_mapping),
3448 				   ETH_CONNECTION_TYPE);
3449 		if (rc)
3450 			return rc;
3451 
3452 		/* Ramrod completion is pending */
3453 		return 1;
3454 	}
3455 }
3456 
3457 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3458 				    struct bnx2x_mcast_ramrod_params *p,
3459 				    enum bnx2x_mcast_cmd cmd)
3460 {
3461 	if (cmd == BNX2X_MCAST_CMD_SET) {
3462 		BNX2X_ERR("Can't use `set' command on e1h!\n");
3463 		return -EINVAL;
3464 	}
3465 
3466 	/* Mark, that there is a work to do */
3467 	if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3468 		p->mcast_list_len = 1;
3469 
3470 	return 0;
3471 }
3472 
3473 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3474 				       struct bnx2x_mcast_ramrod_params *p,
3475 				       int old_num_bins,
3476 				       enum bnx2x_mcast_cmd cmd)
3477 {
3478 	/* Do nothing */
3479 }
3480 
3481 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3482 do { \
3483 	(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3484 } while (0)
3485 
3486 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3487 					   struct bnx2x_mcast_obj *o,
3488 					   struct bnx2x_mcast_ramrod_params *p,
3489 					   u32 *mc_filter)
3490 {
3491 	struct bnx2x_mcast_list_elem *mlist_pos;
3492 	int bit;
3493 
3494 	list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3495 		bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3496 		BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3497 
3498 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3499 		   mlist_pos->mac, bit);
3500 
3501 		/* bookkeeping... */
3502 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3503 				  bit);
3504 	}
3505 }
3506 
3507 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3508 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3509 	u32 *mc_filter)
3510 {
3511 	int bit;
3512 
3513 	for (bit = bnx2x_mcast_get_next_bin(o, 0);
3514 	     bit >= 0;
3515 	     bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3516 		BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3517 		DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3518 	}
3519 }
3520 
3521 /* On 57711 we write the multicast MACs' approximate match
3522  * table by directly into the TSTORM's internal RAM. So we don't
3523  * really need to handle any tricks to make it work.
3524  */
3525 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3526 				 struct bnx2x_mcast_ramrod_params *p,
3527 				 enum bnx2x_mcast_cmd cmd)
3528 {
3529 	int i;
3530 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3531 	struct bnx2x_raw_obj *r = &o->raw;
3532 
3533 	/* If CLEAR_ONLY has been requested - clear the registry
3534 	 * and clear a pending bit.
3535 	 */
3536 	if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3537 		u32 mc_filter[MC_HASH_SIZE] = {0};
3538 
3539 		/* Set the multicast filter bits before writing it into
3540 		 * the internal memory.
3541 		 */
3542 		switch (cmd) {
3543 		case BNX2X_MCAST_CMD_ADD:
3544 			bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3545 			break;
3546 
3547 		case BNX2X_MCAST_CMD_DEL:
3548 			DP(BNX2X_MSG_SP,
3549 			   "Invalidating multicast MACs configuration\n");
3550 
3551 			/* clear the registry */
3552 			memset(o->registry.aprox_match.vec, 0,
3553 			       sizeof(o->registry.aprox_match.vec));
3554 			break;
3555 
3556 		case BNX2X_MCAST_CMD_RESTORE:
3557 			bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3558 			break;
3559 
3560 		default:
3561 			BNX2X_ERR("Unknown command: %d\n", cmd);
3562 			return -EINVAL;
3563 		}
3564 
3565 		/* Set the mcast filter in the internal memory */
3566 		for (i = 0; i < MC_HASH_SIZE; i++)
3567 			REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3568 	} else
3569 		/* clear the registry */
3570 		memset(o->registry.aprox_match.vec, 0,
3571 		       sizeof(o->registry.aprox_match.vec));
3572 
3573 	/* We are done */
3574 	r->clear_pending(r);
3575 
3576 	return 0;
3577 }
3578 
3579 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3580 				   struct bnx2x_mcast_ramrod_params *p,
3581 				   enum bnx2x_mcast_cmd cmd)
3582 {
3583 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3584 	int reg_sz = o->get_registry_size(o);
3585 
3586 	if (cmd == BNX2X_MCAST_CMD_SET) {
3587 		BNX2X_ERR("Can't use `set' command on e1!\n");
3588 		return -EINVAL;
3589 	}
3590 
3591 	switch (cmd) {
3592 	/* DEL command deletes all currently configured MACs */
3593 	case BNX2X_MCAST_CMD_DEL:
3594 		o->set_registry_size(o, 0);
3595 		/* fall through */
3596 
3597 	/* RESTORE command will restore the entire multicast configuration */
3598 	case BNX2X_MCAST_CMD_RESTORE:
3599 		p->mcast_list_len = reg_sz;
3600 		DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3601 		   cmd, p->mcast_list_len);
3602 		break;
3603 
3604 	case BNX2X_MCAST_CMD_ADD:
3605 	case BNX2X_MCAST_CMD_CONT:
3606 		/* Multicast MACs on 57710 are configured as unicast MACs and
3607 		 * there is only a limited number of CAM entries for that
3608 		 * matter.
3609 		 */
3610 		if (p->mcast_list_len > o->max_cmd_len) {
3611 			BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3612 				  o->max_cmd_len);
3613 			return -EINVAL;
3614 		}
3615 		/* Every configured MAC should be cleared if DEL command is
3616 		 * called. Only the last ADD command is relevant as long as
3617 		 * every ADD commands overrides the previous configuration.
3618 		 */
3619 		DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3620 		if (p->mcast_list_len > 0)
3621 			o->set_registry_size(o, p->mcast_list_len);
3622 
3623 		break;
3624 
3625 	default:
3626 		BNX2X_ERR("Unknown command: %d\n", cmd);
3627 		return -EINVAL;
3628 	}
3629 
3630 	/* We want to ensure that commands are executed one by one for 57710.
3631 	 * Therefore each none-empty command will consume o->max_cmd_len.
3632 	 */
3633 	if (p->mcast_list_len)
3634 		o->total_pending_num += o->max_cmd_len;
3635 
3636 	return 0;
3637 }
3638 
3639 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3640 				      struct bnx2x_mcast_ramrod_params *p,
3641 				   int old_num_macs,
3642 				   enum bnx2x_mcast_cmd cmd)
3643 {
3644 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3645 
3646 	o->set_registry_size(o, old_num_macs);
3647 
3648 	/* If current command hasn't been handled yet and we are
3649 	 * here means that it's meant to be dropped and we have to
3650 	 * update the number of outstanding MACs accordingly.
3651 	 */
3652 	if (p->mcast_list_len)
3653 		o->total_pending_num -= o->max_cmd_len;
3654 }
3655 
3656 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3657 					struct bnx2x_mcast_obj *o, int idx,
3658 					union bnx2x_mcast_config_data *cfg_data,
3659 					enum bnx2x_mcast_cmd cmd)
3660 {
3661 	struct bnx2x_raw_obj *r = &o->raw;
3662 	struct mac_configuration_cmd *data =
3663 		(struct mac_configuration_cmd *)(r->rdata);
3664 
3665 	/* copy mac */
3666 	if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3667 		bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3668 				      &data->config_table[idx].middle_mac_addr,
3669 				      &data->config_table[idx].lsb_mac_addr,
3670 				      cfg_data->mac);
3671 
3672 		data->config_table[idx].vlan_id = 0;
3673 		data->config_table[idx].pf_id = r->func_id;
3674 		data->config_table[idx].clients_bit_vector =
3675 			cpu_to_le32(1 << r->cl_id);
3676 
3677 		SET_FLAG(data->config_table[idx].flags,
3678 			 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3679 			 T_ETH_MAC_COMMAND_SET);
3680 	}
3681 }
3682 
3683 /**
3684  * bnx2x_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3685  *
3686  * @bp:		device handle
3687  * @p:
3688  * @len:	number of rules to handle
3689  */
3690 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3691 					struct bnx2x_mcast_ramrod_params *p,
3692 					u8 len)
3693 {
3694 	struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3695 	struct mac_configuration_cmd *data =
3696 		(struct mac_configuration_cmd *)(r->rdata);
3697 
3698 	u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3699 		     BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3700 		     BNX2X_MAX_MULTICAST*(1 + r->func_id));
3701 
3702 	data->hdr.offset = offset;
3703 	data->hdr.client_id = cpu_to_le16(0xff);
3704 	data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3705 				     (BNX2X_FILTER_MCAST_PENDING <<
3706 				      BNX2X_SWCID_SHIFT));
3707 	data->hdr.length = len;
3708 }
3709 
3710 /**
3711  * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3712  *
3713  * @bp:		device handle
3714  * @o:
3715  * @start_idx:	index in the registry to start from
3716  * @rdata_idx:	index in the ramrod data to start from
3717  *
3718  * restore command for 57710 is like all other commands - always a stand alone
3719  * command - start_idx and rdata_idx will always be 0. This function will always
3720  * succeed.
3721  * returns -1 to comply with 57712 variant.
3722  */
3723 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3724 	struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3725 	int *rdata_idx)
3726 {
3727 	struct bnx2x_mcast_mac_elem *elem;
3728 	int i = 0;
3729 	union bnx2x_mcast_config_data cfg_data = {NULL};
3730 
3731 	/* go through the registry and configure the MACs from it. */
3732 	list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3733 		cfg_data.mac = &elem->mac[0];
3734 		o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3735 
3736 		i++;
3737 
3738 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3739 		   cfg_data.mac);
3740 	}
3741 
3742 	*rdata_idx = i;
3743 
3744 	return -1;
3745 }
3746 
3747 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3748 	struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3749 {
3750 	struct bnx2x_pending_mcast_cmd *cmd_pos;
3751 	struct bnx2x_mcast_mac_elem *pmac_pos;
3752 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3753 	union bnx2x_mcast_config_data cfg_data = {NULL};
3754 	int cnt = 0;
3755 
3756 	/* If nothing to be done - return */
3757 	if (list_empty(&o->pending_cmds_head))
3758 		return 0;
3759 
3760 	/* Handle the first command */
3761 	cmd_pos = list_first_entry(&o->pending_cmds_head,
3762 				   struct bnx2x_pending_mcast_cmd, link);
3763 
3764 	switch (cmd_pos->type) {
3765 	case BNX2X_MCAST_CMD_ADD:
3766 		list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3767 			cfg_data.mac = &pmac_pos->mac[0];
3768 			o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3769 
3770 			cnt++;
3771 
3772 			DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3773 			   pmac_pos->mac);
3774 		}
3775 		break;
3776 
3777 	case BNX2X_MCAST_CMD_DEL:
3778 		cnt = cmd_pos->data.macs_num;
3779 		DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3780 		break;
3781 
3782 	case BNX2X_MCAST_CMD_RESTORE:
3783 		o->hdl_restore(bp, o, 0, &cnt);
3784 		break;
3785 
3786 	default:
3787 		BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3788 		return -EINVAL;
3789 	}
3790 
3791 	list_del(&cmd_pos->link);
3792 	bnx2x_free_groups(&cmd_pos->group_head);
3793 	kfree(cmd_pos);
3794 
3795 	return cnt;
3796 }
3797 
3798 /**
3799  * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3800  *
3801  * @fw_hi:
3802  * @fw_mid:
3803  * @fw_lo:
3804  * @mac:
3805  */
3806 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3807 					 __le16 *fw_lo, u8 *mac)
3808 {
3809 	mac[1] = ((u8 *)fw_hi)[0];
3810 	mac[0] = ((u8 *)fw_hi)[1];
3811 	mac[3] = ((u8 *)fw_mid)[0];
3812 	mac[2] = ((u8 *)fw_mid)[1];
3813 	mac[5] = ((u8 *)fw_lo)[0];
3814 	mac[4] = ((u8 *)fw_lo)[1];
3815 }
3816 
3817 /**
3818  * bnx2x_mcast_refresh_registry_e1 -
3819  *
3820  * @bp:		device handle
3821  * @cnt:
3822  *
3823  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3824  * and update the registry correspondingly: if ADD - allocate a memory and add
3825  * the entries to the registry (list), if DELETE - clear the registry and free
3826  * the memory.
3827  */
3828 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3829 						  struct bnx2x_mcast_obj *o)
3830 {
3831 	struct bnx2x_raw_obj *raw = &o->raw;
3832 	struct bnx2x_mcast_mac_elem *elem;
3833 	struct mac_configuration_cmd *data =
3834 			(struct mac_configuration_cmd *)(raw->rdata);
3835 
3836 	/* If first entry contains a SET bit - the command was ADD,
3837 	 * otherwise - DEL_ALL
3838 	 */
3839 	if (GET_FLAG(data->config_table[0].flags,
3840 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3841 		int i, len = data->hdr.length;
3842 
3843 		/* Break if it was a RESTORE command */
3844 		if (!list_empty(&o->registry.exact_match.macs))
3845 			return 0;
3846 
3847 		elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3848 		if (!elem) {
3849 			BNX2X_ERR("Failed to allocate registry memory\n");
3850 			return -ENOMEM;
3851 		}
3852 
3853 		for (i = 0; i < len; i++, elem++) {
3854 			bnx2x_get_fw_mac_addr(
3855 				&data->config_table[i].msb_mac_addr,
3856 				&data->config_table[i].middle_mac_addr,
3857 				&data->config_table[i].lsb_mac_addr,
3858 				elem->mac);
3859 			DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3860 			   elem->mac);
3861 			list_add_tail(&elem->link,
3862 				      &o->registry.exact_match.macs);
3863 		}
3864 	} else {
3865 		elem = list_first_entry(&o->registry.exact_match.macs,
3866 					struct bnx2x_mcast_mac_elem, link);
3867 		DP(BNX2X_MSG_SP, "Deleting a registry\n");
3868 		kfree(elem);
3869 		INIT_LIST_HEAD(&o->registry.exact_match.macs);
3870 	}
3871 
3872 	return 0;
3873 }
3874 
3875 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3876 				struct bnx2x_mcast_ramrod_params *p,
3877 				enum bnx2x_mcast_cmd cmd)
3878 {
3879 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3880 	struct bnx2x_raw_obj *raw = &o->raw;
3881 	struct mac_configuration_cmd *data =
3882 		(struct mac_configuration_cmd *)(raw->rdata);
3883 	int cnt = 0, i, rc;
3884 
3885 	/* Reset the ramrod data buffer */
3886 	memset(data, 0, sizeof(*data));
3887 
3888 	/* First set all entries as invalid */
3889 	for (i = 0; i < o->max_cmd_len ; i++)
3890 		SET_FLAG(data->config_table[i].flags,
3891 			 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3892 			 T_ETH_MAC_COMMAND_INVALIDATE);
3893 
3894 	/* Handle pending commands first */
3895 	cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3896 
3897 	/* If there are no more pending commands - clear SCHEDULED state */
3898 	if (list_empty(&o->pending_cmds_head))
3899 		o->clear_sched(o);
3900 
3901 	/* The below may be true iff there were no pending commands */
3902 	if (!cnt)
3903 		cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3904 
3905 	/* For 57710 every command has o->max_cmd_len length to ensure that
3906 	 * commands are done one at a time.
3907 	 */
3908 	o->total_pending_num -= o->max_cmd_len;
3909 
3910 	/* send a ramrod */
3911 
3912 	WARN_ON(cnt > o->max_cmd_len);
3913 
3914 	/* Set ramrod header (in particular, a number of entries to update) */
3915 	bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3916 
3917 	/* update a registry: we need the registry contents to be always up
3918 	 * to date in order to be able to execute a RESTORE opcode. Here
3919 	 * we use the fact that for 57710 we sent one command at a time
3920 	 * hence we may take the registry update out of the command handling
3921 	 * and do it in a simpler way here.
3922 	 */
3923 	rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3924 	if (rc)
3925 		return rc;
3926 
3927 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
3928 	 * RAMROD_PENDING status immediately.
3929 	 */
3930 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3931 		raw->clear_pending(raw);
3932 		return 0;
3933 	} else {
3934 		/* No need for an explicit memory barrier here as long as we
3935 		 * ensure the ordering of writing to the SPQ element
3936 		 * and updating of the SPQ producer which involves a memory
3937 		 * read. If the memory read is removed we will have to put a
3938 		 * full memory barrier there (inside bnx2x_sp_post()).
3939 		 */
3940 
3941 		/* Send a ramrod */
3942 		rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3943 				   U64_HI(raw->rdata_mapping),
3944 				   U64_LO(raw->rdata_mapping),
3945 				   ETH_CONNECTION_TYPE);
3946 		if (rc)
3947 			return rc;
3948 
3949 		/* Ramrod completion is pending */
3950 		return 1;
3951 	}
3952 }
3953 
3954 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3955 {
3956 	return o->registry.exact_match.num_macs_set;
3957 }
3958 
3959 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3960 {
3961 	return o->registry.aprox_match.num_bins_set;
3962 }
3963 
3964 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3965 						int n)
3966 {
3967 	o->registry.exact_match.num_macs_set = n;
3968 }
3969 
3970 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3971 						int n)
3972 {
3973 	o->registry.aprox_match.num_bins_set = n;
3974 }
3975 
3976 int bnx2x_config_mcast(struct bnx2x *bp,
3977 		       struct bnx2x_mcast_ramrod_params *p,
3978 		       enum bnx2x_mcast_cmd cmd)
3979 {
3980 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3981 	struct bnx2x_raw_obj *r = &o->raw;
3982 	int rc = 0, old_reg_size;
3983 
3984 	/* This is needed to recover number of currently configured mcast macs
3985 	 * in case of failure.
3986 	 */
3987 	old_reg_size = o->get_registry_size(o);
3988 
3989 	/* Do some calculations and checks */
3990 	rc = o->validate(bp, p, cmd);
3991 	if (rc)
3992 		return rc;
3993 
3994 	/* Return if there is no work to do */
3995 	if ((!p->mcast_list_len) && (!o->check_sched(o)))
3996 		return 0;
3997 
3998 	DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3999 	   o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4000 
4001 	/* Enqueue the current command to the pending list if we can't complete
4002 	 * it in the current iteration
4003 	 */
4004 	if (r->check_pending(r) ||
4005 	    ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4006 		rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
4007 		if (rc < 0)
4008 			goto error_exit1;
4009 
4010 		/* As long as the current command is in a command list we
4011 		 * don't need to handle it separately.
4012 		 */
4013 		p->mcast_list_len = 0;
4014 	}
4015 
4016 	if (!r->check_pending(r)) {
4017 
4018 		/* Set 'pending' state */
4019 		r->set_pending(r);
4020 
4021 		/* Configure the new classification in the chip */
4022 		rc = o->config_mcast(bp, p, cmd);
4023 		if (rc < 0)
4024 			goto error_exit2;
4025 
4026 		/* Wait for a ramrod completion if was requested */
4027 		if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4028 			rc = o->wait_comp(bp, o);
4029 	}
4030 
4031 	return rc;
4032 
4033 error_exit2:
4034 	r->clear_pending(r);
4035 
4036 error_exit1:
4037 	o->revert(bp, p, old_reg_size, cmd);
4038 
4039 	return rc;
4040 }
4041 
4042 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
4043 {
4044 	smp_mb__before_atomic();
4045 	clear_bit(o->sched_state, o->raw.pstate);
4046 	smp_mb__after_atomic();
4047 }
4048 
4049 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
4050 {
4051 	smp_mb__before_atomic();
4052 	set_bit(o->sched_state, o->raw.pstate);
4053 	smp_mb__after_atomic();
4054 }
4055 
4056 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
4057 {
4058 	return !!test_bit(o->sched_state, o->raw.pstate);
4059 }
4060 
4061 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
4062 {
4063 	return o->raw.check_pending(&o->raw) || o->check_sched(o);
4064 }
4065 
4066 void bnx2x_init_mcast_obj(struct bnx2x *bp,
4067 			  struct bnx2x_mcast_obj *mcast_obj,
4068 			  u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
4069 			  u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
4070 			  int state, unsigned long *pstate, bnx2x_obj_type type)
4071 {
4072 	memset(mcast_obj, 0, sizeof(*mcast_obj));
4073 
4074 	bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4075 			   rdata, rdata_mapping, state, pstate, type);
4076 
4077 	mcast_obj->engine_id = engine_id;
4078 
4079 	INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
4080 
4081 	mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
4082 	mcast_obj->check_sched = bnx2x_mcast_check_sched;
4083 	mcast_obj->set_sched = bnx2x_mcast_set_sched;
4084 	mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
4085 
4086 	if (CHIP_IS_E1(bp)) {
4087 		mcast_obj->config_mcast      = bnx2x_mcast_setup_e1;
4088 		mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
4089 		mcast_obj->hdl_restore       =
4090 			bnx2x_mcast_handle_restore_cmd_e1;
4091 		mcast_obj->check_pending     = bnx2x_mcast_check_pending;
4092 
4093 		if (CHIP_REV_IS_SLOW(bp))
4094 			mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
4095 		else
4096 			mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
4097 
4098 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
4099 		mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e1;
4100 		mcast_obj->validate          = bnx2x_mcast_validate_e1;
4101 		mcast_obj->revert            = bnx2x_mcast_revert_e1;
4102 		mcast_obj->get_registry_size =
4103 			bnx2x_mcast_get_registry_size_exact;
4104 		mcast_obj->set_registry_size =
4105 			bnx2x_mcast_set_registry_size_exact;
4106 
4107 		/* 57710 is the only chip that uses the exact match for mcast
4108 		 * at the moment.
4109 		 */
4110 		INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
4111 
4112 	} else if (CHIP_IS_E1H(bp)) {
4113 		mcast_obj->config_mcast  = bnx2x_mcast_setup_e1h;
4114 		mcast_obj->enqueue_cmd   = NULL;
4115 		mcast_obj->hdl_restore   = NULL;
4116 		mcast_obj->check_pending = bnx2x_mcast_check_pending;
4117 
4118 		/* 57711 doesn't send a ramrod, so it has unlimited credit
4119 		 * for one command.
4120 		 */
4121 		mcast_obj->max_cmd_len       = -1;
4122 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
4123 		mcast_obj->set_one_rule      = NULL;
4124 		mcast_obj->validate          = bnx2x_mcast_validate_e1h;
4125 		mcast_obj->revert            = bnx2x_mcast_revert_e1h;
4126 		mcast_obj->get_registry_size =
4127 			bnx2x_mcast_get_registry_size_aprox;
4128 		mcast_obj->set_registry_size =
4129 			bnx2x_mcast_set_registry_size_aprox;
4130 	} else {
4131 		mcast_obj->config_mcast      = bnx2x_mcast_setup_e2;
4132 		mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
4133 		mcast_obj->hdl_restore       =
4134 			bnx2x_mcast_handle_restore_cmd_e2;
4135 		mcast_obj->check_pending     = bnx2x_mcast_check_pending;
4136 		/* TODO: There should be a proper HSI define for this number!!!
4137 		 */
4138 		mcast_obj->max_cmd_len       = 16;
4139 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
4140 		mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e2;
4141 		mcast_obj->validate          = bnx2x_mcast_validate_e2;
4142 		mcast_obj->revert            = bnx2x_mcast_revert_e2;
4143 		mcast_obj->get_registry_size =
4144 			bnx2x_mcast_get_registry_size_aprox;
4145 		mcast_obj->set_registry_size =
4146 			bnx2x_mcast_set_registry_size_aprox;
4147 	}
4148 }
4149 
4150 /*************************** Credit handling **********************************/
4151 
4152 /**
4153  * atomic_add_ifless - add if the result is less than a given value.
4154  *
4155  * @v:	pointer of type atomic_t
4156  * @a:	the amount to add to v...
4157  * @u:	...if (v + a) is less than u.
4158  *
4159  * returns true if (v + a) was less than u, and false otherwise.
4160  *
4161  */
4162 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
4163 {
4164 	int c, old;
4165 
4166 	c = atomic_read(v);
4167 	for (;;) {
4168 		if (unlikely(c + a >= u))
4169 			return false;
4170 
4171 		old = atomic_cmpxchg((v), c, c + a);
4172 		if (likely(old == c))
4173 			break;
4174 		c = old;
4175 	}
4176 
4177 	return true;
4178 }
4179 
4180 /**
4181  * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4182  *
4183  * @v:	pointer of type atomic_t
4184  * @a:	the amount to dec from v...
4185  * @u:	...if (v - a) is more or equal than u.
4186  *
4187  * returns true if (v - a) was more or equal than u, and false
4188  * otherwise.
4189  */
4190 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
4191 {
4192 	int c, old;
4193 
4194 	c = atomic_read(v);
4195 	for (;;) {
4196 		if (unlikely(c - a < u))
4197 			return false;
4198 
4199 		old = atomic_cmpxchg((v), c, c - a);
4200 		if (likely(old == c))
4201 			break;
4202 		c = old;
4203 	}
4204 
4205 	return true;
4206 }
4207 
4208 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
4209 {
4210 	bool rc;
4211 
4212 	smp_mb();
4213 	rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4214 	smp_mb();
4215 
4216 	return rc;
4217 }
4218 
4219 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
4220 {
4221 	bool rc;
4222 
4223 	smp_mb();
4224 
4225 	/* Don't let to refill if credit + cnt > pool_sz */
4226 	rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4227 
4228 	smp_mb();
4229 
4230 	return rc;
4231 }
4232 
4233 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
4234 {
4235 	int cur_credit;
4236 
4237 	smp_mb();
4238 	cur_credit = atomic_read(&o->credit);
4239 
4240 	return cur_credit;
4241 }
4242 
4243 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
4244 					  int cnt)
4245 {
4246 	return true;
4247 }
4248 
4249 static bool bnx2x_credit_pool_get_entry(
4250 	struct bnx2x_credit_pool_obj *o,
4251 	int *offset)
4252 {
4253 	int idx, vec, i;
4254 
4255 	*offset = -1;
4256 
4257 	/* Find "internal cam-offset" then add to base for this object... */
4258 	for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
4259 
4260 		/* Skip the current vector if there are no free entries in it */
4261 		if (!o->pool_mirror[vec])
4262 			continue;
4263 
4264 		/* If we've got here we are going to find a free entry */
4265 		for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4266 		      i < BIT_VEC64_ELEM_SZ; idx++, i++)
4267 
4268 			if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4269 				/* Got one!! */
4270 				BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4271 				*offset = o->base_pool_offset + idx;
4272 				return true;
4273 			}
4274 	}
4275 
4276 	return false;
4277 }
4278 
4279 static bool bnx2x_credit_pool_put_entry(
4280 	struct bnx2x_credit_pool_obj *o,
4281 	int offset)
4282 {
4283 	if (offset < o->base_pool_offset)
4284 		return false;
4285 
4286 	offset -= o->base_pool_offset;
4287 
4288 	if (offset >= o->pool_sz)
4289 		return false;
4290 
4291 	/* Return the entry to the pool */
4292 	BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4293 
4294 	return true;
4295 }
4296 
4297 static bool bnx2x_credit_pool_put_entry_always_true(
4298 	struct bnx2x_credit_pool_obj *o,
4299 	int offset)
4300 {
4301 	return true;
4302 }
4303 
4304 static bool bnx2x_credit_pool_get_entry_always_true(
4305 	struct bnx2x_credit_pool_obj *o,
4306 	int *offset)
4307 {
4308 	*offset = -1;
4309 	return true;
4310 }
4311 /**
4312  * bnx2x_init_credit_pool - initialize credit pool internals.
4313  *
4314  * @p:
4315  * @base:	Base entry in the CAM to use.
4316  * @credit:	pool size.
4317  *
4318  * If base is negative no CAM entries handling will be performed.
4319  * If credit is negative pool operations will always succeed (unlimited pool).
4320  *
4321  */
4322 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
4323 			    int base, int credit)
4324 {
4325 	/* Zero the object first */
4326 	memset(p, 0, sizeof(*p));
4327 
4328 	/* Set the table to all 1s */
4329 	memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4330 
4331 	/* Init a pool as full */
4332 	atomic_set(&p->credit, credit);
4333 
4334 	/* The total poll size */
4335 	p->pool_sz = credit;
4336 
4337 	p->base_pool_offset = base;
4338 
4339 	/* Commit the change */
4340 	smp_mb();
4341 
4342 	p->check = bnx2x_credit_pool_check;
4343 
4344 	/* if pool credit is negative - disable the checks */
4345 	if (credit >= 0) {
4346 		p->put      = bnx2x_credit_pool_put;
4347 		p->get      = bnx2x_credit_pool_get;
4348 		p->put_entry = bnx2x_credit_pool_put_entry;
4349 		p->get_entry = bnx2x_credit_pool_get_entry;
4350 	} else {
4351 		p->put      = bnx2x_credit_pool_always_true;
4352 		p->get      = bnx2x_credit_pool_always_true;
4353 		p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4354 		p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4355 	}
4356 
4357 	/* If base is negative - disable entries handling */
4358 	if (base < 0) {
4359 		p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4360 		p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4361 	}
4362 }
4363 
4364 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
4365 				struct bnx2x_credit_pool_obj *p, u8 func_id,
4366 				u8 func_num)
4367 {
4368 /* TODO: this will be defined in consts as well... */
4369 #define BNX2X_CAM_SIZE_EMUL 5
4370 
4371 	int cam_sz;
4372 
4373 	if (CHIP_IS_E1(bp)) {
4374 		/* In E1, Multicast is saved in cam... */
4375 		if (!CHIP_REV_IS_SLOW(bp))
4376 			cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
4377 		else
4378 			cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
4379 
4380 		bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4381 
4382 	} else if (CHIP_IS_E1H(bp)) {
4383 		/* CAM credit is equaly divided between all active functions
4384 		 * on the PORT!.
4385 		 */
4386 		if ((func_num > 0)) {
4387 			if (!CHIP_REV_IS_SLOW(bp))
4388 				cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4389 			else
4390 				cam_sz = BNX2X_CAM_SIZE_EMUL;
4391 			bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4392 		} else {
4393 			/* this should never happen! Block MAC operations. */
4394 			bnx2x_init_credit_pool(p, 0, 0);
4395 		}
4396 
4397 	} else {
4398 
4399 		/* CAM credit is equaly divided between all active functions
4400 		 * on the PATH.
4401 		 */
4402 		if (func_num > 0) {
4403 			if (!CHIP_REV_IS_SLOW(bp))
4404 				cam_sz = PF_MAC_CREDIT_E2(bp, func_num);
4405 			else
4406 				cam_sz = BNX2X_CAM_SIZE_EMUL;
4407 
4408 			/* No need for CAM entries handling for 57712 and
4409 			 * newer.
4410 			 */
4411 			bnx2x_init_credit_pool(p, -1, cam_sz);
4412 		} else {
4413 			/* this should never happen! Block MAC operations. */
4414 			bnx2x_init_credit_pool(p, 0, 0);
4415 		}
4416 	}
4417 }
4418 
4419 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4420 				 struct bnx2x_credit_pool_obj *p,
4421 				 u8 func_id,
4422 				 u8 func_num)
4423 {
4424 	if (CHIP_IS_E1x(bp)) {
4425 		/* There is no VLAN credit in HW on 57710 and 57711 only
4426 		 * MAC / MAC-VLAN can be set
4427 		 */
4428 		bnx2x_init_credit_pool(p, 0, -1);
4429 	} else {
4430 		/* CAM credit is equally divided between all active functions
4431 		 * on the PATH.
4432 		 */
4433 		if (func_num > 0) {
4434 			int credit = PF_VLAN_CREDIT_E2(bp, func_num);
4435 
4436 			bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit);
4437 		} else
4438 			/* this should never happen! Block VLAN operations. */
4439 			bnx2x_init_credit_pool(p, 0, 0);
4440 	}
4441 }
4442 
4443 /****************** RSS Configuration ******************/
4444 /**
4445  * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4446  *
4447  * @bp:		driver handle
4448  * @p:		pointer to rss configuration
4449  *
4450  * Prints it when NETIF_MSG_IFUP debug level is configured.
4451  */
4452 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4453 					struct bnx2x_config_rss_params *p)
4454 {
4455 	int i;
4456 
4457 	DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4458 	DP(BNX2X_MSG_SP, "0x0000: ");
4459 	for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4460 		DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4461 
4462 		/* Print 4 bytes in a line */
4463 		if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4464 		    (((i + 1) & 0x3) == 0)) {
4465 			DP_CONT(BNX2X_MSG_SP, "\n");
4466 			DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4467 		}
4468 	}
4469 
4470 	DP_CONT(BNX2X_MSG_SP, "\n");
4471 }
4472 
4473 /**
4474  * bnx2x_setup_rss - configure RSS
4475  *
4476  * @bp:		device handle
4477  * @p:		rss configuration
4478  *
4479  * sends on UPDATE ramrod for that matter.
4480  */
4481 static int bnx2x_setup_rss(struct bnx2x *bp,
4482 			   struct bnx2x_config_rss_params *p)
4483 {
4484 	struct bnx2x_rss_config_obj *o = p->rss_obj;
4485 	struct bnx2x_raw_obj *r = &o->raw;
4486 	struct eth_rss_update_ramrod_data *data =
4487 		(struct eth_rss_update_ramrod_data *)(r->rdata);
4488 	u16 caps = 0;
4489 	u8 rss_mode = 0;
4490 	int rc;
4491 
4492 	memset(data, 0, sizeof(*data));
4493 
4494 	DP(BNX2X_MSG_SP, "Configuring RSS\n");
4495 
4496 	/* Set an echo field */
4497 	data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4498 				 (r->state << BNX2X_SWCID_SHIFT));
4499 
4500 	/* RSS mode */
4501 	if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4502 		rss_mode = ETH_RSS_MODE_DISABLED;
4503 	else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4504 		rss_mode = ETH_RSS_MODE_REGULAR;
4505 
4506 	data->rss_mode = rss_mode;
4507 
4508 	DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4509 
4510 	/* RSS capabilities */
4511 	if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4512 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4513 
4514 	if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4515 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4516 
4517 	if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4518 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4519 
4520 	if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4521 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4522 
4523 	if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4524 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4525 
4526 	if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4527 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4528 
4529 	if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags))
4530 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4531 
4532 	if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags))
4533 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4534 
4535 	if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4536 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4537 
4538 	/* RSS keys */
4539 	if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4540 		u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key);
4541 		const u8 *src = (const u8 *)p->rss_key;
4542 		int i;
4543 
4544 		/* Apparently, bnx2x reads this array in reverse order
4545 		 * We need to byte swap rss_key to comply with Toeplitz specs.
4546 		 */
4547 		for (i = 0; i < sizeof(data->rss_key); i++)
4548 			*--dst = *src++;
4549 
4550 		caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4551 	}
4552 
4553 	data->capabilities = cpu_to_le16(caps);
4554 
4555 	/* Hashing mask */
4556 	data->rss_result_mask = p->rss_result_mask;
4557 
4558 	/* RSS engine ID */
4559 	data->rss_engine_id = o->engine_id;
4560 
4561 	DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4562 
4563 	/* Indirection table */
4564 	memcpy(data->indirection_table, p->ind_table,
4565 		  T_ETH_INDIRECTION_TABLE_SIZE);
4566 
4567 	/* Remember the last configuration */
4568 	memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4569 
4570 	/* Print the indirection table */
4571 	if (netif_msg_ifup(bp))
4572 		bnx2x_debug_print_ind_table(bp, p);
4573 
4574 	/* No need for an explicit memory barrier here as long as we
4575 	 * ensure the ordering of writing to the SPQ element
4576 	 * and updating of the SPQ producer which involves a memory
4577 	 * read. If the memory read is removed we will have to put a
4578 	 * full memory barrier there (inside bnx2x_sp_post()).
4579 	 */
4580 
4581 	/* Send a ramrod */
4582 	rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4583 			   U64_HI(r->rdata_mapping),
4584 			   U64_LO(r->rdata_mapping),
4585 			   ETH_CONNECTION_TYPE);
4586 
4587 	if (rc < 0)
4588 		return rc;
4589 
4590 	return 1;
4591 }
4592 
4593 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4594 			     u8 *ind_table)
4595 {
4596 	memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4597 }
4598 
4599 int bnx2x_config_rss(struct bnx2x *bp,
4600 		     struct bnx2x_config_rss_params *p)
4601 {
4602 	int rc;
4603 	struct bnx2x_rss_config_obj *o = p->rss_obj;
4604 	struct bnx2x_raw_obj *r = &o->raw;
4605 
4606 	/* Do nothing if only driver cleanup was requested */
4607 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4608 		DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n",
4609 		   p->ramrod_flags);
4610 		return 0;
4611 	}
4612 
4613 	r->set_pending(r);
4614 
4615 	rc = o->config_rss(bp, p);
4616 	if (rc < 0) {
4617 		r->clear_pending(r);
4618 		return rc;
4619 	}
4620 
4621 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4622 		rc = r->wait_comp(bp, r);
4623 
4624 	return rc;
4625 }
4626 
4627 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4628 			       struct bnx2x_rss_config_obj *rss_obj,
4629 			       u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4630 			       void *rdata, dma_addr_t rdata_mapping,
4631 			       int state, unsigned long *pstate,
4632 			       bnx2x_obj_type type)
4633 {
4634 	bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4635 			   rdata_mapping, state, pstate, type);
4636 
4637 	rss_obj->engine_id  = engine_id;
4638 	rss_obj->config_rss = bnx2x_setup_rss;
4639 }
4640 
4641 /********************** Queue state object ***********************************/
4642 
4643 /**
4644  * bnx2x_queue_state_change - perform Queue state change transition
4645  *
4646  * @bp:		device handle
4647  * @params:	parameters to perform the transition
4648  *
4649  * returns 0 in case of successfully completed transition, negative error
4650  * code in case of failure, positive (EBUSY) value if there is a completion
4651  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4652  * not set in params->ramrod_flags for asynchronous commands).
4653  *
4654  */
4655 int bnx2x_queue_state_change(struct bnx2x *bp,
4656 			     struct bnx2x_queue_state_params *params)
4657 {
4658 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4659 	int rc, pending_bit;
4660 	unsigned long *pending = &o->pending;
4661 
4662 	/* Check that the requested transition is legal */
4663 	rc = o->check_transition(bp, o, params);
4664 	if (rc) {
4665 		BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4666 		return -EINVAL;
4667 	}
4668 
4669 	/* Set "pending" bit */
4670 	DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4671 	pending_bit = o->set_pending(o, params);
4672 	DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4673 
4674 	/* Don't send a command if only driver cleanup was requested */
4675 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4676 		o->complete_cmd(bp, o, pending_bit);
4677 	else {
4678 		/* Send a ramrod */
4679 		rc = o->send_cmd(bp, params);
4680 		if (rc) {
4681 			o->next_state = BNX2X_Q_STATE_MAX;
4682 			clear_bit(pending_bit, pending);
4683 			smp_mb__after_atomic();
4684 			return rc;
4685 		}
4686 
4687 		if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4688 			rc = o->wait_comp(bp, o, pending_bit);
4689 			if (rc)
4690 				return rc;
4691 
4692 			return 0;
4693 		}
4694 	}
4695 
4696 	return !!test_bit(pending_bit, pending);
4697 }
4698 
4699 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4700 				   struct bnx2x_queue_state_params *params)
4701 {
4702 	enum bnx2x_queue_cmd cmd = params->cmd, bit;
4703 
4704 	/* ACTIVATE and DEACTIVATE commands are implemented on top of
4705 	 * UPDATE command.
4706 	 */
4707 	if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4708 	    (cmd == BNX2X_Q_CMD_DEACTIVATE))
4709 		bit = BNX2X_Q_CMD_UPDATE;
4710 	else
4711 		bit = cmd;
4712 
4713 	set_bit(bit, &obj->pending);
4714 	return bit;
4715 }
4716 
4717 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4718 				 struct bnx2x_queue_sp_obj *o,
4719 				 enum bnx2x_queue_cmd cmd)
4720 {
4721 	return bnx2x_state_wait(bp, cmd, &o->pending);
4722 }
4723 
4724 /**
4725  * bnx2x_queue_comp_cmd - complete the state change command.
4726  *
4727  * @bp:		device handle
4728  * @o:
4729  * @cmd:
4730  *
4731  * Checks that the arrived completion is expected.
4732  */
4733 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4734 				struct bnx2x_queue_sp_obj *o,
4735 				enum bnx2x_queue_cmd cmd)
4736 {
4737 	unsigned long cur_pending = o->pending;
4738 
4739 	if (!test_and_clear_bit(cmd, &cur_pending)) {
4740 		BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4741 			  cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4742 			  o->state, cur_pending, o->next_state);
4743 		return -EINVAL;
4744 	}
4745 
4746 	if (o->next_tx_only >= o->max_cos)
4747 		/* >= because tx only must always be smaller than cos since the
4748 		 * primary connection supports COS 0
4749 		 */
4750 		BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4751 			   o->next_tx_only, o->max_cos);
4752 
4753 	DP(BNX2X_MSG_SP,
4754 	   "Completing command %d for queue %d, setting state to %d\n",
4755 	   cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4756 
4757 	if (o->next_tx_only)  /* print num tx-only if any exist */
4758 		DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4759 		   o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4760 
4761 	o->state = o->next_state;
4762 	o->num_tx_only = o->next_tx_only;
4763 	o->next_state = BNX2X_Q_STATE_MAX;
4764 
4765 	/* It's important that o->state and o->next_state are
4766 	 * updated before o->pending.
4767 	 */
4768 	wmb();
4769 
4770 	clear_bit(cmd, &o->pending);
4771 	smp_mb__after_atomic();
4772 
4773 	return 0;
4774 }
4775 
4776 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4777 				struct bnx2x_queue_state_params *cmd_params,
4778 				struct client_init_ramrod_data *data)
4779 {
4780 	struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4781 
4782 	/* Rx data */
4783 
4784 	/* IPv6 TPA supported for E2 and above only */
4785 	data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4786 				CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4787 }
4788 
4789 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4790 				struct bnx2x_queue_sp_obj *o,
4791 				struct bnx2x_general_setup_params *params,
4792 				struct client_init_general_data *gen_data,
4793 				unsigned long *flags)
4794 {
4795 	gen_data->client_id = o->cl_id;
4796 
4797 	if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4798 		gen_data->statistics_counter_id =
4799 					params->stat_id;
4800 		gen_data->statistics_en_flg = 1;
4801 		gen_data->statistics_zero_flg =
4802 			test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4803 	} else
4804 		gen_data->statistics_counter_id =
4805 					DISABLE_STATISTIC_COUNTER_ID_VALUE;
4806 
4807 	gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4808 	gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4809 	gen_data->sp_client_id = params->spcl_id;
4810 	gen_data->mtu = cpu_to_le16(params->mtu);
4811 	gen_data->func_id = o->func_id;
4812 
4813 	gen_data->cos = params->cos;
4814 
4815 	gen_data->traffic_type =
4816 		test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4817 		LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4818 
4819 	gen_data->fp_hsi_ver = params->fp_hsi;
4820 
4821 	DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4822 	   gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4823 }
4824 
4825 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4826 				struct bnx2x_txq_setup_params *params,
4827 				struct client_init_tx_data *tx_data,
4828 				unsigned long *flags)
4829 {
4830 	tx_data->enforce_security_flg =
4831 		test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4832 	tx_data->default_vlan =
4833 		cpu_to_le16(params->default_vlan);
4834 	tx_data->default_vlan_flg =
4835 		test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4836 	tx_data->tx_switching_flg =
4837 		test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4838 	tx_data->anti_spoofing_flg =
4839 		test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4840 	tx_data->force_default_pri_flg =
4841 		test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4842 	tx_data->refuse_outband_vlan_flg =
4843 		test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4844 	tx_data->tunnel_lso_inc_ip_id =
4845 		test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4846 	tx_data->tunnel_non_lso_pcsum_location =
4847 		test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4848 							    CSUM_ON_BD;
4849 
4850 	tx_data->tx_status_block_id = params->fw_sb_id;
4851 	tx_data->tx_sb_index_number = params->sb_cq_index;
4852 	tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4853 
4854 	tx_data->tx_bd_page_base.lo =
4855 		cpu_to_le32(U64_LO(params->dscr_map));
4856 	tx_data->tx_bd_page_base.hi =
4857 		cpu_to_le32(U64_HI(params->dscr_map));
4858 
4859 	/* Don't configure any Tx switching mode during queue SETUP */
4860 	tx_data->state = 0;
4861 }
4862 
4863 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4864 				struct rxq_pause_params *params,
4865 				struct client_init_rx_data *rx_data)
4866 {
4867 	/* flow control data */
4868 	rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4869 	rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4870 	rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4871 	rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4872 	rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4873 	rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4874 	rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4875 }
4876 
4877 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4878 				struct bnx2x_rxq_setup_params *params,
4879 				struct client_init_rx_data *rx_data,
4880 				unsigned long *flags)
4881 {
4882 	rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4883 				CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4884 	rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4885 				CLIENT_INIT_RX_DATA_TPA_MODE;
4886 	rx_data->vmqueue_mode_en_flg = 0;
4887 
4888 	rx_data->cache_line_alignment_log_size =
4889 		params->cache_line_log;
4890 	rx_data->enable_dynamic_hc =
4891 		test_bit(BNX2X_Q_FLG_DHC, flags);
4892 	rx_data->max_sges_for_packet = params->max_sges_pkt;
4893 	rx_data->client_qzone_id = params->cl_qzone_id;
4894 	rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4895 
4896 	/* Always start in DROP_ALL mode */
4897 	rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4898 				     CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4899 
4900 	/* We don't set drop flags */
4901 	rx_data->drop_ip_cs_err_flg = 0;
4902 	rx_data->drop_tcp_cs_err_flg = 0;
4903 	rx_data->drop_ttl0_flg = 0;
4904 	rx_data->drop_udp_cs_err_flg = 0;
4905 	rx_data->inner_vlan_removal_enable_flg =
4906 		test_bit(BNX2X_Q_FLG_VLAN, flags);
4907 	rx_data->outer_vlan_removal_enable_flg =
4908 		test_bit(BNX2X_Q_FLG_OV, flags);
4909 	rx_data->status_block_id = params->fw_sb_id;
4910 	rx_data->rx_sb_index_number = params->sb_cq_index;
4911 	rx_data->max_tpa_queues = params->max_tpa_queues;
4912 	rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4913 	rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4914 	rx_data->bd_page_base.lo =
4915 		cpu_to_le32(U64_LO(params->dscr_map));
4916 	rx_data->bd_page_base.hi =
4917 		cpu_to_le32(U64_HI(params->dscr_map));
4918 	rx_data->sge_page_base.lo =
4919 		cpu_to_le32(U64_LO(params->sge_map));
4920 	rx_data->sge_page_base.hi =
4921 		cpu_to_le32(U64_HI(params->sge_map));
4922 	rx_data->cqe_page_base.lo =
4923 		cpu_to_le32(U64_LO(params->rcq_map));
4924 	rx_data->cqe_page_base.hi =
4925 		cpu_to_le32(U64_HI(params->rcq_map));
4926 	rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4927 
4928 	if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4929 		rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4930 		rx_data->is_approx_mcast = 1;
4931 	}
4932 
4933 	rx_data->rss_engine_id = params->rss_engine_id;
4934 
4935 	/* silent vlan removal */
4936 	rx_data->silent_vlan_removal_flg =
4937 		test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4938 	rx_data->silent_vlan_value =
4939 		cpu_to_le16(params->silent_removal_value);
4940 	rx_data->silent_vlan_mask =
4941 		cpu_to_le16(params->silent_removal_mask);
4942 }
4943 
4944 /* initialize the general, tx and rx parts of a queue object */
4945 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4946 				struct bnx2x_queue_state_params *cmd_params,
4947 				struct client_init_ramrod_data *data)
4948 {
4949 	bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4950 				       &cmd_params->params.setup.gen_params,
4951 				       &data->general,
4952 				       &cmd_params->params.setup.flags);
4953 
4954 	bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4955 				  &cmd_params->params.setup.txq_params,
4956 				  &data->tx,
4957 				  &cmd_params->params.setup.flags);
4958 
4959 	bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4960 				  &cmd_params->params.setup.rxq_params,
4961 				  &data->rx,
4962 				  &cmd_params->params.setup.flags);
4963 
4964 	bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4965 				     &cmd_params->params.setup.pause_params,
4966 				     &data->rx);
4967 }
4968 
4969 /* initialize the general and tx parts of a tx-only queue object */
4970 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4971 				struct bnx2x_queue_state_params *cmd_params,
4972 				struct tx_queue_init_ramrod_data *data)
4973 {
4974 	bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4975 				       &cmd_params->params.tx_only.gen_params,
4976 				       &data->general,
4977 				       &cmd_params->params.tx_only.flags);
4978 
4979 	bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4980 				  &cmd_params->params.tx_only.txq_params,
4981 				  &data->tx,
4982 				  &cmd_params->params.tx_only.flags);
4983 
4984 	DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4985 			 cmd_params->q_obj->cids[0],
4986 			 data->tx.tx_bd_page_base.lo,
4987 			 data->tx.tx_bd_page_base.hi);
4988 }
4989 
4990 /**
4991  * bnx2x_q_init - init HW/FW queue
4992  *
4993  * @bp:		device handle
4994  * @params:
4995  *
4996  * HW/FW initial Queue configuration:
4997  *      - HC: Rx and Tx
4998  *      - CDU context validation
4999  *
5000  */
5001 static inline int bnx2x_q_init(struct bnx2x *bp,
5002 			       struct bnx2x_queue_state_params *params)
5003 {
5004 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5005 	struct bnx2x_queue_init_params *init = &params->params.init;
5006 	u16 hc_usec;
5007 	u8 cos;
5008 
5009 	/* Tx HC configuration */
5010 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
5011 	    test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
5012 		hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5013 
5014 		bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
5015 			init->tx.sb_cq_index,
5016 			!test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
5017 			hc_usec);
5018 	}
5019 
5020 	/* Rx HC configuration */
5021 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
5022 	    test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
5023 		hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5024 
5025 		bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
5026 			init->rx.sb_cq_index,
5027 			!test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
5028 			hc_usec);
5029 	}
5030 
5031 	/* Set CDU context validation values */
5032 	for (cos = 0; cos < o->max_cos; cos++) {
5033 		DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
5034 				 o->cids[cos], cos);
5035 		DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
5036 		bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
5037 	}
5038 
5039 	/* As no ramrod is sent, complete the command immediately  */
5040 	o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
5041 
5042 	smp_mb();
5043 
5044 	return 0;
5045 }
5046 
5047 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
5048 					struct bnx2x_queue_state_params *params)
5049 {
5050 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5051 	struct client_init_ramrod_data *rdata =
5052 		(struct client_init_ramrod_data *)o->rdata;
5053 	dma_addr_t data_mapping = o->rdata_mapping;
5054 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5055 
5056 	/* Clear the ramrod data */
5057 	memset(rdata, 0, sizeof(*rdata));
5058 
5059 	/* Fill the ramrod data */
5060 	bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5061 
5062 	/* No need for an explicit memory barrier here as long as we
5063 	 * ensure the ordering of writing to the SPQ element
5064 	 * and updating of the SPQ producer which involves a memory
5065 	 * read. If the memory read is removed we will have to put a
5066 	 * full memory barrier there (inside bnx2x_sp_post()).
5067 	 */
5068 	return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5069 			     U64_HI(data_mapping),
5070 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5071 }
5072 
5073 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
5074 					struct bnx2x_queue_state_params *params)
5075 {
5076 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5077 	struct client_init_ramrod_data *rdata =
5078 		(struct client_init_ramrod_data *)o->rdata;
5079 	dma_addr_t data_mapping = o->rdata_mapping;
5080 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5081 
5082 	/* Clear the ramrod data */
5083 	memset(rdata, 0, sizeof(*rdata));
5084 
5085 	/* Fill the ramrod data */
5086 	bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5087 	bnx2x_q_fill_setup_data_e2(bp, params, rdata);
5088 
5089 	/* No need for an explicit memory barrier here as long as we
5090 	 * ensure the ordering of writing to the SPQ element
5091 	 * and updating of the SPQ producer which involves a memory
5092 	 * read. If the memory read is removed we will have to put a
5093 	 * full memory barrier there (inside bnx2x_sp_post()).
5094 	 */
5095 	return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5096 			     U64_HI(data_mapping),
5097 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5098 }
5099 
5100 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
5101 				  struct bnx2x_queue_state_params *params)
5102 {
5103 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5104 	struct tx_queue_init_ramrod_data *rdata =
5105 		(struct tx_queue_init_ramrod_data *)o->rdata;
5106 	dma_addr_t data_mapping = o->rdata_mapping;
5107 	int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5108 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
5109 		&params->params.tx_only;
5110 	u8 cid_index = tx_only_params->cid_index;
5111 
5112 	if (cid_index >= o->max_cos) {
5113 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5114 			  o->cl_id, cid_index);
5115 		return -EINVAL;
5116 	}
5117 
5118 	DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
5119 			 tx_only_params->gen_params.cos,
5120 			 tx_only_params->gen_params.spcl_id);
5121 
5122 	/* Clear the ramrod data */
5123 	memset(rdata, 0, sizeof(*rdata));
5124 
5125 	/* Fill the ramrod data */
5126 	bnx2x_q_fill_setup_tx_only(bp, params, rdata);
5127 
5128 	DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5129 			 o->cids[cid_index], rdata->general.client_id,
5130 			 rdata->general.sp_client_id, rdata->general.cos);
5131 
5132 	/* No need for an explicit memory barrier here as long as we
5133 	 * ensure the ordering of writing to the SPQ element
5134 	 * and updating of the SPQ producer which involves a memory
5135 	 * read. If the memory read is removed we will have to put a
5136 	 * full memory barrier there (inside bnx2x_sp_post()).
5137 	 */
5138 	return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
5139 			     U64_HI(data_mapping),
5140 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5141 }
5142 
5143 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
5144 				     struct bnx2x_queue_sp_obj *obj,
5145 				     struct bnx2x_queue_update_params *params,
5146 				     struct client_update_ramrod_data *data)
5147 {
5148 	/* Client ID of the client to update */
5149 	data->client_id = obj->cl_id;
5150 
5151 	/* Function ID of the client to update */
5152 	data->func_id = obj->func_id;
5153 
5154 	/* Default VLAN value */
5155 	data->default_vlan = cpu_to_le16(params->def_vlan);
5156 
5157 	/* Inner VLAN stripping */
5158 	data->inner_vlan_removal_enable_flg =
5159 		test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
5160 	data->inner_vlan_removal_change_flg =
5161 		test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
5162 			 &params->update_flags);
5163 
5164 	/* Outer VLAN stripping */
5165 	data->outer_vlan_removal_enable_flg =
5166 		test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
5167 	data->outer_vlan_removal_change_flg =
5168 		test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
5169 			 &params->update_flags);
5170 
5171 	/* Drop packets that have source MAC that doesn't belong to this
5172 	 * Queue.
5173 	 */
5174 	data->anti_spoofing_enable_flg =
5175 		test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
5176 	data->anti_spoofing_change_flg =
5177 		test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
5178 
5179 	/* Activate/Deactivate */
5180 	data->activate_flg =
5181 		test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
5182 	data->activate_change_flg =
5183 		test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
5184 
5185 	/* Enable default VLAN */
5186 	data->default_vlan_enable_flg =
5187 		test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
5188 	data->default_vlan_change_flg =
5189 		test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
5190 			 &params->update_flags);
5191 
5192 	/* silent vlan removal */
5193 	data->silent_vlan_change_flg =
5194 		test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5195 			 &params->update_flags);
5196 	data->silent_vlan_removal_flg =
5197 		test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
5198 	data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
5199 	data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
5200 
5201 	/* tx switching */
5202 	data->tx_switching_flg =
5203 		test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, &params->update_flags);
5204 	data->tx_switching_change_flg =
5205 		test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
5206 			 &params->update_flags);
5207 
5208 	/* PTP */
5209 	data->handle_ptp_pkts_flg =
5210 		test_bit(BNX2X_Q_UPDATE_PTP_PKTS, &params->update_flags);
5211 	data->handle_ptp_pkts_change_flg =
5212 		test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, &params->update_flags);
5213 }
5214 
5215 static inline int bnx2x_q_send_update(struct bnx2x *bp,
5216 				      struct bnx2x_queue_state_params *params)
5217 {
5218 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5219 	struct client_update_ramrod_data *rdata =
5220 		(struct client_update_ramrod_data *)o->rdata;
5221 	dma_addr_t data_mapping = o->rdata_mapping;
5222 	struct bnx2x_queue_update_params *update_params =
5223 		&params->params.update;
5224 	u8 cid_index = update_params->cid_index;
5225 
5226 	if (cid_index >= o->max_cos) {
5227 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5228 			  o->cl_id, cid_index);
5229 		return -EINVAL;
5230 	}
5231 
5232 	/* Clear the ramrod data */
5233 	memset(rdata, 0, sizeof(*rdata));
5234 
5235 	/* Fill the ramrod data */
5236 	bnx2x_q_fill_update_data(bp, o, update_params, rdata);
5237 
5238 	/* No need for an explicit memory barrier here as long as we
5239 	 * ensure the ordering of writing to the SPQ element
5240 	 * and updating of the SPQ producer which involves a memory
5241 	 * read. If the memory read is removed we will have to put a
5242 	 * full memory barrier there (inside bnx2x_sp_post()).
5243 	 */
5244 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5245 			     o->cids[cid_index], U64_HI(data_mapping),
5246 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5247 }
5248 
5249 /**
5250  * bnx2x_q_send_deactivate - send DEACTIVATE command
5251  *
5252  * @bp:		device handle
5253  * @params:
5254  *
5255  * implemented using the UPDATE command.
5256  */
5257 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
5258 					struct bnx2x_queue_state_params *params)
5259 {
5260 	struct bnx2x_queue_update_params *update = &params->params.update;
5261 
5262 	memset(update, 0, sizeof(*update));
5263 
5264 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5265 
5266 	return bnx2x_q_send_update(bp, params);
5267 }
5268 
5269 /**
5270  * bnx2x_q_send_activate - send ACTIVATE command
5271  *
5272  * @bp:		device handle
5273  * @params:
5274  *
5275  * implemented using the UPDATE command.
5276  */
5277 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
5278 					struct bnx2x_queue_state_params *params)
5279 {
5280 	struct bnx2x_queue_update_params *update = &params->params.update;
5281 
5282 	memset(update, 0, sizeof(*update));
5283 
5284 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
5285 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5286 
5287 	return bnx2x_q_send_update(bp, params);
5288 }
5289 
5290 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp,
5291 				struct bnx2x_queue_sp_obj *obj,
5292 				struct bnx2x_queue_update_tpa_params *params,
5293 				struct tpa_update_ramrod_data *data)
5294 {
5295 	data->client_id = obj->cl_id;
5296 	data->complete_on_both_clients = params->complete_on_both_clients;
5297 	data->dont_verify_rings_pause_thr_flg =
5298 		params->dont_verify_thr;
5299 	data->max_agg_size = cpu_to_le16(params->max_agg_sz);
5300 	data->max_sges_for_packet = params->max_sges_pkt;
5301 	data->max_tpa_queues = params->max_tpa_queues;
5302 	data->sge_buff_size = cpu_to_le16(params->sge_buff_sz);
5303 	data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map));
5304 	data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map));
5305 	data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high);
5306 	data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low);
5307 	data->tpa_mode = params->tpa_mode;
5308 	data->update_ipv4 = params->update_ipv4;
5309 	data->update_ipv6 = params->update_ipv6;
5310 }
5311 
5312 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
5313 					struct bnx2x_queue_state_params *params)
5314 {
5315 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5316 	struct tpa_update_ramrod_data *rdata =
5317 		(struct tpa_update_ramrod_data *)o->rdata;
5318 	dma_addr_t data_mapping = o->rdata_mapping;
5319 	struct bnx2x_queue_update_tpa_params *update_tpa_params =
5320 		&params->params.update_tpa;
5321 	u16 type;
5322 
5323 	/* Clear the ramrod data */
5324 	memset(rdata, 0, sizeof(*rdata));
5325 
5326 	/* Fill the ramrod data */
5327 	bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata);
5328 
5329 	/* Add the function id inside the type, so that sp post function
5330 	 * doesn't automatically add the PF func-id, this is required
5331 	 * for operations done by PFs on behalf of their VFs
5332 	 */
5333 	type = ETH_CONNECTION_TYPE |
5334 		((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5335 
5336 	/* No need for an explicit memory barrier here as long as we
5337 	 * ensure the ordering of writing to the SPQ element
5338 	 * and updating of the SPQ producer which involves a memory
5339 	 * read. If the memory read is removed we will have to put a
5340 	 * full memory barrier there (inside bnx2x_sp_post()).
5341 	 */
5342 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5343 			     o->cids[BNX2X_PRIMARY_CID_INDEX],
5344 			     U64_HI(data_mapping),
5345 			     U64_LO(data_mapping), type);
5346 }
5347 
5348 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
5349 				    struct bnx2x_queue_state_params *params)
5350 {
5351 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5352 
5353 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
5354 			     o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
5355 			     ETH_CONNECTION_TYPE);
5356 }
5357 
5358 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
5359 				       struct bnx2x_queue_state_params *params)
5360 {
5361 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5362 	u8 cid_idx = params->params.cfc_del.cid_index;
5363 
5364 	if (cid_idx >= o->max_cos) {
5365 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5366 			  o->cl_id, cid_idx);
5367 		return -EINVAL;
5368 	}
5369 
5370 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
5371 			     o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
5372 }
5373 
5374 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
5375 					struct bnx2x_queue_state_params *params)
5376 {
5377 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5378 	u8 cid_index = params->params.terminate.cid_index;
5379 
5380 	if (cid_index >= o->max_cos) {
5381 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5382 			  o->cl_id, cid_index);
5383 		return -EINVAL;
5384 	}
5385 
5386 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
5387 			     o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
5388 }
5389 
5390 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
5391 				     struct bnx2x_queue_state_params *params)
5392 {
5393 	struct bnx2x_queue_sp_obj *o = params->q_obj;
5394 
5395 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
5396 			     o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
5397 			     ETH_CONNECTION_TYPE);
5398 }
5399 
5400 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
5401 					struct bnx2x_queue_state_params *params)
5402 {
5403 	switch (params->cmd) {
5404 	case BNX2X_Q_CMD_INIT:
5405 		return bnx2x_q_init(bp, params);
5406 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
5407 		return bnx2x_q_send_setup_tx_only(bp, params);
5408 	case BNX2X_Q_CMD_DEACTIVATE:
5409 		return bnx2x_q_send_deactivate(bp, params);
5410 	case BNX2X_Q_CMD_ACTIVATE:
5411 		return bnx2x_q_send_activate(bp, params);
5412 	case BNX2X_Q_CMD_UPDATE:
5413 		return bnx2x_q_send_update(bp, params);
5414 	case BNX2X_Q_CMD_UPDATE_TPA:
5415 		return bnx2x_q_send_update_tpa(bp, params);
5416 	case BNX2X_Q_CMD_HALT:
5417 		return bnx2x_q_send_halt(bp, params);
5418 	case BNX2X_Q_CMD_CFC_DEL:
5419 		return bnx2x_q_send_cfc_del(bp, params);
5420 	case BNX2X_Q_CMD_TERMINATE:
5421 		return bnx2x_q_send_terminate(bp, params);
5422 	case BNX2X_Q_CMD_EMPTY:
5423 		return bnx2x_q_send_empty(bp, params);
5424 	default:
5425 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5426 		return -EINVAL;
5427 	}
5428 }
5429 
5430 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
5431 				    struct bnx2x_queue_state_params *params)
5432 {
5433 	switch (params->cmd) {
5434 	case BNX2X_Q_CMD_SETUP:
5435 		return bnx2x_q_send_setup_e1x(bp, params);
5436 	case BNX2X_Q_CMD_INIT:
5437 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
5438 	case BNX2X_Q_CMD_DEACTIVATE:
5439 	case BNX2X_Q_CMD_ACTIVATE:
5440 	case BNX2X_Q_CMD_UPDATE:
5441 	case BNX2X_Q_CMD_UPDATE_TPA:
5442 	case BNX2X_Q_CMD_HALT:
5443 	case BNX2X_Q_CMD_CFC_DEL:
5444 	case BNX2X_Q_CMD_TERMINATE:
5445 	case BNX2X_Q_CMD_EMPTY:
5446 		return bnx2x_queue_send_cmd_cmn(bp, params);
5447 	default:
5448 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5449 		return -EINVAL;
5450 	}
5451 }
5452 
5453 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
5454 				   struct bnx2x_queue_state_params *params)
5455 {
5456 	switch (params->cmd) {
5457 	case BNX2X_Q_CMD_SETUP:
5458 		return bnx2x_q_send_setup_e2(bp, params);
5459 	case BNX2X_Q_CMD_INIT:
5460 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
5461 	case BNX2X_Q_CMD_DEACTIVATE:
5462 	case BNX2X_Q_CMD_ACTIVATE:
5463 	case BNX2X_Q_CMD_UPDATE:
5464 	case BNX2X_Q_CMD_UPDATE_TPA:
5465 	case BNX2X_Q_CMD_HALT:
5466 	case BNX2X_Q_CMD_CFC_DEL:
5467 	case BNX2X_Q_CMD_TERMINATE:
5468 	case BNX2X_Q_CMD_EMPTY:
5469 		return bnx2x_queue_send_cmd_cmn(bp, params);
5470 	default:
5471 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5472 		return -EINVAL;
5473 	}
5474 }
5475 
5476 /**
5477  * bnx2x_queue_chk_transition - check state machine of a regular Queue
5478  *
5479  * @bp:		device handle
5480  * @o:
5481  * @params:
5482  *
5483  * (not Forwarding)
5484  * It both checks if the requested command is legal in a current
5485  * state and, if it's legal, sets a `next_state' in the object
5486  * that will be used in the completion flow to set the `state'
5487  * of the object.
5488  *
5489  * returns 0 if a requested command is a legal transition,
5490  *         -EINVAL otherwise.
5491  */
5492 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5493 				      struct bnx2x_queue_sp_obj *o,
5494 				      struct bnx2x_queue_state_params *params)
5495 {
5496 	enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5497 	enum bnx2x_queue_cmd cmd = params->cmd;
5498 	struct bnx2x_queue_update_params *update_params =
5499 		 &params->params.update;
5500 	u8 next_tx_only = o->num_tx_only;
5501 
5502 	/* Forget all pending for completion commands if a driver only state
5503 	 * transition has been requested.
5504 	 */
5505 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5506 		o->pending = 0;
5507 		o->next_state = BNX2X_Q_STATE_MAX;
5508 	}
5509 
5510 	/* Don't allow a next state transition if we are in the middle of
5511 	 * the previous one.
5512 	 */
5513 	if (o->pending) {
5514 		BNX2X_ERR("Blocking transition since pending was %lx\n",
5515 			  o->pending);
5516 		return -EBUSY;
5517 	}
5518 
5519 	switch (state) {
5520 	case BNX2X_Q_STATE_RESET:
5521 		if (cmd == BNX2X_Q_CMD_INIT)
5522 			next_state = BNX2X_Q_STATE_INITIALIZED;
5523 
5524 		break;
5525 	case BNX2X_Q_STATE_INITIALIZED:
5526 		if (cmd == BNX2X_Q_CMD_SETUP) {
5527 			if (test_bit(BNX2X_Q_FLG_ACTIVE,
5528 				     &params->params.setup.flags))
5529 				next_state = BNX2X_Q_STATE_ACTIVE;
5530 			else
5531 				next_state = BNX2X_Q_STATE_INACTIVE;
5532 		}
5533 
5534 		break;
5535 	case BNX2X_Q_STATE_ACTIVE:
5536 		if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5537 			next_state = BNX2X_Q_STATE_INACTIVE;
5538 
5539 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5540 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5541 			next_state = BNX2X_Q_STATE_ACTIVE;
5542 
5543 		else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5544 			next_state = BNX2X_Q_STATE_MULTI_COS;
5545 			next_tx_only = 1;
5546 		}
5547 
5548 		else if (cmd == BNX2X_Q_CMD_HALT)
5549 			next_state = BNX2X_Q_STATE_STOPPED;
5550 
5551 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5552 			/* If "active" state change is requested, update the
5553 			 *  state accordingly.
5554 			 */
5555 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5556 				     &update_params->update_flags) &&
5557 			    !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5558 				      &update_params->update_flags))
5559 				next_state = BNX2X_Q_STATE_INACTIVE;
5560 			else
5561 				next_state = BNX2X_Q_STATE_ACTIVE;
5562 		}
5563 
5564 		break;
5565 	case BNX2X_Q_STATE_MULTI_COS:
5566 		if (cmd == BNX2X_Q_CMD_TERMINATE)
5567 			next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5568 
5569 		else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5570 			next_state = BNX2X_Q_STATE_MULTI_COS;
5571 			next_tx_only = o->num_tx_only + 1;
5572 		}
5573 
5574 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5575 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5576 			next_state = BNX2X_Q_STATE_MULTI_COS;
5577 
5578 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5579 			/* If "active" state change is requested, update the
5580 			 *  state accordingly.
5581 			 */
5582 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5583 				     &update_params->update_flags) &&
5584 			    !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5585 				      &update_params->update_flags))
5586 				next_state = BNX2X_Q_STATE_INACTIVE;
5587 			else
5588 				next_state = BNX2X_Q_STATE_MULTI_COS;
5589 		}
5590 
5591 		break;
5592 	case BNX2X_Q_STATE_MCOS_TERMINATED:
5593 		if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5594 			next_tx_only = o->num_tx_only - 1;
5595 			if (next_tx_only == 0)
5596 				next_state = BNX2X_Q_STATE_ACTIVE;
5597 			else
5598 				next_state = BNX2X_Q_STATE_MULTI_COS;
5599 		}
5600 
5601 		break;
5602 	case BNX2X_Q_STATE_INACTIVE:
5603 		if (cmd == BNX2X_Q_CMD_ACTIVATE)
5604 			next_state = BNX2X_Q_STATE_ACTIVE;
5605 
5606 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5607 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5608 			next_state = BNX2X_Q_STATE_INACTIVE;
5609 
5610 		else if (cmd == BNX2X_Q_CMD_HALT)
5611 			next_state = BNX2X_Q_STATE_STOPPED;
5612 
5613 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5614 			/* If "active" state change is requested, update the
5615 			 * state accordingly.
5616 			 */
5617 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5618 				     &update_params->update_flags) &&
5619 			    test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5620 				     &update_params->update_flags)){
5621 				if (o->num_tx_only == 0)
5622 					next_state = BNX2X_Q_STATE_ACTIVE;
5623 				else /* tx only queues exist for this queue */
5624 					next_state = BNX2X_Q_STATE_MULTI_COS;
5625 			} else
5626 				next_state = BNX2X_Q_STATE_INACTIVE;
5627 		}
5628 
5629 		break;
5630 	case BNX2X_Q_STATE_STOPPED:
5631 		if (cmd == BNX2X_Q_CMD_TERMINATE)
5632 			next_state = BNX2X_Q_STATE_TERMINATED;
5633 
5634 		break;
5635 	case BNX2X_Q_STATE_TERMINATED:
5636 		if (cmd == BNX2X_Q_CMD_CFC_DEL)
5637 			next_state = BNX2X_Q_STATE_RESET;
5638 
5639 		break;
5640 	default:
5641 		BNX2X_ERR("Illegal state: %d\n", state);
5642 	}
5643 
5644 	/* Transition is assured */
5645 	if (next_state != BNX2X_Q_STATE_MAX) {
5646 		DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5647 				 state, cmd, next_state);
5648 		o->next_state = next_state;
5649 		o->next_tx_only = next_tx_only;
5650 		return 0;
5651 	}
5652 
5653 	DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5654 
5655 	return -EINVAL;
5656 }
5657 
5658 void bnx2x_init_queue_obj(struct bnx2x *bp,
5659 			  struct bnx2x_queue_sp_obj *obj,
5660 			  u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5661 			  void *rdata,
5662 			  dma_addr_t rdata_mapping, unsigned long type)
5663 {
5664 	memset(obj, 0, sizeof(*obj));
5665 
5666 	/* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5667 	BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5668 
5669 	memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5670 	obj->max_cos = cid_cnt;
5671 	obj->cl_id = cl_id;
5672 	obj->func_id = func_id;
5673 	obj->rdata = rdata;
5674 	obj->rdata_mapping = rdata_mapping;
5675 	obj->type = type;
5676 	obj->next_state = BNX2X_Q_STATE_MAX;
5677 
5678 	if (CHIP_IS_E1x(bp))
5679 		obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5680 	else
5681 		obj->send_cmd = bnx2x_queue_send_cmd_e2;
5682 
5683 	obj->check_transition = bnx2x_queue_chk_transition;
5684 
5685 	obj->complete_cmd = bnx2x_queue_comp_cmd;
5686 	obj->wait_comp = bnx2x_queue_wait_comp;
5687 	obj->set_pending = bnx2x_queue_set_pending;
5688 }
5689 
5690 /* return a queue object's logical state*/
5691 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5692 			       struct bnx2x_queue_sp_obj *obj)
5693 {
5694 	switch (obj->state) {
5695 	case BNX2X_Q_STATE_ACTIVE:
5696 	case BNX2X_Q_STATE_MULTI_COS:
5697 		return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5698 	case BNX2X_Q_STATE_RESET:
5699 	case BNX2X_Q_STATE_INITIALIZED:
5700 	case BNX2X_Q_STATE_MCOS_TERMINATED:
5701 	case BNX2X_Q_STATE_INACTIVE:
5702 	case BNX2X_Q_STATE_STOPPED:
5703 	case BNX2X_Q_STATE_TERMINATED:
5704 	case BNX2X_Q_STATE_FLRED:
5705 		return BNX2X_Q_LOGICAL_STATE_STOPPED;
5706 	default:
5707 		return -EINVAL;
5708 	}
5709 }
5710 
5711 /********************** Function state object *********************************/
5712 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5713 					   struct bnx2x_func_sp_obj *o)
5714 {
5715 	/* in the middle of transaction - return INVALID state */
5716 	if (o->pending)
5717 		return BNX2X_F_STATE_MAX;
5718 
5719 	/* unsure the order of reading of o->pending and o->state
5720 	 * o->pending should be read first
5721 	 */
5722 	rmb();
5723 
5724 	return o->state;
5725 }
5726 
5727 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5728 				struct bnx2x_func_sp_obj *o,
5729 				enum bnx2x_func_cmd cmd)
5730 {
5731 	return bnx2x_state_wait(bp, cmd, &o->pending);
5732 }
5733 
5734 /**
5735  * bnx2x_func_state_change_comp - complete the state machine transition
5736  *
5737  * @bp:		device handle
5738  * @o:
5739  * @cmd:
5740  *
5741  * Called on state change transition. Completes the state
5742  * machine transition only - no HW interaction.
5743  */
5744 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5745 					       struct bnx2x_func_sp_obj *o,
5746 					       enum bnx2x_func_cmd cmd)
5747 {
5748 	unsigned long cur_pending = o->pending;
5749 
5750 	if (!test_and_clear_bit(cmd, &cur_pending)) {
5751 		BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5752 			  cmd, BP_FUNC(bp), o->state,
5753 			  cur_pending, o->next_state);
5754 		return -EINVAL;
5755 	}
5756 
5757 	DP(BNX2X_MSG_SP,
5758 	   "Completing command %d for func %d, setting state to %d\n",
5759 	   cmd, BP_FUNC(bp), o->next_state);
5760 
5761 	o->state = o->next_state;
5762 	o->next_state = BNX2X_F_STATE_MAX;
5763 
5764 	/* It's important that o->state and o->next_state are
5765 	 * updated before o->pending.
5766 	 */
5767 	wmb();
5768 
5769 	clear_bit(cmd, &o->pending);
5770 	smp_mb__after_atomic();
5771 
5772 	return 0;
5773 }
5774 
5775 /**
5776  * bnx2x_func_comp_cmd - complete the state change command
5777  *
5778  * @bp:		device handle
5779  * @o:
5780  * @cmd:
5781  *
5782  * Checks that the arrived completion is expected.
5783  */
5784 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5785 			       struct bnx2x_func_sp_obj *o,
5786 			       enum bnx2x_func_cmd cmd)
5787 {
5788 	/* Complete the state machine part first, check if it's a
5789 	 * legal completion.
5790 	 */
5791 	int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5792 	return rc;
5793 }
5794 
5795 /**
5796  * bnx2x_func_chk_transition - perform function state machine transition
5797  *
5798  * @bp:		device handle
5799  * @o:
5800  * @params:
5801  *
5802  * It both checks if the requested command is legal in a current
5803  * state and, if it's legal, sets a `next_state' in the object
5804  * that will be used in the completion flow to set the `state'
5805  * of the object.
5806  *
5807  * returns 0 if a requested command is a legal transition,
5808  *         -EINVAL otherwise.
5809  */
5810 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5811 				     struct bnx2x_func_sp_obj *o,
5812 				     struct bnx2x_func_state_params *params)
5813 {
5814 	enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5815 	enum bnx2x_func_cmd cmd = params->cmd;
5816 
5817 	/* Forget all pending for completion commands if a driver only state
5818 	 * transition has been requested.
5819 	 */
5820 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5821 		o->pending = 0;
5822 		o->next_state = BNX2X_F_STATE_MAX;
5823 	}
5824 
5825 	/* Don't allow a next state transition if we are in the middle of
5826 	 * the previous one.
5827 	 */
5828 	if (o->pending)
5829 		return -EBUSY;
5830 
5831 	switch (state) {
5832 	case BNX2X_F_STATE_RESET:
5833 		if (cmd == BNX2X_F_CMD_HW_INIT)
5834 			next_state = BNX2X_F_STATE_INITIALIZED;
5835 
5836 		break;
5837 	case BNX2X_F_STATE_INITIALIZED:
5838 		if (cmd == BNX2X_F_CMD_START)
5839 			next_state = BNX2X_F_STATE_STARTED;
5840 
5841 		else if (cmd == BNX2X_F_CMD_HW_RESET)
5842 			next_state = BNX2X_F_STATE_RESET;
5843 
5844 		break;
5845 	case BNX2X_F_STATE_STARTED:
5846 		if (cmd == BNX2X_F_CMD_STOP)
5847 			next_state = BNX2X_F_STATE_INITIALIZED;
5848 		/* afex ramrods can be sent only in started mode, and only
5849 		 * if not pending for function_stop ramrod completion
5850 		 * for these events - next state remained STARTED.
5851 		 */
5852 		else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5853 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5854 			next_state = BNX2X_F_STATE_STARTED;
5855 
5856 		else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5857 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5858 			next_state = BNX2X_F_STATE_STARTED;
5859 
5860 		/* Switch_update ramrod can be sent in either started or
5861 		 * tx_stopped state, and it doesn't change the state.
5862 		 */
5863 		else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5864 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5865 			next_state = BNX2X_F_STATE_STARTED;
5866 
5867 		else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5868 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5869 			next_state = BNX2X_F_STATE_STARTED;
5870 
5871 		else if (cmd == BNX2X_F_CMD_TX_STOP)
5872 			next_state = BNX2X_F_STATE_TX_STOPPED;
5873 
5874 		break;
5875 	case BNX2X_F_STATE_TX_STOPPED:
5876 		if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5877 		    (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5878 			next_state = BNX2X_F_STATE_TX_STOPPED;
5879 
5880 		else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5881 			 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5882 			next_state = BNX2X_F_STATE_TX_STOPPED;
5883 
5884 		else if (cmd == BNX2X_F_CMD_TX_START)
5885 			next_state = BNX2X_F_STATE_STARTED;
5886 
5887 		break;
5888 	default:
5889 		BNX2X_ERR("Unknown state: %d\n", state);
5890 	}
5891 
5892 	/* Transition is assured */
5893 	if (next_state != BNX2X_F_STATE_MAX) {
5894 		DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5895 				 state, cmd, next_state);
5896 		o->next_state = next_state;
5897 		return 0;
5898 	}
5899 
5900 	DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5901 			 state, cmd);
5902 
5903 	return -EINVAL;
5904 }
5905 
5906 /**
5907  * bnx2x_func_init_func - performs HW init at function stage
5908  *
5909  * @bp:		device handle
5910  * @drv:
5911  *
5912  * Init HW when the current phase is
5913  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5914  * HW blocks.
5915  */
5916 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5917 				       const struct bnx2x_func_sp_drv_ops *drv)
5918 {
5919 	return drv->init_hw_func(bp);
5920 }
5921 
5922 /**
5923  * bnx2x_func_init_port - performs HW init at port stage
5924  *
5925  * @bp:		device handle
5926  * @drv:
5927  *
5928  * Init HW when the current phase is
5929  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5930  * FUNCTION-only HW blocks.
5931  *
5932  */
5933 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5934 				       const struct bnx2x_func_sp_drv_ops *drv)
5935 {
5936 	int rc = drv->init_hw_port(bp);
5937 	if (rc)
5938 		return rc;
5939 
5940 	return bnx2x_func_init_func(bp, drv);
5941 }
5942 
5943 /**
5944  * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5945  *
5946  * @bp:		device handle
5947  * @drv:
5948  *
5949  * Init HW when the current phase is
5950  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5951  * PORT-only and FUNCTION-only HW blocks.
5952  */
5953 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5954 					const struct bnx2x_func_sp_drv_ops *drv)
5955 {
5956 	int rc = drv->init_hw_cmn_chip(bp);
5957 	if (rc)
5958 		return rc;
5959 
5960 	return bnx2x_func_init_port(bp, drv);
5961 }
5962 
5963 /**
5964  * bnx2x_func_init_cmn - performs HW init at common stage
5965  *
5966  * @bp:		device handle
5967  * @drv:
5968  *
5969  * Init HW when the current phase is
5970  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5971  * PORT-only and FUNCTION-only HW blocks.
5972  */
5973 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5974 				      const struct bnx2x_func_sp_drv_ops *drv)
5975 {
5976 	int rc = drv->init_hw_cmn(bp);
5977 	if (rc)
5978 		return rc;
5979 
5980 	return bnx2x_func_init_port(bp, drv);
5981 }
5982 
5983 static int bnx2x_func_hw_init(struct bnx2x *bp,
5984 			      struct bnx2x_func_state_params *params)
5985 {
5986 	u32 load_code = params->params.hw_init.load_phase;
5987 	struct bnx2x_func_sp_obj *o = params->f_obj;
5988 	const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5989 	int rc = 0;
5990 
5991 	DP(BNX2X_MSG_SP, "function %d  load_code %x\n",
5992 			 BP_ABS_FUNC(bp), load_code);
5993 
5994 	/* Prepare buffers for unzipping the FW */
5995 	rc = drv->gunzip_init(bp);
5996 	if (rc)
5997 		return rc;
5998 
5999 	/* Prepare FW */
6000 	rc = drv->init_fw(bp);
6001 	if (rc) {
6002 		BNX2X_ERR("Error loading firmware\n");
6003 		goto init_err;
6004 	}
6005 
6006 	/* Handle the beginning of COMMON_XXX pases separately... */
6007 	switch (load_code) {
6008 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6009 		rc = bnx2x_func_init_cmn_chip(bp, drv);
6010 		if (rc)
6011 			goto init_err;
6012 
6013 		break;
6014 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6015 		rc = bnx2x_func_init_cmn(bp, drv);
6016 		if (rc)
6017 			goto init_err;
6018 
6019 		break;
6020 	case FW_MSG_CODE_DRV_LOAD_PORT:
6021 		rc = bnx2x_func_init_port(bp, drv);
6022 		if (rc)
6023 			goto init_err;
6024 
6025 		break;
6026 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6027 		rc = bnx2x_func_init_func(bp, drv);
6028 		if (rc)
6029 			goto init_err;
6030 
6031 		break;
6032 	default:
6033 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6034 		rc = -EINVAL;
6035 	}
6036 
6037 init_err:
6038 	drv->gunzip_end(bp);
6039 
6040 	/* In case of success, complete the command immediately: no ramrods
6041 	 * have been sent.
6042 	 */
6043 	if (!rc)
6044 		o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
6045 
6046 	return rc;
6047 }
6048 
6049 /**
6050  * bnx2x_func_reset_func - reset HW at function stage
6051  *
6052  * @bp:		device handle
6053  * @drv:
6054  *
6055  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6056  * FUNCTION-only HW blocks.
6057  */
6058 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
6059 					const struct bnx2x_func_sp_drv_ops *drv)
6060 {
6061 	drv->reset_hw_func(bp);
6062 }
6063 
6064 /**
6065  * bnx2x_func_reset_port - reset HW at port stage
6066  *
6067  * @bp:		device handle
6068  * @drv:
6069  *
6070  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6071  * FUNCTION-only and PORT-only HW blocks.
6072  *
6073  *                 !!!IMPORTANT!!!
6074  *
6075  * It's important to call reset_port before reset_func() as the last thing
6076  * reset_func does is pf_disable() thus disabling PGLUE_B, which
6077  * makes impossible any DMAE transactions.
6078  */
6079 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
6080 					const struct bnx2x_func_sp_drv_ops *drv)
6081 {
6082 	drv->reset_hw_port(bp);
6083 	bnx2x_func_reset_func(bp, drv);
6084 }
6085 
6086 /**
6087  * bnx2x_func_reset_cmn - reset HW at common stage
6088  *
6089  * @bp:		device handle
6090  * @drv:
6091  *
6092  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6093  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6094  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6095  */
6096 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
6097 					const struct bnx2x_func_sp_drv_ops *drv)
6098 {
6099 	bnx2x_func_reset_port(bp, drv);
6100 	drv->reset_hw_cmn(bp);
6101 }
6102 
6103 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
6104 				      struct bnx2x_func_state_params *params)
6105 {
6106 	u32 reset_phase = params->params.hw_reset.reset_phase;
6107 	struct bnx2x_func_sp_obj *o = params->f_obj;
6108 	const struct bnx2x_func_sp_drv_ops *drv = o->drv;
6109 
6110 	DP(BNX2X_MSG_SP, "function %d  reset_phase %x\n", BP_ABS_FUNC(bp),
6111 			 reset_phase);
6112 
6113 	switch (reset_phase) {
6114 	case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6115 		bnx2x_func_reset_cmn(bp, drv);
6116 		break;
6117 	case FW_MSG_CODE_DRV_UNLOAD_PORT:
6118 		bnx2x_func_reset_port(bp, drv);
6119 		break;
6120 	case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6121 		bnx2x_func_reset_func(bp, drv);
6122 		break;
6123 	default:
6124 		BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
6125 			   reset_phase);
6126 		break;
6127 	}
6128 
6129 	/* Complete the command immediately: no ramrods have been sent. */
6130 	o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
6131 
6132 	return 0;
6133 }
6134 
6135 static inline int bnx2x_func_send_start(struct bnx2x *bp,
6136 					struct bnx2x_func_state_params *params)
6137 {
6138 	struct bnx2x_func_sp_obj *o = params->f_obj;
6139 	struct function_start_data *rdata =
6140 		(struct function_start_data *)o->rdata;
6141 	dma_addr_t data_mapping = o->rdata_mapping;
6142 	struct bnx2x_func_start_params *start_params = &params->params.start;
6143 
6144 	memset(rdata, 0, sizeof(*rdata));
6145 
6146 	/* Fill the ramrod data with provided parameters */
6147 	rdata->function_mode	= (u8)start_params->mf_mode;
6148 	rdata->sd_vlan_tag	= cpu_to_le16(start_params->sd_vlan_tag);
6149 	rdata->path_id		= BP_PATH(bp);
6150 	rdata->network_cos_mode	= start_params->network_cos_mode;
6151 	rdata->dmae_cmd_id	= BNX2X_FW_DMAE_C;
6152 
6153 	rdata->vxlan_dst_port	= cpu_to_le16(start_params->vxlan_dst_port);
6154 	rdata->geneve_dst_port	= cpu_to_le16(start_params->geneve_dst_port);
6155 	rdata->inner_clss_l2gre	= start_params->inner_clss_l2gre;
6156 	rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6157 	rdata->inner_clss_vxlan	= start_params->inner_clss_vxlan;
6158 	rdata->inner_rss	= start_params->inner_rss;
6159 
6160 	rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6161 	if (start_params->class_fail_ethtype) {
6162 		rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6163 		rdata->sd_accept_mf_clss_fail_ethtype =
6164 			cpu_to_le16(start_params->class_fail_ethtype);
6165 	}
6166 
6167 	rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6168 	rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6169 	if (start_params->sd_vlan_eth_type)
6170 		rdata->sd_vlan_eth_type =
6171 			cpu_to_le16(start_params->sd_vlan_eth_type);
6172 	else
6173 		rdata->sd_vlan_eth_type =
6174 			cpu_to_le16(0x8100);
6175 
6176 	rdata->no_added_tags = start_params->no_added_tags;
6177 
6178 	rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6179 	if (rdata->c2s_pri_tt_valid) {
6180 		memcpy(rdata->c2s_pri_trans_table.val,
6181 		       start_params->c2s_pri,
6182 		       MAX_VLAN_PRIORITIES);
6183 		rdata->c2s_pri_default = start_params->c2s_pri_default;
6184 	}
6185 	/* No need for an explicit memory barrier here as long we would
6186 	 * need to ensure the ordering of writing to the SPQ element
6187 	 * and updating of the SPQ producer which involves a memory
6188 	 * read and we will have to put a full memory barrier there
6189 	 * (inside bnx2x_sp_post()).
6190 	 */
6191 
6192 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6193 			     U64_HI(data_mapping),
6194 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6195 }
6196 
6197 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
6198 					struct bnx2x_func_state_params *params)
6199 {
6200 	struct bnx2x_func_sp_obj *o = params->f_obj;
6201 	struct function_update_data *rdata =
6202 		(struct function_update_data *)o->rdata;
6203 	dma_addr_t data_mapping = o->rdata_mapping;
6204 	struct bnx2x_func_switch_update_params *switch_update_params =
6205 		&params->params.switch_update;
6206 
6207 	memset(rdata, 0, sizeof(*rdata));
6208 
6209 	/* Fill the ramrod data with provided parameters */
6210 	if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6211 		     &switch_update_params->changes)) {
6212 		rdata->tx_switch_suspend_change_flg = 1;
6213 		rdata->tx_switch_suspend =
6214 			test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
6215 				 &switch_update_params->changes);
6216 	}
6217 
6218 	if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
6219 		     &switch_update_params->changes)) {
6220 		rdata->sd_vlan_tag_change_flg = 1;
6221 		rdata->sd_vlan_tag =
6222 			cpu_to_le16(switch_update_params->vlan);
6223 	}
6224 
6225 	if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6226 		     &switch_update_params->changes)) {
6227 		rdata->sd_vlan_eth_type_change_flg = 1;
6228 		rdata->sd_vlan_eth_type =
6229 			cpu_to_le16(switch_update_params->vlan_eth_type);
6230 	}
6231 
6232 	if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6233 		     &switch_update_params->changes)) {
6234 		rdata->sd_vlan_force_pri_change_flg = 1;
6235 		if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6236 			     &switch_update_params->changes))
6237 			rdata->sd_vlan_force_pri_flg = 1;
6238 		rdata->sd_vlan_force_pri_flg =
6239 			switch_update_params->vlan_force_prio;
6240 	}
6241 
6242 	if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
6243 		     &switch_update_params->changes)) {
6244 		rdata->update_tunn_cfg_flg = 1;
6245 		if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6246 			     &switch_update_params->changes))
6247 			rdata->inner_clss_l2gre = 1;
6248 		if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6249 			     &switch_update_params->changes))
6250 			rdata->inner_clss_vxlan = 1;
6251 		if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6252 			     &switch_update_params->changes))
6253 			rdata->inner_clss_l2geneve = 1;
6254 		if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
6255 			     &switch_update_params->changes))
6256 			rdata->inner_rss = 1;
6257 		rdata->vxlan_dst_port =
6258 			cpu_to_le16(switch_update_params->vxlan_dst_port);
6259 		rdata->geneve_dst_port =
6260 			cpu_to_le16(switch_update_params->geneve_dst_port);
6261 	}
6262 
6263 	rdata->echo = SWITCH_UPDATE;
6264 
6265 	/* No need for an explicit memory barrier here as long as we
6266 	 * ensure the ordering of writing to the SPQ element
6267 	 * and updating of the SPQ producer which involves a memory
6268 	 * read. If the memory read is removed we will have to put a
6269 	 * full memory barrier there (inside bnx2x_sp_post()).
6270 	 */
6271 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6272 			     U64_HI(data_mapping),
6273 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6274 }
6275 
6276 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
6277 					 struct bnx2x_func_state_params *params)
6278 {
6279 	struct bnx2x_func_sp_obj *o = params->f_obj;
6280 	struct function_update_data *rdata =
6281 		(struct function_update_data *)o->afex_rdata;
6282 	dma_addr_t data_mapping = o->afex_rdata_mapping;
6283 	struct bnx2x_func_afex_update_params *afex_update_params =
6284 		&params->params.afex_update;
6285 
6286 	memset(rdata, 0, sizeof(*rdata));
6287 
6288 	/* Fill the ramrod data with provided parameters */
6289 	rdata->vif_id_change_flg = 1;
6290 	rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
6291 	rdata->afex_default_vlan_change_flg = 1;
6292 	rdata->afex_default_vlan =
6293 		cpu_to_le16(afex_update_params->afex_default_vlan);
6294 	rdata->allowed_priorities_change_flg = 1;
6295 	rdata->allowed_priorities = afex_update_params->allowed_priorities;
6296 	rdata->echo = AFEX_UPDATE;
6297 
6298 	/* No need for an explicit memory barrier here as long as we
6299 	 * ensure the ordering of writing to the SPQ element
6300 	 * and updating of the SPQ producer which involves a memory
6301 	 * read. If the memory read is removed we will have to put a
6302 	 * full memory barrier there (inside bnx2x_sp_post()).
6303 	 */
6304 	DP(BNX2X_MSG_SP,
6305 	   "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6306 	   rdata->vif_id,
6307 	   rdata->afex_default_vlan, rdata->allowed_priorities);
6308 
6309 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6310 			     U64_HI(data_mapping),
6311 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6312 }
6313 
6314 static
6315 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
6316 					 struct bnx2x_func_state_params *params)
6317 {
6318 	struct bnx2x_func_sp_obj *o = params->f_obj;
6319 	struct afex_vif_list_ramrod_data *rdata =
6320 		(struct afex_vif_list_ramrod_data *)o->afex_rdata;
6321 	struct bnx2x_func_afex_viflists_params *afex_vif_params =
6322 		&params->params.afex_viflists;
6323 	u64 *p_rdata = (u64 *)rdata;
6324 
6325 	memset(rdata, 0, sizeof(*rdata));
6326 
6327 	/* Fill the ramrod data with provided parameters */
6328 	rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
6329 	rdata->func_bit_map          = afex_vif_params->func_bit_map;
6330 	rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6331 	rdata->func_to_clear         = afex_vif_params->func_to_clear;
6332 
6333 	/* send in echo type of sub command */
6334 	rdata->echo = afex_vif_params->afex_vif_list_command;
6335 
6336 	/*  No need for an explicit memory barrier here as long we would
6337 	 *  need to ensure the ordering of writing to the SPQ element
6338 	 *  and updating of the SPQ producer which involves a memory
6339 	 *  read and we will have to put a full memory barrier there
6340 	 *  (inside bnx2x_sp_post()).
6341 	 */
6342 
6343 	DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6344 	   rdata->afex_vif_list_command, rdata->vif_list_index,
6345 	   rdata->func_bit_map, rdata->func_to_clear);
6346 
6347 	/* this ramrod sends data directly and not through DMA mapping */
6348 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6349 			     U64_HI(*p_rdata), U64_LO(*p_rdata),
6350 			     NONE_CONNECTION_TYPE);
6351 }
6352 
6353 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
6354 				       struct bnx2x_func_state_params *params)
6355 {
6356 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
6357 			     NONE_CONNECTION_TYPE);
6358 }
6359 
6360 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
6361 				       struct bnx2x_func_state_params *params)
6362 {
6363 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
6364 			     NONE_CONNECTION_TYPE);
6365 }
6366 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
6367 				       struct bnx2x_func_state_params *params)
6368 {
6369 	struct bnx2x_func_sp_obj *o = params->f_obj;
6370 	struct flow_control_configuration *rdata =
6371 		(struct flow_control_configuration *)o->rdata;
6372 	dma_addr_t data_mapping = o->rdata_mapping;
6373 	struct bnx2x_func_tx_start_params *tx_start_params =
6374 		&params->params.tx_start;
6375 	int i;
6376 
6377 	memset(rdata, 0, sizeof(*rdata));
6378 
6379 	rdata->dcb_enabled = tx_start_params->dcb_enabled;
6380 	rdata->dcb_version = tx_start_params->dcb_version;
6381 	rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6382 
6383 	for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6384 		rdata->traffic_type_to_priority_cos[i] =
6385 			tx_start_params->traffic_type_to_priority_cos[i];
6386 
6387 	for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6388 		rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6389 	/* No need for an explicit memory barrier here as long as we
6390 	 * ensure the ordering of writing to the SPQ element
6391 	 * and updating of the SPQ producer which involves a memory
6392 	 * read. If the memory read is removed we will have to put a
6393 	 * full memory barrier there (inside bnx2x_sp_post()).
6394 	 */
6395 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6396 			     U64_HI(data_mapping),
6397 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6398 }
6399 
6400 static inline
6401 int bnx2x_func_send_set_timesync(struct bnx2x *bp,
6402 				 struct bnx2x_func_state_params *params)
6403 {
6404 	struct bnx2x_func_sp_obj *o = params->f_obj;
6405 	struct set_timesync_ramrod_data *rdata =
6406 		(struct set_timesync_ramrod_data *)o->rdata;
6407 	dma_addr_t data_mapping = o->rdata_mapping;
6408 	struct bnx2x_func_set_timesync_params *set_timesync_params =
6409 		&params->params.set_timesync;
6410 
6411 	memset(rdata, 0, sizeof(*rdata));
6412 
6413 	/* Fill the ramrod data with provided parameters */
6414 	rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6415 	rdata->offset_cmd = set_timesync_params->offset_cmd;
6416 	rdata->add_sub_drift_adjust_value =
6417 		set_timesync_params->add_sub_drift_adjust_value;
6418 	rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6419 	rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6420 	rdata->offset_delta.lo =
6421 		cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6422 	rdata->offset_delta.hi =
6423 		cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6424 
6425 	DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6426 	   rdata->drift_adjust_cmd, rdata->offset_cmd,
6427 	   rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6428 	   rdata->drift_adjust_period, rdata->offset_delta.lo,
6429 	   rdata->offset_delta.hi);
6430 
6431 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6432 			     U64_HI(data_mapping),
6433 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6434 }
6435 
6436 static int bnx2x_func_send_cmd(struct bnx2x *bp,
6437 			       struct bnx2x_func_state_params *params)
6438 {
6439 	switch (params->cmd) {
6440 	case BNX2X_F_CMD_HW_INIT:
6441 		return bnx2x_func_hw_init(bp, params);
6442 	case BNX2X_F_CMD_START:
6443 		return bnx2x_func_send_start(bp, params);
6444 	case BNX2X_F_CMD_STOP:
6445 		return bnx2x_func_send_stop(bp, params);
6446 	case BNX2X_F_CMD_HW_RESET:
6447 		return bnx2x_func_hw_reset(bp, params);
6448 	case BNX2X_F_CMD_AFEX_UPDATE:
6449 		return bnx2x_func_send_afex_update(bp, params);
6450 	case BNX2X_F_CMD_AFEX_VIFLISTS:
6451 		return bnx2x_func_send_afex_viflists(bp, params);
6452 	case BNX2X_F_CMD_TX_STOP:
6453 		return bnx2x_func_send_tx_stop(bp, params);
6454 	case BNX2X_F_CMD_TX_START:
6455 		return bnx2x_func_send_tx_start(bp, params);
6456 	case BNX2X_F_CMD_SWITCH_UPDATE:
6457 		return bnx2x_func_send_switch_update(bp, params);
6458 	case BNX2X_F_CMD_SET_TIMESYNC:
6459 		return bnx2x_func_send_set_timesync(bp, params);
6460 	default:
6461 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
6462 		return -EINVAL;
6463 	}
6464 }
6465 
6466 void bnx2x_init_func_obj(struct bnx2x *bp,
6467 			 struct bnx2x_func_sp_obj *obj,
6468 			 void *rdata, dma_addr_t rdata_mapping,
6469 			 void *afex_rdata, dma_addr_t afex_rdata_mapping,
6470 			 struct bnx2x_func_sp_drv_ops *drv_iface)
6471 {
6472 	memset(obj, 0, sizeof(*obj));
6473 
6474 	mutex_init(&obj->one_pending_mutex);
6475 
6476 	obj->rdata = rdata;
6477 	obj->rdata_mapping = rdata_mapping;
6478 	obj->afex_rdata = afex_rdata;
6479 	obj->afex_rdata_mapping = afex_rdata_mapping;
6480 	obj->send_cmd = bnx2x_func_send_cmd;
6481 	obj->check_transition = bnx2x_func_chk_transition;
6482 	obj->complete_cmd = bnx2x_func_comp_cmd;
6483 	obj->wait_comp = bnx2x_func_wait_comp;
6484 
6485 	obj->drv = drv_iface;
6486 }
6487 
6488 /**
6489  * bnx2x_func_state_change - perform Function state change transition
6490  *
6491  * @bp:		device handle
6492  * @params:	parameters to perform the transaction
6493  *
6494  * returns 0 in case of successfully completed transition,
6495  *         negative error code in case of failure, positive
6496  *         (EBUSY) value if there is a completion to that is
6497  *         still pending (possible only if RAMROD_COMP_WAIT is
6498  *         not set in params->ramrod_flags for asynchronous
6499  *         commands).
6500  */
6501 int bnx2x_func_state_change(struct bnx2x *bp,
6502 			    struct bnx2x_func_state_params *params)
6503 {
6504 	struct bnx2x_func_sp_obj *o = params->f_obj;
6505 	int rc, cnt = 300;
6506 	enum bnx2x_func_cmd cmd = params->cmd;
6507 	unsigned long *pending = &o->pending;
6508 
6509 	mutex_lock(&o->one_pending_mutex);
6510 
6511 	/* Check that the requested transition is legal */
6512 	rc = o->check_transition(bp, o, params);
6513 	if ((rc == -EBUSY) &&
6514 	    (test_bit(RAMROD_RETRY, &params->ramrod_flags))) {
6515 		while ((rc == -EBUSY) && (--cnt > 0)) {
6516 			mutex_unlock(&o->one_pending_mutex);
6517 			msleep(10);
6518 			mutex_lock(&o->one_pending_mutex);
6519 			rc = o->check_transition(bp, o, params);
6520 		}
6521 		if (rc == -EBUSY) {
6522 			mutex_unlock(&o->one_pending_mutex);
6523 			BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6524 			return rc;
6525 		}
6526 	} else if (rc) {
6527 		mutex_unlock(&o->one_pending_mutex);
6528 		return rc;
6529 	}
6530 
6531 	/* Set "pending" bit */
6532 	set_bit(cmd, pending);
6533 
6534 	/* Don't send a command if only driver cleanup was requested */
6535 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
6536 		bnx2x_func_state_change_comp(bp, o, cmd);
6537 		mutex_unlock(&o->one_pending_mutex);
6538 	} else {
6539 		/* Send a ramrod */
6540 		rc = o->send_cmd(bp, params);
6541 
6542 		mutex_unlock(&o->one_pending_mutex);
6543 
6544 		if (rc) {
6545 			o->next_state = BNX2X_F_STATE_MAX;
6546 			clear_bit(cmd, pending);
6547 			smp_mb__after_atomic();
6548 			return rc;
6549 		}
6550 
6551 		if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
6552 			rc = o->wait_comp(bp, o, cmd);
6553 			if (rc)
6554 				return rc;
6555 
6556 			return 0;
6557 		}
6558 	}
6559 
6560 	return !!test_bit(cmd, pending);
6561 }
6562