1 /* bnx2x_sp.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2011-2012 Broadcom Corporation
4  *
5  * Unless you and Broadcom execute a separate written software license
6  * agreement governing use of this software, this software is licensed to you
7  * under the terms of the GNU General Public License version 2, available
8  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
9  *
10  * Notwithstanding the above, under no circumstances may you combine this
11  * software in any way with any other Broadcom software provided under a
12  * license other than the GPL, without Broadcom's express prior written
13  * consent.
14  *
15  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
16  * Written by: Vladislav Zolotarov
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/crc32.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/crc32c.h>
27 #include "bnx2x.h"
28 #include "bnx2x_cmn.h"
29 #include "bnx2x_sp.h"
30 
31 #define BNX2X_MAX_EMUL_MULTI		16
32 
33 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
34 
35 /**** Exe Queue interfaces ****/
36 
37 /**
38  * bnx2x_exe_queue_init - init the Exe Queue object
39  *
40  * @o:		poiter to the object
41  * @exe_len:	length
42  * @owner:	poiter to the owner
43  * @validate:	validate function pointer
44  * @optimize:	optimize function pointer
45  * @exec:	execute function pointer
46  * @get:	get function pointer
47  */
48 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
49 					struct bnx2x_exe_queue_obj *o,
50 					int exe_len,
51 					union bnx2x_qable_obj *owner,
52 					exe_q_validate validate,
53 					exe_q_remove remove,
54 					exe_q_optimize optimize,
55 					exe_q_execute exec,
56 					exe_q_get get)
57 {
58 	memset(o, 0, sizeof(*o));
59 
60 	INIT_LIST_HEAD(&o->exe_queue);
61 	INIT_LIST_HEAD(&o->pending_comp);
62 
63 	spin_lock_init(&o->lock);
64 
65 	o->exe_chunk_len = exe_len;
66 	o->owner         = owner;
67 
68 	/* Owner specific callbacks */
69 	o->validate      = validate;
70 	o->remove        = remove;
71 	o->optimize      = optimize;
72 	o->execute       = exec;
73 	o->get           = get;
74 
75 	DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
76 	   exe_len);
77 }
78 
79 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
80 					     struct bnx2x_exeq_elem *elem)
81 {
82 	DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
83 	kfree(elem);
84 }
85 
86 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
87 {
88 	struct bnx2x_exeq_elem *elem;
89 	int cnt = 0;
90 
91 	spin_lock_bh(&o->lock);
92 
93 	list_for_each_entry(elem, &o->exe_queue, link)
94 		cnt++;
95 
96 	spin_unlock_bh(&o->lock);
97 
98 	return cnt;
99 }
100 
101 /**
102  * bnx2x_exe_queue_add - add a new element to the execution queue
103  *
104  * @bp:		driver handle
105  * @o:		queue
106  * @cmd:	new command to add
107  * @restore:	true - do not optimize the command
108  *
109  * If the element is optimized or is illegal, frees it.
110  */
111 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
112 				      struct bnx2x_exe_queue_obj *o,
113 				      struct bnx2x_exeq_elem *elem,
114 				      bool restore)
115 {
116 	int rc;
117 
118 	spin_lock_bh(&o->lock);
119 
120 	if (!restore) {
121 		/* Try to cancel this element queue */
122 		rc = o->optimize(bp, o->owner, elem);
123 		if (rc)
124 			goto free_and_exit;
125 
126 		/* Check if this request is ok */
127 		rc = o->validate(bp, o->owner, elem);
128 		if (rc) {
129 			BNX2X_ERR("Preamble failed: %d\n", rc);
130 			goto free_and_exit;
131 		}
132 	}
133 
134 	/* If so, add it to the execution queue */
135 	list_add_tail(&elem->link, &o->exe_queue);
136 
137 	spin_unlock_bh(&o->lock);
138 
139 	return 0;
140 
141 free_and_exit:
142 	bnx2x_exe_queue_free_elem(bp, elem);
143 
144 	spin_unlock_bh(&o->lock);
145 
146 	return rc;
147 
148 }
149 
150 static inline void __bnx2x_exe_queue_reset_pending(
151 	struct bnx2x *bp,
152 	struct bnx2x_exe_queue_obj *o)
153 {
154 	struct bnx2x_exeq_elem *elem;
155 
156 	while (!list_empty(&o->pending_comp)) {
157 		elem = list_first_entry(&o->pending_comp,
158 					struct bnx2x_exeq_elem, link);
159 
160 		list_del(&elem->link);
161 		bnx2x_exe_queue_free_elem(bp, elem);
162 	}
163 }
164 
165 static inline void bnx2x_exe_queue_reset_pending(struct bnx2x *bp,
166 						 struct bnx2x_exe_queue_obj *o)
167 {
168 
169 	spin_lock_bh(&o->lock);
170 
171 	__bnx2x_exe_queue_reset_pending(bp, o);
172 
173 	spin_unlock_bh(&o->lock);
174 
175 }
176 
177 /**
178  * bnx2x_exe_queue_step - execute one execution chunk atomically
179  *
180  * @bp:			driver handle
181  * @o:			queue
182  * @ramrod_flags:	flags
183  *
184  * (Atomicy is ensured using the exe_queue->lock).
185  */
186 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
187 				       struct bnx2x_exe_queue_obj *o,
188 				       unsigned long *ramrod_flags)
189 {
190 	struct bnx2x_exeq_elem *elem, spacer;
191 	int cur_len = 0, rc;
192 
193 	memset(&spacer, 0, sizeof(spacer));
194 
195 	spin_lock_bh(&o->lock);
196 
197 	/*
198 	 * Next step should not be performed until the current is finished,
199 	 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
200 	 * properly clear object internals without sending any command to the FW
201 	 * which also implies there won't be any completion to clear the
202 	 * 'pending' list.
203 	 */
204 	if (!list_empty(&o->pending_comp)) {
205 		if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
206 			DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
207 			__bnx2x_exe_queue_reset_pending(bp, o);
208 		} else {
209 			spin_unlock_bh(&o->lock);
210 			return 1;
211 		}
212 	}
213 
214 	/*
215 	 * Run through the pending commands list and create a next
216 	 * execution chunk.
217 	 */
218 	while (!list_empty(&o->exe_queue)) {
219 		elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
220 					link);
221 		WARN_ON(!elem->cmd_len);
222 
223 		if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
224 			cur_len += elem->cmd_len;
225 			/*
226 			 * Prevent from both lists being empty when moving an
227 			 * element. This will allow the call of
228 			 * bnx2x_exe_queue_empty() without locking.
229 			 */
230 			list_add_tail(&spacer.link, &o->pending_comp);
231 			mb();
232 			list_del(&elem->link);
233 			list_add_tail(&elem->link, &o->pending_comp);
234 			list_del(&spacer.link);
235 		} else
236 			break;
237 	}
238 
239 	/* Sanity check */
240 	if (!cur_len) {
241 		spin_unlock_bh(&o->lock);
242 		return 0;
243 	}
244 
245 	rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
246 	if (rc < 0)
247 		/*
248 		 *  In case of an error return the commands back to the queue
249 		 *  and reset the pending_comp.
250 		 */
251 		list_splice_init(&o->pending_comp, &o->exe_queue);
252 	else if (!rc)
253 		/*
254 		 * If zero is returned, means there are no outstanding pending
255 		 * completions and we may dismiss the pending list.
256 		 */
257 		__bnx2x_exe_queue_reset_pending(bp, o);
258 
259 	spin_unlock_bh(&o->lock);
260 	return rc;
261 }
262 
263 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
264 {
265 	bool empty = list_empty(&o->exe_queue);
266 
267 	/* Don't reorder!!! */
268 	mb();
269 
270 	return empty && list_empty(&o->pending_comp);
271 }
272 
273 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
274 	struct bnx2x *bp)
275 {
276 	DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
277 	return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
278 }
279 
280 /************************ raw_obj functions ***********************************/
281 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
282 {
283 	return !!test_bit(o->state, o->pstate);
284 }
285 
286 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
287 {
288 	smp_mb__before_clear_bit();
289 	clear_bit(o->state, o->pstate);
290 	smp_mb__after_clear_bit();
291 }
292 
293 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
294 {
295 	smp_mb__before_clear_bit();
296 	set_bit(o->state, o->pstate);
297 	smp_mb__after_clear_bit();
298 }
299 
300 /**
301  * bnx2x_state_wait - wait until the given bit(state) is cleared
302  *
303  * @bp:		device handle
304  * @state:	state which is to be cleared
305  * @state_p:	state buffer
306  *
307  */
308 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
309 				   unsigned long *pstate)
310 {
311 	/* can take a while if any port is running */
312 	int cnt = 5000;
313 
314 
315 	if (CHIP_REV_IS_EMUL(bp))
316 		cnt *= 20;
317 
318 	DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
319 
320 	might_sleep();
321 	while (cnt--) {
322 		if (!test_bit(state, pstate)) {
323 #ifdef BNX2X_STOP_ON_ERROR
324 			DP(BNX2X_MSG_SP, "exit  (cnt %d)\n", 5000 - cnt);
325 #endif
326 			return 0;
327 		}
328 
329 		usleep_range(1000, 1000);
330 
331 		if (bp->panic)
332 			return -EIO;
333 	}
334 
335 	/* timeout! */
336 	BNX2X_ERR("timeout waiting for state %d\n", state);
337 #ifdef BNX2X_STOP_ON_ERROR
338 	bnx2x_panic();
339 #endif
340 
341 	return -EBUSY;
342 }
343 
344 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
345 {
346 	return bnx2x_state_wait(bp, raw->state, raw->pstate);
347 }
348 
349 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
350 /* credit handling callbacks */
351 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
352 {
353 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
354 
355 	WARN_ON(!mp);
356 
357 	return mp->get_entry(mp, offset);
358 }
359 
360 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
361 {
362 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
363 
364 	WARN_ON(!mp);
365 
366 	return mp->get(mp, 1);
367 }
368 
369 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
370 {
371 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
372 
373 	WARN_ON(!vp);
374 
375 	return vp->get_entry(vp, offset);
376 }
377 
378 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
379 {
380 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
381 
382 	WARN_ON(!vp);
383 
384 	return vp->get(vp, 1);
385 }
386 
387 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
388 {
389 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
390 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
391 
392 	if (!mp->get(mp, 1))
393 		return false;
394 
395 	if (!vp->get(vp, 1)) {
396 		mp->put(mp, 1);
397 		return false;
398 	}
399 
400 	return true;
401 }
402 
403 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
404 {
405 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
406 
407 	return mp->put_entry(mp, offset);
408 }
409 
410 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
411 {
412 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
413 
414 	return mp->put(mp, 1);
415 }
416 
417 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
418 {
419 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
420 
421 	return vp->put_entry(vp, offset);
422 }
423 
424 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
425 {
426 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
427 
428 	return vp->put(vp, 1);
429 }
430 
431 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
432 {
433 	struct bnx2x_credit_pool_obj *mp = o->macs_pool;
434 	struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
435 
436 	if (!mp->put(mp, 1))
437 		return false;
438 
439 	if (!vp->put(vp, 1)) {
440 		mp->get(mp, 1);
441 		return false;
442 	}
443 
444 	return true;
445 }
446 
447 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
448 				int n, u8 *buf)
449 {
450 	struct bnx2x_vlan_mac_registry_elem *pos;
451 	u8 *next = buf;
452 	int counter = 0;
453 
454 	/* traverse list */
455 	list_for_each_entry(pos, &o->head, link) {
456 		if (counter < n) {
457 			/* place leading zeroes in buffer */
458 			memset(next, 0, MAC_LEADING_ZERO_CNT);
459 
460 			/* place mac after leading zeroes*/
461 			memcpy(next + MAC_LEADING_ZERO_CNT, pos->u.mac.mac,
462 			       ETH_ALEN);
463 
464 			/* calculate address of next element and
465 			 * advance counter
466 			 */
467 			counter++;
468 			next = buf + counter * ALIGN(ETH_ALEN, sizeof(u32));
469 
470 			DP(BNX2X_MSG_SP, "copied element number %d to address %p element was %pM\n",
471 			   counter, next, pos->u.mac.mac);
472 		}
473 	}
474 	return counter * ETH_ALEN;
475 }
476 
477 /* check_add() callbacks */
478 static int bnx2x_check_mac_add(struct bnx2x *bp,
479 			       struct bnx2x_vlan_mac_obj *o,
480 			       union bnx2x_classification_ramrod_data *data)
481 {
482 	struct bnx2x_vlan_mac_registry_elem *pos;
483 
484 	DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
485 
486 	if (!is_valid_ether_addr(data->mac.mac))
487 		return -EINVAL;
488 
489 	/* Check if a requested MAC already exists */
490 	list_for_each_entry(pos, &o->head, link)
491 		if (!memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN))
492 			return -EEXIST;
493 
494 	return 0;
495 }
496 
497 static int bnx2x_check_vlan_add(struct bnx2x *bp,
498 				struct bnx2x_vlan_mac_obj *o,
499 				union bnx2x_classification_ramrod_data *data)
500 {
501 	struct bnx2x_vlan_mac_registry_elem *pos;
502 
503 	DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
504 
505 	list_for_each_entry(pos, &o->head, link)
506 		if (data->vlan.vlan == pos->u.vlan.vlan)
507 			return -EEXIST;
508 
509 	return 0;
510 }
511 
512 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
513 				    struct bnx2x_vlan_mac_obj *o,
514 				   union bnx2x_classification_ramrod_data *data)
515 {
516 	struct bnx2x_vlan_mac_registry_elem *pos;
517 
518 	DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
519 	   data->vlan_mac.mac, data->vlan_mac.vlan);
520 
521 	list_for_each_entry(pos, &o->head, link)
522 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
523 		    (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
524 			     ETH_ALEN)))
525 			return -EEXIST;
526 
527 	return 0;
528 }
529 
530 
531 /* check_del() callbacks */
532 static struct bnx2x_vlan_mac_registry_elem *
533 	bnx2x_check_mac_del(struct bnx2x *bp,
534 			    struct bnx2x_vlan_mac_obj *o,
535 			    union bnx2x_classification_ramrod_data *data)
536 {
537 	struct bnx2x_vlan_mac_registry_elem *pos;
538 
539 	DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
540 
541 	list_for_each_entry(pos, &o->head, link)
542 		if (!memcmp(data->mac.mac, pos->u.mac.mac, ETH_ALEN))
543 			return pos;
544 
545 	return NULL;
546 }
547 
548 static struct bnx2x_vlan_mac_registry_elem *
549 	bnx2x_check_vlan_del(struct bnx2x *bp,
550 			     struct bnx2x_vlan_mac_obj *o,
551 			     union bnx2x_classification_ramrod_data *data)
552 {
553 	struct bnx2x_vlan_mac_registry_elem *pos;
554 
555 	DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
556 
557 	list_for_each_entry(pos, &o->head, link)
558 		if (data->vlan.vlan == pos->u.vlan.vlan)
559 			return pos;
560 
561 	return NULL;
562 }
563 
564 static struct bnx2x_vlan_mac_registry_elem *
565 	bnx2x_check_vlan_mac_del(struct bnx2x *bp,
566 				 struct bnx2x_vlan_mac_obj *o,
567 				 union bnx2x_classification_ramrod_data *data)
568 {
569 	struct bnx2x_vlan_mac_registry_elem *pos;
570 
571 	DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
572 	   data->vlan_mac.mac, data->vlan_mac.vlan);
573 
574 	list_for_each_entry(pos, &o->head, link)
575 		if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
576 		    (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
577 			     ETH_ALEN)))
578 			return pos;
579 
580 	return NULL;
581 }
582 
583 /* check_move() callback */
584 static bool bnx2x_check_move(struct bnx2x *bp,
585 			     struct bnx2x_vlan_mac_obj *src_o,
586 			     struct bnx2x_vlan_mac_obj *dst_o,
587 			     union bnx2x_classification_ramrod_data *data)
588 {
589 	struct bnx2x_vlan_mac_registry_elem *pos;
590 	int rc;
591 
592 	/* Check if we can delete the requested configuration from the first
593 	 * object.
594 	 */
595 	pos = src_o->check_del(bp, src_o, data);
596 
597 	/*  check if configuration can be added */
598 	rc = dst_o->check_add(bp, dst_o, data);
599 
600 	/* If this classification can not be added (is already set)
601 	 * or can't be deleted - return an error.
602 	 */
603 	if (rc || !pos)
604 		return false;
605 
606 	return true;
607 }
608 
609 static bool bnx2x_check_move_always_err(
610 	struct bnx2x *bp,
611 	struct bnx2x_vlan_mac_obj *src_o,
612 	struct bnx2x_vlan_mac_obj *dst_o,
613 	union bnx2x_classification_ramrod_data *data)
614 {
615 	return false;
616 }
617 
618 
619 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
620 {
621 	struct bnx2x_raw_obj *raw = &o->raw;
622 	u8 rx_tx_flag = 0;
623 
624 	if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
625 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
626 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
627 
628 	if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
629 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
630 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
631 
632 	return rx_tx_flag;
633 }
634 
635 
636 static inline void bnx2x_set_mac_in_nig(struct bnx2x *bp,
637 				 bool add, unsigned char *dev_addr, int index)
638 {
639 	u32 wb_data[2];
640 	u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
641 			 NIG_REG_LLH0_FUNC_MEM;
642 
643 	if (!IS_MF_SI(bp) || index > BNX2X_LLH_CAM_MAX_PF_LINE)
644 		return;
645 
646 	DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
647 			 (add ? "ADD" : "DELETE"), index);
648 
649 	if (add) {
650 		/* LLH_FUNC_MEM is a u64 WB register */
651 		reg_offset += 8*index;
652 
653 		wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
654 			      (dev_addr[4] <<  8) |  dev_addr[5]);
655 		wb_data[1] = ((dev_addr[0] <<  8) |  dev_addr[1]);
656 
657 		REG_WR_DMAE(bp, reg_offset, wb_data, 2);
658 	}
659 
660 	REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
661 				  NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
662 }
663 
664 /**
665  * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
666  *
667  * @bp:		device handle
668  * @o:		queue for which we want to configure this rule
669  * @add:	if true the command is an ADD command, DEL otherwise
670  * @opcode:	CLASSIFY_RULE_OPCODE_XXX
671  * @hdr:	pointer to a header to setup
672  *
673  */
674 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
675 	struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
676 	struct eth_classify_cmd_header *hdr)
677 {
678 	struct bnx2x_raw_obj *raw = &o->raw;
679 
680 	hdr->client_id = raw->cl_id;
681 	hdr->func_id = raw->func_id;
682 
683 	/* Rx or/and Tx (internal switching) configuration ? */
684 	hdr->cmd_general_data |=
685 		bnx2x_vlan_mac_get_rx_tx_flag(o);
686 
687 	if (add)
688 		hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
689 
690 	hdr->cmd_general_data |=
691 		(opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
692 }
693 
694 /**
695  * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
696  *
697  * @cid:	connection id
698  * @type:	BNX2X_FILTER_XXX_PENDING
699  * @hdr:	poiter to header to setup
700  * @rule_cnt:
701  *
702  * currently we always configure one rule and echo field to contain a CID and an
703  * opcode type.
704  */
705 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
706 				struct eth_classify_header *hdr, int rule_cnt)
707 {
708 	hdr->echo = (cid & BNX2X_SWCID_MASK) | (type << BNX2X_SWCID_SHIFT);
709 	hdr->rule_cnt = (u8)rule_cnt;
710 }
711 
712 
713 /* hw_config() callbacks */
714 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
715 				 struct bnx2x_vlan_mac_obj *o,
716 				 struct bnx2x_exeq_elem *elem, int rule_idx,
717 				 int cam_offset)
718 {
719 	struct bnx2x_raw_obj *raw = &o->raw;
720 	struct eth_classify_rules_ramrod_data *data =
721 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
722 	int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
723 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
724 	bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
725 	unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
726 	u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
727 
728 	/*
729 	 * Set LLH CAM entry: currently only iSCSI and ETH macs are
730 	 * relevant. In addition, current implementation is tuned for a
731 	 * single ETH MAC.
732 	 *
733 	 * When multiple unicast ETH MACs PF configuration in switch
734 	 * independent mode is required (NetQ, multiple netdev MACs,
735 	 * etc.), consider better utilisation of 8 per function MAC
736 	 * entries in the LLH register. There is also
737 	 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
738 	 * total number of CAM entries to 16.
739 	 *
740 	 * Currently we won't configure NIG for MACs other than a primary ETH
741 	 * MAC and iSCSI L2 MAC.
742 	 *
743 	 * If this MAC is moving from one Queue to another, no need to change
744 	 * NIG configuration.
745 	 */
746 	if (cmd != BNX2X_VLAN_MAC_MOVE) {
747 		if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
748 			bnx2x_set_mac_in_nig(bp, add, mac,
749 					     BNX2X_LLH_CAM_ISCSI_ETH_LINE);
750 		else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
751 			bnx2x_set_mac_in_nig(bp, add, mac,
752 					     BNX2X_LLH_CAM_ETH_LINE);
753 	}
754 
755 	/* Reset the ramrod data buffer for the first rule */
756 	if (rule_idx == 0)
757 		memset(data, 0, sizeof(*data));
758 
759 	/* Setup a command header */
760 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
761 				      &rule_entry->mac.header);
762 
763 	DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
764 	   (add ? "add" : "delete"), mac, raw->cl_id);
765 
766 	/* Set a MAC itself */
767 	bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
768 			      &rule_entry->mac.mac_mid,
769 			      &rule_entry->mac.mac_lsb, mac);
770 
771 	/* MOVE: Add a rule that will add this MAC to the target Queue */
772 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
773 		rule_entry++;
774 		rule_cnt++;
775 
776 		/* Setup ramrod data */
777 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
778 					elem->cmd_data.vlan_mac.target_obj,
779 					      true, CLASSIFY_RULE_OPCODE_MAC,
780 					      &rule_entry->mac.header);
781 
782 		/* Set a MAC itself */
783 		bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
784 				      &rule_entry->mac.mac_mid,
785 				      &rule_entry->mac.mac_lsb, mac);
786 	}
787 
788 	/* Set the ramrod data header */
789 	/* TODO: take this to the higher level in order to prevent multiple
790 		 writing */
791 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
792 					rule_cnt);
793 }
794 
795 /**
796  * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
797  *
798  * @bp:		device handle
799  * @o:		queue
800  * @type:
801  * @cam_offset:	offset in cam memory
802  * @hdr:	pointer to a header to setup
803  *
804  * E1/E1H
805  */
806 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
807 	struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
808 	struct mac_configuration_hdr *hdr)
809 {
810 	struct bnx2x_raw_obj *r = &o->raw;
811 
812 	hdr->length = 1;
813 	hdr->offset = (u8)cam_offset;
814 	hdr->client_id = 0xff;
815 	hdr->echo = ((r->cid & BNX2X_SWCID_MASK) | (type << BNX2X_SWCID_SHIFT));
816 }
817 
818 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
819 	struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
820 	u16 vlan_id, struct mac_configuration_entry *cfg_entry)
821 {
822 	struct bnx2x_raw_obj *r = &o->raw;
823 	u32 cl_bit_vec = (1 << r->cl_id);
824 
825 	cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
826 	cfg_entry->pf_id = r->func_id;
827 	cfg_entry->vlan_id = cpu_to_le16(vlan_id);
828 
829 	if (add) {
830 		SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
831 			 T_ETH_MAC_COMMAND_SET);
832 		SET_FLAG(cfg_entry->flags,
833 			 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
834 
835 		/* Set a MAC in a ramrod data */
836 		bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
837 				      &cfg_entry->middle_mac_addr,
838 				      &cfg_entry->lsb_mac_addr, mac);
839 	} else
840 		SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
841 			 T_ETH_MAC_COMMAND_INVALIDATE);
842 }
843 
844 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
845 	struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
846 	u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
847 {
848 	struct mac_configuration_entry *cfg_entry = &config->config_table[0];
849 	struct bnx2x_raw_obj *raw = &o->raw;
850 
851 	bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
852 					 &config->hdr);
853 	bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
854 					 cfg_entry);
855 
856 	DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
857 			 (add ? "setting" : "clearing"),
858 			 mac, raw->cl_id, cam_offset);
859 }
860 
861 /**
862  * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
863  *
864  * @bp:		device handle
865  * @o:		bnx2x_vlan_mac_obj
866  * @elem:	bnx2x_exeq_elem
867  * @rule_idx:	rule_idx
868  * @cam_offset: cam_offset
869  */
870 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
871 				  struct bnx2x_vlan_mac_obj *o,
872 				  struct bnx2x_exeq_elem *elem, int rule_idx,
873 				  int cam_offset)
874 {
875 	struct bnx2x_raw_obj *raw = &o->raw;
876 	struct mac_configuration_cmd *config =
877 		(struct mac_configuration_cmd *)(raw->rdata);
878 	/*
879 	 * 57710 and 57711 do not support MOVE command,
880 	 * so it's either ADD or DEL
881 	 */
882 	bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
883 		true : false;
884 
885 	/* Reset the ramrod data buffer */
886 	memset(config, 0, sizeof(*config));
887 
888 	bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
889 				     cam_offset, add,
890 				     elem->cmd_data.vlan_mac.u.mac.mac, 0,
891 				     ETH_VLAN_FILTER_ANY_VLAN, config);
892 }
893 
894 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
895 				  struct bnx2x_vlan_mac_obj *o,
896 				  struct bnx2x_exeq_elem *elem, int rule_idx,
897 				  int cam_offset)
898 {
899 	struct bnx2x_raw_obj *raw = &o->raw;
900 	struct eth_classify_rules_ramrod_data *data =
901 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
902 	int rule_cnt = rule_idx + 1;
903 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
904 	int cmd = elem->cmd_data.vlan_mac.cmd;
905 	bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
906 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
907 
908 	/* Reset the ramrod data buffer for the first rule */
909 	if (rule_idx == 0)
910 		memset(data, 0, sizeof(*data));
911 
912 	/* Set a rule header */
913 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
914 				      &rule_entry->vlan.header);
915 
916 	DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
917 			 vlan);
918 
919 	/* Set a VLAN itself */
920 	rule_entry->vlan.vlan = cpu_to_le16(vlan);
921 
922 	/* MOVE: Add a rule that will add this MAC to the target Queue */
923 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
924 		rule_entry++;
925 		rule_cnt++;
926 
927 		/* Setup ramrod data */
928 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
929 					elem->cmd_data.vlan_mac.target_obj,
930 					      true, CLASSIFY_RULE_OPCODE_VLAN,
931 					      &rule_entry->vlan.header);
932 
933 		/* Set a VLAN itself */
934 		rule_entry->vlan.vlan = cpu_to_le16(vlan);
935 	}
936 
937 	/* Set the ramrod data header */
938 	/* TODO: take this to the higher level in order to prevent multiple
939 		 writing */
940 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
941 					rule_cnt);
942 }
943 
944 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
945 				      struct bnx2x_vlan_mac_obj *o,
946 				      struct bnx2x_exeq_elem *elem,
947 				      int rule_idx, int cam_offset)
948 {
949 	struct bnx2x_raw_obj *raw = &o->raw;
950 	struct eth_classify_rules_ramrod_data *data =
951 		(struct eth_classify_rules_ramrod_data *)(raw->rdata);
952 	int rule_cnt = rule_idx + 1;
953 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
954 	int cmd = elem->cmd_data.vlan_mac.cmd;
955 	bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
956 	u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
957 	u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
958 
959 
960 	/* Reset the ramrod data buffer for the first rule */
961 	if (rule_idx == 0)
962 		memset(data, 0, sizeof(*data));
963 
964 	/* Set a rule header */
965 	bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
966 				      &rule_entry->pair.header);
967 
968 	/* Set VLAN and MAC themselvs */
969 	rule_entry->pair.vlan = cpu_to_le16(vlan);
970 	bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
971 			      &rule_entry->pair.mac_mid,
972 			      &rule_entry->pair.mac_lsb, mac);
973 
974 	/* MOVE: Add a rule that will add this MAC to the target Queue */
975 	if (cmd == BNX2X_VLAN_MAC_MOVE) {
976 		rule_entry++;
977 		rule_cnt++;
978 
979 		/* Setup ramrod data */
980 		bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
981 					elem->cmd_data.vlan_mac.target_obj,
982 					      true, CLASSIFY_RULE_OPCODE_PAIR,
983 					      &rule_entry->pair.header);
984 
985 		/* Set a VLAN itself */
986 		rule_entry->pair.vlan = cpu_to_le16(vlan);
987 		bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
988 				      &rule_entry->pair.mac_mid,
989 				      &rule_entry->pair.mac_lsb, mac);
990 	}
991 
992 	/* Set the ramrod data header */
993 	/* TODO: take this to the higher level in order to prevent multiple
994 		 writing */
995 	bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
996 					rule_cnt);
997 }
998 
999 /**
1000  * bnx2x_set_one_vlan_mac_e1h -
1001  *
1002  * @bp:		device handle
1003  * @o:		bnx2x_vlan_mac_obj
1004  * @elem:	bnx2x_exeq_elem
1005  * @rule_idx:	rule_idx
1006  * @cam_offset:	cam_offset
1007  */
1008 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1009 				       struct bnx2x_vlan_mac_obj *o,
1010 				       struct bnx2x_exeq_elem *elem,
1011 				       int rule_idx, int cam_offset)
1012 {
1013 	struct bnx2x_raw_obj *raw = &o->raw;
1014 	struct mac_configuration_cmd *config =
1015 		(struct mac_configuration_cmd *)(raw->rdata);
1016 	/*
1017 	 * 57710 and 57711 do not support MOVE command,
1018 	 * so it's either ADD or DEL
1019 	 */
1020 	bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1021 		true : false;
1022 
1023 	/* Reset the ramrod data buffer */
1024 	memset(config, 0, sizeof(*config));
1025 
1026 	bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1027 				     cam_offset, add,
1028 				     elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1029 				     elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1030 				     ETH_VLAN_FILTER_CLASSIFY, config);
1031 }
1032 
1033 #define list_next_entry(pos, member) \
1034 	list_entry((pos)->member.next, typeof(*(pos)), member)
1035 
1036 /**
1037  * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1038  *
1039  * @bp:		device handle
1040  * @p:		command parameters
1041  * @ppos:	pointer to the cooky
1042  *
1043  * reconfigure next MAC/VLAN/VLAN-MAC element from the
1044  * previously configured elements list.
1045  *
1046  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is	taken
1047  * into an account
1048  *
1049  * pointer to the cooky  - that should be given back in the next call to make
1050  * function handle the next element. If *ppos is set to NULL it will restart the
1051  * iterator. If returned *ppos == NULL this means that the last element has been
1052  * handled.
1053  *
1054  */
1055 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1056 			   struct bnx2x_vlan_mac_ramrod_params *p,
1057 			   struct bnx2x_vlan_mac_registry_elem **ppos)
1058 {
1059 	struct bnx2x_vlan_mac_registry_elem *pos;
1060 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1061 
1062 	/* If list is empty - there is nothing to do here */
1063 	if (list_empty(&o->head)) {
1064 		*ppos = NULL;
1065 		return 0;
1066 	}
1067 
1068 	/* make a step... */
1069 	if (*ppos == NULL)
1070 		*ppos = list_first_entry(&o->head,
1071 					 struct bnx2x_vlan_mac_registry_elem,
1072 					 link);
1073 	else
1074 		*ppos = list_next_entry(*ppos, link);
1075 
1076 	pos = *ppos;
1077 
1078 	/* If it's the last step - return NULL */
1079 	if (list_is_last(&pos->link, &o->head))
1080 		*ppos = NULL;
1081 
1082 	/* Prepare a 'user_req' */
1083 	memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1084 
1085 	/* Set the command */
1086 	p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1087 
1088 	/* Set vlan_mac_flags */
1089 	p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1090 
1091 	/* Set a restore bit */
1092 	__set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1093 
1094 	return bnx2x_config_vlan_mac(bp, p);
1095 }
1096 
1097 /*
1098  * bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1099  * pointer to an element with a specific criteria and NULL if such an element
1100  * hasn't been found.
1101  */
1102 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1103 	struct bnx2x_exe_queue_obj *o,
1104 	struct bnx2x_exeq_elem *elem)
1105 {
1106 	struct bnx2x_exeq_elem *pos;
1107 	struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1108 
1109 	/* Check pending for execution commands */
1110 	list_for_each_entry(pos, &o->exe_queue, link)
1111 		if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1112 			      sizeof(*data)) &&
1113 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1114 			return pos;
1115 
1116 	return NULL;
1117 }
1118 
1119 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1120 	struct bnx2x_exe_queue_obj *o,
1121 	struct bnx2x_exeq_elem *elem)
1122 {
1123 	struct bnx2x_exeq_elem *pos;
1124 	struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1125 
1126 	/* Check pending for execution commands */
1127 	list_for_each_entry(pos, &o->exe_queue, link)
1128 		if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1129 			      sizeof(*data)) &&
1130 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1131 			return pos;
1132 
1133 	return NULL;
1134 }
1135 
1136 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1137 	struct bnx2x_exe_queue_obj *o,
1138 	struct bnx2x_exeq_elem *elem)
1139 {
1140 	struct bnx2x_exeq_elem *pos;
1141 	struct bnx2x_vlan_mac_ramrod_data *data =
1142 		&elem->cmd_data.vlan_mac.u.vlan_mac;
1143 
1144 	/* Check pending for execution commands */
1145 	list_for_each_entry(pos, &o->exe_queue, link)
1146 		if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1147 			      sizeof(*data)) &&
1148 		    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1149 			return pos;
1150 
1151 	return NULL;
1152 }
1153 
1154 /**
1155  * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1156  *
1157  * @bp:		device handle
1158  * @qo:		bnx2x_qable_obj
1159  * @elem:	bnx2x_exeq_elem
1160  *
1161  * Checks that the requested configuration can be added. If yes and if
1162  * requested, consume CAM credit.
1163  *
1164  * The 'validate' is run after the 'optimize'.
1165  *
1166  */
1167 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1168 					      union bnx2x_qable_obj *qo,
1169 					      struct bnx2x_exeq_elem *elem)
1170 {
1171 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1172 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1173 	int rc;
1174 
1175 	/* Check the registry */
1176 	rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1177 	if (rc) {
1178 		DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1179 		return rc;
1180 	}
1181 
1182 	/*
1183 	 * Check if there is a pending ADD command for this
1184 	 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1185 	 */
1186 	if (exeq->get(exeq, elem)) {
1187 		DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1188 		return -EEXIST;
1189 	}
1190 
1191 	/*
1192 	 * TODO: Check the pending MOVE from other objects where this
1193 	 * object is a destination object.
1194 	 */
1195 
1196 	/* Consume the credit if not requested not to */
1197 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1198 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1199 	    o->get_credit(o)))
1200 		return -EINVAL;
1201 
1202 	return 0;
1203 }
1204 
1205 /**
1206  * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1207  *
1208  * @bp:		device handle
1209  * @qo:		quable object to check
1210  * @elem:	element that needs to be deleted
1211  *
1212  * Checks that the requested configuration can be deleted. If yes and if
1213  * requested, returns a CAM credit.
1214  *
1215  * The 'validate' is run after the 'optimize'.
1216  */
1217 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1218 					      union bnx2x_qable_obj *qo,
1219 					      struct bnx2x_exeq_elem *elem)
1220 {
1221 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1222 	struct bnx2x_vlan_mac_registry_elem *pos;
1223 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1224 	struct bnx2x_exeq_elem query_elem;
1225 
1226 	/* If this classification can not be deleted (doesn't exist)
1227 	 * - return a BNX2X_EXIST.
1228 	 */
1229 	pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1230 	if (!pos) {
1231 		DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1232 		return -EEXIST;
1233 	}
1234 
1235 	/*
1236 	 * Check if there are pending DEL or MOVE commands for this
1237 	 * MAC/VLAN/VLAN-MAC. Return an error if so.
1238 	 */
1239 	memcpy(&query_elem, elem, sizeof(query_elem));
1240 
1241 	/* Check for MOVE commands */
1242 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1243 	if (exeq->get(exeq, &query_elem)) {
1244 		BNX2X_ERR("There is a pending MOVE command already\n");
1245 		return -EINVAL;
1246 	}
1247 
1248 	/* Check for DEL commands */
1249 	if (exeq->get(exeq, elem)) {
1250 		DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1251 		return -EEXIST;
1252 	}
1253 
1254 	/* Return the credit to the credit pool if not requested not to */
1255 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1256 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1257 	    o->put_credit(o))) {
1258 		BNX2X_ERR("Failed to return a credit\n");
1259 		return -EINVAL;
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 /**
1266  * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1267  *
1268  * @bp:		device handle
1269  * @qo:		quable object to check (source)
1270  * @elem:	element that needs to be moved
1271  *
1272  * Checks that the requested configuration can be moved. If yes and if
1273  * requested, returns a CAM credit.
1274  *
1275  * The 'validate' is run after the 'optimize'.
1276  */
1277 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1278 					       union bnx2x_qable_obj *qo,
1279 					       struct bnx2x_exeq_elem *elem)
1280 {
1281 	struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1282 	struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1283 	struct bnx2x_exeq_elem query_elem;
1284 	struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1285 	struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1286 
1287 	/*
1288 	 * Check if we can perform this operation based on the current registry
1289 	 * state.
1290 	 */
1291 	if (!src_o->check_move(bp, src_o, dest_o,
1292 			       &elem->cmd_data.vlan_mac.u)) {
1293 		DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1294 		return -EINVAL;
1295 	}
1296 
1297 	/*
1298 	 * Check if there is an already pending DEL or MOVE command for the
1299 	 * source object or ADD command for a destination object. Return an
1300 	 * error if so.
1301 	 */
1302 	memcpy(&query_elem, elem, sizeof(query_elem));
1303 
1304 	/* Check DEL on source */
1305 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1306 	if (src_exeq->get(src_exeq, &query_elem)) {
1307 		BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1308 		return -EINVAL;
1309 	}
1310 
1311 	/* Check MOVE on source */
1312 	if (src_exeq->get(src_exeq, elem)) {
1313 		DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1314 		return -EEXIST;
1315 	}
1316 
1317 	/* Check ADD on destination */
1318 	query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1319 	if (dest_exeq->get(dest_exeq, &query_elem)) {
1320 		BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1321 		return -EINVAL;
1322 	}
1323 
1324 	/* Consume the credit if not requested not to */
1325 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1326 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1327 	    dest_o->get_credit(dest_o)))
1328 		return -EINVAL;
1329 
1330 	if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1331 		       &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1332 	    src_o->put_credit(src_o))) {
1333 		/* return the credit taken from dest... */
1334 		dest_o->put_credit(dest_o);
1335 		return -EINVAL;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1342 				   union bnx2x_qable_obj *qo,
1343 				   struct bnx2x_exeq_elem *elem)
1344 {
1345 	switch (elem->cmd_data.vlan_mac.cmd) {
1346 	case BNX2X_VLAN_MAC_ADD:
1347 		return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1348 	case BNX2X_VLAN_MAC_DEL:
1349 		return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1350 	case BNX2X_VLAN_MAC_MOVE:
1351 		return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1352 	default:
1353 		return -EINVAL;
1354 	}
1355 }
1356 
1357 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1358 				  union bnx2x_qable_obj *qo,
1359 				  struct bnx2x_exeq_elem *elem)
1360 {
1361 	int rc = 0;
1362 
1363 	/* If consumption wasn't required, nothing to do */
1364 	if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1365 		     &elem->cmd_data.vlan_mac.vlan_mac_flags))
1366 		return 0;
1367 
1368 	switch (elem->cmd_data.vlan_mac.cmd) {
1369 	case BNX2X_VLAN_MAC_ADD:
1370 	case BNX2X_VLAN_MAC_MOVE:
1371 		rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1372 		break;
1373 	case BNX2X_VLAN_MAC_DEL:
1374 		rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1375 		break;
1376 	default:
1377 		return -EINVAL;
1378 	}
1379 
1380 	if (rc != true)
1381 		return -EINVAL;
1382 
1383 	return 0;
1384 }
1385 
1386 /**
1387  * bnx2x_wait_vlan_mac - passivly wait for 5 seconds until all work completes.
1388  *
1389  * @bp:		device handle
1390  * @o:		bnx2x_vlan_mac_obj
1391  *
1392  */
1393 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1394 			       struct bnx2x_vlan_mac_obj *o)
1395 {
1396 	int cnt = 5000, rc;
1397 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1398 	struct bnx2x_raw_obj *raw = &o->raw;
1399 
1400 	while (cnt--) {
1401 		/* Wait for the current command to complete */
1402 		rc = raw->wait_comp(bp, raw);
1403 		if (rc)
1404 			return rc;
1405 
1406 		/* Wait until there are no pending commands */
1407 		if (!bnx2x_exe_queue_empty(exeq))
1408 			usleep_range(1000, 1000);
1409 		else
1410 			return 0;
1411 	}
1412 
1413 	return -EBUSY;
1414 }
1415 
1416 /**
1417  * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1418  *
1419  * @bp:		device handle
1420  * @o:		bnx2x_vlan_mac_obj
1421  * @cqe:
1422  * @cont:	if true schedule next execution chunk
1423  *
1424  */
1425 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1426 				   struct bnx2x_vlan_mac_obj *o,
1427 				   union event_ring_elem *cqe,
1428 				   unsigned long *ramrod_flags)
1429 {
1430 	struct bnx2x_raw_obj *r = &o->raw;
1431 	int rc;
1432 
1433 	/* Reset pending list */
1434 	bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1435 
1436 	/* Clear pending */
1437 	r->clear_pending(r);
1438 
1439 	/* If ramrod failed this is most likely a SW bug */
1440 	if (cqe->message.error)
1441 		return -EINVAL;
1442 
1443 	/* Run the next bulk of pending commands if requeted */
1444 	if (test_bit(RAMROD_CONT, ramrod_flags)) {
1445 		rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1446 		if (rc < 0)
1447 			return rc;
1448 	}
1449 
1450 	/* If there is more work to do return PENDING */
1451 	if (!bnx2x_exe_queue_empty(&o->exe_queue))
1452 		return 1;
1453 
1454 	return 0;
1455 }
1456 
1457 /**
1458  * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1459  *
1460  * @bp:		device handle
1461  * @o:		bnx2x_qable_obj
1462  * @elem:	bnx2x_exeq_elem
1463  */
1464 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1465 				   union bnx2x_qable_obj *qo,
1466 				   struct bnx2x_exeq_elem *elem)
1467 {
1468 	struct bnx2x_exeq_elem query, *pos;
1469 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1470 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1471 
1472 	memcpy(&query, elem, sizeof(query));
1473 
1474 	switch (elem->cmd_data.vlan_mac.cmd) {
1475 	case BNX2X_VLAN_MAC_ADD:
1476 		query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1477 		break;
1478 	case BNX2X_VLAN_MAC_DEL:
1479 		query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1480 		break;
1481 	default:
1482 		/* Don't handle anything other than ADD or DEL */
1483 		return 0;
1484 	}
1485 
1486 	/* If we found the appropriate element - delete it */
1487 	pos = exeq->get(exeq, &query);
1488 	if (pos) {
1489 
1490 		/* Return the credit of the optimized command */
1491 		if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1492 			      &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1493 			if ((query.cmd_data.vlan_mac.cmd ==
1494 			     BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1495 				BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1496 				return -EINVAL;
1497 			} else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1498 				BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1499 				return -EINVAL;
1500 			}
1501 		}
1502 
1503 		DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1504 			   (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1505 			   "ADD" : "DEL");
1506 
1507 		list_del(&pos->link);
1508 		bnx2x_exe_queue_free_elem(bp, pos);
1509 		return 1;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /**
1516  * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1517  *
1518  * @bp:	  device handle
1519  * @o:
1520  * @elem:
1521  * @restore:
1522  * @re:
1523  *
1524  * prepare a registry element according to the current command request.
1525  */
1526 static inline int bnx2x_vlan_mac_get_registry_elem(
1527 	struct bnx2x *bp,
1528 	struct bnx2x_vlan_mac_obj *o,
1529 	struct bnx2x_exeq_elem *elem,
1530 	bool restore,
1531 	struct bnx2x_vlan_mac_registry_elem **re)
1532 {
1533 	int cmd = elem->cmd_data.vlan_mac.cmd;
1534 	struct bnx2x_vlan_mac_registry_elem *reg_elem;
1535 
1536 	/* Allocate a new registry element if needed. */
1537 	if (!restore &&
1538 	    ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1539 		reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1540 		if (!reg_elem)
1541 			return -ENOMEM;
1542 
1543 		/* Get a new CAM offset */
1544 		if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1545 			/*
1546 			 * This shell never happen, because we have checked the
1547 			 * CAM availiability in the 'validate'.
1548 			 */
1549 			WARN_ON(1);
1550 			kfree(reg_elem);
1551 			return -EINVAL;
1552 		}
1553 
1554 		DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1555 
1556 		/* Set a VLAN-MAC data */
1557 		memcpy(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1558 			  sizeof(reg_elem->u));
1559 
1560 		/* Copy the flags (needed for DEL and RESTORE flows) */
1561 		reg_elem->vlan_mac_flags =
1562 			elem->cmd_data.vlan_mac.vlan_mac_flags;
1563 	} else /* DEL, RESTORE */
1564 		reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1565 
1566 	*re = reg_elem;
1567 	return 0;
1568 }
1569 
1570 /**
1571  * bnx2x_execute_vlan_mac - execute vlan mac command
1572  *
1573  * @bp:			device handle
1574  * @qo:
1575  * @exe_chunk:
1576  * @ramrod_flags:
1577  *
1578  * go and send a ramrod!
1579  */
1580 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1581 				  union bnx2x_qable_obj *qo,
1582 				  struct list_head *exe_chunk,
1583 				  unsigned long *ramrod_flags)
1584 {
1585 	struct bnx2x_exeq_elem *elem;
1586 	struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1587 	struct bnx2x_raw_obj *r = &o->raw;
1588 	int rc, idx = 0;
1589 	bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1590 	bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1591 	struct bnx2x_vlan_mac_registry_elem *reg_elem;
1592 	int cmd;
1593 
1594 	/*
1595 	 * If DRIVER_ONLY execution is requested, cleanup a registry
1596 	 * and exit. Otherwise send a ramrod to FW.
1597 	 */
1598 	if (!drv_only) {
1599 		WARN_ON(r->check_pending(r));
1600 
1601 		/* Set pending */
1602 		r->set_pending(r);
1603 
1604 		/* Fill tha ramrod data */
1605 		list_for_each_entry(elem, exe_chunk, link) {
1606 			cmd = elem->cmd_data.vlan_mac.cmd;
1607 			/*
1608 			 * We will add to the target object in MOVE command, so
1609 			 * change the object for a CAM search.
1610 			 */
1611 			if (cmd == BNX2X_VLAN_MAC_MOVE)
1612 				cam_obj = elem->cmd_data.vlan_mac.target_obj;
1613 			else
1614 				cam_obj = o;
1615 
1616 			rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1617 							      elem, restore,
1618 							      &reg_elem);
1619 			if (rc)
1620 				goto error_exit;
1621 
1622 			WARN_ON(!reg_elem);
1623 
1624 			/* Push a new entry into the registry */
1625 			if (!restore &&
1626 			    ((cmd == BNX2X_VLAN_MAC_ADD) ||
1627 			    (cmd == BNX2X_VLAN_MAC_MOVE)))
1628 				list_add(&reg_elem->link, &cam_obj->head);
1629 
1630 			/* Configure a single command in a ramrod data buffer */
1631 			o->set_one_rule(bp, o, elem, idx,
1632 					reg_elem->cam_offset);
1633 
1634 			/* MOVE command consumes 2 entries in the ramrod data */
1635 			if (cmd == BNX2X_VLAN_MAC_MOVE)
1636 				idx += 2;
1637 			else
1638 				idx++;
1639 		}
1640 
1641 		/*
1642 		 *  No need for an explicit memory barrier here as long we would
1643 		 *  need to ensure the ordering of writing to the SPQ element
1644 		 *  and updating of the SPQ producer which involves a memory
1645 		 *  read and we will have to put a full memory barrier there
1646 		 *  (inside bnx2x_sp_post()).
1647 		 */
1648 
1649 		rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1650 				   U64_HI(r->rdata_mapping),
1651 				   U64_LO(r->rdata_mapping),
1652 				   ETH_CONNECTION_TYPE);
1653 		if (rc)
1654 			goto error_exit;
1655 	}
1656 
1657 	/* Now, when we are done with the ramrod - clean up the registry */
1658 	list_for_each_entry(elem, exe_chunk, link) {
1659 		cmd = elem->cmd_data.vlan_mac.cmd;
1660 		if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1661 		    (cmd == BNX2X_VLAN_MAC_MOVE)) {
1662 			reg_elem = o->check_del(bp, o,
1663 						&elem->cmd_data.vlan_mac.u);
1664 
1665 			WARN_ON(!reg_elem);
1666 
1667 			o->put_cam_offset(o, reg_elem->cam_offset);
1668 			list_del(&reg_elem->link);
1669 			kfree(reg_elem);
1670 		}
1671 	}
1672 
1673 	if (!drv_only)
1674 		return 1;
1675 	else
1676 		return 0;
1677 
1678 error_exit:
1679 	r->clear_pending(r);
1680 
1681 	/* Cleanup a registry in case of a failure */
1682 	list_for_each_entry(elem, exe_chunk, link) {
1683 		cmd = elem->cmd_data.vlan_mac.cmd;
1684 
1685 		if (cmd == BNX2X_VLAN_MAC_MOVE)
1686 			cam_obj = elem->cmd_data.vlan_mac.target_obj;
1687 		else
1688 			cam_obj = o;
1689 
1690 		/* Delete all newly added above entries */
1691 		if (!restore &&
1692 		    ((cmd == BNX2X_VLAN_MAC_ADD) ||
1693 		    (cmd == BNX2X_VLAN_MAC_MOVE))) {
1694 			reg_elem = o->check_del(bp, cam_obj,
1695 						&elem->cmd_data.vlan_mac.u);
1696 			if (reg_elem) {
1697 				list_del(&reg_elem->link);
1698 				kfree(reg_elem);
1699 			}
1700 		}
1701 	}
1702 
1703 	return rc;
1704 }
1705 
1706 static inline int bnx2x_vlan_mac_push_new_cmd(
1707 	struct bnx2x *bp,
1708 	struct bnx2x_vlan_mac_ramrod_params *p)
1709 {
1710 	struct bnx2x_exeq_elem *elem;
1711 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1712 	bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1713 
1714 	/* Allocate the execution queue element */
1715 	elem = bnx2x_exe_queue_alloc_elem(bp);
1716 	if (!elem)
1717 		return -ENOMEM;
1718 
1719 	/* Set the command 'length' */
1720 	switch (p->user_req.cmd) {
1721 	case BNX2X_VLAN_MAC_MOVE:
1722 		elem->cmd_len = 2;
1723 		break;
1724 	default:
1725 		elem->cmd_len = 1;
1726 	}
1727 
1728 	/* Fill the object specific info */
1729 	memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1730 
1731 	/* Try to add a new command to the pending list */
1732 	return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1733 }
1734 
1735 /**
1736  * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1737  *
1738  * @bp:	  device handle
1739  * @p:
1740  *
1741  */
1742 int bnx2x_config_vlan_mac(
1743 	struct bnx2x *bp,
1744 	struct bnx2x_vlan_mac_ramrod_params *p)
1745 {
1746 	int rc = 0;
1747 	struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1748 	unsigned long *ramrod_flags = &p->ramrod_flags;
1749 	bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1750 	struct bnx2x_raw_obj *raw = &o->raw;
1751 
1752 	/*
1753 	 * Add new elements to the execution list for commands that require it.
1754 	 */
1755 	if (!cont) {
1756 		rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1757 		if (rc)
1758 			return rc;
1759 	}
1760 
1761 	/*
1762 	 * If nothing will be executed further in this iteration we want to
1763 	 * return PENDING if there are pending commands
1764 	 */
1765 	if (!bnx2x_exe_queue_empty(&o->exe_queue))
1766 		rc = 1;
1767 
1768 	if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags))  {
1769 		DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1770 		raw->clear_pending(raw);
1771 	}
1772 
1773 	/* Execute commands if required */
1774 	if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1775 	    test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1776 		rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1777 		if (rc < 0)
1778 			return rc;
1779 	}
1780 
1781 	/*
1782 	 * RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1783 	 * then user want to wait until the last command is done.
1784 	 */
1785 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1786 		/*
1787 		 * Wait maximum for the current exe_queue length iterations plus
1788 		 * one (for the current pending command).
1789 		 */
1790 		int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1791 
1792 		while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1793 		       max_iterations--) {
1794 
1795 			/* Wait for the current command to complete */
1796 			rc = raw->wait_comp(bp, raw);
1797 			if (rc)
1798 				return rc;
1799 
1800 			/* Make a next step */
1801 			rc = bnx2x_exe_queue_step(bp, &o->exe_queue,
1802 						  ramrod_flags);
1803 			if (rc < 0)
1804 				return rc;
1805 		}
1806 
1807 		return 0;
1808 	}
1809 
1810 	return rc;
1811 }
1812 
1813 
1814 
1815 /**
1816  * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
1817  *
1818  * @bp:			device handle
1819  * @o:
1820  * @vlan_mac_flags:
1821  * @ramrod_flags:	execution flags to be used for this deletion
1822  *
1823  * if the last operation has completed successfully and there are no
1824  * moreelements left, positive value if the last operation has completed
1825  * successfully and there are more previously configured elements, negative
1826  * value is current operation has failed.
1827  */
1828 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
1829 				  struct bnx2x_vlan_mac_obj *o,
1830 				  unsigned long *vlan_mac_flags,
1831 				  unsigned long *ramrod_flags)
1832 {
1833 	struct bnx2x_vlan_mac_registry_elem *pos = NULL;
1834 	int rc = 0;
1835 	struct bnx2x_vlan_mac_ramrod_params p;
1836 	struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1837 	struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
1838 
1839 	/* Clear pending commands first */
1840 
1841 	spin_lock_bh(&exeq->lock);
1842 
1843 	list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
1844 		if (exeq_pos->cmd_data.vlan_mac.vlan_mac_flags ==
1845 		    *vlan_mac_flags) {
1846 			rc = exeq->remove(bp, exeq->owner, exeq_pos);
1847 			if (rc) {
1848 				BNX2X_ERR("Failed to remove command\n");
1849 				spin_unlock_bh(&exeq->lock);
1850 				return rc;
1851 			}
1852 			list_del(&exeq_pos->link);
1853 		}
1854 	}
1855 
1856 	spin_unlock_bh(&exeq->lock);
1857 
1858 	/* Prepare a command request */
1859 	memset(&p, 0, sizeof(p));
1860 	p.vlan_mac_obj = o;
1861 	p.ramrod_flags = *ramrod_flags;
1862 	p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
1863 
1864 	/*
1865 	 * Add all but the last VLAN-MAC to the execution queue without actually
1866 	 * execution anything.
1867 	 */
1868 	__clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
1869 	__clear_bit(RAMROD_EXEC, &p.ramrod_flags);
1870 	__clear_bit(RAMROD_CONT, &p.ramrod_flags);
1871 
1872 	list_for_each_entry(pos, &o->head, link) {
1873 		if (pos->vlan_mac_flags == *vlan_mac_flags) {
1874 			p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
1875 			memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
1876 			rc = bnx2x_config_vlan_mac(bp, &p);
1877 			if (rc < 0) {
1878 				BNX2X_ERR("Failed to add a new DEL command\n");
1879 				return rc;
1880 			}
1881 		}
1882 	}
1883 
1884 	p.ramrod_flags = *ramrod_flags;
1885 	__set_bit(RAMROD_CONT, &p.ramrod_flags);
1886 
1887 	return bnx2x_config_vlan_mac(bp, &p);
1888 }
1889 
1890 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
1891 	u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
1892 	unsigned long *pstate, bnx2x_obj_type type)
1893 {
1894 	raw->func_id = func_id;
1895 	raw->cid = cid;
1896 	raw->cl_id = cl_id;
1897 	raw->rdata = rdata;
1898 	raw->rdata_mapping = rdata_mapping;
1899 	raw->state = state;
1900 	raw->pstate = pstate;
1901 	raw->obj_type = type;
1902 	raw->check_pending = bnx2x_raw_check_pending;
1903 	raw->clear_pending = bnx2x_raw_clear_pending;
1904 	raw->set_pending = bnx2x_raw_set_pending;
1905 	raw->wait_comp = bnx2x_raw_wait;
1906 }
1907 
1908 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
1909 	u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
1910 	int state, unsigned long *pstate, bnx2x_obj_type type,
1911 	struct bnx2x_credit_pool_obj *macs_pool,
1912 	struct bnx2x_credit_pool_obj *vlans_pool)
1913 {
1914 	INIT_LIST_HEAD(&o->head);
1915 
1916 	o->macs_pool = macs_pool;
1917 	o->vlans_pool = vlans_pool;
1918 
1919 	o->delete_all = bnx2x_vlan_mac_del_all;
1920 	o->restore = bnx2x_vlan_mac_restore;
1921 	o->complete = bnx2x_complete_vlan_mac;
1922 	o->wait = bnx2x_wait_vlan_mac;
1923 
1924 	bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
1925 			   state, pstate, type);
1926 }
1927 
1928 
1929 void bnx2x_init_mac_obj(struct bnx2x *bp,
1930 			struct bnx2x_vlan_mac_obj *mac_obj,
1931 			u8 cl_id, u32 cid, u8 func_id, void *rdata,
1932 			dma_addr_t rdata_mapping, int state,
1933 			unsigned long *pstate, bnx2x_obj_type type,
1934 			struct bnx2x_credit_pool_obj *macs_pool)
1935 {
1936 	union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
1937 
1938 	bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
1939 				   rdata_mapping, state, pstate, type,
1940 				   macs_pool, NULL);
1941 
1942 	/* CAM credit pool handling */
1943 	mac_obj->get_credit = bnx2x_get_credit_mac;
1944 	mac_obj->put_credit = bnx2x_put_credit_mac;
1945 	mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
1946 	mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
1947 
1948 	if (CHIP_IS_E1x(bp)) {
1949 		mac_obj->set_one_rule      = bnx2x_set_one_mac_e1x;
1950 		mac_obj->check_del         = bnx2x_check_mac_del;
1951 		mac_obj->check_add         = bnx2x_check_mac_add;
1952 		mac_obj->check_move        = bnx2x_check_move_always_err;
1953 		mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
1954 
1955 		/* Exe Queue */
1956 		bnx2x_exe_queue_init(bp,
1957 				     &mac_obj->exe_queue, 1, qable_obj,
1958 				     bnx2x_validate_vlan_mac,
1959 				     bnx2x_remove_vlan_mac,
1960 				     bnx2x_optimize_vlan_mac,
1961 				     bnx2x_execute_vlan_mac,
1962 				     bnx2x_exeq_get_mac);
1963 	} else {
1964 		mac_obj->set_one_rule      = bnx2x_set_one_mac_e2;
1965 		mac_obj->check_del         = bnx2x_check_mac_del;
1966 		mac_obj->check_add         = bnx2x_check_mac_add;
1967 		mac_obj->check_move        = bnx2x_check_move;
1968 		mac_obj->ramrod_cmd        =
1969 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
1970 		mac_obj->get_n_elements    = bnx2x_get_n_elements;
1971 
1972 		/* Exe Queue */
1973 		bnx2x_exe_queue_init(bp,
1974 				     &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
1975 				     qable_obj, bnx2x_validate_vlan_mac,
1976 				     bnx2x_remove_vlan_mac,
1977 				     bnx2x_optimize_vlan_mac,
1978 				     bnx2x_execute_vlan_mac,
1979 				     bnx2x_exeq_get_mac);
1980 	}
1981 }
1982 
1983 void bnx2x_init_vlan_obj(struct bnx2x *bp,
1984 			 struct bnx2x_vlan_mac_obj *vlan_obj,
1985 			 u8 cl_id, u32 cid, u8 func_id, void *rdata,
1986 			 dma_addr_t rdata_mapping, int state,
1987 			 unsigned long *pstate, bnx2x_obj_type type,
1988 			 struct bnx2x_credit_pool_obj *vlans_pool)
1989 {
1990 	union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
1991 
1992 	bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
1993 				   rdata_mapping, state, pstate, type, NULL,
1994 				   vlans_pool);
1995 
1996 	vlan_obj->get_credit = bnx2x_get_credit_vlan;
1997 	vlan_obj->put_credit = bnx2x_put_credit_vlan;
1998 	vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
1999 	vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2000 
2001 	if (CHIP_IS_E1x(bp)) {
2002 		BNX2X_ERR("Do not support chips others than E2 and newer\n");
2003 		BUG();
2004 	} else {
2005 		vlan_obj->set_one_rule      = bnx2x_set_one_vlan_e2;
2006 		vlan_obj->check_del         = bnx2x_check_vlan_del;
2007 		vlan_obj->check_add         = bnx2x_check_vlan_add;
2008 		vlan_obj->check_move        = bnx2x_check_move;
2009 		vlan_obj->ramrod_cmd        =
2010 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2011 
2012 		/* Exe Queue */
2013 		bnx2x_exe_queue_init(bp,
2014 				     &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2015 				     qable_obj, bnx2x_validate_vlan_mac,
2016 				     bnx2x_remove_vlan_mac,
2017 				     bnx2x_optimize_vlan_mac,
2018 				     bnx2x_execute_vlan_mac,
2019 				     bnx2x_exeq_get_vlan);
2020 	}
2021 }
2022 
2023 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2024 			     struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2025 			     u8 cl_id, u32 cid, u8 func_id, void *rdata,
2026 			     dma_addr_t rdata_mapping, int state,
2027 			     unsigned long *pstate, bnx2x_obj_type type,
2028 			     struct bnx2x_credit_pool_obj *macs_pool,
2029 			     struct bnx2x_credit_pool_obj *vlans_pool)
2030 {
2031 	union bnx2x_qable_obj *qable_obj =
2032 		(union bnx2x_qable_obj *)vlan_mac_obj;
2033 
2034 	bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2035 				   rdata_mapping, state, pstate, type,
2036 				   macs_pool, vlans_pool);
2037 
2038 	/* CAM pool handling */
2039 	vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2040 	vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2041 	/*
2042 	 * CAM offset is relevant for 57710 and 57711 chips only which have a
2043 	 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2044 	 * will be taken from MACs' pool object only.
2045 	 */
2046 	vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2047 	vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2048 
2049 	if (CHIP_IS_E1(bp)) {
2050 		BNX2X_ERR("Do not support chips others than E2\n");
2051 		BUG();
2052 	} else if (CHIP_IS_E1H(bp)) {
2053 		vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e1h;
2054 		vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2055 		vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2056 		vlan_mac_obj->check_move        = bnx2x_check_move_always_err;
2057 		vlan_mac_obj->ramrod_cmd        = RAMROD_CMD_ID_ETH_SET_MAC;
2058 
2059 		/* Exe Queue */
2060 		bnx2x_exe_queue_init(bp,
2061 				     &vlan_mac_obj->exe_queue, 1, qable_obj,
2062 				     bnx2x_validate_vlan_mac,
2063 				     bnx2x_remove_vlan_mac,
2064 				     bnx2x_optimize_vlan_mac,
2065 				     bnx2x_execute_vlan_mac,
2066 				     bnx2x_exeq_get_vlan_mac);
2067 	} else {
2068 		vlan_mac_obj->set_one_rule      = bnx2x_set_one_vlan_mac_e2;
2069 		vlan_mac_obj->check_del         = bnx2x_check_vlan_mac_del;
2070 		vlan_mac_obj->check_add         = bnx2x_check_vlan_mac_add;
2071 		vlan_mac_obj->check_move        = bnx2x_check_move;
2072 		vlan_mac_obj->ramrod_cmd        =
2073 			RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2074 
2075 		/* Exe Queue */
2076 		bnx2x_exe_queue_init(bp,
2077 				     &vlan_mac_obj->exe_queue,
2078 				     CLASSIFY_RULES_COUNT,
2079 				     qable_obj, bnx2x_validate_vlan_mac,
2080 				     bnx2x_remove_vlan_mac,
2081 				     bnx2x_optimize_vlan_mac,
2082 				     bnx2x_execute_vlan_mac,
2083 				     bnx2x_exeq_get_vlan_mac);
2084 	}
2085 
2086 }
2087 
2088 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2089 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2090 			struct tstorm_eth_mac_filter_config *mac_filters,
2091 			u16 pf_id)
2092 {
2093 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2094 
2095 	u32 addr = BAR_TSTRORM_INTMEM +
2096 			TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2097 
2098 	__storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2099 }
2100 
2101 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2102 				 struct bnx2x_rx_mode_ramrod_params *p)
2103 {
2104 	/* update the bp MAC filter structure  */
2105 	u32 mask = (1 << p->cl_id);
2106 
2107 	struct tstorm_eth_mac_filter_config *mac_filters =
2108 		(struct tstorm_eth_mac_filter_config *)p->rdata;
2109 
2110 	/* initial seeting is drop-all */
2111 	u8 drop_all_ucast = 1, drop_all_mcast = 1;
2112 	u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2113 	u8 unmatched_unicast = 0;
2114 
2115     /* In e1x there we only take into account rx acceot flag since tx switching
2116      * isn't enabled. */
2117 	if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2118 		/* accept matched ucast */
2119 		drop_all_ucast = 0;
2120 
2121 	if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2122 		/* accept matched mcast */
2123 		drop_all_mcast = 0;
2124 
2125 	if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2126 		/* accept all mcast */
2127 		drop_all_ucast = 0;
2128 		accp_all_ucast = 1;
2129 	}
2130 	if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2131 		/* accept all mcast */
2132 		drop_all_mcast = 0;
2133 		accp_all_mcast = 1;
2134 	}
2135 	if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2136 		/* accept (all) bcast */
2137 		accp_all_bcast = 1;
2138 	if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2139 		/* accept unmatched unicasts */
2140 		unmatched_unicast = 1;
2141 
2142 	mac_filters->ucast_drop_all = drop_all_ucast ?
2143 		mac_filters->ucast_drop_all | mask :
2144 		mac_filters->ucast_drop_all & ~mask;
2145 
2146 	mac_filters->mcast_drop_all = drop_all_mcast ?
2147 		mac_filters->mcast_drop_all | mask :
2148 		mac_filters->mcast_drop_all & ~mask;
2149 
2150 	mac_filters->ucast_accept_all = accp_all_ucast ?
2151 		mac_filters->ucast_accept_all | mask :
2152 		mac_filters->ucast_accept_all & ~mask;
2153 
2154 	mac_filters->mcast_accept_all = accp_all_mcast ?
2155 		mac_filters->mcast_accept_all | mask :
2156 		mac_filters->mcast_accept_all & ~mask;
2157 
2158 	mac_filters->bcast_accept_all = accp_all_bcast ?
2159 		mac_filters->bcast_accept_all | mask :
2160 		mac_filters->bcast_accept_all & ~mask;
2161 
2162 	mac_filters->unmatched_unicast = unmatched_unicast ?
2163 		mac_filters->unmatched_unicast | mask :
2164 		mac_filters->unmatched_unicast & ~mask;
2165 
2166 	DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2167 					 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2168 	   mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2169 	   mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2170 	   mac_filters->bcast_accept_all);
2171 
2172 	/* write the MAC filter structure*/
2173 	__storm_memset_mac_filters(bp, mac_filters, p->func_id);
2174 
2175 	/* The operation is completed */
2176 	clear_bit(p->state, p->pstate);
2177 	smp_mb__after_clear_bit();
2178 
2179 	return 0;
2180 }
2181 
2182 /* Setup ramrod data */
2183 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2184 				struct eth_classify_header *hdr,
2185 				u8 rule_cnt)
2186 {
2187 	hdr->echo = cid;
2188 	hdr->rule_cnt = rule_cnt;
2189 }
2190 
2191 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2192 				unsigned long accept_flags,
2193 				struct eth_filter_rules_cmd *cmd,
2194 				bool clear_accept_all)
2195 {
2196 	u16 state;
2197 
2198 	/* start with 'drop-all' */
2199 	state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2200 		ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2201 
2202 	if (accept_flags) {
2203 		if (test_bit(BNX2X_ACCEPT_UNICAST, &accept_flags))
2204 			state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2205 
2206 		if (test_bit(BNX2X_ACCEPT_MULTICAST, &accept_flags))
2207 			state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2208 
2209 		if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &accept_flags)) {
2210 			state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2211 			state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2212 		}
2213 
2214 		if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags)) {
2215 			state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2216 			state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2217 		}
2218 		if (test_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags))
2219 			state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2220 
2221 		if (test_bit(BNX2X_ACCEPT_UNMATCHED, &accept_flags)) {
2222 			state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2223 			state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2224 		}
2225 		if (test_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags))
2226 			state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2227 	}
2228 
2229 	/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2230 	if (clear_accept_all) {
2231 		state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2232 		state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2233 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2234 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2235 	}
2236 
2237 	cmd->state = cpu_to_le16(state);
2238 
2239 }
2240 
2241 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2242 				struct bnx2x_rx_mode_ramrod_params *p)
2243 {
2244 	struct eth_filter_rules_ramrod_data *data = p->rdata;
2245 	int rc;
2246 	u8 rule_idx = 0;
2247 
2248 	/* Reset the ramrod data buffer */
2249 	memset(data, 0, sizeof(*data));
2250 
2251 	/* Setup ramrod data */
2252 
2253 	/* Tx (internal switching) */
2254 	if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2255 		data->rules[rule_idx].client_id = p->cl_id;
2256 		data->rules[rule_idx].func_id = p->func_id;
2257 
2258 		data->rules[rule_idx].cmd_general_data =
2259 			ETH_FILTER_RULES_CMD_TX_CMD;
2260 
2261 		bnx2x_rx_mode_set_cmd_state_e2(bp, p->tx_accept_flags,
2262 			&(data->rules[rule_idx++]), false);
2263 	}
2264 
2265 	/* Rx */
2266 	if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2267 		data->rules[rule_idx].client_id = p->cl_id;
2268 		data->rules[rule_idx].func_id = p->func_id;
2269 
2270 		data->rules[rule_idx].cmd_general_data =
2271 			ETH_FILTER_RULES_CMD_RX_CMD;
2272 
2273 		bnx2x_rx_mode_set_cmd_state_e2(bp, p->rx_accept_flags,
2274 			&(data->rules[rule_idx++]), false);
2275 	}
2276 
2277 
2278 	/*
2279 	 * If FCoE Queue configuration has been requested configure the Rx and
2280 	 * internal switching modes for this queue in separate rules.
2281 	 *
2282 	 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2283 	 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2284 	 */
2285 	if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2286 		/*  Tx (internal switching) */
2287 		if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2288 			data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2289 			data->rules[rule_idx].func_id = p->func_id;
2290 
2291 			data->rules[rule_idx].cmd_general_data =
2292 						ETH_FILTER_RULES_CMD_TX_CMD;
2293 
2294 			bnx2x_rx_mode_set_cmd_state_e2(bp, p->tx_accept_flags,
2295 						     &(data->rules[rule_idx++]),
2296 						       true);
2297 		}
2298 
2299 		/* Rx */
2300 		if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2301 			data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2302 			data->rules[rule_idx].func_id = p->func_id;
2303 
2304 			data->rules[rule_idx].cmd_general_data =
2305 						ETH_FILTER_RULES_CMD_RX_CMD;
2306 
2307 			bnx2x_rx_mode_set_cmd_state_e2(bp, p->rx_accept_flags,
2308 						     &(data->rules[rule_idx++]),
2309 						       true);
2310 		}
2311 	}
2312 
2313 	/*
2314 	 * Set the ramrod header (most importantly - number of rules to
2315 	 * configure).
2316 	 */
2317 	bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2318 
2319 	DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2320 			 data->header.rule_cnt, p->rx_accept_flags,
2321 			 p->tx_accept_flags);
2322 
2323 	/*
2324 	 *  No need for an explicit memory barrier here as long we would
2325 	 *  need to ensure the ordering of writing to the SPQ element
2326 	 *  and updating of the SPQ producer which involves a memory
2327 	 *  read and we will have to put a full memory barrier there
2328 	 *  (inside bnx2x_sp_post()).
2329 	 */
2330 
2331 	/* Send a ramrod */
2332 	rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2333 			   U64_HI(p->rdata_mapping),
2334 			   U64_LO(p->rdata_mapping),
2335 			   ETH_CONNECTION_TYPE);
2336 	if (rc)
2337 		return rc;
2338 
2339 	/* Ramrod completion is pending */
2340 	return 1;
2341 }
2342 
2343 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2344 				      struct bnx2x_rx_mode_ramrod_params *p)
2345 {
2346 	return bnx2x_state_wait(bp, p->state, p->pstate);
2347 }
2348 
2349 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2350 				    struct bnx2x_rx_mode_ramrod_params *p)
2351 {
2352 	/* Do nothing */
2353 	return 0;
2354 }
2355 
2356 int bnx2x_config_rx_mode(struct bnx2x *bp,
2357 			 struct bnx2x_rx_mode_ramrod_params *p)
2358 {
2359 	int rc;
2360 
2361 	/* Configure the new classification in the chip */
2362 	rc = p->rx_mode_obj->config_rx_mode(bp, p);
2363 	if (rc < 0)
2364 		return rc;
2365 
2366 	/* Wait for a ramrod completion if was requested */
2367 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2368 		rc = p->rx_mode_obj->wait_comp(bp, p);
2369 		if (rc)
2370 			return rc;
2371 	}
2372 
2373 	return rc;
2374 }
2375 
2376 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2377 			    struct bnx2x_rx_mode_obj *o)
2378 {
2379 	if (CHIP_IS_E1x(bp)) {
2380 		o->wait_comp      = bnx2x_empty_rx_mode_wait;
2381 		o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2382 	} else {
2383 		o->wait_comp      = bnx2x_wait_rx_mode_comp_e2;
2384 		o->config_rx_mode = bnx2x_set_rx_mode_e2;
2385 	}
2386 }
2387 
2388 /********************* Multicast verbs: SET, CLEAR ****************************/
2389 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2390 {
2391 	return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2392 }
2393 
2394 struct bnx2x_mcast_mac_elem {
2395 	struct list_head link;
2396 	u8 mac[ETH_ALEN];
2397 	u8 pad[2]; /* For a natural alignment of the following buffer */
2398 };
2399 
2400 struct bnx2x_pending_mcast_cmd {
2401 	struct list_head link;
2402 	int type; /* BNX2X_MCAST_CMD_X */
2403 	union {
2404 		struct list_head macs_head;
2405 		u32 macs_num; /* Needed for DEL command */
2406 		int next_bin; /* Needed for RESTORE flow with aprox match */
2407 	} data;
2408 
2409 	bool done; /* set to true, when the command has been handled,
2410 		    * practically used in 57712 handling only, where one pending
2411 		    * command may be handled in a few operations. As long as for
2412 		    * other chips every operation handling is completed in a
2413 		    * single ramrod, there is no need to utilize this field.
2414 		    */
2415 };
2416 
2417 static int bnx2x_mcast_wait(struct bnx2x *bp,
2418 			    struct bnx2x_mcast_obj *o)
2419 {
2420 	if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2421 			o->raw.wait_comp(bp, &o->raw))
2422 		return -EBUSY;
2423 
2424 	return 0;
2425 }
2426 
2427 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2428 				   struct bnx2x_mcast_obj *o,
2429 				   struct bnx2x_mcast_ramrod_params *p,
2430 				   int cmd)
2431 {
2432 	int total_sz;
2433 	struct bnx2x_pending_mcast_cmd *new_cmd;
2434 	struct bnx2x_mcast_mac_elem *cur_mac = NULL;
2435 	struct bnx2x_mcast_list_elem *pos;
2436 	int macs_list_len = ((cmd == BNX2X_MCAST_CMD_ADD) ?
2437 			     p->mcast_list_len : 0);
2438 
2439 	/* If the command is empty ("handle pending commands only"), break */
2440 	if (!p->mcast_list_len)
2441 		return 0;
2442 
2443 	total_sz = sizeof(*new_cmd) +
2444 		macs_list_len * sizeof(struct bnx2x_mcast_mac_elem);
2445 
2446 	/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2447 	new_cmd = kzalloc(total_sz, GFP_ATOMIC);
2448 
2449 	if (!new_cmd)
2450 		return -ENOMEM;
2451 
2452 	DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2453 	   cmd, macs_list_len);
2454 
2455 	INIT_LIST_HEAD(&new_cmd->data.macs_head);
2456 
2457 	new_cmd->type = cmd;
2458 	new_cmd->done = false;
2459 
2460 	switch (cmd) {
2461 	case BNX2X_MCAST_CMD_ADD:
2462 		cur_mac = (struct bnx2x_mcast_mac_elem *)
2463 			  ((u8 *)new_cmd + sizeof(*new_cmd));
2464 
2465 		/* Push the MACs of the current command into the pendig command
2466 		 * MACs list: FIFO
2467 		 */
2468 		list_for_each_entry(pos, &p->mcast_list, link) {
2469 			memcpy(cur_mac->mac, pos->mac, ETH_ALEN);
2470 			list_add_tail(&cur_mac->link, &new_cmd->data.macs_head);
2471 			cur_mac++;
2472 		}
2473 
2474 		break;
2475 
2476 	case BNX2X_MCAST_CMD_DEL:
2477 		new_cmd->data.macs_num = p->mcast_list_len;
2478 		break;
2479 
2480 	case BNX2X_MCAST_CMD_RESTORE:
2481 		new_cmd->data.next_bin = 0;
2482 		break;
2483 
2484 	default:
2485 		BNX2X_ERR("Unknown command: %d\n", cmd);
2486 		return -EINVAL;
2487 	}
2488 
2489 	/* Push the new pending command to the tail of the pending list: FIFO */
2490 	list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2491 
2492 	o->set_sched(o);
2493 
2494 	return 1;
2495 }
2496 
2497 /**
2498  * bnx2x_mcast_get_next_bin - get the next set bin (index)
2499  *
2500  * @o:
2501  * @last:	index to start looking from (including)
2502  *
2503  * returns the next found (set) bin or a negative value if none is found.
2504  */
2505 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2506 {
2507 	int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2508 
2509 	for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2510 		if (o->registry.aprox_match.vec[i])
2511 			for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2512 				int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2513 				if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2514 						       vec, cur_bit)) {
2515 					return cur_bit;
2516 				}
2517 			}
2518 		inner_start = 0;
2519 	}
2520 
2521 	/* None found */
2522 	return -1;
2523 }
2524 
2525 /**
2526  * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2527  *
2528  * @o:
2529  *
2530  * returns the index of the found bin or -1 if none is found
2531  */
2532 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2533 {
2534 	int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2535 
2536 	if (cur_bit >= 0)
2537 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2538 
2539 	return cur_bit;
2540 }
2541 
2542 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2543 {
2544 	struct bnx2x_raw_obj *raw = &o->raw;
2545 	u8 rx_tx_flag = 0;
2546 
2547 	if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2548 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2549 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2550 
2551 	if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2552 	    (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2553 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2554 
2555 	return rx_tx_flag;
2556 }
2557 
2558 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2559 					struct bnx2x_mcast_obj *o, int idx,
2560 					union bnx2x_mcast_config_data *cfg_data,
2561 					int cmd)
2562 {
2563 	struct bnx2x_raw_obj *r = &o->raw;
2564 	struct eth_multicast_rules_ramrod_data *data =
2565 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
2566 	u8 func_id = r->func_id;
2567 	u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2568 	int bin;
2569 
2570 	if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE))
2571 		rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2572 
2573 	data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2574 
2575 	/* Get a bin and update a bins' vector */
2576 	switch (cmd) {
2577 	case BNX2X_MCAST_CMD_ADD:
2578 		bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2579 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2580 		break;
2581 
2582 	case BNX2X_MCAST_CMD_DEL:
2583 		/* If there were no more bins to clear
2584 		 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2585 		 * clear any (0xff) bin.
2586 		 * See bnx2x_mcast_validate_e2() for explanation when it may
2587 		 * happen.
2588 		 */
2589 		bin = bnx2x_mcast_clear_first_bin(o);
2590 		break;
2591 
2592 	case BNX2X_MCAST_CMD_RESTORE:
2593 		bin = cfg_data->bin;
2594 		break;
2595 
2596 	default:
2597 		BNX2X_ERR("Unknown command: %d\n", cmd);
2598 		return;
2599 	}
2600 
2601 	DP(BNX2X_MSG_SP, "%s bin %d\n",
2602 			 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2603 			 "Setting"  : "Clearing"), bin);
2604 
2605 	data->rules[idx].bin_id    = (u8)bin;
2606 	data->rules[idx].func_id   = func_id;
2607 	data->rules[idx].engine_id = o->engine_id;
2608 }
2609 
2610 /**
2611  * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2612  *
2613  * @bp:		device handle
2614  * @o:
2615  * @start_bin:	index in the registry to start from (including)
2616  * @rdata_idx:	index in the ramrod data to start from
2617  *
2618  * returns last handled bin index or -1 if all bins have been handled
2619  */
2620 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2621 	struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2622 	int *rdata_idx)
2623 {
2624 	int cur_bin, cnt = *rdata_idx;
2625 	union bnx2x_mcast_config_data cfg_data = {0};
2626 
2627 	/* go through the registry and configure the bins from it */
2628 	for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2629 	    cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2630 
2631 		cfg_data.bin = (u8)cur_bin;
2632 		o->set_one_rule(bp, o, cnt, &cfg_data,
2633 				BNX2X_MCAST_CMD_RESTORE);
2634 
2635 		cnt++;
2636 
2637 		DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2638 
2639 		/* Break if we reached the maximum number
2640 		 * of rules.
2641 		 */
2642 		if (cnt >= o->max_cmd_len)
2643 			break;
2644 	}
2645 
2646 	*rdata_idx = cnt;
2647 
2648 	return cur_bin;
2649 }
2650 
2651 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2652 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2653 	int *line_idx)
2654 {
2655 	struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2656 	int cnt = *line_idx;
2657 	union bnx2x_mcast_config_data cfg_data = {0};
2658 
2659 	list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2660 				 link) {
2661 
2662 		cfg_data.mac = &pmac_pos->mac[0];
2663 		o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2664 
2665 		cnt++;
2666 
2667 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2668 		   pmac_pos->mac);
2669 
2670 		list_del(&pmac_pos->link);
2671 
2672 		/* Break if we reached the maximum number
2673 		 * of rules.
2674 		 */
2675 		if (cnt >= o->max_cmd_len)
2676 			break;
2677 	}
2678 
2679 	*line_idx = cnt;
2680 
2681 	/* if no more MACs to configure - we are done */
2682 	if (list_empty(&cmd_pos->data.macs_head))
2683 		cmd_pos->done = true;
2684 }
2685 
2686 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2687 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2688 	int *line_idx)
2689 {
2690 	int cnt = *line_idx;
2691 
2692 	while (cmd_pos->data.macs_num) {
2693 		o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2694 
2695 		cnt++;
2696 
2697 		cmd_pos->data.macs_num--;
2698 
2699 		  DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2700 				   cmd_pos->data.macs_num, cnt);
2701 
2702 		/* Break if we reached the maximum
2703 		 * number of rules.
2704 		 */
2705 		if (cnt >= o->max_cmd_len)
2706 			break;
2707 	}
2708 
2709 	*line_idx = cnt;
2710 
2711 	/* If we cleared all bins - we are done */
2712 	if (!cmd_pos->data.macs_num)
2713 		cmd_pos->done = true;
2714 }
2715 
2716 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
2717 	struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2718 	int *line_idx)
2719 {
2720 	cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
2721 						line_idx);
2722 
2723 	if (cmd_pos->data.next_bin < 0)
2724 		/* If o->set_restore returned -1 we are done */
2725 		cmd_pos->done = true;
2726 	else
2727 		/* Start from the next bin next time */
2728 		cmd_pos->data.next_bin++;
2729 }
2730 
2731 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
2732 				struct bnx2x_mcast_ramrod_params *p)
2733 {
2734 	struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
2735 	int cnt = 0;
2736 	struct bnx2x_mcast_obj *o = p->mcast_obj;
2737 
2738 	list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
2739 				 link) {
2740 		switch (cmd_pos->type) {
2741 		case BNX2X_MCAST_CMD_ADD:
2742 			bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
2743 			break;
2744 
2745 		case BNX2X_MCAST_CMD_DEL:
2746 			bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
2747 			break;
2748 
2749 		case BNX2X_MCAST_CMD_RESTORE:
2750 			bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
2751 							   &cnt);
2752 			break;
2753 
2754 		default:
2755 			BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
2756 			return -EINVAL;
2757 		}
2758 
2759 		/* If the command has been completed - remove it from the list
2760 		 * and free the memory
2761 		 */
2762 		if (cmd_pos->done) {
2763 			list_del(&cmd_pos->link);
2764 			kfree(cmd_pos);
2765 		}
2766 
2767 		/* Break if we reached the maximum number of rules */
2768 		if (cnt >= o->max_cmd_len)
2769 			break;
2770 	}
2771 
2772 	return cnt;
2773 }
2774 
2775 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
2776 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
2777 	int *line_idx)
2778 {
2779 	struct bnx2x_mcast_list_elem *mlist_pos;
2780 	union bnx2x_mcast_config_data cfg_data = {0};
2781 	int cnt = *line_idx;
2782 
2783 	list_for_each_entry(mlist_pos, &p->mcast_list, link) {
2784 		cfg_data.mac = mlist_pos->mac;
2785 		o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
2786 
2787 		cnt++;
2788 
2789 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2790 				 mlist_pos->mac);
2791 	}
2792 
2793 	*line_idx = cnt;
2794 }
2795 
2796 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
2797 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
2798 	int *line_idx)
2799 {
2800 	int cnt = *line_idx, i;
2801 
2802 	for (i = 0; i < p->mcast_list_len; i++) {
2803 		o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
2804 
2805 		cnt++;
2806 
2807 		DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
2808 				 p->mcast_list_len - i - 1);
2809 	}
2810 
2811 	*line_idx = cnt;
2812 }
2813 
2814 /**
2815  * bnx2x_mcast_handle_current_cmd -
2816  *
2817  * @bp:		device handle
2818  * @p:
2819  * @cmd:
2820  * @start_cnt:	first line in the ramrod data that may be used
2821  *
2822  * This function is called iff there is enough place for the current command in
2823  * the ramrod data.
2824  * Returns number of lines filled in the ramrod data in total.
2825  */
2826 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
2827 			struct bnx2x_mcast_ramrod_params *p, int cmd,
2828 			int start_cnt)
2829 {
2830 	struct bnx2x_mcast_obj *o = p->mcast_obj;
2831 	int cnt = start_cnt;
2832 
2833 	DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
2834 
2835 	switch (cmd) {
2836 	case BNX2X_MCAST_CMD_ADD:
2837 		bnx2x_mcast_hdl_add(bp, o, p, &cnt);
2838 		break;
2839 
2840 	case BNX2X_MCAST_CMD_DEL:
2841 		bnx2x_mcast_hdl_del(bp, o, p, &cnt);
2842 		break;
2843 
2844 	case BNX2X_MCAST_CMD_RESTORE:
2845 		o->hdl_restore(bp, o, 0, &cnt);
2846 		break;
2847 
2848 	default:
2849 		BNX2X_ERR("Unknown command: %d\n", cmd);
2850 		return -EINVAL;
2851 	}
2852 
2853 	/* The current command has been handled */
2854 	p->mcast_list_len = 0;
2855 
2856 	return cnt;
2857 }
2858 
2859 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
2860 				   struct bnx2x_mcast_ramrod_params *p,
2861 				   int cmd)
2862 {
2863 	struct bnx2x_mcast_obj *o = p->mcast_obj;
2864 	int reg_sz = o->get_registry_size(o);
2865 
2866 	switch (cmd) {
2867 	/* DEL command deletes all currently configured MACs */
2868 	case BNX2X_MCAST_CMD_DEL:
2869 		o->set_registry_size(o, 0);
2870 		/* Don't break */
2871 
2872 	/* RESTORE command will restore the entire multicast configuration */
2873 	case BNX2X_MCAST_CMD_RESTORE:
2874 		/* Here we set the approximate amount of work to do, which in
2875 		 * fact may be only less as some MACs in postponed ADD
2876 		 * command(s) scheduled before this command may fall into
2877 		 * the same bin and the actual number of bins set in the
2878 		 * registry would be less than we estimated here. See
2879 		 * bnx2x_mcast_set_one_rule_e2() for further details.
2880 		 */
2881 		p->mcast_list_len = reg_sz;
2882 		break;
2883 
2884 	case BNX2X_MCAST_CMD_ADD:
2885 	case BNX2X_MCAST_CMD_CONT:
2886 		/* Here we assume that all new MACs will fall into new bins.
2887 		 * However we will correct the real registry size after we
2888 		 * handle all pending commands.
2889 		 */
2890 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
2891 		break;
2892 
2893 	default:
2894 		BNX2X_ERR("Unknown command: %d\n", cmd);
2895 		return -EINVAL;
2896 
2897 	}
2898 
2899 	/* Increase the total number of MACs pending to be configured */
2900 	o->total_pending_num += p->mcast_list_len;
2901 
2902 	return 0;
2903 }
2904 
2905 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
2906 				      struct bnx2x_mcast_ramrod_params *p,
2907 				      int old_num_bins)
2908 {
2909 	struct bnx2x_mcast_obj *o = p->mcast_obj;
2910 
2911 	o->set_registry_size(o, old_num_bins);
2912 	o->total_pending_num -= p->mcast_list_len;
2913 }
2914 
2915 /**
2916  * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
2917  *
2918  * @bp:		device handle
2919  * @p:
2920  * @len:	number of rules to handle
2921  */
2922 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
2923 					struct bnx2x_mcast_ramrod_params *p,
2924 					u8 len)
2925 {
2926 	struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
2927 	struct eth_multicast_rules_ramrod_data *data =
2928 		(struct eth_multicast_rules_ramrod_data *)(r->rdata);
2929 
2930 	data->header.echo = ((r->cid & BNX2X_SWCID_MASK) |
2931 			  (BNX2X_FILTER_MCAST_PENDING << BNX2X_SWCID_SHIFT));
2932 	data->header.rule_cnt = len;
2933 }
2934 
2935 /**
2936  * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
2937  *
2938  * @bp:		device handle
2939  * @o:
2940  *
2941  * Recalculate the actual number of set bins in the registry using Brian
2942  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
2943  *
2944  * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
2945  */
2946 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
2947 						  struct bnx2x_mcast_obj *o)
2948 {
2949 	int i, cnt = 0;
2950 	u64 elem;
2951 
2952 	for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
2953 		elem = o->registry.aprox_match.vec[i];
2954 		for (; elem; cnt++)
2955 			elem &= elem - 1;
2956 	}
2957 
2958 	o->set_registry_size(o, cnt);
2959 
2960 	return 0;
2961 }
2962 
2963 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
2964 				struct bnx2x_mcast_ramrod_params *p,
2965 				int cmd)
2966 {
2967 	struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
2968 	struct bnx2x_mcast_obj *o = p->mcast_obj;
2969 	struct eth_multicast_rules_ramrod_data *data =
2970 		(struct eth_multicast_rules_ramrod_data *)(raw->rdata);
2971 	int cnt = 0, rc;
2972 
2973 	/* Reset the ramrod data buffer */
2974 	memset(data, 0, sizeof(*data));
2975 
2976 	cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
2977 
2978 	/* If there are no more pending commands - clear SCHEDULED state */
2979 	if (list_empty(&o->pending_cmds_head))
2980 		o->clear_sched(o);
2981 
2982 	/* The below may be true iff there was enough room in ramrod
2983 	 * data for all pending commands and for the current
2984 	 * command. Otherwise the current command would have been added
2985 	 * to the pending commands and p->mcast_list_len would have been
2986 	 * zeroed.
2987 	 */
2988 	if (p->mcast_list_len > 0)
2989 		cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
2990 
2991 	/* We've pulled out some MACs - update the total number of
2992 	 * outstanding.
2993 	 */
2994 	o->total_pending_num -= cnt;
2995 
2996 	/* send a ramrod */
2997 	WARN_ON(o->total_pending_num < 0);
2998 	WARN_ON(cnt > o->max_cmd_len);
2999 
3000 	bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3001 
3002 	/* Update a registry size if there are no more pending operations.
3003 	 *
3004 	 * We don't want to change the value of the registry size if there are
3005 	 * pending operations because we want it to always be equal to the
3006 	 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3007 	 * set bins after the last requested operation in order to properly
3008 	 * evaluate the size of the next DEL/RESTORE operation.
3009 	 *
3010 	 * Note that we update the registry itself during command(s) handling
3011 	 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3012 	 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3013 	 * with a limited amount of update commands (per MAC/bin) and we don't
3014 	 * know in this scope what the actual state of bins configuration is
3015 	 * going to be after this ramrod.
3016 	 */
3017 	if (!o->total_pending_num)
3018 		bnx2x_mcast_refresh_registry_e2(bp, o);
3019 
3020 	/*
3021 	 * If CLEAR_ONLY was requested - don't send a ramrod and clear
3022 	 * RAMROD_PENDING status immediately.
3023 	 */
3024 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3025 		raw->clear_pending(raw);
3026 		return 0;
3027 	} else {
3028 		/*
3029 		 *  No need for an explicit memory barrier here as long we would
3030 		 *  need to ensure the ordering of writing to the SPQ element
3031 		 *  and updating of the SPQ producer which involves a memory
3032 		 *  read and we will have to put a full memory barrier there
3033 		 *  (inside bnx2x_sp_post()).
3034 		 */
3035 
3036 		/* Send a ramrod */
3037 		rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3038 				   raw->cid, U64_HI(raw->rdata_mapping),
3039 				   U64_LO(raw->rdata_mapping),
3040 				   ETH_CONNECTION_TYPE);
3041 		if (rc)
3042 			return rc;
3043 
3044 		/* Ramrod completion is pending */
3045 		return 1;
3046 	}
3047 }
3048 
3049 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3050 				    struct bnx2x_mcast_ramrod_params *p,
3051 				    int cmd)
3052 {
3053 	/* Mark, that there is a work to do */
3054 	if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3055 		p->mcast_list_len = 1;
3056 
3057 	return 0;
3058 }
3059 
3060 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3061 				       struct bnx2x_mcast_ramrod_params *p,
3062 				       int old_num_bins)
3063 {
3064 	/* Do nothing */
3065 }
3066 
3067 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3068 do { \
3069 	(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3070 } while (0)
3071 
3072 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3073 					   struct bnx2x_mcast_obj *o,
3074 					   struct bnx2x_mcast_ramrod_params *p,
3075 					   u32 *mc_filter)
3076 {
3077 	struct bnx2x_mcast_list_elem *mlist_pos;
3078 	int bit;
3079 
3080 	list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3081 		bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3082 		BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3083 
3084 		DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3085 				 mlist_pos->mac, bit);
3086 
3087 		/* bookkeeping... */
3088 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3089 				  bit);
3090 	}
3091 }
3092 
3093 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3094 	struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3095 	u32 *mc_filter)
3096 {
3097 	int bit;
3098 
3099 	for (bit = bnx2x_mcast_get_next_bin(o, 0);
3100 	     bit >= 0;
3101 	     bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3102 		BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3103 		DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3104 	}
3105 }
3106 
3107 /* On 57711 we write the multicast MACs' aproximate match
3108  * table by directly into the TSTORM's internal RAM. So we don't
3109  * really need to handle any tricks to make it work.
3110  */
3111 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3112 				 struct bnx2x_mcast_ramrod_params *p,
3113 				 int cmd)
3114 {
3115 	int i;
3116 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3117 	struct bnx2x_raw_obj *r = &o->raw;
3118 
3119 	/* If CLEAR_ONLY has been requested - clear the registry
3120 	 * and clear a pending bit.
3121 	 */
3122 	if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3123 		u32 mc_filter[MC_HASH_SIZE] = {0};
3124 
3125 		/* Set the multicast filter bits before writing it into
3126 		 * the internal memory.
3127 		 */
3128 		switch (cmd) {
3129 		case BNX2X_MCAST_CMD_ADD:
3130 			bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3131 			break;
3132 
3133 		case BNX2X_MCAST_CMD_DEL:
3134 			DP(BNX2X_MSG_SP,
3135 			   "Invalidating multicast MACs configuration\n");
3136 
3137 			/* clear the registry */
3138 			memset(o->registry.aprox_match.vec, 0,
3139 			       sizeof(o->registry.aprox_match.vec));
3140 			break;
3141 
3142 		case BNX2X_MCAST_CMD_RESTORE:
3143 			bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3144 			break;
3145 
3146 		default:
3147 			BNX2X_ERR("Unknown command: %d\n", cmd);
3148 			return -EINVAL;
3149 		}
3150 
3151 		/* Set the mcast filter in the internal memory */
3152 		for (i = 0; i < MC_HASH_SIZE; i++)
3153 			REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3154 	} else
3155 		/* clear the registry */
3156 		memset(o->registry.aprox_match.vec, 0,
3157 		       sizeof(o->registry.aprox_match.vec));
3158 
3159 	/* We are done */
3160 	r->clear_pending(r);
3161 
3162 	return 0;
3163 }
3164 
3165 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3166 				   struct bnx2x_mcast_ramrod_params *p,
3167 				   int cmd)
3168 {
3169 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3170 	int reg_sz = o->get_registry_size(o);
3171 
3172 	switch (cmd) {
3173 	/* DEL command deletes all currently configured MACs */
3174 	case BNX2X_MCAST_CMD_DEL:
3175 		o->set_registry_size(o, 0);
3176 		/* Don't break */
3177 
3178 	/* RESTORE command will restore the entire multicast configuration */
3179 	case BNX2X_MCAST_CMD_RESTORE:
3180 		p->mcast_list_len = reg_sz;
3181 		  DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3182 				   cmd, p->mcast_list_len);
3183 		break;
3184 
3185 	case BNX2X_MCAST_CMD_ADD:
3186 	case BNX2X_MCAST_CMD_CONT:
3187 		/* Multicast MACs on 57710 are configured as unicast MACs and
3188 		 * there is only a limited number of CAM entries for that
3189 		 * matter.
3190 		 */
3191 		if (p->mcast_list_len > o->max_cmd_len) {
3192 			BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3193 				  o->max_cmd_len);
3194 			return -EINVAL;
3195 		}
3196 		/* Every configured MAC should be cleared if DEL command is
3197 		 * called. Only the last ADD command is relevant as long as
3198 		 * every ADD commands overrides the previous configuration.
3199 		 */
3200 		DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3201 		if (p->mcast_list_len > 0)
3202 			o->set_registry_size(o, p->mcast_list_len);
3203 
3204 		break;
3205 
3206 	default:
3207 		BNX2X_ERR("Unknown command: %d\n", cmd);
3208 		return -EINVAL;
3209 
3210 	}
3211 
3212 	/* We want to ensure that commands are executed one by one for 57710.
3213 	 * Therefore each none-empty command will consume o->max_cmd_len.
3214 	 */
3215 	if (p->mcast_list_len)
3216 		o->total_pending_num += o->max_cmd_len;
3217 
3218 	return 0;
3219 }
3220 
3221 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3222 				      struct bnx2x_mcast_ramrod_params *p,
3223 				      int old_num_macs)
3224 {
3225 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3226 
3227 	o->set_registry_size(o, old_num_macs);
3228 
3229 	/* If current command hasn't been handled yet and we are
3230 	 * here means that it's meant to be dropped and we have to
3231 	 * update the number of outstandling MACs accordingly.
3232 	 */
3233 	if (p->mcast_list_len)
3234 		o->total_pending_num -= o->max_cmd_len;
3235 }
3236 
3237 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3238 					struct bnx2x_mcast_obj *o, int idx,
3239 					union bnx2x_mcast_config_data *cfg_data,
3240 					int cmd)
3241 {
3242 	struct bnx2x_raw_obj *r = &o->raw;
3243 	struct mac_configuration_cmd *data =
3244 		(struct mac_configuration_cmd *)(r->rdata);
3245 
3246 	/* copy mac */
3247 	if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3248 		bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3249 				      &data->config_table[idx].middle_mac_addr,
3250 				      &data->config_table[idx].lsb_mac_addr,
3251 				      cfg_data->mac);
3252 
3253 		data->config_table[idx].vlan_id = 0;
3254 		data->config_table[idx].pf_id = r->func_id;
3255 		data->config_table[idx].clients_bit_vector =
3256 			cpu_to_le32(1 << r->cl_id);
3257 
3258 		SET_FLAG(data->config_table[idx].flags,
3259 			 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3260 			 T_ETH_MAC_COMMAND_SET);
3261 	}
3262 }
3263 
3264 /**
3265  * bnx2x_mcast_set_rdata_hdr_e1  - set header values in mac_configuration_cmd
3266  *
3267  * @bp:		device handle
3268  * @p:
3269  * @len:	number of rules to handle
3270  */
3271 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3272 					struct bnx2x_mcast_ramrod_params *p,
3273 					u8 len)
3274 {
3275 	struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3276 	struct mac_configuration_cmd *data =
3277 		(struct mac_configuration_cmd *)(r->rdata);
3278 
3279 	u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3280 		     BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3281 		     BNX2X_MAX_MULTICAST*(1 + r->func_id));
3282 
3283 	data->hdr.offset = offset;
3284 	data->hdr.client_id = 0xff;
3285 	data->hdr.echo = ((r->cid & BNX2X_SWCID_MASK) |
3286 			  (BNX2X_FILTER_MCAST_PENDING << BNX2X_SWCID_SHIFT));
3287 	data->hdr.length = len;
3288 }
3289 
3290 /**
3291  * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3292  *
3293  * @bp:		device handle
3294  * @o:
3295  * @start_idx:	index in the registry to start from
3296  * @rdata_idx:	index in the ramrod data to start from
3297  *
3298  * restore command for 57710 is like all other commands - always a stand alone
3299  * command - start_idx and rdata_idx will always be 0. This function will always
3300  * succeed.
3301  * returns -1 to comply with 57712 variant.
3302  */
3303 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3304 	struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3305 	int *rdata_idx)
3306 {
3307 	struct bnx2x_mcast_mac_elem *elem;
3308 	int i = 0;
3309 	union bnx2x_mcast_config_data cfg_data = {0};
3310 
3311 	/* go through the registry and configure the MACs from it. */
3312 	list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3313 		cfg_data.mac = &elem->mac[0];
3314 		o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3315 
3316 		i++;
3317 
3318 		  DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3319 				   cfg_data.mac);
3320 	}
3321 
3322 	*rdata_idx = i;
3323 
3324 	return -1;
3325 }
3326 
3327 
3328 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3329 	struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3330 {
3331 	struct bnx2x_pending_mcast_cmd *cmd_pos;
3332 	struct bnx2x_mcast_mac_elem *pmac_pos;
3333 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3334 	union bnx2x_mcast_config_data cfg_data = {0};
3335 	int cnt = 0;
3336 
3337 
3338 	/* If nothing to be done - return */
3339 	if (list_empty(&o->pending_cmds_head))
3340 		return 0;
3341 
3342 	/* Handle the first command */
3343 	cmd_pos = list_first_entry(&o->pending_cmds_head,
3344 				   struct bnx2x_pending_mcast_cmd, link);
3345 
3346 	switch (cmd_pos->type) {
3347 	case BNX2X_MCAST_CMD_ADD:
3348 		list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3349 			cfg_data.mac = &pmac_pos->mac[0];
3350 			o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3351 
3352 			cnt++;
3353 
3354 			DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3355 					 pmac_pos->mac);
3356 		}
3357 		break;
3358 
3359 	case BNX2X_MCAST_CMD_DEL:
3360 		cnt = cmd_pos->data.macs_num;
3361 		DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3362 		break;
3363 
3364 	case BNX2X_MCAST_CMD_RESTORE:
3365 		o->hdl_restore(bp, o, 0, &cnt);
3366 		break;
3367 
3368 	default:
3369 		BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3370 		return -EINVAL;
3371 	}
3372 
3373 	list_del(&cmd_pos->link);
3374 	kfree(cmd_pos);
3375 
3376 	return cnt;
3377 }
3378 
3379 /**
3380  * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3381  *
3382  * @fw_hi:
3383  * @fw_mid:
3384  * @fw_lo:
3385  * @mac:
3386  */
3387 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3388 					 __le16 *fw_lo, u8 *mac)
3389 {
3390 	mac[1] = ((u8 *)fw_hi)[0];
3391 	mac[0] = ((u8 *)fw_hi)[1];
3392 	mac[3] = ((u8 *)fw_mid)[0];
3393 	mac[2] = ((u8 *)fw_mid)[1];
3394 	mac[5] = ((u8 *)fw_lo)[0];
3395 	mac[4] = ((u8 *)fw_lo)[1];
3396 }
3397 
3398 /**
3399  * bnx2x_mcast_refresh_registry_e1 -
3400  *
3401  * @bp:		device handle
3402  * @cnt:
3403  *
3404  * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3405  * and update the registry correspondingly: if ADD - allocate a memory and add
3406  * the entries to the registry (list), if DELETE - clear the registry and free
3407  * the memory.
3408  */
3409 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3410 						  struct bnx2x_mcast_obj *o)
3411 {
3412 	struct bnx2x_raw_obj *raw = &o->raw;
3413 	struct bnx2x_mcast_mac_elem *elem;
3414 	struct mac_configuration_cmd *data =
3415 			(struct mac_configuration_cmd *)(raw->rdata);
3416 
3417 	/* If first entry contains a SET bit - the command was ADD,
3418 	 * otherwise - DEL_ALL
3419 	 */
3420 	if (GET_FLAG(data->config_table[0].flags,
3421 			MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3422 		int i, len = data->hdr.length;
3423 
3424 		/* Break if it was a RESTORE command */
3425 		if (!list_empty(&o->registry.exact_match.macs))
3426 			return 0;
3427 
3428 		elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3429 		if (!elem) {
3430 			BNX2X_ERR("Failed to allocate registry memory\n");
3431 			return -ENOMEM;
3432 		}
3433 
3434 		for (i = 0; i < len; i++, elem++) {
3435 			bnx2x_get_fw_mac_addr(
3436 				&data->config_table[i].msb_mac_addr,
3437 				&data->config_table[i].middle_mac_addr,
3438 				&data->config_table[i].lsb_mac_addr,
3439 				elem->mac);
3440 			DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3441 			   elem->mac);
3442 			list_add_tail(&elem->link,
3443 				      &o->registry.exact_match.macs);
3444 		}
3445 	} else {
3446 		elem = list_first_entry(&o->registry.exact_match.macs,
3447 					struct bnx2x_mcast_mac_elem, link);
3448 		DP(BNX2X_MSG_SP, "Deleting a registry\n");
3449 		kfree(elem);
3450 		INIT_LIST_HEAD(&o->registry.exact_match.macs);
3451 	}
3452 
3453 	return 0;
3454 }
3455 
3456 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3457 				struct bnx2x_mcast_ramrod_params *p,
3458 				int cmd)
3459 {
3460 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3461 	struct bnx2x_raw_obj *raw = &o->raw;
3462 	struct mac_configuration_cmd *data =
3463 		(struct mac_configuration_cmd *)(raw->rdata);
3464 	int cnt = 0, i, rc;
3465 
3466 	/* Reset the ramrod data buffer */
3467 	memset(data, 0, sizeof(*data));
3468 
3469 	/* First set all entries as invalid */
3470 	for (i = 0; i < o->max_cmd_len ; i++)
3471 		SET_FLAG(data->config_table[i].flags,
3472 			 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3473 			 T_ETH_MAC_COMMAND_INVALIDATE);
3474 
3475 	/* Handle pending commands first */
3476 	cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3477 
3478 	/* If there are no more pending commands - clear SCHEDULED state */
3479 	if (list_empty(&o->pending_cmds_head))
3480 		o->clear_sched(o);
3481 
3482 	/* The below may be true iff there were no pending commands */
3483 	if (!cnt)
3484 		cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3485 
3486 	/* For 57710 every command has o->max_cmd_len length to ensure that
3487 	 * commands are done one at a time.
3488 	 */
3489 	o->total_pending_num -= o->max_cmd_len;
3490 
3491 	/* send a ramrod */
3492 
3493 	WARN_ON(cnt > o->max_cmd_len);
3494 
3495 	/* Set ramrod header (in particular, a number of entries to update) */
3496 	bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3497 
3498 	/* update a registry: we need the registry contents to be always up
3499 	 * to date in order to be able to execute a RESTORE opcode. Here
3500 	 * we use the fact that for 57710 we sent one command at a time
3501 	 * hence we may take the registry update out of the command handling
3502 	 * and do it in a simpler way here.
3503 	 */
3504 	rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3505 	if (rc)
3506 		return rc;
3507 
3508 	/*
3509 	 * If CLEAR_ONLY was requested - don't send a ramrod and clear
3510 	 * RAMROD_PENDING status immediately.
3511 	 */
3512 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3513 		raw->clear_pending(raw);
3514 		return 0;
3515 	} else {
3516 		/*
3517 		 *  No need for an explicit memory barrier here as long we would
3518 		 *  need to ensure the ordering of writing to the SPQ element
3519 		 *  and updating of the SPQ producer which involves a memory
3520 		 *  read and we will have to put a full memory barrier there
3521 		 *  (inside bnx2x_sp_post()).
3522 		 */
3523 
3524 		/* Send a ramrod */
3525 		rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3526 				   U64_HI(raw->rdata_mapping),
3527 				   U64_LO(raw->rdata_mapping),
3528 				   ETH_CONNECTION_TYPE);
3529 		if (rc)
3530 			return rc;
3531 
3532 		/* Ramrod completion is pending */
3533 		return 1;
3534 	}
3535 
3536 }
3537 
3538 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3539 {
3540 	return o->registry.exact_match.num_macs_set;
3541 }
3542 
3543 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3544 {
3545 	return o->registry.aprox_match.num_bins_set;
3546 }
3547 
3548 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3549 						int n)
3550 {
3551 	o->registry.exact_match.num_macs_set = n;
3552 }
3553 
3554 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3555 						int n)
3556 {
3557 	o->registry.aprox_match.num_bins_set = n;
3558 }
3559 
3560 int bnx2x_config_mcast(struct bnx2x *bp,
3561 		       struct bnx2x_mcast_ramrod_params *p,
3562 		       int cmd)
3563 {
3564 	struct bnx2x_mcast_obj *o = p->mcast_obj;
3565 	struct bnx2x_raw_obj *r = &o->raw;
3566 	int rc = 0, old_reg_size;
3567 
3568 	/* This is needed to recover number of currently configured mcast macs
3569 	 * in case of failure.
3570 	 */
3571 	old_reg_size = o->get_registry_size(o);
3572 
3573 	/* Do some calculations and checks */
3574 	rc = o->validate(bp, p, cmd);
3575 	if (rc)
3576 		return rc;
3577 
3578 	/* Return if there is no work to do */
3579 	if ((!p->mcast_list_len) && (!o->check_sched(o)))
3580 		return 0;
3581 
3582 	DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
3583 	   o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
3584 
3585 	/* Enqueue the current command to the pending list if we can't complete
3586 	 * it in the current iteration
3587 	 */
3588 	if (r->check_pending(r) ||
3589 	    ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
3590 		rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
3591 		if (rc < 0)
3592 			goto error_exit1;
3593 
3594 		/* As long as the current command is in a command list we
3595 		 * don't need to handle it separately.
3596 		 */
3597 		p->mcast_list_len = 0;
3598 	}
3599 
3600 	if (!r->check_pending(r)) {
3601 
3602 		/* Set 'pending' state */
3603 		r->set_pending(r);
3604 
3605 		/* Configure the new classification in the chip */
3606 		rc = o->config_mcast(bp, p, cmd);
3607 		if (rc < 0)
3608 			goto error_exit2;
3609 
3610 		/* Wait for a ramrod completion if was requested */
3611 		if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
3612 			rc = o->wait_comp(bp, o);
3613 	}
3614 
3615 	return rc;
3616 
3617 error_exit2:
3618 	r->clear_pending(r);
3619 
3620 error_exit1:
3621 	o->revert(bp, p, old_reg_size);
3622 
3623 	return rc;
3624 }
3625 
3626 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
3627 {
3628 	smp_mb__before_clear_bit();
3629 	clear_bit(o->sched_state, o->raw.pstate);
3630 	smp_mb__after_clear_bit();
3631 }
3632 
3633 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
3634 {
3635 	smp_mb__before_clear_bit();
3636 	set_bit(o->sched_state, o->raw.pstate);
3637 	smp_mb__after_clear_bit();
3638 }
3639 
3640 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
3641 {
3642 	return !!test_bit(o->sched_state, o->raw.pstate);
3643 }
3644 
3645 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
3646 {
3647 	return o->raw.check_pending(&o->raw) || o->check_sched(o);
3648 }
3649 
3650 void bnx2x_init_mcast_obj(struct bnx2x *bp,
3651 			  struct bnx2x_mcast_obj *mcast_obj,
3652 			  u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
3653 			  u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
3654 			  int state, unsigned long *pstate, bnx2x_obj_type type)
3655 {
3656 	memset(mcast_obj, 0, sizeof(*mcast_obj));
3657 
3658 	bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
3659 			   rdata, rdata_mapping, state, pstate, type);
3660 
3661 	mcast_obj->engine_id = engine_id;
3662 
3663 	INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
3664 
3665 	mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
3666 	mcast_obj->check_sched = bnx2x_mcast_check_sched;
3667 	mcast_obj->set_sched = bnx2x_mcast_set_sched;
3668 	mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
3669 
3670 	if (CHIP_IS_E1(bp)) {
3671 		mcast_obj->config_mcast      = bnx2x_mcast_setup_e1;
3672 		mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
3673 		mcast_obj->hdl_restore       =
3674 			bnx2x_mcast_handle_restore_cmd_e1;
3675 		mcast_obj->check_pending     = bnx2x_mcast_check_pending;
3676 
3677 		if (CHIP_REV_IS_SLOW(bp))
3678 			mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
3679 		else
3680 			mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
3681 
3682 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
3683 		mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e1;
3684 		mcast_obj->validate          = bnx2x_mcast_validate_e1;
3685 		mcast_obj->revert            = bnx2x_mcast_revert_e1;
3686 		mcast_obj->get_registry_size =
3687 			bnx2x_mcast_get_registry_size_exact;
3688 		mcast_obj->set_registry_size =
3689 			bnx2x_mcast_set_registry_size_exact;
3690 
3691 		/* 57710 is the only chip that uses the exact match for mcast
3692 		 * at the moment.
3693 		 */
3694 		INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
3695 
3696 	} else if (CHIP_IS_E1H(bp)) {
3697 		mcast_obj->config_mcast  = bnx2x_mcast_setup_e1h;
3698 		mcast_obj->enqueue_cmd   = NULL;
3699 		mcast_obj->hdl_restore   = NULL;
3700 		mcast_obj->check_pending = bnx2x_mcast_check_pending;
3701 
3702 		/* 57711 doesn't send a ramrod, so it has unlimited credit
3703 		 * for one command.
3704 		 */
3705 		mcast_obj->max_cmd_len       = -1;
3706 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
3707 		mcast_obj->set_one_rule      = NULL;
3708 		mcast_obj->validate          = bnx2x_mcast_validate_e1h;
3709 		mcast_obj->revert            = bnx2x_mcast_revert_e1h;
3710 		mcast_obj->get_registry_size =
3711 			bnx2x_mcast_get_registry_size_aprox;
3712 		mcast_obj->set_registry_size =
3713 			bnx2x_mcast_set_registry_size_aprox;
3714 	} else {
3715 		mcast_obj->config_mcast      = bnx2x_mcast_setup_e2;
3716 		mcast_obj->enqueue_cmd       = bnx2x_mcast_enqueue_cmd;
3717 		mcast_obj->hdl_restore       =
3718 			bnx2x_mcast_handle_restore_cmd_e2;
3719 		mcast_obj->check_pending     = bnx2x_mcast_check_pending;
3720 		/* TODO: There should be a proper HSI define for this number!!!
3721 		 */
3722 		mcast_obj->max_cmd_len       = 16;
3723 		mcast_obj->wait_comp         = bnx2x_mcast_wait;
3724 		mcast_obj->set_one_rule      = bnx2x_mcast_set_one_rule_e2;
3725 		mcast_obj->validate          = bnx2x_mcast_validate_e2;
3726 		mcast_obj->revert            = bnx2x_mcast_revert_e2;
3727 		mcast_obj->get_registry_size =
3728 			bnx2x_mcast_get_registry_size_aprox;
3729 		mcast_obj->set_registry_size =
3730 			bnx2x_mcast_set_registry_size_aprox;
3731 	}
3732 }
3733 
3734 /*************************** Credit handling **********************************/
3735 
3736 /**
3737  * atomic_add_ifless - add if the result is less than a given value.
3738  *
3739  * @v:	pointer of type atomic_t
3740  * @a:	the amount to add to v...
3741  * @u:	...if (v + a) is less than u.
3742  *
3743  * returns true if (v + a) was less than u, and false otherwise.
3744  *
3745  */
3746 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
3747 {
3748 	int c, old;
3749 
3750 	c = atomic_read(v);
3751 	for (;;) {
3752 		if (unlikely(c + a >= u))
3753 			return false;
3754 
3755 		old = atomic_cmpxchg((v), c, c + a);
3756 		if (likely(old == c))
3757 			break;
3758 		c = old;
3759 	}
3760 
3761 	return true;
3762 }
3763 
3764 /**
3765  * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
3766  *
3767  * @v:	pointer of type atomic_t
3768  * @a:	the amount to dec from v...
3769  * @u:	...if (v - a) is more or equal than u.
3770  *
3771  * returns true if (v - a) was more or equal than u, and false
3772  * otherwise.
3773  */
3774 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
3775 {
3776 	int c, old;
3777 
3778 	c = atomic_read(v);
3779 	for (;;) {
3780 		if (unlikely(c - a < u))
3781 			return false;
3782 
3783 		old = atomic_cmpxchg((v), c, c - a);
3784 		if (likely(old == c))
3785 			break;
3786 		c = old;
3787 	}
3788 
3789 	return true;
3790 }
3791 
3792 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
3793 {
3794 	bool rc;
3795 
3796 	smp_mb();
3797 	rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
3798 	smp_mb();
3799 
3800 	return rc;
3801 }
3802 
3803 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
3804 {
3805 	bool rc;
3806 
3807 	smp_mb();
3808 
3809 	/* Don't let to refill if credit + cnt > pool_sz */
3810 	rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
3811 
3812 	smp_mb();
3813 
3814 	return rc;
3815 }
3816 
3817 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
3818 {
3819 	int cur_credit;
3820 
3821 	smp_mb();
3822 	cur_credit = atomic_read(&o->credit);
3823 
3824 	return cur_credit;
3825 }
3826 
3827 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
3828 					  int cnt)
3829 {
3830 	return true;
3831 }
3832 
3833 
3834 static bool bnx2x_credit_pool_get_entry(
3835 	struct bnx2x_credit_pool_obj *o,
3836 	int *offset)
3837 {
3838 	int idx, vec, i;
3839 
3840 	*offset = -1;
3841 
3842 	/* Find "internal cam-offset" then add to base for this object... */
3843 	for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
3844 
3845 		/* Skip the current vector if there are no free entries in it */
3846 		if (!o->pool_mirror[vec])
3847 			continue;
3848 
3849 		/* If we've got here we are going to find a free entry */
3850 		for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
3851 		      i < BIT_VEC64_ELEM_SZ; idx++, i++)
3852 
3853 			if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
3854 				/* Got one!! */
3855 				BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
3856 				*offset = o->base_pool_offset + idx;
3857 				return true;
3858 			}
3859 	}
3860 
3861 	return false;
3862 }
3863 
3864 static bool bnx2x_credit_pool_put_entry(
3865 	struct bnx2x_credit_pool_obj *o,
3866 	int offset)
3867 {
3868 	if (offset < o->base_pool_offset)
3869 		return false;
3870 
3871 	offset -= o->base_pool_offset;
3872 
3873 	if (offset >= o->pool_sz)
3874 		return false;
3875 
3876 	/* Return the entry to the pool */
3877 	BIT_VEC64_SET_BIT(o->pool_mirror, offset);
3878 
3879 	return true;
3880 }
3881 
3882 static bool bnx2x_credit_pool_put_entry_always_true(
3883 	struct bnx2x_credit_pool_obj *o,
3884 	int offset)
3885 {
3886 	return true;
3887 }
3888 
3889 static bool bnx2x_credit_pool_get_entry_always_true(
3890 	struct bnx2x_credit_pool_obj *o,
3891 	int *offset)
3892 {
3893 	*offset = -1;
3894 	return true;
3895 }
3896 /**
3897  * bnx2x_init_credit_pool - initialize credit pool internals.
3898  *
3899  * @p:
3900  * @base:	Base entry in the CAM to use.
3901  * @credit:	pool size.
3902  *
3903  * If base is negative no CAM entries handling will be performed.
3904  * If credit is negative pool operations will always succeed (unlimited pool).
3905  *
3906  */
3907 static inline void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
3908 					  int base, int credit)
3909 {
3910 	/* Zero the object first */
3911 	memset(p, 0, sizeof(*p));
3912 
3913 	/* Set the table to all 1s */
3914 	memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
3915 
3916 	/* Init a pool as full */
3917 	atomic_set(&p->credit, credit);
3918 
3919 	/* The total poll size */
3920 	p->pool_sz = credit;
3921 
3922 	p->base_pool_offset = base;
3923 
3924 	/* Commit the change */
3925 	smp_mb();
3926 
3927 	p->check = bnx2x_credit_pool_check;
3928 
3929 	/* if pool credit is negative - disable the checks */
3930 	if (credit >= 0) {
3931 		p->put      = bnx2x_credit_pool_put;
3932 		p->get      = bnx2x_credit_pool_get;
3933 		p->put_entry = bnx2x_credit_pool_put_entry;
3934 		p->get_entry = bnx2x_credit_pool_get_entry;
3935 	} else {
3936 		p->put      = bnx2x_credit_pool_always_true;
3937 		p->get      = bnx2x_credit_pool_always_true;
3938 		p->put_entry = bnx2x_credit_pool_put_entry_always_true;
3939 		p->get_entry = bnx2x_credit_pool_get_entry_always_true;
3940 	}
3941 
3942 	/* If base is negative - disable entries handling */
3943 	if (base < 0) {
3944 		p->put_entry = bnx2x_credit_pool_put_entry_always_true;
3945 		p->get_entry = bnx2x_credit_pool_get_entry_always_true;
3946 	}
3947 }
3948 
3949 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
3950 				struct bnx2x_credit_pool_obj *p, u8 func_id,
3951 				u8 func_num)
3952 {
3953 /* TODO: this will be defined in consts as well... */
3954 #define BNX2X_CAM_SIZE_EMUL 5
3955 
3956 	int cam_sz;
3957 
3958 	if (CHIP_IS_E1(bp)) {
3959 		/* In E1, Multicast is saved in cam... */
3960 		if (!CHIP_REV_IS_SLOW(bp))
3961 			cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
3962 		else
3963 			cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
3964 
3965 		bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
3966 
3967 	} else if (CHIP_IS_E1H(bp)) {
3968 		/* CAM credit is equaly divided between all active functions
3969 		 * on the PORT!.
3970 		 */
3971 		if ((func_num > 0)) {
3972 			if (!CHIP_REV_IS_SLOW(bp))
3973 				cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
3974 			else
3975 				cam_sz = BNX2X_CAM_SIZE_EMUL;
3976 			bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
3977 		} else {
3978 			/* this should never happen! Block MAC operations. */
3979 			bnx2x_init_credit_pool(p, 0, 0);
3980 		}
3981 
3982 	} else {
3983 
3984 		/*
3985 		 * CAM credit is equaly divided between all active functions
3986 		 * on the PATH.
3987 		 */
3988 		if ((func_num > 0)) {
3989 			if (!CHIP_REV_IS_SLOW(bp))
3990 				cam_sz = (MAX_MAC_CREDIT_E2 / func_num);
3991 			else
3992 				cam_sz = BNX2X_CAM_SIZE_EMUL;
3993 
3994 			/*
3995 			 * No need for CAM entries handling for 57712 and
3996 			 * newer.
3997 			 */
3998 			bnx2x_init_credit_pool(p, -1, cam_sz);
3999 		} else {
4000 			/* this should never happen! Block MAC operations. */
4001 			bnx2x_init_credit_pool(p, 0, 0);
4002 		}
4003 
4004 	}
4005 }
4006 
4007 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4008 				 struct bnx2x_credit_pool_obj *p,
4009 				 u8 func_id,
4010 				 u8 func_num)
4011 {
4012 	if (CHIP_IS_E1x(bp)) {
4013 		/*
4014 		 * There is no VLAN credit in HW on 57710 and 57711 only
4015 		 * MAC / MAC-VLAN can be set
4016 		 */
4017 		bnx2x_init_credit_pool(p, 0, -1);
4018 	} else {
4019 		/*
4020 		 * CAM credit is equaly divided between all active functions
4021 		 * on the PATH.
4022 		 */
4023 		if (func_num > 0) {
4024 			int credit = MAX_VLAN_CREDIT_E2 / func_num;
4025 			bnx2x_init_credit_pool(p, func_id * credit, credit);
4026 		} else
4027 			/* this should never happen! Block VLAN operations. */
4028 			bnx2x_init_credit_pool(p, 0, 0);
4029 	}
4030 }
4031 
4032 /****************** RSS Configuration ******************/
4033 /**
4034  * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4035  *
4036  * @bp:		driver hanlde
4037  * @p:		pointer to rss configuration
4038  *
4039  * Prints it when NETIF_MSG_IFUP debug level is configured.
4040  */
4041 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4042 					struct bnx2x_config_rss_params *p)
4043 {
4044 	int i;
4045 
4046 	DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4047 	DP(BNX2X_MSG_SP, "0x0000: ");
4048 	for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4049 		DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4050 
4051 		/* Print 4 bytes in a line */
4052 		if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4053 		    (((i + 1) & 0x3) == 0)) {
4054 			DP_CONT(BNX2X_MSG_SP, "\n");
4055 			DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4056 		}
4057 	}
4058 
4059 	DP_CONT(BNX2X_MSG_SP, "\n");
4060 }
4061 
4062 /**
4063  * bnx2x_setup_rss - configure RSS
4064  *
4065  * @bp:		device handle
4066  * @p:		rss configuration
4067  *
4068  * sends on UPDATE ramrod for that matter.
4069  */
4070 static int bnx2x_setup_rss(struct bnx2x *bp,
4071 			   struct bnx2x_config_rss_params *p)
4072 {
4073 	struct bnx2x_rss_config_obj *o = p->rss_obj;
4074 	struct bnx2x_raw_obj *r = &o->raw;
4075 	struct eth_rss_update_ramrod_data *data =
4076 		(struct eth_rss_update_ramrod_data *)(r->rdata);
4077 	u8 rss_mode = 0;
4078 	int rc;
4079 
4080 	memset(data, 0, sizeof(*data));
4081 
4082 	DP(BNX2X_MSG_SP, "Configuring RSS\n");
4083 
4084 	/* Set an echo field */
4085 	data->echo = (r->cid & BNX2X_SWCID_MASK) |
4086 		     (r->state << BNX2X_SWCID_SHIFT);
4087 
4088 	/* RSS mode */
4089 	if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4090 		rss_mode = ETH_RSS_MODE_DISABLED;
4091 	else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4092 		rss_mode = ETH_RSS_MODE_REGULAR;
4093 	else if (test_bit(BNX2X_RSS_MODE_VLAN_PRI, &p->rss_flags))
4094 		rss_mode = ETH_RSS_MODE_VLAN_PRI;
4095 	else if (test_bit(BNX2X_RSS_MODE_E1HOV_PRI, &p->rss_flags))
4096 		rss_mode = ETH_RSS_MODE_E1HOV_PRI;
4097 	else if (test_bit(BNX2X_RSS_MODE_IP_DSCP, &p->rss_flags))
4098 		rss_mode = ETH_RSS_MODE_IP_DSCP;
4099 
4100 	data->rss_mode = rss_mode;
4101 
4102 	DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4103 
4104 	/* RSS capabilities */
4105 	if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4106 		data->capabilities |=
4107 			ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4108 
4109 	if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4110 		data->capabilities |=
4111 			ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4112 
4113 	if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4114 		data->capabilities |=
4115 			ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4116 
4117 	if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4118 		data->capabilities |=
4119 			ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4120 
4121 	/* Hashing mask */
4122 	data->rss_result_mask = p->rss_result_mask;
4123 
4124 	/* RSS engine ID */
4125 	data->rss_engine_id = o->engine_id;
4126 
4127 	DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4128 
4129 	/* Indirection table */
4130 	memcpy(data->indirection_table, p->ind_table,
4131 		  T_ETH_INDIRECTION_TABLE_SIZE);
4132 
4133 	/* Remember the last configuration */
4134 	memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4135 
4136 	/* Print the indirection table */
4137 	if (netif_msg_ifup(bp))
4138 		bnx2x_debug_print_ind_table(bp, p);
4139 
4140 	/* RSS keys */
4141 	if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4142 		memcpy(&data->rss_key[0], &p->rss_key[0],
4143 		       sizeof(data->rss_key));
4144 		data->capabilities |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4145 	}
4146 
4147 	/*
4148 	 *  No need for an explicit memory barrier here as long we would
4149 	 *  need to ensure the ordering of writing to the SPQ element
4150 	 *  and updating of the SPQ producer which involves a memory
4151 	 *  read and we will have to put a full memory barrier there
4152 	 *  (inside bnx2x_sp_post()).
4153 	 */
4154 
4155 	/* Send a ramrod */
4156 	rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4157 			   U64_HI(r->rdata_mapping),
4158 			   U64_LO(r->rdata_mapping),
4159 			   ETH_CONNECTION_TYPE);
4160 
4161 	if (rc < 0)
4162 		return rc;
4163 
4164 	return 1;
4165 }
4166 
4167 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4168 			     u8 *ind_table)
4169 {
4170 	memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4171 }
4172 
4173 int bnx2x_config_rss(struct bnx2x *bp,
4174 		     struct bnx2x_config_rss_params *p)
4175 {
4176 	int rc;
4177 	struct bnx2x_rss_config_obj *o = p->rss_obj;
4178 	struct bnx2x_raw_obj *r = &o->raw;
4179 
4180 	/* Do nothing if only driver cleanup was requested */
4181 	if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags))
4182 		return 0;
4183 
4184 	r->set_pending(r);
4185 
4186 	rc = o->config_rss(bp, p);
4187 	if (rc < 0) {
4188 		r->clear_pending(r);
4189 		return rc;
4190 	}
4191 
4192 	if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4193 		rc = r->wait_comp(bp, r);
4194 
4195 	return rc;
4196 }
4197 
4198 
4199 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4200 			       struct bnx2x_rss_config_obj *rss_obj,
4201 			       u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4202 			       void *rdata, dma_addr_t rdata_mapping,
4203 			       int state, unsigned long *pstate,
4204 			       bnx2x_obj_type type)
4205 {
4206 	bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4207 			   rdata_mapping, state, pstate, type);
4208 
4209 	rss_obj->engine_id  = engine_id;
4210 	rss_obj->config_rss = bnx2x_setup_rss;
4211 }
4212 
4213 /********************** Queue state object ***********************************/
4214 
4215 /**
4216  * bnx2x_queue_state_change - perform Queue state change transition
4217  *
4218  * @bp:		device handle
4219  * @params:	parameters to perform the transition
4220  *
4221  * returns 0 in case of successfully completed transition, negative error
4222  * code in case of failure, positive (EBUSY) value if there is a completion
4223  * to that is still pending (possible only if RAMROD_COMP_WAIT is
4224  * not set in params->ramrod_flags for asynchronous commands).
4225  *
4226  */
4227 int bnx2x_queue_state_change(struct bnx2x *bp,
4228 			     struct bnx2x_queue_state_params *params)
4229 {
4230 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4231 	int rc, pending_bit;
4232 	unsigned long *pending = &o->pending;
4233 
4234 	/* Check that the requested transition is legal */
4235 	if (o->check_transition(bp, o, params))
4236 		return -EINVAL;
4237 
4238 	/* Set "pending" bit */
4239 	pending_bit = o->set_pending(o, params);
4240 
4241 	/* Don't send a command if only driver cleanup was requested */
4242 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
4243 		o->complete_cmd(bp, o, pending_bit);
4244 	else {
4245 		/* Send a ramrod */
4246 		rc = o->send_cmd(bp, params);
4247 		if (rc) {
4248 			o->next_state = BNX2X_Q_STATE_MAX;
4249 			clear_bit(pending_bit, pending);
4250 			smp_mb__after_clear_bit();
4251 			return rc;
4252 		}
4253 
4254 		if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
4255 			rc = o->wait_comp(bp, o, pending_bit);
4256 			if (rc)
4257 				return rc;
4258 
4259 			return 0;
4260 		}
4261 	}
4262 
4263 	return !!test_bit(pending_bit, pending);
4264 }
4265 
4266 
4267 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4268 				   struct bnx2x_queue_state_params *params)
4269 {
4270 	enum bnx2x_queue_cmd cmd = params->cmd, bit;
4271 
4272 	/* ACTIVATE and DEACTIVATE commands are implemented on top of
4273 	 * UPDATE command.
4274 	 */
4275 	if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4276 	    (cmd == BNX2X_Q_CMD_DEACTIVATE))
4277 		bit = BNX2X_Q_CMD_UPDATE;
4278 	else
4279 		bit = cmd;
4280 
4281 	set_bit(bit, &obj->pending);
4282 	return bit;
4283 }
4284 
4285 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4286 				 struct bnx2x_queue_sp_obj *o,
4287 				 enum bnx2x_queue_cmd cmd)
4288 {
4289 	return bnx2x_state_wait(bp, cmd, &o->pending);
4290 }
4291 
4292 /**
4293  * bnx2x_queue_comp_cmd - complete the state change command.
4294  *
4295  * @bp:		device handle
4296  * @o:
4297  * @cmd:
4298  *
4299  * Checks that the arrived completion is expected.
4300  */
4301 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4302 				struct bnx2x_queue_sp_obj *o,
4303 				enum bnx2x_queue_cmd cmd)
4304 {
4305 	unsigned long cur_pending = o->pending;
4306 
4307 	if (!test_and_clear_bit(cmd, &cur_pending)) {
4308 		BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4309 			  cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4310 			  o->state, cur_pending, o->next_state);
4311 		return -EINVAL;
4312 	}
4313 
4314 	if (o->next_tx_only >= o->max_cos)
4315 		/* >= becuase tx only must always be smaller than cos since the
4316 		 * primary connection suports COS 0
4317 		 */
4318 		BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4319 			   o->next_tx_only, o->max_cos);
4320 
4321 	DP(BNX2X_MSG_SP,
4322 	   "Completing command %d for queue %d, setting state to %d\n",
4323 	   cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4324 
4325 	if (o->next_tx_only)  /* print num tx-only if any exist */
4326 		DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4327 		   o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4328 
4329 	o->state = o->next_state;
4330 	o->num_tx_only = o->next_tx_only;
4331 	o->next_state = BNX2X_Q_STATE_MAX;
4332 
4333 	/* It's important that o->state and o->next_state are
4334 	 * updated before o->pending.
4335 	 */
4336 	wmb();
4337 
4338 	clear_bit(cmd, &o->pending);
4339 	smp_mb__after_clear_bit();
4340 
4341 	return 0;
4342 }
4343 
4344 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4345 				struct bnx2x_queue_state_params *cmd_params,
4346 				struct client_init_ramrod_data *data)
4347 {
4348 	struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4349 
4350 	/* Rx data */
4351 
4352 	/* IPv6 TPA supported for E2 and above only */
4353 	data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, &params->flags) *
4354 				CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4355 }
4356 
4357 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4358 				struct bnx2x_queue_sp_obj *o,
4359 				struct bnx2x_general_setup_params *params,
4360 				struct client_init_general_data *gen_data,
4361 				unsigned long *flags)
4362 {
4363 	gen_data->client_id = o->cl_id;
4364 
4365 	if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4366 		gen_data->statistics_counter_id =
4367 					params->stat_id;
4368 		gen_data->statistics_en_flg = 1;
4369 		gen_data->statistics_zero_flg =
4370 			test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4371 	} else
4372 		gen_data->statistics_counter_id =
4373 					DISABLE_STATISTIC_COUNTER_ID_VALUE;
4374 
4375 	gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4376 	gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4377 	gen_data->sp_client_id = params->spcl_id;
4378 	gen_data->mtu = cpu_to_le16(params->mtu);
4379 	gen_data->func_id = o->func_id;
4380 
4381 
4382 	gen_data->cos = params->cos;
4383 
4384 	gen_data->traffic_type =
4385 		test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4386 		LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4387 
4388 	DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4389 	   gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4390 }
4391 
4392 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4393 				struct bnx2x_txq_setup_params *params,
4394 				struct client_init_tx_data *tx_data,
4395 				unsigned long *flags)
4396 {
4397 	tx_data->enforce_security_flg =
4398 		test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4399 	tx_data->default_vlan =
4400 		cpu_to_le16(params->default_vlan);
4401 	tx_data->default_vlan_flg =
4402 		test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4403 	tx_data->tx_switching_flg =
4404 		test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4405 	tx_data->anti_spoofing_flg =
4406 		test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4407 	tx_data->tx_status_block_id = params->fw_sb_id;
4408 	tx_data->tx_sb_index_number = params->sb_cq_index;
4409 	tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4410 
4411 	tx_data->tx_bd_page_base.lo =
4412 		cpu_to_le32(U64_LO(params->dscr_map));
4413 	tx_data->tx_bd_page_base.hi =
4414 		cpu_to_le32(U64_HI(params->dscr_map));
4415 
4416 	/* Don't configure any Tx switching mode during queue SETUP */
4417 	tx_data->state = 0;
4418 }
4419 
4420 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4421 				struct rxq_pause_params *params,
4422 				struct client_init_rx_data *rx_data)
4423 {
4424 	/* flow control data */
4425 	rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4426 	rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4427 	rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4428 	rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4429 	rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4430 	rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4431 	rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4432 }
4433 
4434 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4435 				struct bnx2x_rxq_setup_params *params,
4436 				struct client_init_rx_data *rx_data,
4437 				unsigned long *flags)
4438 {
4439 	rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4440 				CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4441 	rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4442 				CLIENT_INIT_RX_DATA_TPA_MODE;
4443 	rx_data->vmqueue_mode_en_flg = 0;
4444 
4445 	rx_data->cache_line_alignment_log_size =
4446 		params->cache_line_log;
4447 	rx_data->enable_dynamic_hc =
4448 		test_bit(BNX2X_Q_FLG_DHC, flags);
4449 	rx_data->max_sges_for_packet = params->max_sges_pkt;
4450 	rx_data->client_qzone_id = params->cl_qzone_id;
4451 	rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4452 
4453 	/* Always start in DROP_ALL mode */
4454 	rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4455 				     CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4456 
4457 	/* We don't set drop flags */
4458 	rx_data->drop_ip_cs_err_flg = 0;
4459 	rx_data->drop_tcp_cs_err_flg = 0;
4460 	rx_data->drop_ttl0_flg = 0;
4461 	rx_data->drop_udp_cs_err_flg = 0;
4462 	rx_data->inner_vlan_removal_enable_flg =
4463 		test_bit(BNX2X_Q_FLG_VLAN, flags);
4464 	rx_data->outer_vlan_removal_enable_flg =
4465 		test_bit(BNX2X_Q_FLG_OV, flags);
4466 	rx_data->status_block_id = params->fw_sb_id;
4467 	rx_data->rx_sb_index_number = params->sb_cq_index;
4468 	rx_data->max_tpa_queues = params->max_tpa_queues;
4469 	rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4470 	rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4471 	rx_data->bd_page_base.lo =
4472 		cpu_to_le32(U64_LO(params->dscr_map));
4473 	rx_data->bd_page_base.hi =
4474 		cpu_to_le32(U64_HI(params->dscr_map));
4475 	rx_data->sge_page_base.lo =
4476 		cpu_to_le32(U64_LO(params->sge_map));
4477 	rx_data->sge_page_base.hi =
4478 		cpu_to_le32(U64_HI(params->sge_map));
4479 	rx_data->cqe_page_base.lo =
4480 		cpu_to_le32(U64_LO(params->rcq_map));
4481 	rx_data->cqe_page_base.hi =
4482 		cpu_to_le32(U64_HI(params->rcq_map));
4483 	rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4484 
4485 	if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4486 		rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4487 		rx_data->is_approx_mcast = 1;
4488 	}
4489 
4490 	rx_data->rss_engine_id = params->rss_engine_id;
4491 
4492 	/* silent vlan removal */
4493 	rx_data->silent_vlan_removal_flg =
4494 		test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4495 	rx_data->silent_vlan_value =
4496 		cpu_to_le16(params->silent_removal_value);
4497 	rx_data->silent_vlan_mask =
4498 		cpu_to_le16(params->silent_removal_mask);
4499 
4500 }
4501 
4502 /* initialize the general, tx and rx parts of a queue object */
4503 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4504 				struct bnx2x_queue_state_params *cmd_params,
4505 				struct client_init_ramrod_data *data)
4506 {
4507 	bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4508 				       &cmd_params->params.setup.gen_params,
4509 				       &data->general,
4510 				       &cmd_params->params.setup.flags);
4511 
4512 	bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4513 				  &cmd_params->params.setup.txq_params,
4514 				  &data->tx,
4515 				  &cmd_params->params.setup.flags);
4516 
4517 	bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4518 				  &cmd_params->params.setup.rxq_params,
4519 				  &data->rx,
4520 				  &cmd_params->params.setup.flags);
4521 
4522 	bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4523 				     &cmd_params->params.setup.pause_params,
4524 				     &data->rx);
4525 }
4526 
4527 /* initialize the general and tx parts of a tx-only queue object */
4528 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4529 				struct bnx2x_queue_state_params *cmd_params,
4530 				struct tx_queue_init_ramrod_data *data)
4531 {
4532 	bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4533 				       &cmd_params->params.tx_only.gen_params,
4534 				       &data->general,
4535 				       &cmd_params->params.tx_only.flags);
4536 
4537 	bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4538 				  &cmd_params->params.tx_only.txq_params,
4539 				  &data->tx,
4540 				  &cmd_params->params.tx_only.flags);
4541 
4542 	DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4543 			 cmd_params->q_obj->cids[0],
4544 			 data->tx.tx_bd_page_base.lo,
4545 			 data->tx.tx_bd_page_base.hi);
4546 }
4547 
4548 /**
4549  * bnx2x_q_init - init HW/FW queue
4550  *
4551  * @bp:		device handle
4552  * @params:
4553  *
4554  * HW/FW initial Queue configuration:
4555  *      - HC: Rx and Tx
4556  *      - CDU context validation
4557  *
4558  */
4559 static inline int bnx2x_q_init(struct bnx2x *bp,
4560 			       struct bnx2x_queue_state_params *params)
4561 {
4562 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4563 	struct bnx2x_queue_init_params *init = &params->params.init;
4564 	u16 hc_usec;
4565 	u8 cos;
4566 
4567 	/* Tx HC configuration */
4568 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
4569 	    test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
4570 		hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
4571 
4572 		bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
4573 			init->tx.sb_cq_index,
4574 			!test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
4575 			hc_usec);
4576 	}
4577 
4578 	/* Rx HC configuration */
4579 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
4580 	    test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
4581 		hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
4582 
4583 		bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
4584 			init->rx.sb_cq_index,
4585 			!test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
4586 			hc_usec);
4587 	}
4588 
4589 	/* Set CDU context validation values */
4590 	for (cos = 0; cos < o->max_cos; cos++) {
4591 		DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
4592 				 o->cids[cos], cos);
4593 		DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
4594 		bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
4595 	}
4596 
4597 	/* As no ramrod is sent, complete the command immediately  */
4598 	o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
4599 
4600 	mmiowb();
4601 	smp_mb();
4602 
4603 	return 0;
4604 }
4605 
4606 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
4607 					struct bnx2x_queue_state_params *params)
4608 {
4609 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4610 	struct client_init_ramrod_data *rdata =
4611 		(struct client_init_ramrod_data *)o->rdata;
4612 	dma_addr_t data_mapping = o->rdata_mapping;
4613 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4614 
4615 	/* Clear the ramrod data */
4616 	memset(rdata, 0, sizeof(*rdata));
4617 
4618 	/* Fill the ramrod data */
4619 	bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4620 
4621 	/*
4622 	 *  No need for an explicit memory barrier here as long we would
4623 	 *  need to ensure the ordering of writing to the SPQ element
4624 	 *  and updating of the SPQ producer which involves a memory
4625 	 *  read and we will have to put a full memory barrier there
4626 	 *  (inside bnx2x_sp_post()).
4627 	 */
4628 
4629 	return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4630 			     U64_HI(data_mapping),
4631 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4632 }
4633 
4634 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
4635 					struct bnx2x_queue_state_params *params)
4636 {
4637 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4638 	struct client_init_ramrod_data *rdata =
4639 		(struct client_init_ramrod_data *)o->rdata;
4640 	dma_addr_t data_mapping = o->rdata_mapping;
4641 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4642 
4643 	/* Clear the ramrod data */
4644 	memset(rdata, 0, sizeof(*rdata));
4645 
4646 	/* Fill the ramrod data */
4647 	bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
4648 	bnx2x_q_fill_setup_data_e2(bp, params, rdata);
4649 
4650 	/*
4651 	 *  No need for an explicit memory barrier here as long we would
4652 	 *  need to ensure the ordering of writing to the SPQ element
4653 	 *  and updating of the SPQ producer which involves a memory
4654 	 *  read and we will have to put a full memory barrier there
4655 	 *  (inside bnx2x_sp_post()).
4656 	 */
4657 
4658 	return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
4659 			     U64_HI(data_mapping),
4660 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4661 }
4662 
4663 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
4664 				  struct bnx2x_queue_state_params *params)
4665 {
4666 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4667 	struct tx_queue_init_ramrod_data *rdata =
4668 		(struct tx_queue_init_ramrod_data *)o->rdata;
4669 	dma_addr_t data_mapping = o->rdata_mapping;
4670 	int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
4671 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
4672 		&params->params.tx_only;
4673 	u8 cid_index = tx_only_params->cid_index;
4674 
4675 
4676 	if (cid_index >= o->max_cos) {
4677 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4678 			  o->cl_id, cid_index);
4679 		return -EINVAL;
4680 	}
4681 
4682 	DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
4683 			 tx_only_params->gen_params.cos,
4684 			 tx_only_params->gen_params.spcl_id);
4685 
4686 	/* Clear the ramrod data */
4687 	memset(rdata, 0, sizeof(*rdata));
4688 
4689 	/* Fill the ramrod data */
4690 	bnx2x_q_fill_setup_tx_only(bp, params, rdata);
4691 
4692 	DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
4693 			 o->cids[cid_index], rdata->general.client_id,
4694 			 rdata->general.sp_client_id, rdata->general.cos);
4695 
4696 	/*
4697 	 *  No need for an explicit memory barrier here as long we would
4698 	 *  need to ensure the ordering of writing to the SPQ element
4699 	 *  and updating of the SPQ producer which involves a memory
4700 	 *  read and we will have to put a full memory barrier there
4701 	 *  (inside bnx2x_sp_post()).
4702 	 */
4703 
4704 	return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
4705 			     U64_HI(data_mapping),
4706 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4707 }
4708 
4709 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
4710 				     struct bnx2x_queue_sp_obj *obj,
4711 				     struct bnx2x_queue_update_params *params,
4712 				     struct client_update_ramrod_data *data)
4713 {
4714 	/* Client ID of the client to update */
4715 	data->client_id = obj->cl_id;
4716 
4717 	/* Function ID of the client to update */
4718 	data->func_id = obj->func_id;
4719 
4720 	/* Default VLAN value */
4721 	data->default_vlan = cpu_to_le16(params->def_vlan);
4722 
4723 	/* Inner VLAN stripping */
4724 	data->inner_vlan_removal_enable_flg =
4725 		test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
4726 	data->inner_vlan_removal_change_flg =
4727 		test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
4728 			 &params->update_flags);
4729 
4730 	/* Outer VLAN sripping */
4731 	data->outer_vlan_removal_enable_flg =
4732 		test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
4733 	data->outer_vlan_removal_change_flg =
4734 		test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
4735 			 &params->update_flags);
4736 
4737 	/* Drop packets that have source MAC that doesn't belong to this
4738 	 * Queue.
4739 	 */
4740 	data->anti_spoofing_enable_flg =
4741 		test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
4742 	data->anti_spoofing_change_flg =
4743 		test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, &params->update_flags);
4744 
4745 	/* Activate/Deactivate */
4746 	data->activate_flg =
4747 		test_bit(BNX2X_Q_UPDATE_ACTIVATE, &params->update_flags);
4748 	data->activate_change_flg =
4749 		test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
4750 
4751 	/* Enable default VLAN */
4752 	data->default_vlan_enable_flg =
4753 		test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
4754 	data->default_vlan_change_flg =
4755 		test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
4756 			 &params->update_flags);
4757 
4758 	/* silent vlan removal */
4759 	data->silent_vlan_change_flg =
4760 		test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4761 			 &params->update_flags);
4762 	data->silent_vlan_removal_flg =
4763 		test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &params->update_flags);
4764 	data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
4765 	data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
4766 }
4767 
4768 static inline int bnx2x_q_send_update(struct bnx2x *bp,
4769 				      struct bnx2x_queue_state_params *params)
4770 {
4771 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4772 	struct client_update_ramrod_data *rdata =
4773 		(struct client_update_ramrod_data *)o->rdata;
4774 	dma_addr_t data_mapping = o->rdata_mapping;
4775 	struct bnx2x_queue_update_params *update_params =
4776 		&params->params.update;
4777 	u8 cid_index = update_params->cid_index;
4778 
4779 	if (cid_index >= o->max_cos) {
4780 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4781 			  o->cl_id, cid_index);
4782 		return -EINVAL;
4783 	}
4784 
4785 
4786 	/* Clear the ramrod data */
4787 	memset(rdata, 0, sizeof(*rdata));
4788 
4789 	/* Fill the ramrod data */
4790 	bnx2x_q_fill_update_data(bp, o, update_params, rdata);
4791 
4792 	/*
4793 	 *  No need for an explicit memory barrier here as long we would
4794 	 *  need to ensure the ordering of writing to the SPQ element
4795 	 *  and updating of the SPQ producer which involves a memory
4796 	 *  read and we will have to put a full memory barrier there
4797 	 *  (inside bnx2x_sp_post()).
4798 	 */
4799 
4800 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
4801 			     o->cids[cid_index], U64_HI(data_mapping),
4802 			     U64_LO(data_mapping), ETH_CONNECTION_TYPE);
4803 }
4804 
4805 /**
4806  * bnx2x_q_send_deactivate - send DEACTIVATE command
4807  *
4808  * @bp:		device handle
4809  * @params:
4810  *
4811  * implemented using the UPDATE command.
4812  */
4813 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
4814 					struct bnx2x_queue_state_params *params)
4815 {
4816 	struct bnx2x_queue_update_params *update = &params->params.update;
4817 
4818 	memset(update, 0, sizeof(*update));
4819 
4820 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
4821 
4822 	return bnx2x_q_send_update(bp, params);
4823 }
4824 
4825 /**
4826  * bnx2x_q_send_activate - send ACTIVATE command
4827  *
4828  * @bp:		device handle
4829  * @params:
4830  *
4831  * implemented using the UPDATE command.
4832  */
4833 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
4834 					struct bnx2x_queue_state_params *params)
4835 {
4836 	struct bnx2x_queue_update_params *update = &params->params.update;
4837 
4838 	memset(update, 0, sizeof(*update));
4839 
4840 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
4841 	__set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
4842 
4843 	return bnx2x_q_send_update(bp, params);
4844 }
4845 
4846 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
4847 					struct bnx2x_queue_state_params *params)
4848 {
4849 	/* TODO: Not implemented yet. */
4850 	return -1;
4851 }
4852 
4853 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
4854 				    struct bnx2x_queue_state_params *params)
4855 {
4856 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4857 
4858 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
4859 			     o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
4860 			     ETH_CONNECTION_TYPE);
4861 }
4862 
4863 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
4864 				       struct bnx2x_queue_state_params *params)
4865 {
4866 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4867 	u8 cid_idx = params->params.cfc_del.cid_index;
4868 
4869 	if (cid_idx >= o->max_cos) {
4870 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4871 			  o->cl_id, cid_idx);
4872 		return -EINVAL;
4873 	}
4874 
4875 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
4876 			     o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
4877 }
4878 
4879 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
4880 					struct bnx2x_queue_state_params *params)
4881 {
4882 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4883 	u8 cid_index = params->params.terminate.cid_index;
4884 
4885 	if (cid_index >= o->max_cos) {
4886 		BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
4887 			  o->cl_id, cid_index);
4888 		return -EINVAL;
4889 	}
4890 
4891 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
4892 			     o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
4893 }
4894 
4895 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
4896 				     struct bnx2x_queue_state_params *params)
4897 {
4898 	struct bnx2x_queue_sp_obj *o = params->q_obj;
4899 
4900 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
4901 			     o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
4902 			     ETH_CONNECTION_TYPE);
4903 }
4904 
4905 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
4906 					struct bnx2x_queue_state_params *params)
4907 {
4908 	switch (params->cmd) {
4909 	case BNX2X_Q_CMD_INIT:
4910 		return bnx2x_q_init(bp, params);
4911 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
4912 		return bnx2x_q_send_setup_tx_only(bp, params);
4913 	case BNX2X_Q_CMD_DEACTIVATE:
4914 		return bnx2x_q_send_deactivate(bp, params);
4915 	case BNX2X_Q_CMD_ACTIVATE:
4916 		return bnx2x_q_send_activate(bp, params);
4917 	case BNX2X_Q_CMD_UPDATE:
4918 		return bnx2x_q_send_update(bp, params);
4919 	case BNX2X_Q_CMD_UPDATE_TPA:
4920 		return bnx2x_q_send_update_tpa(bp, params);
4921 	case BNX2X_Q_CMD_HALT:
4922 		return bnx2x_q_send_halt(bp, params);
4923 	case BNX2X_Q_CMD_CFC_DEL:
4924 		return bnx2x_q_send_cfc_del(bp, params);
4925 	case BNX2X_Q_CMD_TERMINATE:
4926 		return bnx2x_q_send_terminate(bp, params);
4927 	case BNX2X_Q_CMD_EMPTY:
4928 		return bnx2x_q_send_empty(bp, params);
4929 	default:
4930 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
4931 		return -EINVAL;
4932 	}
4933 }
4934 
4935 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
4936 				    struct bnx2x_queue_state_params *params)
4937 {
4938 	switch (params->cmd) {
4939 	case BNX2X_Q_CMD_SETUP:
4940 		return bnx2x_q_send_setup_e1x(bp, params);
4941 	case BNX2X_Q_CMD_INIT:
4942 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
4943 	case BNX2X_Q_CMD_DEACTIVATE:
4944 	case BNX2X_Q_CMD_ACTIVATE:
4945 	case BNX2X_Q_CMD_UPDATE:
4946 	case BNX2X_Q_CMD_UPDATE_TPA:
4947 	case BNX2X_Q_CMD_HALT:
4948 	case BNX2X_Q_CMD_CFC_DEL:
4949 	case BNX2X_Q_CMD_TERMINATE:
4950 	case BNX2X_Q_CMD_EMPTY:
4951 		return bnx2x_queue_send_cmd_cmn(bp, params);
4952 	default:
4953 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
4954 		return -EINVAL;
4955 	}
4956 }
4957 
4958 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
4959 				   struct bnx2x_queue_state_params *params)
4960 {
4961 	switch (params->cmd) {
4962 	case BNX2X_Q_CMD_SETUP:
4963 		return bnx2x_q_send_setup_e2(bp, params);
4964 	case BNX2X_Q_CMD_INIT:
4965 	case BNX2X_Q_CMD_SETUP_TX_ONLY:
4966 	case BNX2X_Q_CMD_DEACTIVATE:
4967 	case BNX2X_Q_CMD_ACTIVATE:
4968 	case BNX2X_Q_CMD_UPDATE:
4969 	case BNX2X_Q_CMD_UPDATE_TPA:
4970 	case BNX2X_Q_CMD_HALT:
4971 	case BNX2X_Q_CMD_CFC_DEL:
4972 	case BNX2X_Q_CMD_TERMINATE:
4973 	case BNX2X_Q_CMD_EMPTY:
4974 		return bnx2x_queue_send_cmd_cmn(bp, params);
4975 	default:
4976 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
4977 		return -EINVAL;
4978 	}
4979 }
4980 
4981 /**
4982  * bnx2x_queue_chk_transition - check state machine of a regular Queue
4983  *
4984  * @bp:		device handle
4985  * @o:
4986  * @params:
4987  *
4988  * (not Forwarding)
4989  * It both checks if the requested command is legal in a current
4990  * state and, if it's legal, sets a `next_state' in the object
4991  * that will be used in the completion flow to set the `state'
4992  * of the object.
4993  *
4994  * returns 0 if a requested command is a legal transition,
4995  *         -EINVAL otherwise.
4996  */
4997 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
4998 				      struct bnx2x_queue_sp_obj *o,
4999 				      struct bnx2x_queue_state_params *params)
5000 {
5001 	enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5002 	enum bnx2x_queue_cmd cmd = params->cmd;
5003 	struct bnx2x_queue_update_params *update_params =
5004 		 &params->params.update;
5005 	u8 next_tx_only = o->num_tx_only;
5006 
5007 	/*
5008 	 * Forget all pending for completion commands if a driver only state
5009 	 * transition has been requested.
5010 	 */
5011 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5012 		o->pending = 0;
5013 		o->next_state = BNX2X_Q_STATE_MAX;
5014 	}
5015 
5016 	/*
5017 	 * Don't allow a next state transition if we are in the middle of
5018 	 * the previous one.
5019 	 */
5020 	if (o->pending)
5021 		return -EBUSY;
5022 
5023 	switch (state) {
5024 	case BNX2X_Q_STATE_RESET:
5025 		if (cmd == BNX2X_Q_CMD_INIT)
5026 			next_state = BNX2X_Q_STATE_INITIALIZED;
5027 
5028 		break;
5029 	case BNX2X_Q_STATE_INITIALIZED:
5030 		if (cmd == BNX2X_Q_CMD_SETUP) {
5031 			if (test_bit(BNX2X_Q_FLG_ACTIVE,
5032 				     &params->params.setup.flags))
5033 				next_state = BNX2X_Q_STATE_ACTIVE;
5034 			else
5035 				next_state = BNX2X_Q_STATE_INACTIVE;
5036 		}
5037 
5038 		break;
5039 	case BNX2X_Q_STATE_ACTIVE:
5040 		if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5041 			next_state = BNX2X_Q_STATE_INACTIVE;
5042 
5043 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5044 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5045 			next_state = BNX2X_Q_STATE_ACTIVE;
5046 
5047 		else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5048 			next_state = BNX2X_Q_STATE_MULTI_COS;
5049 			next_tx_only = 1;
5050 		}
5051 
5052 		else if (cmd == BNX2X_Q_CMD_HALT)
5053 			next_state = BNX2X_Q_STATE_STOPPED;
5054 
5055 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5056 			/* If "active" state change is requested, update the
5057 			 *  state accordingly.
5058 			 */
5059 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5060 				     &update_params->update_flags) &&
5061 			    !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5062 				      &update_params->update_flags))
5063 				next_state = BNX2X_Q_STATE_INACTIVE;
5064 			else
5065 				next_state = BNX2X_Q_STATE_ACTIVE;
5066 		}
5067 
5068 		break;
5069 	case BNX2X_Q_STATE_MULTI_COS:
5070 		if (cmd == BNX2X_Q_CMD_TERMINATE)
5071 			next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5072 
5073 		else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5074 			next_state = BNX2X_Q_STATE_MULTI_COS;
5075 			next_tx_only = o->num_tx_only + 1;
5076 		}
5077 
5078 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5079 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5080 			next_state = BNX2X_Q_STATE_MULTI_COS;
5081 
5082 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5083 			/* If "active" state change is requested, update the
5084 			 *  state accordingly.
5085 			 */
5086 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5087 				     &update_params->update_flags) &&
5088 			    !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5089 				      &update_params->update_flags))
5090 				next_state = BNX2X_Q_STATE_INACTIVE;
5091 			else
5092 				next_state = BNX2X_Q_STATE_MULTI_COS;
5093 		}
5094 
5095 		break;
5096 	case BNX2X_Q_STATE_MCOS_TERMINATED:
5097 		if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5098 			next_tx_only = o->num_tx_only - 1;
5099 			if (next_tx_only == 0)
5100 				next_state = BNX2X_Q_STATE_ACTIVE;
5101 			else
5102 				next_state = BNX2X_Q_STATE_MULTI_COS;
5103 		}
5104 
5105 		break;
5106 	case BNX2X_Q_STATE_INACTIVE:
5107 		if (cmd == BNX2X_Q_CMD_ACTIVATE)
5108 			next_state = BNX2X_Q_STATE_ACTIVE;
5109 
5110 		else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5111 			 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5112 			next_state = BNX2X_Q_STATE_INACTIVE;
5113 
5114 		else if (cmd == BNX2X_Q_CMD_HALT)
5115 			next_state = BNX2X_Q_STATE_STOPPED;
5116 
5117 		else if (cmd == BNX2X_Q_CMD_UPDATE) {
5118 			/* If "active" state change is requested, update the
5119 			 * state accordingly.
5120 			 */
5121 			if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5122 				     &update_params->update_flags) &&
5123 			    test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5124 				     &update_params->update_flags)){
5125 				if (o->num_tx_only == 0)
5126 					next_state = BNX2X_Q_STATE_ACTIVE;
5127 				else /* tx only queues exist for this queue */
5128 					next_state = BNX2X_Q_STATE_MULTI_COS;
5129 			} else
5130 				next_state = BNX2X_Q_STATE_INACTIVE;
5131 		}
5132 
5133 		break;
5134 	case BNX2X_Q_STATE_STOPPED:
5135 		if (cmd == BNX2X_Q_CMD_TERMINATE)
5136 			next_state = BNX2X_Q_STATE_TERMINATED;
5137 
5138 		break;
5139 	case BNX2X_Q_STATE_TERMINATED:
5140 		if (cmd == BNX2X_Q_CMD_CFC_DEL)
5141 			next_state = BNX2X_Q_STATE_RESET;
5142 
5143 		break;
5144 	default:
5145 		BNX2X_ERR("Illegal state: %d\n", state);
5146 	}
5147 
5148 	/* Transition is assured */
5149 	if (next_state != BNX2X_Q_STATE_MAX) {
5150 		DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5151 				 state, cmd, next_state);
5152 		o->next_state = next_state;
5153 		o->next_tx_only = next_tx_only;
5154 		return 0;
5155 	}
5156 
5157 	DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5158 
5159 	return -EINVAL;
5160 }
5161 
5162 void bnx2x_init_queue_obj(struct bnx2x *bp,
5163 			  struct bnx2x_queue_sp_obj *obj,
5164 			  u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5165 			  void *rdata,
5166 			  dma_addr_t rdata_mapping, unsigned long type)
5167 {
5168 	memset(obj, 0, sizeof(*obj));
5169 
5170 	/* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5171 	BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5172 
5173 	memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5174 	obj->max_cos = cid_cnt;
5175 	obj->cl_id = cl_id;
5176 	obj->func_id = func_id;
5177 	obj->rdata = rdata;
5178 	obj->rdata_mapping = rdata_mapping;
5179 	obj->type = type;
5180 	obj->next_state = BNX2X_Q_STATE_MAX;
5181 
5182 	if (CHIP_IS_E1x(bp))
5183 		obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5184 	else
5185 		obj->send_cmd = bnx2x_queue_send_cmd_e2;
5186 
5187 	obj->check_transition = bnx2x_queue_chk_transition;
5188 
5189 	obj->complete_cmd = bnx2x_queue_comp_cmd;
5190 	obj->wait_comp = bnx2x_queue_wait_comp;
5191 	obj->set_pending = bnx2x_queue_set_pending;
5192 }
5193 
5194 /********************** Function state object *********************************/
5195 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5196 					   struct bnx2x_func_sp_obj *o)
5197 {
5198 	/* in the middle of transaction - return INVALID state */
5199 	if (o->pending)
5200 		return BNX2X_F_STATE_MAX;
5201 
5202 	/*
5203 	 * unsure the order of reading of o->pending and o->state
5204 	 * o->pending should be read first
5205 	 */
5206 	rmb();
5207 
5208 	return o->state;
5209 }
5210 
5211 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5212 				struct bnx2x_func_sp_obj *o,
5213 				enum bnx2x_func_cmd cmd)
5214 {
5215 	return bnx2x_state_wait(bp, cmd, &o->pending);
5216 }
5217 
5218 /**
5219  * bnx2x_func_state_change_comp - complete the state machine transition
5220  *
5221  * @bp:		device handle
5222  * @o:
5223  * @cmd:
5224  *
5225  * Called on state change transition. Completes the state
5226  * machine transition only - no HW interaction.
5227  */
5228 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5229 					       struct bnx2x_func_sp_obj *o,
5230 					       enum bnx2x_func_cmd cmd)
5231 {
5232 	unsigned long cur_pending = o->pending;
5233 
5234 	if (!test_and_clear_bit(cmd, &cur_pending)) {
5235 		BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5236 			  cmd, BP_FUNC(bp), o->state,
5237 			  cur_pending, o->next_state);
5238 		return -EINVAL;
5239 	}
5240 
5241 	DP(BNX2X_MSG_SP,
5242 	   "Completing command %d for func %d, setting state to %d\n",
5243 	   cmd, BP_FUNC(bp), o->next_state);
5244 
5245 	o->state = o->next_state;
5246 	o->next_state = BNX2X_F_STATE_MAX;
5247 
5248 	/* It's important that o->state and o->next_state are
5249 	 * updated before o->pending.
5250 	 */
5251 	wmb();
5252 
5253 	clear_bit(cmd, &o->pending);
5254 	smp_mb__after_clear_bit();
5255 
5256 	return 0;
5257 }
5258 
5259 /**
5260  * bnx2x_func_comp_cmd - complete the state change command
5261  *
5262  * @bp:		device handle
5263  * @o:
5264  * @cmd:
5265  *
5266  * Checks that the arrived completion is expected.
5267  */
5268 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5269 			       struct bnx2x_func_sp_obj *o,
5270 			       enum bnx2x_func_cmd cmd)
5271 {
5272 	/* Complete the state machine part first, check if it's a
5273 	 * legal completion.
5274 	 */
5275 	int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5276 	return rc;
5277 }
5278 
5279 /**
5280  * bnx2x_func_chk_transition - perform function state machine transition
5281  *
5282  * @bp:		device handle
5283  * @o:
5284  * @params:
5285  *
5286  * It both checks if the requested command is legal in a current
5287  * state and, if it's legal, sets a `next_state' in the object
5288  * that will be used in the completion flow to set the `state'
5289  * of the object.
5290  *
5291  * returns 0 if a requested command is a legal transition,
5292  *         -EINVAL otherwise.
5293  */
5294 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5295 				     struct bnx2x_func_sp_obj *o,
5296 				     struct bnx2x_func_state_params *params)
5297 {
5298 	enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5299 	enum bnx2x_func_cmd cmd = params->cmd;
5300 
5301 	/*
5302 	 * Forget all pending for completion commands if a driver only state
5303 	 * transition has been requested.
5304 	 */
5305 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5306 		o->pending = 0;
5307 		o->next_state = BNX2X_F_STATE_MAX;
5308 	}
5309 
5310 	/*
5311 	 * Don't allow a next state transition if we are in the middle of
5312 	 * the previous one.
5313 	 */
5314 	if (o->pending)
5315 		return -EBUSY;
5316 
5317 	switch (state) {
5318 	case BNX2X_F_STATE_RESET:
5319 		if (cmd == BNX2X_F_CMD_HW_INIT)
5320 			next_state = BNX2X_F_STATE_INITIALIZED;
5321 
5322 		break;
5323 	case BNX2X_F_STATE_INITIALIZED:
5324 		if (cmd == BNX2X_F_CMD_START)
5325 			next_state = BNX2X_F_STATE_STARTED;
5326 
5327 		else if (cmd == BNX2X_F_CMD_HW_RESET)
5328 			next_state = BNX2X_F_STATE_RESET;
5329 
5330 		break;
5331 	case BNX2X_F_STATE_STARTED:
5332 		if (cmd == BNX2X_F_CMD_STOP)
5333 			next_state = BNX2X_F_STATE_INITIALIZED;
5334 		else if (cmd == BNX2X_F_CMD_TX_STOP)
5335 			next_state = BNX2X_F_STATE_TX_STOPPED;
5336 
5337 		break;
5338 	case BNX2X_F_STATE_TX_STOPPED:
5339 		if (cmd == BNX2X_F_CMD_TX_START)
5340 			next_state = BNX2X_F_STATE_STARTED;
5341 
5342 		break;
5343 	default:
5344 		BNX2X_ERR("Unknown state: %d\n", state);
5345 	}
5346 
5347 	/* Transition is assured */
5348 	if (next_state != BNX2X_F_STATE_MAX) {
5349 		DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5350 				 state, cmd, next_state);
5351 		o->next_state = next_state;
5352 		return 0;
5353 	}
5354 
5355 	DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5356 			 state, cmd);
5357 
5358 	return -EINVAL;
5359 }
5360 
5361 /**
5362  * bnx2x_func_init_func - performs HW init at function stage
5363  *
5364  * @bp:		device handle
5365  * @drv:
5366  *
5367  * Init HW when the current phase is
5368  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5369  * HW blocks.
5370  */
5371 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5372 				       const struct bnx2x_func_sp_drv_ops *drv)
5373 {
5374 	return drv->init_hw_func(bp);
5375 }
5376 
5377 /**
5378  * bnx2x_func_init_port - performs HW init at port stage
5379  *
5380  * @bp:		device handle
5381  * @drv:
5382  *
5383  * Init HW when the current phase is
5384  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5385  * FUNCTION-only HW blocks.
5386  *
5387  */
5388 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5389 				       const struct bnx2x_func_sp_drv_ops *drv)
5390 {
5391 	int rc = drv->init_hw_port(bp);
5392 	if (rc)
5393 		return rc;
5394 
5395 	return bnx2x_func_init_func(bp, drv);
5396 }
5397 
5398 /**
5399  * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5400  *
5401  * @bp:		device handle
5402  * @drv:
5403  *
5404  * Init HW when the current phase is
5405  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5406  * PORT-only and FUNCTION-only HW blocks.
5407  */
5408 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5409 					const struct bnx2x_func_sp_drv_ops *drv)
5410 {
5411 	int rc = drv->init_hw_cmn_chip(bp);
5412 	if (rc)
5413 		return rc;
5414 
5415 	return bnx2x_func_init_port(bp, drv);
5416 }
5417 
5418 /**
5419  * bnx2x_func_init_cmn - performs HW init at common stage
5420  *
5421  * @bp:		device handle
5422  * @drv:
5423  *
5424  * Init HW when the current phase is
5425  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5426  * PORT-only and FUNCTION-only HW blocks.
5427  */
5428 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5429 				      const struct bnx2x_func_sp_drv_ops *drv)
5430 {
5431 	int rc = drv->init_hw_cmn(bp);
5432 	if (rc)
5433 		return rc;
5434 
5435 	return bnx2x_func_init_port(bp, drv);
5436 }
5437 
5438 static int bnx2x_func_hw_init(struct bnx2x *bp,
5439 			      struct bnx2x_func_state_params *params)
5440 {
5441 	u32 load_code = params->params.hw_init.load_phase;
5442 	struct bnx2x_func_sp_obj *o = params->f_obj;
5443 	const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5444 	int rc = 0;
5445 
5446 	DP(BNX2X_MSG_SP, "function %d  load_code %x\n",
5447 			 BP_ABS_FUNC(bp), load_code);
5448 
5449 	/* Prepare buffers for unzipping the FW */
5450 	rc = drv->gunzip_init(bp);
5451 	if (rc)
5452 		return rc;
5453 
5454 	/* Prepare FW */
5455 	rc = drv->init_fw(bp);
5456 	if (rc) {
5457 		BNX2X_ERR("Error loading firmware\n");
5458 		goto init_err;
5459 	}
5460 
5461 	/* Handle the beginning of COMMON_XXX pases separatelly... */
5462 	switch (load_code) {
5463 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5464 		rc = bnx2x_func_init_cmn_chip(bp, drv);
5465 		if (rc)
5466 			goto init_err;
5467 
5468 		break;
5469 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5470 		rc = bnx2x_func_init_cmn(bp, drv);
5471 		if (rc)
5472 			goto init_err;
5473 
5474 		break;
5475 	case FW_MSG_CODE_DRV_LOAD_PORT:
5476 		rc = bnx2x_func_init_port(bp, drv);
5477 		if (rc)
5478 			goto init_err;
5479 
5480 		break;
5481 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5482 		rc = bnx2x_func_init_func(bp, drv);
5483 		if (rc)
5484 			goto init_err;
5485 
5486 		break;
5487 	default:
5488 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5489 		rc = -EINVAL;
5490 	}
5491 
5492 init_err:
5493 	drv->gunzip_end(bp);
5494 
5495 	/* In case of success, complete the comand immediatelly: no ramrods
5496 	 * have been sent.
5497 	 */
5498 	if (!rc)
5499 		o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
5500 
5501 	return rc;
5502 }
5503 
5504 /**
5505  * bnx2x_func_reset_func - reset HW at function stage
5506  *
5507  * @bp:		device handle
5508  * @drv:
5509  *
5510  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
5511  * FUNCTION-only HW blocks.
5512  */
5513 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
5514 					const struct bnx2x_func_sp_drv_ops *drv)
5515 {
5516 	drv->reset_hw_func(bp);
5517 }
5518 
5519 /**
5520  * bnx2x_func_reset_port - reser HW at port stage
5521  *
5522  * @bp:		device handle
5523  * @drv:
5524  *
5525  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
5526  * FUNCTION-only and PORT-only HW blocks.
5527  *
5528  *                 !!!IMPORTANT!!!
5529  *
5530  * It's important to call reset_port before reset_func() as the last thing
5531  * reset_func does is pf_disable() thus disabling PGLUE_B, which
5532  * makes impossible any DMAE transactions.
5533  */
5534 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
5535 					const struct bnx2x_func_sp_drv_ops *drv)
5536 {
5537 	drv->reset_hw_port(bp);
5538 	bnx2x_func_reset_func(bp, drv);
5539 }
5540 
5541 /**
5542  * bnx2x_func_reset_cmn - reser HW at common stage
5543  *
5544  * @bp:		device handle
5545  * @drv:
5546  *
5547  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
5548  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
5549  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
5550  */
5551 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
5552 					const struct bnx2x_func_sp_drv_ops *drv)
5553 {
5554 	bnx2x_func_reset_port(bp, drv);
5555 	drv->reset_hw_cmn(bp);
5556 }
5557 
5558 
5559 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
5560 				      struct bnx2x_func_state_params *params)
5561 {
5562 	u32 reset_phase = params->params.hw_reset.reset_phase;
5563 	struct bnx2x_func_sp_obj *o = params->f_obj;
5564 	const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5565 
5566 	DP(BNX2X_MSG_SP, "function %d  reset_phase %x\n", BP_ABS_FUNC(bp),
5567 			 reset_phase);
5568 
5569 	switch (reset_phase) {
5570 	case FW_MSG_CODE_DRV_UNLOAD_COMMON:
5571 		bnx2x_func_reset_cmn(bp, drv);
5572 		break;
5573 	case FW_MSG_CODE_DRV_UNLOAD_PORT:
5574 		bnx2x_func_reset_port(bp, drv);
5575 		break;
5576 	case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
5577 		bnx2x_func_reset_func(bp, drv);
5578 		break;
5579 	default:
5580 		BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
5581 			   reset_phase);
5582 		break;
5583 	}
5584 
5585 	/* Complete the comand immediatelly: no ramrods have been sent. */
5586 	o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
5587 
5588 	return 0;
5589 }
5590 
5591 static inline int bnx2x_func_send_start(struct bnx2x *bp,
5592 					struct bnx2x_func_state_params *params)
5593 {
5594 	struct bnx2x_func_sp_obj *o = params->f_obj;
5595 	struct function_start_data *rdata =
5596 		(struct function_start_data *)o->rdata;
5597 	dma_addr_t data_mapping = o->rdata_mapping;
5598 	struct bnx2x_func_start_params *start_params = &params->params.start;
5599 
5600 	memset(rdata, 0, sizeof(*rdata));
5601 
5602 	/* Fill the ramrod data with provided parameters */
5603 	rdata->function_mode = cpu_to_le16(start_params->mf_mode);
5604 	rdata->sd_vlan_tag   = cpu_to_le16(start_params->sd_vlan_tag);
5605 	rdata->path_id       = BP_PATH(bp);
5606 	rdata->network_cos_mode = start_params->network_cos_mode;
5607 
5608 	/*
5609 	 *  No need for an explicit memory barrier here as long we would
5610 	 *  need to ensure the ordering of writing to the SPQ element
5611 	 *  and updating of the SPQ producer which involves a memory
5612 	 *  read and we will have to put a full memory barrier there
5613 	 *  (inside bnx2x_sp_post()).
5614 	 */
5615 
5616 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
5617 			     U64_HI(data_mapping),
5618 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5619 }
5620 
5621 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
5622 				       struct bnx2x_func_state_params *params)
5623 {
5624 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
5625 			     NONE_CONNECTION_TYPE);
5626 }
5627 
5628 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
5629 				       struct bnx2x_func_state_params *params)
5630 {
5631 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
5632 			     NONE_CONNECTION_TYPE);
5633 }
5634 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
5635 				       struct bnx2x_func_state_params *params)
5636 {
5637 	struct bnx2x_func_sp_obj *o = params->f_obj;
5638 	struct flow_control_configuration *rdata =
5639 		(struct flow_control_configuration *)o->rdata;
5640 	dma_addr_t data_mapping = o->rdata_mapping;
5641 	struct bnx2x_func_tx_start_params *tx_start_params =
5642 		&params->params.tx_start;
5643 	int i;
5644 
5645 	memset(rdata, 0, sizeof(*rdata));
5646 
5647 	rdata->dcb_enabled = tx_start_params->dcb_enabled;
5648 	rdata->dcb_version = tx_start_params->dcb_version;
5649 	rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
5650 
5651 	for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
5652 		rdata->traffic_type_to_priority_cos[i] =
5653 			tx_start_params->traffic_type_to_priority_cos[i];
5654 
5655 	return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
5656 			     U64_HI(data_mapping),
5657 			     U64_LO(data_mapping), NONE_CONNECTION_TYPE);
5658 }
5659 
5660 static int bnx2x_func_send_cmd(struct bnx2x *bp,
5661 			       struct bnx2x_func_state_params *params)
5662 {
5663 	switch (params->cmd) {
5664 	case BNX2X_F_CMD_HW_INIT:
5665 		return bnx2x_func_hw_init(bp, params);
5666 	case BNX2X_F_CMD_START:
5667 		return bnx2x_func_send_start(bp, params);
5668 	case BNX2X_F_CMD_STOP:
5669 		return bnx2x_func_send_stop(bp, params);
5670 	case BNX2X_F_CMD_HW_RESET:
5671 		return bnx2x_func_hw_reset(bp, params);
5672 	case BNX2X_F_CMD_TX_STOP:
5673 		return bnx2x_func_send_tx_stop(bp, params);
5674 	case BNX2X_F_CMD_TX_START:
5675 		return bnx2x_func_send_tx_start(bp, params);
5676 	default:
5677 		BNX2X_ERR("Unknown command: %d\n", params->cmd);
5678 		return -EINVAL;
5679 	}
5680 }
5681 
5682 void bnx2x_init_func_obj(struct bnx2x *bp,
5683 			 struct bnx2x_func_sp_obj *obj,
5684 			 void *rdata, dma_addr_t rdata_mapping,
5685 			 struct bnx2x_func_sp_drv_ops *drv_iface)
5686 {
5687 	memset(obj, 0, sizeof(*obj));
5688 
5689 	mutex_init(&obj->one_pending_mutex);
5690 
5691 	obj->rdata = rdata;
5692 	obj->rdata_mapping = rdata_mapping;
5693 
5694 	obj->send_cmd = bnx2x_func_send_cmd;
5695 	obj->check_transition = bnx2x_func_chk_transition;
5696 	obj->complete_cmd = bnx2x_func_comp_cmd;
5697 	obj->wait_comp = bnx2x_func_wait_comp;
5698 
5699 	obj->drv = drv_iface;
5700 }
5701 
5702 /**
5703  * bnx2x_func_state_change - perform Function state change transition
5704  *
5705  * @bp:		device handle
5706  * @params:	parameters to perform the transaction
5707  *
5708  * returns 0 in case of successfully completed transition,
5709  *         negative error code in case of failure, positive
5710  *         (EBUSY) value if there is a completion to that is
5711  *         still pending (possible only if RAMROD_COMP_WAIT is
5712  *         not set in params->ramrod_flags for asynchronous
5713  *         commands).
5714  */
5715 int bnx2x_func_state_change(struct bnx2x *bp,
5716 			    struct bnx2x_func_state_params *params)
5717 {
5718 	struct bnx2x_func_sp_obj *o = params->f_obj;
5719 	int rc;
5720 	enum bnx2x_func_cmd cmd = params->cmd;
5721 	unsigned long *pending = &o->pending;
5722 
5723 	mutex_lock(&o->one_pending_mutex);
5724 
5725 	/* Check that the requested transition is legal */
5726 	if (o->check_transition(bp, o, params)) {
5727 		mutex_unlock(&o->one_pending_mutex);
5728 		return -EINVAL;
5729 	}
5730 
5731 	/* Set "pending" bit */
5732 	set_bit(cmd, pending);
5733 
5734 	/* Don't send a command if only driver cleanup was requested */
5735 	if (test_bit(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5736 		bnx2x_func_state_change_comp(bp, o, cmd);
5737 		mutex_unlock(&o->one_pending_mutex);
5738 	} else {
5739 		/* Send a ramrod */
5740 		rc = o->send_cmd(bp, params);
5741 
5742 		mutex_unlock(&o->one_pending_mutex);
5743 
5744 		if (rc) {
5745 			o->next_state = BNX2X_F_STATE_MAX;
5746 			clear_bit(cmd, pending);
5747 			smp_mb__after_clear_bit();
5748 			return rc;
5749 		}
5750 
5751 		if (test_bit(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
5752 			rc = o->wait_comp(bp, o, cmd);
5753 			if (rc)
5754 				return rc;
5755 
5756 			return 0;
5757 		}
5758 	}
5759 
5760 	return !!test_bit(cmd, pending);
5761 }
5762