1 /* bnx2x_init_ops.h: Qlogic Everest network driver. 2 * Static functions needed during the initialization. 3 * This file is "included" in bnx2x_main.c. 4 * 5 * Copyright (c) 2007-2013 Broadcom Corporation 6 * Copyright (c) 2014 QLogic Corporation 7 All rights reserved 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation. 12 * 13 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 14 * Written by: Vladislav Zolotarov 15 */ 16 17 #ifndef BNX2X_INIT_OPS_H 18 #define BNX2X_INIT_OPS_H 19 20 21 #ifndef BP_ILT 22 #define BP_ILT(bp) NULL 23 #endif 24 25 #ifndef BP_FUNC 26 #define BP_FUNC(bp) 0 27 #endif 28 29 #ifndef BP_PORT 30 #define BP_PORT(bp) 0 31 #endif 32 33 #ifndef BNX2X_ILT_FREE 34 #define BNX2X_ILT_FREE(x, y, sz) 35 #endif 36 37 #ifndef BNX2X_ILT_ZALLOC 38 #define BNX2X_ILT_ZALLOC(x, y, sz) 39 #endif 40 41 #ifndef ILOG2 42 #define ILOG2(x) x 43 #endif 44 45 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len); 46 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); 47 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, 48 dma_addr_t phys_addr, u32 addr, 49 u32 len); 50 51 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, 52 const u32 *data, u32 len) 53 { 54 u32 i; 55 56 for (i = 0; i < len; i++) 57 REG_WR(bp, addr + i*4, data[i]); 58 } 59 60 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, 61 const u32 *data, u32 len) 62 { 63 u32 i; 64 65 for (i = 0; i < len; i++) 66 bnx2x_reg_wr_ind(bp, addr + i*4, data[i]); 67 } 68 69 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len, 70 u8 wb) 71 { 72 if (bp->dmae_ready) 73 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); 74 75 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ 76 else if (wb && CHIP_IS_E1(bp)) 77 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); 78 79 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ 80 else 81 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); 82 } 83 84 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, 85 u32 len, u8 wb) 86 { 87 u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4)); 88 u32 buf_len32 = buf_len/4; 89 u32 i; 90 91 memset(GUNZIP_BUF(bp), (u8)fill, buf_len); 92 93 for (i = 0; i < len; i += buf_len32) { 94 u32 cur_len = min(buf_len32, len - i); 95 96 bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb); 97 } 98 } 99 100 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len) 101 { 102 if (bp->dmae_ready) 103 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); 104 105 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ 106 else if (CHIP_IS_E1(bp)) 107 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); 108 109 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ 110 else 111 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); 112 } 113 114 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, 115 const u32 *data, u32 len64) 116 { 117 u32 buf_len32 = FW_BUF_SIZE/4; 118 u32 len = len64*2; 119 u64 data64 = 0; 120 u32 i; 121 122 /* 64 bit value is in a blob: first low DWORD, then high DWORD */ 123 data64 = HILO_U64((*(data + 1)), (*data)); 124 125 len64 = min((u32)(FW_BUF_SIZE/8), len64); 126 for (i = 0; i < len64; i++) { 127 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i; 128 129 *pdata = data64; 130 } 131 132 for (i = 0; i < len; i += buf_len32) { 133 u32 cur_len = min(buf_len32, len - i); 134 135 bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len); 136 } 137 } 138 139 /********************************************************* 140 There are different blobs for each PRAM section. 141 In addition, each blob write operation is divided into a few operations 142 in order to decrease the amount of phys. contiguous buffer needed. 143 Thus, when we select a blob the address may be with some offset 144 from the beginning of PRAM section. 145 The same holds for the INT_TABLE sections. 146 **********************************************************/ 147 #define IF_IS_INT_TABLE_ADDR(base, addr) \ 148 if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) 149 150 #define IF_IS_PRAM_ADDR(base, addr) \ 151 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) 152 153 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, 154 const u8 *data) 155 { 156 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) 157 data = INIT_TSEM_INT_TABLE_DATA(bp); 158 else 159 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) 160 data = INIT_CSEM_INT_TABLE_DATA(bp); 161 else 162 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) 163 data = INIT_USEM_INT_TABLE_DATA(bp); 164 else 165 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) 166 data = INIT_XSEM_INT_TABLE_DATA(bp); 167 else 168 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) 169 data = INIT_TSEM_PRAM_DATA(bp); 170 else 171 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) 172 data = INIT_CSEM_PRAM_DATA(bp); 173 else 174 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) 175 data = INIT_USEM_PRAM_DATA(bp); 176 else 177 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) 178 data = INIT_XSEM_PRAM_DATA(bp); 179 180 return data; 181 } 182 183 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, 184 const u32 *data, u32 len) 185 { 186 if (bp->dmae_ready) 187 VIRT_WR_DMAE_LEN(bp, data, addr, len, 0); 188 189 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ 190 else if (CHIP_IS_E1(bp)) 191 bnx2x_init_ind_wr(bp, addr, data, len); 192 193 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ 194 else 195 bnx2x_init_str_wr(bp, addr, data, len); 196 } 197 198 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo, 199 u32 val_hi) 200 { 201 u32 wb_write[2]; 202 203 wb_write[0] = val_lo; 204 wb_write[1] = val_hi; 205 REG_WR_DMAE_LEN(bp, reg, wb_write, 2); 206 } 207 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, 208 u32 blob_off) 209 { 210 const u8 *data = NULL; 211 int rc; 212 u32 i; 213 214 data = bnx2x_sel_blob(bp, addr, data) + blob_off*4; 215 216 rc = bnx2x_gunzip(bp, data, len); 217 if (rc) 218 return; 219 220 /* gunzip_outlen is in dwords */ 221 len = GUNZIP_OUTLEN(bp); 222 for (i = 0; i < len; i++) 223 ((u32 *)GUNZIP_BUF(bp))[i] = (__force u32) 224 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]); 225 226 bnx2x_write_big_buf_wb(bp, addr, len); 227 } 228 229 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage) 230 { 231 u16 op_start = 232 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, 233 STAGE_START)]; 234 u16 op_end = 235 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, 236 STAGE_END)]; 237 const union init_op *op; 238 u32 op_idx, op_type, addr, len; 239 const u32 *data, *data_base; 240 241 /* If empty block */ 242 if (op_start == op_end) 243 return; 244 245 data_base = INIT_DATA(bp); 246 247 for (op_idx = op_start; op_idx < op_end; op_idx++) { 248 249 op = (const union init_op *)&(INIT_OPS(bp)[op_idx]); 250 /* Get generic data */ 251 op_type = op->raw.op; 252 addr = op->raw.offset; 253 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and 254 * OP_WR64 (we assume that op_arr_write and op_write have the 255 * same structure). 256 */ 257 len = op->arr_wr.data_len; 258 data = data_base + op->arr_wr.data_off; 259 260 switch (op_type) { 261 case OP_RD: 262 REG_RD(bp, addr); 263 break; 264 case OP_WR: 265 REG_WR(bp, addr, op->write.val); 266 break; 267 case OP_SW: 268 bnx2x_init_str_wr(bp, addr, data, len); 269 break; 270 case OP_WB: 271 bnx2x_init_wr_wb(bp, addr, data, len); 272 break; 273 case OP_ZR: 274 bnx2x_init_fill(bp, addr, 0, op->zero.len, 0); 275 break; 276 case OP_WB_ZR: 277 bnx2x_init_fill(bp, addr, 0, op->zero.len, 1); 278 break; 279 case OP_ZP: 280 bnx2x_init_wr_zp(bp, addr, len, 281 op->arr_wr.data_off); 282 break; 283 case OP_WR_64: 284 bnx2x_init_wr_64(bp, addr, data, len); 285 break; 286 case OP_IF_MODE_AND: 287 /* if any of the flags doesn't match, skip the 288 * conditional block. 289 */ 290 if ((INIT_MODE_FLAGS(bp) & 291 op->if_mode.mode_bit_map) != 292 op->if_mode.mode_bit_map) 293 op_idx += op->if_mode.cmd_offset; 294 break; 295 case OP_IF_MODE_OR: 296 /* if all the flags don't match, skip the conditional 297 * block. 298 */ 299 if ((INIT_MODE_FLAGS(bp) & 300 op->if_mode.mode_bit_map) == 0) 301 op_idx += op->if_mode.cmd_offset; 302 break; 303 default: 304 /* Should never get here! */ 305 306 break; 307 } 308 } 309 } 310 311 312 /**************************************************************************** 313 * PXP Arbiter 314 ****************************************************************************/ 315 /* 316 * This code configures the PCI read/write arbiter 317 * which implements a weighted round robin 318 * between the virtual queues in the chip. 319 * 320 * The values were derived for each PCI max payload and max request size. 321 * since max payload and max request size are only known at run time, 322 * this is done as a separate init stage. 323 */ 324 325 #define NUM_WR_Q 13 326 #define NUM_RD_Q 29 327 #define MAX_RD_ORD 3 328 #define MAX_WR_ORD 2 329 330 /* configuration for one arbiter queue */ 331 struct arb_line { 332 int l; 333 int add; 334 int ubound; 335 }; 336 337 /* derived configuration for each read queue for each max request size */ 338 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { 339 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, 340 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} }, 341 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} }, 342 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} }, 343 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, 344 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, 345 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, 346 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, 347 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, 348 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 349 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 350 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 351 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 352 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 353 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 354 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 355 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} }, 356 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 357 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 358 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 359 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 360 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 361 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 362 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 363 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 364 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 365 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 366 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, 367 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } 368 }; 369 370 /* derived configuration for each write queue for each max request size */ 371 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { 372 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} }, 373 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} }, 374 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, 375 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, 376 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, 377 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, 378 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, 379 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, 380 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, 381 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} }, 382 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, 383 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} }, 384 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } 385 }; 386 387 /* register addresses for read queues */ 388 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { 389 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, 390 PXP2_REG_RQ_BW_RD_UBOUND0}, 391 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, 392 PXP2_REG_PSWRQ_BW_UB1}, 393 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, 394 PXP2_REG_PSWRQ_BW_UB2}, 395 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, 396 PXP2_REG_PSWRQ_BW_UB3}, 397 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, 398 PXP2_REG_RQ_BW_RD_UBOUND4}, 399 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, 400 PXP2_REG_RQ_BW_RD_UBOUND5}, 401 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, 402 PXP2_REG_PSWRQ_BW_UB6}, 403 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, 404 PXP2_REG_PSWRQ_BW_UB7}, 405 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, 406 PXP2_REG_PSWRQ_BW_UB8}, 407 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, 408 PXP2_REG_PSWRQ_BW_UB9}, 409 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, 410 PXP2_REG_PSWRQ_BW_UB10}, 411 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, 412 PXP2_REG_PSWRQ_BW_UB11}, 413 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, 414 PXP2_REG_RQ_BW_RD_UBOUND12}, 415 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, 416 PXP2_REG_RQ_BW_RD_UBOUND13}, 417 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, 418 PXP2_REG_RQ_BW_RD_UBOUND14}, 419 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, 420 PXP2_REG_RQ_BW_RD_UBOUND15}, 421 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, 422 PXP2_REG_RQ_BW_RD_UBOUND16}, 423 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, 424 PXP2_REG_RQ_BW_RD_UBOUND17}, 425 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, 426 PXP2_REG_RQ_BW_RD_UBOUND18}, 427 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, 428 PXP2_REG_RQ_BW_RD_UBOUND19}, 429 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, 430 PXP2_REG_RQ_BW_RD_UBOUND20}, 431 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, 432 PXP2_REG_RQ_BW_RD_UBOUND22}, 433 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, 434 PXP2_REG_RQ_BW_RD_UBOUND23}, 435 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, 436 PXP2_REG_RQ_BW_RD_UBOUND24}, 437 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, 438 PXP2_REG_RQ_BW_RD_UBOUND25}, 439 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, 440 PXP2_REG_RQ_BW_RD_UBOUND26}, 441 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, 442 PXP2_REG_RQ_BW_RD_UBOUND27}, 443 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, 444 PXP2_REG_PSWRQ_BW_UB28} 445 }; 446 447 /* register addresses for write queues */ 448 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { 449 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, 450 PXP2_REG_PSWRQ_BW_UB1}, 451 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, 452 PXP2_REG_PSWRQ_BW_UB2}, 453 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, 454 PXP2_REG_PSWRQ_BW_UB3}, 455 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, 456 PXP2_REG_PSWRQ_BW_UB6}, 457 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, 458 PXP2_REG_PSWRQ_BW_UB7}, 459 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, 460 PXP2_REG_PSWRQ_BW_UB8}, 461 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, 462 PXP2_REG_PSWRQ_BW_UB9}, 463 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, 464 PXP2_REG_PSWRQ_BW_UB10}, 465 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, 466 PXP2_REG_PSWRQ_BW_UB11}, 467 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, 468 PXP2_REG_PSWRQ_BW_UB28}, 469 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, 470 PXP2_REG_RQ_BW_WR_UBOUND29}, 471 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, 472 PXP2_REG_RQ_BW_WR_UBOUND30} 473 }; 474 475 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, 476 int w_order) 477 { 478 u32 val, i; 479 480 if (r_order > MAX_RD_ORD) { 481 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", 482 r_order, MAX_RD_ORD); 483 r_order = MAX_RD_ORD; 484 } 485 if (w_order > MAX_WR_ORD) { 486 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", 487 w_order, MAX_WR_ORD); 488 w_order = MAX_WR_ORD; 489 } 490 if (CHIP_REV_IS_FPGA(bp)) { 491 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); 492 w_order = 0; 493 } 494 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); 495 496 for (i = 0; i < NUM_RD_Q-1; i++) { 497 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); 498 REG_WR(bp, read_arb_addr[i].add, 499 read_arb_data[i][r_order].add); 500 REG_WR(bp, read_arb_addr[i].ubound, 501 read_arb_data[i][r_order].ubound); 502 } 503 504 for (i = 0; i < NUM_WR_Q-1; i++) { 505 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || 506 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { 507 508 REG_WR(bp, write_arb_addr[i].l, 509 write_arb_data[i][w_order].l); 510 511 REG_WR(bp, write_arb_addr[i].add, 512 write_arb_data[i][w_order].add); 513 514 REG_WR(bp, write_arb_addr[i].ubound, 515 write_arb_data[i][w_order].ubound); 516 } else { 517 518 val = REG_RD(bp, write_arb_addr[i].l); 519 REG_WR(bp, write_arb_addr[i].l, 520 val | (write_arb_data[i][w_order].l << 10)); 521 522 val = REG_RD(bp, write_arb_addr[i].add); 523 REG_WR(bp, write_arb_addr[i].add, 524 val | (write_arb_data[i][w_order].add << 10)); 525 526 val = REG_RD(bp, write_arb_addr[i].ubound); 527 REG_WR(bp, write_arb_addr[i].ubound, 528 val | (write_arb_data[i][w_order].ubound << 7)); 529 } 530 } 531 532 val = write_arb_data[NUM_WR_Q-1][w_order].add; 533 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; 534 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; 535 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); 536 537 val = read_arb_data[NUM_RD_Q-1][r_order].add; 538 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; 539 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; 540 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); 541 542 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); 543 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); 544 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); 545 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); 546 547 if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD)) 548 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); 549 550 if (CHIP_IS_E3(bp)) 551 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order)); 552 else if (CHIP_IS_E2(bp)) 553 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order)); 554 else 555 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); 556 557 if (!CHIP_IS_E1(bp)) { 558 /* MPS w_order optimal TH presently TH 559 * 128 0 0 2 560 * 256 1 1 3 561 * >=512 2 2 3 562 */ 563 /* DMAE is special */ 564 if (!CHIP_IS_E1H(bp)) { 565 /* E2 can use optimal TH */ 566 val = w_order; 567 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val); 568 } else { 569 val = ((w_order == 0) ? 2 : 3); 570 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); 571 } 572 573 REG_WR(bp, PXP2_REG_WR_HC_MPS, val); 574 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); 575 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); 576 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); 577 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); 578 REG_WR(bp, PXP2_REG_WR_QM_MPS, val); 579 REG_WR(bp, PXP2_REG_WR_TM_MPS, val); 580 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); 581 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); 582 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); 583 } 584 585 /* Validate number of tags suppoted by device */ 586 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980 587 val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST); 588 val &= 0xFF; 589 if (val <= 0x20) 590 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20); 591 } 592 593 /**************************************************************************** 594 * ILT management 595 ****************************************************************************/ 596 /* 597 * This codes hides the low level HW interaction for ILT management and 598 * configuration. The API consists of a shadow ILT table which is set by the 599 * driver and a set of routines to use it to configure the HW. 600 * 601 */ 602 603 /* ILT HW init operations */ 604 605 /* ILT memory management operations */ 606 #define ILT_MEMOP_ALLOC 0 607 #define ILT_MEMOP_FREE 1 608 609 /* the phys address is shifted right 12 bits and has an added 610 * 1=valid bit added to the 53rd bit 611 * then since this is a wide register(TM) 612 * we split it into two 32 bit writes 613 */ 614 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) 615 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) 616 #define ILT_RANGE(f, l) (((l) << 10) | f) 617 618 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, 619 struct ilt_line *line, u32 size, u8 memop) 620 { 621 if (memop == ILT_MEMOP_FREE) { 622 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size); 623 return 0; 624 } 625 BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size); 626 if (!line->page) 627 return -1; 628 line->size = size; 629 return 0; 630 } 631 632 633 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, 634 u8 memop) 635 { 636 int i, rc; 637 struct bnx2x_ilt *ilt = BP_ILT(bp); 638 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; 639 640 if (!ilt || !ilt->lines) 641 return -1; 642 643 if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM)) 644 return 0; 645 646 for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) { 647 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i], 648 ilt_cli->page_size, memop); 649 } 650 return rc; 651 } 652 653 static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop) 654 { 655 int rc = 0; 656 657 if (CONFIGURE_NIC_MODE(bp)) 658 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop); 659 if (!rc) 660 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop); 661 662 return rc; 663 } 664 665 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop) 666 { 667 int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop); 668 if (!rc) 669 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop); 670 if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp)) 671 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop); 672 673 return rc; 674 } 675 676 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx, 677 dma_addr_t page_mapping) 678 { 679 u32 reg; 680 681 if (CHIP_IS_E1(bp)) 682 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8; 683 else 684 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8; 685 686 bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping)); 687 } 688 689 static void bnx2x_ilt_line_init_op(struct bnx2x *bp, 690 struct bnx2x_ilt *ilt, int idx, u8 initop) 691 { 692 dma_addr_t null_mapping; 693 int abs_idx = ilt->start_line + idx; 694 695 696 switch (initop) { 697 case INITOP_INIT: 698 /* set in the init-value array */ 699 case INITOP_SET: 700 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping); 701 break; 702 case INITOP_CLEAR: 703 null_mapping = 0; 704 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping); 705 break; 706 } 707 } 708 709 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp, 710 struct ilt_client_info *ilt_cli, 711 u32 ilt_start, u8 initop) 712 { 713 u32 start_reg = 0; 714 u32 end_reg = 0; 715 716 /* The boundary is either SET or INIT, 717 CLEAR => SET and for now SET ~~ INIT */ 718 719 /* find the appropriate regs */ 720 if (CHIP_IS_E1(bp)) { 721 switch (ilt_cli->client_num) { 722 case ILT_CLIENT_CDU: 723 start_reg = PXP2_REG_PSWRQ_CDU0_L2P; 724 break; 725 case ILT_CLIENT_QM: 726 start_reg = PXP2_REG_PSWRQ_QM0_L2P; 727 break; 728 case ILT_CLIENT_SRC: 729 start_reg = PXP2_REG_PSWRQ_SRC0_L2P; 730 break; 731 case ILT_CLIENT_TM: 732 start_reg = PXP2_REG_PSWRQ_TM0_L2P; 733 break; 734 } 735 REG_WR(bp, start_reg + BP_FUNC(bp)*4, 736 ILT_RANGE((ilt_start + ilt_cli->start), 737 (ilt_start + ilt_cli->end))); 738 } else { 739 switch (ilt_cli->client_num) { 740 case ILT_CLIENT_CDU: 741 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT; 742 end_reg = PXP2_REG_RQ_CDU_LAST_ILT; 743 break; 744 case ILT_CLIENT_QM: 745 start_reg = PXP2_REG_RQ_QM_FIRST_ILT; 746 end_reg = PXP2_REG_RQ_QM_LAST_ILT; 747 break; 748 case ILT_CLIENT_SRC: 749 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT; 750 end_reg = PXP2_REG_RQ_SRC_LAST_ILT; 751 break; 752 case ILT_CLIENT_TM: 753 start_reg = PXP2_REG_RQ_TM_FIRST_ILT; 754 end_reg = PXP2_REG_RQ_TM_LAST_ILT; 755 break; 756 } 757 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start)); 758 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end)); 759 } 760 } 761 762 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp, 763 struct bnx2x_ilt *ilt, 764 struct ilt_client_info *ilt_cli, 765 u8 initop) 766 { 767 int i; 768 769 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) 770 return; 771 772 for (i = ilt_cli->start; i <= ilt_cli->end; i++) 773 bnx2x_ilt_line_init_op(bp, ilt, i, initop); 774 775 /* init/clear the ILT boundries */ 776 bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop); 777 } 778 779 static void bnx2x_ilt_client_init_op(struct bnx2x *bp, 780 struct ilt_client_info *ilt_cli, u8 initop) 781 { 782 struct bnx2x_ilt *ilt = BP_ILT(bp); 783 784 bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop); 785 } 786 787 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp, 788 int cli_num, u8 initop) 789 { 790 struct bnx2x_ilt *ilt = BP_ILT(bp); 791 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; 792 793 bnx2x_ilt_client_init_op(bp, ilt_cli, initop); 794 } 795 796 static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop) 797 { 798 if (CONFIGURE_NIC_MODE(bp)) 799 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop); 800 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop); 801 } 802 803 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop) 804 { 805 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop); 806 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop); 807 if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp)) 808 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop); 809 } 810 811 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num, 812 u32 psz_reg, u8 initop) 813 { 814 struct bnx2x_ilt *ilt = BP_ILT(bp); 815 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; 816 817 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) 818 return; 819 820 switch (initop) { 821 case INITOP_INIT: 822 /* set in the init-value array */ 823 case INITOP_SET: 824 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12)); 825 break; 826 case INITOP_CLEAR: 827 break; 828 } 829 } 830 831 /* 832 * called during init common stage, ilt clients should be initialized 833 * prioir to calling this function 834 */ 835 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop) 836 { 837 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU, 838 PXP2_REG_RQ_CDU_P_SIZE, initop); 839 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM, 840 PXP2_REG_RQ_QM_P_SIZE, initop); 841 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC, 842 PXP2_REG_RQ_SRC_P_SIZE, initop); 843 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM, 844 PXP2_REG_RQ_TM_P_SIZE, initop); 845 } 846 847 /**************************************************************************** 848 * QM initializations 849 ****************************************************************************/ 850 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */ 851 #define QM_INIT_MIN_CID_COUNT 31 852 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT) 853 854 /* called during init port stage */ 855 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count, 856 u8 initop) 857 { 858 int port = BP_PORT(bp); 859 860 if (QM_INIT(qm_cid_count)) { 861 switch (initop) { 862 case INITOP_INIT: 863 /* set in the init-value array */ 864 case INITOP_SET: 865 REG_WR(bp, QM_REG_CONNNUM_0 + port*4, 866 qm_cid_count/16 - 1); 867 break; 868 case INITOP_CLEAR: 869 break; 870 } 871 } 872 } 873 874 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count, 875 u32 base_reg, u32 reg) 876 { 877 int i; 878 u32 wb_data[2] = {0, 0}; 879 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) { 880 REG_WR(bp, base_reg + i*4, 881 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC)); 882 bnx2x_init_wr_wb(bp, reg + i*8, wb_data, 2); 883 } 884 } 885 886 /* called during init common stage */ 887 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count, 888 u8 initop) 889 { 890 if (!QM_INIT(qm_cid_count)) 891 return; 892 893 switch (initop) { 894 case INITOP_INIT: 895 /* set in the init-value array */ 896 case INITOP_SET: 897 bnx2x_qm_set_ptr_table(bp, qm_cid_count, 898 QM_REG_BASEADDR, QM_REG_PTRTBL); 899 if (CHIP_IS_E1H(bp)) 900 bnx2x_qm_set_ptr_table(bp, qm_cid_count, 901 QM_REG_BASEADDR_EXT_A, 902 QM_REG_PTRTBL_EXT_A); 903 break; 904 case INITOP_CLEAR: 905 break; 906 } 907 } 908 909 /**************************************************************************** 910 * SRC initializations 911 ****************************************************************************/ 912 /* called during init func stage */ 913 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2, 914 dma_addr_t t2_mapping, int src_cid_count) 915 { 916 int i; 917 int port = BP_PORT(bp); 918 919 /* Initialize T2 */ 920 for (i = 0; i < src_cid_count-1; i++) 921 t2[i].next = (u64)(t2_mapping + 922 (i+1)*sizeof(struct src_ent)); 923 924 /* tell the searcher where the T2 table is */ 925 REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count); 926 927 bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16, 928 U64_LO(t2_mapping), U64_HI(t2_mapping)); 929 930 bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16, 931 U64_LO((u64)t2_mapping + 932 (src_cid_count-1) * sizeof(struct src_ent)), 933 U64_HI((u64)t2_mapping + 934 (src_cid_count-1) * sizeof(struct src_ent))); 935 } 936 #endif /* BNX2X_INIT_OPS_H */ 937