1 /* bnx2x_init.h: Broadcom Everest network driver. 2 * Structures and macroes needed during the initialization. 3 * 4 * Copyright (c) 2007-2012 Broadcom Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 * 10 * Maintained by: Eilon Greenstein <eilong@broadcom.com> 11 * Written by: Eliezer Tamir 12 * Modified by: Vladislav Zolotarov <vladz@broadcom.com> 13 */ 14 15 #ifndef BNX2X_INIT_H 16 #define BNX2X_INIT_H 17 18 /* Init operation types and structures */ 19 enum { 20 OP_RD = 0x1, /* read a single register */ 21 OP_WR, /* write a single register */ 22 OP_SW, /* copy a string to the device */ 23 OP_ZR, /* clear memory */ 24 OP_ZP, /* unzip then copy with DMAE */ 25 OP_WR_64, /* write 64 bit pattern */ 26 OP_WB, /* copy a string using DMAE */ 27 OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */ 28 /* Skip the following ops if all of the init modes don't match */ 29 OP_IF_MODE_OR, 30 /* Skip the following ops if any of the init modes don't match */ 31 OP_IF_MODE_AND, 32 OP_MAX 33 }; 34 35 enum { 36 STAGE_START, 37 STAGE_END, 38 }; 39 40 /* Returns the index of start or end of a specific block stage in ops array*/ 41 #define BLOCK_OPS_IDX(block, stage, end) \ 42 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) 43 44 45 /* structs for the various opcodes */ 46 struct raw_op { 47 u32 op:8; 48 u32 offset:24; 49 u32 raw_data; 50 }; 51 52 struct op_read { 53 u32 op:8; 54 u32 offset:24; 55 u32 val; 56 }; 57 58 struct op_write { 59 u32 op:8; 60 u32 offset:24; 61 u32 val; 62 }; 63 64 struct op_arr_write { 65 u32 op:8; 66 u32 offset:24; 67 #ifdef __BIG_ENDIAN 68 u16 data_len; 69 u16 data_off; 70 #else /* __LITTLE_ENDIAN */ 71 u16 data_off; 72 u16 data_len; 73 #endif 74 }; 75 76 struct op_zero { 77 u32 op:8; 78 u32 offset:24; 79 u32 len; 80 }; 81 82 struct op_if_mode { 83 u32 op:8; 84 u32 cmd_offset:24; 85 u32 mode_bit_map; 86 }; 87 88 89 union init_op { 90 struct op_read read; 91 struct op_write write; 92 struct op_arr_write arr_wr; 93 struct op_zero zero; 94 struct raw_op raw; 95 struct op_if_mode if_mode; 96 }; 97 98 99 /* Init Phases */ 100 enum { 101 PHASE_COMMON, 102 PHASE_PORT0, 103 PHASE_PORT1, 104 PHASE_PF0, 105 PHASE_PF1, 106 PHASE_PF2, 107 PHASE_PF3, 108 PHASE_PF4, 109 PHASE_PF5, 110 PHASE_PF6, 111 PHASE_PF7, 112 NUM_OF_INIT_PHASES 113 }; 114 115 /* Init Modes */ 116 enum { 117 MODE_ASIC = 0x00000001, 118 MODE_FPGA = 0x00000002, 119 MODE_EMUL = 0x00000004, 120 MODE_E2 = 0x00000008, 121 MODE_E3 = 0x00000010, 122 MODE_PORT2 = 0x00000020, 123 MODE_PORT4 = 0x00000040, 124 MODE_SF = 0x00000080, 125 MODE_MF = 0x00000100, 126 MODE_MF_SD = 0x00000200, 127 MODE_MF_SI = 0x00000400, 128 MODE_MF_NIV = 0x00000800, 129 MODE_E3_A0 = 0x00001000, 130 MODE_E3_B0 = 0x00002000, 131 MODE_COS3 = 0x00004000, 132 MODE_COS6 = 0x00008000, 133 MODE_LITTLE_ENDIAN = 0x00010000, 134 MODE_BIG_ENDIAN = 0x00020000, 135 }; 136 137 /* Init Blocks */ 138 enum { 139 BLOCK_ATC, 140 BLOCK_BRB1, 141 BLOCK_CCM, 142 BLOCK_CDU, 143 BLOCK_CFC, 144 BLOCK_CSDM, 145 BLOCK_CSEM, 146 BLOCK_DBG, 147 BLOCK_DMAE, 148 BLOCK_DORQ, 149 BLOCK_HC, 150 BLOCK_IGU, 151 BLOCK_MISC, 152 BLOCK_NIG, 153 BLOCK_PBF, 154 BLOCK_PGLUE_B, 155 BLOCK_PRS, 156 BLOCK_PXP2, 157 BLOCK_PXP, 158 BLOCK_QM, 159 BLOCK_SRC, 160 BLOCK_TCM, 161 BLOCK_TM, 162 BLOCK_TSDM, 163 BLOCK_TSEM, 164 BLOCK_UCM, 165 BLOCK_UPB, 166 BLOCK_USDM, 167 BLOCK_USEM, 168 BLOCK_XCM, 169 BLOCK_XPB, 170 BLOCK_XSDM, 171 BLOCK_XSEM, 172 BLOCK_MISC_AEU, 173 NUM_OF_INIT_BLOCKS 174 }; 175 176 /* QM queue numbers */ 177 #define BNX2X_ETH_Q 0 178 #define BNX2X_TOE_Q 3 179 #define BNX2X_TOE_ACK_Q 6 180 #define BNX2X_ISCSI_Q 9 181 #define BNX2X_ISCSI_ACK_Q 11 182 #define BNX2X_FCOE_Q 10 183 184 /* Vnics per mode */ 185 #define BNX2X_PORT2_MODE_NUM_VNICS 4 186 #define BNX2X_PORT4_MODE_NUM_VNICS 2 187 188 /* COS offset for port1 in E3 B0 4port mode */ 189 #define BNX2X_E3B0_PORT1_COS_OFFSET 3 190 191 /* QM Register addresses */ 192 #define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\ 193 (QM_REG_QVOQIDX_0 + 4 * (pf_q_num)) 194 #define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\ 195 (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5))) 196 #define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\ 197 (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4)) 198 199 /* extracts the QM queue number for the specified port and vnic */ 200 #define BNX2X_PF_Q_NUM(q_num, port, vnic)\ 201 ((((port) << 1) | (vnic)) * 16 + (q_num)) 202 203 204 /* Maps the specified queue to the specified COS */ 205 static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos) 206 { 207 /* find current COS mapping */ 208 u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4); 209 210 /* check if queue->COS mapping has changed */ 211 if (curr_cos != new_cos) { 212 u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS; 213 u32 reg_addr, reg_bit_map, vnic; 214 215 /* update parameters for 4port mode */ 216 if (INIT_MODE_FLAGS(bp) & MODE_PORT4) { 217 num_vnics = BNX2X_PORT4_MODE_NUM_VNICS; 218 if (BP_PORT(bp)) { 219 curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET; 220 new_cos += BNX2X_E3B0_PORT1_COS_OFFSET; 221 } 222 } 223 224 /* change queue mapping for each VNIC */ 225 for (vnic = 0; vnic < num_vnics; vnic++) { 226 u32 pf_q_num = 227 BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic); 228 u32 q_bit_map = 1 << (pf_q_num & 0x1f); 229 230 /* overwrite queue->VOQ mapping */ 231 REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos); 232 233 /* clear queue bit from current COS bit map */ 234 reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num); 235 reg_bit_map = REG_RD(bp, reg_addr); 236 REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map)); 237 238 /* set queue bit in new COS bit map */ 239 reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num); 240 reg_bit_map = REG_RD(bp, reg_addr); 241 REG_WR(bp, reg_addr, reg_bit_map | q_bit_map); 242 243 /* set/clear queue bit in command-queue bit map 244 (E2/E3A0 only, valid COS values are 0/1) */ 245 if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) { 246 reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num); 247 reg_bit_map = REG_RD(bp, reg_addr); 248 q_bit_map = 1 << (2 * (pf_q_num & 0xf)); 249 reg_bit_map = new_cos ? 250 (reg_bit_map | q_bit_map) : 251 (reg_bit_map & (~q_bit_map)); 252 REG_WR(bp, reg_addr, reg_bit_map); 253 } 254 } 255 } 256 } 257 258 /* Configures the QM according to the specified per-traffic-type COSes */ 259 static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode, 260 struct priority_cos *traffic_cos) 261 { 262 bnx2x_map_q_cos(bp, BNX2X_FCOE_Q, 263 traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos); 264 bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q, 265 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); 266 bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q, 267 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); 268 if (mode != STATIC_COS) { 269 /* required only in backward compatible COS mode */ 270 bnx2x_map_q_cos(bp, BNX2X_ETH_Q, 271 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); 272 bnx2x_map_q_cos(bp, BNX2X_TOE_Q, 273 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); 274 bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q, 275 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); 276 } 277 } 278 279 280 /* Returns the index of start or end of a specific block stage in ops array*/ 281 #define BLOCK_OPS_IDX(block, stage, end) \ 282 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) 283 284 285 #define INITOP_SET 0 /* set the HW directly */ 286 #define INITOP_CLEAR 1 /* clear the HW directly */ 287 #define INITOP_INIT 2 /* set the init-value array */ 288 289 /**************************************************************************** 290 * ILT management 291 ****************************************************************************/ 292 struct ilt_line { 293 dma_addr_t page_mapping; 294 void *page; 295 u32 size; 296 }; 297 298 struct ilt_client_info { 299 u32 page_size; 300 u16 start; 301 u16 end; 302 u16 client_num; 303 u16 flags; 304 #define ILT_CLIENT_SKIP_INIT 0x1 305 #define ILT_CLIENT_SKIP_MEM 0x2 306 }; 307 308 struct bnx2x_ilt { 309 u32 start_line; 310 struct ilt_line *lines; 311 struct ilt_client_info clients[4]; 312 #define ILT_CLIENT_CDU 0 313 #define ILT_CLIENT_QM 1 314 #define ILT_CLIENT_SRC 2 315 #define ILT_CLIENT_TM 3 316 }; 317 318 /**************************************************************************** 319 * SRC configuration 320 ****************************************************************************/ 321 struct src_ent { 322 u8 opaque[56]; 323 u64 next; 324 }; 325 326 /**************************************************************************** 327 * Parity configuration 328 ****************************************************************************/ 329 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \ 330 { \ 331 block##_REG_##block##_PRTY_MASK, \ 332 block##_REG_##block##_PRTY_STS_CLR, \ 333 en_mask, {m1, m1h, m2, m3}, #block \ 334 } 335 336 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \ 337 { \ 338 block##_REG_##block##_PRTY_MASK_0, \ 339 block##_REG_##block##_PRTY_STS_CLR_0, \ 340 en_mask, {m1, m1h, m2, m3}, #block"_0" \ 341 } 342 343 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \ 344 { \ 345 block##_REG_##block##_PRTY_MASK_1, \ 346 block##_REG_##block##_PRTY_STS_CLR_1, \ 347 en_mask, {m1, m1h, m2, m3}, #block"_1" \ 348 } 349 350 static const struct { 351 u32 mask_addr; 352 u32 sts_clr_addr; 353 u32 en_mask; /* Mask to enable parity attentions */ 354 struct { 355 u32 e1; /* 57710 */ 356 u32 e1h; /* 57711 */ 357 u32 e2; /* 57712 */ 358 u32 e3; /* 578xx */ 359 } reg_mask; /* Register mask (all valid bits) */ 360 char name[7]; /* Block's longest name is 6 characters long 361 * (name + suffix) 362 */ 363 } bnx2x_blocks_parity_data[] = { 364 /* bit 19 masked */ 365 /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */ 366 /* bit 5,18,20-31 */ 367 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */ 368 /* bit 5 */ 369 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */ 370 /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */ 371 /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */ 372 373 /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't 374 * want to handle "system kill" flow at the moment. 375 */ 376 BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff, 377 0x7ffffff), 378 BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 379 0xffffffff), 380 BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff), 381 BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0), 382 BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0), 383 BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff), 384 BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff), 385 BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff), 386 BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1), 387 BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff), 388 BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f), 389 BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3), 390 BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3), 391 {GRCBASE_UPB + PB_REG_PB_PRTY_MASK, 392 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf, 393 {0xf, 0xf, 0xf, 0xf}, "UPB"}, 394 {GRCBASE_XPB + PB_REG_PB_PRTY_MASK, 395 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0, 396 {0xf, 0xf, 0xf, 0xf}, "XPB"}, 397 BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7), 398 BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f), 399 BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f), 400 BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1), 401 BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf), 402 BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf), 403 BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff), 404 BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff), 405 BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f), 406 BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff), 407 BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), 408 BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff), 409 BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), 410 BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), 411 BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), 412 BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), 413 BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff), 414 BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 415 0xffffffff), 416 BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), 417 BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 418 0xffffffff), 419 BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f), 420 BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 421 0xffffffff), 422 BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f), 423 BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, 424 0xffffffff), 425 BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), 426 }; 427 428 429 /* [28] MCP Latched rom_parity 430 * [29] MCP Latched ump_rx_parity 431 * [30] MCP Latched ump_tx_parity 432 * [31] MCP Latched scpad_parity 433 */ 434 #define MISC_AEU_ENABLE_MCP_PRTY_BITS \ 435 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ 436 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ 437 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \ 438 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) 439 440 /* Below registers control the MCP parity attention output. When 441 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are 442 * enabled, when cleared - disabled. 443 */ 444 static const u32 mcp_attn_ctl_regs[] = { 445 MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0, 446 MISC_REG_AEU_ENABLE4_NIG_0, 447 MISC_REG_AEU_ENABLE4_PXP_0, 448 MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0, 449 MISC_REG_AEU_ENABLE4_NIG_1, 450 MISC_REG_AEU_ENABLE4_PXP_1 451 }; 452 453 static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable) 454 { 455 int i; 456 u32 reg_val; 457 458 for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) { 459 reg_val = REG_RD(bp, mcp_attn_ctl_regs[i]); 460 461 if (enable) 462 reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; 463 else 464 reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; 465 466 REG_WR(bp, mcp_attn_ctl_regs[i], reg_val); 467 } 468 } 469 470 static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx) 471 { 472 if (CHIP_IS_E1(bp)) 473 return bnx2x_blocks_parity_data[idx].reg_mask.e1; 474 else if (CHIP_IS_E1H(bp)) 475 return bnx2x_blocks_parity_data[idx].reg_mask.e1h; 476 else if (CHIP_IS_E2(bp)) 477 return bnx2x_blocks_parity_data[idx].reg_mask.e2; 478 else /* CHIP_IS_E3 */ 479 return bnx2x_blocks_parity_data[idx].reg_mask.e3; 480 } 481 482 static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp) 483 { 484 int i; 485 486 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) { 487 u32 dis_mask = bnx2x_parity_reg_mask(bp, i); 488 489 if (dis_mask) { 490 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr, 491 dis_mask); 492 DP(NETIF_MSG_HW, "Setting parity mask " 493 "for %s to\t\t0x%x\n", 494 bnx2x_blocks_parity_data[i].name, dis_mask); 495 } 496 } 497 498 /* Disable MCP parity attentions */ 499 bnx2x_set_mcp_parity(bp, false); 500 } 501 502 /** 503 * Clear the parity error status registers. 504 */ 505 static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp) 506 { 507 int i; 508 u32 reg_val, mcp_aeu_bits = 509 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | 510 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY | 511 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | 512 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY; 513 514 /* Clear SEM_FAST parities */ 515 REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); 516 REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); 517 REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); 518 REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); 519 520 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) { 521 u32 reg_mask = bnx2x_parity_reg_mask(bp, i); 522 523 if (reg_mask) { 524 reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i]. 525 sts_clr_addr); 526 if (reg_val & reg_mask) 527 DP(NETIF_MSG_HW, 528 "Parity errors in %s: 0x%x\n", 529 bnx2x_blocks_parity_data[i].name, 530 reg_val & reg_mask); 531 } 532 } 533 534 /* Check if there were parity attentions in MCP */ 535 reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP); 536 if (reg_val & mcp_aeu_bits) 537 DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n", 538 reg_val & mcp_aeu_bits); 539 540 /* Clear parity attentions in MCP: 541 * [7] clears Latched rom_parity 542 * [8] clears Latched ump_rx_parity 543 * [9] clears Latched ump_tx_parity 544 * [10] clears Latched scpad_parity (both ports) 545 */ 546 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780); 547 } 548 549 static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp) 550 { 551 int i; 552 553 for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) { 554 u32 reg_mask = bnx2x_parity_reg_mask(bp, i); 555 556 if (reg_mask) 557 REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr, 558 bnx2x_blocks_parity_data[i].en_mask & reg_mask); 559 } 560 561 /* Enable MCP parity attentions */ 562 bnx2x_set_mcp_parity(bp, true); 563 } 564 565 566 #endif /* BNX2X_INIT_H */ 567 568