1 /* bnx2x_init.h: Broadcom Everest network driver.
2  *               Structures and macroes needed during the initialization.
3  *
4  * Copyright (c) 2007-2013 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  *
10  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
11  * Written by: Eliezer Tamir
12  * Modified by: Vladislav Zolotarov
13  */
14 
15 #ifndef BNX2X_INIT_H
16 #define BNX2X_INIT_H
17 
18 /* Init operation types and structures */
19 enum {
20 	OP_RD = 0x1,	/* read a single register */
21 	OP_WR,		/* write a single register */
22 	OP_SW,		/* copy a string to the device */
23 	OP_ZR,		/* clear memory */
24 	OP_ZP,		/* unzip then copy with DMAE */
25 	OP_WR_64,	/* write 64 bit pattern */
26 	OP_WB,		/* copy a string using DMAE */
27 	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
28 	/* Skip the following ops if all of the init modes don't match */
29 	OP_IF_MODE_OR,
30 	/* Skip the following ops if any of the init modes don't match */
31 	OP_IF_MODE_AND,
32 	OP_MAX
33 };
34 
35 enum {
36 	STAGE_START,
37 	STAGE_END,
38 };
39 
40 /* Returns the index of start or end of a specific block stage in ops array*/
41 #define BLOCK_OPS_IDX(block, stage, end) \
42 	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
43 
44 
45 /* structs for the various opcodes */
46 struct raw_op {
47 	u32 op:8;
48 	u32 offset:24;
49 	u32 raw_data;
50 };
51 
52 struct op_read {
53 	u32 op:8;
54 	u32 offset:24;
55 	u32 val;
56 };
57 
58 struct op_write {
59 	u32 op:8;
60 	u32 offset:24;
61 	u32 val;
62 };
63 
64 struct op_arr_write {
65 	u32 op:8;
66 	u32 offset:24;
67 #ifdef __BIG_ENDIAN
68 	u16 data_len;
69 	u16 data_off;
70 #else /* __LITTLE_ENDIAN */
71 	u16 data_off;
72 	u16 data_len;
73 #endif
74 };
75 
76 struct op_zero {
77 	u32 op:8;
78 	u32 offset:24;
79 	u32 len;
80 };
81 
82 struct op_if_mode {
83 	u32 op:8;
84 	u32 cmd_offset:24;
85 	u32 mode_bit_map;
86 };
87 
88 
89 union init_op {
90 	struct op_read		read;
91 	struct op_write		write;
92 	struct op_arr_write	arr_wr;
93 	struct op_zero		zero;
94 	struct raw_op		raw;
95 	struct op_if_mode	if_mode;
96 };
97 
98 
99 /* Init Phases */
100 enum {
101 	PHASE_COMMON,
102 	PHASE_PORT0,
103 	PHASE_PORT1,
104 	PHASE_PF0,
105 	PHASE_PF1,
106 	PHASE_PF2,
107 	PHASE_PF3,
108 	PHASE_PF4,
109 	PHASE_PF5,
110 	PHASE_PF6,
111 	PHASE_PF7,
112 	NUM_OF_INIT_PHASES
113 };
114 
115 /* Init Modes */
116 enum {
117 	MODE_ASIC                      = 0x00000001,
118 	MODE_FPGA                      = 0x00000002,
119 	MODE_EMUL                      = 0x00000004,
120 	MODE_E2                        = 0x00000008,
121 	MODE_E3                        = 0x00000010,
122 	MODE_PORT2                     = 0x00000020,
123 	MODE_PORT4                     = 0x00000040,
124 	MODE_SF                        = 0x00000080,
125 	MODE_MF                        = 0x00000100,
126 	MODE_MF_SD                     = 0x00000200,
127 	MODE_MF_SI                     = 0x00000400,
128 	MODE_MF_AFEX                   = 0x00000800,
129 	MODE_E3_A0                     = 0x00001000,
130 	MODE_E3_B0                     = 0x00002000,
131 	MODE_COS3                      = 0x00004000,
132 	MODE_COS6                      = 0x00008000,
133 	MODE_LITTLE_ENDIAN             = 0x00010000,
134 	MODE_BIG_ENDIAN                = 0x00020000,
135 };
136 
137 /* Init Blocks */
138 enum {
139 	BLOCK_ATC,
140 	BLOCK_BRB1,
141 	BLOCK_CCM,
142 	BLOCK_CDU,
143 	BLOCK_CFC,
144 	BLOCK_CSDM,
145 	BLOCK_CSEM,
146 	BLOCK_DBG,
147 	BLOCK_DMAE,
148 	BLOCK_DORQ,
149 	BLOCK_HC,
150 	BLOCK_IGU,
151 	BLOCK_MISC,
152 	BLOCK_NIG,
153 	BLOCK_PBF,
154 	BLOCK_PGLUE_B,
155 	BLOCK_PRS,
156 	BLOCK_PXP2,
157 	BLOCK_PXP,
158 	BLOCK_QM,
159 	BLOCK_SRC,
160 	BLOCK_TCM,
161 	BLOCK_TM,
162 	BLOCK_TSDM,
163 	BLOCK_TSEM,
164 	BLOCK_UCM,
165 	BLOCK_UPB,
166 	BLOCK_USDM,
167 	BLOCK_USEM,
168 	BLOCK_XCM,
169 	BLOCK_XPB,
170 	BLOCK_XSDM,
171 	BLOCK_XSEM,
172 	BLOCK_MISC_AEU,
173 	NUM_OF_INIT_BLOCKS
174 };
175 
176 /* QM queue numbers */
177 #define BNX2X_ETH_Q		0
178 #define BNX2X_TOE_Q		3
179 #define BNX2X_TOE_ACK_Q		6
180 #define BNX2X_ISCSI_Q		9
181 #define BNX2X_ISCSI_ACK_Q	11
182 #define BNX2X_FCOE_Q		10
183 
184 /* Vnics per mode */
185 #define BNX2X_PORT2_MODE_NUM_VNICS 4
186 #define BNX2X_PORT4_MODE_NUM_VNICS 2
187 
188 /* COS offset for port1 in E3 B0 4port mode */
189 #define BNX2X_E3B0_PORT1_COS_OFFSET 3
190 
191 /* QM Register addresses */
192 #define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
193 	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
194 #define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
195 	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
196 #define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
197 	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
198 
199 /* extracts the QM queue number for the specified port and vnic */
200 #define BNX2X_PF_Q_NUM(q_num, port, vnic)\
201 	((((port) << 1) | (vnic)) * 16 + (q_num))
202 
203 
204 /* Maps the specified queue to the specified COS */
205 static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
206 {
207 	/* find current COS mapping */
208 	u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
209 
210 	/* check if queue->COS mapping has changed */
211 	if (curr_cos != new_cos) {
212 		u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
213 		u32 reg_addr, reg_bit_map, vnic;
214 
215 		/* update parameters for 4port mode */
216 		if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
217 			num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
218 			if (BP_PORT(bp)) {
219 				curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
220 				new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
221 			}
222 		}
223 
224 		/* change queue mapping for each VNIC */
225 		for (vnic = 0; vnic < num_vnics; vnic++) {
226 			u32 pf_q_num =
227 				BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
228 			u32 q_bit_map = 1 << (pf_q_num & 0x1f);
229 
230 			/* overwrite queue->VOQ mapping */
231 			REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
232 
233 			/* clear queue bit from current COS bit map */
234 			reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
235 			reg_bit_map = REG_RD(bp, reg_addr);
236 			REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
237 
238 			/* set queue bit in new COS bit map */
239 			reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
240 			reg_bit_map = REG_RD(bp, reg_addr);
241 			REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
242 
243 			/* set/clear queue bit in command-queue bit map
244 			 * (E2/E3A0 only, valid COS values are 0/1)
245 			 */
246 			if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
247 				reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
248 				reg_bit_map = REG_RD(bp, reg_addr);
249 				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
250 				reg_bit_map = new_cos ?
251 					      (reg_bit_map | q_bit_map) :
252 					      (reg_bit_map & (~q_bit_map));
253 				REG_WR(bp, reg_addr, reg_bit_map);
254 			}
255 		}
256 	}
257 }
258 
259 /* Configures the QM according to the specified per-traffic-type COSes */
260 static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
261 				       struct priority_cos *traffic_cos)
262 {
263 	bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
264 			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
265 	bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
266 			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
267 	bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
268 		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
269 	if (mode != STATIC_COS) {
270 		/* required only in backward compatible COS mode */
271 		bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
272 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
273 		bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
274 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
275 		bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
276 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
277 	}
278 }
279 
280 
281 /* congestion management port init api description
282  * the api works as follows:
283  * the driver should pass the cmng_init_input struct, the port_init function
284  * will prepare the required internal ram structure which will be passed back
285  * to the driver (cmng_init) that will write it into the internal ram.
286  *
287  * IMPORTANT REMARKS:
288  * 1. the cmng_init struct does not represent the contiguous internal ram
289  *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
290  *    offset in order to write the port sub struct and the
291  *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
292  *    words - don't use memcpy!).
293  * 2. although the cmng_init struct is filled for the maximal vnic number
294  *    possible, the driver should only write the valid vnics into the internal
295  *    ram according to the appropriate port mode.
296  */
297 #define BITS_TO_BYTES(x) ((x)/8)
298 
299 /* CMNG constants, as derived from system spec calculations */
300 
301 /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
302 #define DEF_MIN_RATE 100
303 
304 /* resolution of the rate shaping timer - 400 usec */
305 #define RS_PERIODIC_TIMEOUT_USEC 400
306 
307 /* number of bytes in single QM arbitration cycle -
308  * coefficient for calculating the fairness timer
309  */
310 #define QM_ARB_BYTES 160000
311 
312 /* resolution of Min algorithm 1:100 */
313 #define MIN_RES 100
314 
315 /* how many bytes above threshold for
316  * the minimal credit of Min algorithm
317  */
318 #define MIN_ABOVE_THRESH 32768
319 
320 /* Fairness algorithm integration time coefficient -
321  * for calculating the actual Tfair
322  */
323 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
324 
325 /* Memory of fairness algorithm - 2 cycles */
326 #define FAIR_MEM 2
327 #define SAFC_TIMEOUT_USEC 52
328 
329 #define SDM_TICKS 4
330 
331 
332 static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
333 				  u32 r_param, struct cmng_init *ram_data)
334 {
335 	u32 vnic;
336 	struct cmng_vnic *vdata = &ram_data->vnic;
337 	struct cmng_struct_per_port *pdata = &ram_data->port;
338 	/* rate shaping per-port variables
339 	 * 100 micro seconds in SDM ticks = 25
340 	 * since each tick is 4 microSeconds
341 	 */
342 
343 	pdata->rs_vars.rs_periodic_timeout =
344 	RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
345 
346 	/* this is the threshold below which no timer arming will occur.
347 	 * 1.25 coefficient is for the threshold to be a little bigger
348 	 * then the real time to compensate for timer in-accuracy
349 	 */
350 	pdata->rs_vars.rs_threshold =
351 	(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
352 
353 	/* rate shaping per-vnic variables */
354 	for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
355 		/* global vnic counter */
356 		vdata->vnic_max_rate[vnic].vn_counter.rate =
357 		input_data->vnic_max_rate[vnic];
358 		/* maximal Mbps for this vnic
359 		 * the quota in each timer period - number of bytes
360 		 * transmitted in this period
361 		 */
362 		vdata->vnic_max_rate[vnic].vn_counter.quota =
363 			RS_PERIODIC_TIMEOUT_USEC *
364 			(u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
365 	}
366 
367 }
368 
369 static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
370 				  u32 r_param, struct cmng_init *ram_data)
371 {
372 	u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
373 	struct cmng_vnic *vdata = &ram_data->vnic;
374 	struct cmng_struct_per_port *pdata = &ram_data->port;
375 
376 	/* this is the resolution of the fairness timer */
377 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
378 
379 	/* fairness per-port variables
380 	 * for 10G it is 1000usec. for 1G it is 10000usec.
381 	 */
382 	tFair = T_FAIR_COEF / input_data->port_rate;
383 
384 	/* this is the threshold below which we won't arm the timer anymore */
385 	pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
386 
387 	/* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
388 	 * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
389 	 */
390 	pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
391 
392 	/* since each tick is 4 microSeconds */
393 	pdata->fair_vars.fairness_timeout =
394 				fair_periodic_timeout_usec / SDM_TICKS;
395 
396 	/* calculate sum of weights */
397 	vnicWeightSum = 0;
398 
399 	for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
400 		vnicWeightSum += input_data->vnic_min_rate[vnic];
401 
402 	/* global vnic counter */
403 	if (vnicWeightSum > 0) {
404 		/* fairness per-vnic variables */
405 		for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
406 			/* this is the credit for each period of the fairness
407 			 * algorithm - number of bytes in T_FAIR (this vnic
408 			 * share of the port rate)
409 			 */
410 			vdata->vnic_min_rate[vnic].vn_credit_delta =
411 				(u32)input_data->vnic_min_rate[vnic] * 100 *
412 				(T_FAIR_COEF / (8 * 100 * vnicWeightSum));
413 			if (vdata->vnic_min_rate[vnic].vn_credit_delta <
414 			    pdata->fair_vars.fair_threshold +
415 			    MIN_ABOVE_THRESH) {
416 				vdata->vnic_min_rate[vnic].vn_credit_delta =
417 					pdata->fair_vars.fair_threshold +
418 					MIN_ABOVE_THRESH;
419 			}
420 		}
421 	}
422 }
423 
424 static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
425 				     u32 r_param, struct cmng_init *ram_data)
426 {
427 	u32 vnic, cos;
428 	u32 cosWeightSum = 0;
429 	struct cmng_vnic *vdata = &ram_data->vnic;
430 	struct cmng_struct_per_port *pdata = &ram_data->port;
431 
432 	for (cos = 0; cos < MAX_COS_NUMBER; cos++)
433 		cosWeightSum += input_data->cos_min_rate[cos];
434 
435 	if (cosWeightSum > 0) {
436 
437 		for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
438 			/* Since cos and vnic shouldn't work together the rate
439 			 * to divide between the coses is the port rate.
440 			 */
441 			u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
442 			for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
443 				/* this is the credit for each period of
444 				 * the fairness algorithm - number of bytes
445 				 * in T_FAIR (this cos share of the vnic rate)
446 				 */
447 				ccd[cos] =
448 				    (u32)input_data->cos_min_rate[cos] * 100 *
449 				    (T_FAIR_COEF / (8 * 100 * cosWeightSum));
450 				 if (ccd[cos] < pdata->fair_vars.fair_threshold
451 						+ MIN_ABOVE_THRESH) {
452 					ccd[cos] =
453 					    pdata->fair_vars.fair_threshold +
454 					    MIN_ABOVE_THRESH;
455 				}
456 			}
457 		}
458 	}
459 }
460 
461 static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
462 				   struct cmng_init *ram_data)
463 {
464 	/* in microSeconds */
465 	ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
466 }
467 
468 /* Congestion management port init */
469 static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
470 				   struct cmng_init *ram_data)
471 {
472 	u32 r_param;
473 	memset(ram_data, 0, sizeof(struct cmng_init));
474 
475 	ram_data->port.flags = input_data->flags;
476 
477 	/* number of bytes transmitted in a rate of 10Gbps
478 	 * in one usec = 1.25KB.
479 	 */
480 	r_param = BITS_TO_BYTES(input_data->port_rate);
481 	bnx2x_init_max(input_data, r_param, ram_data);
482 	bnx2x_init_min(input_data, r_param, ram_data);
483 	bnx2x_init_fw_wrr(input_data, r_param, ram_data);
484 	bnx2x_init_safc(input_data, ram_data);
485 }
486 
487 
488 
489 /* Returns the index of start or end of a specific block stage in ops array */
490 #define BLOCK_OPS_IDX(block, stage, end) \
491 			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
492 
493 
494 #define INITOP_SET		0	/* set the HW directly */
495 #define INITOP_CLEAR		1	/* clear the HW directly */
496 #define INITOP_INIT		2	/* set the init-value array */
497 
498 /****************************************************************************
499 * ILT management
500 ****************************************************************************/
501 struct ilt_line {
502 	dma_addr_t page_mapping;
503 	void *page;
504 	u32 size;
505 };
506 
507 struct ilt_client_info {
508 	u32 page_size;
509 	u16 start;
510 	u16 end;
511 	u16 client_num;
512 	u16 flags;
513 #define ILT_CLIENT_SKIP_INIT	0x1
514 #define ILT_CLIENT_SKIP_MEM	0x2
515 };
516 
517 struct bnx2x_ilt {
518 	u32 start_line;
519 	struct ilt_line		*lines;
520 	struct ilt_client_info	clients[4];
521 #define ILT_CLIENT_CDU	0
522 #define ILT_CLIENT_QM	1
523 #define ILT_CLIENT_SRC	2
524 #define ILT_CLIENT_TM	3
525 };
526 
527 /****************************************************************************
528 * SRC configuration
529 ****************************************************************************/
530 struct src_ent {
531 	u8 opaque[56];
532 	u64 next;
533 };
534 
535 /****************************************************************************
536 * Parity configuration
537 ****************************************************************************/
538 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
539 { \
540 	block##_REG_##block##_PRTY_MASK, \
541 	block##_REG_##block##_PRTY_STS_CLR, \
542 	en_mask, {m1, m1h, m2, m3}, #block \
543 }
544 
545 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
546 { \
547 	block##_REG_##block##_PRTY_MASK_0, \
548 	block##_REG_##block##_PRTY_STS_CLR_0, \
549 	en_mask, {m1, m1h, m2, m3}, #block"_0" \
550 }
551 
552 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
553 { \
554 	block##_REG_##block##_PRTY_MASK_1, \
555 	block##_REG_##block##_PRTY_STS_CLR_1, \
556 	en_mask, {m1, m1h, m2, m3}, #block"_1" \
557 }
558 
559 static const struct {
560 	u32 mask_addr;
561 	u32 sts_clr_addr;
562 	u32 en_mask;		/* Mask to enable parity attentions */
563 	struct {
564 		u32 e1;		/* 57710 */
565 		u32 e1h;	/* 57711 */
566 		u32 e2;		/* 57712 */
567 		u32 e3;		/* 578xx */
568 	} reg_mask;		/* Register mask (all valid bits) */
569 	char name[8];		/* Block's longest name is 7 characters long
570 				 * (name + suffix)
571 				 */
572 } bnx2x_blocks_parity_data[] = {
573 	/* bit 19 masked */
574 	/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
575 	/* bit 5,18,20-31 */
576 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
577 	/* bit 5 */
578 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
579 	/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
580 	/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
581 
582 	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
583 	 * want to handle "system kill" flow at the moment.
584 	 */
585 	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
586 			0x7ffffff),
587 	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
588 			  0xffffffff),
589 	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
590 	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
591 	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
592 	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
593 	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff),
594 	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
595 	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
596 	BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
597 	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
598 	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
599 	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
600 	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
601 		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
602 		{0xf, 0xf, 0xf, 0xf}, "UPB"},
603 	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
604 		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
605 		{0xf, 0xf, 0xf, 0xf}, "XPB"},
606 	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
607 	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
608 	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
609 	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
610 	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
611 	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
612 	BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
613 	BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
614 	BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
615 	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
616 	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
617 	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
618 	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
619 	BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
620 	BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
621 	BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
622 	BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
623 	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
624 			  0xffffffff),
625 	BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
626 	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
627 			  0xffffffff),
628 	BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
629 	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
630 			  0xffffffff),
631 	BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
632 	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
633 			  0xffffffff),
634 	BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
635 };
636 
637 
638 /* [28] MCP Latched rom_parity
639  * [29] MCP Latched ump_rx_parity
640  * [30] MCP Latched ump_tx_parity
641  * [31] MCP Latched scpad_parity
642  */
643 #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS	\
644 	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
645 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
646 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
647 
648 #define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
649 	(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
650 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
651 
652 /* Below registers control the MCP parity attention output. When
653  * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
654  * enabled, when cleared - disabled.
655  */
656 static const struct {
657 	u32 addr;
658 	u32 bits;
659 } mcp_attn_ctl_regs[] = {
660 	{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
661 		MISC_AEU_ENABLE_MCP_PRTY_BITS },
662 	{ MISC_REG_AEU_ENABLE4_NIG_0,
663 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
664 	{ MISC_REG_AEU_ENABLE4_PXP_0,
665 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
666 	{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
667 		MISC_AEU_ENABLE_MCP_PRTY_BITS },
668 	{ MISC_REG_AEU_ENABLE4_NIG_1,
669 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
670 	{ MISC_REG_AEU_ENABLE4_PXP_1,
671 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
672 };
673 
674 static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
675 {
676 	int i;
677 	u32 reg_val;
678 
679 	for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
680 		reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
681 
682 		if (enable)
683 			reg_val |= mcp_attn_ctl_regs[i].bits;
684 		else
685 			reg_val &= ~mcp_attn_ctl_regs[i].bits;
686 
687 		REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
688 	}
689 }
690 
691 static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
692 {
693 	if (CHIP_IS_E1(bp))
694 		return bnx2x_blocks_parity_data[idx].reg_mask.e1;
695 	else if (CHIP_IS_E1H(bp))
696 		return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
697 	else if (CHIP_IS_E2(bp))
698 		return bnx2x_blocks_parity_data[idx].reg_mask.e2;
699 	else /* CHIP_IS_E3 */
700 		return bnx2x_blocks_parity_data[idx].reg_mask.e3;
701 }
702 
703 static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
704 {
705 	int i;
706 
707 	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
708 		u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
709 
710 		if (dis_mask) {
711 			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
712 			       dis_mask);
713 			DP(NETIF_MSG_HW, "Setting parity mask "
714 						 "for %s to\t\t0x%x\n",
715 				    bnx2x_blocks_parity_data[i].name, dis_mask);
716 		}
717 	}
718 
719 	/* Disable MCP parity attentions */
720 	bnx2x_set_mcp_parity(bp, false);
721 }
722 
723 /* Clear the parity error status registers. */
724 static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
725 {
726 	int i;
727 	u32 reg_val, mcp_aeu_bits =
728 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
729 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
730 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
731 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
732 
733 	/* Clear SEM_FAST parities */
734 	REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
735 	REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
736 	REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
737 	REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
738 
739 	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
740 		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
741 
742 		if (reg_mask) {
743 			reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
744 					 sts_clr_addr);
745 			if (reg_val & reg_mask)
746 				DP(NETIF_MSG_HW,
747 					    "Parity errors in %s: 0x%x\n",
748 					    bnx2x_blocks_parity_data[i].name,
749 					    reg_val & reg_mask);
750 		}
751 	}
752 
753 	/* Check if there were parity attentions in MCP */
754 	reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
755 	if (reg_val & mcp_aeu_bits)
756 		DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
757 		   reg_val & mcp_aeu_bits);
758 
759 	/* Clear parity attentions in MCP:
760 	 * [7]  clears Latched rom_parity
761 	 * [8]  clears Latched ump_rx_parity
762 	 * [9]  clears Latched ump_tx_parity
763 	 * [10] clears Latched scpad_parity (both ports)
764 	 */
765 	REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
766 }
767 
768 static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
769 {
770 	int i;
771 
772 	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
773 		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
774 
775 		if (reg_mask)
776 			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
777 				bnx2x_blocks_parity_data[i].en_mask & reg_mask);
778 	}
779 
780 	/* Enable MCP parity attentions */
781 	bnx2x_set_mcp_parity(bp, true);
782 }
783 
784 
785 #endif /* BNX2X_INIT_H */
786 
787