1 /* bnx2x_main.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/kernel.h> 25 #include <linux/device.h> /* for dev_info() */ 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/ioport.h> 29 #include <linux/slab.h> 30 #include <linux/interrupt.h> 31 #include <linux/pci.h> 32 #include <linux/aer.h> 33 #include <linux/init.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/bitops.h> 39 #include <linux/irq.h> 40 #include <linux/delay.h> 41 #include <asm/byteorder.h> 42 #include <linux/time.h> 43 #include <linux/ethtool.h> 44 #include <linux/mii.h> 45 #include <linux/if_vlan.h> 46 #include <linux/crash_dump.h> 47 #include <net/ip.h> 48 #include <net/ipv6.h> 49 #include <net/tcp.h> 50 #include <net/vxlan.h> 51 #include <net/checksum.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/workqueue.h> 54 #include <linux/crc32.h> 55 #include <linux/crc32c.h> 56 #include <linux/prefetch.h> 57 #include <linux/zlib.h> 58 #include <linux/io.h> 59 #include <linux/semaphore.h> 60 #include <linux/stringify.h> 61 #include <linux/vmalloc.h> 62 #include "bnx2x.h" 63 #include "bnx2x_init.h" 64 #include "bnx2x_init_ops.h" 65 #include "bnx2x_cmn.h" 66 #include "bnx2x_vfpf.h" 67 #include "bnx2x_dcb.h" 68 #include "bnx2x_sp.h" 69 #include <linux/firmware.h> 70 #include "bnx2x_fw_file_hdr.h" 71 /* FW files */ 72 #define FW_FILE_VERSION \ 73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 76 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 80 81 /* Time in jiffies before concluding the transmitter is hung */ 82 #define TX_TIMEOUT (5*HZ) 83 84 static char version[] = 85 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver " 86 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 87 88 MODULE_AUTHOR("Eliezer Tamir"); 89 MODULE_DESCRIPTION("QLogic " 90 "BCM57710/57711/57711E/" 91 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 92 "57840/57840_MF Driver"); 93 MODULE_LICENSE("GPL"); 94 MODULE_VERSION(DRV_MODULE_VERSION); 95 MODULE_FIRMWARE(FW_FILE_NAME_E1); 96 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 97 MODULE_FIRMWARE(FW_FILE_NAME_E2); 98 99 int bnx2x_num_queues; 100 module_param_named(num_queues, bnx2x_num_queues, int, 0444); 101 MODULE_PARM_DESC(num_queues, 102 " Set number of queues (default is as a number of CPUs)"); 103 104 static int disable_tpa; 105 module_param(disable_tpa, int, 0444); 106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 107 108 static int int_mode; 109 module_param(int_mode, int, 0444); 110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 111 "(1 INT#x; 2 MSI)"); 112 113 static int dropless_fc; 114 module_param(dropless_fc, int, 0444); 115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 116 117 static int mrrs = -1; 118 module_param(mrrs, int, 0444); 119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 120 121 static int debug; 122 module_param(debug, int, 0444); 123 MODULE_PARM_DESC(debug, " Default debug msglevel"); 124 125 static struct workqueue_struct *bnx2x_wq; 126 struct workqueue_struct *bnx2x_iov_wq; 127 128 struct bnx2x_mac_vals { 129 u32 xmac_addr; 130 u32 xmac_val; 131 u32 emac_addr; 132 u32 emac_val; 133 u32 umac_addr[2]; 134 u32 umac_val[2]; 135 u32 bmac_addr; 136 u32 bmac_val[2]; 137 }; 138 139 enum bnx2x_board_type { 140 BCM57710 = 0, 141 BCM57711, 142 BCM57711E, 143 BCM57712, 144 BCM57712_MF, 145 BCM57712_VF, 146 BCM57800, 147 BCM57800_MF, 148 BCM57800_VF, 149 BCM57810, 150 BCM57810_MF, 151 BCM57810_VF, 152 BCM57840_4_10, 153 BCM57840_2_20, 154 BCM57840_MF, 155 BCM57840_VF, 156 BCM57811, 157 BCM57811_MF, 158 BCM57840_O, 159 BCM57840_MFO, 160 BCM57811_VF 161 }; 162 163 /* indexed by board_type, above */ 164 static struct { 165 char *name; 166 } board_info[] = { 167 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" }, 168 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" }, 169 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" }, 170 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" }, 171 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" }, 172 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" }, 173 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" }, 174 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" }, 175 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" }, 176 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" }, 177 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" }, 178 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" }, 179 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" }, 180 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" }, 181 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 182 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 183 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" }, 184 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" }, 185 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" }, 186 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 187 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" } 188 }; 189 190 #ifndef PCI_DEVICE_ID_NX2_57710 191 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 192 #endif 193 #ifndef PCI_DEVICE_ID_NX2_57711 194 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 195 #endif 196 #ifndef PCI_DEVICE_ID_NX2_57711E 197 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 198 #endif 199 #ifndef PCI_DEVICE_ID_NX2_57712 200 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 201 #endif 202 #ifndef PCI_DEVICE_ID_NX2_57712_MF 203 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 204 #endif 205 #ifndef PCI_DEVICE_ID_NX2_57712_VF 206 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 207 #endif 208 #ifndef PCI_DEVICE_ID_NX2_57800 209 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 210 #endif 211 #ifndef PCI_DEVICE_ID_NX2_57800_MF 212 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 213 #endif 214 #ifndef PCI_DEVICE_ID_NX2_57800_VF 215 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 216 #endif 217 #ifndef PCI_DEVICE_ID_NX2_57810 218 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 219 #endif 220 #ifndef PCI_DEVICE_ID_NX2_57810_MF 221 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 222 #endif 223 #ifndef PCI_DEVICE_ID_NX2_57840_O 224 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 225 #endif 226 #ifndef PCI_DEVICE_ID_NX2_57810_VF 227 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 228 #endif 229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 230 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 231 #endif 232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 233 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 234 #endif 235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 236 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 237 #endif 238 #ifndef PCI_DEVICE_ID_NX2_57840_MF 239 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 240 #endif 241 #ifndef PCI_DEVICE_ID_NX2_57840_VF 242 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 243 #endif 244 #ifndef PCI_DEVICE_ID_NX2_57811 245 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 246 #endif 247 #ifndef PCI_DEVICE_ID_NX2_57811_MF 248 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 249 #endif 250 #ifndef PCI_DEVICE_ID_NX2_57811_VF 251 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 252 #endif 253 254 static const struct pci_device_id bnx2x_pci_tbl[] = { 255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 273 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 275 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 279 { 0 } 280 }; 281 282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 283 284 /* Global resources for unloading a previously loaded device */ 285 #define BNX2X_PREV_WAIT_NEEDED 1 286 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 287 static LIST_HEAD(bnx2x_prev_list); 288 289 /* Forward declaration */ 290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 293 294 /**************************************************************************** 295 * General service functions 296 ****************************************************************************/ 297 298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 299 300 static void __storm_memset_dma_mapping(struct bnx2x *bp, 301 u32 addr, dma_addr_t mapping) 302 { 303 REG_WR(bp, addr, U64_LO(mapping)); 304 REG_WR(bp, addr + 4, U64_HI(mapping)); 305 } 306 307 static void storm_memset_spq_addr(struct bnx2x *bp, 308 dma_addr_t mapping, u16 abs_fid) 309 { 310 u32 addr = XSEM_REG_FAST_MEMORY + 311 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 312 313 __storm_memset_dma_mapping(bp, addr, mapping); 314 } 315 316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 317 u16 pf_id) 318 { 319 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 320 pf_id); 321 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 322 pf_id); 323 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 324 pf_id); 325 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 326 pf_id); 327 } 328 329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 330 u8 enable) 331 { 332 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 333 enable); 334 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 335 enable); 336 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 337 enable); 338 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 339 enable); 340 } 341 342 static void storm_memset_eq_data(struct bnx2x *bp, 343 struct event_ring_data *eq_data, 344 u16 pfid) 345 { 346 size_t size = sizeof(struct event_ring_data); 347 348 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 349 350 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 351 } 352 353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 354 u16 pfid) 355 { 356 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 357 REG_WR16(bp, addr, eq_prod); 358 } 359 360 /* used only at init 361 * locking is done by mcp 362 */ 363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 364 { 365 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 366 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 368 PCICFG_VENDOR_ID_OFFSET); 369 } 370 371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 372 { 373 u32 val; 374 375 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 376 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 378 PCICFG_VENDOR_ID_OFFSET); 379 380 return val; 381 } 382 383 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 384 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 385 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 386 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 387 #define DMAE_DP_DST_NONE "dst_addr [none]" 388 389 static void bnx2x_dp_dmae(struct bnx2x *bp, 390 struct dmae_command *dmae, int msglvl) 391 { 392 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 393 int i; 394 395 switch (dmae->opcode & DMAE_COMMAND_DST) { 396 case DMAE_CMD_DST_PCI: 397 if (src_type == DMAE_CMD_SRC_PCI) 398 DP(msglvl, "DMAE: opcode 0x%08x\n" 399 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 400 "comp_addr [%x:%08x], comp_val 0x%08x\n", 401 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 402 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 403 dmae->comp_addr_hi, dmae->comp_addr_lo, 404 dmae->comp_val); 405 else 406 DP(msglvl, "DMAE: opcode 0x%08x\n" 407 "src [%08x], len [%d*4], dst [%x:%08x]\n" 408 "comp_addr [%x:%08x], comp_val 0x%08x\n", 409 dmae->opcode, dmae->src_addr_lo >> 2, 410 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 411 dmae->comp_addr_hi, dmae->comp_addr_lo, 412 dmae->comp_val); 413 break; 414 case DMAE_CMD_DST_GRC: 415 if (src_type == DMAE_CMD_SRC_PCI) 416 DP(msglvl, "DMAE: opcode 0x%08x\n" 417 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 418 "comp_addr [%x:%08x], comp_val 0x%08x\n", 419 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 420 dmae->len, dmae->dst_addr_lo >> 2, 421 dmae->comp_addr_hi, dmae->comp_addr_lo, 422 dmae->comp_val); 423 else 424 DP(msglvl, "DMAE: opcode 0x%08x\n" 425 "src [%08x], len [%d*4], dst [%08x]\n" 426 "comp_addr [%x:%08x], comp_val 0x%08x\n", 427 dmae->opcode, dmae->src_addr_lo >> 2, 428 dmae->len, dmae->dst_addr_lo >> 2, 429 dmae->comp_addr_hi, dmae->comp_addr_lo, 430 dmae->comp_val); 431 break; 432 default: 433 if (src_type == DMAE_CMD_SRC_PCI) 434 DP(msglvl, "DMAE: opcode 0x%08x\n" 435 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 436 "comp_addr [%x:%08x] comp_val 0x%08x\n", 437 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 438 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 439 dmae->comp_val); 440 else 441 DP(msglvl, "DMAE: opcode 0x%08x\n" 442 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 443 "comp_addr [%x:%08x] comp_val 0x%08x\n", 444 dmae->opcode, dmae->src_addr_lo >> 2, 445 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 446 dmae->comp_val); 447 break; 448 } 449 450 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 451 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 452 i, *(((u32 *)dmae) + i)); 453 } 454 455 /* copy command into DMAE command memory and set DMAE command go */ 456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 457 { 458 u32 cmd_offset; 459 int i; 460 461 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 462 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 463 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 464 } 465 REG_WR(bp, dmae_reg_go_c[idx], 1); 466 } 467 468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 469 { 470 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 471 DMAE_CMD_C_ENABLE); 472 } 473 474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 475 { 476 return opcode & ~DMAE_CMD_SRC_RESET; 477 } 478 479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 480 bool with_comp, u8 comp_type) 481 { 482 u32 opcode = 0; 483 484 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 485 (dst_type << DMAE_COMMAND_DST_SHIFT)); 486 487 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 488 489 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 490 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 491 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 492 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 493 494 #ifdef __BIG_ENDIAN 495 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 496 #else 497 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 498 #endif 499 if (with_comp) 500 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 501 return opcode; 502 } 503 504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 505 struct dmae_command *dmae, 506 u8 src_type, u8 dst_type) 507 { 508 memset(dmae, 0, sizeof(struct dmae_command)); 509 510 /* set the opcode */ 511 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 512 true, DMAE_COMP_PCI); 513 514 /* fill in the completion parameters */ 515 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 516 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 517 dmae->comp_val = DMAE_COMP_VAL; 518 } 519 520 /* issue a dmae command over the init-channel and wait for completion */ 521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 522 u32 *comp) 523 { 524 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 525 int rc = 0; 526 527 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 528 529 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 530 * as long as this code is called both from syscall context and 531 * from ndo_set_rx_mode() flow that may be called from BH. 532 */ 533 534 spin_lock_bh(&bp->dmae_lock); 535 536 /* reset completion */ 537 *comp = 0; 538 539 /* post the command on the channel used for initializations */ 540 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 541 542 /* wait for completion */ 543 udelay(5); 544 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 545 546 if (!cnt || 547 (bp->recovery_state != BNX2X_RECOVERY_DONE && 548 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 549 BNX2X_ERR("DMAE timeout!\n"); 550 rc = DMAE_TIMEOUT; 551 goto unlock; 552 } 553 cnt--; 554 udelay(50); 555 } 556 if (*comp & DMAE_PCI_ERR_FLAG) { 557 BNX2X_ERR("DMAE PCI error!\n"); 558 rc = DMAE_PCI_ERROR; 559 } 560 561 unlock: 562 563 spin_unlock_bh(&bp->dmae_lock); 564 565 return rc; 566 } 567 568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 569 u32 len32) 570 { 571 int rc; 572 struct dmae_command dmae; 573 574 if (!bp->dmae_ready) { 575 u32 *data = bnx2x_sp(bp, wb_data[0]); 576 577 if (CHIP_IS_E1(bp)) 578 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 579 else 580 bnx2x_init_str_wr(bp, dst_addr, data, len32); 581 return; 582 } 583 584 /* set opcode and fixed command fields */ 585 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 586 587 /* fill in addresses and len */ 588 dmae.src_addr_lo = U64_LO(dma_addr); 589 dmae.src_addr_hi = U64_HI(dma_addr); 590 dmae.dst_addr_lo = dst_addr >> 2; 591 dmae.dst_addr_hi = 0; 592 dmae.len = len32; 593 594 /* issue the command and wait for completion */ 595 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 596 if (rc) { 597 BNX2X_ERR("DMAE returned failure %d\n", rc); 598 #ifdef BNX2X_STOP_ON_ERROR 599 bnx2x_panic(); 600 #endif 601 } 602 } 603 604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 605 { 606 int rc; 607 struct dmae_command dmae; 608 609 if (!bp->dmae_ready) { 610 u32 *data = bnx2x_sp(bp, wb_data[0]); 611 int i; 612 613 if (CHIP_IS_E1(bp)) 614 for (i = 0; i < len32; i++) 615 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 616 else 617 for (i = 0; i < len32; i++) 618 data[i] = REG_RD(bp, src_addr + i*4); 619 620 return; 621 } 622 623 /* set opcode and fixed command fields */ 624 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 625 626 /* fill in addresses and len */ 627 dmae.src_addr_lo = src_addr >> 2; 628 dmae.src_addr_hi = 0; 629 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 630 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 631 dmae.len = len32; 632 633 /* issue the command and wait for completion */ 634 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 635 if (rc) { 636 BNX2X_ERR("DMAE returned failure %d\n", rc); 637 #ifdef BNX2X_STOP_ON_ERROR 638 bnx2x_panic(); 639 #endif 640 } 641 } 642 643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 644 u32 addr, u32 len) 645 { 646 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 647 int offset = 0; 648 649 while (len > dmae_wr_max) { 650 bnx2x_write_dmae(bp, phys_addr + offset, 651 addr + offset, dmae_wr_max); 652 offset += dmae_wr_max * 4; 653 len -= dmae_wr_max; 654 } 655 656 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 657 } 658 659 enum storms { 660 XSTORM, 661 TSTORM, 662 CSTORM, 663 USTORM, 664 MAX_STORMS 665 }; 666 667 #define STORMS_NUM 4 668 #define REGS_IN_ENTRY 4 669 670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 671 enum storms storm, 672 int entry) 673 { 674 switch (storm) { 675 case XSTORM: 676 return XSTORM_ASSERT_LIST_OFFSET(entry); 677 case TSTORM: 678 return TSTORM_ASSERT_LIST_OFFSET(entry); 679 case CSTORM: 680 return CSTORM_ASSERT_LIST_OFFSET(entry); 681 case USTORM: 682 return USTORM_ASSERT_LIST_OFFSET(entry); 683 case MAX_STORMS: 684 default: 685 BNX2X_ERR("unknown storm\n"); 686 } 687 return -EINVAL; 688 } 689 690 static int bnx2x_mc_assert(struct bnx2x *bp) 691 { 692 char last_idx; 693 int i, j, rc = 0; 694 enum storms storm; 695 u32 regs[REGS_IN_ENTRY]; 696 u32 bar_storm_intmem[STORMS_NUM] = { 697 BAR_XSTRORM_INTMEM, 698 BAR_TSTRORM_INTMEM, 699 BAR_CSTRORM_INTMEM, 700 BAR_USTRORM_INTMEM 701 }; 702 u32 storm_assert_list_index[STORMS_NUM] = { 703 XSTORM_ASSERT_LIST_INDEX_OFFSET, 704 TSTORM_ASSERT_LIST_INDEX_OFFSET, 705 CSTORM_ASSERT_LIST_INDEX_OFFSET, 706 USTORM_ASSERT_LIST_INDEX_OFFSET 707 }; 708 char *storms_string[STORMS_NUM] = { 709 "XSTORM", 710 "TSTORM", 711 "CSTORM", 712 "USTORM" 713 }; 714 715 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 716 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 717 storm_assert_list_index[storm]); 718 if (last_idx) 719 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 720 storms_string[storm], last_idx); 721 722 /* print the asserts */ 723 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 724 /* read a single assert entry */ 725 for (j = 0; j < REGS_IN_ENTRY; j++) 726 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 727 bnx2x_get_assert_list_entry(bp, 728 storm, 729 i) + 730 sizeof(u32) * j); 731 732 /* log entry if it contains a valid assert */ 733 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 734 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 735 storms_string[storm], i, regs[3], 736 regs[2], regs[1], regs[0]); 737 rc++; 738 } else { 739 break; 740 } 741 } 742 } 743 744 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 745 CHIP_IS_E1(bp) ? "everest1" : 746 CHIP_IS_E1H(bp) ? "everest1h" : 747 CHIP_IS_E2(bp) ? "everest2" : "everest3", 748 BCM_5710_FW_MAJOR_VERSION, 749 BCM_5710_FW_MINOR_VERSION, 750 BCM_5710_FW_REVISION_VERSION); 751 752 return rc; 753 } 754 755 #define MCPR_TRACE_BUFFER_SIZE (0x800) 756 #define SCRATCH_BUFFER_SIZE(bp) \ 757 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 758 759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 760 { 761 u32 addr, val; 762 u32 mark, offset; 763 __be32 data[9]; 764 int word; 765 u32 trace_shmem_base; 766 if (BP_NOMCP(bp)) { 767 BNX2X_ERR("NO MCP - can not dump\n"); 768 return; 769 } 770 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 771 (bp->common.bc_ver & 0xff0000) >> 16, 772 (bp->common.bc_ver & 0xff00) >> 8, 773 (bp->common.bc_ver & 0xff)); 774 775 if (pci_channel_offline(bp->pdev)) { 776 BNX2X_ERR("Cannot dump MCP info while in PCI error\n"); 777 return; 778 } 779 780 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 781 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 782 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 783 784 if (BP_PATH(bp) == 0) 785 trace_shmem_base = bp->common.shmem_base; 786 else 787 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 788 789 /* sanity */ 790 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 791 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 792 SCRATCH_BUFFER_SIZE(bp)) { 793 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 794 trace_shmem_base); 795 return; 796 } 797 798 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 799 800 /* validate TRCB signature */ 801 mark = REG_RD(bp, addr); 802 if (mark != MFW_TRACE_SIGNATURE) { 803 BNX2X_ERR("Trace buffer signature is missing."); 804 return ; 805 } 806 807 /* read cyclic buffer pointer */ 808 addr += 4; 809 mark = REG_RD(bp, addr); 810 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 811 if (mark >= trace_shmem_base || mark < addr + 4) { 812 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 813 return; 814 } 815 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 816 817 printk("%s", lvl); 818 819 /* dump buffer after the mark */ 820 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 821 for (word = 0; word < 8; word++) 822 data[word] = htonl(REG_RD(bp, offset + 4*word)); 823 data[8] = 0x0; 824 pr_cont("%s", (char *)data); 825 } 826 827 /* dump buffer before the mark */ 828 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 829 for (word = 0; word < 8; word++) 830 data[word] = htonl(REG_RD(bp, offset + 4*word)); 831 data[8] = 0x0; 832 pr_cont("%s", (char *)data); 833 } 834 printk("%s" "end of fw dump\n", lvl); 835 } 836 837 static void bnx2x_fw_dump(struct bnx2x *bp) 838 { 839 bnx2x_fw_dump_lvl(bp, KERN_ERR); 840 } 841 842 static void bnx2x_hc_int_disable(struct bnx2x *bp) 843 { 844 int port = BP_PORT(bp); 845 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 846 u32 val = REG_RD(bp, addr); 847 848 /* in E1 we must use only PCI configuration space to disable 849 * MSI/MSIX capability 850 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 851 */ 852 if (CHIP_IS_E1(bp)) { 853 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 854 * Use mask register to prevent from HC sending interrupts 855 * after we exit the function 856 */ 857 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 858 859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 860 HC_CONFIG_0_REG_INT_LINE_EN_0 | 861 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 862 } else 863 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 864 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 865 HC_CONFIG_0_REG_INT_LINE_EN_0 | 866 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 867 868 DP(NETIF_MSG_IFDOWN, 869 "write %x to HC %d (addr 0x%x)\n", 870 val, port, addr); 871 872 /* flush all outstanding writes */ 873 mmiowb(); 874 875 REG_WR(bp, addr, val); 876 if (REG_RD(bp, addr) != val) 877 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 878 } 879 880 static void bnx2x_igu_int_disable(struct bnx2x *bp) 881 { 882 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 883 884 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 885 IGU_PF_CONF_INT_LINE_EN | 886 IGU_PF_CONF_ATTN_BIT_EN); 887 888 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 889 890 /* flush all outstanding writes */ 891 mmiowb(); 892 893 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 894 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 895 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 896 } 897 898 static void bnx2x_int_disable(struct bnx2x *bp) 899 { 900 if (bp->common.int_block == INT_BLOCK_HC) 901 bnx2x_hc_int_disable(bp); 902 else 903 bnx2x_igu_int_disable(bp); 904 } 905 906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 907 { 908 int i; 909 u16 j; 910 struct hc_sp_status_block_data sp_sb_data; 911 int func = BP_FUNC(bp); 912 #ifdef BNX2X_STOP_ON_ERROR 913 u16 start = 0, end = 0; 914 u8 cos; 915 #endif 916 if (IS_PF(bp) && disable_int) 917 bnx2x_int_disable(bp); 918 919 bp->stats_state = STATS_STATE_DISABLED; 920 bp->eth_stats.unrecoverable_error++; 921 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 922 923 BNX2X_ERR("begin crash dump -----------------\n"); 924 925 /* Indices */ 926 /* Common */ 927 if (IS_PF(bp)) { 928 struct host_sp_status_block *def_sb = bp->def_status_blk; 929 int data_size, cstorm_offset; 930 931 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 932 bp->def_idx, bp->def_att_idx, bp->attn_state, 933 bp->spq_prod_idx, bp->stats_counter); 934 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 935 def_sb->atten_status_block.attn_bits, 936 def_sb->atten_status_block.attn_bits_ack, 937 def_sb->atten_status_block.status_block_id, 938 def_sb->atten_status_block.attn_bits_index); 939 BNX2X_ERR(" def ("); 940 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 941 pr_cont("0x%x%s", 942 def_sb->sp_sb.index_values[i], 943 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 944 945 data_size = sizeof(struct hc_sp_status_block_data) / 946 sizeof(u32); 947 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 948 for (i = 0; i < data_size; i++) 949 *((u32 *)&sp_sb_data + i) = 950 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 951 i * sizeof(u32)); 952 953 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 954 sp_sb_data.igu_sb_id, 955 sp_sb_data.igu_seg_id, 956 sp_sb_data.p_func.pf_id, 957 sp_sb_data.p_func.vnic_id, 958 sp_sb_data.p_func.vf_id, 959 sp_sb_data.p_func.vf_valid, 960 sp_sb_data.state); 961 } 962 963 for_each_eth_queue(bp, i) { 964 struct bnx2x_fastpath *fp = &bp->fp[i]; 965 int loop; 966 struct hc_status_block_data_e2 sb_data_e2; 967 struct hc_status_block_data_e1x sb_data_e1x; 968 struct hc_status_block_sm *hc_sm_p = 969 CHIP_IS_E1x(bp) ? 970 sb_data_e1x.common.state_machine : 971 sb_data_e2.common.state_machine; 972 struct hc_index_data *hc_index_p = 973 CHIP_IS_E1x(bp) ? 974 sb_data_e1x.index_data : 975 sb_data_e2.index_data; 976 u8 data_size, cos; 977 u32 *sb_data_p; 978 struct bnx2x_fp_txdata txdata; 979 980 if (!bp->fp) 981 break; 982 983 if (!fp->rx_cons_sb) 984 continue; 985 986 /* Rx */ 987 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 988 i, fp->rx_bd_prod, fp->rx_bd_cons, 989 fp->rx_comp_prod, 990 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 991 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 992 fp->rx_sge_prod, fp->last_max_sge, 993 le16_to_cpu(fp->fp_hc_idx)); 994 995 /* Tx */ 996 for_each_cos_in_tx_queue(fp, cos) 997 { 998 if (!fp->txdata_ptr[cos]) 999 break; 1000 1001 txdata = *fp->txdata_ptr[cos]; 1002 1003 if (!txdata.tx_cons_sb) 1004 continue; 1005 1006 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 1007 i, txdata.tx_pkt_prod, 1008 txdata.tx_pkt_cons, txdata.tx_bd_prod, 1009 txdata.tx_bd_cons, 1010 le16_to_cpu(*txdata.tx_cons_sb)); 1011 } 1012 1013 loop = CHIP_IS_E1x(bp) ? 1014 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1015 1016 /* host sb data */ 1017 1018 if (IS_FCOE_FP(fp)) 1019 continue; 1020 1021 BNX2X_ERR(" run indexes ("); 1022 for (j = 0; j < HC_SB_MAX_SM; j++) 1023 pr_cont("0x%x%s", 1024 fp->sb_running_index[j], 1025 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1026 1027 BNX2X_ERR(" indexes ("); 1028 for (j = 0; j < loop; j++) 1029 pr_cont("0x%x%s", 1030 fp->sb_index_values[j], 1031 (j == loop - 1) ? ")" : " "); 1032 1033 /* VF cannot access FW refelection for status block */ 1034 if (IS_VF(bp)) 1035 continue; 1036 1037 /* fw sb data */ 1038 data_size = CHIP_IS_E1x(bp) ? 1039 sizeof(struct hc_status_block_data_e1x) : 1040 sizeof(struct hc_status_block_data_e2); 1041 data_size /= sizeof(u32); 1042 sb_data_p = CHIP_IS_E1x(bp) ? 1043 (u32 *)&sb_data_e1x : 1044 (u32 *)&sb_data_e2; 1045 /* copy sb data in here */ 1046 for (j = 0; j < data_size; j++) 1047 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1048 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1049 j * sizeof(u32)); 1050 1051 if (!CHIP_IS_E1x(bp)) { 1052 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1053 sb_data_e2.common.p_func.pf_id, 1054 sb_data_e2.common.p_func.vf_id, 1055 sb_data_e2.common.p_func.vf_valid, 1056 sb_data_e2.common.p_func.vnic_id, 1057 sb_data_e2.common.same_igu_sb_1b, 1058 sb_data_e2.common.state); 1059 } else { 1060 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1061 sb_data_e1x.common.p_func.pf_id, 1062 sb_data_e1x.common.p_func.vf_id, 1063 sb_data_e1x.common.p_func.vf_valid, 1064 sb_data_e1x.common.p_func.vnic_id, 1065 sb_data_e1x.common.same_igu_sb_1b, 1066 sb_data_e1x.common.state); 1067 } 1068 1069 /* SB_SMs data */ 1070 for (j = 0; j < HC_SB_MAX_SM; j++) { 1071 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1072 j, hc_sm_p[j].__flags, 1073 hc_sm_p[j].igu_sb_id, 1074 hc_sm_p[j].igu_seg_id, 1075 hc_sm_p[j].time_to_expire, 1076 hc_sm_p[j].timer_value); 1077 } 1078 1079 /* Indices data */ 1080 for (j = 0; j < loop; j++) { 1081 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1082 hc_index_p[j].flags, 1083 hc_index_p[j].timeout); 1084 } 1085 } 1086 1087 #ifdef BNX2X_STOP_ON_ERROR 1088 if (IS_PF(bp)) { 1089 /* event queue */ 1090 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1091 for (i = 0; i < NUM_EQ_DESC; i++) { 1092 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1093 1094 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1095 i, bp->eq_ring[i].message.opcode, 1096 bp->eq_ring[i].message.error); 1097 BNX2X_ERR("data: %x %x %x\n", 1098 data[0], data[1], data[2]); 1099 } 1100 } 1101 1102 /* Rings */ 1103 /* Rx */ 1104 for_each_valid_rx_queue(bp, i) { 1105 struct bnx2x_fastpath *fp = &bp->fp[i]; 1106 1107 if (!bp->fp) 1108 break; 1109 1110 if (!fp->rx_cons_sb) 1111 continue; 1112 1113 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1114 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1115 for (j = start; j != end; j = RX_BD(j + 1)) { 1116 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1117 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1118 1119 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1120 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1121 } 1122 1123 start = RX_SGE(fp->rx_sge_prod); 1124 end = RX_SGE(fp->last_max_sge); 1125 for (j = start; j != end; j = RX_SGE(j + 1)) { 1126 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1127 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1128 1129 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1130 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1131 } 1132 1133 start = RCQ_BD(fp->rx_comp_cons - 10); 1134 end = RCQ_BD(fp->rx_comp_cons + 503); 1135 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1136 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1137 1138 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1139 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1140 } 1141 } 1142 1143 /* Tx */ 1144 for_each_valid_tx_queue(bp, i) { 1145 struct bnx2x_fastpath *fp = &bp->fp[i]; 1146 1147 if (!bp->fp) 1148 break; 1149 1150 for_each_cos_in_tx_queue(fp, cos) { 1151 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1152 1153 if (!fp->txdata_ptr[cos]) 1154 break; 1155 1156 if (!txdata->tx_cons_sb) 1157 continue; 1158 1159 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1160 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1161 for (j = start; j != end; j = TX_BD(j + 1)) { 1162 struct sw_tx_bd *sw_bd = 1163 &txdata->tx_buf_ring[j]; 1164 1165 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1166 i, cos, j, sw_bd->skb, 1167 sw_bd->first_bd); 1168 } 1169 1170 start = TX_BD(txdata->tx_bd_cons - 10); 1171 end = TX_BD(txdata->tx_bd_cons + 254); 1172 for (j = start; j != end; j = TX_BD(j + 1)) { 1173 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1174 1175 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1176 i, cos, j, tx_bd[0], tx_bd[1], 1177 tx_bd[2], tx_bd[3]); 1178 } 1179 } 1180 } 1181 #endif 1182 if (IS_PF(bp)) { 1183 bnx2x_fw_dump(bp); 1184 bnx2x_mc_assert(bp); 1185 } 1186 BNX2X_ERR("end crash dump -----------------\n"); 1187 } 1188 1189 /* 1190 * FLR Support for E2 1191 * 1192 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1193 * initialization. 1194 */ 1195 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1196 #define FLR_WAIT_INTERVAL 50 /* usec */ 1197 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1198 1199 struct pbf_pN_buf_regs { 1200 int pN; 1201 u32 init_crd; 1202 u32 crd; 1203 u32 crd_freed; 1204 }; 1205 1206 struct pbf_pN_cmd_regs { 1207 int pN; 1208 u32 lines_occup; 1209 u32 lines_freed; 1210 }; 1211 1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1213 struct pbf_pN_buf_regs *regs, 1214 u32 poll_count) 1215 { 1216 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1217 u32 cur_cnt = poll_count; 1218 1219 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1220 crd = crd_start = REG_RD(bp, regs->crd); 1221 init_crd = REG_RD(bp, regs->init_crd); 1222 1223 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1224 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1225 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1226 1227 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1228 (init_crd - crd_start))) { 1229 if (cur_cnt--) { 1230 udelay(FLR_WAIT_INTERVAL); 1231 crd = REG_RD(bp, regs->crd); 1232 crd_freed = REG_RD(bp, regs->crd_freed); 1233 } else { 1234 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1235 regs->pN); 1236 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1237 regs->pN, crd); 1238 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1239 regs->pN, crd_freed); 1240 break; 1241 } 1242 } 1243 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1244 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1245 } 1246 1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1248 struct pbf_pN_cmd_regs *regs, 1249 u32 poll_count) 1250 { 1251 u32 occup, to_free, freed, freed_start; 1252 u32 cur_cnt = poll_count; 1253 1254 occup = to_free = REG_RD(bp, regs->lines_occup); 1255 freed = freed_start = REG_RD(bp, regs->lines_freed); 1256 1257 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1258 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1259 1260 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1261 if (cur_cnt--) { 1262 udelay(FLR_WAIT_INTERVAL); 1263 occup = REG_RD(bp, regs->lines_occup); 1264 freed = REG_RD(bp, regs->lines_freed); 1265 } else { 1266 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1267 regs->pN); 1268 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1269 regs->pN, occup); 1270 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1271 regs->pN, freed); 1272 break; 1273 } 1274 } 1275 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1276 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1277 } 1278 1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1280 u32 expected, u32 poll_count) 1281 { 1282 u32 cur_cnt = poll_count; 1283 u32 val; 1284 1285 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1286 udelay(FLR_WAIT_INTERVAL); 1287 1288 return val; 1289 } 1290 1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1292 char *msg, u32 poll_cnt) 1293 { 1294 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1295 if (val != 0) { 1296 BNX2X_ERR("%s usage count=%d\n", msg, val); 1297 return 1; 1298 } 1299 return 0; 1300 } 1301 1302 /* Common routines with VF FLR cleanup */ 1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1304 { 1305 /* adjust polling timeout */ 1306 if (CHIP_REV_IS_EMUL(bp)) 1307 return FLR_POLL_CNT * 2000; 1308 1309 if (CHIP_REV_IS_FPGA(bp)) 1310 return FLR_POLL_CNT * 120; 1311 1312 return FLR_POLL_CNT; 1313 } 1314 1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1316 { 1317 struct pbf_pN_cmd_regs cmd_regs[] = { 1318 {0, (CHIP_IS_E3B0(bp)) ? 1319 PBF_REG_TQ_OCCUPANCY_Q0 : 1320 PBF_REG_P0_TQ_OCCUPANCY, 1321 (CHIP_IS_E3B0(bp)) ? 1322 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1323 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1324 {1, (CHIP_IS_E3B0(bp)) ? 1325 PBF_REG_TQ_OCCUPANCY_Q1 : 1326 PBF_REG_P1_TQ_OCCUPANCY, 1327 (CHIP_IS_E3B0(bp)) ? 1328 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1329 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1330 {4, (CHIP_IS_E3B0(bp)) ? 1331 PBF_REG_TQ_OCCUPANCY_LB_Q : 1332 PBF_REG_P4_TQ_OCCUPANCY, 1333 (CHIP_IS_E3B0(bp)) ? 1334 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1335 PBF_REG_P4_TQ_LINES_FREED_CNT} 1336 }; 1337 1338 struct pbf_pN_buf_regs buf_regs[] = { 1339 {0, (CHIP_IS_E3B0(bp)) ? 1340 PBF_REG_INIT_CRD_Q0 : 1341 PBF_REG_P0_INIT_CRD , 1342 (CHIP_IS_E3B0(bp)) ? 1343 PBF_REG_CREDIT_Q0 : 1344 PBF_REG_P0_CREDIT, 1345 (CHIP_IS_E3B0(bp)) ? 1346 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1347 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1348 {1, (CHIP_IS_E3B0(bp)) ? 1349 PBF_REG_INIT_CRD_Q1 : 1350 PBF_REG_P1_INIT_CRD, 1351 (CHIP_IS_E3B0(bp)) ? 1352 PBF_REG_CREDIT_Q1 : 1353 PBF_REG_P1_CREDIT, 1354 (CHIP_IS_E3B0(bp)) ? 1355 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1356 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1357 {4, (CHIP_IS_E3B0(bp)) ? 1358 PBF_REG_INIT_CRD_LB_Q : 1359 PBF_REG_P4_INIT_CRD, 1360 (CHIP_IS_E3B0(bp)) ? 1361 PBF_REG_CREDIT_LB_Q : 1362 PBF_REG_P4_CREDIT, 1363 (CHIP_IS_E3B0(bp)) ? 1364 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1365 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1366 }; 1367 1368 int i; 1369 1370 /* Verify the command queues are flushed P0, P1, P4 */ 1371 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1372 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1373 1374 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1375 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1376 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1377 } 1378 1379 #define OP_GEN_PARAM(param) \ 1380 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1381 1382 #define OP_GEN_TYPE(type) \ 1383 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1384 1385 #define OP_GEN_AGG_VECT(index) \ 1386 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1387 1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1389 { 1390 u32 op_gen_command = 0; 1391 u32 comp_addr = BAR_CSTRORM_INTMEM + 1392 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1393 int ret = 0; 1394 1395 if (REG_RD(bp, comp_addr)) { 1396 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1397 return 1; 1398 } 1399 1400 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1401 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1402 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1403 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1404 1405 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1406 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1407 1408 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1409 BNX2X_ERR("FW final cleanup did not succeed\n"); 1410 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1411 (REG_RD(bp, comp_addr))); 1412 bnx2x_panic(); 1413 return 1; 1414 } 1415 /* Zero completion for next FLR */ 1416 REG_WR(bp, comp_addr, 0); 1417 1418 return ret; 1419 } 1420 1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1422 { 1423 u16 status; 1424 1425 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1426 return status & PCI_EXP_DEVSTA_TRPND; 1427 } 1428 1429 /* PF FLR specific routines 1430 */ 1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1432 { 1433 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1434 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1435 CFC_REG_NUM_LCIDS_INSIDE_PF, 1436 "CFC PF usage counter timed out", 1437 poll_cnt)) 1438 return 1; 1439 1440 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1441 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1442 DORQ_REG_PF_USAGE_CNT, 1443 "DQ PF usage counter timed out", 1444 poll_cnt)) 1445 return 1; 1446 1447 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1448 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1449 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1450 "QM PF usage counter timed out", 1451 poll_cnt)) 1452 return 1; 1453 1454 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1455 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1456 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1457 "Timers VNIC usage counter timed out", 1458 poll_cnt)) 1459 return 1; 1460 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1461 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1462 "Timers NUM_SCANS usage counter timed out", 1463 poll_cnt)) 1464 return 1; 1465 1466 /* Wait DMAE PF usage counter to zero */ 1467 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1468 dmae_reg_go_c[INIT_DMAE_C(bp)], 1469 "DMAE command register timed out", 1470 poll_cnt)) 1471 return 1; 1472 1473 return 0; 1474 } 1475 1476 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1477 { 1478 u32 val; 1479 1480 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1481 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1482 1483 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1484 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1485 1486 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1487 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1488 1489 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1490 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1491 1492 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1493 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1494 1495 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1496 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1497 1498 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1499 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1500 1501 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1502 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1503 val); 1504 } 1505 1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1507 { 1508 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1509 1510 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1511 1512 /* Re-enable PF target read access */ 1513 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1514 1515 /* Poll HW usage counters */ 1516 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1517 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1518 return -EBUSY; 1519 1520 /* Zero the igu 'trailing edge' and 'leading edge' */ 1521 1522 /* Send the FW cleanup command */ 1523 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1524 return -EBUSY; 1525 1526 /* ATC cleanup */ 1527 1528 /* Verify TX hw is flushed */ 1529 bnx2x_tx_hw_flushed(bp, poll_cnt); 1530 1531 /* Wait 100ms (not adjusted according to platform) */ 1532 msleep(100); 1533 1534 /* Verify no pending pci transactions */ 1535 if (bnx2x_is_pcie_pending(bp->pdev)) 1536 BNX2X_ERR("PCIE Transactions still pending\n"); 1537 1538 /* Debug */ 1539 bnx2x_hw_enable_status(bp); 1540 1541 /* 1542 * Master enable - Due to WB DMAE writes performed before this 1543 * register is re-initialized as part of the regular function init 1544 */ 1545 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1546 1547 return 0; 1548 } 1549 1550 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1551 { 1552 int port = BP_PORT(bp); 1553 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1554 u32 val = REG_RD(bp, addr); 1555 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1556 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1557 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1558 1559 if (msix) { 1560 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1561 HC_CONFIG_0_REG_INT_LINE_EN_0); 1562 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1563 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1564 if (single_msix) 1565 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1566 } else if (msi) { 1567 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1568 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1569 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1570 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1571 } else { 1572 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1573 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1574 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1575 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1576 1577 if (!CHIP_IS_E1(bp)) { 1578 DP(NETIF_MSG_IFUP, 1579 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1580 1581 REG_WR(bp, addr, val); 1582 1583 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1584 } 1585 } 1586 1587 if (CHIP_IS_E1(bp)) 1588 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1589 1590 DP(NETIF_MSG_IFUP, 1591 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1592 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1593 1594 REG_WR(bp, addr, val); 1595 /* 1596 * Ensure that HC_CONFIG is written before leading/trailing edge config 1597 */ 1598 mmiowb(); 1599 barrier(); 1600 1601 if (!CHIP_IS_E1(bp)) { 1602 /* init leading/trailing edge */ 1603 if (IS_MF(bp)) { 1604 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1605 if (bp->port.pmf) 1606 /* enable nig and gpio3 attention */ 1607 val |= 0x1100; 1608 } else 1609 val = 0xffff; 1610 1611 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1612 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1613 } 1614 1615 /* Make sure that interrupts are indeed enabled from here on */ 1616 mmiowb(); 1617 } 1618 1619 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1620 { 1621 u32 val; 1622 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1623 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1624 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1625 1626 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1627 1628 if (msix) { 1629 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1630 IGU_PF_CONF_SINGLE_ISR_EN); 1631 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1632 IGU_PF_CONF_ATTN_BIT_EN); 1633 1634 if (single_msix) 1635 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1636 } else if (msi) { 1637 val &= ~IGU_PF_CONF_INT_LINE_EN; 1638 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1639 IGU_PF_CONF_ATTN_BIT_EN | 1640 IGU_PF_CONF_SINGLE_ISR_EN); 1641 } else { 1642 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1643 val |= (IGU_PF_CONF_INT_LINE_EN | 1644 IGU_PF_CONF_ATTN_BIT_EN | 1645 IGU_PF_CONF_SINGLE_ISR_EN); 1646 } 1647 1648 /* Clean previous status - need to configure igu prior to ack*/ 1649 if ((!msix) || single_msix) { 1650 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1651 bnx2x_ack_int(bp); 1652 } 1653 1654 val |= IGU_PF_CONF_FUNC_EN; 1655 1656 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1657 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1658 1659 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1660 1661 if (val & IGU_PF_CONF_INT_LINE_EN) 1662 pci_intx(bp->pdev, true); 1663 1664 barrier(); 1665 1666 /* init leading/trailing edge */ 1667 if (IS_MF(bp)) { 1668 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1669 if (bp->port.pmf) 1670 /* enable nig and gpio3 attention */ 1671 val |= 0x1100; 1672 } else 1673 val = 0xffff; 1674 1675 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1676 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1677 1678 /* Make sure that interrupts are indeed enabled from here on */ 1679 mmiowb(); 1680 } 1681 1682 void bnx2x_int_enable(struct bnx2x *bp) 1683 { 1684 if (bp->common.int_block == INT_BLOCK_HC) 1685 bnx2x_hc_int_enable(bp); 1686 else 1687 bnx2x_igu_int_enable(bp); 1688 } 1689 1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1691 { 1692 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1693 int i, offset; 1694 1695 if (disable_hw) 1696 /* prevent the HW from sending interrupts */ 1697 bnx2x_int_disable(bp); 1698 1699 /* make sure all ISRs are done */ 1700 if (msix) { 1701 synchronize_irq(bp->msix_table[0].vector); 1702 offset = 1; 1703 if (CNIC_SUPPORT(bp)) 1704 offset++; 1705 for_each_eth_queue(bp, i) 1706 synchronize_irq(bp->msix_table[offset++].vector); 1707 } else 1708 synchronize_irq(bp->pdev->irq); 1709 1710 /* make sure sp_task is not running */ 1711 cancel_delayed_work(&bp->sp_task); 1712 cancel_delayed_work(&bp->period_task); 1713 flush_workqueue(bnx2x_wq); 1714 } 1715 1716 /* fast path */ 1717 1718 /* 1719 * General service functions 1720 */ 1721 1722 /* Return true if succeeded to acquire the lock */ 1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1724 { 1725 u32 lock_status; 1726 u32 resource_bit = (1 << resource); 1727 int func = BP_FUNC(bp); 1728 u32 hw_lock_control_reg; 1729 1730 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1731 "Trying to take a lock on resource %d\n", resource); 1732 1733 /* Validating that the resource is within range */ 1734 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1735 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1736 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1737 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1738 return false; 1739 } 1740 1741 if (func <= 5) 1742 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1743 else 1744 hw_lock_control_reg = 1745 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1746 1747 /* Try to acquire the lock */ 1748 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1749 lock_status = REG_RD(bp, hw_lock_control_reg); 1750 if (lock_status & resource_bit) 1751 return true; 1752 1753 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1754 "Failed to get a lock on resource %d\n", resource); 1755 return false; 1756 } 1757 1758 /** 1759 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1760 * 1761 * @bp: driver handle 1762 * 1763 * Returns the recovery leader resource id according to the engine this function 1764 * belongs to. Currently only only 2 engines is supported. 1765 */ 1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1767 { 1768 if (BP_PATH(bp)) 1769 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1770 else 1771 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1772 } 1773 1774 /** 1775 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1776 * 1777 * @bp: driver handle 1778 * 1779 * Tries to acquire a leader lock for current engine. 1780 */ 1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1782 { 1783 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1784 } 1785 1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1787 1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1790 { 1791 /* Set the interrupt occurred bit for the sp-task to recognize it 1792 * must ack the interrupt and transition according to the IGU 1793 * state machine. 1794 */ 1795 atomic_set(&bp->interrupt_occurred, 1); 1796 1797 /* The sp_task must execute only after this bit 1798 * is set, otherwise we will get out of sync and miss all 1799 * further interrupts. Hence, the barrier. 1800 */ 1801 smp_wmb(); 1802 1803 /* schedule sp_task to workqueue */ 1804 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1805 } 1806 1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1808 { 1809 struct bnx2x *bp = fp->bp; 1810 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1811 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1812 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1813 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1814 1815 DP(BNX2X_MSG_SP, 1816 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1817 fp->index, cid, command, bp->state, 1818 rr_cqe->ramrod_cqe.ramrod_type); 1819 1820 /* If cid is within VF range, replace the slowpath object with the 1821 * one corresponding to this VF 1822 */ 1823 if (cid >= BNX2X_FIRST_VF_CID && 1824 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1825 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1826 1827 switch (command) { 1828 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1829 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1830 drv_cmd = BNX2X_Q_CMD_UPDATE; 1831 break; 1832 1833 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1834 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1835 drv_cmd = BNX2X_Q_CMD_SETUP; 1836 break; 1837 1838 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1839 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1840 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1841 break; 1842 1843 case (RAMROD_CMD_ID_ETH_HALT): 1844 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1845 drv_cmd = BNX2X_Q_CMD_HALT; 1846 break; 1847 1848 case (RAMROD_CMD_ID_ETH_TERMINATE): 1849 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1850 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1851 break; 1852 1853 case (RAMROD_CMD_ID_ETH_EMPTY): 1854 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1855 drv_cmd = BNX2X_Q_CMD_EMPTY; 1856 break; 1857 1858 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1859 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1860 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1861 break; 1862 1863 default: 1864 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1865 command, fp->index); 1866 return; 1867 } 1868 1869 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1870 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1871 /* q_obj->complete_cmd() failure means that this was 1872 * an unexpected completion. 1873 * 1874 * In this case we don't want to increase the bp->spq_left 1875 * because apparently we haven't sent this command the first 1876 * place. 1877 */ 1878 #ifdef BNX2X_STOP_ON_ERROR 1879 bnx2x_panic(); 1880 #else 1881 return; 1882 #endif 1883 1884 smp_mb__before_atomic(); 1885 atomic_inc(&bp->cq_spq_left); 1886 /* push the change in bp->spq_left and towards the memory */ 1887 smp_mb__after_atomic(); 1888 1889 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1890 1891 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1892 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1893 /* if Q update ramrod is completed for last Q in AFEX vif set 1894 * flow, then ACK MCP at the end 1895 * 1896 * mark pending ACK to MCP bit. 1897 * prevent case that both bits are cleared. 1898 * At the end of load/unload driver checks that 1899 * sp_state is cleared, and this order prevents 1900 * races 1901 */ 1902 smp_mb__before_atomic(); 1903 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1904 wmb(); 1905 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1906 smp_mb__after_atomic(); 1907 1908 /* schedule the sp task as mcp ack is required */ 1909 bnx2x_schedule_sp_task(bp); 1910 } 1911 1912 return; 1913 } 1914 1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1916 { 1917 struct bnx2x *bp = netdev_priv(dev_instance); 1918 u16 status = bnx2x_ack_int(bp); 1919 u16 mask; 1920 int i; 1921 u8 cos; 1922 1923 /* Return here if interrupt is shared and it's not for us */ 1924 if (unlikely(status == 0)) { 1925 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1926 return IRQ_NONE; 1927 } 1928 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1929 1930 #ifdef BNX2X_STOP_ON_ERROR 1931 if (unlikely(bp->panic)) 1932 return IRQ_HANDLED; 1933 #endif 1934 1935 for_each_eth_queue(bp, i) { 1936 struct bnx2x_fastpath *fp = &bp->fp[i]; 1937 1938 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1939 if (status & mask) { 1940 /* Handle Rx or Tx according to SB id */ 1941 for_each_cos_in_tx_queue(fp, cos) 1942 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1943 prefetch(&fp->sb_running_index[SM_RX_ID]); 1944 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1945 status &= ~mask; 1946 } 1947 } 1948 1949 if (CNIC_SUPPORT(bp)) { 1950 mask = 0x2; 1951 if (status & (mask | 0x1)) { 1952 struct cnic_ops *c_ops = NULL; 1953 1954 rcu_read_lock(); 1955 c_ops = rcu_dereference(bp->cnic_ops); 1956 if (c_ops && (bp->cnic_eth_dev.drv_state & 1957 CNIC_DRV_STATE_HANDLES_IRQ)) 1958 c_ops->cnic_handler(bp->cnic_data, NULL); 1959 rcu_read_unlock(); 1960 1961 status &= ~mask; 1962 } 1963 } 1964 1965 if (unlikely(status & 0x1)) { 1966 1967 /* schedule sp task to perform default status block work, ack 1968 * attentions and enable interrupts. 1969 */ 1970 bnx2x_schedule_sp_task(bp); 1971 1972 status &= ~0x1; 1973 if (!status) 1974 return IRQ_HANDLED; 1975 } 1976 1977 if (unlikely(status)) 1978 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1979 status); 1980 1981 return IRQ_HANDLED; 1982 } 1983 1984 /* Link */ 1985 1986 /* 1987 * General service functions 1988 */ 1989 1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1991 { 1992 u32 lock_status; 1993 u32 resource_bit = (1 << resource); 1994 int func = BP_FUNC(bp); 1995 u32 hw_lock_control_reg; 1996 int cnt; 1997 1998 /* Validating that the resource is within range */ 1999 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2000 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2001 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2002 return -EINVAL; 2003 } 2004 2005 if (func <= 5) { 2006 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2007 } else { 2008 hw_lock_control_reg = 2009 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2010 } 2011 2012 /* Validating that the resource is not already taken */ 2013 lock_status = REG_RD(bp, hw_lock_control_reg); 2014 if (lock_status & resource_bit) { 2015 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 2016 lock_status, resource_bit); 2017 return -EEXIST; 2018 } 2019 2020 /* Try for 5 second every 5ms */ 2021 for (cnt = 0; cnt < 1000; cnt++) { 2022 /* Try to acquire the lock */ 2023 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2024 lock_status = REG_RD(bp, hw_lock_control_reg); 2025 if (lock_status & resource_bit) 2026 return 0; 2027 2028 usleep_range(5000, 10000); 2029 } 2030 BNX2X_ERR("Timeout\n"); 2031 return -EAGAIN; 2032 } 2033 2034 int bnx2x_release_leader_lock(struct bnx2x *bp) 2035 { 2036 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2037 } 2038 2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2040 { 2041 u32 lock_status; 2042 u32 resource_bit = (1 << resource); 2043 int func = BP_FUNC(bp); 2044 u32 hw_lock_control_reg; 2045 2046 /* Validating that the resource is within range */ 2047 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2048 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2049 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2050 return -EINVAL; 2051 } 2052 2053 if (func <= 5) { 2054 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2055 } else { 2056 hw_lock_control_reg = 2057 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2058 } 2059 2060 /* Validating that the resource is currently taken */ 2061 lock_status = REG_RD(bp, hw_lock_control_reg); 2062 if (!(lock_status & resource_bit)) { 2063 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2064 lock_status, resource_bit); 2065 return -EFAULT; 2066 } 2067 2068 REG_WR(bp, hw_lock_control_reg, resource_bit); 2069 return 0; 2070 } 2071 2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2073 { 2074 /* The GPIO should be swapped if swap register is set and active */ 2075 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2076 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2077 int gpio_shift = gpio_num + 2078 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2079 u32 gpio_mask = (1 << gpio_shift); 2080 u32 gpio_reg; 2081 int value; 2082 2083 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2084 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2085 return -EINVAL; 2086 } 2087 2088 /* read GPIO value */ 2089 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2090 2091 /* get the requested pin value */ 2092 if ((gpio_reg & gpio_mask) == gpio_mask) 2093 value = 1; 2094 else 2095 value = 0; 2096 2097 return value; 2098 } 2099 2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2101 { 2102 /* The GPIO should be swapped if swap register is set and active */ 2103 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2104 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2105 int gpio_shift = gpio_num + 2106 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2107 u32 gpio_mask = (1 << gpio_shift); 2108 u32 gpio_reg; 2109 2110 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2111 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2112 return -EINVAL; 2113 } 2114 2115 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2116 /* read GPIO and mask except the float bits */ 2117 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2118 2119 switch (mode) { 2120 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2121 DP(NETIF_MSG_LINK, 2122 "Set GPIO %d (shift %d) -> output low\n", 2123 gpio_num, gpio_shift); 2124 /* clear FLOAT and set CLR */ 2125 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2126 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2127 break; 2128 2129 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2130 DP(NETIF_MSG_LINK, 2131 "Set GPIO %d (shift %d) -> output high\n", 2132 gpio_num, gpio_shift); 2133 /* clear FLOAT and set SET */ 2134 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2135 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2136 break; 2137 2138 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2139 DP(NETIF_MSG_LINK, 2140 "Set GPIO %d (shift %d) -> input\n", 2141 gpio_num, gpio_shift); 2142 /* set FLOAT */ 2143 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2144 break; 2145 2146 default: 2147 break; 2148 } 2149 2150 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2151 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2152 2153 return 0; 2154 } 2155 2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2157 { 2158 u32 gpio_reg = 0; 2159 int rc = 0; 2160 2161 /* Any port swapping should be handled by caller. */ 2162 2163 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2164 /* read GPIO and mask except the float bits */ 2165 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2166 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2167 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2168 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2169 2170 switch (mode) { 2171 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2172 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2173 /* set CLR */ 2174 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2175 break; 2176 2177 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2178 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2179 /* set SET */ 2180 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2181 break; 2182 2183 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2184 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2185 /* set FLOAT */ 2186 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2187 break; 2188 2189 default: 2190 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2191 rc = -EINVAL; 2192 break; 2193 } 2194 2195 if (rc == 0) 2196 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2197 2198 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2199 2200 return rc; 2201 } 2202 2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2204 { 2205 /* The GPIO should be swapped if swap register is set and active */ 2206 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2207 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2208 int gpio_shift = gpio_num + 2209 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2210 u32 gpio_mask = (1 << gpio_shift); 2211 u32 gpio_reg; 2212 2213 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2214 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2215 return -EINVAL; 2216 } 2217 2218 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2219 /* read GPIO int */ 2220 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2221 2222 switch (mode) { 2223 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2224 DP(NETIF_MSG_LINK, 2225 "Clear GPIO INT %d (shift %d) -> output low\n", 2226 gpio_num, gpio_shift); 2227 /* clear SET and set CLR */ 2228 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2229 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2230 break; 2231 2232 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2233 DP(NETIF_MSG_LINK, 2234 "Set GPIO INT %d (shift %d) -> output high\n", 2235 gpio_num, gpio_shift); 2236 /* clear CLR and set SET */ 2237 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2238 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2239 break; 2240 2241 default: 2242 break; 2243 } 2244 2245 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2246 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2247 2248 return 0; 2249 } 2250 2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2252 { 2253 u32 spio_reg; 2254 2255 /* Only 2 SPIOs are configurable */ 2256 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2257 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2258 return -EINVAL; 2259 } 2260 2261 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2262 /* read SPIO and mask except the float bits */ 2263 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2264 2265 switch (mode) { 2266 case MISC_SPIO_OUTPUT_LOW: 2267 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2268 /* clear FLOAT and set CLR */ 2269 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2270 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2271 break; 2272 2273 case MISC_SPIO_OUTPUT_HIGH: 2274 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2275 /* clear FLOAT and set SET */ 2276 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2277 spio_reg |= (spio << MISC_SPIO_SET_POS); 2278 break; 2279 2280 case MISC_SPIO_INPUT_HI_Z: 2281 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2282 /* set FLOAT */ 2283 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2284 break; 2285 2286 default: 2287 break; 2288 } 2289 2290 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2291 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2292 2293 return 0; 2294 } 2295 2296 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2297 { 2298 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2299 2300 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2301 ADVERTISED_Pause); 2302 switch (bp->link_vars.ieee_fc & 2303 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2304 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2305 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2306 ADVERTISED_Pause); 2307 break; 2308 2309 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2310 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2311 break; 2312 2313 default: 2314 break; 2315 } 2316 } 2317 2318 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2319 { 2320 /* Initialize link parameters structure variables 2321 * It is recommended to turn off RX FC for jumbo frames 2322 * for better performance 2323 */ 2324 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2325 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2326 else 2327 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2328 } 2329 2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2331 { 2332 u32 pause_enabled = 0; 2333 2334 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2335 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2336 pause_enabled = 1; 2337 2338 REG_WR(bp, BAR_USTRORM_INTMEM + 2339 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2340 pause_enabled); 2341 } 2342 2343 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2344 pause_enabled ? "enabled" : "disabled"); 2345 } 2346 2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2348 { 2349 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2350 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2351 2352 if (!BP_NOMCP(bp)) { 2353 bnx2x_set_requested_fc(bp); 2354 bnx2x_acquire_phy_lock(bp); 2355 2356 if (load_mode == LOAD_DIAG) { 2357 struct link_params *lp = &bp->link_params; 2358 lp->loopback_mode = LOOPBACK_XGXS; 2359 /* Prefer doing PHY loopback at highest speed */ 2360 if (lp->req_line_speed[cfx_idx] < SPEED_20000) { 2361 if (lp->speed_cap_mask[cfx_idx] & 2362 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) 2363 lp->req_line_speed[cfx_idx] = 2364 SPEED_20000; 2365 else if (lp->speed_cap_mask[cfx_idx] & 2366 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2367 lp->req_line_speed[cfx_idx] = 2368 SPEED_10000; 2369 else 2370 lp->req_line_speed[cfx_idx] = 2371 SPEED_1000; 2372 } 2373 } 2374 2375 if (load_mode == LOAD_LOOPBACK_EXT) { 2376 struct link_params *lp = &bp->link_params; 2377 lp->loopback_mode = LOOPBACK_EXT; 2378 } 2379 2380 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2381 2382 bnx2x_release_phy_lock(bp); 2383 2384 bnx2x_init_dropless_fc(bp); 2385 2386 bnx2x_calc_fc_adv(bp); 2387 2388 if (bp->link_vars.link_up) { 2389 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2390 bnx2x_link_report(bp); 2391 } 2392 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2393 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2394 return rc; 2395 } 2396 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2397 return -EINVAL; 2398 } 2399 2400 void bnx2x_link_set(struct bnx2x *bp) 2401 { 2402 if (!BP_NOMCP(bp)) { 2403 bnx2x_acquire_phy_lock(bp); 2404 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2405 bnx2x_release_phy_lock(bp); 2406 2407 bnx2x_init_dropless_fc(bp); 2408 2409 bnx2x_calc_fc_adv(bp); 2410 } else 2411 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2412 } 2413 2414 static void bnx2x__link_reset(struct bnx2x *bp) 2415 { 2416 if (!BP_NOMCP(bp)) { 2417 bnx2x_acquire_phy_lock(bp); 2418 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2419 bnx2x_release_phy_lock(bp); 2420 } else 2421 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2422 } 2423 2424 void bnx2x_force_link_reset(struct bnx2x *bp) 2425 { 2426 bnx2x_acquire_phy_lock(bp); 2427 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2428 bnx2x_release_phy_lock(bp); 2429 } 2430 2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2432 { 2433 u8 rc = 0; 2434 2435 if (!BP_NOMCP(bp)) { 2436 bnx2x_acquire_phy_lock(bp); 2437 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2438 is_serdes); 2439 bnx2x_release_phy_lock(bp); 2440 } else 2441 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2442 2443 return rc; 2444 } 2445 2446 /* Calculates the sum of vn_min_rates. 2447 It's needed for further normalizing of the min_rates. 2448 Returns: 2449 sum of vn_min_rates. 2450 or 2451 0 - if all the min_rates are 0. 2452 In the later case fairness algorithm should be deactivated. 2453 If not all min_rates are zero then those that are zeroes will be set to 1. 2454 */ 2455 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2456 struct cmng_init_input *input) 2457 { 2458 int all_zero = 1; 2459 int vn; 2460 2461 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2462 u32 vn_cfg = bp->mf_config[vn]; 2463 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2464 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2465 2466 /* Skip hidden vns */ 2467 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2468 vn_min_rate = 0; 2469 /* If min rate is zero - set it to 1 */ 2470 else if (!vn_min_rate) 2471 vn_min_rate = DEF_MIN_RATE; 2472 else 2473 all_zero = 0; 2474 2475 input->vnic_min_rate[vn] = vn_min_rate; 2476 } 2477 2478 /* if ETS or all min rates are zeros - disable fairness */ 2479 if (BNX2X_IS_ETS_ENABLED(bp)) { 2480 input->flags.cmng_enables &= 2481 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2482 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2483 } else if (all_zero) { 2484 input->flags.cmng_enables &= 2485 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2486 DP(NETIF_MSG_IFUP, 2487 "All MIN values are zeroes fairness will be disabled\n"); 2488 } else 2489 input->flags.cmng_enables |= 2490 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2491 } 2492 2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2494 struct cmng_init_input *input) 2495 { 2496 u16 vn_max_rate; 2497 u32 vn_cfg = bp->mf_config[vn]; 2498 2499 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2500 vn_max_rate = 0; 2501 else { 2502 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2503 2504 if (IS_MF_PERCENT_BW(bp)) { 2505 /* maxCfg in percents of linkspeed */ 2506 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2507 } else /* SD modes */ 2508 /* maxCfg is absolute in 100Mb units */ 2509 vn_max_rate = maxCfg * 100; 2510 } 2511 2512 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2513 2514 input->vnic_max_rate[vn] = vn_max_rate; 2515 } 2516 2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2518 { 2519 if (CHIP_REV_IS_SLOW(bp)) 2520 return CMNG_FNS_NONE; 2521 if (IS_MF(bp)) 2522 return CMNG_FNS_MINMAX; 2523 2524 return CMNG_FNS_NONE; 2525 } 2526 2527 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2528 { 2529 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2530 2531 if (BP_NOMCP(bp)) 2532 return; /* what should be the default value in this case */ 2533 2534 /* For 2 port configuration the absolute function number formula 2535 * is: 2536 * abs_func = 2 * vn + BP_PORT + BP_PATH 2537 * 2538 * and there are 4 functions per port 2539 * 2540 * For 4 port configuration it is 2541 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2542 * 2543 * and there are 2 functions per port 2544 */ 2545 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2546 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2547 2548 if (func >= E1H_FUNC_MAX) 2549 break; 2550 2551 bp->mf_config[vn] = 2552 MF_CFG_RD(bp, func_mf_config[func].config); 2553 } 2554 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2555 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2556 bp->flags |= MF_FUNC_DIS; 2557 } else { 2558 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2559 bp->flags &= ~MF_FUNC_DIS; 2560 } 2561 } 2562 2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2564 { 2565 struct cmng_init_input input; 2566 memset(&input, 0, sizeof(struct cmng_init_input)); 2567 2568 input.port_rate = bp->link_vars.line_speed; 2569 2570 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2571 int vn; 2572 2573 /* read mf conf from shmem */ 2574 if (read_cfg) 2575 bnx2x_read_mf_cfg(bp); 2576 2577 /* vn_weight_sum and enable fairness if not 0 */ 2578 bnx2x_calc_vn_min(bp, &input); 2579 2580 /* calculate and set min-max rate for each vn */ 2581 if (bp->port.pmf) 2582 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2583 bnx2x_calc_vn_max(bp, vn, &input); 2584 2585 /* always enable rate shaping and fairness */ 2586 input.flags.cmng_enables |= 2587 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2588 2589 bnx2x_init_cmng(&input, &bp->cmng); 2590 return; 2591 } 2592 2593 /* rate shaping and fairness are disabled */ 2594 DP(NETIF_MSG_IFUP, 2595 "rate shaping and fairness are disabled\n"); 2596 } 2597 2598 static void storm_memset_cmng(struct bnx2x *bp, 2599 struct cmng_init *cmng, 2600 u8 port) 2601 { 2602 int vn; 2603 size_t size = sizeof(struct cmng_struct_per_port); 2604 2605 u32 addr = BAR_XSTRORM_INTMEM + 2606 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2607 2608 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2609 2610 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2611 int func = func_by_vn(bp, vn); 2612 2613 addr = BAR_XSTRORM_INTMEM + 2614 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2615 size = sizeof(struct rate_shaping_vars_per_vn); 2616 __storm_memset_struct(bp, addr, size, 2617 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2618 2619 addr = BAR_XSTRORM_INTMEM + 2620 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2621 size = sizeof(struct fairness_vars_per_vn); 2622 __storm_memset_struct(bp, addr, size, 2623 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2624 } 2625 } 2626 2627 /* init cmng mode in HW according to local configuration */ 2628 void bnx2x_set_local_cmng(struct bnx2x *bp) 2629 { 2630 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2631 2632 if (cmng_fns != CMNG_FNS_NONE) { 2633 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2634 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2635 } else { 2636 /* rate shaping and fairness are disabled */ 2637 DP(NETIF_MSG_IFUP, 2638 "single function mode without fairness\n"); 2639 } 2640 } 2641 2642 /* This function is called upon link interrupt */ 2643 static void bnx2x_link_attn(struct bnx2x *bp) 2644 { 2645 /* Make sure that we are synced with the current statistics */ 2646 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2647 2648 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2649 2650 bnx2x_init_dropless_fc(bp); 2651 2652 if (bp->link_vars.link_up) { 2653 2654 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2655 struct host_port_stats *pstats; 2656 2657 pstats = bnx2x_sp(bp, port_stats); 2658 /* reset old mac stats */ 2659 memset(&(pstats->mac_stx[0]), 0, 2660 sizeof(struct mac_stx)); 2661 } 2662 if (bp->state == BNX2X_STATE_OPEN) 2663 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2664 } 2665 2666 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2667 bnx2x_set_local_cmng(bp); 2668 2669 __bnx2x_link_report(bp); 2670 2671 if (IS_MF(bp)) 2672 bnx2x_link_sync_notify(bp); 2673 } 2674 2675 void bnx2x__link_status_update(struct bnx2x *bp) 2676 { 2677 if (bp->state != BNX2X_STATE_OPEN) 2678 return; 2679 2680 /* read updated dcb configuration */ 2681 if (IS_PF(bp)) { 2682 bnx2x_dcbx_pmf_update(bp); 2683 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2684 if (bp->link_vars.link_up) 2685 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2686 else 2687 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2688 /* indicate link status */ 2689 bnx2x_link_report(bp); 2690 2691 } else { /* VF */ 2692 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2693 SUPPORTED_10baseT_Full | 2694 SUPPORTED_100baseT_Half | 2695 SUPPORTED_100baseT_Full | 2696 SUPPORTED_1000baseT_Full | 2697 SUPPORTED_2500baseX_Full | 2698 SUPPORTED_10000baseT_Full | 2699 SUPPORTED_TP | 2700 SUPPORTED_FIBRE | 2701 SUPPORTED_Autoneg | 2702 SUPPORTED_Pause | 2703 SUPPORTED_Asym_Pause); 2704 bp->port.advertising[0] = bp->port.supported[0]; 2705 2706 bp->link_params.bp = bp; 2707 bp->link_params.port = BP_PORT(bp); 2708 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2709 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2710 bp->link_params.req_line_speed[0] = SPEED_10000; 2711 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2712 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2713 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2714 bp->link_vars.line_speed = SPEED_10000; 2715 bp->link_vars.link_status = 2716 (LINK_STATUS_LINK_UP | 2717 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2718 bp->link_vars.link_up = 1; 2719 bp->link_vars.duplex = DUPLEX_FULL; 2720 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2721 __bnx2x_link_report(bp); 2722 2723 bnx2x_sample_bulletin(bp); 2724 2725 /* if bulletin board did not have an update for link status 2726 * __bnx2x_link_report will report current status 2727 * but it will NOT duplicate report in case of already reported 2728 * during sampling bulletin board. 2729 */ 2730 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2731 } 2732 } 2733 2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2735 u16 vlan_val, u8 allowed_prio) 2736 { 2737 struct bnx2x_func_state_params func_params = {NULL}; 2738 struct bnx2x_func_afex_update_params *f_update_params = 2739 &func_params.params.afex_update; 2740 2741 func_params.f_obj = &bp->func_obj; 2742 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2743 2744 /* no need to wait for RAMROD completion, so don't 2745 * set RAMROD_COMP_WAIT flag 2746 */ 2747 2748 f_update_params->vif_id = vifid; 2749 f_update_params->afex_default_vlan = vlan_val; 2750 f_update_params->allowed_priorities = allowed_prio; 2751 2752 /* if ramrod can not be sent, response to MCP immediately */ 2753 if (bnx2x_func_state_change(bp, &func_params) < 0) 2754 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2755 2756 return 0; 2757 } 2758 2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2760 u16 vif_index, u8 func_bit_map) 2761 { 2762 struct bnx2x_func_state_params func_params = {NULL}; 2763 struct bnx2x_func_afex_viflists_params *update_params = 2764 &func_params.params.afex_viflists; 2765 int rc; 2766 u32 drv_msg_code; 2767 2768 /* validate only LIST_SET and LIST_GET are received from switch */ 2769 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2770 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2771 cmd_type); 2772 2773 func_params.f_obj = &bp->func_obj; 2774 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2775 2776 /* set parameters according to cmd_type */ 2777 update_params->afex_vif_list_command = cmd_type; 2778 update_params->vif_list_index = vif_index; 2779 update_params->func_bit_map = 2780 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2781 update_params->func_to_clear = 0; 2782 drv_msg_code = 2783 (cmd_type == VIF_LIST_RULE_GET) ? 2784 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2785 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2786 2787 /* if ramrod can not be sent, respond to MCP immediately for 2788 * SET and GET requests (other are not triggered from MCP) 2789 */ 2790 rc = bnx2x_func_state_change(bp, &func_params); 2791 if (rc < 0) 2792 bnx2x_fw_command(bp, drv_msg_code, 0); 2793 2794 return 0; 2795 } 2796 2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2798 { 2799 struct afex_stats afex_stats; 2800 u32 func = BP_ABS_FUNC(bp); 2801 u32 mf_config; 2802 u16 vlan_val; 2803 u32 vlan_prio; 2804 u16 vif_id; 2805 u8 allowed_prio; 2806 u8 vlan_mode; 2807 u32 addr_to_write, vifid, addrs, stats_type, i; 2808 2809 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2810 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2811 DP(BNX2X_MSG_MCP, 2812 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2813 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2814 } 2815 2816 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2817 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2818 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2819 DP(BNX2X_MSG_MCP, 2820 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2821 vifid, addrs); 2822 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2823 addrs); 2824 } 2825 2826 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2827 addr_to_write = SHMEM2_RD(bp, 2828 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2829 stats_type = SHMEM2_RD(bp, 2830 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2831 2832 DP(BNX2X_MSG_MCP, 2833 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2834 addr_to_write); 2835 2836 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2837 2838 /* write response to scratchpad, for MCP */ 2839 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2840 REG_WR(bp, addr_to_write + i*sizeof(u32), 2841 *(((u32 *)(&afex_stats))+i)); 2842 2843 /* send ack message to MCP */ 2844 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2845 } 2846 2847 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2848 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2849 bp->mf_config[BP_VN(bp)] = mf_config; 2850 DP(BNX2X_MSG_MCP, 2851 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2852 mf_config); 2853 2854 /* if VIF_SET is "enabled" */ 2855 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2856 /* set rate limit directly to internal RAM */ 2857 struct cmng_init_input cmng_input; 2858 struct rate_shaping_vars_per_vn m_rs_vn; 2859 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2860 u32 addr = BAR_XSTRORM_INTMEM + 2861 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2862 2863 bp->mf_config[BP_VN(bp)] = mf_config; 2864 2865 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2866 m_rs_vn.vn_counter.rate = 2867 cmng_input.vnic_max_rate[BP_VN(bp)]; 2868 m_rs_vn.vn_counter.quota = 2869 (m_rs_vn.vn_counter.rate * 2870 RS_PERIODIC_TIMEOUT_USEC) / 8; 2871 2872 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2873 2874 /* read relevant values from mf_cfg struct in shmem */ 2875 vif_id = 2876 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2877 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2878 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2879 vlan_val = 2880 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2881 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2882 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2883 vlan_prio = (mf_config & 2884 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2885 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2886 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2887 vlan_mode = 2888 (MF_CFG_RD(bp, 2889 func_mf_config[func].afex_config) & 2890 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2891 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2892 allowed_prio = 2893 (MF_CFG_RD(bp, 2894 func_mf_config[func].afex_config) & 2895 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2896 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2897 2898 /* send ramrod to FW, return in case of failure */ 2899 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2900 allowed_prio)) 2901 return; 2902 2903 bp->afex_def_vlan_tag = vlan_val; 2904 bp->afex_vlan_mode = vlan_mode; 2905 } else { 2906 /* notify link down because BP->flags is disabled */ 2907 bnx2x_link_report(bp); 2908 2909 /* send INVALID VIF ramrod to FW */ 2910 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2911 2912 /* Reset the default afex VLAN */ 2913 bp->afex_def_vlan_tag = -1; 2914 } 2915 } 2916 } 2917 2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2919 { 2920 struct bnx2x_func_switch_update_params *switch_update_params; 2921 struct bnx2x_func_state_params func_params; 2922 2923 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2924 switch_update_params = &func_params.params.switch_update; 2925 func_params.f_obj = &bp->func_obj; 2926 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2927 2928 /* Prepare parameters for function state transitions */ 2929 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2930 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 2931 2932 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) { 2933 int func = BP_ABS_FUNC(bp); 2934 u32 val; 2935 2936 /* Re-learn the S-tag from shmem */ 2937 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2938 FUNC_MF_CFG_E1HOV_TAG_MASK; 2939 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2940 bp->mf_ov = val; 2941 } else { 2942 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2943 goto fail; 2944 } 2945 2946 /* Configure new S-tag in LLH */ 2947 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2948 bp->mf_ov); 2949 2950 /* Send Ramrod to update FW of change */ 2951 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2952 &switch_update_params->changes); 2953 switch_update_params->vlan = bp->mf_ov; 2954 2955 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2956 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2957 bp->mf_ov); 2958 goto fail; 2959 } else { 2960 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", 2961 bp->mf_ov); 2962 } 2963 } else { 2964 goto fail; 2965 } 2966 2967 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2968 return; 2969 fail: 2970 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2971 } 2972 2973 static void bnx2x_pmf_update(struct bnx2x *bp) 2974 { 2975 int port = BP_PORT(bp); 2976 u32 val; 2977 2978 bp->port.pmf = 1; 2979 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2980 2981 /* 2982 * We need the mb() to ensure the ordering between the writing to 2983 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2984 */ 2985 smp_mb(); 2986 2987 /* queue a periodic task */ 2988 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2989 2990 bnx2x_dcbx_pmf_update(bp); 2991 2992 /* enable nig attention */ 2993 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2994 if (bp->common.int_block == INT_BLOCK_HC) { 2995 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2996 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2997 } else if (!CHIP_IS_E1x(bp)) { 2998 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2999 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 3000 } 3001 3002 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 3003 } 3004 3005 /* end of Link */ 3006 3007 /* slow path */ 3008 3009 /* 3010 * General service functions 3011 */ 3012 3013 /* send the MCP a request, block until there is a reply */ 3014 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 3015 { 3016 int mb_idx = BP_FW_MB_IDX(bp); 3017 u32 seq; 3018 u32 rc = 0; 3019 u32 cnt = 1; 3020 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3021 3022 mutex_lock(&bp->fw_mb_mutex); 3023 seq = ++bp->fw_seq; 3024 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3025 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3026 3027 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3028 (command | seq), param); 3029 3030 do { 3031 /* let the FW do it's magic ... */ 3032 msleep(delay); 3033 3034 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3035 3036 /* Give the FW up to 5 second (500*10ms) */ 3037 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3038 3039 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3040 cnt*delay, rc, seq); 3041 3042 /* is this a reply to our command? */ 3043 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3044 rc &= FW_MSG_CODE_MASK; 3045 else { 3046 /* FW BUG! */ 3047 BNX2X_ERR("FW failed to respond!\n"); 3048 bnx2x_fw_dump(bp); 3049 rc = 0; 3050 } 3051 mutex_unlock(&bp->fw_mb_mutex); 3052 3053 return rc; 3054 } 3055 3056 static void storm_memset_func_cfg(struct bnx2x *bp, 3057 struct tstorm_eth_function_common_config *tcfg, 3058 u16 abs_fid) 3059 { 3060 size_t size = sizeof(struct tstorm_eth_function_common_config); 3061 3062 u32 addr = BAR_TSTRORM_INTMEM + 3063 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3064 3065 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3066 } 3067 3068 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3069 { 3070 if (CHIP_IS_E1x(bp)) { 3071 struct tstorm_eth_function_common_config tcfg = {0}; 3072 3073 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3074 } 3075 3076 /* Enable the function in the FW */ 3077 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3078 storm_memset_func_en(bp, p->func_id, 1); 3079 3080 /* spq */ 3081 if (p->spq_active) { 3082 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3083 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3084 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3085 } 3086 } 3087 3088 /** 3089 * bnx2x_get_common_flags - Return common flags 3090 * 3091 * @bp device handle 3092 * @fp queue handle 3093 * @zero_stats TRUE if statistics zeroing is needed 3094 * 3095 * Return the flags that are common for the Tx-only and not normal connections. 3096 */ 3097 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3098 struct bnx2x_fastpath *fp, 3099 bool zero_stats) 3100 { 3101 unsigned long flags = 0; 3102 3103 /* PF driver will always initialize the Queue to an ACTIVE state */ 3104 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3105 3106 /* tx only connections collect statistics (on the same index as the 3107 * parent connection). The statistics are zeroed when the parent 3108 * connection is initialized. 3109 */ 3110 3111 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3112 if (zero_stats) 3113 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3114 3115 if (bp->flags & TX_SWITCHING) 3116 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3117 3118 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3119 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3120 3121 #ifdef BNX2X_STOP_ON_ERROR 3122 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3123 #endif 3124 3125 return flags; 3126 } 3127 3128 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3129 struct bnx2x_fastpath *fp, 3130 bool leading) 3131 { 3132 unsigned long flags = 0; 3133 3134 /* calculate other queue flags */ 3135 if (IS_MF_SD(bp)) 3136 __set_bit(BNX2X_Q_FLG_OV, &flags); 3137 3138 if (IS_FCOE_FP(fp)) { 3139 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3140 /* For FCoE - force usage of default priority (for afex) */ 3141 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3142 } 3143 3144 if (fp->mode != TPA_MODE_DISABLED) { 3145 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3146 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3147 if (fp->mode == TPA_MODE_GRO) 3148 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3149 } 3150 3151 if (leading) { 3152 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3153 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3154 } 3155 3156 /* Always set HW VLAN stripping */ 3157 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3158 3159 /* configure silent vlan removal */ 3160 if (IS_MF_AFEX(bp)) 3161 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3162 3163 return flags | bnx2x_get_common_flags(bp, fp, true); 3164 } 3165 3166 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3167 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3168 u8 cos) 3169 { 3170 gen_init->stat_id = bnx2x_stats_id(fp); 3171 gen_init->spcl_id = fp->cl_id; 3172 3173 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3174 if (IS_FCOE_FP(fp)) 3175 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3176 else 3177 gen_init->mtu = bp->dev->mtu; 3178 3179 gen_init->cos = cos; 3180 3181 gen_init->fp_hsi = ETH_FP_HSI_VERSION; 3182 } 3183 3184 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3185 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3186 struct bnx2x_rxq_setup_params *rxq_init) 3187 { 3188 u8 max_sge = 0; 3189 u16 sge_sz = 0; 3190 u16 tpa_agg_size = 0; 3191 3192 if (fp->mode != TPA_MODE_DISABLED) { 3193 pause->sge_th_lo = SGE_TH_LO(bp); 3194 pause->sge_th_hi = SGE_TH_HI(bp); 3195 3196 /* validate SGE ring has enough to cross high threshold */ 3197 WARN_ON(bp->dropless_fc && 3198 pause->sge_th_hi + FW_PREFETCH_CNT > 3199 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3200 3201 tpa_agg_size = TPA_AGG_SIZE; 3202 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3203 SGE_PAGE_SHIFT; 3204 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3205 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3206 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3207 } 3208 3209 /* pause - not for e1 */ 3210 if (!CHIP_IS_E1(bp)) { 3211 pause->bd_th_lo = BD_TH_LO(bp); 3212 pause->bd_th_hi = BD_TH_HI(bp); 3213 3214 pause->rcq_th_lo = RCQ_TH_LO(bp); 3215 pause->rcq_th_hi = RCQ_TH_HI(bp); 3216 /* 3217 * validate that rings have enough entries to cross 3218 * high thresholds 3219 */ 3220 WARN_ON(bp->dropless_fc && 3221 pause->bd_th_hi + FW_PREFETCH_CNT > 3222 bp->rx_ring_size); 3223 WARN_ON(bp->dropless_fc && 3224 pause->rcq_th_hi + FW_PREFETCH_CNT > 3225 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3226 3227 pause->pri_map = 1; 3228 } 3229 3230 /* rxq setup */ 3231 rxq_init->dscr_map = fp->rx_desc_mapping; 3232 rxq_init->sge_map = fp->rx_sge_mapping; 3233 rxq_init->rcq_map = fp->rx_comp_mapping; 3234 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3235 3236 /* This should be a maximum number of data bytes that may be 3237 * placed on the BD (not including paddings). 3238 */ 3239 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3240 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3241 3242 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3243 rxq_init->tpa_agg_sz = tpa_agg_size; 3244 rxq_init->sge_buf_sz = sge_sz; 3245 rxq_init->max_sges_pkt = max_sge; 3246 rxq_init->rss_engine_id = BP_FUNC(bp); 3247 rxq_init->mcast_engine_id = BP_FUNC(bp); 3248 3249 /* Maximum number or simultaneous TPA aggregation for this Queue. 3250 * 3251 * For PF Clients it should be the maximum available number. 3252 * VF driver(s) may want to define it to a smaller value. 3253 */ 3254 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3255 3256 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3257 rxq_init->fw_sb_id = fp->fw_sb_id; 3258 3259 if (IS_FCOE_FP(fp)) 3260 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3261 else 3262 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3263 /* configure silent vlan removal 3264 * if multi function mode is afex, then mask default vlan 3265 */ 3266 if (IS_MF_AFEX(bp)) { 3267 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3268 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3269 } 3270 } 3271 3272 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3273 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3274 u8 cos) 3275 { 3276 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3277 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3278 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3279 txq_init->fw_sb_id = fp->fw_sb_id; 3280 3281 /* 3282 * set the tss leading client id for TX classification == 3283 * leading RSS client id 3284 */ 3285 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3286 3287 if (IS_FCOE_FP(fp)) { 3288 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3289 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3290 } 3291 } 3292 3293 static void bnx2x_pf_init(struct bnx2x *bp) 3294 { 3295 struct bnx2x_func_init_params func_init = {0}; 3296 struct event_ring_data eq_data = { {0} }; 3297 3298 if (!CHIP_IS_E1x(bp)) { 3299 /* reset IGU PF statistics: MSIX + ATTN */ 3300 /* PF */ 3301 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3302 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3303 (CHIP_MODE_IS_4_PORT(bp) ? 3304 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3305 /* ATTN */ 3306 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3307 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3308 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3309 (CHIP_MODE_IS_4_PORT(bp) ? 3310 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3311 } 3312 3313 func_init.spq_active = true; 3314 func_init.pf_id = BP_FUNC(bp); 3315 func_init.func_id = BP_FUNC(bp); 3316 func_init.spq_map = bp->spq_mapping; 3317 func_init.spq_prod = bp->spq_prod_idx; 3318 3319 bnx2x_func_init(bp, &func_init); 3320 3321 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3322 3323 /* 3324 * Congestion management values depend on the link rate 3325 * There is no active link so initial link rate is set to 10 Gbps. 3326 * When the link comes up The congestion management values are 3327 * re-calculated according to the actual link rate. 3328 */ 3329 bp->link_vars.line_speed = SPEED_10000; 3330 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3331 3332 /* Only the PMF sets the HW */ 3333 if (bp->port.pmf) 3334 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3335 3336 /* init Event Queue - PCI bus guarantees correct endianity*/ 3337 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3338 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3339 eq_data.producer = bp->eq_prod; 3340 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3341 eq_data.sb_id = DEF_SB_ID; 3342 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3343 } 3344 3345 static void bnx2x_e1h_disable(struct bnx2x *bp) 3346 { 3347 int port = BP_PORT(bp); 3348 3349 bnx2x_tx_disable(bp); 3350 3351 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3352 } 3353 3354 static void bnx2x_e1h_enable(struct bnx2x *bp) 3355 { 3356 int port = BP_PORT(bp); 3357 3358 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3359 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3360 3361 /* Tx queue should be only re-enabled */ 3362 netif_tx_wake_all_queues(bp->dev); 3363 3364 /* 3365 * Should not call netif_carrier_on since it will be called if the link 3366 * is up when checking for link state 3367 */ 3368 } 3369 3370 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3371 3372 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3373 { 3374 struct eth_stats_info *ether_stat = 3375 &bp->slowpath->drv_info_to_mcp.ether_stat; 3376 struct bnx2x_vlan_mac_obj *mac_obj = 3377 &bp->sp_objs->mac_obj; 3378 int i; 3379 3380 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3381 ETH_STAT_INFO_VERSION_LEN); 3382 3383 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3384 * mac_local field in ether_stat struct. The base address is offset by 2 3385 * bytes to account for the field being 8 bytes but a mac address is 3386 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3387 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3388 * allocated by the ether_stat struct, so the macs will land in their 3389 * proper positions. 3390 */ 3391 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3392 memset(ether_stat->mac_local + i, 0, 3393 sizeof(ether_stat->mac_local[0])); 3394 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3395 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3396 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3397 ETH_ALEN); 3398 ether_stat->mtu_size = bp->dev->mtu; 3399 if (bp->dev->features & NETIF_F_RXCSUM) 3400 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3401 if (bp->dev->features & NETIF_F_TSO) 3402 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3403 ether_stat->feature_flags |= bp->common.boot_mode; 3404 3405 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3406 3407 ether_stat->txq_size = bp->tx_ring_size; 3408 ether_stat->rxq_size = bp->rx_ring_size; 3409 3410 #ifdef CONFIG_BNX2X_SRIOV 3411 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3412 #endif 3413 } 3414 3415 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3416 { 3417 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3418 struct fcoe_stats_info *fcoe_stat = 3419 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3420 3421 if (!CNIC_LOADED(bp)) 3422 return; 3423 3424 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3425 3426 fcoe_stat->qos_priority = 3427 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3428 3429 /* insert FCoE stats from ramrod response */ 3430 if (!NO_FCOE(bp)) { 3431 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3432 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3433 tstorm_queue_statistics; 3434 3435 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3436 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3437 xstorm_queue_statistics; 3438 3439 struct fcoe_statistics_params *fw_fcoe_stat = 3440 &bp->fw_stats_data->fcoe; 3441 3442 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3443 fcoe_stat->rx_bytes_lo, 3444 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3445 3446 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3447 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3448 fcoe_stat->rx_bytes_lo, 3449 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3450 3451 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3452 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3453 fcoe_stat->rx_bytes_lo, 3454 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3455 3456 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3457 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3458 fcoe_stat->rx_bytes_lo, 3459 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3460 3461 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3462 fcoe_stat->rx_frames_lo, 3463 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3464 3465 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3466 fcoe_stat->rx_frames_lo, 3467 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3468 3469 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3470 fcoe_stat->rx_frames_lo, 3471 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3472 3473 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3474 fcoe_stat->rx_frames_lo, 3475 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3476 3477 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3478 fcoe_stat->tx_bytes_lo, 3479 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3480 3481 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3482 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3483 fcoe_stat->tx_bytes_lo, 3484 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3485 3486 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3487 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3488 fcoe_stat->tx_bytes_lo, 3489 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3490 3491 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3492 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3493 fcoe_stat->tx_bytes_lo, 3494 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3495 3496 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3497 fcoe_stat->tx_frames_lo, 3498 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3499 3500 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3501 fcoe_stat->tx_frames_lo, 3502 fcoe_q_xstorm_stats->ucast_pkts_sent); 3503 3504 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3505 fcoe_stat->tx_frames_lo, 3506 fcoe_q_xstorm_stats->bcast_pkts_sent); 3507 3508 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3509 fcoe_stat->tx_frames_lo, 3510 fcoe_q_xstorm_stats->mcast_pkts_sent); 3511 } 3512 3513 /* ask L5 driver to add data to the struct */ 3514 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3515 } 3516 3517 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3518 { 3519 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3520 struct iscsi_stats_info *iscsi_stat = 3521 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3522 3523 if (!CNIC_LOADED(bp)) 3524 return; 3525 3526 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3527 ETH_ALEN); 3528 3529 iscsi_stat->qos_priority = 3530 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3531 3532 /* ask L5 driver to add data to the struct */ 3533 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3534 } 3535 3536 /* called due to MCP event (on pmf): 3537 * reread new bandwidth configuration 3538 * configure FW 3539 * notify others function about the change 3540 */ 3541 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3542 { 3543 /* Workaround for MFW bug. 3544 * MFW is not supposed to generate BW attention in 3545 * single function mode. 3546 */ 3547 if (!IS_MF(bp)) { 3548 DP(BNX2X_MSG_MCP, 3549 "Ignoring MF BW config in single function mode\n"); 3550 return; 3551 } 3552 3553 if (bp->link_vars.link_up) { 3554 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3555 bnx2x_link_sync_notify(bp); 3556 } 3557 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3558 } 3559 3560 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3561 { 3562 bnx2x_config_mf_bw(bp); 3563 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3564 } 3565 3566 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3567 { 3568 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3569 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3570 } 3571 3572 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3573 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3574 3575 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3576 { 3577 enum drv_info_opcode op_code; 3578 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3579 bool release = false; 3580 int wait; 3581 3582 /* if drv_info version supported by MFW doesn't match - send NACK */ 3583 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3584 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3585 return; 3586 } 3587 3588 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3589 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3590 3591 /* Must prevent other flows from accessing drv_info_to_mcp */ 3592 mutex_lock(&bp->drv_info_mutex); 3593 3594 memset(&bp->slowpath->drv_info_to_mcp, 0, 3595 sizeof(union drv_info_to_mcp)); 3596 3597 switch (op_code) { 3598 case ETH_STATS_OPCODE: 3599 bnx2x_drv_info_ether_stat(bp); 3600 break; 3601 case FCOE_STATS_OPCODE: 3602 bnx2x_drv_info_fcoe_stat(bp); 3603 break; 3604 case ISCSI_STATS_OPCODE: 3605 bnx2x_drv_info_iscsi_stat(bp); 3606 break; 3607 default: 3608 /* if op code isn't supported - send NACK */ 3609 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3610 goto out; 3611 } 3612 3613 /* if we got drv_info attn from MFW then these fields are defined in 3614 * shmem2 for sure 3615 */ 3616 SHMEM2_WR(bp, drv_info_host_addr_lo, 3617 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3618 SHMEM2_WR(bp, drv_info_host_addr_hi, 3619 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3620 3621 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3622 3623 /* Since possible management wants both this and get_driver_version 3624 * need to wait until management notifies us it finished utilizing 3625 * the buffer. 3626 */ 3627 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3628 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3629 } else if (!bp->drv_info_mng_owner) { 3630 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3631 3632 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3633 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3634 3635 /* Management is done; need to clear indication */ 3636 if (indication & bit) { 3637 SHMEM2_WR(bp, mfw_drv_indication, 3638 indication & ~bit); 3639 release = true; 3640 break; 3641 } 3642 3643 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3644 } 3645 } 3646 if (!release) { 3647 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3648 bp->drv_info_mng_owner = true; 3649 } 3650 3651 out: 3652 mutex_unlock(&bp->drv_info_mutex); 3653 } 3654 3655 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3656 { 3657 u8 vals[4]; 3658 int i = 0; 3659 3660 if (bnx2x_format) { 3661 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3662 &vals[0], &vals[1], &vals[2], &vals[3]); 3663 if (i > 0) 3664 vals[0] -= '0'; 3665 } else { 3666 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3667 &vals[0], &vals[1], &vals[2], &vals[3]); 3668 } 3669 3670 while (i < 4) 3671 vals[i++] = 0; 3672 3673 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3674 } 3675 3676 void bnx2x_update_mng_version(struct bnx2x *bp) 3677 { 3678 u32 iscsiver = DRV_VER_NOT_LOADED; 3679 u32 fcoever = DRV_VER_NOT_LOADED; 3680 u32 ethver = DRV_VER_NOT_LOADED; 3681 int idx = BP_FW_MB_IDX(bp); 3682 u8 *version; 3683 3684 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3685 return; 3686 3687 mutex_lock(&bp->drv_info_mutex); 3688 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3689 if (bp->drv_info_mng_owner) 3690 goto out; 3691 3692 if (bp->state != BNX2X_STATE_OPEN) 3693 goto out; 3694 3695 /* Parse ethernet driver version */ 3696 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3697 if (!CNIC_LOADED(bp)) 3698 goto out; 3699 3700 /* Try getting storage driver version via cnic */ 3701 memset(&bp->slowpath->drv_info_to_mcp, 0, 3702 sizeof(union drv_info_to_mcp)); 3703 bnx2x_drv_info_iscsi_stat(bp); 3704 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3705 iscsiver = bnx2x_update_mng_version_utility(version, false); 3706 3707 memset(&bp->slowpath->drv_info_to_mcp, 0, 3708 sizeof(union drv_info_to_mcp)); 3709 bnx2x_drv_info_fcoe_stat(bp); 3710 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3711 fcoever = bnx2x_update_mng_version_utility(version, false); 3712 3713 out: 3714 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3715 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3716 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3717 3718 mutex_unlock(&bp->drv_info_mutex); 3719 3720 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3721 ethver, iscsiver, fcoever); 3722 } 3723 3724 void bnx2x_update_mfw_dump(struct bnx2x *bp) 3725 { 3726 u32 drv_ver; 3727 u32 valid_dump; 3728 3729 if (!SHMEM2_HAS(bp, drv_info)) 3730 return; 3731 3732 /* Update Driver load time, possibly broken in y2038 */ 3733 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds()); 3734 3735 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3736 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver); 3737 3738 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 3739 3740 /* Check & notify On-Chip dump. */ 3741 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump); 3742 3743 if (valid_dump & FIRST_DUMP_VALID) 3744 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n"); 3745 3746 if (valid_dump & SECOND_DUMP_VALID) 3747 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n"); 3748 } 3749 3750 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3751 { 3752 u32 cmd_ok, cmd_fail; 3753 3754 /* sanity */ 3755 if (event & DRV_STATUS_DCC_EVENT_MASK && 3756 event & DRV_STATUS_OEM_EVENT_MASK) { 3757 BNX2X_ERR("Received simultaneous events %08x\n", event); 3758 return; 3759 } 3760 3761 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3762 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3763 cmd_ok = DRV_MSG_CODE_DCC_OK; 3764 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3765 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3766 cmd_ok = DRV_MSG_CODE_OEM_OK; 3767 } 3768 3769 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3770 3771 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3772 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3773 /* This is the only place besides the function initialization 3774 * where the bp->flags can change so it is done without any 3775 * locks 3776 */ 3777 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3778 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3779 bp->flags |= MF_FUNC_DIS; 3780 3781 bnx2x_e1h_disable(bp); 3782 } else { 3783 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3784 bp->flags &= ~MF_FUNC_DIS; 3785 3786 bnx2x_e1h_enable(bp); 3787 } 3788 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3789 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3790 } 3791 3792 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3793 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3794 bnx2x_config_mf_bw(bp); 3795 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3796 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3797 } 3798 3799 /* Report results to MCP */ 3800 if (event) 3801 bnx2x_fw_command(bp, cmd_fail, 0); 3802 else 3803 bnx2x_fw_command(bp, cmd_ok, 0); 3804 } 3805 3806 /* must be called under the spq lock */ 3807 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3808 { 3809 struct eth_spe *next_spe = bp->spq_prod_bd; 3810 3811 if (bp->spq_prod_bd == bp->spq_last_bd) { 3812 bp->spq_prod_bd = bp->spq; 3813 bp->spq_prod_idx = 0; 3814 DP(BNX2X_MSG_SP, "end of spq\n"); 3815 } else { 3816 bp->spq_prod_bd++; 3817 bp->spq_prod_idx++; 3818 } 3819 return next_spe; 3820 } 3821 3822 /* must be called under the spq lock */ 3823 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3824 { 3825 int func = BP_FUNC(bp); 3826 3827 /* 3828 * Make sure that BD data is updated before writing the producer: 3829 * BD data is written to the memory, the producer is read from the 3830 * memory, thus we need a full memory barrier to ensure the ordering. 3831 */ 3832 mb(); 3833 3834 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3835 bp->spq_prod_idx); 3836 mmiowb(); 3837 } 3838 3839 /** 3840 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3841 * 3842 * @cmd: command to check 3843 * @cmd_type: command type 3844 */ 3845 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3846 { 3847 if ((cmd_type == NONE_CONNECTION_TYPE) || 3848 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3849 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3850 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3851 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3852 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3853 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3854 return true; 3855 else 3856 return false; 3857 } 3858 3859 /** 3860 * bnx2x_sp_post - place a single command on an SP ring 3861 * 3862 * @bp: driver handle 3863 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3864 * @cid: SW CID the command is related to 3865 * @data_hi: command private data address (high 32 bits) 3866 * @data_lo: command private data address (low 32 bits) 3867 * @cmd_type: command type (e.g. NONE, ETH) 3868 * 3869 * SP data is handled as if it's always an address pair, thus data fields are 3870 * not swapped to little endian in upper functions. Instead this function swaps 3871 * data as if it's two u32 fields. 3872 */ 3873 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3874 u32 data_hi, u32 data_lo, int cmd_type) 3875 { 3876 struct eth_spe *spe; 3877 u16 type; 3878 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3879 3880 #ifdef BNX2X_STOP_ON_ERROR 3881 if (unlikely(bp->panic)) { 3882 BNX2X_ERR("Can't post SP when there is panic\n"); 3883 return -EIO; 3884 } 3885 #endif 3886 3887 spin_lock_bh(&bp->spq_lock); 3888 3889 if (common) { 3890 if (!atomic_read(&bp->eq_spq_left)) { 3891 BNX2X_ERR("BUG! EQ ring full!\n"); 3892 spin_unlock_bh(&bp->spq_lock); 3893 bnx2x_panic(); 3894 return -EBUSY; 3895 } 3896 } else if (!atomic_read(&bp->cq_spq_left)) { 3897 BNX2X_ERR("BUG! SPQ ring full!\n"); 3898 spin_unlock_bh(&bp->spq_lock); 3899 bnx2x_panic(); 3900 return -EBUSY; 3901 } 3902 3903 spe = bnx2x_sp_get_next(bp); 3904 3905 /* CID needs port number to be encoded int it */ 3906 spe->hdr.conn_and_cmd_data = 3907 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3908 HW_CID(bp, cid)); 3909 3910 /* In some cases, type may already contain the func-id 3911 * mainly in SRIOV related use cases, so we add it here only 3912 * if it's not already set. 3913 */ 3914 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3915 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3916 SPE_HDR_CONN_TYPE; 3917 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3918 SPE_HDR_FUNCTION_ID); 3919 } else { 3920 type = cmd_type; 3921 } 3922 3923 spe->hdr.type = cpu_to_le16(type); 3924 3925 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3926 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3927 3928 /* 3929 * It's ok if the actual decrement is issued towards the memory 3930 * somewhere between the spin_lock and spin_unlock. Thus no 3931 * more explicit memory barrier is needed. 3932 */ 3933 if (common) 3934 atomic_dec(&bp->eq_spq_left); 3935 else 3936 atomic_dec(&bp->cq_spq_left); 3937 3938 DP(BNX2X_MSG_SP, 3939 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3940 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3941 (u32)(U64_LO(bp->spq_mapping) + 3942 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3943 HW_CID(bp, cid), data_hi, data_lo, type, 3944 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3945 3946 bnx2x_sp_prod_update(bp); 3947 spin_unlock_bh(&bp->spq_lock); 3948 return 0; 3949 } 3950 3951 /* acquire split MCP access lock register */ 3952 static int bnx2x_acquire_alr(struct bnx2x *bp) 3953 { 3954 u32 j, val; 3955 int rc = 0; 3956 3957 might_sleep(); 3958 for (j = 0; j < 1000; j++) { 3959 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3960 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3961 if (val & MCPR_ACCESS_LOCK_LOCK) 3962 break; 3963 3964 usleep_range(5000, 10000); 3965 } 3966 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3967 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3968 rc = -EBUSY; 3969 } 3970 3971 return rc; 3972 } 3973 3974 /* release split MCP access lock register */ 3975 static void bnx2x_release_alr(struct bnx2x *bp) 3976 { 3977 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3978 } 3979 3980 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3981 #define BNX2X_DEF_SB_IDX 0x0002 3982 3983 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3984 { 3985 struct host_sp_status_block *def_sb = bp->def_status_blk; 3986 u16 rc = 0; 3987 3988 barrier(); /* status block is written to by the chip */ 3989 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3990 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3991 rc |= BNX2X_DEF_SB_ATT_IDX; 3992 } 3993 3994 if (bp->def_idx != def_sb->sp_sb.running_index) { 3995 bp->def_idx = def_sb->sp_sb.running_index; 3996 rc |= BNX2X_DEF_SB_IDX; 3997 } 3998 3999 /* Do not reorder: indices reading should complete before handling */ 4000 barrier(); 4001 return rc; 4002 } 4003 4004 /* 4005 * slow path service functions 4006 */ 4007 4008 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 4009 { 4010 int port = BP_PORT(bp); 4011 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4012 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4013 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 4014 NIG_REG_MASK_INTERRUPT_PORT0; 4015 u32 aeu_mask; 4016 u32 nig_mask = 0; 4017 u32 reg_addr; 4018 4019 if (bp->attn_state & asserted) 4020 BNX2X_ERR("IGU ERROR\n"); 4021 4022 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4023 aeu_mask = REG_RD(bp, aeu_addr); 4024 4025 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 4026 aeu_mask, asserted); 4027 aeu_mask &= ~(asserted & 0x3ff); 4028 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4029 4030 REG_WR(bp, aeu_addr, aeu_mask); 4031 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4032 4033 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4034 bp->attn_state |= asserted; 4035 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4036 4037 if (asserted & ATTN_HARD_WIRED_MASK) { 4038 if (asserted & ATTN_NIG_FOR_FUNC) { 4039 4040 bnx2x_acquire_phy_lock(bp); 4041 4042 /* save nig interrupt mask */ 4043 nig_mask = REG_RD(bp, nig_int_mask_addr); 4044 4045 /* If nig_mask is not set, no need to call the update 4046 * function. 4047 */ 4048 if (nig_mask) { 4049 REG_WR(bp, nig_int_mask_addr, 0); 4050 4051 bnx2x_link_attn(bp); 4052 } 4053 4054 /* handle unicore attn? */ 4055 } 4056 if (asserted & ATTN_SW_TIMER_4_FUNC) 4057 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4058 4059 if (asserted & GPIO_2_FUNC) 4060 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4061 4062 if (asserted & GPIO_3_FUNC) 4063 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4064 4065 if (asserted & GPIO_4_FUNC) 4066 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4067 4068 if (port == 0) { 4069 if (asserted & ATTN_GENERAL_ATTN_1) { 4070 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4071 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4072 } 4073 if (asserted & ATTN_GENERAL_ATTN_2) { 4074 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4075 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4076 } 4077 if (asserted & ATTN_GENERAL_ATTN_3) { 4078 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4079 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4080 } 4081 } else { 4082 if (asserted & ATTN_GENERAL_ATTN_4) { 4083 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4084 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4085 } 4086 if (asserted & ATTN_GENERAL_ATTN_5) { 4087 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4088 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4089 } 4090 if (asserted & ATTN_GENERAL_ATTN_6) { 4091 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4092 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4093 } 4094 } 4095 4096 } /* if hardwired */ 4097 4098 if (bp->common.int_block == INT_BLOCK_HC) 4099 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4100 COMMAND_REG_ATTN_BITS_SET); 4101 else 4102 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4103 4104 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4105 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4106 REG_WR(bp, reg_addr, asserted); 4107 4108 /* now set back the mask */ 4109 if (asserted & ATTN_NIG_FOR_FUNC) { 4110 /* Verify that IGU ack through BAR was written before restoring 4111 * NIG mask. This loop should exit after 2-3 iterations max. 4112 */ 4113 if (bp->common.int_block != INT_BLOCK_HC) { 4114 u32 cnt = 0, igu_acked; 4115 do { 4116 igu_acked = REG_RD(bp, 4117 IGU_REG_ATTENTION_ACK_BITS); 4118 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4119 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4120 if (!igu_acked) 4121 DP(NETIF_MSG_HW, 4122 "Failed to verify IGU ack on time\n"); 4123 barrier(); 4124 } 4125 REG_WR(bp, nig_int_mask_addr, nig_mask); 4126 bnx2x_release_phy_lock(bp); 4127 } 4128 } 4129 4130 static void bnx2x_fan_failure(struct bnx2x *bp) 4131 { 4132 int port = BP_PORT(bp); 4133 u32 ext_phy_config; 4134 /* mark the failure */ 4135 ext_phy_config = 4136 SHMEM_RD(bp, 4137 dev_info.port_hw_config[port].external_phy_config); 4138 4139 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4140 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4141 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4142 ext_phy_config); 4143 4144 /* log the failure */ 4145 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4146 "Please contact OEM Support for assistance\n"); 4147 4148 /* Schedule device reset (unload) 4149 * This is due to some boards consuming sufficient power when driver is 4150 * up to overheat if fan fails. 4151 */ 4152 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4153 } 4154 4155 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4156 { 4157 int port = BP_PORT(bp); 4158 int reg_offset; 4159 u32 val; 4160 4161 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4162 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4163 4164 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4165 4166 val = REG_RD(bp, reg_offset); 4167 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4168 REG_WR(bp, reg_offset, val); 4169 4170 BNX2X_ERR("SPIO5 hw attention\n"); 4171 4172 /* Fan failure attention */ 4173 bnx2x_hw_reset_phy(&bp->link_params); 4174 bnx2x_fan_failure(bp); 4175 } 4176 4177 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4178 bnx2x_acquire_phy_lock(bp); 4179 bnx2x_handle_module_detect_int(&bp->link_params); 4180 bnx2x_release_phy_lock(bp); 4181 } 4182 4183 if (attn & HW_INTERRUPT_ASSERT_SET_0) { 4184 4185 val = REG_RD(bp, reg_offset); 4186 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0); 4187 REG_WR(bp, reg_offset, val); 4188 4189 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4190 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0)); 4191 bnx2x_panic(); 4192 } 4193 } 4194 4195 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4196 { 4197 u32 val; 4198 4199 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4200 4201 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4202 BNX2X_ERR("DB hw attention 0x%x\n", val); 4203 /* DORQ discard attention */ 4204 if (val & 0x2) 4205 BNX2X_ERR("FATAL error from DORQ\n"); 4206 } 4207 4208 if (attn & HW_INTERRUPT_ASSERT_SET_1) { 4209 4210 int port = BP_PORT(bp); 4211 int reg_offset; 4212 4213 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4214 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4215 4216 val = REG_RD(bp, reg_offset); 4217 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1); 4218 REG_WR(bp, reg_offset, val); 4219 4220 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4221 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1)); 4222 bnx2x_panic(); 4223 } 4224 } 4225 4226 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4227 { 4228 u32 val; 4229 4230 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4231 4232 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4233 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4234 /* CFC error attention */ 4235 if (val & 0x2) 4236 BNX2X_ERR("FATAL error from CFC\n"); 4237 } 4238 4239 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4240 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4241 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4242 /* RQ_USDMDP_FIFO_OVERFLOW */ 4243 if (val & 0x18000) 4244 BNX2X_ERR("FATAL error from PXP\n"); 4245 4246 if (!CHIP_IS_E1x(bp)) { 4247 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4248 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4249 } 4250 } 4251 4252 if (attn & HW_INTERRUPT_ASSERT_SET_2) { 4253 4254 int port = BP_PORT(bp); 4255 int reg_offset; 4256 4257 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4258 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4259 4260 val = REG_RD(bp, reg_offset); 4261 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2); 4262 REG_WR(bp, reg_offset, val); 4263 4264 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4265 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2)); 4266 bnx2x_panic(); 4267 } 4268 } 4269 4270 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4271 { 4272 u32 val; 4273 4274 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4275 4276 if (attn & BNX2X_PMF_LINK_ASSERT) { 4277 int func = BP_FUNC(bp); 4278 4279 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4280 bnx2x_read_mf_cfg(bp); 4281 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4282 func_mf_config[BP_ABS_FUNC(bp)].config); 4283 val = SHMEM_RD(bp, 4284 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4285 4286 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4287 DRV_STATUS_OEM_EVENT_MASK)) 4288 bnx2x_oem_event(bp, 4289 (val & (DRV_STATUS_DCC_EVENT_MASK | 4290 DRV_STATUS_OEM_EVENT_MASK))); 4291 4292 if (val & DRV_STATUS_SET_MF_BW) 4293 bnx2x_set_mf_bw(bp); 4294 4295 if (val & DRV_STATUS_DRV_INFO_REQ) 4296 bnx2x_handle_drv_info_req(bp); 4297 4298 if (val & DRV_STATUS_VF_DISABLED) 4299 bnx2x_schedule_iov_task(bp, 4300 BNX2X_IOV_HANDLE_FLR); 4301 4302 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4303 bnx2x_pmf_update(bp); 4304 4305 if (bp->port.pmf && 4306 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4307 bp->dcbx_enabled > 0) 4308 /* start dcbx state machine */ 4309 bnx2x_dcbx_set_params(bp, 4310 BNX2X_DCBX_STATE_NEG_RECEIVED); 4311 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4312 bnx2x_handle_afex_cmd(bp, 4313 val & DRV_STATUS_AFEX_EVENT_MASK); 4314 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4315 bnx2x_handle_eee_event(bp); 4316 4317 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4318 bnx2x_schedule_sp_rtnl(bp, 4319 BNX2X_SP_RTNL_UPDATE_SVID, 0); 4320 4321 if (bp->link_vars.periodic_flags & 4322 PERIODIC_FLAGS_LINK_EVENT) { 4323 /* sync with link */ 4324 bnx2x_acquire_phy_lock(bp); 4325 bp->link_vars.periodic_flags &= 4326 ~PERIODIC_FLAGS_LINK_EVENT; 4327 bnx2x_release_phy_lock(bp); 4328 if (IS_MF(bp)) 4329 bnx2x_link_sync_notify(bp); 4330 bnx2x_link_report(bp); 4331 } 4332 /* Always call it here: bnx2x_link_report() will 4333 * prevent the link indication duplication. 4334 */ 4335 bnx2x__link_status_update(bp); 4336 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4337 4338 BNX2X_ERR("MC assert!\n"); 4339 bnx2x_mc_assert(bp); 4340 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4341 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4342 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4343 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4344 bnx2x_panic(); 4345 4346 } else if (attn & BNX2X_MCP_ASSERT) { 4347 4348 BNX2X_ERR("MCP assert!\n"); 4349 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4350 bnx2x_fw_dump(bp); 4351 4352 } else 4353 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4354 } 4355 4356 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4357 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4358 if (attn & BNX2X_GRC_TIMEOUT) { 4359 val = CHIP_IS_E1(bp) ? 0 : 4360 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4361 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4362 } 4363 if (attn & BNX2X_GRC_RSV) { 4364 val = CHIP_IS_E1(bp) ? 0 : 4365 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4366 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4367 } 4368 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4369 } 4370 } 4371 4372 /* 4373 * Bits map: 4374 * 0-7 - Engine0 load counter. 4375 * 8-15 - Engine1 load counter. 4376 * 16 - Engine0 RESET_IN_PROGRESS bit. 4377 * 17 - Engine1 RESET_IN_PROGRESS bit. 4378 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4379 * on the engine 4380 * 19 - Engine1 ONE_IS_LOADED. 4381 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4382 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4383 * just the one belonging to its engine). 4384 * 4385 */ 4386 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4387 4388 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4389 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4390 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4391 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4392 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4393 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4394 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4395 4396 /* 4397 * Set the GLOBAL_RESET bit. 4398 * 4399 * Should be run under rtnl lock 4400 */ 4401 void bnx2x_set_reset_global(struct bnx2x *bp) 4402 { 4403 u32 val; 4404 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4405 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4406 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4407 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4408 } 4409 4410 /* 4411 * Clear the GLOBAL_RESET bit. 4412 * 4413 * Should be run under rtnl lock 4414 */ 4415 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4416 { 4417 u32 val; 4418 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4419 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4420 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4421 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4422 } 4423 4424 /* 4425 * Checks the GLOBAL_RESET bit. 4426 * 4427 * should be run under rtnl lock 4428 */ 4429 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4430 { 4431 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4432 4433 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4434 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4435 } 4436 4437 /* 4438 * Clear RESET_IN_PROGRESS bit for the current engine. 4439 * 4440 * Should be run under rtnl lock 4441 */ 4442 static void bnx2x_set_reset_done(struct bnx2x *bp) 4443 { 4444 u32 val; 4445 u32 bit = BP_PATH(bp) ? 4446 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4447 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4448 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4449 4450 /* Clear the bit */ 4451 val &= ~bit; 4452 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4453 4454 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4455 } 4456 4457 /* 4458 * Set RESET_IN_PROGRESS for the current engine. 4459 * 4460 * should be run under rtnl lock 4461 */ 4462 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4463 { 4464 u32 val; 4465 u32 bit = BP_PATH(bp) ? 4466 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4467 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4468 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4469 4470 /* Set the bit */ 4471 val |= bit; 4472 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4473 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4474 } 4475 4476 /* 4477 * Checks the RESET_IN_PROGRESS bit for the given engine. 4478 * should be run under rtnl lock 4479 */ 4480 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4481 { 4482 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4483 u32 bit = engine ? 4484 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4485 4486 /* return false if bit is set */ 4487 return (val & bit) ? false : true; 4488 } 4489 4490 /* 4491 * set pf load for the current pf. 4492 * 4493 * should be run under rtnl lock 4494 */ 4495 void bnx2x_set_pf_load(struct bnx2x *bp) 4496 { 4497 u32 val1, val; 4498 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4499 BNX2X_PATH0_LOAD_CNT_MASK; 4500 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4501 BNX2X_PATH0_LOAD_CNT_SHIFT; 4502 4503 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4504 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4505 4506 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4507 4508 /* get the current counter value */ 4509 val1 = (val & mask) >> shift; 4510 4511 /* set bit of that PF */ 4512 val1 |= (1 << bp->pf_num); 4513 4514 /* clear the old value */ 4515 val &= ~mask; 4516 4517 /* set the new one */ 4518 val |= ((val1 << shift) & mask); 4519 4520 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4521 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4522 } 4523 4524 /** 4525 * bnx2x_clear_pf_load - clear pf load mark 4526 * 4527 * @bp: driver handle 4528 * 4529 * Should be run under rtnl lock. 4530 * Decrements the load counter for the current engine. Returns 4531 * whether other functions are still loaded 4532 */ 4533 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4534 { 4535 u32 val1, val; 4536 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4537 BNX2X_PATH0_LOAD_CNT_MASK; 4538 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4539 BNX2X_PATH0_LOAD_CNT_SHIFT; 4540 4541 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4542 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4543 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4544 4545 /* get the current counter value */ 4546 val1 = (val & mask) >> shift; 4547 4548 /* clear bit of that PF */ 4549 val1 &= ~(1 << bp->pf_num); 4550 4551 /* clear the old value */ 4552 val &= ~mask; 4553 4554 /* set the new one */ 4555 val |= ((val1 << shift) & mask); 4556 4557 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4558 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4559 return val1 != 0; 4560 } 4561 4562 /* 4563 * Read the load status for the current engine. 4564 * 4565 * should be run under rtnl lock 4566 */ 4567 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4568 { 4569 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4570 BNX2X_PATH0_LOAD_CNT_MASK); 4571 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4572 BNX2X_PATH0_LOAD_CNT_SHIFT); 4573 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4574 4575 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4576 4577 val = (val & mask) >> shift; 4578 4579 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4580 engine, val); 4581 4582 return val != 0; 4583 } 4584 4585 static void _print_parity(struct bnx2x *bp, u32 reg) 4586 { 4587 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4588 } 4589 4590 static void _print_next_block(int idx, const char *blk) 4591 { 4592 pr_cont("%s%s", idx ? ", " : "", blk); 4593 } 4594 4595 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4596 int *par_num, bool print) 4597 { 4598 u32 cur_bit; 4599 bool res; 4600 int i; 4601 4602 res = false; 4603 4604 for (i = 0; sig; i++) { 4605 cur_bit = (0x1UL << i); 4606 if (sig & cur_bit) { 4607 res |= true; /* Each bit is real error! */ 4608 4609 if (print) { 4610 switch (cur_bit) { 4611 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4612 _print_next_block((*par_num)++, "BRB"); 4613 _print_parity(bp, 4614 BRB1_REG_BRB1_PRTY_STS); 4615 break; 4616 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4617 _print_next_block((*par_num)++, 4618 "PARSER"); 4619 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4620 break; 4621 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4622 _print_next_block((*par_num)++, "TSDM"); 4623 _print_parity(bp, 4624 TSDM_REG_TSDM_PRTY_STS); 4625 break; 4626 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4627 _print_next_block((*par_num)++, 4628 "SEARCHER"); 4629 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4630 break; 4631 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4632 _print_next_block((*par_num)++, "TCM"); 4633 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4634 break; 4635 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4636 _print_next_block((*par_num)++, 4637 "TSEMI"); 4638 _print_parity(bp, 4639 TSEM_REG_TSEM_PRTY_STS_0); 4640 _print_parity(bp, 4641 TSEM_REG_TSEM_PRTY_STS_1); 4642 break; 4643 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4644 _print_next_block((*par_num)++, "XPB"); 4645 _print_parity(bp, GRCBASE_XPB + 4646 PB_REG_PB_PRTY_STS); 4647 break; 4648 } 4649 } 4650 4651 /* Clear the bit */ 4652 sig &= ~cur_bit; 4653 } 4654 } 4655 4656 return res; 4657 } 4658 4659 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4660 int *par_num, bool *global, 4661 bool print) 4662 { 4663 u32 cur_bit; 4664 bool res; 4665 int i; 4666 4667 res = false; 4668 4669 for (i = 0; sig; i++) { 4670 cur_bit = (0x1UL << i); 4671 if (sig & cur_bit) { 4672 res |= true; /* Each bit is real error! */ 4673 switch (cur_bit) { 4674 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4675 if (print) { 4676 _print_next_block((*par_num)++, "PBF"); 4677 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4678 } 4679 break; 4680 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4681 if (print) { 4682 _print_next_block((*par_num)++, "QM"); 4683 _print_parity(bp, QM_REG_QM_PRTY_STS); 4684 } 4685 break; 4686 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4687 if (print) { 4688 _print_next_block((*par_num)++, "TM"); 4689 _print_parity(bp, TM_REG_TM_PRTY_STS); 4690 } 4691 break; 4692 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4693 if (print) { 4694 _print_next_block((*par_num)++, "XSDM"); 4695 _print_parity(bp, 4696 XSDM_REG_XSDM_PRTY_STS); 4697 } 4698 break; 4699 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4700 if (print) { 4701 _print_next_block((*par_num)++, "XCM"); 4702 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4703 } 4704 break; 4705 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4706 if (print) { 4707 _print_next_block((*par_num)++, 4708 "XSEMI"); 4709 _print_parity(bp, 4710 XSEM_REG_XSEM_PRTY_STS_0); 4711 _print_parity(bp, 4712 XSEM_REG_XSEM_PRTY_STS_1); 4713 } 4714 break; 4715 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4716 if (print) { 4717 _print_next_block((*par_num)++, 4718 "DOORBELLQ"); 4719 _print_parity(bp, 4720 DORQ_REG_DORQ_PRTY_STS); 4721 } 4722 break; 4723 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4724 if (print) { 4725 _print_next_block((*par_num)++, "NIG"); 4726 if (CHIP_IS_E1x(bp)) { 4727 _print_parity(bp, 4728 NIG_REG_NIG_PRTY_STS); 4729 } else { 4730 _print_parity(bp, 4731 NIG_REG_NIG_PRTY_STS_0); 4732 _print_parity(bp, 4733 NIG_REG_NIG_PRTY_STS_1); 4734 } 4735 } 4736 break; 4737 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4738 if (print) 4739 _print_next_block((*par_num)++, 4740 "VAUX PCI CORE"); 4741 *global = true; 4742 break; 4743 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4744 if (print) { 4745 _print_next_block((*par_num)++, 4746 "DEBUG"); 4747 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4748 } 4749 break; 4750 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4751 if (print) { 4752 _print_next_block((*par_num)++, "USDM"); 4753 _print_parity(bp, 4754 USDM_REG_USDM_PRTY_STS); 4755 } 4756 break; 4757 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4758 if (print) { 4759 _print_next_block((*par_num)++, "UCM"); 4760 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4761 } 4762 break; 4763 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4764 if (print) { 4765 _print_next_block((*par_num)++, 4766 "USEMI"); 4767 _print_parity(bp, 4768 USEM_REG_USEM_PRTY_STS_0); 4769 _print_parity(bp, 4770 USEM_REG_USEM_PRTY_STS_1); 4771 } 4772 break; 4773 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4774 if (print) { 4775 _print_next_block((*par_num)++, "UPB"); 4776 _print_parity(bp, GRCBASE_UPB + 4777 PB_REG_PB_PRTY_STS); 4778 } 4779 break; 4780 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4781 if (print) { 4782 _print_next_block((*par_num)++, "CSDM"); 4783 _print_parity(bp, 4784 CSDM_REG_CSDM_PRTY_STS); 4785 } 4786 break; 4787 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4788 if (print) { 4789 _print_next_block((*par_num)++, "CCM"); 4790 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4791 } 4792 break; 4793 } 4794 4795 /* Clear the bit */ 4796 sig &= ~cur_bit; 4797 } 4798 } 4799 4800 return res; 4801 } 4802 4803 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4804 int *par_num, bool print) 4805 { 4806 u32 cur_bit; 4807 bool res; 4808 int i; 4809 4810 res = false; 4811 4812 for (i = 0; sig; i++) { 4813 cur_bit = (0x1UL << i); 4814 if (sig & cur_bit) { 4815 res = true; /* Each bit is real error! */ 4816 if (print) { 4817 switch (cur_bit) { 4818 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4819 _print_next_block((*par_num)++, 4820 "CSEMI"); 4821 _print_parity(bp, 4822 CSEM_REG_CSEM_PRTY_STS_0); 4823 _print_parity(bp, 4824 CSEM_REG_CSEM_PRTY_STS_1); 4825 break; 4826 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4827 _print_next_block((*par_num)++, "PXP"); 4828 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4829 _print_parity(bp, 4830 PXP2_REG_PXP2_PRTY_STS_0); 4831 _print_parity(bp, 4832 PXP2_REG_PXP2_PRTY_STS_1); 4833 break; 4834 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4835 _print_next_block((*par_num)++, 4836 "PXPPCICLOCKCLIENT"); 4837 break; 4838 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4839 _print_next_block((*par_num)++, "CFC"); 4840 _print_parity(bp, 4841 CFC_REG_CFC_PRTY_STS); 4842 break; 4843 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4844 _print_next_block((*par_num)++, "CDU"); 4845 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4846 break; 4847 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4848 _print_next_block((*par_num)++, "DMAE"); 4849 _print_parity(bp, 4850 DMAE_REG_DMAE_PRTY_STS); 4851 break; 4852 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4853 _print_next_block((*par_num)++, "IGU"); 4854 if (CHIP_IS_E1x(bp)) 4855 _print_parity(bp, 4856 HC_REG_HC_PRTY_STS); 4857 else 4858 _print_parity(bp, 4859 IGU_REG_IGU_PRTY_STS); 4860 break; 4861 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4862 _print_next_block((*par_num)++, "MISC"); 4863 _print_parity(bp, 4864 MISC_REG_MISC_PRTY_STS); 4865 break; 4866 } 4867 } 4868 4869 /* Clear the bit */ 4870 sig &= ~cur_bit; 4871 } 4872 } 4873 4874 return res; 4875 } 4876 4877 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4878 int *par_num, bool *global, 4879 bool print) 4880 { 4881 bool res = false; 4882 u32 cur_bit; 4883 int i; 4884 4885 for (i = 0; sig; i++) { 4886 cur_bit = (0x1UL << i); 4887 if (sig & cur_bit) { 4888 switch (cur_bit) { 4889 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4890 if (print) 4891 _print_next_block((*par_num)++, 4892 "MCP ROM"); 4893 *global = true; 4894 res = true; 4895 break; 4896 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4897 if (print) 4898 _print_next_block((*par_num)++, 4899 "MCP UMP RX"); 4900 *global = true; 4901 res = true; 4902 break; 4903 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4904 if (print) 4905 _print_next_block((*par_num)++, 4906 "MCP UMP TX"); 4907 *global = true; 4908 res = true; 4909 break; 4910 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4911 (*par_num)++; 4912 /* clear latched SCPAD PATIRY from MCP */ 4913 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4914 1UL << 10); 4915 break; 4916 } 4917 4918 /* Clear the bit */ 4919 sig &= ~cur_bit; 4920 } 4921 } 4922 4923 return res; 4924 } 4925 4926 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4927 int *par_num, bool print) 4928 { 4929 u32 cur_bit; 4930 bool res; 4931 int i; 4932 4933 res = false; 4934 4935 for (i = 0; sig; i++) { 4936 cur_bit = (0x1UL << i); 4937 if (sig & cur_bit) { 4938 res = true; /* Each bit is real error! */ 4939 if (print) { 4940 switch (cur_bit) { 4941 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4942 _print_next_block((*par_num)++, 4943 "PGLUE_B"); 4944 _print_parity(bp, 4945 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4946 break; 4947 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4948 _print_next_block((*par_num)++, "ATC"); 4949 _print_parity(bp, 4950 ATC_REG_ATC_PRTY_STS); 4951 break; 4952 } 4953 } 4954 /* Clear the bit */ 4955 sig &= ~cur_bit; 4956 } 4957 } 4958 4959 return res; 4960 } 4961 4962 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4963 u32 *sig) 4964 { 4965 bool res = false; 4966 4967 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4968 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4969 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4970 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4971 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4972 int par_num = 0; 4973 4974 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4975 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4976 sig[0] & HW_PRTY_ASSERT_SET_0, 4977 sig[1] & HW_PRTY_ASSERT_SET_1, 4978 sig[2] & HW_PRTY_ASSERT_SET_2, 4979 sig[3] & HW_PRTY_ASSERT_SET_3, 4980 sig[4] & HW_PRTY_ASSERT_SET_4); 4981 if (print) { 4982 if (((sig[0] & HW_PRTY_ASSERT_SET_0) || 4983 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4984 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4985 (sig[4] & HW_PRTY_ASSERT_SET_4)) || 4986 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) { 4987 netdev_err(bp->dev, 4988 "Parity errors detected in blocks: "); 4989 } else { 4990 print = false; 4991 } 4992 } 4993 res |= bnx2x_check_blocks_with_parity0(bp, 4994 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4995 res |= bnx2x_check_blocks_with_parity1(bp, 4996 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4997 res |= bnx2x_check_blocks_with_parity2(bp, 4998 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4999 res |= bnx2x_check_blocks_with_parity3(bp, 5000 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 5001 res |= bnx2x_check_blocks_with_parity4(bp, 5002 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 5003 5004 if (print) 5005 pr_cont("\n"); 5006 } 5007 5008 return res; 5009 } 5010 5011 /** 5012 * bnx2x_chk_parity_attn - checks for parity attentions. 5013 * 5014 * @bp: driver handle 5015 * @global: true if there was a global attention 5016 * @print: show parity attention in syslog 5017 */ 5018 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 5019 { 5020 struct attn_route attn = { {0} }; 5021 int port = BP_PORT(bp); 5022 5023 attn.sig[0] = REG_RD(bp, 5024 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 5025 port*4); 5026 attn.sig[1] = REG_RD(bp, 5027 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 5028 port*4); 5029 attn.sig[2] = REG_RD(bp, 5030 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 5031 port*4); 5032 attn.sig[3] = REG_RD(bp, 5033 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 5034 port*4); 5035 /* Since MCP attentions can't be disabled inside the block, we need to 5036 * read AEU registers to see whether they're currently disabled 5037 */ 5038 attn.sig[3] &= ((REG_RD(bp, 5039 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 5040 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 5041 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 5042 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 5043 5044 if (!CHIP_IS_E1x(bp)) 5045 attn.sig[4] = REG_RD(bp, 5046 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 5047 port*4); 5048 5049 return bnx2x_parity_attn(bp, global, print, attn.sig); 5050 } 5051 5052 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5053 { 5054 u32 val; 5055 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5056 5057 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5058 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5059 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5060 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5061 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5062 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5063 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5064 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5065 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5066 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5067 if (val & 5068 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5069 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5070 if (val & 5071 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5072 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5073 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5074 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5075 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5076 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5077 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5078 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5079 } 5080 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5081 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5082 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5083 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5084 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5085 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5086 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5087 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5088 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5089 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5090 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5091 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5092 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5093 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5094 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5095 } 5096 5097 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5098 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5099 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5100 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5101 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5102 } 5103 } 5104 5105 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5106 { 5107 struct attn_route attn, *group_mask; 5108 int port = BP_PORT(bp); 5109 int index; 5110 u32 reg_addr; 5111 u32 val; 5112 u32 aeu_mask; 5113 bool global = false; 5114 5115 /* need to take HW lock because MCP or other port might also 5116 try to handle this event */ 5117 bnx2x_acquire_alr(bp); 5118 5119 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5120 #ifndef BNX2X_STOP_ON_ERROR 5121 bp->recovery_state = BNX2X_RECOVERY_INIT; 5122 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5123 /* Disable HW interrupts */ 5124 bnx2x_int_disable(bp); 5125 /* In case of parity errors don't handle attentions so that 5126 * other function would "see" parity errors. 5127 */ 5128 #else 5129 bnx2x_panic(); 5130 #endif 5131 bnx2x_release_alr(bp); 5132 return; 5133 } 5134 5135 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5136 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5137 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5138 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5139 if (!CHIP_IS_E1x(bp)) 5140 attn.sig[4] = 5141 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5142 else 5143 attn.sig[4] = 0; 5144 5145 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5146 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5147 5148 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5149 if (deasserted & (1 << index)) { 5150 group_mask = &bp->attn_group[index]; 5151 5152 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5153 index, 5154 group_mask->sig[0], group_mask->sig[1], 5155 group_mask->sig[2], group_mask->sig[3], 5156 group_mask->sig[4]); 5157 5158 bnx2x_attn_int_deasserted4(bp, 5159 attn.sig[4] & group_mask->sig[4]); 5160 bnx2x_attn_int_deasserted3(bp, 5161 attn.sig[3] & group_mask->sig[3]); 5162 bnx2x_attn_int_deasserted1(bp, 5163 attn.sig[1] & group_mask->sig[1]); 5164 bnx2x_attn_int_deasserted2(bp, 5165 attn.sig[2] & group_mask->sig[2]); 5166 bnx2x_attn_int_deasserted0(bp, 5167 attn.sig[0] & group_mask->sig[0]); 5168 } 5169 } 5170 5171 bnx2x_release_alr(bp); 5172 5173 if (bp->common.int_block == INT_BLOCK_HC) 5174 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5175 COMMAND_REG_ATTN_BITS_CLR); 5176 else 5177 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5178 5179 val = ~deasserted; 5180 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5181 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5182 REG_WR(bp, reg_addr, val); 5183 5184 if (~bp->attn_state & deasserted) 5185 BNX2X_ERR("IGU ERROR\n"); 5186 5187 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5188 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5189 5190 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5191 aeu_mask = REG_RD(bp, reg_addr); 5192 5193 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5194 aeu_mask, deasserted); 5195 aeu_mask |= (deasserted & 0x3ff); 5196 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5197 5198 REG_WR(bp, reg_addr, aeu_mask); 5199 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5200 5201 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5202 bp->attn_state &= ~deasserted; 5203 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5204 } 5205 5206 static void bnx2x_attn_int(struct bnx2x *bp) 5207 { 5208 /* read local copy of bits */ 5209 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5210 attn_bits); 5211 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5212 attn_bits_ack); 5213 u32 attn_state = bp->attn_state; 5214 5215 /* look for changed bits */ 5216 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5217 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5218 5219 DP(NETIF_MSG_HW, 5220 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5221 attn_bits, attn_ack, asserted, deasserted); 5222 5223 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5224 BNX2X_ERR("BAD attention state\n"); 5225 5226 /* handle bits that were raised */ 5227 if (asserted) 5228 bnx2x_attn_int_asserted(bp, asserted); 5229 5230 if (deasserted) 5231 bnx2x_attn_int_deasserted(bp, deasserted); 5232 } 5233 5234 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5235 u16 index, u8 op, u8 update) 5236 { 5237 u32 igu_addr = bp->igu_base_addr; 5238 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5239 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5240 igu_addr); 5241 } 5242 5243 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5244 { 5245 /* No memory barriers */ 5246 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5247 mmiowb(); /* keep prod updates ordered */ 5248 } 5249 5250 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5251 union event_ring_elem *elem) 5252 { 5253 u8 err = elem->message.error; 5254 5255 if (!bp->cnic_eth_dev.starting_cid || 5256 (cid < bp->cnic_eth_dev.starting_cid && 5257 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5258 return 1; 5259 5260 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5261 5262 if (unlikely(err)) { 5263 5264 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5265 cid); 5266 bnx2x_panic_dump(bp, false); 5267 } 5268 bnx2x_cnic_cfc_comp(bp, cid, err); 5269 return 0; 5270 } 5271 5272 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5273 { 5274 struct bnx2x_mcast_ramrod_params rparam; 5275 int rc; 5276 5277 memset(&rparam, 0, sizeof(rparam)); 5278 5279 rparam.mcast_obj = &bp->mcast_obj; 5280 5281 netif_addr_lock_bh(bp->dev); 5282 5283 /* Clear pending state for the last command */ 5284 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5285 5286 /* If there are pending mcast commands - send them */ 5287 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5288 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5289 if (rc < 0) 5290 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5291 rc); 5292 } 5293 5294 netif_addr_unlock_bh(bp->dev); 5295 } 5296 5297 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5298 union event_ring_elem *elem) 5299 { 5300 unsigned long ramrod_flags = 0; 5301 int rc = 0; 5302 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 5303 u32 cid = echo & BNX2X_SWCID_MASK; 5304 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5305 5306 /* Always push next commands out, don't wait here */ 5307 __set_bit(RAMROD_CONT, &ramrod_flags); 5308 5309 switch (echo >> BNX2X_SWCID_SHIFT) { 5310 case BNX2X_FILTER_MAC_PENDING: 5311 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5312 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5313 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5314 else 5315 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5316 5317 break; 5318 case BNX2X_FILTER_VLAN_PENDING: 5319 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n"); 5320 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj; 5321 break; 5322 case BNX2X_FILTER_MCAST_PENDING: 5323 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5324 /* This is only relevant for 57710 where multicast MACs are 5325 * configured as unicast MACs using the same ramrod. 5326 */ 5327 bnx2x_handle_mcast_eqe(bp); 5328 return; 5329 default: 5330 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 5331 return; 5332 } 5333 5334 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5335 5336 if (rc < 0) 5337 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5338 else if (rc > 0) 5339 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5340 } 5341 5342 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5343 5344 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5345 { 5346 netif_addr_lock_bh(bp->dev); 5347 5348 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5349 5350 /* Send rx_mode command again if was requested */ 5351 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5352 bnx2x_set_storm_rx_mode(bp); 5353 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5354 &bp->sp_state)) 5355 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5356 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5357 &bp->sp_state)) 5358 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5359 5360 netif_addr_unlock_bh(bp->dev); 5361 } 5362 5363 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5364 union event_ring_elem *elem) 5365 { 5366 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5367 DP(BNX2X_MSG_SP, 5368 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5369 elem->message.data.vif_list_event.func_bit_map); 5370 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5371 elem->message.data.vif_list_event.func_bit_map); 5372 } else if (elem->message.data.vif_list_event.echo == 5373 VIF_LIST_RULE_SET) { 5374 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5375 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5376 } 5377 } 5378 5379 /* called with rtnl_lock */ 5380 static void bnx2x_after_function_update(struct bnx2x *bp) 5381 { 5382 int q, rc; 5383 struct bnx2x_fastpath *fp; 5384 struct bnx2x_queue_state_params queue_params = {NULL}; 5385 struct bnx2x_queue_update_params *q_update_params = 5386 &queue_params.params.update; 5387 5388 /* Send Q update command with afex vlan removal values for all Qs */ 5389 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5390 5391 /* set silent vlan removal values according to vlan mode */ 5392 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5393 &q_update_params->update_flags); 5394 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5395 &q_update_params->update_flags); 5396 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5397 5398 /* in access mode mark mask and value are 0 to strip all vlans */ 5399 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5400 q_update_params->silent_removal_value = 0; 5401 q_update_params->silent_removal_mask = 0; 5402 } else { 5403 q_update_params->silent_removal_value = 5404 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5405 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5406 } 5407 5408 for_each_eth_queue(bp, q) { 5409 /* Set the appropriate Queue object */ 5410 fp = &bp->fp[q]; 5411 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5412 5413 /* send the ramrod */ 5414 rc = bnx2x_queue_state_change(bp, &queue_params); 5415 if (rc < 0) 5416 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5417 q); 5418 } 5419 5420 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5421 fp = &bp->fp[FCOE_IDX(bp)]; 5422 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5423 5424 /* clear pending completion bit */ 5425 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5426 5427 /* mark latest Q bit */ 5428 smp_mb__before_atomic(); 5429 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5430 smp_mb__after_atomic(); 5431 5432 /* send Q update ramrod for FCoE Q */ 5433 rc = bnx2x_queue_state_change(bp, &queue_params); 5434 if (rc < 0) 5435 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5436 q); 5437 } else { 5438 /* If no FCoE ring - ACK MCP now */ 5439 bnx2x_link_report(bp); 5440 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5441 } 5442 } 5443 5444 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5445 struct bnx2x *bp, u32 cid) 5446 { 5447 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5448 5449 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5450 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5451 else 5452 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5453 } 5454 5455 static void bnx2x_eq_int(struct bnx2x *bp) 5456 { 5457 u16 hw_cons, sw_cons, sw_prod; 5458 union event_ring_elem *elem; 5459 u8 echo; 5460 u32 cid; 5461 u8 opcode; 5462 int rc, spqe_cnt = 0; 5463 struct bnx2x_queue_sp_obj *q_obj; 5464 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5465 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5466 5467 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5468 5469 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5470 * when we get the next-page we need to adjust so the loop 5471 * condition below will be met. The next element is the size of a 5472 * regular element and hence incrementing by 1 5473 */ 5474 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5475 hw_cons++; 5476 5477 /* This function may never run in parallel with itself for a 5478 * specific bp, thus there is no need in "paired" read memory 5479 * barrier here. 5480 */ 5481 sw_cons = bp->eq_cons; 5482 sw_prod = bp->eq_prod; 5483 5484 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5485 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5486 5487 for (; sw_cons != hw_cons; 5488 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5489 5490 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5491 5492 rc = bnx2x_iov_eq_sp_event(bp, elem); 5493 if (!rc) { 5494 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5495 rc); 5496 goto next_spqe; 5497 } 5498 5499 opcode = elem->message.opcode; 5500 5501 /* handle eq element */ 5502 switch (opcode) { 5503 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5504 bnx2x_vf_mbx_schedule(bp, 5505 &elem->message.data.vf_pf_event); 5506 continue; 5507 5508 case EVENT_RING_OPCODE_STAT_QUERY: 5509 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5510 "got statistics comp event %d\n", 5511 bp->stats_comp++); 5512 /* nothing to do with stats comp */ 5513 goto next_spqe; 5514 5515 case EVENT_RING_OPCODE_CFC_DEL: 5516 /* handle according to cid range */ 5517 /* 5518 * we may want to verify here that the bp state is 5519 * HALTING 5520 */ 5521 5522 /* elem CID originates from FW; actually LE */ 5523 cid = SW_CID(elem->message.data.cfc_del_event.cid); 5524 5525 DP(BNX2X_MSG_SP, 5526 "got delete ramrod for MULTI[%d]\n", cid); 5527 5528 if (CNIC_LOADED(bp) && 5529 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5530 goto next_spqe; 5531 5532 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5533 5534 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5535 break; 5536 5537 goto next_spqe; 5538 5539 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5540 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5541 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5542 if (f_obj->complete_cmd(bp, f_obj, 5543 BNX2X_F_CMD_TX_STOP)) 5544 break; 5545 goto next_spqe; 5546 5547 case EVENT_RING_OPCODE_START_TRAFFIC: 5548 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5549 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5550 if (f_obj->complete_cmd(bp, f_obj, 5551 BNX2X_F_CMD_TX_START)) 5552 break; 5553 goto next_spqe; 5554 5555 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5556 echo = elem->message.data.function_update_event.echo; 5557 if (echo == SWITCH_UPDATE) { 5558 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5559 "got FUNC_SWITCH_UPDATE ramrod\n"); 5560 if (f_obj->complete_cmd( 5561 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5562 break; 5563 5564 } else { 5565 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5566 5567 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5568 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5569 f_obj->complete_cmd(bp, f_obj, 5570 BNX2X_F_CMD_AFEX_UPDATE); 5571 5572 /* We will perform the Queues update from 5573 * sp_rtnl task as all Queue SP operations 5574 * should run under rtnl_lock. 5575 */ 5576 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5577 } 5578 5579 goto next_spqe; 5580 5581 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5582 f_obj->complete_cmd(bp, f_obj, 5583 BNX2X_F_CMD_AFEX_VIFLISTS); 5584 bnx2x_after_afex_vif_lists(bp, elem); 5585 goto next_spqe; 5586 case EVENT_RING_OPCODE_FUNCTION_START: 5587 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5588 "got FUNC_START ramrod\n"); 5589 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5590 break; 5591 5592 goto next_spqe; 5593 5594 case EVENT_RING_OPCODE_FUNCTION_STOP: 5595 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5596 "got FUNC_STOP ramrod\n"); 5597 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5598 break; 5599 5600 goto next_spqe; 5601 5602 case EVENT_RING_OPCODE_SET_TIMESYNC: 5603 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5604 "got set_timesync ramrod completion\n"); 5605 if (f_obj->complete_cmd(bp, f_obj, 5606 BNX2X_F_CMD_SET_TIMESYNC)) 5607 break; 5608 goto next_spqe; 5609 } 5610 5611 switch (opcode | bp->state) { 5612 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5613 BNX2X_STATE_OPEN): 5614 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5615 BNX2X_STATE_OPENING_WAIT4_PORT): 5616 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5617 BNX2X_STATE_CLOSING_WAIT4_HALT): 5618 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5619 SW_CID(elem->message.data.eth_event.echo)); 5620 rss_raw->clear_pending(rss_raw); 5621 break; 5622 5623 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5624 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5625 case (EVENT_RING_OPCODE_SET_MAC | 5626 BNX2X_STATE_CLOSING_WAIT4_HALT): 5627 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5628 BNX2X_STATE_OPEN): 5629 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5630 BNX2X_STATE_DIAG): 5631 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5632 BNX2X_STATE_CLOSING_WAIT4_HALT): 5633 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n"); 5634 bnx2x_handle_classification_eqe(bp, elem); 5635 break; 5636 5637 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5638 BNX2X_STATE_OPEN): 5639 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5640 BNX2X_STATE_DIAG): 5641 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5642 BNX2X_STATE_CLOSING_WAIT4_HALT): 5643 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5644 bnx2x_handle_mcast_eqe(bp); 5645 break; 5646 5647 case (EVENT_RING_OPCODE_FILTERS_RULES | 5648 BNX2X_STATE_OPEN): 5649 case (EVENT_RING_OPCODE_FILTERS_RULES | 5650 BNX2X_STATE_DIAG): 5651 case (EVENT_RING_OPCODE_FILTERS_RULES | 5652 BNX2X_STATE_CLOSING_WAIT4_HALT): 5653 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5654 bnx2x_handle_rx_mode_eqe(bp); 5655 break; 5656 default: 5657 /* unknown event log error and continue */ 5658 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5659 elem->message.opcode, bp->state); 5660 } 5661 next_spqe: 5662 spqe_cnt++; 5663 } /* for */ 5664 5665 smp_mb__before_atomic(); 5666 atomic_add(spqe_cnt, &bp->eq_spq_left); 5667 5668 bp->eq_cons = sw_cons; 5669 bp->eq_prod = sw_prod; 5670 /* Make sure that above mem writes were issued towards the memory */ 5671 smp_wmb(); 5672 5673 /* update producer */ 5674 bnx2x_update_eq_prod(bp, bp->eq_prod); 5675 } 5676 5677 static void bnx2x_sp_task(struct work_struct *work) 5678 { 5679 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5680 5681 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5682 5683 /* make sure the atomic interrupt_occurred has been written */ 5684 smp_rmb(); 5685 if (atomic_read(&bp->interrupt_occurred)) { 5686 5687 /* what work needs to be performed? */ 5688 u16 status = bnx2x_update_dsb_idx(bp); 5689 5690 DP(BNX2X_MSG_SP, "status %x\n", status); 5691 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5692 atomic_set(&bp->interrupt_occurred, 0); 5693 5694 /* HW attentions */ 5695 if (status & BNX2X_DEF_SB_ATT_IDX) { 5696 bnx2x_attn_int(bp); 5697 status &= ~BNX2X_DEF_SB_ATT_IDX; 5698 } 5699 5700 /* SP events: STAT_QUERY and others */ 5701 if (status & BNX2X_DEF_SB_IDX) { 5702 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5703 5704 if (FCOE_INIT(bp) && 5705 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5706 /* Prevent local bottom-halves from running as 5707 * we are going to change the local NAPI list. 5708 */ 5709 local_bh_disable(); 5710 napi_schedule(&bnx2x_fcoe(bp, napi)); 5711 local_bh_enable(); 5712 } 5713 5714 /* Handle EQ completions */ 5715 bnx2x_eq_int(bp); 5716 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5717 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5718 5719 status &= ~BNX2X_DEF_SB_IDX; 5720 } 5721 5722 /* if status is non zero then perhaps something went wrong */ 5723 if (unlikely(status)) 5724 DP(BNX2X_MSG_SP, 5725 "got an unknown interrupt! (status 0x%x)\n", status); 5726 5727 /* ack status block only if something was actually handled */ 5728 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5729 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5730 } 5731 5732 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5733 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5734 &bp->sp_state)) { 5735 bnx2x_link_report(bp); 5736 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5737 } 5738 } 5739 5740 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5741 { 5742 struct net_device *dev = dev_instance; 5743 struct bnx2x *bp = netdev_priv(dev); 5744 5745 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5746 IGU_INT_DISABLE, 0); 5747 5748 #ifdef BNX2X_STOP_ON_ERROR 5749 if (unlikely(bp->panic)) 5750 return IRQ_HANDLED; 5751 #endif 5752 5753 if (CNIC_LOADED(bp)) { 5754 struct cnic_ops *c_ops; 5755 5756 rcu_read_lock(); 5757 c_ops = rcu_dereference(bp->cnic_ops); 5758 if (c_ops) 5759 c_ops->cnic_handler(bp->cnic_data, NULL); 5760 rcu_read_unlock(); 5761 } 5762 5763 /* schedule sp task to perform default status block work, ack 5764 * attentions and enable interrupts. 5765 */ 5766 bnx2x_schedule_sp_task(bp); 5767 5768 return IRQ_HANDLED; 5769 } 5770 5771 /* end of slow path */ 5772 5773 void bnx2x_drv_pulse(struct bnx2x *bp) 5774 { 5775 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5776 bp->fw_drv_pulse_wr_seq); 5777 } 5778 5779 static void bnx2x_timer(struct timer_list *t) 5780 { 5781 struct bnx2x *bp = from_timer(bp, t, timer); 5782 5783 if (!netif_running(bp->dev)) 5784 return; 5785 5786 if (IS_PF(bp) && 5787 !BP_NOMCP(bp)) { 5788 int mb_idx = BP_FW_MB_IDX(bp); 5789 u16 drv_pulse; 5790 u16 mcp_pulse; 5791 5792 ++bp->fw_drv_pulse_wr_seq; 5793 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5794 drv_pulse = bp->fw_drv_pulse_wr_seq; 5795 bnx2x_drv_pulse(bp); 5796 5797 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5798 MCP_PULSE_SEQ_MASK); 5799 /* The delta between driver pulse and mcp response 5800 * should not get too big. If the MFW is more than 5 pulses 5801 * behind, we should worry about it enough to generate an error 5802 * log. 5803 */ 5804 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5805 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5806 drv_pulse, mcp_pulse); 5807 } 5808 5809 if (bp->state == BNX2X_STATE_OPEN) 5810 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5811 5812 /* sample pf vf bulletin board for new posts from pf */ 5813 if (IS_VF(bp)) 5814 bnx2x_timer_sriov(bp); 5815 5816 mod_timer(&bp->timer, jiffies + bp->current_interval); 5817 } 5818 5819 /* end of Statistics */ 5820 5821 /* nic init */ 5822 5823 /* 5824 * nic init service functions 5825 */ 5826 5827 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5828 { 5829 u32 i; 5830 if (!(len%4) && !(addr%4)) 5831 for (i = 0; i < len; i += 4) 5832 REG_WR(bp, addr + i, fill); 5833 else 5834 for (i = 0; i < len; i++) 5835 REG_WR8(bp, addr + i, fill); 5836 } 5837 5838 /* helper: writes FP SP data to FW - data_size in dwords */ 5839 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5840 int fw_sb_id, 5841 u32 *sb_data_p, 5842 u32 data_size) 5843 { 5844 int index; 5845 for (index = 0; index < data_size; index++) 5846 REG_WR(bp, BAR_CSTRORM_INTMEM + 5847 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5848 sizeof(u32)*index, 5849 *(sb_data_p + index)); 5850 } 5851 5852 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5853 { 5854 u32 *sb_data_p; 5855 u32 data_size = 0; 5856 struct hc_status_block_data_e2 sb_data_e2; 5857 struct hc_status_block_data_e1x sb_data_e1x; 5858 5859 /* disable the function first */ 5860 if (!CHIP_IS_E1x(bp)) { 5861 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5862 sb_data_e2.common.state = SB_DISABLED; 5863 sb_data_e2.common.p_func.vf_valid = false; 5864 sb_data_p = (u32 *)&sb_data_e2; 5865 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5866 } else { 5867 memset(&sb_data_e1x, 0, 5868 sizeof(struct hc_status_block_data_e1x)); 5869 sb_data_e1x.common.state = SB_DISABLED; 5870 sb_data_e1x.common.p_func.vf_valid = false; 5871 sb_data_p = (u32 *)&sb_data_e1x; 5872 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5873 } 5874 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5875 5876 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5877 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5878 CSTORM_STATUS_BLOCK_SIZE); 5879 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5880 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5881 CSTORM_SYNC_BLOCK_SIZE); 5882 } 5883 5884 /* helper: writes SP SB data to FW */ 5885 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5886 struct hc_sp_status_block_data *sp_sb_data) 5887 { 5888 int func = BP_FUNC(bp); 5889 int i; 5890 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5891 REG_WR(bp, BAR_CSTRORM_INTMEM + 5892 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5893 i*sizeof(u32), 5894 *((u32 *)sp_sb_data + i)); 5895 } 5896 5897 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5898 { 5899 int func = BP_FUNC(bp); 5900 struct hc_sp_status_block_data sp_sb_data; 5901 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5902 5903 sp_sb_data.state = SB_DISABLED; 5904 sp_sb_data.p_func.vf_valid = false; 5905 5906 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5907 5908 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5909 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5910 CSTORM_SP_STATUS_BLOCK_SIZE); 5911 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5912 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5913 CSTORM_SP_SYNC_BLOCK_SIZE); 5914 } 5915 5916 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5917 int igu_sb_id, int igu_seg_id) 5918 { 5919 hc_sm->igu_sb_id = igu_sb_id; 5920 hc_sm->igu_seg_id = igu_seg_id; 5921 hc_sm->timer_value = 0xFF; 5922 hc_sm->time_to_expire = 0xFFFFFFFF; 5923 } 5924 5925 /* allocates state machine ids. */ 5926 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5927 { 5928 /* zero out state machine indices */ 5929 /* rx indices */ 5930 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5931 5932 /* tx indices */ 5933 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5934 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5935 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5936 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5937 5938 /* map indices */ 5939 /* rx indices */ 5940 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5941 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5942 5943 /* tx indices */ 5944 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5945 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5946 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5947 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5948 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5949 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5950 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5951 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5952 } 5953 5954 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5955 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5956 { 5957 int igu_seg_id; 5958 5959 struct hc_status_block_data_e2 sb_data_e2; 5960 struct hc_status_block_data_e1x sb_data_e1x; 5961 struct hc_status_block_sm *hc_sm_p; 5962 int data_size; 5963 u32 *sb_data_p; 5964 5965 if (CHIP_INT_MODE_IS_BC(bp)) 5966 igu_seg_id = HC_SEG_ACCESS_NORM; 5967 else 5968 igu_seg_id = IGU_SEG_ACCESS_NORM; 5969 5970 bnx2x_zero_fp_sb(bp, fw_sb_id); 5971 5972 if (!CHIP_IS_E1x(bp)) { 5973 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5974 sb_data_e2.common.state = SB_ENABLED; 5975 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5976 sb_data_e2.common.p_func.vf_id = vfid; 5977 sb_data_e2.common.p_func.vf_valid = vf_valid; 5978 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5979 sb_data_e2.common.same_igu_sb_1b = true; 5980 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5981 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5982 hc_sm_p = sb_data_e2.common.state_machine; 5983 sb_data_p = (u32 *)&sb_data_e2; 5984 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5985 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5986 } else { 5987 memset(&sb_data_e1x, 0, 5988 sizeof(struct hc_status_block_data_e1x)); 5989 sb_data_e1x.common.state = SB_ENABLED; 5990 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5991 sb_data_e1x.common.p_func.vf_id = 0xff; 5992 sb_data_e1x.common.p_func.vf_valid = false; 5993 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5994 sb_data_e1x.common.same_igu_sb_1b = true; 5995 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5996 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5997 hc_sm_p = sb_data_e1x.common.state_machine; 5998 sb_data_p = (u32 *)&sb_data_e1x; 5999 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 6000 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 6001 } 6002 6003 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 6004 igu_sb_id, igu_seg_id); 6005 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 6006 igu_sb_id, igu_seg_id); 6007 6008 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 6009 6010 /* write indices to HW - PCI guarantees endianity of regpairs */ 6011 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 6012 } 6013 6014 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 6015 u16 tx_usec, u16 rx_usec) 6016 { 6017 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 6018 false, rx_usec); 6019 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6020 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 6021 tx_usec); 6022 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6023 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 6024 tx_usec); 6025 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6026 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 6027 tx_usec); 6028 } 6029 6030 static void bnx2x_init_def_sb(struct bnx2x *bp) 6031 { 6032 struct host_sp_status_block *def_sb = bp->def_status_blk; 6033 dma_addr_t mapping = bp->def_status_blk_mapping; 6034 int igu_sp_sb_index; 6035 int igu_seg_id; 6036 int port = BP_PORT(bp); 6037 int func = BP_FUNC(bp); 6038 int reg_offset, reg_offset_en5; 6039 u64 section; 6040 int index; 6041 struct hc_sp_status_block_data sp_sb_data; 6042 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 6043 6044 if (CHIP_INT_MODE_IS_BC(bp)) { 6045 igu_sp_sb_index = DEF_SB_IGU_ID; 6046 igu_seg_id = HC_SEG_ACCESS_DEF; 6047 } else { 6048 igu_sp_sb_index = bp->igu_dsb_id; 6049 igu_seg_id = IGU_SEG_ACCESS_DEF; 6050 } 6051 6052 /* ATTN */ 6053 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6054 atten_status_block); 6055 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6056 6057 bp->attn_state = 0; 6058 6059 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6060 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6061 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6062 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6063 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6064 int sindex; 6065 /* take care of sig[0]..sig[4] */ 6066 for (sindex = 0; sindex < 4; sindex++) 6067 bp->attn_group[index].sig[sindex] = 6068 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6069 6070 if (!CHIP_IS_E1x(bp)) 6071 /* 6072 * enable5 is separate from the rest of the registers, 6073 * and therefore the address skip is 4 6074 * and not 16 between the different groups 6075 */ 6076 bp->attn_group[index].sig[4] = REG_RD(bp, 6077 reg_offset_en5 + 0x4*index); 6078 else 6079 bp->attn_group[index].sig[4] = 0; 6080 } 6081 6082 if (bp->common.int_block == INT_BLOCK_HC) { 6083 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6084 HC_REG_ATTN_MSG0_ADDR_L); 6085 6086 REG_WR(bp, reg_offset, U64_LO(section)); 6087 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6088 } else if (!CHIP_IS_E1x(bp)) { 6089 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6090 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6091 } 6092 6093 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6094 sp_sb); 6095 6096 bnx2x_zero_sp_sb(bp); 6097 6098 /* PCI guarantees endianity of regpairs */ 6099 sp_sb_data.state = SB_ENABLED; 6100 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6101 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6102 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6103 sp_sb_data.igu_seg_id = igu_seg_id; 6104 sp_sb_data.p_func.pf_id = func; 6105 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6106 sp_sb_data.p_func.vf_id = 0xff; 6107 6108 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6109 6110 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6111 } 6112 6113 void bnx2x_update_coalesce(struct bnx2x *bp) 6114 { 6115 int i; 6116 6117 for_each_eth_queue(bp, i) 6118 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6119 bp->tx_ticks, bp->rx_ticks); 6120 } 6121 6122 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6123 { 6124 spin_lock_init(&bp->spq_lock); 6125 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6126 6127 bp->spq_prod_idx = 0; 6128 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6129 bp->spq_prod_bd = bp->spq; 6130 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6131 } 6132 6133 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6134 { 6135 int i; 6136 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6137 union event_ring_elem *elem = 6138 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6139 6140 elem->next_page.addr.hi = 6141 cpu_to_le32(U64_HI(bp->eq_mapping + 6142 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6143 elem->next_page.addr.lo = 6144 cpu_to_le32(U64_LO(bp->eq_mapping + 6145 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6146 } 6147 bp->eq_cons = 0; 6148 bp->eq_prod = NUM_EQ_DESC; 6149 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6150 /* we want a warning message before it gets wrought... */ 6151 atomic_set(&bp->eq_spq_left, 6152 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6153 } 6154 6155 /* called with netif_addr_lock_bh() */ 6156 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6157 unsigned long rx_mode_flags, 6158 unsigned long rx_accept_flags, 6159 unsigned long tx_accept_flags, 6160 unsigned long ramrod_flags) 6161 { 6162 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6163 int rc; 6164 6165 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6166 6167 /* Prepare ramrod parameters */ 6168 ramrod_param.cid = 0; 6169 ramrod_param.cl_id = cl_id; 6170 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6171 ramrod_param.func_id = BP_FUNC(bp); 6172 6173 ramrod_param.pstate = &bp->sp_state; 6174 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6175 6176 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6177 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6178 6179 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6180 6181 ramrod_param.ramrod_flags = ramrod_flags; 6182 ramrod_param.rx_mode_flags = rx_mode_flags; 6183 6184 ramrod_param.rx_accept_flags = rx_accept_flags; 6185 ramrod_param.tx_accept_flags = tx_accept_flags; 6186 6187 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6188 if (rc < 0) { 6189 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6190 return rc; 6191 } 6192 6193 return 0; 6194 } 6195 6196 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6197 unsigned long *rx_accept_flags, 6198 unsigned long *tx_accept_flags) 6199 { 6200 /* Clear the flags first */ 6201 *rx_accept_flags = 0; 6202 *tx_accept_flags = 0; 6203 6204 switch (rx_mode) { 6205 case BNX2X_RX_MODE_NONE: 6206 /* 6207 * 'drop all' supersedes any accept flags that may have been 6208 * passed to the function. 6209 */ 6210 break; 6211 case BNX2X_RX_MODE_NORMAL: 6212 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6213 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6214 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6215 6216 /* internal switching mode */ 6217 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6218 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6219 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6220 6221 if (bp->accept_any_vlan) { 6222 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6223 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6224 } 6225 6226 break; 6227 case BNX2X_RX_MODE_ALLMULTI: 6228 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6229 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6230 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6231 6232 /* internal switching mode */ 6233 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6234 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6235 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6236 6237 if (bp->accept_any_vlan) { 6238 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6239 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6240 } 6241 6242 break; 6243 case BNX2X_RX_MODE_PROMISC: 6244 /* According to definition of SI mode, iface in promisc mode 6245 * should receive matched and unmatched (in resolution of port) 6246 * unicast packets. 6247 */ 6248 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6249 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6250 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6251 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6252 6253 /* internal switching mode */ 6254 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6255 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6256 6257 if (IS_MF_SI(bp)) 6258 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6259 else 6260 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6261 6262 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6263 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6264 6265 break; 6266 default: 6267 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6268 return -EINVAL; 6269 } 6270 6271 return 0; 6272 } 6273 6274 /* called with netif_addr_lock_bh() */ 6275 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6276 { 6277 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6278 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6279 int rc; 6280 6281 if (!NO_FCOE(bp)) 6282 /* Configure rx_mode of FCoE Queue */ 6283 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6284 6285 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6286 &tx_accept_flags); 6287 if (rc) 6288 return rc; 6289 6290 __set_bit(RAMROD_RX, &ramrod_flags); 6291 __set_bit(RAMROD_TX, &ramrod_flags); 6292 6293 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6294 rx_accept_flags, tx_accept_flags, 6295 ramrod_flags); 6296 } 6297 6298 static void bnx2x_init_internal_common(struct bnx2x *bp) 6299 { 6300 int i; 6301 6302 /* Zero this manually as its initialization is 6303 currently missing in the initTool */ 6304 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6305 REG_WR(bp, BAR_USTRORM_INTMEM + 6306 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6307 if (!CHIP_IS_E1x(bp)) { 6308 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6309 CHIP_INT_MODE_IS_BC(bp) ? 6310 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6311 } 6312 } 6313 6314 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6315 { 6316 switch (load_code) { 6317 case FW_MSG_CODE_DRV_LOAD_COMMON: 6318 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6319 bnx2x_init_internal_common(bp); 6320 /* no break */ 6321 6322 case FW_MSG_CODE_DRV_LOAD_PORT: 6323 /* nothing to do */ 6324 /* no break */ 6325 6326 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6327 /* internal memory per function is 6328 initialized inside bnx2x_pf_init */ 6329 break; 6330 6331 default: 6332 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6333 break; 6334 } 6335 } 6336 6337 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6338 { 6339 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6340 } 6341 6342 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6343 { 6344 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6345 } 6346 6347 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6348 { 6349 if (CHIP_IS_E1x(fp->bp)) 6350 return BP_L_ID(fp->bp) + fp->index; 6351 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6352 return bnx2x_fp_igu_sb_id(fp); 6353 } 6354 6355 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6356 { 6357 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6358 u8 cos; 6359 unsigned long q_type = 0; 6360 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6361 fp->rx_queue = fp_idx; 6362 fp->cid = fp_idx; 6363 fp->cl_id = bnx2x_fp_cl_id(fp); 6364 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6365 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6366 /* qZone id equals to FW (per path) client id */ 6367 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6368 6369 /* init shortcut */ 6370 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6371 6372 /* Setup SB indices */ 6373 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6374 6375 /* Configure Queue State object */ 6376 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6377 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6378 6379 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6380 6381 /* init tx data */ 6382 for_each_cos_in_tx_queue(fp, cos) { 6383 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6384 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6385 FP_COS_TO_TXQ(fp, cos, bp), 6386 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6387 cids[cos] = fp->txdata_ptr[cos]->cid; 6388 } 6389 6390 /* nothing more for vf to do here */ 6391 if (IS_VF(bp)) 6392 return; 6393 6394 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6395 fp->fw_sb_id, fp->igu_sb_id); 6396 bnx2x_update_fpsb_idx(fp); 6397 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6398 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6399 bnx2x_sp_mapping(bp, q_rdata), q_type); 6400 6401 /** 6402 * Configure classification DBs: Always enable Tx switching 6403 */ 6404 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6405 6406 DP(NETIF_MSG_IFUP, 6407 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6408 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6409 fp->igu_sb_id); 6410 } 6411 6412 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6413 { 6414 int i; 6415 6416 for (i = 1; i <= NUM_TX_RINGS; i++) { 6417 struct eth_tx_next_bd *tx_next_bd = 6418 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6419 6420 tx_next_bd->addr_hi = 6421 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6422 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6423 tx_next_bd->addr_lo = 6424 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6425 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6426 } 6427 6428 *txdata->tx_cons_sb = cpu_to_le16(0); 6429 6430 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6431 txdata->tx_db.data.zero_fill1 = 0; 6432 txdata->tx_db.data.prod = 0; 6433 6434 txdata->tx_pkt_prod = 0; 6435 txdata->tx_pkt_cons = 0; 6436 txdata->tx_bd_prod = 0; 6437 txdata->tx_bd_cons = 0; 6438 txdata->tx_pkt = 0; 6439 } 6440 6441 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6442 { 6443 int i; 6444 6445 for_each_tx_queue_cnic(bp, i) 6446 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6447 } 6448 6449 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6450 { 6451 int i; 6452 u8 cos; 6453 6454 for_each_eth_queue(bp, i) 6455 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6456 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6457 } 6458 6459 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6460 { 6461 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6462 unsigned long q_type = 0; 6463 6464 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6465 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6466 BNX2X_FCOE_ETH_CL_ID_IDX); 6467 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6468 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6469 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6470 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6471 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6472 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6473 fp); 6474 6475 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6476 6477 /* qZone id equals to FW (per path) client id */ 6478 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6479 /* init shortcut */ 6480 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6481 bnx2x_rx_ustorm_prods_offset(fp); 6482 6483 /* Configure Queue State object */ 6484 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6485 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6486 6487 /* No multi-CoS for FCoE L2 client */ 6488 BUG_ON(fp->max_cos != 1); 6489 6490 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6491 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6492 bnx2x_sp_mapping(bp, q_rdata), q_type); 6493 6494 DP(NETIF_MSG_IFUP, 6495 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6496 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6497 fp->igu_sb_id); 6498 } 6499 6500 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6501 { 6502 if (!NO_FCOE(bp)) 6503 bnx2x_init_fcoe_fp(bp); 6504 6505 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6506 BNX2X_VF_ID_INVALID, false, 6507 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6508 6509 /* ensure status block indices were read */ 6510 rmb(); 6511 bnx2x_init_rx_rings_cnic(bp); 6512 bnx2x_init_tx_rings_cnic(bp); 6513 6514 /* flush all */ 6515 mb(); 6516 mmiowb(); 6517 } 6518 6519 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6520 { 6521 int i; 6522 6523 /* Setup NIC internals and enable interrupts */ 6524 for_each_eth_queue(bp, i) 6525 bnx2x_init_eth_fp(bp, i); 6526 6527 /* ensure status block indices were read */ 6528 rmb(); 6529 bnx2x_init_rx_rings(bp); 6530 bnx2x_init_tx_rings(bp); 6531 6532 if (IS_PF(bp)) { 6533 /* Initialize MOD_ABS interrupts */ 6534 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6535 bp->common.shmem_base, 6536 bp->common.shmem2_base, BP_PORT(bp)); 6537 6538 /* initialize the default status block and sp ring */ 6539 bnx2x_init_def_sb(bp); 6540 bnx2x_update_dsb_idx(bp); 6541 bnx2x_init_sp_ring(bp); 6542 } else { 6543 bnx2x_memset_stats(bp); 6544 } 6545 } 6546 6547 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6548 { 6549 bnx2x_init_eq_ring(bp); 6550 bnx2x_init_internal(bp, load_code); 6551 bnx2x_pf_init(bp); 6552 bnx2x_stats_init(bp); 6553 6554 /* flush all before enabling interrupts */ 6555 mb(); 6556 mmiowb(); 6557 6558 bnx2x_int_enable(bp); 6559 6560 /* Check for SPIO5 */ 6561 bnx2x_attn_int_deasserted0(bp, 6562 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6563 AEU_INPUTS_ATTN_BITS_SPIO5); 6564 } 6565 6566 /* gzip service functions */ 6567 static int bnx2x_gunzip_init(struct bnx2x *bp) 6568 { 6569 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6570 &bp->gunzip_mapping, GFP_KERNEL); 6571 if (bp->gunzip_buf == NULL) 6572 goto gunzip_nomem1; 6573 6574 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6575 if (bp->strm == NULL) 6576 goto gunzip_nomem2; 6577 6578 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6579 if (bp->strm->workspace == NULL) 6580 goto gunzip_nomem3; 6581 6582 return 0; 6583 6584 gunzip_nomem3: 6585 kfree(bp->strm); 6586 bp->strm = NULL; 6587 6588 gunzip_nomem2: 6589 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6590 bp->gunzip_mapping); 6591 bp->gunzip_buf = NULL; 6592 6593 gunzip_nomem1: 6594 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6595 return -ENOMEM; 6596 } 6597 6598 static void bnx2x_gunzip_end(struct bnx2x *bp) 6599 { 6600 if (bp->strm) { 6601 vfree(bp->strm->workspace); 6602 kfree(bp->strm); 6603 bp->strm = NULL; 6604 } 6605 6606 if (bp->gunzip_buf) { 6607 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6608 bp->gunzip_mapping); 6609 bp->gunzip_buf = NULL; 6610 } 6611 } 6612 6613 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6614 { 6615 int n, rc; 6616 6617 /* check gzip header */ 6618 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6619 BNX2X_ERR("Bad gzip header\n"); 6620 return -EINVAL; 6621 } 6622 6623 n = 10; 6624 6625 #define FNAME 0x8 6626 6627 if (zbuf[3] & FNAME) 6628 while ((zbuf[n++] != 0) && (n < len)); 6629 6630 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6631 bp->strm->avail_in = len - n; 6632 bp->strm->next_out = bp->gunzip_buf; 6633 bp->strm->avail_out = FW_BUF_SIZE; 6634 6635 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6636 if (rc != Z_OK) 6637 return rc; 6638 6639 rc = zlib_inflate(bp->strm, Z_FINISH); 6640 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6641 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6642 bp->strm->msg); 6643 6644 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6645 if (bp->gunzip_outlen & 0x3) 6646 netdev_err(bp->dev, 6647 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6648 bp->gunzip_outlen); 6649 bp->gunzip_outlen >>= 2; 6650 6651 zlib_inflateEnd(bp->strm); 6652 6653 if (rc == Z_STREAM_END) 6654 return 0; 6655 6656 return rc; 6657 } 6658 6659 /* nic load/unload */ 6660 6661 /* 6662 * General service functions 6663 */ 6664 6665 /* send a NIG loopback debug packet */ 6666 static void bnx2x_lb_pckt(struct bnx2x *bp) 6667 { 6668 u32 wb_write[3]; 6669 6670 /* Ethernet source and destination addresses */ 6671 wb_write[0] = 0x55555555; 6672 wb_write[1] = 0x55555555; 6673 wb_write[2] = 0x20; /* SOP */ 6674 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6675 6676 /* NON-IP protocol */ 6677 wb_write[0] = 0x09000000; 6678 wb_write[1] = 0x55555555; 6679 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6680 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6681 } 6682 6683 /* some of the internal memories 6684 * are not directly readable from the driver 6685 * to test them we send debug packets 6686 */ 6687 static int bnx2x_int_mem_test(struct bnx2x *bp) 6688 { 6689 int factor; 6690 int count, i; 6691 u32 val = 0; 6692 6693 if (CHIP_REV_IS_FPGA(bp)) 6694 factor = 120; 6695 else if (CHIP_REV_IS_EMUL(bp)) 6696 factor = 200; 6697 else 6698 factor = 1; 6699 6700 /* Disable inputs of parser neighbor blocks */ 6701 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6702 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6703 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6704 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6705 6706 /* Write 0 to parser credits for CFC search request */ 6707 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6708 6709 /* send Ethernet packet */ 6710 bnx2x_lb_pckt(bp); 6711 6712 /* TODO do i reset NIG statistic? */ 6713 /* Wait until NIG register shows 1 packet of size 0x10 */ 6714 count = 1000 * factor; 6715 while (count) { 6716 6717 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6718 val = *bnx2x_sp(bp, wb_data[0]); 6719 if (val == 0x10) 6720 break; 6721 6722 usleep_range(10000, 20000); 6723 count--; 6724 } 6725 if (val != 0x10) { 6726 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6727 return -1; 6728 } 6729 6730 /* Wait until PRS register shows 1 packet */ 6731 count = 1000 * factor; 6732 while (count) { 6733 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6734 if (val == 1) 6735 break; 6736 6737 usleep_range(10000, 20000); 6738 count--; 6739 } 6740 if (val != 0x1) { 6741 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6742 return -2; 6743 } 6744 6745 /* Reset and init BRB, PRS */ 6746 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6747 msleep(50); 6748 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6749 msleep(50); 6750 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6751 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6752 6753 DP(NETIF_MSG_HW, "part2\n"); 6754 6755 /* Disable inputs of parser neighbor blocks */ 6756 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6757 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6758 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6759 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6760 6761 /* Write 0 to parser credits for CFC search request */ 6762 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6763 6764 /* send 10 Ethernet packets */ 6765 for (i = 0; i < 10; i++) 6766 bnx2x_lb_pckt(bp); 6767 6768 /* Wait until NIG register shows 10 + 1 6769 packets of size 11*0x10 = 0xb0 */ 6770 count = 1000 * factor; 6771 while (count) { 6772 6773 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6774 val = *bnx2x_sp(bp, wb_data[0]); 6775 if (val == 0xb0) 6776 break; 6777 6778 usleep_range(10000, 20000); 6779 count--; 6780 } 6781 if (val != 0xb0) { 6782 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6783 return -3; 6784 } 6785 6786 /* Wait until PRS register shows 2 packets */ 6787 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6788 if (val != 2) 6789 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6790 6791 /* Write 1 to parser credits for CFC search request */ 6792 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6793 6794 /* Wait until PRS register shows 3 packets */ 6795 msleep(10 * factor); 6796 /* Wait until NIG register shows 1 packet of size 0x10 */ 6797 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6798 if (val != 3) 6799 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6800 6801 /* clear NIG EOP FIFO */ 6802 for (i = 0; i < 11; i++) 6803 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6804 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6805 if (val != 1) { 6806 BNX2X_ERR("clear of NIG failed\n"); 6807 return -4; 6808 } 6809 6810 /* Reset and init BRB, PRS, NIG */ 6811 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6812 msleep(50); 6813 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6814 msleep(50); 6815 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6816 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6817 if (!CNIC_SUPPORT(bp)) 6818 /* set NIC mode */ 6819 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6820 6821 /* Enable inputs of parser neighbor blocks */ 6822 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6823 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6824 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6825 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6826 6827 DP(NETIF_MSG_HW, "done\n"); 6828 6829 return 0; /* OK */ 6830 } 6831 6832 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6833 { 6834 u32 val; 6835 6836 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6837 if (!CHIP_IS_E1x(bp)) 6838 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6839 else 6840 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6841 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6842 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6843 /* 6844 * mask read length error interrupts in brb for parser 6845 * (parsing unit and 'checksum and crc' unit) 6846 * these errors are legal (PU reads fixed length and CAC can cause 6847 * read length error on truncated packets) 6848 */ 6849 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6850 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6851 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6852 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6853 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6854 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6855 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6856 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6857 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6858 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6859 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6860 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6861 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6862 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6863 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6864 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6865 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6866 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6867 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6868 6869 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6870 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6871 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6872 if (!CHIP_IS_E1x(bp)) 6873 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6874 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6875 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6876 6877 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6878 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6879 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6880 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6881 6882 if (!CHIP_IS_E1x(bp)) 6883 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6884 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6885 6886 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6887 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6888 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6889 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6890 } 6891 6892 static void bnx2x_reset_common(struct bnx2x *bp) 6893 { 6894 u32 val = 0x1400; 6895 6896 /* reset_common */ 6897 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6898 0xd3ffff7f); 6899 6900 if (CHIP_IS_E3(bp)) { 6901 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6902 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6903 } 6904 6905 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6906 } 6907 6908 static void bnx2x_setup_dmae(struct bnx2x *bp) 6909 { 6910 bp->dmae_ready = 0; 6911 spin_lock_init(&bp->dmae_lock); 6912 } 6913 6914 static void bnx2x_init_pxp(struct bnx2x *bp) 6915 { 6916 u16 devctl; 6917 int r_order, w_order; 6918 6919 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6920 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6921 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6922 if (bp->mrrs == -1) 6923 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6924 else { 6925 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6926 r_order = bp->mrrs; 6927 } 6928 6929 bnx2x_init_pxp_arb(bp, r_order, w_order); 6930 } 6931 6932 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6933 { 6934 int is_required; 6935 u32 val; 6936 int port; 6937 6938 if (BP_NOMCP(bp)) 6939 return; 6940 6941 is_required = 0; 6942 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6943 SHARED_HW_CFG_FAN_FAILURE_MASK; 6944 6945 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6946 is_required = 1; 6947 6948 /* 6949 * The fan failure mechanism is usually related to the PHY type since 6950 * the power consumption of the board is affected by the PHY. Currently, 6951 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6952 */ 6953 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6954 for (port = PORT_0; port < PORT_MAX; port++) { 6955 is_required |= 6956 bnx2x_fan_failure_det_req( 6957 bp, 6958 bp->common.shmem_base, 6959 bp->common.shmem2_base, 6960 port); 6961 } 6962 6963 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6964 6965 if (is_required == 0) 6966 return; 6967 6968 /* Fan failure is indicated by SPIO 5 */ 6969 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6970 6971 /* set to active low mode */ 6972 val = REG_RD(bp, MISC_REG_SPIO_INT); 6973 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6974 REG_WR(bp, MISC_REG_SPIO_INT, val); 6975 6976 /* enable interrupt to signal the IGU */ 6977 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6978 val |= MISC_SPIO_SPIO5; 6979 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6980 } 6981 6982 void bnx2x_pf_disable(struct bnx2x *bp) 6983 { 6984 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6985 val &= ~IGU_PF_CONF_FUNC_EN; 6986 6987 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6988 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6989 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6990 } 6991 6992 static void bnx2x__common_init_phy(struct bnx2x *bp) 6993 { 6994 u32 shmem_base[2], shmem2_base[2]; 6995 /* Avoid common init in case MFW supports LFA */ 6996 if (SHMEM2_RD(bp, size) > 6997 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6998 return; 6999 shmem_base[0] = bp->common.shmem_base; 7000 shmem2_base[0] = bp->common.shmem2_base; 7001 if (!CHIP_IS_E1x(bp)) { 7002 shmem_base[1] = 7003 SHMEM2_RD(bp, other_shmem_base_addr); 7004 shmem2_base[1] = 7005 SHMEM2_RD(bp, other_shmem2_base_addr); 7006 } 7007 bnx2x_acquire_phy_lock(bp); 7008 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 7009 bp->common.chip_id); 7010 bnx2x_release_phy_lock(bp); 7011 } 7012 7013 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 7014 { 7015 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 7016 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 7017 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 7018 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 7019 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 7020 7021 /* make sure this value is 0 */ 7022 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 7023 7024 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 7025 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 7026 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 7027 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 7028 } 7029 7030 static void bnx2x_set_endianity(struct bnx2x *bp) 7031 { 7032 #ifdef __BIG_ENDIAN 7033 bnx2x_config_endianity(bp, 1); 7034 #else 7035 bnx2x_config_endianity(bp, 0); 7036 #endif 7037 } 7038 7039 static void bnx2x_reset_endianity(struct bnx2x *bp) 7040 { 7041 bnx2x_config_endianity(bp, 0); 7042 } 7043 7044 /** 7045 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 7046 * 7047 * @bp: driver handle 7048 */ 7049 static int bnx2x_init_hw_common(struct bnx2x *bp) 7050 { 7051 u32 val; 7052 7053 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 7054 7055 /* 7056 * take the RESET lock to protect undi_unload flow from accessing 7057 * registers while we're resetting the chip 7058 */ 7059 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7060 7061 bnx2x_reset_common(bp); 7062 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7063 7064 val = 0xfffc; 7065 if (CHIP_IS_E3(bp)) { 7066 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7067 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7068 } 7069 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7070 7071 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7072 7073 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7074 7075 if (!CHIP_IS_E1x(bp)) { 7076 u8 abs_func_id; 7077 7078 /** 7079 * 4-port mode or 2-port mode we need to turn of master-enable 7080 * for everyone, after that, turn it back on for self. 7081 * so, we disregard multi-function or not, and always disable 7082 * for all functions on the given path, this means 0,2,4,6 for 7083 * path 0 and 1,3,5,7 for path 1 7084 */ 7085 for (abs_func_id = BP_PATH(bp); 7086 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7087 if (abs_func_id == BP_ABS_FUNC(bp)) { 7088 REG_WR(bp, 7089 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7090 1); 7091 continue; 7092 } 7093 7094 bnx2x_pretend_func(bp, abs_func_id); 7095 /* clear pf enable */ 7096 bnx2x_pf_disable(bp); 7097 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7098 } 7099 } 7100 7101 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7102 if (CHIP_IS_E1(bp)) { 7103 /* enable HW interrupt from PXP on USDM overflow 7104 bit 16 on INT_MASK_0 */ 7105 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7106 } 7107 7108 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7109 bnx2x_init_pxp(bp); 7110 bnx2x_set_endianity(bp); 7111 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7112 7113 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7114 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7115 7116 /* let the HW do it's magic ... */ 7117 msleep(100); 7118 /* finish PXP init */ 7119 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7120 if (val != 1) { 7121 BNX2X_ERR("PXP2 CFG failed\n"); 7122 return -EBUSY; 7123 } 7124 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7125 if (val != 1) { 7126 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7127 return -EBUSY; 7128 } 7129 7130 /* Timers bug workaround E2 only. We need to set the entire ILT to 7131 * have entries with value "0" and valid bit on. 7132 * This needs to be done by the first PF that is loaded in a path 7133 * (i.e. common phase) 7134 */ 7135 if (!CHIP_IS_E1x(bp)) { 7136 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7137 * (i.e. vnic3) to start even if it is marked as "scan-off". 7138 * This occurs when a different function (func2,3) is being marked 7139 * as "scan-off". Real-life scenario for example: if a driver is being 7140 * load-unloaded while func6,7 are down. This will cause the timer to access 7141 * the ilt, translate to a logical address and send a request to read/write. 7142 * Since the ilt for the function that is down is not valid, this will cause 7143 * a translation error which is unrecoverable. 7144 * The Workaround is intended to make sure that when this happens nothing fatal 7145 * will occur. The workaround: 7146 * 1. First PF driver which loads on a path will: 7147 * a. After taking the chip out of reset, by using pretend, 7148 * it will write "0" to the following registers of 7149 * the other vnics. 7150 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7151 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7152 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7153 * And for itself it will write '1' to 7154 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7155 * dmae-operations (writing to pram for example.) 7156 * note: can be done for only function 6,7 but cleaner this 7157 * way. 7158 * b. Write zero+valid to the entire ILT. 7159 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7160 * VNIC3 (of that port). The range allocated will be the 7161 * entire ILT. This is needed to prevent ILT range error. 7162 * 2. Any PF driver load flow: 7163 * a. ILT update with the physical addresses of the allocated 7164 * logical pages. 7165 * b. Wait 20msec. - note that this timeout is needed to make 7166 * sure there are no requests in one of the PXP internal 7167 * queues with "old" ILT addresses. 7168 * c. PF enable in the PGLC. 7169 * d. Clear the was_error of the PF in the PGLC. (could have 7170 * occurred while driver was down) 7171 * e. PF enable in the CFC (WEAK + STRONG) 7172 * f. Timers scan enable 7173 * 3. PF driver unload flow: 7174 * a. Clear the Timers scan_en. 7175 * b. Polling for scan_on=0 for that PF. 7176 * c. Clear the PF enable bit in the PXP. 7177 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7178 * e. Write zero+valid to all ILT entries (The valid bit must 7179 * stay set) 7180 * f. If this is VNIC 3 of a port then also init 7181 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7182 * to the last entry in the ILT. 7183 * 7184 * Notes: 7185 * Currently the PF error in the PGLC is non recoverable. 7186 * In the future the there will be a recovery routine for this error. 7187 * Currently attention is masked. 7188 * Having an MCP lock on the load/unload process does not guarantee that 7189 * there is no Timer disable during Func6/7 enable. This is because the 7190 * Timers scan is currently being cleared by the MCP on FLR. 7191 * Step 2.d can be done only for PF6/7 and the driver can also check if 7192 * there is error before clearing it. But the flow above is simpler and 7193 * more general. 7194 * All ILT entries are written by zero+valid and not just PF6/7 7195 * ILT entries since in the future the ILT entries allocation for 7196 * PF-s might be dynamic. 7197 */ 7198 struct ilt_client_info ilt_cli; 7199 struct bnx2x_ilt ilt; 7200 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7201 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7202 7203 /* initialize dummy TM client */ 7204 ilt_cli.start = 0; 7205 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7206 ilt_cli.client_num = ILT_CLIENT_TM; 7207 7208 /* Step 1: set zeroes to all ilt page entries with valid bit on 7209 * Step 2: set the timers first/last ilt entry to point 7210 * to the entire range to prevent ILT range error for 3rd/4th 7211 * vnic (this code assumes existence of the vnic) 7212 * 7213 * both steps performed by call to bnx2x_ilt_client_init_op() 7214 * with dummy TM client 7215 * 7216 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7217 * and his brother are split registers 7218 */ 7219 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7220 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7221 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7222 7223 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7224 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7225 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7226 } 7227 7228 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7229 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7230 7231 if (!CHIP_IS_E1x(bp)) { 7232 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7233 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7234 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7235 7236 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7237 7238 /* let the HW do it's magic ... */ 7239 do { 7240 msleep(200); 7241 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7242 } while (factor-- && (val != 1)); 7243 7244 if (val != 1) { 7245 BNX2X_ERR("ATC_INIT failed\n"); 7246 return -EBUSY; 7247 } 7248 } 7249 7250 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7251 7252 bnx2x_iov_init_dmae(bp); 7253 7254 /* clean the DMAE memory */ 7255 bp->dmae_ready = 1; 7256 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7257 7258 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7259 7260 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7261 7262 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7263 7264 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7265 7266 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7267 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7268 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7269 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7270 7271 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7272 7273 /* QM queues pointers table */ 7274 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7275 7276 /* soft reset pulse */ 7277 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7278 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7279 7280 if (CNIC_SUPPORT(bp)) 7281 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7282 7283 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7284 7285 if (!CHIP_REV_IS_SLOW(bp)) 7286 /* enable hw interrupt from doorbell Q */ 7287 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7288 7289 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7290 7291 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7292 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7293 7294 if (!CHIP_IS_E1(bp)) 7295 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7296 7297 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7298 if (IS_MF_AFEX(bp)) { 7299 /* configure that VNTag and VLAN headers must be 7300 * received in afex mode 7301 */ 7302 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7303 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7304 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7305 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7306 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7307 } else { 7308 /* Bit-map indicating which L2 hdrs may appear 7309 * after the basic Ethernet header 7310 */ 7311 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7312 bp->path_has_ovlan ? 7 : 6); 7313 } 7314 } 7315 7316 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7317 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7318 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7319 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7320 7321 if (!CHIP_IS_E1x(bp)) { 7322 /* reset VFC memories */ 7323 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7324 VFC_MEMORIES_RST_REG_CAM_RST | 7325 VFC_MEMORIES_RST_REG_RAM_RST); 7326 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7327 VFC_MEMORIES_RST_REG_CAM_RST | 7328 VFC_MEMORIES_RST_REG_RAM_RST); 7329 7330 msleep(20); 7331 } 7332 7333 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7334 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7335 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7336 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7337 7338 /* sync semi rtc */ 7339 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7340 0x80000000); 7341 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7342 0x80000000); 7343 7344 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7345 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7346 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7347 7348 if (!CHIP_IS_E1x(bp)) { 7349 if (IS_MF_AFEX(bp)) { 7350 /* configure that VNTag and VLAN headers must be 7351 * sent in afex mode 7352 */ 7353 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7354 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7355 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7356 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7357 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7358 } else { 7359 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7360 bp->path_has_ovlan ? 7 : 6); 7361 } 7362 } 7363 7364 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7365 7366 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7367 7368 if (CNIC_SUPPORT(bp)) { 7369 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7370 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7371 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7372 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7373 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7374 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7375 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7376 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7377 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7378 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7379 } 7380 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7381 7382 if (sizeof(union cdu_context) != 1024) 7383 /* we currently assume that a context is 1024 bytes */ 7384 dev_alert(&bp->pdev->dev, 7385 "please adjust the size of cdu_context(%ld)\n", 7386 (long)sizeof(union cdu_context)); 7387 7388 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7389 val = (4 << 24) + (0 << 12) + 1024; 7390 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7391 7392 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7393 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7394 /* enable context validation interrupt from CFC */ 7395 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7396 7397 /* set the thresholds to prevent CFC/CDU race */ 7398 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7399 7400 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7401 7402 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7403 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7404 7405 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7406 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7407 7408 /* Reset PCIE errors for debug */ 7409 REG_WR(bp, 0x2814, 0xffffffff); 7410 REG_WR(bp, 0x3820, 0xffffffff); 7411 7412 if (!CHIP_IS_E1x(bp)) { 7413 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7414 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7415 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7416 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7417 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7418 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7419 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7420 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7421 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7422 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7423 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7424 } 7425 7426 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7427 if (!CHIP_IS_E1(bp)) { 7428 /* in E3 this done in per-port section */ 7429 if (!CHIP_IS_E3(bp)) 7430 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7431 } 7432 if (CHIP_IS_E1H(bp)) 7433 /* not applicable for E2 (and above ...) */ 7434 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7435 7436 if (CHIP_REV_IS_SLOW(bp)) 7437 msleep(200); 7438 7439 /* finish CFC init */ 7440 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7441 if (val != 1) { 7442 BNX2X_ERR("CFC LL_INIT failed\n"); 7443 return -EBUSY; 7444 } 7445 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7446 if (val != 1) { 7447 BNX2X_ERR("CFC AC_INIT failed\n"); 7448 return -EBUSY; 7449 } 7450 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7451 if (val != 1) { 7452 BNX2X_ERR("CFC CAM_INIT failed\n"); 7453 return -EBUSY; 7454 } 7455 REG_WR(bp, CFC_REG_DEBUG0, 0); 7456 7457 if (CHIP_IS_E1(bp)) { 7458 /* read NIG statistic 7459 to see if this is our first up since powerup */ 7460 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7461 val = *bnx2x_sp(bp, wb_data[0]); 7462 7463 /* do internal memory self test */ 7464 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7465 BNX2X_ERR("internal mem self test failed\n"); 7466 return -EBUSY; 7467 } 7468 } 7469 7470 bnx2x_setup_fan_failure_detection(bp); 7471 7472 /* clear PXP2 attentions */ 7473 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7474 7475 bnx2x_enable_blocks_attention(bp); 7476 bnx2x_enable_blocks_parity(bp); 7477 7478 if (!BP_NOMCP(bp)) { 7479 if (CHIP_IS_E1x(bp)) 7480 bnx2x__common_init_phy(bp); 7481 } else 7482 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7483 7484 if (SHMEM2_HAS(bp, netproc_fw_ver)) 7485 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 7486 7487 return 0; 7488 } 7489 7490 /** 7491 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7492 * 7493 * @bp: driver handle 7494 */ 7495 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7496 { 7497 int rc = bnx2x_init_hw_common(bp); 7498 7499 if (rc) 7500 return rc; 7501 7502 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7503 if (!BP_NOMCP(bp)) 7504 bnx2x__common_init_phy(bp); 7505 7506 return 0; 7507 } 7508 7509 static int bnx2x_init_hw_port(struct bnx2x *bp) 7510 { 7511 int port = BP_PORT(bp); 7512 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7513 u32 low, high; 7514 u32 val, reg; 7515 7516 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7517 7518 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7519 7520 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7521 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7522 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7523 7524 /* Timers bug workaround: disables the pf_master bit in pglue at 7525 * common phase, we need to enable it here before any dmae access are 7526 * attempted. Therefore we manually added the enable-master to the 7527 * port phase (it also happens in the function phase) 7528 */ 7529 if (!CHIP_IS_E1x(bp)) 7530 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7531 7532 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7533 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7534 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7535 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7536 7537 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7538 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7539 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7540 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7541 7542 /* QM cid (connection) count */ 7543 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7544 7545 if (CNIC_SUPPORT(bp)) { 7546 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7547 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7548 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7549 } 7550 7551 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7552 7553 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7554 7555 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7556 7557 if (IS_MF(bp)) 7558 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7559 else if (bp->dev->mtu > 4096) { 7560 if (bp->flags & ONE_PORT_FLAG) 7561 low = 160; 7562 else { 7563 val = bp->dev->mtu; 7564 /* (24*1024 + val*4)/256 */ 7565 low = 96 + (val/64) + 7566 ((val % 64) ? 1 : 0); 7567 } 7568 } else 7569 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7570 high = low + 56; /* 14*1024/256 */ 7571 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7572 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7573 } 7574 7575 if (CHIP_MODE_IS_4_PORT(bp)) 7576 REG_WR(bp, (BP_PORT(bp) ? 7577 BRB1_REG_MAC_GUARANTIED_1 : 7578 BRB1_REG_MAC_GUARANTIED_0), 40); 7579 7580 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7581 if (CHIP_IS_E3B0(bp)) { 7582 if (IS_MF_AFEX(bp)) { 7583 /* configure headers for AFEX mode */ 7584 REG_WR(bp, BP_PORT(bp) ? 7585 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7586 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7587 REG_WR(bp, BP_PORT(bp) ? 7588 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7589 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7590 REG_WR(bp, BP_PORT(bp) ? 7591 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7592 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7593 } else { 7594 /* Ovlan exists only if we are in multi-function + 7595 * switch-dependent mode, in switch-independent there 7596 * is no ovlan headers 7597 */ 7598 REG_WR(bp, BP_PORT(bp) ? 7599 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7600 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7601 (bp->path_has_ovlan ? 7 : 6)); 7602 } 7603 } 7604 7605 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7606 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7607 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7608 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7609 7610 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7611 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7612 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7613 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7614 7615 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7616 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7617 7618 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7619 7620 if (CHIP_IS_E1x(bp)) { 7621 /* configure PBF to work without PAUSE mtu 9000 */ 7622 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7623 7624 /* update threshold */ 7625 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7626 /* update init credit */ 7627 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7628 7629 /* probe changes */ 7630 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7631 udelay(50); 7632 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7633 } 7634 7635 if (CNIC_SUPPORT(bp)) 7636 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7637 7638 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7639 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7640 7641 if (CHIP_IS_E1(bp)) { 7642 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7643 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7644 } 7645 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7646 7647 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7648 7649 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7650 /* init aeu_mask_attn_func_0/1: 7651 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7652 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7653 * bits 4-7 are used for "per vn group attention" */ 7654 val = IS_MF(bp) ? 0xF7 : 0x7; 7655 /* Enable DCBX attention for all but E1 */ 7656 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7657 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7658 7659 /* SCPAD_PARITY should NOT trigger close the gates */ 7660 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7661 REG_WR(bp, reg, 7662 REG_RD(bp, reg) & 7663 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7664 7665 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7666 REG_WR(bp, reg, 7667 REG_RD(bp, reg) & 7668 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7669 7670 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7671 7672 if (!CHIP_IS_E1x(bp)) { 7673 /* Bit-map indicating which L2 hdrs may appear after the 7674 * basic Ethernet header 7675 */ 7676 if (IS_MF_AFEX(bp)) 7677 REG_WR(bp, BP_PORT(bp) ? 7678 NIG_REG_P1_HDRS_AFTER_BASIC : 7679 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7680 else 7681 REG_WR(bp, BP_PORT(bp) ? 7682 NIG_REG_P1_HDRS_AFTER_BASIC : 7683 NIG_REG_P0_HDRS_AFTER_BASIC, 7684 IS_MF_SD(bp) ? 7 : 6); 7685 7686 if (CHIP_IS_E3(bp)) 7687 REG_WR(bp, BP_PORT(bp) ? 7688 NIG_REG_LLH1_MF_MODE : 7689 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7690 } 7691 if (!CHIP_IS_E3(bp)) 7692 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7693 7694 if (!CHIP_IS_E1(bp)) { 7695 /* 0x2 disable mf_ov, 0x1 enable */ 7696 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7697 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7698 7699 if (!CHIP_IS_E1x(bp)) { 7700 val = 0; 7701 switch (bp->mf_mode) { 7702 case MULTI_FUNCTION_SD: 7703 val = 1; 7704 break; 7705 case MULTI_FUNCTION_SI: 7706 case MULTI_FUNCTION_AFEX: 7707 val = 2; 7708 break; 7709 } 7710 7711 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7712 NIG_REG_LLH0_CLS_TYPE), val); 7713 } 7714 { 7715 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7716 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7717 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7718 } 7719 } 7720 7721 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7722 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7723 if (val & MISC_SPIO_SPIO5) { 7724 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7725 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7726 val = REG_RD(bp, reg_addr); 7727 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7728 REG_WR(bp, reg_addr, val); 7729 } 7730 7731 if (CHIP_IS_E3B0(bp)) 7732 bp->flags |= PTP_SUPPORTED; 7733 7734 return 0; 7735 } 7736 7737 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7738 { 7739 int reg; 7740 u32 wb_write[2]; 7741 7742 if (CHIP_IS_E1(bp)) 7743 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7744 else 7745 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7746 7747 wb_write[0] = ONCHIP_ADDR1(addr); 7748 wb_write[1] = ONCHIP_ADDR2(addr); 7749 REG_WR_DMAE(bp, reg, wb_write, 2); 7750 } 7751 7752 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7753 { 7754 u32 data, ctl, cnt = 100; 7755 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7756 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7757 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7758 u32 sb_bit = 1 << (idu_sb_id%32); 7759 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7760 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7761 7762 /* Not supported in BC mode */ 7763 if (CHIP_INT_MODE_IS_BC(bp)) 7764 return; 7765 7766 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7767 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7768 IGU_REGULAR_CLEANUP_SET | 7769 IGU_REGULAR_BCLEANUP; 7770 7771 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7772 func_encode << IGU_CTRL_REG_FID_SHIFT | 7773 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7774 7775 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7776 data, igu_addr_data); 7777 REG_WR(bp, igu_addr_data, data); 7778 mmiowb(); 7779 barrier(); 7780 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7781 ctl, igu_addr_ctl); 7782 REG_WR(bp, igu_addr_ctl, ctl); 7783 mmiowb(); 7784 barrier(); 7785 7786 /* wait for clean up to finish */ 7787 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7788 msleep(20); 7789 7790 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7791 DP(NETIF_MSG_HW, 7792 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7793 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7794 } 7795 } 7796 7797 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7798 { 7799 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7800 } 7801 7802 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7803 { 7804 u32 i, base = FUNC_ILT_BASE(func); 7805 for (i = base; i < base + ILT_PER_FUNC; i++) 7806 bnx2x_ilt_wr(bp, i, 0); 7807 } 7808 7809 static void bnx2x_init_searcher(struct bnx2x *bp) 7810 { 7811 int port = BP_PORT(bp); 7812 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7813 /* T1 hash bits value determines the T1 number of entries */ 7814 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7815 } 7816 7817 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7818 { 7819 int rc; 7820 struct bnx2x_func_state_params func_params = {NULL}; 7821 struct bnx2x_func_switch_update_params *switch_update_params = 7822 &func_params.params.switch_update; 7823 7824 /* Prepare parameters for function state transitions */ 7825 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7826 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7827 7828 func_params.f_obj = &bp->func_obj; 7829 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7830 7831 /* Function parameters */ 7832 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7833 &switch_update_params->changes); 7834 if (suspend) 7835 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7836 &switch_update_params->changes); 7837 7838 rc = bnx2x_func_state_change(bp, &func_params); 7839 7840 return rc; 7841 } 7842 7843 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7844 { 7845 int rc, i, port = BP_PORT(bp); 7846 int vlan_en = 0, mac_en[NUM_MACS]; 7847 7848 /* Close input from network */ 7849 if (bp->mf_mode == SINGLE_FUNCTION) { 7850 bnx2x_set_rx_filter(&bp->link_params, 0); 7851 } else { 7852 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7853 NIG_REG_LLH0_FUNC_EN); 7854 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7855 NIG_REG_LLH0_FUNC_EN, 0); 7856 for (i = 0; i < NUM_MACS; i++) { 7857 mac_en[i] = REG_RD(bp, port ? 7858 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7859 4 * i) : 7860 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7861 4 * i)); 7862 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7863 4 * i) : 7864 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7865 } 7866 } 7867 7868 /* Close BMC to host */ 7869 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7870 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7871 7872 /* Suspend Tx switching to the PF. Completion of this ramrod 7873 * further guarantees that all the packets of that PF / child 7874 * VFs in BRB were processed by the Parser, so it is safe to 7875 * change the NIC_MODE register. 7876 */ 7877 rc = bnx2x_func_switch_update(bp, 1); 7878 if (rc) { 7879 BNX2X_ERR("Can't suspend tx-switching!\n"); 7880 return rc; 7881 } 7882 7883 /* Change NIC_MODE register */ 7884 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7885 7886 /* Open input from network */ 7887 if (bp->mf_mode == SINGLE_FUNCTION) { 7888 bnx2x_set_rx_filter(&bp->link_params, 1); 7889 } else { 7890 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7891 NIG_REG_LLH0_FUNC_EN, vlan_en); 7892 for (i = 0; i < NUM_MACS; i++) { 7893 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7894 4 * i) : 7895 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7896 mac_en[i]); 7897 } 7898 } 7899 7900 /* Enable BMC to host */ 7901 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7902 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7903 7904 /* Resume Tx switching to the PF */ 7905 rc = bnx2x_func_switch_update(bp, 0); 7906 if (rc) { 7907 BNX2X_ERR("Can't resume tx-switching!\n"); 7908 return rc; 7909 } 7910 7911 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7912 return 0; 7913 } 7914 7915 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7916 { 7917 int rc; 7918 7919 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7920 7921 if (CONFIGURE_NIC_MODE(bp)) { 7922 /* Configure searcher as part of function hw init */ 7923 bnx2x_init_searcher(bp); 7924 7925 /* Reset NIC mode */ 7926 rc = bnx2x_reset_nic_mode(bp); 7927 if (rc) 7928 BNX2X_ERR("Can't change NIC mode!\n"); 7929 return rc; 7930 } 7931 7932 return 0; 7933 } 7934 7935 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 7936 * and boot began, or when kdump kernel was loaded. Either case would invalidate 7937 * the addresses of the transaction, resulting in was-error bit set in the pci 7938 * causing all hw-to-host pcie transactions to timeout. If this happened we want 7939 * to clear the interrupt which detected this from the pglueb and the was done 7940 * bit 7941 */ 7942 static void bnx2x_clean_pglue_errors(struct bnx2x *bp) 7943 { 7944 if (!CHIP_IS_E1x(bp)) 7945 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 7946 1 << BP_ABS_FUNC(bp)); 7947 } 7948 7949 static int bnx2x_init_hw_func(struct bnx2x *bp) 7950 { 7951 int port = BP_PORT(bp); 7952 int func = BP_FUNC(bp); 7953 int init_phase = PHASE_PF0 + func; 7954 struct bnx2x_ilt *ilt = BP_ILT(bp); 7955 u16 cdu_ilt_start; 7956 u32 addr, val; 7957 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7958 int i, main_mem_width, rc; 7959 7960 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7961 7962 /* FLR cleanup - hmmm */ 7963 if (!CHIP_IS_E1x(bp)) { 7964 rc = bnx2x_pf_flr_clnup(bp); 7965 if (rc) { 7966 bnx2x_fw_dump(bp); 7967 return rc; 7968 } 7969 } 7970 7971 /* set MSI reconfigure capability */ 7972 if (bp->common.int_block == INT_BLOCK_HC) { 7973 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7974 val = REG_RD(bp, addr); 7975 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7976 REG_WR(bp, addr, val); 7977 } 7978 7979 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7980 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7981 7982 ilt = BP_ILT(bp); 7983 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7984 7985 if (IS_SRIOV(bp)) 7986 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7987 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7988 7989 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7990 * those of the VFs, so start line should be reset 7991 */ 7992 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7993 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7994 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7995 ilt->lines[cdu_ilt_start + i].page_mapping = 7996 bp->context[i].cxt_mapping; 7997 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7998 } 7999 8000 bnx2x_ilt_init_op(bp, INITOP_SET); 8001 8002 if (!CONFIGURE_NIC_MODE(bp)) { 8003 bnx2x_init_searcher(bp); 8004 REG_WR(bp, PRS_REG_NIC_MODE, 0); 8005 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 8006 } else { 8007 /* Set NIC mode */ 8008 REG_WR(bp, PRS_REG_NIC_MODE, 1); 8009 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 8010 } 8011 8012 if (!CHIP_IS_E1x(bp)) { 8013 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 8014 8015 /* Turn on a single ISR mode in IGU if driver is going to use 8016 * INT#x or MSI 8017 */ 8018 if (!(bp->flags & USING_MSIX_FLAG)) 8019 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 8020 /* 8021 * Timers workaround bug: function init part. 8022 * Need to wait 20msec after initializing ILT, 8023 * needed to make sure there are no requests in 8024 * one of the PXP internal queues with "old" ILT addresses 8025 */ 8026 msleep(20); 8027 /* 8028 * Master enable - Due to WB DMAE writes performed before this 8029 * register is re-initialized as part of the regular function 8030 * init 8031 */ 8032 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 8033 /* Enable the function in IGU */ 8034 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 8035 } 8036 8037 bp->dmae_ready = 1; 8038 8039 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 8040 8041 bnx2x_clean_pglue_errors(bp); 8042 8043 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 8044 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 8045 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 8046 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 8047 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 8048 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 8049 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 8050 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 8051 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 8052 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 8053 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 8054 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 8055 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 8056 8057 if (!CHIP_IS_E1x(bp)) 8058 REG_WR(bp, QM_REG_PF_EN, 1); 8059 8060 if (!CHIP_IS_E1x(bp)) { 8061 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8062 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8063 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8064 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8065 } 8066 bnx2x_init_block(bp, BLOCK_QM, init_phase); 8067 8068 bnx2x_init_block(bp, BLOCK_TM, init_phase); 8069 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 8070 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 8071 8072 bnx2x_iov_init_dq(bp); 8073 8074 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 8075 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 8076 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 8077 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 8078 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 8079 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 8080 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 8081 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8082 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8083 if (!CHIP_IS_E1x(bp)) 8084 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8085 8086 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8087 8088 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8089 8090 if (!CHIP_IS_E1x(bp)) 8091 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8092 8093 if (IS_MF(bp)) { 8094 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8095 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8096 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8097 bp->mf_ov); 8098 } 8099 } 8100 8101 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8102 8103 /* HC init per function */ 8104 if (bp->common.int_block == INT_BLOCK_HC) { 8105 if (CHIP_IS_E1H(bp)) { 8106 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8107 8108 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8109 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8110 } 8111 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8112 8113 } else { 8114 int num_segs, sb_idx, prod_offset; 8115 8116 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8117 8118 if (!CHIP_IS_E1x(bp)) { 8119 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8120 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8121 } 8122 8123 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8124 8125 if (!CHIP_IS_E1x(bp)) { 8126 int dsb_idx = 0; 8127 /** 8128 * Producer memory: 8129 * E2 mode: address 0-135 match to the mapping memory; 8130 * 136 - PF0 default prod; 137 - PF1 default prod; 8131 * 138 - PF2 default prod; 139 - PF3 default prod; 8132 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8133 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8134 * 144-147 reserved. 8135 * 8136 * E1.5 mode - In backward compatible mode; 8137 * for non default SB; each even line in the memory 8138 * holds the U producer and each odd line hold 8139 * the C producer. The first 128 producers are for 8140 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8141 * producers are for the DSB for each PF. 8142 * Each PF has five segments: (the order inside each 8143 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8144 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8145 * 144-147 attn prods; 8146 */ 8147 /* non-default-status-blocks */ 8148 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8149 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8150 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8151 prod_offset = (bp->igu_base_sb + sb_idx) * 8152 num_segs; 8153 8154 for (i = 0; i < num_segs; i++) { 8155 addr = IGU_REG_PROD_CONS_MEMORY + 8156 (prod_offset + i) * 4; 8157 REG_WR(bp, addr, 0); 8158 } 8159 /* send consumer update with value 0 */ 8160 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8161 USTORM_ID, 0, IGU_INT_NOP, 1); 8162 bnx2x_igu_clear_sb(bp, 8163 bp->igu_base_sb + sb_idx); 8164 } 8165 8166 /* default-status-blocks */ 8167 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8168 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8169 8170 if (CHIP_MODE_IS_4_PORT(bp)) 8171 dsb_idx = BP_FUNC(bp); 8172 else 8173 dsb_idx = BP_VN(bp); 8174 8175 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8176 IGU_BC_BASE_DSB_PROD + dsb_idx : 8177 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8178 8179 /* 8180 * igu prods come in chunks of E1HVN_MAX (4) - 8181 * does not matters what is the current chip mode 8182 */ 8183 for (i = 0; i < (num_segs * E1HVN_MAX); 8184 i += E1HVN_MAX) { 8185 addr = IGU_REG_PROD_CONS_MEMORY + 8186 (prod_offset + i)*4; 8187 REG_WR(bp, addr, 0); 8188 } 8189 /* send consumer update with 0 */ 8190 if (CHIP_INT_MODE_IS_BC(bp)) { 8191 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8192 USTORM_ID, 0, IGU_INT_NOP, 1); 8193 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8194 CSTORM_ID, 0, IGU_INT_NOP, 1); 8195 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8196 XSTORM_ID, 0, IGU_INT_NOP, 1); 8197 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8198 TSTORM_ID, 0, IGU_INT_NOP, 1); 8199 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8200 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8201 } else { 8202 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8203 USTORM_ID, 0, IGU_INT_NOP, 1); 8204 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8205 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8206 } 8207 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8208 8209 /* !!! These should become driver const once 8210 rf-tool supports split-68 const */ 8211 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8212 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8213 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8214 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8215 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8216 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8217 } 8218 } 8219 8220 /* Reset PCIE errors for debug */ 8221 REG_WR(bp, 0x2114, 0xffffffff); 8222 REG_WR(bp, 0x2120, 0xffffffff); 8223 8224 if (CHIP_IS_E1x(bp)) { 8225 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8226 main_mem_base = HC_REG_MAIN_MEMORY + 8227 BP_PORT(bp) * (main_mem_size * 4); 8228 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8229 main_mem_width = 8; 8230 8231 val = REG_RD(bp, main_mem_prty_clr); 8232 if (val) 8233 DP(NETIF_MSG_HW, 8234 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8235 val); 8236 8237 /* Clear "false" parity errors in MSI-X table */ 8238 for (i = main_mem_base; 8239 i < main_mem_base + main_mem_size * 4; 8240 i += main_mem_width) { 8241 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8242 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8243 i, main_mem_width / 4); 8244 } 8245 /* Clear HC parity attention */ 8246 REG_RD(bp, main_mem_prty_clr); 8247 } 8248 8249 #ifdef BNX2X_STOP_ON_ERROR 8250 /* Enable STORMs SP logging */ 8251 REG_WR8(bp, BAR_USTRORM_INTMEM + 8252 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8253 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8254 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8255 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8256 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8257 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8258 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8259 #endif 8260 8261 bnx2x_phy_probe(&bp->link_params); 8262 8263 return 0; 8264 } 8265 8266 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8267 { 8268 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8269 8270 if (!CHIP_IS_E1x(bp)) 8271 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8272 sizeof(struct host_hc_status_block_e2)); 8273 else 8274 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8275 sizeof(struct host_hc_status_block_e1x)); 8276 8277 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8278 } 8279 8280 void bnx2x_free_mem(struct bnx2x *bp) 8281 { 8282 int i; 8283 8284 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8285 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8286 8287 if (IS_VF(bp)) 8288 return; 8289 8290 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8291 sizeof(struct host_sp_status_block)); 8292 8293 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8294 sizeof(struct bnx2x_slowpath)); 8295 8296 for (i = 0; i < L2_ILT_LINES(bp); i++) 8297 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8298 bp->context[i].size); 8299 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8300 8301 BNX2X_FREE(bp->ilt->lines); 8302 8303 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8304 8305 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8306 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8307 8308 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8309 8310 bnx2x_iov_free_mem(bp); 8311 } 8312 8313 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8314 { 8315 if (!CHIP_IS_E1x(bp)) { 8316 /* size = the status block + ramrod buffers */ 8317 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8318 sizeof(struct host_hc_status_block_e2)); 8319 if (!bp->cnic_sb.e2_sb) 8320 goto alloc_mem_err; 8321 } else { 8322 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8323 sizeof(struct host_hc_status_block_e1x)); 8324 if (!bp->cnic_sb.e1x_sb) 8325 goto alloc_mem_err; 8326 } 8327 8328 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8329 /* allocate searcher T2 table, as it wasn't allocated before */ 8330 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8331 if (!bp->t2) 8332 goto alloc_mem_err; 8333 } 8334 8335 /* write address to which L5 should insert its values */ 8336 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8337 &bp->slowpath->drv_info_to_mcp; 8338 8339 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8340 goto alloc_mem_err; 8341 8342 return 0; 8343 8344 alloc_mem_err: 8345 bnx2x_free_mem_cnic(bp); 8346 BNX2X_ERR("Can't allocate memory\n"); 8347 return -ENOMEM; 8348 } 8349 8350 int bnx2x_alloc_mem(struct bnx2x *bp) 8351 { 8352 int i, allocated, context_size; 8353 8354 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8355 /* allocate searcher T2 table */ 8356 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8357 if (!bp->t2) 8358 goto alloc_mem_err; 8359 } 8360 8361 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8362 sizeof(struct host_sp_status_block)); 8363 if (!bp->def_status_blk) 8364 goto alloc_mem_err; 8365 8366 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8367 sizeof(struct bnx2x_slowpath)); 8368 if (!bp->slowpath) 8369 goto alloc_mem_err; 8370 8371 /* Allocate memory for CDU context: 8372 * This memory is allocated separately and not in the generic ILT 8373 * functions because CDU differs in few aspects: 8374 * 1. There are multiple entities allocating memory for context - 8375 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8376 * its own ILT lines. 8377 * 2. Since CDU page-size is not a single 4KB page (which is the case 8378 * for the other ILT clients), to be efficient we want to support 8379 * allocation of sub-page-size in the last entry. 8380 * 3. Context pointers are used by the driver to pass to FW / update 8381 * the context (for the other ILT clients the pointers are used just to 8382 * free the memory during unload). 8383 */ 8384 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8385 8386 for (i = 0, allocated = 0; allocated < context_size; i++) { 8387 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8388 (context_size - allocated)); 8389 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8390 bp->context[i].size); 8391 if (!bp->context[i].vcxt) 8392 goto alloc_mem_err; 8393 allocated += bp->context[i].size; 8394 } 8395 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8396 GFP_KERNEL); 8397 if (!bp->ilt->lines) 8398 goto alloc_mem_err; 8399 8400 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8401 goto alloc_mem_err; 8402 8403 if (bnx2x_iov_alloc_mem(bp)) 8404 goto alloc_mem_err; 8405 8406 /* Slow path ring */ 8407 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8408 if (!bp->spq) 8409 goto alloc_mem_err; 8410 8411 /* EQ */ 8412 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8413 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8414 if (!bp->eq_ring) 8415 goto alloc_mem_err; 8416 8417 return 0; 8418 8419 alloc_mem_err: 8420 bnx2x_free_mem(bp); 8421 BNX2X_ERR("Can't allocate memory\n"); 8422 return -ENOMEM; 8423 } 8424 8425 /* 8426 * Init service functions 8427 */ 8428 8429 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8430 struct bnx2x_vlan_mac_obj *obj, bool set, 8431 int mac_type, unsigned long *ramrod_flags) 8432 { 8433 int rc; 8434 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8435 8436 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8437 8438 /* Fill general parameters */ 8439 ramrod_param.vlan_mac_obj = obj; 8440 ramrod_param.ramrod_flags = *ramrod_flags; 8441 8442 /* Fill a user request section if needed */ 8443 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8444 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8445 8446 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8447 8448 /* Set the command: ADD or DEL */ 8449 if (set) 8450 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8451 else 8452 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8453 } 8454 8455 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8456 8457 if (rc == -EEXIST) { 8458 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8459 /* do not treat adding same MAC as error */ 8460 rc = 0; 8461 } else if (rc < 0) 8462 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8463 8464 return rc; 8465 } 8466 8467 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 8468 struct bnx2x_vlan_mac_obj *obj, bool set, 8469 unsigned long *ramrod_flags) 8470 { 8471 int rc; 8472 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8473 8474 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8475 8476 /* Fill general parameters */ 8477 ramrod_param.vlan_mac_obj = obj; 8478 ramrod_param.ramrod_flags = *ramrod_flags; 8479 8480 /* Fill a user request section if needed */ 8481 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8482 ramrod_param.user_req.u.vlan.vlan = vlan; 8483 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags); 8484 /* Set the command: ADD or DEL */ 8485 if (set) 8486 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8487 else 8488 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8489 } 8490 8491 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8492 8493 if (rc == -EEXIST) { 8494 /* Do not treat adding same vlan as error. */ 8495 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8496 rc = 0; 8497 } else if (rc < 0) { 8498 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del")); 8499 } 8500 8501 return rc; 8502 } 8503 8504 static int bnx2x_del_all_vlans(struct bnx2x *bp) 8505 { 8506 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj; 8507 unsigned long ramrod_flags = 0, vlan_flags = 0; 8508 struct bnx2x_vlan_entry *vlan; 8509 int rc; 8510 8511 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8512 __set_bit(BNX2X_VLAN, &vlan_flags); 8513 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags); 8514 if (rc) 8515 return rc; 8516 8517 /* Mark that hw forgot all entries */ 8518 list_for_each_entry(vlan, &bp->vlan_reg, link) 8519 vlan->hw = false; 8520 bp->vlan_cnt = 0; 8521 8522 return 0; 8523 } 8524 8525 int bnx2x_del_all_macs(struct bnx2x *bp, 8526 struct bnx2x_vlan_mac_obj *mac_obj, 8527 int mac_type, bool wait_for_comp) 8528 { 8529 int rc; 8530 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8531 8532 /* Wait for completion of requested */ 8533 if (wait_for_comp) 8534 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8535 8536 /* Set the mac type of addresses we want to clear */ 8537 __set_bit(mac_type, &vlan_mac_flags); 8538 8539 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8540 if (rc < 0) 8541 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8542 8543 return rc; 8544 } 8545 8546 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8547 { 8548 if (IS_PF(bp)) { 8549 unsigned long ramrod_flags = 0; 8550 8551 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8552 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8553 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8554 &bp->sp_objs->mac_obj, set, 8555 BNX2X_ETH_MAC, &ramrod_flags); 8556 } else { /* vf */ 8557 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8558 bp->fp->index, set); 8559 } 8560 } 8561 8562 int bnx2x_setup_leading(struct bnx2x *bp) 8563 { 8564 if (IS_PF(bp)) 8565 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8566 else /* VF */ 8567 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8568 } 8569 8570 /** 8571 * bnx2x_set_int_mode - configure interrupt mode 8572 * 8573 * @bp: driver handle 8574 * 8575 * In case of MSI-X it will also try to enable MSI-X. 8576 */ 8577 int bnx2x_set_int_mode(struct bnx2x *bp) 8578 { 8579 int rc = 0; 8580 8581 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8582 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8583 return -EINVAL; 8584 } 8585 8586 switch (int_mode) { 8587 case BNX2X_INT_MODE_MSIX: 8588 /* attempt to enable msix */ 8589 rc = bnx2x_enable_msix(bp); 8590 8591 /* msix attained */ 8592 if (!rc) 8593 return 0; 8594 8595 /* vfs use only msix */ 8596 if (rc && IS_VF(bp)) 8597 return rc; 8598 8599 /* failed to enable multiple MSI-X */ 8600 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8601 bp->num_queues, 8602 1 + bp->num_cnic_queues); 8603 8604 /* fall through */ 8605 case BNX2X_INT_MODE_MSI: 8606 bnx2x_enable_msi(bp); 8607 8608 /* fall through */ 8609 case BNX2X_INT_MODE_INTX: 8610 bp->num_ethernet_queues = 1; 8611 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8612 BNX2X_DEV_INFO("set number of queues to 1\n"); 8613 break; 8614 default: 8615 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8616 return -EINVAL; 8617 } 8618 return 0; 8619 } 8620 8621 /* must be called prior to any HW initializations */ 8622 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8623 { 8624 if (IS_SRIOV(bp)) 8625 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8626 return L2_ILT_LINES(bp); 8627 } 8628 8629 void bnx2x_ilt_set_info(struct bnx2x *bp) 8630 { 8631 struct ilt_client_info *ilt_client; 8632 struct bnx2x_ilt *ilt = BP_ILT(bp); 8633 u16 line = 0; 8634 8635 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8636 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8637 8638 /* CDU */ 8639 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8640 ilt_client->client_num = ILT_CLIENT_CDU; 8641 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8642 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8643 ilt_client->start = line; 8644 line += bnx2x_cid_ilt_lines(bp); 8645 8646 if (CNIC_SUPPORT(bp)) 8647 line += CNIC_ILT_LINES; 8648 ilt_client->end = line - 1; 8649 8650 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8651 ilt_client->start, 8652 ilt_client->end, 8653 ilt_client->page_size, 8654 ilt_client->flags, 8655 ilog2(ilt_client->page_size >> 12)); 8656 8657 /* QM */ 8658 if (QM_INIT(bp->qm_cid_count)) { 8659 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8660 ilt_client->client_num = ILT_CLIENT_QM; 8661 ilt_client->page_size = QM_ILT_PAGE_SZ; 8662 ilt_client->flags = 0; 8663 ilt_client->start = line; 8664 8665 /* 4 bytes for each cid */ 8666 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8667 QM_ILT_PAGE_SZ); 8668 8669 ilt_client->end = line - 1; 8670 8671 DP(NETIF_MSG_IFUP, 8672 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8673 ilt_client->start, 8674 ilt_client->end, 8675 ilt_client->page_size, 8676 ilt_client->flags, 8677 ilog2(ilt_client->page_size >> 12)); 8678 } 8679 8680 if (CNIC_SUPPORT(bp)) { 8681 /* SRC */ 8682 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8683 ilt_client->client_num = ILT_CLIENT_SRC; 8684 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8685 ilt_client->flags = 0; 8686 ilt_client->start = line; 8687 line += SRC_ILT_LINES; 8688 ilt_client->end = line - 1; 8689 8690 DP(NETIF_MSG_IFUP, 8691 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8692 ilt_client->start, 8693 ilt_client->end, 8694 ilt_client->page_size, 8695 ilt_client->flags, 8696 ilog2(ilt_client->page_size >> 12)); 8697 8698 /* TM */ 8699 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8700 ilt_client->client_num = ILT_CLIENT_TM; 8701 ilt_client->page_size = TM_ILT_PAGE_SZ; 8702 ilt_client->flags = 0; 8703 ilt_client->start = line; 8704 line += TM_ILT_LINES; 8705 ilt_client->end = line - 1; 8706 8707 DP(NETIF_MSG_IFUP, 8708 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8709 ilt_client->start, 8710 ilt_client->end, 8711 ilt_client->page_size, 8712 ilt_client->flags, 8713 ilog2(ilt_client->page_size >> 12)); 8714 } 8715 8716 BUG_ON(line > ILT_MAX_LINES); 8717 } 8718 8719 /** 8720 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8721 * 8722 * @bp: driver handle 8723 * @fp: pointer to fastpath 8724 * @init_params: pointer to parameters structure 8725 * 8726 * parameters configured: 8727 * - HC configuration 8728 * - Queue's CDU context 8729 */ 8730 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8731 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8732 { 8733 u8 cos; 8734 int cxt_index, cxt_offset; 8735 8736 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8737 if (!IS_FCOE_FP(fp)) { 8738 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8739 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8740 8741 /* If HC is supported, enable host coalescing in the transition 8742 * to INIT state. 8743 */ 8744 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8745 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8746 8747 /* HC rate */ 8748 init_params->rx.hc_rate = bp->rx_ticks ? 8749 (1000000 / bp->rx_ticks) : 0; 8750 init_params->tx.hc_rate = bp->tx_ticks ? 8751 (1000000 / bp->tx_ticks) : 0; 8752 8753 /* FW SB ID */ 8754 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8755 fp->fw_sb_id; 8756 8757 /* 8758 * CQ index among the SB indices: FCoE clients uses the default 8759 * SB, therefore it's different. 8760 */ 8761 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8762 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8763 } 8764 8765 /* set maximum number of COSs supported by this queue */ 8766 init_params->max_cos = fp->max_cos; 8767 8768 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8769 fp->index, init_params->max_cos); 8770 8771 /* set the context pointers queue object */ 8772 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8773 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8774 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8775 ILT_PAGE_CIDS); 8776 init_params->cxts[cos] = 8777 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8778 } 8779 } 8780 8781 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8782 struct bnx2x_queue_state_params *q_params, 8783 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8784 int tx_index, bool leading) 8785 { 8786 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8787 8788 /* Set the command */ 8789 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8790 8791 /* Set tx-only QUEUE flags: don't zero statistics */ 8792 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8793 8794 /* choose the index of the cid to send the slow path on */ 8795 tx_only_params->cid_index = tx_index; 8796 8797 /* Set general TX_ONLY_SETUP parameters */ 8798 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8799 8800 /* Set Tx TX_ONLY_SETUP parameters */ 8801 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8802 8803 DP(NETIF_MSG_IFUP, 8804 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8805 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8806 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8807 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8808 8809 /* send the ramrod */ 8810 return bnx2x_queue_state_change(bp, q_params); 8811 } 8812 8813 /** 8814 * bnx2x_setup_queue - setup queue 8815 * 8816 * @bp: driver handle 8817 * @fp: pointer to fastpath 8818 * @leading: is leading 8819 * 8820 * This function performs 2 steps in a Queue state machine 8821 * actually: 1) RESET->INIT 2) INIT->SETUP 8822 */ 8823 8824 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8825 bool leading) 8826 { 8827 struct bnx2x_queue_state_params q_params = {NULL}; 8828 struct bnx2x_queue_setup_params *setup_params = 8829 &q_params.params.setup; 8830 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8831 &q_params.params.tx_only; 8832 int rc; 8833 u8 tx_index; 8834 8835 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8836 8837 /* reset IGU state skip FCoE L2 queue */ 8838 if (!IS_FCOE_FP(fp)) 8839 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8840 IGU_INT_ENABLE, 0); 8841 8842 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8843 /* We want to wait for completion in this context */ 8844 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8845 8846 /* Prepare the INIT parameters */ 8847 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8848 8849 /* Set the command */ 8850 q_params.cmd = BNX2X_Q_CMD_INIT; 8851 8852 /* Change the state to INIT */ 8853 rc = bnx2x_queue_state_change(bp, &q_params); 8854 if (rc) { 8855 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8856 return rc; 8857 } 8858 8859 DP(NETIF_MSG_IFUP, "init complete\n"); 8860 8861 /* Now move the Queue to the SETUP state... */ 8862 memset(setup_params, 0, sizeof(*setup_params)); 8863 8864 /* Set QUEUE flags */ 8865 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8866 8867 /* Set general SETUP parameters */ 8868 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8869 FIRST_TX_COS_INDEX); 8870 8871 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8872 &setup_params->rxq_params); 8873 8874 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8875 FIRST_TX_COS_INDEX); 8876 8877 /* Set the command */ 8878 q_params.cmd = BNX2X_Q_CMD_SETUP; 8879 8880 if (IS_FCOE_FP(fp)) 8881 bp->fcoe_init = true; 8882 8883 /* Change the state to SETUP */ 8884 rc = bnx2x_queue_state_change(bp, &q_params); 8885 if (rc) { 8886 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8887 return rc; 8888 } 8889 8890 /* loop through the relevant tx-only indices */ 8891 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8892 tx_index < fp->max_cos; 8893 tx_index++) { 8894 8895 /* prepare and send tx-only ramrod*/ 8896 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8897 tx_only_params, tx_index, leading); 8898 if (rc) { 8899 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8900 fp->index, tx_index); 8901 return rc; 8902 } 8903 } 8904 8905 return rc; 8906 } 8907 8908 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8909 { 8910 struct bnx2x_fastpath *fp = &bp->fp[index]; 8911 struct bnx2x_fp_txdata *txdata; 8912 struct bnx2x_queue_state_params q_params = {NULL}; 8913 int rc, tx_index; 8914 8915 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8916 8917 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8918 /* We want to wait for completion in this context */ 8919 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8920 8921 /* close tx-only connections */ 8922 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8923 tx_index < fp->max_cos; 8924 tx_index++){ 8925 8926 /* ascertain this is a normal queue*/ 8927 txdata = fp->txdata_ptr[tx_index]; 8928 8929 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8930 txdata->txq_index); 8931 8932 /* send halt terminate on tx-only connection */ 8933 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8934 memset(&q_params.params.terminate, 0, 8935 sizeof(q_params.params.terminate)); 8936 q_params.params.terminate.cid_index = tx_index; 8937 8938 rc = bnx2x_queue_state_change(bp, &q_params); 8939 if (rc) 8940 return rc; 8941 8942 /* send halt terminate on tx-only connection */ 8943 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8944 memset(&q_params.params.cfc_del, 0, 8945 sizeof(q_params.params.cfc_del)); 8946 q_params.params.cfc_del.cid_index = tx_index; 8947 rc = bnx2x_queue_state_change(bp, &q_params); 8948 if (rc) 8949 return rc; 8950 } 8951 /* Stop the primary connection: */ 8952 /* ...halt the connection */ 8953 q_params.cmd = BNX2X_Q_CMD_HALT; 8954 rc = bnx2x_queue_state_change(bp, &q_params); 8955 if (rc) 8956 return rc; 8957 8958 /* ...terminate the connection */ 8959 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8960 memset(&q_params.params.terminate, 0, 8961 sizeof(q_params.params.terminate)); 8962 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8963 rc = bnx2x_queue_state_change(bp, &q_params); 8964 if (rc) 8965 return rc; 8966 /* ...delete cfc entry */ 8967 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8968 memset(&q_params.params.cfc_del, 0, 8969 sizeof(q_params.params.cfc_del)); 8970 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8971 return bnx2x_queue_state_change(bp, &q_params); 8972 } 8973 8974 static void bnx2x_reset_func(struct bnx2x *bp) 8975 { 8976 int port = BP_PORT(bp); 8977 int func = BP_FUNC(bp); 8978 int i; 8979 8980 /* Disable the function in the FW */ 8981 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8982 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8983 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8984 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8985 8986 /* FP SBs */ 8987 for_each_eth_queue(bp, i) { 8988 struct bnx2x_fastpath *fp = &bp->fp[i]; 8989 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8990 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8991 SB_DISABLED); 8992 } 8993 8994 if (CNIC_LOADED(bp)) 8995 /* CNIC SB */ 8996 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8997 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8998 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8999 9000 /* SP SB */ 9001 REG_WR8(bp, BAR_CSTRORM_INTMEM + 9002 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 9003 SB_DISABLED); 9004 9005 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 9006 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 9007 0); 9008 9009 /* Configure IGU */ 9010 if (bp->common.int_block == INT_BLOCK_HC) { 9011 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 9012 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 9013 } else { 9014 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 9015 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 9016 } 9017 9018 if (CNIC_LOADED(bp)) { 9019 /* Disable Timer scan */ 9020 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 9021 /* 9022 * Wait for at least 10ms and up to 2 second for the timers 9023 * scan to complete 9024 */ 9025 for (i = 0; i < 200; i++) { 9026 usleep_range(10000, 20000); 9027 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 9028 break; 9029 } 9030 } 9031 /* Clear ILT */ 9032 bnx2x_clear_func_ilt(bp, func); 9033 9034 /* Timers workaround bug for E2: if this is vnic-3, 9035 * we need to set the entire ilt range for this timers. 9036 */ 9037 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 9038 struct ilt_client_info ilt_cli; 9039 /* use dummy TM client */ 9040 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 9041 ilt_cli.start = 0; 9042 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 9043 ilt_cli.client_num = ILT_CLIENT_TM; 9044 9045 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 9046 } 9047 9048 /* this assumes that reset_port() called before reset_func()*/ 9049 if (!CHIP_IS_E1x(bp)) 9050 bnx2x_pf_disable(bp); 9051 9052 bp->dmae_ready = 0; 9053 } 9054 9055 static void bnx2x_reset_port(struct bnx2x *bp) 9056 { 9057 int port = BP_PORT(bp); 9058 u32 val; 9059 9060 /* Reset physical Link */ 9061 bnx2x__link_reset(bp); 9062 9063 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 9064 9065 /* Do not rcv packets to BRB */ 9066 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 9067 /* Do not direct rcv packets that are not for MCP to the BRB */ 9068 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 9069 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 9070 9071 /* Configure AEU */ 9072 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 9073 9074 msleep(100); 9075 /* Check for BRB port occupancy */ 9076 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 9077 if (val) 9078 DP(NETIF_MSG_IFDOWN, 9079 "BRB1 is not empty %d blocks are occupied\n", val); 9080 9081 /* TODO: Close Doorbell port? */ 9082 } 9083 9084 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 9085 { 9086 struct bnx2x_func_state_params func_params = {NULL}; 9087 9088 /* Prepare parameters for function state transitions */ 9089 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9090 9091 func_params.f_obj = &bp->func_obj; 9092 func_params.cmd = BNX2X_F_CMD_HW_RESET; 9093 9094 func_params.params.hw_init.load_phase = load_code; 9095 9096 return bnx2x_func_state_change(bp, &func_params); 9097 } 9098 9099 static int bnx2x_func_stop(struct bnx2x *bp) 9100 { 9101 struct bnx2x_func_state_params func_params = {NULL}; 9102 int rc; 9103 9104 /* Prepare parameters for function state transitions */ 9105 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9106 func_params.f_obj = &bp->func_obj; 9107 func_params.cmd = BNX2X_F_CMD_STOP; 9108 9109 /* 9110 * Try to stop the function the 'good way'. If fails (in case 9111 * of a parity error during bnx2x_chip_cleanup()) and we are 9112 * not in a debug mode, perform a state transaction in order to 9113 * enable further HW_RESET transaction. 9114 */ 9115 rc = bnx2x_func_state_change(bp, &func_params); 9116 if (rc) { 9117 #ifdef BNX2X_STOP_ON_ERROR 9118 return rc; 9119 #else 9120 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 9121 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 9122 return bnx2x_func_state_change(bp, &func_params); 9123 #endif 9124 } 9125 9126 return 0; 9127 } 9128 9129 /** 9130 * bnx2x_send_unload_req - request unload mode from the MCP. 9131 * 9132 * @bp: driver handle 9133 * @unload_mode: requested function's unload mode 9134 * 9135 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 9136 */ 9137 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 9138 { 9139 u32 reset_code = 0; 9140 int port = BP_PORT(bp); 9141 9142 /* Select the UNLOAD request mode */ 9143 if (unload_mode == UNLOAD_NORMAL) 9144 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9145 9146 else if (bp->flags & NO_WOL_FLAG) 9147 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9148 9149 else if (bp->wol) { 9150 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9151 u8 *mac_addr = bp->dev->dev_addr; 9152 struct pci_dev *pdev = bp->pdev; 9153 u32 val; 9154 u16 pmc; 9155 9156 /* The mac address is written to entries 1-4 to 9157 * preserve entry 0 which is used by the PMF 9158 */ 9159 u8 entry = (BP_VN(bp) + 1)*8; 9160 9161 val = (mac_addr[0] << 8) | mac_addr[1]; 9162 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9163 9164 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9165 (mac_addr[4] << 8) | mac_addr[5]; 9166 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9167 9168 /* Enable the PME and clear the status */ 9169 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9170 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9171 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9172 9173 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9174 9175 } else 9176 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9177 9178 /* Send the request to the MCP */ 9179 if (!BP_NOMCP(bp)) 9180 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9181 else { 9182 int path = BP_PATH(bp); 9183 9184 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9185 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9186 bnx2x_load_count[path][2]); 9187 bnx2x_load_count[path][0]--; 9188 bnx2x_load_count[path][1 + port]--; 9189 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9190 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9191 bnx2x_load_count[path][2]); 9192 if (bnx2x_load_count[path][0] == 0) 9193 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9194 else if (bnx2x_load_count[path][1 + port] == 0) 9195 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9196 else 9197 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9198 } 9199 9200 return reset_code; 9201 } 9202 9203 /** 9204 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9205 * 9206 * @bp: driver handle 9207 * @keep_link: true iff link should be kept up 9208 */ 9209 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9210 { 9211 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9212 9213 /* Report UNLOAD_DONE to MCP */ 9214 if (!BP_NOMCP(bp)) 9215 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9216 } 9217 9218 static int bnx2x_func_wait_started(struct bnx2x *bp) 9219 { 9220 int tout = 50; 9221 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9222 9223 if (!bp->port.pmf) 9224 return 0; 9225 9226 /* 9227 * (assumption: No Attention from MCP at this stage) 9228 * PMF probably in the middle of TX disable/enable transaction 9229 * 1. Sync IRS for default SB 9230 * 2. Sync SP queue - this guarantees us that attention handling started 9231 * 3. Wait, that TX disable/enable transaction completes 9232 * 9233 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9234 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9235 * received completion for the transaction the state is TX_STOPPED. 9236 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9237 * transaction. 9238 */ 9239 9240 /* make sure default SB ISR is done */ 9241 if (msix) 9242 synchronize_irq(bp->msix_table[0].vector); 9243 else 9244 synchronize_irq(bp->pdev->irq); 9245 9246 flush_workqueue(bnx2x_wq); 9247 flush_workqueue(bnx2x_iov_wq); 9248 9249 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9250 BNX2X_F_STATE_STARTED && tout--) 9251 msleep(20); 9252 9253 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9254 BNX2X_F_STATE_STARTED) { 9255 #ifdef BNX2X_STOP_ON_ERROR 9256 BNX2X_ERR("Wrong function state\n"); 9257 return -EBUSY; 9258 #else 9259 /* 9260 * Failed to complete the transaction in a "good way" 9261 * Force both transactions with CLR bit 9262 */ 9263 struct bnx2x_func_state_params func_params = {NULL}; 9264 9265 DP(NETIF_MSG_IFDOWN, 9266 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9267 9268 func_params.f_obj = &bp->func_obj; 9269 __set_bit(RAMROD_DRV_CLR_ONLY, 9270 &func_params.ramrod_flags); 9271 9272 /* STARTED-->TX_ST0PPED */ 9273 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9274 bnx2x_func_state_change(bp, &func_params); 9275 9276 /* TX_ST0PPED-->STARTED */ 9277 func_params.cmd = BNX2X_F_CMD_TX_START; 9278 return bnx2x_func_state_change(bp, &func_params); 9279 #endif 9280 } 9281 9282 return 0; 9283 } 9284 9285 static void bnx2x_disable_ptp(struct bnx2x *bp) 9286 { 9287 int port = BP_PORT(bp); 9288 9289 /* Disable sending PTP packets to host */ 9290 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9291 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9292 9293 /* Reset PTP event detection rules */ 9294 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9295 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9296 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9297 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9298 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9299 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9300 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9301 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9302 9303 /* Disable the PTP feature */ 9304 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9305 NIG_REG_P0_PTP_EN, 0x0); 9306 } 9307 9308 /* Called during unload, to stop PTP-related stuff */ 9309 static void bnx2x_stop_ptp(struct bnx2x *bp) 9310 { 9311 /* Cancel PTP work queue. Should be done after the Tx queues are 9312 * drained to prevent additional scheduling. 9313 */ 9314 cancel_work_sync(&bp->ptp_task); 9315 9316 if (bp->ptp_tx_skb) { 9317 dev_kfree_skb_any(bp->ptp_tx_skb); 9318 bp->ptp_tx_skb = NULL; 9319 } 9320 9321 /* Disable PTP in HW */ 9322 bnx2x_disable_ptp(bp); 9323 9324 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9325 } 9326 9327 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9328 { 9329 int port = BP_PORT(bp); 9330 int i, rc = 0; 9331 u8 cos; 9332 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9333 u32 reset_code; 9334 9335 /* Wait until tx fastpath tasks complete */ 9336 for_each_tx_queue(bp, i) { 9337 struct bnx2x_fastpath *fp = &bp->fp[i]; 9338 9339 for_each_cos_in_tx_queue(fp, cos) 9340 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9341 #ifdef BNX2X_STOP_ON_ERROR 9342 if (rc) 9343 return; 9344 #endif 9345 } 9346 9347 /* Give HW time to discard old tx messages */ 9348 usleep_range(1000, 2000); 9349 9350 /* Clean all ETH MACs */ 9351 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9352 false); 9353 if (rc < 0) 9354 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9355 9356 /* Clean up UC list */ 9357 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9358 true); 9359 if (rc < 0) 9360 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9361 rc); 9362 9363 /* The whole *vlan_obj structure may be not initialized if VLAN 9364 * filtering offload is not supported by hardware. Currently this is 9365 * true for all hardware covered by CHIP_IS_E1x(). 9366 */ 9367 if (!CHIP_IS_E1x(bp)) { 9368 /* Remove all currently configured VLANs */ 9369 rc = bnx2x_del_all_vlans(bp); 9370 if (rc < 0) 9371 BNX2X_ERR("Failed to delete all VLANs\n"); 9372 } 9373 9374 /* Disable LLH */ 9375 if (!CHIP_IS_E1(bp)) 9376 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9377 9378 /* Set "drop all" (stop Rx). 9379 * We need to take a netif_addr_lock() here in order to prevent 9380 * a race between the completion code and this code. 9381 */ 9382 netif_addr_lock_bh(bp->dev); 9383 /* Schedule the rx_mode command */ 9384 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9385 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9386 else if (bp->slowpath) 9387 bnx2x_set_storm_rx_mode(bp); 9388 9389 /* Cleanup multicast configuration */ 9390 rparam.mcast_obj = &bp->mcast_obj; 9391 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9392 if (rc < 0) 9393 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9394 9395 netif_addr_unlock_bh(bp->dev); 9396 9397 bnx2x_iov_chip_cleanup(bp); 9398 9399 /* 9400 * Send the UNLOAD_REQUEST to the MCP. This will return if 9401 * this function should perform FUNC, PORT or COMMON HW 9402 * reset. 9403 */ 9404 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9405 9406 /* 9407 * (assumption: No Attention from MCP at this stage) 9408 * PMF probably in the middle of TX disable/enable transaction 9409 */ 9410 rc = bnx2x_func_wait_started(bp); 9411 if (rc) { 9412 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9413 #ifdef BNX2X_STOP_ON_ERROR 9414 return; 9415 #endif 9416 } 9417 9418 /* Close multi and leading connections 9419 * Completions for ramrods are collected in a synchronous way 9420 */ 9421 for_each_eth_queue(bp, i) 9422 if (bnx2x_stop_queue(bp, i)) 9423 #ifdef BNX2X_STOP_ON_ERROR 9424 return; 9425 #else 9426 goto unload_error; 9427 #endif 9428 9429 if (CNIC_LOADED(bp)) { 9430 for_each_cnic_queue(bp, i) 9431 if (bnx2x_stop_queue(bp, i)) 9432 #ifdef BNX2X_STOP_ON_ERROR 9433 return; 9434 #else 9435 goto unload_error; 9436 #endif 9437 } 9438 9439 /* If SP settings didn't get completed so far - something 9440 * very wrong has happen. 9441 */ 9442 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9443 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9444 9445 #ifndef BNX2X_STOP_ON_ERROR 9446 unload_error: 9447 #endif 9448 rc = bnx2x_func_stop(bp); 9449 if (rc) { 9450 BNX2X_ERR("Function stop failed!\n"); 9451 #ifdef BNX2X_STOP_ON_ERROR 9452 return; 9453 #endif 9454 } 9455 9456 /* stop_ptp should be after the Tx queues are drained to prevent 9457 * scheduling to the cancelled PTP work queue. It should also be after 9458 * function stop ramrod is sent, since as part of this ramrod FW access 9459 * PTP registers. 9460 */ 9461 if (bp->flags & PTP_SUPPORTED) { 9462 bnx2x_stop_ptp(bp); 9463 if (bp->ptp_clock) { 9464 ptp_clock_unregister(bp->ptp_clock); 9465 bp->ptp_clock = NULL; 9466 } 9467 } 9468 9469 /* Disable HW interrupts, NAPI */ 9470 bnx2x_netif_stop(bp, 1); 9471 /* Delete all NAPI objects */ 9472 bnx2x_del_all_napi(bp); 9473 if (CNIC_LOADED(bp)) 9474 bnx2x_del_all_napi_cnic(bp); 9475 9476 /* Release IRQs */ 9477 bnx2x_free_irq(bp); 9478 9479 /* Reset the chip, unless PCI function is offline. If we reach this 9480 * point following a PCI error handling, it means device is really 9481 * in a bad state and we're about to remove it, so reset the chip 9482 * is not a good idea. 9483 */ 9484 if (!pci_channel_offline(bp->pdev)) { 9485 rc = bnx2x_reset_hw(bp, reset_code); 9486 if (rc) 9487 BNX2X_ERR("HW_RESET failed\n"); 9488 } 9489 9490 /* Report UNLOAD_DONE to MCP */ 9491 bnx2x_send_unload_done(bp, keep_link); 9492 } 9493 9494 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9495 { 9496 u32 val; 9497 9498 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9499 9500 if (CHIP_IS_E1(bp)) { 9501 int port = BP_PORT(bp); 9502 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9503 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9504 9505 val = REG_RD(bp, addr); 9506 val &= ~(0x300); 9507 REG_WR(bp, addr, val); 9508 } else { 9509 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9510 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9511 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9512 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9513 } 9514 } 9515 9516 /* Close gates #2, #3 and #4: */ 9517 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9518 { 9519 u32 val; 9520 9521 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9522 if (!CHIP_IS_E1(bp)) { 9523 /* #4 */ 9524 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9525 /* #2 */ 9526 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9527 } 9528 9529 /* #3 */ 9530 if (CHIP_IS_E1x(bp)) { 9531 /* Prevent interrupts from HC on both ports */ 9532 val = REG_RD(bp, HC_REG_CONFIG_1); 9533 REG_WR(bp, HC_REG_CONFIG_1, 9534 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9535 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9536 9537 val = REG_RD(bp, HC_REG_CONFIG_0); 9538 REG_WR(bp, HC_REG_CONFIG_0, 9539 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9540 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9541 } else { 9542 /* Prevent incoming interrupts in IGU */ 9543 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9544 9545 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9546 (!close) ? 9547 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9548 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9549 } 9550 9551 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9552 close ? "closing" : "opening"); 9553 mmiowb(); 9554 } 9555 9556 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9557 9558 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9559 { 9560 /* Do some magic... */ 9561 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9562 *magic_val = val & SHARED_MF_CLP_MAGIC; 9563 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9564 } 9565 9566 /** 9567 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9568 * 9569 * @bp: driver handle 9570 * @magic_val: old value of the `magic' bit. 9571 */ 9572 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9573 { 9574 /* Restore the `magic' bit value... */ 9575 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9576 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9577 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9578 } 9579 9580 /** 9581 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9582 * 9583 * @bp: driver handle 9584 * @magic_val: old value of 'magic' bit. 9585 * 9586 * Takes care of CLP configurations. 9587 */ 9588 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9589 { 9590 u32 shmem; 9591 u32 validity_offset; 9592 9593 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9594 9595 /* Set `magic' bit in order to save MF config */ 9596 if (!CHIP_IS_E1(bp)) 9597 bnx2x_clp_reset_prep(bp, magic_val); 9598 9599 /* Get shmem offset */ 9600 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9601 validity_offset = 9602 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9603 9604 /* Clear validity map flags */ 9605 if (shmem > 0) 9606 REG_WR(bp, shmem + validity_offset, 0); 9607 } 9608 9609 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9610 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9611 9612 /** 9613 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9614 * 9615 * @bp: driver handle 9616 */ 9617 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9618 { 9619 /* special handling for emulation and FPGA, 9620 wait 10 times longer */ 9621 if (CHIP_REV_IS_SLOW(bp)) 9622 msleep(MCP_ONE_TIMEOUT*10); 9623 else 9624 msleep(MCP_ONE_TIMEOUT); 9625 } 9626 9627 /* 9628 * initializes bp->common.shmem_base and waits for validity signature to appear 9629 */ 9630 static int bnx2x_init_shmem(struct bnx2x *bp) 9631 { 9632 int cnt = 0; 9633 u32 val = 0; 9634 9635 do { 9636 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9637 9638 /* If we read all 0xFFs, means we are in PCI error state and 9639 * should bail out to avoid crashes on adapter's FW reads. 9640 */ 9641 if (bp->common.shmem_base == 0xFFFFFFFF) { 9642 bp->flags |= NO_MCP_FLAG; 9643 return -ENODEV; 9644 } 9645 9646 if (bp->common.shmem_base) { 9647 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9648 if (val & SHR_MEM_VALIDITY_MB) 9649 return 0; 9650 } 9651 9652 bnx2x_mcp_wait_one(bp); 9653 9654 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9655 9656 BNX2X_ERR("BAD MCP validity signature\n"); 9657 9658 return -ENODEV; 9659 } 9660 9661 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9662 { 9663 int rc = bnx2x_init_shmem(bp); 9664 9665 /* Restore the `magic' bit value */ 9666 if (!CHIP_IS_E1(bp)) 9667 bnx2x_clp_reset_done(bp, magic_val); 9668 9669 return rc; 9670 } 9671 9672 static void bnx2x_pxp_prep(struct bnx2x *bp) 9673 { 9674 if (!CHIP_IS_E1(bp)) { 9675 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9676 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9677 mmiowb(); 9678 } 9679 } 9680 9681 /* 9682 * Reset the whole chip except for: 9683 * - PCIE core 9684 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9685 * one reset bit) 9686 * - IGU 9687 * - MISC (including AEU) 9688 * - GRC 9689 * - RBCN, RBCP 9690 */ 9691 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9692 { 9693 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9694 u32 global_bits2, stay_reset2; 9695 9696 /* 9697 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9698 * (per chip) blocks. 9699 */ 9700 global_bits2 = 9701 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9702 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9703 9704 /* Don't reset the following blocks. 9705 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9706 * reset, as in 4 port device they might still be owned 9707 * by the MCP (there is only one leader per path). 9708 */ 9709 not_reset_mask1 = 9710 MISC_REGISTERS_RESET_REG_1_RST_HC | 9711 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9712 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9713 9714 not_reset_mask2 = 9715 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9716 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9717 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9718 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9719 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9720 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9721 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9722 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9723 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9724 MISC_REGISTERS_RESET_REG_2_PGLC | 9725 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9726 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9727 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9728 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9729 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9730 MISC_REGISTERS_RESET_REG_2_UMAC1; 9731 9732 /* 9733 * Keep the following blocks in reset: 9734 * - all xxMACs are handled by the bnx2x_link code. 9735 */ 9736 stay_reset2 = 9737 MISC_REGISTERS_RESET_REG_2_XMAC | 9738 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9739 9740 /* Full reset masks according to the chip */ 9741 reset_mask1 = 0xffffffff; 9742 9743 if (CHIP_IS_E1(bp)) 9744 reset_mask2 = 0xffff; 9745 else if (CHIP_IS_E1H(bp)) 9746 reset_mask2 = 0x1ffff; 9747 else if (CHIP_IS_E2(bp)) 9748 reset_mask2 = 0xfffff; 9749 else /* CHIP_IS_E3 */ 9750 reset_mask2 = 0x3ffffff; 9751 9752 /* Don't reset global blocks unless we need to */ 9753 if (!global) 9754 reset_mask2 &= ~global_bits2; 9755 9756 /* 9757 * In case of attention in the QM, we need to reset PXP 9758 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9759 * because otherwise QM reset would release 'close the gates' shortly 9760 * before resetting the PXP, then the PSWRQ would send a write 9761 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9762 * read the payload data from PSWWR, but PSWWR would not 9763 * respond. The write queue in PGLUE would stuck, dmae commands 9764 * would not return. Therefore it's important to reset the second 9765 * reset register (containing the 9766 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9767 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9768 * bit). 9769 */ 9770 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9771 reset_mask2 & (~not_reset_mask2)); 9772 9773 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9774 reset_mask1 & (~not_reset_mask1)); 9775 9776 barrier(); 9777 mmiowb(); 9778 9779 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9780 reset_mask2 & (~stay_reset2)); 9781 9782 barrier(); 9783 mmiowb(); 9784 9785 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9786 mmiowb(); 9787 } 9788 9789 /** 9790 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9791 * It should get cleared in no more than 1s. 9792 * 9793 * @bp: driver handle 9794 * 9795 * It should get cleared in no more than 1s. Returns 0 if 9796 * pending writes bit gets cleared. 9797 */ 9798 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9799 { 9800 u32 cnt = 1000; 9801 u32 pend_bits = 0; 9802 9803 do { 9804 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9805 9806 if (pend_bits == 0) 9807 break; 9808 9809 usleep_range(1000, 2000); 9810 } while (cnt-- > 0); 9811 9812 if (cnt <= 0) { 9813 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9814 pend_bits); 9815 return -EBUSY; 9816 } 9817 9818 return 0; 9819 } 9820 9821 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9822 { 9823 int cnt = 1000; 9824 u32 val = 0; 9825 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9826 u32 tags_63_32 = 0; 9827 9828 /* Empty the Tetris buffer, wait for 1s */ 9829 do { 9830 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9831 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9832 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9833 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9834 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9835 if (CHIP_IS_E3(bp)) 9836 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9837 9838 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9839 ((port_is_idle_0 & 0x1) == 0x1) && 9840 ((port_is_idle_1 & 0x1) == 0x1) && 9841 (pgl_exp_rom2 == 0xffffffff) && 9842 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9843 break; 9844 usleep_range(1000, 2000); 9845 } while (cnt-- > 0); 9846 9847 if (cnt <= 0) { 9848 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9849 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9850 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9851 pgl_exp_rom2); 9852 return -EAGAIN; 9853 } 9854 9855 barrier(); 9856 9857 /* Close gates #2, #3 and #4 */ 9858 bnx2x_set_234_gates(bp, true); 9859 9860 /* Poll for IGU VQs for 57712 and newer chips */ 9861 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9862 return -EAGAIN; 9863 9864 /* TBD: Indicate that "process kill" is in progress to MCP */ 9865 9866 /* Clear "unprepared" bit */ 9867 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9868 barrier(); 9869 9870 /* Make sure all is written to the chip before the reset */ 9871 mmiowb(); 9872 9873 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9874 * PSWHST, GRC and PSWRD Tetris buffer. 9875 */ 9876 usleep_range(1000, 2000); 9877 9878 /* Prepare to chip reset: */ 9879 /* MCP */ 9880 if (global) 9881 bnx2x_reset_mcp_prep(bp, &val); 9882 9883 /* PXP */ 9884 bnx2x_pxp_prep(bp); 9885 barrier(); 9886 9887 /* reset the chip */ 9888 bnx2x_process_kill_chip_reset(bp, global); 9889 barrier(); 9890 9891 /* clear errors in PGB */ 9892 if (!CHIP_IS_E1x(bp)) 9893 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9894 9895 /* Recover after reset: */ 9896 /* MCP */ 9897 if (global && bnx2x_reset_mcp_comp(bp, val)) 9898 return -EAGAIN; 9899 9900 /* TBD: Add resetting the NO_MCP mode DB here */ 9901 9902 /* Open the gates #2, #3 and #4 */ 9903 bnx2x_set_234_gates(bp, false); 9904 9905 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9906 * reset state, re-enable attentions. */ 9907 9908 return 0; 9909 } 9910 9911 static int bnx2x_leader_reset(struct bnx2x *bp) 9912 { 9913 int rc = 0; 9914 bool global = bnx2x_reset_is_global(bp); 9915 u32 load_code; 9916 9917 /* if not going to reset MCP - load "fake" driver to reset HW while 9918 * driver is owner of the HW 9919 */ 9920 if (!global && !BP_NOMCP(bp)) { 9921 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9922 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9923 if (!load_code) { 9924 BNX2X_ERR("MCP response failure, aborting\n"); 9925 rc = -EAGAIN; 9926 goto exit_leader_reset; 9927 } 9928 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9929 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9930 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9931 rc = -EAGAIN; 9932 goto exit_leader_reset2; 9933 } 9934 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9935 if (!load_code) { 9936 BNX2X_ERR("MCP response failure, aborting\n"); 9937 rc = -EAGAIN; 9938 goto exit_leader_reset2; 9939 } 9940 } 9941 9942 /* Try to recover after the failure */ 9943 if (bnx2x_process_kill(bp, global)) { 9944 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9945 BP_PATH(bp)); 9946 rc = -EAGAIN; 9947 goto exit_leader_reset2; 9948 } 9949 9950 /* 9951 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9952 * state. 9953 */ 9954 bnx2x_set_reset_done(bp); 9955 if (global) 9956 bnx2x_clear_reset_global(bp); 9957 9958 exit_leader_reset2: 9959 /* unload "fake driver" if it was loaded */ 9960 if (!global && !BP_NOMCP(bp)) { 9961 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9962 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9963 } 9964 exit_leader_reset: 9965 bp->is_leader = 0; 9966 bnx2x_release_leader_lock(bp); 9967 smp_mb(); 9968 return rc; 9969 } 9970 9971 static void bnx2x_recovery_failed(struct bnx2x *bp) 9972 { 9973 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9974 9975 /* Disconnect this device */ 9976 netif_device_detach(bp->dev); 9977 9978 /* 9979 * Block ifup for all function on this engine until "process kill" 9980 * or power cycle. 9981 */ 9982 bnx2x_set_reset_in_progress(bp); 9983 9984 /* Shut down the power */ 9985 bnx2x_set_power_state(bp, PCI_D3hot); 9986 9987 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9988 9989 smp_mb(); 9990 } 9991 9992 /* 9993 * Assumption: runs under rtnl lock. This together with the fact 9994 * that it's called only from bnx2x_sp_rtnl() ensure that it 9995 * will never be called when netif_running(bp->dev) is false. 9996 */ 9997 static void bnx2x_parity_recover(struct bnx2x *bp) 9998 { 9999 bool global = false; 10000 u32 error_recovered, error_unrecovered; 10001 bool is_parity; 10002 10003 DP(NETIF_MSG_HW, "Handling parity\n"); 10004 while (1) { 10005 switch (bp->recovery_state) { 10006 case BNX2X_RECOVERY_INIT: 10007 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 10008 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 10009 WARN_ON(!is_parity); 10010 10011 /* Try to get a LEADER_LOCK HW lock */ 10012 if (bnx2x_trylock_leader_lock(bp)) { 10013 bnx2x_set_reset_in_progress(bp); 10014 /* 10015 * Check if there is a global attention and if 10016 * there was a global attention, set the global 10017 * reset bit. 10018 */ 10019 10020 if (global) 10021 bnx2x_set_reset_global(bp); 10022 10023 bp->is_leader = 1; 10024 } 10025 10026 /* Stop the driver */ 10027 /* If interface has been removed - break */ 10028 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 10029 return; 10030 10031 bp->recovery_state = BNX2X_RECOVERY_WAIT; 10032 10033 /* Ensure "is_leader", MCP command sequence and 10034 * "recovery_state" update values are seen on other 10035 * CPUs. 10036 */ 10037 smp_mb(); 10038 break; 10039 10040 case BNX2X_RECOVERY_WAIT: 10041 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 10042 if (bp->is_leader) { 10043 int other_engine = BP_PATH(bp) ? 0 : 1; 10044 bool other_load_status = 10045 bnx2x_get_load_status(bp, other_engine); 10046 bool load_status = 10047 bnx2x_get_load_status(bp, BP_PATH(bp)); 10048 global = bnx2x_reset_is_global(bp); 10049 10050 /* 10051 * In case of a parity in a global block, let 10052 * the first leader that performs a 10053 * leader_reset() reset the global blocks in 10054 * order to clear global attentions. Otherwise 10055 * the gates will remain closed for that 10056 * engine. 10057 */ 10058 if (load_status || 10059 (global && other_load_status)) { 10060 /* Wait until all other functions get 10061 * down. 10062 */ 10063 schedule_delayed_work(&bp->sp_rtnl_task, 10064 HZ/10); 10065 return; 10066 } else { 10067 /* If all other functions got down - 10068 * try to bring the chip back to 10069 * normal. In any case it's an exit 10070 * point for a leader. 10071 */ 10072 if (bnx2x_leader_reset(bp)) { 10073 bnx2x_recovery_failed(bp); 10074 return; 10075 } 10076 10077 /* If we are here, means that the 10078 * leader has succeeded and doesn't 10079 * want to be a leader any more. Try 10080 * to continue as a none-leader. 10081 */ 10082 break; 10083 } 10084 } else { /* non-leader */ 10085 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 10086 /* Try to get a LEADER_LOCK HW lock as 10087 * long as a former leader may have 10088 * been unloaded by the user or 10089 * released a leadership by another 10090 * reason. 10091 */ 10092 if (bnx2x_trylock_leader_lock(bp)) { 10093 /* I'm a leader now! Restart a 10094 * switch case. 10095 */ 10096 bp->is_leader = 1; 10097 break; 10098 } 10099 10100 schedule_delayed_work(&bp->sp_rtnl_task, 10101 HZ/10); 10102 return; 10103 10104 } else { 10105 /* 10106 * If there was a global attention, wait 10107 * for it to be cleared. 10108 */ 10109 if (bnx2x_reset_is_global(bp)) { 10110 schedule_delayed_work( 10111 &bp->sp_rtnl_task, 10112 HZ/10); 10113 return; 10114 } 10115 10116 error_recovered = 10117 bp->eth_stats.recoverable_error; 10118 error_unrecovered = 10119 bp->eth_stats.unrecoverable_error; 10120 bp->recovery_state = 10121 BNX2X_RECOVERY_NIC_LOADING; 10122 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 10123 error_unrecovered++; 10124 netdev_err(bp->dev, 10125 "Recovery failed. Power cycle needed\n"); 10126 /* Disconnect this device */ 10127 netif_device_detach(bp->dev); 10128 /* Shut down the power */ 10129 bnx2x_set_power_state( 10130 bp, PCI_D3hot); 10131 smp_mb(); 10132 } else { 10133 bp->recovery_state = 10134 BNX2X_RECOVERY_DONE; 10135 error_recovered++; 10136 smp_mb(); 10137 } 10138 bp->eth_stats.recoverable_error = 10139 error_recovered; 10140 bp->eth_stats.unrecoverable_error = 10141 error_unrecovered; 10142 10143 return; 10144 } 10145 } 10146 default: 10147 return; 10148 } 10149 } 10150 } 10151 10152 static int bnx2x_udp_port_update(struct bnx2x *bp) 10153 { 10154 struct bnx2x_func_switch_update_params *switch_update_params; 10155 struct bnx2x_func_state_params func_params = {NULL}; 10156 struct bnx2x_udp_tunnel *udp_tunnel; 10157 u16 vxlan_port = 0, geneve_port = 0; 10158 int rc; 10159 10160 switch_update_params = &func_params.params.switch_update; 10161 10162 /* Prepare parameters for function state transitions */ 10163 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 10164 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 10165 10166 func_params.f_obj = &bp->func_obj; 10167 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 10168 10169 /* Function parameters */ 10170 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 10171 &switch_update_params->changes); 10172 10173 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) { 10174 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]; 10175 geneve_port = udp_tunnel->dst_port; 10176 switch_update_params->geneve_dst_port = geneve_port; 10177 } 10178 10179 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) { 10180 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]; 10181 vxlan_port = udp_tunnel->dst_port; 10182 switch_update_params->vxlan_dst_port = vxlan_port; 10183 } 10184 10185 /* Re-enable inner-rss for the offloaded UDP tunnels */ 10186 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS, 10187 &switch_update_params->changes); 10188 10189 rc = bnx2x_func_state_change(bp, &func_params); 10190 if (rc) 10191 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n", 10192 vxlan_port, geneve_port, rc); 10193 else 10194 DP(BNX2X_MSG_SP, 10195 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n", 10196 vxlan_port, geneve_port); 10197 10198 return rc; 10199 } 10200 10201 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port, 10202 enum bnx2x_udp_port_type type) 10203 { 10204 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10205 10206 if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp)) 10207 return; 10208 10209 if (udp_port->count && udp_port->dst_port == port) { 10210 udp_port->count++; 10211 return; 10212 } 10213 10214 if (udp_port->count) { 10215 DP(BNX2X_MSG_SP, 10216 "UDP tunnel [%d] - destination port limit reached\n", 10217 type); 10218 return; 10219 } 10220 10221 udp_port->dst_port = port; 10222 udp_port->count = 1; 10223 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10224 } 10225 10226 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port, 10227 enum bnx2x_udp_port_type type) 10228 { 10229 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10230 10231 if (!IS_PF(bp) || CHIP_IS_E1x(bp)) 10232 return; 10233 10234 if (!udp_port->count || udp_port->dst_port != port) { 10235 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n", 10236 type); 10237 return; 10238 } 10239 10240 /* Remove reference, and make certain it's no longer in use */ 10241 udp_port->count--; 10242 if (udp_port->count) 10243 return; 10244 udp_port->dst_port = 0; 10245 10246 if (netif_running(bp->dev)) 10247 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10248 else 10249 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n", 10250 type, port); 10251 } 10252 10253 static void bnx2x_udp_tunnel_add(struct net_device *netdev, 10254 struct udp_tunnel_info *ti) 10255 { 10256 struct bnx2x *bp = netdev_priv(netdev); 10257 u16 t_port = ntohs(ti->port); 10258 10259 switch (ti->type) { 10260 case UDP_TUNNEL_TYPE_VXLAN: 10261 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10262 break; 10263 case UDP_TUNNEL_TYPE_GENEVE: 10264 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10265 break; 10266 default: 10267 break; 10268 } 10269 } 10270 10271 static void bnx2x_udp_tunnel_del(struct net_device *netdev, 10272 struct udp_tunnel_info *ti) 10273 { 10274 struct bnx2x *bp = netdev_priv(netdev); 10275 u16 t_port = ntohs(ti->port); 10276 10277 switch (ti->type) { 10278 case UDP_TUNNEL_TYPE_VXLAN: 10279 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10280 break; 10281 case UDP_TUNNEL_TYPE_GENEVE: 10282 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10283 break; 10284 default: 10285 break; 10286 } 10287 } 10288 10289 static int bnx2x_close(struct net_device *dev); 10290 10291 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 10292 * scheduled on a general queue in order to prevent a dead lock. 10293 */ 10294 static void bnx2x_sp_rtnl_task(struct work_struct *work) 10295 { 10296 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 10297 10298 rtnl_lock(); 10299 10300 if (!netif_running(bp->dev)) { 10301 rtnl_unlock(); 10302 return; 10303 } 10304 10305 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 10306 #ifdef BNX2X_STOP_ON_ERROR 10307 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10308 "you will need to reboot when done\n"); 10309 goto sp_rtnl_not_reset; 10310 #endif 10311 /* 10312 * Clear all pending SP commands as we are going to reset the 10313 * function anyway. 10314 */ 10315 bp->sp_rtnl_state = 0; 10316 smp_mb(); 10317 10318 bnx2x_parity_recover(bp); 10319 10320 rtnl_unlock(); 10321 return; 10322 } 10323 10324 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10325 #ifdef BNX2X_STOP_ON_ERROR 10326 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10327 "you will need to reboot when done\n"); 10328 goto sp_rtnl_not_reset; 10329 #endif 10330 10331 /* 10332 * Clear all pending SP commands as we are going to reset the 10333 * function anyway. 10334 */ 10335 bp->sp_rtnl_state = 0; 10336 smp_mb(); 10337 10338 /* Immediately indicate link as down */ 10339 bp->link_vars.link_up = 0; 10340 bp->force_link_down = true; 10341 netif_carrier_off(bp->dev); 10342 BNX2X_ERR("Indicating link is down due to Tx-timeout\n"); 10343 10344 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10345 /* When ret value shows failure of allocation failure, 10346 * the nic is rebooted again. If open still fails, a error 10347 * message to notify the user. 10348 */ 10349 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) { 10350 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10351 if (bnx2x_nic_load(bp, LOAD_NORMAL)) 10352 BNX2X_ERR("Open the NIC fails again!\n"); 10353 } 10354 rtnl_unlock(); 10355 return; 10356 } 10357 #ifdef BNX2X_STOP_ON_ERROR 10358 sp_rtnl_not_reset: 10359 #endif 10360 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10361 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10362 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10363 bnx2x_after_function_update(bp); 10364 /* 10365 * in case of fan failure we need to reset id if the "stop on error" 10366 * debug flag is set, since we trying to prevent permanent overheating 10367 * damage 10368 */ 10369 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10370 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10371 netif_device_detach(bp->dev); 10372 bnx2x_close(bp->dev); 10373 rtnl_unlock(); 10374 return; 10375 } 10376 10377 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10378 DP(BNX2X_MSG_SP, 10379 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10380 bnx2x_vfpf_set_mcast(bp->dev); 10381 } 10382 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10383 &bp->sp_rtnl_state)){ 10384 if (netif_carrier_ok(bp->dev)) { 10385 bnx2x_tx_disable(bp); 10386 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10387 } 10388 } 10389 10390 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10391 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10392 bnx2x_set_rx_mode_inner(bp); 10393 } 10394 10395 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10396 &bp->sp_rtnl_state)) 10397 bnx2x_pf_set_vfs_vlan(bp); 10398 10399 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10400 bnx2x_dcbx_stop_hw_tx(bp); 10401 bnx2x_dcbx_resume_hw_tx(bp); 10402 } 10403 10404 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10405 &bp->sp_rtnl_state)) 10406 bnx2x_update_mng_version(bp); 10407 10408 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state)) 10409 bnx2x_handle_update_svid_cmd(bp); 10410 10411 if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT, 10412 &bp->sp_rtnl_state)) { 10413 if (bnx2x_udp_port_update(bp)) { 10414 /* On error, forget configuration */ 10415 memset(bp->udp_tunnel_ports, 0, 10416 sizeof(struct bnx2x_udp_tunnel) * 10417 BNX2X_UDP_PORT_MAX); 10418 } else { 10419 /* Since we don't store additional port information, 10420 * if no ports are configured for any feature ask for 10421 * information about currently configured ports. 10422 */ 10423 if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count && 10424 !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) 10425 udp_tunnel_get_rx_info(bp->dev); 10426 } 10427 } 10428 10429 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10430 * can be called from other contexts as well) 10431 */ 10432 rtnl_unlock(); 10433 10434 /* enable SR-IOV if applicable */ 10435 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10436 &bp->sp_rtnl_state)) { 10437 bnx2x_disable_sriov(bp); 10438 bnx2x_enable_sriov(bp); 10439 } 10440 } 10441 10442 static void bnx2x_period_task(struct work_struct *work) 10443 { 10444 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10445 10446 if (!netif_running(bp->dev)) 10447 goto period_task_exit; 10448 10449 if (CHIP_REV_IS_SLOW(bp)) { 10450 BNX2X_ERR("period task called on emulation, ignoring\n"); 10451 goto period_task_exit; 10452 } 10453 10454 bnx2x_acquire_phy_lock(bp); 10455 /* 10456 * The barrier is needed to ensure the ordering between the writing to 10457 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10458 * the reading here. 10459 */ 10460 smp_mb(); 10461 if (bp->port.pmf) { 10462 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10463 10464 /* Re-queue task in 1 sec */ 10465 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10466 } 10467 10468 bnx2x_release_phy_lock(bp); 10469 period_task_exit: 10470 return; 10471 } 10472 10473 /* 10474 * Init service functions 10475 */ 10476 10477 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10478 { 10479 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10480 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10481 return base + (BP_ABS_FUNC(bp)) * stride; 10482 } 10483 10484 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp, 10485 u8 port, u32 reset_reg, 10486 struct bnx2x_mac_vals *vals) 10487 { 10488 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10489 u32 base_addr; 10490 10491 if (!(mask & reset_reg)) 10492 return false; 10493 10494 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port); 10495 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10496 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG; 10497 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]); 10498 REG_WR(bp, vals->umac_addr[port], 0); 10499 10500 return true; 10501 } 10502 10503 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10504 struct bnx2x_mac_vals *vals) 10505 { 10506 u32 val, base_addr, offset, mask, reset_reg; 10507 bool mac_stopped = false; 10508 u8 port = BP_PORT(bp); 10509 10510 /* reset addresses as they also mark which values were changed */ 10511 memset(vals, 0, sizeof(*vals)); 10512 10513 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10514 10515 if (!CHIP_IS_E3(bp)) { 10516 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10517 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10518 if ((mask & reset_reg) && val) { 10519 u32 wb_data[2]; 10520 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10521 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10522 : NIG_REG_INGRESS_BMAC0_MEM; 10523 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10524 : BIGMAC_REGISTER_BMAC_CONTROL; 10525 10526 /* 10527 * use rd/wr since we cannot use dmae. This is safe 10528 * since MCP won't access the bus due to the request 10529 * to unload, and no function on the path can be 10530 * loaded at this time. 10531 */ 10532 wb_data[0] = REG_RD(bp, base_addr + offset); 10533 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10534 vals->bmac_addr = base_addr + offset; 10535 vals->bmac_val[0] = wb_data[0]; 10536 vals->bmac_val[1] = wb_data[1]; 10537 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10538 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10539 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10540 } 10541 BNX2X_DEV_INFO("Disable emac Rx\n"); 10542 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10543 vals->emac_val = REG_RD(bp, vals->emac_addr); 10544 REG_WR(bp, vals->emac_addr, 0); 10545 mac_stopped = true; 10546 } else { 10547 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10548 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10549 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10550 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10551 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10552 val & ~(1 << 1)); 10553 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10554 val | (1 << 1)); 10555 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10556 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10557 REG_WR(bp, vals->xmac_addr, 0); 10558 mac_stopped = true; 10559 } 10560 10561 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0, 10562 reset_reg, vals); 10563 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1, 10564 reset_reg, vals); 10565 } 10566 10567 if (mac_stopped) 10568 msleep(20); 10569 } 10570 10571 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10572 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10573 0x1848 + ((f) << 4)) 10574 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10575 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10576 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10577 10578 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10579 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10580 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10581 10582 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10583 { 10584 /* UNDI marks its presence in DORQ - 10585 * it initializes CID offset for normal bell to 0x7 10586 */ 10587 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10588 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10589 return false; 10590 10591 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10592 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10593 return true; 10594 } 10595 10596 return false; 10597 } 10598 10599 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10600 { 10601 u16 rcq, bd; 10602 u32 addr, tmp_reg; 10603 10604 if (BP_FUNC(bp) < 2) 10605 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10606 else 10607 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10608 10609 tmp_reg = REG_RD(bp, addr); 10610 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10611 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10612 10613 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10614 REG_WR(bp, addr, tmp_reg); 10615 10616 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10617 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10618 } 10619 10620 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10621 { 10622 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10623 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10624 if (!rc) { 10625 BNX2X_ERR("MCP response failure, aborting\n"); 10626 return -EBUSY; 10627 } 10628 10629 return 0; 10630 } 10631 10632 static struct bnx2x_prev_path_list * 10633 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10634 { 10635 struct bnx2x_prev_path_list *tmp_list; 10636 10637 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10638 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10639 bp->pdev->bus->number == tmp_list->bus && 10640 BP_PATH(bp) == tmp_list->path) 10641 return tmp_list; 10642 10643 return NULL; 10644 } 10645 10646 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10647 { 10648 struct bnx2x_prev_path_list *tmp_list; 10649 int rc; 10650 10651 rc = down_interruptible(&bnx2x_prev_sem); 10652 if (rc) { 10653 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10654 return rc; 10655 } 10656 10657 tmp_list = bnx2x_prev_path_get_entry(bp); 10658 if (tmp_list) { 10659 tmp_list->aer = 1; 10660 rc = 0; 10661 } else { 10662 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10663 BP_PATH(bp)); 10664 } 10665 10666 up(&bnx2x_prev_sem); 10667 10668 return rc; 10669 } 10670 10671 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10672 { 10673 struct bnx2x_prev_path_list *tmp_list; 10674 bool rc = false; 10675 10676 if (down_trylock(&bnx2x_prev_sem)) 10677 return false; 10678 10679 tmp_list = bnx2x_prev_path_get_entry(bp); 10680 if (tmp_list) { 10681 if (tmp_list->aer) { 10682 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10683 BP_PATH(bp)); 10684 } else { 10685 rc = true; 10686 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10687 BP_PATH(bp)); 10688 } 10689 } 10690 10691 up(&bnx2x_prev_sem); 10692 10693 return rc; 10694 } 10695 10696 bool bnx2x_port_after_undi(struct bnx2x *bp) 10697 { 10698 struct bnx2x_prev_path_list *entry; 10699 bool val; 10700 10701 down(&bnx2x_prev_sem); 10702 10703 entry = bnx2x_prev_path_get_entry(bp); 10704 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10705 10706 up(&bnx2x_prev_sem); 10707 10708 return val; 10709 } 10710 10711 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10712 { 10713 struct bnx2x_prev_path_list *tmp_list; 10714 int rc; 10715 10716 rc = down_interruptible(&bnx2x_prev_sem); 10717 if (rc) { 10718 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10719 return rc; 10720 } 10721 10722 /* Check whether the entry for this path already exists */ 10723 tmp_list = bnx2x_prev_path_get_entry(bp); 10724 if (tmp_list) { 10725 if (!tmp_list->aer) { 10726 BNX2X_ERR("Re-Marking the path.\n"); 10727 } else { 10728 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10729 BP_PATH(bp)); 10730 tmp_list->aer = 0; 10731 } 10732 up(&bnx2x_prev_sem); 10733 return 0; 10734 } 10735 up(&bnx2x_prev_sem); 10736 10737 /* Create an entry for this path and add it */ 10738 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10739 if (!tmp_list) { 10740 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10741 return -ENOMEM; 10742 } 10743 10744 tmp_list->bus = bp->pdev->bus->number; 10745 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10746 tmp_list->path = BP_PATH(bp); 10747 tmp_list->aer = 0; 10748 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10749 10750 rc = down_interruptible(&bnx2x_prev_sem); 10751 if (rc) { 10752 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10753 kfree(tmp_list); 10754 } else { 10755 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10756 BP_PATH(bp)); 10757 list_add(&tmp_list->list, &bnx2x_prev_list); 10758 up(&bnx2x_prev_sem); 10759 } 10760 10761 return rc; 10762 } 10763 10764 static int bnx2x_do_flr(struct bnx2x *bp) 10765 { 10766 struct pci_dev *dev = bp->pdev; 10767 10768 if (CHIP_IS_E1x(bp)) { 10769 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10770 return -EINVAL; 10771 } 10772 10773 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10774 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10775 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10776 bp->common.bc_ver); 10777 return -EINVAL; 10778 } 10779 10780 if (!pci_wait_for_pending_transaction(dev)) 10781 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10782 10783 BNX2X_DEV_INFO("Initiating FLR\n"); 10784 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10785 10786 return 0; 10787 } 10788 10789 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10790 { 10791 int rc; 10792 10793 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10794 10795 /* Test if previous unload process was already finished for this path */ 10796 if (bnx2x_prev_is_path_marked(bp)) 10797 return bnx2x_prev_mcp_done(bp); 10798 10799 BNX2X_DEV_INFO("Path is unmarked\n"); 10800 10801 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10802 if (bnx2x_prev_is_after_undi(bp)) 10803 goto out; 10804 10805 /* If function has FLR capabilities, and existing FW version matches 10806 * the one required, then FLR will be sufficient to clean any residue 10807 * left by previous driver 10808 */ 10809 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10810 10811 if (!rc) { 10812 /* fw version is good */ 10813 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10814 rc = bnx2x_do_flr(bp); 10815 } 10816 10817 if (!rc) { 10818 /* FLR was performed */ 10819 BNX2X_DEV_INFO("FLR successful\n"); 10820 return 0; 10821 } 10822 10823 BNX2X_DEV_INFO("Could not FLR\n"); 10824 10825 out: 10826 /* Close the MCP request, return failure*/ 10827 rc = bnx2x_prev_mcp_done(bp); 10828 if (!rc) 10829 rc = BNX2X_PREV_WAIT_NEEDED; 10830 10831 return rc; 10832 } 10833 10834 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10835 { 10836 u32 reset_reg, tmp_reg = 0, rc; 10837 bool prev_undi = false; 10838 struct bnx2x_mac_vals mac_vals; 10839 10840 /* It is possible a previous function received 'common' answer, 10841 * but hasn't loaded yet, therefore creating a scenario of 10842 * multiple functions receiving 'common' on the same path. 10843 */ 10844 BNX2X_DEV_INFO("Common unload Flow\n"); 10845 10846 memset(&mac_vals, 0, sizeof(mac_vals)); 10847 10848 if (bnx2x_prev_is_path_marked(bp)) 10849 return bnx2x_prev_mcp_done(bp); 10850 10851 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10852 10853 /* Reset should be performed after BRB is emptied */ 10854 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10855 u32 timer_count = 1000; 10856 10857 /* Close the MAC Rx to prevent BRB from filling up */ 10858 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10859 10860 /* close LLH filters for both ports towards the BRB */ 10861 bnx2x_set_rx_filter(&bp->link_params, 0); 10862 bp->link_params.port ^= 1; 10863 bnx2x_set_rx_filter(&bp->link_params, 0); 10864 bp->link_params.port ^= 1; 10865 10866 /* Check if the UNDI driver was previously loaded */ 10867 if (bnx2x_prev_is_after_undi(bp)) { 10868 prev_undi = true; 10869 /* clear the UNDI indication */ 10870 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10871 /* clear possible idle check errors */ 10872 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10873 } 10874 if (!CHIP_IS_E1x(bp)) 10875 /* block FW from writing to host */ 10876 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10877 10878 /* wait until BRB is empty */ 10879 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10880 while (timer_count) { 10881 u32 prev_brb = tmp_reg; 10882 10883 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10884 if (!tmp_reg) 10885 break; 10886 10887 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10888 10889 /* reset timer as long as BRB actually gets emptied */ 10890 if (prev_brb > tmp_reg) 10891 timer_count = 1000; 10892 else 10893 timer_count--; 10894 10895 /* If UNDI resides in memory, manually increment it */ 10896 if (prev_undi) 10897 bnx2x_prev_unload_undi_inc(bp, 1); 10898 10899 udelay(10); 10900 } 10901 10902 if (!timer_count) 10903 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10904 } 10905 10906 /* No packets are in the pipeline, path is ready for reset */ 10907 bnx2x_reset_common(bp); 10908 10909 if (mac_vals.xmac_addr) 10910 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10911 if (mac_vals.umac_addr[0]) 10912 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]); 10913 if (mac_vals.umac_addr[1]) 10914 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]); 10915 if (mac_vals.emac_addr) 10916 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10917 if (mac_vals.bmac_addr) { 10918 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10919 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10920 } 10921 10922 rc = bnx2x_prev_mark_path(bp, prev_undi); 10923 if (rc) { 10924 bnx2x_prev_mcp_done(bp); 10925 return rc; 10926 } 10927 10928 return bnx2x_prev_mcp_done(bp); 10929 } 10930 10931 static int bnx2x_prev_unload(struct bnx2x *bp) 10932 { 10933 int time_counter = 10; 10934 u32 rc, fw, hw_lock_reg, hw_lock_val; 10935 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10936 10937 /* clear hw from errors which may have resulted from an interrupted 10938 * dmae transaction. 10939 */ 10940 bnx2x_clean_pglue_errors(bp); 10941 10942 /* Release previously held locks */ 10943 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10944 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10945 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10946 10947 hw_lock_val = REG_RD(bp, hw_lock_reg); 10948 if (hw_lock_val) { 10949 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10950 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10951 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10952 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10953 } 10954 10955 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10956 REG_WR(bp, hw_lock_reg, 0xffffffff); 10957 } else 10958 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10959 10960 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10961 BNX2X_DEV_INFO("Release previously held alr\n"); 10962 bnx2x_release_alr(bp); 10963 } 10964 10965 do { 10966 int aer = 0; 10967 /* Lock MCP using an unload request */ 10968 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10969 if (!fw) { 10970 BNX2X_ERR("MCP response failure, aborting\n"); 10971 rc = -EBUSY; 10972 break; 10973 } 10974 10975 rc = down_interruptible(&bnx2x_prev_sem); 10976 if (rc) { 10977 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10978 rc); 10979 } else { 10980 /* If Path is marked by EEH, ignore unload status */ 10981 aer = !!(bnx2x_prev_path_get_entry(bp) && 10982 bnx2x_prev_path_get_entry(bp)->aer); 10983 up(&bnx2x_prev_sem); 10984 } 10985 10986 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10987 rc = bnx2x_prev_unload_common(bp); 10988 break; 10989 } 10990 10991 /* non-common reply from MCP might require looping */ 10992 rc = bnx2x_prev_unload_uncommon(bp); 10993 if (rc != BNX2X_PREV_WAIT_NEEDED) 10994 break; 10995 10996 msleep(20); 10997 } while (--time_counter); 10998 10999 if (!time_counter || rc) { 11000 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 11001 rc = -EPROBE_DEFER; 11002 } 11003 11004 /* Mark function if its port was used to boot from SAN */ 11005 if (bnx2x_port_after_undi(bp)) 11006 bp->link_params.feature_config_flags |= 11007 FEATURE_CONFIG_BOOT_FROM_SAN; 11008 11009 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 11010 11011 return rc; 11012 } 11013 11014 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 11015 { 11016 u32 val, val2, val3, val4, id, boot_mode; 11017 u16 pmc; 11018 11019 /* Get the chip revision id and number. */ 11020 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 11021 val = REG_RD(bp, MISC_REG_CHIP_NUM); 11022 id = ((val & 0xffff) << 16); 11023 val = REG_RD(bp, MISC_REG_CHIP_REV); 11024 id |= ((val & 0xf) << 12); 11025 11026 /* Metal is read from PCI regs, but we can't access >=0x400 from 11027 * the configuration space (so we need to reg_rd) 11028 */ 11029 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 11030 id |= (((val >> 24) & 0xf) << 4); 11031 val = REG_RD(bp, MISC_REG_BOND_ID); 11032 id |= (val & 0xf); 11033 bp->common.chip_id = id; 11034 11035 /* force 57811 according to MISC register */ 11036 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 11037 if (CHIP_IS_57810(bp)) 11038 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 11039 (bp->common.chip_id & 0x0000FFFF); 11040 else if (CHIP_IS_57810_MF(bp)) 11041 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 11042 (bp->common.chip_id & 0x0000FFFF); 11043 bp->common.chip_id |= 0x1; 11044 } 11045 11046 /* Set doorbell size */ 11047 bp->db_size = (1 << BNX2X_DB_SHIFT); 11048 11049 if (!CHIP_IS_E1x(bp)) { 11050 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 11051 if ((val & 1) == 0) 11052 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 11053 else 11054 val = (val >> 1) & 1; 11055 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 11056 "2_PORT_MODE"); 11057 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 11058 CHIP_2_PORT_MODE; 11059 11060 if (CHIP_MODE_IS_4_PORT(bp)) 11061 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 11062 else 11063 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 11064 } else { 11065 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 11066 bp->pfid = bp->pf_num; /* 0..7 */ 11067 } 11068 11069 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 11070 11071 bp->link_params.chip_id = bp->common.chip_id; 11072 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 11073 11074 val = (REG_RD(bp, 0x2874) & 0x55); 11075 if ((bp->common.chip_id & 0x1) || 11076 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 11077 bp->flags |= ONE_PORT_FLAG; 11078 BNX2X_DEV_INFO("single port device\n"); 11079 } 11080 11081 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 11082 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 11083 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 11084 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 11085 bp->common.flash_size, bp->common.flash_size); 11086 11087 bnx2x_init_shmem(bp); 11088 11089 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 11090 MISC_REG_GENERIC_CR_1 : 11091 MISC_REG_GENERIC_CR_0)); 11092 11093 bp->link_params.shmem_base = bp->common.shmem_base; 11094 bp->link_params.shmem2_base = bp->common.shmem2_base; 11095 if (SHMEM2_RD(bp, size) > 11096 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 11097 bp->link_params.lfa_base = 11098 REG_RD(bp, bp->common.shmem2_base + 11099 (u32)offsetof(struct shmem2_region, 11100 lfa_host_addr[BP_PORT(bp)])); 11101 else 11102 bp->link_params.lfa_base = 0; 11103 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 11104 bp->common.shmem_base, bp->common.shmem2_base); 11105 11106 if (!bp->common.shmem_base) { 11107 BNX2X_DEV_INFO("MCP not active\n"); 11108 bp->flags |= NO_MCP_FLAG; 11109 return; 11110 } 11111 11112 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 11113 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 11114 11115 bp->link_params.hw_led_mode = ((bp->common.hw_config & 11116 SHARED_HW_CFG_LED_MODE_MASK) >> 11117 SHARED_HW_CFG_LED_MODE_SHIFT); 11118 11119 bp->link_params.feature_config_flags = 0; 11120 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 11121 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 11122 bp->link_params.feature_config_flags |= 11123 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11124 else 11125 bp->link_params.feature_config_flags &= 11126 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11127 11128 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 11129 bp->common.bc_ver = val; 11130 BNX2X_DEV_INFO("bc_ver %X\n", val); 11131 if (val < BNX2X_BC_VER) { 11132 /* for now only warn 11133 * later we might need to enforce this */ 11134 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 11135 BNX2X_BC_VER, val); 11136 } 11137 bp->link_params.feature_config_flags |= 11138 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 11139 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 11140 11141 bp->link_params.feature_config_flags |= 11142 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 11143 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 11144 bp->link_params.feature_config_flags |= 11145 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 11146 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 11147 bp->link_params.feature_config_flags |= 11148 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 11149 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 11150 11151 bp->link_params.feature_config_flags |= 11152 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 11153 FEATURE_CONFIG_MT_SUPPORT : 0; 11154 11155 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 11156 BC_SUPPORTS_PFC_STATS : 0; 11157 11158 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 11159 BC_SUPPORTS_FCOE_FEATURES : 0; 11160 11161 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 11162 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 11163 11164 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 11165 BC_SUPPORTS_RMMOD_CMD : 0; 11166 11167 boot_mode = SHMEM_RD(bp, 11168 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 11169 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 11170 switch (boot_mode) { 11171 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 11172 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 11173 break; 11174 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 11175 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 11176 break; 11177 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 11178 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 11179 break; 11180 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 11181 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 11182 break; 11183 } 11184 11185 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 11186 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 11187 11188 BNX2X_DEV_INFO("%sWoL capable\n", 11189 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 11190 11191 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 11192 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 11193 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 11194 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 11195 11196 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 11197 val, val2, val3, val4); 11198 } 11199 11200 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 11201 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 11202 11203 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 11204 { 11205 int pfid = BP_FUNC(bp); 11206 int igu_sb_id; 11207 u32 val; 11208 u8 fid, igu_sb_cnt = 0; 11209 11210 bp->igu_base_sb = 0xff; 11211 if (CHIP_INT_MODE_IS_BC(bp)) { 11212 int vn = BP_VN(bp); 11213 igu_sb_cnt = bp->igu_sb_cnt; 11214 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 11215 FP_SB_MAX_E1x; 11216 11217 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 11218 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 11219 11220 return 0; 11221 } 11222 11223 /* IGU in normal mode - read CAM */ 11224 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 11225 igu_sb_id++) { 11226 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 11227 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 11228 continue; 11229 fid = IGU_FID(val); 11230 if ((fid & IGU_FID_ENCODE_IS_PF)) { 11231 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 11232 continue; 11233 if (IGU_VEC(val) == 0) 11234 /* default status block */ 11235 bp->igu_dsb_id = igu_sb_id; 11236 else { 11237 if (bp->igu_base_sb == 0xff) 11238 bp->igu_base_sb = igu_sb_id; 11239 igu_sb_cnt++; 11240 } 11241 } 11242 } 11243 11244 #ifdef CONFIG_PCI_MSI 11245 /* Due to new PF resource allocation by MFW T7.4 and above, it's 11246 * optional that number of CAM entries will not be equal to the value 11247 * advertised in PCI. 11248 * Driver should use the minimal value of both as the actual status 11249 * block count 11250 */ 11251 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 11252 #endif 11253 11254 if (igu_sb_cnt == 0) { 11255 BNX2X_ERR("CAM configuration error\n"); 11256 return -EINVAL; 11257 } 11258 11259 return 0; 11260 } 11261 11262 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 11263 { 11264 int cfg_size = 0, idx, port = BP_PORT(bp); 11265 11266 /* Aggregation of supported attributes of all external phys */ 11267 bp->port.supported[0] = 0; 11268 bp->port.supported[1] = 0; 11269 switch (bp->link_params.num_phys) { 11270 case 1: 11271 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 11272 cfg_size = 1; 11273 break; 11274 case 2: 11275 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 11276 cfg_size = 1; 11277 break; 11278 case 3: 11279 if (bp->link_params.multi_phy_config & 11280 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11281 bp->port.supported[1] = 11282 bp->link_params.phy[EXT_PHY1].supported; 11283 bp->port.supported[0] = 11284 bp->link_params.phy[EXT_PHY2].supported; 11285 } else { 11286 bp->port.supported[0] = 11287 bp->link_params.phy[EXT_PHY1].supported; 11288 bp->port.supported[1] = 11289 bp->link_params.phy[EXT_PHY2].supported; 11290 } 11291 cfg_size = 2; 11292 break; 11293 } 11294 11295 if (!(bp->port.supported[0] || bp->port.supported[1])) { 11296 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 11297 SHMEM_RD(bp, 11298 dev_info.port_hw_config[port].external_phy_config), 11299 SHMEM_RD(bp, 11300 dev_info.port_hw_config[port].external_phy_config2)); 11301 return; 11302 } 11303 11304 if (CHIP_IS_E3(bp)) 11305 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 11306 else { 11307 switch (switch_cfg) { 11308 case SWITCH_CFG_1G: 11309 bp->port.phy_addr = REG_RD( 11310 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 11311 break; 11312 case SWITCH_CFG_10G: 11313 bp->port.phy_addr = REG_RD( 11314 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 11315 break; 11316 default: 11317 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 11318 bp->port.link_config[0]); 11319 return; 11320 } 11321 } 11322 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 11323 /* mask what we support according to speed_cap_mask per configuration */ 11324 for (idx = 0; idx < cfg_size; idx++) { 11325 if (!(bp->link_params.speed_cap_mask[idx] & 11326 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 11327 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 11328 11329 if (!(bp->link_params.speed_cap_mask[idx] & 11330 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 11331 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 11332 11333 if (!(bp->link_params.speed_cap_mask[idx] & 11334 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 11335 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 11336 11337 if (!(bp->link_params.speed_cap_mask[idx] & 11338 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 11339 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11340 11341 if (!(bp->link_params.speed_cap_mask[idx] & 11342 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11343 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11344 SUPPORTED_1000baseT_Full); 11345 11346 if (!(bp->link_params.speed_cap_mask[idx] & 11347 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11348 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11349 11350 if (!(bp->link_params.speed_cap_mask[idx] & 11351 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11352 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11353 11354 if (!(bp->link_params.speed_cap_mask[idx] & 11355 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11356 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11357 } 11358 11359 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11360 bp->port.supported[1]); 11361 } 11362 11363 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11364 { 11365 u32 link_config, idx, cfg_size = 0; 11366 bp->port.advertising[0] = 0; 11367 bp->port.advertising[1] = 0; 11368 switch (bp->link_params.num_phys) { 11369 case 1: 11370 case 2: 11371 cfg_size = 1; 11372 break; 11373 case 3: 11374 cfg_size = 2; 11375 break; 11376 } 11377 for (idx = 0; idx < cfg_size; idx++) { 11378 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11379 link_config = bp->port.link_config[idx]; 11380 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11381 case PORT_FEATURE_LINK_SPEED_AUTO: 11382 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11383 bp->link_params.req_line_speed[idx] = 11384 SPEED_AUTO_NEG; 11385 bp->port.advertising[idx] |= 11386 bp->port.supported[idx]; 11387 if (bp->link_params.phy[EXT_PHY1].type == 11388 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11389 bp->port.advertising[idx] |= 11390 (SUPPORTED_100baseT_Half | 11391 SUPPORTED_100baseT_Full); 11392 } else { 11393 /* force 10G, no AN */ 11394 bp->link_params.req_line_speed[idx] = 11395 SPEED_10000; 11396 bp->port.advertising[idx] |= 11397 (ADVERTISED_10000baseT_Full | 11398 ADVERTISED_FIBRE); 11399 continue; 11400 } 11401 break; 11402 11403 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11404 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11405 bp->link_params.req_line_speed[idx] = 11406 SPEED_10; 11407 bp->port.advertising[idx] |= 11408 (ADVERTISED_10baseT_Full | 11409 ADVERTISED_TP); 11410 } else { 11411 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11412 link_config, 11413 bp->link_params.speed_cap_mask[idx]); 11414 return; 11415 } 11416 break; 11417 11418 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11419 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11420 bp->link_params.req_line_speed[idx] = 11421 SPEED_10; 11422 bp->link_params.req_duplex[idx] = 11423 DUPLEX_HALF; 11424 bp->port.advertising[idx] |= 11425 (ADVERTISED_10baseT_Half | 11426 ADVERTISED_TP); 11427 } else { 11428 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11429 link_config, 11430 bp->link_params.speed_cap_mask[idx]); 11431 return; 11432 } 11433 break; 11434 11435 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11436 if (bp->port.supported[idx] & 11437 SUPPORTED_100baseT_Full) { 11438 bp->link_params.req_line_speed[idx] = 11439 SPEED_100; 11440 bp->port.advertising[idx] |= 11441 (ADVERTISED_100baseT_Full | 11442 ADVERTISED_TP); 11443 } else { 11444 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11445 link_config, 11446 bp->link_params.speed_cap_mask[idx]); 11447 return; 11448 } 11449 break; 11450 11451 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11452 if (bp->port.supported[idx] & 11453 SUPPORTED_100baseT_Half) { 11454 bp->link_params.req_line_speed[idx] = 11455 SPEED_100; 11456 bp->link_params.req_duplex[idx] = 11457 DUPLEX_HALF; 11458 bp->port.advertising[idx] |= 11459 (ADVERTISED_100baseT_Half | 11460 ADVERTISED_TP); 11461 } else { 11462 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11463 link_config, 11464 bp->link_params.speed_cap_mask[idx]); 11465 return; 11466 } 11467 break; 11468 11469 case PORT_FEATURE_LINK_SPEED_1G: 11470 if (bp->port.supported[idx] & 11471 SUPPORTED_1000baseT_Full) { 11472 bp->link_params.req_line_speed[idx] = 11473 SPEED_1000; 11474 bp->port.advertising[idx] |= 11475 (ADVERTISED_1000baseT_Full | 11476 ADVERTISED_TP); 11477 } else if (bp->port.supported[idx] & 11478 SUPPORTED_1000baseKX_Full) { 11479 bp->link_params.req_line_speed[idx] = 11480 SPEED_1000; 11481 bp->port.advertising[idx] |= 11482 ADVERTISED_1000baseKX_Full; 11483 } else { 11484 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11485 link_config, 11486 bp->link_params.speed_cap_mask[idx]); 11487 return; 11488 } 11489 break; 11490 11491 case PORT_FEATURE_LINK_SPEED_2_5G: 11492 if (bp->port.supported[idx] & 11493 SUPPORTED_2500baseX_Full) { 11494 bp->link_params.req_line_speed[idx] = 11495 SPEED_2500; 11496 bp->port.advertising[idx] |= 11497 (ADVERTISED_2500baseX_Full | 11498 ADVERTISED_TP); 11499 } else { 11500 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11501 link_config, 11502 bp->link_params.speed_cap_mask[idx]); 11503 return; 11504 } 11505 break; 11506 11507 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11508 if (bp->port.supported[idx] & 11509 SUPPORTED_10000baseT_Full) { 11510 bp->link_params.req_line_speed[idx] = 11511 SPEED_10000; 11512 bp->port.advertising[idx] |= 11513 (ADVERTISED_10000baseT_Full | 11514 ADVERTISED_FIBRE); 11515 } else if (bp->port.supported[idx] & 11516 SUPPORTED_10000baseKR_Full) { 11517 bp->link_params.req_line_speed[idx] = 11518 SPEED_10000; 11519 bp->port.advertising[idx] |= 11520 (ADVERTISED_10000baseKR_Full | 11521 ADVERTISED_FIBRE); 11522 } else { 11523 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11524 link_config, 11525 bp->link_params.speed_cap_mask[idx]); 11526 return; 11527 } 11528 break; 11529 case PORT_FEATURE_LINK_SPEED_20G: 11530 bp->link_params.req_line_speed[idx] = SPEED_20000; 11531 11532 break; 11533 default: 11534 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11535 link_config); 11536 bp->link_params.req_line_speed[idx] = 11537 SPEED_AUTO_NEG; 11538 bp->port.advertising[idx] = 11539 bp->port.supported[idx]; 11540 break; 11541 } 11542 11543 bp->link_params.req_flow_ctrl[idx] = (link_config & 11544 PORT_FEATURE_FLOW_CONTROL_MASK); 11545 if (bp->link_params.req_flow_ctrl[idx] == 11546 BNX2X_FLOW_CTRL_AUTO) { 11547 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11548 bp->link_params.req_flow_ctrl[idx] = 11549 BNX2X_FLOW_CTRL_NONE; 11550 else 11551 bnx2x_set_requested_fc(bp); 11552 } 11553 11554 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11555 bp->link_params.req_line_speed[idx], 11556 bp->link_params.req_duplex[idx], 11557 bp->link_params.req_flow_ctrl[idx], 11558 bp->port.advertising[idx]); 11559 } 11560 } 11561 11562 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11563 { 11564 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11565 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11566 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11567 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11568 } 11569 11570 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11571 { 11572 int port = BP_PORT(bp); 11573 u32 config; 11574 u32 ext_phy_type, ext_phy_config, eee_mode; 11575 11576 bp->link_params.bp = bp; 11577 bp->link_params.port = port; 11578 11579 bp->link_params.lane_config = 11580 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11581 11582 bp->link_params.speed_cap_mask[0] = 11583 SHMEM_RD(bp, 11584 dev_info.port_hw_config[port].speed_capability_mask) & 11585 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11586 bp->link_params.speed_cap_mask[1] = 11587 SHMEM_RD(bp, 11588 dev_info.port_hw_config[port].speed_capability_mask2) & 11589 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11590 bp->port.link_config[0] = 11591 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11592 11593 bp->port.link_config[1] = 11594 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11595 11596 bp->link_params.multi_phy_config = 11597 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11598 /* If the device is capable of WoL, set the default state according 11599 * to the HW 11600 */ 11601 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11602 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11603 (config & PORT_FEATURE_WOL_ENABLED)); 11604 11605 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11606 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11607 bp->flags |= NO_ISCSI_FLAG; 11608 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11609 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11610 bp->flags |= NO_FCOE_FLAG; 11611 11612 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11613 bp->link_params.lane_config, 11614 bp->link_params.speed_cap_mask[0], 11615 bp->port.link_config[0]); 11616 11617 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11618 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11619 bnx2x_phy_probe(&bp->link_params); 11620 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11621 11622 bnx2x_link_settings_requested(bp); 11623 11624 /* 11625 * If connected directly, work with the internal PHY, otherwise, work 11626 * with the external PHY 11627 */ 11628 ext_phy_config = 11629 SHMEM_RD(bp, 11630 dev_info.port_hw_config[port].external_phy_config); 11631 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11632 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11633 bp->mdio.prtad = bp->port.phy_addr; 11634 11635 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11636 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11637 bp->mdio.prtad = 11638 XGXS_EXT_PHY_ADDR(ext_phy_config); 11639 11640 /* Configure link feature according to nvram value */ 11641 eee_mode = (((SHMEM_RD(bp, dev_info. 11642 port_feature_config[port].eee_power_mode)) & 11643 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11644 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11645 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11646 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11647 EEE_MODE_ENABLE_LPI | 11648 EEE_MODE_OUTPUT_TIME; 11649 } else { 11650 bp->link_params.eee_mode = 0; 11651 } 11652 } 11653 11654 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11655 { 11656 u32 no_flags = NO_ISCSI_FLAG; 11657 int port = BP_PORT(bp); 11658 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11659 drv_lic_key[port].max_iscsi_conn); 11660 11661 if (!CNIC_SUPPORT(bp)) { 11662 bp->flags |= no_flags; 11663 return; 11664 } 11665 11666 /* Get the number of maximum allowed iSCSI connections */ 11667 bp->cnic_eth_dev.max_iscsi_conn = 11668 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11669 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11670 11671 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11672 bp->cnic_eth_dev.max_iscsi_conn); 11673 11674 /* 11675 * If maximum allowed number of connections is zero - 11676 * disable the feature. 11677 */ 11678 if (!bp->cnic_eth_dev.max_iscsi_conn) 11679 bp->flags |= no_flags; 11680 } 11681 11682 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11683 { 11684 /* Port info */ 11685 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11686 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11687 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11688 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11689 11690 /* Node info */ 11691 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11692 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11693 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11694 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11695 } 11696 11697 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11698 { 11699 u8 count = 0; 11700 11701 if (IS_MF(bp)) { 11702 u8 fid; 11703 11704 /* iterate over absolute function ids for this path: */ 11705 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11706 if (IS_MF_SD(bp)) { 11707 u32 cfg = MF_CFG_RD(bp, 11708 func_mf_config[fid].config); 11709 11710 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11711 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11712 FUNC_MF_CFG_PROTOCOL_FCOE)) 11713 count++; 11714 } else { 11715 u32 cfg = MF_CFG_RD(bp, 11716 func_ext_config[fid]. 11717 func_cfg); 11718 11719 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11720 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11721 count++; 11722 } 11723 } 11724 } else { /* SF */ 11725 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11726 11727 for (port = 0; port < port_cnt; port++) { 11728 u32 lic = SHMEM_RD(bp, 11729 drv_lic_key[port].max_fcoe_conn) ^ 11730 FW_ENCODE_32BIT_PATTERN; 11731 if (lic) 11732 count++; 11733 } 11734 } 11735 11736 return count; 11737 } 11738 11739 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11740 { 11741 int port = BP_PORT(bp); 11742 int func = BP_ABS_FUNC(bp); 11743 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11744 drv_lic_key[port].max_fcoe_conn); 11745 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11746 11747 if (!CNIC_SUPPORT(bp)) { 11748 bp->flags |= NO_FCOE_FLAG; 11749 return; 11750 } 11751 11752 /* Get the number of maximum allowed FCoE connections */ 11753 bp->cnic_eth_dev.max_fcoe_conn = 11754 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11755 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11756 11757 /* Calculate the number of maximum allowed FCoE tasks */ 11758 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11759 11760 /* check if FCoE resources must be shared between different functions */ 11761 if (num_fcoe_func) 11762 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11763 11764 /* Read the WWN: */ 11765 if (!IS_MF(bp)) { 11766 /* Port info */ 11767 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11768 SHMEM_RD(bp, 11769 dev_info.port_hw_config[port]. 11770 fcoe_wwn_port_name_upper); 11771 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11772 SHMEM_RD(bp, 11773 dev_info.port_hw_config[port]. 11774 fcoe_wwn_port_name_lower); 11775 11776 /* Node info */ 11777 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11778 SHMEM_RD(bp, 11779 dev_info.port_hw_config[port]. 11780 fcoe_wwn_node_name_upper); 11781 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11782 SHMEM_RD(bp, 11783 dev_info.port_hw_config[port]. 11784 fcoe_wwn_node_name_lower); 11785 } else if (!IS_MF_SD(bp)) { 11786 /* Read the WWN info only if the FCoE feature is enabled for 11787 * this function. 11788 */ 11789 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11790 bnx2x_get_ext_wwn_info(bp, func); 11791 } else { 11792 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11793 bnx2x_get_ext_wwn_info(bp, func); 11794 } 11795 11796 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11797 11798 /* 11799 * If maximum allowed number of connections is zero - 11800 * disable the feature. 11801 */ 11802 if (!bp->cnic_eth_dev.max_fcoe_conn) { 11803 bp->flags |= NO_FCOE_FLAG; 11804 eth_zero_addr(bp->fip_mac); 11805 } 11806 } 11807 11808 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11809 { 11810 /* 11811 * iSCSI may be dynamically disabled but reading 11812 * info here we will decrease memory usage by driver 11813 * if the feature is disabled for good 11814 */ 11815 bnx2x_get_iscsi_info(bp); 11816 bnx2x_get_fcoe_info(bp); 11817 } 11818 11819 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11820 { 11821 u32 val, val2; 11822 int func = BP_ABS_FUNC(bp); 11823 int port = BP_PORT(bp); 11824 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11825 u8 *fip_mac = bp->fip_mac; 11826 11827 if (IS_MF(bp)) { 11828 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11829 * FCoE MAC then the appropriate feature should be disabled. 11830 * In non SD mode features configuration comes from struct 11831 * func_ext_config. 11832 */ 11833 if (!IS_MF_SD(bp)) { 11834 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11835 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11836 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11837 iscsi_mac_addr_upper); 11838 val = MF_CFG_RD(bp, func_ext_config[func]. 11839 iscsi_mac_addr_lower); 11840 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11841 BNX2X_DEV_INFO 11842 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11843 } else { 11844 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11845 } 11846 11847 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11848 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11849 fcoe_mac_addr_upper); 11850 val = MF_CFG_RD(bp, func_ext_config[func]. 11851 fcoe_mac_addr_lower); 11852 bnx2x_set_mac_buf(fip_mac, val, val2); 11853 BNX2X_DEV_INFO 11854 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11855 } else { 11856 bp->flags |= NO_FCOE_FLAG; 11857 } 11858 11859 bp->mf_ext_config = cfg; 11860 11861 } else { /* SD MODE */ 11862 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11863 /* use primary mac as iscsi mac */ 11864 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11865 11866 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11867 BNX2X_DEV_INFO 11868 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11869 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11870 /* use primary mac as fip mac */ 11871 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11872 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11873 BNX2X_DEV_INFO 11874 ("Read FIP MAC: %pM\n", fip_mac); 11875 } 11876 } 11877 11878 /* If this is a storage-only interface, use SAN mac as 11879 * primary MAC. Notice that for SD this is already the case, 11880 * as the SAN mac was copied from the primary MAC. 11881 */ 11882 if (IS_MF_FCOE_AFEX(bp)) 11883 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11884 } else { 11885 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11886 iscsi_mac_upper); 11887 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11888 iscsi_mac_lower); 11889 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11890 11891 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11892 fcoe_fip_mac_upper); 11893 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11894 fcoe_fip_mac_lower); 11895 bnx2x_set_mac_buf(fip_mac, val, val2); 11896 } 11897 11898 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11899 if (!is_valid_ether_addr(iscsi_mac)) { 11900 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11901 eth_zero_addr(iscsi_mac); 11902 } 11903 11904 /* Disable FCoE if MAC configuration is invalid. */ 11905 if (!is_valid_ether_addr(fip_mac)) { 11906 bp->flags |= NO_FCOE_FLAG; 11907 eth_zero_addr(bp->fip_mac); 11908 } 11909 } 11910 11911 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11912 { 11913 u32 val, val2; 11914 int func = BP_ABS_FUNC(bp); 11915 int port = BP_PORT(bp); 11916 11917 /* Zero primary MAC configuration */ 11918 eth_zero_addr(bp->dev->dev_addr); 11919 11920 if (BP_NOMCP(bp)) { 11921 BNX2X_ERROR("warning: random MAC workaround active\n"); 11922 eth_hw_addr_random(bp->dev); 11923 } else if (IS_MF(bp)) { 11924 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11925 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11926 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11927 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11928 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11929 11930 if (CNIC_SUPPORT(bp)) 11931 bnx2x_get_cnic_mac_hwinfo(bp); 11932 } else { 11933 /* in SF read MACs from port configuration */ 11934 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11935 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11936 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11937 11938 if (CNIC_SUPPORT(bp)) 11939 bnx2x_get_cnic_mac_hwinfo(bp); 11940 } 11941 11942 if (!BP_NOMCP(bp)) { 11943 /* Read physical port identifier from shmem */ 11944 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11945 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11946 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11947 bp->flags |= HAS_PHYS_PORT_ID; 11948 } 11949 11950 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11951 11952 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11953 dev_err(&bp->pdev->dev, 11954 "bad Ethernet MAC address configuration: %pM\n" 11955 "change it manually before bringing up the appropriate network interface\n", 11956 bp->dev->dev_addr); 11957 } 11958 11959 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11960 { 11961 int tmp; 11962 u32 cfg; 11963 11964 if (IS_VF(bp)) 11965 return false; 11966 11967 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11968 /* Take function: tmp = func */ 11969 tmp = BP_ABS_FUNC(bp); 11970 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11971 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11972 } else { 11973 /* Take port: tmp = port */ 11974 tmp = BP_PORT(bp); 11975 cfg = SHMEM_RD(bp, 11976 dev_info.port_hw_config[tmp].generic_features); 11977 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11978 } 11979 return cfg; 11980 } 11981 11982 static void validate_set_si_mode(struct bnx2x *bp) 11983 { 11984 u8 func = BP_ABS_FUNC(bp); 11985 u32 val; 11986 11987 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11988 11989 /* check for legal mac (upper bytes) */ 11990 if (val != 0xffff) { 11991 bp->mf_mode = MULTI_FUNCTION_SI; 11992 bp->mf_config[BP_VN(bp)] = 11993 MF_CFG_RD(bp, func_mf_config[func].config); 11994 } else 11995 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11996 } 11997 11998 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11999 { 12000 int /*abs*/func = BP_ABS_FUNC(bp); 12001 int vn; 12002 u32 val = 0, val2 = 0; 12003 int rc = 0; 12004 12005 /* Validate that chip access is feasible */ 12006 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) { 12007 dev_err(&bp->pdev->dev, 12008 "Chip read returns all Fs. Preventing probe from continuing\n"); 12009 return -EINVAL; 12010 } 12011 12012 bnx2x_get_common_hwinfo(bp); 12013 12014 /* 12015 * initialize IGU parameters 12016 */ 12017 if (CHIP_IS_E1x(bp)) { 12018 bp->common.int_block = INT_BLOCK_HC; 12019 12020 bp->igu_dsb_id = DEF_SB_IGU_ID; 12021 bp->igu_base_sb = 0; 12022 } else { 12023 bp->common.int_block = INT_BLOCK_IGU; 12024 12025 /* do not allow device reset during IGU info processing */ 12026 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 12027 12028 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 12029 12030 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 12031 int tout = 5000; 12032 12033 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 12034 12035 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 12036 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 12037 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 12038 12039 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 12040 tout--; 12041 usleep_range(1000, 2000); 12042 } 12043 12044 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 12045 dev_err(&bp->pdev->dev, 12046 "FORCING Normal Mode failed!!!\n"); 12047 bnx2x_release_hw_lock(bp, 12048 HW_LOCK_RESOURCE_RESET); 12049 return -EPERM; 12050 } 12051 } 12052 12053 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 12054 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 12055 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 12056 } else 12057 BNX2X_DEV_INFO("IGU Normal Mode\n"); 12058 12059 rc = bnx2x_get_igu_cam_info(bp); 12060 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 12061 if (rc) 12062 return rc; 12063 } 12064 12065 /* 12066 * set base FW non-default (fast path) status block id, this value is 12067 * used to initialize the fw_sb_id saved on the fp/queue structure to 12068 * determine the id used by the FW. 12069 */ 12070 if (CHIP_IS_E1x(bp)) 12071 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 12072 else /* 12073 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 12074 * the same queue are indicated on the same IGU SB). So we prefer 12075 * FW and IGU SBs to be the same value. 12076 */ 12077 bp->base_fw_ndsb = bp->igu_base_sb; 12078 12079 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 12080 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 12081 bp->igu_sb_cnt, bp->base_fw_ndsb); 12082 12083 /* 12084 * Initialize MF configuration 12085 */ 12086 bp->mf_ov = 0; 12087 bp->mf_mode = 0; 12088 bp->mf_sub_mode = 0; 12089 vn = BP_VN(bp); 12090 12091 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 12092 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 12093 bp->common.shmem2_base, SHMEM2_RD(bp, size), 12094 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 12095 12096 if (SHMEM2_HAS(bp, mf_cfg_addr)) 12097 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 12098 else 12099 bp->common.mf_cfg_base = bp->common.shmem_base + 12100 offsetof(struct shmem_region, func_mb) + 12101 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 12102 /* 12103 * get mf configuration: 12104 * 1. Existence of MF configuration 12105 * 2. MAC address must be legal (check only upper bytes) 12106 * for Switch-Independent mode; 12107 * OVLAN must be legal for Switch-Dependent mode 12108 * 3. SF_MODE configures specific MF mode 12109 */ 12110 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12111 /* get mf configuration */ 12112 val = SHMEM_RD(bp, 12113 dev_info.shared_feature_config.config); 12114 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 12115 12116 switch (val) { 12117 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 12118 validate_set_si_mode(bp); 12119 break; 12120 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 12121 if ((!CHIP_IS_E1x(bp)) && 12122 (MF_CFG_RD(bp, func_mf_config[func]. 12123 mac_upper) != 0xffff) && 12124 (SHMEM2_HAS(bp, 12125 afex_driver_support))) { 12126 bp->mf_mode = MULTI_FUNCTION_AFEX; 12127 bp->mf_config[vn] = MF_CFG_RD(bp, 12128 func_mf_config[func].config); 12129 } else { 12130 BNX2X_DEV_INFO("can not configure afex mode\n"); 12131 } 12132 break; 12133 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 12134 /* get OV configuration */ 12135 val = MF_CFG_RD(bp, 12136 func_mf_config[FUNC_0].e1hov_tag); 12137 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 12138 12139 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12140 bp->mf_mode = MULTI_FUNCTION_SD; 12141 bp->mf_config[vn] = MF_CFG_RD(bp, 12142 func_mf_config[func].config); 12143 } else 12144 BNX2X_DEV_INFO("illegal OV for SD\n"); 12145 break; 12146 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE: 12147 bp->mf_mode = MULTI_FUNCTION_SD; 12148 bp->mf_sub_mode = SUB_MF_MODE_BD; 12149 bp->mf_config[vn] = 12150 MF_CFG_RD(bp, 12151 func_mf_config[func].config); 12152 12153 if (SHMEM2_HAS(bp, mtu_size)) { 12154 int mtu_idx = BP_FW_MB_IDX(bp); 12155 u16 mtu_size; 12156 u32 mtu; 12157 12158 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]); 12159 mtu_size = (u16)mtu; 12160 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n", 12161 mtu_size, mtu); 12162 12163 /* if valid: update device mtu */ 12164 if ((mtu_size >= ETH_MIN_PACKET_SIZE) && 12165 (mtu_size <= 12166 ETH_MAX_JUMBO_PACKET_SIZE)) 12167 bp->dev->mtu = mtu_size; 12168 } 12169 break; 12170 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 12171 bp->mf_mode = MULTI_FUNCTION_SD; 12172 bp->mf_sub_mode = SUB_MF_MODE_UFP; 12173 bp->mf_config[vn] = 12174 MF_CFG_RD(bp, 12175 func_mf_config[func].config); 12176 break; 12177 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 12178 bp->mf_config[vn] = 0; 12179 break; 12180 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 12181 val2 = SHMEM_RD(bp, 12182 dev_info.shared_hw_config.config_3); 12183 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 12184 switch (val2) { 12185 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 12186 validate_set_si_mode(bp); 12187 bp->mf_sub_mode = 12188 SUB_MF_MODE_NPAR1_DOT_5; 12189 break; 12190 default: 12191 /* Unknown configuration */ 12192 bp->mf_config[vn] = 0; 12193 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 12194 val); 12195 } 12196 break; 12197 default: 12198 /* Unknown configuration: reset mf_config */ 12199 bp->mf_config[vn] = 0; 12200 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 12201 } 12202 } 12203 12204 BNX2X_DEV_INFO("%s function mode\n", 12205 IS_MF(bp) ? "multi" : "single"); 12206 12207 switch (bp->mf_mode) { 12208 case MULTI_FUNCTION_SD: 12209 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 12210 FUNC_MF_CFG_E1HOV_TAG_MASK; 12211 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12212 bp->mf_ov = val; 12213 bp->path_has_ovlan = true; 12214 12215 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 12216 func, bp->mf_ov, bp->mf_ov); 12217 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) || 12218 (bp->mf_sub_mode == SUB_MF_MODE_BD)) { 12219 dev_err(&bp->pdev->dev, 12220 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n", 12221 func); 12222 bp->path_has_ovlan = true; 12223 } else { 12224 dev_err(&bp->pdev->dev, 12225 "No valid MF OV for func %d, aborting\n", 12226 func); 12227 return -EPERM; 12228 } 12229 break; 12230 case MULTI_FUNCTION_AFEX: 12231 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 12232 break; 12233 case MULTI_FUNCTION_SI: 12234 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 12235 func); 12236 break; 12237 default: 12238 if (vn) { 12239 dev_err(&bp->pdev->dev, 12240 "VN %d is in a single function mode, aborting\n", 12241 vn); 12242 return -EPERM; 12243 } 12244 break; 12245 } 12246 12247 /* check if other port on the path needs ovlan: 12248 * Since MF configuration is shared between ports 12249 * Possible mixed modes are only 12250 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 12251 */ 12252 if (CHIP_MODE_IS_4_PORT(bp) && 12253 !bp->path_has_ovlan && 12254 !IS_MF(bp) && 12255 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12256 u8 other_port = !BP_PORT(bp); 12257 u8 other_func = BP_PATH(bp) + 2*other_port; 12258 val = MF_CFG_RD(bp, 12259 func_mf_config[other_func].e1hov_tag); 12260 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 12261 bp->path_has_ovlan = true; 12262 } 12263 } 12264 12265 /* adjust igu_sb_cnt to MF for E1H */ 12266 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 12267 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 12268 12269 /* port info */ 12270 bnx2x_get_port_hwinfo(bp); 12271 12272 /* Get MAC addresses */ 12273 bnx2x_get_mac_hwinfo(bp); 12274 12275 bnx2x_get_cnic_info(bp); 12276 12277 return rc; 12278 } 12279 12280 static void bnx2x_read_fwinfo(struct bnx2x *bp) 12281 { 12282 int cnt, i, block_end, rodi; 12283 char vpd_start[BNX2X_VPD_LEN+1]; 12284 char str_id_reg[VENDOR_ID_LEN+1]; 12285 char str_id_cap[VENDOR_ID_LEN+1]; 12286 char *vpd_data; 12287 char *vpd_extended_data = NULL; 12288 u8 len; 12289 12290 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 12291 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 12292 12293 if (cnt < BNX2X_VPD_LEN) 12294 goto out_not_found; 12295 12296 /* VPD RO tag should be first tag after identifier string, hence 12297 * we should be able to find it in first BNX2X_VPD_LEN chars 12298 */ 12299 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 12300 PCI_VPD_LRDT_RO_DATA); 12301 if (i < 0) 12302 goto out_not_found; 12303 12304 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 12305 pci_vpd_lrdt_size(&vpd_start[i]); 12306 12307 i += PCI_VPD_LRDT_TAG_SIZE; 12308 12309 if (block_end > BNX2X_VPD_LEN) { 12310 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 12311 if (vpd_extended_data == NULL) 12312 goto out_not_found; 12313 12314 /* read rest of vpd image into vpd_extended_data */ 12315 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 12316 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 12317 block_end - BNX2X_VPD_LEN, 12318 vpd_extended_data + BNX2X_VPD_LEN); 12319 if (cnt < (block_end - BNX2X_VPD_LEN)) 12320 goto out_not_found; 12321 vpd_data = vpd_extended_data; 12322 } else 12323 vpd_data = vpd_start; 12324 12325 /* now vpd_data holds full vpd content in both cases */ 12326 12327 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12328 PCI_VPD_RO_KEYWORD_MFR_ID); 12329 if (rodi < 0) 12330 goto out_not_found; 12331 12332 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12333 12334 if (len != VENDOR_ID_LEN) 12335 goto out_not_found; 12336 12337 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12338 12339 /* vendor specific info */ 12340 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 12341 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 12342 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 12343 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 12344 12345 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12346 PCI_VPD_RO_KEYWORD_VENDOR0); 12347 if (rodi >= 0) { 12348 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12349 12350 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12351 12352 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 12353 memcpy(bp->fw_ver, &vpd_data[rodi], len); 12354 bp->fw_ver[len] = ' '; 12355 } 12356 } 12357 kfree(vpd_extended_data); 12358 return; 12359 } 12360 out_not_found: 12361 kfree(vpd_extended_data); 12362 return; 12363 } 12364 12365 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 12366 { 12367 u32 flags = 0; 12368 12369 if (CHIP_REV_IS_FPGA(bp)) 12370 SET_FLAGS(flags, MODE_FPGA); 12371 else if (CHIP_REV_IS_EMUL(bp)) 12372 SET_FLAGS(flags, MODE_EMUL); 12373 else 12374 SET_FLAGS(flags, MODE_ASIC); 12375 12376 if (CHIP_MODE_IS_4_PORT(bp)) 12377 SET_FLAGS(flags, MODE_PORT4); 12378 else 12379 SET_FLAGS(flags, MODE_PORT2); 12380 12381 if (CHIP_IS_E2(bp)) 12382 SET_FLAGS(flags, MODE_E2); 12383 else if (CHIP_IS_E3(bp)) { 12384 SET_FLAGS(flags, MODE_E3); 12385 if (CHIP_REV(bp) == CHIP_REV_Ax) 12386 SET_FLAGS(flags, MODE_E3_A0); 12387 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12388 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12389 } 12390 12391 if (IS_MF(bp)) { 12392 SET_FLAGS(flags, MODE_MF); 12393 switch (bp->mf_mode) { 12394 case MULTI_FUNCTION_SD: 12395 SET_FLAGS(flags, MODE_MF_SD); 12396 break; 12397 case MULTI_FUNCTION_SI: 12398 SET_FLAGS(flags, MODE_MF_SI); 12399 break; 12400 case MULTI_FUNCTION_AFEX: 12401 SET_FLAGS(flags, MODE_MF_AFEX); 12402 break; 12403 } 12404 } else 12405 SET_FLAGS(flags, MODE_SF); 12406 12407 #if defined(__LITTLE_ENDIAN) 12408 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12409 #else /*(__BIG_ENDIAN)*/ 12410 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12411 #endif 12412 INIT_MODE_FLAGS(bp) = flags; 12413 } 12414 12415 static int bnx2x_init_bp(struct bnx2x *bp) 12416 { 12417 int func; 12418 int rc; 12419 12420 mutex_init(&bp->port.phy_mutex); 12421 mutex_init(&bp->fw_mb_mutex); 12422 mutex_init(&bp->drv_info_mutex); 12423 sema_init(&bp->stats_lock, 1); 12424 bp->drv_info_mng_owner = false; 12425 INIT_LIST_HEAD(&bp->vlan_reg); 12426 12427 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12428 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12429 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12430 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12431 if (IS_PF(bp)) { 12432 rc = bnx2x_get_hwinfo(bp); 12433 if (rc) 12434 return rc; 12435 } else { 12436 eth_zero_addr(bp->dev->dev_addr); 12437 } 12438 12439 bnx2x_set_modes_bitmap(bp); 12440 12441 rc = bnx2x_alloc_mem_bp(bp); 12442 if (rc) 12443 return rc; 12444 12445 bnx2x_read_fwinfo(bp); 12446 12447 func = BP_FUNC(bp); 12448 12449 /* need to reset chip if undi was active */ 12450 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12451 /* init fw_seq */ 12452 bp->fw_seq = 12453 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12454 DRV_MSG_SEQ_NUMBER_MASK; 12455 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12456 12457 rc = bnx2x_prev_unload(bp); 12458 if (rc) { 12459 bnx2x_free_mem_bp(bp); 12460 return rc; 12461 } 12462 } 12463 12464 if (CHIP_REV_IS_FPGA(bp)) 12465 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12466 12467 if (BP_NOMCP(bp) && (func == 0)) 12468 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12469 12470 bp->disable_tpa = disable_tpa; 12471 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12472 /* Reduce memory usage in kdump environment by disabling TPA */ 12473 bp->disable_tpa |= is_kdump_kernel(); 12474 12475 /* Set TPA flags */ 12476 if (bp->disable_tpa) { 12477 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12478 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12479 } 12480 12481 if (CHIP_IS_E1(bp)) 12482 bp->dropless_fc = 0; 12483 else 12484 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12485 12486 bp->mrrs = mrrs; 12487 12488 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12489 if (IS_VF(bp)) 12490 bp->rx_ring_size = MAX_RX_AVAIL; 12491 12492 /* make sure that the numbers are in the right granularity */ 12493 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12494 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12495 12496 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12497 12498 timer_setup(&bp->timer, bnx2x_timer, 0); 12499 bp->timer.expires = jiffies + bp->current_interval; 12500 12501 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12502 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12503 SHMEM2_HAS(bp, dcbx_en) && 12504 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12505 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) && 12506 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) { 12507 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12508 bnx2x_dcbx_init_params(bp); 12509 } else { 12510 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12511 } 12512 12513 if (CHIP_IS_E1x(bp)) 12514 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12515 else 12516 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12517 12518 /* multiple tx priority */ 12519 if (IS_VF(bp)) 12520 bp->max_cos = 1; 12521 else if (CHIP_IS_E1x(bp)) 12522 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12523 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12524 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12525 else if (CHIP_IS_E3B0(bp)) 12526 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12527 else 12528 BNX2X_ERR("unknown chip %x revision %x\n", 12529 CHIP_NUM(bp), CHIP_REV(bp)); 12530 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12531 12532 /* We need at least one default status block for slow-path events, 12533 * second status block for the L2 queue, and a third status block for 12534 * CNIC if supported. 12535 */ 12536 if (IS_VF(bp)) 12537 bp->min_msix_vec_cnt = 1; 12538 else if (CNIC_SUPPORT(bp)) 12539 bp->min_msix_vec_cnt = 3; 12540 else /* PF w/o cnic */ 12541 bp->min_msix_vec_cnt = 2; 12542 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12543 12544 bp->dump_preset_idx = 1; 12545 12546 return rc; 12547 } 12548 12549 /**************************************************************************** 12550 * General service functions 12551 ****************************************************************************/ 12552 12553 /* 12554 * net_device service functions 12555 */ 12556 12557 /* called with rtnl_lock */ 12558 static int bnx2x_open(struct net_device *dev) 12559 { 12560 struct bnx2x *bp = netdev_priv(dev); 12561 int rc; 12562 12563 bp->stats_init = true; 12564 12565 netif_carrier_off(dev); 12566 12567 bnx2x_set_power_state(bp, PCI_D0); 12568 12569 /* If parity had happen during the unload, then attentions 12570 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12571 * want the first function loaded on the current engine to 12572 * complete the recovery. 12573 * Parity recovery is only relevant for PF driver. 12574 */ 12575 if (IS_PF(bp)) { 12576 int other_engine = BP_PATH(bp) ? 0 : 1; 12577 bool other_load_status, load_status; 12578 bool global = false; 12579 12580 other_load_status = bnx2x_get_load_status(bp, other_engine); 12581 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12582 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12583 bnx2x_chk_parity_attn(bp, &global, true)) { 12584 do { 12585 /* If there are attentions and they are in a 12586 * global blocks, set the GLOBAL_RESET bit 12587 * regardless whether it will be this function 12588 * that will complete the recovery or not. 12589 */ 12590 if (global) 12591 bnx2x_set_reset_global(bp); 12592 12593 /* Only the first function on the current 12594 * engine should try to recover in open. In case 12595 * of attentions in global blocks only the first 12596 * in the chip should try to recover. 12597 */ 12598 if ((!load_status && 12599 (!global || !other_load_status)) && 12600 bnx2x_trylock_leader_lock(bp) && 12601 !bnx2x_leader_reset(bp)) { 12602 netdev_info(bp->dev, 12603 "Recovered in open\n"); 12604 break; 12605 } 12606 12607 /* recovery has failed... */ 12608 bnx2x_set_power_state(bp, PCI_D3hot); 12609 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12610 12611 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12612 "If you still see this message after a few retries then power cycle is required.\n"); 12613 12614 return -EAGAIN; 12615 } while (0); 12616 } 12617 } 12618 12619 bp->recovery_state = BNX2X_RECOVERY_DONE; 12620 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12621 if (rc) 12622 return rc; 12623 12624 if (IS_PF(bp)) 12625 udp_tunnel_get_rx_info(dev); 12626 12627 return 0; 12628 } 12629 12630 /* called with rtnl_lock */ 12631 static int bnx2x_close(struct net_device *dev) 12632 { 12633 struct bnx2x *bp = netdev_priv(dev); 12634 12635 /* Unload the driver, release IRQs */ 12636 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12637 12638 return 0; 12639 } 12640 12641 struct bnx2x_mcast_list_elem_group 12642 { 12643 struct list_head mcast_group_link; 12644 struct bnx2x_mcast_list_elem mcast_elems[]; 12645 }; 12646 12647 #define MCAST_ELEMS_PER_PG \ 12648 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \ 12649 sizeof(struct bnx2x_mcast_list_elem)) 12650 12651 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list) 12652 { 12653 struct bnx2x_mcast_list_elem_group *current_mcast_group; 12654 12655 while (!list_empty(mcast_group_list)) { 12656 current_mcast_group = list_first_entry(mcast_group_list, 12657 struct bnx2x_mcast_list_elem_group, 12658 mcast_group_link); 12659 list_del(¤t_mcast_group->mcast_group_link); 12660 free_page((unsigned long)current_mcast_group); 12661 } 12662 } 12663 12664 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12665 struct bnx2x_mcast_ramrod_params *p, 12666 struct list_head *mcast_group_list) 12667 { 12668 struct bnx2x_mcast_list_elem *mc_mac; 12669 struct netdev_hw_addr *ha; 12670 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL; 12671 int mc_count = netdev_mc_count(bp->dev); 12672 int offset = 0; 12673 12674 INIT_LIST_HEAD(&p->mcast_list); 12675 netdev_for_each_mc_addr(ha, bp->dev) { 12676 if (!offset) { 12677 current_mcast_group = 12678 (struct bnx2x_mcast_list_elem_group *) 12679 __get_free_page(GFP_ATOMIC); 12680 if (!current_mcast_group) { 12681 bnx2x_free_mcast_macs_list(mcast_group_list); 12682 BNX2X_ERR("Failed to allocate mc MAC list\n"); 12683 return -ENOMEM; 12684 } 12685 list_add(¤t_mcast_group->mcast_group_link, 12686 mcast_group_list); 12687 } 12688 mc_mac = ¤t_mcast_group->mcast_elems[offset]; 12689 mc_mac->mac = bnx2x_mc_addr(ha); 12690 list_add_tail(&mc_mac->link, &p->mcast_list); 12691 offset++; 12692 if (offset == MCAST_ELEMS_PER_PG) 12693 offset = 0; 12694 } 12695 p->mcast_list_len = mc_count; 12696 return 0; 12697 } 12698 12699 /** 12700 * bnx2x_set_uc_list - configure a new unicast MACs list. 12701 * 12702 * @bp: driver handle 12703 * 12704 * We will use zero (0) as a MAC type for these MACs. 12705 */ 12706 static int bnx2x_set_uc_list(struct bnx2x *bp) 12707 { 12708 int rc; 12709 struct net_device *dev = bp->dev; 12710 struct netdev_hw_addr *ha; 12711 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12712 unsigned long ramrod_flags = 0; 12713 12714 /* First schedule a cleanup up of old configuration */ 12715 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12716 if (rc < 0) { 12717 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12718 return rc; 12719 } 12720 12721 netdev_for_each_uc_addr(ha, dev) { 12722 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12723 BNX2X_UC_LIST_MAC, &ramrod_flags); 12724 if (rc == -EEXIST) { 12725 DP(BNX2X_MSG_SP, 12726 "Failed to schedule ADD operations: %d\n", rc); 12727 /* do not treat adding same MAC as error */ 12728 rc = 0; 12729 12730 } else if (rc < 0) { 12731 12732 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12733 rc); 12734 return rc; 12735 } 12736 } 12737 12738 /* Execute the pending commands */ 12739 __set_bit(RAMROD_CONT, &ramrod_flags); 12740 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12741 BNX2X_UC_LIST_MAC, &ramrod_flags); 12742 } 12743 12744 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp) 12745 { 12746 LIST_HEAD(mcast_group_list); 12747 struct net_device *dev = bp->dev; 12748 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12749 int rc = 0; 12750 12751 rparam.mcast_obj = &bp->mcast_obj; 12752 12753 /* first, clear all configured multicast MACs */ 12754 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12755 if (rc < 0) { 12756 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12757 return rc; 12758 } 12759 12760 /* then, configure a new MACs list */ 12761 if (netdev_mc_count(dev)) { 12762 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12763 if (rc) 12764 return rc; 12765 12766 /* Now add the new MACs */ 12767 rc = bnx2x_config_mcast(bp, &rparam, 12768 BNX2X_MCAST_CMD_ADD); 12769 if (rc < 0) 12770 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12771 rc); 12772 12773 bnx2x_free_mcast_macs_list(&mcast_group_list); 12774 } 12775 12776 return rc; 12777 } 12778 12779 static int bnx2x_set_mc_list(struct bnx2x *bp) 12780 { 12781 LIST_HEAD(mcast_group_list); 12782 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12783 struct net_device *dev = bp->dev; 12784 int rc = 0; 12785 12786 /* On older adapters, we need to flush and re-add filters */ 12787 if (CHIP_IS_E1x(bp)) 12788 return bnx2x_set_mc_list_e1x(bp); 12789 12790 rparam.mcast_obj = &bp->mcast_obj; 12791 12792 if (netdev_mc_count(dev)) { 12793 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12794 if (rc) 12795 return rc; 12796 12797 /* Override the curently configured set of mc filters */ 12798 rc = bnx2x_config_mcast(bp, &rparam, 12799 BNX2X_MCAST_CMD_SET); 12800 if (rc < 0) 12801 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12802 rc); 12803 12804 bnx2x_free_mcast_macs_list(&mcast_group_list); 12805 } else { 12806 /* If no mc addresses are required, flush the configuration */ 12807 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12808 if (rc < 0) 12809 BNX2X_ERR("Failed to clear multicast configuration %d\n", 12810 rc); 12811 } 12812 12813 return rc; 12814 } 12815 12816 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12817 static void bnx2x_set_rx_mode(struct net_device *dev) 12818 { 12819 struct bnx2x *bp = netdev_priv(dev); 12820 12821 if (bp->state != BNX2X_STATE_OPEN) { 12822 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12823 return; 12824 } else { 12825 /* Schedule an SP task to handle rest of change */ 12826 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12827 NETIF_MSG_IFUP); 12828 } 12829 } 12830 12831 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12832 { 12833 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12834 12835 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12836 12837 netif_addr_lock_bh(bp->dev); 12838 12839 if (bp->dev->flags & IFF_PROMISC) { 12840 rx_mode = BNX2X_RX_MODE_PROMISC; 12841 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12842 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12843 CHIP_IS_E1(bp))) { 12844 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12845 } else { 12846 if (IS_PF(bp)) { 12847 /* some multicasts */ 12848 if (bnx2x_set_mc_list(bp) < 0) 12849 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12850 12851 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12852 netif_addr_unlock_bh(bp->dev); 12853 if (bnx2x_set_uc_list(bp) < 0) 12854 rx_mode = BNX2X_RX_MODE_PROMISC; 12855 netif_addr_lock_bh(bp->dev); 12856 } else { 12857 /* configuring mcast to a vf involves sleeping (when we 12858 * wait for the pf's response). 12859 */ 12860 bnx2x_schedule_sp_rtnl(bp, 12861 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12862 } 12863 } 12864 12865 bp->rx_mode = rx_mode; 12866 /* handle ISCSI SD mode */ 12867 if (IS_MF_ISCSI_ONLY(bp)) 12868 bp->rx_mode = BNX2X_RX_MODE_NONE; 12869 12870 /* Schedule the rx_mode command */ 12871 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12872 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12873 netif_addr_unlock_bh(bp->dev); 12874 return; 12875 } 12876 12877 if (IS_PF(bp)) { 12878 bnx2x_set_storm_rx_mode(bp); 12879 netif_addr_unlock_bh(bp->dev); 12880 } else { 12881 /* VF will need to request the PF to make this change, and so 12882 * the VF needs to release the bottom-half lock prior to the 12883 * request (as it will likely require sleep on the VF side) 12884 */ 12885 netif_addr_unlock_bh(bp->dev); 12886 bnx2x_vfpf_storm_rx_mode(bp); 12887 } 12888 } 12889 12890 /* called with rtnl_lock */ 12891 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12892 int devad, u16 addr) 12893 { 12894 struct bnx2x *bp = netdev_priv(netdev); 12895 u16 value; 12896 int rc; 12897 12898 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12899 prtad, devad, addr); 12900 12901 /* The HW expects different devad if CL22 is used */ 12902 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12903 12904 bnx2x_acquire_phy_lock(bp); 12905 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12906 bnx2x_release_phy_lock(bp); 12907 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12908 12909 if (!rc) 12910 rc = value; 12911 return rc; 12912 } 12913 12914 /* called with rtnl_lock */ 12915 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12916 u16 addr, u16 value) 12917 { 12918 struct bnx2x *bp = netdev_priv(netdev); 12919 int rc; 12920 12921 DP(NETIF_MSG_LINK, 12922 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12923 prtad, devad, addr, value); 12924 12925 /* The HW expects different devad if CL22 is used */ 12926 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12927 12928 bnx2x_acquire_phy_lock(bp); 12929 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12930 bnx2x_release_phy_lock(bp); 12931 return rc; 12932 } 12933 12934 /* called with rtnl_lock */ 12935 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12936 { 12937 struct bnx2x *bp = netdev_priv(dev); 12938 struct mii_ioctl_data *mdio = if_mii(ifr); 12939 12940 if (!netif_running(dev)) 12941 return -EAGAIN; 12942 12943 switch (cmd) { 12944 case SIOCSHWTSTAMP: 12945 return bnx2x_hwtstamp_ioctl(bp, ifr); 12946 default: 12947 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12948 mdio->phy_id, mdio->reg_num, mdio->val_in); 12949 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12950 } 12951 } 12952 12953 static int bnx2x_validate_addr(struct net_device *dev) 12954 { 12955 struct bnx2x *bp = netdev_priv(dev); 12956 12957 /* query the bulletin board for mac address configured by the PF */ 12958 if (IS_VF(bp)) 12959 bnx2x_sample_bulletin(bp); 12960 12961 if (!is_valid_ether_addr(dev->dev_addr)) { 12962 BNX2X_ERR("Non-valid Ethernet address\n"); 12963 return -EADDRNOTAVAIL; 12964 } 12965 return 0; 12966 } 12967 12968 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12969 struct netdev_phys_item_id *ppid) 12970 { 12971 struct bnx2x *bp = netdev_priv(netdev); 12972 12973 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12974 return -EOPNOTSUPP; 12975 12976 ppid->id_len = sizeof(bp->phys_port_id); 12977 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12978 12979 return 0; 12980 } 12981 12982 static netdev_features_t bnx2x_features_check(struct sk_buff *skb, 12983 struct net_device *dev, 12984 netdev_features_t features) 12985 { 12986 /* 12987 * A skb with gso_size + header length > 9700 will cause a 12988 * firmware panic. Drop GSO support. 12989 * 12990 * Eventually the upper layer should not pass these packets down. 12991 * 12992 * For speed, if the gso_size is <= 9000, assume there will 12993 * not be 700 bytes of headers and pass it through. Only do a 12994 * full (slow) validation if the gso_size is > 9000. 12995 * 12996 * (Due to the way SKB_BY_FRAGS works this will also do a full 12997 * validation in that case.) 12998 */ 12999 if (unlikely(skb_is_gso(skb) && 13000 (skb_shinfo(skb)->gso_size > 9000) && 13001 !skb_gso_validate_mac_len(skb, 9700))) 13002 features &= ~NETIF_F_GSO_MASK; 13003 13004 features = vlan_features_check(skb, features); 13005 return vxlan_features_check(skb, features); 13006 } 13007 13008 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add) 13009 { 13010 int rc; 13011 13012 if (IS_PF(bp)) { 13013 unsigned long ramrod_flags = 0; 13014 13015 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 13016 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj, 13017 add, &ramrod_flags); 13018 } else { 13019 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add); 13020 } 13021 13022 return rc; 13023 } 13024 13025 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp) 13026 { 13027 struct bnx2x_vlan_entry *vlan; 13028 int rc = 0; 13029 13030 /* Configure all non-configured entries */ 13031 list_for_each_entry(vlan, &bp->vlan_reg, link) { 13032 if (vlan->hw) 13033 continue; 13034 13035 if (bp->vlan_cnt >= bp->vlan_credit) 13036 return -ENOBUFS; 13037 13038 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 13039 if (rc) { 13040 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid); 13041 return rc; 13042 } 13043 13044 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid); 13045 vlan->hw = true; 13046 bp->vlan_cnt++; 13047 } 13048 13049 return 0; 13050 } 13051 13052 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode) 13053 { 13054 bool need_accept_any_vlan; 13055 13056 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp); 13057 13058 if (bp->accept_any_vlan != need_accept_any_vlan) { 13059 bp->accept_any_vlan = need_accept_any_vlan; 13060 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n", 13061 bp->accept_any_vlan ? "raised" : "cleared"); 13062 if (set_rx_mode) { 13063 if (IS_PF(bp)) 13064 bnx2x_set_rx_mode_inner(bp); 13065 else 13066 bnx2x_vfpf_storm_rx_mode(bp); 13067 } 13068 } 13069 } 13070 13071 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp) 13072 { 13073 /* Don't set rx mode here. Our caller will do it. */ 13074 bnx2x_vlan_configure(bp, false); 13075 13076 return 0; 13077 } 13078 13079 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 13080 { 13081 struct bnx2x *bp = netdev_priv(dev); 13082 struct bnx2x_vlan_entry *vlan; 13083 13084 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid); 13085 13086 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL); 13087 if (!vlan) 13088 return -ENOMEM; 13089 13090 vlan->vid = vid; 13091 vlan->hw = false; 13092 list_add_tail(&vlan->link, &bp->vlan_reg); 13093 13094 if (netif_running(dev)) 13095 bnx2x_vlan_configure(bp, true); 13096 13097 return 0; 13098 } 13099 13100 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 13101 { 13102 struct bnx2x *bp = netdev_priv(dev); 13103 struct bnx2x_vlan_entry *vlan; 13104 bool found = false; 13105 int rc = 0; 13106 13107 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid); 13108 13109 list_for_each_entry(vlan, &bp->vlan_reg, link) 13110 if (vlan->vid == vid) { 13111 found = true; 13112 break; 13113 } 13114 13115 if (!found) { 13116 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid); 13117 return -EINVAL; 13118 } 13119 13120 if (netif_running(dev) && vlan->hw) { 13121 rc = __bnx2x_vlan_configure_vid(bp, vid, false); 13122 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid); 13123 bp->vlan_cnt--; 13124 } 13125 13126 list_del(&vlan->link); 13127 kfree(vlan); 13128 13129 if (netif_running(dev)) 13130 bnx2x_vlan_configure(bp, true); 13131 13132 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc); 13133 13134 return rc; 13135 } 13136 13137 static const struct net_device_ops bnx2x_netdev_ops = { 13138 .ndo_open = bnx2x_open, 13139 .ndo_stop = bnx2x_close, 13140 .ndo_start_xmit = bnx2x_start_xmit, 13141 .ndo_select_queue = bnx2x_select_queue, 13142 .ndo_set_rx_mode = bnx2x_set_rx_mode, 13143 .ndo_set_mac_address = bnx2x_change_mac_addr, 13144 .ndo_validate_addr = bnx2x_validate_addr, 13145 .ndo_do_ioctl = bnx2x_ioctl, 13146 .ndo_change_mtu = bnx2x_change_mtu, 13147 .ndo_fix_features = bnx2x_fix_features, 13148 .ndo_set_features = bnx2x_set_features, 13149 .ndo_tx_timeout = bnx2x_tx_timeout, 13150 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid, 13151 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid, 13152 .ndo_setup_tc = __bnx2x_setup_tc, 13153 #ifdef CONFIG_BNX2X_SRIOV 13154 .ndo_set_vf_mac = bnx2x_set_vf_mac, 13155 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 13156 .ndo_get_vf_config = bnx2x_get_vf_config, 13157 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk, 13158 #endif 13159 #ifdef NETDEV_FCOE_WWNN 13160 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 13161 #endif 13162 13163 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 13164 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 13165 .ndo_features_check = bnx2x_features_check, 13166 .ndo_udp_tunnel_add = bnx2x_udp_tunnel_add, 13167 .ndo_udp_tunnel_del = bnx2x_udp_tunnel_del, 13168 }; 13169 13170 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 13171 { 13172 struct device *dev = &bp->pdev->dev; 13173 13174 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && 13175 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { 13176 dev_err(dev, "System does not support DMA, aborting\n"); 13177 return -EIO; 13178 } 13179 13180 return 0; 13181 } 13182 13183 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 13184 { 13185 if (bp->flags & AER_ENABLED) { 13186 pci_disable_pcie_error_reporting(bp->pdev); 13187 bp->flags &= ~AER_ENABLED; 13188 } 13189 } 13190 13191 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 13192 struct net_device *dev, unsigned long board_type) 13193 { 13194 int rc; 13195 u32 pci_cfg_dword; 13196 bool chip_is_e1x = (board_type == BCM57710 || 13197 board_type == BCM57711 || 13198 board_type == BCM57711E); 13199 13200 SET_NETDEV_DEV(dev, &pdev->dev); 13201 13202 bp->dev = dev; 13203 bp->pdev = pdev; 13204 13205 rc = pci_enable_device(pdev); 13206 if (rc) { 13207 dev_err(&bp->pdev->dev, 13208 "Cannot enable PCI device, aborting\n"); 13209 goto err_out; 13210 } 13211 13212 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13213 dev_err(&bp->pdev->dev, 13214 "Cannot find PCI device base address, aborting\n"); 13215 rc = -ENODEV; 13216 goto err_out_disable; 13217 } 13218 13219 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 13220 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 13221 rc = -ENODEV; 13222 goto err_out_disable; 13223 } 13224 13225 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 13226 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 13227 PCICFG_REVESION_ID_ERROR_VAL) { 13228 pr_err("PCI device error, probably due to fan failure, aborting\n"); 13229 rc = -ENODEV; 13230 goto err_out_disable; 13231 } 13232 13233 if (atomic_read(&pdev->enable_cnt) == 1) { 13234 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13235 if (rc) { 13236 dev_err(&bp->pdev->dev, 13237 "Cannot obtain PCI resources, aborting\n"); 13238 goto err_out_disable; 13239 } 13240 13241 pci_set_master(pdev); 13242 pci_save_state(pdev); 13243 } 13244 13245 if (IS_PF(bp)) { 13246 if (!pdev->pm_cap) { 13247 dev_err(&bp->pdev->dev, 13248 "Cannot find power management capability, aborting\n"); 13249 rc = -EIO; 13250 goto err_out_release; 13251 } 13252 } 13253 13254 if (!pci_is_pcie(pdev)) { 13255 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 13256 rc = -EIO; 13257 goto err_out_release; 13258 } 13259 13260 rc = bnx2x_set_coherency_mask(bp); 13261 if (rc) 13262 goto err_out_release; 13263 13264 dev->mem_start = pci_resource_start(pdev, 0); 13265 dev->base_addr = dev->mem_start; 13266 dev->mem_end = pci_resource_end(pdev, 0); 13267 13268 dev->irq = pdev->irq; 13269 13270 bp->regview = pci_ioremap_bar(pdev, 0); 13271 if (!bp->regview) { 13272 dev_err(&bp->pdev->dev, 13273 "Cannot map register space, aborting\n"); 13274 rc = -ENOMEM; 13275 goto err_out_release; 13276 } 13277 13278 /* In E1/E1H use pci device function given by kernel. 13279 * In E2/E3 read physical function from ME register since these chips 13280 * support Physical Device Assignment where kernel BDF maybe arbitrary 13281 * (depending on hypervisor). 13282 */ 13283 if (chip_is_e1x) { 13284 bp->pf_num = PCI_FUNC(pdev->devfn); 13285 } else { 13286 /* chip is E2/3*/ 13287 pci_read_config_dword(bp->pdev, 13288 PCICFG_ME_REGISTER, &pci_cfg_dword); 13289 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 13290 ME_REG_ABS_PF_NUM_SHIFT); 13291 } 13292 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 13293 13294 /* clean indirect addresses */ 13295 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 13296 PCICFG_VENDOR_ID_OFFSET); 13297 13298 /* Set PCIe reset type to fundamental for EEH recovery */ 13299 pdev->needs_freset = 1; 13300 13301 /* AER (Advanced Error reporting) configuration */ 13302 rc = pci_enable_pcie_error_reporting(pdev); 13303 if (!rc) 13304 bp->flags |= AER_ENABLED; 13305 else 13306 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 13307 13308 /* 13309 * Clean the following indirect addresses for all functions since it 13310 * is not used by the driver. 13311 */ 13312 if (IS_PF(bp)) { 13313 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 13314 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 13315 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 13316 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 13317 13318 if (chip_is_e1x) { 13319 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 13320 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 13321 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 13322 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 13323 } 13324 13325 /* Enable internal target-read (in case we are probed after PF 13326 * FLR). Must be done prior to any BAR read access. Only for 13327 * 57712 and up 13328 */ 13329 if (!chip_is_e1x) 13330 REG_WR(bp, 13331 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13332 } 13333 13334 dev->watchdog_timeo = TX_TIMEOUT; 13335 13336 dev->netdev_ops = &bnx2x_netdev_ops; 13337 bnx2x_set_ethtool_ops(bp, dev); 13338 13339 dev->priv_flags |= IFF_UNICAST_FLT; 13340 13341 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13342 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13343 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW | 13344 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 13345 if (!chip_is_e1x) { 13346 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13347 NETIF_F_GSO_IPXIP4 | 13348 NETIF_F_GSO_UDP_TUNNEL | 13349 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13350 NETIF_F_GSO_PARTIAL; 13351 13352 dev->hw_enc_features = 13353 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13354 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13355 NETIF_F_GSO_IPXIP4 | 13356 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13357 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | 13358 NETIF_F_GSO_PARTIAL; 13359 13360 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM | 13361 NETIF_F_GSO_UDP_TUNNEL_CSUM; 13362 } 13363 13364 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13365 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 13366 13367 if (IS_PF(bp)) { 13368 if (chip_is_e1x) 13369 bp->accept_any_vlan = true; 13370 else 13371 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13372 } 13373 /* For VF we'll know whether to enable VLAN filtering after 13374 * getting a response to CHANNEL_TLV_ACQUIRE from PF. 13375 */ 13376 13377 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 13378 dev->features |= NETIF_F_HIGHDMA; 13379 if (dev->features & NETIF_F_LRO) 13380 dev->features &= ~NETIF_F_GRO_HW; 13381 13382 /* Add Loopback capability to the device */ 13383 dev->hw_features |= NETIF_F_LOOPBACK; 13384 13385 #ifdef BCM_DCBNL 13386 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 13387 #endif 13388 13389 /* MTU range, 46 - 9600 */ 13390 dev->min_mtu = ETH_MIN_PACKET_SIZE; 13391 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE; 13392 13393 /* get_port_hwinfo() will set prtad and mmds properly */ 13394 bp->mdio.prtad = MDIO_PRTAD_NONE; 13395 bp->mdio.mmds = 0; 13396 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 13397 bp->mdio.dev = dev; 13398 bp->mdio.mdio_read = bnx2x_mdio_read; 13399 bp->mdio.mdio_write = bnx2x_mdio_write; 13400 13401 return 0; 13402 13403 err_out_release: 13404 if (atomic_read(&pdev->enable_cnt) == 1) 13405 pci_release_regions(pdev); 13406 13407 err_out_disable: 13408 pci_disable_device(pdev); 13409 13410 err_out: 13411 return rc; 13412 } 13413 13414 static int bnx2x_check_firmware(struct bnx2x *bp) 13415 { 13416 const struct firmware *firmware = bp->firmware; 13417 struct bnx2x_fw_file_hdr *fw_hdr; 13418 struct bnx2x_fw_file_section *sections; 13419 u32 offset, len, num_ops; 13420 __be16 *ops_offsets; 13421 int i; 13422 const u8 *fw_ver; 13423 13424 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 13425 BNX2X_ERR("Wrong FW size\n"); 13426 return -EINVAL; 13427 } 13428 13429 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 13430 sections = (struct bnx2x_fw_file_section *)fw_hdr; 13431 13432 /* Make sure none of the offsets and sizes make us read beyond 13433 * the end of the firmware data */ 13434 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 13435 offset = be32_to_cpu(sections[i].offset); 13436 len = be32_to_cpu(sections[i].len); 13437 if (offset + len > firmware->size) { 13438 BNX2X_ERR("Section %d length is out of bounds\n", i); 13439 return -EINVAL; 13440 } 13441 } 13442 13443 /* Likewise for the init_ops offsets */ 13444 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 13445 ops_offsets = (__force __be16 *)(firmware->data + offset); 13446 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 13447 13448 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 13449 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 13450 BNX2X_ERR("Section offset %d is out of bounds\n", i); 13451 return -EINVAL; 13452 } 13453 } 13454 13455 /* Check FW version */ 13456 offset = be32_to_cpu(fw_hdr->fw_version.offset); 13457 fw_ver = firmware->data + offset; 13458 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 13459 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 13460 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 13461 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 13462 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 13463 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 13464 BCM_5710_FW_MAJOR_VERSION, 13465 BCM_5710_FW_MINOR_VERSION, 13466 BCM_5710_FW_REVISION_VERSION, 13467 BCM_5710_FW_ENGINEERING_VERSION); 13468 return -EINVAL; 13469 } 13470 13471 return 0; 13472 } 13473 13474 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13475 { 13476 const __be32 *source = (const __be32 *)_source; 13477 u32 *target = (u32 *)_target; 13478 u32 i; 13479 13480 for (i = 0; i < n/4; i++) 13481 target[i] = be32_to_cpu(source[i]); 13482 } 13483 13484 /* 13485 Ops array is stored in the following format: 13486 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 13487 */ 13488 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 13489 { 13490 const __be32 *source = (const __be32 *)_source; 13491 struct raw_op *target = (struct raw_op *)_target; 13492 u32 i, j, tmp; 13493 13494 for (i = 0, j = 0; i < n/8; i++, j += 2) { 13495 tmp = be32_to_cpu(source[j]); 13496 target[i].op = (tmp >> 24) & 0xff; 13497 target[i].offset = tmp & 0xffffff; 13498 target[i].raw_data = be32_to_cpu(source[j + 1]); 13499 } 13500 } 13501 13502 /* IRO array is stored in the following format: 13503 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 13504 */ 13505 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 13506 { 13507 const __be32 *source = (const __be32 *)_source; 13508 struct iro *target = (struct iro *)_target; 13509 u32 i, j, tmp; 13510 13511 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 13512 target[i].base = be32_to_cpu(source[j]); 13513 j++; 13514 tmp = be32_to_cpu(source[j]); 13515 target[i].m1 = (tmp >> 16) & 0xffff; 13516 target[i].m2 = tmp & 0xffff; 13517 j++; 13518 tmp = be32_to_cpu(source[j]); 13519 target[i].m3 = (tmp >> 16) & 0xffff; 13520 target[i].size = tmp & 0xffff; 13521 j++; 13522 } 13523 } 13524 13525 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13526 { 13527 const __be16 *source = (const __be16 *)_source; 13528 u16 *target = (u16 *)_target; 13529 u32 i; 13530 13531 for (i = 0; i < n/2; i++) 13532 target[i] = be16_to_cpu(source[i]); 13533 } 13534 13535 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 13536 do { \ 13537 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 13538 bp->arr = kmalloc(len, GFP_KERNEL); \ 13539 if (!bp->arr) \ 13540 goto lbl; \ 13541 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 13542 (u8 *)bp->arr, len); \ 13543 } while (0) 13544 13545 static int bnx2x_init_firmware(struct bnx2x *bp) 13546 { 13547 const char *fw_file_name; 13548 struct bnx2x_fw_file_hdr *fw_hdr; 13549 int rc; 13550 13551 if (bp->firmware) 13552 return 0; 13553 13554 if (CHIP_IS_E1(bp)) 13555 fw_file_name = FW_FILE_NAME_E1; 13556 else if (CHIP_IS_E1H(bp)) 13557 fw_file_name = FW_FILE_NAME_E1H; 13558 else if (!CHIP_IS_E1x(bp)) 13559 fw_file_name = FW_FILE_NAME_E2; 13560 else { 13561 BNX2X_ERR("Unsupported chip revision\n"); 13562 return -EINVAL; 13563 } 13564 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 13565 13566 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 13567 if (rc) { 13568 BNX2X_ERR("Can't load firmware file %s\n", 13569 fw_file_name); 13570 goto request_firmware_exit; 13571 } 13572 13573 rc = bnx2x_check_firmware(bp); 13574 if (rc) { 13575 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 13576 goto request_firmware_exit; 13577 } 13578 13579 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 13580 13581 /* Initialize the pointers to the init arrays */ 13582 /* Blob */ 13583 rc = -ENOMEM; 13584 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 13585 13586 /* Opcodes */ 13587 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 13588 13589 /* Offsets */ 13590 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 13591 be16_to_cpu_n); 13592 13593 /* STORMs firmware */ 13594 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13595 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 13596 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 13597 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 13598 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13599 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 13600 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 13601 be32_to_cpu(fw_hdr->usem_pram_data.offset); 13602 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13603 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 13604 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 13605 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 13606 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13607 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 13608 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 13609 be32_to_cpu(fw_hdr->csem_pram_data.offset); 13610 /* IRO */ 13611 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13612 13613 return 0; 13614 13615 iro_alloc_err: 13616 kfree(bp->init_ops_offsets); 13617 init_offsets_alloc_err: 13618 kfree(bp->init_ops); 13619 init_ops_alloc_err: 13620 kfree(bp->init_data); 13621 request_firmware_exit: 13622 release_firmware(bp->firmware); 13623 bp->firmware = NULL; 13624 13625 return rc; 13626 } 13627 13628 static void bnx2x_release_firmware(struct bnx2x *bp) 13629 { 13630 kfree(bp->init_ops_offsets); 13631 kfree(bp->init_ops); 13632 kfree(bp->init_data); 13633 release_firmware(bp->firmware); 13634 bp->firmware = NULL; 13635 } 13636 13637 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13638 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13639 .init_hw_cmn = bnx2x_init_hw_common, 13640 .init_hw_port = bnx2x_init_hw_port, 13641 .init_hw_func = bnx2x_init_hw_func, 13642 13643 .reset_hw_cmn = bnx2x_reset_common, 13644 .reset_hw_port = bnx2x_reset_port, 13645 .reset_hw_func = bnx2x_reset_func, 13646 13647 .gunzip_init = bnx2x_gunzip_init, 13648 .gunzip_end = bnx2x_gunzip_end, 13649 13650 .init_fw = bnx2x_init_firmware, 13651 .release_fw = bnx2x_release_firmware, 13652 }; 13653 13654 void bnx2x__init_func_obj(struct bnx2x *bp) 13655 { 13656 /* Prepare DMAE related driver resources */ 13657 bnx2x_setup_dmae(bp); 13658 13659 bnx2x_init_func_obj(bp, &bp->func_obj, 13660 bnx2x_sp(bp, func_rdata), 13661 bnx2x_sp_mapping(bp, func_rdata), 13662 bnx2x_sp(bp, func_afex_rdata), 13663 bnx2x_sp_mapping(bp, func_afex_rdata), 13664 &bnx2x_func_sp_drv); 13665 } 13666 13667 /* must be called after sriov-enable */ 13668 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13669 { 13670 int cid_count = BNX2X_L2_MAX_CID(bp); 13671 13672 if (IS_SRIOV(bp)) 13673 cid_count += BNX2X_VF_CIDS; 13674 13675 if (CNIC_SUPPORT(bp)) 13676 cid_count += CNIC_CID_MAX; 13677 13678 return roundup(cid_count, QM_CID_ROUND); 13679 } 13680 13681 /** 13682 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 13683 * 13684 * @dev: pci device 13685 * 13686 */ 13687 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13688 { 13689 int index; 13690 u16 control = 0; 13691 13692 /* 13693 * If MSI-X is not supported - return number of SBs needed to support 13694 * one fast path queue: one FP queue + SB for CNIC 13695 */ 13696 if (!pdev->msix_cap) { 13697 dev_info(&pdev->dev, "no msix capability found\n"); 13698 return 1 + cnic_cnt; 13699 } 13700 dev_info(&pdev->dev, "msix capability found\n"); 13701 13702 /* 13703 * The value in the PCI configuration space is the index of the last 13704 * entry, namely one less than the actual size of the table, which is 13705 * exactly what we want to return from this function: number of all SBs 13706 * without the default SB. 13707 * For VFs there is no default SB, then we return (index+1). 13708 */ 13709 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13710 13711 index = control & PCI_MSIX_FLAGS_QSIZE; 13712 13713 return index; 13714 } 13715 13716 static int set_max_cos_est(int chip_id) 13717 { 13718 switch (chip_id) { 13719 case BCM57710: 13720 case BCM57711: 13721 case BCM57711E: 13722 return BNX2X_MULTI_TX_COS_E1X; 13723 case BCM57712: 13724 case BCM57712_MF: 13725 return BNX2X_MULTI_TX_COS_E2_E3A0; 13726 case BCM57800: 13727 case BCM57800_MF: 13728 case BCM57810: 13729 case BCM57810_MF: 13730 case BCM57840_4_10: 13731 case BCM57840_2_20: 13732 case BCM57840_O: 13733 case BCM57840_MFO: 13734 case BCM57840_MF: 13735 case BCM57811: 13736 case BCM57811_MF: 13737 return BNX2X_MULTI_TX_COS_E3B0; 13738 case BCM57712_VF: 13739 case BCM57800_VF: 13740 case BCM57810_VF: 13741 case BCM57840_VF: 13742 case BCM57811_VF: 13743 return 1; 13744 default: 13745 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13746 return -ENODEV; 13747 } 13748 } 13749 13750 static int set_is_vf(int chip_id) 13751 { 13752 switch (chip_id) { 13753 case BCM57712_VF: 13754 case BCM57800_VF: 13755 case BCM57810_VF: 13756 case BCM57840_VF: 13757 case BCM57811_VF: 13758 return true; 13759 default: 13760 return false; 13761 } 13762 } 13763 13764 /* nig_tsgen registers relative address */ 13765 #define tsgen_ctrl 0x0 13766 #define tsgen_freecount 0x10 13767 #define tsgen_synctime_t0 0x20 13768 #define tsgen_offset_t0 0x28 13769 #define tsgen_drift_t0 0x30 13770 #define tsgen_synctime_t1 0x58 13771 #define tsgen_offset_t1 0x60 13772 #define tsgen_drift_t1 0x68 13773 13774 /* FW workaround for setting drift */ 13775 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13776 int best_val, int best_period) 13777 { 13778 struct bnx2x_func_state_params func_params = {NULL}; 13779 struct bnx2x_func_set_timesync_params *set_timesync_params = 13780 &func_params.params.set_timesync; 13781 13782 /* Prepare parameters for function state transitions */ 13783 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13784 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13785 13786 func_params.f_obj = &bp->func_obj; 13787 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13788 13789 /* Function parameters */ 13790 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13791 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13792 set_timesync_params->add_sub_drift_adjust_value = 13793 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13794 set_timesync_params->drift_adjust_value = best_val; 13795 set_timesync_params->drift_adjust_period = best_period; 13796 13797 return bnx2x_func_state_change(bp, &func_params); 13798 } 13799 13800 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13801 { 13802 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13803 int rc; 13804 int drift_dir = 1; 13805 int val, period, period1, period2, dif, dif1, dif2; 13806 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13807 13808 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13809 13810 if (!netif_running(bp->dev)) { 13811 DP(BNX2X_MSG_PTP, 13812 "PTP adjfreq called while the interface is down\n"); 13813 return -ENETDOWN; 13814 } 13815 13816 if (ppb < 0) { 13817 ppb = -ppb; 13818 drift_dir = 0; 13819 } 13820 13821 if (ppb == 0) { 13822 best_val = 1; 13823 best_period = 0x1FFFFFF; 13824 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13825 best_val = 31; 13826 best_period = 1; 13827 } else { 13828 /* Changed not to allow val = 8, 16, 24 as these values 13829 * are not supported in workaround. 13830 */ 13831 for (val = 0; val <= 31; val++) { 13832 if ((val & 0x7) == 0) 13833 continue; 13834 period1 = val * 1000000 / ppb; 13835 period2 = period1 + 1; 13836 if (period1 != 0) 13837 dif1 = ppb - (val * 1000000 / period1); 13838 else 13839 dif1 = BNX2X_MAX_PHC_DRIFT; 13840 if (dif1 < 0) 13841 dif1 = -dif1; 13842 dif2 = ppb - (val * 1000000 / period2); 13843 if (dif2 < 0) 13844 dif2 = -dif2; 13845 dif = (dif1 < dif2) ? dif1 : dif2; 13846 period = (dif1 < dif2) ? period1 : period2; 13847 if (dif < best_dif) { 13848 best_dif = dif; 13849 best_val = val; 13850 best_period = period; 13851 } 13852 } 13853 } 13854 13855 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13856 best_period); 13857 if (rc) { 13858 BNX2X_ERR("Failed to set drift\n"); 13859 return -EFAULT; 13860 } 13861 13862 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val, 13863 best_period); 13864 13865 return 0; 13866 } 13867 13868 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13869 { 13870 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13871 13872 if (!netif_running(bp->dev)) { 13873 DP(BNX2X_MSG_PTP, 13874 "PTP adjtime called while the interface is down\n"); 13875 return -ENETDOWN; 13876 } 13877 13878 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13879 13880 timecounter_adjtime(&bp->timecounter, delta); 13881 13882 return 0; 13883 } 13884 13885 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 13886 { 13887 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13888 u64 ns; 13889 13890 if (!netif_running(bp->dev)) { 13891 DP(BNX2X_MSG_PTP, 13892 "PTP gettime called while the interface is down\n"); 13893 return -ENETDOWN; 13894 } 13895 13896 ns = timecounter_read(&bp->timecounter); 13897 13898 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13899 13900 *ts = ns_to_timespec64(ns); 13901 13902 return 0; 13903 } 13904 13905 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13906 const struct timespec64 *ts) 13907 { 13908 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13909 u64 ns; 13910 13911 if (!netif_running(bp->dev)) { 13912 DP(BNX2X_MSG_PTP, 13913 "PTP settime called while the interface is down\n"); 13914 return -ENETDOWN; 13915 } 13916 13917 ns = timespec64_to_ns(ts); 13918 13919 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13920 13921 /* Re-init the timecounter */ 13922 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13923 13924 return 0; 13925 } 13926 13927 /* Enable (or disable) ancillary features of the phc subsystem */ 13928 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13929 struct ptp_clock_request *rq, int on) 13930 { 13931 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13932 13933 BNX2X_ERR("PHC ancillary features are not supported\n"); 13934 return -ENOTSUPP; 13935 } 13936 13937 void bnx2x_register_phc(struct bnx2x *bp) 13938 { 13939 /* Fill the ptp_clock_info struct and register PTP clock*/ 13940 bp->ptp_clock_info.owner = THIS_MODULE; 13941 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13942 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13943 bp->ptp_clock_info.n_alarm = 0; 13944 bp->ptp_clock_info.n_ext_ts = 0; 13945 bp->ptp_clock_info.n_per_out = 0; 13946 bp->ptp_clock_info.pps = 0; 13947 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13948 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13949 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime; 13950 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime; 13951 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13952 13953 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13954 if (IS_ERR(bp->ptp_clock)) { 13955 bp->ptp_clock = NULL; 13956 BNX2X_ERR("PTP clock registration failed\n"); 13957 } 13958 } 13959 13960 static int bnx2x_init_one(struct pci_dev *pdev, 13961 const struct pci_device_id *ent) 13962 { 13963 struct net_device *dev = NULL; 13964 struct bnx2x *bp; 13965 int rc, max_non_def_sbs; 13966 int rx_count, tx_count, rss_count, doorbell_size; 13967 int max_cos_est; 13968 bool is_vf; 13969 int cnic_cnt; 13970 13971 /* Management FW 'remembers' living interfaces. Allow it some time 13972 * to forget previously living interfaces, allowing a proper re-load. 13973 */ 13974 if (is_kdump_kernel()) { 13975 ktime_t now = ktime_get_boottime(); 13976 ktime_t fw_ready_time = ktime_set(5, 0); 13977 13978 if (ktime_before(now, fw_ready_time)) 13979 msleep(ktime_ms_delta(fw_ready_time, now)); 13980 } 13981 13982 /* An estimated maximum supported CoS number according to the chip 13983 * version. 13984 * We will try to roughly estimate the maximum number of CoSes this chip 13985 * may support in order to minimize the memory allocated for Tx 13986 * netdev_queue's. This number will be accurately calculated during the 13987 * initialization of bp->max_cos based on the chip versions AND chip 13988 * revision in the bnx2x_init_bp(). 13989 */ 13990 max_cos_est = set_max_cos_est(ent->driver_data); 13991 if (max_cos_est < 0) 13992 return max_cos_est; 13993 is_vf = set_is_vf(ent->driver_data); 13994 cnic_cnt = is_vf ? 0 : 1; 13995 13996 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13997 13998 /* add another SB for VF as it has no default SB */ 13999 max_non_def_sbs += is_vf ? 1 : 0; 14000 14001 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 14002 rss_count = max_non_def_sbs - cnic_cnt; 14003 14004 if (rss_count < 1) 14005 return -EINVAL; 14006 14007 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 14008 rx_count = rss_count + cnic_cnt; 14009 14010 /* Maximum number of netdev Tx queues: 14011 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 14012 */ 14013 tx_count = rss_count * max_cos_est + cnic_cnt; 14014 14015 /* dev zeroed in init_etherdev */ 14016 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 14017 if (!dev) 14018 return -ENOMEM; 14019 14020 bp = netdev_priv(dev); 14021 14022 bp->flags = 0; 14023 if (is_vf) 14024 bp->flags |= IS_VF_FLAG; 14025 14026 bp->igu_sb_cnt = max_non_def_sbs; 14027 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 14028 bp->msg_enable = debug; 14029 bp->cnic_support = cnic_cnt; 14030 bp->cnic_probe = bnx2x_cnic_probe; 14031 14032 pci_set_drvdata(pdev, dev); 14033 14034 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 14035 if (rc < 0) { 14036 free_netdev(dev); 14037 return rc; 14038 } 14039 14040 BNX2X_DEV_INFO("This is a %s function\n", 14041 IS_PF(bp) ? "physical" : "virtual"); 14042 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 14043 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 14044 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 14045 tx_count, rx_count); 14046 14047 rc = bnx2x_init_bp(bp); 14048 if (rc) 14049 goto init_one_exit; 14050 14051 /* Map doorbells here as we need the real value of bp->max_cos which 14052 * is initialized in bnx2x_init_bp() to determine the number of 14053 * l2 connections. 14054 */ 14055 if (IS_VF(bp)) { 14056 bp->doorbells = bnx2x_vf_doorbells(bp); 14057 rc = bnx2x_vf_pci_alloc(bp); 14058 if (rc) 14059 goto init_one_freemem; 14060 } else { 14061 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 14062 if (doorbell_size > pci_resource_len(pdev, 2)) { 14063 dev_err(&bp->pdev->dev, 14064 "Cannot map doorbells, bar size too small, aborting\n"); 14065 rc = -ENOMEM; 14066 goto init_one_freemem; 14067 } 14068 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), 14069 doorbell_size); 14070 } 14071 if (!bp->doorbells) { 14072 dev_err(&bp->pdev->dev, 14073 "Cannot map doorbell space, aborting\n"); 14074 rc = -ENOMEM; 14075 goto init_one_freemem; 14076 } 14077 14078 if (IS_VF(bp)) { 14079 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 14080 if (rc) 14081 goto init_one_freemem; 14082 14083 #ifdef CONFIG_BNX2X_SRIOV 14084 /* VF with OLD Hypervisor or old PF do not support filtering */ 14085 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) { 14086 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14087 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14088 } 14089 #endif 14090 } 14091 14092 /* Enable SRIOV if capability found in configuration space */ 14093 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 14094 if (rc) 14095 goto init_one_freemem; 14096 14097 /* calc qm_cid_count */ 14098 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 14099 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 14100 14101 /* disable FCOE L2 queue for E1x*/ 14102 if (CHIP_IS_E1x(bp)) 14103 bp->flags |= NO_FCOE_FLAG; 14104 14105 /* Set bp->num_queues for MSI-X mode*/ 14106 bnx2x_set_num_queues(bp); 14107 14108 /* Configure interrupt mode: try to enable MSI-X/MSI if 14109 * needed. 14110 */ 14111 rc = bnx2x_set_int_mode(bp); 14112 if (rc) { 14113 dev_err(&pdev->dev, "Cannot set interrupts\n"); 14114 goto init_one_freemem; 14115 } 14116 BNX2X_DEV_INFO("set interrupts successfully\n"); 14117 14118 /* register the net device */ 14119 rc = register_netdev(dev); 14120 if (rc) { 14121 dev_err(&pdev->dev, "Cannot register net device\n"); 14122 goto init_one_freemem; 14123 } 14124 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 14125 14126 if (!NO_FCOE(bp)) { 14127 /* Add storage MAC address */ 14128 rtnl_lock(); 14129 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14130 rtnl_unlock(); 14131 } 14132 BNX2X_DEV_INFO( 14133 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n", 14134 board_info[ent->driver_data].name, 14135 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 14136 dev->base_addr, bp->pdev->irq, dev->dev_addr); 14137 pcie_print_link_status(bp->pdev); 14138 14139 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 14140 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 14141 14142 return 0; 14143 14144 init_one_freemem: 14145 bnx2x_free_mem_bp(bp); 14146 14147 init_one_exit: 14148 bnx2x_disable_pcie_error_reporting(bp); 14149 14150 if (bp->regview) 14151 iounmap(bp->regview); 14152 14153 if (IS_PF(bp) && bp->doorbells) 14154 iounmap(bp->doorbells); 14155 14156 free_netdev(dev); 14157 14158 if (atomic_read(&pdev->enable_cnt) == 1) 14159 pci_release_regions(pdev); 14160 14161 pci_disable_device(pdev); 14162 14163 return rc; 14164 } 14165 14166 static void __bnx2x_remove(struct pci_dev *pdev, 14167 struct net_device *dev, 14168 struct bnx2x *bp, 14169 bool remove_netdev) 14170 { 14171 /* Delete storage MAC address */ 14172 if (!NO_FCOE(bp)) { 14173 rtnl_lock(); 14174 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14175 rtnl_unlock(); 14176 } 14177 14178 #ifdef BCM_DCBNL 14179 /* Delete app tlvs from dcbnl */ 14180 bnx2x_dcbnl_update_applist(bp, true); 14181 #endif 14182 14183 if (IS_PF(bp) && 14184 !BP_NOMCP(bp) && 14185 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 14186 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 14187 14188 /* Close the interface - either directly or implicitly */ 14189 if (remove_netdev) { 14190 unregister_netdev(dev); 14191 } else { 14192 rtnl_lock(); 14193 dev_close(dev); 14194 rtnl_unlock(); 14195 } 14196 14197 bnx2x_iov_remove_one(bp); 14198 14199 /* Power on: we can't let PCI layer write to us while we are in D3 */ 14200 if (IS_PF(bp)) { 14201 bnx2x_set_power_state(bp, PCI_D0); 14202 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED); 14203 14204 /* Set endianity registers to reset values in case next driver 14205 * boots in different endianty environment. 14206 */ 14207 bnx2x_reset_endianity(bp); 14208 } 14209 14210 /* Disable MSI/MSI-X */ 14211 bnx2x_disable_msi(bp); 14212 14213 /* Power off */ 14214 if (IS_PF(bp)) 14215 bnx2x_set_power_state(bp, PCI_D3hot); 14216 14217 /* Make sure RESET task is not scheduled before continuing */ 14218 cancel_delayed_work_sync(&bp->sp_rtnl_task); 14219 14220 /* send message via vfpf channel to release the resources of this vf */ 14221 if (IS_VF(bp)) 14222 bnx2x_vfpf_release(bp); 14223 14224 /* Assumes no further PCIe PM changes will occur */ 14225 if (system_state == SYSTEM_POWER_OFF) { 14226 pci_wake_from_d3(pdev, bp->wol); 14227 pci_set_power_state(pdev, PCI_D3hot); 14228 } 14229 14230 bnx2x_disable_pcie_error_reporting(bp); 14231 if (remove_netdev) { 14232 if (bp->regview) 14233 iounmap(bp->regview); 14234 14235 /* For vfs, doorbells are part of the regview and were unmapped 14236 * along with it. FW is only loaded by PF. 14237 */ 14238 if (IS_PF(bp)) { 14239 if (bp->doorbells) 14240 iounmap(bp->doorbells); 14241 14242 bnx2x_release_firmware(bp); 14243 } else { 14244 bnx2x_vf_pci_dealloc(bp); 14245 } 14246 bnx2x_free_mem_bp(bp); 14247 14248 free_netdev(dev); 14249 14250 if (atomic_read(&pdev->enable_cnt) == 1) 14251 pci_release_regions(pdev); 14252 14253 pci_disable_device(pdev); 14254 } 14255 } 14256 14257 static void bnx2x_remove_one(struct pci_dev *pdev) 14258 { 14259 struct net_device *dev = pci_get_drvdata(pdev); 14260 struct bnx2x *bp; 14261 14262 if (!dev) { 14263 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 14264 return; 14265 } 14266 bp = netdev_priv(dev); 14267 14268 __bnx2x_remove(pdev, dev, bp, true); 14269 } 14270 14271 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 14272 { 14273 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 14274 14275 bp->rx_mode = BNX2X_RX_MODE_NONE; 14276 14277 if (CNIC_LOADED(bp)) 14278 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 14279 14280 /* Stop Tx */ 14281 bnx2x_tx_disable(bp); 14282 /* Delete all NAPI objects */ 14283 bnx2x_del_all_napi(bp); 14284 if (CNIC_LOADED(bp)) 14285 bnx2x_del_all_napi_cnic(bp); 14286 netdev_reset_tc(bp->dev); 14287 14288 del_timer_sync(&bp->timer); 14289 cancel_delayed_work_sync(&bp->sp_task); 14290 cancel_delayed_work_sync(&bp->period_task); 14291 14292 if (!down_timeout(&bp->stats_lock, HZ / 10)) { 14293 bp->stats_state = STATS_STATE_DISABLED; 14294 up(&bp->stats_lock); 14295 } 14296 14297 bnx2x_save_statistics(bp); 14298 14299 netif_carrier_off(bp->dev); 14300 14301 return 0; 14302 } 14303 14304 /** 14305 * bnx2x_io_error_detected - called when PCI error is detected 14306 * @pdev: Pointer to PCI device 14307 * @state: The current pci connection state 14308 * 14309 * This function is called after a PCI bus error affecting 14310 * this device has been detected. 14311 */ 14312 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 14313 pci_channel_state_t state) 14314 { 14315 struct net_device *dev = pci_get_drvdata(pdev); 14316 struct bnx2x *bp = netdev_priv(dev); 14317 14318 rtnl_lock(); 14319 14320 BNX2X_ERR("IO error detected\n"); 14321 14322 netif_device_detach(dev); 14323 14324 if (state == pci_channel_io_perm_failure) { 14325 rtnl_unlock(); 14326 return PCI_ERS_RESULT_DISCONNECT; 14327 } 14328 14329 if (netif_running(dev)) 14330 bnx2x_eeh_nic_unload(bp); 14331 14332 bnx2x_prev_path_mark_eeh(bp); 14333 14334 pci_disable_device(pdev); 14335 14336 rtnl_unlock(); 14337 14338 /* Request a slot reset */ 14339 return PCI_ERS_RESULT_NEED_RESET; 14340 } 14341 14342 /** 14343 * bnx2x_io_slot_reset - called after the PCI bus has been reset 14344 * @pdev: Pointer to PCI device 14345 * 14346 * Restart the card from scratch, as if from a cold-boot. 14347 */ 14348 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 14349 { 14350 struct net_device *dev = pci_get_drvdata(pdev); 14351 struct bnx2x *bp = netdev_priv(dev); 14352 int i; 14353 14354 rtnl_lock(); 14355 BNX2X_ERR("IO slot reset initializing...\n"); 14356 if (pci_enable_device(pdev)) { 14357 dev_err(&pdev->dev, 14358 "Cannot re-enable PCI device after reset\n"); 14359 rtnl_unlock(); 14360 return PCI_ERS_RESULT_DISCONNECT; 14361 } 14362 14363 pci_set_master(pdev); 14364 pci_restore_state(pdev); 14365 pci_save_state(pdev); 14366 14367 if (netif_running(dev)) 14368 bnx2x_set_power_state(bp, PCI_D0); 14369 14370 if (netif_running(dev)) { 14371 BNX2X_ERR("IO slot reset --> driver unload\n"); 14372 14373 /* MCP should have been reset; Need to wait for validity */ 14374 if (bnx2x_init_shmem(bp)) { 14375 rtnl_unlock(); 14376 return PCI_ERS_RESULT_DISCONNECT; 14377 } 14378 14379 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 14380 u32 v; 14381 14382 v = SHMEM2_RD(bp, 14383 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 14384 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 14385 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 14386 } 14387 bnx2x_drain_tx_queues(bp); 14388 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 14389 bnx2x_netif_stop(bp, 1); 14390 bnx2x_free_irq(bp); 14391 14392 /* Report UNLOAD_DONE to MCP */ 14393 bnx2x_send_unload_done(bp, true); 14394 14395 bp->sp_state = 0; 14396 bp->port.pmf = 0; 14397 14398 bnx2x_prev_unload(bp); 14399 14400 /* We should have reseted the engine, so It's fair to 14401 * assume the FW will no longer write to the bnx2x driver. 14402 */ 14403 bnx2x_squeeze_objects(bp); 14404 bnx2x_free_skbs(bp); 14405 for_each_rx_queue(bp, i) 14406 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 14407 bnx2x_free_fp_mem(bp); 14408 bnx2x_free_mem(bp); 14409 14410 bp->state = BNX2X_STATE_CLOSED; 14411 } 14412 14413 rtnl_unlock(); 14414 14415 return PCI_ERS_RESULT_RECOVERED; 14416 } 14417 14418 /** 14419 * bnx2x_io_resume - called when traffic can start flowing again 14420 * @pdev: Pointer to PCI device 14421 * 14422 * This callback is called when the error recovery driver tells us that 14423 * its OK to resume normal operation. 14424 */ 14425 static void bnx2x_io_resume(struct pci_dev *pdev) 14426 { 14427 struct net_device *dev = pci_get_drvdata(pdev); 14428 struct bnx2x *bp = netdev_priv(dev); 14429 14430 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 14431 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 14432 return; 14433 } 14434 14435 rtnl_lock(); 14436 14437 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 14438 DRV_MSG_SEQ_NUMBER_MASK; 14439 14440 if (netif_running(dev)) 14441 bnx2x_nic_load(bp, LOAD_NORMAL); 14442 14443 netif_device_attach(dev); 14444 14445 rtnl_unlock(); 14446 } 14447 14448 static const struct pci_error_handlers bnx2x_err_handler = { 14449 .error_detected = bnx2x_io_error_detected, 14450 .slot_reset = bnx2x_io_slot_reset, 14451 .resume = bnx2x_io_resume, 14452 }; 14453 14454 static void bnx2x_shutdown(struct pci_dev *pdev) 14455 { 14456 struct net_device *dev = pci_get_drvdata(pdev); 14457 struct bnx2x *bp; 14458 14459 if (!dev) 14460 return; 14461 14462 bp = netdev_priv(dev); 14463 if (!bp) 14464 return; 14465 14466 rtnl_lock(); 14467 netif_device_detach(dev); 14468 rtnl_unlock(); 14469 14470 /* Don't remove the netdevice, as there are scenarios which will cause 14471 * the kernel to hang, e.g., when trying to remove bnx2i while the 14472 * rootfs is mounted from SAN. 14473 */ 14474 __bnx2x_remove(pdev, dev, bp, false); 14475 } 14476 14477 static struct pci_driver bnx2x_pci_driver = { 14478 .name = DRV_MODULE_NAME, 14479 .id_table = bnx2x_pci_tbl, 14480 .probe = bnx2x_init_one, 14481 .remove = bnx2x_remove_one, 14482 .suspend = bnx2x_suspend, 14483 .resume = bnx2x_resume, 14484 .err_handler = &bnx2x_err_handler, 14485 #ifdef CONFIG_BNX2X_SRIOV 14486 .sriov_configure = bnx2x_sriov_configure, 14487 #endif 14488 .shutdown = bnx2x_shutdown, 14489 }; 14490 14491 static int __init bnx2x_init(void) 14492 { 14493 int ret; 14494 14495 pr_info("%s", version); 14496 14497 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 14498 if (bnx2x_wq == NULL) { 14499 pr_err("Cannot create workqueue\n"); 14500 return -ENOMEM; 14501 } 14502 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 14503 if (!bnx2x_iov_wq) { 14504 pr_err("Cannot create iov workqueue\n"); 14505 destroy_workqueue(bnx2x_wq); 14506 return -ENOMEM; 14507 } 14508 14509 ret = pci_register_driver(&bnx2x_pci_driver); 14510 if (ret) { 14511 pr_err("Cannot register driver\n"); 14512 destroy_workqueue(bnx2x_wq); 14513 destroy_workqueue(bnx2x_iov_wq); 14514 } 14515 return ret; 14516 } 14517 14518 static void __exit bnx2x_cleanup(void) 14519 { 14520 struct list_head *pos, *q; 14521 14522 pci_unregister_driver(&bnx2x_pci_driver); 14523 14524 destroy_workqueue(bnx2x_wq); 14525 destroy_workqueue(bnx2x_iov_wq); 14526 14527 /* Free globally allocated resources */ 14528 list_for_each_safe(pos, q, &bnx2x_prev_list) { 14529 struct bnx2x_prev_path_list *tmp = 14530 list_entry(pos, struct bnx2x_prev_path_list, list); 14531 list_del(pos); 14532 kfree(tmp); 14533 } 14534 } 14535 14536 void bnx2x_notify_link_changed(struct bnx2x *bp) 14537 { 14538 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 14539 } 14540 14541 module_init(bnx2x_init); 14542 module_exit(bnx2x_cleanup); 14543 14544 /** 14545 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 14546 * 14547 * @bp: driver handle 14548 * @set: set or clear the CAM entry 14549 * 14550 * This function will wait until the ramrod completion returns. 14551 * Return 0 if success, -ENODEV if ramrod doesn't return. 14552 */ 14553 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 14554 { 14555 unsigned long ramrod_flags = 0; 14556 14557 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 14558 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 14559 &bp->iscsi_l2_mac_obj, true, 14560 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 14561 } 14562 14563 /* count denotes the number of new completions we have seen */ 14564 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 14565 { 14566 struct eth_spe *spe; 14567 int cxt_index, cxt_offset; 14568 14569 #ifdef BNX2X_STOP_ON_ERROR 14570 if (unlikely(bp->panic)) 14571 return; 14572 #endif 14573 14574 spin_lock_bh(&bp->spq_lock); 14575 BUG_ON(bp->cnic_spq_pending < count); 14576 bp->cnic_spq_pending -= count; 14577 14578 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 14579 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 14580 & SPE_HDR_CONN_TYPE) >> 14581 SPE_HDR_CONN_TYPE_SHIFT; 14582 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 14583 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 14584 14585 /* Set validation for iSCSI L2 client before sending SETUP 14586 * ramrod 14587 */ 14588 if (type == ETH_CONNECTION_TYPE) { 14589 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 14590 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 14591 ILT_PAGE_CIDS; 14592 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 14593 (cxt_index * ILT_PAGE_CIDS); 14594 bnx2x_set_ctx_validation(bp, 14595 &bp->context[cxt_index]. 14596 vcxt[cxt_offset].eth, 14597 BNX2X_ISCSI_ETH_CID(bp)); 14598 } 14599 } 14600 14601 /* 14602 * There may be not more than 8 L2, not more than 8 L5 SPEs 14603 * and in the air. We also check that number of outstanding 14604 * COMMON ramrods is not more than the EQ and SPQ can 14605 * accommodate. 14606 */ 14607 if (type == ETH_CONNECTION_TYPE) { 14608 if (!atomic_read(&bp->cq_spq_left)) 14609 break; 14610 else 14611 atomic_dec(&bp->cq_spq_left); 14612 } else if (type == NONE_CONNECTION_TYPE) { 14613 if (!atomic_read(&bp->eq_spq_left)) 14614 break; 14615 else 14616 atomic_dec(&bp->eq_spq_left); 14617 } else if ((type == ISCSI_CONNECTION_TYPE) || 14618 (type == FCOE_CONNECTION_TYPE)) { 14619 if (bp->cnic_spq_pending >= 14620 bp->cnic_eth_dev.max_kwqe_pending) 14621 break; 14622 else 14623 bp->cnic_spq_pending++; 14624 } else { 14625 BNX2X_ERR("Unknown SPE type: %d\n", type); 14626 bnx2x_panic(); 14627 break; 14628 } 14629 14630 spe = bnx2x_sp_get_next(bp); 14631 *spe = *bp->cnic_kwq_cons; 14632 14633 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14634 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14635 14636 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14637 bp->cnic_kwq_cons = bp->cnic_kwq; 14638 else 14639 bp->cnic_kwq_cons++; 14640 } 14641 bnx2x_sp_prod_update(bp); 14642 spin_unlock_bh(&bp->spq_lock); 14643 } 14644 14645 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14646 struct kwqe_16 *kwqes[], u32 count) 14647 { 14648 struct bnx2x *bp = netdev_priv(dev); 14649 int i; 14650 14651 #ifdef BNX2X_STOP_ON_ERROR 14652 if (unlikely(bp->panic)) { 14653 BNX2X_ERR("Can't post to SP queue while panic\n"); 14654 return -EIO; 14655 } 14656 #endif 14657 14658 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14659 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14660 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14661 return -EAGAIN; 14662 } 14663 14664 spin_lock_bh(&bp->spq_lock); 14665 14666 for (i = 0; i < count; i++) { 14667 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14668 14669 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14670 break; 14671 14672 *bp->cnic_kwq_prod = *spe; 14673 14674 bp->cnic_kwq_pending++; 14675 14676 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14677 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14678 spe->data.update_data_addr.hi, 14679 spe->data.update_data_addr.lo, 14680 bp->cnic_kwq_pending); 14681 14682 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14683 bp->cnic_kwq_prod = bp->cnic_kwq; 14684 else 14685 bp->cnic_kwq_prod++; 14686 } 14687 14688 spin_unlock_bh(&bp->spq_lock); 14689 14690 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14691 bnx2x_cnic_sp_post(bp, 0); 14692 14693 return i; 14694 } 14695 14696 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14697 { 14698 struct cnic_ops *c_ops; 14699 int rc = 0; 14700 14701 mutex_lock(&bp->cnic_mutex); 14702 c_ops = rcu_dereference_protected(bp->cnic_ops, 14703 lockdep_is_held(&bp->cnic_mutex)); 14704 if (c_ops) 14705 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14706 mutex_unlock(&bp->cnic_mutex); 14707 14708 return rc; 14709 } 14710 14711 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14712 { 14713 struct cnic_ops *c_ops; 14714 int rc = 0; 14715 14716 rcu_read_lock(); 14717 c_ops = rcu_dereference(bp->cnic_ops); 14718 if (c_ops) 14719 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14720 rcu_read_unlock(); 14721 14722 return rc; 14723 } 14724 14725 /* 14726 * for commands that have no data 14727 */ 14728 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14729 { 14730 struct cnic_ctl_info ctl = {0}; 14731 14732 ctl.cmd = cmd; 14733 14734 return bnx2x_cnic_ctl_send(bp, &ctl); 14735 } 14736 14737 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14738 { 14739 struct cnic_ctl_info ctl = {0}; 14740 14741 /* first we tell CNIC and only then we count this as a completion */ 14742 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14743 ctl.data.comp.cid = cid; 14744 ctl.data.comp.error = err; 14745 14746 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14747 bnx2x_cnic_sp_post(bp, 0); 14748 } 14749 14750 /* Called with netif_addr_lock_bh() taken. 14751 * Sets an rx_mode config for an iSCSI ETH client. 14752 * Doesn't block. 14753 * Completion should be checked outside. 14754 */ 14755 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14756 { 14757 unsigned long accept_flags = 0, ramrod_flags = 0; 14758 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14759 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14760 14761 if (start) { 14762 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14763 * because it's the only way for UIO Queue to accept 14764 * multicasts (in non-promiscuous mode only one Queue per 14765 * function will receive multicast packets (leading in our 14766 * case). 14767 */ 14768 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14769 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14770 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14771 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14772 14773 /* Clear STOP_PENDING bit if START is requested */ 14774 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14775 14776 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14777 } else 14778 /* Clear START_PENDING bit if STOP is requested */ 14779 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14780 14781 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14782 set_bit(sched_state, &bp->sp_state); 14783 else { 14784 __set_bit(RAMROD_RX, &ramrod_flags); 14785 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14786 ramrod_flags); 14787 } 14788 } 14789 14790 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14791 { 14792 struct bnx2x *bp = netdev_priv(dev); 14793 int rc = 0; 14794 14795 switch (ctl->cmd) { 14796 case DRV_CTL_CTXTBL_WR_CMD: { 14797 u32 index = ctl->data.io.offset; 14798 dma_addr_t addr = ctl->data.io.dma_addr; 14799 14800 bnx2x_ilt_wr(bp, index, addr); 14801 break; 14802 } 14803 14804 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14805 int count = ctl->data.credit.credit_count; 14806 14807 bnx2x_cnic_sp_post(bp, count); 14808 break; 14809 } 14810 14811 /* rtnl_lock is held. */ 14812 case DRV_CTL_START_L2_CMD: { 14813 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14814 unsigned long sp_bits = 0; 14815 14816 /* Configure the iSCSI classification object */ 14817 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14818 cp->iscsi_l2_client_id, 14819 cp->iscsi_l2_cid, BP_FUNC(bp), 14820 bnx2x_sp(bp, mac_rdata), 14821 bnx2x_sp_mapping(bp, mac_rdata), 14822 BNX2X_FILTER_MAC_PENDING, 14823 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14824 &bp->macs_pool); 14825 14826 /* Set iSCSI MAC address */ 14827 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14828 if (rc) 14829 break; 14830 14831 mmiowb(); 14832 barrier(); 14833 14834 /* Start accepting on iSCSI L2 ring */ 14835 14836 netif_addr_lock_bh(dev); 14837 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14838 netif_addr_unlock_bh(dev); 14839 14840 /* bits to wait on */ 14841 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14842 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14843 14844 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14845 BNX2X_ERR("rx_mode completion timed out!\n"); 14846 14847 break; 14848 } 14849 14850 /* rtnl_lock is held. */ 14851 case DRV_CTL_STOP_L2_CMD: { 14852 unsigned long sp_bits = 0; 14853 14854 /* Stop accepting on iSCSI L2 ring */ 14855 netif_addr_lock_bh(dev); 14856 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14857 netif_addr_unlock_bh(dev); 14858 14859 /* bits to wait on */ 14860 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14861 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14862 14863 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14864 BNX2X_ERR("rx_mode completion timed out!\n"); 14865 14866 mmiowb(); 14867 barrier(); 14868 14869 /* Unset iSCSI L2 MAC */ 14870 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14871 BNX2X_ISCSI_ETH_MAC, true); 14872 break; 14873 } 14874 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14875 int count = ctl->data.credit.credit_count; 14876 14877 smp_mb__before_atomic(); 14878 atomic_add(count, &bp->cq_spq_left); 14879 smp_mb__after_atomic(); 14880 break; 14881 } 14882 case DRV_CTL_ULP_REGISTER_CMD: { 14883 int ulp_type = ctl->data.register_data.ulp_type; 14884 14885 if (CHIP_IS_E3(bp)) { 14886 int idx = BP_FW_MB_IDX(bp); 14887 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14888 int path = BP_PATH(bp); 14889 int port = BP_PORT(bp); 14890 int i; 14891 u32 scratch_offset; 14892 u32 *host_addr; 14893 14894 /* first write capability to shmem2 */ 14895 if (ulp_type == CNIC_ULP_ISCSI) 14896 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14897 else if (ulp_type == CNIC_ULP_FCOE) 14898 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14899 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14900 14901 if ((ulp_type != CNIC_ULP_FCOE) || 14902 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14903 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14904 break; 14905 14906 /* if reached here - should write fcoe capabilities */ 14907 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14908 if (!scratch_offset) 14909 break; 14910 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14911 fcoe_features[path][port]); 14912 host_addr = (u32 *) &(ctl->data.register_data. 14913 fcoe_features); 14914 for (i = 0; i < sizeof(struct fcoe_capabilities); 14915 i += 4) 14916 REG_WR(bp, scratch_offset + i, 14917 *(host_addr + i/4)); 14918 } 14919 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14920 break; 14921 } 14922 14923 case DRV_CTL_ULP_UNREGISTER_CMD: { 14924 int ulp_type = ctl->data.ulp_type; 14925 14926 if (CHIP_IS_E3(bp)) { 14927 int idx = BP_FW_MB_IDX(bp); 14928 u32 cap; 14929 14930 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14931 if (ulp_type == CNIC_ULP_ISCSI) 14932 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14933 else if (ulp_type == CNIC_ULP_FCOE) 14934 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14935 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14936 } 14937 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14938 break; 14939 } 14940 14941 default: 14942 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14943 rc = -EINVAL; 14944 } 14945 14946 /* For storage-only interfaces, change driver state */ 14947 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) { 14948 switch (ctl->drv_state) { 14949 case DRV_NOP: 14950 break; 14951 case DRV_ACTIVE: 14952 bnx2x_set_os_driver_state(bp, 14953 OS_DRIVER_STATE_ACTIVE); 14954 break; 14955 case DRV_INACTIVE: 14956 bnx2x_set_os_driver_state(bp, 14957 OS_DRIVER_STATE_DISABLED); 14958 break; 14959 case DRV_UNLOADED: 14960 bnx2x_set_os_driver_state(bp, 14961 OS_DRIVER_STATE_NOT_LOADED); 14962 break; 14963 default: 14964 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state); 14965 } 14966 } 14967 14968 return rc; 14969 } 14970 14971 static int bnx2x_get_fc_npiv(struct net_device *dev, 14972 struct cnic_fc_npiv_tbl *cnic_tbl) 14973 { 14974 struct bnx2x *bp = netdev_priv(dev); 14975 struct bdn_fc_npiv_tbl *tbl = NULL; 14976 u32 offset, entries; 14977 int rc = -EINVAL; 14978 int i; 14979 14980 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0])) 14981 goto out; 14982 14983 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n"); 14984 14985 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); 14986 if (!tbl) { 14987 BNX2X_ERR("Failed to allocate fc_npiv table\n"); 14988 goto out; 14989 } 14990 14991 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]); 14992 if (!offset) { 14993 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n"); 14994 goto out; 14995 } 14996 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset); 14997 14998 /* Read the table contents from nvram */ 14999 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) { 15000 BNX2X_ERR("Failed to read FC-NPIV table\n"); 15001 goto out; 15002 } 15003 15004 /* Since bnx2x_nvram_read() returns data in be32, we need to convert 15005 * the number of entries back to cpu endianness. 15006 */ 15007 entries = tbl->fc_npiv_cfg.num_of_npiv; 15008 entries = (__force u32)be32_to_cpu((__force __be32)entries); 15009 tbl->fc_npiv_cfg.num_of_npiv = entries; 15010 15011 if (!tbl->fc_npiv_cfg.num_of_npiv) { 15012 DP(BNX2X_MSG_MCP, 15013 "No FC-NPIV table [valid, simply not present]\n"); 15014 goto out; 15015 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) { 15016 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n", 15017 tbl->fc_npiv_cfg.num_of_npiv); 15018 goto out; 15019 } else { 15020 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n", 15021 tbl->fc_npiv_cfg.num_of_npiv); 15022 } 15023 15024 /* Copy the data into cnic-provided struct */ 15025 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv; 15026 for (i = 0; i < cnic_tbl->count; i++) { 15027 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8); 15028 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8); 15029 } 15030 15031 rc = 0; 15032 out: 15033 kfree(tbl); 15034 return rc; 15035 } 15036 15037 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 15038 { 15039 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15040 15041 if (bp->flags & USING_MSIX_FLAG) { 15042 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 15043 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 15044 cp->irq_arr[0].vector = bp->msix_table[1].vector; 15045 } else { 15046 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 15047 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 15048 } 15049 if (!CHIP_IS_E1x(bp)) 15050 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 15051 else 15052 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 15053 15054 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 15055 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 15056 cp->irq_arr[1].status_blk = bp->def_status_blk; 15057 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 15058 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 15059 15060 cp->num_irq = 2; 15061 } 15062 15063 void bnx2x_setup_cnic_info(struct bnx2x *bp) 15064 { 15065 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15066 15067 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15068 bnx2x_cid_ilt_lines(bp); 15069 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15070 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15071 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15072 15073 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 15074 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 15075 cp->iscsi_l2_cid); 15076 15077 if (NO_ISCSI_OOO(bp)) 15078 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15079 } 15080 15081 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 15082 void *data) 15083 { 15084 struct bnx2x *bp = netdev_priv(dev); 15085 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15086 int rc; 15087 15088 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 15089 15090 if (ops == NULL) { 15091 BNX2X_ERR("NULL ops received\n"); 15092 return -EINVAL; 15093 } 15094 15095 if (!CNIC_SUPPORT(bp)) { 15096 BNX2X_ERR("Can't register CNIC when not supported\n"); 15097 return -EOPNOTSUPP; 15098 } 15099 15100 if (!CNIC_LOADED(bp)) { 15101 rc = bnx2x_load_cnic(bp); 15102 if (rc) { 15103 BNX2X_ERR("CNIC-related load failed\n"); 15104 return rc; 15105 } 15106 } 15107 15108 bp->cnic_enabled = true; 15109 15110 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 15111 if (!bp->cnic_kwq) 15112 return -ENOMEM; 15113 15114 bp->cnic_kwq_cons = bp->cnic_kwq; 15115 bp->cnic_kwq_prod = bp->cnic_kwq; 15116 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 15117 15118 bp->cnic_spq_pending = 0; 15119 bp->cnic_kwq_pending = 0; 15120 15121 bp->cnic_data = data; 15122 15123 cp->num_irq = 0; 15124 cp->drv_state |= CNIC_DRV_STATE_REGD; 15125 cp->iro_arr = bp->iro_arr; 15126 15127 bnx2x_setup_cnic_irq_info(bp); 15128 15129 rcu_assign_pointer(bp->cnic_ops, ops); 15130 15131 /* Schedule driver to read CNIC driver versions */ 15132 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 15133 15134 return 0; 15135 } 15136 15137 static int bnx2x_unregister_cnic(struct net_device *dev) 15138 { 15139 struct bnx2x *bp = netdev_priv(dev); 15140 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15141 15142 mutex_lock(&bp->cnic_mutex); 15143 cp->drv_state = 0; 15144 RCU_INIT_POINTER(bp->cnic_ops, NULL); 15145 mutex_unlock(&bp->cnic_mutex); 15146 synchronize_rcu(); 15147 bp->cnic_enabled = false; 15148 kfree(bp->cnic_kwq); 15149 bp->cnic_kwq = NULL; 15150 15151 return 0; 15152 } 15153 15154 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 15155 { 15156 struct bnx2x *bp = netdev_priv(dev); 15157 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15158 15159 /* If both iSCSI and FCoE are disabled - return NULL in 15160 * order to indicate CNIC that it should not try to work 15161 * with this device. 15162 */ 15163 if (NO_ISCSI(bp) && NO_FCOE(bp)) 15164 return NULL; 15165 15166 cp->drv_owner = THIS_MODULE; 15167 cp->chip_id = CHIP_ID(bp); 15168 cp->pdev = bp->pdev; 15169 cp->io_base = bp->regview; 15170 cp->io_base2 = bp->doorbells; 15171 cp->max_kwqe_pending = 8; 15172 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 15173 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15174 bnx2x_cid_ilt_lines(bp); 15175 cp->ctx_tbl_len = CNIC_ILT_LINES; 15176 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15177 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 15178 cp->drv_ctl = bnx2x_drv_ctl; 15179 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv; 15180 cp->drv_register_cnic = bnx2x_register_cnic; 15181 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 15182 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15183 cp->iscsi_l2_client_id = 15184 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 15185 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15186 15187 if (NO_ISCSI_OOO(bp)) 15188 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15189 15190 if (NO_ISCSI(bp)) 15191 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 15192 15193 if (NO_FCOE(bp)) 15194 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 15195 15196 BNX2X_DEV_INFO( 15197 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 15198 cp->ctx_blk_size, 15199 cp->ctx_tbl_offset, 15200 cp->ctx_tbl_len, 15201 cp->starting_cid); 15202 return cp; 15203 } 15204 15205 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 15206 { 15207 struct bnx2x *bp = fp->bp; 15208 u32 offset = BAR_USTRORM_INTMEM; 15209 15210 if (IS_VF(bp)) 15211 return bnx2x_vf_ustorm_prods_offset(bp, fp); 15212 else if (!CHIP_IS_E1x(bp)) 15213 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 15214 else 15215 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 15216 15217 return offset; 15218 } 15219 15220 /* called only on E1H or E2. 15221 * When pretending to be PF, the pretend value is the function number 0...7 15222 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 15223 * combination 15224 */ 15225 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 15226 { 15227 u32 pretend_reg; 15228 15229 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 15230 return -1; 15231 15232 /* get my own pretend register */ 15233 pretend_reg = bnx2x_get_pretend_reg(bp); 15234 REG_WR(bp, pretend_reg, pretend_func_val); 15235 REG_RD(bp, pretend_reg); 15236 return 0; 15237 } 15238 15239 static void bnx2x_ptp_task(struct work_struct *work) 15240 { 15241 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 15242 int port = BP_PORT(bp); 15243 u32 val_seq; 15244 u64 timestamp, ns; 15245 struct skb_shared_hwtstamps shhwtstamps; 15246 15247 /* Read Tx timestamp registers */ 15248 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15249 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 15250 if (val_seq & 0x10000) { 15251 /* There is a valid timestamp value */ 15252 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 15253 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 15254 timestamp <<= 32; 15255 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 15256 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 15257 /* Reset timestamp register to allow new timestamp */ 15258 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15259 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15260 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15261 15262 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 15263 shhwtstamps.hwtstamp = ns_to_ktime(ns); 15264 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 15265 dev_kfree_skb_any(bp->ptp_tx_skb); 15266 bp->ptp_tx_skb = NULL; 15267 15268 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 15269 timestamp, ns); 15270 } else { 15271 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n"); 15272 /* Reschedule to keep checking for a valid timestamp value */ 15273 schedule_work(&bp->ptp_task); 15274 } 15275 } 15276 15277 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 15278 { 15279 int port = BP_PORT(bp); 15280 u64 timestamp, ns; 15281 15282 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 15283 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 15284 timestamp <<= 32; 15285 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 15286 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 15287 15288 /* Reset timestamp register to allow new timestamp */ 15289 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15290 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15291 15292 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15293 15294 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 15295 15296 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 15297 timestamp, ns); 15298 } 15299 15300 /* Read the PHC */ 15301 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc) 15302 { 15303 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 15304 int port = BP_PORT(bp); 15305 u32 wb_data[2]; 15306 u64 phc_cycles; 15307 15308 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 15309 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 15310 phc_cycles = wb_data[1]; 15311 phc_cycles = (phc_cycles << 32) + wb_data[0]; 15312 15313 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 15314 15315 return phc_cycles; 15316 } 15317 15318 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 15319 { 15320 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 15321 bp->cyclecounter.read = bnx2x_cyclecounter_read; 15322 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64); 15323 bp->cyclecounter.shift = 0; 15324 bp->cyclecounter.mult = 1; 15325 } 15326 15327 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 15328 { 15329 struct bnx2x_func_state_params func_params = {NULL}; 15330 struct bnx2x_func_set_timesync_params *set_timesync_params = 15331 &func_params.params.set_timesync; 15332 15333 /* Prepare parameters for function state transitions */ 15334 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 15335 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 15336 15337 func_params.f_obj = &bp->func_obj; 15338 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 15339 15340 /* Function parameters */ 15341 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 15342 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 15343 15344 return bnx2x_func_state_change(bp, &func_params); 15345 } 15346 15347 static int bnx2x_enable_ptp_packets(struct bnx2x *bp) 15348 { 15349 struct bnx2x_queue_state_params q_params; 15350 int rc, i; 15351 15352 /* send queue update ramrod to enable PTP packets */ 15353 memset(&q_params, 0, sizeof(q_params)); 15354 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 15355 q_params.cmd = BNX2X_Q_CMD_UPDATE; 15356 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 15357 &q_params.params.update.update_flags); 15358 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 15359 &q_params.params.update.update_flags); 15360 15361 /* send the ramrod on all the queues of the PF */ 15362 for_each_eth_queue(bp, i) { 15363 struct bnx2x_fastpath *fp = &bp->fp[i]; 15364 15365 /* Set the appropriate Queue object */ 15366 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 15367 15368 /* Update the Queue state */ 15369 rc = bnx2x_queue_state_change(bp, &q_params); 15370 if (rc) { 15371 BNX2X_ERR("Failed to enable PTP packets\n"); 15372 return rc; 15373 } 15374 } 15375 15376 return 0; 15377 } 15378 15379 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 15380 { 15381 int port = BP_PORT(bp); 15382 int rc; 15383 15384 if (!bp->hwtstamp_ioctl_called) 15385 return 0; 15386 15387 switch (bp->tx_type) { 15388 case HWTSTAMP_TX_ON: 15389 bp->flags |= TX_TIMESTAMPING_EN; 15390 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15391 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA); 15392 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15393 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE); 15394 break; 15395 case HWTSTAMP_TX_ONESTEP_SYNC: 15396 BNX2X_ERR("One-step timestamping is not supported\n"); 15397 return -ERANGE; 15398 } 15399 15400 switch (bp->rx_filter) { 15401 case HWTSTAMP_FILTER_NONE: 15402 break; 15403 case HWTSTAMP_FILTER_ALL: 15404 case HWTSTAMP_FILTER_SOME: 15405 case HWTSTAMP_FILTER_NTP_ALL: 15406 bp->rx_filter = HWTSTAMP_FILTER_NONE; 15407 break; 15408 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 15409 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 15410 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 15411 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 15412 /* Initialize PTP detection for UDP/IPv4 events */ 15413 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15414 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE); 15415 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15416 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE); 15417 break; 15418 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 15419 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 15420 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 15421 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 15422 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 15423 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15424 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA); 15425 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15426 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE); 15427 break; 15428 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 15429 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 15430 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 15431 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 15432 /* Initialize PTP detection L2 events */ 15433 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15434 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF); 15435 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15436 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF); 15437 15438 break; 15439 case HWTSTAMP_FILTER_PTP_V2_EVENT: 15440 case HWTSTAMP_FILTER_PTP_V2_SYNC: 15441 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 15442 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 15443 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 15444 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15445 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA); 15446 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15447 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE); 15448 break; 15449 } 15450 15451 /* Indicate to FW that this PF expects recorded PTP packets */ 15452 rc = bnx2x_enable_ptp_packets(bp); 15453 if (rc) 15454 return rc; 15455 15456 /* Enable sending PTP packets to host */ 15457 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15458 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 15459 15460 return 0; 15461 } 15462 15463 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 15464 { 15465 struct hwtstamp_config config; 15466 int rc; 15467 15468 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 15469 15470 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 15471 return -EFAULT; 15472 15473 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 15474 config.tx_type, config.rx_filter); 15475 15476 if (config.flags) { 15477 BNX2X_ERR("config.flags is reserved for future use\n"); 15478 return -EINVAL; 15479 } 15480 15481 bp->hwtstamp_ioctl_called = 1; 15482 bp->tx_type = config.tx_type; 15483 bp->rx_filter = config.rx_filter; 15484 15485 rc = bnx2x_configure_ptp_filters(bp); 15486 if (rc) 15487 return rc; 15488 15489 config.rx_filter = bp->rx_filter; 15490 15491 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 15492 -EFAULT : 0; 15493 } 15494 15495 /* Configures HW for PTP */ 15496 static int bnx2x_configure_ptp(struct bnx2x *bp) 15497 { 15498 int rc, port = BP_PORT(bp); 15499 u32 wb_data[2]; 15500 15501 /* Reset PTP event detection rules - will be configured in the IOCTL */ 15502 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15503 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 15504 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15505 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 15506 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15507 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 15508 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15509 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 15510 15511 /* Disable PTP packets to host - will be configured in the IOCTL*/ 15512 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15513 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 15514 15515 /* Enable the PTP feature */ 15516 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 15517 NIG_REG_P0_PTP_EN, 0x3F); 15518 15519 /* Enable the free-running counter */ 15520 wb_data[0] = 0; 15521 wb_data[1] = 0; 15522 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 15523 15524 /* Reset drift register (offset register is not reset) */ 15525 rc = bnx2x_send_reset_timesync_ramrod(bp); 15526 if (rc) { 15527 BNX2X_ERR("Failed to reset PHC drift register\n"); 15528 return -EFAULT; 15529 } 15530 15531 /* Reset possibly old timestamps */ 15532 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15533 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15534 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15535 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15536 15537 return 0; 15538 } 15539 15540 /* Called during load, to initialize PTP-related stuff */ 15541 void bnx2x_init_ptp(struct bnx2x *bp) 15542 { 15543 int rc; 15544 15545 /* Configure PTP in HW */ 15546 rc = bnx2x_configure_ptp(bp); 15547 if (rc) { 15548 BNX2X_ERR("Stopping PTP initialization\n"); 15549 return; 15550 } 15551 15552 /* Init work queue for Tx timestamping */ 15553 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 15554 15555 /* Init cyclecounter and timecounter. This is done only in the first 15556 * load. If done in every load, PTP application will fail when doing 15557 * unload / load (e.g. MTU change) while it is running. 15558 */ 15559 if (!bp->timecounter_init_done) { 15560 bnx2x_init_cyclecounter(bp); 15561 timecounter_init(&bp->timecounter, &bp->cyclecounter, 15562 ktime_to_ns(ktime_get_real())); 15563 bp->timecounter_init_done = 1; 15564 } 15565 15566 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 15567 } 15568