1 /* bnx2x_cmn.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/crash_dump.h> 27 #include <net/tcp.h> 28 #include <net/gro.h> 29 #include <net/ipv6.h> 30 #include <net/ip6_checksum.h> 31 #include <linux/prefetch.h> 32 #include "bnx2x_cmn.h" 33 #include "bnx2x_init.h" 34 #include "bnx2x_sp.h" 35 36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 39 static int bnx2x_poll(struct napi_struct *napi, int budget); 40 41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 42 { 43 int i; 44 45 /* Add NAPI objects */ 46 for_each_rx_queue_cnic(bp, i) { 47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll); 48 } 49 } 50 51 static void bnx2x_add_all_napi(struct bnx2x *bp) 52 { 53 int i; 54 55 /* Add NAPI objects */ 56 for_each_eth_queue(bp, i) { 57 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll); 58 } 59 } 60 61 static int bnx2x_calc_num_queues(struct bnx2x *bp) 62 { 63 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 64 65 /* Reduce memory usage in kdump environment by using only one queue */ 66 if (is_kdump_kernel()) 67 nq = 1; 68 69 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 70 return nq; 71 } 72 73 /** 74 * bnx2x_move_fp - move content of the fastpath structure. 75 * 76 * @bp: driver handle 77 * @from: source FP index 78 * @to: destination FP index 79 * 80 * Makes sure the contents of the bp->fp[to].napi is kept 81 * intact. This is done by first copying the napi struct from 82 * the target to the source, and then mem copying the entire 83 * source onto the target. Update txdata pointers and related 84 * content. 85 */ 86 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 87 { 88 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 89 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 90 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 91 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 92 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 93 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 94 int old_max_eth_txqs, new_max_eth_txqs; 95 int old_txdata_index = 0, new_txdata_index = 0; 96 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 97 98 /* Copy the NAPI object as it has been already initialized */ 99 from_fp->napi = to_fp->napi; 100 101 /* Move bnx2x_fastpath contents */ 102 memcpy(to_fp, from_fp, sizeof(*to_fp)); 103 to_fp->index = to; 104 105 /* Retain the tpa_info of the original `to' version as we don't want 106 * 2 FPs to contain the same tpa_info pointer. 107 */ 108 to_fp->tpa_info = old_tpa_info; 109 110 /* move sp_objs contents as well, as their indices match fp ones */ 111 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 112 113 /* move fp_stats contents as well, as their indices match fp ones */ 114 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 115 116 /* Update txdata pointers in fp and move txdata content accordingly: 117 * Each fp consumes 'max_cos' txdata structures, so the index should be 118 * decremented by max_cos x delta. 119 */ 120 121 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 122 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 123 (bp)->max_cos; 124 if (from == FCOE_IDX(bp)) { 125 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 126 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 127 } 128 129 memcpy(&bp->bnx2x_txq[new_txdata_index], 130 &bp->bnx2x_txq[old_txdata_index], 131 sizeof(struct bnx2x_fp_txdata)); 132 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 133 } 134 135 /** 136 * bnx2x_fill_fw_str - Fill buffer with FW version string. 137 * 138 * @bp: driver handle 139 * @buf: character buffer to fill with the fw name 140 * @buf_len: length of the above buffer 141 * 142 */ 143 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 144 { 145 if (IS_PF(bp)) { 146 u8 phy_fw_ver[PHY_FW_VER_LEN]; 147 148 phy_fw_ver[0] = '\0'; 149 bnx2x_get_ext_phy_fw_version(&bp->link_params, 150 phy_fw_ver, PHY_FW_VER_LEN); 151 strscpy(buf, bp->fw_ver, buf_len); 152 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 153 "bc %d.%d.%d%s%s", 154 (bp->common.bc_ver & 0xff0000) >> 16, 155 (bp->common.bc_ver & 0xff00) >> 8, 156 (bp->common.bc_ver & 0xff), 157 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 158 } else { 159 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 160 } 161 } 162 163 /** 164 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 165 * 166 * @bp: driver handle 167 * @delta: number of eth queues which were not allocated 168 */ 169 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 170 { 171 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 172 173 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 174 * backward along the array could cause memory to be overridden 175 */ 176 for (cos = 1; cos < bp->max_cos; cos++) { 177 for (i = 0; i < old_eth_num - delta; i++) { 178 struct bnx2x_fastpath *fp = &bp->fp[i]; 179 int new_idx = cos * (old_eth_num - delta) + i; 180 181 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 182 sizeof(struct bnx2x_fp_txdata)); 183 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 184 } 185 } 186 } 187 188 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 189 190 /* free skb in the packet ring at pos idx 191 * return idx of last bd freed 192 */ 193 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 194 u16 idx, unsigned int *pkts_compl, 195 unsigned int *bytes_compl) 196 { 197 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 198 struct eth_tx_start_bd *tx_start_bd; 199 struct eth_tx_bd *tx_data_bd; 200 struct sk_buff *skb = tx_buf->skb; 201 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 202 int nbd; 203 u16 split_bd_len = 0; 204 205 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 206 prefetch(&skb->end); 207 208 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 209 txdata->txq_index, idx, tx_buf, skb); 210 211 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 212 213 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 214 #ifdef BNX2X_STOP_ON_ERROR 215 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 216 BNX2X_ERR("BAD nbd!\n"); 217 bnx2x_panic(); 218 } 219 #endif 220 new_cons = nbd + tx_buf->first_bd; 221 222 /* Get the next bd */ 223 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 224 225 /* Skip a parse bd... */ 226 --nbd; 227 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 228 229 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 230 /* Skip second parse bd... */ 231 --nbd; 232 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 233 } 234 235 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 236 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 237 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 238 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 239 --nbd; 240 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 241 } 242 243 /* unmap first bd */ 244 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 245 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 246 DMA_TO_DEVICE); 247 248 /* now free frags */ 249 while (nbd > 0) { 250 251 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 252 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 253 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 254 if (--nbd) 255 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 256 } 257 258 /* release skb */ 259 WARN_ON(!skb); 260 if (likely(skb)) { 261 (*pkts_compl)++; 262 (*bytes_compl) += skb->len; 263 dev_kfree_skb_any(skb); 264 } 265 266 tx_buf->first_bd = 0; 267 tx_buf->skb = NULL; 268 269 return new_cons; 270 } 271 272 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 273 { 274 struct netdev_queue *txq; 275 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 276 unsigned int pkts_compl = 0, bytes_compl = 0; 277 278 #ifdef BNX2X_STOP_ON_ERROR 279 if (unlikely(bp->panic)) 280 return -1; 281 #endif 282 283 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 284 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 285 sw_cons = txdata->tx_pkt_cons; 286 287 /* Ensure subsequent loads occur after hw_cons */ 288 smp_rmb(); 289 290 while (sw_cons != hw_cons) { 291 u16 pkt_cons; 292 293 pkt_cons = TX_BD(sw_cons); 294 295 DP(NETIF_MSG_TX_DONE, 296 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 297 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 298 299 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 300 &pkts_compl, &bytes_compl); 301 302 sw_cons++; 303 } 304 305 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 306 307 txdata->tx_pkt_cons = sw_cons; 308 txdata->tx_bd_cons = bd_cons; 309 310 /* Need to make the tx_bd_cons update visible to start_xmit() 311 * before checking for netif_tx_queue_stopped(). Without the 312 * memory barrier, there is a small possibility that 313 * start_xmit() will miss it and cause the queue to be stopped 314 * forever. 315 * On the other hand we need an rmb() here to ensure the proper 316 * ordering of bit testing in the following 317 * netif_tx_queue_stopped(txq) call. 318 */ 319 smp_mb(); 320 321 if (unlikely(netif_tx_queue_stopped(txq))) { 322 /* Taking tx_lock() is needed to prevent re-enabling the queue 323 * while it's empty. This could have happen if rx_action() gets 324 * suspended in bnx2x_tx_int() after the condition before 325 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 326 * 327 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 328 * sends some packets consuming the whole queue again-> 329 * stops the queue 330 */ 331 332 __netif_tx_lock(txq, smp_processor_id()); 333 334 if ((netif_tx_queue_stopped(txq)) && 335 (bp->state == BNX2X_STATE_OPEN) && 336 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 337 netif_tx_wake_queue(txq); 338 339 __netif_tx_unlock(txq); 340 } 341 return 0; 342 } 343 344 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 345 u16 idx) 346 { 347 u16 last_max = fp->last_max_sge; 348 349 if (SUB_S16(idx, last_max) > 0) 350 fp->last_max_sge = idx; 351 } 352 353 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 354 u16 sge_len, 355 struct eth_end_agg_rx_cqe *cqe) 356 { 357 struct bnx2x *bp = fp->bp; 358 u16 last_max, last_elem, first_elem; 359 u16 delta = 0; 360 u16 i; 361 362 if (!sge_len) 363 return; 364 365 /* First mark all used pages */ 366 for (i = 0; i < sge_len; i++) 367 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 368 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 369 370 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 371 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 372 373 /* Here we assume that the last SGE index is the biggest */ 374 prefetch((void *)(fp->sge_mask)); 375 bnx2x_update_last_max_sge(fp, 376 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 377 378 last_max = RX_SGE(fp->last_max_sge); 379 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 380 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 381 382 /* If ring is not full */ 383 if (last_elem + 1 != first_elem) 384 last_elem++; 385 386 /* Now update the prod */ 387 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 388 if (likely(fp->sge_mask[i])) 389 break; 390 391 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 392 delta += BIT_VEC64_ELEM_SZ; 393 } 394 395 if (delta > 0) { 396 fp->rx_sge_prod += delta; 397 /* clear page-end entries */ 398 bnx2x_clear_sge_mask_next_elems(fp); 399 } 400 401 DP(NETIF_MSG_RX_STATUS, 402 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 403 fp->last_max_sge, fp->rx_sge_prod); 404 } 405 406 /* Get Toeplitz hash value in the skb using the value from the 407 * CQE (calculated by HW). 408 */ 409 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 410 const struct eth_fast_path_rx_cqe *cqe, 411 enum pkt_hash_types *rxhash_type) 412 { 413 /* Get Toeplitz hash from CQE */ 414 if ((bp->dev->features & NETIF_F_RXHASH) && 415 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 416 enum eth_rss_hash_type htype; 417 418 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 419 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 420 (htype == TCP_IPV6_HASH_TYPE)) ? 421 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 422 423 return le32_to_cpu(cqe->rss_hash_result); 424 } 425 *rxhash_type = PKT_HASH_TYPE_NONE; 426 return 0; 427 } 428 429 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 430 u16 cons, u16 prod, 431 struct eth_fast_path_rx_cqe *cqe) 432 { 433 struct bnx2x *bp = fp->bp; 434 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 435 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 436 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 437 dma_addr_t mapping; 438 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 439 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 440 441 /* print error if current state != stop */ 442 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 443 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 444 445 /* Try to map an empty data buffer from the aggregation info */ 446 mapping = dma_map_single(&bp->pdev->dev, 447 first_buf->data + NET_SKB_PAD, 448 fp->rx_buf_size, DMA_FROM_DEVICE); 449 /* 450 * ...if it fails - move the skb from the consumer to the producer 451 * and set the current aggregation state as ERROR to drop it 452 * when TPA_STOP arrives. 453 */ 454 455 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 456 /* Move the BD from the consumer to the producer */ 457 bnx2x_reuse_rx_data(fp, cons, prod); 458 tpa_info->tpa_state = BNX2X_TPA_ERROR; 459 return; 460 } 461 462 /* move empty data from pool to prod */ 463 prod_rx_buf->data = first_buf->data; 464 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 465 /* point prod_bd to new data */ 466 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 467 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 468 469 /* move partial skb from cons to pool (don't unmap yet) */ 470 *first_buf = *cons_rx_buf; 471 472 /* mark bin state as START */ 473 tpa_info->parsing_flags = 474 le16_to_cpu(cqe->pars_flags.flags); 475 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 476 tpa_info->tpa_state = BNX2X_TPA_START; 477 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 478 tpa_info->placement_offset = cqe->placement_offset; 479 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 480 if (fp->mode == TPA_MODE_GRO) { 481 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 482 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 483 tpa_info->gro_size = gro_size; 484 } 485 486 #ifdef BNX2X_STOP_ON_ERROR 487 fp->tpa_queue_used |= (1 << queue); 488 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 489 fp->tpa_queue_used); 490 #endif 491 } 492 493 /* Timestamp option length allowed for TPA aggregation: 494 * 495 * nop nop kind length echo val 496 */ 497 #define TPA_TSTAMP_OPT_LEN 12 498 /** 499 * bnx2x_set_gro_params - compute GRO values 500 * 501 * @skb: packet skb 502 * @parsing_flags: parsing flags from the START CQE 503 * @len_on_bd: total length of the first packet for the 504 * aggregation. 505 * @pkt_len: length of all segments 506 * @num_of_coalesced_segs: count of segments 507 * 508 * Approximate value of the MSS for this aggregation calculated using 509 * the first packet of it. 510 * Compute number of aggregated segments, and gso_type. 511 */ 512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 513 u16 len_on_bd, unsigned int pkt_len, 514 u16 num_of_coalesced_segs) 515 { 516 /* TPA aggregation won't have either IP options or TCP options 517 * other than timestamp or IPv6 extension headers. 518 */ 519 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 520 521 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 522 PRS_FLAG_OVERETH_IPV6) { 523 hdrs_len += sizeof(struct ipv6hdr); 524 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 525 } else { 526 hdrs_len += sizeof(struct iphdr); 527 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 528 } 529 530 /* Check if there was a TCP timestamp, if there is it's will 531 * always be 12 bytes length: nop nop kind length echo val. 532 * 533 * Otherwise FW would close the aggregation. 534 */ 535 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 536 hdrs_len += TPA_TSTAMP_OPT_LEN; 537 538 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 539 540 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 541 * to skb_shinfo(skb)->gso_segs 542 */ 543 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 544 } 545 546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 547 u16 index, gfp_t gfp_mask) 548 { 549 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 550 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 551 struct bnx2x_alloc_pool *pool = &fp->page_pool; 552 dma_addr_t mapping; 553 554 if (!pool->page) { 555 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 556 if (unlikely(!pool->page)) 557 return -ENOMEM; 558 559 pool->offset = 0; 560 } 561 562 mapping = dma_map_page(&bp->pdev->dev, pool->page, 563 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE); 564 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 565 BNX2X_ERR("Can't map sge\n"); 566 return -ENOMEM; 567 } 568 569 sw_buf->page = pool->page; 570 sw_buf->offset = pool->offset; 571 572 dma_unmap_addr_set(sw_buf, mapping, mapping); 573 574 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 575 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 576 577 pool->offset += SGE_PAGE_SIZE; 578 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE) 579 get_page(pool->page); 580 else 581 pool->page = NULL; 582 return 0; 583 } 584 585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 586 struct bnx2x_agg_info *tpa_info, 587 u16 pages, 588 struct sk_buff *skb, 589 struct eth_end_agg_rx_cqe *cqe, 590 u16 cqe_idx) 591 { 592 struct sw_rx_page *rx_pg, old_rx_pg; 593 u32 i, frag_len, frag_size; 594 int err, j, frag_id = 0; 595 u16 len_on_bd = tpa_info->len_on_bd; 596 u16 full_page = 0, gro_size = 0; 597 598 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 599 600 if (fp->mode == TPA_MODE_GRO) { 601 gro_size = tpa_info->gro_size; 602 full_page = tpa_info->full_page; 603 } 604 605 /* This is needed in order to enable forwarding support */ 606 if (frag_size) 607 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 608 le16_to_cpu(cqe->pkt_len), 609 le16_to_cpu(cqe->num_of_coalesced_segs)); 610 611 #ifdef BNX2X_STOP_ON_ERROR 612 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 613 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 614 pages, cqe_idx); 615 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 616 bnx2x_panic(); 617 return -EINVAL; 618 } 619 #endif 620 621 /* Run through the SGL and compose the fragmented skb */ 622 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 623 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 624 625 /* FW gives the indices of the SGE as if the ring is an array 626 (meaning that "next" element will consume 2 indices) */ 627 if (fp->mode == TPA_MODE_GRO) 628 frag_len = min_t(u32, frag_size, (u32)full_page); 629 else /* LRO */ 630 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 631 632 rx_pg = &fp->rx_page_ring[sge_idx]; 633 old_rx_pg = *rx_pg; 634 635 /* If we fail to allocate a substitute page, we simply stop 636 where we are and drop the whole packet */ 637 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 638 if (unlikely(err)) { 639 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 640 return err; 641 } 642 643 dma_unmap_page(&bp->pdev->dev, 644 dma_unmap_addr(&old_rx_pg, mapping), 645 SGE_PAGE_SIZE, DMA_FROM_DEVICE); 646 /* Add one frag and update the appropriate fields in the skb */ 647 if (fp->mode == TPA_MODE_LRO) 648 skb_fill_page_desc(skb, j, old_rx_pg.page, 649 old_rx_pg.offset, frag_len); 650 else { /* GRO */ 651 int rem; 652 int offset = 0; 653 for (rem = frag_len; rem > 0; rem -= gro_size) { 654 int len = rem > gro_size ? gro_size : rem; 655 skb_fill_page_desc(skb, frag_id++, 656 old_rx_pg.page, 657 old_rx_pg.offset + offset, 658 len); 659 if (offset) 660 get_page(old_rx_pg.page); 661 offset += len; 662 } 663 } 664 665 skb->data_len += frag_len; 666 skb->truesize += SGE_PAGES; 667 skb->len += frag_len; 668 669 frag_size -= frag_len; 670 } 671 672 return 0; 673 } 674 675 static struct sk_buff * 676 bnx2x_build_skb(const struct bnx2x_fastpath *fp, void *data) 677 { 678 struct sk_buff *skb; 679 680 if (fp->rx_frag_size) 681 skb = build_skb(data, fp->rx_frag_size); 682 else 683 skb = slab_build_skb(data); 684 return skb; 685 } 686 687 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 688 { 689 if (fp->rx_frag_size) 690 skb_free_frag(data); 691 else 692 kfree(data); 693 } 694 695 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 696 { 697 if (fp->rx_frag_size) { 698 /* GFP_KERNEL allocations are used only during initialization */ 699 if (unlikely(gfpflags_allow_blocking(gfp_mask))) 700 return (void *)__get_free_page(gfp_mask); 701 702 return napi_alloc_frag(fp->rx_frag_size); 703 } 704 705 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 706 } 707 708 #ifdef CONFIG_INET 709 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 710 { 711 const struct iphdr *iph = ip_hdr(skb); 712 struct tcphdr *th; 713 714 skb_set_transport_header(skb, sizeof(struct iphdr)); 715 th = tcp_hdr(skb); 716 717 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 718 iph->saddr, iph->daddr, 0); 719 } 720 721 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 722 { 723 struct ipv6hdr *iph = ipv6_hdr(skb); 724 struct tcphdr *th; 725 726 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 727 th = tcp_hdr(skb); 728 729 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 730 &iph->saddr, &iph->daddr, 0); 731 } 732 733 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 734 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 735 { 736 skb_reset_network_header(skb); 737 gro_func(bp, skb); 738 tcp_gro_complete(skb); 739 } 740 #endif 741 742 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 743 struct sk_buff *skb) 744 { 745 #ifdef CONFIG_INET 746 if (skb_shinfo(skb)->gso_size) { 747 switch (be16_to_cpu(skb->protocol)) { 748 case ETH_P_IP: 749 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 750 break; 751 case ETH_P_IPV6: 752 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 753 break; 754 default: 755 netdev_WARN_ONCE(bp->dev, 756 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 757 be16_to_cpu(skb->protocol)); 758 } 759 } 760 #endif 761 skb_record_rx_queue(skb, fp->rx_queue); 762 napi_gro_receive(&fp->napi, skb); 763 } 764 765 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 766 struct bnx2x_agg_info *tpa_info, 767 u16 pages, 768 struct eth_end_agg_rx_cqe *cqe, 769 u16 cqe_idx) 770 { 771 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 772 u8 pad = tpa_info->placement_offset; 773 u16 len = tpa_info->len_on_bd; 774 struct sk_buff *skb = NULL; 775 u8 *new_data, *data = rx_buf->data; 776 u8 old_tpa_state = tpa_info->tpa_state; 777 778 tpa_info->tpa_state = BNX2X_TPA_STOP; 779 780 /* If we there was an error during the handling of the TPA_START - 781 * drop this aggregation. 782 */ 783 if (old_tpa_state == BNX2X_TPA_ERROR) 784 goto drop; 785 786 /* Try to allocate the new data */ 787 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 788 /* Unmap skb in the pool anyway, as we are going to change 789 pool entry status to BNX2X_TPA_STOP even if new skb allocation 790 fails. */ 791 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 792 fp->rx_buf_size, DMA_FROM_DEVICE); 793 if (likely(new_data)) 794 skb = bnx2x_build_skb(fp, data); 795 796 if (likely(skb)) { 797 #ifdef BNX2X_STOP_ON_ERROR 798 if (pad + len > fp->rx_buf_size) { 799 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 800 pad, len, fp->rx_buf_size); 801 bnx2x_panic(); 802 bnx2x_frag_free(fp, new_data); 803 return; 804 } 805 #endif 806 807 skb_reserve(skb, pad + NET_SKB_PAD); 808 skb_put(skb, len); 809 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 810 811 skb->protocol = eth_type_trans(skb, bp->dev); 812 skb->ip_summed = CHECKSUM_UNNECESSARY; 813 814 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 815 skb, cqe, cqe_idx)) { 816 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 817 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 818 bnx2x_gro_receive(bp, fp, skb); 819 } else { 820 DP(NETIF_MSG_RX_STATUS, 821 "Failed to allocate new pages - dropping packet!\n"); 822 dev_kfree_skb_any(skb); 823 } 824 825 /* put new data in bin */ 826 rx_buf->data = new_data; 827 828 return; 829 } 830 if (new_data) 831 bnx2x_frag_free(fp, new_data); 832 drop: 833 /* drop the packet and keep the buffer in the bin */ 834 DP(NETIF_MSG_RX_STATUS, 835 "Failed to allocate or map a new skb - dropping packet!\n"); 836 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 837 } 838 839 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 840 u16 index, gfp_t gfp_mask) 841 { 842 u8 *data; 843 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 844 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 845 dma_addr_t mapping; 846 847 data = bnx2x_frag_alloc(fp, gfp_mask); 848 if (unlikely(data == NULL)) 849 return -ENOMEM; 850 851 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 852 fp->rx_buf_size, 853 DMA_FROM_DEVICE); 854 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 855 bnx2x_frag_free(fp, data); 856 BNX2X_ERR("Can't map rx data\n"); 857 return -ENOMEM; 858 } 859 860 rx_buf->data = data; 861 dma_unmap_addr_set(rx_buf, mapping, mapping); 862 863 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 864 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 865 866 return 0; 867 } 868 869 static 870 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 871 struct bnx2x_fastpath *fp, 872 struct bnx2x_eth_q_stats *qstats) 873 { 874 /* Do nothing if no L4 csum validation was done. 875 * We do not check whether IP csum was validated. For IPv4 we assume 876 * that if the card got as far as validating the L4 csum, it also 877 * validated the IP csum. IPv6 has no IP csum. 878 */ 879 if (cqe->fast_path_cqe.status_flags & 880 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 881 return; 882 883 /* If L4 validation was done, check if an error was found. */ 884 885 if (cqe->fast_path_cqe.type_error_flags & 886 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 887 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 888 qstats->hw_csum_err++; 889 else 890 skb->ip_summed = CHECKSUM_UNNECESSARY; 891 } 892 893 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 894 { 895 struct bnx2x *bp = fp->bp; 896 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 897 u16 sw_comp_cons, sw_comp_prod; 898 int rx_pkt = 0; 899 union eth_rx_cqe *cqe; 900 struct eth_fast_path_rx_cqe *cqe_fp; 901 902 #ifdef BNX2X_STOP_ON_ERROR 903 if (unlikely(bp->panic)) 904 return 0; 905 #endif 906 if (budget <= 0) 907 return rx_pkt; 908 909 bd_cons = fp->rx_bd_cons; 910 bd_prod = fp->rx_bd_prod; 911 bd_prod_fw = bd_prod; 912 sw_comp_cons = fp->rx_comp_cons; 913 sw_comp_prod = fp->rx_comp_prod; 914 915 comp_ring_cons = RCQ_BD(sw_comp_cons); 916 cqe = &fp->rx_comp_ring[comp_ring_cons]; 917 cqe_fp = &cqe->fast_path_cqe; 918 919 DP(NETIF_MSG_RX_STATUS, 920 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 921 922 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 923 struct sw_rx_bd *rx_buf = NULL; 924 struct sk_buff *skb; 925 u8 cqe_fp_flags; 926 enum eth_rx_cqe_type cqe_fp_type; 927 u16 len, pad, queue; 928 u8 *data; 929 u32 rxhash; 930 enum pkt_hash_types rxhash_type; 931 932 #ifdef BNX2X_STOP_ON_ERROR 933 if (unlikely(bp->panic)) 934 return 0; 935 #endif 936 937 bd_prod = RX_BD(bd_prod); 938 bd_cons = RX_BD(bd_cons); 939 940 /* A rmb() is required to ensure that the CQE is not read 941 * before it is written by the adapter DMA. PCI ordering 942 * rules will make sure the other fields are written before 943 * the marker at the end of struct eth_fast_path_rx_cqe 944 * but without rmb() a weakly ordered processor can process 945 * stale data. Without the barrier TPA state-machine might 946 * enter inconsistent state and kernel stack might be 947 * provided with incorrect packet description - these lead 948 * to various kernel crashed. 949 */ 950 rmb(); 951 952 cqe_fp_flags = cqe_fp->type_error_flags; 953 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 954 955 DP(NETIF_MSG_RX_STATUS, 956 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 957 CQE_TYPE(cqe_fp_flags), 958 cqe_fp_flags, cqe_fp->status_flags, 959 le32_to_cpu(cqe_fp->rss_hash_result), 960 le16_to_cpu(cqe_fp->vlan_tag), 961 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 962 963 /* is this a slowpath msg? */ 964 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 965 bnx2x_sp_event(fp, cqe); 966 goto next_cqe; 967 } 968 969 rx_buf = &fp->rx_buf_ring[bd_cons]; 970 data = rx_buf->data; 971 972 if (!CQE_TYPE_FAST(cqe_fp_type)) { 973 struct bnx2x_agg_info *tpa_info; 974 u16 frag_size, pages; 975 #ifdef BNX2X_STOP_ON_ERROR 976 /* sanity check */ 977 if (fp->mode == TPA_MODE_DISABLED && 978 (CQE_TYPE_START(cqe_fp_type) || 979 CQE_TYPE_STOP(cqe_fp_type))) 980 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 981 CQE_TYPE(cqe_fp_type)); 982 #endif 983 984 if (CQE_TYPE_START(cqe_fp_type)) { 985 u16 queue = cqe_fp->queue_index; 986 DP(NETIF_MSG_RX_STATUS, 987 "calling tpa_start on queue %d\n", 988 queue); 989 990 bnx2x_tpa_start(fp, queue, 991 bd_cons, bd_prod, 992 cqe_fp); 993 994 goto next_rx; 995 } 996 queue = cqe->end_agg_cqe.queue_index; 997 tpa_info = &fp->tpa_info[queue]; 998 DP(NETIF_MSG_RX_STATUS, 999 "calling tpa_stop on queue %d\n", 1000 queue); 1001 1002 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 1003 tpa_info->len_on_bd; 1004 1005 if (fp->mode == TPA_MODE_GRO) 1006 pages = (frag_size + tpa_info->full_page - 1) / 1007 tpa_info->full_page; 1008 else 1009 pages = SGE_PAGE_ALIGN(frag_size) >> 1010 SGE_PAGE_SHIFT; 1011 1012 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 1013 &cqe->end_agg_cqe, comp_ring_cons); 1014 #ifdef BNX2X_STOP_ON_ERROR 1015 if (bp->panic) 1016 return 0; 1017 #endif 1018 1019 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 1020 goto next_cqe; 1021 } 1022 /* non TPA */ 1023 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1024 pad = cqe_fp->placement_offset; 1025 dma_sync_single_for_cpu(&bp->pdev->dev, 1026 dma_unmap_addr(rx_buf, mapping), 1027 pad + RX_COPY_THRESH, 1028 DMA_FROM_DEVICE); 1029 pad += NET_SKB_PAD; 1030 prefetch(data + pad); /* speedup eth_type_trans() */ 1031 /* is this an error packet? */ 1032 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1033 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1034 "ERROR flags %x rx packet %u\n", 1035 cqe_fp_flags, sw_comp_cons); 1036 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1037 goto reuse_rx; 1038 } 1039 1040 /* Since we don't have a jumbo ring 1041 * copy small packets if mtu > 1500 1042 */ 1043 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1044 (len <= RX_COPY_THRESH)) { 1045 skb = napi_alloc_skb(&fp->napi, len); 1046 if (skb == NULL) { 1047 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1048 "ERROR packet dropped because of alloc failure\n"); 1049 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1050 goto reuse_rx; 1051 } 1052 memcpy(skb->data, data + pad, len); 1053 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1054 } else { 1055 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1056 GFP_ATOMIC) == 0)) { 1057 dma_unmap_single(&bp->pdev->dev, 1058 dma_unmap_addr(rx_buf, mapping), 1059 fp->rx_buf_size, 1060 DMA_FROM_DEVICE); 1061 skb = bnx2x_build_skb(fp, data); 1062 if (unlikely(!skb)) { 1063 bnx2x_frag_free(fp, data); 1064 bnx2x_fp_qstats(bp, fp)-> 1065 rx_skb_alloc_failed++; 1066 goto next_rx; 1067 } 1068 skb_reserve(skb, pad); 1069 } else { 1070 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1071 "ERROR packet dropped because of alloc failure\n"); 1072 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1073 reuse_rx: 1074 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1075 goto next_rx; 1076 } 1077 } 1078 1079 skb_put(skb, len); 1080 skb->protocol = eth_type_trans(skb, bp->dev); 1081 1082 /* Set Toeplitz hash for a none-LRO skb */ 1083 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1084 skb_set_hash(skb, rxhash, rxhash_type); 1085 1086 skb_checksum_none_assert(skb); 1087 1088 if (bp->dev->features & NETIF_F_RXCSUM) 1089 bnx2x_csum_validate(skb, cqe, fp, 1090 bnx2x_fp_qstats(bp, fp)); 1091 1092 skb_record_rx_queue(skb, fp->rx_queue); 1093 1094 /* Check if this packet was timestamped */ 1095 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1096 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1097 bnx2x_set_rx_ts(bp, skb); 1098 1099 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1100 PARSING_FLAGS_VLAN) 1101 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1102 le16_to_cpu(cqe_fp->vlan_tag)); 1103 1104 napi_gro_receive(&fp->napi, skb); 1105 next_rx: 1106 rx_buf->data = NULL; 1107 1108 bd_cons = NEXT_RX_IDX(bd_cons); 1109 bd_prod = NEXT_RX_IDX(bd_prod); 1110 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1111 rx_pkt++; 1112 next_cqe: 1113 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1114 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1115 1116 /* mark CQE as free */ 1117 BNX2X_SEED_CQE(cqe_fp); 1118 1119 if (rx_pkt == budget) 1120 break; 1121 1122 comp_ring_cons = RCQ_BD(sw_comp_cons); 1123 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1124 cqe_fp = &cqe->fast_path_cqe; 1125 } /* while */ 1126 1127 fp->rx_bd_cons = bd_cons; 1128 fp->rx_bd_prod = bd_prod_fw; 1129 fp->rx_comp_cons = sw_comp_cons; 1130 fp->rx_comp_prod = sw_comp_prod; 1131 1132 /* Update producers */ 1133 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1134 fp->rx_sge_prod); 1135 1136 return rx_pkt; 1137 } 1138 1139 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1140 { 1141 struct bnx2x_fastpath *fp = fp_cookie; 1142 struct bnx2x *bp = fp->bp; 1143 u8 cos; 1144 1145 DP(NETIF_MSG_INTR, 1146 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1147 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1148 1149 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1150 1151 #ifdef BNX2X_STOP_ON_ERROR 1152 if (unlikely(bp->panic)) 1153 return IRQ_HANDLED; 1154 #endif 1155 1156 /* Handle Rx and Tx according to MSI-X vector */ 1157 for_each_cos_in_tx_queue(fp, cos) 1158 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1159 1160 prefetch(&fp->sb_running_index[SM_RX_ID]); 1161 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1162 1163 return IRQ_HANDLED; 1164 } 1165 1166 /* HW Lock for shared dual port PHYs */ 1167 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1168 { 1169 mutex_lock(&bp->port.phy_mutex); 1170 1171 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1172 } 1173 1174 void bnx2x_release_phy_lock(struct bnx2x *bp) 1175 { 1176 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1177 1178 mutex_unlock(&bp->port.phy_mutex); 1179 } 1180 1181 /* calculates MF speed according to current linespeed and MF configuration */ 1182 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1183 { 1184 u16 line_speed = bp->link_vars.line_speed; 1185 if (IS_MF(bp)) { 1186 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1187 bp->mf_config[BP_VN(bp)]); 1188 1189 /* Calculate the current MAX line speed limit for the MF 1190 * devices 1191 */ 1192 if (IS_MF_PERCENT_BW(bp)) 1193 line_speed = (line_speed * maxCfg) / 100; 1194 else { /* SD mode */ 1195 u16 vn_max_rate = maxCfg * 100; 1196 1197 if (vn_max_rate < line_speed) 1198 line_speed = vn_max_rate; 1199 } 1200 } 1201 1202 return line_speed; 1203 } 1204 1205 /** 1206 * bnx2x_fill_report_data - fill link report data to report 1207 * 1208 * @bp: driver handle 1209 * @data: link state to update 1210 * 1211 * It uses a none-atomic bit operations because is called under the mutex. 1212 */ 1213 static void bnx2x_fill_report_data(struct bnx2x *bp, 1214 struct bnx2x_link_report_data *data) 1215 { 1216 memset(data, 0, sizeof(*data)); 1217 1218 if (IS_PF(bp)) { 1219 /* Fill the report data: effective line speed */ 1220 data->line_speed = bnx2x_get_mf_speed(bp); 1221 1222 /* Link is down */ 1223 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1224 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1225 &data->link_report_flags); 1226 1227 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1228 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1229 &data->link_report_flags); 1230 1231 /* Full DUPLEX */ 1232 if (bp->link_vars.duplex == DUPLEX_FULL) 1233 __set_bit(BNX2X_LINK_REPORT_FD, 1234 &data->link_report_flags); 1235 1236 /* Rx Flow Control is ON */ 1237 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1238 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1239 &data->link_report_flags); 1240 1241 /* Tx Flow Control is ON */ 1242 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1243 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1244 &data->link_report_flags); 1245 } else { /* VF */ 1246 *data = bp->vf_link_vars; 1247 } 1248 } 1249 1250 /** 1251 * bnx2x_link_report - report link status to OS. 1252 * 1253 * @bp: driver handle 1254 * 1255 * Calls the __bnx2x_link_report() under the same locking scheme 1256 * as a link/PHY state managing code to ensure a consistent link 1257 * reporting. 1258 */ 1259 1260 void bnx2x_link_report(struct bnx2x *bp) 1261 { 1262 bnx2x_acquire_phy_lock(bp); 1263 __bnx2x_link_report(bp); 1264 bnx2x_release_phy_lock(bp); 1265 } 1266 1267 /** 1268 * __bnx2x_link_report - report link status to OS. 1269 * 1270 * @bp: driver handle 1271 * 1272 * None atomic implementation. 1273 * Should be called under the phy_lock. 1274 */ 1275 void __bnx2x_link_report(struct bnx2x *bp) 1276 { 1277 struct bnx2x_link_report_data cur_data; 1278 1279 if (bp->force_link_down) { 1280 bp->link_vars.link_up = 0; 1281 return; 1282 } 1283 1284 /* reread mf_cfg */ 1285 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1286 bnx2x_read_mf_cfg(bp); 1287 1288 /* Read the current link report info */ 1289 bnx2x_fill_report_data(bp, &cur_data); 1290 1291 /* Don't report link down or exactly the same link status twice */ 1292 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1293 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1294 &bp->last_reported_link.link_report_flags) && 1295 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1296 &cur_data.link_report_flags))) 1297 return; 1298 1299 bp->link_cnt++; 1300 1301 /* We are going to report a new link parameters now - 1302 * remember the current data for the next time. 1303 */ 1304 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1305 1306 /* propagate status to VFs */ 1307 if (IS_PF(bp)) 1308 bnx2x_iov_link_update(bp); 1309 1310 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1311 &cur_data.link_report_flags)) { 1312 netif_carrier_off(bp->dev); 1313 netdev_err(bp->dev, "NIC Link is Down\n"); 1314 return; 1315 } else { 1316 const char *duplex; 1317 const char *flow; 1318 1319 netif_carrier_on(bp->dev); 1320 1321 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1322 &cur_data.link_report_flags)) 1323 duplex = "full"; 1324 else 1325 duplex = "half"; 1326 1327 /* Handle the FC at the end so that only these flags would be 1328 * possibly set. This way we may easily check if there is no FC 1329 * enabled. 1330 */ 1331 if (cur_data.link_report_flags) { 1332 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1333 &cur_data.link_report_flags)) { 1334 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1335 &cur_data.link_report_flags)) 1336 flow = "ON - receive & transmit"; 1337 else 1338 flow = "ON - receive"; 1339 } else { 1340 flow = "ON - transmit"; 1341 } 1342 } else { 1343 flow = "none"; 1344 } 1345 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1346 cur_data.line_speed, duplex, flow); 1347 } 1348 } 1349 1350 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1351 { 1352 int i; 1353 1354 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1355 struct eth_rx_sge *sge; 1356 1357 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1358 sge->addr_hi = 1359 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1360 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1361 1362 sge->addr_lo = 1363 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1364 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1365 } 1366 } 1367 1368 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1369 struct bnx2x_fastpath *fp, int last) 1370 { 1371 int i; 1372 1373 for (i = 0; i < last; i++) { 1374 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1375 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1376 u8 *data = first_buf->data; 1377 1378 if (data == NULL) { 1379 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1380 continue; 1381 } 1382 if (tpa_info->tpa_state == BNX2X_TPA_START) 1383 dma_unmap_single(&bp->pdev->dev, 1384 dma_unmap_addr(first_buf, mapping), 1385 fp->rx_buf_size, DMA_FROM_DEVICE); 1386 bnx2x_frag_free(fp, data); 1387 first_buf->data = NULL; 1388 } 1389 } 1390 1391 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1392 { 1393 int j; 1394 1395 for_each_rx_queue_cnic(bp, j) { 1396 struct bnx2x_fastpath *fp = &bp->fp[j]; 1397 1398 fp->rx_bd_cons = 0; 1399 1400 /* Activate BD ring */ 1401 /* Warning! 1402 * this will generate an interrupt (to the TSTORM) 1403 * must only be done after chip is initialized 1404 */ 1405 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1406 fp->rx_sge_prod); 1407 } 1408 } 1409 1410 void bnx2x_init_rx_rings(struct bnx2x *bp) 1411 { 1412 int func = BP_FUNC(bp); 1413 u16 ring_prod; 1414 int i, j; 1415 1416 /* Allocate TPA resources */ 1417 for_each_eth_queue(bp, j) { 1418 struct bnx2x_fastpath *fp = &bp->fp[j]; 1419 1420 DP(NETIF_MSG_IFUP, 1421 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1422 1423 if (fp->mode != TPA_MODE_DISABLED) { 1424 /* Fill the per-aggregation pool */ 1425 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1426 struct bnx2x_agg_info *tpa_info = 1427 &fp->tpa_info[i]; 1428 struct sw_rx_bd *first_buf = 1429 &tpa_info->first_buf; 1430 1431 first_buf->data = 1432 bnx2x_frag_alloc(fp, GFP_KERNEL); 1433 if (!first_buf->data) { 1434 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1435 j); 1436 bnx2x_free_tpa_pool(bp, fp, i); 1437 fp->mode = TPA_MODE_DISABLED; 1438 break; 1439 } 1440 dma_unmap_addr_set(first_buf, mapping, 0); 1441 tpa_info->tpa_state = BNX2X_TPA_STOP; 1442 } 1443 1444 /* "next page" elements initialization */ 1445 bnx2x_set_next_page_sgl(fp); 1446 1447 /* set SGEs bit mask */ 1448 bnx2x_init_sge_ring_bit_mask(fp); 1449 1450 /* Allocate SGEs and initialize the ring elements */ 1451 for (i = 0, ring_prod = 0; 1452 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1453 1454 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1455 GFP_KERNEL) < 0) { 1456 BNX2X_ERR("was only able to allocate %d rx sges\n", 1457 i); 1458 BNX2X_ERR("disabling TPA for queue[%d]\n", 1459 j); 1460 /* Cleanup already allocated elements */ 1461 bnx2x_free_rx_sge_range(bp, fp, 1462 ring_prod); 1463 bnx2x_free_tpa_pool(bp, fp, 1464 MAX_AGG_QS(bp)); 1465 fp->mode = TPA_MODE_DISABLED; 1466 ring_prod = 0; 1467 break; 1468 } 1469 ring_prod = NEXT_SGE_IDX(ring_prod); 1470 } 1471 1472 fp->rx_sge_prod = ring_prod; 1473 } 1474 } 1475 1476 for_each_eth_queue(bp, j) { 1477 struct bnx2x_fastpath *fp = &bp->fp[j]; 1478 1479 fp->rx_bd_cons = 0; 1480 1481 /* Activate BD ring */ 1482 /* Warning! 1483 * this will generate an interrupt (to the TSTORM) 1484 * must only be done after chip is initialized 1485 */ 1486 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1487 fp->rx_sge_prod); 1488 1489 if (j != 0) 1490 continue; 1491 1492 if (CHIP_IS_E1(bp)) { 1493 REG_WR(bp, BAR_USTRORM_INTMEM + 1494 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1495 U64_LO(fp->rx_comp_mapping)); 1496 REG_WR(bp, BAR_USTRORM_INTMEM + 1497 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1498 U64_HI(fp->rx_comp_mapping)); 1499 } 1500 } 1501 } 1502 1503 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1504 { 1505 u8 cos; 1506 struct bnx2x *bp = fp->bp; 1507 1508 for_each_cos_in_tx_queue(fp, cos) { 1509 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1510 unsigned pkts_compl = 0, bytes_compl = 0; 1511 1512 u16 sw_prod = txdata->tx_pkt_prod; 1513 u16 sw_cons = txdata->tx_pkt_cons; 1514 1515 while (sw_cons != sw_prod) { 1516 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1517 &pkts_compl, &bytes_compl); 1518 sw_cons++; 1519 } 1520 1521 netdev_tx_reset_queue( 1522 netdev_get_tx_queue(bp->dev, 1523 txdata->txq_index)); 1524 } 1525 } 1526 1527 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1528 { 1529 int i; 1530 1531 for_each_tx_queue_cnic(bp, i) { 1532 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1533 } 1534 } 1535 1536 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1537 { 1538 int i; 1539 1540 for_each_eth_queue(bp, i) { 1541 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1542 } 1543 } 1544 1545 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1546 { 1547 struct bnx2x *bp = fp->bp; 1548 int i; 1549 1550 /* ring wasn't allocated */ 1551 if (fp->rx_buf_ring == NULL) 1552 return; 1553 1554 for (i = 0; i < NUM_RX_BD; i++) { 1555 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1556 u8 *data = rx_buf->data; 1557 1558 if (data == NULL) 1559 continue; 1560 dma_unmap_single(&bp->pdev->dev, 1561 dma_unmap_addr(rx_buf, mapping), 1562 fp->rx_buf_size, DMA_FROM_DEVICE); 1563 1564 rx_buf->data = NULL; 1565 bnx2x_frag_free(fp, data); 1566 } 1567 } 1568 1569 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1570 { 1571 int j; 1572 1573 for_each_rx_queue_cnic(bp, j) { 1574 bnx2x_free_rx_bds(&bp->fp[j]); 1575 } 1576 } 1577 1578 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1579 { 1580 int j; 1581 1582 for_each_eth_queue(bp, j) { 1583 struct bnx2x_fastpath *fp = &bp->fp[j]; 1584 1585 bnx2x_free_rx_bds(fp); 1586 1587 if (fp->mode != TPA_MODE_DISABLED) 1588 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1589 } 1590 } 1591 1592 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1593 { 1594 bnx2x_free_tx_skbs_cnic(bp); 1595 bnx2x_free_rx_skbs_cnic(bp); 1596 } 1597 1598 void bnx2x_free_skbs(struct bnx2x *bp) 1599 { 1600 bnx2x_free_tx_skbs(bp); 1601 bnx2x_free_rx_skbs(bp); 1602 } 1603 1604 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1605 { 1606 /* load old values */ 1607 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1608 1609 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1610 /* leave all but MAX value */ 1611 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1612 1613 /* set new MAX value */ 1614 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1615 & FUNC_MF_CFG_MAX_BW_MASK; 1616 1617 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1618 } 1619 } 1620 1621 /** 1622 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1623 * 1624 * @bp: driver handle 1625 * @nvecs: number of vectors to be released 1626 */ 1627 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1628 { 1629 int i, offset = 0; 1630 1631 if (nvecs == offset) 1632 return; 1633 1634 /* VFs don't have a default SB */ 1635 if (IS_PF(bp)) { 1636 free_irq(bp->msix_table[offset].vector, bp->dev); 1637 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1638 bp->msix_table[offset].vector); 1639 offset++; 1640 } 1641 1642 if (CNIC_SUPPORT(bp)) { 1643 if (nvecs == offset) 1644 return; 1645 offset++; 1646 } 1647 1648 for_each_eth_queue(bp, i) { 1649 if (nvecs == offset) 1650 return; 1651 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1652 i, bp->msix_table[offset].vector); 1653 1654 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1655 } 1656 } 1657 1658 void bnx2x_free_irq(struct bnx2x *bp) 1659 { 1660 if (bp->flags & USING_MSIX_FLAG && 1661 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1662 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1663 1664 /* vfs don't have a default status block */ 1665 if (IS_PF(bp)) 1666 nvecs++; 1667 1668 bnx2x_free_msix_irqs(bp, nvecs); 1669 } else { 1670 free_irq(bp->dev->irq, bp->dev); 1671 } 1672 } 1673 1674 int bnx2x_enable_msix(struct bnx2x *bp) 1675 { 1676 int msix_vec = 0, i, rc; 1677 1678 /* VFs don't have a default status block */ 1679 if (IS_PF(bp)) { 1680 bp->msix_table[msix_vec].entry = msix_vec; 1681 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1682 bp->msix_table[0].entry); 1683 msix_vec++; 1684 } 1685 1686 /* Cnic requires an msix vector for itself */ 1687 if (CNIC_SUPPORT(bp)) { 1688 bp->msix_table[msix_vec].entry = msix_vec; 1689 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1690 msix_vec, bp->msix_table[msix_vec].entry); 1691 msix_vec++; 1692 } 1693 1694 /* We need separate vectors for ETH queues only (not FCoE) */ 1695 for_each_eth_queue(bp, i) { 1696 bp->msix_table[msix_vec].entry = msix_vec; 1697 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1698 msix_vec, msix_vec, i); 1699 msix_vec++; 1700 } 1701 1702 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1703 msix_vec); 1704 1705 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1706 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1707 /* 1708 * reconfigure number of tx/rx queues according to available 1709 * MSI-X vectors 1710 */ 1711 if (rc == -ENOSPC) { 1712 /* Get by with single vector */ 1713 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1714 if (rc < 0) { 1715 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1716 rc); 1717 goto no_msix; 1718 } 1719 1720 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1721 bp->flags |= USING_SINGLE_MSIX_FLAG; 1722 1723 BNX2X_DEV_INFO("set number of queues to 1\n"); 1724 bp->num_ethernet_queues = 1; 1725 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1726 } else if (rc < 0) { 1727 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1728 goto no_msix; 1729 } else if (rc < msix_vec) { 1730 /* how less vectors we will have? */ 1731 int diff = msix_vec - rc; 1732 1733 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1734 1735 /* 1736 * decrease number of queues by number of unallocated entries 1737 */ 1738 bp->num_ethernet_queues -= diff; 1739 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1740 1741 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1742 bp->num_queues); 1743 } 1744 1745 bp->flags |= USING_MSIX_FLAG; 1746 1747 return 0; 1748 1749 no_msix: 1750 /* fall to INTx if not enough memory */ 1751 if (rc == -ENOMEM) 1752 bp->flags |= DISABLE_MSI_FLAG; 1753 1754 return rc; 1755 } 1756 1757 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1758 { 1759 int i, rc, offset = 0; 1760 1761 /* no default status block for vf */ 1762 if (IS_PF(bp)) { 1763 rc = request_irq(bp->msix_table[offset++].vector, 1764 bnx2x_msix_sp_int, 0, 1765 bp->dev->name, bp->dev); 1766 if (rc) { 1767 BNX2X_ERR("request sp irq failed\n"); 1768 return -EBUSY; 1769 } 1770 } 1771 1772 if (CNIC_SUPPORT(bp)) 1773 offset++; 1774 1775 for_each_eth_queue(bp, i) { 1776 struct bnx2x_fastpath *fp = &bp->fp[i]; 1777 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1778 bp->dev->name, i); 1779 1780 rc = request_irq(bp->msix_table[offset].vector, 1781 bnx2x_msix_fp_int, 0, fp->name, fp); 1782 if (rc) { 1783 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1784 bp->msix_table[offset].vector, rc); 1785 bnx2x_free_msix_irqs(bp, offset); 1786 return -EBUSY; 1787 } 1788 1789 offset++; 1790 } 1791 1792 i = BNX2X_NUM_ETH_QUEUES(bp); 1793 if (IS_PF(bp)) { 1794 offset = 1 + CNIC_SUPPORT(bp); 1795 netdev_info(bp->dev, 1796 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1797 bp->msix_table[0].vector, 1798 0, bp->msix_table[offset].vector, 1799 i - 1, bp->msix_table[offset + i - 1].vector); 1800 } else { 1801 offset = CNIC_SUPPORT(bp); 1802 netdev_info(bp->dev, 1803 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1804 0, bp->msix_table[offset].vector, 1805 i - 1, bp->msix_table[offset + i - 1].vector); 1806 } 1807 return 0; 1808 } 1809 1810 int bnx2x_enable_msi(struct bnx2x *bp) 1811 { 1812 int rc; 1813 1814 rc = pci_enable_msi(bp->pdev); 1815 if (rc) { 1816 BNX2X_DEV_INFO("MSI is not attainable\n"); 1817 return -1; 1818 } 1819 bp->flags |= USING_MSI_FLAG; 1820 1821 return 0; 1822 } 1823 1824 static int bnx2x_req_irq(struct bnx2x *bp) 1825 { 1826 unsigned long flags; 1827 unsigned int irq; 1828 1829 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1830 flags = 0; 1831 else 1832 flags = IRQF_SHARED; 1833 1834 if (bp->flags & USING_MSIX_FLAG) 1835 irq = bp->msix_table[0].vector; 1836 else 1837 irq = bp->pdev->irq; 1838 1839 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1840 } 1841 1842 static int bnx2x_setup_irqs(struct bnx2x *bp) 1843 { 1844 int rc = 0; 1845 if (bp->flags & USING_MSIX_FLAG && 1846 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1847 rc = bnx2x_req_msix_irqs(bp); 1848 if (rc) 1849 return rc; 1850 } else { 1851 rc = bnx2x_req_irq(bp); 1852 if (rc) { 1853 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1854 return rc; 1855 } 1856 if (bp->flags & USING_MSI_FLAG) { 1857 bp->dev->irq = bp->pdev->irq; 1858 netdev_info(bp->dev, "using MSI IRQ %d\n", 1859 bp->dev->irq); 1860 } 1861 if (bp->flags & USING_MSIX_FLAG) { 1862 bp->dev->irq = bp->msix_table[0].vector; 1863 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1864 bp->dev->irq); 1865 } 1866 } 1867 1868 return 0; 1869 } 1870 1871 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1872 { 1873 int i; 1874 1875 for_each_rx_queue_cnic(bp, i) { 1876 napi_enable(&bnx2x_fp(bp, i, napi)); 1877 } 1878 } 1879 1880 static void bnx2x_napi_enable(struct bnx2x *bp) 1881 { 1882 int i; 1883 1884 for_each_eth_queue(bp, i) { 1885 napi_enable(&bnx2x_fp(bp, i, napi)); 1886 } 1887 } 1888 1889 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1890 { 1891 int i; 1892 1893 for_each_rx_queue_cnic(bp, i) { 1894 napi_disable(&bnx2x_fp(bp, i, napi)); 1895 } 1896 } 1897 1898 static void bnx2x_napi_disable(struct bnx2x *bp) 1899 { 1900 int i; 1901 1902 for_each_eth_queue(bp, i) { 1903 napi_disable(&bnx2x_fp(bp, i, napi)); 1904 } 1905 } 1906 1907 void bnx2x_netif_start(struct bnx2x *bp) 1908 { 1909 if (netif_running(bp->dev)) { 1910 bnx2x_napi_enable(bp); 1911 if (CNIC_LOADED(bp)) 1912 bnx2x_napi_enable_cnic(bp); 1913 bnx2x_int_enable(bp); 1914 if (bp->state == BNX2X_STATE_OPEN) 1915 netif_tx_wake_all_queues(bp->dev); 1916 } 1917 } 1918 1919 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1920 { 1921 bnx2x_int_disable_sync(bp, disable_hw); 1922 bnx2x_napi_disable(bp); 1923 if (CNIC_LOADED(bp)) 1924 bnx2x_napi_disable_cnic(bp); 1925 } 1926 1927 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1928 struct net_device *sb_dev) 1929 { 1930 struct bnx2x *bp = netdev_priv(dev); 1931 1932 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1933 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1934 u16 ether_type = ntohs(hdr->h_proto); 1935 1936 /* Skip VLAN tag if present */ 1937 if (ether_type == ETH_P_8021Q) { 1938 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 1939 1940 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1941 } 1942 1943 /* If ethertype is FCoE or FIP - use FCoE ring */ 1944 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1945 return bnx2x_fcoe_tx(bp, txq_index); 1946 } 1947 1948 /* select a non-FCoE queue */ 1949 return netdev_pick_tx(dev, skb, NULL) % 1950 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos); 1951 } 1952 1953 void bnx2x_set_num_queues(struct bnx2x *bp) 1954 { 1955 /* RSS queues */ 1956 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1957 1958 /* override in STORAGE SD modes */ 1959 if (IS_MF_STORAGE_ONLY(bp)) 1960 bp->num_ethernet_queues = 1; 1961 1962 /* Add special queues */ 1963 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1964 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1965 1966 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1967 } 1968 1969 /** 1970 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1971 * 1972 * @bp: Driver handle 1973 * @include_cnic: handle cnic case 1974 * 1975 * We currently support for at most 16 Tx queues for each CoS thus we will 1976 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1977 * bp->max_cos. 1978 * 1979 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1980 * index after all ETH L2 indices. 1981 * 1982 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1983 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1984 * 16..31,...) with indices that are not coupled with any real Tx queue. 1985 * 1986 * The proper configuration of skb->queue_mapping is handled by 1987 * bnx2x_select_queue() and __skb_tx_hash(). 1988 * 1989 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1990 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1991 */ 1992 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1993 { 1994 int rc, tx, rx; 1995 1996 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1997 rx = BNX2X_NUM_ETH_QUEUES(bp); 1998 1999 /* account for fcoe queue */ 2000 if (include_cnic && !NO_FCOE(bp)) { 2001 rx++; 2002 tx++; 2003 } 2004 2005 rc = netif_set_real_num_tx_queues(bp->dev, tx); 2006 if (rc) { 2007 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 2008 return rc; 2009 } 2010 rc = netif_set_real_num_rx_queues(bp->dev, rx); 2011 if (rc) { 2012 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 2013 return rc; 2014 } 2015 2016 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 2017 tx, rx); 2018 2019 return rc; 2020 } 2021 2022 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2023 { 2024 int i; 2025 2026 for_each_queue(bp, i) { 2027 struct bnx2x_fastpath *fp = &bp->fp[i]; 2028 u32 mtu; 2029 2030 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2031 if (IS_FCOE_IDX(i)) 2032 /* 2033 * Although there are no IP frames expected to arrive to 2034 * this ring we still want to add an 2035 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2036 * overrun attack. 2037 */ 2038 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2039 else 2040 mtu = bp->dev->mtu; 2041 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2042 IP_HEADER_ALIGNMENT_PADDING + 2043 ETH_OVERHEAD + 2044 mtu + 2045 BNX2X_FW_RX_ALIGN_END; 2046 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size); 2047 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2048 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2049 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2050 else 2051 fp->rx_frag_size = 0; 2052 } 2053 } 2054 2055 static int bnx2x_init_rss(struct bnx2x *bp) 2056 { 2057 int i; 2058 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2059 2060 /* Prepare the initial contents for the indirection table if RSS is 2061 * enabled 2062 */ 2063 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2064 bp->rss_conf_obj.ind_table[i] = 2065 bp->fp->cl_id + 2066 ethtool_rxfh_indir_default(i, num_eth_queues); 2067 2068 /* 2069 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2070 * per-port, so if explicit configuration is needed , do it only 2071 * for a PMF. 2072 * 2073 * For 57712 and newer on the other hand it's a per-function 2074 * configuration. 2075 */ 2076 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2077 } 2078 2079 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2080 bool config_hash, bool enable) 2081 { 2082 struct bnx2x_config_rss_params params = {NULL}; 2083 2084 /* Although RSS is meaningless when there is a single HW queue we 2085 * still need it enabled in order to have HW Rx hash generated. 2086 * 2087 * if (!is_eth_multi(bp)) 2088 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2089 */ 2090 2091 params.rss_obj = rss_obj; 2092 2093 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2094 2095 if (enable) { 2096 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2097 2098 /* RSS configuration */ 2099 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2100 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2101 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2102 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2103 if (rss_obj->udp_rss_v4) 2104 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2105 if (rss_obj->udp_rss_v6) 2106 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2107 2108 if (!CHIP_IS_E1x(bp)) { 2109 /* valid only for TUNN_MODE_VXLAN tunnel mode */ 2110 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags); 2111 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags); 2112 2113 /* valid only for TUNN_MODE_GRE tunnel mode */ 2114 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags); 2115 } 2116 } else { 2117 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2118 } 2119 2120 /* Hash bits */ 2121 params.rss_result_mask = MULTI_MASK; 2122 2123 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2124 2125 if (config_hash) { 2126 /* RSS keys */ 2127 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2128 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2129 } 2130 2131 if (IS_PF(bp)) 2132 return bnx2x_config_rss(bp, ¶ms); 2133 else 2134 return bnx2x_vfpf_config_rss(bp, ¶ms); 2135 } 2136 2137 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2138 { 2139 struct bnx2x_func_state_params func_params = {NULL}; 2140 2141 /* Prepare parameters for function state transitions */ 2142 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2143 2144 func_params.f_obj = &bp->func_obj; 2145 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2146 2147 func_params.params.hw_init.load_phase = load_code; 2148 2149 return bnx2x_func_state_change(bp, &func_params); 2150 } 2151 2152 /* 2153 * Cleans the object that have internal lists without sending 2154 * ramrods. Should be run when interrupts are disabled. 2155 */ 2156 void bnx2x_squeeze_objects(struct bnx2x *bp) 2157 { 2158 int rc; 2159 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2160 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2161 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2162 2163 /***************** Cleanup MACs' object first *************************/ 2164 2165 /* Wait for completion of requested */ 2166 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2167 /* Perform a dry cleanup */ 2168 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2169 2170 /* Clean ETH primary MAC */ 2171 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2172 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2173 &ramrod_flags); 2174 if (rc != 0) 2175 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2176 2177 /* Cleanup UC list */ 2178 vlan_mac_flags = 0; 2179 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2180 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2181 &ramrod_flags); 2182 if (rc != 0) 2183 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2184 2185 /***************** Now clean mcast object *****************************/ 2186 rparam.mcast_obj = &bp->mcast_obj; 2187 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2188 2189 /* Add a DEL command... - Since we're doing a driver cleanup only, 2190 * we take a lock surrounding both the initial send and the CONTs, 2191 * as we don't want a true completion to disrupt us in the middle. 2192 */ 2193 netif_addr_lock_bh(bp->dev); 2194 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2195 if (rc < 0) 2196 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2197 rc); 2198 2199 /* ...and wait until all pending commands are cleared */ 2200 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2201 while (rc != 0) { 2202 if (rc < 0) { 2203 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2204 rc); 2205 netif_addr_unlock_bh(bp->dev); 2206 return; 2207 } 2208 2209 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2210 } 2211 netif_addr_unlock_bh(bp->dev); 2212 } 2213 2214 #ifndef BNX2X_STOP_ON_ERROR 2215 #define LOAD_ERROR_EXIT(bp, label) \ 2216 do { \ 2217 (bp)->state = BNX2X_STATE_ERROR; \ 2218 goto label; \ 2219 } while (0) 2220 2221 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2222 do { \ 2223 bp->cnic_loaded = false; \ 2224 goto label; \ 2225 } while (0) 2226 #else /*BNX2X_STOP_ON_ERROR*/ 2227 #define LOAD_ERROR_EXIT(bp, label) \ 2228 do { \ 2229 (bp)->state = BNX2X_STATE_ERROR; \ 2230 (bp)->panic = 1; \ 2231 return -EBUSY; \ 2232 } while (0) 2233 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2234 do { \ 2235 bp->cnic_loaded = false; \ 2236 (bp)->panic = 1; \ 2237 return -EBUSY; \ 2238 } while (0) 2239 #endif /*BNX2X_STOP_ON_ERROR*/ 2240 2241 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2242 { 2243 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2244 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2245 return; 2246 } 2247 2248 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2249 { 2250 int num_groups, vf_headroom = 0; 2251 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2252 2253 /* number of queues for statistics is number of eth queues + FCoE */ 2254 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2255 2256 /* Total number of FW statistics requests = 2257 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2258 * and fcoe l2 queue) stats + num of queues (which includes another 1 2259 * for fcoe l2 queue if applicable) 2260 */ 2261 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2262 2263 /* vf stats appear in the request list, but their data is allocated by 2264 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2265 * it is used to determine where to place the vf stats queries in the 2266 * request struct 2267 */ 2268 if (IS_SRIOV(bp)) 2269 vf_headroom = bnx2x_vf_headroom(bp); 2270 2271 /* Request is built from stats_query_header and an array of 2272 * stats_query_cmd_group each of which contains 2273 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2274 * configured in the stats_query_header. 2275 */ 2276 num_groups = 2277 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2278 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2279 1 : 0)); 2280 2281 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2282 bp->fw_stats_num, vf_headroom, num_groups); 2283 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2284 num_groups * sizeof(struct stats_query_cmd_group); 2285 2286 /* Data for statistics requests + stats_counter 2287 * stats_counter holds per-STORM counters that are incremented 2288 * when STORM has finished with the current request. 2289 * memory for FCoE offloaded statistics are counted anyway, 2290 * even if they will not be sent. 2291 * VF stats are not accounted for here as the data of VF stats is stored 2292 * in memory allocated by the VF, not here. 2293 */ 2294 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2295 sizeof(struct per_pf_stats) + 2296 sizeof(struct fcoe_statistics_params) + 2297 sizeof(struct per_queue_stats) * num_queue_stats + 2298 sizeof(struct stats_counter); 2299 2300 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2301 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2302 if (!bp->fw_stats) 2303 goto alloc_mem_err; 2304 2305 /* Set shortcuts */ 2306 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2307 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2308 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2309 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2310 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2311 bp->fw_stats_req_sz; 2312 2313 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2314 U64_HI(bp->fw_stats_req_mapping), 2315 U64_LO(bp->fw_stats_req_mapping)); 2316 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2317 U64_HI(bp->fw_stats_data_mapping), 2318 U64_LO(bp->fw_stats_data_mapping)); 2319 return 0; 2320 2321 alloc_mem_err: 2322 bnx2x_free_fw_stats_mem(bp); 2323 BNX2X_ERR("Can't allocate FW stats memory\n"); 2324 return -ENOMEM; 2325 } 2326 2327 /* send load request to mcp and analyze response */ 2328 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2329 { 2330 u32 param; 2331 2332 /* init fw_seq */ 2333 bp->fw_seq = 2334 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2335 DRV_MSG_SEQ_NUMBER_MASK); 2336 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2337 2338 /* Get current FW pulse sequence */ 2339 bp->fw_drv_pulse_wr_seq = 2340 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2341 DRV_PULSE_SEQ_MASK); 2342 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2343 2344 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2345 2346 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2347 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2348 2349 /* load request */ 2350 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2351 2352 /* if mcp fails to respond we must abort */ 2353 if (!(*load_code)) { 2354 BNX2X_ERR("MCP response failure, aborting\n"); 2355 return -EBUSY; 2356 } 2357 2358 /* If mcp refused (e.g. other port is in diagnostic mode) we 2359 * must abort 2360 */ 2361 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2362 BNX2X_ERR("MCP refused load request, aborting\n"); 2363 return -EBUSY; 2364 } 2365 return 0; 2366 } 2367 2368 /* check whether another PF has already loaded FW to chip. In 2369 * virtualized environments a pf from another VM may have already 2370 * initialized the device including loading FW 2371 */ 2372 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2373 { 2374 /* is another pf loaded on this engine? */ 2375 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2376 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2377 u8 loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng; 2378 u32 loaded_fw; 2379 2380 /* read loaded FW from chip */ 2381 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2382 2383 loaded_fw_major = loaded_fw & 0xff; 2384 loaded_fw_minor = (loaded_fw >> 8) & 0xff; 2385 loaded_fw_rev = (loaded_fw >> 16) & 0xff; 2386 loaded_fw_eng = (loaded_fw >> 24) & 0xff; 2387 2388 DP(BNX2X_MSG_SP, "loaded fw 0x%x major 0x%x minor 0x%x rev 0x%x eng 0x%x\n", 2389 loaded_fw, loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng); 2390 2391 /* abort nic load if version mismatch */ 2392 if (loaded_fw_major != BCM_5710_FW_MAJOR_VERSION || 2393 loaded_fw_minor != BCM_5710_FW_MINOR_VERSION || 2394 loaded_fw_eng != BCM_5710_FW_ENGINEERING_VERSION || 2395 loaded_fw_rev < BCM_5710_FW_REVISION_VERSION_V15) { 2396 if (print_err) 2397 BNX2X_ERR("loaded FW incompatible. Aborting\n"); 2398 else 2399 BNX2X_DEV_INFO("loaded FW incompatible, possibly due to MF UNDI\n"); 2400 2401 return -EBUSY; 2402 } 2403 } 2404 return 0; 2405 } 2406 2407 /* returns the "mcp load_code" according to global load_count array */ 2408 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2409 { 2410 int path = BP_PATH(bp); 2411 2412 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2413 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2414 bnx2x_load_count[path][2]); 2415 bnx2x_load_count[path][0]++; 2416 bnx2x_load_count[path][1 + port]++; 2417 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2418 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2419 bnx2x_load_count[path][2]); 2420 if (bnx2x_load_count[path][0] == 1) 2421 return FW_MSG_CODE_DRV_LOAD_COMMON; 2422 else if (bnx2x_load_count[path][1 + port] == 1) 2423 return FW_MSG_CODE_DRV_LOAD_PORT; 2424 else 2425 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2426 } 2427 2428 /* mark PMF if applicable */ 2429 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2430 { 2431 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2432 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2433 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2434 bp->port.pmf = 1; 2435 /* We need the barrier to ensure the ordering between the 2436 * writing to bp->port.pmf here and reading it from the 2437 * bnx2x_periodic_task(). 2438 */ 2439 smp_mb(); 2440 } else { 2441 bp->port.pmf = 0; 2442 } 2443 2444 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2445 } 2446 2447 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2448 { 2449 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2450 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2451 (bp->common.shmem2_base)) { 2452 if (SHMEM2_HAS(bp, dcc_support)) 2453 SHMEM2_WR(bp, dcc_support, 2454 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2455 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2456 if (SHMEM2_HAS(bp, afex_driver_support)) 2457 SHMEM2_WR(bp, afex_driver_support, 2458 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2459 } 2460 2461 /* Set AFEX default VLAN tag to an invalid value */ 2462 bp->afex_def_vlan_tag = -1; 2463 } 2464 2465 /** 2466 * bnx2x_bz_fp - zero content of the fastpath structure. 2467 * 2468 * @bp: driver handle 2469 * @index: fastpath index to be zeroed 2470 * 2471 * Makes sure the contents of the bp->fp[index].napi is kept 2472 * intact. 2473 */ 2474 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2475 { 2476 struct bnx2x_fastpath *fp = &bp->fp[index]; 2477 int cos; 2478 struct napi_struct orig_napi = fp->napi; 2479 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2480 2481 /* bzero bnx2x_fastpath contents */ 2482 if (fp->tpa_info) 2483 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2484 sizeof(struct bnx2x_agg_info)); 2485 memset(fp, 0, sizeof(*fp)); 2486 2487 /* Restore the NAPI object as it has been already initialized */ 2488 fp->napi = orig_napi; 2489 fp->tpa_info = orig_tpa_info; 2490 fp->bp = bp; 2491 fp->index = index; 2492 if (IS_ETH_FP(fp)) 2493 fp->max_cos = bp->max_cos; 2494 else 2495 /* Special queues support only one CoS */ 2496 fp->max_cos = 1; 2497 2498 /* Init txdata pointers */ 2499 if (IS_FCOE_FP(fp)) 2500 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2501 if (IS_ETH_FP(fp)) 2502 for_each_cos_in_tx_queue(fp, cos) 2503 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2504 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2505 2506 /* set the tpa flag for each queue. The tpa flag determines the queue 2507 * minimal size so it must be set prior to queue memory allocation 2508 */ 2509 if (bp->dev->features & NETIF_F_LRO) 2510 fp->mode = TPA_MODE_LRO; 2511 else if (bp->dev->features & NETIF_F_GRO_HW) 2512 fp->mode = TPA_MODE_GRO; 2513 else 2514 fp->mode = TPA_MODE_DISABLED; 2515 2516 /* We don't want TPA if it's disabled in bp 2517 * or if this is an FCoE L2 ring. 2518 */ 2519 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2520 fp->mode = TPA_MODE_DISABLED; 2521 } 2522 2523 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state) 2524 { 2525 u32 cur; 2526 2527 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp)) 2528 return; 2529 2530 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]); 2531 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n", 2532 cur, state); 2533 2534 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state); 2535 } 2536 2537 int bnx2x_load_cnic(struct bnx2x *bp) 2538 { 2539 int i, rc, port = BP_PORT(bp); 2540 2541 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2542 2543 mutex_init(&bp->cnic_mutex); 2544 2545 if (IS_PF(bp)) { 2546 rc = bnx2x_alloc_mem_cnic(bp); 2547 if (rc) { 2548 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2549 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2550 } 2551 } 2552 2553 rc = bnx2x_alloc_fp_mem_cnic(bp); 2554 if (rc) { 2555 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2556 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2557 } 2558 2559 /* Update the number of queues with the cnic queues */ 2560 rc = bnx2x_set_real_num_queues(bp, 1); 2561 if (rc) { 2562 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2563 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2564 } 2565 2566 /* Add all CNIC NAPI objects */ 2567 bnx2x_add_all_napi_cnic(bp); 2568 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2569 bnx2x_napi_enable_cnic(bp); 2570 2571 rc = bnx2x_init_hw_func_cnic(bp); 2572 if (rc) 2573 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2574 2575 bnx2x_nic_init_cnic(bp); 2576 2577 if (IS_PF(bp)) { 2578 /* Enable Timer scan */ 2579 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2580 2581 /* setup cnic queues */ 2582 for_each_cnic_queue(bp, i) { 2583 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2584 if (rc) { 2585 BNX2X_ERR("Queue setup failed\n"); 2586 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2587 } 2588 } 2589 } 2590 2591 /* Initialize Rx filter. */ 2592 bnx2x_set_rx_mode_inner(bp); 2593 2594 /* re-read iscsi info */ 2595 bnx2x_get_iscsi_info(bp); 2596 bnx2x_setup_cnic_irq_info(bp); 2597 bnx2x_setup_cnic_info(bp); 2598 bp->cnic_loaded = true; 2599 if (bp->state == BNX2X_STATE_OPEN) 2600 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2601 2602 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2603 2604 return 0; 2605 2606 #ifndef BNX2X_STOP_ON_ERROR 2607 load_error_cnic2: 2608 /* Disable Timer scan */ 2609 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2610 2611 load_error_cnic1: 2612 bnx2x_napi_disable_cnic(bp); 2613 /* Update the number of queues without the cnic queues */ 2614 if (bnx2x_set_real_num_queues(bp, 0)) 2615 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2616 load_error_cnic0: 2617 BNX2X_ERR("CNIC-related load failed\n"); 2618 bnx2x_free_fp_mem_cnic(bp); 2619 bnx2x_free_mem_cnic(bp); 2620 return rc; 2621 #endif /* ! BNX2X_STOP_ON_ERROR */ 2622 } 2623 2624 /* must be called with rtnl_lock */ 2625 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2626 { 2627 int port = BP_PORT(bp); 2628 int i, rc = 0, load_code = 0; 2629 2630 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2631 DP(NETIF_MSG_IFUP, 2632 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2633 2634 #ifdef BNX2X_STOP_ON_ERROR 2635 if (unlikely(bp->panic)) { 2636 BNX2X_ERR("Can't load NIC when there is panic\n"); 2637 return -EPERM; 2638 } 2639 #endif 2640 2641 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2642 2643 /* zero the structure w/o any lock, before SP handler is initialized */ 2644 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2645 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2646 &bp->last_reported_link.link_report_flags); 2647 2648 if (IS_PF(bp)) 2649 /* must be called before memory allocation and HW init */ 2650 bnx2x_ilt_set_info(bp); 2651 2652 /* 2653 * Zero fastpath structures preserving invariants like napi, which are 2654 * allocated only once, fp index, max_cos, bp pointer. 2655 * Also set fp->mode and txdata_ptr. 2656 */ 2657 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2658 for_each_queue(bp, i) 2659 bnx2x_bz_fp(bp, i); 2660 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2661 bp->num_cnic_queues) * 2662 sizeof(struct bnx2x_fp_txdata)); 2663 2664 bp->fcoe_init = false; 2665 2666 /* Set the receive queues buffer size */ 2667 bnx2x_set_rx_buf_size(bp); 2668 2669 if (IS_PF(bp)) { 2670 rc = bnx2x_alloc_mem(bp); 2671 if (rc) { 2672 BNX2X_ERR("Unable to allocate bp memory\n"); 2673 return rc; 2674 } 2675 } 2676 2677 /* need to be done after alloc mem, since it's self adjusting to amount 2678 * of memory available for RSS queues 2679 */ 2680 rc = bnx2x_alloc_fp_mem(bp); 2681 if (rc) { 2682 BNX2X_ERR("Unable to allocate memory for fps\n"); 2683 LOAD_ERROR_EXIT(bp, load_error0); 2684 } 2685 2686 /* Allocated memory for FW statistics */ 2687 rc = bnx2x_alloc_fw_stats_mem(bp); 2688 if (rc) 2689 LOAD_ERROR_EXIT(bp, load_error0); 2690 2691 /* request pf to initialize status blocks */ 2692 if (IS_VF(bp)) { 2693 rc = bnx2x_vfpf_init(bp); 2694 if (rc) 2695 LOAD_ERROR_EXIT(bp, load_error0); 2696 } 2697 2698 /* As long as bnx2x_alloc_mem() may possibly update 2699 * bp->num_queues, bnx2x_set_real_num_queues() should always 2700 * come after it. At this stage cnic queues are not counted. 2701 */ 2702 rc = bnx2x_set_real_num_queues(bp, 0); 2703 if (rc) { 2704 BNX2X_ERR("Unable to set real_num_queues\n"); 2705 LOAD_ERROR_EXIT(bp, load_error0); 2706 } 2707 2708 /* configure multi cos mappings in kernel. 2709 * this configuration may be overridden by a multi class queue 2710 * discipline or by a dcbx negotiation result. 2711 */ 2712 bnx2x_setup_tc(bp->dev, bp->max_cos); 2713 2714 /* Add all NAPI objects */ 2715 bnx2x_add_all_napi(bp); 2716 DP(NETIF_MSG_IFUP, "napi added\n"); 2717 bnx2x_napi_enable(bp); 2718 2719 if (IS_PF(bp)) { 2720 /* set pf load just before approaching the MCP */ 2721 bnx2x_set_pf_load(bp); 2722 2723 /* if mcp exists send load request and analyze response */ 2724 if (!BP_NOMCP(bp)) { 2725 /* attempt to load pf */ 2726 rc = bnx2x_nic_load_request(bp, &load_code); 2727 if (rc) 2728 LOAD_ERROR_EXIT(bp, load_error1); 2729 2730 /* what did mcp say? */ 2731 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2732 if (rc) { 2733 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2734 LOAD_ERROR_EXIT(bp, load_error2); 2735 } 2736 } else { 2737 load_code = bnx2x_nic_load_no_mcp(bp, port); 2738 } 2739 2740 /* mark pmf if applicable */ 2741 bnx2x_nic_load_pmf(bp, load_code); 2742 2743 /* Init Function state controlling object */ 2744 bnx2x__init_func_obj(bp); 2745 2746 /* Initialize HW */ 2747 rc = bnx2x_init_hw(bp, load_code); 2748 if (rc) { 2749 BNX2X_ERR("HW init failed, aborting\n"); 2750 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2751 LOAD_ERROR_EXIT(bp, load_error2); 2752 } 2753 } 2754 2755 bnx2x_pre_irq_nic_init(bp); 2756 2757 /* Connect to IRQs */ 2758 rc = bnx2x_setup_irqs(bp); 2759 if (rc) { 2760 BNX2X_ERR("setup irqs failed\n"); 2761 if (IS_PF(bp)) 2762 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2763 LOAD_ERROR_EXIT(bp, load_error2); 2764 } 2765 2766 /* Init per-function objects */ 2767 if (IS_PF(bp)) { 2768 /* Setup NIC internals and enable interrupts */ 2769 bnx2x_post_irq_nic_init(bp, load_code); 2770 2771 bnx2x_init_bp_objs(bp); 2772 bnx2x_iov_nic_init(bp); 2773 2774 /* Set AFEX default VLAN tag to an invalid value */ 2775 bp->afex_def_vlan_tag = -1; 2776 bnx2x_nic_load_afex_dcc(bp, load_code); 2777 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2778 rc = bnx2x_func_start(bp); 2779 if (rc) { 2780 BNX2X_ERR("Function start failed!\n"); 2781 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2782 2783 LOAD_ERROR_EXIT(bp, load_error3); 2784 } 2785 2786 /* Send LOAD_DONE command to MCP */ 2787 if (!BP_NOMCP(bp)) { 2788 load_code = bnx2x_fw_command(bp, 2789 DRV_MSG_CODE_LOAD_DONE, 0); 2790 if (!load_code) { 2791 BNX2X_ERR("MCP response failure, aborting\n"); 2792 rc = -EBUSY; 2793 LOAD_ERROR_EXIT(bp, load_error3); 2794 } 2795 } 2796 2797 /* initialize FW coalescing state machines in RAM */ 2798 bnx2x_update_coalesce(bp); 2799 } 2800 2801 /* setup the leading queue */ 2802 rc = bnx2x_setup_leading(bp); 2803 if (rc) { 2804 BNX2X_ERR("Setup leading failed!\n"); 2805 LOAD_ERROR_EXIT(bp, load_error3); 2806 } 2807 2808 /* set up the rest of the queues */ 2809 for_each_nondefault_eth_queue(bp, i) { 2810 if (IS_PF(bp)) 2811 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2812 else /* VF */ 2813 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2814 if (rc) { 2815 BNX2X_ERR("Queue %d setup failed\n", i); 2816 LOAD_ERROR_EXIT(bp, load_error3); 2817 } 2818 } 2819 2820 /* setup rss */ 2821 rc = bnx2x_init_rss(bp); 2822 if (rc) { 2823 BNX2X_ERR("PF RSS init failed\n"); 2824 LOAD_ERROR_EXIT(bp, load_error3); 2825 } 2826 2827 /* Now when Clients are configured we are ready to work */ 2828 bp->state = BNX2X_STATE_OPEN; 2829 2830 /* Configure a ucast MAC */ 2831 if (IS_PF(bp)) 2832 rc = bnx2x_set_eth_mac(bp, true); 2833 else /* vf */ 2834 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2835 true); 2836 if (rc) { 2837 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2838 LOAD_ERROR_EXIT(bp, load_error3); 2839 } 2840 2841 if (IS_PF(bp) && bp->pending_max) { 2842 bnx2x_update_max_mf_config(bp, bp->pending_max); 2843 bp->pending_max = 0; 2844 } 2845 2846 bp->force_link_down = false; 2847 if (bp->port.pmf) { 2848 rc = bnx2x_initial_phy_init(bp, load_mode); 2849 if (rc) 2850 LOAD_ERROR_EXIT(bp, load_error3); 2851 } 2852 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2853 2854 /* Start fast path */ 2855 2856 /* Re-configure vlan filters */ 2857 rc = bnx2x_vlan_reconfigure_vid(bp); 2858 if (rc) 2859 LOAD_ERROR_EXIT(bp, load_error3); 2860 2861 /* Initialize Rx filter. */ 2862 bnx2x_set_rx_mode_inner(bp); 2863 2864 if (bp->flags & PTP_SUPPORTED) { 2865 bnx2x_register_phc(bp); 2866 bnx2x_init_ptp(bp); 2867 bnx2x_configure_ptp_filters(bp); 2868 } 2869 /* Start Tx */ 2870 switch (load_mode) { 2871 case LOAD_NORMAL: 2872 /* Tx queue should be only re-enabled */ 2873 netif_tx_wake_all_queues(bp->dev); 2874 break; 2875 2876 case LOAD_OPEN: 2877 netif_tx_start_all_queues(bp->dev); 2878 smp_mb__after_atomic(); 2879 break; 2880 2881 case LOAD_DIAG: 2882 case LOAD_LOOPBACK_EXT: 2883 bp->state = BNX2X_STATE_DIAG; 2884 break; 2885 2886 default: 2887 break; 2888 } 2889 2890 if (bp->port.pmf) 2891 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2892 else 2893 bnx2x__link_status_update(bp); 2894 2895 /* start the timer */ 2896 mod_timer(&bp->timer, jiffies + bp->current_interval); 2897 2898 if (CNIC_ENABLED(bp)) 2899 bnx2x_load_cnic(bp); 2900 2901 if (IS_PF(bp)) 2902 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2903 2904 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2905 /* mark driver is loaded in shmem2 */ 2906 u32 val; 2907 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2908 val &= ~DRV_FLAGS_MTU_MASK; 2909 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT); 2910 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2911 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2912 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2913 } 2914 2915 /* Wait for all pending SP commands to complete */ 2916 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2917 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2918 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2919 return -EBUSY; 2920 } 2921 2922 /* Update driver data for On-Chip MFW dump. */ 2923 if (IS_PF(bp)) 2924 bnx2x_update_mfw_dump(bp); 2925 2926 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2927 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2928 bnx2x_dcbx_init(bp, false); 2929 2930 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2931 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE); 2932 2933 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2934 2935 return 0; 2936 2937 #ifndef BNX2X_STOP_ON_ERROR 2938 load_error3: 2939 if (IS_PF(bp)) { 2940 bnx2x_int_disable_sync(bp, 1); 2941 2942 /* Clean queueable objects */ 2943 bnx2x_squeeze_objects(bp); 2944 } 2945 2946 /* Free SKBs, SGEs, TPA pool and driver internals */ 2947 bnx2x_free_skbs(bp); 2948 for_each_rx_queue(bp, i) 2949 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2950 2951 /* Release IRQs */ 2952 bnx2x_free_irq(bp); 2953 load_error2: 2954 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2955 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2956 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2957 } 2958 2959 bp->port.pmf = 0; 2960 load_error1: 2961 bnx2x_napi_disable(bp); 2962 bnx2x_del_all_napi(bp); 2963 2964 /* clear pf_load status, as it was already set */ 2965 if (IS_PF(bp)) 2966 bnx2x_clear_pf_load(bp); 2967 load_error0: 2968 bnx2x_free_fw_stats_mem(bp); 2969 bnx2x_free_fp_mem(bp); 2970 bnx2x_free_mem(bp); 2971 2972 return rc; 2973 #endif /* ! BNX2X_STOP_ON_ERROR */ 2974 } 2975 2976 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2977 { 2978 u8 rc = 0, cos, i; 2979 2980 /* Wait until tx fastpath tasks complete */ 2981 for_each_tx_queue(bp, i) { 2982 struct bnx2x_fastpath *fp = &bp->fp[i]; 2983 2984 for_each_cos_in_tx_queue(fp, cos) 2985 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2986 if (rc) 2987 return rc; 2988 } 2989 return 0; 2990 } 2991 2992 /* must be called with rtnl_lock */ 2993 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2994 { 2995 int i; 2996 bool global = false; 2997 2998 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2999 3000 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 3001 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 3002 3003 /* mark driver is unloaded in shmem2 */ 3004 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 3005 u32 val; 3006 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 3007 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 3008 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 3009 } 3010 3011 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 3012 (bp->state == BNX2X_STATE_CLOSED || 3013 bp->state == BNX2X_STATE_ERROR)) { 3014 /* We can get here if the driver has been unloaded 3015 * during parity error recovery and is either waiting for a 3016 * leader to complete or for other functions to unload and 3017 * then ifdown has been issued. In this case we want to 3018 * unload and let other functions to complete a recovery 3019 * process. 3020 */ 3021 bp->recovery_state = BNX2X_RECOVERY_DONE; 3022 bp->is_leader = 0; 3023 bnx2x_release_leader_lock(bp); 3024 smp_mb(); 3025 3026 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 3027 BNX2X_ERR("Can't unload in closed or error state\n"); 3028 return -EINVAL; 3029 } 3030 3031 /* Nothing to do during unload if previous bnx2x_nic_load() 3032 * have not completed successfully - all resources are released. 3033 * 3034 * we can get here only after unsuccessful ndo_* callback, during which 3035 * dev->IFF_UP flag is still on. 3036 */ 3037 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 3038 return 0; 3039 3040 /* It's important to set the bp->state to the value different from 3041 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 3042 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 3043 */ 3044 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 3045 smp_mb(); 3046 3047 /* indicate to VFs that the PF is going down */ 3048 bnx2x_iov_channel_down(bp); 3049 3050 if (CNIC_LOADED(bp)) 3051 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 3052 3053 /* Stop Tx */ 3054 bnx2x_tx_disable(bp); 3055 netdev_reset_tc(bp->dev); 3056 3057 bp->rx_mode = BNX2X_RX_MODE_NONE; 3058 3059 del_timer_sync(&bp->timer); 3060 3061 if (IS_PF(bp) && !BP_NOMCP(bp)) { 3062 /* Set ALWAYS_ALIVE bit in shmem */ 3063 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3064 bnx2x_drv_pulse(bp); 3065 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3066 bnx2x_save_statistics(bp); 3067 } 3068 3069 /* wait till consumers catch up with producers in all queues. 3070 * If we're recovering, FW can't write to host so no reason 3071 * to wait for the queues to complete all Tx. 3072 */ 3073 if (unload_mode != UNLOAD_RECOVERY) 3074 bnx2x_drain_tx_queues(bp); 3075 3076 /* if VF indicate to PF this function is going down (PF will delete sp 3077 * elements and clear initializations 3078 */ 3079 if (IS_VF(bp)) { 3080 bnx2x_clear_vlan_info(bp); 3081 bnx2x_vfpf_close_vf(bp); 3082 } else if (unload_mode != UNLOAD_RECOVERY) { 3083 /* if this is a normal/close unload need to clean up chip*/ 3084 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3085 } else { 3086 /* Send the UNLOAD_REQUEST to the MCP */ 3087 bnx2x_send_unload_req(bp, unload_mode); 3088 3089 /* Prevent transactions to host from the functions on the 3090 * engine that doesn't reset global blocks in case of global 3091 * attention once global blocks are reset and gates are opened 3092 * (the engine which leader will perform the recovery 3093 * last). 3094 */ 3095 if (!CHIP_IS_E1x(bp)) 3096 bnx2x_pf_disable(bp); 3097 3098 /* Disable HW interrupts, NAPI */ 3099 bnx2x_netif_stop(bp, 1); 3100 /* Delete all NAPI objects */ 3101 bnx2x_del_all_napi(bp); 3102 if (CNIC_LOADED(bp)) 3103 bnx2x_del_all_napi_cnic(bp); 3104 /* Release IRQs */ 3105 bnx2x_free_irq(bp); 3106 3107 /* Report UNLOAD_DONE to MCP */ 3108 bnx2x_send_unload_done(bp, false); 3109 } 3110 3111 /* 3112 * At this stage no more interrupts will arrive so we may safely clean 3113 * the queueable objects here in case they failed to get cleaned so far. 3114 */ 3115 if (IS_PF(bp)) 3116 bnx2x_squeeze_objects(bp); 3117 3118 /* There should be no more pending SP commands at this stage */ 3119 bp->sp_state = 0; 3120 3121 bp->port.pmf = 0; 3122 3123 /* clear pending work in rtnl task */ 3124 bp->sp_rtnl_state = 0; 3125 smp_mb(); 3126 3127 /* Free SKBs, SGEs, TPA pool and driver internals */ 3128 bnx2x_free_skbs(bp); 3129 if (CNIC_LOADED(bp)) 3130 bnx2x_free_skbs_cnic(bp); 3131 for_each_rx_queue(bp, i) 3132 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3133 3134 bnx2x_free_fp_mem(bp); 3135 if (CNIC_LOADED(bp)) 3136 bnx2x_free_fp_mem_cnic(bp); 3137 3138 if (IS_PF(bp)) { 3139 if (CNIC_LOADED(bp)) 3140 bnx2x_free_mem_cnic(bp); 3141 } 3142 bnx2x_free_mem(bp); 3143 3144 bp->state = BNX2X_STATE_CLOSED; 3145 bp->cnic_loaded = false; 3146 3147 /* Clear driver version indication in shmem */ 3148 if (IS_PF(bp) && !BP_NOMCP(bp)) 3149 bnx2x_update_mng_version(bp); 3150 3151 /* Check if there are pending parity attentions. If there are - set 3152 * RECOVERY_IN_PROGRESS. 3153 */ 3154 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3155 bnx2x_set_reset_in_progress(bp); 3156 3157 /* Set RESET_IS_GLOBAL if needed */ 3158 if (global) 3159 bnx2x_set_reset_global(bp); 3160 } 3161 3162 /* The last driver must disable a "close the gate" if there is no 3163 * parity attention or "process kill" pending. 3164 */ 3165 if (IS_PF(bp) && 3166 !bnx2x_clear_pf_load(bp) && 3167 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3168 bnx2x_disable_close_the_gate(bp); 3169 3170 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3171 3172 return 0; 3173 } 3174 3175 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3176 { 3177 u16 pmcsr; 3178 3179 /* If there is no power capability, silently succeed */ 3180 if (!bp->pdev->pm_cap) { 3181 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3182 return 0; 3183 } 3184 3185 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3186 3187 switch (state) { 3188 case PCI_D0: 3189 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3190 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3191 PCI_PM_CTRL_PME_STATUS)); 3192 3193 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3194 /* delay required during transition out of D3hot */ 3195 msleep(20); 3196 break; 3197 3198 case PCI_D3hot: 3199 /* If there are other clients above don't 3200 shut down the power */ 3201 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3202 return 0; 3203 /* Don't shut down the power for emulation and FPGA */ 3204 if (CHIP_REV_IS_SLOW(bp)) 3205 return 0; 3206 3207 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3208 pmcsr |= 3; 3209 3210 if (bp->wol) 3211 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3212 3213 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3214 pmcsr); 3215 3216 /* No more memory access after this point until 3217 * device is brought back to D0. 3218 */ 3219 break; 3220 3221 default: 3222 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3223 return -EINVAL; 3224 } 3225 return 0; 3226 } 3227 3228 /* 3229 * net_device service functions 3230 */ 3231 static int bnx2x_poll(struct napi_struct *napi, int budget) 3232 { 3233 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3234 napi); 3235 struct bnx2x *bp = fp->bp; 3236 int rx_work_done; 3237 u8 cos; 3238 3239 #ifdef BNX2X_STOP_ON_ERROR 3240 if (unlikely(bp->panic)) { 3241 napi_complete(napi); 3242 return 0; 3243 } 3244 #endif 3245 for_each_cos_in_tx_queue(fp, cos) 3246 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3247 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3248 3249 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0; 3250 3251 if (rx_work_done < budget) { 3252 /* No need to update SB for FCoE L2 ring as long as 3253 * it's connected to the default SB and the SB 3254 * has been updated when NAPI was scheduled. 3255 */ 3256 if (IS_FCOE_FP(fp)) { 3257 napi_complete_done(napi, rx_work_done); 3258 } else { 3259 bnx2x_update_fpsb_idx(fp); 3260 /* bnx2x_has_rx_work() reads the status block, 3261 * thus we need to ensure that status block indices 3262 * have been actually read (bnx2x_update_fpsb_idx) 3263 * prior to this check (bnx2x_has_rx_work) so that 3264 * we won't write the "newer" value of the status block 3265 * to IGU (if there was a DMA right after 3266 * bnx2x_has_rx_work and if there is no rmb, the memory 3267 * reading (bnx2x_update_fpsb_idx) may be postponed 3268 * to right before bnx2x_ack_sb). In this case there 3269 * will never be another interrupt until there is 3270 * another update of the status block, while there 3271 * is still unhandled work. 3272 */ 3273 rmb(); 3274 3275 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3276 if (napi_complete_done(napi, rx_work_done)) { 3277 /* Re-enable interrupts */ 3278 DP(NETIF_MSG_RX_STATUS, 3279 "Update index to %d\n", fp->fp_hc_idx); 3280 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3281 le16_to_cpu(fp->fp_hc_idx), 3282 IGU_INT_ENABLE, 1); 3283 } 3284 } else { 3285 rx_work_done = budget; 3286 } 3287 } 3288 } 3289 3290 return rx_work_done; 3291 } 3292 3293 /* we split the first BD into headers and data BDs 3294 * to ease the pain of our fellow microcode engineers 3295 * we use one mapping for both BDs 3296 */ 3297 static u16 bnx2x_tx_split(struct bnx2x *bp, 3298 struct bnx2x_fp_txdata *txdata, 3299 struct sw_tx_bd *tx_buf, 3300 struct eth_tx_start_bd **tx_bd, u16 hlen, 3301 u16 bd_prod) 3302 { 3303 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3304 struct eth_tx_bd *d_tx_bd; 3305 dma_addr_t mapping; 3306 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3307 3308 /* first fix first BD */ 3309 h_tx_bd->nbytes = cpu_to_le16(hlen); 3310 3311 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3312 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3313 3314 /* now get a new data BD 3315 * (after the pbd) and fill it */ 3316 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3317 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3318 3319 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3320 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3321 3322 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3323 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3324 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3325 3326 /* this marks the BD as one that has no individual mapping */ 3327 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3328 3329 DP(NETIF_MSG_TX_QUEUED, 3330 "TSO split data size is %d (%x:%x)\n", 3331 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3332 3333 /* update tx_bd */ 3334 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3335 3336 return bd_prod; 3337 } 3338 3339 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3340 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3341 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3342 { 3343 __sum16 tsum = (__force __sum16) csum; 3344 3345 if (fix > 0) 3346 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3347 csum_partial(t_header - fix, fix, 0))); 3348 3349 else if (fix < 0) 3350 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3351 csum_partial(t_header, -fix, 0))); 3352 3353 return bswab16(tsum); 3354 } 3355 3356 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3357 { 3358 u32 rc; 3359 __u8 prot = 0; 3360 __be16 protocol; 3361 3362 if (skb->ip_summed != CHECKSUM_PARTIAL) 3363 return XMIT_PLAIN; 3364 3365 protocol = vlan_get_protocol(skb); 3366 if (protocol == htons(ETH_P_IPV6)) { 3367 rc = XMIT_CSUM_V6; 3368 prot = ipv6_hdr(skb)->nexthdr; 3369 } else { 3370 rc = XMIT_CSUM_V4; 3371 prot = ip_hdr(skb)->protocol; 3372 } 3373 3374 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3375 if (inner_ip_hdr(skb)->version == 6) { 3376 rc |= XMIT_CSUM_ENC_V6; 3377 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3378 rc |= XMIT_CSUM_TCP; 3379 } else { 3380 rc |= XMIT_CSUM_ENC_V4; 3381 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3382 rc |= XMIT_CSUM_TCP; 3383 } 3384 } 3385 if (prot == IPPROTO_TCP) 3386 rc |= XMIT_CSUM_TCP; 3387 3388 if (skb_is_gso(skb)) { 3389 if (skb_is_gso_v6(skb)) { 3390 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3391 if (rc & XMIT_CSUM_ENC) 3392 rc |= XMIT_GSO_ENC_V6; 3393 } else { 3394 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3395 if (rc & XMIT_CSUM_ENC) 3396 rc |= XMIT_GSO_ENC_V4; 3397 } 3398 } 3399 3400 return rc; 3401 } 3402 3403 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */ 3404 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4 3405 3406 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3407 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3 3408 3409 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3410 /* check if packet requires linearization (packet is too fragmented) 3411 no need to check fragmentation if page size > 8K (there will be no 3412 violation to FW restrictions) */ 3413 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3414 u32 xmit_type) 3415 { 3416 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS; 3417 int to_copy = 0, hlen = 0; 3418 3419 if (xmit_type & XMIT_GSO_ENC) 3420 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS; 3421 3422 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) { 3423 if (xmit_type & XMIT_GSO) { 3424 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3425 int wnd_size = MAX_FETCH_BD - num_tso_win_sub; 3426 /* Number of windows to check */ 3427 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3428 int wnd_idx = 0; 3429 int frag_idx = 0; 3430 u32 wnd_sum = 0; 3431 3432 /* Headers length */ 3433 if (xmit_type & XMIT_GSO_ENC) 3434 hlen = skb_inner_tcp_all_headers(skb); 3435 else 3436 hlen = skb_tcp_all_headers(skb); 3437 3438 /* Amount of data (w/o headers) on linear part of SKB*/ 3439 first_bd_sz = skb_headlen(skb) - hlen; 3440 3441 wnd_sum = first_bd_sz; 3442 3443 /* Calculate the first sum - it's special */ 3444 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3445 wnd_sum += 3446 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3447 3448 /* If there was data on linear skb data - check it */ 3449 if (first_bd_sz > 0) { 3450 if (unlikely(wnd_sum < lso_mss)) { 3451 to_copy = 1; 3452 goto exit_lbl; 3453 } 3454 3455 wnd_sum -= first_bd_sz; 3456 } 3457 3458 /* Others are easier: run through the frag list and 3459 check all windows */ 3460 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3461 wnd_sum += 3462 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3463 3464 if (unlikely(wnd_sum < lso_mss)) { 3465 to_copy = 1; 3466 break; 3467 } 3468 wnd_sum -= 3469 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3470 } 3471 } else { 3472 /* in non-LSO too fragmented packet should always 3473 be linearized */ 3474 to_copy = 1; 3475 } 3476 } 3477 3478 exit_lbl: 3479 if (unlikely(to_copy)) 3480 DP(NETIF_MSG_TX_QUEUED, 3481 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3482 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3483 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3484 3485 return to_copy; 3486 } 3487 #endif 3488 3489 /** 3490 * bnx2x_set_pbd_gso - update PBD in GSO case. 3491 * 3492 * @skb: packet skb 3493 * @pbd: parse BD 3494 * @xmit_type: xmit flags 3495 */ 3496 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3497 struct eth_tx_parse_bd_e1x *pbd, 3498 u32 xmit_type) 3499 { 3500 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3501 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3502 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3503 3504 if (xmit_type & XMIT_GSO_V4) { 3505 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3506 pbd->tcp_pseudo_csum = 3507 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3508 ip_hdr(skb)->daddr, 3509 0, IPPROTO_TCP, 0)); 3510 } else { 3511 pbd->tcp_pseudo_csum = 3512 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3513 &ipv6_hdr(skb)->daddr, 3514 0, IPPROTO_TCP, 0)); 3515 } 3516 3517 pbd->global_data |= 3518 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3519 } 3520 3521 /** 3522 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3523 * 3524 * @bp: driver handle 3525 * @skb: packet skb 3526 * @parsing_data: data to be updated 3527 * @xmit_type: xmit flags 3528 * 3529 * 57712/578xx related, when skb has encapsulation 3530 */ 3531 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3532 u32 *parsing_data, u32 xmit_type) 3533 { 3534 *parsing_data |= 3535 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3536 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3537 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3538 3539 if (xmit_type & XMIT_CSUM_TCP) { 3540 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3541 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3542 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3543 3544 return skb_inner_tcp_all_headers(skb); 3545 } 3546 3547 /* We support checksum offload for TCP and UDP only. 3548 * No need to pass the UDP header length - it's a constant. 3549 */ 3550 return skb_inner_transport_offset(skb) + sizeof(struct udphdr); 3551 } 3552 3553 /** 3554 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3555 * 3556 * @bp: driver handle 3557 * @skb: packet skb 3558 * @parsing_data: data to be updated 3559 * @xmit_type: xmit flags 3560 * 3561 * 57712/578xx related 3562 */ 3563 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3564 u32 *parsing_data, u32 xmit_type) 3565 { 3566 *parsing_data |= 3567 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3568 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3569 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3570 3571 if (xmit_type & XMIT_CSUM_TCP) { 3572 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3573 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3574 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3575 3576 return skb_tcp_all_headers(skb); 3577 } 3578 /* We support checksum offload for TCP and UDP only. 3579 * No need to pass the UDP header length - it's a constant. 3580 */ 3581 return skb_transport_offset(skb) + sizeof(struct udphdr); 3582 } 3583 3584 /* set FW indication according to inner or outer protocols if tunneled */ 3585 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3586 struct eth_tx_start_bd *tx_start_bd, 3587 u32 xmit_type) 3588 { 3589 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3590 3591 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3592 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3593 3594 if (!(xmit_type & XMIT_CSUM_TCP)) 3595 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3596 } 3597 3598 /** 3599 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3600 * 3601 * @bp: driver handle 3602 * @skb: packet skb 3603 * @pbd: parse BD to be updated 3604 * @xmit_type: xmit flags 3605 */ 3606 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3607 struct eth_tx_parse_bd_e1x *pbd, 3608 u32 xmit_type) 3609 { 3610 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3611 3612 /* for now NS flag is not used in Linux */ 3613 pbd->global_data = 3614 cpu_to_le16(hlen | 3615 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3616 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3617 3618 pbd->ip_hlen_w = (skb_transport_header(skb) - 3619 skb_network_header(skb)) >> 1; 3620 3621 hlen += pbd->ip_hlen_w; 3622 3623 /* We support checksum offload for TCP and UDP only */ 3624 if (xmit_type & XMIT_CSUM_TCP) 3625 hlen += tcp_hdrlen(skb) / 2; 3626 else 3627 hlen += sizeof(struct udphdr) / 2; 3628 3629 pbd->total_hlen_w = cpu_to_le16(hlen); 3630 hlen = hlen*2; 3631 3632 if (xmit_type & XMIT_CSUM_TCP) { 3633 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3634 3635 } else { 3636 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3637 3638 DP(NETIF_MSG_TX_QUEUED, 3639 "hlen %d fix %d csum before fix %x\n", 3640 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3641 3642 /* HW bug: fixup the CSUM */ 3643 pbd->tcp_pseudo_csum = 3644 bnx2x_csum_fix(skb_transport_header(skb), 3645 SKB_CS(skb), fix); 3646 3647 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3648 pbd->tcp_pseudo_csum); 3649 } 3650 3651 return hlen; 3652 } 3653 3654 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3655 struct eth_tx_parse_bd_e2 *pbd_e2, 3656 struct eth_tx_parse_2nd_bd *pbd2, 3657 u16 *global_data, 3658 u32 xmit_type) 3659 { 3660 u16 hlen_w = 0; 3661 u8 outerip_off, outerip_len = 0; 3662 3663 /* from outer IP to transport */ 3664 hlen_w = (skb_inner_transport_header(skb) - 3665 skb_network_header(skb)) >> 1; 3666 3667 /* transport len */ 3668 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3669 3670 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3671 3672 /* outer IP header info */ 3673 if (xmit_type & XMIT_CSUM_V4) { 3674 struct iphdr *iph = ip_hdr(skb); 3675 u32 csum = (__force u32)(~iph->check) - 3676 (__force u32)iph->tot_len - 3677 (__force u32)iph->frag_off; 3678 3679 outerip_len = iph->ihl << 1; 3680 3681 pbd2->fw_ip_csum_wo_len_flags_frag = 3682 bswab16(csum_fold((__force __wsum)csum)); 3683 } else { 3684 pbd2->fw_ip_hdr_to_payload_w = 3685 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3686 pbd_e2->data.tunnel_data.flags |= 3687 ETH_TUNNEL_DATA_IPV6_OUTER; 3688 } 3689 3690 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3691 3692 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3693 3694 /* inner IP header info */ 3695 if (xmit_type & XMIT_CSUM_ENC_V4) { 3696 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3697 3698 pbd_e2->data.tunnel_data.pseudo_csum = 3699 bswab16(~csum_tcpudp_magic( 3700 inner_ip_hdr(skb)->saddr, 3701 inner_ip_hdr(skb)->daddr, 3702 0, IPPROTO_TCP, 0)); 3703 } else { 3704 pbd_e2->data.tunnel_data.pseudo_csum = 3705 bswab16(~csum_ipv6_magic( 3706 &inner_ipv6_hdr(skb)->saddr, 3707 &inner_ipv6_hdr(skb)->daddr, 3708 0, IPPROTO_TCP, 0)); 3709 } 3710 3711 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3712 3713 *global_data |= 3714 outerip_off | 3715 (outerip_len << 3716 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3717 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3718 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3719 3720 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3721 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3722 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3723 } 3724 } 3725 3726 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3727 u32 xmit_type) 3728 { 3729 struct ipv6hdr *ipv6; 3730 3731 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3732 return; 3733 3734 if (xmit_type & XMIT_GSO_ENC_V6) 3735 ipv6 = inner_ipv6_hdr(skb); 3736 else /* XMIT_GSO_V6 */ 3737 ipv6 = ipv6_hdr(skb); 3738 3739 if (ipv6->nexthdr == NEXTHDR_IPV6) 3740 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3741 } 3742 3743 /* called with netif_tx_lock 3744 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3745 * netif_wake_queue() 3746 */ 3747 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3748 { 3749 struct bnx2x *bp = netdev_priv(dev); 3750 3751 struct netdev_queue *txq; 3752 struct bnx2x_fp_txdata *txdata; 3753 struct sw_tx_bd *tx_buf; 3754 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3755 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3756 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3757 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3758 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3759 u32 pbd_e2_parsing_data = 0; 3760 u16 pkt_prod, bd_prod; 3761 int nbd, txq_index; 3762 dma_addr_t mapping; 3763 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3764 int i; 3765 u8 hlen = 0; 3766 __le16 pkt_size = 0; 3767 struct ethhdr *eth; 3768 u8 mac_type = UNICAST_ADDRESS; 3769 3770 #ifdef BNX2X_STOP_ON_ERROR 3771 if (unlikely(bp->panic)) 3772 return NETDEV_TX_BUSY; 3773 #endif 3774 3775 txq_index = skb_get_queue_mapping(skb); 3776 txq = netdev_get_tx_queue(dev, txq_index); 3777 3778 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3779 3780 txdata = &bp->bnx2x_txq[txq_index]; 3781 3782 /* enable this debug print to view the transmission queue being used 3783 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3784 txq_index, fp_index, txdata_index); */ 3785 3786 /* enable this debug print to view the transmission details 3787 DP(NETIF_MSG_TX_QUEUED, 3788 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3789 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3790 3791 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3792 skb_shinfo(skb)->nr_frags + 3793 BDS_PER_TX_PKT + 3794 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3795 /* Handle special storage cases separately */ 3796 if (txdata->tx_ring_size == 0) { 3797 struct bnx2x_eth_q_stats *q_stats = 3798 bnx2x_fp_qstats(bp, txdata->parent_fp); 3799 q_stats->driver_filtered_tx_pkt++; 3800 dev_kfree_skb(skb); 3801 return NETDEV_TX_OK; 3802 } 3803 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3804 netif_tx_stop_queue(txq); 3805 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3806 3807 return NETDEV_TX_BUSY; 3808 } 3809 3810 DP(NETIF_MSG_TX_QUEUED, 3811 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3812 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3813 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3814 skb->len); 3815 3816 eth = (struct ethhdr *)skb->data; 3817 3818 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3819 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3820 if (is_broadcast_ether_addr(eth->h_dest)) 3821 mac_type = BROADCAST_ADDRESS; 3822 else 3823 mac_type = MULTICAST_ADDRESS; 3824 } 3825 3826 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3827 /* First, check if we need to linearize the skb (due to FW 3828 restrictions). No need to check fragmentation if page size > 8K 3829 (there will be no violation to FW restrictions) */ 3830 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3831 /* Statistics of linearization */ 3832 bp->lin_cnt++; 3833 if (skb_linearize(skb) != 0) { 3834 DP(NETIF_MSG_TX_QUEUED, 3835 "SKB linearization failed - silently dropping this SKB\n"); 3836 dev_kfree_skb_any(skb); 3837 return NETDEV_TX_OK; 3838 } 3839 } 3840 #endif 3841 /* Map skb linear data for DMA */ 3842 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3843 skb_headlen(skb), DMA_TO_DEVICE); 3844 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3845 DP(NETIF_MSG_TX_QUEUED, 3846 "SKB mapping failed - silently dropping this SKB\n"); 3847 dev_kfree_skb_any(skb); 3848 return NETDEV_TX_OK; 3849 } 3850 /* 3851 Please read carefully. First we use one BD which we mark as start, 3852 then we have a parsing info BD (used for TSO or xsum), 3853 and only then we have the rest of the TSO BDs. 3854 (don't forget to mark the last one as last, 3855 and to unmap only AFTER you write to the BD ...) 3856 And above all, all pdb sizes are in words - NOT DWORDS! 3857 */ 3858 3859 /* get current pkt produced now - advance it just before sending packet 3860 * since mapping of pages may fail and cause packet to be dropped 3861 */ 3862 pkt_prod = txdata->tx_pkt_prod; 3863 bd_prod = TX_BD(txdata->tx_bd_prod); 3864 3865 /* get a tx_buf and first BD 3866 * tx_start_bd may be changed during SPLIT, 3867 * but first_bd will always stay first 3868 */ 3869 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3870 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3871 first_bd = tx_start_bd; 3872 3873 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3874 3875 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3876 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3877 bp->eth_stats.ptp_skip_tx_ts++; 3878 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3879 } else if (bp->ptp_tx_skb) { 3880 bp->eth_stats.ptp_skip_tx_ts++; 3881 netdev_err_once(bp->dev, 3882 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n"); 3883 } else { 3884 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3885 /* schedule check for Tx timestamp */ 3886 bp->ptp_tx_skb = skb_get(skb); 3887 bp->ptp_tx_start = jiffies; 3888 schedule_work(&bp->ptp_task); 3889 } 3890 } 3891 3892 /* header nbd: indirectly zero other flags! */ 3893 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3894 3895 /* remember the first BD of the packet */ 3896 tx_buf->first_bd = txdata->tx_bd_prod; 3897 tx_buf->skb = skb; 3898 tx_buf->flags = 0; 3899 3900 DP(NETIF_MSG_TX_QUEUED, 3901 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3902 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3903 3904 if (skb_vlan_tag_present(skb)) { 3905 tx_start_bd->vlan_or_ethertype = 3906 cpu_to_le16(skb_vlan_tag_get(skb)); 3907 tx_start_bd->bd_flags.as_bitfield |= 3908 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3909 } else { 3910 /* when transmitting in a vf, start bd must hold the ethertype 3911 * for fw to enforce it 3912 */ 3913 u16 vlan_tci = 0; 3914 #ifndef BNX2X_STOP_ON_ERROR 3915 if (IS_VF(bp)) { 3916 #endif 3917 /* Still need to consider inband vlan for enforced */ 3918 if (__vlan_get_tag(skb, &vlan_tci)) { 3919 tx_start_bd->vlan_or_ethertype = 3920 cpu_to_le16(ntohs(eth->h_proto)); 3921 } else { 3922 tx_start_bd->bd_flags.as_bitfield |= 3923 (X_ETH_INBAND_VLAN << 3924 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3925 tx_start_bd->vlan_or_ethertype = 3926 cpu_to_le16(vlan_tci); 3927 } 3928 #ifndef BNX2X_STOP_ON_ERROR 3929 } else { 3930 /* used by FW for packet accounting */ 3931 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3932 } 3933 #endif 3934 } 3935 3936 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3937 3938 /* turn on parsing and get a BD */ 3939 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3940 3941 if (xmit_type & XMIT_CSUM) 3942 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3943 3944 if (!CHIP_IS_E1x(bp)) { 3945 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3946 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3947 3948 if (xmit_type & XMIT_CSUM_ENC) { 3949 u16 global_data = 0; 3950 3951 /* Set PBD in enc checksum offload case */ 3952 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3953 &pbd_e2_parsing_data, 3954 xmit_type); 3955 3956 /* turn on 2nd parsing and get a BD */ 3957 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3958 3959 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3960 3961 memset(pbd2, 0, sizeof(*pbd2)); 3962 3963 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3964 (skb_inner_network_header(skb) - 3965 skb->data) >> 1; 3966 3967 if (xmit_type & XMIT_GSO_ENC) 3968 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3969 &global_data, 3970 xmit_type); 3971 3972 pbd2->global_data = cpu_to_le16(global_data); 3973 3974 /* add addition parse BD indication to start BD */ 3975 SET_FLAG(tx_start_bd->general_data, 3976 ETH_TX_START_BD_PARSE_NBDS, 1); 3977 /* set encapsulation flag in start BD */ 3978 SET_FLAG(tx_start_bd->general_data, 3979 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3980 3981 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3982 3983 nbd++; 3984 } else if (xmit_type & XMIT_CSUM) { 3985 /* Set PBD in checksum offload case w/o encapsulation */ 3986 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3987 &pbd_e2_parsing_data, 3988 xmit_type); 3989 } 3990 3991 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3992 /* Add the macs to the parsing BD if this is a vf or if 3993 * Tx Switching is enabled. 3994 */ 3995 if (IS_VF(bp)) { 3996 /* override GRE parameters in BD */ 3997 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3998 &pbd_e2->data.mac_addr.src_mid, 3999 &pbd_e2->data.mac_addr.src_lo, 4000 eth->h_source); 4001 4002 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 4003 &pbd_e2->data.mac_addr.dst_mid, 4004 &pbd_e2->data.mac_addr.dst_lo, 4005 eth->h_dest); 4006 } else { 4007 if (bp->flags & TX_SWITCHING) 4008 bnx2x_set_fw_mac_addr( 4009 &pbd_e2->data.mac_addr.dst_hi, 4010 &pbd_e2->data.mac_addr.dst_mid, 4011 &pbd_e2->data.mac_addr.dst_lo, 4012 eth->h_dest); 4013 #ifdef BNX2X_STOP_ON_ERROR 4014 /* Enforce security is always set in Stop on Error - 4015 * source mac should be present in the parsing BD 4016 */ 4017 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 4018 &pbd_e2->data.mac_addr.src_mid, 4019 &pbd_e2->data.mac_addr.src_lo, 4020 eth->h_source); 4021 #endif 4022 } 4023 4024 SET_FLAG(pbd_e2_parsing_data, 4025 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 4026 } else { 4027 u16 global_data = 0; 4028 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 4029 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 4030 /* Set PBD in checksum offload case */ 4031 if (xmit_type & XMIT_CSUM) 4032 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 4033 4034 SET_FLAG(global_data, 4035 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 4036 pbd_e1x->global_data |= cpu_to_le16(global_data); 4037 } 4038 4039 /* Setup the data pointer of the first BD of the packet */ 4040 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4041 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4042 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 4043 pkt_size = tx_start_bd->nbytes; 4044 4045 DP(NETIF_MSG_TX_QUEUED, 4046 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4047 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4048 le16_to_cpu(tx_start_bd->nbytes), 4049 tx_start_bd->bd_flags.as_bitfield, 4050 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4051 4052 if (xmit_type & XMIT_GSO) { 4053 4054 DP(NETIF_MSG_TX_QUEUED, 4055 "TSO packet len %d hlen %d total len %d tso size %d\n", 4056 skb->len, hlen, skb_headlen(skb), 4057 skb_shinfo(skb)->gso_size); 4058 4059 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4060 4061 if (unlikely(skb_headlen(skb) > hlen)) { 4062 nbd++; 4063 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4064 &tx_start_bd, hlen, 4065 bd_prod); 4066 } 4067 if (!CHIP_IS_E1x(bp)) 4068 pbd_e2_parsing_data |= 4069 (skb_shinfo(skb)->gso_size << 4070 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4071 ETH_TX_PARSE_BD_E2_LSO_MSS; 4072 else 4073 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4074 } 4075 4076 /* Set the PBD's parsing_data field if not zero 4077 * (for the chips newer than 57711). 4078 */ 4079 if (pbd_e2_parsing_data) 4080 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4081 4082 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4083 4084 /* Handle fragmented skb */ 4085 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4086 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4087 4088 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4089 skb_frag_size(frag), DMA_TO_DEVICE); 4090 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4091 unsigned int pkts_compl = 0, bytes_compl = 0; 4092 4093 DP(NETIF_MSG_TX_QUEUED, 4094 "Unable to map page - dropping packet...\n"); 4095 4096 /* we need unmap all buffers already mapped 4097 * for this SKB; 4098 * first_bd->nbd need to be properly updated 4099 * before call to bnx2x_free_tx_pkt 4100 */ 4101 first_bd->nbd = cpu_to_le16(nbd); 4102 bnx2x_free_tx_pkt(bp, txdata, 4103 TX_BD(txdata->tx_pkt_prod), 4104 &pkts_compl, &bytes_compl); 4105 return NETDEV_TX_OK; 4106 } 4107 4108 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4109 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4110 if (total_pkt_bd == NULL) 4111 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4112 4113 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4114 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4115 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4116 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4117 nbd++; 4118 4119 DP(NETIF_MSG_TX_QUEUED, 4120 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4121 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4122 le16_to_cpu(tx_data_bd->nbytes)); 4123 } 4124 4125 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4126 4127 /* update with actual num BDs */ 4128 first_bd->nbd = cpu_to_le16(nbd); 4129 4130 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4131 4132 /* now send a tx doorbell, counting the next BD 4133 * if the packet contains or ends with it 4134 */ 4135 if (TX_BD_POFF(bd_prod) < nbd) 4136 nbd++; 4137 4138 /* total_pkt_bytes should be set on the first data BD if 4139 * it's not an LSO packet and there is more than one 4140 * data BD. In this case pkt_size is limited by an MTU value. 4141 * However we prefer to set it for an LSO packet (while we don't 4142 * have to) in order to save some CPU cycles in a none-LSO 4143 * case, when we much more care about them. 4144 */ 4145 if (total_pkt_bd != NULL) 4146 total_pkt_bd->total_pkt_bytes = pkt_size; 4147 4148 if (pbd_e1x) 4149 DP(NETIF_MSG_TX_QUEUED, 4150 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4151 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4152 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4153 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4154 le16_to_cpu(pbd_e1x->total_hlen_w)); 4155 if (pbd_e2) 4156 DP(NETIF_MSG_TX_QUEUED, 4157 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4158 pbd_e2, 4159 pbd_e2->data.mac_addr.dst_hi, 4160 pbd_e2->data.mac_addr.dst_mid, 4161 pbd_e2->data.mac_addr.dst_lo, 4162 pbd_e2->data.mac_addr.src_hi, 4163 pbd_e2->data.mac_addr.src_mid, 4164 pbd_e2->data.mac_addr.src_lo, 4165 pbd_e2->parsing_data); 4166 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4167 4168 netdev_tx_sent_queue(txq, skb->len); 4169 4170 skb_tx_timestamp(skb); 4171 4172 txdata->tx_pkt_prod++; 4173 /* 4174 * Make sure that the BD data is updated before updating the producer 4175 * since FW might read the BD right after the producer is updated. 4176 * This is only applicable for weak-ordered memory model archs such 4177 * as IA-64. The following barrier is also mandatory since FW will 4178 * assumes packets must have BDs. 4179 */ 4180 wmb(); 4181 4182 txdata->tx_db.data.prod += nbd; 4183 /* make sure descriptor update is observed by HW */ 4184 wmb(); 4185 4186 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw); 4187 4188 txdata->tx_bd_prod += nbd; 4189 4190 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4191 netif_tx_stop_queue(txq); 4192 4193 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4194 * ordering of set_bit() in netif_tx_stop_queue() and read of 4195 * fp->bd_tx_cons */ 4196 smp_mb(); 4197 4198 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4199 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4200 netif_tx_wake_queue(txq); 4201 } 4202 txdata->tx_pkt++; 4203 4204 return NETDEV_TX_OK; 4205 } 4206 4207 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default) 4208 { 4209 int mfw_vn = BP_FW_MB_IDX(bp); 4210 u32 tmp; 4211 4212 /* If the shmem shouldn't affect configuration, reflect */ 4213 if (!IS_MF_BD(bp)) { 4214 int i; 4215 4216 for (i = 0; i < BNX2X_MAX_PRIORITY; i++) 4217 c2s_map[i] = i; 4218 *c2s_default = 0; 4219 4220 return; 4221 } 4222 4223 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]); 4224 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4225 c2s_map[0] = tmp & 0xff; 4226 c2s_map[1] = (tmp >> 8) & 0xff; 4227 c2s_map[2] = (tmp >> 16) & 0xff; 4228 c2s_map[3] = (tmp >> 24) & 0xff; 4229 4230 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]); 4231 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4232 c2s_map[4] = tmp & 0xff; 4233 c2s_map[5] = (tmp >> 8) & 0xff; 4234 c2s_map[6] = (tmp >> 16) & 0xff; 4235 c2s_map[7] = (tmp >> 24) & 0xff; 4236 4237 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]); 4238 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4239 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff; 4240 } 4241 4242 /** 4243 * bnx2x_setup_tc - routine to configure net_device for multi tc 4244 * 4245 * @dev: net device to configure 4246 * @num_tc: number of traffic classes to enable 4247 * 4248 * callback connected to the ndo_setup_tc function pointer 4249 */ 4250 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4251 { 4252 struct bnx2x *bp = netdev_priv(dev); 4253 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def; 4254 int cos, prio, count, offset; 4255 4256 /* setup tc must be called under rtnl lock */ 4257 ASSERT_RTNL(); 4258 4259 /* no traffic classes requested. Aborting */ 4260 if (!num_tc) { 4261 netdev_reset_tc(dev); 4262 return 0; 4263 } 4264 4265 /* requested to support too many traffic classes */ 4266 if (num_tc > bp->max_cos) { 4267 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4268 num_tc, bp->max_cos); 4269 return -EINVAL; 4270 } 4271 4272 /* declare amount of supported traffic classes */ 4273 if (netdev_set_num_tc(dev, num_tc)) { 4274 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4275 return -EINVAL; 4276 } 4277 4278 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def); 4279 4280 /* configure priority to traffic class mapping */ 4281 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4282 int outer_prio = c2s_map[prio]; 4283 4284 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]); 4285 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4286 "mapping priority %d to tc %d\n", 4287 outer_prio, bp->prio_to_cos[outer_prio]); 4288 } 4289 4290 /* Use this configuration to differentiate tc0 from other COSes 4291 This can be used for ets or pfc, and save the effort of setting 4292 up a multio class queue disc or negotiating DCBX with a switch 4293 netdev_set_prio_tc_map(dev, 0, 0); 4294 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4295 for (prio = 1; prio < 16; prio++) { 4296 netdev_set_prio_tc_map(dev, prio, 1); 4297 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4298 } */ 4299 4300 /* configure traffic class to transmission queue mapping */ 4301 for (cos = 0; cos < bp->max_cos; cos++) { 4302 count = BNX2X_NUM_ETH_QUEUES(bp); 4303 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4304 netdev_set_tc_queue(dev, cos, count, offset); 4305 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4306 "mapping tc %d to offset %d count %d\n", 4307 cos, offset, count); 4308 } 4309 4310 return 0; 4311 } 4312 4313 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type, 4314 void *type_data) 4315 { 4316 struct tc_mqprio_qopt *mqprio = type_data; 4317 4318 if (type != TC_SETUP_QDISC_MQPRIO) 4319 return -EOPNOTSUPP; 4320 4321 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 4322 4323 return bnx2x_setup_tc(dev, mqprio->num_tc); 4324 } 4325 4326 /* called with rtnl_lock */ 4327 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4328 { 4329 struct sockaddr *addr = p; 4330 struct bnx2x *bp = netdev_priv(dev); 4331 int rc = 0; 4332 4333 if (!is_valid_ether_addr(addr->sa_data)) { 4334 BNX2X_ERR("Requested MAC address is not valid\n"); 4335 return -EINVAL; 4336 } 4337 4338 if (IS_MF_STORAGE_ONLY(bp)) { 4339 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4340 return -EINVAL; 4341 } 4342 4343 if (netif_running(dev)) { 4344 rc = bnx2x_set_eth_mac(bp, false); 4345 if (rc) 4346 return rc; 4347 } 4348 4349 eth_hw_addr_set(dev, addr->sa_data); 4350 4351 if (netif_running(dev)) 4352 rc = bnx2x_set_eth_mac(bp, true); 4353 4354 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4355 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4356 4357 return rc; 4358 } 4359 4360 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4361 { 4362 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4363 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4364 u8 cos; 4365 4366 /* Common */ 4367 4368 if (IS_FCOE_IDX(fp_index)) { 4369 memset(sb, 0, sizeof(union host_hc_status_block)); 4370 fp->status_blk_mapping = 0; 4371 } else { 4372 /* status blocks */ 4373 if (!CHIP_IS_E1x(bp)) 4374 BNX2X_PCI_FREE(sb->e2_sb, 4375 bnx2x_fp(bp, fp_index, 4376 status_blk_mapping), 4377 sizeof(struct host_hc_status_block_e2)); 4378 else 4379 BNX2X_PCI_FREE(sb->e1x_sb, 4380 bnx2x_fp(bp, fp_index, 4381 status_blk_mapping), 4382 sizeof(struct host_hc_status_block_e1x)); 4383 } 4384 4385 /* Rx */ 4386 if (!skip_rx_queue(bp, fp_index)) { 4387 bnx2x_free_rx_bds(fp); 4388 4389 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4390 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4391 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4392 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4393 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4394 4395 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4396 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4397 sizeof(struct eth_fast_path_rx_cqe) * 4398 NUM_RCQ_BD); 4399 4400 /* SGE ring */ 4401 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4402 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4403 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4404 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4405 } 4406 4407 /* Tx */ 4408 if (!skip_tx_queue(bp, fp_index)) { 4409 /* fastpath tx rings: tx_buf tx_desc */ 4410 for_each_cos_in_tx_queue(fp, cos) { 4411 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4412 4413 DP(NETIF_MSG_IFDOWN, 4414 "freeing tx memory of fp %d cos %d cid %d\n", 4415 fp_index, cos, txdata->cid); 4416 4417 BNX2X_FREE(txdata->tx_buf_ring); 4418 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4419 txdata->tx_desc_mapping, 4420 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4421 } 4422 } 4423 /* end of fastpath */ 4424 } 4425 4426 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4427 { 4428 int i; 4429 for_each_cnic_queue(bp, i) 4430 bnx2x_free_fp_mem_at(bp, i); 4431 } 4432 4433 void bnx2x_free_fp_mem(struct bnx2x *bp) 4434 { 4435 int i; 4436 for_each_eth_queue(bp, i) 4437 bnx2x_free_fp_mem_at(bp, i); 4438 } 4439 4440 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4441 { 4442 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4443 if (!CHIP_IS_E1x(bp)) { 4444 bnx2x_fp(bp, index, sb_index_values) = 4445 (__le16 *)status_blk.e2_sb->sb.index_values; 4446 bnx2x_fp(bp, index, sb_running_index) = 4447 (__le16 *)status_blk.e2_sb->sb.running_index; 4448 } else { 4449 bnx2x_fp(bp, index, sb_index_values) = 4450 (__le16 *)status_blk.e1x_sb->sb.index_values; 4451 bnx2x_fp(bp, index, sb_running_index) = 4452 (__le16 *)status_blk.e1x_sb->sb.running_index; 4453 } 4454 } 4455 4456 /* Returns the number of actually allocated BDs */ 4457 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4458 int rx_ring_size) 4459 { 4460 struct bnx2x *bp = fp->bp; 4461 u16 ring_prod, cqe_ring_prod; 4462 int i, failure_cnt = 0; 4463 4464 fp->rx_comp_cons = 0; 4465 cqe_ring_prod = ring_prod = 0; 4466 4467 /* This routine is called only during fo init so 4468 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4469 */ 4470 for (i = 0; i < rx_ring_size; i++) { 4471 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4472 failure_cnt++; 4473 continue; 4474 } 4475 ring_prod = NEXT_RX_IDX(ring_prod); 4476 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4477 WARN_ON(ring_prod <= (i - failure_cnt)); 4478 } 4479 4480 if (failure_cnt) 4481 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4482 i - failure_cnt, fp->index); 4483 4484 fp->rx_bd_prod = ring_prod; 4485 /* Limit the CQE producer by the CQE ring size */ 4486 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4487 cqe_ring_prod); 4488 4489 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4490 4491 return i - failure_cnt; 4492 } 4493 4494 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4495 { 4496 int i; 4497 4498 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4499 struct eth_rx_cqe_next_page *nextpg; 4500 4501 nextpg = (struct eth_rx_cqe_next_page *) 4502 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4503 nextpg->addr_hi = 4504 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4505 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4506 nextpg->addr_lo = 4507 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4508 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4509 } 4510 } 4511 4512 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4513 { 4514 union host_hc_status_block *sb; 4515 struct bnx2x_fastpath *fp = &bp->fp[index]; 4516 int ring_size = 0; 4517 u8 cos; 4518 int rx_ring_size = 0; 4519 4520 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4521 rx_ring_size = MIN_RX_SIZE_NONTPA; 4522 bp->rx_ring_size = rx_ring_size; 4523 } else if (!bp->rx_ring_size) { 4524 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4525 4526 if (CHIP_IS_E3(bp)) { 4527 u32 cfg = SHMEM_RD(bp, 4528 dev_info.port_hw_config[BP_PORT(bp)]. 4529 default_cfg); 4530 4531 /* Decrease ring size for 1G functions */ 4532 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4533 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4534 rx_ring_size /= 10; 4535 } 4536 4537 /* allocate at least number of buffers required by FW */ 4538 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4539 MIN_RX_SIZE_TPA, rx_ring_size); 4540 4541 bp->rx_ring_size = rx_ring_size; 4542 } else /* if rx_ring_size specified - use it */ 4543 rx_ring_size = bp->rx_ring_size; 4544 4545 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4546 4547 /* Common */ 4548 sb = &bnx2x_fp(bp, index, status_blk); 4549 4550 if (!IS_FCOE_IDX(index)) { 4551 /* status blocks */ 4552 if (!CHIP_IS_E1x(bp)) { 4553 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4554 sizeof(struct host_hc_status_block_e2)); 4555 if (!sb->e2_sb) 4556 goto alloc_mem_err; 4557 } else { 4558 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4559 sizeof(struct host_hc_status_block_e1x)); 4560 if (!sb->e1x_sb) 4561 goto alloc_mem_err; 4562 } 4563 } 4564 4565 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4566 * set shortcuts for it. 4567 */ 4568 if (!IS_FCOE_IDX(index)) 4569 set_sb_shortcuts(bp, index); 4570 4571 /* Tx */ 4572 if (!skip_tx_queue(bp, index)) { 4573 /* fastpath tx rings: tx_buf tx_desc */ 4574 for_each_cos_in_tx_queue(fp, cos) { 4575 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4576 4577 DP(NETIF_MSG_IFUP, 4578 "allocating tx memory of fp %d cos %d\n", 4579 index, cos); 4580 4581 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4582 sizeof(struct sw_tx_bd), 4583 GFP_KERNEL); 4584 if (!txdata->tx_buf_ring) 4585 goto alloc_mem_err; 4586 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4587 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4588 if (!txdata->tx_desc_ring) 4589 goto alloc_mem_err; 4590 } 4591 } 4592 4593 /* Rx */ 4594 if (!skip_rx_queue(bp, index)) { 4595 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4596 bnx2x_fp(bp, index, rx_buf_ring) = 4597 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4598 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4599 goto alloc_mem_err; 4600 bnx2x_fp(bp, index, rx_desc_ring) = 4601 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4602 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4603 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4604 goto alloc_mem_err; 4605 4606 /* Seed all CQEs by 1s */ 4607 bnx2x_fp(bp, index, rx_comp_ring) = 4608 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4609 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4610 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4611 goto alloc_mem_err; 4612 4613 /* SGE ring */ 4614 bnx2x_fp(bp, index, rx_page_ring) = 4615 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4616 GFP_KERNEL); 4617 if (!bnx2x_fp(bp, index, rx_page_ring)) 4618 goto alloc_mem_err; 4619 bnx2x_fp(bp, index, rx_sge_ring) = 4620 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4621 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4622 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4623 goto alloc_mem_err; 4624 /* RX BD ring */ 4625 bnx2x_set_next_page_rx_bd(fp); 4626 4627 /* CQ ring */ 4628 bnx2x_set_next_page_rx_cq(fp); 4629 4630 /* BDs */ 4631 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4632 if (ring_size < rx_ring_size) 4633 goto alloc_mem_err; 4634 } 4635 4636 return 0; 4637 4638 /* handles low memory cases */ 4639 alloc_mem_err: 4640 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4641 index, ring_size); 4642 /* FW will drop all packets if queue is not big enough, 4643 * In these cases we disable the queue 4644 * Min size is different for OOO, TPA and non-TPA queues 4645 */ 4646 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4647 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4648 /* release memory allocated for this queue */ 4649 bnx2x_free_fp_mem_at(bp, index); 4650 return -ENOMEM; 4651 } 4652 return 0; 4653 } 4654 4655 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4656 { 4657 if (!NO_FCOE(bp)) 4658 /* FCoE */ 4659 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4660 /* we will fail load process instead of mark 4661 * NO_FCOE_FLAG 4662 */ 4663 return -ENOMEM; 4664 4665 return 0; 4666 } 4667 4668 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4669 { 4670 int i; 4671 4672 /* 1. Allocate FP for leading - fatal if error 4673 * 2. Allocate RSS - fix number of queues if error 4674 */ 4675 4676 /* leading */ 4677 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4678 return -ENOMEM; 4679 4680 /* RSS */ 4681 for_each_nondefault_eth_queue(bp, i) 4682 if (bnx2x_alloc_fp_mem_at(bp, i)) 4683 break; 4684 4685 /* handle memory failures */ 4686 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4687 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4688 4689 WARN_ON(delta < 0); 4690 bnx2x_shrink_eth_fp(bp, delta); 4691 if (CNIC_SUPPORT(bp)) 4692 /* move non eth FPs next to last eth FP 4693 * must be done in that order 4694 * FCOE_IDX < FWD_IDX < OOO_IDX 4695 */ 4696 4697 /* move FCoE fp even NO_FCOE_FLAG is on */ 4698 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4699 bp->num_ethernet_queues -= delta; 4700 bp->num_queues = bp->num_ethernet_queues + 4701 bp->num_cnic_queues; 4702 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4703 bp->num_queues + delta, bp->num_queues); 4704 } 4705 4706 return 0; 4707 } 4708 4709 void bnx2x_free_mem_bp(struct bnx2x *bp) 4710 { 4711 int i; 4712 4713 for (i = 0; i < bp->fp_array_size; i++) 4714 kfree(bp->fp[i].tpa_info); 4715 kfree(bp->fp); 4716 kfree(bp->sp_objs); 4717 kfree(bp->fp_stats); 4718 kfree(bp->bnx2x_txq); 4719 kfree(bp->msix_table); 4720 kfree(bp->ilt); 4721 } 4722 4723 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4724 { 4725 struct bnx2x_fastpath *fp; 4726 struct msix_entry *tbl; 4727 struct bnx2x_ilt *ilt; 4728 int msix_table_size = 0; 4729 int fp_array_size, txq_array_size; 4730 int i; 4731 4732 /* 4733 * The biggest MSI-X table we might need is as a maximum number of fast 4734 * path IGU SBs plus default SB (for PF only). 4735 */ 4736 msix_table_size = bp->igu_sb_cnt; 4737 if (IS_PF(bp)) 4738 msix_table_size++; 4739 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4740 4741 /* fp array: RSS plus CNIC related L2 queues */ 4742 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4743 bp->fp_array_size = fp_array_size; 4744 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4745 4746 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4747 if (!fp) 4748 goto alloc_err; 4749 for (i = 0; i < bp->fp_array_size; i++) { 4750 fp[i].tpa_info = 4751 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4752 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4753 if (!(fp[i].tpa_info)) 4754 goto alloc_err; 4755 } 4756 4757 bp->fp = fp; 4758 4759 /* allocate sp objs */ 4760 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4761 GFP_KERNEL); 4762 if (!bp->sp_objs) 4763 goto alloc_err; 4764 4765 /* allocate fp_stats */ 4766 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4767 GFP_KERNEL); 4768 if (!bp->fp_stats) 4769 goto alloc_err; 4770 4771 /* Allocate memory for the transmission queues array */ 4772 txq_array_size = 4773 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4774 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4775 4776 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4777 GFP_KERNEL); 4778 if (!bp->bnx2x_txq) 4779 goto alloc_err; 4780 4781 /* msix table */ 4782 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4783 if (!tbl) 4784 goto alloc_err; 4785 bp->msix_table = tbl; 4786 4787 /* ilt */ 4788 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4789 if (!ilt) 4790 goto alloc_err; 4791 bp->ilt = ilt; 4792 4793 return 0; 4794 alloc_err: 4795 bnx2x_free_mem_bp(bp); 4796 return -ENOMEM; 4797 } 4798 4799 int bnx2x_reload_if_running(struct net_device *dev) 4800 { 4801 struct bnx2x *bp = netdev_priv(dev); 4802 4803 if (unlikely(!netif_running(dev))) 4804 return 0; 4805 4806 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4807 return bnx2x_nic_load(bp, LOAD_NORMAL); 4808 } 4809 4810 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4811 { 4812 u32 sel_phy_idx = 0; 4813 if (bp->link_params.num_phys <= 1) 4814 return INT_PHY; 4815 4816 if (bp->link_vars.link_up) { 4817 sel_phy_idx = EXT_PHY1; 4818 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4819 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4820 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4821 sel_phy_idx = EXT_PHY2; 4822 } else { 4823 4824 switch (bnx2x_phy_selection(&bp->link_params)) { 4825 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4826 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4827 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4828 sel_phy_idx = EXT_PHY1; 4829 break; 4830 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4831 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4832 sel_phy_idx = EXT_PHY2; 4833 break; 4834 } 4835 } 4836 4837 return sel_phy_idx; 4838 } 4839 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4840 { 4841 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4842 /* 4843 * The selected activated PHY is always after swapping (in case PHY 4844 * swapping is enabled). So when swapping is enabled, we need to reverse 4845 * the configuration 4846 */ 4847 4848 if (bp->link_params.multi_phy_config & 4849 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4850 if (sel_phy_idx == EXT_PHY1) 4851 sel_phy_idx = EXT_PHY2; 4852 else if (sel_phy_idx == EXT_PHY2) 4853 sel_phy_idx = EXT_PHY1; 4854 } 4855 return LINK_CONFIG_IDX(sel_phy_idx); 4856 } 4857 4858 #ifdef NETDEV_FCOE_WWNN 4859 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4860 { 4861 struct bnx2x *bp = netdev_priv(dev); 4862 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4863 4864 switch (type) { 4865 case NETDEV_FCOE_WWNN: 4866 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4867 cp->fcoe_wwn_node_name_lo); 4868 break; 4869 case NETDEV_FCOE_WWPN: 4870 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4871 cp->fcoe_wwn_port_name_lo); 4872 break; 4873 default: 4874 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4875 return -EINVAL; 4876 } 4877 4878 return 0; 4879 } 4880 #endif 4881 4882 /* called with rtnl_lock */ 4883 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4884 { 4885 struct bnx2x *bp = netdev_priv(dev); 4886 4887 if (pci_num_vf(bp->pdev)) { 4888 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4889 return -EPERM; 4890 } 4891 4892 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4893 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4894 return -EAGAIN; 4895 } 4896 4897 /* This does not race with packet allocation 4898 * because the actual alloc size is 4899 * only updated as part of load 4900 */ 4901 dev->mtu = new_mtu; 4902 4903 if (!bnx2x_mtu_allows_gro(new_mtu)) 4904 dev->features &= ~NETIF_F_GRO_HW; 4905 4906 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4907 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4908 4909 return bnx2x_reload_if_running(dev); 4910 } 4911 4912 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4913 netdev_features_t features) 4914 { 4915 struct bnx2x *bp = netdev_priv(dev); 4916 4917 if (pci_num_vf(bp->pdev)) { 4918 netdev_features_t changed = dev->features ^ features; 4919 4920 /* Revert the requested changes in features if they 4921 * would require internal reload of PF in bnx2x_set_features(). 4922 */ 4923 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4924 features &= ~NETIF_F_RXCSUM; 4925 features |= dev->features & NETIF_F_RXCSUM; 4926 } 4927 4928 if (changed & NETIF_F_LOOPBACK) { 4929 features &= ~NETIF_F_LOOPBACK; 4930 features |= dev->features & NETIF_F_LOOPBACK; 4931 } 4932 } 4933 4934 /* TPA requires Rx CSUM offloading */ 4935 if (!(features & NETIF_F_RXCSUM)) 4936 features &= ~NETIF_F_LRO; 4937 4938 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu)) 4939 features &= ~NETIF_F_GRO_HW; 4940 if (features & NETIF_F_GRO_HW) 4941 features &= ~NETIF_F_LRO; 4942 4943 return features; 4944 } 4945 4946 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4947 { 4948 struct bnx2x *bp = netdev_priv(dev); 4949 netdev_features_t changes = features ^ dev->features; 4950 bool bnx2x_reload = false; 4951 int rc; 4952 4953 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4954 if (!pci_num_vf(bp->pdev)) { 4955 if (features & NETIF_F_LOOPBACK) { 4956 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4957 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4958 bnx2x_reload = true; 4959 } 4960 } else { 4961 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4962 bp->link_params.loopback_mode = LOOPBACK_NONE; 4963 bnx2x_reload = true; 4964 } 4965 } 4966 } 4967 4968 /* Don't care about GRO changes */ 4969 changes &= ~NETIF_F_GRO; 4970 4971 if (changes) 4972 bnx2x_reload = true; 4973 4974 if (bnx2x_reload) { 4975 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4976 dev->features = features; 4977 rc = bnx2x_reload_if_running(dev); 4978 return rc ? rc : 1; 4979 } 4980 /* else: bnx2x_nic_load() will be called at end of recovery */ 4981 } 4982 4983 return 0; 4984 } 4985 4986 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue) 4987 { 4988 struct bnx2x *bp = netdev_priv(dev); 4989 4990 /* We want the information of the dump logged, 4991 * but calling bnx2x_panic() would kill all chances of recovery. 4992 */ 4993 if (!bp->panic) 4994 #ifndef BNX2X_STOP_ON_ERROR 4995 bnx2x_panic_dump(bp, false); 4996 #else 4997 bnx2x_panic(); 4998 #endif 4999 5000 /* This allows the netif to be shutdown gracefully before resetting */ 5001 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 5002 } 5003 5004 static int __maybe_unused bnx2x_suspend(struct device *dev_d) 5005 { 5006 struct pci_dev *pdev = to_pci_dev(dev_d); 5007 struct net_device *dev = pci_get_drvdata(pdev); 5008 struct bnx2x *bp; 5009 5010 if (!dev) { 5011 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5012 return -ENODEV; 5013 } 5014 bp = netdev_priv(dev); 5015 5016 rtnl_lock(); 5017 5018 if (!netif_running(dev)) { 5019 rtnl_unlock(); 5020 return 0; 5021 } 5022 5023 netif_device_detach(dev); 5024 5025 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 5026 5027 rtnl_unlock(); 5028 5029 return 0; 5030 } 5031 5032 static int __maybe_unused bnx2x_resume(struct device *dev_d) 5033 { 5034 struct pci_dev *pdev = to_pci_dev(dev_d); 5035 struct net_device *dev = pci_get_drvdata(pdev); 5036 struct bnx2x *bp; 5037 int rc; 5038 5039 if (!dev) { 5040 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5041 return -ENODEV; 5042 } 5043 bp = netdev_priv(dev); 5044 5045 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 5046 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 5047 return -EAGAIN; 5048 } 5049 5050 rtnl_lock(); 5051 5052 if (!netif_running(dev)) { 5053 rtnl_unlock(); 5054 return 0; 5055 } 5056 5057 netif_device_attach(dev); 5058 5059 rc = bnx2x_nic_load(bp, LOAD_OPEN); 5060 5061 rtnl_unlock(); 5062 5063 return rc; 5064 } 5065 5066 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume); 5067 5068 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 5069 u32 cid) 5070 { 5071 if (!cxt) { 5072 BNX2X_ERR("bad context pointer %p\n", cxt); 5073 return; 5074 } 5075 5076 /* ustorm cxt validation */ 5077 cxt->ustorm_ag_context.cdu_usage = 5078 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5079 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 5080 /* xcontext validation */ 5081 cxt->xstorm_ag_context.cdu_reserved = 5082 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5083 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 5084 } 5085 5086 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 5087 u8 fw_sb_id, u8 sb_index, 5088 u8 ticks) 5089 { 5090 u32 addr = BAR_CSTRORM_INTMEM + 5091 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 5092 REG_WR8(bp, addr, ticks); 5093 DP(NETIF_MSG_IFUP, 5094 "port %x fw_sb_id %d sb_index %d ticks %d\n", 5095 port, fw_sb_id, sb_index, ticks); 5096 } 5097 5098 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5099 u16 fw_sb_id, u8 sb_index, 5100 u8 disable) 5101 { 5102 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5103 u32 addr = BAR_CSTRORM_INTMEM + 5104 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5105 u8 flags = REG_RD8(bp, addr); 5106 /* clear and set */ 5107 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5108 flags |= enable_flag; 5109 REG_WR8(bp, addr, flags); 5110 DP(NETIF_MSG_IFUP, 5111 "port %x fw_sb_id %d sb_index %d disable %d\n", 5112 port, fw_sb_id, sb_index, disable); 5113 } 5114 5115 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5116 u8 sb_index, u8 disable, u16 usec) 5117 { 5118 int port = BP_PORT(bp); 5119 u8 ticks = usec / BNX2X_BTR; 5120 5121 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5122 5123 disable = disable ? 1 : (usec ? 0 : 1); 5124 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5125 } 5126 5127 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5128 u32 verbose) 5129 { 5130 smp_mb__before_atomic(); 5131 set_bit(flag, &bp->sp_rtnl_state); 5132 smp_mb__after_atomic(); 5133 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5134 flag); 5135 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5136 } 5137