1 /* bnx2x_init_ops.h: Broadcom Everest network driver. 2 * Static functions needed during the initialization. 3 * This file is "included" in bnx2x_main.c. 4 * 5 * Copyright (c) 2007-2013 Broadcom Corporation 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Eilon Greenstein <eilong@broadcom.com> 12 * Written by: Vladislav Zolotarov <vladz@broadcom.com> 13 */ 14 15 #ifndef BNX2X_INIT_OPS_H 16 #define BNX2X_INIT_OPS_H 17 18 19 #ifndef BP_ILT 20 #define BP_ILT(bp) NULL 21 #endif 22 23 #ifndef BP_FUNC 24 #define BP_FUNC(bp) 0 25 #endif 26 27 #ifndef BP_PORT 28 #define BP_PORT(bp) 0 29 #endif 30 31 #ifndef BNX2X_ILT_FREE 32 #define BNX2X_ILT_FREE(x, y, sz) 33 #endif 34 35 #ifndef BNX2X_ILT_ZALLOC 36 #define BNX2X_ILT_ZALLOC(x, y, sz) 37 #endif 38 39 #ifndef ILOG2 40 #define ILOG2(x) x 41 #endif 42 43 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len); 44 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); 45 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, 46 dma_addr_t phys_addr, u32 addr, 47 u32 len); 48 49 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, 50 const u32 *data, u32 len) 51 { 52 u32 i; 53 54 for (i = 0; i < len; i++) 55 REG_WR(bp, addr + i*4, data[i]); 56 } 57 58 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, 59 const u32 *data, u32 len) 60 { 61 u32 i; 62 63 for (i = 0; i < len; i++) 64 bnx2x_reg_wr_ind(bp, addr + i*4, data[i]); 65 } 66 67 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len, 68 u8 wb) 69 { 70 if (bp->dmae_ready) 71 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); 72 73 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ 74 else if (wb && CHIP_IS_E1(bp)) 75 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); 76 77 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ 78 else 79 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); 80 } 81 82 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, 83 u32 len, u8 wb) 84 { 85 u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4)); 86 u32 buf_len32 = buf_len/4; 87 u32 i; 88 89 memset(GUNZIP_BUF(bp), (u8)fill, buf_len); 90 91 for (i = 0; i < len; i += buf_len32) { 92 u32 cur_len = min(buf_len32, len - i); 93 94 bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb); 95 } 96 } 97 98 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len) 99 { 100 if (bp->dmae_ready) 101 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); 102 103 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ 104 else if (CHIP_IS_E1(bp)) 105 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); 106 107 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ 108 else 109 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); 110 } 111 112 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, 113 const u32 *data, u32 len64) 114 { 115 u32 buf_len32 = FW_BUF_SIZE/4; 116 u32 len = len64*2; 117 u64 data64 = 0; 118 u32 i; 119 120 /* 64 bit value is in a blob: first low DWORD, then high DWORD */ 121 data64 = HILO_U64((*(data + 1)), (*data)); 122 123 len64 = min((u32)(FW_BUF_SIZE/8), len64); 124 for (i = 0; i < len64; i++) { 125 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i; 126 127 *pdata = data64; 128 } 129 130 for (i = 0; i < len; i += buf_len32) { 131 u32 cur_len = min(buf_len32, len - i); 132 133 bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len); 134 } 135 } 136 137 /********************************************************* 138 There are different blobs for each PRAM section. 139 In addition, each blob write operation is divided into a few operations 140 in order to decrease the amount of phys. contiguous buffer needed. 141 Thus, when we select a blob the address may be with some offset 142 from the beginning of PRAM section. 143 The same holds for the INT_TABLE sections. 144 **********************************************************/ 145 #define IF_IS_INT_TABLE_ADDR(base, addr) \ 146 if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) 147 148 #define IF_IS_PRAM_ADDR(base, addr) \ 149 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) 150 151 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, 152 const u8 *data) 153 { 154 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) 155 data = INIT_TSEM_INT_TABLE_DATA(bp); 156 else 157 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) 158 data = INIT_CSEM_INT_TABLE_DATA(bp); 159 else 160 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) 161 data = INIT_USEM_INT_TABLE_DATA(bp); 162 else 163 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) 164 data = INIT_XSEM_INT_TABLE_DATA(bp); 165 else 166 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) 167 data = INIT_TSEM_PRAM_DATA(bp); 168 else 169 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) 170 data = INIT_CSEM_PRAM_DATA(bp); 171 else 172 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) 173 data = INIT_USEM_PRAM_DATA(bp); 174 else 175 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) 176 data = INIT_XSEM_PRAM_DATA(bp); 177 178 return data; 179 } 180 181 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, 182 const u32 *data, u32 len) 183 { 184 if (bp->dmae_ready) 185 VIRT_WR_DMAE_LEN(bp, data, addr, len, 0); 186 187 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ 188 else if (CHIP_IS_E1(bp)) 189 bnx2x_init_ind_wr(bp, addr, data, len); 190 191 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ 192 else 193 bnx2x_init_str_wr(bp, addr, data, len); 194 } 195 196 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo, 197 u32 val_hi) 198 { 199 u32 wb_write[2]; 200 201 wb_write[0] = val_lo; 202 wb_write[1] = val_hi; 203 REG_WR_DMAE_LEN(bp, reg, wb_write, 2); 204 } 205 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, 206 u32 blob_off) 207 { 208 const u8 *data = NULL; 209 int rc; 210 u32 i; 211 212 data = bnx2x_sel_blob(bp, addr, data) + blob_off*4; 213 214 rc = bnx2x_gunzip(bp, data, len); 215 if (rc) 216 return; 217 218 /* gunzip_outlen is in dwords */ 219 len = GUNZIP_OUTLEN(bp); 220 for (i = 0; i < len; i++) 221 ((u32 *)GUNZIP_BUF(bp))[i] = (__force u32) 222 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]); 223 224 bnx2x_write_big_buf_wb(bp, addr, len); 225 } 226 227 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage) 228 { 229 u16 op_start = 230 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, 231 STAGE_START)]; 232 u16 op_end = 233 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, 234 STAGE_END)]; 235 const union init_op *op; 236 u32 op_idx, op_type, addr, len; 237 const u32 *data, *data_base; 238 239 /* If empty block */ 240 if (op_start == op_end) 241 return; 242 243 data_base = INIT_DATA(bp); 244 245 for (op_idx = op_start; op_idx < op_end; op_idx++) { 246 247 op = (const union init_op *)&(INIT_OPS(bp)[op_idx]); 248 /* Get generic data */ 249 op_type = op->raw.op; 250 addr = op->raw.offset; 251 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and 252 * OP_WR64 (we assume that op_arr_write and op_write have the 253 * same structure). 254 */ 255 len = op->arr_wr.data_len; 256 data = data_base + op->arr_wr.data_off; 257 258 switch (op_type) { 259 case OP_RD: 260 REG_RD(bp, addr); 261 break; 262 case OP_WR: 263 REG_WR(bp, addr, op->write.val); 264 break; 265 case OP_SW: 266 bnx2x_init_str_wr(bp, addr, data, len); 267 break; 268 case OP_WB: 269 bnx2x_init_wr_wb(bp, addr, data, len); 270 break; 271 case OP_ZR: 272 bnx2x_init_fill(bp, addr, 0, op->zero.len, 0); 273 break; 274 case OP_WB_ZR: 275 bnx2x_init_fill(bp, addr, 0, op->zero.len, 1); 276 break; 277 case OP_ZP: 278 bnx2x_init_wr_zp(bp, addr, len, 279 op->arr_wr.data_off); 280 break; 281 case OP_WR_64: 282 bnx2x_init_wr_64(bp, addr, data, len); 283 break; 284 case OP_IF_MODE_AND: 285 /* if any of the flags doesn't match, skip the 286 * conditional block. 287 */ 288 if ((INIT_MODE_FLAGS(bp) & 289 op->if_mode.mode_bit_map) != 290 op->if_mode.mode_bit_map) 291 op_idx += op->if_mode.cmd_offset; 292 break; 293 case OP_IF_MODE_OR: 294 /* if all the flags don't match, skip the conditional 295 * block. 296 */ 297 if ((INIT_MODE_FLAGS(bp) & 298 op->if_mode.mode_bit_map) == 0) 299 op_idx += op->if_mode.cmd_offset; 300 break; 301 default: 302 /* Should never get here! */ 303 304 break; 305 } 306 } 307 } 308 309 310 /**************************************************************************** 311 * PXP Arbiter 312 ****************************************************************************/ 313 /* 314 * This code configures the PCI read/write arbiter 315 * which implements a weighted round robin 316 * between the virtual queues in the chip. 317 * 318 * The values were derived for each PCI max payload and max request size. 319 * since max payload and max request size are only known at run time, 320 * this is done as a separate init stage. 321 */ 322 323 #define NUM_WR_Q 13 324 #define NUM_RD_Q 29 325 #define MAX_RD_ORD 3 326 #define MAX_WR_ORD 2 327 328 /* configuration for one arbiter queue */ 329 struct arb_line { 330 int l; 331 int add; 332 int ubound; 333 }; 334 335 /* derived configuration for each read queue for each max request size */ 336 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { 337 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, 338 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} }, 339 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} }, 340 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} }, 341 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, 342 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, 343 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, 344 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, 345 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, 346 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 347 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 348 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 349 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 350 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 351 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 352 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 353 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} }, 354 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 355 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 356 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 357 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 358 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 359 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 360 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 361 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 362 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 363 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 364 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 365 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } 366 }; 367 368 /* derived configuration for each write queue for each max request size */ 369 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { 370 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} }, 371 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} }, 372 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, 373 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, 374 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, 375 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, 376 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, 377 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, 378 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, 379 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} }, 380 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, 381 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} }, 382 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } 383 }; 384 385 /* register addresses for read queues */ 386 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { 387 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, 388 PXP2_REG_RQ_BW_RD_UBOUND0}, 389 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, 390 PXP2_REG_PSWRQ_BW_UB1}, 391 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, 392 PXP2_REG_PSWRQ_BW_UB2}, 393 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, 394 PXP2_REG_PSWRQ_BW_UB3}, 395 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, 396 PXP2_REG_RQ_BW_RD_UBOUND4}, 397 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, 398 PXP2_REG_RQ_BW_RD_UBOUND5}, 399 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, 400 PXP2_REG_PSWRQ_BW_UB6}, 401 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, 402 PXP2_REG_PSWRQ_BW_UB7}, 403 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, 404 PXP2_REG_PSWRQ_BW_UB8}, 405 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, 406 PXP2_REG_PSWRQ_BW_UB9}, 407 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, 408 PXP2_REG_PSWRQ_BW_UB10}, 409 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, 410 PXP2_REG_PSWRQ_BW_UB11}, 411 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, 412 PXP2_REG_RQ_BW_RD_UBOUND12}, 413 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, 414 PXP2_REG_RQ_BW_RD_UBOUND13}, 415 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, 416 PXP2_REG_RQ_BW_RD_UBOUND14}, 417 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, 418 PXP2_REG_RQ_BW_RD_UBOUND15}, 419 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, 420 PXP2_REG_RQ_BW_RD_UBOUND16}, 421 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, 422 PXP2_REG_RQ_BW_RD_UBOUND17}, 423 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, 424 PXP2_REG_RQ_BW_RD_UBOUND18}, 425 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, 426 PXP2_REG_RQ_BW_RD_UBOUND19}, 427 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, 428 PXP2_REG_RQ_BW_RD_UBOUND20}, 429 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, 430 PXP2_REG_RQ_BW_RD_UBOUND22}, 431 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, 432 PXP2_REG_RQ_BW_RD_UBOUND23}, 433 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, 434 PXP2_REG_RQ_BW_RD_UBOUND24}, 435 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, 436 PXP2_REG_RQ_BW_RD_UBOUND25}, 437 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, 438 PXP2_REG_RQ_BW_RD_UBOUND26}, 439 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, 440 PXP2_REG_RQ_BW_RD_UBOUND27}, 441 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, 442 PXP2_REG_PSWRQ_BW_UB28} 443 }; 444 445 /* register addresses for write queues */ 446 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { 447 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, 448 PXP2_REG_PSWRQ_BW_UB1}, 449 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, 450 PXP2_REG_PSWRQ_BW_UB2}, 451 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, 452 PXP2_REG_PSWRQ_BW_UB3}, 453 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, 454 PXP2_REG_PSWRQ_BW_UB6}, 455 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, 456 PXP2_REG_PSWRQ_BW_UB7}, 457 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, 458 PXP2_REG_PSWRQ_BW_UB8}, 459 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, 460 PXP2_REG_PSWRQ_BW_UB9}, 461 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, 462 PXP2_REG_PSWRQ_BW_UB10}, 463 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, 464 PXP2_REG_PSWRQ_BW_UB11}, 465 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, 466 PXP2_REG_PSWRQ_BW_UB28}, 467 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, 468 PXP2_REG_RQ_BW_WR_UBOUND29}, 469 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, 470 PXP2_REG_RQ_BW_WR_UBOUND30} 471 }; 472 473 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, 474 int w_order) 475 { 476 u32 val, i; 477 478 if (r_order > MAX_RD_ORD) { 479 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", 480 r_order, MAX_RD_ORD); 481 r_order = MAX_RD_ORD; 482 } 483 if (w_order > MAX_WR_ORD) { 484 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", 485 w_order, MAX_WR_ORD); 486 w_order = MAX_WR_ORD; 487 } 488 if (CHIP_REV_IS_FPGA(bp)) { 489 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); 490 w_order = 0; 491 } 492 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); 493 494 for (i = 0; i < NUM_RD_Q-1; i++) { 495 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); 496 REG_WR(bp, read_arb_addr[i].add, 497 read_arb_data[i][r_order].add); 498 REG_WR(bp, read_arb_addr[i].ubound, 499 read_arb_data[i][r_order].ubound); 500 } 501 502 for (i = 0; i < NUM_WR_Q-1; i++) { 503 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || 504 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { 505 506 REG_WR(bp, write_arb_addr[i].l, 507 write_arb_data[i][w_order].l); 508 509 REG_WR(bp, write_arb_addr[i].add, 510 write_arb_data[i][w_order].add); 511 512 REG_WR(bp, write_arb_addr[i].ubound, 513 write_arb_data[i][w_order].ubound); 514 } else { 515 516 val = REG_RD(bp, write_arb_addr[i].l); 517 REG_WR(bp, write_arb_addr[i].l, 518 val | (write_arb_data[i][w_order].l << 10)); 519 520 val = REG_RD(bp, write_arb_addr[i].add); 521 REG_WR(bp, write_arb_addr[i].add, 522 val | (write_arb_data[i][w_order].add << 10)); 523 524 val = REG_RD(bp, write_arb_addr[i].ubound); 525 REG_WR(bp, write_arb_addr[i].ubound, 526 val | (write_arb_data[i][w_order].ubound << 7)); 527 } 528 } 529 530 val = write_arb_data[NUM_WR_Q-1][w_order].add; 531 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; 532 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; 533 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); 534 535 val = read_arb_data[NUM_RD_Q-1][r_order].add; 536 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; 537 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; 538 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); 539 540 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); 541 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); 542 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); 543 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); 544 545 if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD)) 546 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); 547 548 if (CHIP_IS_E3(bp)) 549 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order)); 550 else if (CHIP_IS_E2(bp)) 551 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order)); 552 else 553 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); 554 555 if (!CHIP_IS_E1(bp)) { 556 /* MPS w_order optimal TH presently TH 557 * 128 0 0 2 558 * 256 1 1 3 559 * >=512 2 2 3 560 */ 561 /* DMAE is special */ 562 if (!CHIP_IS_E1H(bp)) { 563 /* E2 can use optimal TH */ 564 val = w_order; 565 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val); 566 } else { 567 val = ((w_order == 0) ? 2 : 3); 568 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); 569 } 570 571 REG_WR(bp, PXP2_REG_WR_HC_MPS, val); 572 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); 573 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); 574 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); 575 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); 576 REG_WR(bp, PXP2_REG_WR_QM_MPS, val); 577 REG_WR(bp, PXP2_REG_WR_TM_MPS, val); 578 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); 579 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); 580 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); 581 } 582 583 /* Validate number of tags suppoted by device */ 584 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980 585 val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST); 586 val &= 0xFF; 587 if (val <= 0x20) 588 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20); 589 } 590 591 /**************************************************************************** 592 * ILT management 593 ****************************************************************************/ 594 /* 595 * This codes hides the low level HW interaction for ILT management and 596 * configuration. The API consists of a shadow ILT table which is set by the 597 * driver and a set of routines to use it to configure the HW. 598 * 599 */ 600 601 /* ILT HW init operations */ 602 603 /* ILT memory management operations */ 604 #define ILT_MEMOP_ALLOC 0 605 #define ILT_MEMOP_FREE 1 606 607 /* the phys address is shifted right 12 bits and has an added 608 * 1=valid bit added to the 53rd bit 609 * then since this is a wide register(TM) 610 * we split it into two 32 bit writes 611 */ 612 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) 613 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) 614 #define ILT_RANGE(f, l) (((l) << 10) | f) 615 616 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, 617 struct ilt_line *line, u32 size, u8 memop) 618 { 619 if (memop == ILT_MEMOP_FREE) { 620 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size); 621 return 0; 622 } 623 BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size); 624 if (!line->page) 625 return -1; 626 line->size = size; 627 return 0; 628 } 629 630 631 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, 632 u8 memop) 633 { 634 int i, rc; 635 struct bnx2x_ilt *ilt = BP_ILT(bp); 636 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; 637 638 if (!ilt || !ilt->lines) 639 return -1; 640 641 if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM)) 642 return 0; 643 644 for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) { 645 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i], 646 ilt_cli->page_size, memop); 647 } 648 return rc; 649 } 650 651 static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop) 652 { 653 int rc = 0; 654 655 if (CONFIGURE_NIC_MODE(bp)) 656 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop); 657 if (!rc) 658 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop); 659 660 return rc; 661 } 662 663 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop) 664 { 665 int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop); 666 if (!rc) 667 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop); 668 if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp)) 669 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop); 670 671 return rc; 672 } 673 674 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx, 675 dma_addr_t page_mapping) 676 { 677 u32 reg; 678 679 if (CHIP_IS_E1(bp)) 680 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8; 681 else 682 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8; 683 684 bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping)); 685 } 686 687 static void bnx2x_ilt_line_init_op(struct bnx2x *bp, 688 struct bnx2x_ilt *ilt, int idx, u8 initop) 689 { 690 dma_addr_t null_mapping; 691 int abs_idx = ilt->start_line + idx; 692 693 694 switch (initop) { 695 case INITOP_INIT: 696 /* set in the init-value array */ 697 case INITOP_SET: 698 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping); 699 break; 700 case INITOP_CLEAR: 701 null_mapping = 0; 702 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping); 703 break; 704 } 705 } 706 707 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp, 708 struct ilt_client_info *ilt_cli, 709 u32 ilt_start, u8 initop) 710 { 711 u32 start_reg = 0; 712 u32 end_reg = 0; 713 714 /* The boundary is either SET or INIT, 715 CLEAR => SET and for now SET ~~ INIT */ 716 717 /* find the appropriate regs */ 718 if (CHIP_IS_E1(bp)) { 719 switch (ilt_cli->client_num) { 720 case ILT_CLIENT_CDU: 721 start_reg = PXP2_REG_PSWRQ_CDU0_L2P; 722 break; 723 case ILT_CLIENT_QM: 724 start_reg = PXP2_REG_PSWRQ_QM0_L2P; 725 break; 726 case ILT_CLIENT_SRC: 727 start_reg = PXP2_REG_PSWRQ_SRC0_L2P; 728 break; 729 case ILT_CLIENT_TM: 730 start_reg = PXP2_REG_PSWRQ_TM0_L2P; 731 break; 732 } 733 REG_WR(bp, start_reg + BP_FUNC(bp)*4, 734 ILT_RANGE((ilt_start + ilt_cli->start), 735 (ilt_start + ilt_cli->end))); 736 } else { 737 switch (ilt_cli->client_num) { 738 case ILT_CLIENT_CDU: 739 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT; 740 end_reg = PXP2_REG_RQ_CDU_LAST_ILT; 741 break; 742 case ILT_CLIENT_QM: 743 start_reg = PXP2_REG_RQ_QM_FIRST_ILT; 744 end_reg = PXP2_REG_RQ_QM_LAST_ILT; 745 break; 746 case ILT_CLIENT_SRC: 747 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT; 748 end_reg = PXP2_REG_RQ_SRC_LAST_ILT; 749 break; 750 case ILT_CLIENT_TM: 751 start_reg = PXP2_REG_RQ_TM_FIRST_ILT; 752 end_reg = PXP2_REG_RQ_TM_LAST_ILT; 753 break; 754 } 755 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start)); 756 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end)); 757 } 758 } 759 760 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp, 761 struct bnx2x_ilt *ilt, 762 struct ilt_client_info *ilt_cli, 763 u8 initop) 764 { 765 int i; 766 767 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) 768 return; 769 770 for (i = ilt_cli->start; i <= ilt_cli->end; i++) 771 bnx2x_ilt_line_init_op(bp, ilt, i, initop); 772 773 /* init/clear the ILT boundries */ 774 bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop); 775 } 776 777 static void bnx2x_ilt_client_init_op(struct bnx2x *bp, 778 struct ilt_client_info *ilt_cli, u8 initop) 779 { 780 struct bnx2x_ilt *ilt = BP_ILT(bp); 781 782 bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop); 783 } 784 785 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp, 786 int cli_num, u8 initop) 787 { 788 struct bnx2x_ilt *ilt = BP_ILT(bp); 789 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; 790 791 bnx2x_ilt_client_init_op(bp, ilt_cli, initop); 792 } 793 794 static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop) 795 { 796 if (CONFIGURE_NIC_MODE(bp)) 797 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop); 798 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop); 799 } 800 801 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop) 802 { 803 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop); 804 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop); 805 if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp)) 806 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop); 807 } 808 809 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num, 810 u32 psz_reg, u8 initop) 811 { 812 struct bnx2x_ilt *ilt = BP_ILT(bp); 813 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; 814 815 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) 816 return; 817 818 switch (initop) { 819 case INITOP_INIT: 820 /* set in the init-value array */ 821 case INITOP_SET: 822 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12)); 823 break; 824 case INITOP_CLEAR: 825 break; 826 } 827 } 828 829 /* 830 * called during init common stage, ilt clients should be initialized 831 * prioir to calling this function 832 */ 833 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop) 834 { 835 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU, 836 PXP2_REG_RQ_CDU_P_SIZE, initop); 837 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM, 838 PXP2_REG_RQ_QM_P_SIZE, initop); 839 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC, 840 PXP2_REG_RQ_SRC_P_SIZE, initop); 841 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM, 842 PXP2_REG_RQ_TM_P_SIZE, initop); 843 } 844 845 /**************************************************************************** 846 * QM initializations 847 ****************************************************************************/ 848 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */ 849 #define QM_INIT_MIN_CID_COUNT 31 850 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT) 851 852 /* called during init port stage */ 853 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count, 854 u8 initop) 855 { 856 int port = BP_PORT(bp); 857 858 if (QM_INIT(qm_cid_count)) { 859 switch (initop) { 860 case INITOP_INIT: 861 /* set in the init-value array */ 862 case INITOP_SET: 863 REG_WR(bp, QM_REG_CONNNUM_0 + port*4, 864 qm_cid_count/16 - 1); 865 break; 866 case INITOP_CLEAR: 867 break; 868 } 869 } 870 } 871 872 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count, 873 u32 base_reg, u32 reg) 874 { 875 int i; 876 u32 wb_data[2] = {0, 0}; 877 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) { 878 REG_WR(bp, base_reg + i*4, 879 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC)); 880 bnx2x_init_wr_wb(bp, reg + i*8, wb_data, 2); 881 } 882 } 883 884 /* called during init common stage */ 885 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count, 886 u8 initop) 887 { 888 if (!QM_INIT(qm_cid_count)) 889 return; 890 891 switch (initop) { 892 case INITOP_INIT: 893 /* set in the init-value array */ 894 case INITOP_SET: 895 bnx2x_qm_set_ptr_table(bp, qm_cid_count, 896 QM_REG_BASEADDR, QM_REG_PTRTBL); 897 if (CHIP_IS_E1H(bp)) 898 bnx2x_qm_set_ptr_table(bp, qm_cid_count, 899 QM_REG_BASEADDR_EXT_A, 900 QM_REG_PTRTBL_EXT_A); 901 break; 902 case INITOP_CLEAR: 903 break; 904 } 905 } 906 907 /**************************************************************************** 908 * SRC initializations 909 ****************************************************************************/ 910 /* called during init func stage */ 911 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2, 912 dma_addr_t t2_mapping, int src_cid_count) 913 { 914 int i; 915 int port = BP_PORT(bp); 916 917 /* Initialize T2 */ 918 for (i = 0; i < src_cid_count-1; i++) 919 t2[i].next = (u64)(t2_mapping + 920 (i+1)*sizeof(struct src_ent)); 921 922 /* tell the searcher where the T2 table is */ 923 REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count); 924 925 bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16, 926 U64_LO(t2_mapping), U64_HI(t2_mapping)); 927 928 bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16, 929 U64_LO((u64)t2_mapping + 930 (src_cid_count-1) * sizeof(struct src_ent)), 931 U64_HI((u64)t2_mapping + 932 (src_cid_count-1) * sizeof(struct src_ent))); 933 } 934 #endif /* BNX2X_INIT_OPS_H */ 935